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1 General

Each student enrolled in Physics 102 must complete this course of labs concurrently.
The structure will be pretty much like the Phy 101 labs.

There are a total of ten labs, roughly one per week. Lab classes are three hours
long and all work should be completed during this time. Students may continue to
use the same logbooks that they used in 101, and as in 101, these logbooks should
never leave the lab without permission of the TA or lab manager.

2 Lab Reports

As before, the lab writeup requirements are not very demanding. There’s no need to
repeat what was said in the manual. Describe what was done, making appropriate
sketches; present your data, results, and a brief discussion of errors. Also answer any
questions that are asked in the manual.

3 Prelab Problem Sets

At the end of the lab manual, you will find a short set of questions for each lab,
starting with lab II. These are to be completed before the lab each week and handed
in at the beginning of your lab section. They should be trivial for anyone who has
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read the lab write-up. TA’s have the right to refuse to accept prelab problem sets if
they see students working on them during lab time.

4 Grading

Lab writeups will be graded on a 5 point scale, with 4 being average. Anything below
a 3 is considered a failed lab and must be re-done during reading week. The lab
writeups will make up 2/3 of your lab grade, and the prelab problems sets 1/3. The
lab grade will then count as 10% of your course grade.

5 Missed and Failed Labs

If for any reason you are unable to attend your assigned lab, you should attend one
of the other lab sections during the week, if at all possible. You must inform the lab
manager beforehand of the switch (E-mail will suffice). Whichever lab you attend,
it’s important that your lab notebook is graded by one of your usual TA’s. It’s your
responsibility to see that your lab is graded, particularly if you attend a section which
comes later in the week than your assigned section.

If you are unable to attend any of the lab sections on a particular week (or in the
unlikely event that you fail a lab), there will be a make-up week during reading week.

If you feel that you will have some conflict that’s impossible to resolve within this
context, it’s in your interest to inform the lab manager as soon as possible. As before,
there will be a rather draconian policy about missed/failed labs:

• 1 missing lab = 1 letter grade drop in Phy 102.

• 2 or more missing labs = FAIL Phy 102.

6 Use of Computers

We will not make as much use of the computers this semester as last; however, they
will remain set up at the lab stations. If students wish to use any of the programs
for plotting or fitting, they may do so. Otherwise, most plots may also be made by
hand.

4



Lab 1 - Introduction

1 Goal

The goal of this lab is to familiarize you with some of the concepts and equipment
that you will use throughout the semester. In general, the labs will try to stay in
step with the course material; however, in order to understand the use of some of the
equipment, it will be necessary to introduce a few concepts in advance. Things which
will be covered in this lab are

• Electric field, voltage, current, and resistance.

• The use of the digital multi-meter (DMM)

• Safety

2 Electric Field, Voltage, Current, and Resistance

Electric Field

As you have learned in class, the electric field ( �E) is a measure of the force experienced
by a test particle of unit charge, which results from the influence of all other charges
in a system. The SI unit of electric field is N/C (Newton/Coulomb). In practice it is
difficult to directly measure electric fields, because any sort of probe usually ends up
influencing the field.

Voltage

Voltage (V ) is a measure of potential energy. Like any potential energy, there is no
such thing as “absolute” voltage; one can only speak of the voltage difference between
two points. The voltage difference between two points is the amount of work needed
to move one unit of charge from one point to the other. A positive voltage difference
implies that one must do work to move positive charge, while one can extract work by
allowing negative charge to move. A negative voltage difference implies the opposite.
In other words, positive charge will tend to move from a higher voltage to a lower
voltage, while negative charge will tend to move in the other direction. The SI unit
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of potential is a “Volt” (V). It takes one Joule (J) of energy to change the potential
of one Coulomb (C) by one Volt (V).

Current

Current (I) measures the rate at which charge moves. In these labs we will usually
talk about current flowing through a wire. The SI unit of current is the “Ampere”
(A). One Ampere is equal to one Coulomb/second (C/s).

Students are often confused about the sign of the current. The direction of the
current is defined to be the direction of positive charge flow, even though charge is
usually transported by negative carriers (electrons); that is, if electrons are flowing
from point A to point B, we say the current is flowing from point B to point A.
With this definition, we can always say that current will tend to flow from a point
of higher voltage to a point of lower voltage. For this reason, voltage is also called
Electromotive Force (EMF).

Resistance and Ohm’s Law

The actual flow of current through matter is a complicated process, but it turns
out that it can very often be characterized in terms of a linear relationship for a
particular object (or electrical component). In other words, if one applies a certain
voltage across the object and measures the current, then doubling the voltage will
double the current. The constant of proportionality is called the “resistance” (R).
The SI unit of resistance is called the “Ohm” (Ω), and it defined by “Ohm’s Law”

R =
V

I
(1)

where R is the resistance in ohms, V is the voltage in volts, and I is the current in
Amperes. A whole class of electrical components, called “resistors”, are designed to
have a specific resistance. We’ll learn about these in more detail in lab III.

3 The Digital Multimeter (DMM)

One of our primary tools for the first few labs will be the Digital Multimeter (DMM).
It’s often called a Digital Voltmeter (DVM), although it measures other things. The
ones we will use have a display, a selector knob, and two wires, which are called
“probes” or “leads”. You’ll see that the selector knob is divided into five regions,
corresponding to the five functions of the DMM, with each region divided into several
ranges, which define the full-scale reading (and therefore the precision) of the meter.
The five things which the meter can measure are
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• DC Voltage - in this mode, the meter will measure the average voltage difference
between the red lead and the black lead. A positive reading means that the red
lead is at a higher voltage than the black lead.

• AC Voltage - measures alternating voltage. Don’t worry about this for now.

• DC Current - measures the average current flowing through the meter. A pos-
itive reading means that current is flowing in the red lead and out the black
lead (remember, this really means that electrons are flowing in the opposite
direction).

• AC Current - measures alternating current. Don’t worry about this for now.

• Resistance - measures the resistance of an object placed between the two leads.
There’s no “direction” for resistance.

Measuring Voltage

In your lab setup, you will find a several batteries. A “battery” can be though of as
a source of voltage potential between its two contacts. Use the DMM to measure the
different types of batteries. Establish what the voltage of each of them is and which
terminal is positive (just pretend that this information isn’t written on the side of the
battery).

Now, connect the batteries, in series, in such a way as to make the following total
voltages

• 3 volts

• 12 volts

• 6 volts

Use the voltmeter to verify that voltages are what you predict.

Measuring Resistance

You will find several resistors in your setup. Use the meter to measure their resistance,
in ohms.

Measuring Current

Using ohms law, predict the current that will flow through each of the resistors if it
is connected across the terminals of each type of battery. Use the meter to verify the
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predicted value (hint, remember that the meter measures the current flowing through
it).1

4 Safety

In general, we will not be working with dangerous voltages in these labs. Still, it’s
good to understand some of the basic dangers of electricity.

The threat posed by electric power depends critically on the total current and
the path it takes through your body. Very low currents (< 50 mA) pose little threat
beyond a shock. It takes very high currents to actually damage the body (100’s of
Amperes or more); however, there can be an extreme danger posed by substantially
lower currents. In particular, alternating currents of 100 to 150 mA passing through
the heart can send the heart into “fibrillation” - a rapid, shallow, arythmic beating
that is very quickly fatal. Higher currents will cause the heart to stop beating for
the duration of the current, then resume normally. This is in fact how fibrillation is
stopped.

The voltages needed to produce these lethal currents depend, of course, on the
total resistance of the path. This depends on the condition of the skin and the area
of contact.

Set the meter to measure resistance. Hold one lead between the thumb and fore-
finger of each hand and measure the approximate resistance. Based on this resistance,
what voltage would it take to produce a lethal current of 100 mA?

Now connect the leads to the two brass bars. Hold one bar tightly in each hand
and measure the resistance. Howmuch voltage would it take to deliver a lethal current
now?

Finally, soak your hands in the bowl of saltwater for about 30 seconds. Pat the
excess water off of your hands, but do not dry them. Now repeat the measurement
with the brass bars. What would be a lethal voltage now?

Why are water and electricity such a dangerous mixture?

Experienced electricians (ie, ones who have gotten a few shocks) will keep one
hand in their pocket while working on a live panel. Why?

Skin resistance is one of the measurements made by a polygraph (lie detector).
What do you think might happen to your skin resistance if you were lying and why?

1It’s very important that you do NOT connect the meter directly across the terminals in current
mode. This could damage the meter.
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Lab 2 - Electrostatic Fields

1 Goal

As we said, it’s rather difficult to measure electric fields directly; however, in this lab,
we’ll learn to “model” electric fields using resistive paper and conductive paint.

This lab may seem kind of silly, but until the advent of modern computers, this was
in fact how electric and magnetic fields were calculated for complicated geometries.
This technique was used to design the cyclotron magnet in the Palmer basement,
which you’ll see in a couple of weeks. Very recently, a resistive model was made to
double-check a computer calculation for a field within part of a micro-chip which was
designed in the physics department.

2 Principle

Because the paper is resistive, voltage differences will cause current to flow. The
current will follow the path that electric field lines would in free space. Because the
paper is two-dimensional, it corresponds to a cross-section of an infitinely long three-
dimensional body or bodies. Thus, a dot corresponds to a long line, a line to a plane,
a circle to a cylinder, etc.

3 Lab Reports

In this lab, you’ll be making field maps on sheets of resistive paper. You only need
to make one set of actual drawings per group, which should all be turned in with
one member’s lab notebook. All the lab notebooks should have reasonably accurate
sketches of the field maps, and include the name of the person with the originals.

4 Geometries

Note! For all the geometries you will draw, try to center the figures on the sheet as
much as possible. While in most cases, exact measurements are not necessary, try to
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be reasonably neat; ie, lines should be straight and of uniform width, circles should
be round, etc.

Geometry 1

Brass Contact

Painted Line

Equipotential Line

Use the conductive paint to paint two parallel lines on the page, each about 1 cm
wide and 15 cm long, spaced 5 cm apart. Place one brass contact on each line. Set
the power supply to 10V and verify it using the DMM. Attach one lead of the power
supply to each bar. Attach one lead of the DMM to the negative bar and measure all
voltages relative to that. Use the positive lead to “map” lines of equipotential. That
is, find all the points on the sheet that are at a particular potential. The easiest way
to do this is to attach the positive lead to the lead of a pencil and to make a mark
at every point that has a particular potential, then go back and connect all points
of the same potential. Trying to put the pencil on the sheet and “follow” lines of
equipotential doesn’t work very well.
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5.25

Black Lead

Common

Red Lead

Pencil

Probe Point

DMM

Map lines which are at the following potentials

• 5 V

• 1 V

• 7 V

Carry the lines to the edge of the page. Be particularly careful once you get near the
edge. What happens to the lines at the edge of the page? Why? (Hint: What is the
orientation of the electric current relative to the lines of equipotential?)

If you have been careful to center your figure, then the lines you have drawn should
allow you to predict the location of two other lines. What are they? Check a few
points to verify that you are correct.

You’ll notice that the lines look like the lines on a topographic map. What does
it mean when the lines on a topographic map are close together? What does it mean
when lines of equipotential are close together?

Make a plot of the potential versus distance along a line from the center of one
line to the center of the other. What physical system are you modeling with these
two lines? What can you say about the electric field in such a system based on the
plot you have just made?
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Geometry 2

Now paint two solid dots, about 2.5 cm in diameter and 15 cm apart. Place one brass
contact on each one and map out several (at least 5) equipotential lines as before.
Use these to sketch in (as dotted lines) approximate electric field lines.

Geometry 3

Paint one solid dot, about 2.5 cm in diameter, at the center of the page. Now paint
a concentric circle with the same diameter as the brass ring. Place a brass contact
on the dot and the brass ring on the circle. Put 10V across them. Map several
equipotential lines. Make a plot of V versus R. Now calculate the electric field as a
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function of radius using

E = −dV
dR
≈ −∆V

∆R
(1)

where ∆V and ∆R are the finite differences between your lines. Take the position for
each value of E to be the point halfway between the two lines you used to calculate it
and make a plot of E versus R. Does it show the 1/R dependence that one expects
for an infinite line of charge?
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Lab 3 - DC Circuits

1 Goal

In this lab you will become familiar with basic DC (Direct Current) circuits.

2 Introduction and Warm-up Questions

In this section you do not have to actually do any experiments. Just answer the
questions.

You should familiarize with the following symbols:

Resistor

Variable Resistor

Capacitor

Variable Capacitor

Electrolytic Capacitor

Warning!! Pay attention to 
the polarity!

+

+
Power Supply
(or Battery)

Circuit Ground
(Common)

On-Off Switch

2-Position Switch

V AVoltmeter Ammeter
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Problem 1

What is the effective resistance of two resistors R1 and R2 in series? in parallel?
Answer the same questions for two capacitors C1 and C2. What is the effective
resistance of the following combination of resistors?

R1

R2

R3

Problem 2

V

A

A voltmeter is placed in parallel with a resistor or a capacitor in a circuit. Why? An
ammeter is placed in series with the components in a circuit. Why? What does this
say about the internal resistance (resistance between the two probes) RV and RA of
the two devices? What would be the ideal values of RV and RA?

3 Circuits

Note! Realize that when you are constructing these circuits, it’s not important that
the circuit actually look like the schematic. Also, it’s not really important what value
the power supply is set to, as long as you know what it is. A nice round number like
10V is usually easiest to work with.

Resistors in Series

Construct the following circuit:

+

Vs

Measure all voltages
relative to this point

A B

R1

R2

R1 = 2000Ω
R2 = 1000Ω
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Measure the voltage at points A and B (relative to common). Measure the current
passing through both points. Do these numbers agree with Ohm’s Law? What size
resistor could replace the two of them and give the same current at point A?

Resistors in Parallel

Construct the following circuit:

+

Vs

A

B

R1 R2

R1 = 2000Ω
R2 = 1000Ω

C D

E

Measure the voltage at points A and B. Measure the current passing through points
C, D, and E. Do your measurements agree with predictions? What value of resistor
could replace R1 and R2 to give the same current passing through point C?

Meter Resistance

No measuring device is perfect. For example, every voltmeter allows some current to
flow, which biases the measurement somewhat. Our digital meters are pretty good,
so to investigate this we’ll use the old analog meters that used to be used in these
labs.

Set up the following circuit, using the old analog voltmeter:

+

Vs

A B

R1

R2

R1 = R2 =10000Ω

V

+

Verify the voltage at A using the DMM. Note that the two resistors have equal value.
What voltage do you expect to read at B? What value does the analog voltmeter
read? The reason is that some current is flowing through the voltmeter. It therefore
acts like a resistor with a value RV placed in parallel with R2. Based on the voltages
you’ve measured, calculate the effective resistance of R2 and RV in parallel. Then
use the fact that you know R2 to calculate RV .
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(Try to) repeat this measurement using the digital voltmeter. What can you say
about RV for the digital voltmeter?

Capacitors

Wire the circuit as shown
+

Vs
R1

R1 =10000Ω

V

+

C1

C1 = ?+

Close the switch to charge the capacitor. Now open the switch and measure voltage
versus time, using the stopwatch. This goes pretty fast, so you should probably
coordinate with your lab partners and take a couple of practice runs. Measure the
voltage until it has dropped below 10% of its initial value.

Use the StatMost program on the computer to make a plot of V versus t. Fit the
points to an exponential decay, ie

V = Ae−Bt (1)

and use this to calculate the value of C (with errors!).

Now that you have measured the value of one capacitor, you can use it to calibrate
other capacitors. Wire up the following circuit:

+

Vs

R1 =10000Ω

V

+ C2 = ?

C1

+

C2

+

C1 is the capacitor that you have just measured and C2 is a new, unknown capacitor.
Place the switch in a position to charge C1. Measure the voltage across C1. Use an
extra piece of wire to discharge (short) C2 completely. Now move to switch into the
other position so charge will flow from C1 to C2. Measure the final voltage. What is
the value of C2?

Repeat the measurement, but this time do not discharge C2. What is the final
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voltage measurement? Explain.
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Lab 4 - Magnetic Force

1 Goal

The goal of this lab is to verify the magnetic force law and use it to measure the ratio
of the charge of an electron to its mass (e/m). The lab is quite short to allow time
for tours of the old Palmer Cyclotron (see next section).

2 Cyclotron Tours

During the lab, the class will be taken, in groups, to the Jadwin high bay to see the
venerable Palmer Cyclotron magnet, originally located in the basement of Palmer
Hall. As part of one of the first cyclotrons ever built, it was used for physics research
from 1935 until the late 1960’s. Since then, it has served as a valuable tool for
instruction by creating a large area magnetic field of more than 1 Tesla. With a
field this strong some very interesting effects can be demonstrated. The magnet was
moved from Palmer Hall to Jadwin Hall in the fall of 1998.

Warning!!

A 1 Tesla field is very powerful. Please observe the following rules:

• Remove all magnetic objects (iron or common steel) from above the waist. At
some points you’ll be leaning into the field and they could be pulled from you.
Precious metals are OK, as is surgical steel (eg bone pins). If you wear wire
frame glasses, just pay attention to them if you start to feel any tugging.

• Remove all magnetically encoded cards: credit cards, meal cards, MAC cards,
etc. before entering the cyclotron enclosure. They will be erased by the mag-
netic field. Also it’s a good idea to remove watches, as they could be damaged.
There’ll be a box outside the cyclotron enclosure for this purpose.

• At some point you will be allowed to “play” with the magnetic field. DO NOT,
under any circumstances, put anything into the field other than the objects
indicated by the tour guide. In particular, there are plenty of metal pieces lying
around large enough to cut through your hand if you get them to close to the
pole pieces. In general, don’t put anything larger than, say, 1/4” in diameter
by a few inches long into the field.
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3 e/m Measurement

You see at your stations a rather complicated-looking device...

V

Accelerator
Plates

Accelerator
Voltage

Filament Heating
Voltage

Voltmeter

Filament

Glass  Bulb

Electron
Path

B Into Paper

The principle of the device is quite simple. Within the large glass bulb is a
filament, which can be heated by passing current through it. The hot filament ejects
electrons from its surface. This filament is kept at a negative voltage relative the
the nearby accelerating plates, so the electrons accelerate toward them, acquiring a
kinetic energy given by

1

2
mv2 = eV (1)

where m is the electron mass, v is the electron velocity, and V is a the voltage
difference between the plates and the filament. The plates themselves are kept at
more-or-less the potential of the rest of the device, so once the electrons pass through
them, there is no electrostatic acceleration.

The external “Helmholtz” coils provide a fairly uniform magnetic field B within
the globe. It is straightforward to show that the field at the center of the coils is

B =
(
4

5

)3
2 µ0IN

R
(2)

Where R (=15 cm) is the radius of the coil, N (=130) is the number of turns, and I
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is the (adjustable) current. This magnetic field bends the accelerated electrons into
a circular trajectory. The radius is derived by equating the magnetic force with the
centripetal force, that is

Bev = m
v2

r
(3)

Combining equations (1) and (3), one finds an expression for the ratio of the
electron charge to its mass

e

m
=

2V

B2r2
(4)

You will be able to see the electrons because the bulbs are filled with low pressure
hydrogen. Some of the energetic electrons strike the hydrogen atoms and knock the
atoms into excited states. When they return to their ground states, they emit visible
light. You’ll learn about this in a few weeks.

Of course, e/m is a constant. In this experiment, we can keep the accelerating
voltage fixed and study the relationship between r and B by varying the current in
the coil. According to (4) , if we keep V constant, we expect

1

r
= αB (5)

where

α ≡
√
(e/m)

2V
(6)

Alternatively, we can keep B constant, and vary V . According to equation (4),
There should be a linear relationship between r2 and V , what is it?

4 The Measurement

First, play with the apparatus a little. Set V to about 150 V with no current in the
coils. You should see a faint beam of electrons coming from the filament. Bring the
small bar magnet near the beam and see if you can deflect it. Be very careful as the
bulb is quite fragile.

Next, increase the current in the coil until the the beam of electrons is bent into
a circle, completely contained within th bulb. Again see what effect the small bar
magnet has on the trajectory. Now it’s time to make some measurements.

This measurement would be very straightforward if we could reach in and put a
ruler in the bulb, but unfortunately we can’t, so we use a very clever trick.
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Ruler
Vi r tua l  Image

of  Ruler

Part ial ly Reflect ing
Mi r ro r E lec t ron

P a t h

Glass  Bulb

Eye  o f
Obse rve r

Position the partially reflecting mirror near the bulb so you are looking through
it at the circular electron path. Now position the lighted ruler on your side of the
mirror, so that its image in the mirror lies on top of the electron trajectory. Use
“parallax” to fine tune the position. That is, move your head back and forth a bit
and see if the ruler moves relative to the electron beam. Adjust the distance between
the ruler and the mirror until there is no visible difference in the position of the image
of the ruler and the electron beam. At this point the mirror will be exactly half way
between the ruler and the election beam, and you can use the apparent image of the
ruler to measure the diameter of the electron path. This is known is a “virtual image”
and you’ll learn more about them in a couple of weeks.

First, keeping V fixed, measure the radius for a range of I values (say 5), for which
the electron beam is completely contained in the bulb. For each value of I , measure
and record the radius of the election path. Make a plot of 1/r vs. B. Is it linear as
expected? If so, use its slope to calculate e/m (including error!) based on (5) and
(6). How does it compare to the accepted value?

Next fix I at one of the middle values and vary the accelerating voltage V . Again
measure about five points and make a plot of r2 vs. V . Again, use this to calculate
e/m. How does it compare to the accepted value? to your previous measurement?
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Lab 5 - AC Circuits I

1 Goals

Many interesting uses of electricity involve “AC” circuits - those in which currents
and voltages are changing with time. In this lab we’ll try to investigate some simple
concepts in this area.

2 The Oscilloscope

Your primary tool for this lab will be the oscilloscope, or just “scope”. Oscilloscopes
look a little intimidating, but their basic principle of operation is quite simple. They
are used to make a very fast plot of voltage versus time for one or more sources. For
those of you thinking about medical careers, this is similar to a chart recorder (used
for EKG’s, EEG’s, polygraphs, etc), only much faster.

These scopes can plot one or two inputs (or “channels”) at frequencies up to 60
MHz. You’ll be supplied with detailed instructions for the scope, but you really only
need to worry about a few things:

• Time Base - This is the scale of the horizontal axis. In other words, how much
time each division corresponds to. This is common to both channels.

• Sensitivity - This is the scale of the vertical axis, in volts per division. It can
be set separately for each channel.

• Trigger or Sync - This is the condition which will start the plot. In the simplest
case it is set by

– Source - Which input controls the start of the plot.

– Level - What level (in Volts) will start the plot.

– Slope - Directs whether to start the plot when the input crosses the specified
“level” with a positive or negative slope.

For example, Source=“Chan. 2”, Level=“.2V”, Slope=“Negative” would start
the plot when the signal on input 2 crossed from greater that .2V to less than
.2V.
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The scopes also have “cursors”, which allow you to measure the amplitude of
signals and the distance between peaks (used for calculating frequency).

These modern scopes also have a magic “Autoset” button which will usually pick
reasonable settings for a particular set of inputs. It’s often a good way to begin.

3 Bread Board

You’ll build the circuits for this lab using a “bread board”, also known as a “proto
board” or “perf board”.

The holes of the bread board are designed to firmly hold the leads of electronic com-
ponents or the ends of wires. The holes are connected to one another approximately
as shown. Components are connected together by pushing the leads into connected
holes.

4 Signal Generator

You’ll generate inputs to your circuits using the “signal generator” at your station.
This device can generate square, triangle or sine waves of adjustable amplitude and
frequency. The “function” knob on the right is a actually a double knob. The
outer knob controls the type of waveform; set it to the sine wave shape. The inner
knob controls the amplitude; set it to maximum (all the way clockwise). You can
then control the frequency with two knobs. The knob on the left sets the full scale
frequency. This is then multiplied by the number set on the two concentric knobs in
the center. That is, if the knob on the left is set to 1K, the outer center knob is set
to .5 and the inner center knob is set to 7, frequency will be 1000 × .57 or 570 Hz.
Note that this setting is only approximate and you should rely on the frequency read
out by the oscilloscope when actually taking data.
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5 Transducers

Electric circuits are used to process many things - sound for example. For this to
happen, signals must be converted to and from voltage or current levels. A device
which does this is known as a “transducer”.

As an example, a speaker can convert electrical signals into sound, but it can
also be used the other way around to convert sound into voltage levels. Connect
the earphone to channel 1 of the scope. Set the scale to about 10 mV/div and the
time scale to about 100 ms/div. Set the trigger to “auto” and talk into the earphone.
Observe the trace it makes on the screen. See if you can identify the individual words.

Set the time scale a bit faster, say 5 ms/div, and try to whistle or hum to generate
tones. See if you can generate a sine wave.

6 Filters

As you saw in the previous section, sound is in general a complicated function. Mathe-
matically, we can represent any sound as a combination of many different frequencies.
One of the most basic operations we could do on sound (or any other sort of signal)
would be to construct a circuit which would transmit some frequencies while blocking
others. Such a circuit is known as a “filter”.

Low Pass Filter

Construct the following circuit using the bread board

A B

Signal Generator R

C

Use R = 10 kΩ (brown-black-orange) and C = .05 µF (.05M) Using the grounded
line as a reference, connect probe A to point A and probe B to point B.

This circuit is called a “low pass filter” because it allows low frequency signals to
pass from point A to point B, but not high frequency signals. The terms “low” and
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“high” mean slow or fast compared to the characteristic RC time of the circuit. The
“characteristic frequency” of the system is

f0 ≡
1

2πRC
(1)

You’ll be using the scope to measure the ratio of the voltage at point B to that
at point A as a function of the signal generator frequency. You’ll have to adjust the
time scale throughout your measurements. A good place to start is to set the signal
generator to approximately f0. Then, on the oscilloscope, set the sensitivities to 2
V/div and the time base to 1 ms/div. You can go faster or slower as you change the
frequency.

To measure the amplitude of a signal, set the scope cursers to “∆V mode” and
position the horizontal cursors to the highest and lowest point on particular trace.
The peak-to-peak difference will display on the screeen.

To measure frequency, set the scope cursors to “ 1
∆t

mode”, then position the two
cursors at two consecutive peaks. Try to be as precise as possible. The frequency will
display on the screen.

Make a plot of square of the ratio of Vpp at point B to that at A as a function of
frequency; that is, plot (

V Bpp
V App

)2
vs f (2)

for frequencies from 20 Hz to 3000 Hz. We plot the square because we are usually
interested in the fraction of transmitted power, which will depend on the square
of the voltage. Use the special log paper provided. (Question: why is acoustic
response almost always plotted on a logarithmic scale?) Take enough points to get an
accurate picture of the function, say about 10. Don’t try to space the points evenly in
frequency. You’ll want to take lots of points where the function seems to be changing
quickly as a function of frequency. It’s probably easiest to plot data as you go, rather
than to wait until the end. Indicate f0 on your plot.

In your log book, explain qualitatively the general shape of the plot, in terms of
the things you know about resistors and capacitors.
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High Pass Filter

Construct the following circuit

A B

Signal Generator

R
C

Use the same component values as before. This is called a “high pass filter” because
it allows only high frequencies to pass from point A to point B.

Make the same plot that you made for the low pass filter. If you wish, you can
even make the two plots on the same piece of paper. Again, indicate f0 on the plot
and explain qualitatively the behavior you’ve observed.
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Lab 6 - AC Circuits II

1 Goals

The goal of this lab is to learn something about electrical resonances, which are
fundamental to such things at television tuners, radio receivers, etc...

2 Bandpass Filter

Last week you learned to make a high-pass and a low pass filter; however, as anyone
who’s ever used a graphic equalizer knows, one sometimes wants to select a narrow
range of frequencies. Construct the following circuit using the breadboard, with the
component values C = .1 µF, L = 85 mH, and R = 50 Ω

CL

R
Vin

Vout

Connect the circuit to the signal generator and the scope, as you did last week. Using
the special log paper, make a plot of

Vout

Vin
vs f

What is the peak amplitude? at what frequency? Explain the shape in terms of total
impedance of the circuit

Z =

√
R2 +

(
ωL − 1

ωC

)2
(1)
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where ω(= 2πf) is the angular frequency. Based on this, calculate the expected
frequency of the peak to be at. How close is your measured peak?

3 Resonant Behavior

Now move the circuit around, as follows

C
LR

Vin Vout

As you can see, you’ve really constructed the same circuit, you’re just looking at a
different part of it (If we had more sophisticated scopes, you wouldn’t have to redo
the circuit). Again make a plot of

Vout

Vin
vs f

Only this time, you’ll have to adjust the vertical scale of the paper, because you’ll
see it get much bigger than one.

What you’re seeing is an electrical resonance. You’ve already learned a little about
resonant behavior in mechanical systems, involving springs, masses, and damping
forces. If we make the correspondence between electrical charge in a circuit and
mechanical displacement in a physics system, then which electrical component (L, R,
or C) corresponds to mass? to the spring constant? to a dissipative damping force ?

4 Example Application - Tone Control

Some of the most common uses of filters involve the processing of sound. A variable
low-pass filter can serve as a simple tone control.
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For this section, you’ll use a small AM/FM radio. You’ll take the signal from the
earphone jack, filter it, then use the small amplifier to hear the result.

Using the bread board, wire the circuit as follows

R

C

A B

Radio

Red

Black

Red

Black

Amplifier

Use the 1 kΩ variable resistor and the 1 µF capacitor (105). Connect probe A to point
A and probe B to point B. Turn on both the radio and the amplifier. Set the radio
to FM and select a station that comes in clearly (which won’t necessarily be your
favorite station). Describe what happens to the sound as you increase the resistance
of the variable resistor.

Try to describe in words any visual differences between the signals measured at
points A and B, when the resistance is a maximum.

Now interchange the capacitor and resistor to make a high-pass filter and answer
the same questions, only now observe what happens as the resistance decreases.

Note: please remember to turn off both the radio and the amplifier when you are
done using them, to conserve the batteries.
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Lab 7 - Geometric Optics I

1 Introduction

Geometric optics is a practical subject, leading directly as it does, to the under-
standing of very practical optical instruments: eyes; eyeglasses, cameras, magnifiers,
microscopes, telescopes, projectors, medical endoscopes. Geometric optics rests on
three simple assumptions:

(1) Light travels in straight lines, called rays;

(2) Light rays cross each other with no interference between them;

(3) Whenever the rays strike the interface between two media in which the speed of
light is different (e.g., air-glass;.glass-air; air-water, etc.) the rays bend (change
direction), by an amount which depends on the two speeds (Snell’s Law)

The purpose of these laboratories is fourfold:

(1) to verify and thus become familiar with the most important law in geometric
optics, the law that governs the bending of light at the interface between two
transparent media, Snell’s Law, and to measure an index of refraction;

(2) to measure the critical angle of total internal reflection (the basis of fiber optic
light pipes and cystoscopes);

(3) to use and thus become familiar with the lens equation for thin lenses and the
formula for magnification of the images; as well as the method of ray tracing;

(4) to understand, build and use, several optical instruments (based on the three
principles ofgeo- metric optics) which extend the power or your sight, and let
you see things which you could otherwise not see.
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2 Pinhole Camera

The pinhole camera is a simple device
which depends for its operation, solely
on the first two assumptions of geomet-
ric optics: light travels in straight lines
called rays; the rays cross each other
without affecting each other. Con-
struct and use a pinhole camera as de-
scribed below.

Al

foil

translucent 

screen or pap

to the object

pinhole

(cross section)

Figure 1

(1) Unfold the folded up box with which you were provided, and use the knife to
cut an approximately square hole (approximately 5 cm. on a side) in each of
face of a pair of opposite faces.

(2) Cover one of the holes with a piece of aluminum foil, and the other hole with
a sheet of translucent paper or plastic — non-shiny side to the outside. Use
adhesive tape to hold them in place.

(3) Make a pinhole in the aluminum foil, using a pin or needle. Your pinhole camera
is now complete.

Use the pinhole camera to view (form a picture of) the filament of a clear glass
light bulb, or the array of colored light bulbs, by pointing the pinhole side toward the
bulb(s) and looking at the plastic covered hole, keeping it at a comfortable distance
from your eye. Watch the image as you move toward or back away from the light
bulb, or the array of colored bulbs.

Now see if you can get a picture of the outdoors, though the window. You may
have to put a black cloth over your head and the camera to get rid off extraneous
light, and you may even want to enlarge the pinhole slightly with a sewing needle, to
get a bit more light. Explore. Q: Were the pictures erect or inverted? Q: Did you
have to be at any particular distance for the image to be in focus?

Now write your name on the pinhole camera and put it aside — we shall be using
it later to make a lens camera. (You may take it with you after the next week’s lab,
if you like).
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3 Snell’s Law

water

air

30

41.7

o

o

a)

water

air

30

41.7

o

o

b)

Figure 2

We now examine the bending of light at an interface (between glass and air), (Snell’s
Law).

It is customary to describe the bending (refraction) by giving two angles: the
angle between the incident ray and the perpendicular to the boundary; and the angle
between the bent (refracted) ray and the perpendicular to the boundary. As an
example, in the figures at the right, 2a shows a ray traveling through water at an
angle of 30◦ with the perpendicular to the boundary is bent as it crosses the interface
into air, and now makes an angle of 41.7◦ with the perpendicular. It does not make
any difference which way the light is going — if from water to air (2a) and the angle
in water is 30◦, then the angle in air will be 41.7◦; if from air to water (2b) and the
angle in air is 41.7◦, the angle in water will be 30◦.That is, for an air/water interface,
the angle 30◦ in water is permanently paired with the angle 41.7◦ in air. The same is
true for other pairs of angles. This pairing was first documented by Claudius Ptolemy
(140 A.D) for air and water. It is the anatomy of this pairing that the ancients could
not find, but Mr. Snell, fifteen centuries later, did.

It was not until 1621 that Snell found the rule:

nair sinφair = nwater sinφwater (1)

Where n is the “index of refraction”. Every transparent material has its own index
of refraction. The values of the index of refraction for a variety of such materials are
given in the table below:
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Vacuum (by definition) 1 Crown Glass 1.52
Air 1.0003 Crystalline Quartz 1.54
Water 1.33 Heavy Flint Glass 1.65
Ethyl Alcohol 1.36 Sapphire 1.77
Fused Quartz 1.46 Diamond 2.42

Note that the index of refraction of air is so close to 1.00 that we take it to be 1 in
all that follows.

φ1

Transparent  
Medium 1

Transparent 
Medium 2

φ2

n1=c/v1

n2=c/v2

Figure 3

More generally, when light is refracted at
an interface between two media of refrac-
tive index n1 and n2,

n1 sin φ1 = n2 sinφ2 (2)

Although Snell just assigned n as a prop-
erty of a material, we now know it is simply
a measure of how much greater is the speed
of light in a vacuum (c, the fastest speed
known) than it is in the particular material
(v). Thus:

n ≡ c
v

(3)

or stated another way, for any two media,
1, 2

n1v1 = n2v2 = c or
n1

n2
=
v2

v1
(4)
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4 Snell’s Law Measurements

light source

single slit tracing board and paper

light ray

A

A
B

path of unbent ray

 perpendicular to interface

θ air= A + Bθ glass = A

light ray

p

lens
D-shaped

line perpedicular 
to unbent  ray 

slit

incident

path of the 
bent light ray

Figure 4

To produce one sharp non-diverging light ray, block off all but one slit. Position the
light source, as shown in the diagram, and rotate the housing and light bulb until the
filament of the bulb is vertical (as evidenced by sharp shadows).

Tape down the tracing paper, and using a straight edge, draw a long, straight line
along the light ray.

Using the protractor, carefully draw a line perpendicular to the ray about 10 cm
from the slit.

Now place the D-shaped lens on the board, with its straight edge along your
perpendicular line and the curved face toward the light source. Slide the lens along
the line until the ray leaving the lens follows the line you drew along the original ray.
This guarantees that the center of curvature (P) of the circular side of the lens lies on
the original ray and that the incident ray suffers no angular deviation at the curved
surface. Using a sharp pencil, trace around the circular side of the lens. Before you
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move the lens, note the spacing of this line from the glass due to the finite size of the
pencil line (note: If you rotate the lens around P so that P remains in its original
position then the incident ray through the curved surface will always be perpendicular
to the curved surface and no bending of the ray occurs there. All the bending you
are measuring takes place when the ray passes from glass to air through the straight
side).

Rotate the lens about 5◦, (angle A on the diagram), carefully centering the lens
by fitting the circular edge to your traced line. Draw a line along the straight edge
of the lens, and label it (1); also make a mark and write an (1) on the paper in the
center of the outgoing, bent ray about 10 - 15 cm from the lens.

Rotate the lens approximately another 5◦ and repeat the last step, this time
labeling with a (2)

Continue turning the lens through 5◦ angles, labeling with successive numbers
until you find that there is no emerging ray.

Draw lines along the paths of the outgoing rays (through your marks and the
center of curvature, (P). Measure the angle B between the outgoing ray and the
incident ray’s direction, and the angle A between the line drawn along the straight
edge of the lens and your perpendicular line. Do this for each of the positions of the
lens.

Make a table showing the the measured angles A, B, and the pair of computed
angles φglass = A, and φair = A+B. Then compute the index of refraction (n) of the
glass for each pair of angles (φglass,φair).

Plot the computed indices of refraction as a function of (φair). Draw a best fit
horizontal line through the points.

Q: Do they lie approximately on the line? Q: What is your best estimate of the
index of refraction of the glass in the lens?

Ptolemy recorded the following data for water in the second century AD:
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Angle in air Angle in water
(deg.) (deg.)

10 8
20 15 1/2
30 22 1/2
40 28
50 35
60 40 1/2
70 45
80 50

Plot Ptolemy’s data in the same way you plotted you own. Q: Did you have more
or less spread than Ptolemy? Q: From Ptolemy’s data, what is your best estimate of
the index of refraction of water? In each case compute a mean and take the spread
between the maximum and minimum values of n and state the value of n as: mean
± half the spread.

5 Total Internal Reflection

As a check on your Snell’s Law results, using your measurement of the glass’ index
of refraction, compute the critical angle φc for total internal reflection within the
glass. Then measure φc it is the value of φglass for which φair is exactly 90◦. Q:
Do experiment and prediction agree? Q: What happens when the angle of incidence
φglass is greater than φc?
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Lab 8 - Geometric Optics II

Figure 1

1 The Lens Equation

f f

1

2

3
h

h'

p o

Figure 2

First, we’ll define some terms

• Object — anything which emits rays of light, either because it is self-luminous,
or because it is illuminated;

• Real Image— when all the rays from a point of the object after passing through
the lens, converge to a second point, that second point is called the real image;

• Virtual Image — when all the rays from a point of the object diverge after
passing through the lens, and the continuation in a straight line of the rays
(behind the lens) converge to a second point, that second point is called the
virtual image;
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• Object Distance (p) — distance from object to lens;

• Image Distance (i) — distance from lens to image;

• Focal Length (f) — the distance of the (special) image point made by parallel
rays, i.e. from rays coming from an object at infinity. The focal length is positive
for a converging lens, negative for a diverging lens. Converging strength goes
as 1/f;

• Height of object/image (h/h′) — length of the object/image perpendicular to
the principal or optic axis.

Then there are only two equations you need know

1

p
+

1

i
=

1

f
(1)

and the lateral magnification given by

m ≡ h
′

h
= − i

p
(2)

(later we will want the angular magnification)

With the following convention for signs:

(1) Focal length (f) is positive for converging lenses (fatter in the middle than at
the edge) and negative for diverging lenses (thinner in the middle).

(2) Object distance (p) is positive on the side of the lens from which the light is
coming (normally the case but not necessarily when combination of lenses is
used), negative if on the side of the lens to which the light is going.

(3) Image distance (i) is positive on the side to which the light is going, negative
if on the side from which light is coming. (Equivalently, i is positive for a real
image, negative for a virtual image).

(4) Object and image heights (h and h′) are positive for points above the axis,
negative for points below the axis.
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2 Ray Tracing

Ray tracing is another way to solve the lens equation and to get the magnifications.
As a visualization of the action of a lens on light rays, it is, of course, more graphic
than the algebra of the lens equation. It is useful to know, and often very instructive.

Given a luminous object and a lens, all the rays which leave the object and strike
the lens, are brought back to a focus after passing through the lens — either to a
real focus where all the rays actually cross, or to a virtual focus, a point from which
all the rays seem to diverge. All the rays that miss the lens are, of course unaffected
and contribute nothing to the image. You can see how the diameter of the lens enters
— not with any effect on the focusing properties, but rather on how much light is
gathered, and thus, how bright the image will be.

As far as ray tracing, of all the rays that enter the lens, there are three which are
particularly useful (refer to figure 2):

(1) The ray parallel to the optic axis — is bent by the lens so that it goes through
the focal point on the far side of the lens for diverging lens the ray parallel to
the axis is bent so that it seems to have come from the focal point on the side
from which the light is coming.

(2) The ray that hits the lens right in the middle – is not bent at all (because the
faces of the thin lens are parallel at that point, so no net bending occurs) same
for diverging lens.

(3) The ray that goes through the focal point on the side from which the light is
coming — is bent so as to leave the lens parallel to the optic axis for diverging
lens, the ray that is heading toward the focal point on the far side is bent so
that it is parallel to the axis.

Any two of these rays is sufficient to give the position of the image and its height
— the undeviated ray is particularly useful in establishing the linear and the angular
magnification.

3 Measuring Focal Length

In this part we use and apparatus consisting of: two converging lenses each with a
different focal length; a screen on which to focus, observe and measure the images; two
light bulbs — one blacked over except for a small region at the top (the bulb’s power
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rating and the numerals “15” – printed in the unblackened region and illuminated
from within will be an object whose image you focus and measure on the screen), and
one bulb, mounted across the room in various locations (to be used when a bright,
distant object is needed). You are also provided with a long metal bar (optical bench)
on which to mount and align the lenses, screen and markers.

The object of this part is for you to find the focal length of each of the two lenses
by arranging for each lens in turn to form an image of a luminous object, making
appropriate measurements, and applying the lens equation.

Using a Distant Object

Mount the screen and the weaker of the two lenses provided, on the optical bench.

Choose the most distant of the bright light bulbs which are along the walls of the
lab, and using that bulb as the object, focus its image on the screen. Measure (i) the
distance between the lens and the image on the screen.

Find the distance from the lens to the object (p) (the distant light bulb), using
a long tape measure, or even by pacing it off. Use this object distance (p) and your
measurement of the lens-screen distance, i.e., the image distance (i) to compute the
focal length (f) of the lens, using the lens formula.

Q:Why is a crude measurement of the object distance adequate? Q: How close
does the image distance come to being equal to the focal length?

Using a Near Object

Mount the blacked-over bulb on the table-edge clamp, with its top facing down the
optical bench. The bulb should be about 15 cm beyond the end of the bench.

Place the screen at the other end and the lens in between.

Slide the lens along the bench until it focuses an enlarged image of the “15” on
the screen. (You may have to adjust the height of the components to have the light
through the lens fall on the screen.)

Calculate the actual measured magnification (m = h′/h), and also compute the
magnification from the bulb- lens distance (p) and the lens-screen distance (i), (m =
i/p); compute the focal lengths (f) from the bulb-lens distances and the lens-screen
distances.

Q: Is the image upright or inverted? Is it real or virtual? Now measure: lens-bulb
distance (p), lens-screen distance (i), height of numerals on the screen (h), height of
numerals on the bulb itself (h′). Repeat the measurements for the other location of
the lens which yields a focus on the screen. Q: There are two locations of the lens

41



which yield a focused “15” — why? (Hint: Look at the lens equation.) Q: Is this
second image enlarged or reduced?

Repeat the focal length measurements for the other lens (the stronger) lens.

4 The Camera

The simple camera consists of a converging lens and a box. The lens in one side of
a box brings a real image of the objects in front of the camera to a focus on the
opposite side of the box, where the film is. Since we want the real image exactly in
the plane of the film, focusing is important, and thus, so is the focal length of the lens
and a lens which can be moved toward or away from the film. The amount of light
gathered, and thus the brightness of the image, depends, of course, on the diameter
of the lens.

Look once more at the scene outside through your pinhole camera. Then make a
hole in the aluminum foil about the diameter of one of the two lenses. Put one of the
two lenses (trial and error), in front of the hole, and move the lens toward and away
from the hole in the aluminum foil until you get a picture of the great outdoors on
your translucent plastic. Now you have a camera. Q: What is the difference in the
image between what you remember of the pinhole camera and what you see now?

5 The Eye as a Camera

The eye is a camera with a fixed image distance (i), but in which the focal length of the
(converging) lens can be changed by muscular action. Thus the normal eye lens can
have its shape changed. The change in shape changes the focal length and therefore
its converging power (the process is called accommodation). When a normal eye is
relaxed (longest focal length, least converging power) it can bring parallel rays (from
an object at infinity, i.e., far, far away) to a focus on the retina. For nearer objects it
can “accommodate” (i.e., decrease its focal length, and increase its converging power)
so that it can continue to bring the nearer objects (rays more divergent) to a focus
on the retina. The normal eye can accommodate and produce an image on the retina
for something as close as 15 centimeters (for younger people). The normal eye can
thus “accommodate” for objects anywhere between 15 centimeters (called the “near
point” ) and far, far away (called the “far point”).

Measure your own near point without glasses: bring a book to where it is comfort-
able to read; now bring it even closer to your eyes so that it becomes uncomfortable
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to read, and somewhat blurry; Now move it back away from your eyes until it just
becomes clear and comfortable to read. Have your partner measure the distance from
the book to your eyes — that is your “near” point distance. ..

The eye that is not “normal” may have:

(a) the far point too close (nearsightedness or myopia) so that it cannot focus
distant objects, this relaxed eye is too convergent; or,

(b) the near point too far (farsightedness or hyperopia), when the eye cannot be-
come convergent enough to focus on close objects.

Note that a nearsighted eye was given a divergent (negative) eyeglass because
its convergent power had to be reduced , and a farsighted eye which does not have
sufficient converging power has its converging power added to by the addition of a
converging (positive) lens.

For those of you who wear glasses to read, a pinhole held at your eye will serve in
lieu of your glasses lens or even as magnifier, if there is enough light. Try it with a
a pinhole in a 3X5 card. Q: Since it is a simple and seemingly universal corrector of
vision defects, why doesn’t everyone use a pinhole instead of eye glasses? Q: Suppose
you lost your reading glasses, and had neither a pin nor a 3x5 card, but that you had
desperately to look up a number in a phone book, what would you do?

6 The Simple Magnifier (or Eyepiece)

When you wish to examine something in detail with the naked eye, you bring it closer
and closer to your eye, so that it will subtend a larger and larger angle at the eye,
and thus be spread larger and larger on the retina so that it can be seen in greater
and greater detail.

The normal relaxed human eye has a focal length such that in its relaxed state it
brings to a focus on the retina the almost parallel rays from an object at far away. If
you bring the object closer (or get closer to the object) the eye must “accommodate”,
that is squeeze up its lens to make its focal length shorter and shorter in order for it
to bring the image of the object to a focus on the retina. There is however a limit to
the accommodation of the human eye, a limit to its converging power, so that there
is a smallest distance from the eye to which one can bring the object and still have
it focused on the retina, (a point that doctors call the “near point”). For the young,
normal eye this is often taken to be 15 centimeters from the eye’s lens.
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The simple magnifier is then a converging lens, placed immediately in front of the
eye’s lens, where it adds to the converging power of the eye lens so that the object can
be brought even closer and still be in focus on the retina. At this point the concept
of an angular magnification is useful, When something is brought closer it subtends a
larger angle at the eye, and using the undeviated ray to indicate where the image will
fall on the retina, you can see from the diagram above that closer means larger angle.
When the simple magnifier is used as an eyepiece of a telescope or a microscope, it
functions in precisely the same way except that it is now helping the eye to look at
and magnify a real image rather than a real object. The magnifying power of a simple
magnifier, for a relaxed eye, is taken to be

Angular Magnification

the eye
θ θ'

Figure 3

M ≡ θ
′

θ
≈ (15 cm)

(focal length in cm)
(3)

Place one short piece of plastic ruler in in a spring clip, and get as close to it as
you can and still see it distinctly and comfortably (nominally 15 cm).

Now hold the shorter focal length lens in front of and close to one eye and bring
up the second short piece of plastic ruler as close to the lens as you can and still see
its enlarged image through the lens distinctly and comfortably. Looking through the
lens with one eye, and at the plastic ruler in the clip with the other, you should see
the magnified image superimposed on the non-magnified original ruler in the clip.
This is a bit tricky, as the two images tend to wander around, but with perseverance,
it can be made to work.

Observe how many millimeters (cm) on the scale seen through the lens corresponds
to the millimeters (cm) on the scale seen without the lens. This is the magnification.
This cannot easily be done with high precision - just try to get a good approximation,
and compare it with the result gotten from the formula for magnification above, i.e,
Q: What magnification did you expect? What magnification did you get?

Each of you should adjust the focus and make the, albeit crude, measurement of
the magnification.

Standard microscope eyepieces are marked with a magnification (e.g., 10X) hich
is calculated by the ratio of 25 cm (the nominal value of the near point distance) to
the focal length. A 10X eyepiece therefore has a focal length of 2.5 cm.
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7 The Keplerian Astronomical Telescope

When you wish to examine a distant object, such as the moon, or Jupiter and its
moons, or Saturn and its rings, in more detail from earth, you do not have the option
of moving it closer to you eye. You can however use a converging lens to form a real
image in front of your eyes. If you choose a lens of suitable focal length, the real
image can, be examined in more detail than you can the original object, i.e., even
with just an objective lens you can already have an angular magnification at the eye.
But then of course you have one additional advantage, you can now examine the real
image even better, by using a simple magnifier (called the eyepiece lens). For reasons
that you will have read about, the total magnification of the telescope is:

M ≡ fo
fe

(4)

where fo is the focal length of the objective and fe is focal length of the eyepiece.

Each of you should now get a telescope kit. It should contain:

• Two cardboard tubes, one of which can slide inside the other;

• A 400 mm focal length converging lens (objective);

• A 15 mm focal length lens (eyepiece);

• A foam holder for the eyepiece lens;

• Cardboard spacers for the eyepiece lens;

• A cardboard field stop.

Assemble the telescope as shown below
Outer Tube

Inner Tube

Foam Insert

Cardboard Spacer

Eyepiece
Objective Lens

Field Stop

Objective Holder

Figure 4

Estimate the magnification you expect with your telescope.
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Use your telescope to sight a distant object (outside if you can), focusing by sliding
the inner tube in or out of the outer tube, as appropriate. A good place to start is
with the inner tube slid out so that the distance between objective and eyepiece lens
is approximately the sum of the focal lengths. Q: When you get it focused, do you
find that what you see is right side up or inverted? Can you tell why?

NOTE: NEVER, REPEAT NEVER, LOOK DIRECTLY AT THE SUN WITH
A TELESCOPE, OR FOR THAT MATTER, NEVER LOOK DIRECTLY AT THE
SUN WITH THE NAKED EYE.

Note: the telescope is your to keep.
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Lab 9 - Wave Nature of Light

1 Goals

In this lab, you will investigate Fraunhofer diffraction by one or several slits. This is
Fraunhofer diffraction instead of Fresnel diffraction because the patterns are observed
on a screen very far from the slits, compared with their widths. When several slits are
involved, the phenomena are sometimes referred to as interference, e.g. the Young’s
interference pattern of a pair of slits, but a thorough treatment uses the techniques
of Fraunhofer diffraction analysis.

2 Young’s Double Slit Interference

In this section, you will make a double slit and use it to measure the wavelength of
the light from a laser.

In order to better understand the phenomenon of double slit interference, it might
help you to take a look at the wave tank at the back of the room, which simulates
the effect using waves in water.

You have a small piece of exposed photographic plate. Look at reflections from it
to find the side which has the black emulsion on it; that is, the dull side. You also
have a pair of razor blades taped together, and a steel straight-edge with sticky tape
on one side.

Place the sticky side of the straight-edge on the emulsion side of the glass plate.
Holding the double razor blade between your middle finger and thumb, with your
forefinger pressing down on the top (dull) side, draw a line on the photographic plate
about .5 cm from one edge. Be sure to hold the two blades tightly together insure
uniform line separation. Look at it with a lens to see if there is a clean double line
scratched in the emulsion. If it is less than ideal, try again near the other edge. A
third try can be made near the middle of the plate, if needed.

The spacing between the lines can be easily checked by measured by measuring
the thickness of the two razor blades with the micrometer caliper. Assuming that the
tapers ground on razor blades are alike, the spacing of the lines is the thickness of
one blade (half the thickness of two).

Mount your double slit in a spring clip in front of the laser, with the slit vertical.
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Mount a screen with a scale at the other end of the optical bench. Carefully adjust
the alignment until the laser beam is centered on the pattern, and produces a Young’s
pattern on the screen. You can measure the spacing of the maxima with the scale.
You should have a large number of interference maxima, so that you can measure the
distance between widely spaced maxima and divide by the number of periods to get
good accuracy. Measure the distance from the slits to the screen.

As you learned in class, the angles of the maxima are given by

sin θm =
mλ

d
(1)

where λ is the wavelength of the light, d is the slit spacing, and m is the “order” of
the maximum. For the small angles here

sin θm ≈ θm ≈
xm

l
(2)

where x is the position on the screen and l is the distance to the screen. Thus the
maxima should be more or less uniformly spaced at a distance

∆x ≈ lθ ≈ lλ
d

(3)

Use this formula and your measurements to calculate the wavelength of the light.
How does it compare to the accepted value of 632.8 nm?

3 Single Slit Diffraction

For this part, you will use the Slitfilm slide shown (schematically) below
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Slit Drawings Only Approximate

The film has a variety of slit patterns, each one identified by its coordinates on the
slide (e.g. C-3). The patters are described by the three numbers at the left. Their
meaning is as follows:

• The top number gives the total number of slits in the pattern.

• The middle number gives the width of the slits in units of 44 µm2.

• The bottom number gives the width of the dark spaces between the slits (not
the distance between the slit centers!!), again in units of 44 µm.

You will probably find these widths only approximate.

2If anyone knows the origin of this unit, I’d like to hear it.
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The Fraunhofer diffraction pattern from a single slit shows a prominent central
maximum, and then minima at angles given by

sin θm =
mλ

D
(4)

where D is the width of the slit. Again,for small angles, the approximation

θm ≈
mλ

D
(5)

is valid.

Position the glass slide in a spring clip in front of the laser so that the narrowest
single slit, A-4, is illuminated by the laser beam. Measure the separation between
the central maximum and the successive minima of the resulting diffraction pattern
on the screen. Use this measurement to calculate the slit width. How close is it to
the nominal value?

Repeat with a wider slit, say A-5 or D-1.

4 Multiple Slit Diffraction

Because the patterns on the slide have slit widths comparable to their spacing, the
diffraction patterns show an interesting modulation of the Young’s pattern convoluted
with a single slit pattern. The minima of the Fraunhofer single-slit pattern can fall
on the maxima of the Young’s interference pattern, causing “missing orders”. You
can observe these best by holding the slide in front of your eye and looking at the
spot formed by your laser beam on the screen, from about 10 feet away. Try this for
patterns B-3, E-3, and A-3. Try to explain the observed missing orders. Note that
because the slit widths and spacings are not exact, this may work better for some of
the patterns than others.

5 Diffraction by a Round Aperture

Diffraction of light going through a round aperture (ie, hole) is similar to that of light
going through a slit, but the math gets slightly more complicated. Careful calculation
shows that the first minimum for light coming through a small aperture will occur at

sin θ = 1.22
λ

D
(6)
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where θ is the angle from the center of the image to the middle of the first dark ring,
D is the diameter of the aperture and 1.22 is a numerical factor coming from the
integration. It is precisely this formula that, among other things, limits the angular
resolution of cameras with a particular aperture (“F-stop”).

Make a small hole in a piece of foil by smoothing the foil over a piece of lucite and
pressing firmly (but not too hard) with a sewing needle. Remove the needle before
lifting the foil off the lucite.

Place this piece of foil in front of the laser and make a sketch in your logbook of
the diffraction pattern you observe on the screen. Measure the radius of the first dark
ring to determine the diameter of the hole which you made in the foil.

6 Polarization

As you’ve learned, the waves that make up light consist of alternating electric and
magnetic fields. In ordinary “unpolarized” light, these fields point in random direc-
tions. A polarizing filter allows only those waves to pass whose electric fields point
in a particular direction.

Take one of the polarizing filters at your station (the grey semi-transparent pieces
of plastic). Look at one of the overhead lights through it. Rotate the filter; that
is, continue to look straight through it, but change its orientation. Does the light
intensity appear to change? What does this tell you about the lights in the room?

Now take a second filter. Look at the room light through both of them and rotate
one relative to the other. Describe and explain what happens as you change the
relative orientation of the two filters.

Whenever light is incident on a transparent medium with a different index of
refraction, some of the light is reflected and some is transmitted (refracted). At
any non-zero incident angle, the reflected light is partially polarized with the E field
parallel to the surface. At the “Brewster Angle” (θb), the light is completely polarized.
This angle is given by

tan θb =
n2
n1

(7)

For light in air incident on water (n=1.33), this angle is about 53◦. Try to verify this
phenomenon, at least qualitatively, using the flat water tank in the back of the room
and one of the polarizing filters. Look through the filter at a reflection coming off
the water at approximately the Brewster angle. See how its intensity varies as you
change the orientation of the filter.
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Lab 10 - Atomic Spectra

1 Goals

In this lab you will measure the discrete wavelengths of light emitted by excited
mercury (Hg) and hydrogen (H) atoms. In the case of hydrogen, you will attempt to
verify whether your data are consistent with the simple model developed by Balmer,
and thus with the later “Bohr Atom”, the first quantum model of the hydrogen atom.

2 Introduction

Around the turn of the century, several experimental results appeared to be com-
pletely inconsistent with a “Newtonian” picture of the atomic and subatomic world.
The three most important observations were:

• The fact that the spectrum of radiation from a hot body (so-called “black body”
radiation) was inconsistent with calculations in which oscillatingmolecules could
take on arbitrary energies, but was consistent with a model in which these
energies could only have certain discrete values.

• The “photoelectric effect”; that is the fact that in using light to eject electrons
from a metal surface, it was found that it was the wavelength of the light that
was most important, not its intensity, prompting Einstein to postulate that light
was made of discrete “quanta”, each of which carried an energy proportional to
its frequency3.

• The fact that the light emitted from excited atoms comes in discrete frequencies.

All of these observations could be explained in terms of energy and energy transfer
being “quantized” rather than continuous. Surprisingly, in these three very different
experiments, this quantization was found to be related to the same constant, the so-
called “Planck Constant”. This precipitated the development of a revolutionary new
model of physics at atomic and subatomic scales known as “quantum mechanics”.

3It is this, and not the theory of relativity, for which Einstein won the Nobel Prize. It’s ironic
that Einstein himself never believed all the implications of quantum mechanics, although his work
was seminal in its formulation.
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In this lab, we’ll recreate the measurement of some atomic spectra. The atoms in
gases are excited by passing an electric arc through them. We then study subsequent
frequencies of light that are emitted.

3 The Spectrometer

In this lab, you’ll be using the “crossbow” spectrometer

Obse rve r S o u r c e

Slit

Rule r

C o l o r e d  I m a g e
of Sli tAppa ren t  Pa th  one

Frequency  of  L igh t

θ

θ

Sliding
M a r k e r

Diffract ion
Gra t ing

D

L

Light through a slit in the ruler is incident on a diffraction grating, which is held near
the eye. The various frequencies of the light will form interference maxima at angles
given by the usual

d sin θ = mλ (1)

where d is the slit spacing, λ is the wavelength of the light, and m is the integer order.

Because this light enters the eye at an angle, it will appear to come from a different
point than the slit. You will therefore see the individual frequency components of the
light as colored images of the slit along the ruler in either direction.

To measure the angles, have one person look through the grating at the slit. This
person should direct another member to move one of the sliding markers until it is at
the apparent position of the slit corresponding to a particular frequency component.
The angle can then be calculated with

tan θ =
D

L
(2)
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where L is the length of the beam and D is the distance between the apparent slit and
the real slit. A more accurate measurement is obtained by measuring the position on
each side and taking the average.

4 Experimental Data

First measure the spectral lines for the mercury (Hg) lamp. To start the mercury
lamp, hold the button until you see the bluish white light begin to appear, then
release the button. Unplug the lamp to turn it off.

You should clearly see a purple line, a green line and two very close yellow lines
(you might not be able to resolve them). Use the crossbow spectrometer to measure
their wavelengths and compare them to the accepted values:

color wavelength (nm)

purple 435.8
green 546.1

yellow (1) 577.0
yellow (2) 579.1

Next measure as many of the spectral lines as you can for hydrogen lamp. The
hydrogen lamp is only on while the button is pressed, so one person will have to hold
the button while the other makes the measurement. These hydroden lamps have a
limited lifespan, so try to expedite the measurement.

5 Interpreting the Hydrogen Data

As you saw, the data from the mercury lamp is rather complicated, particularly the
yellow “doublet” line; however, hydrogen is a simple atom consisting of a single proton
and an electron. In 1885, Balmer discovered that the observed visible spectral lines
of hydrogen obeyed the following relationship:

1

λ
= R

(
1

22
− 1

n2

)
; n = 3, 4, 5, etc. (3)

where R is the so-called “Rydberg Constant”. See if your data fit this model. Make
an assumption about which lines correspond to which n values (hint: will a longer
wavelength (redder line) correspond to a lower or higher value for n?). Make a plot
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of 1/λ vs. (1/22 − 1/n2) and measure the slope to determine the Rydberg constant.
How close is it to the accepted value of 1.097 × 107m−1?

The quantum mechanical interpretation of these lines is that the electron orbiting
the hydrogen atom can only exist at discrete energy levels given by

En = −
E0

n2
; n = 1, 2, 3, etc. (4)

(The exact derivation of this expression can be found in the book.). When an electron
makes a transition from a higher energy (n) state to a lower energy (n′ < n) state it
emits a photon with an energy given by

Eγ = hν =
hc

λ
= En −En′ =

(
−E0
n2

)
−
(
−E0
n′2

)
(5)

= E0

(
1

n′2
− 1

n2

)
(6)

E1=-E0

E2=-E0/4

E3=-E0/9
E4=-E0/16

E>5
E=0 E5=-E0/25

Balmer Series

In this experiment, the atoms are excited to a high energy state by the electric
discharge, then gradually transition back down to their ground state.

In this context, the Balmer series is interpreted as transitions to the n = 2 state
from higher initial states. Why don’t we see transitions to the n = 1 state? What is
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the exact relationship between E0 and the Rydberg constant (R)? Use your measured
value for R to get a value for E0. Express your answer in electron-volts. How close is
it to the accepted value of 13.6 eV?
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Prelab Problems Sets

Following are the prelab problem sets, one for each lab starting with lab 2. The
problems sets are due at the beginning of each lab and make up 1/3 of your lab grade.
Each week you should tear out the appropriate problems set, do all work in the space
provided (continuing on the back if need be), and place the sheet in the box near the
door as you come into the lab. Remember to put your name on each sheet!!!
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Lab 2 Problem Set Name:

The following lines represent infinite planes of uniform voltage, each with the voltage
indicated, spaced 1 cm apart.

0V 1V 2V 3V 4V 5V 6V 7V 8V

e−

The dot represents an electron (q = −1.6× 10−19 C, m = 9.11× 10−31 kg)

(a) On the figure, draw an arrow indicating the direction which the electron will go
when it is released.

(b) What will be its acceleration, assuming there are no other forces?
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Lab 3 Problem Set Name:

The following circuit is made with a V = 3 Volt battery and two identical resistors
of R = 100 Ω each.

V
R

R

A

B

(a) What is the magnitude of the current in the circuit (in amps)? Draw an arrow
on the figure to indicate the direction.

(b) What is the voltage difference (magnitude) between A and B?
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Lab 4 Problem Set Name:

An electron is accelerated by the plate capacitor device shown below. The accelerating
voltage is V0 = 1000 V.

−V0

v

(a) What is the magnitude of its velocity v as it leaves the second plate?

(b) If someone turns on a uniform magnetic field of .1 T, pointing out of the page,
will the electron travel in a clockwise or counterclockwise circle?

(c) What will be the radius of the circle?
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Lab 5 Problem Set Name:

The following circuit represents a type of filter.

Vout

R

CVin

The input is a sinusoidally oscillating voltage Vin. The output is Vout. The component
values are R = 10 kΩ and C = 1 µF.

(a) Is this a high-pass or a low-pass filter?

(b) What is the cutoff frequency, in Hz?
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Lab 6 Problem Set Name:

The following circuit has C = 1 µF and L = 1 mH. The switch is closed when there
is a small amount of charge on the capacitor.

CL

At what frequency, in Hz, will the circuit oscillate?
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Lab 7 Problem Set Name:

φ 1 = °45

φ 2

n1 10≈ .

n1 14= .

A ray of light crosses a boundary between air (n1 ≈ 1) and a material with an index
n2 = 1.4. The angle of incidence is φ1 = 45◦. What is the angle of refraction, φ2?
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Lab 8 Problem Set Name:

f f

d fo = 2ho

An object is placed in front of a converging lens at a distance do, which is twice the
focal length f , as shown.

(a) Will the resulting image be real or virtual?

(b) How far from the lens will it form, in terms of f and do? Indicate the position
and orientation of the image on the figure.
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Lab 9 Problem Set Name:

10 m

D

Monochromatic light of wavelength λ = 500 nm passes through two narrow slits 10
µm apart and is incident on a wall 10 m away. How far apart are the interference
maxima at the wall D?
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Lab 10 Problem Set Name:

Atomic hydrogen makes a transition from the n=4 state to to the n=2 state.

(a) What is the energy of the resulting photon, in eV?

(b) What is the wavelength of this photon, in nm?
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