В.Т. Пчентлешев

АНАЛИТИЧЕСКИЙ МЕТОД ВЫЧИСЛЕНИЯ ЗНАЧЕНИЯ ЧИСЛА ПИ

В.Т. Пчентлешев

АНАЛИТИЧЕСКИЙ МЕТОД ВЫЧИСЛЕНИЯ ЗНАЧЕНИЯ ЧИСЛА ПИ

Издательство «Перо» Москва, 2021 УДК 51 ББК 22.1 П92

Книга издана за счет средств автора, в авторской редакции.

В.Т. Пчентлешев. Аналитический метод вычисления значения числа ПИ. – М.: Издательство «Перо», 2021 – 294 с.

ISBN 978-5-00189-333-2

В настоящей книге предложен аналитический, непосредственно связанный с геометрией, круга, цилиндра, тора, конуса и шара, метод вычисления значения числа ПИ (**π**) с какой угодно точностью. Доказано, что число ПИ, стоящее в формулах для вычисления, длины окружности, площади круга, площади поверхности цилиндра, объема цилиндра, площади поверхности тора, объема тора, площади поверхности конуса, объема конуса, площади поверхности сферы и объем шара – имеет разные значения.

Книга будет полезна математикам, а также студентам, преподавателям и всем любителям математики.

In this book, an analytical method is proposed that is directly related to the geometry of a circle, cylinder, torus, cone and ball, a method for calculating the value of the number PI (π) with any accuracy. It is shown that the number PI, which is used in formulas for calculating the circumference, the area of the circle, the surface area of the cylinder, the volume of the cylinder, the surface area of the torus, the volume of the torus, the surface area of the cone, the volume of the cone, the surface area of the sphere and the volume of the ball, has different values.

The book will be useful for mathematicians, as well as students, teachers and all lovers of mathematics.

ISBN 978-5-00189-333-2 © В.Т. Пчентлешев, 2021

Оглавление

Оглавление	3
Предисловие	6
Введение	7
Глава 1	
§1. Положения, используемые при доказательствах	15
Глава 2	
§2. Вычисление длины окружности и площади круга	19
§2.1. Вычисление длины окружности	19
§2.1.1. Метод вписанного многоугольника	19
§2.1.2. Метод описанного многоугольника	22
§2.1.3. Результирующий метод.	25
	27

§2. Вычисление длины окружности и площади круга	19
§2.1. Вычисление длины окружности	19
§2.1.1. Метод вписанного многоугольника	19
§2.1.2. Метод описанного многоугольника	22
§2.1.3. Результирующий метод	25
§2.2. Вычисление площади круга	27
§2.2.1. Метод вписанного многоугольника	27
§2.2.2. Метод описанного многоугольника	28
§2.2.3. Результирующий метод	29
§2.3. Выводы	31
§2.4. О решение задачи квадратуры круга	36

Глава 3

§3. Вычисление площади поверхности и объема цилиндра	38
§3.1. Вычисление площади поверхности цилиндра	38
§3.1.1. Метод вписанного многогранника	38
§3.1.2. Метод описанного многогранника	42
§3.1.3. Результирующий метод	49
§3.2. Вычисление объема цилиндра	51
§3.2.1. Метод вписанного многогранника	51
§3.2.2. Метод описанного многогранника	52
§3.2.3. Результирующий метод	53
§3.3. Выводы	55

Глава 4

§4. Вычисление площади поверхности и объема тора	57
§4.1. Вычисление площади поверхности тора	57
§4.1.1. Метод вписанного многогранника	57
§4.1.2. Метод описанного многогранника	65
§4.1.3. Результирующий метод	74
§4.2. Вычисление объема тора	76
§4.2.1. Метод вписанного многогранника	76
§4.2.2. Метод описанного многогранника	77
§4.2.3. Результирующий метод	78
§4.3. Выводы	79

Глава 5

§5. Вычисление площади поверхности и объема конуса	81
§5.1. Вычисление площади поверхности конуса	81
§5.1.1. Метод вписанного многогранника	81
§5.1.2. Метод описанного многогранника	86
§5.1.3. Результирующий метод	92
§5.2. Вычисление объема конуса	95
§5.2.1. Метод вписанного многогранника	95
§5.2.2. Метод описанного многогранника	96
§5.2.3. Результирующий метод	96
§5.3. Выводы	98

Глава 6

§6. Вычисление площади поверхности сферы и объема шара 10	0
§6.1. Вычисление площади поверхности сферы 10	0
§6.1.1. Метод вписанного многогранника 10	0
§6.1.1.1. Вычисление площади основания первой пирамиды 10)0
§6.1.1.2. Вычисление площади основания второй пирамиды 11	5
§6.1.1.3. Вычисление площади основания третьей пирамиды 12	9
	10
§6.1.1.4. Вычисление площади основания последнеи пирамиды 14	43
§6.1.1.4. Вычисление площади основания последнеи пирамиды 14 §6.1.1.5. Вычисление площади поверхности всей сфера 15	43 53
 §6.1.1.4. Вычисление площади основания последнеи пирамиды 14 §6.1.1.5. Вычисление площади поверхности всей сфера	43 53 10
 §6.1.1.4. Вычисление площади основания последней пирамиды 14 §6.1.1.5. Вычисление площади поверхности всей сфера	43 53 i0 0
 §6.1.1.4. Вычисление площади основания последней пирамиды 14 §6.1.1.5. Вычисление площади поверхности всей сфера	43 53 60 0 70

§6.1.2.4. Вычисление площади основания последней пирамиды	190
§6.1.2.5. Вычисление площади поверхности всей сфера	200
§6.1.3. Результирующий метод	205
§6.2. Вычисление объема шара	214
§6.2.1. Метод вписанного многогранника	214
§6.2.1.1. Вычисление объема первой пирамиды	214
§6.2.1.2. Вычисление объема второй пирамиды	221
§6.2.1.3. Вычисление объема третьей пирамиды	228
§6.2.1.4. Вычисление объема последней пирамиды	235
§6.2.1.5. Вычисление объема всего шара	244
§6.2.2. Метод описанного многогранника	258
§6.2.2.1. Вычисление объема первой пирамиды	258
§6.2.2.2. Вычисление объема второй пирамиды	259
§6.2.2.3. Вычисление объема третьей пирамиды	261
§6.2.2.4. Вычисление объема последней пирамиды	262
§6.2.2.5. Вычисление объема всего шара	265
§6.2.3. Результирующий метод	271
§6.3. Выводы	284
Заключение	288
Литература	293

Предисловие

Автора всегда интересовали задачи, которые считались неразрешимыми. Одной из таких задач является задача квадратуры круга. Автору хотелось попробовать свои силы в решении этой задачи. Первые же полученные результаты оказались настолько неожиданными и необычными, что автор поначалу думал, что он в чем то ошибается. Настолько невероятной казалась сама мысль о том, что в течение нескольких тысячелетий (по сути, за всю историю человеческой цивилизации) никто из математиков (и вообще из образованных людей) не обратил внимание на то, что числа ПИ, стоящие в формулах для вычисления, длины окружности, площади круга, площади поверхности цилиндра, объема цилиндра, площади поверхности тора, объема тора, площади поверхности конуса, объема конуса, площади поверхности сферы и объем шара – могут иметь разные значения. Со временем автору пришлось столкнуться с похожей ситуацией в других науках (в частности, в физике), когда казалась бы общепринятые истины, на самом деле оказываются никакими не истинами, а произвольно принятыми (для некоей определенности) положениями, никакого отношения не имеющими к действительности. Основная часть предлагаемой работы была закончена автором в 90-е годы XX века. Желание опубликовать данную работу пришло автору не сразу. Автор надеется, что читатель не напрасно потратит свое время чтением предлагаемой работы.

Введение

Вычисление значения числа ПИ (общепринятое обозначение числа ПИ – это буква греческого алфавита " π ") связано с вычислением длины окружности, и с решением одной из знаменитых задач древности – квадратуры круга.

В разное время решением данной задачи занимались многие математики.

Древние шумеры располагали приближенным значением числа $\pi = 3 \frac{1}{8}$, полученным, вероятно, в результате конкретных измерений длины окружности ([1], c.133).

В Древнем Китае имелось несколько приближенных значений числа π . Лю Ци получил значение $\pi = 3,15$, а Ван Фань получил значение $\pi = 3,1556$ ([2], c.264).

Индийский математик Ариабхатта, используя 384-угольники, получил значение числа $\pi = 3,1416$ ([3], c.68).

Более точное значение числа π в Индии получали путем разложения дуг окружности по степеням тангенса типа ([3], с.69):

$$\varphi = \tan \varphi - \frac{\tan^3 \varphi}{3} + \frac{\tan^5 \varphi}{5} - \cdots, (B.1)$$

При $\phi = \frac{\pi}{4}$ получается ряд:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \cdots$$
, (B. 2)

Таким образом, уравнения (В.1) и (В.2), по всей вероятности, были первыми представлениями числа π в виде аналитического выражения.

Архимед в работе «Измерение круга» ([4], с.266-271) вычислял значение числа π используя для этого метод впи-

санных и описанных многоугольников, тоесть, чисто геометрический метод. В этом методе длина окружности получается больше периметра вписанного в круг многоугольника, но меньше периметра описанного около круга многоугольника. Таким образом, определялись нижние и верхние границы значения числа π (а, следовательно, взяв, например, среднеарифметическое от нижней и верхней границы можно получить некое искомое значение числа π).

В Европе первым математиком, давшим аналитическое выражение для вычисления значения числа π с какой угодно точностью, был французский математик Виет. Значение числа π он вычислял в виде бесконечного произведения вида ([3], с.83).

$$\frac{\pi}{2} = \frac{1}{\sqrt{\frac{1}{2}} \times \sqrt{\frac{1}{2} + \frac{1}{2}} \times \sqrt{\frac{1}{2}}} \times \sqrt{\frac{1}{2} + \cdots}, (B.3)$$

Гюйгенс Х. в работе «О найденной величине круга» ([5], с.103-166) вычислял значение числа π методом вписанных и описанных многоугольников (тем же методом, который использовал Архимед).

Л. Эйлер, согласно работы Юшкевича А.П. «Леонард Эйлер о квадратуре круга» ([6], с.159-210) вычислял значение числа π аналитическим методом, используя для этого бесконечные ряды, например, типа:

$$\pi = \frac{28}{10} \times \left(1 + \frac{2}{3} \times \frac{2}{100} + \frac{2 \times 4}{3 \times 5} \times \left(\frac{2}{100} \right)^2 + \cdots \right), (B.4)$$

Из [16] известны еще десятки формул для вычисления значения числа **π**, некоторые из которых приведены ниже.

Формула Валлиса:

$$\frac{\pi}{2} = \frac{2}{1} \times \frac{2}{3} \times \frac{4}{3} \times \frac{4}{5} \times \frac{6}{5} \times \frac{6}{7} \times \frac{8}{7} \times \frac{8}{9} \times \dots, (B.5)$$

Ряд Лейбница:

$$\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots, (B.6)$$

Другие ряды:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots, (B.7)$$
$$\pi = \sum_{k=0}^{\infty} \frac{(-1)^k}{4^k} \times \left(\frac{2}{4k+1} + \frac{2}{4k+2} + \frac{2}{4k+3}\right), (B.8)$$

Ряд индийского математика Сриниваса Рамануджана, найденный им в начале XX века:

$$\frac{1}{\pi} = \frac{2 \times \sqrt{2}}{9801} \times \sum_{k=0}^{\infty} \frac{(4k)! (1103 + 26390k)}{(k!)^4 \times 396^{4k}}, (B.9)$$

Ряд братьев Чудновских, найденный ими в 1987 году, который используется в программах, вычисляющих значение числа π на персональных компьютерах:

$$\frac{1}{\pi} = \frac{1}{426880 \times \sqrt{10005}} \times \sum_{k=0}^{\infty} \frac{(6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 \times (-640320)^{3k}}, (B. 10)$$

Формула Бэйли-Боруэйна-Плаффа, открытая в 1997 году Саймоном Плаффом:

$$\pi = \sum_{k=0}^{\infty} \frac{1}{16^k} \times \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6}\right), (B.11)$$

Подводя некоторый итог вышеизложенному, можно отметить, что с момента возникновения задачи вычисления значения числа π и до настоящего времени, известны три принципиально разных способа вычисления значения числа π .

Первый – непосредственное измерение длины окружности, например, при помощи гибкой нити.

Второй – геометрический метод, использующий вписанные и описанные многоугольники. Данный метод позволяет определить числовой диапозон, в котором будет находится число π , но не само число π .

Третий — аналитический метод, использующий для вычисления значения числа π уравнения типа (B.1÷B.11).

Относительно вышеуказанного третьего метода нужно сказать следующее. Уравнения типа (B.1÷B.11), вообще говоря, к геометрии круга не имеют никакого отношения, и вот почему. С левой стороны равенства у них стоит искомое число π , а с правой стороны равенства стоит набор цифр, в виде бесконечного произведения или ряда.

Однако, число π , по своей природе, имеет непосредственное отношение к геометрии круга, так как оно является коэффициентом пропорциональности в формуле для определения длины окружности и площади круга.

Автор не видит какая связь существует между числом π , стоящем в формуле для определения длины окружности $L_{\text{окр}} = 2 \times \pi \times r$, где r – радиус окружности, и уравнениями типа (B.1÷B.11).

Невозможно доказать, что уравнения типа (В.1÷В.11) имеют отношение к геометрии круга. В это можно только верить – что в науке в принципе недопустимо. Если известен числовой диапозон, в котором находится искомое число, то всегда можно подобрать бесконечный ряд или бесконечное произведение, численное значение которого будет находится в данном числовом диапозоне. Но невоз-

можно доказать, что вычисленное таким методом число – это именно искомое число π . Это подтверждается тем простым фактом, что уравнения типа (B.1÷B.11), по форме, совершенно разные уравнения. Вычисленные по уравнениям типа (B.1÷B.11) числа π – количественно отличаются друг от друга (начиная с определенного знака после запятой).

Ламберт И.Г. в работ «Предварительные сведения ищущих квадратуру и спрямление круга» ([5], с.167-196) и Лежандр А.М. в работе «Доказательство того, что отношение длины окружности к диаметру и квадрат его суть иррациональные числа» ([5], с.197-210), используя бесконечные ряды, которые не имели никакого отношения к геометрии круга, вычисляли не значение числа π как таковое, а определяли его природу, тоесть, его иррациональность.

Таким образом, берется, например, бесконечный ряд, численное значение которого лежит в том же числовом диапозоне, что и значение числа π , но который непосредственно не имеет никакого отношения к геометрии круга и к числу π . Затем над этим рядом производятся те или иные действия, в результате которых получается, например, что данный ряд является иррациональным. Из этого делается вывод, что и число π иррационально.

Но если для анализа природы числа π взять выражение, не имеющее никакого отношения к геометрии круга, а, следовательно, и к числу π , то на каком основании свойства этого выражения можно переносить на число π ? В это можно только верить - что в науке в принципе недопустимо.

Вычислять площадь поверхности сферы и объем шара умели уже в древности.

В частности Архимед вписывал в круг и описывал около круга правильные многоугольники, число сторон у

которых кратно 4, и вращал круг и эти многоугольники вокруг диаметра, соединяющего две противоположные вершины многоугольника. В результате вращения круга получался шар, а в результате вращения многоугольников получались тела вращения, составленные из нескольких усеченных конусов. Вычисление поверхности тел вращения сводилось к определению боковых поверхностей всех усеченных конусов. При этом, поверхность шара будет находится между поверхностью описанного тела вращения и поверхностью вписанного тела вращения ([7], с.121).

Открытие интегрального счисления открыло новые возможности для вычисления площади поверхности шара и объема шара.

В частности, объем шара согласно ([8], с.350-351) вычисляется как интеграл от его площади F_x поперечного сечения:

$$V_{\rm III} = \int_{a}^{b} F_x \times d_x = \dots = \frac{4}{3} \times \pi \times R^3, (B. 12)$$

Площадь поверхности сферы вычисляется разбиением поверхности сферы на элементарные участки в виде усеченных конусов, и вычисление боковой поверхности каждого элементарного усеченного конуса, и затем суммирование всех боковых поверхностей элементарных усеченных конусов ([8], с.356).

Несколько иным способом вычисляется площадь поверхности сферы и объем шара согласно ([9], с.298-303). Как извесно, уравнение окружности имеет вид:

$$x^2 + y^2 = R^2$$
, (B. 13)

Где,

х, у – координаты,

R – радиус окружности.Откуда,

$$y^2 = R^2 - x^2$$
, (B. 14)

Объем шара с использование интеграла равен:

$$V_{\rm III} = \int_{-R}^{+R} y^2 \times dx = \dots = \frac{4}{3} \times \pi \times R^3, (B. 15)$$

Площадь поверхности сферы находится следующим образом. Поверхность шара разбивается на элементарные сферические треугольники. Вершины треугольников соединяются с центром шара. Таким образом получаются элементарные пирамиды. Объем элементарной пирамиды равен:

$$\Delta V_{\rm n} = \frac{1}{3} \times \Delta S \times h, (B. 16)$$

Где,

 ΔS – площадь основания элементарной пирамиды,

h – высота элементарной пирамиды.

Полный объем шара будет равен сумме объемов элементарных пирамид, тоесть:

$$V_{\rm III} = \sum_{0}^{S} \frac{1}{3} \times \Delta S \times h, (B. 17)$$

При $\Delta S \rightarrow 0$ и h $\rightarrow R$ получим:

$$V_{\text{III}} = \lim_{\Delta S \to 0} \sum_{0}^{S} \frac{1}{3} \times \Delta S \times h = \int_{0}^{S} \frac{1}{3} \times R \times dS = \frac{1}{3} \times R \times S, (B. 18)$$

Однако, объем шара найден по формуле (В.15). Приравняем уравнения (В.15) и (В.18):

$$\frac{4}{3} \times \pi \times R^3 = \frac{1}{3} \times R \times S, (B. 19)$$

Откуда определяется площадь поверхности сферы S_{сф}.

$$S_{\rm cb} = 4 \times \pi \times R^2$$
, (B. 20)

Как видно из вышеизложенного, вне зависимости от способа вычисления площади поверхности сферы или объема шара, в формулах стоит одно и тоже число π .

Это следует из того, что для вычисления боковой поверхности усеченных конусов и объема усеченных конусов, на которые разбивается шар, используется одно и тоже число π , определяемое для круга.

Таким образом, считается, как само собой разумеющееся, что число π , стоящее в формулах для вычисления, длины окружности, площади круга, площади поверхности цилиндра, объема цилиндра, площади поверхности тора, объема тора, площади поверхности конуса, объема конуса, площади поверхности сферы и объема шара – имеет одно и тоже значение.

Автором предлагается аналитический, непосредственно связанный с геометрией круга, цилиндра, тора, конуса и шара, метод вычисления значения числа π с какой угодно точностью, с помощью которого будет доказано, что вышеуказанное утверждение неверно.

Глава 1

§1. Положения, используемые при доказательствах

Для доказательства того, что число π , стоящее в формулах для вычисления, длины окружности, площади круга, площади поверхности цилиндра, объема цилиндра, площади поверхности тора, объема тора, площади поверхности конуса, объема конуса, площади поверхности сферы и объема шара, имеет разные значения, будут использованы положения, считающиеся общепризнанными в Геометрии и именуемые в дальнейшем **Правилами**.

Правило 1.1 (П.1.1). Высота, биссектриса и медиана, опущенные на одну и туже сторону треугольника совпадают, если две другие стороны треугольника равны ([10], с.183).

Правило 1.2 (П.1.2). Соотношения прямоугольного треугольника: $\sin \alpha = \frac{a}{c}$, $\cos \alpha = \frac{b}{c}$, $\tan \alpha = \frac{a}{b}$, где, а и b – катеты, с – гипотенуза, α – прилегающий к гипотенузе угол ([10], с.190).

Правило 1.3 (П.1.3). Площадь треугольника равна половине произведения его стороны на его высоту, опущенную на эту сторону из противолежащего этой стороне угла ([10], с.183).

Правило 1.4 (П.1.4). Прямая пренадлежит плоскости, если она проходит через две точки, пренадлежащие данной плоскости ([12], с.44).

Правило 1.5 (П.1.5). Две плоскости взаимно перпендикулярны, если одна из плоскостей имеет прямую, перпендикулярную данной плоскости ([11], с.55). Следствие 1.5 (С.1.5). Перпендикуляр к плоскости лежит в плоскости, перпендикулярной данной плоскости.

Правило 1.6 (П.1.6). Прямая перпендикулярна плоскости, если она перпендикулярно любым двум пересекающимся прямым данной плоскости ([11], с.55).

Следствие 1.6 (С.1.6). Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в данной плоскости и пересекающейся с данной прямой.

Правило 1.7 (П.1.7). Мерой угла между двумя плоскостями служит линейный угол, образованный двумя прямыми – сечениями граней этого угла плоскостью, перпендикулярной к их ребру ([13], с.192).

Следствие 1.7 (С.1.7). Плоскость, перпендикулярная их ребру, тоесть, линия их пересечения, в соответствии со С.1.5 будет перпендикулярна каждой из пересекающихся плоскостей. Или иными словами, если каждая из двух пересекающихся плоскостей перпендикулярна другой плоскости, то линия пересечения этих плоскостей перпендикулярна данной плоскости.

Правило 1.8 (П.1.8). Треугольники равны если: три стороны их соответственно равны, две стороны и угол между ними равны, сторона и прилегающие к ней углы соответственно равны ([14], с.71).

Правило 1.9 (П.1.9). Соотношения прямоугольного треугольника: $c^2 = a^2 + b^2$, где, а и b – катеты, с – гипотенуза ([10], с.183).

Правило 1.10 (П.1.10). Треугольники подобны если: две стороны одного треугольника пропорциональны двум сторонам другого труеугольника, а углы, заключенные между ними, равны ([10], с.183).

Правило 1.11 (П.1.11). Соотношения подобных треугольников: $\frac{a'}{a} = \frac{b'}{a} = \frac{c'}{a}$, где, a', b', c' – стороны одного треугольника, a, b, c – стороны другого треугольника ([15], c.342).

Правило 1.12 (П.1.12). Теорема косинусов: $c^2 = a^2 + b^2 - 2 \times a \times b \times \cos \gamma$, где, а, b, c – стороны треугольника, γ – угол между известными сторонами треугольника а и b ([10], c.190).

Правило 1.13 (П.1.13). Объем пирамиды равен: $V_{\Pi} = \frac{1}{3} \times S_{\text{осн}} \times h$, где, $S_{\text{осн}} -$ площадь основания пирамиды, h – высота пирамиды ([10], с.187).

Правило 1.14 (П.1.14). Площадь трапеции равна: $S_{\text{тр}} = \left(\frac{a+b}{2}\right) \times h$, где, а, b – противолежащие стороны трапеции, h – высота трапеции, соединяющая противолежащие стороны а и b ([10], с.184).

Правило 1.15 (П.1.15). Длина окружности равна $L_{\text{окр}} = \pi \times d$, где, π – число ПИ, d – диаметр окружности ([10], c.185).

Правило 1.16 (П.1.16). Площадь круга равна $S_{\text{кр}} = \pi \times r^2$, где, π – число ПИ, г – радиус окружности ([10], с.185).

Правило 1.17 (П.1.17). Площадь прямоугольника равна $S_{np} = a \times b$, где, a, b – стороны прямоугольника ([10], c.184).

Правило 1.18 (П.1.18). Площадь поверхности цилиндра равна $S_{\rm q} = 2 \times r \times \pi \times (r + H_{\rm q})$, где, r - радиус основания цилиндра, $\pi -$ число ПИ, $H_{\rm q}$ – высота цилиндра ([10], с.188).

Правило 1.19 (П.1.19). Объем цилиндра равен $V_{\rm II} = \pi \times r^2 \times H_{\rm II}$, где, г – радиус основания цилиндра, π – число ПИ, $H_{\rm II}$ – высота цилиндра ([10], с.188).

Правило 1.20 (П.1.20). Площадь поверхности тора равна $S_{\rm T} = 4 \times r \times R \times \pi^2$, где, r – радиус образующей окружности тора, R – радиус направляющей окружности тора, π – число ПИ ([10], с.189).

Правило 1.21 (П.1.21). Объем тора равен $V_{\rm T} = 2 \times \pi^2 \times R \times r^2$, где, г – радиус образующей окружности тора, R – радиус направляющей окружности тора, π – число ПИ ([10], с.189).

Правило 1.22 (П.1.22). Площадь поверхности конуса равна $S_{\kappa} = \pi \times r \times (r + L_{\kappa})$, где, π – число ПИ, r – радиус основания конуса, L_{κ} – образующая конуса ([10], с.189).

Правило 1.23 (П.1.23). Объем конуса равен $V_{\kappa} = \frac{1}{3} \times r^2 \times \pi \times H_{\kappa}$, где, г – радиус основания конуса, π – число ПИ, H_{κ} – высота конуса ([10], с.189).

Правило 1.24 (П.1.24). Площадь поверхности сферы равна $S_{c\phi} = 4 \times \pi \times R^2$, где, π – число ПИ, R – радиус сферы ([10], с.189).

Правило 1.25 (П.1.25). Объем шара равен $V_{\kappa} = \frac{4}{3} \times \pi \times R^3$, где, π – число ПИ, R – радиус шара ([10], с.189).

Глава 2

§2. Вычисление длины Окружности и площади Круга

§2.1. Вычисление длины Окружности

§2.1.1. Метод вписанного многоугольника

На Рис.2.1.1.1 показана окружность с центром в точке О, радиусами |OA| = |OB| = r, угол между которыми равен α .

Рис.2.1.1.1.

Соединив точки A и B между собой, получим равнобедренный треугольник OAB (так как | OA | = | OB |). Из точки O опустим перпендикуляр на сторону | AB | треугольника OAB. Получим два прямоугольных треугольника OAC и OBC. Так как треугольник OAB равнобедренный (доказано ранее), и что | $OC | \perp | AB |$ (принято ранее), то в соответствии с **П.1.1** | *OC* | является, одновременно, и высотой и биссектрисой и медианой треугольника ОАВ. Следовательно, | *AC* | = | *CB* |, угол АОС равен углу ВОС и равен $\frac{\alpha}{2}$.

Рассмотрим прямоугольный треугольник ОАС (доказано ранее), у которого известна гипотенуза | OA | = r, (начальное условие), и прилегающий к ней угол $AOC = \frac{\alpha}{2}$, (доказано ранее). Определим согласно **П.1.2** его катеты | OC | и | AC |:

$$|OC| = |OA| \times \cos\frac{\alpha}{2} = r \times \cos\frac{\alpha}{2}, (2.1.1.1)$$
$$|AC| = |OA| \times \sin\frac{\alpha}{2} = r \times \sin\frac{\alpha}{2}, (2.1.1.2)$$

Рассмотрим треугольник ОАВ. Так как |AC| = |CB| (доказано ранее), следовательно, сторона |AB| будет равна:

$$|AB| = |AC| + |CB| = 2 \times |AC| = 2 \times r \times \sin\frac{\alpha}{2}, (2.1.1.3)$$

Чем меньше будет угол α , тем меньше длина стороны | *AB* | треугольника ОАВ будет отличатся от длины дуги окружности \widehat{AB} . Умножив значение стороны | *AB* |, вычисленное по формуле (2.1.1.3), на число таких сторон, укладывающихся по длине окружности, тоесть, на $\frac{360}{\alpha}$, получим (Рис.2.1.1.2) полную длину окружности L_{плокр.в}:

$$L_{\text{дл.окр.в}} = |AB| \times \frac{360}{\alpha} = 2 \times r \times \sin\frac{\alpha}{2} \times \frac{360}{\alpha} = 2 \times r \times \pi_{\text{дл.окр.в}} = d \times \pi_{\text{дл.окр.в}} (2.1.1.4)$$

Где,

d – диаметр окружности,

 $\pi_{\rm дл. окр. в}$ – коэффициент, стоящий в формуле для вычисления длины окружности.

Рис.2.1.1.2.

Как видно из Рис.2.1.1.2, по формуле (2.1.1.4) вычисляется, на самом деле, не длина окружности, а периметр вписанного в окружность многоугольника, так как точно вычислять длину кривых линий (каковой, в частности, является окружность) мы не умеем. Мы умеем точно вычислять только длины прямых линий.

§2.1.2. Метод описанного многоугольника

На Рис.2.1.2.1 показана окружность с центром в точке О, радиусом $|OC_0| = r$. Проведем через точку С₀ прямую линию, касательную к окружности, а, следовательно, пер-пендикулярную к радиусу $|OC_0|$.

Рис.2.1.2.1.

Проведем из точки О прямую линию под углом $\frac{\alpha}{2}$ к радиусу | OC_0 | до ее пересечения с вышеуказанной касательной к окружности в точке A_0 . При этом, данная прямая линия пересекает окружность в точке А. Проведем из точки О прямую линию под углом $\frac{\alpha}{2}$ к радиусу | OC_0 | до ее пересечения с вышеуказанной касательной к окружности в точке B_0 . При этом, данная прямая линия пересекает окружность в точке В. Таким образом, угол A_0OC_0 равен углу B_0OC_0 и равен $\frac{\alpha}{2}$, а угол A_0OB_0 равен α . Таким образом мы получили равнобедренный треугольник OA₀B₀ (так как | $OC_0 | \perp | A_0B_0 |$, углы A_0OC_0 и B_0OC_0 равны между собой, а, следовательно, | $OA_0 | = | OB_0 |$), состоящий из двух прямоугольных треугольников OA₀C₀ и OB₀C₀. Так как треугольник OA₀B₀ равнобедренный (доказано ранее), и что | $OC_0 | \perp | A_0B_0 |$ (принято ранее), то в соответствии с **П.1.1** | $OC_0 |$ является, одновременно, и высотой и биссектрисой и медианой треугольника OA₀B₀. Следовательно, | $A_0C_0 | = | C_0B_0 |$.

Рассмотрим прямоугольный треугольник OA_0C_0 (доказано ранее), у которого известен катет | OC_0 | = r (начальное условие), и прилегающий к нему угол $A_0OC_0 = \frac{\alpha}{2}$ (начальное условие). Определим согласно **П.1.2** его катет | A_0C_0 |:

$$|A_0C_0| = |OC_0| \times \tan \frac{\alpha}{2} = r \times \tan \frac{\alpha}{2}$$
, (2.1.2.1)

Рассмотрим треугольник ОА $_0B_0$. | A_0C_0 | = | C_0B_0 | (доказано ранее), следовательно, сторона | A_0B_0 | будет равна:

$$|A_0B_0| = |A_0C_0| + |C_0B_0| = 2 \times |A_0C_0| = 2 \times r \times \tan\frac{\alpha}{2}, \quad (2.1.2.2)$$

Чем меньше будет угол α , тем меньше длина стороны | A_0B_0 | треугольника OA_0B_0 будет отличатся от длины дуги окружности \widehat{AB} . Умножив значение стороны | A_0B_0 |, вычисленное по формуле (2.1.2.2), на число таких сторон, укладывающихся по длине окружности, тоесть, на $\frac{360}{\alpha}$, получим (Рис.2.1.2.2) полную длину окружности $L_{дл.окр.o}$:

$$L_{\text{дл.окр.о}} = |A_0B_0| \times \frac{360}{\alpha} = 2 \times r \times \tan \frac{\alpha}{2} \times \frac{360}{\alpha} = 2 \times r \times \pi_{\text{дл.окр.o}} = d \times \pi_{\text{дл.окр.o,}} (2.1.2.3)$$

Где,

 $\pi_{\rm дл. oкр. o}$ — коэффициент, стоящий в формуле для вычисления длины окружности.

Рис.2.1.2.2.

Как видно из Рис.2.1.2.2, по формуле (2.1.2.3) вычисляется, на самом деле, не длина окружности, а периметр описанного около окружности многоугольника, так как точно вычислять длину кривых линий (каковой, в частности, является окружность) мы не умеем. Мы умеем точно вычислять только длины прямых линий.

§2.1.3. Результирующий Метод

При использовании метода вписанного в окружность многоугольника в §2.1.1 была найдена формула (2.1.1.4) для вычисления длины окружности, имеющая вид:

$$L_{\text{дл.окр.в}} = 2 \times r \times \sin \frac{\alpha}{2} \times \frac{360}{\alpha} = 2 \times r \times \pi_{\text{дл.окр.в}}, (2.1.3.1)$$

Формула (2.1.3.1) является нижней границей для вычисления значения длины окружности.

При использовании метода описанного около окружности многоугольника в §2.1.2 была найдена формула (2.1.2.3) для вычисления длины окружности, имеющая вид:

$$L_{\text{дл.окр.o}} = 2 \times r \times \tan \frac{\alpha}{2} \times \frac{360}{\alpha} = 2 \times r \times \pi_{\text{дл.окр.o}}, (2.1.3.2)$$

Формула (2.1.3.2) является верхней границей для вычисления значения длины окружности.

Как видно из формул (2.1.3.1) и (2.1.3.2), они по форме не равны между собой.

Искомая длина окружности находится между вышеуказанными нижней и верхней границами. Поэтому, результирующая длина окружности (Рис.2.1.3.1) может быть вычислена как среднеарифметическое от формул (2.1.3.1) и (2.1.3.2):

$$L_{\text{дл.окр.р.}} = \frac{L_{\text{дл.окр.в.}} + L_{\text{дл.окр.o}}}{2} =$$

$$= \frac{\left(2 \times r \times \sin\frac{\alpha}{2} \times \frac{360}{\alpha}\right) + \left(2 \times r \times \tan\frac{\alpha}{2} \times \frac{360}{\alpha}\right)}{2} =$$

$$= 2 \times r \times \frac{180}{\alpha} \times \left(\sin\frac{\alpha}{2} + \tan\frac{\alpha}{2}\right) = 2 \times r \times \pi_{\text{дл.окр.p.}} =$$

$$= d \times \pi_{\text{дл.окр.p.}} (2.1.3.3)$$

Где,

 $\pi_{\rm дл. okp. p}$ – коэффициент, стоящий в формуле для вычисления длины окружности.

 $\pi_{\text{дл.окр.р.}} = \frac{180}{\alpha} \times \left(\sin \frac{\alpha}{2} + \tan \frac{\alpha}{2} \right)$, (2.1.3.4)

Рис.2.1.3.1.

Как видно из Рис.2.1.3.1, по формуле (2.1.3.3) вычисляется, на самом деле, не длина окружности, а периметр некоего среднеарифметического многоугольника, так как точно вычислять длину кривых линий (каковой, в частности, является окружность) мы не умеем. Мы умеем точно вычислять только длины прямых линий.

Значение длины окружности, вычисленное по формуле (2.1.3.3) по результирующему методу, будет ближе к искомому значению длины окружности, по сравнению с длинами окружностей, вычисленными, по формуле (2.1.1.4) по методу вписанного многоугольника, и по формуле (2.1.2.3) по методу описанного многоугольника.

А, следовательно, значение числа ПИ, вычисленное по формуле (2.1.3.4) будет ближе к искомому числу ПИ, по сравнению с числами ПИ, вычисленными, по формуле (2.1.1.5) по методу вписанного многоугольника, и по формуле (2.1.2.4) по методу описанного многоугольника.

§2.2. Вычисление площади Круга §2.2.1. Метод вписанного многоугольника

Площадь треугольника ОАВ (Рис.2.1.1.1), у которого известна сторона | *AB* | и высота | *OC* | (найдены ранее в §2.1.1), согласно **П.1.3** будет равна:

$$S_{OAB} = \frac{1}{2} \times |AB| \times |OC| = \frac{1}{2} \times 2 \times r \times \sin\frac{\alpha}{2} \times r \times \cos\frac{\alpha}{2} = r^2 \times \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2}, (2.2.1.1)$$

Чем меньше будет угол α , тем меньше площадь треугольника ОАВ будет отличаться от площади кругового сектора ОАВ. Умножив площадь треугольника ОАВ, вычисленную по формуле (2.2.1.1), на число таких треугольников, умещающихся в кругу, тоесть, на $\frac{360}{\alpha}$, получим (Рис.2.1.1.2) полную площадь круга S_{кр.в}:

$$S_{\text{Kp},\text{B}} = S_{OAB} \times \frac{360}{\alpha} = r^2 \times \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha}$$
$$= r^2 \times \pi_{\text{пл.Kp},\text{B}}, \quad (2.2.1.2)$$

Где,

*π*_{пл.кр.в} – коэффициент, стоящий в формуле для вычисления площади круга.

$$\pi_{\text{пл.кр.в}} = \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha}, (2.2.1.3)$$

Как видно из Рис.2.1.1.2, по формуле (2.2.1.2) вычисляется, на самом деле, не площадь круга, а площадь вписанного в круг многоугольника, так как точно вычислять площади фигур, ограниченных кривыми линиями (каковой, в частности, является окружность) мы не умеем. Мы умеем точно вычислять площади только плоских фигур, ограниченных только прямыми линиями.

§2.2.2. Метод описанного многоугольника

Площадь треугольника OA_0B_0 (Рис.2.1.2.1), у которого известна сторона | A_0B_0 | (найдена ранее в §2.1.2) и высота | OC_0 | (начальное условие в §2.1.2), согласно **П.1.3** будет равна:

$$S_{OA_0B_0} = \frac{1}{2} \times |A_0B_0| \times |OC_0| = \frac{1}{2} \times 2 \times r \times \tan\frac{\alpha}{2} \times r =$$
$$= r^2 \times \tan\frac{\alpha}{2}, (2.2.2.1)$$

Чем меньше будет угол α , тем меньше площадь треугольника OA₀B₀ будет отличаться от площади кругового сектора OAB. Умножив площадь треугольника OA₀B₀, вычисленную по формуле (2.2.2.1), на число таких треугольников, умещающихся в кругу, тоесть, на $\frac{360}{\alpha}$, получим (Рис.2.1.2.2) полную площадь круга S_{кр.0}:

$$S_{\text{Kp.o}} = S_{OA_0B_0} \times \frac{360}{\alpha} = r^2 \times \tan\frac{\alpha}{2} \times \frac{360}{\alpha}$$
$$= r^2 \times \pi_{\text{дл.окр.o,}} \quad (2.2.2.2)$$

Где,

 $\pi_{\text{дл.окр.о}}$ — коэффициент, стоящий в формуле для вычисления площади круга.

$$\pi_{\text{дл.окр.o}} = \tan \frac{\alpha}{2} \times \frac{360}{\alpha}$$
, (2.2.2.3)

Как видно из Рис.2.1.2.2, по формуле (2.2.2.2) вычисляется, на самом деле, не площадь круга, а площадь описанного около круга многоугольника, так как точно вычислять площади фигур, ограниченных кривыми линиями (каковой, в частности, является окружность) мы не умеем. Мы умеем точно вычислять площади только плоских фигур, ограниченных только прямыми линиями.

§2.2.3. Результирующий Метод

При использовании метода вписанного в круг многоугольника в §2.2.1 была найдена формула (2.2.1.2) для вычисления площади круга, имеющая вид:

$$S_{\text{Kp},\text{B}} = r^2 \times \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha} = r^2 \times \pi_{\text{пл.Kp},\text{B}}, (2.2.3.1)$$

Формула (2.2.3.1) является нижней границей для вычисления значения площади круга.

При использовании метода описанного около круга многоугольника в §2.2.2 была найдена формула (2.2.2.2) для вычисления площади круга, имеющая вид:

$$S_{\text{Kp.o}} = r^2 \times \tan \frac{\alpha}{2} \times \frac{360}{\alpha} = r^2 \times \pi_{\text{дл.окр.o}}, (2.2.3.2)$$

Формула (2.2.3.2) является верхней границей для вычисления значения площади круга.

Как видно из формул (2.2.3.1) и (2.2.3.2), они по форме не равны между собой.

Искомая площадь круга находится между вышеуказанными нижней и верхней границами. Поэтому, результирующая площадь круга может быть вычислена как среднеарифметическое (Рис.2.1.3.1) от формул (2.2.3.1) и (2.2.3.2):

$$S_{\text{Kp.p}} = \frac{S_{\text{Kp.B}} + S_{\text{Kp.0}}}{2} =$$
$$= \frac{\left(r^2 \times \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha}\right) + \left(r^2 \times \tan\frac{\alpha}{2} \times \frac{360}{\alpha}\right)}{2} =$$
$$= r^2 \times \frac{180}{\alpha} \times \left(\left(\sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2}\right) + \tan\frac{\alpha}{2}\right) = r^2 \times \pi_{\text{пл.Kp.p.}}, (2.2.3.3)$$

Где,

 $\pi_{\text{пл.кр.р}}$ – коэффициент, стоящий в формуле для вычисления площади круга.

$$\pi_{\text{пл.кр.р}} = \frac{180}{\alpha} \times \left(\left(\sin \frac{\alpha}{2} \times \cos \frac{\alpha}{2} \right) + \tan \frac{\alpha}{2} \right) , (2.2.3.4)$$

Значение площади круга, вычисленное по формуле (2.2.3.3) по результирующему методу, будет ближе к искомому значению площади круга, по сравнению с площадями круга, вычисленными, по формуле (2.2.1.2) по методу вписанного многоугольника, и по формуле (2.2.2.2) по методу описанного многоугольника.

А, следовательно, значение числа ПИ, вычисленное по формуле (2.2.3.4), будет гораздо ближе к искомому числу

ПИ, по сравнению со значениями числа ПИ, вычисленными, по формуле (2.2.1.3) по методу вписанного многоугольника, и по формуле (2.2.2.3) по методу описанного многоугольника.

Как видно из Рис.2.1.3.1, по формуле (2.2.3.3) вычисляется, на самом деле, не площадь круга, а площадь некоего среднеарифметического многоугольника, так как точно вычислять площади фигур, ограниченных кривыми линиями (каковой, в частности, является окружность) мы не умеем. Мы умеем точно вычислять площади плоских фигур, ограниченных только прямыми линиями.

§2.3. Выводы

Таким образом, как видно из всего вышеизложенного, предлагаемые аналитические методы вычисления длины окружности и площади круга являются **ранее не известной разновидностью методов вписанного в круг и описанного около круга многоугольников**, основу которых составляет использование тригонометрических функций sin, cos и tan. При этом, предлагаемые аналитические методы вычисления длины окружности и площади круга непосредственно связаны с геометрией окружности и круга.

В §2.1.1 по методу вписанного многоугольника была получена формула (2.1.1.5) для вычисления числа $\pi_{дл.окр.в}$ вида:

$$\pi_{\text{дл.окр.в}} = \sin \frac{\alpha}{2} \times \frac{360}{\alpha}, (2.3.1)$$

В §2.1.2 и §2.2.2 по методу описанного многоугольника были получены формулы (2.1.2.4) и (2.2.2.3) для вычисления числа $\pi_{дл.okp.o}$ вида:

$$\pi_{\text{дл.окр.o}} = \tan \frac{\alpha}{2} \times \frac{360}{\alpha}, (2.3.2)$$

В §2.1.3 по результирующему методу была получена формула (2.1.3.4) для вычисления числа $\pi_{\text{дл.окр.р}}$ вида:

$$\pi_{\text{дл.окр.р}} = \frac{180}{\alpha} \times \left(\sin\frac{\alpha}{2} + \tan\frac{\alpha}{2}\right), (2.3.3)$$

В §2.2.1 по методу вписанного многоугольника была получена формула (2.2.1.3) для вычисления числа $\pi_{\text{пл.кр.в}}$ вида:

$$\pi_{\text{пл.кр.в}} = \sin \frac{\alpha}{2} \times \cos \frac{\alpha}{2} \times \frac{360}{\alpha}, (2.3.4)$$

В §2.2.3 по результирующему методу была получена формула (2.2.3.4) для вычисления числа $\pi_{пл.кр.р}$ вида:

$$\pi_{\text{пл.кр.р}} = \frac{180}{\alpha} \times \left(\left(\sin \frac{\alpha}{2} \times \cos \frac{\alpha}{2} \right) + \tan \frac{\alpha}{2} \right), (2.3.5)$$

Из П.1.15 известна формула для вычисления длины окружности, равная:

$$L_{\text{дл.окр}} = 2 \times r \times \pi = d \times \pi$$
, (2.3.6)

Из П.1.16 известна формула для вычисления площади круга, равная:

$$S_{\rm \kappa p} = \pi \times r^2$$
, (2.3.7)

33

Как видно, формулы (2.3.1÷2.3.7) отличаются друг от друга тем, что в формулах (2.3.6) и (2.3.7) стоит некое единое (для всех формул – для вычисления, длины окружности, площади круга, площади поверхности цилиндра, объема цилиндра, площади поверхности тора, объема тора, площади поверхности конуса, объема конуса, площади сферы и объема шара) число π , а в формулах (2.3.1÷2.3.5) стоят числа $\pi_{дл.окр.в}$, $\pi_{дл.окр.о}$, $\pi_{дл.окр.р}$, $\pi_{пл.кр.в}$ и $\pi_{пл.кр.р}$. При этом, вышеуказанные числа по форме и по величине не равны между собой.

В таблице 2.3.1 приведены значения вышеуказанных чисел ПИ при величине угла α , равном, 1° (что соответствует 360-угольнику) и 0,1° (что соответствует 3600-угольнику), с точностью до десятого знака после запятой. Для сравнения, в таблице 2.3.1 приведено известное из [16] значение единого (для всех формул – для вычисления, длины окружности, площади круга, площади поверхности цилиндра, объема цилиндра, площади поверхности тора, объема тора, площади поверхности конуса, объема конуса, площади поверхности сферы, объема шара) числа π , полученного путем вычисления на компьютере бесконечного ряда (не имеющего никакого отношения к геометрии окружности и круга), с точностью до 10 знаков после запятой.

	$\alpha = 1^{\circ}$	$\alpha = 0,1^{\circ}$
$\pi_{{}_{{}_{\!$	3,1415527794	3,1415922548
$\pi_{\rm дл. o k p. o}$	3,1416724046	3,1415934510
π _{дл.окр.р}	3,1416125904	3,1415928528
$\pi_{{}_{\Pi\Pi. \kappa p. B}}$	3,1414331556	3,1415910397
$π_{пл. \kappa p. p}$	3,1415527800	3,1415922318
π	3,1415926535	

Таблица 2.3.1

Как видно из формул (2.3.3), (2.3.5) и таблицы 2.3.1, число $\pi_{дл.окр.p}$ (стоящее в формуле для вычисления длины окружности, полученное по результирующему методу) и число $\pi_{пл.кр.p}$ (стоящее в формуле для вычисления площади круга, полученное по результирующему методу) по форме и по величине (численно) не равны между собой (при $\alpha = 1^{\circ}$ – начиная с 4-й цифры после запятой, а при $\alpha = 0,1^{\circ}$ – начиная с 7-й цифры после запятой). Вышеуказанные числа $\pi_{дл.окр.p}$ и $\pi_{пл.кр.p}$ численно отличаются от единого числа π , известного из [16] (при $\alpha = 0,1^{\circ}$ – начиная с 7-й цифры после запятой).

Каким бы малым не был угол α (и угол $\frac{\alpha}{2}$), он всегда будет больше нуля. Следовательно, $\cos \frac{\alpha}{2}$ всегда будет меньше единицы, а, следовательно, всегда $\pi_{\text{дл.окр.р}}$ будет не равно $\pi_{\text{пл.кр.р}}$:

$$πдл.окр.р \neq πпл.кр.р, (2.3.8)$$

И здесь не имеет значение тот факт, что разница между числами $\pi_{\text{дл.окр.р}}$ и $\pi_{\text{пл.кр.р}}$ невелика, и которой, в некоторых расчетах, можно пренебречь. Числа 1,23456 и 1,23457 так же отличаются друг от друга на малую величину, и числа 999 999 999 и 1 000 000 000 так же отличаются друг от друга на малую величину, которой, в некоторых расчетах, можно пренебречь. Однако, тем не менее, это принципиально разные числа. Такими же принципиально разными числами являются числа $\pi_{\text{дл.окр.р}}$ и $\pi_{\text{пл.кр.р}}$.

По-видимому, считалось, что число ПИ, стоящее в формуле для вычисления длины окружности, и число ПИ, стоящее в формуле для вычисления площади круга – это одно и тоже число ПИ потому, что путем непосредственного измерения, длины окружности (например, посредством гибкой нити) и площади круга, обеспечить точность измерения до 7-го (или даже до 4-го) знака после запятой практически невозможно. А, поэтому, увидеть то, что эти числа ПИ не равны между собой, было невозможно. Это можно увидеть, только используя для вычисления длины окружности и площади круга предложенные автором аналитические выражения (2.1.3.3) и (2.2.3.3), а для вычисления числа ПИ – аналитические выражения (2.1.3.4) и (2.2.3.4). Известные ранее аналитические выражения типа (B.1÷B.11), используемые для вычисления значения числа ПИ, на самом деле, не имеют никакого отношения к геометрии круга, и увидеть в них то, что эти числа ПИ не равны между собой, невозможно в принципе. Невозможно доказать то, что вычисленное по выражениям (B.1÷B.11) число ПИ это то же самое число ПИ, которое стоит в формулах для определения длины окружности и площади круга. В это можно только верить – что в науке в принципе недопустимо.

Важно понимать следующее.

По формулам (2.1.1.4), (2.1.2.3) и (2.1.3.3) вычисляется, на самом деле, не длина окружности (тоесть, не длина кривой линии), как таковая, а длина ломанной линии (периметр многоугольника). Это следут из следующего очевидного факта. В качестве единицы измерения длины нами принята длина прямой линии (в частности, длина одного метра). Кривая линия (каковой является окружность) и прямая линия – это два принципиально разных типа линий. Даже сама длина кривой линии – это условное понятие. В принципиальной постановке вопроса мы должны ясно понимать тот очевидный факт, что мы не умеем <u>точно</u> вычислять величины длин кривых линий (любого типа, в том числе, длину окружности).
По формулам (2.2.1.2), (2.2.2.2) и (2.2.3.3) вычисляется, на самом деле, не площадь круга, как таковая, а площадь многоугольника. Это следут из следующего очевидного факта. В качестве единицы измерения площади нами принят квадрат. А что такое квадрат? Это плоский четырехугольник, у которого все четыре стороны равны между собой и все четыре угла равны между собой. При этом, все четыре стороны квадрата представляют собой прямые линии. А что такое круг? Это плоская фигура, ограниченная замкнутой кривой линией – окружностью. Поэтому, в принципе, невозможно точно вычислить площадь круга. В принципиальной постановке вопроса мы должны ясно понимать тот очевидный факт, что мы не умеем точно вычислять площади фигур, ограниченные кривыми линиями (любого типа, в том числе, окружностью). При вычислении площади круга (и других фигур, ограниченных кривыми линиями) мы, на самом деле, вычисляем площади многоугольников.

§2.4. О решение задачи квадратуры круга

Теперь что касается решения задачи квадратуры круга.

Из всего вышеизложенного однозначно следует, что сама постановка задачи решения квадратуры круга (в любой ее постановке, а не только классическая – при помощи циркуля и линейки) бессмысленна.

По-видимому, квадратура круга так долго мучила умы математиков (а, возможно, кого-то продолжает мучить до сих пор) из-за недопонимания ими самых фундаментальных основ математики (которые, кстати, они сами и придумали).

А именно. Стороны квадрата можно вычислить (и измерить) точно (они конечны по величине), а, следовательно, можно точно вычислить площадь квадрата (которая так же конечна по величине), так как стороны квадрата – это прямые линии (длину которых мы умеем точно вычислять и измерять). Теперь что касается круга. Диаметр круга можно вычислить (и измерить) точно (он конечен по величине), так как диаметр круга – это прямая линия. Из этого математиками делается неверный вывод, что и площадь круга можно вычислить точно (тоесть, что и площадь круга должна быть конечна по величине), а, следовательно, можно найти такой квадрат, который будет равен по площади кругу. Но это совершенно неверно. Мы можем точно вычислить (или измерить) площадь какой-либо плоской фигуры, если мы можем точно вычислить (или измерить), по меньшей мере (например, как в случае с квадратом) две стороны (два точных размера) этой фигуры. В случае с кругом точно вычислить (измерить) можно только один размер – диаметр круга. Поэтому, площадь круга (и других фигур, ограниченных кривыми линиями) точно вычислить невозможно в принципе. То, что мы понимаем под площадью круга (и других фигур, ограниченных кривыми линиями), на самом деле, являются площадями многоугольников. А, следовательно, в принципе, невозможно построить квадрат, равный по площади кругу.

Однако, из этого очевидного факта вовсе не следует, что нужно сложить руки и ничего не делать. Например, в технике, для расчетов, вполне подходят методы вычисления периметра многоугольников и площадей многоугольников, отождествляя их с длинами кривых линий и площадями фигур, ограниченных кривыми линиями, соответственно.

Глава 3

§3. Вычисление площади поверхности и объема Цилиндра

§3.1. Вычисление площади поверхности Цилиндра

§3.1.1. Метод вписанного многогранника

На Рис.3.1.1.1 показан круговой прямой цилиндр с радиусом основания цилиндра г, с центром основания цилиндра в точке O₁ и центром верхней поверхности цилиндра в точке O₂. Таким образом, прямая линия $| O_1 O_2 |$ является осью цилиндра и его высотой $| O_1 O_2 | = H_{II}$.

Рис.3.1.1.1.

Проведем через ось цилиндра | O_1O_2 | плоскость Г. Построив линию пересечения плоскости Г с боковой поверхностью цилиндра, получим прямую линию | A_1A_2 |, которая является образующей цилиндра и которая перпендикулярна плоскости основания цилиндра. Следовательно, | A_1A_2 | = | O_1O_2 |.

Построив линию пересечения плоскости Γ с основанием цилиндра, получим прямую линию | O_1A_1 |, которая является радиусом основания цилиндра | O_1A_1 | = r.

Проведем через ось цилиндра | O_1O_2 | плоскость Δ под уголом α к плоскости Γ . Построив линию пересечения плоскости Δ с боковой поверхностью цилиндра, получим прямую линию | B_1B_2 |, которая является образующей цилиндра и которая перпендикулярна плоскости основания цилиндра. Следовательно, | B_1B_2 | = | O_1O_2 |. Построив линию пересечения плоскости Δ с основанием цилиндра, получим прямую линию | O_1B_1 |, которая является радиусом основания цилиндра | O_1B_1 | = r.

Соединив точки A_1 и B_1 между собой, получим равнобедренный треугольник $A_1O_1B_1$ (так как | O_1A_1 | = | O_1B_1 |).

Полная площадь поверхности цилиндра $S_{u,B}$ будет равна сумме площадей основания $S_{och.u,B}$ и верхней $S_{верх.пов.u,B}$ поверхностей цилиндра, и боковой $S_{бок.u,B}$ поверхности цилиндра:

$$S_{\text{II,B}} = S_{\text{OCH.II,B}} + S_{\text{Bepx.nob.II,B}} + S_{\text{GOK.II,B}} = 2 \times S_{\text{OCH.II,B}} + S_{\text{GOK.II,B}}, \quad (3.1.1.1)$$

Ранее в §2.2.1 была найдена формула (2.2.1.2) для вычисления площади круга по методу вписанного многоугольника. По этой формуле будет вычислена площади основания $S_{\text{осн.ц.в}}$ и верхней $S_{\text{верх.пов.ц.в}}$ поверхностей цилиндра, которая будет иметь вид:

$$S_{\text{осн.ц.в}} = S_{\text{верх.пов.ц.в}} = r^2 \times \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha} = r^2 \times \pi_{\text{пл.кр.в}}, \quad (3.1.1.2)$$

Площадь боковой поверхности цилиндра S_{бок.ц.в} будет вычислена далее.

Соединив точки A_2 и B_2 между собой, получим прямоугольник $A_1A_2B_2B_1$. Ранее в §2.1.1 была найдена формула (2.1.1.3) для вычисления стороны | *AB* |. В данном случае | *AB* | = | A_1B_1 |, а, следовательно, сторона | A_1B_1 | будет равна:

$$|A_{1}B_{1}| = |A_{1}C_{1}| + |C_{1}B_{1}| =$$

= 2 × |A_{1}C_{1}| = 2 × r × sin $\frac{\alpha}{2}$, (3.1.1.3)

Согласно **П.1.17** вычислим площадь $S_{A_1A_2B_2B_1}$ прямоугольник $A_1A_2B_2B_1$, которая будет равна:

$$S_{A_1A_2B_2B_1} = |A_1B_1| \times |A_1A_2| = 2 \times r \times \sin\frac{\alpha}{2} \times H_{\mu}, (3.1.1.4)$$

Чем меньше будет угол α , тем меньше площадь прямоугольника $A_1A_2B_2B_1$ будет отличатся от площади сектора боковой поверхности цилиндра, ограниченного дугами окружностей $\widehat{A_1B_1}$ и $\widehat{A_2B_2}$ и прямыми линиями (образующими цилиндра) $|A_1A_2|$ и $|B_1B_2|$. Умножив площадь прямоугольника $A_1A_2B_2B_1$, вычисленную по формуле (3.1.1.4), на число таких прямоугольников, умещающихся на боковой поверхности цилиндра, тоесть, на $\frac{360}{\alpha}$, получим (Рис.3.1.1.2) полную площадь боковой поверхности цилиндра S_{бок.ц.в}:

$$S_{\text{бок.ц.в}} = S_{A_1 A_2 B_2 B_1} \times \frac{360}{\alpha} = 2 \times r \times \sin \frac{\alpha}{2} \times H_{\text{ц}} \times \frac{360}{\alpha} = 2 \times r \times H_{\text{ц}} \times \pi_{\text{дл.окр.в.}} (3.1.1.5)$$

Рис.3.1.1.2.

Полная площадь поверхности цилиндра $S_{{\scriptscriptstyle\rm I\!I\!B}}$ будет равна:

$$S_{\text{II,B}} = S_{\text{OCH.II,B}} + S_{\text{BepX.IIOB.II,B}} + S_{\text{GOK.II,B}} = 2 \times S_{\text{OCH.II,B}} + S_{\text{GOK.II,B}} =$$

$$= 2 \times \left(r^2 \times \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha}\right) + 2 \times r \times$$

$$\times \sin\frac{\alpha}{2} \times H_{\text{II}} \times \frac{360}{\alpha} =$$

$$= 2 \times r^2 \times \pi_{\text{III,KP,B}} + 2 \times r \times H_{\text{II}} \times \pi_{\text{ДI.OKP,B}} =$$

$$= 2 \times r \times (r \times \pi_{\text{III,KP,B}} + H_{\text{II}} \times \pi_{\text{ДI.OKP,B}}), \quad (3.1.1.6)$$

Как видно из Рис.3.1.1.2, по формуле (3.1.1.6) вычисляется, на самом деле, не площадь поверхности цилиндра, а площадь вписанного в цилиндр многогранника в виде многогранной призмы, так как точно вычислять площади, плоских фигур, ограниченных кривыми линиями (каковой, в частности, является окружность), и криволинейных поверхностей (каковой, в частности, является боковая поверхность цилиндра), мы не умеем. Мы умеем вычислять площади только плоских фигур, ограниченных только прямыми линиями.

§3.1.2. Метод описанного многогранника

На Рис.3.1.2.1 показан круговой прямой цилиндр с радиусом основания цилиндра г, с центром основания цилиндра в точке O₁ и центром верхней поверхности цилиндра в точке O₂. Таким образом, прямая линия | O_1O_2 | является осью цилиндра и его высотой | O_1O_2 | = H_{II} .

Рис.3.1.2.1.

Проведем через ось цилиндра | O_1O_2 | плоскость Z. Построив линию пересечения плоскости Z с основанием цилиндра, получим прямую линию | $O_1C_{1.0}$ |, которая является радиусом основания цилиндра | $O_1C_{1.0}$ | = r. Построив линию пересечения плоскости Z с верхней поверхностью цилиндра, получим прямую линию | $O_2C_{2.0}$ |, которая является радиусом верхней поверхности цилиндра | $O_2C_{2.0}$ | = r.

Проведем через ось цилиндра | O_1O_2 | плоскость Г под углом $\frac{\alpha}{2}$ к плоскости Z. Построив линию пересечения плоскости Г с боковой поверхностью цилиндра, получим прямую линию | A_1A_2 |, которая является образующей цилиндра и которая перпендикулярна плоскости основания цилиндра. Следовательно, | A_1A_2 | = | O_1O_2 |. Построив линию пересечения плоскости Г с основанием цилиндра, получим прямую линию | O_1A_1 |, которая является радиусом основания цилиндра | O_1A_1 | = r. Построив линию пересечения плоскости Г с верхней поверхностью цилиндра, получим прямую линию | O_2A_2 |, которая является радиусом верхней поверхности цилиндра | O_2A_2 | = r.

Проведем через ось конуса $|O_1O_2|$ плоскость Δ под углом $\frac{\alpha}{2}$ к плоскости Z и под углом α к плоскости Г. Построив линию пересечения плоскости Δ с боковой поверхностью цилиндра, получим прямую линию $|B_1B_2|$, которая является образующей цилиндра и которая перпендикулярна плоскости основания цилиндра. Следовательно, $|B_1B_2| = |O_1O_2|$. Построив линию пересечения плоскости Δ с основанием цилиндра, получим прямую линию $|O_1B_1|$, которая является радиусом основания цилиндра $|O_1B_1| = r$. Построив линию пересечения плоскости Δ с верхней поверхностью цилиндра, получим прямую линию $|O_2B_2|$, которая является радиусом верхней поверхности цилиндра $|O_2B_2| = r$.

Проведем через точку $C_{1.0}$ прямую линию, лежащую в плоскости основания цилиндра, касательную к окружности основания цилиндра, а, следовательно, перпендикулярную к радиусу основания цилиндра | $O_1C_{1.0}$ | = r. Проведем из точки O_1 прямую линию до ее пересечения с вышеуказанной касательной к окружности основания цилиндра в точке $A_{1.0}$, при этом, данная прямая линия по направлению совпадает с направлением радиуса | O_1A_1 | = r (тоесть,

угол между прямой линией | $O_1A_{1.0}$ | и радиусом | $O_1C_{1.0}$ | равен $\frac{\alpha}{2}$, и данная прямая линия пересекает окружность основания цилиндра в точке A₁). Таким образом, прямая линия | $O_1A_{1.0}$ | лежит в плоскости Г. Проведем из точки O₁ прямую линию до ее пересечения с вышеуказанной касательной к окружности основания цилиндра в точке B_{1.0}, при этом, данная прямая линия по направлению совпадает с направлением радиуса | O_1B_1 | = r (тоесть, угол между прямой линией | $O_1B_{1.0}$ | и радиусом | $O_1C_{1.0}$ | равен $\frac{\alpha}{2}$, и данная прямая линия пересекает окружность основания цилиндра в точке B₁). Таким образом, прямая линия | $O_1B_{1.0}$ | лежит в плоскости Δ . В результате мы получили равнобедренный треугольник $O_1A_{1.0}B_{1.0}$, у которого | $A_{1.0}B_{1.0}$ | \bot | $O_1C_{1.0}$ |.

Проведем через точку С2.0 прямую линию, лежащую в плоскости верхней поверхности цилиндра, касательную к окружности верхней поверхности цилиндра, а, следовательно, перпендикулярную к радиусу верхней поверхности цилиндра | $O_2 C_{2,0}$ | = r. Проведем из точки O_2 прямую линию до ее пересечения с вышеуказанной касательной к окружности верхней поверхности цилиндра в точке А2.0, при этом, данная прямая линия по направлению совпадает с направлением радиуса | O_2A_2 | = r (тоесть, угол между прямой линией | $O_2A_{2.0}$ | и радиусом | $O_2C_{2.0}$ | равен $\frac{\alpha}{2}$, и данная прямая линия пересекает окружность верхней поверхности цилиндра в точке А2). Таким образом, прямая линия | $O_2 A_{2,0}$ | лежит в плоскости Г. Проведем из точки О2 прямую линию до ее пересечения с вышеуказанной касательной к окружности верхней поверхности цилиндра в точке В_{2.0}, при этом, данная прямая линия по направлению совпадает с направлением радиуса $| O_2 B_2 | = r$ (тоесть, угол между прямой линией | $O_2 B_{2,0}$ | и радиусом $|O_2C_{2.0}|$ равен $\frac{\alpha}{2}$, и данная прямая линия пересекает окружность верхней поверхности цилиндра в точке B₂). Таким образом, прямая линия $|O_2B_{2.0}|$ лежит в плоскости Δ . В результате мы получили равнобедренный треугольник $O_2A_{2.0}B_{2.0}$, у которого $|A_{2.0}B_{2.0}| \perp |O_2C_{2.0}|$.

Полная площадь поверхности цилиндра $S_{u,p}$ будет равна сумме площадей основания $S_{och.u,o}$ и верхней $S_{верх.noв.u,o}$ поверхностей цилиндра, и боковой $S_{бок.u,o}$ поверхности цилиндра:

$$S_{\text{u,o}} = S_{\text{och.u,o}} + S_{\text{верх.пов.u,o}} + S_{\text{бок.u,o}} = = 2 \times S_{\text{och.u,o}} + S_{\text{бок.u,o}}, \quad (3.1.2.1)$$

Ранее в §2.2.2 была найдена формула (2.2.2.2) для вычисления площади круга по методу описанного многоугольника. По этой формуле будет вычислена площади основания $S_{\text{осн.ц.o}}$ и верхней $S_{\text{верх.пов.ц.o}}$ поверхностей цилиндра, которая будет иметь вид:

$$S_{\text{осн.ц.o}} = S_{\text{верх.пов.ц.o}} = r^2 \times \tan \frac{\alpha}{2} \times \frac{360}{\alpha} = r^2 \times \pi_{\text{дл.окр.o}}, \quad (3.1.2.2)$$

Площадь боковой поверхности цилиндра будет вычислена далее.

Соединив точки $A_{1.0}$ и $A_{2.0}$, $B_{1.0}$ и $B_{2.0}$ между собой, получим четырехугольник $A_{1.0}A_{2.0}B_{2.0}B_{1.0}$. | $O_1C_{1.0}$ | = = | $O_2C_{2.0}$ | = r, и | $O_1C_{1.0}$ | и | $O_2C_{2.0}$ | лежат в одной плоскости Z. | $A_{1.0}B_{1.0}$ | \bot | $O_1C_{1.0}$ | и | $A_{2.0}B_{2.0}$ | \bot | $O_2C_{2.0}$ |. Следовательно, | $A_{1.0}B_{1.0}$ | и | $A_{2.0}B_{2.0}$ | \bot | $O_2C_{2.0}$ |. Следовательно, | $A_{1.0}B_{1.0}$ | и | $A_{2.0}B_{2.0}$ | лежат в одной плоскости и | $A_{1.0}B_{1.0}$ | = | $A_{2.0}B_{2.0}$ |. А, следовательно, четырехугольник $A_{1.0}A_{2.0}B_{2.0}B_{1.0}$ является прямоугольником, у которого известна высота | $A_{1.0}A_{2.0}$ | = | O_1O_2 | = H_{II} .

Ранее в §2.1.2 методом описанного многоугольника была найдена формула (2.1.2.2) для вычисления стороны $|A_0B_0|$. В данном случае $|A_0B_0| = |A_{1.0}B_{1.0}|$, следовательно, сторона $|A_{1.0}B_{1.0}|$ будет равна:

$$|A_{1.0}B_{1.0}| = 2 \times r \times \tan \frac{\alpha}{2}, (3.1.2.3)$$

Согласно **П.1.17** вычислим площадь $S_{A_{1.0}A_{2.0}B_{2.0}B_{1.0}}$ прямоугольника $A_{1.0}A_{2.0}B_{2.0}B_{1.0}$, которая будет равна:

$$S_{A_{1.0}A_{2.0}B_{2.0}B_{1.0}} = |A_{1.0}B_{1.0}| \times |A_{1.0}A_{2.0}| =$$
$$= 2 \times r \times \tan \frac{\alpha}{2} \times H_{\text{u}}, \quad (3.1.2.4)$$

Чем меньше будет угол α , тем меньше площадь прямоугольника $A_{1.0}A_{2.0}B_{2.0}B_{1.0}$ будет отличатся от площади сектора боковой поверхности цилиндра, ограниченного дугами окружностей $\widehat{A_1B_1}$ и $\widehat{A_2B_2}$ и прямыми линиями (образующими цилиндра) | A_1A_2 | и | B_1B_2 |. Умножив площадь прямоугольника $A_{1.0}A_{2.0}B_{2.0}B_{1.0}$, вычисленную по формуле (3.1.2.4), на число таких прямоугольников, умещающихся на боковой поверхности цилиндра, тоесть, на $\frac{360}{\alpha}$, получим (Рис.3.1.2.2) полную площадь боковой поверхности цилиндра S_{бок.ц.о}:

$$S_{60K,4,0} = S_{A_{1,0}A_{2,0}B_{2,0}B_{1,0}} \times \frac{360}{\alpha} = 2 \times r \times \tan\frac{\alpha}{2} \times H_{4} \times \frac{360}{\alpha} = 2 \times r \times H_{4} \times \pi_{\beta,1,0,K,0,0} (3.1.2.5)$$

Рис.3.1.2.2.

Полная площадь поверхности цилиндра $S_{{\rm u},{\rm o}}$ будет равна:

$$S_{\text{u,o}} = 2 \times S_{\text{och.u,o}} + S_{\text{fok.u,o}} =$$

$$= 2 \times r^{2} \times \tan \frac{\alpha}{2} \times \frac{360}{\alpha} + 2 \times r \times \tan \frac{\alpha}{2} \times H_{\text{u}} \times$$

$$\times \frac{360}{\alpha} =$$

$$= 2 \times r^{2} \times \pi_{\text{дл.окр.o}} + 2 \times r \times H_{\text{u}} \times \pi_{\text{дл.окр.o}} =$$

$$= 2 \times r \times \pi_{\text{дл.окр.o}} \times (r + H_{\text{u}}), (3.1.2.6)$$

Как видно из Рис.3.1.2.2, по формуле (3.1.2.6) вычисляется, на самом деле, не площадь поверхности цилиндра, а

площадь описанного около цилиндра многогранника в виде многогранной призмы, так как точно вычислять площади, плоских фигур, ограниченных кривыми линиями (каковой, в частности, является окружность), и криволинейных поверхностей (каковой, в частности, является боковая поверхность цилиндра), мы не умеем. Мы умеем вычислять площади только плоских фигур, ограниченных только прямыми линиями.

§3.1.3. Результирующий Метод

При использовании метода вписанного многогранника в §3.1.1 была найдена формула (3.1.1.6) для вычисления полной площади поверхности цилиндра S_{ц.в.}, имеющая вид:

$$S_{\text{II},\text{B}} = 2 \times r \times (r \times \pi_{\text{II},\text{KP},\text{B}} + H_{\text{II}} \times \pi_{\text{Д},\text{OKP},\text{B}}), (3.1.3.1)$$

Формула (3.1.3.1) является нижней границей для вычисления значения площади поверхности цилиндра.

При использовании метода описанного многогранника в §3.1.2 была найдена формула (3.1.2.6) для вычисления полной площади поверхности цилиндра S_{п.o}, имеющая вид:

$$S_{\text{II.0}} = 2 \times r \times \pi_{\text{дл.окр.0}} \times (r + H_{\text{II}}), (3.1.3.2)$$

Формула (3.1.3.2) является верхней границей для вычисления значения площади поверхности цилиндра.

Искомая полная площадь поверхности цилиндра находится между вышеуказанными нижней и верхней границами. Поэтому, результирующая формула для вычисления полной площади поверхности цилиндра S_{п.р} будет представлять среднеарифметическое (Рис.3.1.3.1) от формул (3.1.3.1) и (3.1.3.2) вида:

$$S_{\mu,p} = \frac{S_{\mu,B} + S_{\mu,0}}{2} =$$

$$= \frac{\left(2 \times r \times (r \times \pi_{\mu,n,Kp,B} + H_{\mu} \times \pi_{\mu,n,Kp,B})\right) + \left(2 \times r \times \pi_{\mu,n,Kp,0} \times (r + H_{\mu})\right)}{2} =$$

$$= r \times (r \times \pi_{\mu,n,Kp,B} + H_{\mu} \times \pi_{\mu,n,Kp,B}) + \pi_{\mu,n,Kp,0} \times (r + H_{\mu}), (3.1.3.3)$$

Рис.3.1.3.1.

Как видно из Рис.3.1.3.1, по формуле (3.1.3.3) вычисляется, на самом деле, не площадь поверхности цилиндра, а площадь некоего среднеарифметического многогранника в виде многогранной призмы, так как точно вычислять площади, плоских фигур, ограниченных кривыми линиями (каковой, в частности, является окружность), и криволинейных поверхностей (каковой, в частности, является боковая поверхность цилиндра), мы не умеем. Мы умеем вычислять площади только плоских фигур, ограниченных только прямыми линиями.

Вычисленная по формуле (3.1.3.3) площадь поверхности цилиндра ближе по величине к искомой площади поверхности цилиндра, по сравнению с площадями поверхности цилиндра, вычисленными, по формуле (3.1.1.6) по методу вписанного многогранника, и по формуле (3.1.2.6) по методу описанного многогранника.

§3.2. Вычисление объема Цилиндра §3.2.1. Метод вписанного многогранника

При использовании метода вписанного многогранника в §3.1.1 была найдена формула (3.1.1.2) для вычисления площади основания цилиндра $S_{\text{осн.ц.в.}}$. Высота цилиндра равна $|O_1O_2| = H_{\text{ц.}}$.

Согласно **П.1.19** объем цилиндра V_{ц.в} будет равен произведению площади основания цилиндра S_{осн.ц.в}, вычисленной по формуле (3.1.1.2), на высоту цилиндра $| O_1 O_2 | = H_{II}$:

$$V_{\text{II,B}} = S_{\text{OCH,II,B}} \times H_{\text{II}} = r^2 \times \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha} \times H_{\text{II}} = \pi_{\text{II,I,KD,B}} \times r^2 \times H_{\text{II}}, (3.2.1.1)$$

Как видно из Рис.3.1.1.2, по формуле (3.2.1.1) вычисляется, на самом деле, не объем цилиндра, а объем вписанного в цилиндр многогранника в виде многогранной призмы, так как точно вычислять объемы тел, ограниченных криволинейными поверхностями (каковой, в частности, является боковая поверхность цилиндра), мы не умеем. Мы умеем вычислять объемы тел, ограниченных только плоскими поверхностями.

§3.2.2. Метод описанного многогранника

При использовании метода описанного многогранника в §3.1.2 была найдена формула (3.1.2.2) для вычисления площади основания цилиндра $S_{\text{осн.ц.o.}}$. Высота цилиндра равна $| O_1 O_2 | = H_{\text{u.}}$.

Согласно **П.1.19** объем цилиндра V_{п.0} будет равен произведению площади основания цилиндра S_{осн.п.0}, вычисленной по формуле (3.1.2.2), на высоту цилиндра $| O_1 O_2 | = H_{II}$:

$$V_{\text{u,o}} = S_{\text{осн.u,o}} \times H_{\text{u}} = r^2 \times \tan \frac{\alpha}{2} \times \frac{360}{\alpha} \times H_{\text{u}} = \pi_{\text{дл.окр.o}} \times r^2 \times H_{\text{u}}, (3.2.2.1)$$

Как видно из Рис.3.1.2.2, по формуле (3.2.2.1) вычисляется, на самом деле, не объем цилиндра, а объем описанного около цилиндра многогранника в виде многогранной призмы, так как точно вычислять объемы тел, ограниченных криволинейными поверхностями (каковой, в частности, является боковая поверхность цилиндра), мы не умеем. Мы умеем вычислять объемы тел, ограниченных только плоскими поверхностями.

§3.2.3. Результирующий Метод

При использовании метода вписанного многогранника в §3.2.1 была найдена формула (3.2.1.1) для вычисления объема цилиндра V_и, имеющая вид:

$$V_{\text{u,B}} = r^2 \times \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha} \times H_{\text{u}} = \pi_{\text{пл.кр.в}} \times r^2 \times H_{\text{u}}, (3.2.3.1)$$

Формула (3.2.3.1) является нижней границей для вычисления объема цилиндра.

При использовании метода описанного многогранника в §3.2.2 была найдена формула (3.2.2.1) для вычисления объема цилиндра V_и, имеющая вид:

$$V_{\text{u,o}} = r^2 \times \tan \frac{\alpha}{2} \times \frac{360}{\alpha} \times H_{\text{u}} = \pi_{\text{дл.окр.o}} \times r^2 \times H_{\text{u}}$$
 (3.2.3.2)

Формула (3.2.3.2) является верхней границей для вычисления объема цилиндра.

Искомый объем цилиндра находится между вышеуказанными нижней и верхней границами. Поэтому, результирующая формула для вычисления объема цилиндра $V_{\mu,p}$ будет представлять среднеарифметическое (Рис.3.2.3.1) от формул (3.2.3.1) и (3.2.3.2):

$$V_{\mathrm{u,p}} = \frac{V_{\mathrm{u,B}} + V_{\mathrm{u,o}}}{2} =$$

$$= \frac{\left(r^2 \times \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha} \times H_{\mathrm{u}}\right) + \left(r^2 \times \tan\frac{\alpha}{2} \times \frac{360}{\alpha} \times H_{\mathrm{u}}\right)}{2} =$$

$$= \frac{r^2 \times H_{\mathrm{u}} \times \left(\frac{360}{\alpha} \times \left(\left(\sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2}\right) + \tan\frac{\alpha}{2}\right)\right)}{2} =$$

$$=\frac{2 \times r^{2} \times H_{u} \times \left(\frac{180}{\alpha} \times \left(\left(\sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2}\right) + \tan\frac{\alpha}{2}\right)\right)}{2} = r^{2} \times H_{u} \times \left(\frac{180}{\alpha} \times \left(\left(\sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2}\right) + \tan\frac{\alpha}{2}\right)\right) = \pi_{nn.kp,p} \times r^{2} \times H_{u}, (3.2.3.3)$$

Рис.3.2.3.1.

Как видно из Рис.3.2.3.1, по формуле (3.2.3.3) вычисляется, на самом деле, не объем цилиндра, а объем некоего среднеарифметического многогранника в виде многогранной призмы, так как точно вычислять объемы тел, ограниченных криволинейными поверхностями (каковой, в частности, является боковая поверхность цилиндра), мы не умеем. Мы умеем вычислять объемы тел, ограниченных только плоскими поверхностями.

Вычисленный по формуле (3.2.3.3) объем цилиндра ближе по величине к искомому объему цилиндра, по сравнению с объемами цилиндров, вычисленными, по формуле (3.2.3.1) по методу вписанного многогранника, и по формуле (3.2.3.2) по методу описанного многогранника.

§3.3. Выводы

В §3.1.3 по результирующему методу была найдена формула (3.1.3.3) для вычисления площади поверхности цилиндра S_{ц.р} вида:

$$S_{\rm u,p} = r \times \left((r \times \pi_{\rm пл.кр.в} + H_{\rm u} \times \pi_{\rm дл.окр.в}) \right) + \pi_{\rm дл.окр.o} \times (r + H_{\rm u}), (3.3.1)$$

Из П.1.18 известна формула для вычисления площади поверхности цилиндра, равная:

$$S_{\rm u} = 2 \times r \times \pi \times (r + H_{\rm u}), (3.3.2)$$

В §3.2.3 по результирующему методу была найдена формула (3.2.3.3) для вычисления объема цилиндра $V_{\mu,p}$ вида:

$$V_{\text{II,p}} = \pi_{\text{II,I,Kp,p}} \times r^2 \times H_{\text{II}}, (3.3.3)$$

Из **П.1.19** известна формула для вычисления объема цилиндра, равная:

$$V_{\rm II} = \pi \times r^2 \times H_{\rm II}, (3.3.4)$$

Как видно, формулы (3.3.1÷3.3.4) отличаются друг от друга тем, что в формулах (3.3.2) и (3.3.4) стоит некое единое (для всех формул – для вычисления, длины окружности, площади круга, площади поверхности цилиндра, объема цилиндра, площади поверхности тора, объема тора, площади поверхности конуса, объема конуса, площади поверхности сферы и объема шара) число π , в формуле (3.3.1) стоят три числа $\pi_{пл.кр.в}$, $\pi_{дл.окр.в}$ и $\pi_{дл.окр.о}$, а в формуле (3.3.3) стоит одно число $\pi_{пл.кр.р}$. При этом, вышеуказанные числа, как об этом указано ранее в §2.3 в таблице 2.3.1, по величине не равны между собой.

Глава 4

§4. Вычисление площади поверхности и объема Тора

§4.1. Вычисление площади поверхности Тора §4.1.1. Метод вписанного многогранника

На Рис.4.1.1.1 показан тор с центром в точке O₄, радиусом образующей окружности г и радиусом направляющей окружности R.

Рис.4.1.1.1.

Проведем через ось вращения тора, проходящую через точку О₄ и перпендикулярную плоскости, в которой лежит

направляющая окружность тора, плоскость Λ . Проведем через ось вращения тора, проходящую через точку O_4 и перпендикулярную плоскости, в которой лежит направляющая окружность тора, плоскость Θ , которая составляет с плоскостью Λ угол α .

Плоскость Λ (Рис.4.1.1.2) пересекает направляющую окружность в точке O_6 , а сечение тора этой плоскостью представляет собой окружность радиусом г. Плоскость Θ пересекает направляющую окружность в точке O_5 , а сечение тора этой плоскостью представляет собой окружность радиусом г.

Рис.4.1.1.2.

Соединив точки O₄ и O₅, O₄ и O₆, O₅ и O₆ между собой, получим равнобедренный треугольник O₄O₅O₆ (так как $| O_4 O_5 | = | O_4 O_6 | = R$).

Рассмотрим равнобедренный треугольник $O_4O_5O_6$ (Рис.4.1.1.3), у которого известны две стороны | O_4O_5 | и | O_4O_6 |, и угол $O_5O_4O_6 = \alpha$ между ними.

Рис.4.1.1.3.

Из точки O₄ опустим перпендикуляр | O_4C_3 | на сторону | O_5O_6 | треугольника O₄O₅O₆. Получим два прямоугольных треугольника O₄C₃O₆ и O₄C₃O₅. Треугольник O₄O₅O₆ равнобедренный (доказано ранее), | O_4C_3 | \perp | O_5O_6 | (принято ранее), то в соответствии с **П.1.1** | O_4C_3 | является, одновременно, и высотой, и биссектрисой и медианой треугольника O₄O₅O₆. Следовательно, | O_5C_3 | = | C_3O_6 |, угол O₆O₄C₃ равен углу O₅O₄C₃ и равен $\frac{\alpha}{2}$.

Рассмотрим прямоугольный треугольник $O_4C_3O_6$ (доказано ранее), у которого известна гипотенуза | O_4O_6 | = R (начальное условие), и прилегающий к ней угол $O_6O_4C_3 = \frac{\alpha}{2}$

(доказано ранее). Определим согласно **П.1.2** его катет $|C_3O_6|$:

$$|C_3O_6| = |O_4O_6| \times \sin\frac{\alpha}{2} = R \times \sin\frac{\alpha}{2}, (4.1.1.1)$$

Рассмотрим треугольник $O_4O_5O_6$. | O_5C_3 | = | C_3O_6 | (доказано ранее), следовательно, сторона | O_5O_6 | будет равна:

$$| O_5 O_6 | = | C_3 O_6 | + | O_5 C_3 | = 2 \times | C_3 O_6 | =$$

= 2 × R × sin $\frac{\alpha}{2}$, (4.1.1.2)

Построим круговой прямой цилиндр (Рис.4.1.1.4) с радиусом основания равным г, у которого сторона | O_5O_6 | треугольника $O_4O_5O_6$ будет, одновременно, и осью и высотой цилиндра | O_5O_6 | = $H_{\rm q}$.

Рис.4.1.1.4.

Проведя теже построения, что и в §3.1.1, получим прямоугольник A₃A₄B₄B₃.

Рис.4.1.1.5.

Ранее в §3.1.1 была найдена формула (3.1.1.5) для вычисления площади боковой поверхности цилиндра *S*_{бок.ц.в}, вычисленная методом вписанного в цилиндр многогранника, в данном случае имеющая вид:

$$S_{60K,II,B} = 2 \times r \times \sin \frac{\alpha}{2} \times H_{II} \times \frac{360}{\alpha} = 2 \times r \times \sin \frac{\alpha}{2} \times |O_5O_6| \times \frac{360}{\alpha} =$$
$$= 2 \times r \times \sin \frac{\alpha}{2} \times \left(2 \times R \times \sin \frac{\alpha}{2}\right) \times \frac{360}{\alpha} =$$
$$= 4 \times r \times R \times \sin \frac{\alpha}{2} \times \pi_{\text{дл.окр.B}} (4.1.1.3)$$

Как и в §3.1.1, по формуле (4.1.1.3) вычисляется, на самом деле, не площадь боковой поверхности цилиндра, а площадь боковой поверхности вписанного в цилиндр многогранника в виде многогранной призмы (Рис.4.1.1.6), так как точно вычислять площади криволинейных поверхностей (каковой, в частности, является боковая поверхность цилиндра), мы не умеем.

Рис.4.1.1.6.

На Рис.4.1.1.7 видно, что цилиндр, своей частью, лежащей внутри направляющей окружности тора, расположен за пределами сектора тора, ограниченного плоскостями Λ и Θ , а своей частью, лежащей во вне направляющей окружности тора, не доходит до плоскостей Λ и Θ .

Рис.4.1.1.7.

Из этого может сложится ложное впечатление, что вычисленная по формуле (4.1.1.3) площадь боковой поверхности цилиндра, не соответствует площади боковой поверхности сектора тора, ограниченного плоскостями Λ и Θ .

Однако это не так, и вот почему. Если мы боковую поверхность цилиндра (Рис.4.1.1.8), выступающую за пределы поверхностей Λ и Θ , и расположенную внутри направляющей окружности тора, обрежем плоскостями Λ и Θ , и обрезанные участки боковой поверхности цилиндра (так называемые «копыта») добавим к боковой поверхности цилиндра, расположенной во вне направляющей окружности тора, то получится полное соответствие сектору тора, ограниченного плоскостями Λ и Θ .

Рис.4.1.1.8.

Умножив площадь боковой поверхности цилиндра $S_{\text{бок.ц.в.}}$, вычисленную по формуле (4.1.1.3), на число таких цилиндров, умещающихся на поверхности тора, тоесть, на $\frac{360}{\alpha}$, получим (Рис.4.1.1.9) полную площадь поверхности тора $S_{\text{т.в.}}$:

$$S_{\text{T.B}} = S_{\text{бок.ц.B}} \times \frac{360}{\alpha} = 4 \times r \times R \times \sin\frac{\alpha}{2} \times \pi_{\text{дл.окр.B}} \times \frac{360}{\alpha} = 4 \times r \times R \times \pi^2_{\text{дл.окр.B}}, (4.1.1.4)$$

Рис.4.1.1.9.

Как видно из Рис.4.1.1.9, по формуле (4.1.1.4) вычисляется, на самом деле, не площадь поверхности тора, а площадь некоего вписанного в тор торообразного многогранника, так как точно вычислять площади криволинейных поверхностей (каковой, в частности, является поверхность тора), мы не умеем. Мы умеем вычислять площади только плоских фигур, ограниченных только прямыми линиями.

§4.1.2. Метод описанного многогранника

На Рис.4.1.2.1 показан тор с центром в точке O₄, радиусом образующей окружности г и радиусом направляющей окружности R.

Рис.4.1.2.1.

Проведем через ось вращения тора, проходящую через точку O_4 и перпендикулярную плоскости, в которой лежит направляющая окружность тора, плоскость Ξ . Проведем через ось вращения тора, проходящую через точку O_4 и перпендикулярную плоскости, в которой лежит направляющая окружность тора, плоскость Λ под углом $\frac{\alpha}{2}$ к плоскости Ξ . Проведем через ось вращения тора, проходящую через точку O_4 и перпендикулярную плоскость Λ под углом $\frac{\alpha}{2}$ к плоскости Ξ . Проведем через ось вращения тора, проходящую через точку O_4 и перпендикулярную плоскости, в которой лежит направляющая окружность тора, плоскость Θ под углом $\frac{\alpha}{2}$ к плоскости Ξ , и которая составляет с плоскостью Λ угол α .

Плоскость Ξ пересекает направляющую окружность тора в точке $C_{3,0}$. Плоскость Λ пересекает направляющую окружность тора в точке O_6 , а сечение тора этой плоскостью представляет собой окружность радиусом г. Плоскость Θ пересекает направляющую окружность тора в точке O_5 , а сечение тора этой плоскостью представляет собой окружность радиусом г.

Проведем (Рис.4.1.2.2) через точку $C_{3.0}$ прямую линию, касательную к направляющей окружности, а, следовательно, перпендикулярную к радиусу | $O_4C_{3.0}$ |.

Рис.4.1.2.2.

Проведем из точки O₄ прямую линию под углом $\frac{\alpha}{2}$ к радиусу | $O_4C_{3.0}$ | до ее пересечения с вышеуказанной касательной к направляющей окружности в точке O_{5.0}. При этом, данная прямая линия пересекает направляющую окружность тора в точке O₅. Таким образом, прямая линия | $O_4O_{5.0}$ | лежит в плоскости Θ . Проведем из точки O₄ прямую линию под углом $\frac{\alpha}{2}$ к радиусу | $O_4C_{3.0}$ | до ее пересечения с вышеуказанной касательной к направляющей окружности в точке O_{6.0}. При этом, данная прямая линия пересекает направляющую окружность тора в точке O_{6.0}. Таким образом, прямая линия | $O_4O_{6.0}$ | лежит в плоскости Λ .

Таким образом мы получили равнобедренный треугольник $O_4O_{5.0}O_{6.0}$ (так как | $O_4O_{5.0}$ | = | $O_4O_{6.0}$ |).

Ранее в §2.1.2 методом описанного многоугольника была найдена формула (2.1.2.2) для вычисления стороны $|A_0B_0|$, которая в данном случае соответствует стороне $|O_{5.0}O_{6.0}|$. Следовательно, сторона $|O_{5.0}O_{6.0}|$ будет равная:

$$| O_{5.0}O_{6.0} | = 2 \times R \times \tan \frac{\alpha}{2}, (4.1.2.1)$$

Построим круговой прямой цилиндр (Рис.4.1.2.3) с радиусом основания равным г, у которого сторона $|O_{5.0}O_{6.0}|$ треугольника $O_4O_{5.0}O_{6.0}$ будет, одновременно, и осью и высотой цилиндра $|O_{5.0}O_{6.0}| = H_{\text{u}}$.

Рис.4.1.2.3.

Проведя теже построения, что и в §3.1.2, получим прямоугольник $A_{3.0}A_{4.0}B_{4.0}B_{3.0}.$

Рис.4.1.2.4.

Ранее в §3.1.2 была найдена формула (3.1.2.5) для вычисления площади боковой поверхности цилиндра *S*_{бок.ц.о}, вычисленная методом описанного около цилиндра многогранника, в данном случае имеющая вид:

$$S_{60K,4,0} = 2 \times r \times \tan \frac{\alpha}{2} \times H_{4} \times \frac{360}{\alpha} =$$
$$= 2 \times r \times \tan \frac{\alpha}{2} \times |O_{5,0}O_{6,0}| \times \frac{360}{\alpha} =$$
$$= 2 \times r \times \tan \frac{\alpha}{2} \times \left(2 \times R \times \tan \frac{\alpha}{2}\right) \times \frac{360}{\alpha} =$$
$$= 4 \times r \times R \times \tan \frac{\alpha}{2} \times \pi_{дл.окр.o}, (4.1.2.2)$$

Как и в §3.1.2, по формуле (4.1.2.3) вычисляется, на самом деле, не площадь боковой поверхности цилиндра, а площадь боковой поверхности описанного около цилиндра многогранинка в виде многогранной призмы (Рис.4.1.2.5), так как точно вычислять площади криволинейных поверхностей (каковой, в частности, является боковая поверхность цилиндра), мы не умеем. Мы умеем вычислять площади только плоских фигур, ограниченных только прямыми линиями.

Рис.4.1.2.5.

На Рис.4.1.2.6 видно, что цилиндр, своей частью, лежащей внутри направляющей окружности тора, расположен за пределами сектора тора, ограниченного плоскостями Λ и Θ , а своей частью, лежащей во вне направляющей окружности тора, не доходит до плоскостей Λ и Θ .

Рис.4.1.2.6.

Из этого может сложится ложное впечатление, что вычисленная по формуле (4.1.2.2) площадь боковой поверхности цилиндра, не соответствует площади боковой поверхности сектора тора, ограниченного плоскостями Λ и Θ .

Однако это не так, и вот почему. Если мы боковую поверхность цилиндра (Рис.4.1.2.7), выступающую за пределы плоскостей Λ и Θ , и расположенную внутри направляющей окружности тора, обрежем плоскостями Λ и Θ , и обрезанные участки боковой поверхности цилиндра (так называемые «копыта») добавим к боковой поверхности цилиндра, расположенной во вне направляющей окружности тора, то получится полное соответствие сектору тора, ограниченного поверхностями Λ и Θ .

Рис.4.1.2.7.

Умножив площадь боковой поверхности цилиндра $S_{60K,II,0}$, вычисленную по формуле (4.1.2.2), на число таких цилиндров, умещающихся на поверхности тора, тоесть, на $\frac{360}{\alpha}$, получим (Рис.4.1.2.8) полную площадь поверхности тора $S_{T,0}$:

$$S_{\text{T.0}} = S_{\text{бок.ц.o}} \times \frac{360}{\alpha} = 4 \times r \times R \times \tan \frac{\alpha}{2} \times \pi_{\text{дл.окр.o}} \times \frac{360}{\alpha} = 4 \times r \times R \times \pi_{\text{дл.окр.o}}^2 (4.1.2.3)$$

Рис.4.1.2.8.

Как видно из Рис.4.1.2.8, по формуле (4.1.2.3) вычисляется, на самом деле, не площадь поверхности тора, а площадь некоего описанного около тора торообразного многогранника, так как точно вычислять площади криволинейных поверхностей (каковой, в частности, является поверхность тора), мы не умеем.

§4.1.3. Результирующий Метод

При использовании метода вписанного многогранника в §4.1.1 была найдена формула (4.1.1.4) для вычисления площади поверхности тора *S*_{т.в}, имеющая вид:

$$S_{\text{т.в}} = 4 \times r \times R \times \pi^2_{\text{дл.окр.в}}$$
, (4.1.3.1)

Формула (4.1.3.1) является нижней границей для вычисления площади поверхности тора.

При использовании метода описанного многогранника в §4.1.2 была найдена формула (4.1.2.3) для вычисления площади поверхности тора *S*_{т.о.}, имеющая вид:

$$S_{\text{T.O}} = 4 \times r \times R \times \pi^2_{\text{ДЛ.ОКР.О}}$$
, (4.1.3.2)

Формула (4.1.3.2) является верхней границей для вычисления площади поверхности тора.

Искомая площадь поверхности тора находится между вышеуказанными нижней и верхней границами. Поэтому, результирующая формула для вычисления площади поверхности тора $S_{\text{т.p}}$ будет представлять среднеарифметическое от формул (4.1.3.1) и (4.1.3.2) вида:

$$S_{\text{T,p}} = \frac{S_{\text{T,B}} + S_{\text{T,O}}}{2} = \frac{\left(4 \times r \times R \times \pi_{\text{ДЛ.ОКР.В}}^2\right) + \left(4 \times r \times R \times \pi_{\text{ДЛ.ОКР.O}}^2\right)}{2} = 2 \times r \times R \times \left(\pi_{\text{ДЛ.ОКР.B}}^2 + \pi_{\text{ДЛ.ОКР.O}}^2\right), (4.1.3.3)$$

По формуле (4.1.3.3) вычисляется, на самом деле, не площадь поверхности тора, а площадь некоего среднеарифметического торообразного многогранника, так как точно вычислять площади криволинейных поверхностей (каковой, в частности, является поверхность тора), мы не умеем.

Вычисленная по формуле (4.1.3.3) площадь поверхности тора ближе по величине к искомой площади поверхности тора, по сравнению с площадями поверхности, вычисленными, по формуле (4.1.1.4) по методу вписанного многогранника, и по формуле (4.1.2.3) по методу описанного многогранника.

§4.2. Вычисление объема Тора §4.2.1. Метод вписанного многогранника

Вычислим объем тора.

Ранее в §2.2.1 методом вписанного многоугольника была найдена формула (2.2.1.2) для вычисления площади круга $S_{\text{кр.в.}}$. По этой формуле будет вычислена площадь основания цилиндра $S_{\text{осн.ц.в.}}$, показанного на Рис.4.1.1.4÷4.1.1.7, а именно:

$$S_{\text{кр.в}} = S_{\text{осн.ц.в}} = r^2 \times \pi_{\text{пл.кр.в}}$$
, (4.2.1.1)

Ранее в §4.1.1 методом вписанного многогранника была найдена формула (4.1.1.2) для вычисления высоты цилиндра | O_5O_6 |, равная:

$$| 0_5 0_6 | = 2 \times R \times \sin \frac{\alpha}{2}, (4.2.1.2)$$

Объем цилиндра $V_{\text{ц.в.}}$, показанного на Рис.4.1.1.4÷4.1.1.7, будет равен:

$$V_{\text{I,B}} = S_{\text{OCH.II,B}} \times |O_5 O_6| = \left(r^2 \times \pi_{\text{IIЛ.KP,B}}\right) \times \left(2 \times R \times \sin\frac{\alpha}{2}\right) = 2 \times \pi_{\text{IIЛ.KP,B}} \times R \times r^2 \times \sin\frac{\alpha}{2}, (4.2.1.3)$$

Умножив объем цилиндра V_{ц.в}, вычисленный по по формуле (4.2.1.3), на число таких цилиндров, умещающихся на теле тора, тоесть, на $\frac{360}{\alpha}$, получим объем тора V_{т.в}:

$$V_{\text{T.B}} = V_{\text{II,B}} \times \frac{360}{\alpha} = 2 \times \pi_{\text{II,T.Kp,B}} \times R \times r^2 \times \sin \frac{\alpha}{2} \times \frac{360}{\alpha} = 2 \times \pi_{\text{II,T.Kp,B}} \times \pi_{\text{ДЛ.окр,B}} \times R \times r^2, (4.2.1.4)$$

По формуле (4.2.1.4) вычисляется, на самом деле, не объем тора, а объем некоего вписанного в тор торообразного многогранника, так как точно вычислять объемы тел, ограниченных криволинейными поверхностями (каковой, в частности, является поверхность тора), мы не умеем. Мы умеем вычислять только объемы тел, ограниченных только плоскими поверхностями.

§4.2.2. Метод описанного многогранника

Ранее в §2.2.2 методом описанного многоугольника была найдена формула (2.2.2.2) для вычисления площади круга $S_{\rm кр.o}$. По этой формуле будет вычислена площадь основания цилиндра $S_{\rm осн.ц.o}$, показанного на Рис.4.1.2.3÷4.1.2.6, а именно:

$$S_{\text{кр.o}} = S_{\text{осн.ц.o}} = r^2 \times \pi_{\text{дл.окр.o}}$$
, (4.2.2.1)

Ранее в §4.1.2 методом описанного многогранника была найдена формула (4.1.2.1) для вычисления высоты цилиндра | $O_{5.0}O_{6.0}$ |, равная:

$$| 0_{5.0} 0_{6.0} | = 2 \times R \times \tan \frac{\alpha}{2}, (4.2.2.2)$$

Объем цилиндра V_{ц.0} (Рис.4.1.2.3÷4.1.2.6) будет равен:

$$V_{\text{u,o}} = S_{\text{осн.u,o}} \times | 0_5 0_6 | = \left(r^2 \times \pi_{\text{дл.окр.o}}\right) \times \left(2 \times R \times \tan\frac{\alpha}{2}\right) = 2 \times \pi_{\text{дл.окр.o}} \times R \times r^2 \times \tan\frac{\alpha}{2}, (4.2.2.3)$$

Умножив объем цилиндра $V_{\mu,o}$, вычисленный по по формуле (4.2.2.3), на число таких цилиндров, умещающихся на теле тора, тоесть, на $\frac{360}{\alpha}$, получим объем тора $V_{\tau,o}$:

$$V_{\text{T.O}} = V_{\text{ILO}} \times \frac{360}{\alpha} = 2 \times \pi_{\text{ДЛ.ОКР.O}} \times R \times r^2 \times \tan \frac{\alpha}{2} \times \frac{360}{\alpha} = 2 \times \pi_{\text{ДЛ.ОКР.O}}^2 \times R \times r^2, (4.2.2.4)$$

По формуле (4.2.2.4) вычисляется, на самом деле, не объем тора, а объем некоего описанного около тора торообразного многогранника, так как точно вычислять объемы тел, ограниченных криволинейными поверхностями (каковой, в частности, является поверхность тора), мы не умеем. Мы умеем вычислять только объемы тел, ограниченных только плоскими поверхностями.

§4.2.3. Результирующий Метод

При использовании метода вписанного многогранника в §4.2.1 была найдена формула (4.2.1.4) для вычисления объема тора *V*_{т.в.}, имеющая вид:

$$V_{\text{т.в}} = 2 \times \pi_{\text{пл.кр.в}} \times \pi_{\text{дл.окр.в}} \times R \times r^2$$
, (4.2.3.1)

Формула (4.2.3.1) является нижней границей для вычисления объема тора.

При использовании метода описанного многогранника в §4.2.2 была найдена формула (4.2.2.4) для вычисления объема тора *V*_{т.0}, имеющая вид:

$$V_{\text{T.O}} = 2 \times \pi_{\text{ДЛ.ОКР.0}}^2 \times R \times r^2$$
, (4.2.3.2)

Формула (4.2.3.2) является верхней границей для вычисления объема тора.

Искомый объем тора находится между вышеуказанными нижней и верхней границами. Поэтому, результирующая формула для вычисления объема тора V_{т.р} будет представлять среднеарифметическое от формул (4.2.3.1) и (4.2.3.2) вида:

$$V_{\text{r.p}} = \frac{\left(2 \times \pi_{\text{пл.кр.в}} \times \pi_{\text{дл.окр.в}} \times R \times r^2\right) + \left(2 \times \pi_{\text{дл.окр.o}}^2 \times R \times r^2\right)}{2} = \left(\pi_{\text{пл.кр.в}} \times \pi_{\text{дл.окр.o}} + \pi_{\text{дл.окр.o}}^2\right) \times R \times r^2, (4.2.3.3)$$

По формуле (4.2.3.3) вычисляется, на самом деле, не объем тора, а объем некоего среднеарифметического торообразного многогранника, так как точно вычислять объемы тел, ограниченных криволинейными поверхностями (каковой, в частности, является поверхность тора), мы не умеем. Мы умеем вычислять только объемы тел, ограниченных только плоскими поверхностями.

Вычисленный по формуле (4.2.3.3) объем тора ближе по величине к искомому объему тора, по сравнению с объемами, вычисленными, по формуле (4.2.1.4) по методу вписанного многогранника, и по формуле (4.2.2.4) по методу описанного многогранника.

§4.3. Выводы

Ранее в §4.1.3 результирующим методом была найдена формула (4.1.3.3) для вычисления площади поверхности тора *S*_{т.р.}, имеющая вид:

$$S_{\text{T.p}} = 2 \times r \times R \times (\pi_{\text{дл.окр.в}}^2 + \pi_{\text{дл.окр.o}}^2), (4.3.1)$$

Согласно П.1.20 формула для вычисления площади поверхности тора имеет следующий вид:

$$S_{\rm T} = 4 \times r \times R \times \pi^2$$
, (4.3.2)

Ранее в §4.2.3 результирующим методом была найдена формула (4.2.3.3) для вычисления объема тора, имеющая вид:

$$V_{\text{T.p}} = \left(\pi_{\text{пл.кр.в}} \times \pi_{\text{дл.окр.в}} + \pi_{\text{дл.окр.o}}^2\right) \times R \times r^2, (4.3.3)$$

Согласно П.1.21 формула для определения объема тора имеет вид:

$$V_{\rm T} = 2 \times \pi^2 \times R \times r^2, (4.3.4)$$

Как видно, формулы (4.3.1), (4.3.2), (4.3.3) и (4.3.4) отличаются друг от друга тем, что в формулах (4.3.2) и (4.3.4) стоит некое единое (для всех формул – для вычисления, длины окружности, площади круга, площади поверхности цилиндра, объема цилиндра, площади поверхности тора, объема тора, площади поверхности конуса, объема конуса, площади сферы и объема шара) число π , в формуле (4.3.1) стоят два числа $\pi_{дл.окр.в}$ и $\pi_{дл.окр.о}$, а в формуле (4.3.3) стоят три числа $\pi_{пл.кр.в}$, $\pi_{дл.окр.в}$ и $\pi_{дл.окр.o}$. При этом, вышеуказанные числа, как об этом указано ранее в §2.3 в таблице 2.3.1, по величине не равны между собой.

Глава 5

§5. Вычисление площади поверхности и объема Конуса

§5.1. Вычисление площади поверхности Конуса

§5.1.1. Метод вписанного многогранника

На Рис.5.1.1.1 показан круговой прямой конус с центром основания конуса в точке О₇, радиусом основания г и вершиной конуса в точке О₈. Таким образом, прямая линия $|O_7O_8|$ является осью конуса и его высотой $|O_7O_8| = H_{\rm K}$.

Рис.5.1.1.1.

Проведем через ось конуса | O_7O_8 | плоскость Γ_3 . Построив линию пересечения плоскости Γ_3 с боковой поверхностью конуса, получим прямую линию | A_7O_8 |, которая является образующей конуса. Построив линию пересечения плоскости Γ_3 с основанием конуса, получим прямую линию | O_7A_7 |, которая является радиусом основания конуса | O_7A_7 | = r.

Проведем через ось конуса | O_7O_8 | плоскость Δ_3 под углом α к плоскости Γ_3 . Построив линию пересечения плоскости Δ_3 с боковой поверхностью конуса, получим прямую линию | B_7O_8 |, которая является образующей конуса. Построив линию пересечения плоскости Δ_3 с основанием конуса, получим прямую линию | O_7B_7 |, которая является радиусом основания конуса | O_7B_7 |= r.

Соединив точки A_7 и B_7 между собой, получим равнобедренный треугольник $A_7O_7B_7$ (так как $|O_7A_7| = |O_7B_7| = r$).

Опустим из точки О₇ перпендикуляр | O_7C_7 | на сторону | A_7B_7 | треугольника $A_7O_7B_7$. Соединим точки O₈ и C₇ между собой. Так как треугольник $A_7O_7B_7$ является равнобедренным (доказано ранее), следовательно, в соответствии с **П.1.1** | O_7C_7 | является, одновременно, высотой, биссектрисой и медианой треугольника $A_7O_7B_7$. А, следовательно, угол $A_7O_7C_7$ равнен углу $B_7O_7C_7$ и равен $\frac{\alpha}{2}$, и | A_7C_7 | = | C_7B_7 |.

Ранее в §2.1.1 при использовании метода вписанного многоугольника были найдена формула (2.1.1.3) для вычисления длин стороны | AB |, которая в данном случае равна стороне | A_3B_3 |, и равна:

$$|AB| = |A_7B_7| = 2 \times |O_7A_7| \times \sin\frac{\alpha}{2} = 2 \times r \times \sin\frac{\alpha}{2}, (5.1.1.1)$$

Рассмотрим прямоугольный треугольник $A_7O_7C_7$ (Рис.5.1.1.1), у которого известны гипотенуза | O_7A_7 | = rи прилегающий к ней угол $A_7O_7C_7 = \frac{\alpha}{2}$. Согласно **П.1.2** найдем его катет | O_7C_7 |:

$$| 0_7 C_7 | = | 0_7 A_7 | \times \cos \frac{\alpha}{2} = r \times \cos \frac{\alpha}{2}, (5.1.1.2)$$

Полная площадь поверхности конуса $S_{\kappa,B}$ равна сумме площадей основания конуса $S_{\text{осн.к.в}}$ и боковой поверхности конуса $S_{\text{бок.к.в}}$.

Ранее в §2.2.1 при использовании метода вписанного многоугольника была найдена формула (2.2.1.2) для вычисления площади круга $S_{\text{кр.в}}$, равная в данном случае $S_{\text{осн.к.в.}}$

$$S_{\text{KP},\text{B}} = S_{\text{OCH,K,B}} = r^2 \times \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha} = r^2 \times \pi_{\text{пл.Kp,B}}, (5.1.1.3)$$

Остается вычислить площадь боковой поверхности конуса $S_{60K,K,B}$. Для этого вычислим площадь треугольника $O_8A_7B_7$.

 $|O_7O_8|$ является высотой конуса (начальное условие), следовательно, $|O_7O_8|$ перпендикулярна плоскости основания конуса, а, следовательно, треугольник $O_7O_8C_7$ прямоугольный.

Рассмотрим прямоугольный треугольник $O_7O_8C_7$ (Рис.5.1.1.1), у которого известны катеты | O_7C_7 | и | O_7O_8 | = $H_{\rm K}$. Согласно **П.1.9** найдем его гипотенузу | C_7O_8 |:

$$|C_7 O_8| = \sqrt{|O_7 O_8|^2 + |O_7 C_7|^2} = \sqrt{H_\kappa^2 + \left(r \times \cos\frac{\alpha}{2}\right)^2}, (5.1.1.4)$$

 $|O_7C_7| \perp |A_7B_7|$ (принято ранее), следовательно, плоскость треугольника $O_7O_8C_7$ перпендикулярна стороне

 $|A_7B_7|$. Следовательно, в соответствии со **С1.6** $|A_7B_7| \perp |C_7O_8|$, а, следовательно, $|C_7O_8|$ является высотой равнобедренного треугольника O₈A₇B₇ (так как $|A_7O_8| = |B_7O_8|$, в силу того, что $|A_7O_8|$ и $|B_7O_8|$ являются образующими конуса).

Рассмотрим равнобедренный треугольник $O_8A_7B_7$. Площадь $S_{O_8A_7B_7}$ треугольника $O_8A_7B_7$ согласно **П.1.3** будет равна:

$$S_{O_8A_7B_7} = \frac{1}{2} \times |A_7B_7| \times |C_7O_8| =$$

= $\frac{1}{2} \times 2 \times r \times \sin\frac{\alpha}{2} \times \sqrt{H_{\kappa}^2 + (r \times \cos\frac{\alpha}{2})^2} =$
= $r \times \sin\frac{\alpha}{2} \times \sqrt{H_{\kappa}^2 + (r \times \cos\frac{\alpha}{2})^2}$, (5.1.1.5)

Чем меньше будет угол α , тем меньше площадь треугольника $O_8A_7B_7$ будет отличаться от площади боковой поверхности сектора конуса, ограниченного образующими $|A_7O_8|$ и $|B_7O_8|$, и дугой окружности $\widehat{A_7B_7}$. Умножив площадь треугольника $O_8A_7B_7$, вычисленную по формуле (5.1.1.5), на число таких треугольников, умещающихся на боковой посерхности конуса, тоесть, на $\frac{360}{\alpha}$, получим (Рис.5.1.1.2) полную площадь боковой поверхности конуса S_{бок.к.в}:

$$S_{60K,K,B} = S_{O_8A_7B_7} \times \frac{360}{\alpha} =$$
$$= r \times \sin\frac{\alpha}{2} \times \sqrt{H_K^2 + \left(r \times \cos\frac{\alpha}{2}\right)^2} \times \frac{360}{\alpha} =$$

Рис.5.1.1.2.

Вычислим полную площадь поверхности конуса $S_{\text{к.в.}}$, которая равна сумме площадей основания конуса $S_{\text{осн.к.в}}$ и боковой поверхности конуса $S_{\text{бок.к.в.}}$.

$$S_{\text{K,B}} = S_{\text{OCH.K,B}} + S_{\text{GOK.K,B}} = \left(r^2 \times \sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha}\right) + \frac{1}{2}\left(r^2 \times \sin\frac{\alpha}{2} \times \frac{360}{\alpha}\right) + \frac{1}{2}\left(r^2 \times \frac{360}{\alpha}\right) + \frac{1}{2}\left(r$$

$$+\left(r \times \sin\frac{\alpha}{2} \times \left(\sqrt{{H_{\kappa}}^{2} + \left(r \times \cos\frac{\alpha}{2}\right)^{2}}\right) \times \frac{360}{\alpha}\right) =$$
$$= \pi_{\Pi \pi. \kappa p. B} \times r^{2} + \pi_{\Lambda \pi. \kappa p. B} \times r \times$$
$$\times \sqrt{{H_{\kappa}}^{2} + \left(r \times \cos\frac{\alpha}{2}\right)^{2}}, (5.1.1.7)$$

Как видно из Рис.5.1.1.2, по формуле (5.1.1.7) вычисляется, на самом деле, не площадь поверхности конуса, а площадь вписанного в конус многогранника в виде многогранной пирамиды, так как точно вычислять площади, плоских фигур (основание конуса), ограниченных кривыми линиями (каковой, в частности, является окружность), и криволинейных поверхностей (каковой, в частности, является боковая поверхность конуса), мы не умеем. Мы умеем вычислять площади только плоских фигур, ограниченных только прямыми линиями.

§5.1.2. Метод описанного многогранника

На Рис.5.1.2.1 показан круговой прямой конус с центром основания конуса в точке O_7 , радиусом основания г и вершиной конуса в точке O_8 . Таким образом, прямая $|O_7O_8|$ является осью конуса и его высотой $|O_7O_8| = H_{\kappa}$.

Рис.5.1.2.1.

Проведем через ось конуса | O_7O_8 | плоскость Z_3 . Построив линию пересечения плоскости Z_3 с боковой поверхностью конуса, получим прямую линию | $C_{7.0}O_8$ |, которая является образующей конуса. Построив линию пересечения плоскости Z_3 с основанием конуса, получим прямую линию | $O_7C_{7.0}$ |, которая является радиусом основания конуса | $O_7C_{7.0}$ | = r.

Проведем через ось конуса | O_7O_8 | плоскость Γ_3 под углом $\frac{\alpha}{2}$ к плоскости Z_3 , а, следовательно, и к радиусу | $O_7C_{7.0}$ |. Построив линию пересечения плоскости Γ_3 с боковой поверхностью конуса, получим прямую линию | A_7O_8 |, которая является образующей конуса. Построив линию пересечения плоскости Γ_3 с основанием конуса, получим прямую линию | O_7A_7 |, которая является радиусом основания конуса | O_7A_7 | = r.

Проведем через ось конуса | O_7O_8 | плоскость Δ_3 под углом $\frac{\alpha}{2}$ к плоскости Z_3 , а, следовательно, и к радиусу | $O_7C_{3.0}$ | (при этом, угол между плоскостями Z_3 и Δ_3 равен α). Построив линию пересечения плоскости Δ_3 с боковой поверхностью конуса, получим прямую линию | B_7O_8 |, которая является образующей конуса. Построив линию пересечения плоскости Δ_3 с основанием конуса, получим прямую линию | O_7B_7 |, которая является радиусом основания конуса | O_7B_7 | = r.

Проведем через точку С_{7.0} прямую линию, лежащую в плоскости основания конуса, касательную к окружности основания конуса, а, следовательно, перпендикулярную к радиусу основания конуса | $O_7C_{7.0}$ | = r. Проведем из точки О₇ прямую линию до ее пересечения с вышеуказанной касательной к окружности основания конуса в точке А_{7.0}, при этом, данная прямая линия по направлению совпадает с направлением радиуса | O_7A_7 | = r (тоесть, угол между прямой линией | $O_7A_{7.0}$ | и радиусом | $O_7C_{7.0}$ | равен $\frac{\alpha}{2}$, и данная прямая линия пересекает окружность основания конуса в точке А₇). Проведем из точки О₇ прямую линию до ее пересечения с вышеуказанной касательной к окружность основания конуса в точке А₇). Проведем из точки О₇ прямую линию до ее пересечения с вышеуказанной касательной к окружности основания конуса в точке В_{7.0}, при этом, данная прямая линия по направлению совпадает с направления конуса в точке В_{7.0}, при этом, данная прямая линия по направлению совпадает с направлением радиуса | O_7B_7 | = r (тоесть, угол между прямой линия по направлению совпадает с направления конуса в точке В_{7.0}, при этом, данная прямая линия по направлению совпадает с направлением радиуса | O_7B_7 | = r (тоесть, угол между прямой ли-

нией | $O_7 B_{7.0}$ | и радиусом | $O_7 C_{7.0}$ | равен $\frac{\alpha}{2}$, данная прямая линия пересекает окружность основания конуса в точке В₇).

Таким образом, мы получили треугольник $O_7A_{7.0}B_{7.0}$. Так как | $O_7C_{7.0}$ | \bot | $A_{7.0}B_{7.0}$ |, угол $A_{7.0}O_7C_{7.0}$ равен углу $B_{7.0}O_7C_{7.0}$ и равен $\frac{\alpha}{2}$, следовательно, треугольник $O_7A_{7.0}B_{7.0}$ равнобедренный. А, следовательно, | $O_7A_{7.0}$ | = | $O_7B_{7.0}$ |, и | $O_7C_{7.0}$ | согласно **П.1.1** является, одновременно, высотой, биссектрисой и медианой треугольника $O_7A_{7.0}B_{7.0}$. Следовательно, | $A_{7.0}C_{7.0}B_{7.0}$ | = | $C_{7.0}B_{7.0}$.

Ранее в §2.1.2 при использовании метода описанного многоугольника была найдена формула (2.1.2.2) для вычисления длины стороны | A_0B_0 |, которая в данном случае равна стороне | $A_{7,0}B_{7,0}$ |, и равна:

$$|A_0B_0| = |A_{7.0}B_{7.0}| = 2 \times r \times \tan \frac{\alpha}{2}, (5.1.2.1)$$

Полная площадь поверхности конуса $S_{\kappa.0}$ равна сумме площадей основания конуса $S_{\text{осн.к.0}}$ и боковой поверхности конуса $S_{\text{бок.к.0}}$.

Ранее в §2.2.2 при использовании метода описанного многоугольника была найдена формула (2.2.2.2) для вычисления площади круга $S_{\text{кр.o}}$, равная в данном случае $S_{\text{осн. к.o.}}$ и равная:

$$S_{\text{KP.O}} = S_{\text{OCH.K.O}} = r^2 \times \tan \frac{\alpha}{2} \times \frac{360}{\alpha} = r^2 \times \pi_{\text{дл.окр.o}}, (5.1.2.2)$$

Остается вычислить площадь боковой поверхности конуса $S_{60K,K,0}$. Для этого вычислим площадь треугольника $O_8A_{7,0}B_{7,0}$.

 $|O_7O_8|$ является высотой конуса (начальное условие), следовательно, $|O_7O_8|$ перпендикулярна плоскости осно-

вания конуса, а, следовательно, треугольник O₇O₈C_{7.0} прямоугольный.

Рассмотрим прямоугольный треугольник $O_7O_8C_{7.0}$ (Рис.5.1.2.1), у которого известны катеты | $O_7C_{7.0}$ | = r и | O_7O_8 | = H_{κ} . Согласно **П.1.9** найдем гипотенузу | $O_8C_{7.0}$ |:

$$| O_8 C_{7.0} | = \sqrt{| O_7 C_{7.0} |^2 + | O_7 O_8 |^2} = \sqrt{r^2 + H_{\kappa}^2}, (5.1.2.3)$$

 $|O_7C_{7.0}|$ и $|O_8C_{7.0}|$ лежат в плоскости Z_3 . Следовательно, в соответствии с **П.1.6** $|A_{7.0}B_{7.0}|$ перпендикулярна плоскости Z_3 , а, следовательно, $|O_8C_{7.0}| \perp |A_{7.0}B_{7.0}|$. Следовательно, треугольник $O_8A_{7.0}B_{7.0}$ является равнобедренным, и $|O_8C_{7.0}|$ является его высотой (и образующей конуса).

Вычислим площадь $S_{O_8A_{7.0}B_{7.0}}$ треугольника $O_8A_{7.0}B_{7.0}$, которая согласно **П.1.3** будет равна:

$$S_{O_8A_{7,0}B_{7,0}} = \frac{1}{2} \times |A_{7,0}B_{7,0}| \times |O_8C_{7,0}| =$$

= $\frac{1}{2} \times 2 \times r \times \tan \frac{\alpha}{2} \times \sqrt{r^2 + {H_{\kappa}}^2} =$
= $r \times \tan \frac{\alpha}{2} \times \sqrt{r^2 + {H_{\kappa}}^2}$, (5.1.2.4)

Чем меньше будет угол α , тем меньше площадь треугольника $O_8A_{7.0}B_{7.0}$ будет отличатся от площади боковой поверхности сектора конуса, ограниченного дугой окружности $\widehat{A_7B_7}$ и образующими конуса | A_7O_8 | и | B_7O_8 |. Умножив площадь треугольника $O_8A_{7.0}B_{7.0}$, вычисленную по формуле (5.1.2.4), на число таких треугольников, умещающихся на боковой поверхности конуса, тоесть, на $\frac{360}{\alpha}$, получим (Рис.5.1.2.2) полную площадь боковой поверхности конуса S_{бок.к.о}:

Рис.5.1.2.2.

Вычислим полную площадь поверхности конуса $S_{\kappa,o}$, которая равна сумме площадей основания конуса $S_{och,\kappa,o}$ и боковой поверхности конуса $S_{60\kappa,\kappa,o}$.

$$S_{\text{K}.0} = S_{\text{OCH.K.0}} + S_{\text{GOK.K.0}} =$$

= $r^2 \times \pi_{\text{дл.окр.0}} + r \times \pi_{\text{дл.окр.0}} \times \sqrt{r^2 + {H_{\text{K}}}^2} =$
= $\pi_{\text{дл.окр.0}} \times \left(r^2 + r \times \sqrt{r^2 + {H_{\text{K}}}^2}\right)$, (5.1.2.6)

Как видно из Рис.5.1.2.2, по формуле (5.1.2.6) вычисляется, на самом деле, не площадь поверхности конуса, а площадь описанного около конуса многогранника в виде многогранной пирамиды, так как точно вычислять площади, плоских фигур (основание конуса), ограниченных кривыми линиями (каковой, в частности, является окружность), и криволинейных поверхностей (каковой, в частности, является боковая поверхность конуса), мы не умеем. Мы умеем вычислять площади только плоских фигур, ограниченных только прямыми линиями.

§5.1.3. Результирующий Метод

При использовании метода вписанного многогранника в §5.1.1 была найдена формула (5.1.1.7) для вычисления площади поверхности конуса *S*_{к.в}, имеющая вид:

$$S_{\rm k,b} = \pi_{\rm ii,kp,b} \times r^2 + \pi_{\rm dii,okp,b} \times r \times \sqrt{H_{\rm k}^2 + \left(r \times \cos\frac{\alpha}{2}\right)^2}, (5.1.3.1)$$

Формула (5.1.3.1) является нижней границей для вычисления значения площади поверхности конуса.

При использовании метода описанного многогранника в §5.1.2 была найдена формула (5.1.2.6) для вычисления площади поверхности конуса $S_{\kappa,0}$, имеющая вид:

$$S_{\text{к.o}} = \pi_{\text{дл.окр.o}} \times \left(r^2 + r \times \sqrt{r^2 + {H_{\text{K}}}^2} \right)$$
, (5.1.3.2)

Формула (5.1.3.2) является верхней границей для вычисления значения площади поверхности конуса.

Искомая полная площадь поверхности конуса находится между вышеуказанными нижней и верхней границами. Поэтому, результирующая формула для вычисления полной площади поверхности конуса $S_{\kappa,p}$ (Рис.5.1.3.1) будет представлять среднеарифметическое от формул (5.1.3.1) и (5.1.3.2) вида:

$$S_{\text{K},\text{p}} = \frac{S_{\text{K},\text{B}} + S_{\text{K},\text{O}}}{2} =$$

$$= \frac{1}{2} \times \left(\pi_{\Pi \pi. \mathrm{Kp}.\mathrm{B}} \times r^{2} + \pi_{\mathrm{d}\pi. \mathrm{OKp}.\mathrm{B}} \times r \times \sqrt{H_{\mathrm{K}}^{2} + \left(r \times \cos\frac{\alpha}{2}\right)^{2}} \right) + \frac{1}{2} \times \left(\pi_{\mathrm{d}\pi. \mathrm{OKp}.\mathrm{O}} \times \left(r^{2} + r \times \sqrt{r^{2} + H_{\mathrm{K}}^{2}}\right) \right) = \frac{1}{2} \times r \times \left(\left(\pi_{\mathrm{\Pi}\pi. \mathrm{Kp}.\mathrm{B}} \times r + \pi_{\mathrm{d}\pi. \mathrm{OKp}.\mathrm{B}} \times \sqrt{H_{\mathrm{K}}^{2} + \left(r \times \cos\frac{\alpha}{2}\right)^{2}} \right) + \left(\pi_{\mathrm{d}\pi. \mathrm{OKp}.\mathrm{O}} \times \left(r + \sqrt{r^{2} + H_{\mathrm{K}}^{2}}\right) \right) \right), (5.1.3.3)$$

Рис.5.1.3.1.

Как видно из Рис.5.1.3.1, по формуле (5.1.3.3) вычисляется, на самом деле, не площадь поверхности конуса, а площадь некоего среднеарифметического многогранника в виде многогранной пирамиды, так как точно вычислять площади, плоских фигур (основание конуса), ограниченных кривыми линиями (каковой, в частности, является окружность), и криволинейных поверхностей (каковой, в частности, является боковая поверхность конуса), мы не умеем. Мы умеем вычислять только площади плоских фигур, ограниченных только прямыми линиями. Вычисленная по формуле (5.1.3.3) площадь поверхности конуса ближе по величине к искомой площади поверхности конуса, по сравнению с площадями поверхности конуса, вычисленными, по формуле (5.1.1.7) методом вписанного многогранника, и по формуле (5.1.2.6) методом описанного многогранника.

§5.2. Вычисление объема Конуса §5.2.1. Метод вписанного многогранника

Ранее в §5.1.1 при использовании метода вписанного многогранника была найдена формула (5.1.1.3) для вычисления площади основания конуса $S_{\text{осн.к.в}}$, имеющая следующий вид:

$$S_{\rm och.k.b} = r^2 \times \pi_{\rm пл.кр.b}$$
, (5.2.1.1)

Согласно **П.1.23** вычислим объем конуса $V_{\text{к.в.}}$:

$$V_{\rm K,B} = \frac{1}{3} \times S_{\rm OCH,K,B} \times H_{\rm K} = \frac{1}{3} \times r^2 \times \pi_{\rm II,KP,B} \times H_{\rm K}, (5.2.1.2)$$

По формуле (5.2.1.2) вычисляется, на самом деле, не объем конуса, а объем некоего вписанного в конус многогранника в виде многогранной пирамиды, так как точно вычислять объемы тел, ограниченных криволинейными поверхностями (каковой, в частности, является боковая поверхность конуса), мы не умеем. Мы умеем вычислять только объемы тел, ограниченных только плоскими поверхностями.

§5.2.2. Метод описанного многогранника

Ранее в §5.1.2 при использовании метода вписанного многогранника была найдена формула (5.1.2.2) для вычисления площади основания конуса $S_{\text{осн.к.о}}$, имеющая следующий вид:

$$S_{\text{осн.к.o}} = r^2 \times \pi_{\text{дл.окр.o}}, (5.2.2.1)$$

Согласно **П.1.23** вычислим объем конуса $V_{K,0}$:

$$V_{\rm K.0} = \frac{1}{3} \times S_{\rm OCH.K.0} \times H_{\rm K} = \frac{1}{3} \times r^2 \times \pi_{\rm дл.okp.o} \times H_{\rm K}, (5.2.2.2)$$

По формуле (5.2.2.2) вычисляется, на самом деле, не объем конуса, а объем некоего описанного около конуса многогранника в виде многогранной пирамиды, так как точно вычислять объемы тел, ограниченных криволинейными поверхностями (каковой, в частности, является боковая поверхность конуса), мы не умеем. Мы умеем вычислять только объемы тел, ограниченных только плоскими поверхностями.

§5.2.3. Результирующий Метод

При использовании метода вписанного многогранника в §5.2.1 была найдена формула (5.2.1.2) для вычисления объема конуса *V*_{к.в}, имеющая вид:

$$V_{\rm K,B} = \frac{1}{3} \times r^2 \times \pi_{\rm II,KP,B} \times H_{\rm K}, (5.2.3.1)$$

Формула (5.2.3.1) является нижней границей для вычисления объема конуса.

При использовании метода описанного многогранника в §5.2.2 была найдена формула (5.2.2.2) для вычисления объема конуса, имеющая вид:

$$V_{\rm K.0} = \frac{1}{3} \times r^2 \times \pi_{\rm дл. o kp. 0} \times H_{\rm K}, (5.2.3.2)$$

Формула (5.2.3.1) является верхней границей для вычисления объема конуса.

Искомый объем конуса находится между вышеуказанными нижней и верхней границами. Поэтому, результирующая формула для вычисления объема конуса $V_{\text{к.р}}$ будет представлять среднеарифметическое от формул (5.2.3.1) и (5.2.3.2) вида:

$$V_{\mathrm{K,p}} = \frac{V_{\mathrm{K}} + V_{\mathrm{K,0}}}{2} =$$

$$= \frac{\left(\frac{1}{3} \times r^{2} \times \pi_{\mathrm{пл.Kp,B}} \times H_{\mathrm{K}}\right) + \left(\frac{1}{3} \times r^{2} \times \pi_{\mathrm{дл.oKp.o}} \times H_{\mathrm{K}}\right)}{2} =$$

$$= \frac{1}{6} \times r^{2} \times H_{\mathrm{K}} \times \left(\pi_{\mathrm{пл.Kp.B}} + \pi_{\mathrm{дл.oKp.o}}\right) =$$

$$= \frac{1}{6} \times r^{2} \times H_{\mathrm{K}} \times \left(\left(\sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2} \times \frac{360}{\alpha}\right) + \left(\tan\frac{\alpha}{2} \times \frac{360}{\alpha}\right)\right) =$$

$$= \frac{1}{3} \times r^{2} \times H_{\mathrm{K}} \times \left(\frac{180}{\alpha} \times \left(\left(\sin\frac{\alpha}{2} \times \cos\frac{\alpha}{2}\right) + \tan\frac{\alpha}{2}\right)\right) =$$

$$= \frac{1}{3} \times r^{2} \times \pi_{\mathrm{пл.Kp.p}} \times H_{\mathrm{K}}, (5.2.3.3)$$

По формуле (5.2.3.3) вычисляется, на самом деле, не объем конуса, а объем некоего среднеарифметического многогранника в виде многогранной пирамиды, так как точно вычислять объемы тел, ограниченных криволинейными поверхностями (каковой, в частности, является боковая поверхность конуса), мы не умеем. Мы умеем вычислять только объемы тел, ограниченных только плоскими поверхностями.

Вычисленный по формуле (5.2.3.3) объем ближе по величине к искомому объему конуса, по сравнению с объемами, вычисленными, по формуле (5.2.1.2) методом вписанного многогранника, и по формуле (5.2.2.2) методом описанного многогранника.

§5.3. Выводы

В §5.1.3 по результирующему методу была найдена формула (5.1.3.3) для вычисления площади поверхности конуса *S*_{к.р.}, имеющая вид:

$$S_{\text{K,p}} = \frac{1}{2} \times r \times \left(\left(\pi_{\text{пл.кр.B}} \times r + \pi_{\text{дл.окр.B}} \times \sqrt{H_{\text{K}}^{2} + \left(r \times \cos \frac{\alpha}{2}\right)^{2}} \right) + \left(\pi_{\text{дл.окр.0}} \times \left(r + \sqrt{r^{2} + H_{\text{K}}^{2}}\right) \right) \right), (5.3.1)$$

Из **П.1.22** известна формула для вычисления площади поверхности конуса *S*_к, имеющаяя следующий вид:

$$S_{\rm K} = \pi \times r \times (r + L_{\rm K}), (5.3.2)$$

В §5.2.3 по результирующему методу была найдена формула (5.2.3.3) для вычисления объема конуса $V_{\text{к.р.}}$, имеющая вид:

$$V_{\text{K},\text{p}} = \frac{1}{3} \times r^2 \times \pi_{\text{пл.кр.p}} \times H_{\text{к}}, (5.3.3)$$

Из **П.1.23** известна формула для вычисления объема конуса *V*_к, имеющая следующий вид:

$$V_{\rm K} = \frac{1}{3} \times r^2 \times \pi \times H_{\rm K}, (5.3.4)$$

Как видно, в формулах (5.3.2) и (5.3.4) стоит некое единое (для всех формул – для вычисления, длины окружности, площади круга, площади поверхности цилиндра, объема цилиндра, площади поверхности тора, объема тора, площади поверхности конуса, объема конуса, площади поверхности сферы и объема шара) число π , в формуле (5.3.1) стоят три числа $\pi_{пл.кр.в}$, $\pi_{дл.окр.в}$ и $\pi_{дл.окр.о}$, а в формуле (5.3.3) стоит одно число $\pi_{пл.кр.р}$. При этом, вышеуказанные числа, как об этом указано ранее в §2.3 в таблице 2.3.1, по величине не равны между собой.

Глава 6

§6. Вычисление площади поверхности Сферы и объема Шара

§6.1. Вычисление площади поверхности Сферы

§6.1.1.Метод вписанного многогранника §6.1.1.1. Вычисление площади основания первой пирамиды

На Рис.6.1.1.1.1 показан шар с центром в точке О, диаметром | DE | и радиусом | OD | = R.

Рис.6.1.1.1.1.

Радиус | OD | лежит на диаметре | DE |. Проведем из центра шара О радиус | OF |, перпендикулярный диаметру | DE |, а, следовательно, и перпиндикулярный радиусу | OD |. Через диаметр | DE | и радиус | OF | проведем плоскость Π_0 . Плоскость Π_0 пересекает поверхность сферы (шара) по дуге окружности \widehat{DFE} . Проведем через радиус | OF | плоскость Σ_0 , перпендикулярную диаметру | DE |, а так как диаметр | DE | лежит в плоскости Π_0 , то в соответствии с **П.1.5** плоскость Σ_0 будет перпендикулярна плоскости Π_0 .

Проведем из центра шара точки О радиус | OG | (Рис.6.1.1.1.1) так, чтобы он лежал в плоскости Σ_0 . При этом радиус | OG | составляет с радиусом | OF | (так как | OF | также лежит в плоскости Σ_0) угол $FOG = \frac{\alpha}{2}$. Проведем через радиус | OG | и диаметр | DE | плоскость Φ_0 . Плоскость Φ_0 пересекает поверхность сферы (шара) по дуге окружности DGE.

Проведем из центра шара точки О радиус | OH | (Рис.6.1.1.1) так, чтобы он лежал в плоскости Σ_0 и составлял с радиусом | OF | угол $FOH = \frac{\alpha}{2}$, а с радиусом | OG |, соответственно, угол $GOH = \alpha$. Проведем через радиус | OH | и диаметр | DE | плоскость Ψ_0 . Плоскость Ψ_0 пересекает поверхность сферы (шара) по дуге окружности \widehat{DHE} .

Диаметр | DE | является линией пересечения плоскостей Π_0 , Φ_0 и Ψ_0 . Радиус | OF | лежит в плоскости Σ_0 и | OF | \bot | DE | (начальное условие). Так как | DE | перпендекулярен плоскости Σ_0 , а | OG | и | OH | лежат в плоскости Σ_0 (принято ранее), то в соответствии со **С.1.6** | DE | \bot | OG | и | DE | \bot | OH |. Вместе с тем радиус | OF | лежит в плоскости Π_0 , радиус | OG | лежит в плоскости Φ_0 , а радиус | OH | лежит в плоскости Φ_0 .

Следовательно, в соответствии с **П.1.7** угол $FOG = \frac{\alpha}{2}$ является углом между плоскостями Π_0 и Φ_0 , угол $FOH = \frac{\alpha}{2}$ является углом между плоскостями Π_0 и Ψ_0 , а угол $GOH = \alpha$ является углом между плоскостями Φ_0 и Ψ_0 .

Плоскость Σ_0 пересекает поверхность сферы (шара), заключенную между плоскостями Φ_0 и Ψ_0 , по дуге окружности \widehat{GFH} .

Проведем из центра шара точки О радиус $|OI_1| = R$ (Рис.6.1.1.2) так, чтобы он лежал в плоскости Π_0 и сос-

Рис.6.1.1.1.2.

тавлял с радиусом | OD | угол α (тоесть, угол $DOI_1 = \alpha$). Проведем через радиус | OI_1 | плоскость Σ_1 , перпендикулярную плоскости Π_0 . При этом, плоскость Σ_1 пересекает, дугу окружности \widehat{DG} (лежащую в плоскости Φ_0) в точке J_1 , а дугу окружности \widehat{DH} (лежащую в плоскости Ψ_0) в точке K_1 . При этом, $|OJ_1| = R$ и $|OK_1| = R$. Плоскость Σ_1 пересекает поверхность сферы (шара), заключенную между плоскостями Φ_0 и Ψ_0 , по дуге окружности $\widehat{J_1 I_1 K_1}$.

Соединив точки J_1 и O, K_1 и O, J_1 и D, K_1 и D, J_1 и K_1 (Рис.6.1.1.1.3) между собой, получим пирамиду ODJ₁K₁ с основанием в виде треугольника DJ₁K₁ и вершиной в точке О. При этом, основание пирамиды DJ₁K₁ касается изнутри поверхности сферы в трех точках D, J₁ и K₁.

Рис.6.1.1.1.3.

Сторона пирамиды OJ_1K_1 представляет собой равнобедренный треугольник (так как $| OJ_1 | = | OK_1 | = R$). Точки O, J₁ и K₁ лежат в плоскости Σ_1 , следовательно, в соответствии с **П.1.4** и $| OJ_1 |$, $| OK_1 |$ и $| J_1K_1 |$ будут лежать в плоскости Σ_1 , а, следовательно, и весь треугольник OJ_1K_1 лежит в плоскости Σ_1 .

Сторона пирамиды ODJ₁ представляет собой треугольник. Точки O, D и J₁ лежат в плоскости Φ_0 , следовательно, в соответствии с правилом **П.1.4** и | *OD* |, | *DJ*₁ | и | *OJ*₁ | будут лежать в плоскости Φ_0 , а, следовательно, и весь треугольник ODJ₁ лежит в плоскости Φ_0 .

Сторона пирамиды ODK₁ представляет собой треугольник. Точки O, D и K₁ лежат в плоскости Ψ_0 , следовательно, в соответствии с **П.1.4** и | *OD* |, | *DK*₁ | и | *OK*₁ | будут лежать в плоскости Ψ_0 , а, следовательно, и весь треугольник ODK₁ лежит в плоскости Ψ_0 .

 $|J_1K_1|$ пересекает радиус $|OI_1|$ в точке Q_1 (Рис.6.1.1.1.4).

Рис.6.1.1.1.4.

Рассмотрим пирамиду ODJ_1K_1 (Рис.6.1.1.1.5). Опустим из точки D перпендикуляр | DL_1 | на сторону пирамиды OJ_1K_1 . Так как сторона пирамиды OJ_1K_1 лежит в плоскости Σ_1 , которая перпендикулярна плоскости Π_0 (принято ранее), а точка D лежит в плоскости Π_0 , то в соответтвии со C.1.5 | DL_1 | будет лежать в плоскости Π_0 .

Рис.6.1.1.1.5.

Точка L_1 должна лежать, одновременно, и в плоскости Π_0 и в плоскости Σ_1 , тоесть на радиусе | OI_1 |, являющемся линией пересечения плоскостей Π_0 и Σ_1 . Так как точки О и L_1 лежат на радиусе | OI_1 |, то и | OL_1 |, будет лежать на радиусе | OI_1 |.

 $|DL_1|$ перпендикулярна стороне пирамиды OJ_1K_1 (плоскости Σ_1 (принято ранее)). $|OL_1|$ лежит в плоскости Σ_1 (так как она лежит на радиусе $|OI_1|$, который лежит в плоскости Σ_1 (принято ранее)). Следовательно, в соответствии со **С.1.6** $|DL_1| \perp |OL_1|$, а, следовательно, треугольник ODL₁ прямоугольный, у которого известна гипотенуза |OD| = R (начальное условие), и прилежащий к ней угол $DOL_1 = \alpha$ (так как угол DOL₁ равен углу $DOI_1 = \alpha$, в силу того, что $|OL_1|$ лежит на радиусе $|OI_1|$). Согласно **П.1.2** найдет катет $|OL_1|$:

$$|OL_1| = |OD| \times \cos \alpha = R \times \cos \alpha$$
, (6.1.1.1)

Опустим из точки L₁ (Рис.6.1.1.1.5) перпендикуляр $|L_1M_1|$ на радиус |OD|. Получим прямоугольный треугольник OL₁M₁, у которого известна гипотенуза $|OL_1|$ (найдено ранее) и прилегающий к ней угол $M_1OL_1 = \alpha$ (так как угол M₁OL₁ равен углу $DOI_1 = \alpha$, в силу того, что $|OM_1|$ лежит на радиусе |OD|, а $|OL_1|$ лежит на радиусе $|OI_1|$). В соответствии с **П.1.2** найдем катет $|L_1M_1|$:

 $|L_1M_1| = |OL_1| \times \sin \alpha = R \times \cos \alpha \times \sin \alpha$, (6.1.1.1.2)

Из точки L₁ (Рис.6.1.1.1.6) проведем прямую линию, перпендикулярную плоскости Π_0 , до ее пересечения с плоскостью Φ_0 в точке N₁, и до ее пересечения с плоскостью Ψ_0 в точке P₁. Соединив точки N₁ и M₁, P₁ и M₁ между собой, получим треугольник M₁N₁P₁. Точка L₁ лежит на радиусе | OI_1 | (доказано ранее), который лежит в плоскости Σ_1 . Плоскость Σ_1 перпендикулярна плоскости Π_0 . | N_1P_1 | перпендикулярна плоскости Π_0 (принято ранее), следовательно, | N_1P_1 | лежит в плоскости Σ_1 и в соответствии со C.1.5 плоскость треугольника M₁N₁P₁ перпендикулярна плоскости Π_0 . А, следовательно, точка N₁ лежит на радиусе | OI_1 |, а точка P₁ лежит на радиусе | OK_1 |.

Рис.6.1.1.1.6.

Так как точки N₁ и M₁ лежат в плоскоти Φ_0 (в плоскости треугольника ODJ₁), то в соответствии с **П.1.4** и | N_1M_1 | будет лежать в плоскости треугольника ODJ₁.

Так как точки P_1 и M_1 лежат в плоскости Ψ_0 (в плоскости треугольника ODK₁), то в соответствии с **П.1.4** и $|P_1M_1|$ будет лежать в плоскости треугольника ODK₁.

| *DE* | является линией пересечения плоскостей Π_0 , Φ_0 и Ψ_0 . Следовательно, в соответствии с **П.1.7** угол $N_1M_1P_1$ является углом между плоскостями Φ_0 и Ψ_0 , и равен а (начальное условие), а углы $L_1M_1N_1$ и $L_1M_1P_1$ являются углами между плоскостями Π_0 и Φ_0 , и Π_0 и Ψ_0 , соответственно, равны между собой и равны $\frac{\alpha}{2}$ (начальное условие).

Рассмотрим треугольник $M_1N_1P_1$ (Рис.6.1.1.1.7). | N_1P_1 | перпендикулярна плоскости Π_0 (принято ранее). Точки L_1 и M_1 лежат, соответственно, на радиусах | OI_1 | и | OD |, каждый из которых лежит в плоскости Π_0 (начальное условие). Следовательно, и точки L_1 и M_1 будут лежать в плоскости Π_0 , а, следовательно, в соответствии с **П.1.4** и | L_1M_1 | лежит в плоскости Π_0 . Следовательно, в соответствии с **С.1.6** | N_1P_1 | \bot | L_1M_1 |.

Рис.6.1.1.1.7.

Рассмотрим треугольники $M_1L_1N_1$ и $M_1L_1P_1$ (Рис.6.1.1.1.7). Они имеют одну общую сторону | L_1M_1 |. Углы $L_1M_1N_1$ и $L_1M_1P_1$, прилежащие к стороне | L_1M_1 |, равны между собой и равны $\frac{\alpha}{2}$ (доказано ранее). Углы $N_1L_1M_1$ и $P_1L_1M_1$, прилежащие к стороне | L_1M_1 |, равны между собой и равны 90° (так как | N_1P_1 | \bot | L_1M_1 |). Сле-
довательно, в соответствии с **П.1.8** треугольники $M_1L_1N_1$ и $M_1L_1P_1$ равны между собой.

Рассмотрим треугольник $M_1L_1P_1$ (Рис.6.1.1.1.7), у которого известен катет | L_1M_1 | (данный треугольник прямоугольный, так как | N_1P_1 | \perp | L_1M_1 |, а, следовательно, и | L_1P_1 | \perp | L_1M_1 |) и угол $L_1M_1P_1 = \frac{\alpha}{2}$ (доказано ранее). В соответствии с **П.1.2** найдем катет | L_1P_1 |:

$$|L_1P_1| = |L_1M_1| \times \tan\frac{\alpha}{2} =$$
$$= R \times \cos\alpha \times \sin\alpha \times \tan\frac{\alpha}{2}, \quad (6.1.1.1.3)$$

Из равенства треугольников $M_1L_1N_1$ и $M_1L_1P_1$ следует, что $|L_1P_1| = |L_1N_1|$, а, следовательно, $|N_1P_1|$ будет равна:

$$|N_1P_1| = |L_1P_1| + |L_1N_1| = 2 \times |L_1P_1| = = 2 \times R \times \cos \alpha \times \sin \alpha \times \tan \frac{\alpha}{2}, (6.1.1.1.4)$$

Рассмотрим треугольник ON_1P_1 (Рис.6.1.1.1.8). | OL_1 | лежит в плоскости Π_0 (так как | OL_1 | лежит на радиусе | OI_1 |, который лежит в плоскости Π_0 (начальное условие)).

Рис.6.1.1.1.8.

| N_1P_1 | перпендикулярна плоскости Π_0 (принято ранее), следовательно, в соответствии со **С.1.5** | N_1P_1 | \bot | OL_1 |. | L_1P_1 | = | L_1N_1 | (доказано ранее). Треугольники OL_1N_1 и

 OL_1P_1 имеют общую сторну | OL_1 |. Таким образом, у треугольников OL_1N_1 и OL_1P_1 равны две стороны и угол между ними. Следовательно, в соответствии с **П.1.8** треугольники OL_1N_1 и OL_1P_1 равны между собой. Так как | N_1P_1 | \bot | OL_1 |, следовательно, треугольники OL_1N_1 и OL_1P_1 прямоугольные.

Рассмотрим прямоугольный треугольник OL_1P_1 (Рис.6.1.1.1.8). У него известен катет | OL_1 | (найден ранее) и катет | L_1P_1 | (также найден ранее). Следовательно, в соответсвии с **П.1.9** найдем гипотенузу | OP_1 |:

$$|OP_1| = \sqrt{|OL_1|^2 + |L_1P_1|^2} =$$
$$= \sqrt{(R \times \cos \alpha)^2 + (R \times \cos \alpha \times \sin \alpha \times \tan \frac{\alpha}{2})^2} =$$
$$= R \times \cos \alpha \times \sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}, (6.1.1.1.5)$$

Рассмотрим треугольник OJ_1K_1 (Рис.6.1.1.1.9). Так как было доказано ранее данный треугольник равнобедренный. Из равенства треугольников OL_1N_1 и OL_1P_1 (доказано ранее) следует, что | ON_1 | = | OP_1 |, тоесть, что треугольник ON_1P_1 равнобедренный. Угол N_1OP_1 равен углу J_1OK_1 .

Рис.6.1.1.1.9.

Следовательно, в соответствии с **П.1.10** треугольники ON_1P_1 и OJ_1K_1 подобны. Из их подобия согласно **П.1.11** следует:

$$\frac{|OK_1|}{|OP_1|} = \frac{|J_1K_1|}{|N_1P_1|}, (6.1.1.6)$$

Откуда найдем | J_1K_1 |:

$$|J_1K_1| = \frac{|OK_1| \times |N_1P_1|}{|OP_1|} =$$

$$= \frac{R \times \left(2 \times R \times \cos \alpha \times \sin \alpha \times \tan \frac{\alpha}{2}\right)}{R \times \cos \alpha \times \sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} =$$

$$= \frac{2 \times R \times \sin \alpha \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}, (6.1.1.17)$$

 $|N_1P_1| \perp |OL_1|$, $|L_1P_1| = |L_1N_1|$ (доказано ранее). Следовательно, $|OL_1|$ является, одновременно, и медианой и биссектрисой и высотой треугольника ON₁P₁.

Так как $|OL_1|$ лежит на $|OQ_1|$, которая, в свою очередь, лежит на радиусе $|OI_1|$, и что треугольник OJ_1K_1 равнобедренный (доказано ранее) и подобный треугольнику ON_1P_1 (доказано ранее), следовательно, $|OQ_1|$ является, одновременно, и медианой и биссектрисой и высотой треугольника OJ_1K_1 . Тоесть, что $|J_1K_1| \perp |OQ_1|$, и что $|J_1Q_1| = |Q_1K_1|$. $|J_1K_1|$ лежит в плоскости треугольника OJ_1K_1 (доказано ранее), а $|N_1P_1|$ лежит в плоскости треугольника OJ_1K_1 (доказано ранее), $|J_1K_1|$ лежит в плоскости треугольника OJ_1K_1 (доказано ранее), $|J_1K_1| \perp |OQ_1|$ и $|N_1P_1| \perp |OL_1|$ (доказано ранее), следовательно, и $|J_1K_1| \perp |OI_1|$ и $|N_1P_1| \perp |OI_1|$ (так как $|OQ_1|$ лежит на радиусе $|OI_1|$, и $|OL_1|$ лежит на радиусе $|OI_1|$).

Следовательно, $|N_1P_1| || |J_1K_1|$. Но так как $|N_1P_1|$ перпендикулярна плоскости Π_0 (принято ранее), следовательно, и $|J_1K_1|$ будет препендикулярна плоскости Π_0 .

Рассмотрим треугольник OJ_1K_1 (Рис.6.1.1.1.10). Точка Q_1 является точкой пересечения радиуса | OI_1 | и стороны | J_1K_1 | треугольника OJ_1K_1 . Соединим точки D и Q_1 между собой. Так как точка Q_1 лежит на радиусе | OI_1 |, который лежит в плоскости Π_0 , следовательно, и точка Q_1 будет лежать в плоскости Π_0 . Точка D лежит в плоскости Π_0 (начальное условие). Таким образом, точки D и Q_1 лежат в плоскости Π_0 , а, следовательно, в соответствии с **П.1.4** и | DQ_1 | будет лежать в плоскости Π_0 . | OQ_1 | лежит на радиусе | OI_1 |, который лежит в плоскости Π_0 (начальное условие), следовательно, и | OQ_1 | лежит в плоскости Π_0 .

Рис.6.1.1.1.10.

 $|DQ_1|$ и $|OQ_1|$ лежат в плоскости Π_0 (доказано ранее), а $|J_1K_1|$ перпендикулярна плоскости Π_0 (доказано ранее). Следовательно, в соответствии со **С.1.6** $|J_1K_1| \perp |DQ_1|$ и $|J_1K_1| \perp |OQ_1|$.

Рассмотрим треугольник DJ₁K₁ (Рис.6.1.1.1.1), который является основание пирамиды ODJ₁K₁. | $J_1K_1 | \perp | DQ_1 | u$ | $J_1Q_1 | = | Q_1K_1 |$ (доказано ранее). Угол J₁Q₁D треугольника DJ₁Q₁ равен углу K₁Q₁D треугольника DK₁Q₁ и равен

Рис.6.1.1.1.11.

90° (так как | J_1K_1 | \perp | DQ_1 |). Треугольники DJ₁Q₁ и DK₁Q₁ имеют одну общую сторону | DQ_1 |. Следовательно, в соответствии с **П.1.8** треугольники DJ₁Q₁ и DK₁Q₁ равны между собой, а, следовательно, | DJ_1 | = | DK_1 |. Следовательно, в соответствии с **П.1.1** | DQ_1 | является высотой треугольника DJ₁Q₁.

Рассмотрим прямоугольный треугольник OK₁Q₁ (Рис.6.1.1.1.9) (так как $|J_1K_1| \perp |OQ_1|$ (доказано ранее), следовательно, и $|Q_1K_1| \perp |OQ_1|$), у которого известна гипотенуза $|OK_1| = R$ (начальное условие) и катет $|Q_1K_1| = \frac{1}{2} \times |J_1K_1|$ (найденный ранее, так как было доказано, что $|J_1Q_1| = |Q_1K_1|$, а, следовательно, $|J_1K_1| = |J_1Q_1| + |Q_1K_1|$). Следовательно, в соответствии с **П.1.9** найдем катет $|OQ_1|$:

$$| OQ_{1} | = \sqrt{| OK_{1} |^{2} - | Q_{1}K_{1} |^{2}} = \sqrt{| OK_{1} |^{2} - \left(\frac{|J_{1}K_{1}|}{2}\right)^{2}} = \sqrt{R^{2} - \left(\frac{2 \times R \times \sin \alpha \times \tan \frac{\alpha}{2}}{2 \times \sqrt{1 + \sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}}\right)^{2}} = R \times \sqrt{1 - \frac{\sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}}, (6.1.1.1.8)$$

Рассмотрим треугольник ODQ₁ (Рис.6.1.1.1.12), у которого известны две стороны, |OD| = R (начальное условие) и $|OQ_1|$ (найдена ранее), и угол между ними $DOQ_1 = \alpha$ (так как угол DOQ₁ равен углу $DOI_1 = \alpha$, в силу того, что $|OQ_1|$ лежит на радиусе $|OI_1|$.

Рис.6.1.1.1.12.

Следовательно, в соответствии с **П.1.12** найдем третью сторону $| DQ_1 |$ треугольника ODQ₁:

 $|DQ_1| = \sqrt{|OD|^2 + |OQ_1|^2 - 2 \times |OD| \times |OQ_1| \times \cos \alpha} =$

$$= \sqrt{R^{2} + \left(R \times \sqrt{1 - \frac{\sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}}\right)^{2} - \frac{1}{1 + \sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}}$$

$$-2 \times R \times \left(R \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \right) \times \cos \alpha =$$
$$= R \times \sqrt{2 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} - }$$

$$-2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}, (6.1.1.1.9)$$

Площадь треугольника DJ_1K_1 (Рис.6.1.1.11), у которого ранее найдены сторона $|J_1K_1|$ и высота $|DQ_1|$, согласно **П.1.3** будет равна:

$$S_{DJ_1K_1} = \frac{1}{2} \times |J_1K_1| \times |DQ_1| =$$
$$= \frac{1}{2} \times \left(\frac{2 \times R \times \sin \alpha \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \right) \times$$

$$\times \left(R \times \sqrt{2 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} - 2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \right) =$$

$$= R^2 \times \sin \alpha \times \tan \frac{\alpha}{2} \times$$

$$\times \frac{\sqrt{2 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} - 2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} , (6.1.1.10)$$

Таким образом, чем меньше будет угол α , тем меньше площадь треугольника DJ_1K_1 будет отличатся от площади поверхности сферы, ограниченной дугами окружностей $\widehat{DJ_1}, J_1 \widehat{K_1} u \ \widehat{K_1} D$.

§6.1.1.2. Вычисление площади основания второй пирамиды

На Рис.6.1.1.2.1 показан шар с центром в точке О, диаметром | DE | и радиусом | OD | = R.

Рис.6.1.1.2.1.

Проведем из центра шара точки О радиус| $OI_2 | = R$ так, чтобы он лежал в плоскости Π_0 и составлял, с радиусом | OD | угол 2 α (тоесть, угол $DOI_2 = 2\alpha$), а с радиусом | $OI_1 |$ угол α (тоесть, угол $I_2OI_1 = \alpha$). Проведем через радиус | $OI_2 |$ плоскость Σ_2 , перпендикулярную плоскости Π_0 . При этом, плоскость Σ_2 пересекает, дугу окружности \widehat{DG} (лежащую в плоскости Φ_0) в точке J_2 , а дугу окружности \widehat{DH} (лежащую в плоскости Ψ_0) в точке K_2 . При этом, | $OJ_2 | = R \ u | OK_2 | = R$. Плоскость Σ_2 пересекает поверхность сферы (шара), заключенную между плоскостями Φ_0 и Ψ_0 , по дуге окружности $\widehat{J_2 I_2 K_2}$.

Соединив точки J₁ и O, K₁ и O, J₂ и O, K₂ и O, J₁ и J₂, J₂ и K₂, K₂ и K₁, K₁ и J₁ (Рис.6.1.1.2.2) между собой, получим пирамиду $OJ_1J_2K_2K_1$ с основанием в виде трапеции $J_1J_2K_2K_1$ и вершиной в точке О. При этом, основание пирамиды $J_1J_2K_2K_1$ касается изнутри поверхности сферы в четырех точках J₁, J₂, K₂ и K₁.

Рис.6.1.1.2.2.

Сторона пирамиды OJ_2K_2 представляет собой равнобедренный треугольник (так как | OJ_2 | = | OK_2 | = R). Точки O, J_2 и K_2 лежат в плоскости Σ_2 , следовательно, в соответствии с **П.1.4** и | OJ_2 |, | OK_2 | и | J_2K_2 | будут лежать в плоскости Σ_2 , а, следовательно, и весть треугольник OJ_2K_2 будет лежать в плоскости Σ_2 . $|J_2K_2|$ пересекает радиус $|OI_2|$ в точке Q_2 (Рис.6.1.1.1.3).

Рис.6.1.1.2.3.

Рассмотрим пирамиду $OJ_1J_2K_2K_1$ (Рис.6.1.1.2.4). Опустим из точки D перпендикуляр | DL_2 | на плоскость треугольника OJ_2K_2 (на сторону пирамиды OJ_2K_2). Так как сторона пирамиды OJ_2K_2 лежит в плоскости Σ_2 (доказано ранее), которая перпендикулярна плоскости Π_0 (принято ранее), а точка D лежит в плоскости Π_0 (начальное условие), то в соответствии со **С.1.5** | DL_2 | будет лежать в плоскости Π_0 .

Рис.6.1.1.2.4.

Точка L₂ должна лежать, одновременно, и в плоскости Π_0 и в плоскости Σ_2 , тоесть, на радиусе | OI_2 |, являющемся линией пересечения плоскостей Π_0 и Σ_2 . Так как точки О и L₂ лежат на радиусе | OI_2 |, то и | OL_2 | будет лежать на радиусе | OI_2 |.

 $|DL_2|$ перпендикулярна стороне пирамиды OJ_2K_2 (плоскости Σ_2) (принято ранее). $|OL_2|$ лежит в плоскости Σ_2 (так как она лежит на радиусе $|OI_2|$, который лежит в плоскости Σ_2 (принято ранее)). Следовательно, в соответствии со **С.1.6** $|DL_2| \perp |OL_2|$, а, следовательно, треугольник ODL₂ прямоугольный, у которого известна гипотенуза |OD| = R (начальное условие) и прилежащий к ней угол $DOL_2 = 2\alpha$ (так как угол DOL₂ равен углу $DOI_2 = 2\alpha$, в силу того, что $|OL_2|$ лежит на радиусе $|OI_2|$). Согласно **П.1.2** найдем катет $|OL_2|$:

$$|OL_2| = |OD| \times \cos 2\alpha = R \times \cos 2\alpha$$
, (6.1.1.2.1)

Опустим из точки L₂ (Рис.6.1.1.2.4) перпендикуляр $|L_2M_2|$ на радиус |OD|. Получим прямоугольный треугольник OL₂M₂, у которого известна гипотенуза $|OL_2|$ (найдена ранее) и прилежащий к ней угол $M_2OL_2 = 2\alpha$ (так как угол M₂OL₂ равен углу $DOI_2 = 2\alpha$, в силу того, что $|OM_2|$ лежит на радиусе |OD|, а $|OL_2|$ лежит на радиусе $|OI_2|$). В соответствии с **П.1.2** найдем катет $|L_2M_2|$:

 $|L_2M_2| = |OL_2| \times \sin 2\alpha = R \times \cos 2\alpha \times \sin 2\alpha$, (6.1.1.2.2)

Из точки L₂ (Рис.6.1.1.2.5) проведем прямую линию, перпендикулярную плоскости Π_0 , до ее пересечения с плоскостью Φ_0 в точке N₂, и до ее пересечения с плоскостью Ψ_0 в точке P₂. Соединив точки N₂ и M₂, P₂ и M₂ между собой, получим треугольник M₂N₂P₂. Точка L₂ лежит на радиусе | OI_2 | (доказано ранее), который лежит в плоскости Σ_2 . Плоскость Σ_2 перпендикулярна плоскости Π_0 (принято ранее), следовательно, | N_2P_2 | лежит в плоскости Σ_2 и в соответствии со C.1.5 плоскость треугольника M₂N₂P₂ перпендикулярна плоскости N₂ лежит на радиусе | OI_2 |, а точка P₂ лежит на радиусе | OK_2 |.

Рис.6.1.1.2.5.

Так как точки N₂ и P₂ лежат в плоскости Σ_2 (в плоскости треугольника OJ₃K₃), то в соответствии с **П.1.4** | N_2P_2 | лежит в плоскости треугольника OJ₂K₂.

Так как точки N₂ и M₂ лежат в плоскости Φ_0 , то в соответствии с П.1.4 и | N_2M_2 | лежит в плоскости Φ_0 .

Так как точки P_2 и M_2 лежат в плоскости Ψ_0 , то в соответствии с **П.1.4** и | P_2M_2 | лежит в плоскости Ψ_0 .

| *DE* | является линией пересечения плоскостей Π_0 , Φ_0 и Ψ_0 . Следовательно, в соответсвии с **П.1.7** угол N₂M₂P₂ является углом между плоскостями Φ_0 и Ψ_0 , и равен α (начальное условие), а углы L₂M₂N₂ и L₂M₂P₂ являются углами между плоскостями Π_0 и Φ_0 , и Π_0 и Ψ_0 , соответственно, равны между собой и равны $\frac{\alpha}{2}$ (начальное условие).

Рассмотрим треугольник $M_2N_2P_2$ (Рис.6.1.1.2.6). | N_2P_2 | препендикулярна плоскости Π_0 (принято ранее). Точки L_2 и M_2 лежат на радиусах | OI_2 | и | OD |, соответственно,

Рис.6.1.1.2.6.

каждый из которых лежит в плоскости Π_0 (начальное условие). Следовательно, и точки L_2 и M_2 будут лежать в плоскости Π_0 , а, следовательно, в соответствии с **П.1.4** и $|L_2M_2|$ лежит в плоскости Π_0 . Следовательно, в соответствии со **С.1.6** $|N_2P_2| \perp |L_2M_2|$.

Рассмотрим треугольники $M_2L_2N_2$ и $M_2L_2P_2$ (Рис.6.1.1.2.6). Они имеют одну общую сторону | L_2M_2 |. Углы $L_2M_2N_2$ и $L_2M_2P_2$, прилежащие к стороне | L_2M_2 |, равны между собой и равны $\frac{\alpha}{2}$ (доказано ранее). Углы $N_2L_2M_2$ и $P_2L_2M_2$, прилежащие к стороне | L_2M_2 |, равны между собой и равны 90° (так как | N_2P_2 | \bot | L_2M_2 |). Следовательно, в соответствии с **П.1.8** треугольники $M_2L_2N_2$ и $M_2L_2P_2$ равны между собой.

Рассмотрим (Рис.6.1.1.2.6) прямоугольный треугольник $M_2L_2P_2$ (так как угол $P_2L_2M_2 = 90^\circ$ (доказано ранее)), у которого известны катет | L_2M_2 | (найден ранее) и угол $L_2M_2P_2 = \frac{\alpha}{2}$ (доказано ранее). В соответствии с **П.1.2** найдем катет | L_2P_2 |:

$$|L_2P_2| = |L_2M_2| \times \tan\frac{\alpha}{2} =$$
$$= R \times \cos 2\alpha \times \sin 2\alpha \times \tan\frac{\alpha}{2}, \quad (6.1.1.2.3)$$

Из равенства треугольников $M_2L_2N_2$ и $M_2L_2P_2$ следует, что | L_2P_2 | = | L_2N_2 |, а, следовательно, | N_2P_2 | будет равна:

$$|N_2P_2| = |L_2P_2| + |L_2N_2| = 2 \times |L_2P_2| = = 2 \times R \times \cos 2\alpha \times \sin 2\alpha \times \tan \frac{\alpha}{2}, (6.1.1.2.4)$$

Рассмотрим треугольник ON_2P_2 (Рис.6.1.1.2.7). | OL_2 | лежит в плоскости Π_0 (так как | OL_2 | лежит на радиусе | OI_2 |, который лежит в плоскости Π_0 (начальное условие)).

Рис.6.1.1.2.7.

 $|N_2P_2|$ перпендикулярна плоскости Π_0 (принято ранее), следовательно, в соответствии со **С.1.6** $|N_2P_2| \perp |OL_2|$. $|L_2P_2| = |L_2N_2|$ (доказано ранее). Треугольники OL_2N_2 и OL_2P_2 имеют общую сторону $|OL_2|$. Таким образом, у треугольников OL_2N_2 и OL_2P_2 равны две стороны и углы между ними. Следовательно, в соответствии с **П.1.8** треугольники OL_2N_2 и OL_2P_2 равны между собой. Так как $|N_2P_2| \perp |OL_2|$ (доказано ранее), следовательно, треугольники OL_2N_2 и OL_2P_2 равны между собой. Так как

Рассмотрим прямоугольный треугольник OL_2P_2 (Рис.6.1.1.2.7). У него известны катеты | OL_2 | и | L_2P_2 | (найдены ранее). Следовательно, в соответствии с **П.1.9** найдем гипотенузу | OP_2 |:

$$|OP_2| = \sqrt{|OL_2|^2 + |L_2P_2|^2} =$$
$$= \sqrt{(R \times \cos 2\alpha)^2 + (R \times \cos 2\alpha \times \sin 2\alpha \times \tan \frac{\alpha}{2})^2} =$$
$$= R \times \cos 2\alpha \times \sqrt{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}, (6.1.1.2.5)$$

Рассмотрим треугольник OJ₂K₂ (Рис.6.1.1.2.8), который является равнобедренным (доказано ранее).

Рис.6.1.1.2.8.

Из равенства треугольников OL_2N_2 и OL_2P_2 (доказано ранее) следует, что | ON_2 | = | OP_2 |, тоесть, что треугольник ON_2P_2 равнобедренный. Угол N_2OP_2 равен углу J_2OK_2 . Следовательно, в соответствии с **П.1.10** треугольники ON_2P_2 и OJ_2K_2 подобны. Из их подобия согласно **П.1.11** следует:

$$\frac{\mid OK_2 \mid}{\mid OP_2 \mid} = \frac{\mid J_2K_2 \mid}{\mid N_2P_2 \mid}, (6.1.1.2.6)$$

Откуда найдем | J_2K_2 |:

$$|J_2K_2| = \frac{|OK_2| \times |N_2P_2|}{|OP_2|} =$$
$$= \frac{R \times \left(2 \times R \times \cos 2\alpha \times \sin 2\alpha \times \tan \frac{\alpha}{2}\right)}{R \times \cos 2\alpha \times \sqrt{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}} =$$

$$=\frac{2\times R\times \sin 2\alpha \times \tan \frac{\alpha}{2}}{\sqrt{1+\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}},(6.1.1.2.7)$$

 $|N_2P_2| \perp |OL_2|$, а $|L_2P_2| = |L_2N_2|$ (доказано ранее). Следовательно, $|OL_2|$ является, одновременно, и медианой и биссектрисой и высотой треугольника ON₂P₂.

Так как | OL_2 | лежит на | OQ_2 |, которая в свою очередь лежит на радиусе | OI_2 |, и что равнобедренный треугольник OJ₂K₂ (доказано ранее) подобен треугольнику ON₂P₂ (доказано ранее), следовательно, | OQ_2 | является, одновременно, и медианой и биссектрисой и высотой треугольника OJ₂K₂. Тоесть, что | $J_2K_2 | \perp | OQ_2 |$ и | $J_2Q_2 | = | Q_2K_2 |$. | $J_2K_2 |$ лежит в плоскости треугольника OJ₂K₂ (доказано ранее), а | N_2P_2 | также лежит в плоскости треугольника OJ₂K₂ (доказано ранее). | $J_2K_2 | \perp | OQ_2 |$ и | $N_2P_2 | \perp | OL_2 |$ (доказано ранее), следовательно, и | $J_2K_2 | \perp | OI_2 |$ и | $N_2P_2 | \perp | OQ_2 |$ (так как | $OQ_2 |$ лежит на радиусе | $OI_2 |$, и | $OL_2 |$ лежит на радиусе | $OI_2 |$).

Следовательно, $|N_2P_2| || |J_2K_2|$. Но так как $|N_2P_2|$ перпендикулярна плоскости Π_0 (принято ранее), следовательно, и $|J_2K_2|$ будет перпендикулярна плоскости Π_0 .

Рассмотрим треугольник OJ_2K_2 (Рис.6.1.1.2.9). Точка Q_2 является точкой пересечения радиуса | OI_2 | и стороны | J_2K_2 | треугольника OJ_2K_2 .

Рис.6.1.1.2.9.

Соединим точки Q_1 и Q_2 между собой. Так как точка Q_2 лежит на радиусе $|OI_2|$, который лежит в плоскости Π_0 , следовательно, и точка Q_2 будет лежать в плоскости Π_0 . Точка Q_1 лежит в плоскости Π_0 (доказано ранее в §6.1.1.1). Таким образом, точки Q_1 и Q_2 лежат в плоскости Π_0 , а, следовательно, в соответстии с **П.1.4** и $|Q_1Q_2|$ будет лежать в плоскости Π_0 . $|OQ_2|$ лежит на радиусе $|OI_2|$, который лежит в плоскости Π_0 , следовательно, и $|OQ_2|$ лежит в плоскости Π_0 .

 $|Q_1Q_2|$ и $|OQ_2|$ лежат в плоскости Π_0 (доказано ранее), а $|J_2K_2|$ перпендикулярна плоскости Π_0 (доказано ранее). Следоваетльно, в соответствии со **С.1.6** $|J_2K_2| \perp |Q_1Q_2|$ и $|J_2K_2| \perp |OQ_2|$.

Рассмотрим треугольник OK₂Q₂ (Рис.6.1.1.2.8), который является прямоугольным (так как | $J_2K_2 | \perp | OQ_2 |$, следовательно, и | $Q_2K_2 | \perp | OQ_2 |$), и у которого известна гипотенуза | $OK_2 | = R$ (начальное условие) и катет | $Q_2K_2 | = \frac{1}{2} \times |J_2K_2|$ (так как | $J_2Q_2 | = |Q_2K_2|$, следовательно,

 $|J_2K_2| = |J_2Q_2| + |Q_2K_2|$ (найдено ранее)). Следовательно, в соответсвии с **П.1.9** найдем катет | OQ_2 |:

$$| OQ_{2} | = \sqrt{| OK_{2} |^{2} - | Q_{2}K_{2} |^{2}} = \sqrt{| OK_{2} |^{2} - \left(\frac{|J_{2}K_{2}|}{2}\right)^{2}} = \sqrt{R^{2} - \left(\frac{2 \times R \times \sin 2\alpha \times \tan \frac{\alpha}{2}}{2 \times \sqrt{1 + \sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}}\right)^{2}} = R \times \sqrt{1 - \frac{\sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}}, (6.1.1.2.8)$$

Рассмотрим треугольник OQ_1Q_2 (Рис.6.1.1.2.10), у которого известны две стороны, $|OQ_1|$ (найдена ранее в §6.1.1.1) и $|OQ_2|$ (найдена ранее в данном параграфе) и угол между ними $Q_1OQ_2 = \alpha$ (так как угол Q_1OQ_2 равен разности между углами $DOI_2 = 2\alpha$ и $DOI_1 = \alpha$ (так как $|OQ_1|$ лежит на радиусе $|OI_1|$, а $|OQ_2|$ лежит на радиусе $|OI_2|$)).

Рис.6.1.1.2.10.

Следовательно, в соответсвии с **П.1.12** найдем третью сторону | Q_1Q_2 |:

$$= \sqrt{\left(R \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}\right)^2 + \left(R \times \sqrt{1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}}\right)^2 - 2 \times \left(R \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}}\right)^2 - 2 \times \left(R \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}\right) \times \left(R \times \sqrt{1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}}\right) \times \cos \alpha = \frac{1}{2}$$

$$= R \times \sqrt{\left(1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}\right) + \left(1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}\right) - \frac{1}{2}}$$

$$= 2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \times \sqrt{1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}}, \quad (6.1.12.9)$$

Рассмотрим трапецию $J_1J_2K_2K_1$ (Рис.6.1.1.2.11), являющуюся основание пирамиды $OJ_1J_2K_2K_1$. | J_2K_2 | \bot | Q_1Q_2 | (доказано ранее).

Рис.6.1.1.2.11.

Как было доказано ранее в §6.1.1.1, | J_1K_1 | перпендикулярна плоскости Π_0 . | Q_1Q_2 | лежит в плоскости Π_0 (доказано ранее), следовательно, в соответствии со **С.1.6** | J_1K_1 | \perp | Q_1Q_2 |. Следовательно, | Q_1Q_2 | является высо-

той трапеции $J_1J_2K_2K_1$. Ранее были найдены противолежащие стороны данной трапеции | J_1K_1 | (найдена в §6.1.1.1) и | J_2K_2 | (найдена в данном параграфе). Согласно **П.1.14** найдем площадь трапеции $J_1J_2K_2K_1$:

$$S_{J_{1}J_{2}K_{2}K_{1}} = \left(\frac{|J_{1}K_{1}| + |J_{2}K_{2}|}{2}\right) \times |Q_{1}Q_{2}| =$$

$$= \frac{1}{2} \times \left(\frac{2 \times R \times \sin \alpha \times \tan^{\frac{\alpha}{2}}}{\sqrt{1 + \sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}} + \frac{2 \times R \times \sin 2\alpha \times \tan^{\frac{\alpha}{2}}}{\sqrt{1 + \sin^{2}2\alpha \times \tan^{\frac{\alpha}{2}}\frac{\alpha}{2}}}\right) \times R \times$$

$$\times \sqrt{\left(1 - \frac{\sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}\right)} + \left(1 - \frac{\sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}\right) -$$

$$- 2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}} \times \sqrt{1 - \frac{\sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}} =$$

$$= R^{2} \times \left(\frac{\sin \alpha \times \tan\frac{\alpha}{2}}{\sqrt{1 + \sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}} + \frac{\sin 2\alpha \times \tan\frac{\alpha}{2}}{\sqrt{1 + \sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}}\right) \times$$

$$\times \sqrt{\left(1 - \frac{\sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}\right)} + \left(1 - \frac{\sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}\right) -$$

$$2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}} \times \sqrt{1 - \frac{\sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}}, (6.1.1.2.10)$$

Таким образом, чем меньше будет угол α , тем меньше площадь трапеции $J_1J_2K_2K_1$ будет отличатся от площади поверхности сферы, ограниченной дугами окружностей $\widehat{J_1J_2}, \widehat{J_2K_2}, \widehat{K_2K_1}$ и $\widehat{K_1J_1}$.

§6.1.1.3. Вычисление площади основания третьей пирамиды

На Рис.6.1.1.3.1 показан шар с центром в точке О, диаметром | DE | и радиусом | OD | = R.

Рис.6.1.1.3.1.

Проведем из центра шара точки О радиус $|OI_3| = R$ так, чтобы он лежал в плоскости Π_0 и составлял, с радиусом |OD| угол 3 α (тоесть, угол $DOI_3 = 3\alpha$), а с радиусом $|OI_2|$ угол α (тоесть, угол $I_2OI_3 = \alpha$). Проведем через радиус $|OI_3|$ плоскость Σ_3 , перпендикулярную плоскости Π_0 . При этом, плоскость Σ_3 пересекает, дугу окружности \widehat{DG} (лежащую в плоскости Φ_0) в точке J₃, а дугу окружности \widehat{DH} (лежащую в плоскости Ψ_0) в точке K₃. При этом, | $OJ_3 | = R \ u | OK_3 | = R$. Плоскость Σ_3 пересекает поверхность сферы (шара), заключенную между плоскостями Φ_0 и Ψ_0 , по дуге окружности $I_3 I_3 K_3$.

Соединив точки J_2 и O, K_2 и O, J_3 и O, K_3 и O, J_2 и J_3 , J_3 и K₃, K₃ и K₂, K₂ и J₂ (Рис.6.1.1.3.2) между собой, получим пирамиду $OJ_2J_3K_3K_2$ с основанием в виде виде трапеции

Рис.6.1.1.3.2.

 $J_2J_3K_3K_2$ и вершиной в точке О. При этом, основание пирамиды $J_2J_3K_3K_2$ касается изнутри поверхности сферы в четырех точках J_2 , J_3 , K_3 и K_2 .

Сторона пирамиды OJ_3K_3 представляет собой равнобедренный треугольник (так как | OJ_3 | =| OK_3 | = R). Точки O, J₃ и K₃ лежат в плоскости Σ_3 , следовательно, в соответствии с **П.1.4** и | OJ_3 |, | OK_3 | и | J_3K_3 | будут лежать в плоскости Σ_3 , а следовательно, и весть треуголник OJ_3K_3 будет лежать в плоскости Σ_3 .

 $|J_3K_3|$ пересекает радиус $|OI_3|$ в точке Q_3 (Рис.6.1.1.1.3).

Рис.6.1.1.3.3.

Рассмотрим пирамиду $OJ_2J_3K_3K_2$ (Рис.6.1.1.3.4). Опустим из точки D перепендикуляр | DL_3 | на плоскость треугольника OJ_3K_3 (на сторону пирамиды OJ_3K_3). Так как сторона пирамиды OJ_3K_3 лежит в плоскости Σ_3 (доказано ранее), которая перпендикулярна плоскости Π_0 (принято ранее), а точка D лежит в плоскости Π_0 (начальное условие), то в соответствии со **С.1.5** | DL_3 | будет лежать в плоскости Π_0 .

Рис.6.1.1.3.4.

Точка L_3 должна лежать, одновременно, и в плоскости Π_0 и в плоскости Σ_3 , тоесть, на радиусе | OI_3 |, являющемся линией пересечения плоскостей Π_0 и Σ_3 . Так как точки О и L_3 лежат на радиусе | OI_3 |, то и | OL_3 | будет лежать на радиусе | OI_3 |.

 $|DL_3|$ перпендикулярна стороне пирамиды OJ_3K_3 (плоскости Σ_3) (принято ранее). $|OL_3|$ лежит в плоскости Σ_3 (так как она лежит на радиусе $|OI_3|$, который лежит в плоскости Σ_3 (принято ранее)). Следовательно, в соответствии со **С.1.6** $|DL_3| \perp |OL_3|$, а, следовательно, треугольник ODL₃ прямоугольный, у которого известна гипотенуза |OD| = R (начальное условие) и прилежащий к ней угол $DOL_3 = 3\alpha$ (так как угол DOL₃ равен углу $DOI_3 = 3\alpha$, в силу того, что | OL_3 | лежит на радиусе | OI_3 |). Согласно **П.1.2** найдем катет | OL_3 |:

$$|OL_3| = |OD| \times \cos 3\alpha = R \times \cos 3\alpha$$
, (6.1.1.3.1)

Опустим из точки L₃ (Рис.6.1.1.3.4) перпендикуляр $|L_3M_3|$ на радиус |OD|. Получим прямоугольный треугольник OL₃M₃, у которого известна гипотенуза $|OL_3|$ (найдена ранее) и прилегающий к ней угол $M_3OL_3 = 3\alpha$ (так как угол M₃OL₃ равен углу $DOI_3 = 3\alpha$, в силу того, что $|OM_3|$ лежит на радиусе |OD|, а $|OL_3|$ лежит на радиусе $|OI_3|$). В соответствии с **П.1.2** найдем катет $|L_3M_3|$:

 $|L_3M_3| = |OL_3| \times \sin 3\alpha = R \times \cos 3\alpha \times \sin 3\alpha$, (6.1.1.3.2)

Из точки L₃ (Рис.6.1.1.3.5) проведем прямую линию, перпендикулярную плоскости Π_0 , до ее пересечения с плоскостью Φ_0 в точке N₃, и до ее пересечения с плоскостью Ψ_0 в точке P₃. Соединив точки N₃ и M₃, P₃ и M₃ между собой, получим треугольник M₃N₃P₃. Точка L₃ лежит на радиусе | OI_3 | (доказано ранее), который лежит в плоскости Σ_3 . Плоскость Σ_3 перпендикулярна плоскости Π_0 . | N_3P_3 | перпендикулярна плоскости Π_0 (принято ранее), следовательно, | N_3P_3 | лежит в плоскости Σ_3 и в соответствии со C.1.5 плоскость треугольника M₃N₃P₃ перпендикулярна плоскости Π_0 . А, следовательно, точка N₃ лежит на радиусе | OJ_3 |, а точка P₃ лежит на радиусе | OK_3 |.

Рис.6.1.1.3.5.

Так как точки N₃ и P₃ лежат в плоскости Σ_3 (в плоскости треугольника OJ₃K₃), то в соответствии с **П.1.4** | N_3P_3 | лежит в плоскости треугольника OJ₃K₃.

Так как точки N₃ и M₃ лежат в плоскости Φ_0 , то в соответствии с П.1.4 и | N_3M_3 | лежит в плоскости Φ_0 .

Так как точки P_3 и M_3 лежат в плоскости Ψ_0 , то в соответствии с **П.1.4** и | P_3M_3 | лежит в плоскости Ψ_0 .

| *DE* | является линией пересечения плоскостей Π_0 , Φ_0 и Ψ_0 . Следовательно, в соответсвии с **П.1.7** угол $N_3M_3P_3$ является углом между плоскостями Φ_0 и Ψ_0 , и равен α (начальное условие), а углы $L_3M_3N_3$ и $L_3M_3P_3$ являются угла-

ми между плоскостями Π_0 и Φ_0 , и Π_0 и Ψ_0 , соответственно, равны между собой и равны $\frac{\alpha}{2}$ (начальное условие).

Рассмотрим треугольник $M_3N_3P_3$ (Рис.6.1.1.3.6). | N_3P_3 | препендикулярна плоскости Π_0 (принято ранее). Точки L_3 и M_3 лежат на радиусах | OI_3 | и | OD |, соответственно, каждый из которых лежит в плоскости Π_0 (начальное условие). Следовательно, и точки L_3 и M_3 будут лежать в плоскости Π_0 , а, следовательно, в соответствии с **П.1.4** и | L_3M_3 | лежит в плоскости Π_0 . Следовательно, в соответствии с **С.1.6** | N_3P_3 | \bot | L_3M_3 |.

Рис.6.1.1.3.6.

Рассмотрим треугольники $M_3L_3N_3$ и $M_3L_3P_3$ (Рис.6.1.1.3.6). Они имеют одну общую сторону | L_3M_3 |. Углы $L_3M_3N_3$ и $L_3M_3P_3$, прилежащие к стороне | L_3M_3 |, равны между собой и равны $\frac{\alpha}{2}$ (доказано ранее). Углы $N_3L_3M_3$ и $P_3L_3M_3$, прилежащие к стороне | L_3M_3 |, равны между собой и равны 90° (так как | N_3P_3 | \bot | L_3M_3 |). Следовательно, в соответствии с **П.1.8** треугольники $M_3L_3N_3$ и $M_3L_3P_3$ равны между собой.

Рассмотрим (Рис.6.1.1.3.6) прямоугольный треугольник $M_3L_3P_3$ (так как | N_3P_3 | \bot | L_3M_3 |, а, следовательно, и | L_3P_3 | \bot | L_3M_3 |), у которого известны катет | L_3M_3 |

(найден ранее) и угол $L_3M_3P_3 = \frac{\alpha}{2}$ (доказано ранее). В соответствии с **П.1.2** найдем катет | L_3P_3 | :

$$|L_3P_3| = |L_3M_3| \times \tan\frac{\alpha}{2} =$$
$$= R \times \cos 3\alpha \times \sin 3\alpha \times \tan\frac{\alpha}{2}, \quad (6.1.1.3.3)$$

Из равенства треугольников $M_3L_3N_3$ и $M_3L_3P_3$ следует, что | L_3P_3 | = | L_3N_3 |, а, следовательно, | N_3P_3 | будет равна:

$$|N_{3}P_{3}| = |L_{3}P_{3}| + |L_{3}N_{3}| = 2 \times |L_{3}P_{3}| =$$

= 2 × R × cos 3a × sin 3a × tan $\frac{\alpha}{2}$, (6.1.1.3.4)

Рассмотрим треугольник ON_3P_3 (Рис.6.1.1.3.7). | OL_3 | лежит в плоскости Π_0 (так как | OL_3 |лежит на радиусе | OI_3 |, который лежит в плоскости I_0 (начальное условие)).

Рис.6.1.1.3.7.

 $|N_3P_3|$ перпендикулярна плоскости Π_0 (принято ранее), следовательно, в соответствии со **С.1.6** $|N_3P_3| \perp |OL_3|$. $|L_3P_3| = |L_3N_3|$ (доказано ранее). Треугольники OL_3N_3 и OL_3P_3 имеют общую сторону $|OL_3|$. Таким образом, у треугольников OL_3N_3 и OL_3P_3 равны две стороны и углы между ними. Следовательно, в соответствии с **П.1.8** треугольники OL_3N_3 и OL_3P_3 равны между собой. Так как $|N_3P_3| \perp |OL_3|$ (доказано ранее), следовательно, треугольники OL_3N_3 и OL_3P_3 прямоугольные. Рассмотрим прямоугольный треугольник OL_3P_3 (Рис.6.1.1.3.7). У него известны катеты | OL_3 | и | L_3P_3 | (найдены ранее). Следовательно, в соответствии с **П.1.9** найдем гипотенузу | OP_3 |:

$$|OP_3| = \sqrt{|OL_3|^2 + |L_3P_3|^2} =$$
$$= \sqrt{(R \times \cos 3\alpha)^2 + (R \times \cos 3\alpha \times \sin 3\alpha \times \tan \frac{\alpha}{2})^2} =$$
$$= R \times \cos 3\alpha \times \sqrt{1 + \sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}} , (6.1.1.3.5)$$

Рассмотрим треугольник OJ₃K₃ (Рис.6.1.1.3.8), который является равнобедренным (доказано ранее).

Рис.6.1.1.3.8.

Из равенства треугольников OL_3N_3 и OL_3P_3 (доказано ранее) следует, что | ON_3 | = | OP_3 |, тоесть, что треугольник ON_3P_3 равнобедренный. Угол N_3OP_3 равен углу J_3OK_3 . Следовательно, в соответствии с **П.1.10** треугольники ON_3P_3 и OJ_3K_3 подобны. Из их подобия согласно **П.1.11** следует:

$$\frac{\mid OK_3 \mid}{\mid OP_3 \mid} = \frac{\mid J_3K_3 \mid}{\mid N_3P_3 \mid}, (6.1.1.3.6)$$

Откуда найдем | J_3K_3 |:

$$|J_{3}K_{3}| = \frac{|OK_{3}| \times |N_{3}P_{3}|}{|OP_{3}|} =$$

$$= \frac{R \times \left(2 \times R \times \cos 3\alpha \times \sin 3\alpha \times \tan \frac{\alpha}{2}\right)}{R \times \cos 3\alpha \times \sqrt{1 + \sin^{2}3\alpha \times \tan^{2}\frac{\alpha}{2}}} =$$

$$= \frac{2 \times R \times \sin 3\alpha \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^{2}3\alpha \times \tan^{2}\frac{\alpha}{2}}}, (6.1.1.3.7)$$

 $|N_3P_3| \perp |OL_3|$, а $|L_3P_3| = |L_3N_3|$ (доказано ранее). Следовательно, $|OL_3|$ является, одновременно, и медианой и биссектрисой и высотой треугольника ON₃P₃.

Так как $|OL_3|$ лежит на $|OQ_3|$, которая в свою очередь лежит на радиусе $|OI_3|$, и что равнобедренный треугольник OJ₃K₃ (доказано ранее) подобен треугольнику ON₃P₃ (доказано ранее), следовательно, $|OQ_3|$ является, одновременно, и медианой и биссектрисой и высотой треугольника OJ₃K₃. Тоесть, что $|J_3K_3| \perp |OQ_3|$ и $|J_3Q_3| = |Q_3K_3|$. $|J_3K_3|$ лежит в плоскости треугольника OJ₃K₃ (доказано ранее), а $|N_3P_3|$ также лежит в плоскости треугольника OJ₃K₃ (доказано ранее), а $|N_3P_3|$ также лежит в плоскости треугольника OJ₃K₃ (доказано ранее). $|J_3K_3| \perp |OQ_3|$ и $|N_3P_3| \perp |OL_3|$ (доказано ранее). Следовательно, и $|J_3K_3| \perp |OI_3|$ и $|N_3P_3| \perp |OQ_3|$ (так как $|OQ_3|$ лежит на радиусе $|OI_3|$, и $|OL_3|$ лежит на радиусе $|OI_3|$).

Следовательно, $|N_3P_3| || |J_3K_3|$. Но так как $|N_3P_3|$ перпендикулярна плоскости Π_0 (принято ранее), следовательно, и $|J_3K_3|$ будет перпендикулярна плоскости Π_0 .

Рассмотрим треугольник OJ_3K_3 (Рис.6.1.1.3.9). Точка Q_3 является точкой пересечения радиуса | OI_3 | и стороны | J_3K_3 | треугольника OJ_3K_3 .

Рис.6.1.1.3.9.

Соединим точки Q_2 и Q_3 между собой. Так как точка Q_3 лежит на радиусе радиуса | OI_3 |, который лежит в плоскости Π_0 , следовательно, и точка Q_3 будет лежать в плоскости Π_0 . Точка Q_2 лежит в плоскости Π_0 (доказано ранее в §6.1.1.2). Таким образом, точки Q_2 и Q_3 лежат в плоскости Π_0 , а, следовательно, в соответстии с **П.1.4** и | Q_2Q_3 | будет лежать в плоскости Π_0 . | OQ_3 | лежит на радиусе | OI_3 |, который лежит в плоскости Π_0 , следовательно, и | OQ_3 | лежит в плоскости Π_0 .

 $|Q_2Q_3|$ и $|OQ_3|$ лежат в плоскости Π_0 (доказано ранее), а $|J_3K_3|$ перпендикулярна плоскости Π_0 (доказано ранее). Следоваетльно, в соответствии со **С.1.6** $|J_3K_3| \perp |Q_2Q_3|$ и $|J_3K_3| \perp |OQ_3|$. Рассмотрим треугольник OK₃Q₃ (Рис.6.1.1.3.8), который является прямоугольным (так как $|J_3K_3| \perp |OQ_3|$, следовательно, и $|Q_3K_3| \perp |OQ_3|$), и у которого известна гипотенуза $|OK_3| = R$ (начальное условие) и катет $|Q_3K_3| = \frac{1}{2} \times |J_3K_3|$ (так как $|J_3Q_3| = |Q_3K_3|$, следовательно, $|J_3K_3| = |J_3Q_3| + |Q_3K_3|$ (найдено ранее)). Следовательно, в соответсвии с **П.1.9** найдем катет $|OQ_3|$:

$$| OQ_{3} | = \sqrt{| OK_{3} |^{2} - | Q_{3}K_{3} |^{2}} = \sqrt{| OK_{3} |^{2} - \left(\frac{| J_{3}K_{3} |}{2}\right)^{2}} = \sqrt{| CK_{3} |^{2} - \left(\frac{2 \times R \times \sin 3\alpha \times \tan \frac{\alpha}{2}}{2 \times \sqrt{1 + \sin^{2}3\alpha \times \tan^{2}\frac{\alpha}{2}}}\right)^{2}} = R \times \sqrt{1 - \frac{\sin^{2}3\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}3\alpha \times \tan^{2}\frac{\alpha}{2}}}, (6.1.1.3.8)$$

Рассмотрим треугольник OQ_2Q_2 (Рис.6.1.1.3.10), у которого известны две стороны, $|OQ_2|$ (найдена ранее в§6.1.1.2) и $|OQ_3|$ (найдена ранее в данном параграфе) и

Рис.6.1.1.3.10.

угол между ними $Q_2OQ_3 = \alpha$ (так как угол Q_2OQ_3 равен разности между углами $DOI_3 = 3\alpha$ (начальное условие) и $DOI_2 = 2\alpha$ (начальное условие), в силу того, что | OQ_2 | лежит на радиусе | OI_2 | (доказано ранее), а | OQ_3 | лежит на радиусе | OI_3 | (доказано ранее).

Следовательно, в соответсвии с **П.1.12** найдем третью сторону | Q_2Q_3 |:

$$|Q_2Q_3| = \sqrt{|OQ_2|^2 + |OQ_3|^2 - 2 \times |OQ_2| \times |OQ_3| \times \cos \alpha} = \sqrt{\left(R \times \sqrt{1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}\right)^2} + \left(R \times \sqrt{1 - \frac{\sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}}\right)^2 - \sqrt{\left(R \times \sqrt{1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}}\right)} \times \left(R \times \sqrt{1 - \frac{\sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}}\right) \times \cos \alpha} = R \times \sqrt{\left(1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}\right)} + \left(1 - \frac{\sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}\right)} - 2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}} \times \sqrt{1 - \frac{\sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}}, (6.1.1.3.9)$$

Рассмотрим трапецию $J_2J_3K_3K_2$ (Рис.6.1.1.3.9), являющуюся основание пирамиды $OJ_2J_3K_3K_2$. | $J_3K_3 \mid \perp \mid Q_2Q_3 \mid$ (доказано ранее).

Рис.6.1.1.3.11.

Как было доказано ранее в §6.1.1.2, $|J_2K_2|$ перпендикулярна плоскости Π_0 . $|Q_2Q_3|$ лежит в плоскости Π_0 (доказано ранее), следовательно, в соответствии со **С.1.6** $|J_2K_2| \perp |Q_2Q_3|$. Следовательно, $|Q_2Q_3|$ является высотой трапеции $J_2J_3K_3K_2$. Ранее были найдены противолежащие стороны данной трапеции $|J_2K_2|$ (найдена в §6.1.1.2) и $|J_3K_3|$ (найдена в данном параграфе). Согласно **П.1.14** найдем площадь трапеции $J_2J_3K_3K_2$:

$$S_{J_2J_3K_3K_2} = \left(\frac{|J_2K_2| + |J_3K_3|}{2}\right) \times |Q_2Q_3| =$$
$$= \frac{1}{2} \times \left(\frac{2 \times R \times \sin 2\alpha \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{2 \times R \times \sin 3\alpha \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}}\right) \times R \times$$

$$\times \left(1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(1 - \frac{\sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}} \right) - \frac{\sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}} \right) - \frac{\sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}} = 0$$

$$-2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}} \times \sqrt{1 - \frac{\sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 3\alpha \times \tan^2 \frac{\alpha}{2}}} =$$

$$= R^{2} \times \left(\frac{\sin 2\alpha \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^{2} 2\alpha \times \tan^{2} \frac{\alpha}{2}}} + \frac{\sin 3\alpha \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^{2} 3\alpha \times \tan^{2} \frac{\alpha}{2}}} \right) \times \sqrt{\left(1 - \frac{\sin^{2} 2\alpha \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} 2\alpha \times \tan^{2} \frac{\alpha}{2}}\right)} + \left(1 - \frac{\sin^{2} 3\alpha \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} 3\alpha \times \tan^{2} \frac{\alpha}{2}}\right) - \frac{\cos^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} 2\alpha \times \tan^{2} \frac{\alpha}{2}} \times \sqrt{1 - \frac{\sin^{2} 3\alpha \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} 3\alpha \times \tan^{2} \frac{\alpha}{2}}}, (6.1.1.3.10)$$

Таким образом, чем меньше будет угол α , тем меньше площадь трапеции $J_2J_3K_3K_2$ будет отличатся от площади поверхности сферы, ограниченной дугами $\widehat{J_2J_3}$, $\widehat{J_3K_3}$, $\widehat{K_3K_2}$ и $\widehat{K_2J_2}$.

§6.1.1.4. Вычисление площади основания последней пирамиды

Как видно из уравнений (6.1.1.2.10) и (6.1.1.3.10), они отличаются только значением коэффициента перед углом α.

Уравнения (6.1.1.2.10) и (6.1.1.3.10) можно записать в виде:

$$S_{J_{j-1}J_{j}K_{j}K_{j-1}} = R^{2} \times \left(\frac{\sin(i-\alpha) \times \tan\frac{\alpha}{2}}{\sqrt{1+\sin^{2}(i-\alpha) \times \tan^{2}\frac{\alpha}{2}}} + \frac{\sin i \times \tan\frac{\alpha}{2}}{\sqrt{1+\sin^{2}i \times \tan^{2}\frac{\alpha}{2}}} \right) \times$$

$$\times \sqrt{\left(1 - \frac{\sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}}\right) + \left(1 - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}\right) - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}\right) - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}\right)}$$
$$-2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}}} \times \sqrt{1 - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}}, (6.1.14.1)$$

Подставив в уравнение (6.1.1.4.1) вместо і значение, равное 2α или 3α , а вместо ј значение, равное 2 или 3, получим уравнения (6.1.1.2.10) и (6.1.1.3.10), соответственно.

Все последующие пирамиды при изменении угла DOI_i от $DOI_3 = 3\alpha$ до $DOI_{90-\alpha} = (90 - \alpha)$ будут иметь в основании трапецию, и ее площадь будет вычисляться по формуле (6.1.1.4.1). При этом, вместо і нужно будет подставить текущее значение угла DOI_i, а вместо ј поставить текущее значение индекса.

Исключением будет последняя пирамида (Рис.6.1.1.4.1), заключенная между углами $DOI_{90-\alpha} = (90 - \alpha)$ и DOF = 90, так как одна сторона основания пирамиды будет найдена иным, по сравнению с предыдущими пирамидами, способом.

Рис.6.1.1.4.1.

Рассмотрим последнюю пирамиду. Совершив построения, аналогичные тем, что были произведены в §6.1.1.2 и §6.1.1.3, получим сторону основания последней пирамиды $|J_{90-\alpha}K_{90-\alpha}|$, которая также будет перпендикулярна плоскости Π_0 (так как $|J_1K_1|$, $|J_2K_2|$ и $|J_3K_3|$ перпендикулярны плоскости Π_0 (доказано ранее)).

Из уравнений (6.1.1.2.7) и (6.1.1.3.7) видно, что они отличаются только значением коэффициента перед углом α . Следовательно, и | $J_{90-\alpha}K_{90-\alpha}$ | будет вычислена по той же формуле, подставив значение угла, равное (90 – α), тоесть:

$$|J_{90-\alpha}K_{90-\alpha}| = \frac{2 \times R \times \sin(90-\alpha) \times \tan\frac{\alpha}{2}}{\sqrt{1 + \sin^2(90-\alpha) \times \tan^2\frac{\alpha}{2}}}, (6.1.1.4.2)$$

Соединив точки $J_{90-\alpha}$ и О, $K_{90-\alpha}$ и О, G и О, H и O, $J_{90-\alpha}$ и G, G и H, H и $K_{90-\alpha}$, $K_{90-\alpha}$ и $J_{90-\alpha}$ (Рис.6.1.1.4.2) между собой, получим пирамиду $OJ_{90-\alpha}GHK_{90-\alpha}$ с основанием в виде трапеции $J_{90-\alpha}GHK_{90-\alpha}$ и вершиной в точке О.

Рис.6.1.1.4.2.

Рассмотрим треугольник OGH. Точки G и H лежат в плоскости Σ_0 (начальное условие), следовательно, в соответствии с **П.1.4** и | *GH* | будет лежать в плоскости Σ_0 . | *OG* | и | *OH* | лежат в плоскости Σ_0 (начальное условие). Следовательно, весь треугольник OGH лежит в плоскости Σ_0 .

|OG| = |OH| = R (начальное условие), следовательно, треугольник OGH равнобедренный. Угол $GOH = \alpha$, а угол FOG равен углу $FOH = \frac{\alpha}{2}$ (начальное условие). Радиус |OF| и сторона |GH| треугольника OGH (Рис.6.1.1.4.3)

пересекаются в точке Q_{90} . Следовательно, $|OQ_{90}|$ лежит на радиусе |OF|. Так как треугольник ОGH равнобедренный (доказано ранее), а угол FOG равен углу $FOH = \frac{\alpha}{2}$ (начальное условие), и что $|OQ_{90}|$ лежит на радиусе |OF|(доказано ранее), следовательно, $|OQ_{90}|$ является биссектрисой угла GOH, а в соответствии с **П.1.1**, и медианой и высотой треугольника OGH. Тоесть, что $|GQ_{90}| = |Q_{90}P|$, а $|GH| \perp |OQ_{90}|$. $|J_{90-\alpha}K_{90-\alpha}|$ пересекает радиус $|OI_{90-\alpha}|$ в точке $Q_{90-\alpha}$.

Рис.6.1.1.4.3.

Рассмотрим прямоугольный треугольник OGQ₉₀ (Рис.6.1.1.4.4) (так как | *GH* | \perp | *OQ*₉₀ | (доказано ранее), а, следовательно, и | *GQ*₉₀ | \perp | *OQ*₉₀ |, так как | *GQ*₉₀ | лежит на | *GH* |), у которого известна гипотенуза | *OG* | = *R* (начальное условие), и прилегающий к ней угол *Q*₉₀*OG* = $\frac{\alpha}{2}$ (так как угол *Q*₉₀OG равен углу *FOG* = $\frac{\alpha}{2}$ (начальное условие), в силу того что | *OQ*₉₀ | лежит на радиусе | *OF* |

Рис.6.1.1.4.4.

(доказано ранее)). В соответствии с **П.1.2** найдем катеты $| GQ_{90} | u | OQ_{90} |$ треугольника OGQ₉₀:

$$|GQ_{90}| = |OG| \times \sin\frac{\alpha}{2} = R \times \sin\frac{\alpha}{2}, (6.1.1.4.3)$$
$$|OQ_{90}| = |OG| \times \cos\frac{\alpha}{2} = R \times \cos\frac{\alpha}{2}, (6.1.1.4.4)$$

Так как $|GQ_{90}| = |Q_{90}H|$ (доказано ранее), следовательно, найдем |GH|:

$$|GH| = |GQ_{90}| + |Q_{90}H| = 2 \times |GQ_{90}| = 2 \times R \times \sin\frac{\alpha}{2}, \quad (6.1.1.4.5)$$

Рассмотрим пирамиду $OJ_{90-\alpha}GHK_{90-\alpha}$ (6.1.1.4.5) с основанием в виде трапеции $J_{90-\alpha}GHK_{90-\alpha}$ и вершиной в точке О. При этом, основание пирамиды $J_{90-\alpha}GHK_{90-\alpha}$ касается из-

148

нутри поверхности сферы в четырех точках $J_{90\mathchar`a},~G,~H$ и $K_{90\mathchar`a}$.

Рис.6.1.1.4.5.

Как видно из формул (6.1.1.2.8) и (6.1.1.3.8) они отличаются только значением коэффициента перед углом α . Следовательно, и | $OQ_{90-\alpha}$ | будет вычислена по такой же формуле, подставив значение угла, равное (90 – α):

$$| OQ_{90-\alpha} | = R \times \sqrt{1 - \frac{\sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}}, (6.1.1.4.6)$$

Рассмотрим треугольник $OQ_{90}Q_{90-\alpha}$ (6.1.1.4.6), у которого известны стороны | $OQ_{90-\alpha}$ | и | OQ_{90} | (найдены ранее) и угол между ними $Q_{90-\alpha}OQ_{90} = \alpha$ (так как | $OQ_{90-\alpha}$ | лежит на радиусе | $OI_{90-\alpha}$ |, а | OQ_{90} | лежит на радиусе | OF | (доказано ранее), а угол $Q_{90-\alpha}OQ_{90}$ равен разности между углом $DOF = 90^{\circ}$ (начальное условие) и углом $DOI_{90-\alpha} = 90 - \alpha$ (начальное условие)).

Рис.6.1.1.4.6.

В соответствии с **П.1.12** найдем третью сторону $|Q_{90}Q_{90-\alpha}|$ треугольника $OQ_{90}Q_{90-\alpha}$:

 $|Q_{90}Q_{90-\alpha}| = \sqrt{|OQ_{90-\alpha}|^2 + |OQ_{90}|^2 - 2 \times |OQ_{90-\alpha}| \times |OQ_{90}| \times \cos \alpha} =$

$$= \sqrt{\left(R \times \sqrt{1 - \frac{\sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}}\right)^2 + \left(R \times \cos \frac{\alpha}{2}\right)^2} - 2 \times \left(R \times \sqrt{1 - \frac{\sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}}\right)} \times \left(R \times \cos \frac{\alpha}{2}\right) \times \cos \alpha} = R \times \sqrt{\left(1 - \frac{\sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}\right) + \cos^2 \frac{\alpha}{2}} - 2}$$

$$-2 \times \cos \alpha \times \cos \frac{\alpha}{2} \times \sqrt{1 - \frac{\sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}}, (6.1.1.4.7)$$

Рассмотрим трапецию $J_{90-\alpha}$ GHK_{90- $\alpha}$} (6.1.1.4.7). Так как было доказано в §6.1.1.2 и §6.1.1.3 для рассмотренных пирамид, и | $J_{90-\alpha}K_{90-\alpha}$ | также будет перпендикулярна плос-

кости Π_0 . | *GH* | \perp | *OQ*₉₀ | (доказано ранее), а | *OQ*₉₀ | лежит в плоскости Π_0 (так как | OQ_{90} | лежит на радиусе |OF| (доказано ранее), который лежит в плоскости Π_0 (начальное условие)), то в соответствии со C.1.6 | GH | перпендикулярна плоскости Π_0 . Но | $Q_{90}Q_{90-\alpha}$ | лежит в плоскости П₀ (так как точки Q₉₀ и Q_{90-а} лежат в плоскости Π_0 (так как они лежат на радиусах | OF | и | $OI_{90-\alpha}$ |, соответственно, которые лежат в плоскости П₀), а, следовательно, в соответствии с П.1.4 и | $OQ_{90-\alpha}$ | лежит в плоскости П₀). Следовательно, в соответствии со С.1.6 | перпендикулярна $Q_{90}Q_{90-\alpha}$ | будет И | GH | и $| J_{90-\alpha}K_{90-\alpha} |$. Тоесть, $| Q_{90}Q_{90-\alpha} |$ является высотой трапеции J_{90-a}GHK_{90-a}.

Рис.6.1.1.4.7.

Ранее были найдены противолежащие стороны трапеции | $J_{90-\alpha}K_{90-\alpha}$ | и | *GH* |, и высота трапеции | $Q_{90}Q_{90-\alpha}$ |. Согласно **П.1.14** найдем площадь трапеции $J_{90-\alpha}GHK_{90-\alpha}$:

$$S_{J_{90-\alpha}GHK_{90-\alpha}} = \left(\frac{|J_{90-\alpha}K_{90-\alpha}| + |GH|}{2}\right) \times |Q_{90}Q_{90-\alpha}| =$$
$$= \frac{1}{2} \times \left(\frac{2 \times R \times \sin(90-\alpha) \times \tan\frac{\alpha}{2}}{\sqrt{1 + \sin^2(90-\alpha) \times \tan^2\frac{\alpha}{2}}} + 2 \times R \times \sin\frac{\alpha}{2}\right) \times R \times$$

$$\times \sqrt{\left(1 - \frac{\sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}\right) + \cos^2 \frac{\alpha}{2}} -$$

$$-2 \times \cos \alpha \times \cos \frac{\alpha}{2} \times \sqrt{1 - \frac{\sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}} =$$

$$= R^{2} \times \left(\frac{\sin(90 - \alpha) \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^{2}(90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}} + \sin \frac{\alpha}{2} \right) \times$$

$$\times \sqrt{\left(1 - \frac{\sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}\right) + \cos^2 \frac{\alpha}{2}} - \frac{1}{2}$$

$$-2 \times \cos \alpha \times \cos \frac{\alpha}{2} \times \sqrt{1 - \frac{\sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}}, (6.1.1.4.8)$$

Таким образом, чем меньше будет угол α , тем меньше площадь трапеции $J_{90-\alpha}GHK_{90-\alpha}$ будет отличатся от площади поверхности сферы, ограниченной дугами $J_{90-\alpha}G$, \widehat{GH} , $\widehat{HK_{90-\alpha}}$ и $K_{90-\alpha}\overline{J_{90-\alpha}}$.

§6.1.1.5. Вычисление площади поверхности всей сферы

Для того, чтобы вычислить площадь поверхности сферы, ограниченной дугами окружностей, \widehat{DG} , \widehat{GH} , и \widehat{HD} , необходимо суммировать уравнения (6.1.1.1.10), (6.1.1.2.10) (предварительно представив его в виде суммы площадей оснований пирамид, начиная со второй и заканчивая предпоследней) и (6.1.1.4.8) (Рис.6.1.1.5.1).

Рис.6.1.1.5.1.

На самом деле будет вычислена не площадь фрагмента сферической поверхности, а площадь фрагмента вписанной в сферу изнутри многогранной поверхности (Рис.6.1.1.5.2), так как вычислять площади криволинейных поверхностей мы не умеем.

Рис.6.1.1.5.2.

Умножив полученное значение на два (так как плоскость Σ_0 делит фрагмент сферической поверхности, ограниченный дугами окружностей \widehat{DGE} и \widehat{DHE} , на две равные части), получим площадь поверхности сферы, ограниченной дугами окружностей \widehat{DGE} и \widehat{DHE} (Рис.6.1.1.5.3).

Рис.6.1.1.5.3.

На самом деле будет вычислена не площадь фрагмента сферической поверхности, а площадь фрагмента вписанной в сферу изнутри многогранной поверхности (Рис.6.1.1.5.4), так как вычислять площади криволинейных поверхностей мы не умеем.

Рис.6.1.1.5.4.

А умножив это значение на число таких участков, укладывающихся на поверхности всей сферы, тоесть, на $\frac{360}{\alpha}$, получим площадь поверхности всей сферы S_{пов.сф.в} (Рис.6.1.1.5.5):

$$+\sum_{i=2\alpha}^{i=\frac{90}{\alpha}-\alpha} \left(R^2 \times \left(\frac{\sin(i-\alpha) \times \tan\frac{\alpha}{2}}{\sqrt{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}} + \frac{\sin i \times \tan\frac{\alpha}{2}}{\sqrt{1+\sin^2 i \times \tan^2\frac{\alpha}{2}}} \right) \times \right)$$

$$\times \sqrt{\left(1 - \frac{\sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}}\right) + \left(1 - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}\right) -$$

Г

Γ

$$-2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}}} \times \sqrt{1 - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} +$$

$$+R^{2} \times \left(\frac{\sin(90-\alpha) \times \tan\frac{\alpha}{2}}{\sqrt{1+\sin^{2}(90-\alpha) \times \tan^{2}\frac{\alpha}{2}}} + \sin\frac{\alpha}{2}\right) \times$$

$$\times \sqrt{\left(1 - \frac{\sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}\right) + \cos^2 \frac{\alpha}{2}} - \frac{1}{2}$$

$$\boxed{-2 \times \cos \alpha \times \cos \frac{\alpha}{2} \times \sqrt{1 - \frac{\sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90 - \alpha) \times \tan^2 \frac{\alpha}{2}}}} \times 2 \times \frac{360}{\alpha} =$$

= 4 ×
$$R^2$$
 × $\pi_{\text{пл.пов.сф.в}}$, (6.1.1.5.1)

Где,

π_{пл.пов.сф.в} – коэффициент, стоящий в формуле для
вычисления площади поверхности сферы.

$$\pi_{\text{fit,non},c\phi,s} = \left(\left(\frac{\sin \alpha \times \tan \frac{\alpha}{2} \times \sqrt{2 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} - 2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}} \right) + \frac{1 + \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin i \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}}} \right) \times \frac{1 + \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}}{\sqrt{1 + \sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin i \times \tan \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} \right) \times \frac{1 + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}}}{\sqrt{1 + \sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} \right) + \frac{1 + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}}{\sqrt{1 + \sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}} \times \sqrt{1 - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{\sqrt{1 + \sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}}} \times \sqrt{1 + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}}{1 + \sin^2 i \times \tan^2 \frac{$$

Рис.6.1.1.5.5.

По формуле (6.1.1.5.1) вычисляется, на самом деле, не площадь поверхности сферы (Рис.6.1.1.5.5), а площадь поверхности вписанного в сферу изнутри сферообразного многогранника (Рис.6.1.1.5.6), так как вычислять площади криволинейных поверхностей мы не умеем.

Рис.6.1.1.5.6.

§6.1.2.Метод описанного многогранника §6.1.2.1. Вычисление площади основания первой пирамиды

На Рис.6.1.2.1.1 показан шар с центром в точке О, диаметром | DE | и радиусом | OD | = R.

Рис.6.1.2.1.1.

Радиус | OD | лежит на диаметре | DE |. Проведем из центра шара О радиус | OF |, перпендикулярный диаметру | DE |, а, следовательно, и радиусу | OD |. Через диаметр | DE | и радиус | OF | проведем плоскость Π_0 . Плоскость Π_0 пересекает поверхность сферы (шара) по дуге окружности \widehat{DFE} . Проведем через радиус | OF | плоскость Σ_0 , перпендикулярную диаметру | DE |, а так как диаметр | DE | лежит в плоскости Π_0 , то в соответствии с **П.1.5** плоскость Σ_0 будет перпендикулярна плоскости Π_0 .

Проведем из центра шара точки О радиус | OG | (Рис.6.1.2.1.1) так, чтобы он лежал в плоскости Σ_0 . При этом радиус | OG | составляет с радиусом | OF | (так как | OF | также лежит в плоскости Σ_0) угол $FOG = \frac{\alpha}{2}$. Проведем через радиус | OG | и диаметр | DE | плоскость Φ_0 . Плоскость Φ_0 пересекает поверхность сферы (шара) по дуге окружности DGE.

Проведем из центра шара точки О радиус | OH | (Рис.6.1.2.1.1) так, чтобы он лежал в плоскости Σ_0 и составлял с радиусом | OF | угол $FOH = \frac{\alpha}{2}$, а с радиусом | OG |, соответственно, угол $GOH = \alpha$. Проведем через радиус | OH | и диаметр | DE | плоскость Ψ_0 . Плоскость Ψ_0 пересекает поверхность сферы (шара) по дуге окружности \widehat{DHE} .

Диаметр | *DE* | является линией пересечения плоскостей Π_0 , Φ_0 и Ψ_0 . Радиус | *OF* | лежит в плоскости Σ_0 и | *OF* | \bot | *DE* | (начальное условие). Так как | *DE* | перпендекулярен плоскости Σ_0 , а | *OG* | и | *OH* | лежат в плоскости Σ_0 (принято ранее), то в соответствии со **C.1.6** | *DE* | \bot | *OG* | и | *DE* | \bot | *OH* |. Вместе с тем радиус | *OF* | лежит в плоскости Π_0 , радиус | *OG* | лежит в плоскости Φ_0 , а радиус | *OH* | лежит в плоскости Ψ_0 (принято ранее). Следовательно, в соответствии с **П.1.7** угол *FOG* = $\frac{\alpha}{2}$ является углом между плоскостями Π_0 и Φ_0 , угол *FOH* = $\frac{\alpha}{2}$ является углом между плоскостями Π_0 и Ψ_0 , а угол *GOH* = α является углом между плоскостями Φ_0 и Ψ_0 . Плоскость Σ_0 пересекает поверхность сферы (шара), заключенную между плоскостями Φ_0 и Ψ_0 , по дуге окружности \widehat{GFH} .

Проведем из центра шара точки О радиус | OI_1 | = R(Рис.6.1.2.1.2) так, чтобы он лежал в плоскости Π_0 и составлял с радиусом | OD | угол α (тоесть, угол $DOI_1 = \alpha$). Проведем из центра шара точки О радиус | $OI_{0.1}$ | = R так, чтобы он лежал в плоскости Π_0 и составлял с радиусом | OD | и с радиусом | OI_1 | угол $\frac{\alpha}{2}$ (тоесть, угол $DOI_{0.1} = \frac{\alpha}{2}$ и угол $I_{0.1}OI_1 = \frac{\alpha}{2}$).

Рис.6.1.2.1.2.

В плоскости Π_0 через точку $I_{0.1}$ (Рис.6.1.2.1.3) проведем прямую линию, касательную к дуге окружности \widehat{DF} , а, следовательно, перпендикулярную к радиусу | $OI_{0.1}$ | = R.

Рис.6.1.2.1.3.

В плоскости Π_0 из точки О проведем прямую линию до ее пересечения с вышеуказанной касательной к дуге окружности \widehat{DF} в точке $I_{1.0}$, при этом, данная прямая линия $|OI_{1.0}|$ по направлению совпадает с направлением радиуса $|OI_1|$ (тоесть, данная прямая линия $|OI_{1.0}|$ пересекает дугу окружности \widehat{DF} в точке I_1). Таким образом, прямая линия $|OI_{1.0}|$ лежит в плоскости Π_0 . Проведем из точки О прямую линию до ее пересечения с вышеуказанной касательной к дуге окружности \widehat{DF} в точке D_0 , при этом, данная прямая линия $|D_0I_{1.0}|$ по направлению совпадает с направлением радиуса |OD| (тоесть, данная прямая линия $|D_0I_{1.0}|$ пересекает дугу окружности \widehat{DF} в точке D). Таким образом, прямая линия $|D_0I_{1.0}|$ лежит в плоскости Π_0 . Таким образом, мы получили треугольник $OD_0I_{1.0}$ (Рис.6.1.2.1.4), лежащий в плоскости Π_0 , у которого угол $D_0OI_{1.0} = \alpha$, угол $D_0OI_{0.1} = \frac{\alpha}{2}$ и угол $I_{1.0}OI_{0.1} = \frac{\alpha}{2}$. | $D_0I_{1.0} \mid \perp \mid OI_{0.1} \mid$ (принято ранее), следовательно, согласно **П.1.1** радиус $\mid OI_{0.1} \mid$ является, одновременно, высотой, биссектрисой и медианой треугольника $OD_0I_{1.0}$. А, следовательно, $\mid D_0I_{0.1} \mid = \mid I_{0.1}I_{1.0} \mid$. Таким образом, треугольник $OD_0I_{1.0}$ является равнобедренным, и состоит из двух прямоугольных треугольников $OI_{0.1}D_0$ и $OI_{0.1}I_{1.0}$, которые равны между собой.

Рис.6.1.2.1.4.

Рассмотрим прямоугольный треугольник $OI_{0.1}I_{1.0}$ (Рис.6.1.2.1.4), у которого известен катет | $OI_{0.1}$ | = R и прилегающий к нему угол $I_{1.0}OI_{0.1} = \frac{\alpha}{2}$. Согласно **П.1.2** найдем его второй катет | $I_{0.1}I_{1.0}$ | и гипотенузу | $OI_{1.0}$ |:

$$|I_{0.1}I_{1.0}| = |OI_{0.1}| \times \tan\frac{\alpha}{2} = R \times \tan\frac{\alpha}{2}, (6.1.2.1.1)$$
$$|OI_{1.0}| = \frac{|OI_{0.1}|}{\cos\frac{\alpha}{2}} = \frac{R}{\cos\frac{\alpha}{2}}, (6.1.2.1.2)$$

Так как | $D_0 I_{0.1}$ | = | $I_{0.1} I_{1.0}$ | (доказано ранее), то сторона | $D_0 I_{1.0}$ | треугольника OD₀I_{1.0} будет равна:

$$|D_0 I_{1.0}| = |D_0 I_{0.1}| + |I_{0.1} I_{1.0}| = 2 \times |I_{0.1} I_{1.0}| =$$

= 2 × R × tan $\frac{\alpha}{2}$, (6.1.2.1.3)

Из точки I_{1.0} (Рис.6.1.2.1.5) проведем прямую линию, перпендикулярную плоскости Π_0 , до ее пересечения с плоскостью Φ_0 в точке J_{1.0}, и до ее пересечения с плоскостью Ψ_0 в точке K_{1.0}. Таким образом, мы получили прямую линию | J_{1.0}K_{1.0} |, перпендикулярную плоскости Π_0 . Соединив точки D₀ и J_{1.0}, D₀ и K_{1.0} между собой, получим треугольник D₀J_{1.0}K_{1.0}. Точка I_{1.0} лежит на радиусе | OI₁ | (принято ранее), который лежит в плоскости Π_0 . | J_{1.0}K_{1.0} | перпендикулярна плоскости Π_0 (принято ранее), следовательно, в соответствии со **С.1.5** плоскость треугольника D₀J_{1.0}K_{1.0} перпендикулярна плоскости Π_0 .

Рис.6.1.2.1.5.

Соединив точки О и $J_{1.0}$, О и $K_{1.0}$ между собой, получим пирамиду $OD_0J_{1.0}K_{1.0}$ с основанием в виде треугольника $D_0J_{1.0}K_{1.0}$ и вершиной в точке О. При этом, основание пирамиды $D_0J_{1.0}K_{1.0}$ касается извне поверхности сферы в одной точке $I_{0.1}$.

Плоскость треугольника $D_0J_{1.0}K_{1.0}$ перпендикулярна плоскости Π_0 (доказано ранее). Треугольник $OD_0I_{1.0}$ лежит в плоскости Π_0 (так как точки O, D_0 и $I_{1.0}$ лежат в плоскости Π_0). Следовательно, плоскость треугольника $OD_0I_{1.0}$ перпендикулярна плоскости треугольника $D_0J_{1.0}K_{1.0}$, а прямая линия | $D_0I_{1.0}$ | является линией пересечения плоскостей треугольников $OD_0I_{1.0}$ и $D_0J_{1.0}K_{1.0}$. | $D_0I_{1.0}$ | \bot | $OI_{0.1}$ | (принято ранее), следовательно, радиус | $OI_{0.1}$ | перпендикулярен плоскости треугольника $D_0J_{1.0}K_{1.0}$ (основанию пирамиды), а, следовательно, радиус | $OI_{0.1}$ | является высотой пирамиды $OD_0J_{1.0}K_{1.0}$.

Плоскость треугольника $OJ_{1.0}K_{1.0}$ (Рис.6.1.2.1.6) пересекает поверхность сферы по дуге окружности J_1K_1 .

Рис.6.1.2.1.6.

Из точки $I_{1.0}$ (Рис.6.1.2.1.7) опустим перпендикуляр | $I_{1.0}M_1$ | на радиус | OD |. Соединив точки $J_{1.0}$ и M_1 , $K_{1.0}$ и M_1 между собой, получим треугольник $M_1J_{1.0}K_{1.0}$ | $J_{1.0}K_{1.0}$ | перпендикулярна плоскости Π_0 (принято ранее), следовательно, плоскость треугольника $M_1J_{1.0}K_{1.0}$ перпендикулярна плоскости Π_0 . А, следовательно, в соответсвии с **П.1.7** угол $J_{1.0}M_1K_{1.0}$ является углом между плоскостями Φ_0 и Ψ_0 и равен α , угол $J_{1.0}M_1I_{1.0}$ является углом между плоскостями Φ_0 и Π_0 и равен $\frac{\alpha}{2}$, угол $K_{1.0}M_1I_{1.0}$ является углом между плоскостями Π_0 и Ψ_0 и равен $\frac{\alpha}{2}$.

Рис.6.1.2.1.7.

Рассмотрим прямоугольный треугольник $OM_1I_{1.0}$ (Рис.6.1.2.1.7), у которого известна гипотенуза | $OI_{1.0}$ | (найдена ранее) и прилегающий к ней угол $I_{1.0}OM_1 = \alpha$ (начальное условие, так как точка M_1 лежит на радиусе | OD |. Согласно **П.1.2** найдем катет | $I_{1.0}M_1$ |:

$$|I_{1.0}M_1| = |OI_{1.0}| \times \sin \alpha = \frac{R \times \sin \alpha}{\cos \frac{\alpha}{2}}, (6.1.2.1.4)$$

Рассмотрим треугольник $M_1J_{1.0}K_{1.0}$ (Рис.6.1.2.1.8). | $J_{1.0}K_{1.0}$ | перпендикулярна плоскости Π_0 (принято ранее). Точки $I_{1.0}$ и M_1 лежат, соответственно, на радиусах | OI_1 | и | OD |, каждый из которых лежит в плоскости Π_0 (начальное условие). Следовательно, и точки $I_{1.0}$ и M_1 будут ле-

Рис. 6.1.2.1.8.

жать в плоскости Π_0 , а, следовательно, в соответствии с **П.1.4** и | $I_{1.0}M_1$ | лежит в плоскости Π_0 . Следовательно, в соответствии со **С.1.5** | $J_{1.0}K_{1.0} \mid \perp \mid I_{1.0}M_1 \mid$.

Рассмотрим треугольники $M_1I_{1.0}J_{1.0}$ и $M_1I_{1.0}K_{1.0}$ (Рис.6.1.2.1.8). Они имеют одну общую сторону | $I_{1.0}M_1$ |. Углы $J_{1.0}M_1I_{1.0}$ и $K_{1.0}M_1I_{1.0}$, прилежащие к стороне | $I_{1.0}M_1$ |, равны между собой и равны $\frac{\alpha}{2}$ (доказано ранее). Углы $J_{1.0}I_{1.0}M_1$ и $K_{1.0}I_{1.0}M_1$, прилежащие к стороне | $I_{1.0}M_1$ |, равны между собой и равны 90° (так как | $J_{1.0}K_{1.0}$ | \bot | $I_{1.0}M_1$ |). Следовательно, в соответствии с **П.1.8** треугольники $M_1I_{1.0}J_{1.0}$ и $M_1I_{1.0}K_{1.0}$ равны между собой.

Рассмотрим прямоугольный треугольник $M_1I_{1.0}J_{1.0}$ (Рис.6.1.2.1.8), у которого известен катет | $I_{1.0}M_1$ | и прилегающий к нему угол $J_{1.0}M_1I_{1.0} = \frac{\alpha}{2}$ (доказано ранее). В соответствии с **П.1.2** найдем катет | $J_{1.0}I_{1.0}$ |:

$$|J_{1.0}I_{1.0}| = |I_{1.0}M_1| \times \tan{\frac{\alpha}{2}} = \frac{R \times \sin{\alpha}}{\cos{\frac{\alpha}{2}}} \times \tan{\frac{\alpha}{2}}, (6.1.2.1.5)$$

Из равенства треугольников $M_1I_{1.0}J_{1.0}$ и $M_1I_{1.0}K_{1.0}$ следует, что $|J_{1.0}I_{1.0}| = |I_{1.0}K_{1.0}|$, а, следовательно, $|J_{1.0}K_{1.0}|$ будет равна:

168

$$|J_{1.0}K_{1.0}| = |J_{1.0}I_{1.0}| + |I_{1.0}K_{1.0}| = 2 \times |J_{1.0}I_{1.0}| =$$
$$= 2 \times \frac{R \times \sin \alpha}{\cos \frac{\alpha}{2}} \times \tan \frac{\alpha}{2}, (6.1.2.1.6)$$

Рассмотрим треугольник $D_0J_{1.0}K_{1.0}$ (Рис.6.1.2.1.9). | $J_{1.0}K_{1.0}$ | перпендикулярна плоскости Π_0 (принято ранее). | $D_0I_{1.0}$ | лежит в плоскости Π_0 (доказано ранее). Следовательно, в соответствии со **С.1.6** | $J_{1.0}K_{1.0}$ | \bot | $D_0I_{1.0}$ |. | $J_{1.0}I_{1.0}$ | = | $I_{1.0}K_{1.0}$ | (доказано ранее). А, следовательно, | $D_0I_{1.0}$ | является высотой треугольника $D_0J_{1.0}K_{1.0}$, у которого известны высота | $D_0I_{1.0}$ | и сторона | $J_{1.0}K_{1.0}$ | (найдены ранее).

Рис.6.1.2.1.9.

Согласно **П.1.3** найдем площадь треугольника $D_0 J_{1.0} K_{1.0}$ (который является основанием пирамиды $OD_0 J_{1.0} K_{1.0}$):

$$S_{D_0 J_{1.0} K_{1.0}} = \frac{1}{2} \times |J_{1.0} K_{1.0}| \times |D_0 I_{1.0}| =$$
$$= \frac{1}{2} \times \left(2 \times \frac{R \times \sin \alpha}{\cos \frac{\alpha}{2}} \times \tan \frac{\alpha}{2} \right) \times \left(2 \times R \times \tan \frac{\alpha}{2} \right) =$$

$$= 2 \times R^2 \times \frac{\sin \alpha \times \tan^2 \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}, (6.1.2.1.7)$$

Таким образом, чем меньше будет угол α , тем меньше площадь треугольника $D_0 J_{1.0} K_{1.0}$ будет отличастя от площади поверхности сферы, ограниченной дугами окружностей $\widehat{DJ_1}, J_1 \widehat{K_1} u \ \widehat{K_1} D$ (Рис.6.1.2.1.6).

§6.1.2.2. Вычисление площади основания второй пирамиды

На Рис.6.1.2.2.1 показан шар с центром в точке О, диаметром | DE | и радиусом | OD | = R.

Рис.6.1.2.2.1.

Проведем из центра шара точки О радиус | OI_2 | = R так, чтобы он лежал в плоскости Π_0 и составлял с радиусом | OD | угол 2 α (тоесть, угол $DOI_2 = \alpha$). Проведем из центра шара точки О радиус | $OI_{0.2}$ | = R так, чтобы он лежал в плоскости Π_0 и составлял с радиусом | OI_2 | и прямой линией | $OI_{1.0}$ | угол $\frac{\alpha}{2}$ (тоесть, угол $I_2OI_{0.2} = \frac{\alpha}{2}$ и угол $I_{0.2}OI_{1.0} = \frac{\alpha}{2}$).

В плоскости П₀ из точки I_{1.0} через точку I_{0.2} (Рис.6.1.2.2.2) проведем прямую линию. Получим треугольник OI_{1.0}I_{0.2} равный треугольнику OD₀I_{0.1}, построенному в §6.1.2.1 (так как | $OI_{0.1}$ | = | $OI_{0.2}$ | = R и угол $D_0OI_{0.1}$ равен углу $I_{1.0}OI_{0.2} = \frac{\alpha}{2}$). Следовательно, прямая линия | $I_{1.0}I_{0.2}$ | будет касательна к дуге окружности \widehat{DF} , а, следовательно, перпендикулярна к радиусу | $OI_{0.2}$ |.

Рис.6.1.2.2.2.

Продлим прямую линию | $I_{1.0}I_{0.2}$ | далее. В плоскости Π_0 из точки О проведем прямую линию до ее пересечения с вышеуказанной касательной к дуге окружности \widehat{DF} в точке $I_{2.0}$, при этом, данная прямая линия | $OI_{2.0}$ | по направлению совпадает с направлением радиуса| OI_2 | (тоесть, данная прямая линия | $OI_{2.0}$ | пересекает дугу окружности \widehat{DF} в точке I_2). Таким образом, прямая линия | $OI_{2.0}$ | лежит в плоскости Π_0 , а прямая линия | $I_{1.0}I_{2.0}$ | касательна к дуге окружности \widehat{DF} в точке I_0 , и лежит в плоскости Π_0 .

Таким образом, мы получили треугольник OI_{1.0}I_{2.0} (Рис.6.1.2.2.3), лежащий в плоскости П₀, у которого угол $I_{1.0}OI_{2.0} = \alpha$, угол $I_{1.0}OI_{0.2} = \frac{\alpha}{2}$ и угол $I_{2.0}OI_{0.2} = \frac{\alpha}{2}$. | $I_{1.0}I_{2.0} \mid \perp \mid OI_{0.2} \mid$ (доказано ранее), следовательно, сог-

Рис.6.1.2.2.3.

ласно **П.1.1** радиус $|OI_{0.2}|$ является, одновременно, высотой, биссектрисой и медианой треугольника $OI_{1.0}I_{2.0}$. А, следовательно, $|I_{1.0}I_{0.2}| = |I_{0.2}I_{2.0}|$. Таким образом, треугольник $OI_{1.0}I_{2.0}$ является равнобедренным, и состоит из двух прямоугольных треугольников $OI_{1.0}I_{0.2}$ и $OI_{2.0}I_{0.2}$, которые равны между собой.

Рассмотрим прямоугольный треугольник $OI_{0.2}I_{2.0}$ (Рис.6.1.2.2.3), у которого известен катет | $OI_{0.2}$ | = R и прилегающий к нему угол $I_{2.0}OI_{0.2} = \frac{\alpha}{2}$. Согласно **П.1.2** найдем его второй катет | $I_{0.2}I_{2.0}$ | и гипотенузу | $OI_{2.0}$ |:

$$|I_{0.2}I_{2.0}| = |OI_{0.2}| \times \tan\frac{\alpha}{2} = R \times \tan\frac{\alpha}{2}, (6.1.2.2.1)$$
$$|OI_{2.0}| = \frac{|OI_{0.2}|}{\cos\frac{\alpha}{2}} = \frac{R}{\cos\frac{\alpha}{2}}, (6.1.2.2.2)$$

Так как | $I_{1.0}I_{0.2}$ | = | $I_{0.2}I_{2.0}$ | (доказано ранее), то сторона | $I_{1.0}I_{2.0}$ | треугольника OI_{1.0}I_{2.0} будет равна:

$$|I_{1.0}I_{2.0}| = |I_{1.0}I_{0.2}| + |I_{0.2}I_{2.0}| = 2 \times |I_{0.2}I_{2.0}| = = 2 \times R \times \tan\frac{\alpha}{2}, (6.1.2.2.3)$$

Из точки I_{2.0} (Рис.6.1.2.2.4) проведем прямую линию, перпендикулярную плоскости Π_0 , до ее пересечения с плоскостью Φ_0 в точке J_{2.0}, и до ее пересечения с плоскостью Ψ_0 в точке K_{2.0}. Таким образом, мы получили прямую линию | J_{2.0}K_{2.0} |, перпендикулярную плоскости Π_0 . Ранее в §6.1.2.1 была построена прямая линия | J_{1.0}K_{1.0} |, перпендикулярная плоскости Π_0 . Соединив точки J_{1.0} и J_{2.0}, K_{1.0} и K_{2.0} между собой, получим трапецию J_{1.0}J_{2.0}K_{2.0}K_{1.0}. Так как каждая из прямых линий | J_{1.0}K_{1.0} | и | J_{2.0}K_{2.0} | перпендикулярная плоскости Π_0 (принято ранее), следовательно, в соответствии со C.1.5 плоскость трапеции $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$ будет перпендикулярная плоскости Π_0 .

Рис.6.1.2.2.4.

Соединив точки О и $J_{1.0}$, О и $J_{2.0}$, О и $K_{1.0}$, О и $K_{2.0}$ между собой, получим пирамиду $OJ_{1.0}J_{2.0}K_{2.0}K_{1.0}$ с основанием в виде трапеции $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$ и вершиной в точке О. При этом, основание пирамиды $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$ касается извне поверхности сферы в одной точке $I_{0.2}$.

Плоскость трапеции $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$ перпендикулярна плоскости Π_0 (доказано ранее). Треугольник $OI_{1.0}I_{2.0}$ лежит в плоскости Π_0 (так как точки O, $I_{1.0}$ и $I_{2.0}$ лежат в плоскости Π_0). Следовательно, плоскость треугольника $OI_{1.0}I_{2.0}$ перпендикулярна плоскости трапеции $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$, а прямая линия | $I_{1.0}I_{2.0}$ | является линией пересечения плоскостей трапеции $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$ и треугольника $OI_{1.0}I_{2.0}$ | $I_{1.0}I_{2.0}$ | доказано ранее), следовательно, радиус | $OI_{0.2}$ | перпендикулярен плоскости трапеции

 $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$ (основанию пирамиды), а, следовательно, радиус | $OI_{0.2}$ | является высотой пирамиды $OJ_{1.0}J_{2.0}K_{2.0}K_{1.0}$.

Плоскость треугольника $OJ_{1.0}K_{1.0}$ (Рис.6.1.2.2.5) пересекает поверхность сферы по дуге окружности $\widehat{J_2K_2}$.

Рис.6.1.2.2.5.

Из точки I_{2.0} (Рис.6.1.2.2.6) опустим перпендикуляр | $I_{2.0}M_2$ | на радиус | OD |. Соединив точки J_{2.0} и M₂, K_{2.0} и M₂ между собой, получим треугольник M₂J_{2.0}K_{2.0} | $J_{2.0}K_{2.0}$ | перпендикулярна плоскости П₀ (принято ранее), следовательно, плоскость треугольника M₂J_{2.0}K_{2.0} перпендикулярна плоскости П₀. А, следовательно, в соответсвии с **П.1.7** угол J_{2.0}M₂K_{2.0} является углом между плоскостями Φ_0 и Ψ_0 и равен α , угол J_{2.0}M₂I_{2.0} является углом между плоскостями Φ_0 и Π_0 и равен $\frac{\alpha}{2}$, угол K_{2.0}M₂I_{2.0} является углом между плоскостями Π_0 и Ψ_0 и равен $\frac{\alpha}{2}$.

Рис.6.1.2.2.6.

Рассмотрим прямоугольный треугольник $OM_2I_{2.0}$ (Рис.6.1.2.2.6), у которого известна гипотенуза | $OI_{2.0}$ | (найдена ранее) и прилегающий к ней угол $I_{2.0}OM_2 = 2\alpha$ (начальное условие, так как точка M_2 лежит на радиусе | OD |). Согласно **П.1.2** найдем катет | $I_{2.0}M_2$ |:

$$|I_{2.0}M_2| = |OI_{2.0}| \times \sin 2\alpha = \frac{R \times \sin 2\alpha}{\cos \frac{\alpha}{2}}, (6.1.2.2.4)$$

Рассмотрим треугольник $M_2J_{2.0}K_{2.0}$ (Рис. 6.1.2.2.7). | $J_{2.0}K_{2.0}$ | перпендикулярна плоскости Π_0 (принято ранее). Точки $I_{2.0}$ и M_2 лежат, соответственно, на радиусах | OI_2 | и |OD|, каждый из которых лежит в плоскости Π_0 (начальное условие). Следовательно, и точки $I_{2.0}$ и M_2 будут лежать в плоскости Π_0 , а, следовательно, в соответствии с **П.1.4** и $|I_{2.0}M_2|$ лежит в плоскости Π_0 . Следовательно, в соответствии со **С.1.5** $|J_{2.0}K_{2.0}| \perp |I_{2.0}M_2|$.

Рис. 6.1.2.2.7.

Рассмотрим треугольники М2I2.0J2.0 и М2I2.0K2.0 (Рис.6.1.2.2.7). Они имеют одну общую сторону | $I_{2.0}M_2$ |. Углы $J_{2.0}M_2I_{2.0}$ и $K_{2.0}M_2I_{2.0}$, прилежащие к стороне | $I_{2.0}M_2$ |, равны между собой и равны $\frac{\alpha}{2}$ (доказано ранее). Углы $J_{2,0}I_{2,0}M_2$ и $K_{2,0}I_{2,0}M_2$, прилежащие к стороне | $I_{2,0}M_2$ |, равсобой равны 90° между (так ны И как $|J_{2,0}K_{2,0}| \perp |I_{2,0}M_2|$). Следовательно, в соответствии с П.1.8 треугольники $M_2I_{2.0}J_{2.0}$ и $M_2I_{2.0}K_{2.0}$ равны между собой.

Рассмотрим прямоугольный треугольник $M_2I_{2.0}J_{2.0}$ (Рис.6.1.2.2.7), у которого известен катет | $I_{2.0}M_2$ | и прилегающий к нему угол $J_{2.0}M_2I_{2.0} = \frac{\alpha}{2}$ (доказано ранее). В соответствии с **П.1.2** найдем катет | $J_{2.0}I_{2.0}$ |:

$$|J_{2.0}I_{2.0}| = |I_{2.0}M_2| \times \tan\frac{\alpha}{2} = \frac{R \times \sin 2\alpha}{\cos\frac{\alpha}{2}} \times \tan\frac{\alpha}{2}, \quad (6.1.2.2.5)$$

Из равенства треугольников $M_2I_{2.0}J_{2.0}$ и $M_2I_{2.0}K_{2.0}$ следует, что | $J_{2.0}I_{2.0}$ | = | $I_{2.0}K_{2.0}$ |, а, следовательно, | $J_{2.0}K_{2.0}$ | будет равна:

$$|J_{2.0}K_{2.0}| = |J_{2.0}I_{2.0}| + |I_{2.0}K_{2.0}| = 2 \times |J_{2.0}I_{2.0}| =$$

= $2 \times \frac{R \times \sin 2\alpha}{\cos \frac{\alpha}{2}} \times \tan \frac{\alpha}{2}$, (6.1.2.2.6)

Рассмотрим трапецию $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$ (Рис.6.1.2.2.8). Ранее в §6.1.2.1 была построена прямая линия | $J_{1.0}K_{1.0}$ |, перпендикулярная плоскости Π_0 (принято ранее). Прямая линия | $J_{2.0}K_{2.0}$ | перпендикулярна плоскости Π_0 (принято ранее). | $I_{1.0}I_{2.0}$ | лежит в плоскости Π_0 (доказано ранее). Следовательно, в соответствии со **С.1.6** | $J_{1.0}K_{1.0}$ | \bot | $I_{1.0}I_{2.0}$ | и | $J_{2.0}K_{2.0}$ | \bot | $I_{1.0}I_{2.0}$ |. | $J_{1.0}I_{1.0}$ | = | $I_{1.0}K_{1.0}$ | (доказано ранее). Следовательно, в соответствии со **С.1.6** | $J_{1.0}K_{1.0}$ | \bot | $I_{1.0}I_{2.0}$ | и | $J_{2.0}K_{2.0}$ | \bot | $I_{1.0}I_{2.0}$ | = | $I_{2.0}K_{2.0}$ | (доказано ранее в §6.1.2.1), | $J_{2.0}I_{2.0}$ | = | $I_{2.0}K_{2.0}$ | (доказано в этом параграфе). А, следовательно, | $I_{1.0}I_{2.0}$ | является высотой трапеции $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$, у которой известны высота | $I_{1.0}I_{2.0}$ | (найдена ранее в §6.1.2.1) и | $J_{2.0}K_{2.0}$ | (найдена в этом параграфе).

Рис.6.1.2.2.8.

Согласно **П.1.14** найдем площадь $S_{J_{1.0}J_{2.0}K_{2.0}K_{1.0}}$ трапеции $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$ (которая является основанием пирамиды $OJ_{1.0}J_{2.0}K_{2.0}K_{1.0}$):

$$S_{J_{1.0}J_{2.0}K_{2.0}K_{1.0}} = \frac{(|J_{1.0}K_{1.0}| + |J_{2.0}K_{2.0}|)}{2} \times |I_{1.0}I_{2.0}| = \frac{\left(\left(2 \times \frac{R \times \sin \alpha}{\cos \frac{\alpha}{2}} \times \tan \frac{\alpha}{2}\right) + \left(2 \times \frac{R \times \sin 2\alpha}{\cos \frac{\alpha}{2}} \times \tan \frac{\alpha}{2}\right)\right)}{2} \times 2 \times \frac{2}{\alpha}$$

$$\times R \times \tan \frac{1}{2} = 2 \times R^{2} \times \left(\left(\frac{\sin \alpha \times \tan \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \right) + \left(\frac{\sin 2\alpha \times \tan \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \right) \right) \times \tan \frac{\alpha}{2} = 2 \times R^{2} \times \left(\frac{\sin \alpha + \sin 2\alpha}{\cos \frac{\alpha}{2}} \right) \times \tan^{2} \frac{\alpha}{2}, (6.1.2.2.7)$$

Таким образом, чем меньше будет угол α , тем меньше площадь трапеции $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$ будет отличатся от площади поверхности сферы, ограниченной дугами окружностей $\widehat{J_1J_2}, \widehat{J_2K_2}, \widehat{K_2K_1}$ и $\widehat{K_1J_1}$ (Рис.6.1.2.2.5).
§6.1.2.3. Вычисление площади основания третьей пирамиды

На Рис.6.1.2.3.1 показан шар с центром в точке О, диаметром | DE | и радиусом | OD | = R.

Рис.6.1.2.3.1.

Проведем из центра шара точки О радиус $|OI_3| = R$ так, чтобы он лежал в плоскости Π_0 и составлял с радиусом |OD| угол 3α (тоесть, угол $DOI_3 = \alpha$). Проведем из центра шара точки О радиус $|OI_{0.3}| = R$ так, чтобы он лежал в плоскости Π_0 и составлял с радиусом $|OI_3|$ и прямой

линией | $OI_{2.0}$ | угол $\frac{\alpha}{2}$ (тоесть, угол $I_3OI_{0.3} = \frac{\alpha}{2}$ и угол $I_{0.3}OI_{2.0} = \frac{\alpha}{2}$).

В плоскости П₀ (Рис.6.1.2.3.2) из точки I_{2.0} через точку I_{0.3} проведем прямую линию. Получим треугольник OI_{2.0}I_{0.3} равный треугольнику OI_{1.0}I_{0.2}, построенному в §6.1.2.2 (так как | $OI_{0.2}$ | = | $OI_{0.3}$ | = R и угол $I_{1.0}OI_{0.2}$ равен углу $I_{2.0}OI_{0.3} = \frac{\alpha}{2}$). Следовательно, прямая линия | $I_{2.0}I_{0.3}$ | будет касательна к дуге окружности \widehat{DF} , а, следовательно, перпендикулярна к радиусу | $OI_{0.3}$ |.

Рис.6.1.2.3.2.

Продлим прямую линию | $I_{2.0}I_{0.3}$ | далее. В плоскости Π_0 из точки О проведем прямую линию до ее пересечения с вышеуказанной касательной к дуге окружности \widehat{DF} в точке $I_{3.0}$, при этом, данная прямая линия | $OI_{3.0}$ | по нап-

равлению совпадает с направлением радиуса OI_3 | (тоесть, данная прямая линия | $OI_{3.0}$ | пересекает дугу окружности \widehat{DF} в точке I_3). Таким образом, прямая линия | $OI_{3.0}$ | лежит в плоскости Π_0 , а прямая линия | $I_{2.0}I_{3.0}$ | касательна к дуге окружности \widehat{DF} в точке $I_{0.3}$, и лежит в плоскости Π_0 .

Таким образом, мы получили треугольник $OI_{2.0}I_{3.0}$ (Рис.6.1.2.3.3), лежащий в плоскости Π_0 , у которого угол $I_{2.0}OI_{3.0} = \alpha$, угол $I_{2.0}OI_{0.3} = \frac{\alpha}{2}$ и угол $I_{3.0}OI_{0.3} = \frac{\alpha}{2}$. | $I_{2.0}I_{3.0} | \perp | OI_{0.3} |$ (доказано ранее), следовательно, согласно **П.1.1** радиус | $OI_{0.3} |$ является, одновременно, высо-

Рис.6.1.2.3.3.

той, биссектрисой и медианой треугольника $OI_{2.0}I_{3.0}$. А, следовательно, | $I_{2.0}I_{0.3}$ | = | $I_{0.3}I_{3.0}$ |.

Таким образом, треугольник $OI_{2.0}I_{3.0}$ является равнобедренным, и состоит из двух прямоугольных треугольников $OI_{2.0}I_{0.3}$ и $OI_{3.0}I_{0.3}$, которые равны между собой.

Рассмотрим прямоугольный треугольник $OI_{0.3}I_{3.0}$ (Рис.6.1.2.3.3), у которого известен катет | $OI_{0.3}$ | = R и прилегающий к нему угол $I_{3.0}OI_{0.3} = \frac{\alpha}{2}$. Согласно **П.1.2** найдем его второй катет | $I_{0.3}I_{3.0}$ | и гипотенузу | $OI_{3.0}$ |:

$$|I_{0.3}I_{3.0}| = |OI_{0.3}| \times \tan\frac{\alpha}{2} = R \times \tan\frac{\alpha}{2}, (6.1.2.3.1)$$
$$|OI_{3.0}| = \frac{|OI_{0.2}|}{\cos\frac{\alpha}{2}} = \frac{R}{\cos\frac{\alpha}{2}}, (6.1.2.3.2)$$

Так как | $I_{2.0}I_{0.3}$ | = | $I_{0.3}I_{3.0}$ | (доказано ранее), то сторона | $I_{2.0}I_{3.0}$ | треугольника OI_{2.0}I_{3.0} будет равна:

$$|I_{2.0}I_{3.0}| = |I_{2.0}I_{0.3}| + |I_{0.3}I_{3.0}| = 2 \times |I_{0.3}I_{3.0}| = = 2 \times R \times \tan \frac{\alpha}{2}, (6.1.2.3.3)$$

Из точки I_{3.0} (Рис.6.1.2.3.4) проведем прямую линию, перпендикулярную плоскости Π_0 , до ее пересечения с плоскостью Φ_0 в точке J_{3.0}, и до ее пересечения с плоскостью Ψ_0 в точке K_{3.0}. Таким образом, мы получили прямую линию | J_{3.0}K_{3.0} |, перпендикулярную плоскости Π_0 . Ранее в §6.1.2.2 была построена прямая линия | J_{2.0}K_{2.0} |, перпендикулярная плоскости Π_0 . Соединив точки J_{2.0} и J_{3.0}, K_{2.0} и K_{3.0} между собой, получим трапецию J_{2.0}J_{3.0}K_{3.0}K_{2.0}. Так как каждая из прямых линий | J_{2.0}K_{2.0} | и | J_{3.0}K_{3.0} | перпендикулярная плоскости Π_0 (принято ранее), следовательно, в соответствии со C.1.5 плоскость трапеции J_{2.0}J_{3.0}K_{3.0}K_{2.0} будет перпендикулярная плоскости Π_0 .

Рис.6.1.2.3.4.

Соединив точки О и $J_{2.0}$, О и $J_{3.0}$, О и $K_{2.0}$, О и $K_{3.0}$ между собой, получим пирамиду $OJ_{2.0}J_{3.0}K_{3.0}K_{2.0}$ с основанием в виде трапеции $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$ и вершиной в точке О. При этом, основание пирамиды $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$ касается извне поверхности сферы в одной точке $I_{0.3}$.

Плоскость трапеции $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$ перпендикулярна плоскости Π_0 (доказано ранее). Треугольник $OI_{2.0}I_{3.0}$ лежит в плоскости Π_0 (так как точки O, $I_{2.0}$ и $I_{3.0}$ лежат в плоскости Π_0). Следовательно, плоскость треугольника $OI_{2.0}I_{3.0}$ перпендикулярна плоскости трапеции $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$, а прямая линия | $I_{2.0}I_{3.0}$ | является линией пересечения плоскостей трапеции $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$ и треугольника $OI_{2.0}I_{3.0}$. | $I_{2.0}I_{3.0}$ | \bot | $OI_{0.3}$ | (доказано ранее), следовательно, радиус | $OI_{0.3}$ | перпендикулярен плоскости трапеции $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$ (основанию пирамиды), а, следовательно, радиус | $OI_{0.3}$ | является высотой пирамиды $OJ_{2.0}J_{3.0}K_{3.0}K_{2.0}$.

Плоскость треугольника $OJ_{2.0}K_{3.0}$ (Рис.6.1.2.3.5) пересекает поверхность сферы по дуге окружности J_3K_3 .

Рис.6.1.2.3.5.

Из точки $I_{3.0}$ (Рис.6.1.2.3.6) опустим перпендикуляр | $I_{3.0}M_3$ | на радиус | OD |. Соединив точки $J_{3.0}$ и M_3 , $K_{3.0}$ и M_3 между собой, получим треугольник $M_3J_{3.0}K_{3.0}$. | $J_{3.0}K_{3.0}$ | перпендикулярна плоскости Π_0 (принято ранее), следовательно, плоскость треугольника $M_3J_{3.0}K_{3.0}$ перпендикулярна плоскости Π_0 . А, следовательно, в соответсвии с **П.1.7** угол $J_{3.0}M_3K_{3.0}$ является углом между плоскостями Φ_0 и Ψ_0 и равен α , угол $J_{3.0}M_3I_{3.0}$ является углом между плоскостями Φ_0 и Π_0 и равен $\frac{\alpha}{2}$, угол $K_{3.0}M_3I_{3.0}$ является углом между плоскостями Π_0 и Ψ_0 и равен $\frac{\alpha}{2}$.

Рис.6.1.2.3.6.

Рассмотрим прямоугольный треугольник ОМ₃I_{3.0} (Рис.6.1.2.3.6), у которого известна гипотенуза | $OI_{3.0}$ | (найдена ранее) и прилегающий к ней угол $I_{3.0}OM_3 = 3\alpha$

(начальное условие, так как точка M_3 лежит на радиусе | *OD* |). Согласно **П.1.2** найдем катет | $I_{3,0}M_3$ |:

$$|I_{3.0}M_3| = |OI_{3.0}| \times \sin 3\alpha = \frac{R \times \sin 3\alpha}{\cos \frac{\alpha}{2}}, (6.1.2.3.4)$$

Рассмотрим треугольник $M_3J_{3.0}K_{3.0}$ (Рис.6.1.2.3.7). | $J_{3.0}K_{3.0}$ | перпендикулярна плоскости Π_0 (принято ранее). Точки $I_{3.0}$ и M_3 лежат, соответственно, на радиусах | OI_3 | и | OD |, каждый из которых лежит в плоскости Π_0 (начальное условие). Следовательно, и точки $I_{3.0}$ и M_3 будут лежать в плоскости Π_0 , а, следовательно, в соответствии с **П.1.4** и | $I_{3.0}M_3$ | лежит в плоскости Π_0 . Следовательно, в соответствии со **С.1.5** | $J_{3.0}K_{3.0}$ | \bot | $I_{3.0}M_3$ |.

Рис. 6.1.2.3.7.

Рассмотрим треугольники $M_3I_{3,0}J_{3,0}$ и $M_3I_{3,0}K_{3,0}$ (Рис.6.1.2.3.7). Они имеют одну общую сторону | $I_{3,0}M_3$ |. Углы $J_{3,0}M_3I_{3,0}$ и $K_{3,0}M_3I_{3,0}$, прилежащие к стороне | $I_{3,0}M_3$ |, равны между собой и равны $\frac{\alpha}{2}$ (доказано ранее). Углы $J_{3.0}I_{3.0}M_3$ и $K_{3.0}I_{3.0}M_3$, прилежащие к стороне | $I_{3.0}M_3$ |, равны между собой и равны 90° (так как | $J_{3.0}K_{3.0} | \perp | I_{3.0}M_3 |$). Следовательно, в соответствии с **П.1.8** треугольники $M_3I_{3.0}J_{3.0}$ и $M_3I_{3.0}K_{3.0}$ равны между собой.

Рассмотрим прямоугольный треугольник $M_3I_{3.0}J_{3.0}$ (Рис.6.1.2.3.7), у которого известен катет | $I_{3.0}M_3$ | и прилегающий к нему угол $J_{3.0}M_3I_{3.0} = \frac{\alpha}{2}$ (доказано ранее). В соответствии с **П.1.2** найдем катет | $J_{3.0}I_{3.0}$ |:

$$|J_{3.0}I_{3.0}| = |I_{3.0}M_3| \times \tan{\frac{\alpha}{2}} = \frac{R \times \sin{3\alpha}}{\cos{\frac{\alpha}{2}}} \times \tan{\frac{\alpha}{2}}, \quad (6.1.2.3.5)$$

Из равенства треугольников $M_3I_{3.0}J_{3.0}$ и $M_3I_{3.0}K_{3.0}$ следует, что $|J_{3.0}I_{3.0}| = |I_{3.0}K_{3.0}|$, а, следовательно, $|J_{3.0}K_{3.0}|$ будет равна:

$$|J_{3.0}K_{3.0}| = |J_{3.0}I_{3.0}| + |I_{3.0}K_{3.0}| = 2 \times |J_{3.0}I_{3.0}| =$$

= $2 \times \frac{R \times \sin 3\alpha}{\cos \frac{\alpha}{2}} \times \tan \frac{\alpha}{2}$, (6.1.2.3.6)

Рассмотрим трапецию $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$ (Рис.6.1.2.3.8). Ранее в §6.1.2.2 была построена прямая линия | $J_{2.0}K_{2.0}$ |, перпендикулярная плоскости Π_0 (принято ранее). Прямая линия | $J_{3.0}K_{3.0}$ | перпендикулярна плоскости Π_0 (принято ранее). Прямая линия | $J_{2.0}I_{3.0}$ | лежит в плоскости Π_0 (доказано ранее). Следовательно, в соответствии со **С.1.6** | $J_{2.0}K_{2.0} \mid \perp \mid I_{2.0}I_{3.0} \mid$ и | $J_{3.0}K_{3.0} \mid \perp \mid I_{2.0}I_{3.0} \mid$. | $J_{2.0}I_{2.0} \mid$ = = | $I_{2.0}K_{2.0} \mid ($ доказано ранее в §6.1.2.2), | $J_{3.0}I_{3.0} \mid$ = = | $I_{3.0}K_{3.0} \mid$ (доказано в этом параграфе). А, следовательно, | $I_{2.0}I_{3.0} \mid$ является высотой трапеции $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$, у которой известны высота | $I_{2.0}I_{3.0} \mid$ (найдена ранее) и две

стороны | $J_{2.0}K_{2.0}$ | (найдена ранее в §6.1.2.2) и | $J_{3.0}K_{3.0}$ | (найдена в этом параграфе).

Рис.6.1.2.3.8.

Согласно **П.1.14** найдем площадь $S_{J_{2.0}J_{3.0}K_{3.0}K_{2.0}}$ трапеции $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$ (которая является основанием пирамиды $OJ_{2.0}J_{3.0}K_{3.0}K_{2.0}$):

$$S_{J_{2,0}J_{3,0}K_{3,0}K_{2,0}} = \frac{\left(|J_{2,0}K_{2,0}| + |J_{3,0}K_{3,0}|\right)}{2} \times |I_{2,0}I_{3,0}| =$$

$$= \frac{\left(\left(2 \times \frac{R \times \sin 2\alpha}{\cos \frac{\alpha}{2}} \times \tan \frac{\alpha}{2}\right) + \left(2 \times \frac{R \times \sin 3\alpha}{\cos \frac{\alpha}{2}} \times \tan \frac{\alpha}{2}\right)\right)}{2} \times 2 \times R \times \tan \frac{\alpha}{2} =$$

$$= 2 \times R^{2} \times \left(\left(\frac{\sin 2\alpha \times \tan \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}\right) + \left(\frac{\sin 3\alpha \times \tan \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}\right)\right) \times \tan \frac{\alpha}{2} =$$

$$= 2 \times R^{2} \times \left(\frac{\sin 2\alpha + \sin 3\alpha}{\cos \frac{\alpha}{2}}\right) \times \tan^{2} \frac{\alpha}{2}, (6.1.2.3.7)$$

Таким образом, чем меньше будет угол α , тем меньше площадь трапеции $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$ будет отличатся от площади поверхности сферы, ограниченной дугами окружностей $\widehat{J_{2J_{3}}}, \widehat{J_{3}K_{3}}, \widehat{K_{3}K_{2}}$ и $\widehat{K_{2J_{2}}}$ (Рис.6.1.2.3.5).

§6.1.2.4. Вычисление площади основания последней пирамиды

Как видно из уравнений (6.1.2.2.7) и (6.1.2.3.7), они отличаются только значением коэффициента перед углом α.

Уравнения (6.1.2.2.7) и (6.1.2.3.7) можно записать в виде:

$$S_{J_{j-1}J_jK_jK_{j-1}} = 2 \times R^2 \times \left(\frac{\sin(i-\alpha) + \sin i}{\cos\frac{\alpha}{2}}\right) \times \tan^2\frac{\alpha}{2} , (6.1.2.4.1)$$

Подставив в уравнение (6.1.2.4.1) вместо і значение, равное 2 α или 3 α , а вместо ј значение, равное 2 или 3, получим уравнения (6.1.2.2.7) и (6.1.2.3.7).

Все последующие пирамиды при изменении угла DOI_i от $DOI_3 = 3\alpha$ до $DOI_{90-\alpha} = (90 - \alpha)$ будут иметь в основании трапецию, и площадь ее основания будет вычисляться по формуле (6.1.2.4.1). При этом, вместо і нужно будет подставить текущее значение угла DOI_i, а вместо ј поставить текущее значение индекса.

Исключением будет последняя пирамида, заключенная между углами $DOI_{90-\alpha} = (90 - \alpha)$ и DOF = 90, так как одна сторона основания пирамиды будет найдена иным, по сравнению с предыдущими пирамидами, способом.

На Рис.6.1.2.4.1 показан шар с центром в точке О, диаметром | *DE* | и радиусами | *OD* | = *R* и | *OF* | = *R*, при этом, оба радиуса лежал в плоскости Π_0 . Совершив построения, аналогичные тем, что были произведены в §6.1.2..2 и §6.1.2.3, получим прямую линию | *OI*_{(90- α).0} |, лежащую в плоскости Π_0 (принято ранее). Угол *DOF* = 90°, а угол *DOI*_{(90- α).0} = 90 – α . Проведем из центра шара точки О радиус | *OF*_{0.1} | = *R* так, чтобы он лежал

Рис. 6.1.2.4.1.

В плоскости П₀ (Рис.6.1.2.4.2) из точки I_{(90- α).0} через точку F_{0.1} проведем прямую линию. Получим треугольник OI_{(90- α).0}F_{0.1}, равный треугольнику OI_{1.0}I_{0.2}, построенному в §6.1.2.2 (так как | $OI_{0.2}$ | = | $F_{0.1}$ | = R и угол $I_{1.0}OI_{0.2}$ равен углу $I_{(90-\alpha).0}OF_{0.1} = \frac{\alpha}{2}$). Следовательно, прямая линия

 $|I_{(90-\alpha).0}F_{0.1}|$ будет касательна к дуге окружности \widehat{DF} , а, следовательно, перпендикулярна к радиусу $|OF_{0.1}|$.

Рис.6.1.2.4.2.

Продлим прямую линию | $I_{(90-\alpha).0}F_{0.1}$ | далее. В плоскости Π_0 из точки О проведем прямую линию до ее пересечения с вышеуказанной касательной к дуге окружности \widehat{DF} в точке $F_{1.0}$, при этом, данная прямая линия | $OF_{1.0}$ | по направлению совпадает с направлением радиуса| OF | (тоесть, данная прямая линия | $OF_{1.0}$ | пересекает дугу окружности \widehat{DF} в точке F). Таким образом, прямая линия | $OF_{1.0}$ | лежит в плоскости Π_0 , а прямая линия | $I_{(90-\alpha).0}F_{1.0}$ | касательна к дуге окружности \widehat{DF} в точке F_{0.1}, и лежит в плоскости Π_0 .

Таким образом, мы получили треугольник $OI_{(90-\alpha).0}F_{1.0}$ (Рис.6.1.2.4.3), лежащий в плоскости Π_0 , у которого угол

Рис.6.1.2.4.3.

 $I_{(90-\alpha).0}OF_{1.0} = \alpha$, угол $I_{(90-\alpha).0}OF_{0.1} = \frac{\alpha}{2}$ и угол $F_{1.0}OF_{0.1} = \frac{\alpha}{2}$. | $I_{(90-\alpha).0}F_{1.0}$ | \perp | $OF_{0.1}$ |, следовательно, согласно **П.1.1** радиус | $OF_{0.1}$ | является, одновременно, высотой, биссектрисой и медианой треугольника OI_{(90-\alpha).0}F_{1.0}. А, следовательно, | $I_{(90-\alpha).0}F_{0.1}$ | = | $F_{0.1}F_{1.0}$ |. Таким образом, треугольник OI_{(90-\alpha).0}F_{1.0} является равнобедренным, и сос-

тоит из двух прямоугольных треугольников $OI_{(90-\alpha).0}F_{0.1}$ и $OF_{1.0}F_{0.1}$, которые равны между собой.

Рассмотрим прямоугольный треугольник OF_{0.1}F_{1.0} (Рис.6.1.2.4.3), у которого известен катет | $OF_{0.1}$ | = R и прилегающий к нему угол $F_{1.0}OF_{0.1} = \frac{\alpha}{2}$. Согласно **П.1.2** найдем его второй катет | $F_{0.1}F_{1.0}$ | и гипотенузу | $OF_{1.0}$ |:

$$|F_{0.1}F_{1.0}| = |OF_{0.1}| \times \tan\frac{\alpha}{2} = R \times \tan\frac{\alpha}{2}, (6.1.2.4.2)$$
$$|OF_{1.0}| = \frac{|OF_{0.1}|}{\cos\frac{\alpha}{2}} = \frac{R}{\cos\frac{\alpha}{2}}, \quad (6.1.2.4.3)$$

Так как | $I_{(90-\alpha).0}F_{0.1}$ | = | $F_{0.1}F_{1.0}$ | (доказано ранее), то сторона | $I_{(90-\alpha).0}F_{1.0}$ | треугольника $OI_{(90-\alpha).0}F_{1.0}$ будет равна:

$$|I_{(90-\alpha).0}F_{1.0}| = |I_{(90-\alpha).0}F_{0.1}| + |F_{0.1}F_{1.0}| = 2 \times |F_{0.1}F_{1.0}| = 2 \times R \times \tan\frac{\alpha}{2}, (6.1.2.4.4)$$

Из точки $F_{1.0}$ (Рис.6.1.2.4.4) проведем прямую линию, перпендикулярную плоскости Π_0 , до ее пересечения с плоскостью Φ_0 в точке $J_{90.0}$, и до ее пересечения с плоскостью Ψ_0 в точке $K_{90.0}$. Таким образом, мы получили прямую линию | $J_{90.0}K_{90.0}$ |, перпендикулярную плоскости Π_0 .

Из уравнений (6.1.2.2.6) и (6.1.2.3.6) видно, что они отличаются только значением коэффициента перед углом α . Следовательно, и | $J_{(90-\alpha).0}K_{(90-\alpha).0}$ | будет вычислена по той же формуле, подставив значение угла, равное (90 – α), тоесть:

$$|J_{(90-\alpha).0}K_{(90-\alpha).0}| = 2 \times \frac{R \times \sin(90-\alpha)}{\cos\frac{\alpha}{2}} \times \tan\frac{\alpha}{2}, \quad (6.1.2.4.5)$$

Соединив точки $J_{(90-\alpha).0}$ и $J_{90.0}$, $K_{(90-\alpha).0}$ и $K_{90.0}$ между собой, получим трапецию $J_{(90-\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}$. Так как каж-

Рис.6.1.2.4.4.

дая из прямых линий | $J_{90-\alpha}K_{90-\alpha}$ | и | $J_{90.0}K_{90.0}$ | перпен дикулярная плоскости Π_0 (принято ранее), следовательно, в соответствии со **С.1.5** плоскость трапеции $J_{(90-\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}$ будет перпендикулярная плоскости Π_0 .

Соединив точки О и $J_{(90-\alpha).0}$, О и $J_{90.0}$, О и $K_{(90-\alpha).0}$, О и $K_{90.0}$ между собой (Рис.6.1.2.4.4), получим пирамиду

 $OJ_{(90-\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}$ с основанием в виде трапеции $J_{(90-\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}$ и вершиной в точке О. При этом, основание пирамиды $J_{(90-\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}$ касается извне поверхности сферы в одной точке $F_{0.1}$.

Плоскость трапеции J_{(90-а),0}J_{90,0}K_{90,0}K_{(90-а),0} перпендикуплоскости П₀ (доказано ранее). Треугольник лярна $OI_{90-\alpha),0}F_{1,0}$ лежит в плоскости Π_0 (так как точки O, $I_{90-\alpha),0}$ и F_{1.0} лежат в плоскости П₀). Следовательно, плоскость треугольника OI_{90-а) 0}F_{1.0} перпендикулярна плоскости трапеции J_{(90-α).0}J_{90.0}K_{90.0}K_{(90-α).0}, а прямая линия | I_{(90-α).0}F_{1.0} | явпересечения плоскостей трапеции линией ляется $OI_{90-\alpha).0}F_{1.0}$. $J_{(90-\alpha),0}J_{90,0}K_{90,0}K_{(90-\alpha),0}$ треугольника И $|I_{(90-\alpha),0}F_{1,0}| \perp |OF_{0,1}|$ (доказано ранее), следовательно, радиус $|OF_{0,1}|$ перпендикулярен плоскости трапеции J_{(90-а).0}J_{90.0}K_{90.0}K_{(90-а).0} (основанию пирамиды), а, следовательно, радиус | $OF_{0.1}$ | является высотой пирамиды $OJ_{(90-1)}$ $_{\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}.$

Плоскость треугольника $OJ_{90.0}K_{90.0}$ (Рис.6.1.2.4.5) пересекает поверхность сферы по дуге окружности \widehat{GH} .

Рис.6.1.2.4.5.

Рассмотрим треугольник OJ_{90.0}K_{90.0} (Рис.6.1.2.4.6). Прямая линия | J_{90.0}K_{90.0} | перпендикулярна плоскости П₀ (принято paнee), а прямая линия | OF_{1.0} | лежит в плос- Π_0 (принято ранее). Следовательно, кости $|J_{90,0}K_{90,0}| \perp |OF_{1,0}|$, а, следовательно, треугольник является равнобедренным, у $OJ_{90,0}K_{90,0}$ которого, $|J_{90.0}F_{1.0}| = |F_{1.0}K_{90.0}|, \text{ угол } J_{90.0}OK_{90.0} = \alpha, \text{ угол } J_{90.0}OF_{1.0} = \frac{\alpha}{2}, \text{ угол } K_{90.0}OF_{1.0} = \frac{\alpha}{2}, \text{ а угол } OF_{1.0}J_{90.0} \text{ равен }$ углу $OF_{1,0}K_{90,0}$ и равнен 90°. Следовательно, согласно **П.1.1** прямая линия $| OF_{1,0} |$ является, одновременно, высотой, биссектрисой и медианой треугольника OJ_{90.0}K_{90.0}. Таким образом, треугольник OJ_{90.0}К_{90.0} является равнобедренным, и состоит из двух прямоугольных треугольников OF_{1.0}J_{90.0} и OF_{1.0}K_{90.0}, которые равны между собой.

Рис.6.1.2.4.6.

Рассмотрим прямоугольный треугольник OF_{1.0}J_{90.0} (Рис.6.1.2.4.6), у которого известен катет | $OF_{1.0}$ | (найден ранее) и прилегающий к нему угол $F_{1.0}OJ_{90.0} = \frac{\alpha}{2}$. Согласно **П.1.2** найдем его второй катет | $F_{1.0}J_{90.0}$ |:

$$|F_{1.0}J_{90.0}| = |OF_{1.0}| \times \tan{\frac{\alpha}{2}} = \frac{R}{\cos{\frac{\alpha}{2}}} \times \tan{\frac{\alpha}{2}}, (6.1.2.4.6)$$

Так как | $J_{90.0}F_{1.0}$ | = | $F_{1.0}K_{90.0}$ | (доказано ранее), то сторона | $J_{90.0}K_{90.0}$ | треугольника О $J_{90.0}K_{90.0}$ будет равна:

$$|J_{90.0}K_{90.0}| = |F_{1.0}J_{90.0}| + |F_{1.0}K_{90.0}| = 2 \times |F_{1.0}J_{90.0}| = 2 \times \frac{R}{\cos\frac{\alpha}{2}} \times \tan\frac{\alpha}{2}, (6.1.2.4.7)$$

Рассмотрим трапецию $J_{(90-\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}$ (Рис.6.1.2.4.7). Ранее в этом параграфе была вычислена формула для прямой линии | $J_{(90-\alpha).0}K_{(90-\alpha).0}$ |, которая перпендикулярна плоскости Π_0 (принято ранее). Прямая линия | $J_{90.0}K_{90.0}$ | перпендикулярна плоскости Π_0 (принято ранее).

Рис.6.1.2.4.7.

 $|I_{(90-\alpha).0}F_{1.0}|$ лежит в плоскости Π_0 (доказано ранее). Следовательно, в соответствии со **С.1.6**

Согласно **П.1.14** найдем площадь $S_{J_{(90-\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}}$ трапеции $J_{(90-\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}$ (которая является основанием пирамиды $OJ_{(90-\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}$):

$$S_{J_{(90-\alpha),0}J_{90,0}K_{90,0}K_{(90-\alpha),0}} = \frac{\left(1 J_{(90-\alpha),0}K_{(90-\alpha),0} + 1 J_{90,0}K_{90,0}\right)}{2} \times |I_{(90-\alpha),0}F_{1,0}| = \frac{\left(\left(2 \times \frac{R \times \sin(90-\alpha)}{\cos\frac{\alpha}{2}} \times \tan\frac{\alpha}{2}\right) + \left(2 \times \frac{R}{\cos\frac{\alpha}{2}} \times \tan\frac{\alpha}{2}\right)\right)}{2} \times 2 \times R \times \tan\frac{\alpha}{2}}{\cos\frac{\alpha}{2}} + \frac{1}{\cos\frac{\alpha}{2}} \times 2 \times R \times \tan\frac{\alpha}{2}}{\cos\frac{\alpha}{2}} = 2 \times R^{2} \times \left(\frac{\sin(90-\alpha) \times \tan\frac{\alpha}{2}}{\cos\frac{\alpha}{2}} + \frac{\tan\frac{\alpha}{2}}{\cos\frac{\alpha}{2}}\right) \times \tan\frac{\alpha}{2} = 2 \times R^{2} \times \left(\frac{\sin(90-\alpha) + 1}{\cos\frac{\alpha}{2}}\right) \times \tan^{2}\frac{\alpha}{2}, (6.1.2.4.8)$$

Таким образом, чем меньше будет угол α , тем меньше площадь трапеции $J_{(90-\alpha).0}G_0H_0K_{(90-\alpha).0}$ будет отличатся от площади поверхности сферы, ограниченной дугами окружностей $\widehat{J_{90-\alpha}G}, \widehat{GH}, \widehat{HK_{90-\alpha}}$ и $K_{90-\alpha}\overline{J_{90-\alpha}}$ (Рис.6.1.2.4.5).

§6.1.2.5. Вычисление площади поверхности всей Сферы

Для того, чтобы вычислить площадь поверхности сферы (Рис.6.1.2.5.1), ограниченной дугами окружностей \widehat{DG} , \widehat{GH} , и \widehat{HD} , необходимо суммировать уравнения (6.1.2.1.7), (6.1.2.2.7) (предварительно представив его в виде суммы площадей оснований пирамид, начиная со второй и заканчивая предпоследней) и (6.1.2.4.8).

Рис.6.1.2.5.1.

На самом деле будет вычислена не площадь фрагмента сферической поверхности, а площадь фрагмента описанной (Рис.6.1.1.5.2), около сферы извне многогранной поверхности, так как вычислять площади криволинейных поверхностей мы не умеем.

Рис.6.1.2.5.2.

Умножив полученное значение на два (так как плоскость Σ_0 делит фрагмент сферической поверхности, ограниченный дугами окружностей \widehat{DGE} и \widehat{DHE} , на две равные части), получим площадь поверхности сферы, ограниченной дугами окружностей \widehat{DGE} и \widehat{DHE} (Рис.6.1.2.5.3).

Рис.6.1.2.5.3.

На самом деле будет вычислена не площадь фрагмента сферической поверхности, а площадь фрагмента описанной (Рис.6.1.2.5.4) около сферы извне многогранной поверхности, так как вычислять площади криволинейных поверхностей мы не умеем.

Рис.6.1.2.5.4.

А умножив это значение на число таких участков, укладывающихся на поверхности всей сферы, тоесть, на $\frac{360}{\alpha}$, получим (Рис.6.1.2.5.5) площадь поверхности всей сферы $S_{c\phi \cdot o}$

Рис.6.1.2.5.5.

Таким образом, площадь поверхности сферы $S_{c\varphi \cdot o}$ будет равна:

$$S_{c\phi,o} = \left(\left(2 \times R^2 \times \frac{\sin \alpha \times \tan^2 \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \right) + \frac{i = \frac{90}{\alpha} - \alpha}{2} \left(2 \times R^2 \times \left(\frac{\sin(i - \alpha) + \sin i}{\cos \frac{\alpha}{2}} \right) \times \tan^2 \frac{\alpha}{2} \right) + 2 \times R^2 \times \left(\frac{\sin(90 - \alpha) + 1}{\cos \frac{\alpha}{2}} \right) \times \tan^2 \frac{\alpha}{2} \right) \times 2 \times \frac{360}{\alpha} = 1$$

$$= \left(\left(2 \times R^{2} \times \frac{\sin \alpha}{\cos \frac{\alpha}{2}} \right) + \sum_{i=2\alpha}^{i=\frac{90}{\alpha}-\alpha} \left(2 \times R^{2} \times \left(\frac{\sin(i-\alpha) + \sin i}{\cos \frac{\alpha}{2}} \right) \right) + 2 \times R^{2} \times \left(\frac{\sin(90-\alpha) + 1}{\cos \frac{\alpha}{2}} \right) \right) \times \tan^{2} \frac{\alpha}{2} \times 2 \times \frac{360}{\alpha} = 4 \times R^{2} \times \pi_{\text{пл.пов.сф.ov}} \quad (6.1.2.5.1)$$

Где,

 $\pi_{\text{пл.пов.сф.о}}$ – коэффициент, стоящий в формуле для вычисления площади поверхности сферы.

$$\pi_{\Pi \Lambda.\Pi OB. c\phi, o} = \left(\left(\frac{\sin \alpha}{\cos \frac{\alpha}{2}} \right) + \sum_{i=2\alpha}^{i=\frac{90}{\alpha}-\alpha} \left(\frac{\sin(i-\alpha) + \sin i}{\cos \frac{\alpha}{2}} \right) + \left(\frac{\sin(90-\alpha) + 1}{\cos \frac{\alpha}{2}} \right) \right) \times \tan^2 \frac{\alpha}{2} \times \frac{360}{\alpha}, \quad (6.1.2.5.2)$$

На самом деле по формуле (6.1.2.5.1) будет вычислена не площадь поверхности сферы, а площадь описанной около сферы извне поверхности сферообразного многогранника (Рис.6.1.2.5.6), так как вычислять площади криволинейных поверхностей мы не умеем.

Рис.6.1.2.5.6.

§6.1.3. Результирующий Метод

При использовании метода вписанного многогранника в §6.1.1 была найдена формула (6.1.1.5.1) для вычисления полной площади поверхности сферы S_{сф.в}, имеющая вид:

$$S_{\text{nob.c}\phi,\text{B}} = \left(\left(\frac{R^2 \times \sin \alpha \times \tan \frac{\alpha}{2} \times \sqrt{2 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} - 2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}} \right) + \left(\frac{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2} + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2} + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2} + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} \right) + \left(\frac{1 + \sin^2 \alpha \times \tan^2 \frac$$

$$+\sum_{i=2\alpha}^{i=\frac{90}{\alpha}-\alpha} \left(R^2 \times \left(\frac{\sin(i-\alpha) \times \tan\frac{\alpha}{2}}{\sqrt{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}} + \frac{\sin i \times \tan\frac{\alpha}{2}}{\sqrt{1+\sin^2 i \times \tan^2\frac{\alpha}{2}}} \right) \times \right) \times \left(\frac{1-\frac{\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}}{\sqrt{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}} + \left(1 - \frac{\sin^2 i \times \tan^2\frac{\alpha}{2}}{1+\sin^2 i \times \tan^2\frac{\alpha}{2}}\right) - \frac{1-\frac{\sin^2 i \times \tan^2\frac{\alpha}{2}}{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}}{\sqrt{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}} \times \sqrt{1 - \frac{\sin^2 i \times \tan^2\frac{\alpha}{2}}{1+\sin^2 i \times \tan^2\frac{\alpha}{2}}} \right) + \frac{1-\frac{\sin^2 i \times \tan^2\frac{\alpha}{2}}{1+\sin^2 i \times \tan^2\frac{\alpha}{2}}}{\sqrt{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}} + \frac{1-\frac{\sin^2 i \times \tan^2\frac{\alpha}{2}}{1+\sin^2 i \times \tan^2\frac{\alpha}{2}}}{\sqrt{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}} + \frac{1-\frac{\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}{2}}{\sqrt{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}}} + \frac{1-\frac{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}}{\sqrt{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}} + \frac{1-\frac{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}}{\sqrt{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}}} + \frac{1-\frac{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}}{\sqrt{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}}} + \frac{1-\frac{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}}{\sqrt{1+\sin^2(i-\alpha) \times \tan^2\frac{\alpha}{2}}}} + \frac{1-\frac{1+\sin^2(i$$

Формула (6.1.3.1) является нижней границей для вычисления значения площади поверхности сферы.

При использовании метода описанного многогранника в §6.1.2 была найдена формула (6.1.2.5.1) для вычисления полной площади поверхности сферы $S_{\text{пов.сф.о}}$, имеющая вид:

206

$$S_{c\phi,o} = \left(\left(2 \times R^2 \times \frac{\sin \alpha}{\cos \frac{\alpha}{2}} \right) + \frac{i = \frac{90}{\alpha} - \alpha}{\sum_{i=2\alpha}} \left(2 \times R^2 \times \left(\frac{\sin(i-\alpha) + \sin i}{\cos \frac{\alpha}{2}} \right) \right) \right) + 2 \times R^2 \times \left(\frac{\sin(90-\alpha) + 1}{\cos \frac{\alpha}{2}} \right) \right) \times \tan^2 \frac{\alpha}{2} \times 2 \times \frac{360}{\alpha}, (6.1.3.2)$$

Формула (6.1.3.2) является верхней границей для вычисления значения площади поверхности сферы.

Искомая полная площадь поверхности сферы находится между вышеуказанными нижней и верхней границами. Поэтому, результирующая формула для вычисления полной площади поверхности сферы $S_{\text{пов.сф.р}}$ будет представлять среднеарифметическое от формул (6.1.3.1) и (6.1.3.2) вида:

$$S_{\text{пов.сф.р}} = \frac{S_{\text{пов.сф.в}} + S_{\text{пов.сф.o}}}{2} = \frac{1}{2} \times$$

$$\times \left(\left| \left| \left(\frac{R^2 \times \sin \alpha \times \tan \frac{\alpha}{2} \times \sqrt{2 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} - 2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \right) + \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \right) + \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} + \frac{\sin i \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} \right) \times \frac{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}{\sqrt{1 + \sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin i \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} \right) \times \frac{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{\sqrt{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} \right) \times \frac{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}}} + \frac{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \frac{1}{2}}}} + \frac{1 - \frac{1 - \frac{1}{2}}{\sqrt{1 + \frac{1}{2}}} + \frac{1 - \frac{1}{2}}{$$

$$\times \left[\left(1 - \frac{\sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}} \right) + \left(1 - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} \right) - \frac{\sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}} \right] + \left(1 - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} \right) + \frac{\sin^2(1-\alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(i-\alpha) \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 \alpha}{2} \right) + \frac{\cos^2 \alpha}{2} + \frac{\cos^2 \alpha}{2}$$

$$= R^{2} \times \frac{360}{\alpha} \times \left(\left| \left(\left(\frac{\sin \alpha \times \tan \frac{\alpha}{2} \times \sqrt{2 - \frac{\sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}} - 2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}} \right) + \frac{\sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}{\sqrt{1 + \sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}} \right) + \frac{\sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}{\sqrt{1 + \sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}} \right) \times \frac{1 + \frac{\sin^{2} \alpha}{2} \times \tan^{2} \frac{\alpha}{2}}{\sqrt{1 + \sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}} \times \sqrt{\left(1 - \frac{\sin^{2} (i - \alpha) \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} (i - \alpha) \times \tan^{2} \frac{\alpha}{2}}\right) + \left(1 - \frac{\sin^{2} i \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} (x \tan^{2} \frac{\alpha}{2})}\right) - \frac{2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^{2} (i - \alpha) \times \tan^{2} \frac{\alpha}{2}}} + \left(1 - \frac{\sin^{2} i \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} (x \tan^{2} \frac{\alpha}{2})}\right) + \frac{\sin^{2} (i - \alpha) \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} (i - \alpha) \times \tan^{2} \frac{\alpha}{2}} \times \sqrt{1 - \frac{\sin^{2} (i - \alpha) \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} (i - \alpha) \times \tan^{2} \frac{\alpha}{2}}} + \frac{\sin \frac{\alpha}{2}}{1 + \sin^{2} (x \tan^{2} \frac{\alpha}{2})} + \frac{\sin^{2} (1 - \frac{\sin^{2} (0 - \alpha) \times \tan^{2} \frac{\alpha}{2}}{\sqrt{1 + \sin^{2} (0 - \alpha) \times \tan^{2} \frac{\alpha}{2}}} + \frac{\sin^{2} \alpha}{1 + \sin^{2} (x \tan^{2} \frac{\alpha}{2})} + \frac{\sqrt{\left(1 - \frac{\sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}\right)} + \frac{\sqrt{\left(1 - \frac{\sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}\right)}} + \frac{\left(\left(\left(2 \times \frac{\sin \alpha}{\cos \frac{\alpha}{2}}\right) + \frac{\sin^{2} \frac{\sin^{2} (2 - \alpha}{\cos \frac{\alpha}{2}}\right) + \frac{\sin^{2} \frac{\sin^{2} (2 - \alpha}{\cos \frac{\alpha}{2}}\right) + \frac{\sin^{2} \frac{\cos^{2} \alpha}{\cos \frac{\alpha}{2}}}\right) + \frac{\sin^{2} \frac{\cos^{2} \alpha}{\cos \frac{\alpha}{2}} + \frac{\sin^{2} \frac{\cos^{2} \alpha}{1 + \sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}}{1 + \sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}}\right) + \frac{\sin^{2} \frac{\cos^{2} \alpha}{\cos \frac{\alpha}{2}}} + \frac{\sin^{2} \frac{\cos^{2} \alpha}{1 + \sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}}{1 + \sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}} + \frac{\sin^{2} \frac{\cos^{2} \alpha}{2}} + \frac{\sin^{2} \frac{\cos^{2} \alpha}{\cos \frac{\alpha}{2}}} + \frac{\sin^{2} \frac{\cos^{2} \alpha}{1 + \sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}}{\cos \frac{\alpha}{2}}} + \frac{\sin^{2} \frac{\cos^{2} \alpha}{\cos \frac{\alpha}{2}}} + \frac{\sin^{2} \frac{\cos^{2} \alpha}{1 + \sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}}{\cos \frac{\alpha}{2}}} + \frac{\sin^{2} \frac{\cos^{2} \alpha}{1 + \sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}}{\cos \frac{\alpha}{2}}} + \frac{\sin^{2} \frac{\cos^{2} \alpha}{1 + \sin^{2} (90 - \alpha) \times \tan^{2} \frac{\alpha}{2}}}{\cos \frac{\alpha}{2}}} + \frac{\sin^{2} \frac{\cos^{2} \alpha}{1 + \sin^{2} \frac{\cos^{2} \alpha}{1 + \sin^{2} \frac{\alpha}{2}}}}{\cos \frac{\alpha}{2}}} + \frac{\sin^{2} \frac{\cos^{2} \alpha}{1 + \sin^{2} \frac{\alpha}{2}}}{\cos \frac{$$

+ 2 ×
$$\left(\frac{\sin(90-\alpha)+1}{\cos\frac{\alpha}{2}}\right)$$
 × $\tan^2\frac{\alpha}{2}$ = 4 × R^2 × $\pi_{\text{пл.пов.сф.р'}}$ (6.1.3.3)

Где,

π_{пл.пов.сф.р} – коэффициент, стоящий в формуле для вычисления площади поверхности сферы.

$$\pi_{\Pi \pi.\Pi OB.c\phi.p} = \frac{90}{\alpha} \times$$

$$\times \left(\left(\left(\left(\frac{\sin \alpha \times \tan \frac{\alpha}{2} \times \sqrt{2 + \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}} - 2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \right) + \frac{\sin \alpha \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \right) + \frac{\sin \alpha \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin \alpha \times \tan \frac{\alpha}{2}}{\sqrt{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \right) \times \frac{\sqrt{\left(1 - \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}\right) + \left(1 - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}\right) - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} - 2 \times \cos \alpha \times \sqrt{1 - \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{\sqrt{1 - \frac{\sin^2 (i - \alpha) \times \tan^2 \frac{\alpha}{2}}{2}}} \times \sqrt{1 - \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac{\sin^2 i \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 i \times \tan^2 \frac{\alpha}{2}}} + \frac$$

$$+ \left(\frac{\sin(90-\alpha) \times \tan\frac{\alpha}{2}}{\sqrt{1+\sin^2(90-\alpha) \times \tan^2\frac{\alpha}{2}}} + \sin\frac{\alpha}{2}\right) \times \\\times \sqrt{\left(1 - \frac{\sin^2(90-\alpha) \times \tan^2\frac{\alpha}{2}}{1+\sin^2(90-\alpha) \times \tan^2\frac{\alpha}{2}}\right) + \cos^2\frac{\alpha}{2}} - \\\frac{-2 \times \cos\alpha \times \cos\frac{\alpha}{2} \times \sqrt{1 - \frac{\sin^2(90-\alpha) \times \tan^2\frac{\alpha}{2}}{1+\sin^2(90-\alpha) \times \tan^2\frac{\alpha}{2}}}}\right)} + \\+ \left(\left(\left(2 \times \frac{\sin\alpha}{\cos\frac{\alpha}{2}}\right) + \sum_{i=2\alpha}^{i=\frac{90-\alpha}{\alpha}} \left(2 \times \left(\frac{\sin(i-\alpha) + \sin i}{\cos\frac{\alpha}{2}}\right)\right) + \right) + \\+ 2 \times \left(\frac{\sin(90-\alpha) + 1}{\cos\frac{\alpha}{2}}\right)\right) \times \tan^2\frac{\alpha}{2}}\right)\right), (6.1.3.4)$$

По формуле (6.1.3.3) вычисляется, на самом деле, не площадь поверхности некоей среднеарифметической сферы (Рис.6.1.3.1), а площадь некоего среднеарифметического сферообразного многогранника (Рис.6.1.3.2), так как точно вычислять площади криволинейных поверхностей (каковой, в частности, является поверхность сферы), мы не умеем.

Рис.6.1.3.1.

Рис.6.1.3.2.

Вычисленная по формуле (6.1.3.3) площадь поверхности ближе по величине к площади поверхности сферы, по сравнению с площадями поверхности сферы, вычисленными по формулам, (6.1.3.1) по методу вписанного многогранника, и (6.1.3.2) по методу описанного многогранника.

§6.2. Вычисление объема Шара §6.2.1.Метод вписанного многогранника §6.2.1.1. Вычисление объема первой пирамиды

На Рис.6.2.1.1.1 показана пирамида ODJ_1K_1 с основанием в виде треугольника DJ_1K_1 и вершиной в точке O (построенная в §6.1.1.1). Опустим из точки O перпендикуляр $|OS_1|$ на плоскость треугольника DJ_1K_1 (на основание пирамиды).

Рис.6.2.1.1.1.

Так как $|J_1K_1|$ перпендикулярна плоскости Π_0 (доказано ранее в §6.1.1.1), то в соответствии с **П.1.5** плоскость треугольника DJ₁K₁ перпендикулярна плоскости Π_0 . Так как точка О лежит в плоскости Π_0 (начальное условие), то в соответствии со **С.1.5** перпендикуляр $|OS_1|$ будет лежать в плоскости Π_0 . Но точка S₁, одновременно, должна лежать и в плоскости Π_0 и в плоскости треугольника DJ₁K₁, тоесть, на прямой $|DQ_1|$, являющейся линией пересечения этих плоскостей.

Рассмотрим треугольник ODQ₁ (Рис.6.2.1.1.2), у которого известны две стороны, |OD| = R (начальное условие) и $|OQ_1|$ (найдена ранее в §6.1.1.1), и угол между ними

 $DOQ_1 = \alpha$ (так как угол DOQ₁ равен углу $DOI_1 = \alpha$, в силу того, что | OQ_1 | лежит на радиусе | OI_1 |).

Рис.6.2.1.1.2.

Опустим из точки Q_1 перпендикуляр | Q_1T_1 | на сторону | OD |. | Q_1T_1 | согласно **П.1.2** будет равна:

$$|Q_1T_1| = |OQ_1| \times \sin \alpha =$$

$$= \left(R \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \right) \times$$

$$\times \sin \alpha, (6.2.1.1.1)$$

Площадь треугольника ODQ₁ (Рис. 6.2.1.1.2), у которого ранее найдена высота $|Q_1T_1|$ и известна сторона |OD| = R (начальное условие), согласно **П.1.3** равна:

$$S_{ODQ_{1}} = \frac{1}{2} \times |OD| \times |Q_{1}T_{1}| =$$

= $\frac{1}{2} \times R \times \left(R \times \sqrt{1 - \frac{\sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}\alpha \times \tan^{2}\frac{\alpha}{2}}} \right) \times$
× $\sin \alpha =$
$$=\frac{1}{2} \times R^{2} \times \sqrt{1 - \frac{\sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}{1 + \sin^{2} \alpha \times \tan^{2} \frac{\alpha}{2}}} \times \sin \alpha , (6.2.1.1.2)$$

 $|DQ_1|$ (найдена ранее в §6.1.1.1) лежит в плоскости треугольника DJ₁K₁ (так как $|DQ_1|$ является высотой треугольника DJ₁K₁, и которая перпендикулярна плоскости П₀ (доказано ранее в §6.1.1.1)). $|OS_1|$ лежит в плоскости П₀, следовательно, в соответствии со **С.1.6** $|OS_1| \perp |DQ_1|$. С другой стороны площадь треугольника ODQ₁ согласно **П.1.3** равна:

$$S_{ODQ_1} = \frac{1}{2} \times |DQ_1| \times |OS_1|, (6.2.1.1.3)$$

Откуда определим величину перпендикуляра | OS_1 |:

Ранее в §6.1.1.1 была найдена площадь основания пирамиды $S_{DJ_1K_1}$. Объем пирамиды ODJ₁K₁ (Рис.6.2.1.1.1) соглано **П.1.13** будет равен:

Таким образом, чем меньше будет угол α , тем меньше объем пирамиды ODJ₁K₁ с основанием в виде треугольника DJ₁K₁ будет отличатся от объема шарового сектора ODJ₁K₁ с основанием в виде участка поверхности сферы, ограниченного дугами $\widehat{DJ_1}, J_1\widehat{K_1}$ и $\widehat{K_1D}$.

§6.2.1.2. Вычисление объема второй пирамиды

На Рис.6.2.1.2.1 показана пирамида $OJ_1J_2K_2K_1$ с основанием в виде трапеции $J_1J_2K_2K_1$ и вершиной в точке О (построенная в §6.1.1.2).

Рис.6.2.1.2.1.

Опустим из вершины точки О перпендикуляр | OS_2 | на основание пирамиды $J_1J_2K_2K_1$. Так как | J_2K_2 | перпендикулярна плоскости Π_0 (доказано ранее в §6.1.1.2), то в соответсвии с **П.1.5** плоскость основания пирамиды $J_1J_2K_2K_1$ перпендикулярна плоскости Π_0 . Но точка О лежит в плос-

кости Π_0 (начальное условие), следовательно, в соответствии со **С.1.5** перпендикуляр | OS_2 | будет лежать в плоскости Π_0 . Но точка S_2 , одновременно, должна лежать и в плоскости Π_0 и в плоскости основания пирамиды $J_1J_2K_2K_1$, тоесть, на прямой | Q_1Q_2 |, являющейся линией пересечения этих плоскостей.

Рассмотрим треугольник OQ₁Q₂ (Рис.6.2.1.2.2), у которого известны стороны, $|OQ_1|$ (найдена ранее в §6.1.1.1) и $|OQ_2|$ (найдена ранее в §6.1.1.2), и угол $Q_1OQ_2 = \alpha$ (доказано ранее). Опустим из точки Q₂ перпендикуляр $|Q_2T_2|$

Рис.6.2.1.2.2.

на сторону | OQ_1 |. Согласно **П.1.2** | Q_2T_2 | будет равна:

 $|Q_2T_2| = |OQ_2| \times \sin \alpha =$ $= \left(R \times \sqrt{1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}}\right) \times \sin \alpha , (6.2.1.2.1)$

Площадь треугольника OQ_1Q_2 (Рис.6.2.1.2.2), у которого известны | OQ_1 | (найдена ранее в §6.1.1.1) и высота | Q_2T_2 | (найдена ранее в этом параграфе), согласно **П.1.3** будет равна:

$$S_{OQ_1Q_2} = \frac{1}{2} \times |OQ_1| \times |Q_2T_2| =$$

$$= \frac{1}{2} \times \left(R \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \right) \times$$

$$\times \left(R \times \sqrt{1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}} \times \sin \alpha \right) =$$

$$= \frac{1}{2} \times R^2 \times \sin \alpha \times \sqrt{1 - \frac{\sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 \alpha \times \tan^2 \frac{\alpha}{2}}} \times$$

$$\times \sqrt{1 - \frac{\sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2 2\alpha \times \tan^2 \frac{\alpha}{2}}}, (6.2.1.2.2)$$

Точки Q₁ и Q₂ лежат в плоскости основания пирамиды J₁J₂K₂K₁, следовательно, в соответсвии с **П.1.4** и | Q_1Q_2 | (найдена ранее в §6.1.1.2) лежит в плоскости основания пирамиды J₁J₂K₂K₁. | OS_2 | перпендикулярна плоскости основания пирамиды J₁J₂K₂K₁ (принято ранее), следовательно, в соответсвиии со **С.1.6** | OS_2 | \bot | Q_1Q_2 |. С другой стороны площадь треугольника OQ₁Q₂ равна:

$$S_{0Q_1Q_2} = \frac{1}{2} \times |Q_1Q_2| \times |OS_2|, (6.2.1.2.3)$$

Откуда определим величину перпендикуляра | *OS*₂ |:

Ранее в §6.1.1.2 была найдена площадь основания пирамиды $S_{J_1J_2K_2K_1}$. Объем пирамиды $OJ_1J_2K_2K_1$ (Рис.6.2.1.2.1) согласно **П.1.13** будет равен:

226

Ш

×

Таким образом, чем меньше будет угол α , тем меньше объем пирамиды $OJ_1J_2K_2K_1$ с основанием в виде трапеции $J_1J_2K_2K_1$ будет отличатся от объема шарового сектора $OJ_1J_2K_2K_1$ с основанием в виде участка поверхности сферы, ограниченного дугами $\widehat{J_1J_2}, \widehat{J_1K_1}, \widehat{K_2K_1}$ и $\widehat{K_1J_1}$.

§6.2.1.3. Вычисление объема третьей пирамиды

На Рис.6.2.1.3.1 показана пирамида $OJ_2J_3K_3K_2$ с основанием в виде трапеции $J_2J_3K_3K_2$ и вершиной в точке О

(построенная в §6.1.1.3). Опустим из вершины точки О перпендикуляр | OS_3 | на основание пирамиды $J_2J_3K_3K_2$. Так как | J_3K_3 | перпендикулярна плоскости Π_0 (доказано ранее в §6.1.1.3), то в соответсвии с **П.1.5** плоскость основания пирамиды $J_2J_3K_3K_2$ перпендикулярна плоскости Π_0 . Но точка О лежит в плоскости Π_0 (начальное условие), следовательно, в соответсвии со **С.1.5** перпендикуляр | OS_3 | будет лежать в плоскости Π_0 . Но точка S_3 , одновременно, должна лежать и в плоскости Π_0 и в плоскости основания пирамиды $J_2J_3K_3K_2$, тоесть, на прямой | Q_2Q_3 |, являющейся линией пересечения этих плосостей.

Рассмотрим треугольник OQ₂Q₃ (Рис.6.2.1.3.2), у которого известны стороны | OQ_2 | (найдена ранее в §6.1.1.2) и | OQ_3 | (найдена ранее в §6.1.1.3), и угол $Q_2OQ_3 = \alpha$ (доказано ранее в §6.1.1.3).

Рис.6.2.1.3.2.

Опустим из точки Q_3 перпендикуляр | Q_3T_3 | на сторону | OQ_2 |. | Q_3T_3 | согласно **П.1.2** будет равна:

$$|Q_{3}T_{3}| = |OQ_{3}| \times \sin \alpha =$$

$$= R \times \sqrt{1 - \frac{\sin^{2}3\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}3\alpha \times \tan^{2}\frac{\alpha}{2}}} \times \sin \alpha , (6.2.1.3.1)$$

Площадь треугольника OQ_2Q_3 (Рис.6.2.1.3.2), у которого известны сторона | OQ_2 | (найдена ранее в §6.1.1.2) и высота | Q_3T_3 | (найдена ранее в данном параграфе), согласно **П.1.3** будет равна:

$$S_{0Q_{2}Q_{3}} = \frac{1}{2} \times |0Q_{2}| \times |Q_{3}T_{3}| =$$

$$= \frac{1}{2} \times \left(R \times \sqrt{1 - \frac{\sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}} \right) \times$$

$$\times \left(R \times \sqrt{1 - \frac{\sin^{2}3\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}3\alpha \times \tan^{2}\frac{\alpha}{2}}} \times \sin \alpha \right) =$$

$$= \frac{1}{2} \times R^{2} \times \sqrt{1 - \frac{\sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}2\alpha \times \tan^{2}\frac{\alpha}{2}}} \times$$

$$\times \sqrt{1 - \frac{\sin^{2}3\alpha \times \tan^{2}\frac{\alpha}{2}}{1 + \sin^{2}3\alpha \times \tan^{2}\frac{\alpha}{2}}} \times \sin \alpha , (6.2.1.3.2)$$

Точки Q₂ и Q₃ лежат в плоскости основания пирамиды J₂J₃K₃K₂, следовательно, в соответсвии с **П.1.4** и | Q_2Q_3 | (найдена ранее в §6.1.1.3) лежит в плоскости основания пирамиды J₂J₃K₃K₂. | OS_3 | перпендикулярна плоскости основания пирамиды J₂J₃K₃K₂ (принято ранее), следовательно, в соответсвиии со **С.1.6** | OS_3 | \bot | Q_2Q_3 |. С другой стороны площадь треугольника OQ₂Q₃ равна:

$$S_{OQ_2Q_3} = \frac{1}{2} \times |Q_2Q_3| \times |OS_3|, (6.2.1.3.3)$$

Откуда определим величину перпендикуляра | OS_3 |:

Объем пирамиды $OJ_2J_3K_3K_3$ (Рис.6.2.1.3.1), у которой известны площадь основания $S_{J_2J_3K_3K_2}$ (найдена ранее в §6.1.1.3) и высота | OS_3 | (найдена ранее в этом параграфе), согласно **П.1.3** будет равен:

Таким образом, чем меньше будет угол α , тем меньше объем пирамиды $OJ_2J_3K_3K_2$ с основанием в виде трапеции $J_2J_3K_3K_2$ будет отличаться от объема шарового сектора $OJ_2J_3K_3K_2$ с основанием в виде участка поверхности сферы, ограниченного дугами $\widehat{J_2J_3}, \widehat{J_3K_3}, \widehat{K_3K_2}$ и $\widehat{K_2J_2}$.

§6.2.1.4. Вычисление объема последней пирамиды

Как видно из уравнений (6.2.1.2.5) и (6.2.1.3.5), они отличаются только значением коэффициента перед углом α.

Уравнения (6.2.1.2.5) и (6.2.1.3.5) можно записать в виде:

Подставив в уравнение (6.2.1.4.1) вместо і значение, равное 2α или 3α , а вместо ј значение, равное 2 или 3, получим уравнения (6.2.1.2.5) и (6.2.1.3.5).

Все последующие пирамиды при изменении угла DOI_i от $DOI_3 = 3\alpha$ до $DOI_{90-\alpha} = (90 - \alpha)$ будут иметь в основании трапецию, а объем пирамиды будет вычисляться по формуле (6.2.1.4.1). При этом, вместо і нужно будет подставить текущее значение угла DOI_i, а вместо ј поставить текущее значение индекса.

На Рис.6.2.1.4.1 показана пирамида $OJ_{90-\alpha}GHK_{90-\alpha}$ с основанием в виде трапеции $J_{90-\alpha}GHK_{90-\alpha}$ и вершиной в точке О (построенная в §6.1.1.4). Опустим из вершины пирамиды точки О перпендикуляр | OS_{90} | на ее основание $J_{90-\alpha}GHK_{90-\alpha}$. | GH | и | $J_{90-\alpha}K_{90-\alpha}$ | лежат в плоскости основания $J_{90-\alpha}GHK_{90-\alpha}$ (принято ранее в §6.1.1.4), и каждая из них перпендикулярна плоскости Π_0 (доказано ранее в §6.1.1.4).

Рис.6.2.1.4.1.

Следовательно, в соответствии с **П.1.5** плоскость основания пирамиды $J_{90-\alpha}GHK_{90-\alpha}$ будет перпендикулярна плоскости Π_0 . Точка О лежит в плоскости Π_0 (начальное условие), которая перпендикулярна плоскости основания $J_{90-\alpha}GHK_{90-\alpha}$ (доказано ранее в §6.1.1.4), следовательно, в соответствии со **С.1.5** перпендикуляр | OS_{90} | будет лежать в плоскости Π_0 . Точка S_{90} должна, одновременно, лежать и в плоскости Π_0 и в плоскости основания $J_{90-\alpha}GHK_{90-\alpha}$, тоесть, на стороне | $Q_{90}Q_{90-\alpha}$ |, являющейся линией пересечения этих плоскостей.

Рассмотрим треугольник $OQ_{90}Q_{90-\alpha}$ (Рис.6.2.1.4.2), у которого известны стороны | $Q_{90}Q_{90-\alpha}$ | и | OQ_{90} | (найдены

Рис.6.2.1.4.2.

ранее в §6.1.1.4), и угол между ними $Q_{90-\alpha}OQ_{90} = \alpha$ (доказано ранее в §6.1.1.4). Опустим из точки Q_{90} перпендикуляр | $Q_{90}T_{90}$ | на сторону | $OQ_{90-\alpha}$ |. | $Q_{90}T_{90}$ | согласно **П.1.2** будет равна:

$$|Q_{90}T_{90}| = |OQ_{90}| \times \sin \alpha = R \times \cos \frac{\alpha}{2} \times \sin \alpha$$
, (6.2.1.4.2)

Площадь треугольника $OQ_{90}Q_{90-\alpha}$, у которого известна сторона | $OQ_{90-\alpha}$ | (найдена ранее в §6.1.1.4) и высота | $Q_{90}T_{90}$ | (найдена ранее в этом параграфе) согласно **П.1.3** будет равна:

$$S_{OQ_{90}Q_{90-\alpha}} = \frac{1}{2} \times |OQ_{90-\alpha}| \times |Q_{90}T_{90}| =$$

$$= \frac{1}{2} \times \left(R \times \sqrt{1 - \frac{\sin^2(90-\alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90-\alpha) \times \tan^2 \frac{\alpha}{2}}} \right) \times$$

$$\times \left(R \times \cos \frac{\alpha}{2} \times \sin \alpha \right) =$$

$$= \frac{1}{2} \times R^2 \times \cos \frac{\alpha}{2} \times \sin \alpha \times$$

$$\times \sqrt{1 - \frac{\sin^2(90-\alpha) \times \tan^2 \frac{\alpha}{2}}{1 + \sin^2(90-\alpha) \times \tan^2 \frac{\alpha}{2}}}, (6.2.1.4.3)$$

Q_{90-α} и Q₉₀ лежат, соответственно, Точки на $|J_{90-\alpha}K_{90-\alpha}|$ и |GH|, каждая из которых лежит в плоскости основания J90-аGHK90-а, следовательно, и точки Q90-а и Q₉₀ будут лежать в плоскости основания J_{90-а}GHK_{90-а}, а, следовательно, в соответствии с **П.1.4** и | $Q_{90}Q_{90-\alpha}$ | будет лежать в плоскости основания J_{90-a}GHK_{90-a}. | OS₉₀ | перпендикулярна плоскости основания J_{90-а}GHK_{90-а} (принято следовательно, соответствии ранее), В co C.1.6 $|OS_{90}|\perp |Q_{90}Q_{90-\alpha}|$. С другой стороны площадь треугольника OQ₉₀Q_{90-α} равна:

$$S_{OQ_{90}Q_{90-\alpha}} = \frac{1}{2} \times |Q_{90}Q_{90-\alpha}| \times |OS_{90}|, (6.2.1.4.4)$$

Откуда найдем значение высоты пирамиды | OS_{90} |:

Объем пирамиды $OJ_{90-\alpha}GHK_{90-\alpha}$, у которой известны площадь основания $S_{J_{90-\alpha}GHK_{90-\alpha}}$ (найдена ранее в §6.1.1.4) и высота | OS_{90} | (найдены ранее в этом параграфе), согласно **П.1.13** будет равен:

$$\int_{0}^{0} O_{J_{90-\alpha}GHK_{90-\alpha}} = \frac{1}{3} \times S_{J_{90-\alpha}GHK_{90-\alpha}} \times | 0S_{90} | =$$

Таким образом, чем меньше будет угол α , тем меньше объем пирамиды $OJ_{90-\alpha}GHK_{90-\alpha}$ с основанием в виде трапеции $J_{90-\alpha}GHK_{90-\alpha}$ будет отличатся от объема шарового сектора $OJ_{90-\alpha}GHK_{90-\alpha}$ с основанием в виде участка поверхности сферы, ограниченного дугами $J_{90-\alpha}G$, \widehat{GH} , $H\widehat{K_{90-\alpha}}$ и $K_{90-\alpha}\overline{J_{90-\alpha}}$.

§6.2.1.5. Вычисление объема всего Шара

Для определения объема фрагмента шара, представляющего из себя сектор шара с вершиной в точке О и основанием в виде участка поверхности сферы, ограниченного дугами окружностей \widehat{DG} , \widehat{GH} , и \widehat{HD} (Рис.6.2.1.5.1)., необходимо суммировать уравнения (6.2.1.1.5), (6.2.1.2.5) (предварительно представив его в виде суммы объемов пирамид, начиная со второй и заканчивая предпоследней) и (6.2.1.4.5).

Рис.6.2.1.5.1.

На самом деле будет вычислен не объем фрагмента шара, а объем фрагмента вписанного в шар изнутри сферообразного многогранника (Рис.6.2.1.5.2), так как вычислять объемы тел, ограниченных криволинейными поверхностями, мы не умеем.

Рис.6.2.1.5.2.

Умножив полученное значение на два (так как плоскость Σ_0 делит фрагмент шара, ограниченный дугами окружностей \widehat{DGE} и \widehat{DHE} (Рис.6.2.1.5.3), на две равные части), получим объем фрагмента шара, ограниченного дугами окружностей \widehat{DGE} и \widehat{DHE} и диаметром | DE |.

Рис.6.2.1.5.3.

На самом деле будет вычислен не объем фрагмента шара, а объем фрагмента вписанного в шар изнутри сферообразного многогранника (Рис.6.2.1.5.4), так как вычислять объемы тел, ограниченных криволинейными поверхностями, мы не умеем.

Рис.6.2.1.5.4.

А умножив это значение на число таких фрагментов, укладывающихся на теле шара, тоесть, на $\frac{360}{\alpha}$, получим полный объем шара V_{об.ш.в} (Рис.6.2.1.5.5):

Где,

Рис.6.2.1.5.5.

По формуле (6.2.1.5.1) вычисляется, на самом деле, не объем шара (Рис.6.2.1.5.5), а объем вписанного в шар изнутри сферообразного многогранника (Рис.6.2.1.5.6), так как вычислять объемы тел, ограниченных криволинейными поверхностями, мы не умеем.

Рис.6.2.1.5.6.

§6.2.2.Метод описанного многогранника §6.2.2.1. Вычисление объема первой пирамиды

На Рис.6.2.2.1.1 показана пирамида $OD_0J_{1.0}K_{1.0}$ с основанием в виде треугольника $D_0J_{1.0}K_{1.0}$ и вершиной в точке О (построенная в §6.1.2.1).

Рис.6.2.2.1.1.

Ранее в §6.1.2.1 были найдены площадь основания $S_{D_0J_{1.0}K_{1.0}}$ и высота | $OI_{0.1}$ | = R (начальное условие) пирамиды $OD_0J_{1.0}K_{1.0}$. Объем пирамиды $OD_0J_{1.0}K_{1.0}$ согласно **П.1.13** будет равен:

$$V_{OD_0J_{1.0}K_{1.0}} = \frac{1}{3} \times S_{D_0J_{1.0}K_{1.0}} \times |OI_{0.1}| =$$

= $\frac{1}{3} \times \left(2 \times R^2 \times \frac{\sin \alpha \times \tan^2 \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \right) \times R =$
= $\frac{2}{3} \times R^3 \times \frac{\sin \alpha \times \tan^2 \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}, (6.2.2.1.1)$

Таким образом, чем меньше будет угол α , тем меньше объем пирамиды $OD_0J_{1.0}K_{1.0}$ с основанием в виде треугольника $D_0J_{1.0}K_{1.0}$ будет отличатся от объема шарового сектора с основанием в виде участка поверхности сферы (Рис.6.1.2.1.6), ограниченного дугами окружностей $\widehat{DJ_1}$, $J_1\widehat{K_1}$ и $\widehat{K_1D}$

§6.2.2.2. Вычисление объема второй пирамиды

На Рис.6.2.2.2.1 показана пирамида $OJ_{1.0}J_{2.0}K_{2.0}K_{1.0}$ с основанием в виде трапеции $J_{1.0}J_{2.0}K_{2.0}K_{1.0}$ и вершиной в точке O (построенная в §6.1.2.2).

Рис.6.2.2.2.1.

Ранее в §6.1.2.2 были найдены площадь основания $S_{J_{1.0}J_{2.0}K_{2.0}K_{1.0}}$ и высота | $OI_{0.2}$ | = R (начальное условие) пирамиды $OJ_{1.0}J_{2.0}K_{2.0}K_{1.0}$. Объем пирамиды $OJ_{1.0}J_{2.0}K_{2.0}K_{1.0}$ соглано **П.1.13** будет равен:

$$V_{J_{1.0}J_{2.0}K_{2.0}K_{1.0}} = \frac{1}{3} \times S_{J_{1.0}J_{2.0}K_{2.0}K_{1.0}} \times |OI_{0.2}| =$$

$$= \frac{1}{3} \times \left(2 \times R^2 \times \left(\frac{\sin \alpha + \sin 2\alpha}{\cos \frac{\alpha}{2}}\right) \times \tan^2 \frac{\alpha}{2}\right) \times$$

$$\times R =$$

$$= \frac{2}{3} \times R^3 \times \left(\frac{\sin \alpha + \sin 2\alpha}{\cos \frac{\alpha}{2}}\right) \times$$

$$\times \tan^2 \frac{\alpha}{2}, \quad (6.2.2.2.1)$$

Таким образом, чем меньше будет угол α , тем меньше объем пирамиды $OJ_{1.0}J_{2.0}K_{2.0}K_{1.0}$ с основанием в виде трапеции $J_{10}J_{2.0}K_{2.0}K_{1.0}$ будет отличатся от объема шарового сектора с основанием в виде участка поверхности сферы (Рис.6.1.2.2.5), ограниченного дугами окружностей $\widehat{J_{1}J_{2}}$, $\widehat{J_{2}K_{2}}$, $\widehat{K_{2}K_{1}}$ и $\widehat{K_{1}J_{1}}$.

§6.2.2.3. Вычисление объема третьей пирамиды

На Рис.6.2.2.3.1 показана пирамида $OJ_{2.0}J_{3.0}K_{3.0}K_{2.0}$ с основанием в виде трапеции $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$ и вершиной в точке O (построенная в §6.1.2.3).

Ранее в §6.1.2.3 были найдены площадь основания $S_{J_{2.0}J_{3.0}K_{3.0}K_{2.0}}$ и высота | $OI_{0.3}$ | = R (начальное условие) пирамиды $OJ_{2.0}J_{3.0}K_{3.0}K_{2.0}$. Объем пирамиды $OJ_{2.0}J_{3.0}K_{3.0}K_{2.0}$ соглано **П.1.13** будет равен:

$$V_{J_{2.0}J_{3.0}K_{3.0}K_{2.0}} = \frac{1}{3} \times S_{J_{2.0}J_{3.0}K_{3.0}K_{2.0}} \times |OI_{0.3}| =$$

$$= \frac{1}{3} \times \left(2 \times R^2 \times \left(\frac{\sin 2\alpha + \sin 3\alpha}{\cos \frac{\alpha}{2}}\right) \times \tan^2 \frac{\alpha}{2}\right) \times$$

$$\times R =$$

$$= \frac{2}{3} \times R^3 \times \left(\frac{\sin 2\alpha + \sin 3\alpha}{\cos \frac{\alpha}{2}}\right) \times \tan^2 \frac{\alpha}{2}, (6.2.2.3.1)$$

Таким образом, чем меньше будет угол α , тем меньше объем пирамиды $OJ_{2.0}J_{3.0}K_{3.0}K_{2.0}$ с основанием в виде трапеции $J_{2.0}J_{3.0}K_{3.0}K_{2.0}$ будет отличатся от объема шарового сектора с основанием в виде участка поверхности сферы (Рис.6.1.2.3.5), ограниченного дугами окружностей $\widehat{J_{2}J_{3}}$, $\widehat{J_{3}K_{3}}, \widehat{K_{3}K_{2}}$ и $\widehat{K_{2}J_{2}}$.

§6.2.2.4. Вычисление объема последней пирамиды

Как видно из уравнений (6.2.2.2.1) и (6.2.2.3.1), они отличаются только значением коэффициента перед углом α.

Уравнения (6.2.2.2.1) и (6.2.2.3.1) можно записать в виде:

$$V_{OJ_{j-1}J_{j}K_{j}K_{j-1}} = \frac{2}{3} \times R^{3} \times \left(\frac{\sin(i-\alpha) + \sin i}{\cos\frac{\alpha}{2}}\right) \times \tan^{2}\frac{\alpha}{2}, (6.2.2.4.1)$$

Подставив в уравнение (6.2.2.4.1) вместо і значение, равное 2α или 3α , а вместо ј значение, равное 2 или 3, получим уравнения (6.2.2.2.1) и (6.2.2.3.1).

Все последующие пирамиды при изменении угла DOI_i от $DOI_3 = 3\alpha$ до $DOI_{90-\alpha} = (90 - \alpha)$ будут иметь в основании трапецию, и ее объем пирамиды будет вычисляться по формуле (6.2.2.4.1). При этом, вместо і нужно будет подставить текущее значение угла DOI_i, а вместо ј поставить текущее значение индекса.

Объем последней пирамиды $OJ_{(90-\alpha).0}G_0H_0K_{(90-\alpha).0}$ будет вычислен по своей формуле. На Рис.6.2.2.4.1 показана

Рис.6.2.2.4.1.

пирамида $OJ_{(90-\alpha).0}G_0H_0K_{(90-\alpha).0}$ с основанием в виде трапеции $J_{(90-\alpha).0}G_0H_0K_{(90-\alpha).0}$ и вершиной в точке O (построенная в §6.1.2.4).

Ранее в §6.1.2.4 были найдены площадь основания $S_{J_{(90-\alpha).0}J_{90.0}K_{90-\alpha).0}}$ и высота | $OF_{0.1}$ | = R (начальное условие) пирамиды $OJ_{(90-\alpha).0}G_0H_0K_{(90-\alpha).0}$. Объем пирамиды $OJ_{(90-\alpha).0}G_0H_0K_{(90-\alpha).0}$ соглано **П.1.13** будет равен:

$$V_{J_{(90-\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}} = \frac{1}{3} \times S_{J_{(90-\alpha).0}J_{90.0}K_{90.0}K_{(90-\alpha).0}} \times |OF_{0.1}| =$$

$$= \frac{1}{3} \times \left(2 \times R^2 \times \left(\frac{\sin(90-\alpha)+1}{\cos\frac{\alpha}{2}}\right) \times \tan^2\frac{\alpha}{2}\right) \times R =$$

$$= \frac{2}{3} \times R^3 \times \left(\frac{\sin(90-\alpha)+1}{\cos\frac{\alpha}{2}}\right) \times \tan^2\frac{\alpha}{2}, \quad (6.2.2.4.2)$$

Таким образом, чем меньше будет угол α , тем меньше объем пирамиды $OJ_{(90-\alpha).0}G_0H_0K_{(90-\alpha).0}$ с основанием в виде трапеции $J_{(90-\alpha).0}G_0H_0K_{(90-\alpha).0}$ будет отличатся от объема шарового сектора с основанием в виде участка поверхности сферы (Рис.6.1.2.4.5), ограниченного дугами окружностей $J_{90-\alpha}G, \widehat{GH}, \widehat{HK_{90-\alpha}} \bowtie K_{90-\alpha}\overline{J_{90-\alpha}}.$

§6.2.2.5. Вычисление объема всего Шара

Для определения объема фрагмента шара, представляющего из себя сектор шара с вершиной в точке О и основанием в виде участка поверхности сферы, ограниченного дугами окружностей \widehat{DG} , \widehat{GH} , и \widehat{HD} (Рис.6.2.2.5.1), необходимо суммировать уравнения (6.2.2.1.1), (6.2.2.2.1) (предварительно представив его в виде суммы объемов пирамид, начиная со второй и заканчивая предпоследней) и (6.2.2.4.2).

Рис.6.2.2.5.1.

На самом деле будет вычислен не объем фрагмента шара, а объем фрагмента описанного около шара извне сферообразного многогранника (Рис.6.2.2.5.2), так как вычислять объемы тел, ограниченных криволинейными поверхностями, мы не умеем.

Рис.6.2.2.5.2.

Умножив полученное значение на два (так как плоскость Σ_0 делит фрагмент шара, ограниченный дугами окружностей \widehat{DGE} и \widehat{DHE} (Рис.6.2.2.5.3), на две равные части), получим объем фрагмента шара, ограниченного дугами окружностей \widehat{DGE} и \widehat{DHE} и диаметром | DE |.

Рис.6.2.2.5.3.

На самом деле будет вычислен не объем фрагмента шара, а объем фрагмента описанного около шара извне сферообразного многогранника (Рис.6.2.2.5.4), так как вычислять объемы тел, ограниченных криволинейными поверхностями, мы не умеем.

Рис.6.2.2.5.4.

А умножив это значение на число таких фрагментов, укладывающихся на теле шара, тоесть, на $\frac{360}{\alpha}$, получим полный объем шара V_{об-ш.0} (Рис.6.2.2.5.5):

$$V_{\text{o6.III.0}} = \left(\frac{2}{3} \times R^3 \times \frac{\sin \alpha \times \tan^2 \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} + \frac{i = \frac{90}{\alpha} - \alpha}{2} \left(\frac{2}{3} \times R^3 \times \left(\frac{\sin(i - \alpha) + \sin i}{\cos \frac{\alpha}{2}}\right) \times \tan^2 \frac{\alpha}{2}\right) + \frac{2}{3} \times R^3 \times \left(\frac{\sin(90 - \alpha) + 1}{\cos \frac{\alpha}{2}}\right) \times \tan^2 \frac{\alpha}{2}\right) \times 2 \times \frac{360}{\alpha} =$$

$$= \frac{4}{3} \times R^{3} \times \left(\frac{\sin \alpha \times \tan^{2} \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} + \frac{i = \frac{90}{\alpha} - \alpha}{\sum_{i=2\alpha}} \left(\left(\frac{\sin(i-\alpha) + \sin i}{\cos \frac{\alpha}{2}}\right) \times \tan^{2} \frac{\alpha}{2}\right) + \left(\frac{\sin(90-\alpha) + 1}{\cos \frac{\alpha}{2}}\right) \times \tan^{2} \frac{\alpha}{2}\right) \times \frac{360}{\alpha} = \frac{4}{3} \times R^{3} \times \pi_{\text{o6.III.0}}, (6.2.2.5.1)$$

Где,

 $\pi_{\rm of.m.o}$ — коэффициент, стоящий в формуле для вычисления площади поверхности сферы.

$$\pi_{\text{o6.III.0}} = \left(\frac{\sin\alpha \times \tan^2 \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} + \sum_{i=2\alpha}^{i=\frac{90}{\alpha}-\alpha} \left(\left(\frac{\sin(i-\alpha) + \sin i}{\cos \frac{\alpha}{2}}\right) \times \tan^2 \frac{\alpha}{2} \right) + \left(\frac{\sin(90-\alpha) + 1}{\cos \frac{\alpha}{2}}\right) \times \tan^2 \frac{\alpha}{2} \right) \times \tan^2 \frac{\alpha}{2} \right) \times \tan^2 \frac{\alpha}{2}$$

269

Рис.6.2.2.5.5.

По формуле (6.2.2.5.1) вычисляется, на самом деле, не объем шара (Рис.6.2.2.5.5), а объем описанного около шара сферообразного многогранника (Рис.6.2.2.5.6), так как вычислять объемы тел, ограниченных криволинейными поверхностями, мы не умеем.

Рис.6.2.2.5.6.

§6.2.3. Результирующий Метод

При использовании метода вписанного многогранника в §6.2.1.5 была найдена формула (6.2.1.5.1) для вычисления объема шара V_{об.ш.в}, имеющая вид:

Формула (6.2.3.1) является нижней границей для вычисления объема шара.

При использовании метода описанного многогранника в §6.2.2.5 была найдена формула (6.2.2.5.1) для вычисления объема шара V_{об.ш.о}, имеющая вид:

$$V_{\text{o6.III.0}} = \frac{4}{3} \times R^{-3} \times \left(\frac{\sin \alpha \times \tan^2 \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} + \frac{i = \frac{90}{\alpha} - \alpha}{\sum i = 2\alpha} \left(\left(\frac{\sin(i-\alpha) + \sin i}{\cos \frac{\alpha}{2}}\right) \times \tan^2 \frac{\alpha}{2} \right) + \left(\frac{\sin(90-\alpha) + 1}{\cos \frac{\alpha}{2}}\right) \times \tan^2 \frac{\alpha}{2} \right) \times \frac{360}{\alpha} = \frac{4}{3} \times R^3 \times \pi_{\text{o6.III.0}}, (6.2.3.2)$$

Формула (6.2.3.2) является верхней границей для вычисления объема шара.

Искомый объем шара находится между вышеуказанными нижней и верхней границами. Поэтому, результирующая формула для вычисления объема шара $V_{\rm of.p}$ будет представлять среднеарифметическое от формул (6.2.3.1) и (6.2.3.2) вида:

 $= \frac{4}{3} \times R^3 \times \pi_{\rm o6.m.p'} (6.2.3.3)$

Где,

π_{об.ш.р} – коэффициент, стоящий в формуле для
 вычисления площади поверхности сферы.

По формуле (6.2.3.3) вычисляется, на самом деле, не объем шара, а объем некоего среднеарифметического сферообразного многогранника, так как точно вычислять объемы тел, ограниченных криволинейными поверхностями (каковой, в частности, является поверхность сферы), мы не умеем. Мы умеем вычислять только объемы тел, ограниченных только плоскими поверхностями.

Вычисленный по формуле (6.2.3.3) объем ближе по величине к искомому объему шара, по сравнению с объемами, вычисленными по формулам, (6.2.3.1) методом вписнного многогранника, и (6.2.3.2) методом описанного многогранника.

§6.3. Выводы

Ранее в §6.1.1.5 методом вписанного многогранника была найдена формула (6.1.1.5.1) для вычисления площади поверхности сферы *S*_{пов.сф.р}, имеющая вид:

$$S_{\text{пов.сф.в}} = 4 \times \pi_{\text{пл.пов.сф.в}} \times R^2$$
, (6.3.1)

Ранее в §6.1.1.5 методом вписанного многогранника была найдена формула (6.1.1.5.2) для вычисления $\pi_{\text{пл.пов.сф.в.}}$

Ранее в §6.1.2.5 методом описанного многогранника была найдена формула (6.1.2.5.1) для вычисления площади поверхности сферы *S*_{пов.сф.о}, имеющая вид:

$$S_{\text{пов.сф.в}} = 4 \times \pi_{\text{пл.пов.сф.o}} \times R^2$$
, (6.3.2)

Ранее в §6.1.2.5 методом описанного многогранника была найдена формула (6.1.2.5.2) для вычисления $\pi_{\text{пл.пов.сф.o.}}$

Как видно из формул (6.1.1.5.2) и (6.1.2.5.2), числа $\pi_{\text{пл.пов.сф.в}}$ и $\pi_{\text{пл.пов.сф.o}}$ по форме отличаются друг от друга. Следовательно, нетрудно предположить, что и количественно они будут отличаться друг от друга.

Ранее в §6.1.3 результирующим методом была найдена формула (6.1.3.3) для вычисления площади поверхности сферы *S*_{пов.сф.р}, имеющая вид:

$$S_{\text{пов.сф.р}} = 4 \times \pi_{\text{пл.пов.сф.р}} \times R^2, (6.3.3)$$

Ранее в §6.1.3 результирующим методом была найдена формула (6.1.3.4) для вычисления $\pi_{\text{пл.пов.сф.р.}}$.

Согласно П.1.24 формула для вычисления площади поверхности сферы имеет следующий вид:

$$S_{cb} = 4 \times \pi \times R^2$$
, (6.3.4)

Ранее в §6.2.1.5 методом вписанного многогранника была найдена формула (6.2.1.5.1) для вычисления объема шара $V_{\rm of. III.B}$, имеющая вид:

$$V_{\text{of.III.B}} = \frac{4}{3} \times R^{3} \times \pi_{\text{of.III.B}}$$
, (6.3.5)

Ранее в §6.2.1.5 методом вписанного многогранника была найдена формула (6.2.1.5.2) для вычисления $\pi_{\text{об.ш.в.}}$

Ранее в §6.2.2.5 методом описанного многогранника была найдена формула (6.2.2.5.1) для вычисления объема шара $V_{\rm of, ..., o}$, имеющая вид:

$$V_{\text{of.III.o}} = \frac{4}{3} \times R^{3} \times \pi_{\text{of.III.o}}, (6.3.6)$$

Ранее в §6.2.2.5 методом описанного многогранника была найдена формула (6.2.2.5.2) для вычисления $\pi_{\text{об.ш.o.}}$.

Как видно из формул (6.2.1.5.2) и (6.2.2.5.2), числа $\pi_{o6.ш.b}$ и $\pi_{o6.ш.o}$ по форме отличаются друг от друга. Следовательно, нетрудно предположить, что и количественно они будут отличаться друг от друга.

Ранее в §6.2.3 результирующим методом была найдена формула (6.2.3.3) для вычисления объема шара $V_{\rm of.u.p}$, имеющая вид:

$$V_{\rm of.u.p} = \frac{4}{3} \times R^{3} \times \pi_{\rm of.u.p}, (6.3.7)$$

Ранее в §6.2.3 результирующим методом была найдена формула (6.2.3.4) для вычисления $\pi_{\text{об.ш.р.}}$.

Согласно П.1.25 формула для вычисления объема шара имеет следующий вид:

$$V_{\rm \scriptscriptstyle K} = \frac{4}{3} \times \pi \times R^3, (6.3.8)$$

Как видно из формул (6.1.3.4) и (6.2.3.4), числа $\pi_{\text{пл.пов.сф.р}}$ и $\pi_{\text{об.ш.р}}$ по форме отличаются друг от друга. Следовательно, нетрудно предположить, что и количественно они будут отличаться друг от друга.

Формулы (6.3.3), (6.3.4), (6.3.7) и (6.3.8) отличаются друг от друга тем, что в формулах (6.3.4) и (6.3.8) стоит некое единое (для всех формул – для вычисления, длины окружности, площади круга, площади поверхности цилиндра, объема цилиндра, площади поверхности тора, объема тора, площади поверхности конуса, объема конуса, площади сферы и объема шара) число π , а в формулах (6.3.3) и (6.3.7) стоят числа $\pi_{пл.пов.сф.p}$ и $\pi_{of.ш.p}$, соответственно. При этом, все вышеуказанные числа по форме, и, как нетрудно предположить, и по величине, отличаются друг от друга. Автором не вычислялось значение чисел $\pi_{\text{пл.пов.сф.р}}$ и $\pi_{\text{об.ш.р}}$ из-за большого требуемого объема вычислений, который очень трудоемок по времени при вычислении на обычном калькуляторе. При наличии специальной программы для вычисления математических формул на компьютере, величину чисел $\pi_{\text{пл.пов.сф.р}}$ и $\pi_{\text{об.ш.р}}$ можно рассчитать быстро.
Заключение

Как видно из всего вышеизложенного, предложенный автором аналитический метод вычисления значения чисел $\pi_{дл.окр.p.}$, $\pi_{пл.кр.p.}$, $\pi_{пл.кр.в.}$, $\pi_{дл.окр.в.}$, $\pi_{пл.пов.сф.p}$ и $\pi_{of.ш.p}$ является ранее не известной разновидностью методов вписанного в круг и описанного около круга многоугольников, непосредственно связан с геометрией, круга, цилиндра, тора, конуса и шара, так как в нем используются тригонометрические функции sin, cos, tan и другие известные общепринятые положения Геометрии, которые непосредственно связаны с геометрией, круга, цилиндра, тора, конуса и шара.

Этим предложенный автором аналитический метод отличается от известных уравнений типа (B.1÷B.11), используемых для вычисления значения числа π , которые к геометрии круга не имеют никакого отношения.

Число π , по своей природе, имеет непосредственное отношение к геометрии круга, так как оно является коэффициентом пропорциональности в формулах для вычисления длины окружности и площади круга (и других формулах Геометрии).

Невозможно доказать, что уравнения типа (В.1÷В.11) имеют отношение к геометрии круга. В это можно только верить – что в науке в принципе недопустимо. Если известен числовой диапозон, в котором находится искомое число, то всегда можно подобрать бесконечный ряд или бесконечное произведение, численное значение которого будет находится в данном числовом диапозоне. Но невозможно доказать, что вычисленное таким методом число – это именно искомое число π . Это подтверждается тем простым фактом, что уравнения типа (В.1÷В.11), по форме, совершенно разные уравнения. Вычисленные по уравнениям типа (В.1÷В.11) числа π – количественно отличаются друг от друга (начиная с определенного знака после запятой).

Предложенными автором результирующими методами получены формулы для вычисления следующих величин.

Длины окружности:

$$L_{\rm дл. o k p. p} = 2 \times r \times \pi_{\rm дл. o k p. p}, (3.1)$$

Площади круга:

$$S_{\text{кр.р}} = r^2 \times \pi_{\text{пл.кр.р}}$$
, (3.2)

Площади поверхности цилиндра:

$$S_{\text{II},\text{p}} = r \times (r \times \pi_{\text{пл.кр.в}} + H_{\text{II}} \times \pi_{\text{дл.окр.в}}) + \pi_{\text{дл.окр.o}} \times (r + H_{\text{II}}), (3.3)$$

Объема цилиндра:

$$V_{\mathrm{u,p}} = \pi_{\mathrm{пл. \kappa p. p}} \times r^2 \times H_{\mathrm{u}}, (3.4)$$

Площади поверхности тора:

$$S_{\text{T.p}} = 2 \times r \times R \times \left(\pi_{\text{дл.окр.в}}^2 + \pi_{\text{дл.окр.o}}^2\right), (3.5)$$

Объема тора:

$$V_{\text{T,p}} = \left(\pi_{\text{пл.кр.в}} \times \pi_{\text{дл.окр.в}} + \pi_{\text{дл.окр.o}}^2\right) \times R \times r^2, (3.6)$$

Площади поверхности конуса:

$$S_{\text{K,p}} = \frac{1}{2} \times r \times \left(\left(\pi_{\text{пл.кр.в}} \times r + \pi_{\text{дл.окр.в}} \times \sqrt{H_{\text{K}}^2 + \left(r \times \cos\frac{\alpha}{2}\right)^2} \right) + \left(\pi_{\text{дл.окр.o}}^2 \times \left(r + \sqrt{r^2 + H_{\text{K}}^2} \right) \right) \right), (3.7)$$

Объема конуса:

$$V_{\text{K,p}} = \frac{1}{3} \times r^2 \times \pi_{\text{пл.кр.р}} \times H_{\text{к}}, (3.8)$$

Площадь поверхности сферы:

$$S_{\text{пов.сф.р}} = 4 \times R^2 \times \pi_{\text{пл.пов.сф.р}}$$
, (3.9)

Объема шара:

$$V_{\text{of.u.p}} = \frac{4}{3} \times R^{3} \times \pi_{\text{of.u.p}}, (3.10)$$

Как видно из уравнений (3.1÷3.10), в них стоят разные по форме и по величине числа $\pi_{дл.окр.p}$, $\pi_{пл.кр.p}$, $\pi_{пл.кр.в}$, $\pi_{дл.окр.в}$, $\pi_{дл.окр.o}$, $\pi_{пл.пов.сф.p}$ и $\pi_{o6.ш.p}$.

В таблице 3.1 приведены значения вышеуказанных чисел при величине угла α , равном 1° (что соответствует 360-угольнику) и 0,1° (что соответствует 3600-угольнику), с точностью до десятого знака после запятой. Для сравнения, в таблице 3.1 приведено известное из [16] значение единого (для всех формул – для вычисления, длины окружности, площади круга, площади поверхности цилиндра, объема цилиндра, площади поверхности тора, объема тора, площади поверхности конуса, объема конуса, площади поверхности сферы, объема шара) числа π , полученного путем вычисления на компьютере бесконечного ряда (не имеющего никакого отношения к геометрии круга), с точностью до 10 знаков после запятой.

При этом, автором не вычислялось значение чисел $\pi_{\text{пл.пов.сф.р}}$ и $\pi_{\text{об.ш.р}}$ из-за большого требуемого объема вычислений, который очень трудоемок по времени при вычислении на обычном калькуляторе. При наличии специальной программы для вычисления математических фор-

мул на компьютере, величину чисел $\pi_{\text{пл.пов.сф.р}}$ и $\pi_{\text{об.ш.р}}$ можно рассчитать быстро.

Таблица 3.1

	$\alpha = 1^{\circ}$	$\alpha = 0,1^{\circ}$
$\pi_{\rm дл. okp. b}$	3,1415527794	3,1415922548
$\pi_{\rm дл.okp.o}$	3,1416724046	3,1415934510
π _{дл.окр.р}	3,1416125904	3,1415928528
$\pi_{{}_{\Pi\Pi. \kappa p. B}}$	3,1414331556	3,1415910397
π _{пл.кр.р}	3,1415527800	3,1415922318
$\pi_{_{\Pi\Pi.\Pi OB.c\varphi.B}}$	-	-
$\pi_{{}_{\Pi\Pi.\Pi OB.c\varphi.o}}$	-	-
$\pi_{{}_{\Pi\Pi.\Pi OB.c \varphi.p}}$	-	-
$\pi_{ m o 6. III. B}$	-	-
$\pi_{ m o 6. III. o}$	-	-
π _{об.ш.р}	-	-
π	3,1415926535	

Как видно из таблицы 3.1, хотя в количественном отношении вышеуказанные числа $\pi_{дл.окр.p}$, $\pi_{пл.кр.p}$ и π незначительно отличаются друг от друга, но, тем не менее, это принципиально разные числа.

И здесь не имеет значение тот факт, что разница между числами $\pi_{дл.окр.р}$ и $\pi_{пл.кр.p}$ невелика, и которой, в некоторых расчетах, можно пренебречь. Числа 1,23456 и 1,23457 так же отличаются друг от друга на малую величину, и числа 999 999 999 и 1 000 000 000 так же отличаются друг от друга на малую величину, которой, в некоторых расчетах, можно пренебречь. Однако, тем не менее, это принципиально разные числа. Такими же принципиально разными числами являются числа $\pi_{дл.окр.p}$ и $\pi_{пл.кр.p}$. Предложенный автором метод вычисления значения чисел $\pi_{дл.окр.р}$, $\pi_{пл.кр.р}$, $\pi_{пл.кр.в}$, $\pi_{дл.окр.в}$, $\pi_{дл.окр.о}$, $\pi_{пл.пов.сф.р}$ и $\pi_{of....p}$ позволяет вычислять их с какой угодно точностью, так как чем меньше будет угол α , стоящий в уравнениях для вычисления вышеуказанных чисел, тем с большей точностью будут вычислены, длина окружности, площадь круга, площадь поверхности цилиндра, объем цилиндра, площадь поверхности тора, объем тора, площадь поверхности конуса, объем конуса, площадь поверхности сферы и объем шара.

Важно понимать следующее.

Предложенный автором аналитический метод позволяет вычислять, длину ломанной линии (периметр многоугольника), площади плоских поверхностей и объемы тел, ограниченных плоскими поверхностями, так как вычислять длину кривых линий (каковой, в частности, является окружность), площади криволинейных поверхностей (каковыми в частности являются поверхности цилиндра, тора, конуса и сферы), и объемы тел, ограниченных криволинейными поверхностями – мы не умеем в принципе.

Литература

1. Вайман А.А. Шумеро-Вавилонская математика III-I тысячелетия до новой эры. – М.: Издательство Восточной Литературы, 1961. – 275 с.

2. Березкина Э.И. Математика Древнего Китая. М.: Наука, 1980. – 311 с.

3. Белозеров С.Е. Пять знаменитых задач древности. Ростов-на-Дону.: Издательство Ростовского Университета, 1975. – 320 с.

4. Архимед. Сочинения. М.: Государственное издательство физико-математической литературы, 1962. – 639 с.

5. О квадратуре круга. Пер. с нем. Академика Бернштейна С.Я. М.: ОНТИ НКТП СССР, 1935. – 235 с.

6. Юшкевич А.П. Леонард Эйлер о квадратуре круга/Историко-математические исследования. М.: Государственное издательство технико-теоретической литературы, выпуск №10, 1957. – С.159-210.

7. История математики. Том 1. М.: Наука, 1970. – 351 с.

8. Натансон И.П. Краткий курс высшей математики. М.: Государственное издательство физико-математической литературы, 1963. – 311 с.

9. Зайцев И.Л Элементы высшей математики. М.: Наука, 1972. – 416 с.

10. Бронштейн И.Н., Семендяев К.А. Справочник по математике. М.: Наука, 1986. – 544 с.

11. Бубенников А.В. Начертательная геометрия. М.: Высшая школа, 1985. – 288 с.

12. Гордон В.О., Семенцов-Огиевский М.А. Курс начертательной геометрии. М.: Наука, 1988. – 272 с.

13. Фролов С.А. Начертательная геометрия. М.: Машиностроение, 1983. – 240 с.

14. Александров А.Д. Основания геометрии. М.: Наука, 1987. – 288 с.

15. Берже М. Геометрия. Том 1. М.: Мир, 1984. – 560 с. 16. Сайт в сети Интернет: https://ru.wikipedia.org/wiki/%D0 %9F%D0%B8(%D1%87%D0%B8%D1%81%D0%BB%D0% BE. Научное издание

Валерий Туркубеевич Пчентлешев

АНАЛИТИЧЕСКИЙ МЕТОД ВЫЧИСЛЕНИЯ ЗНАЧЕНИЯ ЧИСЛА ПИ

Издательство «Перо» 109052, Москва, Нижегородская ул., д. 29–33, стр. 27, ком. 105 Тел.: (495) 973–72–28, 665–34–36 www.pero-print.ru e-mail: info@pero-print.ru Подписано в печать 16.07.2021. Формат 60х90/16. Бумага офсетная. Усл. печ. л. 18,5. Тираж 50 экз. Заказ 630. Отпечатано в ООО «Издательство «Перо»

