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Health economics (HE) is a multi-disciplinary field with links to economics, psychology 

and medicine. This is especially apparent in economic evaluations (EE) which have become 

an integral part in the management of health care systems in many western countries. In 

economic evaluations, information on a disease, on the cost of a treatment and on the 

effectiveness of the treatment is combined into a single mathematical model. This model is 

then used to assess the cost effectiveness of a treatment for the disease. The mathematical 

techniques employed to obtain and describe the information originate from three distinct 

mathematical disciplines associated with economics, psychology and medicine: econo-

metrics, psychometrics and (bio)statistics. Even though there is a large amount of overlap, 

they all originated as separate disciplines and were developed with different perspectives 

in mind. This means that researchers in HE have a wide variety of different statistical and 

mathematical techniques at their disposal.

This dissertation shows how ideas and approaches from different disciplines can be 

applied in solving health economic problems. Basic statistical techniques common to 

all fields, such as linear regression, are common. They are applied in most of the studies 

presented in this thesis. In addition to this, the studies described in this thesis show how 

more specialised techniques and approaches can be used outside the field where they were 

originally developed. In particular they are used in economic evaluations and the measure-

ment and valuation of health related quality of life.

The first of these is Monte Carlo simulation. Monte Carlo (MC) simulation is a numerical 

technique that was invented by Stan Ulam and John von Neumann while they were work-

ing on the Manhattan project [1,2]. With the increase in computing power over the years, 

MC simulation has become a very popular technique in many different fields including 

the social and health sciences. Different applications can also have different mathematical 

objectives and therefore different perspectives of regarding MC. For example, in mathemat-

ical finance MC is used as a numerical integration technique for the calculation of option 

pricing [3,4]. In contrast, in health economics MC is commonly viewed as a numerical sam-

pling technique in simulation studies. In this thesis Monte Carlo simulation was used in two 

different applications. Firstly to determine the uncertainty around the outcome parameters 

of the Markov model for an economic evaluation of a new chemotherapy for colorectal 

cancer. Secondly to compute the uncertainty around the utility values for EQ-5D health 

states. Furthermore MC was used to determine the relationship between the number of 

health states and the number of respondents included in EQ-5D valuation studies and the 

uncertainty surrounding the utility values.

The second technique used outside its main field of application is factor analysis (FA), a 

statistical technique with strong ties to psychometrics. In psychology FA is applied in the 
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development of questionnaires. FA can be used to explore the underlying dimensional 

structure of questionnaire data. The basic idea behind it is to investigate whether a number 

of items generate information about a more general underlying construct [5]. FA determines 

common factors and the way questionnaire items are associated to these factors by analys-

ing the pattern of correlation. Items with relatively high inter-correlation are assumed to 

reflect the same construct, and items with low inter-correlation reflect different constructs. 

In this thesis FA was used in an econometric problem. Namely, can utility values obtained 

with a generic utility measure be attached to the health states from a disease specific quality 

of life instrument?

The third technique used outside its main field of application is the Discrete Choice Experi-

ment (DCE) and associated Discrete Choice Models (DCM). In a DCE respondents are 

shown two alternatives and are asked to choose which of those two alternatives they prefer. 

Because the data collected is typically in the form of a proportion of respondents preferring 

alternative A to alternative B, a specific class of models (i.e. probability models) is needed 

to analyse these data. DCEs and DCMs have been extensively applied and refined in the 

fields of transport economics and marketing. In this thesis DCE and DCM were employed 

as an alternative to time trade off (TTO) or visual analogue scale (VAS) for the elicitation 

and modelling of health state valuations.

Besides the use of the various statistical techniques from the social and health sciences, 

mathematical approaches from seemingly unrelated fields such as (astro)physics can also 

be used in health economics. This is shown in a study where polar coordinates r and ϑ 

(i.e. radius and angle) are used rather than the conventional Cartesian coordinates x and 

y to estimate a utility model for the valuation of health related quality of life. In essence 

what this means is that the regression model was based on geometry. Even though the 

use of polar coordinates (and therefore geometry) is highly uncommon in the social and 

health sciences, it is considered the default approach in many branches of physics and 

astrophysics.

Lastly, the frequentist approach to statistics and the Bayesian approach to statistics were 

compared in a study to perform a fixed-effect and a random-effect meta-analysis. Both 

approaches have their own underlying framework and, for the purpose of data synthesis, 

both approaches allow for the same type of models. The frequentist approach is the con-

ventional type of statistics and is different from the Bayesian approach. The idea behind 

Bayesian statistics is that what is known (or believed to be true) about the model param-

eters before seeing the new data can be captured in a probability distribution called a prior. 

This prior is then synthesized with the information in the new data to produce a posterior 
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probability distribution, which expresses what we now know about the parameters after 

seeing the data [6].

Structure of this thesis

This structure of this thesis is as follows. Chapter 2 introduces the concept of quality of life 

measurement. It examines the impact of age on quality of life of the general population 

from eleven European countries. The chapter also contains a description of the EQ-5D, the 

most widely used generic utility measure, which is applied extensively in this thesis. Chap-

ter 3 forms an introduction into economic evaluations. It provides an example of a Markov 

model for the evaluation of the cost-effectiveness of panitumumab, a new chemotherapy 

for the treatment of colorectal cancer.

This is followed by three chapters on sources of uncertainty in CUA outcomes. Chapter 4 

investigates the impact of four different methods of meta-analysis on the outcomes (i.e. 

cost-effectiveness) of a probabilistic Markov model for Chronic Obstructive Pulmonary 

Disease (COPD). Chapter 5 presents a simulation study to quantify the amount uncertainty 

surrounding utility values and the link between the number of respondents and health 

states included in the valuation study on the uncertainty surrounding the utilities. Chapter 

6 assesses the appropriateness of using a mapping model to attach EQ-5D based utilities to 

health states from a disease specific quality of life measure for use in hip related disorders, 

the Oxford Hip Score (OHS).

The last two studies presented in this thesis are on new approaches in utility modelling. 

Chapter 7 shows how a regression technique based on geometry can be used to estimate a 

utility model for EQ-5D based health state valuations. Chapter 8 describes a study where 

EQ-5D health state valuation data was collected using four different elicitation techniques: 

ranking, VAS, TTO and DCM. The impact of the different elicitation techniques is compared 

on the basis of the resulting utility models.

Lastly, chapter 9 summarises the conclusions of the different chapters and discusses the 

implications of the results.
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Introduction

The impact of age on health is getting increasingly important because of the aging popu-

lations in many western countries. Older age is associated with an increase of mortality 

rate due to poorer health. Poor health in turn is associated with a decrease in quality of 

life. Therefore both the increase in mortality rate and the decrease in quality of life are 

important when considering the health of an aging population. Many types of studies use 

the general population as a frame of reference. For example the mortality of the general 

population is taken as background mortality on which a particular disease related mortality 

is superimposed. In such studies it might be important to not only take this background 

mortality into account, but also the background quality of life of the reference population. 

It would therefore be helpful to investigate and model the impact of age on quality of life.

In this study we used data collected with the EQ-5D to investigate the impact of age on 

quality of life. The EQ-5D is a generic measurement instrument for use in adults to describe 

and value health states [1,2]. The EQ-5D classification describes health states according 

to five dimensions: mobility; self-care; usual activities; pain/discomfort; and anxiety/

depression. Each dimension has three levels: ‘no problems’; ‘some problems’; and ‘severe 

problems’. Health-state descriptions are constructed by taking one level for each attribute, 

thus defining 243 (35) distinct health states, where ‘11111’ represents the best and ‘33333’ the 

worst state.

The health states can be converted into single summary index numbers (also known as 

utilities) using an EQ-5D value set. The value sets are based on statistical models applied 

to data that reflect the values of the EQ-5D health states. In the valuation studies, a sample 

of the general population evaluates hypothetical health states (i.e. descriptions of health as 

defined by the EQ-5D classification system). Commonly used techniques for the valuation 

of EQ-5D health states are the Visual Analogue Scale (VAS) and Time Trade-Off (TTO). The 

value sets are anchored on the utility scale where full health = ‘11111’ = 1 and ‘dead’ = 0. This 

allows the EQ-5D index values to be used in the calculation of Quality Adjusted Life Years 

(QALYs).

In addition to the classification system and associated utilities, the EQ-5D instrument 

contains a visual analogue scale, the EQ VAS. The EQ VAS is a vertical rating scale ranging 

from “best imaginable health” at the top of the scale (=100) to “worst imaginable health” 

at the bottom of the scale (=0). Respondents are asked to rate their health today directly 

on this scale (as opposed to rating an EQ-5D health state on the scale). This means that 

the EQ-VAS can capture information from aspects of health not included in the descriptive 

system of EQ-5D.
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The aim of this paper is to investigate the relation between age and self-reported health as 

expressed by the EQ-5D descriptive system and the EQ-VAS.

Methods

Data

The data originated from the EuroQol Group database that was assembled as part of the 

European Union funded EQ-net project from 2002 [3]. The database was updated with 

additional data that became available after 2002. For the purposes of this study, data for 

10 European countries were used: Belgium [4], Finland [5], Germany [6,7], Greece [8], 

Hungary [9], The Netherlands [10,11], Slovenia [12], Spain [13-15], Sweden [16,17], and the UK 

[18,19]. Data from separate studies within the same country were pooled in order to increase 

the number of observations in each cell. As the current study was undertaken in order to 

provide models for the population norms, only data from surveys that targeted the general 

public were used. Data from two of the studies in the EuroQol EQ-net database were based 

on patient populations rather than the general population and were therefore not included. 

The final restriction on the data was that, due to the low number of very elderly respondents, 

age was restricted to the range of 18 to 85 years old.

Models

In order to investigate the relationship between self-reported health and age, OLS regres-

sion models were estimated where EQ-VAS was the dependent variable and age was the 

independent variable. Because the relation between EQ-VAS and age might be different for 

men than for women, OLS models were also fitted separately for men and women. Since 

there might be marked differences between the EQ-VAS values of people who classify their 

own health as perfect (i.e. in 11111) compared to those of people that indicate to have health 

problems on the descriptive system. About half of the sample reports an EQ-5D state of 

11111. This proportion ranges from 75% for age 18 to 20% for age 85. Therefore an analysis was 

undertaken on for these two groups.

To gain insight in the effect of age on the individual 5 EQ-5D dimensions regression models 

were estimated for the proportion of reported problems per dimension. Because relatively 

few level 3 problems were reported, these models were carried out on dichotomized levels 

of the five EQ-5D dimensions (i.e. no problems; problems). Therefore logistic regression 

was used. The logistic model is of the form P = 1/(1+e−z), where z is a function of age and 

P = the proportion of problems. The final model was selected based on best model fit as 



Chapter 2

16

measured by: 1) adjusted R2 of the models based on data including both the within and the 

between variance, 2) adjusted R2 of the models based only on the between variance and 3) 

Akaike’s information criteria (AIC).

When analyzing the data it was found that the EQ-VAS data per age-category was skewed. 

This could pose a problem since one of the assumptions underlying OLS regression is that 

the data is normally distributed. Therefore, the models were also fitted on EQ-VAS values 

that were transformed using a logistic transformation in order to remove this skewness [3]. 

The transformation that was used was

VAS* = ln




VAS − min 



, where min = 0.5 and max = 100.5.
max − VAS

All analyses were carried out in SPSS version 19.

Results

Table 2.1 shows an overview of the data that was used in this study. We found that the 

logistic transformation of the EQ-VAS data did remove some of the skewness. However, the 

model fits were poorer on the transformed data than on the raw data (results not shown). 

Therefore it was decided to carry out all analyses on the untransformed data. Table 2.2 pres-

ents the differences between the models, when data from all European countries was used.

Table 2.1: Proportion of respondents in the dataset by country, sex and age group.

Age groups

Country N
% 

Male
18-29 30-39 40-49 50-59 60-69 70-79 80-85

Belgium 1258 47% 9% 23% 22% 17% 15% 11% 3%

Finland 1580 49% 20% 15% 14% 10% 18% 17% 5%

Germany 812 60% 15% 15% 15% 22% 20% 11% 3%

Greece 463 54% 29% 19% 17% 17% 11% 6% 1%

Hungary 5457 45% 22% 16% 20% 17% 13% 10% 2%

Netherlands 823 44% 14% 19% 13% 13% 17% 18% 7%

Slovenia 734 44% 27% 19% 17% 16% 11% 9% 1%

Spain 2701 47% 24% 17% 17% 16% 15% 10% 2%

Sweden 3587 54% 16% 19% 18% 20% 13% 11% 3%

United Kingdom 3349 43% 20% 20% 16% 14% 14% 12% 3%

Total 20764 48% 20% 18% 17% 16% 14% 11% 3%
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The fact that the age parameter is smaller than zero indicates that EQ-VAS scores decrease 

with increasing age. Table 2.2 shows that age partly explains the decrease in reported own 

health although R2 is low (about 11%). This is due to the fact that age is only an indicator 

for health. The remaining 89% of the variance is due to other factors, such as the presence 

of disease. The proportion of explained variance of the linear model was 10.6%. Adding a 

quadratic term increased the adjusted R2 from 10.6% to 10.7%, an increase of 0.1%. Using a 

cubic model resulted in a value of R2 of 10.8%. Compared to the R2 resulting from the linear 

model this is an increase of 0.2%. Furthermore, Akaike’s information criterion showed that 

there was only a marginal difference in information captured between the 3 models. Lastly, 

when using country specific data rather than aggregated data, the quadratic and cubic 

models resulted in regression coefficients that were not significantly different from zero, 

with a significance level of 5%. Therefore, adding a quadratic and/or a cubic term to the 

model results in only marginally higher proportions of explained variance compared to the 

linear model. Based on this information it was decided to use the linear model for modeling 

the age dependency of EQ-VAS.

In order to investigate the impact of gender on the relation between EQ VAS and age, we 

also estimated the linear models separately for men and for women. Table 2.3 shows the 

regression coefficients and values of R2 for the linear model separate for men and women. 

A linear model was also estimated in which age, sex and the interaction of age and sex (i.e. 

age*sex) were introduced stepwise as covariates. This model resulted in the exclusion of 

sex from the model, but the values of R2 and AIC were virtually identical. As can be seen 

in table 2.3 the constant is higher for women than for men, whereas the age parameter is 

smaller. This means that women start out with slightly higher EQ-VAS values than men, but 

from age 28 they are lower than those for men.

Table 2.2: regression models for EQ VAS versus age based on data from all European countries.

adjusted R2 AIC constant age age2 age3

Linear .106 101924 93.216 −.340

Quadratic .107 101902 88.876 −.134 −.002

Cubic .108 101885 78.731 .616 −.019 .0001

Table 2.3: Regression coefficients and values of R2 for the linear model by sex.

adjusted R2 AIC constant age age*sex (M=0,F=1)

Men 0.097 47169 92.61 −0.32

Women 0.115 54688 93.71 −0.36

Total 0.106 101896 93.12 −0.34

Total + sex*age 0.107 101880 93.20 −0.35 0.023
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Figure 2.1 shows the EQ VAS scores predicted by the linear model and the mean observed 

EQ VAS scores per year of age (each age is used as an age group). This means that all the 

differences in reported EQ VAS within a single age (i.e. within state variance) have been 

erased. Figure 2.1 is therefore somewhat misleading because it shows only part of the total 

variance of the data, and the model seems to fit the data (explaining the total variance) 

much better than actually is the case. The separate models for respondents indicating no 

problems on any of the EQ-5D dimensions (i.e. 11111) and respondents with problems on 

one or more EQ-5D dimensions (i.e. NO 11111) show that in both cases the EQ-VAS decreases 

with age. Not surprisingly, the EQ-VAS values for 11111 consistently higher than those for the 

combined data. Furthermore, the EQ-VAS values for NO 11111 are consistently lower. The fact 

that the EQ-VAS values for 11111 also decrease with age indicates that the EQ-VAS picks up 

decreases in self assessed quality of life that the EQ-5D descriptive system doesn’t pick up.

Separate models were tested for countries with more than 3000 respondents. These coun-

tries are Hungary, Spain and the United Kingdom. Even though the two Swedish studies 

together have more than 3000 respondents, Sweden was not included because only one 

50

55

60

65

70

75

80

85

90

95

100

0 10 20 30 40 50 60 70 80 90

E
Q

-V
A

S 

Age 

11111
All
NOT 11111

♂ 

♀ 

Figure 2.1: Observed EQ VAS scores and predicted EQ VAS scores by age with the linear model.

Table 2.4: Regression coefficients and values of R2 for the linear model per country.

adjusted R2 constant age

Hungary 0.214 95.65 −0.53

Spain 0.070 88.35 −0.27

United Kingdom 0.064 93.97 −0.24

Total 0.106 93.12 −0.34
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of the two available Swedish studies reported EQ VAS values (N = 534). The models for 

Hungary, Spain and the United Kingdom are presented in table 2.4.

Figure 2.2 shows the EQ VAS values predicted by the linear model and the mean observed 

EQ VAS values per year of age for Hungary, Spain and the United Kingdom. As was the case 

in figure 2.1, all the differences in reported EQ VAS within a single age were erased. Figure 

2.2 is therefore also somewhat misleading because it shows only part of the total variance 

of the data, so again the model seems to fit the data (explaining the total variance) much 

better than is actually the case.

Logistic regression was used to model the proportion of reported problems on each of 

the five EQ-5D dimensions. The models for sex were based on the data from all European 

countries. The constant regression coefficient sets the offset point at age 0. Small constant 

(i.e. large negative value) results in a low proportion of reported problems at age 0. The age 

coefficient is related to the global effects of age on the reported proportion of problems. A 

(relatively) large value of b
age

 results in a proportion of reported problems that increases 

faster with increasing age than a small value of b
age

. Table 2.5 shows the regression coef-

ficients and values of R2 for the logistic model of the five EQ-5D dimensions.

As can be seen in table  2.5 the proportion of explained variance varies from 1.6% for 

anxiety/depression to 21.3% for mobility. Also, the values of the regression coefficients, 

and therefore the shape of the curves from the models, vary greatly between dimensions. 

For each dimension, the values of the constant for women are smaller than those for men, 

and the values of the age parameter for women are larger than for men. This means that 
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three countries in the dataset.
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younger women report fewer problems than men, but the proportion of reported problems 

increase faster with increasing age for women than for men. The models of the proportion 

of reported problems by age for all European countries are presented in figure 2.3.
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Figure 2.3: Logistic model for the proportion of reported problems by age for all European countries.

Table 2.5: Nagelkerke R2 and regression coefficients for the logistic model of the proportion of 

reported problems.

Nagelkerke R2 constant age

Mobility Men 0.193 −4.733 0.058

Women 0.231 −4.980 0.064

Total 0.213 −4.867 0.061

Self-Care Men 0.113 −6.135 0.056

Women 0.146 −6.520 0.063

Total 0.131 −6.347 0.060

Usual Activities Men 0.107 −3.986 0.042

Women 0.131 −4.190 0.046

Total 0.120 −4.095 0.044

Pain / Discomfort Men 0.114 −2.321 0.036

Women 0.147 −2.409 0.041

Total 0.131 −2.369 0.039

Anxiety / Depression Men 0.010 −1.774 0.011

Women 0.023 −1.743 0.016

Total 0.016 −1.764 0.014
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Separate models have been made for countries with more than 3000 respondents. Because 

data from both Swedish studies could be used for determining the models for reported 

proportion of problems, models for Sweden have been made in addition to models for 

Hungary, Spain and the United Kingdom. The regression coefficients and Nagelkerke R2 

for the logistic models of the proportion of reported problems are presented in table 2.6.

Comparing tables 2.5 and 2.6 shows that differences between countries were larger than 

the overall differences between men and women, as was the case for the models estimated 

Table 2.6: Nagelkerke R2 and regression coefficients for the logistic model of the proportion of 

reported problems.

Nagelkerke R2 constant age

Mobility Hungary 0.254 −4.951 0.068

Spain 0.205 −5.165 0.062

Sweden 0.179 −5.565 0.063

United Kingdom 0.190 −4.426 0.055

Total 0.213 −4.867 0.061

Self-Care Hungary 0.189 −6.629 0.071

Spain 0.117 −7.000 0.061

Sweden 0.070 −6.709 0.049

United Kingdom 0.072 −5.401 0.042

Total 0.131 −6.347 0.060

Usual Activities Hungary 0.193 −4.895 0.060

Spain 0.093 −4.204 0.040

Sweden 0.033 −3.814 0.026

United Kingdom 0.094 −3.585 0.037

Total 0.120 −4.095 0.044

Pain / Discomfort Hungary 0.181 −2.713 0.048

Spain 0.077 −2.283 0.029

Sweden 0.080 −1.720 0.031

United Kingdom 0.142 −2.727 0.041

Total 0.131 −2.369 0.039

Anxiety / Depression Hungary 0.077 −2.015 0.030

Spain 0.008 −2.090 0.010

Sweden 0.000 −0.903 0.000†

United Kingdom 0.023 −2.150 0.017

Total 0.016 −1.764 0.014

† Regression coefficient is not significantly different from 0 with a significance level of 0.01 (b
age

 = 0.00006, signifi-

cance = 0.98).
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for the EQ-VAS. The reason that R2 is zero for the anxiety/depression dimension for the 

Swedish data is that since the age parameter is essentially equal to zero, no age dependency 

was found, and hence the variance cannot be explained using a model that has age as its 

only explanatory variable.

Conclusions and discussion

In order to investigate the relationship between self assessed health related quality of life 

and age as measured by EQ-5D, we analysed population data from 10 European countries. 

First we estimated regression models where the EQ-VAS values were the dependent vari-

able, and age and gender the independent variables.

The linear model resulted in a constant = 93.12 and age parameter = −0.34 with adjusted 

R2 = 0.106. Extending the model to also include quadratic and cubic age parameters did 

only not improve the fit of the model. Using the mean observed EQ-VAS scores per year of 

age instead of the raw data, (i.e. all the within variance is removed), results in a dramatic 

increase in R2. The value of R2 increases from 10.7% to 93.9% while the regressions coef-

ficients stay the same. If not only the raw EQ VAS values are changed into the mean EQ 

VAS values per year of age, but also only a single observation per year of age is used, all 

ages receive equal weight in the regression model. The resulting R2 for this variant of the 

linear model is 0.95. The corresponding regression coefficients change slightly from the 

individual-data model results to: constant = 93.26 and age = −0.35.

Differences were found between men and women, where women tend to start out with 

higher quality of life than men. However, because women show a steeper decline in EQ-

VAS scores by age than man, men tend to have higher EQ-VAS values from age 28 and up. 

However, the differences are small (about 3 points on the VAS at age 85). However, even 

though they are statistically significant they should be interpreted with care because no 

adjustments were made for differences in survival between men and women. Lastly, we 

found that differences between the linear models based on the EQ-VAS between countries 

are larger than the overall difference between men and women.

Modeling of the proportion of reported problems has been carried out using logistic 

regression. Again the values of R2 are low (ranging from 23% to 1%), but all but one of the 

regression coefficients are significant with a significance level smaller than 0.01. Distinct 

differences were found between the relation with age of the physical domains mobility, 

self-care and usual activities, and the domains pain/discomfort and anxiety/depression. 

The physical domains start with few reported problems (<5%) at age 18, that increase with 
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age at an increasing rate. Pain/discomfort and anxiety/depression start out higher (18% and 

19%) and also increase with age but at a constant rate, which is higher for pain/discomfort 

than for anxiety/depression.

Not all data used for each country is fully representative of that country. Some studies have 

been conducted in specific geographic regions or other subgroups of the population as a 

whole. Despite this, we consider the collective dataset has adequate representativeness for 

Europe and has enabled us to obtain meaningful results, as the ten countries taken together 

have a good geographical distribution over Europe.
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Introduction

Colorectal cancer is the fourth most commonly diagnosed cancer and the second leading 

cause of cancer-related deaths in the US. In the US, it is estimated that over 153.800 cases of 

colorectal cancer are diagnosed and over 50.600 patients will die from the disease in 2008 

[1]. In the European Union, the most recent update from the GLOBOCAN database reports 

in 2008 an incidence of approximately 334.000 patients with colorectal cancer and 150.000 

deaths associated with these cancers [2]. In the Netherlands, in 2010 approximately 12,700 

patients were diagnosed, and over 5.000 patients were reported to have died from it [3].

At the time of diagnosis, almost a quarter to a third of the patients already have metastatic 

disease (stage IV; mCRC), and approximately a third of the patients diagnosed and resected 

with early-stage disease subsequently develop metastases [4]. Nearly all patients with meta-

static cancer will die of their disease and treatment of metastatic disease is in most cases pal-

liative in intent as no cure is available except in subjects with (potentially) resectable liver or 

lung metastases. 5-fluorouracil, a thymidylate synthetase inhibitor, introduced in the fifties 

of the previous century, is still part of the treatment. In the past decades, however, therapies 

for mCRC have improved dramatically and have shifted from monotherapy to combination 

therapy and, finally, to sequential combination therapy. Combinations of newer cytotoxic 

agents, i.e., irinotecan and oxaliplatin, with fluoropyrimidine regimens have improved 

survival in these patients and have become the new standard of care. The addition of the 

topoisomerase-I inhibitor irinotecan to the combination of 5-fluorouracil and leucovorin 

(5-FU/LV; FOLFIRI) in the first-line treatment of mCRC resulted in improved response 

rates, a longer time to progression, and greater overall survival than 5-FU/LV alone [5,6]. 

The cytostatic agent oxaliplatin, a third generation platinum compound, was introduced 

in the same period. In combination with 5-FU/LV (FOLFOX), oxaliplatin resulted in higher 

response rates, longer progression-free survival, and longer overall survival in the first-line 

treatment of mCRC than the combination of irinotecan and bolus FU/LV [7,8]. Both of 

these agents, irinotecan and oxaliplatin, are associated with significant toxicities, which 

occasionally can be severe, particularly when combined with bolus 5-fluorouracil.

In addition to these chemotherapeutic agents, in the last decade, three biologic compounds 

have been approved for the treatment of metastatic colorectal cancer: bevacizumab, 

cetuximab and panitumumab [9,10]. Although all three agents are monoclonal antibodies 

directed against specific cancer-related targets, they are quite different. Bevacizumab is a 

recombinant humanized antibody that targets tumor angiogenesis by specifically binding 

to the vascular endothelial growth factor (VEGF), thereby blocking VEGF binding to its 

receptor in endothelial cells and subsequent signaling. When in first-line combined with 

irinotecan and bolus 5-FU/LV (IFL), bevacizumab confers superior response rates, time to 
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progression, and survival compared with IFL alone [11]. Moreover, the addition of bevaci-

zumab to 5-FU/LV has also shown advantages in both overall and progression-free survival 

times compared with 5-FU/LV or IFL regimens [12].

Both cetuximab and panitumumab target the human epidermal growth factor receptor 

(HER-1/EGFR), which when activated by various ligands, including the epidermal growth 

factor (EGF), initiates a signaling cascade [13]. The protein product of the proto-oncogene 

KRAS (Kirsten rat sarcoma 2 viral oncogene homologue) is a central down-stream signal-

transducer of EGFR [14]. In tumors, activation of KRAS by EGFR contributes to EGFR-medi-

ated increased proliferation, survival and the production of pro-angiogenic factors [13,14]. 

KRAS is one of the most frequently activated oncogenes in human cancers. Mutations of the 

KRAS gene at certain hot-spots (mainly codons 12 and 13) result in constitutive activation of 

the KRAS protein, independently of EGFR signalling [15]. In mCRC, the incidence of KRAS 

mutations is in the range of 30 to 50% [16].

Study data have demonstrated that patients with mCRC and activating KRAS mutations 

in the tumor are highly unlikely to benefit from treatment with these antibodies as mono-

therapy or in combination with chemotherapy. Results from a pivotal trial in patients with 

mCRC who had failed standard chemotherapy [17], comparing panitumumab plus Best 

Supportive Care (BSC) versus BSC alone, according to KRAS status demonstrated that 

treatment with panitumumab in patients with a tumor with activating KRAS mutations in 

codon 12 and 13, no treatment effect could be demonstrated [18]. In patients with a KRAS 

wild-type tumor, higher disease control (51% versus 12%) and improved progression free 

survival (median 12.3 versus 7.3 weeks; Hazard Ratio=0.45, 95% Confidence Interval 0.34-

0.59) was shown [18]. 76% of patients randomized to BSC alone in first instance were given 

panitumumab upon progressive disease in a subsequent protocol. Therefore, no effect on 

overall survival could be demonstrated [18].

Panitumumab is the first fully human monoclonal antibody approved in mCRC targeting 

the EGFR. Panitumumab is approved in Europe by the European Medicines Agency for the 

treatment of patients with wild-type KRAS mCRC in first-line in combination with FOLFOX, 

in second-line in combination with FOLFIRI for patients who have received first-line 

fluoropyrimidine-based chemotherapy (excluding irinotecan), and as monotherapy after 

failure of fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy regi-

mens. The chimeric antibody cetuximab is approved by the European Medicines Agency 

for the treatment of patients with EGFR-expressing, KRAS wild-type mCRC in combination 

with irinotecan-based chemotherapy, in first-line in combination with FOLFOX, and as a 

single agent in patients who have failed oxaliplatin- and irinotecan-based therapy and who 

are intolerant to irinotecan. The introduction of the biologicals in the treatment of mCRC 
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has resulted in a near doubling of patient survival, which is a significant accomplishment 

in the treatment of a disease that was once considered untreatable.

In the Netherlands, panitumumab monotherapy was granted temporary reimbursement in 

2008 for KRAS wild-type mCRC after failure of fluoropyrimidine-, oxaliplatin-, and irinote-

can-containing chemotherapy regimens. Although combination therapy of cetuximab and 

irinotecan was approved earlier by the EMA, it was not (widely) used in Netherlands due 

to a negative reimbursement assessment in 2007. However, in 2009, cetuximab was also 

granted temporary reimbursement as monotherapy. Currently, reimbursement dossiers 

are under discussion for both panitumumab and cetuximab combination therapy in earlier 

lines. In clinical practice, this means that in the Netherlands, EGFR antibodies are currently 

mostly used in third line treatment as monotherapy, even though it is not limited to third 

line per se.

The focus of the current cost-effectiveness study is on the use of panitumumab as mono-

therapy for mCRC patients that failed fluoropyrimidine-, oxaliplatin-, and irinotecan- con-

taining chemotherapy regimens.

Methods

The primary source of effectiveness data for the cost-effectiveness model was an open-label 

phase 3 clinical trial including 463 patients with mCRC [17,19]. The treatment arm of the 

trial was panitumumab + Best Supportive Care (BSC; n = 231) and the comparator arm was 

BSC alone (n = 232). All patients were followed approximately every 3 months for up to 2 

years after random assignment. Upon disease progression, patients in the BSC arm were 

eligible to receive panitumumab under a separate study in a cross-over protocol. In total 

Table 3.1: Demographics and baseline characteristics of patients included in the trial.

Panitumumab Best Supportive Care

N 231 232

Sex
% Male 63% 64%

Age
median (range) 62 (27-82) 63 (27-83)

ECOG
% 0, % 1, % 2 46%, 41%, 13% 34%, 50%, 15%

K-ras wild type
N (%) 124 (54%) 121 (52%)
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176 patients from the BSC arm (76%) crossed over to panitumumab. Both arms of the trial 

included patients both with wild-type and with mutated KRAS tumors, as the role of this 

biomarker was only investigated afterwards. A summary of the demographics and baseline 

characteristics can be found in table 3.1.

The model that was used to assess the cost-effectiveness of panitumumab plus BSC (Pmab 

arm) versus BSC alone (BSC arm) was a Markov model with a probabilistic sensitivity 

analysis (PSA). The three disease states in the model were: mCRC, Progressive disease and 

Death (figure  3.1). Patients start in the Markov state mCRC. From there they can stay in 

the mCRC state, enter the progressive disease state, or die. From the progressive disease 

state patients can remain in this state or die. A graphical presentation of the structure of 

the cost-effectiveness model is presented in figure 3.1. The cycle length of the model was 14 

days and the time horizon was 4 years (i.e. 104 cycles). Through extrapolation of the survival 

data to this 4 year time horizon it was found that 99.99% of patients will have died after 4 

years. Therefore the analyses are effectively life time analyses. One of the characteristics 

of a Markov model is that the model is memoryless. This Markov assumption implies that 

the risk of death for patients in the progressive disease state is the same for all patients in 

that state irrespective of the amount of time that patients spent in that state [20] (i.e., it has 

no memory of patient history). It is clear that in our case the Markov assumption does not 

hold (i.e., patient history should be taken into account when determining the transition 

probabilities) and therefore we used a micro simulation Markov model. In a micro simula-

tion Markov model patients are sent through the model one at a time, so that individual 

patient histories can be examined when evaluating the model and time-dependency can be 

included in the transitions from one state to the next [20]. In each analysis 1,000 individual 

patients were simulated per arm. The probabilistic sensitivity analyses (PSA) used 1,000 

iterations. The iteration of the PSA and the simulation of the patients were implemented as 

a nested Monte Carlo simulation. That is, for every iteration of the PSA, a new set of 1,000 

patients per arm were simulated.

mCRC 

Progressive 
disease 

Death 

Figure 3.1: Structure of the cost-effectiveness model.
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Model parameters

The input parameters used in the cost-effectiveness model fall into four categories: Transi-

tion probabilities between disease states, Use of panitumumab, Costs, and Health related 

Quality of Life.

Transition probabilities

In order to model the time dependent transition probabilities, we first analyzed the data 

using Kaplan Meier survival analyses. Next parametric functions were fitted to the data 

and compared to the results from the Kaplan Meier analysis. The time dependent transi-

tion probabilities from mCRC to death (i.e., patients who die before disease progression) 

and from progressive disease to death (i.e., patients who die after disease progression) 

were estimated using Weibull models. For the Weibull model the cumulative survival is: 

S(t) = Exp(−L * tG). In the PSA the correlation between L and G was taken into account using 

Cholesky decomposition. The scale parameters of the Weibull models were not normally 

distributed. Therefore the natural logarithm of the scale parameter Ln(L) was used to 

calculate the probabilistic transitions in the CE-model. The Kaplan Meier analyses for the 

transition probabilities from mCRC to progressive disease showed that the survival func-

tions were initially concave, but after a while turned convex. Therefore two models were 

fitted to each curve, one for the concave part and one for the convex part. For the Pmab arm 

the cut-off point was at 56 days. The concave part was modeled using an exponential func-

tion S(t) = Exp(−L * G). The convex part was modeled using a Weibull function. For the BSC 

arm the cut-off point was at 60 days. Both parts were modeled using a Weibull function. 

The cut-off points (i.e. 56 days and 60 days) were based on the results of the Kaplan Meier 

analyses and indicate that for the transition from mCRC to progressive disease the patients 

can roughly be divided into two groups, early progression versus late progression. Figure 

3.2 shows the results from the estimation of the time dependent transition probabilities.

Panitumumab

Since the CE model uses BSC alone as a comparator, patients in the BSC arm who were 

treated with panitumumab were censored at the cross-over time. The exposure to panitu-

mumab was therefore limited to patients in the Pmab arm. We accounted for the correla-

tion between the number of treatments with panitumumab and the total time at risk in the 

mCRC and progressive disease states. According to the trial protocol patients did not receive 

panitumumab after disease progression was established. However, disease progression was 

monitored both by the physician treating the patient and separately (and retrospectively) 

by an expert panel. In our model we used the information on disease progression supplied 
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by the expert panel in order to avoid effects of differences between individual physicians. In 

many instances the expert panel concluded that progressive disease occurred at an earlier 

point in time than the physicians did. Therefore, contrary to the protocol specification, 

panitumumab had been administered after disease progression and we incorporated this 

in the model and in the base case scenario. We tested the impact of this aspect of the model 

in a sensitivity analysis.

Costs

The unit cost that was used for panitumumab was the 2008 pharmacy purchase price of € 

4.46 per mg. The total costs related to panitumumab were implemented in the model on 

the basis of the mean dosage of panitumumab that was used in the clinical trial. These were 

425 mg (se = 3.2) before progression and 418 mg (se = 7.3) after progression. The uncertainty 

surrounding the mean dosage before and after progression was included in the PSA. All 

patients in the Pmab arm received panitumumab at least once before progression.

Apart from the costs of panitumumab, six other cost components were identified and 

included in the CE model. These were: concomitant medication, hospitalization, visits, 

medical procedures, radiotherapy, and chemotherapy. The resource use was derived from 

the trial data. The unit costs were based on data from the Netherlands and are expressed in 
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Figure 3.2: Transition probabilities between the 3 states of the model: Kaplan Meier survival curves 

and modelled survival curves (with 95% CIs) for the Pmab arm and the BSC arm.



Chapter 3

34

2008 Euros. The hospitalization costs made up 70% of the costs due to these six components. 

Therefore, the coefficient of variation of the hospitalization costs was used to estimate the 

standard error of the total costs associated with these six components. Subsequently, the 

total costs were incorporated in the model as a gamma distribution. An overview of the 

costs is presented in table 3.2.

Health related Quality of Life

The clinical trial included regular measurements with the EQ-5D to assess health related 

quality of life of the patients in the trial. The UK-TTO value set was used to convert the 

health profiles of the patients into utilities [21]. These utilities were consequently used 

to determine the mean utility of the mCRC and progressive disease states in the Markov 

model (table 3.2). The utility for the state dead was zero by definition. In the probabilistic 

sensitivity analyses beta distributions were fitted to the utilities. As can be seen in table 3.2, 

the mean utility values before progression in the Pmab arm were higher than those of the 

BSC arm (0.74 vs. 0.68). The mean utility values after progression were not significantly 

different at 95% level. Furthermore, because there was no clinical reason to assume that 

patients in the Pmab arm had different utilities after progression than patients in the BSC 

arm, the utilities after progression in both arms were set to the mean utility for all patients 

after progression (i.e., 0.70).

Table 3.2: Unit costs for panitumumab, mean costs per patient for the other cost components (in 

2008 euro) and utilities for the disease states in the base case model.

Panitumumab Best Supportive Care

mean se mean se

Unit Costs

Panitumumab per 440mg €1,962

Mean Costs per patient

Concomitant medication €45 €18

Hospitalization €1,779 €1,248

Visits €386 €248

Medical procedures €109 €65

Radiotherapy €101 €88

Chemotherapy €97 €30

Total (excl Pmab) €2,518 €273 €1,696 €269

Utilities

mCRC 0.74 0.007 0.68 0.013

Progressive disease 0.70 0.008 0.70 0.008
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Scenarios

The cost-effectiveness of panitumumab was assessed in three different scenarios. In the first 

scenario (the base case) the model parameters were estimated using data from all patients 

included in the trial as described above. In the second scenario all model parameters were 

re-estimated based on data from the subgroup of patients that had KRAS wild-type mCRC 

(referred to as the KRAS-WT subgroup in the remainder of this paper). Compared to the 

base case, the biggest impact for the Pmab arm was in time to progressive disease; the 

Kaplan Meier estimates showed a median gain of 50 days for the KRAS-WT subgroup. For 

the BSC arm, the largest impact was on the time from progression to death. Contrary to 

our expectations, the survival analyses showed that the KRAS-WT subgroup had a median 

gain of 61 days for the time from progression to death for the BSC arm, compared to only 

a 7 day median gain for the time from progression to death for the Pmab arm. The data 

showed that this 61 day median survival gain was associated with only a handful of actual 

patients. This was due to the high level of censoring (i.e., 76% of patients in the BSC alone 

arm were allowed to cross-over to panitumumab). When censored data is used in Kaplan 

Meier analyses it is implicitly assumed that the censored patients do not differ from the 

non-censored patients. However, from a clinical point of view, it is possible that the patients 

in worst health cross over to the Pmab arm, whereas the patients in good health remain 

in the BSC arm. Therefore, it was hypothesised that the censoring due to cross-over lead 

to an overestimation of the survival for patients in the BSC arm. This hypothesis was con-

firmed by the direct comparison of the time from progression to death of the BSC arm of all 

patients to that of the KR-WT patients using a log rank test. This resulted in a Chi square of 

0.322 with a significance of 0.57 showing that the 2 curves (and therefore the 61 day survival 

gain) were not statistically different at the 95% level. Because of this, the second scenario 

used the transition probability from progression to death from all BSC patients, not just 

from the KRAS-WT patients. However, we included the model results when using only the 

data from the KRAS-WT patients in the sensitivity analyses.

The third scenario was also based on the KRAS-WT subgroup, but was extended to include 

diagnostic testing for KRAS for all patients in the Pmab arm. These costs were assumed to 

be €200 per test, based on the Dutch Healthcare Authority tariff for complex molecular 

diagnostics. Patients with a positive test result (roughly one half – see table 3.1) received 

treatment with panitumumab plus BSC, while the patients with a negative test result 

received BSC alone.
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Sensitivity analyses

Two sensitivity analyses were performed for scenario 1 both related to the inclusion of 

administration of panitumumab after progression. As stated previously, we used the retro-

spective assessments of disease progression from the expert panel, rather than the assess-

ments of the physician treating the patient. The result of this is that the base case model 

also includes administering panitumumab after disease progression. In the first sensitivity 

analysis (SA1), patients in the Pmab arm received panitumumab only before progression. 

This implies that no costs were attributed to use of panitumumab after progression. It was 

assumed that the survival gain in the time from progression to death in the Pmab arm 

compared to the BSC arm was due only to the effects of panitumumab given before disease 

progression. Apart from the removal of the costs for panitumumab after progression all 

other model parameters are the same as in the base case.

The second sensitivity (SA2) analysis was a more conservative version of the first. Patients 

in the Pmab arm again received panitumumab only before progression. This time, however, 

it was assumed that the survival gain in the time from progression to death in the Pmab 

arm compared to the BSC arm was due to the effects of panitumumab given after disease 

progression. In order to simulate the survival time of patients in the Pmab arm after pro-

gression, we assumed that the survival after progression was the same as in the BSC arm. 

Therefore, the transition probabilities from the state progressive disease to the state dead of 

the BSC arm were used in both arms. The costs after progression in the Pmab arm were set 

to the value of the BSC arm. The other model parameters (i.e. the costs for panitumumab, 

the utility values and the other resource use costs) were the same as those in the base case.

In scenario 2 we used the transition probability from progression to death from all BSC 

patients, not just from the KRAS-WT patients to model survival after disease progression 

for the BSC arm. We included a third sensitivity analysis (SA3) for this scenario using only 

the data from the KRAS-WT patients.

Results

The base case scenario, which was based on all patients included in the trial, resulted in 

estimates of €15,502 for the incremental costs and 0.24 for the incremental QALYs (table 3.3). 

This leads a mean ICER of €64,321/QALY (table 3.4). The difference in number of QALYs 

between the two arms (i.e. ΔQALY in table 3.3) was larger for scenario 2 (0.24 versus 0.31) 

but smaller for scenario 3 (0.24 versus 0.16 respectively). In both the Pmab arm and the BSC 

arm, the mean number of QALYs (and life years) for the KRAS-WT scenario is higher than 



37

Economic evaluation of Panitumumab in mCRC

for the base case scenario. Furthermore, the survival benefit of panitumumab compared to 

BSC is also higher. However, since the cost difference between the two arms is also higher, 

the ICER for scenarios 2 and 3 are close to the ICER of the base case (ICER
scen 2

 = 64,541 and 

ICER
scen 3

 = 66,131 respectively). SA1 resulted in a decrease of the ICER: ICER
SA 1

 = 50,419. This 

was due to a decrease in ΔCost of €3,351. SA2 – a conservative variant of SA1 – resulted in 

a similar reduction in ΔCost, but this was offset by a reduction in ΔQALY of nearly 55% 

leading to an ICER
SA 2

 = 112,070. The sensitivity analysis on the transition probabilities of the 

BSC arm in scenario 2 also resulted in an ICER about twice as high (ICER
SA 3

 = 126,936). This 

was due to the fact that in this sensitivity analysis ΔQALY was 50% lower (e.g. 0.16 versus 

0.31 for scenario 2).

Table 3.3: Costs, QALYs and incremental differences for the 3 scenarios.

Panitumumab Best Supportive Care Incremental

Costs QALYs Costs QALYs Δ Costs Δ QALYs

Base case

mean €17,193 0.50 €1,691 0.26 €15,502 0.24

95% CI [15,503; 19,097] [0.48; 0.53] [1,181; 2,250] [0.23; 0.34] [13,740; 17,579] [0.16; 0.28]

CoV † 0.05 0.03 0.16 0.11

Scenario 2

mean €21,527 0.59 €1,346 0.28 €20,181 0.31

95% CI [18,983; 24,306] [0.56; 0.62] [949; 1,826] [0.24; 0.37] [17,589; 22,969] [0.22; 0.37]

CoV † 0.06 0.03 0.15 0.12

Scenario 3

mean €11,611 0.43 €1,346 0.28 €10,264 0.16

95% CI [10,183; 13,207] [0.40; 0.50] [950; 1,803] [0.24; 0.39] [9,038; 11,529] [0.11; 0.18]

CoV † 0.06 0.03 0.15 0.12

† CoV = Coefficient of Variation.

Table 3.4: mean ICERs (in 2008 Euro per QALY) plus 95% confidence intervals for the 3 scenarios 

and sensitivity analyses (SA).

ICER 95% CI

base case 64,321 [52,642; 94,187]

SA 1 50,419 [40,748; 73,418]

SA 2 112,070 [95,386; 129,973]

Scenario 2 64,541 [52,136; 90,706]

SA 3 126,936 *

Scenario 3 66,131 [53,789; 96,316]

* Bootstrapped confidence intervals for this sensitivity analyses can not accurately be determined since the 95% 

CI of Δ QALYs includes 0.
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As can be seen in table 3.3, the coefficient of variations (CoV) for the BSC arm are about 

4 times the size of the CoV for the Pmab arm. This difference in uncertainty illustrates the 

impact of censoring the BSC patients at the time they cross-over to panitumumab.

Cost-effectiveness acceptability curves for the three scenarios are shown in figure 3.3. This 

figure shows the differences in the impact that the uncertainty associated with the three 

scenarios has on the probability that treatment with Pmab is cost effective.

Conclusions and discussion

The cost-effectiveness of panitumumab as monotherapy in mCRC was determined using 

a probabilistic micro simulation Markov model. Three different scenarios were evaluated 

with the model. The first scenario was the base case model based on the complete patient 

population of the pivotal trial in which panitumumab plus BSC was compared with BSC 

alone in mCRC patients after failure of fluoropyrimidine-, oxaliplatin-, and irinotecan-

containing chemotherapy regimens, and resulted in an ICER of €64,321/QALY. The second 

scenario was based on the subgroup of patients with KRAS wild-type mCRC, but otherwise 

equal to the first. This scenario resulted in an ICER of €64,541/QALY. In the third scenario, 
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Figure 3.3: Cost Effectiveness Acceptability Curves: The probability that treatment with 

panitumumab is cost-effective per value of the ceiling ratio for the three scenarios.
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prior testing for the KRAS tumor mutational status was included for patients in the Pmab 

arm. The resulting ICER was €66,131/QALY.

When averaged over the entire study time, the mean utility values before progression of the 

Pmab arm were about 9% higher than those of the BSC arm (0.74 vs. 0.68). However, the 

utility values at baseline were 0.68 for Pmab versus 0.66 for BSC and this difference was not 

statistically significant at the 5% level. This means that at baseline there was no difference 

between the two arms with respect to quality of life. Therefore there is both a survival gain 

and a quality of life benefit associated with the use of panitumumab before progression.

The cut-off points (i.e., 56 days and 60 days) were based on the results of the Kaplan Meier 

analyses and indicate that for the transition from mCRC to progressive disease the patients 

can roughly be divided into two groups, early progression versus late progression. This was 

also found when estimating the transition probabilities of the KRAS-WT subgroup, leading 

to the conclusion that this division is not associated with the KRAS tumor mutational status.

The uncertainty surrounding the ICERs is related to the uncertainty surrounding the costs 

and effects used in the model. From the coefficients of variation presented in table 3.3 it 

follows that the uncertainty related to the outcomes of the BSC arm is about 4 times higher 

than that related to the Pmab arm. This is because of the cross-over design of the trial. As 

mentioned earlier, 76% of patients in the BSC arm cross-over to receive panitumumab. All 

these patients are censored at the moment of cross-over, resulting in a loss of power in the 

BSC arm. In addition to this, about half the patients had KRAS wild-type mCRC, effectively 

halving the sample size, for analyses based on this subgroup.

A number of assumptions were made when building the CE model. Firstly, serious adverse 

events (SAE) were not modeled as separate Markov states. The data showed that the num-

ber of SAEs was low (94 for the Pmab arm; 50 for the BSC arm) and the median duration 

of these events was shorter than the cycle time of the model. Therefore the costs of these 

SAEs were included in the mCRC and progressive disease states. Secondly, treatment with 

panitumumab before and after progression was modeled separately and was therefore 

assumed to be independent of one another. Lastly, costs and QALYs were not discounted. 

In the Pmab arm, 76% of the patients will have died within 1 year, and in the BSC arm, 97% 

of the patients. After 2 years the proportions of patients that died increased to 97% and 

100%. Therefore only very small differences were found between the discounted and non-

discounted results, typically around 0.1% of the magnitude of the ICER. For example, in the 

base case the discounted ICER would drop from €64,321/QALY to €64,244/QALY. Therefore, 

compared to the uncertainty associated with the estimation of the ICERs themselves, the 

impact of discounting is negligible.
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We feel confident that the effects of these assumptions are either very small compared to 

the amount of uncertainty surrounding the model outcomes, or even out when the model is 

evaluated using a small cycle time and a large number of patients and simulations.

Our results can be compared to the cost-effectiveness of cetuximab. Two economic evalu-

ations have been carried out where cetuximab was compared to best supportive care in 

mCRC [22,23]. The models in those studies were different from the one we used in this 

study: they estimated the mean overall survival and mean costs directly from the trial data, 

whereas we used a decision analytic model. The main advantages of using a micro-simula-

tion Markov model is the ease with which the trial results can be extrapolated beyond the 

trial time horizon and the possibility to implement and analyse different scenarios

Mittmann and colleagues found an ICER of $299,613/QALY, while Starling and colleagues 

estimated that the ICER was £57,608/QALY. For patients with KRAS wild-type mCRC, Mit-

tmann obtained an ICER of $186,761/QALY. Comparing these results to our own indicates 

that panitumumab is associated with a lower ICER than cetuximab. This is the case both 

when all patients are considered and when only patients with KRAS wild-type mCRC are 

considered.

A commonly used “rule of thumb” for the maximum ICER threshold in the Netherlands is 

€80,000/QALY for conditions with a high burden of disease such as cancer [24] (although 

this is seen more as a guideline and not a fixed threshold). These drugs are put on the 

“expensive drugs list” where they are temporarily reimbursed, pending availability of new 

data from real world clinical practice. Our results show that the estimated cost-effectiveness 

of panitumumab is below this threshold and that temporary reimbursement is therefore 

warrented. An observational study with a follow-up time of 3 years is ongoing, where the 

focus is on establishing “real life” effectiveness and resource use instead of trial based 

efficacy and resource use. The results from that study will ultimately be used to run the 

economic evaluation with real-life data to facilitate the decision on whether or not panitu-

mumab will be considered for prolonged reimbursement in the Netherlands as monother-

apy for KRAS wild-type mCRC patients that have failed fluoropyrimidine-, oxaliplatine- and 

irinotecan-containing chemotherapy regimes.
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Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a chronic and progressive lung disease, 

characterised by predominantly respiratory symptoms that worsen over time, such as 

breath lessness, and episodes of acute decompensation, called exacerbations [1]. Phar-

macological treatment of COPD aims to relief symptoms, improve lung function, reduce 

frequency and severity of exacerbations and improve quality of life. In order to establish 

the cost-effectiveness of available treatments, several cost-effectiveness (CE) models have 

been published [2] one of which co-developed by the authors of this research presented 

here [3-5].

In order for cost-effectiveness models to be able to inform resource allocations over lon-

ger periods of time, they must be suited to incorporate emerging evidence. Some model 

updates may be rather simple and straightforward, such as including new cost data for 

resource use types, whereas others will be more complex to handle, such as new patient-

level data that can inform mathematically-derived model parameters such as transition 

probabilities. With the evolution from deterministic to probabilistic models, this task will 

be even more complex, as not only point estimates of the parameters will need updating 

but also their associated distributions and potential inter-dependencies.

Meta-analysis has traditionally been used to combine quantitative results of several similar 

studies into a pooled estimate of the relative treatment effect (e.g. odds ratio, relative risk, 

proportional difference in change from baseline). It uses the magnitude of the treatment 

effect and its uncertainty from each individual study to produce a weighted mean of the 

treatment effect [6-8]. However, in cost effectiveness models, a relative treatment effect like 

the odds ratio of having an exacerbation in COPD is not the only parameter to be estimated. 

A cost effectiveness model is made up of a wide range of different model parameters, 

including absolute treatment-specific transition probabilities between disease states, 

probabilities of experiencing events, utility values, costs and relative risks of the benefits of 

one treatment over the other. In other words, the model parameters in a probabilistic CE 

model have different types of distributions than those used to model a relative treatment 

effect. Both the distributions for these model parameters and the relative effects between 

comparators need to be modelled. Therefore there is more heterogeneity in the case of CE 

models than usual in meta-analyses.

The aim of this study is to illustrate how standard methods of evidence synthesis perform 

when applied to different types of model parameters and their distributions using an 

existing cost-effectiveness model. In our study, transition probabilities and exacerbation 

probabilities were re-estimated incorporating new patient-level data from a 1-year clinical 
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trial. The outcomes of the study will demonstrate how sensitive the estimates of the cost-

effectiveness are to the choice of method to combine the data.

Methods

Details of the Markov model for which we re-estimated the parameters were published 

before [3,4]. In short, the model has three COPD states of increasing severity based on pre-

bronchodilator Forced Expiratory Volume in one second as percentage of the predicted 

value (FEV
1
 % pred): moderate COPD, severe COPD and very severe COPD. The fourth 

state in the model is death. In pre-specified time intervals (Markov cycles) patients move 

between states and have a risk of experiencing an exacerbation. The model adopts a time 

horizon of 5 years. The cycle length of the model is one month, except for the first cycle 

where it was 8 days. Transitions between states were assumed to take place halfway through 

the cycle. During each cycle, there is a risk of getting an exacerbation. That exacerbation 

can either be severe or non-severe.

The risk of experiencing an exacerbation varies by disease state and treatment group. Given 

treatment group and disease state, exacerbation probabilities were assumed to be constant 

over time. Healthcare resource use and quality of life values (utilities) depend upon COPD 

severity state and the severity of the exacerbation. Given disease state and exacerbation 

severity, resource use and utilities were assumed to be similar across treatment groups in 

the model. The model investigated three different bronchodilator therapies, the reference 

treatment (i.e. the new treatment of interest) and two comparator treatments. Differences 

in costs and QALYs between those are driven by three factors: 1) the transition probabilities 

between disease states which themselves depend on the decline in FEV
1
 % pred, 2) the 

exacerbation probabilities in each state and 3) the costs of the (study) medications for each 

treatment group.

All monthly transition probabilities between disease states in the first year and all monthly 

probabilities to experience exacerbations in the first year and subsequent years were 

directly obtained from the patient-level data of the three trials used to construct the 

original model [9-11]. In the first trial the difference between the reference treatment and 

comparator treatment 1 was assessed (N
ref

 = 356; N
comp1

 = 179). In the second trial the differ-

ence between the reference treatment, comparator 2 and placebo was assessed (N
ref

 = 402; 

N
comp2

 = 405 N
plac

 = 400). In the third trial the differences between the reference treatment 

and placebo were assessed (N
ref

 = 550; N
plac

 = 371). The first year transition probabilities and 

exacerbation probabilities were based on patient-level data of clinical trials of up to one 

year duration [9-11]. The subsequent probabilities were estimated based on the published 
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decline in lung function (FEV
1
 decline 52 ml/year [12]), or in case of the exacerbation prob-

abilities, were assumed to remain as observed in the first year. These were first calculated 

for the reference treatment and then derived for the comparator treatments as the relative 

differences between the reference and the comparators.

The reason to conduct the current study was that new patient-level data from a clinical trial 

with a follow-up time of 1 year became available. In this new trial the reference treatment 

was compared with placebo (N
ref

 = 670; N
plac

 = 653) [13-15]. These new data triggered us to re-

estimate three sets of parameters of our CE model: 1) the probability of getting an exacerba-

tion, 2) the probability that the exacerbation was severe, and 3) the transition probabilities 

between disease states. These re-estimations were performed with different techniques of 

data-synthesis because we aimed to investigate the consequences of applying these differ-

ent techniques for the cost-effectiveness estimates. Costs, resource use, utility values and 

relative risks of the reference treatment versus the comparators remained unchanged.

The parameters of the reference treatment in the CE model were re-estimated by directly 

applying the various meta-analysis models (see below). The parameters for the two com-

parator treatments were re-estimated indirectly using the new results for the reference 

treatment and the (old) relative risks between the reference and the comparator treatments.

In this study we focused on two model specifications that are generally used for meta-

analysis: fixed-effects (FE) and random-effects (RE). In fixed-effect meta-analysis the 

assumption is made that each of the individual studies aims to estimate the same true 

parameter value (e.g. the underlying exacerbation probability or transition probability) 

and that differences between studies are due to random (sampling) error. In other words, 

it is assumed that all factors that could influence the parameter value are the same in all 

the study samples, and therefore the effect size is the same in all the study samples. The 

combined effect is the estimate of this value. In this study, we used the inverse variance 

method for the fixed-effect meta-analysis. It produces a weighted average of aggregated 

data across all studies to give a pooled estimate of the transition probabilities and the exac-

erbation probabilities. The weights are based on the inverse of the uncertainty (standard 

error squared) of each study, i.e. studies with a large variance get a small weight and vice 

versa. The variance of the pooled estimate is calculated as the inverse of the sum of the 

weights [8].

In a random-effect meta-analysis it is assumed that, in addition to sampling error, differ-

ences between studies are caused by heterogeneity between studies [16]. In other words, it 

is assumed that all studies are samples drawn from a pool of all possible studies that differ 

from each other in ways that could impact on the treatment effect. For example, the inten-
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sity of the intervention or the age of the subjects may have varied from one study to the next. 

The goal is to estimate the mean of all possible studies. The true parameter value may be 

study specific and varies across studies. The variance in the true underlying parameter value 

of each study is called the random-effect variance. Random-effect models should be used 

when there is heterogeneity between study results caused, for example, by different patient 

populations or different study designs. As in the fixed-effect approach, the true parameter 

value is calculated as the weighted average of study-specific values. Now, however, the 

weights are based on a combination of the sampling error (standard error squared) of each 

study and the random-effect variance (in this case the trial specific effects). We used the 

method proposed by DerSimonian and Laird for our frequentist random effects analysis [7]. 

The homogeneity between the studies was tested with the I2-statistic. The I2-statistic is the 

proportion of total variation in the estimates of treatment effect that is due to heterogeneity 

between studies [16,17]. When the between-study variance becomes 0, the random-effect 

meta-analysis becomes identical to the frequentist fixed-effect meta-analysis.

We have used both the frequentist approach and the Bayesian approach to perform a fixed-

effect meta-analysis and a random-effect meta-analysis. Both approaches have their own 

underlying framework and, for the purpose of data synthesis, both approaches allow for 

the same type of models. The frequentist approach is the conventional type of statistics and 

is different from the Bayesian approach. The idea behind Bayesian statistics is that what 

is known (or believed to be true) about the model parameters before seeing the new data 

can be captured in a probability distribution called a prior. This prior is then synthesized 

with the information in the new data to produce a posterior probability distribution, which 

expresses what we now know about the parameters after seeing the data.

The Bayesian fixed-effects models were estimated algebraically (also known as Bayesian 

updating or a conjugate analysis). Because we were dealing with probabilities based on 

count data we specified all priors as beta distributions. When the prior distribution of a 

certain probability is distributed Beta(α
0
,β

0
) and the newly available data is characterized 

by a binomial distribution Bin(p,n), with n the sample size and p the probability of success, 

then the posterior distribution is characterized by the distribution Beta(α
0
 + pn, β

0
 + (1−p)

n) [18].

When specifying random-effect models in a Bayesian framework, prior distributions need 

to be defined not only for the parameters of interest (i.e. transition probabilities and exac-

erbation probabilities) but also for the between-study variance (heterogeneity) [18-20]. The 

probabilities were based on binomial distributions Bin(p,n) just as in the Bayesian fixed-

effects model specification. In order to model these, we defined μ
i
 = logit(p

i
) = ln(p

i
/(1-p

i
)) 

with μ
i
~Normal(μ

0
, 1/τ

0
2), where τ

0
 is the between-study standard deviation, 1/τ

0
2 is the 
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precision, and the subscript i indicates the different trials. Because we had no strong pre-

conceptions regarding the priors, we used non-informative priors in all cases. The prior dis-

tributions for μ
0
 and 1/τ

0
2 were defined as μ

0
~Normal(0, 10−6) and 1/τ

0
2~Gamma(0.001,0.001). 

Generally, Bayesian RE models result in greater uncertainty surrounding the means than 

the frequentist RE models. This is because the uncertainty about the between study vari-

ance is captured in Bayesian RE models, while this is assumed to be known with certainty 

in frequentist RE models.

As stated previously, we used the I2-statistic to assess homogeneity of the data in the 

frequentist approach and used that as a basis for the choice between FE and RE model 

specifications. Since there is no Bayesian equivalent of the I2-statistic we used residual devi-

ance to assess the model fit of Bayesian models [21]. Residual deviance is a measure of fit 

linked to the Deviance Information Criterion (DIC), the (Bayesian) hierarchical modeling 

generalization of the Akaike Information Criterion. Deviance measures the fit of the model 

to the data points using the likelihood function. The larger the likelihood, the closer the 

model fit. The best fit is where the model predictions equal the observed data. Such a model 

is called a saturated model. The residual deviance is the deviance for the model minus the 

deviance for the saturated model: D
res

 = −2(loglike
model

 − loglike
saturated

) with posterior mean 

D̄
res

. If the model is an adequate fit, we expect D̄
res

 to be roughly equal to the number of data 

points (in our case the number of data points is 4, one for each study). The total number 

of iterations used to estimate the Bayesian RE models was 50,000. The burn in comprised 

the first 20,000 iterations. We checked convergence of the Bayesian RE models through 

inspection of the autocorrelation, sampling history, posterior density distributions and 

MCMC errors.

Summarizing, we compared the following four methods: frequentist fixed-effects meta-

analysis, frequentist random-effects meta-analysis, Bayesian fixed-effects meta-analysis 

and Bayesian random-effects meta-analysis. The first three of these methods were imple-

mented using algebraic calculations, but the Bayesian RE model required a Markov 

Chain Monte Carlo process. In order to investigate the impact of these four meta-analysis 

methods on the cost-effectiveness results, we filled the cost-effectiveness model with the 

parameter estimates that were obtained with each of the four methods and studied the 

differences between the three treatments in total costs, in total number of QALYs and in 

the Net Monetary Benefits that were used to calculate the Cost-Effectiveness Acceptability 

Frontiers [22]. We used MS Excel 2003 for the frequentist models and the Bayesian fixed-

effects analyses and WinBUGS 1.4 for the Bayesian random-effects analyses.
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Results

Exacerbation probabilities

Table 4.1 shows the mean and SE of the exacerbation probabilities in the reference group 

before and after incorporation of the data from the new trial, with either one of the four 

methods of meta-analysis. We use the term SE to indicate the uncertainty of the parameter 

estimates for all 4 methods. However, strictly speaking this is not the correct terminology 

since the uncertainty surrounding the Bayesian estimates is not the standard error of the 

mean, but the standard deviation of the posterior distribution. The different methods of 

meta-analysis resulted in different estimates of exacerbation probabilities and their stan-

dard errors. The fixed-effect meta-analysis produced the lowest means and standard errors 

for the exacerbation probabilities and the probabilities of the exacerbation being severe. 

The Bayesian random-effect meta-analysis resulted in the highest estimated probabilities 

of getting an exacerbation and in the highest standard errors. The estimated probabilities 

were at most 23% higher and the standard errors were up to 9 times higher than the Bayes-

ian fixed-effect meta-analysis. Except for patients with moderate COPD, this method also 

resulted in the highest estimated probability that an exacerbation would be severe. In 

patients with moderate COPD, Bayesian fixed-effect meta-analysis resulted in a 20% higher 

estimated probability of an event being severe than the standard fixed-effect meta-analysis. 

It must be remarked here that when normal distributions would be used for the prob-

abilities, the frequentist and Bayesian FE model would yield the same results. However, 

normal distributions are not appropriate to model probabilities, because probabilities are 

necessarily restricted to the interval [0, 1]. Therefore we assumed beta distributions for the 

Table 4.1: Mean (SE†) monthly exacerbation probabilities of the reference treatment, before and after 

re-estimation.

Before
re-estimation

Frequentist Bayesian

Fixed effects Random
effects

Fixed effects Random
effects

P (exacerbation)

Moderate COPD .051 (.004) .050 (.003) .050 (.003) .050 (.003) .051 (.005)

Severe COPD .075 (.003) .070 (.003) .075 (.007) .072 (.003) .077 (.018)

Very severe COPD .096 (.005) .089 (.004) .107 (.016) .095 (.005) .109 (.044)

P (severe exacerbation)|(exacerbation)

Moderate COPD .097 (.024) .101 (.019) .109 (.029) .121 (.021) .118 (.040)

Severe COPD .136 (.018) .103 (.012) .117 (.026) .118 (.013) .120 (.045)

Very severe COPD .192 (.027) .176 (.021) .176 (.021) .178 (.021) .179 (.028)

† For the Bayesian analyses the standard deviations of the posterior distributions are shown
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probabilities, yielding slightly different results for the Bayesian model and the frequentist 

inverse variance method.

Figure 4.1 graphically displays the differences between the meta-analyses in the probability 

of getting an exacerbation when having moderate, severe and very severe COPD in the 

reference treatment arm. The top three estimates are the estimates obtained from the trials 

that were the basis for the original model while the fourth estimate reflects the new data. 

Clearly, the probability of having an exacerbation in the second trial was found to be mark-

edly higher than in the other three trials. However such a clear discrepancy between trial 2 

and the other trials was not found in other parameters, such as the transition probabilities or 

the probability that an exacerbation was severe. It can be seen in figure 4.1 that the random-

effects specifications put more weight on the second trial when estimating the combined 

mean value than the fixed-effects specifications do. As we expected, the Bayesian RE models 

resulted in greater uncertainty surrounding the means than the frequentist RE models.

To assess the fit of the Bayesian models we calculated the residual deviance for the Bayesian 

fixed effects and random effects models for the probability to experience an exacerbation. 

The results are presented in table 4.2.

Moderate COPD treated with reference treatment Severe COPD treated with reference treatment 

  
Probability of having an exacerbation Probability of having an exacerbation 

  
Very severe COPD treated with reference treatment  

 

1-4 = Clinical trials (1-3 “old evidence”, 4 “new 
evidence”) 
5 = Frequentist fixed-effect meta-analysis 
6 = Frequentist random-effect meta-analysis 
7 = Bayesian fixed-effect meta-analysis 
8 = Bayesian random-effect meta-analysis 

Probability of having an exacerbation  
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Figure 4.1: Meta-analyses of exacerbation probabilities.
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For moderate COPD the residual deviance of the Bayesian fixed effects and random effects 

models are very similar and close to the number of data points, indicating that both models 

fit equally well. However, for severe and very severe COPD the random effects model clearly 

outperforms the fixed effects model. The Bayesian random effects models also perform bet-

ter for the probabilities of the exacerbation being severe.

Transition probabilities

The monthly transition probabilities for months 2 to 12 from the first year for the frequentist 

and Bayesian analyses are presented in table  4.3. As indicated in the table, there were a 

number of transition probabilities for which the between-study heterogeneity was too 

small for the Bayesian random-effects model to converge. These probabilities were entered 

as fixed-effects in the model. In other words, for these transitions the random-effects model 

collapsed into a fixed-effects model.

Table 4.2: Residual deviance of the Bayesian models for the monthly exacerbation probabilities of 

the reference treatment.

Moderate COPD Severe COPD Very severe COPD

P (exacerbation)

fixed effects 4.24 27.70 48.83

random effects 3.86 4.41 4.18

P (severe exacerbation)|(exacerbation)

fixed effects 5.55 13.61 2.03

random effects 4.40 5.02 2.24

Table 4.3: Mean (SE†) 1st year monthly transition probabilities between the states in the Markov 

model for the reference treatment from the frequentist and Bayesian meta-analyses.

Frequentist Fixed-Effects Frequentist Random-Effects

Moderate Severe Very sev. Death Moderate Severe Very sev. Death

Moderate .961 (.008) .037 (.008) .000 (.000) .002 (.002) .962 (.008) .037 (.008) .000 (.000) .002 (.002)

Severe .019 (.004) .961 (.006) .017 (.004) .003 (.002) .019 (.004) .962 (.006) .017 (.004) .003 (.002)

Very sev. .000 (.000) .037 (.009) .960 (.010) .003 (.003) .000 (.000) .037 (.009) .960 (.010) .003 (.003)

Bayesian Fixed-Effects Bayesian Random Effects

Moderate Severe Very sev. Death Moderate Severe Very sev. Death

Moderate .957 (.008) .039 (.008) .002 (.002) .002 (.002) .957 (.013) .039 (.012) .002 (.002) .002 (.002)*

Severe .020 (.005) .958 (.007) .020 (.005) .003 (.002) .020 (.007) .957 (.017) .020 (.016) .003 (.002)*

Very sev. .005 (.003) .039 (.009) .953 (.010) .003 (.003) .005 (.003)* .039 (.016) .953 (.016) .003 (.003)*

* Parameters in the Bayesian random-effects model that are entered as fixed-effects due to small between-study 

heterogeneity
† For the Bayesian analyses the standard deviations of the posterior distributions are shown
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Just as for the exacerbation probabilities, the fixed-effect meta-analysis also produced the 

lowest means and SEs for the transition probabilities. However, there is little difference in 

mean transition probabilities between the fixed-effect and random-effect meta-analysis 

because the lack of heterogeneity meant that the same method was used for the random 

effects procedure as for the fixed effect procedure. Regarding the standard errors, the most 

notable result is the great increase in standard errors when applying Bayesian random-

effect meta-analysis. These standard errors are up to 2.8 times higher than in the other 

approaches.

The residual deviance for the Bayesian fixed effects and random effects models for the 1st 

year monthly transition probabilities of the reference treatment are presented in table 4.4. 

As can be seen in this table, the residual deviances are very similar and therefore the ran-

dom effects model fits the data only marginally better.

As stated previously, the re-estimated model parameters for the comparator treatments 

were obtained indirectly via relative risks. These indirectly obtained re-estimated prob-

ability distributions were jointly used with the directly re-estimated probabilities for the 

reference treatment in the analysis on the impact of method of data synthesis on cost-

effectiveness.

Cost-effectiveness

Table 4.5 shows the impact of using different types of meta-analysis on the estimated dif-

ferences in cost and outcomes between treatment options. In all meta-analyses except 

the Bayesian random-effect meta-analysis, the reference treatment remained dominant 

compared to the two comparators as was the case in the original model. The results for 

Table 4.4: Residual deviance of the Bayesian models for 1st year monthly transition probabilities 

between the states in the Markov model for the reference treatment.

Bayesian Fixed-Effects

Moderate Severe Very sev. Death

Moderate 2.02 4.40 1.13

Severe 2.33 4.17 1.06

Very sev. 3.48 1.69 1.11

Bayesian Random-Effects

Moderate Severe Very sev. Death

Moderate 2.41 4.44 1.15

Severe 2.46 3.68 1.07

Very sev. 3.48 2.05 1.12
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the reference treatment in terms of costs, QALYs and costs per QALY are slightly less favor-

able in the re-estimated models compared to the original model. In all meta-analyses, 

the probability that an exacerbation is severe increases in moderate COPD, whereas it 

decreases in severe and very severe COPD. In comparator 1 the effect of the latter decrease 

is relatively greater than in the reference treatment because in comparator 1 more patients 

move towards severe and very severe COPD. In the reference treatment the effect of the 

increasing probability of experiencing a severe exacerbation when having moderate COPD 

is relatively greater than in comparator 1 because more patients remain in moderate COPD. 

In addition, the matrix of transition probabilities that is generally more favorable for the 

reference treatment than the other two treatments becomes slightly less favorable when 

adding the new data. Overall, these effects lead to a slight worsening of incremental results 

of the reference treatment compared to comparator 1. This worsening is most pronounced 

when updating the model input using Bayesian random-effect meta-analysis. The much 

larger standard errors for the transition probabilities and exacerbation probabilities in 

the Bayesian random-effect meta-analysis are the reason for the more pronounced effect. 

These large SEs cause skewness in the beta distributions used, causing a shift in the point 

estimate for outcomes such as QALYs, even when the input point estimates differ little 

between synthesis approaches. This effect is larger for comparator 1 than for the reference 

treatment, since the SEs for comparator 1 are larger than the SEs for the reference treatment.

Figure 4.2 shows the cost-effectiveness acceptability frontiers resulting from each type 

of meta-analysis. In the base case the reference treatment has the highest expected net 

benefit for all values of the willingness to pay for a QALY above 0. The same is true for the 

meta-analyses except for the Bayesian random-effect meta-analysis where the reference 

treatment has the highest expected net benefit for threshold values above €320 per QALY. If 

the threshold is below this value, comparator 1 has the highest expected net benefit.

Table 4.5: Results for the three treatment arms in the CE model: Mean (SE) Costs and QALYs before 

and after re-estimation

Reference Comparator 1 Comparator 2

Costs QALYs Costs QALYs Costs QALYs

Before
re-estimation

7386 (515) 3.340 (.107) 7606 (841) 3.253 (.171) 8326 (1227) 3.251 (.226)

Frequentist
FE 6975 (417) 3.351 (.091) 7006 (613) 3.272 (.145) 7652 (976) 3.254 (.192)

RE 7290 (504) 3.348 (.090) 7456 (793) 3.245 (.191) 8295 (1234) 3.245 (.191)

Bayesian
FE 7261 (461) 3.338 (.145) 7284 (682) 3.267 (.141) 8214 (1123) 3.244 (.196)

RE 7407 (724) 3.344 (.099) 7392 (1185) 3.296 (.160) 8387 (1699) 3.260 (.283)

FE = Fixed-effects

RE = Random-effects
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The cost-effectiveness acceptability frontier was about 15% lower for the Bayesian random-

effect meta-analysis than for the other meta-analyses. This is due to the greater amount 

of uncertainty around the parameter estimates. As a result of this uncertainty, there will 

be more variability in the results of the model runs, i.e. there will be more runs where 

comparators are favored over the reference in terms of expected net benefit. The accept-

ability frontier resulting from the frequentist random-effect meta-analysis lies above the 

acceptability frontier of the other meta-analyses because the point estimate of the ICER was 

driven by the favorable exacerbation pattern for the reference treatment in this analysis.

Conclusions and discussion

In this study we have compared four different methods of meta-analysis and found that 

the estimates of three groups of model parameters, i.e. the probabilities of having an exac-

erbation, the probabilities that the exacerbation is severe and the transition probabilities, 

can vary considerably depending on the method used. Not only the estimates of the mean 

parameter values were affected but also, and more prominently, the estimates of the stan-

dard errors. We found up to nine-fold differences in standard errors of the exacerbation 

probabilities and up to almost three-fold differences in standard errors of the transition 

probabilities. These differences were found for the Bayesian random-effect meta-analysis, 

the method that was most different from the other methods.

Nevertheless, in this particular study, the impact of the different methods on the estimated 

differences between bronchodilators in costs and QALYs is relatively limited. This is partly 
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because the probabilities that are most sensitive to the choice of meta-analysis are the 

‘small’ probabilities (e.g. the probability of moving from moderate to very severe COPD), 

which by themselves do not drive the cost-effectiveness outcomes. It is also due to the fact 

that we only had new evidence for the reference treatment to add and no new evidence on 

the relative treatment effect of the reference treatment versus the comparators. It is likely 

that if we would have had new evidence on the difference between the reference treat-

ment and the comparators, or if the new data would have been less well in line with the 

previous studies, the impact of the choice of meta-analysis method would have been more 

substantial. However for cost-effectiveness models it will be quite a common occurrence 

that data synthesis will only be required for parts of model as new evidence may only affect 

selected aspects.

Compared to the original CE model results, re-estimating the model using the Bayesian 

random-effect meta-analysis led to the greatest change in cost-effectiveness estimates. 

Not only were the point estimates most different, but also the uncertainty surrounding 

these estimates. The cost-effectiveness acceptability frontier, showing the probability that 

the expected Net Monetary Benefit of the reference treatment is below the maximum 

willingness to pay for a QALY (ceiling ratio or threshold) was roughly about 15% lower for 

the Bayesian random-effect meta-analysis than for the other meta-analyses. The reference 

treatment always had the highest expected net benefit, except in the Bayesian random-

effect meta-analysis, where for very small values below €320, comparator treatment 1 had 

the highest expected net benefit. The uncertainty around the cost-effectiveness is greatest 

when using the Bayesian random-effect meta-analysis. This is because in Bayesian RE 

meta-analysis the total uncertainty is based on the combination of uncertainty from three 

sources as opposed to one or two sources: 1) the between study heterogeneity of the data, 2) 

the uncertainty associated with the priors for the model parameters and 3) the uncertainty 

associated with the priors for the between study heterogeneity.

In general, there are more model specifications possible than the four we have used in the 

current study. All four of our models were univariate, as opposed to multivariate, which 

are models in which the outcome measures (exacerbation and transition probabilities) are 

analyzed jointly, thereby also revealing information about the correlations between the 

multiple outcome variables. To apply multivariate meta-analysis the estimated vector of 

outcome measures along with the corresponding estimated covariance matrix per trial is 

needed [23]. Since the overall database used in our study and the number of underlying 

patient samples was limited, it was not possible to perform a multivariate meta-analysis. 

Also, the data did not allow the specification of hierarchical models beyond random-effects 

or meta-regression models. In a meta-regression adjustments are made for characteristics 

of the different trials that could be associated with differences in the observed parameter 
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values. With such small numbers it is impossible to ascertain whether the study-specific 

covariates really explain the heterogeneity between the studies and the likelihood to find 

false positive results is high.

The results of this study show that the choice of method to derive a pooled estimate of the 

model parameters is an additional source of uncertainty that is commonly not param-

eterized and therefore not included in a probabilistic sensitivity analysis and a value of 

information analysis. The question is: “Should it be parameterized, should it be part of a 

separate sensitivity analysis or is there a way to decide what method is best suitable for a 

given set of studies?” Although doing a sensitivity analysis on method of meta-analysis is 

wise, the answer is probably the latter.

If studies are homogeneous, the choice between using a frequentist or a Bayesian method is 

unimportant. If they are not, random-effect meta-analysis accounts for the heterogeneity, 

but it may be more important to examine the reasons for lack of homogeneity in order to 

decide whether pooling in itself is legitimate. Homogeneity should be considered jointly 

for all parameters that need to be estimated. For example, based on figure 4.1 one could 

conclude that trial 2 is an outlier and that therefore a fixed effects model would be most 

appropriate to model the exacerbation probabilities. However, trial 2 is not an outlier for the 

other model parameters such as the probability of having a severe exacerbation conditional 

on having an exacerbation, so the assumption that trial 2 is an outlier does not hold. There-

fore allowing the choice between fixed effects and random effects model specifications to 

be made on a per parameter basis, instead of on all information captured within the trials 

can lead to erroneous assumptions.

Besides this more conceptual argument on the choice for fixed effects or random effects, 

techniques are available for assessing which method to use based on the data itself. In this 

study we used the I2-statistic for the frequentist approach and residual deviance for the 

Bayesian approach. They indicated that for the probability of experiencing an exacerbation 

and the probability of the exacerbation being severe the random effects models perform 

better. However this difference was not found for the transition probabilities.

In our current study data pooling was legitimate given the similarity between studies with 

respect to study design and patient population. To illustrate this, the small difference 

between the fixed-effect and random-effect meta-analysis of transition probabilities is 

explained by the very small random-effect variance, i.e. the very small variance between 

the true underlying transition probabilities in each study.
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The choice between the frequentist and Bayesian approach might be driven by ones prefer-

ence, since frequentist and Bayesian statistics can be seen as two opposing philosophies 

about statistics. In practice, health economists have already more or less adopted the 

Bayesian philosophy with the probabilistic decision analytic framework in which param-

eters are thought of as having probability distributions [24]. As such, standard probabilistic 

sensitivity analysis is essentially Bayesian. Thus, unless one is a convinced frequentist, we 

would argue that a Bayesian approach is in general preferable. In addition, the Bayesian 

approach offers great flexibility in analysing data from various distributions, and when 

performing a random-effect analysis the Bayesian approach captures the between study 

heterogeneity more completely.

When opting for the Bayesian approach it is important to carefully address the choice of 

priors, especially when using an informative prior. When applying the Bayesian random-

effect model, it is particularly important to realize that when the number of studies com-

bined is small, the choice of the prior for the between-study variance may critically affect 

the analysis. This is not a weakness of the Bayesian approach but merely a reflection of the 

true uncertainties inherent in the problem of combining information from diverse sources. 

For example, the fixed-effect approach to combining information is equivalent to assuming 

that the prior distribution of the between-study variance is concentrated at or very near 

0 and any justification for applying the fixed-effect model in a given situation is exactly 

equivalent to justifying the use of such a prior distribution. The use of a prior distribution for 

the between-study variance is best thought of as a compromise between opposing philoso-

phies about meta-analysis: those who believe that that variance is near 0 (the philosophy 

of a fixed-effect meta-analysis) and those who believe that the between-study variance is 

large and borrowing strength is hopeless in most cases (the “you can’t combine apples and 

oranges” philosophy). An open-minded prior distribution should assign significant prior 

probabilities that either philosophy could be right for any given problem. Additionally, the 

meta-analysis should be tested for sensitivity to alternative specification of the priors. The 

appropriateness of the use of a Gamma(0.001,0.001) distribution as a prior for the preci-

sion (1/τ2
0
) has been debated in the literature [25,26]. Therefore we assessed the use of this 

prior specification in our study by comparing the results with those where uniform(0,10) 

was used as a prior for τ
0
. It was found that in our case the Gamma(0.001,0.001) priors on 

the precision behaved better than the uniform(0,10) priors on the between-study standard 

deviation. This was because some of the probabilities were relatively small.

In conclusion, this study has demonstrated that the choice of method for the meta-analysis 

can affect resulting model parameter updates considerably. This can in turn affect the esti-

mates of cost-effectiveness and the uncertainty around them, although in the current study 

the impact on the preferred treatment was limited and the results remained qualitatively 
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the same as in the original model, before the re-estimation. In general, Bayesian methods 

are preferable. For fixed effect models, the Bayesian approach offers great flexibility in 

analysing data from various distributions. If a random effects specification is warranted, a 

Bayesian approach is in general more appropriate because the between study heterogene-

ity is captured more completely.
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Introduction

Generic utility measures have been developed and used to capture health related quality 

of life in a single summary index score, called a utility. These utilities are anchored on full 

health = 1 and death = 0. The quality weights can then be multiplied with life years gained 

to form the QALY, a measure of health that includes both quantity and quality of life [1]. 

Using the QALY as an outcome measure allows policy makers to compare the effectiveness 

(or –  more precisely – cost utility) of treatments across different diseases. This is neces-

sary when making budget allocations for the health care sector as a whole under budget 

constraints.

Three of the most widely used utility measures are the EQ-5D [2], the SF-6D [3,4] and the 

HUI [5,6]. Valuation studies have been performed for each of these instruments where util-

ity weights were derived for the health states described by the instruments. For all instru-

ments, the utility values for health states are in general presented (and subsequently used) 

as point estimates [1].

However, utilities are based on empirical valuation studies in which statistical models are 

used to estimate the utilities associated with health states on the basis of subsets of states. 

Because of the empirical nature of these valuation studies it is not clear to what extent the 

uncertainty in the parameter estimates is due to random error and model imprecision. In 

this paper we focus on two issues. Firstly, how can we quantify the effect of these two error 

components? Secondly, what is the impact of the sample size and number of observed 

health states on this uncertainty in the valuation studies used to derive the utilities? These 

questions are important for the design of new valuation studies Three components of 

uncertainty were identified and investigated in this study:

1. The error due to the different responses for a specific health state given by the 

respondents in the valuation study (i.e. response heterogeneity). This should NOT 

be included in the error of the utilities, because this is random error (i.e. people 

will give different answers and we are interested in the mean value of the general 

population, not the individual answers of respondents). In ANOVA terms this is the 

within-variance [7].

2. The error/uncertainty due to differences between the sample means and the popula-

tion means. A possible source of this error is the amount of bias of the sample. This 

type of error can only be investigated by comparing the outcomes to those of another 

representative random sample. E.g., if the sample is drawn from a sub-group of 

patients with a particular disease, there is a possibility of bias. However, even for an 

unbiased sample there will be a difference between the mean health state valuations 

and the mean population values. The standard error of the mean for the observed 
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health states could be used as a measure for this difference, under the assumption 

of a non-biased sample. This standard error depends on the sample size and will be 

larger, the smaller the sample.

3. The error due to the use of a misspecified or imprecise model. Whether a model is 

precise enough can be investigated by assessment of the percentage of the between-

variance† that is explained by the model [7]. One possibility is that the model as 

such is correct and the error/uncertainty is solely due to the fact that not all health 

states were observed but that interpolation was used to estimate the values for the 

unobserved health states. Comparisons between models with varying numbers 

of observed states allows for quantification of this error. Furthermore, the within-

variance can be used to estimate the variance of the health state mean for each 

health state and to check whether the differences between observed and predicted 

means are within acceptable limits, under the assumption of a perfect model.

In addition to the within and between variances, the mean absolute error (MAE) and the 

goodness of fit statistic (R2) can be used as measures for the performance of a model. MAE 

is the mean of the absolute values of the differences between observed and the estimated 

values. R2 indicates the proportion of error in the individual valuations reduced by the 

model, that is the ratio of explained and total variance in the individual scores. It is less 

appropriate for a check on the correctness of the model, because it includes the within 

variance described under point 1. I.e. a model that fits (almost) perfectly on the observed 

mean values of the states might still have a low value of R2. The same model applied to the 

mean values instead of the individual values will show this.

Of course, other sources of uncertainty exist. For example, in the regression analyses that 

are commonly used to estimate the utility models it is assumed that the observed states 

have normal distributions, which might not be the case (e.g. floor and ceiling effects may 

be present). Furthermore there is the possibility of interviewer bias, and the valuations 

themselves are susceptible to change over time [8]. However, these biases as well as the 

possible bias in the sample will not be taken into account here, as they are associated with 

the valuation task and format and are not statistical in nature.

In this study we focus on the uncertainty associated with EQ-5D based utilities. The EQ-5D 

is a generic measurement instrument to describe and value health states [2]. The EQ-5D 

classification describes health states according to five attributes: mobility; self-care; usual 

activities; pain/discomfort; and anxiety/depression. Each attribute has three levels: ‘no 

problems’; ‘some problems’; and ‘severe problems’. Health-state descriptions are con-

† Within variance is the variance of the individual health states originating from the different answers of 

respondents. Between variance is the variance of the mean values over all observed health states
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structed by taking one level for each attribute, thus defining 243 (35) distinct health states, 

where ‘11111’ represents the best and ‘33333’ the worst state.

We used data from two EQ-5D valuation studies, the UK MVH study and the Dutch TTO 

study [9,10]. Both studies used Time-Trade-Off as elicitation technique for obtaining utili-

ties. The UK study included 42 observed health states and had a sample size n = 2997. The 

43rd state that was evaluated in the MVH-study was “unconscious”. This state was omitted in 

our analyses as it is not part of the EQ-5D classification system. The Dutch study included 17 

states (a subset of the 42 from the UK study) and n = 298. We assumed that samples used in 

both valuation studies were unbiased representations of the national populations.

Methods

The quality of the regression model that resulted from the MVH study, which model was 

also used in the Dutch valuation study, is the main object of investigation in this paper. 

The regression equation and parameter estimates that resulted from the MVH study are 

taken as starting point for this investigation. In order to find out to what extent the model 

is wrong or imprecise, an ANOVA check was carried out to see whether the parameter 

estimates are within the error bounds under the assumption of a perfect model. Firstly, the 

between-within variances of the health state valuations are estimated without any model 

assumptions. Secondly, using these estimates, we investigated to what extent the between 

variance is reduced by the model.

Next a Monte Carlo simulation was carried out to find out to what extent uncertainty in the 

value sets is influenced by the sample sizes and the number of health states used in the 

studies. Starting from the same health states as used in the original study, for each health 

state random samples are drawn from a normal distribution with a mean health state value 

deduced from the Dutch and MVH models and variance equal to those of the observed 

health state valuations of each model. In other words, we combined the modelled means 

with the observed variances to generate samples in our simulation. Each health state was 

evaluated an equal number of times. This number was equal to 25, 50, 100, 298 (the number 

of participants in the Dutch study), 500 and 1000. Random sample values outside the range 

from +1 to −1 were truncated.

To each simulated sample the same linear model was applied as in both original studies. 

The parameters were estimated and the model estimates were computed for each health 

state. There were one hundred simulations for each sample, resulting in distributions of 

values for each health state. Because the model predictions are used as ‘population’ means 
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for each sample, a ‘perfect’ model is guaranteed for the outcomes. This way, the uncertainty 

in the mean health state values could be investigated as a function of sample size. Lastly, 

we varied the number of health states to study the impact that number of observed health 

states has on the uncertainty of the model parameters. The sets included 14, 17, 21, 28, 35 

and 42 health states with n = 1000. They were selected to be a subset of the original 42 health 

states from the MVH study chosen in such a way that they were spread out over the full 

spectrum of health states. Data were analysed using SAS v8.2.

Results

For the UK data the R2 of the original model was 0.43. At first sight this may seem low. 

However, the F value$ was high at 801 and the mean absolute error (MAE) was low at 0.039 

[9]. This implies that the model fit was better than one would expect on the basis of the R2 

value. When the model was fitted to the mean values only (thereby removing the within 

variance) the R2 was 0.98. This shows e.g., that addition of interaction parameters will not 

improve the model significantly. The residuals, using the Dolan model as a perfect model 

(i.e. using the same standard errors to determine the CI’s where the residuals should be 

between) are shown in figure  5.1. As can be seen the residuals lie mostly within the CI, 

$ This is the ratio of the within and between variance
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Figure 5.1: Residuals with 95% CI’s using the Dolan regression model as a perfect model. EQ-5D 

states are ranked from best (left) to worst (right).
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indicating that the model fits the data well. Figure 5.2 shows the same situation for the 

Dutch data. Because the sample size is smaller the 95% CI is wider, and the residuals all fall 

within the boundaries.

The standard deviation over the 100 Monte Carlo simulations was calculated for each health 

state included in the simulation. The uncertainty of the utility values in a single simula-

tion varied with varying sample sizes used. Therefore, the standard deviation over the 100 

simulations also varied with sample size and is an estimate of the uncertainty of the utility 

values due to sample size.

In figure 5.3 the number of states in the models for the UK was 42 and for the Netherlands 17. 

The mean SD of the index values was taken over all states. As can be seen the uncertainty for 

the UK is lower than for the NL and in both cases the uncertainty decreases with increasing 

sample size.

The impact of the number of health states on the parameter estimates and uncertainty 

surrounding the parameter estimates at an N = 1000 of the model is shown in figure  5.4. 

In figure  5.4 it can be seen that the uncertainty decreases substantially with increasing 

number of health states, however, the percentage of change is also in the worst case of 14 

health states still relatively small.
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Figure 5.2: Residuals with 95% CI’s using the Lamers regression model as a perfect model. EQ-5D 

states are ranked from best (left) to worst (right).
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In figure 5.5 a comparison is made between the UK and the NL for individual health states. 

This figure shows the impact of the ceiling effect on the uncertainty surrounding the health 

states (the uncertainty is smaller for better health states). In the 2 graphs with 17 health 

0.00

0.02

0.04

0.06

0.08

0.10

0 200 400 600 800 1000 1200

m
ea

n 
sd

 in
de

x 

sample size 

mean sd uk
mean sd nl

Figure 5.3: Effect of sample size on the mean uncertainty surrounding the utilities (N = 25, 50, 100, 

298, 500, and 1000) for the UK with 42 observed states and the Netherlands with 17 states.
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Figure 5.4: Effect of the number of health states on the uncertainty surrounding the parameter 

estimates of the UK regression model for n = 1000.
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states and N = 1000 a floor effect can be observed, although this is smaller than the ceiling 

effect. Finally, from this figure can be concluded that increasing the number of health states 

from 17 to 42 reduces the uncertainty more than increasing the number of observations per 

health state from 298 to 1000.

Conclusions and discussion

In this study we analysed the uncertainty bounds of the utilities from two of the EQ-5D 

value sets: The Dutch TTO study and the UK MVH study. In order to assess the uncertainty 

of the estimate for each health state, the within variance was removed from the models. 

Also, the impact of the number of respondents and health states on the uncertainty was 

investigated using Monte Carlo simulation.

For the MVH-study, as well as the Dutch study the chosen values for the number of states and 

respondents resulted in outcomes that were well within the error bounds. That is, the observed 

means did not differ significantly from the means predicted by a perfect model. Therefore, the 

choice of a perfectly fitting model in the Monte Carlo simulation seems acceptable.

As expected, the Monte Carlo results show that increasing the number of respondents per 

state decrease the uncertainty surrounding the utility values. Also, increasing the number 

of health states in a valuation study will lessen the uncertainty margins of the utilities. The 
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Figure 5.5: Comparison of uncertainty surrounding all 243 EQ-5D health states based on the Dutch 

and UK utilities for 17 and 42 health states and 298 and 1000 observations per state.
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standard error of the mean utilities, averaged over all health states, ranged from 0.095 when 

17 states were valued by 25 respondents to 0.009 when 42 health states were valued by 1000 

respondents. The uncertainty for individual health states using the simulated Dutch data 

for these numbers of respondents and states used in the Dutch valuation study ranged from 

0.044 to 0.010. The mean uncertainty over all health states was 0.028. The uncertainty for 

individual health states using the simulated MVH data at the number of respondents and 

states used in the MVH valuation study ranged from 0.013 to 0.006. The mean uncertainty 

over all health states was 0.009.

In probabilistic cost utility analyses the uncertainty surrounding the utilities originates from 

the fact that not all patients indicate that they are in the same health state. It is therefore 

only associated with the heterogeneity of the patient population in the study. Our findings 

imply that apart from this heterogeneity the inherent uncertainty of the utility estimates 

should also be taken into account in cost utility analyses. Looking at the magnitude of the 

uncertainty it becomes clear that for small valuation studies the uncertainty surrounding 

the utilities can get large enough to have a possible impact on CUA results if the differences 

in utility values between the treatment arms under consideration are small. When these 

value sets are used in a CUA the differences in effect might prove to be not significant and 

could influence policy makers’ decisions on whether or not to reimburse certain proce-

dures or drugs.

We recognise that this study has several limitations. In the Monte Carlo simulation the 

uncertainty was modelled using the magnitude of the standard error from the observed 

data. It was assumed that the uncertainty followed a normal distribution and was truncated 

at +1 and −1. This assumption might not reflect the actual uncertainty distribution close to 

the ends of the scale. Also the number of simulations that was run was 100, which is on 

the small side. We feel confident that these issues might only have a small impact on our 

results. However, we only looked at uncertainty that was statistical in nature. Other sources 

of uncertainty such as interviewer bias, bias due to the fact that the sample might not be 

representative of the population and the change over time of respondents values were not 

taken into account. Therefore our estimates should be considered as conservative.

In a saturation study (i.e. a study where all 243 possible EQ-5D health states are valued 

by respondents) the uncertainty that should be incorporated is the standard error of the 

mean of each health state. In the MVH study with N ≈ 750 per state the mean standard error 

was 0.017. For the Dutch study with N = 298 the mean observed standard error was 0.026. 

These values are of similar magnitude as the uncertainty from the models. Therefore, for a 

saturation study you would need far more observations in total than for a modelling study 

while obtaining a similar level of uncertainty for each health state.
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Based on our results we suggest that for EQ-5D TTO valuation studies one would need 

between 35 and 42 health states (i.e. about 15% to 17% of the total number of possible states) 

to be valued by between 300 and 500 respondents in order to obtain uncertainty margins 

surrounding the utilities smaller than 0.01 on average. This is about 1/3 of the magnitude 

of the smallest mean parameter estimate of both the Dutch and the UK models. For both 

models this is for the dimension usual activities at level 2 (UA2). For the Netherlands 

UA2 = 0.032 and for the UK UA2 = 0.036. Also this is well below the minimum important 

difference (MID) obtained with EQ-5D when utilities were used as point estimates. Pickard 

et al. found an MID of 0.08 when EQ-5D is used in cancer [11] while Walters and Brazier 

found slightly lower values in other disease areas, 0.074 on average [12].

Expending the number of levels of the EQ-5D from 3 to 5 will increase the number of pos-

sible health states from 243 to 3125. Care has to be taken to include enough health states 

and enough observations per health state in a 5 level valuation study. If too few states or 

observations per state are used the uncertainty surrounding the utilities might become so 

big that the utility values themselves will not be significantly different from one another. 

This would mean that the full range of 3125 possible health states would not be used. Other 

valuation techniques than TTO such as VAS and discrete choice experiments, have other 

underlying mechanisms of generating utility values and therefore of creating the associ-

ated uncertainty. This should be taken into account when considering the use of such 

techniques to generate utilities.

As Szende and Schaefer [13] indicate in their paper, mapping techniques are expected to 

be used more frequently to obtain utility values. When mapping from a disease specific 

questionnaire to for instance EQ-5D is done, an additional source of uncertainty is gen-

erated. This additional uncertainty should also be included in probabilistic models and 

could prove to be large compared to the uncertainty from the utilities from EQ-5D and the 

uncertainty from trial data itself.

Lastly, the whole issue of uncertainty does not limit itself to the effect side of cost utility 

analyses. The same arguments could be made for the cost side, where commonly the 

uncertainty is included only from differences in resource use of individual patients while it 

is assumed that the unit costs are deterministic, and therefore perfectly known.
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Introduction

There is increasing interest in the routine use of patient reported outcome measures 

(PROMs) to audit the impact of health care and compare the performance of health care 

providers [1]. There are two principal types of PROM: generic and disease-specific. One of 

the most commonly used generic measures is the EQ-5D which describes health in terms of 

five domains each with three response levels. This results in potentially 243 health states [2]. 

It was developed for the purpose of combining descriptions of health states with informa-

tion about their values based on social value sets, which show the index value (also referred 

to as the weight, or ‘utility’) for each state, anchored at 1 for full health and 0 for dead. 

Although anchored on dead, the EQ-5D does allow states to be considered worse than dead 

(i.e. utility <0). Utilities are generated using stated preferences techniques, such as time 

trade off (TTO) and are elicited from members of the general public [3]. They are used to 

calculate the incremental Quality Adjusted Life Years (QALYs) gained by patients as a result 

of a treatment. This is used as the basis for comparing the cost effectiveness of different 

treatments in terms of the incremental cost per QALY gained.

In contrast, disease-specific measures (DSM) have been developed to provide more 

detailed information on the condition of patients in a specific patient group. For example, 

the Oxford Hip Score (OHS) has 12 items to assess symptoms and functional status (dis-

ability) with each item having five possible answers, resulting in over 244 million possible 

health states [4]. The summary score for a health state described by OHS is obtained by 

adding the levels of each item resulting in a score between 12 and 60, where 12 is the best 

outcome.

There are three principal differences between the EQ-5D and disease-specific measures. 

First, DSMs can include items related to domains that are not included in EQ-5D and hence 

will not be reflected in changes in the patient’s EQ-5D utility score. Second, the availability 

of more items per domain in DSMs might result in greater sensitivity to change in health 

status. And third, while the scale properties of the items have been made explicit in the 

EQ-5D, this may not be true for DSMs.

When cost effectiveness analysis is needed and no generic utility measure was included 

in the clinical study, utilities may still be obtained by linking the DSM data collected to a 

generic utility measure. The utility weights from the EQ-5D might be linked to health states 

derived from a disease-specific measure in a mapping study. The most common way of 

estimating a mapping function is by comparing data from each instrument collected for the 

same population and to estimate the relationship between the two via regression, although 

other methods are also used [5,6]. One of the most straightforward techniques employed 
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is to estimate a regression model where utility is the dependent variable and the disease-

specific items are the independent variables [6] – this is referred to as a direct approach to 

mapping. An alternative approach is to use an indirect method. In this case, the DSM items 

are mapped on to the items of the generic measure [7]. When estimating a mapping model 

ideally the goal should be to provide a single universal model applicable in all situations. At 

the very least it should be generalisable to include ‘out of sample predictions’. The appro-

priateness of a mapping approach therefore hinges on both the representativeness of the 

data and on the comparability of the information captured by both types of instruments [5].

The aim of this study was to assess the comparability of the information captured by the 

OHS and the EQ-5D and investigate the validity of obtaining utilities for the OHS via map-

ping.

Methods

We made use of data obtained from a prospective cohort of NHS patients in England 

undergoing unilateral hip replacement [8] recruited at 11 health care providers. Data were 

collected from 512 patients before undergoing hip replacement and from 444 patients six 

months after surgery. There were 37 missing values for the OHS and 23 missing values for 

the EQ-5D. The UK-TTO value set (MVH-A1 tariff [9]) was used to calculate the utilities for 

the responses of the EQ-5D descriptive system. This is the value set that was elicited in a UK 

general population sample in 1993 and is the most widely used. Because the pre-operation 

(pre-op) and post-operation (post-op) data were expected to vary according to disease 

severity, we defined disease severity categories based on the utilities from the UK-TTO 

value set. These categories comprised steps of 0.1 in the utility scale i.e. the top category 

was 1 to (but not including) 0.9 and the bottom category (most severe states) was −0.3 to 

(but not including) −0.4. Although the UK-TTO value set has a minimum value of −0.59, 

values below −0.35 were absent in our data set (i.e. none of the patients reported to be in 

the worst EQ-5D states).

We started our analyses by exploring the data to find the (dis)similarities of the pre- and 

post-op data and the instruments using the combined correlation matrix of the OHS and 

EQ-5D. The correlation matrix comprised the inter-item correlations for all items of both 

questionnaires. In addition the combined pre- and post-op data was investigated as was the 

change in health status between the two time points. Principal component analysis (PCA) 

was applied to explore and compare the underlying dimensional structure of the OHS data 

and EQ-5D evident in these data. The basic idea behind PCA is to investigate whether a 

number of items generate information about a more general underlying construct [10]. 
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PCA determines these factors and the way items are associated by analysing the pattern 

of correlation. Items with relatively high inter-correlation are assumed to reflect the same 

construct, and items with low inter-correlation reflect different constructs. Eigenvalues 

are used to condense the variance in a correlation matrix. The eigenvalues of a construct 

represent the relative share of variance accounted for by this construct. The sum of the 

eigenvalues is equal to the number of items. In our case this was 17: five items of the EQ-5D 

plus 12 items of the OHS. If the items do not correlate with each other the eigenvalues will 

reflect only the variance in the original items and be equal to one for each item.

We carried out both exploratory and confirmatory PCAs. For the former we selected those 

constructs that had an eigenvalue >1 [11]. Since this is based solely on the inter-item cor-

relations the meaning of the resulting constructs can be difficult to interpret. The number 

of constructs in the confirmatory PCA was derived from inspection of the items. We chose 

five constructs reflecting the five items of the EQ-5D. In order to obtain a more interpretable 

set of factors, varimax rotation – an orthogonal rotation of the factor axes – was used to 

rotate the factors of both the exploratory and the confirmatory PCA [10]. Varimax rotation 

is effectively a change of coordinates of the factor solution, which allows for improved dif-

ferentiation and interpretability of the extracted factors. Apart from giving insight in the 

dimensional structure of both instruments, the PCA also provided a basis for the choice 

between a direct or an indirect mapping approach.

We assessed the predictive performance of mapping models between the OHS and EQ-5D. 

Three main effects OLS regression models were estimated, one based on the pre-op data, 

one based on the post-op data and one based on the combined data. In all three models 

the EQ-5D index was the dependent variable and OHS items were the independent vari-

ables. The aim of mapping is to find a single model with which to map all OHS responses 

onto EQ-5D utilities, irrespective of when they were collected. Therefore, the performance 

of the three models was tested on the pre-op data, the post-op data and the combined data. 

Finally, we also estimated a fourth model based on the combined data where the depen-

dent variable was again the EQ-5D index, but where the independent variables included 

the 12 OHS items, the 12 OHS items squared and all 66 two way interactions from the 12 

OHS items. This full model was proposed by Rowen et al. for mapping SF-36 to EQ-5D in 

order to test for non-linearity of the mapping function [12]. In order to determine which 

of the 90 hypothesised model parameters were statistically significant at the 95% level, we 

followed a two step schema. Firstly we did a forward, a backward and a stepwise regression 

on all 90 parameters. Next we removed the items that were excluded in all three regres-

sions and ran the forward, backward and stepwise regression for a second time on the 

reduced set of items. Finally, we selected the best predictive model from this set of three. 

The mean absolute error (MAE) was used as the measure of predictive validity. The MAE is 
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the absolute value of the difference between the observed EQ-5D index and the predicted 

EQ-5D index.

All analyses were carried out in SPSS version 16.0.

Results

Distribution of EQ-5D utilities

Of the 243 potential EQ-5D states, 52 were reported by the patients, covering most of the 

utility scale as defined by the UK-TTO value set for EQ-5D. The distribution of these 52 states 

over the disease severity categories (based on steps of 0.1 on the utility scale) for pre- and 

post-op data is shown in table 6.1.

None of the patients reported level 3 problems with mobility on the EQ-5D, either before 

or after their hip replacement surgery. Furthermore, only 1% of patients reported ‘extreme 

Table 6.1: Observed EQ-5D health states and range of EQ-5D utilities per disease severity category 

(pre- and post-op data combined).

Severity
category

EQ-5D Health States†
Observed utilities

n mean range

1 11111 139 1.00 1.00 1.00

0.9 11112 11211 12111 21111 21211 61 0.85 0.81 0.88

0.8 11121 11122 11221 12112 12211 21121 21212 22211 91 0.77 0.71 0.80

0.7 11222 12121 12221 21122 21221 21222 22121 22212 187 0.67 0.62 0.69

0.6 11311 12222 22221 22222 174 0.56 0.52 0.59

0.5 11113 2 0.41 0.41 0.41

0.4 21321 2 0.36 0.36 0.36

0.3 11231 21322 22321 23221 20 0.26 0.21 0.29

0.2 21131 21223 21231 21331 22322 50 0.17 0.10 0.20

0.1 21232 21332 22131 22223 22231 22323 63 0.06 0.02 0.09

0 21233 22232 22331 22332 136 −0.03 −0.08 0.00

−0.1 21333 22233 23331 11 −0.16 −0.18 −0.11

−0.2 22333 6 −0.24 −0.24 −0.24

−0.3 23333 1 −0.35 −0.35 −0.35

† 1 = no problems, 2 = some problems, 3 = extreme problems.

1st digit = Mobility, 2nd = Self-care, 3rd = Usual Activity, 4th = Pain/Discomfort, 5th = Anxiety/Depression.
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problems’ for self care and 2% for anxiety/depression. In contrast, 17% of the patients indi-

cated extreme problems for ‘usual activities’ and 44% for ‘pain/discomfort’.

The difference between the EQ-5D data collected before and after surgery is shown in 

figure 6.1. Before surgery 44% of patients reported a utility between 0.5 and 0.7, and 44% 

of patients had a utility between −0.1 and 0.3. Following surgery, 31% of patients were in 

perfect health with a utility of 1 and 61% reported a utility between 0.5 and 0.9. The mean 

utility gain because of hip replacement was found to be 0.42 (SD: 0.34).

Correlation between EQ-5D and OHS

For the pre-op dataset, the Spearman correlations between the OHS items and the EQ-5D 

items tended to be moderate (mean = 0.33, range = 0.08; 0.69). The highest correlation 

(0.691) was found between OHS item, How would you describe the pain you usually had 

from your hip, and the Pain/discomfort dimension of EQ-5D. The mean of the correlations 

between the EQ-5D index and the OHS items was 0.54 (range 0.41; 0.64). For the post-op 

data the inter-item correlations were higher (mean = 0.43, range = 0.26; 0.63) as was the 

correlation between the EQ-5D index and the OHS items (mean = 0.58, range = 0.49; 0.68). 

In both data sets the lowest correlations were those between any of the OHS items and the 

Anxiety/depression dimension of EQ-5D.
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Figure 6.1: Distributions of the disease severity of patients (based on EQ-5D) pre- and post-

operation.
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Exploratory principal component analysis

The underlying dimensional structure of the pre-op data was investigated using principal 

component analysis with varimax rotation. The extraction process was based on the cor-

relation matrix. When the number of components was limited to those with an eigenvalue 

>1, three constructs emerged which explained 56% of the total variance: pain, self care and 

mobility (table 6.2).

Four out of 17 items (6, 7, 8, 11) had a loading >0.4 on more than one construct. The EQ-5D 

dimensions of ‘mobility’ and ‘usual activity’ loaded on the same construct. The ‘anxiety/

depression’ dimension did not load onto any of the three constructs – this was because of 

the poor correlation of this dimension with any of the OHS items and other EQ-5D dimen-

sions. OHS items 1, 6, 8, 10, 11, and 12, all related to pain, loaded together on the EQ-5D 

dimension ‘pain/discomfort’. However, OHS item 6 loaded with an almost equal weight 

onto ‘mobility’ presumably because this item describes the time a patient is able to walk in 

combination with the pain from the hip becoming severe. OHS items 7 and 8 loaded onto 

‘pain’ and ‘self care’. These items describe an activity which relates to self care in combina-

tion with mention of the word painful. OHS item 11 loaded on all three constructs. Similarly 

OHS items 2, 3, 4, 5, 7, 8, 11 loaded onto ‘self care’ with items 7 and 8 also loading onto ‘pain’ 

and item 11 onto all three constructs. OHS items 6, 9 and 11 plus the EQ-5D dimensions 

‘mobility’ and ‘usual activity’ loaded onto ‘mobility’.

Confirmatory principal component analysis

In the confirmatory analysis the number of components to be extracted was set to five 

(table  6.3). As can be seen in table  6.3, no two EQ-5D items loaded onto a single factor. 

Furthermore, ‘Anxiety/depression’ can be seen to be a distinct construct, unrelated to any 

of the OHS items. Four OHS items (3,6,9,11) had factor loadings in excess of 0.4 on two con-

structs. Item 3 loaded both on ‘self care’ and on ‘usual activity’, items 6 and 9 on ‘pain’ and 

‘usual activity’, and item 9 on ‘mobility’ and ‘usual activity’. It is plausible that these items 

loaded on more than one construct (e.g. item 11 relates to the limitation in usual activity 

because of pain). Therefore, the OHS gives detailed information on three domains: pain, 

mobility and usual activity.

Comparison of pre-op data with other datasets

The results from both the exploratory and confirmatory analyses of the post-op data dif-

fered from those of the pre-op data. This difference was not in the number of constructs 

(i.e. three in the exploratory and five in the confirmatory analysis), but in the distribution 
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Table 6.2: Overview of the items associated with the three constructs derived from the exploratory 

principal factor analysis of the pre-operation data.

Item Construct 1: Pain Factor loading

OHS 1 How would you describe the pain you usually had from your hip? 0.76

OHS 6
For how long have you been able to walk before pain from your hip 
became severe? (with or without a stick)

0.46

OHS 7* Have you been able to climb a flight of stairs? 0.42

OHS 8
After a meal (sat at a table), how painful has it been for you to stand up 
from a chair because of your hip?

0.60

OHS 10
Have you had any sudden, severe pain – ‘shooting’, ‘stabbing’ or ‘spasms’ – 
from the affected hip?

0.71

OHS 11
How much has pain from your hip interfered with your usual work 
(including housework)?

0.50

OHS 12 Have you been troubled by pain from your hip in bed at night? 0.72

EQ 4 Pain/Discomfort 0.72

Item Construct 2: Self Care

OHS 2
Have you had any trouble with washing and drying yourself (all over) 
because of your hip?

0.74

OHS 3
Have you had any trouble getting in and out of a car or using public 
transport because of your hip? (whichever you tend to use)

0.67

OHS 4 Have you been able to put on a pair of socks, stockings or tights? 0.72

OHS 5 Could you do the household shopping on your own? 0.54

OHS 7 Have you been able to climb a flight of stairs? 0.50

OHS 8*
After a meal (sat at a table), how painful has it been for you to stand up 
from a chair because of your hip?

0.48

OHS 11*
How much has pain from your hip interfered with your usual work 
(including housework)?

0.46

EQ 2 Self Care 0.77

Item Construct 3: Mobility

OHS 6*
For how long have you been able to walk before pain from your hip 
became severe? (with or without a stick)

0.42

OHS 9 Have you been limping when walking, because of your hip? 0.57

OHS 11*
How much has pain from your hip interfered with your usual work 
(including housework)?

0.47

EQ 1 Mobility 0.78

EQ 3 Usual Activity 0.63

Item No construct

EQ 5 Anxiety/Depression
≤ .340 on all 

factors

* Item is associated more strongly with one of the other constructs.
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Table 6.3: Overview of the items associated with the five constructs used in the EQ-5D, based on the 

confirmatory principal factor analysis of the pre-operation data.

Construct 1: Pain/Discomfort Factor loading

OHS 1 How would you describe the pain you usually had from your hip? 0.77

OHS 6*
For how long have you been able to walk before pain from your hip 
became severe? (with or without a stick)

0.41

OHS 8
After a meal (sat at a table), how painful has it been for you to stand up 
from a chair because of your hip?

0.55

OHS 10
Have you had any sudden, severe pain – ‘shooting’, ‘stabbing’ or ‘spasms’ – 
from the affected hip?

0.67

OHS 
11*

How much has pain from your hip interfered with your usual work 
(including housework)?

0.41

OHS 12 Have you been troubled by pain from your hip in bed at night? 0.71

EQ 4 Pain/Discomfort 0.72

Construct 2: Usual activity

OHS 3*
Have you had any trouble getting in and out of a car or using public 
transport because of your hip? (whichever you tend to use)

0.49

OHS 5 Could you do the household shopping on your own? 0.72

OHS 6
For how long have you been able to walk before pain from your hip 
became severe? (with or without a stick)

0.51

OHS 7 Have you been able to climb a flight of stairs? 0.69

OHS 9* Have you been limping when walking, because of your hip? 0.40

OHS 11
How much has pain from your hip interfered with your usual work 
(including housework)?

0.62

EQ 3 Usual Activity 0.65

Construct 3: Self Care

OHS 2
Have you had any trouble with washing and drying yourself (all over) 
because of your hip?

0.76

OHS 3
Have you had any trouble getting in and out of a car or using public 
transport because of your hip? (whichever you tend to use)

0.56

OHS 4 Have you been able to put on a pair of socks, stockings or tights? 0.67

EQ 2 Self Care 0.77

Construct 4: Mobility

OHS 9 Have you been limping when walking, because of your hip? 0.45

EQ 1 Mobility 0.88

Construct 5: Anxiety/Depression

EQ 5 Anxiety/Depression 0.91

* Item is associated more strongly with one of the other constructs.
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of items over the different constructs. The most noticeable difference from the exploratory 

analysis was that four of the five EQ-5D dimensions loaded strongest onto a single construct 

(‘self care’ being the exception). Furthermore, the confirmatory analysis on the pre-op data 

showed that the EQ-5D domains all loaded onto their own construct. This is not the case in 

the results from the post-op data. Here three of the five EQ-5D domains loaded onto a single 

construct on which none of the OHS items loaded. This would suggest that the constructs 

underlying the post-op data are not the same as those underlying the pre-op data.

The combined pre and post-op data resulted in the highest inter-item correlations. On aver-

age, the correlations of OHS items and EQ-5D items were 0.23 higher for the combined data 

than for the pre-op data. The factor analysis on the combined data resulted in a different 

distribution of the items over the factors than the analysis on the pre-op data or on the 

post-op data (results not presented).

Analysis based on the individual patient differences between pre- and post-op data (i.e. the 

changes in health of a patient across the two points in time) resulted in the lowest inter-item 

correlations. On average, the correlations were 0.05 lower compared to the pre-op data.

Mapping models

The PCA showed that ‘Anxiety/depression’ was a distinct construct, unrelated to any of 

the OHS items. Therefore, we could only use the direct mapping approach. In the three 

main effects mapping models (table 6.4) the observed differences between the pre-op data, 

post-op data and combined data were reflected in the different OHS items included in each 

model and the parameter estimates. The performance of the models varied both between 

dataset and disease severity category (figures 6.2 and 6.3). Predictably, the model estimated 

on the pre-op data (pre-op model) gave the best fit on the pre-op data with an overall MAE 

of 0.16, followed by the model based on the combined data (combined model, overall 

MAE = 0.18) and the model based on the post-op data (post-op model, overall MAE = 0.20). 

However, the combined model fitted the post-op data best with an overall MAE of 0.10. The 

post-op model resulted in an overall MAE of 0.11 and the pre-op model in an overall MAE of 

0.34. In the pre-op data there were no observations with disease severity category 0.5 and 

0.9. In the post-op data these were present and the MAE for category 0.5 was higher than for 

other categories for all three models.

Of the 90 parameters of the full mapping model only 10 were significantly different from 

0 at the 95% confidence level (table 6.4). The full model performed marginally better than 

the combined model on the combined data with overall MAE = 0.139 compared to 0.147 

for the combined model and adjusted R2 of 0.748 versus 0.714 (figure 6.4). We found that 
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the mapping models underestimated the utilities for the mild health states while they 

overestimated those for the more severe health states. Furthermore the predicted utility 

gains from the full model differed from the observed utility gains obtained from the EQ-5D 

Table 6.4: Parameter estimates of the three main effects and the full mapping models.

pre-op post-op combined Full

OHS item model model model OHS item model

1 −.1498 * −.0266 4 −0.020

2 −.0424 * −.0333 12 0.049

3 * * * squared terms

4 * * −.0169 7 sq −0.018

5 * −.0358 −.0281 11 sq −0.017

6 −.0305 −.0279 −.0347 interactions

7 −.0369 −.0433 −.0287 1 x 7 0.023

8 −.0393 * * 1 x 8 −0.006

9 * −.0255 * 1 x 12 −0.036

10 * −.0311 −.0303 2 x 5 −0.011

11 −.0522 −.0681 −.0386 6 x 10 −0.007

12 −.0372 * −.0301 11 x 12 0.020

Intercept 1.8081 1.1815 1.2602 intercept 0.956

* Parameter estimates not significantly different from 0 at the 95% confidence level.
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Figure 6.2: Predictive performance of the three mapping models on the pre-operation data.
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data itself (figure 6.5). The number of patients reporting utility gains between 0.3 and 0.7 

was higher for the predictions from the full model than for the observed data, while the 

predicted numbers of patients above or below these boundaries were lower than observed.
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Figure 6.3: Predictive performance of the three mapping models on the post-operation data.
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Conclusions and discussion

Our analysis of patients’ self-reported health on the OHS and EQ-5D in a sample of NHS 

patients undergoing hip surgery shows clear differences in the underlying constructs of 

these two instruments. The exploratory principal components analysis suggests that at least 

three distinct constructs, relating to pain, mobility and usual activity, can be used to sum-

marize the data. The confirmatory principal components analysis shows that the 12 items 

of the OHS relate to four of the five dimensions of EQ-5D, the exception being ‘anxiety/

depression’. The correlations between the OHS and EQ-5D index (0.54 for pre-op, 0.58 for 

post-op) were slightly lower than the correlations found in other studies. Ostendorf and 

colleagues found a correlation of 0.64 pre-operation [13], while Dawson and colleagues 

found correlations of 0.67 for pre-operation and 0.77 for post-operation data [14].

Similar to other studies [12,15,16], we found that the mapping models underestimated the 

utilities for the mild health states while they overestimated those for the more severe health 

states. The two mapping models based on the combined data resulted in the best predicted 

performance. This was expected to be the case since the amount of data on which these 

models were estimated was almost two times that of the other models. All four models, 

however, perform poorly in using OHS data to predict utilities of patients with severe states 

(utility < 0.3), as indicated by MAE values larger than 0.14 for these values. As almost half 

the patients before surgery fall into this category, this is a major limitation. Because of the 

large MAE values indicating a minimum prediction error of 10% of the entire utility scale, 
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none of the models could be recommended as an acceptable basis for calculating utilities 

from the OHS responses for use in cost utility analyses. Further, finding a mapping model 

that results in an acceptably low MAE is unlikely because of differences in the underlying 

constructs of the OHS and EQ-5D, such as the absence of ‘anxiety/depression’ from the 

OHS. These same differences also preclude the use of indirect mapping approaches when 

mapping OHS to EQ-5D.

The OHS items are multidimensional such that the same aspect of health status is picked 

up by different items. Therefore the OHS items more often show responsiveness to change 

than the items of the EQ-5D. Moreover since the OHS items have five response categories 

the potential for respondents to indicate an improvement is higher. For each item of the 

OHS, 75-90% of respondents indicate an improvement following surgery, while 10-20% 

indicates no change. For the EQ-5D items, only 30-50% indicates an improvement while 

40-60% indicates no change. However, after aggregating over items using the Paretian Clas-

sification of Health Change approach [18] (in the Paretian Classification of Health Change 

approach an improvement in health status is defined as an improvement in at least one 

dimension of health with no deterioration in any of the other dimensions of health), the 

proportion of respondents indicating an improvement on EQ-5D increased to 82% (with 5% 

of respondents indicating no change on the aggregate level).

A key difference between the instruments is that the EQ-5D separates out the changes 

in health over separate dimensions, whereas the OHS combines information on several 

dimensions in a number of items. Also, in the OHS a mixture of response categories is used. 

Some of the response categories are similar to those of EQ-5D (i.e. they range from ‘no 

problems’ to ‘impossible to do’) and thus describe levels of severity. Other items in the OHS 

have response categories based on frequency or quantity (e.g. ranging from ‘never’ to ‘all of 

the time’). Such items are not present in EQ-5D; hence improvements in these attributes as 

measured by OHS may not be reflected by a corresponding change in EQ-5D.

The response categories used in the EQ-5D have implications for the way patients can 

describe their health. The response for the most extreme level of problems with mobility 

is ‘confined to bed’. Although such a definition might be useful to reveal the state of health 

for some types of patient, changes in those less severely ill cannot be adequately reflected. 

In effect, hip patients only have the choice between some and no problems with mobility. 

None of the respondents report themselves as confined to bed and, as a result, only small 

improvements in mobility could be detected. This problem may be resolved by the new 

version of the EQ-5D (EQ-5D-5L [18]) which has five response categories, and which has 

replaced ‘confined to bed’ with ‘extreme problems with mobility’.
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Some items of the OHS relate to more than one construct. This results in inter-item cor-

relations hampering the creation of a parsimonious value set (i.e. interaction effects will be 

important). The summary score for the OHS is calculated simply by adding the responses 

for each item. This means that the numerical labels of the response categories are assumed 

to have intrinsic numerical values with interval scale properties (implying that the items 

have equal weight and that the distances between the levels are equal). Furthermore, the 

different types of response categories are treated equally. From past valuation research it 

is clear that these assumptions do not hold [3]. Therefore the numeric values represented 

by the summary scores have limited meaning. For quality assessment of services, this 

limits the use of the summary scores of OHS to comparisons of performance over time and 

between providers, but does not allow assessment of the absolute impact.

Differences between the OHS and the EQ-5D do not undermine the merits of either instru-

ment when used for their own purposes. However, our results suggest that, because of the 

conceptual differences between these instruments, it is not possible to produce a viable 

mapping model for estimating utilities for the OHS based on OLS regression.
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Introduction

Can you imagine a health state where you would rather die than be in that state? If not, 

might another? Respondents with infinitely negative values for specific health states are 

commonly encountered in health valuation studies. When accumulating preferences 

across individuals, such extreme values negate the validity of summary statistics, such 

as population means and variances. A single infinite value causes the statistic to become 

infinite itself, losing all information about the other values within the population.

Even if such an extreme value is impossible, the potential of an extreme response (i.e., 

stated value) hinders survey research. When asked in a survey, respondents may state that 

they would give anything to have a baby, drink, or good night’s sleep (not necessarily in that 

order). Whether such an extreme response is credible or not, sample means including these 

infinite responses are not defined. The potential for an infinite response or infinite value is a 

challenging aspect to all forms of preference-based measurement, and is acutely important 

in health valuation.

Currently, three trade-off techniques dominate the literature, each of which involves vary-

ing quantities of life (i.e., time, risk, and persons). For example, the time trade-off technique 

(TTO) might ask whether the respondent prefers ten years in a disease state or eight years in 

optimal health. By raising and lowering the time in optimal health (a.k.a., quality-adjusted 

life years or QALYs), the interviewer can identify the respondent’s indifference point (e.g., 

ten years in the health state equal to eight QALYs). A state may have an extremely negative 

value: a respondent may be indifferent between a minute with a disease and the loss of one 

QALY (one minute with disease equals negative one QALY), which implies that a year with 

disease is worth –525,949 QALYs. Such an extreme TTO response would overwhelm typical 

summary measures. Therefore, this paper introduces an application of directional statistics 

in health valuation studies that may replace the more common practices [1,2].

The classical approach in health valuation remains highly controversial: (1) value is 

expressed as a ratio, representing the trade-off between two goods (e.g. −1 year/1 min-

ute = –525,949 QALYs); (2) the summary measure is the mean ratio; and (3) because means 

with outliers behave badly, extreme ratios are arbitrarily transformed to make the estimates 

look more credible [1,3]. We show that the assumption of angular error or “wavering prefer-

ence” motivates the use of directional statistics as an alternative approach to ratio statistics, 

and negates the impetus toward arbitrary transformations.

All trade-offs may be expressed using Cartesian coordinates (x,y), where a person is indif-

ferent between x and y. In time trade-off (TTO), x is time in a disease state and y is time 
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in optimal health (a.k.a. quality-adjusted life years (QALYs)). Value may be expressed by 

the ratio, y/x (See figure 7.1). For example, from a maximum choice of ten health years, a 

respondent may equate eight years in optimal health to ten years of disease time (Point A; 

value = 8/10 = 0.8). Or, a respondent may consider a scenario of two years of optimal health 

followed by eight years of disease, and equate it to “immediate death.” Because the value of 

death is zero on a QALY scale, this response suggests the eight years of disease is equal to 

a loss of two years in optimal health (Point B; value = −2/8 = −0.25). All TTO responses (x,y) 

may be arranged on the dashed line in figure 7.1, and values on a QALY scale are bounded 

between one and negative infinity.

Using a sample of trade-off responses, the conventional approach to valuation is to estimate 

a ratio statistic, μ, by minimizing the sum of squared error:

 εε −=∑
=

iii

N

i
iN xywhereMin

1

21

μ
μ     (1)

Values, y
i
/x

i
 , vary across individuals. Additive variation around a ratio statistic, μ, may be 

expressed using an error term, ε
i
, representing randomness in value and measurement 

error. Typically, additive error distributions have finite variance in addition to the expected 
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Figure 7.1: Time Trade-off Responses.
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value zero and independence. However, error in a ratio statistic can be poorly defined, 

because if one or more x values are zero, the error becomes infinitely large. In the UK valua-

tion of EQ-5D states, Dolan addressed the infinite variance problem by arbitrarily replacing 

all negative ratios (i.e., worse-than-death or WTD ratios) with y/10 [1]. Because y in the 

TTO varies from negative 9.75 to 10 years, the range of the adjusted values is bounded, from 

−0.975 to one.

Another concern with the application of ratio statistics is that x and y are not interchange-

able. In other words, μ(x,y) is not equal to the inverse of μ(x,y). This is particularly evident 

if one or more y values are zero. However, in a more general conjoint analysis, the trade-off 

of x for y may or may not be equal to the inverse of the trade-off of y for x, particularly in the 

case of complementary goods (e.g., shoe strings and shoes); however, this is an advanta-

geous attribute in health valuation and other applications, like monetary exchanges (e.g., 

dollars for yen).

Drummond and colleague discuss similar difficulties in the estimation of incremental 

cost-effectiveness ratios [4,5]. On a cost-effectiveness plane, the y-axis reflects incremental 

costs (y) and the x-axis reflects incremental effectiveness (x). The convention is to divide the 

mean cost by the mean effectiveness (a ratio known as an incremental cost-effectiveness 

ratio or ICER) as an alternative to a ratio statistic.

The application of directional statistics in health valuation addresses the problems of 

extreme values and interchangability, and motivates an estimator nearly identical to the 

ICER (i.e., ratio of means).

Methods

Directional Statistics in Health Valuation

Every point in a Euclidean space can be uniquely mapped to a set of polar coordinates (θ, r) 

described by an angle and a radius:

 x = r * cos(θ) y = r * sin(θ) r = √ x2 + y2  and θ = arctan(y/x)

Specifically, each ratio (y/x) is the tangent of an angle, θ. The radius, r, represents the size 

of the trade-off. Instead of a ratio statistic as the value estimator, we propose estimating the 

tangent of the mean angle.
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In figure  7.1, we show that the QALY angles are bounded between 45 degrees and nega-

tive 90 degrees. For example, a non-trader’s response of a negative infinite QALY value is 

a negative 90 degree QALY angle. Similarly, the value of optimal health (ratio = 1) is a 45 

degree angle and the value of dead (0) is a zero degree angle.

Instead of expressing randomness in value, y
i
/x

i
 = μ + ε

i
 , we may express randomness in 

direction, θ
i
 = θ + ε

i
. Direction error has been examined in many settings, such as adjust-

ments on a dial, readings on a compass or clock, or the variability of wind directions or 

seasonality [6-8]. As in the aforementioned examples, respondent preferences in health 

valuation may waver in a directional fashion (e.g., feeling up beat or downtrodden).

Our solution of changing the coordinate system so that problems can be circumvented (or 

calculations be made more easily) is commonly used in physics. For example, obtaining the 

equation of motion of a system of coupled oscillators can be done easier using Langrangian 

mechanics with spherical coordinates than using Newtonian mechanics with Cartesian 

coordinates [9].

Because angles are bounded, directional statistics are finite by construction and inter-

changeable. However, two well-known issues prevent the use of ordinary least squares 

(OLS) (equation 1) as a directional loss function for the estimation of mean angles: the 

crossover problem and circular variance. The crossover problem is related to the circular 

nature of angles. For example, on a compass, where north is zero degrees, the arithmetic 

mean of 45 degrees (northeast) and 315 degrees (northwest) is 180 degrees (south), not 

0 degrees (north), even though zero may be a more accurate representation of central 

tendency. The potential of crossing over north prevents the use of arithmetic means in 

directional applications. The QALY angles lie between 45 degrees (the values of optimal 

health) and negative 90 degrees (value of negative infinity), not throughout the entire circle. 

Therefore, crossover (i.e., angles beyond 180 or negative 180 degrees) is not possible.

Because the sum of squared error does not represent circular variance, OLS (equation 1) is 

inappropriate to use as a directional loss function. The largest possible error in QALY angles 

is 145 degrees; yet, the OLS specification allows for error beyond 145 degrees, and the square 

of this error may reach beyond the crossover point (180 degrees). OLS is inappropriate for 

the estimation of a linear probability model for similar reasons.

In directional statistics, circular variance is represented by

 ( )( ) ( )( )∑
=

−−→−−
N

i
iiNMin

1

1

ˆ
cosˆcossinˆsin1cosˆcossinˆsin1 θθθθθθθθ

θ
 (2)
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Mean angle, θ̂, is the estimate that minimizes circular variance, which is a directional loss 

function analogous to OLS (equation 1). Mardia and Jupp refer to this measure of dispersion 

as one minus the mean resultant length, R [10]. Unlike the error in ratio statistics, each ele-

ment in the circular variance expression is finite, ranging from zero to two, with an overall 

mean ranging between zero and one. If the angles are widely dispersed (i.e., discordance 

in health state value), circular variance approaches one, R ≅ 0, and if the angles are con-

centrated ( i.e., concordance in health state value), circular variance approaches zero, R ≅ 1.

To clarify the estimator of the tangent, we take the derivative of equation 2 and set it to zero:
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The tangent of the mean angle is the mean of y/r over the mean of x/r, where r is the radius. 

In figure 7.1, each TTO response has a radius as measured from the distance to the origin. 

If all responses (x, y) were rescaled by dividing by their radii, they would lie along the semi-

circular line. The tangent of the mean angle would be the mean of the rescaled y over the 

mean of the rescaled x. In other words, the mean angle estimator ignores the distance from 

the origin of each response.

Instead, radii may be included in the loss function as weights for each element of equation 

two. It follows that the tangent of a radially weighted mean angle is the mean of y over the 

mean of x:

 ( ) ( ) ( ) ( )( ) ( )∑ ∑∑
= ==

=→−−
N

i

N

j
jN
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i
iNrririiN xyrMin

r 1 1
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ˆ
ˆtanˆcoscosˆsinsin1 θθθθθ

θ
 (3)

Radial weighting the loss function suggests that angular error far from the origin is more 

important than error near the origin. In valuation, trade-offs with lengthy radii may be given 

more weight, because greater quantities are involved. For example, a monetary exchange 

involving millions of Euros may receive greater attention than a typical money exchange at 

an automatic teller machine. On the other hand, in trade-off response, which represents a 

single respondent’s valuation of a single state (i.e., one person, one vote), variability in the 

radii (see figure 7.1) is viewed as an artefact of the experimental design, and the mean angle 
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removes this arbitrary noise. The point (9, 10) is farther from the origin than the point (8, 10), 

but this does not necessarily suggest that it is more or less important.

In health valuation, directional statistics are appealing for their technical simplicity and 

plain intuition (i.e., individual preferences waver). Instead of the ratio statistic (i.e., the 

mean of y/x), the approach entails a ratio of means, y x . Radially weighted or not, the mean 

of x is non-zero by construction; therefore, the directional statistics may be more robust 

than their ratio counterparts. If x and y were switched, the resulting estimate would be the 

inverse of the original (i.e., interchangeability). When Dolan replaced WTD responses with 

y/10, the adjusted ratio statistic became y 10, which is similar to the radially weighted esti-

mator, y x  [1]. Although Dolan’s transformation has no theoretical basis, estimates under 

the classical approach approximate those based on directional statistics by construction.

Circular Regression

Valuation studies typically examine trade-offs between hypothesized health scenarios to 

predict the values of scenarios that were not directly incorporated into the sample. Out-

of-sample predictions can be accomplished using a linear combination of state-specific 

variables, Z’β, known as a multi-attribute utility (MAU) regression model. Using OLS (equa-

tion 1), the classical approach is to estimate the MAU regression model, yi x
i
 = Z

i
'β + ε

i
, where 

the dependent variable is the ratio, y/x. To improve the face validity of these predictions, 

Dolan arbitrarily replaced the dependent variable with y/10.

The circular regression approach is to estimate a linear MAU model by minimizing 

circular variance (equation 2), where θ
i
 = arctan (y

i
/x

i
) and θ̂  = arctan (Z

i
'β̂). Similarly, the 

radially weighted directional loss function (equation 3) may be minimized to estimate 

θ̂
r
 = arctan (Z

i
'β̂

r
). The MAU regression coefficients, β and β

r
, are on the same scale as the 

ratio statistic estimates; yet, the circular regression approach avoids the problems of ratio 

statistics and the arbitrary transformations of WTD responses.

The Measurement and Valuation of Health Study in the United Kingdom

To demonstrate the application of directional statistics in health valuation, we examine data 

from the seminal Measurement and Valuation of Health Study [1,11]. In 1993, the University 

of York administered 3395 interviews with a response rate of 64% and collected values of 42 

EQ-5D health states and the state of unconsciousness. During the TTO exercise, respon-

dents placed a value on up to 13 states. As mentioned earlier, the MVH protocol bounded 

the lower end of the loss in years to be greater than negative 9.75 (See figure 7.1); therefore, 

the ratio, y/x, is bounded between 1 and −39 (or −9.75/0.25).
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For the TTO analytical sample (N = 3,355), respondents were excluded (1) if only one or two 

states were valued (other than 11111, “immediate death,” and “unconscious”); (2) if all states 

were given the same value; or (3) if all states were valued worse than “immediate death.” 

The three criteria motivated the exclusion of 1.2% of the TTO respondents. Across the 3,355 

respondents, each of the 39,673 TTO responses described an equivalence of time in optimal 

and non-optimal health, BTD (10,y) or WTD (10+y, y), where y is time in optimal health 

between 10 and negative 9.75 years.

In this analysis, the values of the 42 hypothesized EQ-5D states were estimated using ratio 

statistics with and without Dolan’s transformation of WTD responses, and using directional 

statistics with and without radial weights. This allowed the comparison of the four methods 

(i.e., mean ratio, Dolan adjusted, Unweighted, and Radially-Weighted) without the distrac-

tion of state-specific attributes. Likewise, four MAU regression models were estimated to 

predict the values of the 243 EQ-5D states.

For both the 42 state values and the regression coefficient, 95% confidence intervals were 

estimated using the percentile method by applying bootstrap sampling with respondent-

specific cluster replacement. For each iteration of the bootstrap, a sample of respondents 

was extracted from the analytical sample with replacement and the analysis was re-run 

with the bootstrap sample. After 1,000 iterations, the parameter estimates were sorted and 

the top and bottom 24 estimates of each parameter removed. The 25th and 975th estimates 

represented the 95% confidence interval under the percentile bootstrap approach [12].

In complement to visual inspection, concordance between the predictions made in this 

study was measured using Lin’s coefficient of agreement and mean absolute difference. 

Because of its prominence in the literature, Dolan’s published value set was compared 

to these regression predictions. Using the same source data and variables as the original 

analysis of the MVH data, ratio statistic estimates with Dolan’s transformation of WTD 

responses were nearly identical in this analysis to published estimates. Minor deviations 

between the published and the re-estimated values may be attributable to differences in 

sample selection criteria.

Like the original analysis of the MVH data, the MUA regression model includes twelve 

indicator variables: five for second level domains, five for the third level domains, one for 

any second or third level domains (i.e., constant); and one for any third level domains (i.e. 

N3). The EQ-5D descriptive system has five dimensions (mobility, self-care, usual activities, 

pain/discomfort, and anxiety/depression) each with three possible levels [13]. The MUA 

regression model captures the detrimental effects of each level on each domain as well as 

the multiplicative effects of any one second or third level domains (i.e., constant), and of 
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any one third level domains in the state vector (i.e., N3). All database work was conducted 

on SAS 9.1, and the analyses were conducted using Stata 10 [14,15].

Results

After stratifying the analytic sample into 42 state-specific subsamples, we estimated the 

mean ratio with and without Dolan’s transformation of WTD responses (i.e., ∑N
1 y

i
x

i
 and 

y
10) and the tangent of the mean angle with and without radial weights (i.e., yr x

r
 and y x ). 

Without the Dolan transformation, the mean ratio is significantly positive for only ten out 

of the 42 states, which suggests that few states are better than “immediate death”. These 

estimates clearly lack face validity, and motivate the Dolan transformation. Transformed 

estimates are significantly greater than or equal to mean ratios for all 42 states, arbitrarily 

increasing values. Of the 42 states, 28 of the transformed estimates are significantly positive 

and 14 significantly negative, suggesting a third of the states are worse than “immediate 

death”. Because the Dolan transformation is the conventional approach to health valuation, 

these estimates (i.e., Dolan ratios) are compared with directional results.

Based on figure  7.2, directional statistics produce values similar to the Dolan ratios. As 

a measure of concordance with the arbitrarily adjusted estimates, Lin’s coefficient of 

agreement is 0.916 for the tangent of the mean angles and 0.954 for the radially weighted 

circular regression approach avoids the problems of ratio statistics
and the arbitrary transformations of WTD responses.

The measurement and valuation of health study in the United
Kingdom

To demonstrate the application of directional statistics in health
valuation, we examine data from the seminal Measurement and
Valuation of Health Study (Dolan, 1997; Gudex, 1994). In 1993, the
University of York administered 3395 interviews with a response
rate of 64% and collected values of 42 EQ-5D health states and the
state of unconsciousness. During the TTO exercise, respondents
placed a value on up to 13 states. As mentioned earlier, the MVH
protocol bounded the lower end of the loss in years to be greater
than negative 9.75 (See Fig. 1); therefore, the ratio, y/x, is bounded
between 1 and �39 (or �9.75/0.25).

For the TTO analytical sample (N¼ 3355), respondents were
excluded (1) if only one or two states were valued (other than
11,111, ‘‘immediate death,’’ and ‘‘unconscious’’); (2) if all states were
given the same value; or (3) if all states were valued worse than
‘‘immediate death.’’ The three criteria motivated the exclusion of
1.2% of the TTO respondents. Across the 3355 respondents, each of
the 39,673 TTO responses described an equivalence of time in
optimal and non-optimal health, BTD (10,y) or WTD (10þ y, y),
where y is time in optimal health between 10 and negative 9.75
QALYs.

In this analysis, the values of the 42 hypothesized EQ-5D states
were estimated using ratio statistics with and without Dolan’s
transformation of WTD responses, and using directional statistics
with and without radial weights. This allowed the comparison of
the four methods (i.e., mean ratio, Dolan adjusted, Unweighted, and
Radially-Weighted) without the distraction of state-specific
attributes. Likewise, fourMAU regressionmodels were estimated to
predict the values of the 243 EQ-5D states.

For both the 42 state values and the regression coefficient, 95%
confidence intervals were estimated using the percentile method
by applying bootstrap sampling with respondent-specific cluster
replacement. For each iteration of the bootstrap, a sample of
respondents was extracted from the analytical sample with
replacement and the analysis was re-run with the bootstrap
sample. After 1000 iterations, the parameter estimates were sor-
ted and the top and bottom 24 estimates of each parameter
removed. The 25th and 975th estimates represented the 95%
confidence interval under the percentile bootstrap approach
(Efron & Tibshirani, 1993).

In complement to visual inspection, concordance between the
predictions was measured using Lin’s coefficient of agreement and
mean absolute difference. Because of its prominence in the litera-
ture, Dolan’s published value set was compared to these regression
predictions. Using the same source data and variables as the orig-
inal analysis of the MVH data, ratio statistic estimates with Dolan’s
transformation of WTD responses were nearly identical in this
analysis to published estimates. Minor deviations between the
published and the re-estimated values may be attributable to
differences in sample selection criteria.

The EQ-5D descriptive system has five dimensions (mobility,
self-care, usual activities, pain/discomfort, and anxiety/depression)
each with three possible levels. Like the original analysis of the
MVH data, the MUA regression model includes twelve indicator
variables: five for second level domains, five for the third level
domains, one for any second or third level domains (i.e., intercept);
and one for any third level domains (i.e. N3). The EQ-5D descriptive
system has five dimensions (mobility, self-care, usual activities,
pain/discomfort, and anxiety/depression) each with three possible
levels (Szende, Oppe, & Devlin, 2007). The MUA regression model

captures the detrimental effects of each level on each domain as
well as the multiplicative effects of any one second or third level
domains (i.e., intercept), and of any one third level domains in the
state vector (i.e., N3). All database work was conducted on SAS 9.1,
and the analyses were conducted using Stata 10 (SAS, 2007;
StataCorp, 2007).

Analysis

After stratifying the analytic sample into 42 state-specific
subsamples, we estimated themean ratio with and without Dolan’s
transformation of WTD responses (i.e., 1

N

P
yi=xi and y=10) and

the tangent of the mean angle with and without radial weights (i.e.,
yr=xr and y=x). Without the Dolan transformation, the mean
ratio is significantly positive for only ten out of the 42 states, which
suggests that few states are better than ‘‘immediate death’’. These
estimates clearly lack face validity, and motivate the Dolan trans-
formation. Transformed estimates are significantly greater than or
equal to mean ratios for all 42 states, arbitrarily increasing values.
Of the 42 states, 28 of the transformed estimates are significantly
positive and 14 significantly negative, suggesting a third of the
states are worse than ‘‘immediate death’’. Because the Dolan
transformation is the conventional approach to health valuation,
these estimates (i.e., Dolan ratios) are compared with directional
results.

Based on Fig. 2, directional statistics produce values similar to
the Dolan ratios. As a measure of concordance with the arbitrarily
adjusted estimates, Lin’s coefficient of agreement is 0.916 for the
tangent of the mean angles and 0.954 for the radially weighted
estimates. Similarly, the absolute mean difference is 0.136 for the
unweighted and 0.067 for the weighted.

While the estimates are similar, the unweighted estimates are
significantly less than the Dolan ratios for all 42 states (Fig. 2).
The weighted estimates are more balanced; significantly less than
the Dolan ratios for 26 states and greater than for 14 states. If the
purpose is to produce estimates similar to the Dolan ratio predic-
tions, the tangent of the radially weighed angle is a preferred
estimator.

Fig. 2 further illustrates the negative relationship between the
Dolan ratios and the angle-based QALY values. For BTD states, the
differences between the Dolan ratios and the directional estimates
appear small. For WTD states, the difference increases as states
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Fig. 2. Comparison of angle-based and ratio-based QALY values for the 42 hypothe-
sized EQ-5D health states.
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Figure 7.2: Comparison of Angle-based and Ratio-based QALY values for the 42 Hypothesized EQ-

5D Health States.
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estimates. Similarly, the absolute mean difference is 0.136 for the unweighted and 0.067 for 

the weighted.

While the estimates are similar, the unweighted estimates are significantly less than the 

Dolan ratios for all 42 states (figure 7.2). The weighted estimates are more balanced; signifi-

cantly less than the Dolan ratios for 26 states and greater than for 14 states. If the purpose 

is to produce estimates similar to the Dolan ratio predictions, the tangent of the radially 

weighed angle is a preferred estimator.

Figure 7.2 further illustrates the negative relationship between the Dolan ratios and the 

angle-based QALY values. For BTD states, the differences between the Dolan ratios and the 

directional estimates appear small. For WTD states, the difference increases as states grow 

more severe. For example, the Dolan ratio of the “pits” state (33333) is X, and the weighted 

estimate is Y.

Health Valuation of the Entire EQ-5D Descriptive System

To assign values to all 243 possible EQ-5D health states, we estimated four regression mod-

els (table 7.1). Each coefficient reflects a decrement from optimal health (1.00); therefore, 

based on the 95% bootstrap confidence intervals, it is expected to be significantly negative. 

Table 7.1: Multi-Attribute Utility Regression Models for EQ-5D Health States.

N = 3,355 respondents Mean Ratio* Tangent of Mean Angle

with 39,673 responses Untransformed Transformed Unweighted Radially Weighted

State Attributes Coef. 95% C.I. Coef. 95% C.I. Coef. 95% C.I. Coef. 95% C.I.

Mobility, 2 −0.234 −0.378 −0.092 −0.069 −0.081 −0.058 −0.055 −0.073 −0.038 −0.040 −0.056 −0.025

Self-Care, 2 −0.085 −0.227 0.051 −0.105 −0.116 −0.094 −0.098 −0.115 −0.081 −0.082 −0.097 −0.068

Usual Activity, 2 −0.246 −0.372 −0.114 −0.034 −0.047 −0.022 −0.048 −0.065 −0.031 −0.050 −0.065 −0.037

Pain/Discomfort, 2 −0.240 −0.400 −0.095 −0.120 −0.131 −0.108 −0.124 −0.142 −0.105 −0.106 −0.122 −0.090

Anxiety/Depression, 2 −0.213 −0.346 −0.081 −0.071 −0.082 −0.061 −0.088 −0.104 −0.072 −0.087 −0.101 −0.073

Mobility, 3 −2.627 −2.900 −2.365 −0.311 −0.328 −0.293 −0.499 −0.529 −0.469 −0.498 −0.527 −0.469

Self-Care, 3 −1.614 −1.837 −1.405 −0.217 −0.232 −0.201 −0.327 −0.350 −0.305 −0.323 −0.344 −0.301

Usual Activity, 3 −1.202 −1.450 −0.977 −0.084 −0.102 −0.068 −0.183 −0.210 −0.160 −0.204 −0.228 −0.181

Pain/Discomfort, 3 −2.710 −2.962 −2.468 −0.374 −0.390 −0.358 −0.590 −0.618 −0.563 −0.575 −0.602 −0.549

Anxiety/Depression, 3 −2.050 −2.284 −1.800 −0.234 −0.250 −0.219 −0.386 −0.413 −0.359 −0.395 −0.420 −0.370

Any 2’s or 3’s −0.073 −0.163 0.029 −0.086 −0.096 −0.075 −0.114 −0.129 −0.100 −0.090 −0.103 −0.078

Any 3’s 0.834 0.583 1.075 −0.279 −0.297 −0.260 −0.125 −0.150 −0.098 −0.028 −0.051 −0.005

* In the TTO, better than death (BTD) response is (10,y) and worse than death (WTD) response is (10+y, y) where 

y is years in optimal health equal to x years in the health state. Dolan transformed the WTD responses from 

(10+y,y) to (10,y), arbitrarily inflating the ratios, y/x.
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For example, the Dolan ratio coefficient of any one second or third level domain is −0.086, 

which suggests that non-optimal health states have a maximum value of 0.914 (or 1-0.086). 

This decrement is known as the non-optimal gap.

The first five coefficients represent the decrement associated with “some problems” on 

each of the five domains. For these coefficients, the 95% confidence intervals overlap. 

The second set of coefficients represents decrements associated with “severe problems.” 

With the exception of the N3 coefficient, the Dolan ratio coefficients are significantly lower 

than the directional coefficients. The value of the N3 coefficient, being larger in the Dolan 

ratio model (−0.279) than in the directional models (−0.125 and −0.028), suggests that the 

directional models better differentiate the third level domains than the Dolan ratio model.

The replication of the Dolan ratio model is nearly identical to the published estimates (fig-

ure 7.3). Lin’s coefficient is 0.999, and the mean absolute difference across the 243 predicted 

values is 0.006. The small difference is likely attributable to rounding error and changes in 

the sample selection criteria. Figure 7.3 illustrates the relationship between the published 

Dolan estimates and the angle-based predictions, including predictions for all 243 EQ-5D 

states [1]. A negative relationship is illustrated where the greatest difference appears in the 

prediction of WTD values. For the 243 predictions, Lin’s coefficient of agreement between 

Dolan’s values and the unweighted values is 0.85, and the mean absolute difference is 0.164. 

Greater agreement is found in the weighted estimates, where Lin’s coefficient is 0.922 and 

grow more severe. For example, the Dolan ratio of the ‘‘pits’’ state
(33333) is �0.59, and the weighted estimate is �1.11.

Health valuation of the entire EQ-5D descriptive system

To assign values to all 243 possible EQ-5D health states, we
estimated four regression models (Table 1). Each coefficient reflects
a decrement from optimal health (1.00); therefore, based on the
95% bootstrap confidence intervals, it is expected to be significantly
negative. For example, the Dolan ratio coefficient of any one second
or third level domain (i.e., intercept) is �0.086, which suggests that
non-optimal health states have a maximum value of 0.914 (or
1�0.086). This decrement is known as the non-optimal gap.

The first five coefficients represent the decrement associated
with ‘‘some problems’’ on each of the five domains. For these
coefficients, the 95% confidence intervals overlap. The second set of
coefficients represents decrements associated with ‘‘severe
problems.’’ With the exception of the N3 coefficient, the Dolan ratio
coefficients are significantly lower than the directional coefficients.
The value of the N3 coefficient, being larger in the Dolan ratio
model (�0.279) than in the directional models (�0.125 and
�0.028), suggests that the directional models better differentiate
the third level domains than the Dolan ratio model.

The replication of the Dolan ratio model is nearly identical to the
published estimates. Lin’s coefficient is 0.999, and the mean abso-
lute difference across the 243 predicted values is 0.006. The small
difference is likely attributable to rounding error and changes in the
sample selection criteria. Fig. 3 illustrates the relationship between
the published Dolan estimates and the angle-based predictions,
including predictions for all 243 EQ-5D states (Dolan, 1997). A
negative relationship is illustrated where the greatest difference
appears in the prediction of WTD values. For the 243 predictions,
Lin’s coefficient of agreement between Dolan’s values and the
unweighted values is 0.85, and the mean absolute difference is
0.164. Greater agreement is found in theweighted estimates, where
Lin’s coefficient is 0.922 and the mean absolute difference is 0.109.
For reference, Fig. 4 is a histogram of angular error for the circular
regression models with or without radial weights.

Discussion

In this paper, we introduce the concept of wavering preferences,
and two directional statistics for use in the valuation of health
states (i.e., yr=xr and y=x). Each estimator addresses well known
issues in the ratio statistics, specifically infinite values and inter-
changeability, and negates the impetus behind the transformation
of outlying responses (e.g., Dolan or Shaw’s transformation of WTD

Table 1
Multi-attribute utility regression models for EQ-5D health states.

N¼ 3355 respondents with 39,673 responses Mean ratioa Tangent of mean angle

Untransformed Transformed Unweighted Radially weighted

State attributes Coef. 95% C.I. Coef. 95% C.I. Coef. 95% C.I. Coef. 95% C.I.

Mobility, 2 �0.234 �0.378 �0.092 �0.069 �0.081 �0.058 �0.055 �0.073 �0.038 �0.040 �0.056 �0.025
Self-care, 2 �0.085 �0.227 0.051 �0.105 �0.116 �0.094 �0.098 �0.115 �0.081 �0.082 �0.097 �0.068
Usual activity, 2 �0.246 �0.372 �0.114 �0.034 �0.047 �0.022 �0.048 �0.065 �0.031 �0.050 �0.065 �0.037
Pain/Discomfort, 2 �0.240 �0.400 �0.095 �0.120 �0.131 �0.108 �0.124 �0.142 �0.105 �0.106 �0.122 �0.090
Anxiety/Depression, 2 �0.213 �0.346 �0.081 �0.071 �0.082 �0.061 �0.088 �0.104 �0.072 �0.087 �0.101 �0.073
Mobility, 3 �2.627 �2.900 �2.365 �0.311 �0.328 �0.293 �0.499 �0.529 �0.469 �0.498 �0.527 �0.469
Self-care, 3 �1.614 �1.837 �1.405 �0.217 �0.232 �0.201 �0.327 �0.350 �0.305 �0.323 �0.344 �0.301
Usual activity, 3 �1.202 �1.450 �0.977 �0.084 �0.102 �0.068 �0.183 �0.210 �0.160 �0.204 �0.228 �0.181
Pain/Discomfort, 3 �2.710 �2.962 �2.468 �0.374 �0.390 �0.358 �0.590 �0.618 �0.563 �0.575 �0.602 �0.549
Anxiety/Depression, 3 �2.050 �2.284 �1.800 �0.234 �0.250 �0.219 �0.386 �0.413 �0.359 �0.395 �0.420 �0.370
Any 2’s or 3’s �0.073 �0.163 0.029 �0.086 �0.096 �0.075 �0.114 �0.129 �0.100 �0.090 �0.103 �0.078
Any 3’s 0.834 0.583 1.075 �0.279 �0.297 �0.260 �0.125 �0.150 �0.098 �0.028 �0.051 �0.005

a In the TTO, better than death (BTD) response is (10,y) and worse than death (WTD) response is (10þ y, y) where y is years in optimal health equal to x years in the health
state. Dolan transformed the WTD responses from (10þ y,y) to (10,y), arbitrarily inflating the ratios, y/x.
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the mean absolute difference is 0.109. For reference, figure  7.4 is a histogram of angular 

error for the circular regression models with or without radial weights.

Conclusions and discussion

In this paper, we introduce the concept of wavering preferences, and two directional statis-

tics for use in the valuation of health states (i.e., yr x
r

 and y x ). Each estimator addresses well 

known issues in the ratio statistics, specifically infinite values and interchangeability, and 

negates the impetus behind the transformation of outlying responses (e.g., Dolan or Shaw’s 

transformation of WTD responses). The estimator is nearly identical to an incremental cost-

effectiveness ratio (ICER). The resulting predictions are similar to those commonly applied 

in health policy; however, differences occur in the more severe health states. We focus on 

health valuation; however, multiple areas of conjoint analysis in health and medicine may 

benefit from this approach, particularly those where trade-offs seem unfathomable.

Given that the QALY scale is bounded between one and negative infinity, QALY angles are 

bounded between 45 degrees and negative 90 degrees. The directional estimator does not 

impose these bounds, which leads to two possible limitations. First, the predicted angles 

may be outside the QALY scale, which is similar to the problems faced in linear probability 

models. The ratio of means, y x , are naturally bounded to the interval, but out-of-sample 

predictions may be off the scale. This is unlikely to occur at the upper bound where 45 

degrees is optimal health, because all descriptive systems describe decrements from this 

grow more severe. For example, the Dolan ratio of the ‘‘pits’’ state
(33333) is �0.59, and the weighted estimate is �1.11.

Health valuation of the entire EQ-5D descriptive system

To assign values to all 243 possible EQ-5D health states, we
estimated four regression models (Table 1). Each coefficient reflects
a decrement from optimal health (1.00); therefore, based on the
95% bootstrap confidence intervals, it is expected to be significantly
negative. For example, the Dolan ratio coefficient of any one second
or third level domain (i.e., intercept) is �0.086, which suggests that
non-optimal health states have a maximum value of 0.914 (or
1�0.086). This decrement is known as the non-optimal gap.

The first five coefficients represent the decrement associated
with ‘‘some problems’’ on each of the five domains. For these
coefficients, the 95% confidence intervals overlap. The second set of
coefficients represents decrements associated with ‘‘severe
problems.’’ With the exception of the N3 coefficient, the Dolan ratio
coefficients are significantly lower than the directional coefficients.
The value of the N3 coefficient, being larger in the Dolan ratio
model (�0.279) than in the directional models (�0.125 and
�0.028), suggests that the directional models better differentiate
the third level domains than the Dolan ratio model.

The replication of the Dolan ratio model is nearly identical to the
published estimates. Lin’s coefficient is 0.999, and the mean abso-
lute difference across the 243 predicted values is 0.006. The small
difference is likely attributable to rounding error and changes in the
sample selection criteria. Fig. 3 illustrates the relationship between
the published Dolan estimates and the angle-based predictions,
including predictions for all 243 EQ-5D states (Dolan, 1997). A
negative relationship is illustrated where the greatest difference
appears in the prediction of WTD values. For the 243 predictions,
Lin’s coefficient of agreement between Dolan’s values and the
unweighted values is 0.85, and the mean absolute difference is
0.164. Greater agreement is found in theweighted estimates, where
Lin’s coefficient is 0.922 and the mean absolute difference is 0.109.
For reference, Fig. 4 is a histogram of angular error for the circular
regression models with or without radial weights.

Discussion

In this paper, we introduce the concept of wavering preferences,
and two directional statistics for use in the valuation of health
states (i.e., yr=xr and y=x). Each estimator addresses well known
issues in the ratio statistics, specifically infinite values and inter-
changeability, and negates the impetus behind the transformation
of outlying responses (e.g., Dolan or Shaw’s transformation of WTD

Table 1
Multi-attribute utility regression models for EQ-5D health states.

N¼ 3355 respondents with 39,673 responses Mean ratioa Tangent of mean angle

Untransformed Transformed Unweighted Radially weighted

State attributes Coef. 95% C.I. Coef. 95% C.I. Coef. 95% C.I. Coef. 95% C.I.

Mobility, 2 �0.234 �0.378 �0.092 �0.069 �0.081 �0.058 �0.055 �0.073 �0.038 �0.040 �0.056 �0.025
Self-care, 2 �0.085 �0.227 0.051 �0.105 �0.116 �0.094 �0.098 �0.115 �0.081 �0.082 �0.097 �0.068
Usual activity, 2 �0.246 �0.372 �0.114 �0.034 �0.047 �0.022 �0.048 �0.065 �0.031 �0.050 �0.065 �0.037
Pain/Discomfort, 2 �0.240 �0.400 �0.095 �0.120 �0.131 �0.108 �0.124 �0.142 �0.105 �0.106 �0.122 �0.090
Anxiety/Depression, 2 �0.213 �0.346 �0.081 �0.071 �0.082 �0.061 �0.088 �0.104 �0.072 �0.087 �0.101 �0.073
Mobility, 3 �2.627 �2.900 �2.365 �0.311 �0.328 �0.293 �0.499 �0.529 �0.469 �0.498 �0.527 �0.469
Self-care, 3 �1.614 �1.837 �1.405 �0.217 �0.232 �0.201 �0.327 �0.350 �0.305 �0.323 �0.344 �0.301
Usual activity, 3 �1.202 �1.450 �0.977 �0.084 �0.102 �0.068 �0.183 �0.210 �0.160 �0.204 �0.228 �0.181
Pain/Discomfort, 3 �2.710 �2.962 �2.468 �0.374 �0.390 �0.358 �0.590 �0.618 �0.563 �0.575 �0.602 �0.549
Anxiety/Depression, 3 �2.050 �2.284 �1.800 �0.234 �0.250 �0.219 �0.386 �0.413 �0.359 �0.395 �0.420 �0.370
Any 2’s or 3’s �0.073 �0.163 0.029 �0.086 �0.096 �0.075 �0.114 �0.129 �0.100 �0.090 �0.103 �0.078
Any 3’s 0.834 0.583 1.075 �0.279 �0.297 �0.260 �0.125 �0.150 �0.098 �0.028 �0.051 �0.005

a In the TTO, better than death (BTD) response is (10,y) and worse than death (WTD) response is (10þ y, y) where y is years in optimal health equal to x years in the health
state. Dolan transformed the WTD responses from (10þ y,y) to (10,y), arbitrarily inflating the ratios, y/x.
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point. WTD values may seem more likely to extend past negative 90 degrees, but few states 

are WTD. A second limitation is that the confidence intervals may span outside the QALY 

scale. To address this limitation, we apply bootstrap techniques to estimate the confidence 

intervals around estimates instead of assuming symmetric standard error. Because boot-

strap intervals are empirical and rely on resampled predictions, the confidence intervals 

remain within the QALY scale.

Alternative statistical methods in health valuation have been proposed to analytically 

accommodate infinite ratios, all of which have underlying assumptions with arbitrary ele-

ments. The most common is the transformation of WTD responses. Lamers and colleagues 

investigated three such transformations: 1) the monotonic transformation, y/10, proposed 

by Patrick and used by Dolan; 2) the linear transformation, (y/x)/39, proposed by Shaw and 

colleagues; and 3) truncation at −1 [1-3,16]. Lamers shows that each renders a different value 

set, and all transformations lack a sound theoretical underpinning.

A second class of alternative methods involves changing the estimator, not the data. In 

the current paper, we recommend the use of direction statistics; however, Craig and 

Busschbach recommend regressing y on x, using a coefficient, instead of a ratio statistic, 

as the estimator [17]. More recent work has investigated changing the measure of central 

tendency: instead of mean ratio, median or mode ratios may be estimated [18]. Median 

and mode statistics mitigate the effects of potentially infinite distribution tails, but are less 

relevant for economic evaluations.

Choosing directional statistics over Craig and Busschbach’s coefficient approach may 

appear arbitrary; nevertheless, each has a clear utility framework (i.e., wavering and 

episodic utility) [17]. No theoretical framework has yet been proposed to motivate the 

manipulation of data or the use of medians or modes for decision analyses, so these more 

pragmatic alternatives may be less justified.

Changing the estimator does not resolve issues inherent to trade-off experimental protocols. 

TTO responses are collected on two scales, one for BTD responses and another for WTD 

responses [11]. Scale separation may psychometrically influence TTO responses, which is 

not addressed by the proposed directional statistics. Secondly, we examine the value of 

a health state by varying time as a quantity of life, not risk or persons. Even though the 

problem that we present in this paper is essentially two dimensional, this does not mean 

that the use of directional statistics is limited to two dimensional problems. In principle 

the methodology can be extended to include three or more dimensional problems, just like 

in physics (e.g. in relativistic mechanics a four dimensional coordinate system is typically 

used) [19-21]. Lastly, the TTO task involves only gains in time. Prospect theory suggests that 
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respondents value losses distinctly from gains, and adjusting for these differences would be 

analogous to adding a reverse gear to the directional approach [22,23].

The tangent of the radially weighted mean angle, y x , provides consistent estimates without 

the arbitrary transformation of WTD responses, and the estimator has a clear underlying 

theoretical framework (i.e., wavering preferences). Its predictions are nearly identical to 

Dolan’s estimates, except that they have a wider range. To understand this difference, it 

is noteworthy that the two estimators, 
y

10 and y x , are the same except for the difference 

between x and ten. Because time in disease (x) is ten years or less, no simulation is required 

to show that the proportional difference between the estimates is always 
x

10 by construc-

tion. The more difficult questions concern the implications of this wider range in QALY 

estimates for economic evaluations.
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Introduction

Composite measures of health outcomes such as ‘quality-adjusted life years’ (QALYs) 

require weights or values attached to different health states that reflect the levels of health 

associated with these states. The standard gamble (SG) and time trade-off (TTO), which 

have emerged from health economics research, are frequently used to assign values to 

health states [1]. Psychology has contributed another technique, the visual analogue scale 

(VAS) [2]. Unfortunately, there are theoretical and empirical drawbacks to all of these 

techniques [3]. Responses to the SG and TTO are likely to be influenced by factors extrane-

ous to judgments about health levels, such as risk aversion or time preference. Moreover, 

empirical violations of the normative axioms supporting the use of these techniques have 

been noted. Regarding VAS, critics question its interval properties and point to its lack of 

a relation to economic theory. In the literature on health-state valuation, arguments are 

raised for and against different techniques, but this debate has not led to consensus [4]. 

Therefore, but also in light of the diverging empirical results, continued work on improving 

the methods is warranted.

Probabilistic discrete choice (DC) modelling offers an alternative approach for exploring 

people’s values. Such DC models can be used to analyse data obtained through approaches 

involving choices, ranks, or matches between alternatives, as defined by attributes and 

levels [5]. This strategy was first developed in transport economics and marketing. There, 

instead of modelling people’s actual choices (revealed preferences), Louviere and others 

modelled the choices made by subjects in carefully constructed experimental studies 

based on stated preferences: discrete choice experiments (DCE) [6]. This approach also 

made it possible to predict values for alternatives that could not be judged in the real world 

(i.e., hypothetical situations or conditions). Recently, DC modelling has attracted much 

attention in the area of health evaluation. The framework offers a conceptual basis for the 

evaluation of the benefits of health programs. DCE was introduced into health economics 

to evaluate health-care products going beyond the QALY paradigm. The technique is used 

to evaluate aspects of health care like waiting time, location of treatment, and type of care 

[7-9] but also to quantify health outcomes [10-14].

DC modelling has good prospects for health-state valuation. The statistical literature clas-

sifies it among the probabilistic choice models that are grounded in modern measurement 

theory and consistent with economic theory (i.e., the random utility model). All DC models 

have in common that they can establish the relative merit of one phenomenon with respect 

to others. If the phenomena are characterized by specific attributes with certain levels, 

extended probabilistic choice models would permit estimating the relative importance of 

the attributes and their associated levels, and even estimating overall values for different 
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combinations of attribute levels. A promising feature of DC models is that the derived 

values only relate to the attractiveness of a health state; they are not expressed in trade-offs 

between improved health and something else, as in TTO and SG. Bias due to these extrane-

ous factors may therefore be prevented. Moreover, DC models have a practical advantage: 

when conducting DCEs, health states may be evaluated in a self-completion format. The 

scope for valuation research is thereby widened as compared to existing TTO protocols for 

deriving values for health-state measurement instruments such as EQ-5D.

But DC models are not without problems when used for health-state valuation. The analyti-

cal procedure on which analysis of DCE data is based assumes that the difference in values 

between choice options (e.g., two health states) can be inferred from the proportion of 

respondents that chose one option over the other. This implies that the relative position of 

all health states on the latent scale would lie between the ‘best’ and the ‘worst’ health states. 

For the estimation of QALYs, however, those values need to be scaled on the full-health – 

dead scale. If DC modelling is used to value health, a way must be found to link the derived 

values under this model to the scale required to calculate QALYs. Yet there is no consensus 

on what is the best way to handle the arbitrarily scaled DC values obtained, so it remains 

uncertain just how valid and informative DC-based values are.

The first step in any applied procedure for rescaling DC values may be to rescale by anchor-

ing them on values obtained for the best and worst health state using other valuation 

techniques, such as TTO or SG. This approach might not be ideal, however, since part of the 

motivation to explore the DC model as a potential candidate to produce health-state values 

comes from the limitations of existing valuation methods. Alternatively, the DCE may be 

designed in such a way that the derived health-state values can be related to the value of 

the state ‘dead’. A simple manner to achieve this is to design a DCE in which respondents 

are presented one health state at a time and asked if they consider it better or worse than 

being dead. The difference between a health state and being dead can then be estimated 

from the observed probability that the respondents would prefer to be dead. However, the 

precision of the estimates will critically depend on the proportion of people who prefer 

each state over being dead and on the consistency of choices for each state, as explained 

by Flynn et al. [15]. Both problems are less likely to arise in studies comparing health states 

to each other rather than to being dead. By mixing these designs, the ability to relate the 

health-state values to being dead may be maintained, as demonstrated by McCabe et al. [13] 

and Salomon [16]. These authors mixed the state ‘dead’ in the choice set as a health state, 

so that a parameter for the state ‘dead’ is estimated as part of the model. Doing so provides 

the information needed to rescale the values while limiting (not omitting) the effect of the 

aforementioned biases.
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It is hard to say beforehand which method of deriving QALY weights with the DC model 

would produce optimal results: anchoring on external TTO values; or anchoring the DCE-

derived values on being dead. Experimentation with DC modelling is therefore required to 

see how these difficulties may be resolved in a particular situation.

This paper considers the application of DC modelling for deriving health-state values. 

Research on novel, enhanced, and feasible measurement tools is conducted by the EuroQol 

Group to support improvement of the Group’s health-status measurement instrument, the 

EQ-5D. This work is motivated by the perceived limitations of the traditional valuation 

techniques and by the prospects of DC models for health-state valuation. We analysed 

congruence across methods (DC, Rank, VAS, and TTO) and across samples with the aim of 

determining whether DC modelling produces value estimates that are comparable to tra-

ditional methods. The main focus of the study was to compare DC values to values elicited 

with the standard TTO technique.

Methods

EQ-5D states

The EuroQol EQ-5D is a generic measurement instrument to describe and value health 

states [17]. The EQ-5D classification describes health states according to five attributes: 

mobility; self-care; usual activities; pain/discomfort; and anxiety/depression. Each attri-

bute has three levels: ‘no problems’; ‘some problems’; and ‘severe problems’. Health-state 

descriptions are constructed by taking one level for each attribute, thus defining 243 (35) 

distinct health states, where ‘11111’ represents the best and ‘33333’ the worst state. An EQ-5D 

health state may be converted to a single summary index by applying a formula that essen-

tially attaches weights to each of the levels in each dimension. This formula reflects the 

values of EQ-5D health states as obtained from respondents in a sample of interest. Usually 

this is a representative sample of the general population, but in the current study both a 

student sample and a general population sample were used.

Not all EQ-5D states were included in the experiment. We constructed a discrete choice 

experiment (DCE) of 60 pairs of EQ-5D states, following the methodology described below. 

For the three other judgmental tasks in our study protocol, a set of 17 EQ-5D health states 

was selected. The set comprised five very mild, four mild, four moderate, three severe 

states, and state ‘33333’. The 17 states are: 11112, 11113, 11121, 11131, 11133, 11211, 11312, 12111, 13311, 

21111, 22222, 23232, 32211, 32223, 32313, 33323, and 33333. The same 17 states were used in the 

Dutch EQ-5D TTO valuation study [18].
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Respondents

For practical reasons, this study included a general population sample (target N = 400) and 

a student sample (target N = 200). Methodological issues were studied only in the student 

sample to reduce cost, but the validity and feasibility of DC modelling for health-state valu-

ation were eventually explored in the general population, in line with the societal perspec-

tive taken in most economic evaluations.

Students were recruited at Erasmus University in Rotterdam, The Netherlands. Each student 

was offered € 20 for participating. The general population sample consisted of members of 

an Internet panel. This panel included approximately 104,000 people. Stratified sampling 

was used to select a research sample from the panel that was representative for the Dutch 

general population in terms of age, gender, and education. The stratified sampling proce-

dure was performed in three rounds, so the final round allowed for over- or under-sampling 

of specific groups if the desired distribution over the strata had not been attained yet. The 

incentive offered to the panel members consisted of a € 2.50 donation to a charity chosen by 

the respondent and a chance to win gift certificates or other prizes in a lottery.

People in the general population sample were only administered the DCE. The students 

completed (in this order) the DCE, Ranking, VAS, and TTO task in the presence of one of 

the researchers or a research assistant. To become familiar with the type of health-state 

descriptions, all respondents were administered the EQ-5D prior to the judgmental tasks.

Judgmental tasks

DCE – In the DCE, all respondents were presented with a forced choice between two EQ-5D 

states. After this paired comparison task, students were prompted to answer a second ques-

tion related to each of the two health states separately. This extra question offered ‘dead’ 

as a choice, phrased as “would you rather be dead than living in this health state?” In the 

remainder of the paper, we will refer to the two outcomes as DCE data and DCE
dead

 data 

respectively.

The DCE was programmed as a computer experiment. Respondents logged in to a website 

where they were presented with a number of choices between two EQ-5D states that were 

randomly selected from the choice set. Our general population sample received nine discrete 

choices; students received 18 discrete choices, and thus compared 36 states to being dead.

Ranking, VAS, and TTO – The Ranking, VAS, and TTO tasks were performed as described 

in Lamers et al., 2006 [18]. The valuation procedure may be summarized as follows. First, 
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students rank-ordered the 17 EQ-5D states selected for these tasks, supplemented with 

‘dead’ and state ‘11111’, by putting the card with the ‘best’ health state on top and the ‘worst’ 

one at the bottom. Next, students valued the rank-ordered health states on the EuroQol 

visual analogue scale (EQ-VAS) using a bisection method that specified the order in which 

various states needed to be valued. The TTO valuation task followed the VAS valuation. 

TTO was executed using a Computer Assisted Personal Interviewing (CAPI) method that 

followed standard TTO protocols based on the original UK study protocol [19]. This implies 

that the health states were presented in random order, that the TTO task was facilitated by 

a visual aid, and that the respondents were led by a process of outward titration to select a 

length of time t in state ‘11111’ (perfect health) that they regarded as equivalent to ten years in 

the target state (for states better than dead) or to select a length of time (10 − t) in the target 

state followed by t years in state ‘11111’ (for states worse than dead).

Experimental design of the DCE

The DCE design was constructed using a Bayesian efficient approach, which to our knowl-

edge has not been applied in health economics before. Most DCEs in health economics 

have applied orthogonal designs. These allow the uncorrelated estimation of main effects, 

assuming that all interactions are negligible. A limitation of orthogonal designs is that 

orthogonality is compromised if, for the purpose of data analysis, categorical multi-level 

variables need to be transformed into a set of dummy variables. Moreover, in optimal 

orthogonal designs the efficiency of the design is optimized for the situation that choices 

are made randomly. This is true under the restrictive assumption that the estimates of the 

parameters in the utility model are equal to zero (β = 0). This implies that two choice options 

within a pair have a 50% probability of being preferred, irrespective of their attribute levels. 

If β = 0 does not hold, the design will not be optimally efficient for producing information 

in regard to the true parameter effects [20,21]. Both issues with orthogonal designs apply to 

EQ-5D valuation, so we decided to look elsewhere.

To construct a Bayesian efficient design, a computer algorithm was used (see Appendix). 

The algorithm entailed an iterative procedure whereby a great many designs, each with 

the desired number of 60 choice situations, were randomly selected from the full factorial 

design and compared by their D-error, which was computed on the basis of expected values 

of the model parameters. In the Bayesian framework these expected values are known as 

priors. Because the priors were not perfectly known, they were included as distributions 

from which they were sampled rather than as point estimates in the design algorithm. 

This way, when priors deviate from their expected values, the impact on the efficiency of 

the design is minimized. To that end, the Bayesian efficient design algorithm uses nested 

Monte Carlo simulation. The best design remaining after 2000 iterations, each containing 
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1000 draws for the priors, was selected for this study. The probability that this design is 

the optimal one is small since a more efficient design is likely to exist. Even if not optimal, 

the design will still be efficient, given the large number of iterations in the Monte Carlo 

simulation.

The DC model we intended to estimate included main-effect terms for the five categorical 

three-level EQ-5D domains (transformed into a set of ten dummies) and the so-called N3 

term. This is a non-multiplicative interaction term that is frequently used in EuroQol valu-

ation models. It allows for measuring the ‘extra’ disutility when reporting severe (level 3) 

problems on at least one EQ domain [17]. Accordingly, a minimum number of 11 pairs is 

required to estimate all model parameters. It was decided to increase this number to 60 

pairs to allow for extension of the model with interaction terms, if relevant.

The priors for the main effects were obtained by taking the weighted average of the param-

eter estimates from three TTO-based EQ-5D studies [18,19,22]. We used a standard error 

of 20% surrounding these priors to account for the possibility that parameter estimates 

modelled on the basis of DCE data might be different from those elicited with TTO. The 

prior parameter estimates of the interactions were set to 0 (table 8.1).

Table 8.1: Model parameters for the Bayesian efficient design.

Main effects* Priors for main effects Interactions (priors = 0)

MO2 −0.108 MO2*SC2 SC2*UA2 UA2*PD2 PD2*AD2

MO3 −0.434 MO2*SC3 SC2*UA3 UA2*PD3 PD2*AD3

SC2 −0.140 MO2*UA2 SC2*PD2 UA2*AD2 PD3*AD2

SC3 −0.346 MO2*UA3 SC2*PD3 UA2*AD3 PD3*AD3

UA2 −0.090 MO2*PD2 SC2*AD2 UA3*PD2

UA3 −0.240 MO2*PD3 SC2*AD3 UA3*PD3

PD2 −0.147 MO2*AD2 SC3*UA2 UA3*AD2

PD3 −0.463 MO2*AD3 SC3*UA3 UA3*AD3

AD2 −0.119 MO3*SC2 SC3*PD2

AD3 −0.354 MO3*SC3 SC3*PD3

MO3*UA2 SC3*AD2

MO3*UA3 SC3*AD3

MO3*PD2

MO3*PD3

MO3*AD2

MO3*AD3

* The abbreviations MO2 to AD3 represent the five categorical three-level EQ-5D domains transformed into a set 

of ten dummies. The first level (no problems) was used as reference category.
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The algorithm produced a design of 60 pairwise comparisons of two EQ-5D states. To 

further improve the design, we identified and altered dominant choices in which logical 

consistency predicts that one alternative will always be preferred. Nine dominant choices 

were identified. In five pairs, the worst state was improved to escape from dominance; in 

Table 8.2: Final set of 60 pairs of EQ-5D health states for the DCE (asterisk marking the 9 states that 

were manually altered).

Choice Option 1 Option 2 Choice Option 1 Option 2

1 21231 22323 31 13211 21233

2 23223 31113 32 33311 22133

3 11112 12221 33 32112 23312

4 33322 23312 34 21112 22111

5 22331 23233 35 32211 13333

6 32133 22312 36 13131 13113

7 33123* 22233* 37 22313 23231

8 23212 32121 38 31313 32231

9 32322 33131 39 12123 33321

10 11231 32111* 40 22311 32123

11 33222 11312 41 11133 21123

12 13122 21212 42 31311 21313

13 22221 13212 43 21212 32213

14 22312 11212 44 11121 22112*

15 22132 12321 45 13313 31221

16 12332 31333 46 21321* 12111

17 22333 33332 47 33323 23122

18 31222 12112 48 11223 32321

19 31131 13111 49 23313 32222

20 12233 13132 50 31323 22321

21 31131 12121 51 33113* 32332

22 33131 21323 52 22131 21212

23 33122 31132 53 23222 31113

24 11133 32211* 54 12222 33121

25 12231 21121 55 31132 21333

26 12312 13131 56 12213 31232

27 21111* 11311 57 23312 13123

28 11223 12313* 58 21211 32313

29 13231 31231 59 31133 21331

30 31123 12212 60 13321 13231
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the other four, the best state was made worse. The alterations were made randomly, but in 

accordance with the following rules: 1) the D-efficiency of the design was improved with 

the alterations; and 2) the new health state was not included yet in the choice set. This 

strategy resulted in a choice set of 60 pairs including 106 unique health states (94 states 

were included once, 10 twice, and two were included three times).The final set of 60 states 

is presented in table 8.2. The D-error of this design was 1.11.

Analysis

The rank data was analysed using the ‘law of comparative judgment’ (LCJ) model, as intro-

duced by Thurstone [23,24]. To model the rankings within the Thurstonian framework, the 

rankings are transformed (‘exploded’) into paired comparisons. The analytical procedure 

assumes that the difference in value between two health states can be inferred from the 

proportion (i.e., probabilities) of respondents who preferred one health state to another. 

The resulting matrix of probabilities is subsequently transformed into Z-values (i.e., normal 

distribution). The LCJ values are obtained by taking the mean of all the columns of the 

Z-matrix, as described by Krabbe [24].

Mean VAS and TTO values were obtained with approaches commonly used in EQ-5D valu-

ation studies [described, for example, in 17-19]. Observed VAS values were obtained on a 

scale with the endpoints ‘best imaginable health’ (= 100) and ‘worst imaginable health’ (= 0). 

To use these values in health-state valuation, they need to be rescaled such that state ‘11111’ 

has a value of 1 and being dead has a value of 0. Rescaling was performed at the respondent 

level on the basis of the observed VAS scores for the various health states and the scores that 

were recorded for ‘dead’ and ‘perfect health’, using the following equation [17]:

rawDEAD−
health state-rawVAS

raw

raw
health state-rescaled 11111

DEAD−
VAS =

The same procedure that was applied in the Dutch valuation study [18] was used for esti-

mating values from TTO responses. For states regarded as better than dead, the TTO value 

is t/10; for states worse than dead, values are computed as −t/(10 − t). These negative health 

states were subsequently bounded at minus 1 with the commonly used transformation 

v’ = v/(1 − v). Linear regression analysis was used to interpolate values for all EQ-5D states 

from the values for the 17 states that were observed.

For the TTO task, the predicted values for all 243 EQ-5D states were derived after interpola-

tion from the values for the 17 states that were included in the TTO task. The TTO model 

included an intercept, interpreted as any deviation from full health, as well as dummy 

variables for the ten main effects and for the N3 parameter.
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We modelled and rescaled DCE-derived values in two different ways. The applied DC mod-

els were a conditional logit model (estimated only on the DCE data) and a rank-ordered 

logit model (estimated on DCE and DCE
dead

 data), as explained below.

First we used the conditional logit model to analyse the DCE data obtained from the 60 

pairwise comparisons of EQ-5D states. The model included dummy variables for the ten 

main effects and the N3 parameter. The values derived from this model are on an unde-

fined scale. To link the DCE-derived health-state values to the QALY scale, we used TTO 

values for the worst health state (33333) and the best health state (11111) as anchor points for 

rescaling. For the general population we used TTO values obtained from the Dutch EQ-5D 

valuation study. For the student sample, we used the empirical TTO values derived in this 

study. We will refer to the resulting values as the DC values.

Alternatively, we derived health-state values from the DCE data on the QALY scale by 

anchoring the values on the value for being dead (thus: 0). For this purpose we modelled 

the information obtained from both the DC and DC
dead

 data. This information was used 

to deduce how the respondent would have rank ordered the two EQ-5D states and ‘dead’ 

from most to least preferred. These rank orderings were analysed using a rank-ordered 

logit model. Besides the dummy variables for the ten main effects and the N3 parameter, 

this model also includes a parameter for the state of being dead, which can be used to 

rescale the values and put them on the full-health – dead (1 – 0) scale, as demonstrated by 

McCabe et al. [13]. The value for being dead is anchored at zero by dividing all coefficients 

by the coefficient for ‘dead’. By additionally restricting the value of full health to 1, values are 

produced in the 0 to 1 range for states better than dead and negative values for states worse 

than dead. We will refer to the resulting value set as DC
dead

The two DC models are both variants of the multinomial logit model that is frequently used 

for analysis of DCE data [5,25]. The latter makes the simplifying assumptions that the error 

terms are independently, identically distributed (the IID assumption) and that the ratio of 

the probabilities of two alternatives i and k does not depend on any alternatives other than i 

and k (the IIA assumption). Several other models relax the IIA assumption, thereby alleviat-

ing concerns about bias due to its violation. Examples include the mixed logit model, the 

generalized extreme value model, and the probit model [25]. The first of these is considered 

the most promising for discrete choice analysis [26]. While mixed logit models are arguably 

more powerful, they also require higher data quality. For practical reasons, we decided to 

power the current study just for conditional logit estimation and not for mixed logit estima-

tion. Our aim was to make a global comparison of TTO and DC values and then to study 

the strengths and weaknesses of various ways of anchoring relative DC values on the QALY 

scale. If this study generates satisfactory results, we anticipate future studies whereby the 
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design would be optimized in relation to selected anchoring strategies as well as to bias 

minimization.

Intraclass correlation coefficients (mixed model, average measures) and mean absolute 

differences were computed to estimate the degree of correspondence between different 

methods. Except for the DC model (Stata 10 SE), all statistical analyses were performed in 

SPSS (V. 17.0).

Results

Respondents

Data were elicited in a sample of 444 persons in the general population and 209 students. 

The general population sample was representative in terms of gender, age, and level of 

education (table 8.3).

Table 8.3: Characteristics of the two samples.

Sample
(N = 444)

General population 
norms* (%)

Students
(N = 209)

Male, % (N) 48.2 (214) 50.1 30.6 (64)

18-24 3.8 (17) 5.9 79.7 (51)

25-34 7.9 (35) 9 18.8 (12)

35-44 10.8 (48) 11.3 1.5 (1)

45-54 9.7 (43) 10.1 -

55-64 10.4 (46) 8.6 -

65-74 5.6 (25) 5.2 -

Female, % (N) 51.8 (230) 50 69.4 (145)

18-24 4.7 (21) 5.8 82.7 (120)

25-34 9.2 (41) 9 16.5 (24)

35-44 11.5 (51) 11.1 0.8 (1)

45-54 10.4 (46) 9.9 -

55-64 10.1 (45) 8.5 -

65-74 5.9 (26) 5.7 -

Marital status, % (N)

Single 23.4 (104) - 68.4 (143)

Married/living together 59.0 (262) - 16.7 (35)
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Preference data elicited in students using Ranks, VAS, and TTO

The observed mean values for the 17 health states that were obtained in students using 

Ranks, VAS, and TTO are presented in table 8.4 and – supplemented with the DC values – in 

Table 8.3: Characteristics of the two samples (continued).

Sample (N = 444) General population 
norms* (%)

Students (N = 209)

Widowed 3.2 (14) - -

Divorced 10.4 (46) - 1.4 (3)

Missing, other 4.1 (18) - 13.5 (28)

Educational level, % (N)

Low 27.0 (120) 26.3 -

Middle 40.1 (178) 42.5 -

High 32.9 (146) 31.3 100.0 (209)

Age, Mean (SD) 45.5 (14.6) - 22.7 (3.4)

EQ-5D index, Mean (SD) 0.83 (0.23) - 0.93 (0.1)

* source: Survey Sampling International, Minicensus data (Netherlands).

that overall DC values are higher than TTO values, and also that
marginal differences between TTO and DC values for individual
pairs of states can be as large as around 0.20. The mean of
marginal differences between DC values and TTO values for
individual pairs was 0.086 (SD 0.002).

Anchoring DC Values on “Dead”
Students considered a health state to be worse than dead in about
10% of the cases. The DC model parameter estimates derived
from the DCdead data are presented in Table 5.

The values produced by the two different models (DC vs.
DCdead) are congruent (Fig. 5); the intraclass correlation between
the two value sets was 0.99 (P < 0.001; CI 0.92–0.99), while the

mean absolute difference between the values was 0.019 (SD
0.009). The DCdead values were slightly lower than values derived
from the DCE involving pair-wise comparison of EQ-5D states,
except for mild health states. Therefore, the difference between
the DCdead values and the TTO values was slightly smaller than
the difference between the DC values and the TTO values.

Interaction Terms in the DC Models
The analysis of the DC models expanded with first-order inter-
action terms showed that 10 of the 40 interaction terms were
statistically significant. Nevertheless, three main effects (mobility
level 2, pain level 2, depression/anxiety level 2) were no longer
statistically significant when compared to the main effect model.

Table 4 Observed and rescaled mean (SD) ranks, visual analog scale (VAS), and time trade-off (TTO) values (N = 209) and predicted discrete choice
(DC) values (N = 204) for the 17 EQ-5D states

State

Ranks
Thurstone

(exploded ranks) VAS (observed) VAS (normalized) TTO (observed) DC model (predicted)

Mean SD Rescaled LCJ Mean SD Mean SD Rescaled Mean SD DCE DCE dead

11111 1.01 0.21 1.00 — 98.83 3.35 100.00 0.00 1.00 — — 1.00 1.00
11112 4.17 1.97 0.81 0.96 82.72 12.87 81.97 14.20 0.82 0.81 0.28 0.92 0.93
11211 4.20 1.78 0.81 0.92 82.07 11.46 80.99 14.53 0.81 0.83 0.25 0.93 0.93
12111 4.25 2.27 0.80 0.88 81.03 15.79 79.61 21.14 0.80 0.86 0.25 0.95 0.95
11121 4.34 1.92 0.80 0.91 81.54 13.69 80.80 14.31 0.81 0.86 0.22 0.95 0.95
21111 4.36 2.48 0.80 0.88 80.99 14.41 79.87 15.93 0.80 0.89 0.18 0.95 0.95
11113 8.25 2.99 0.56 0.64 57.50 21.18 53.98 23.79 0.54 0.52 0.44 0.65 0.63
11312 8.97 2.19 0.52 0.58 55.12 16.16 51.18 20.21 0.51 0.55 0.34 0.62 0.60
11131 9.40 2.83 0.49 0.55 51.20 19.38 46.73 22.18 0.47 0.43 0.45 0.64 0.60
22222 9.98 1.92 0.45 0.49 48.47 14.59 43.70 18.63 0.44 0.58 0.36 0.70 0.71
13311 10.27 2.76 0.44 0.52 48.26 18.14 43.71 22.84 0.44 0.51 0.38 0.58 0.56
32211 11.05 2.81 0.39 0.44 42.78 18.41 37.33 24.99 0.37 0.56 0.40 0.56 0.54
11133 12.85 2.94 0.28 0.33 31.54 18.90 24.85 23.52 0.25 0.24 0.49 0.40 0.38
23232 13.62 2.21 0.23 0.24 27.42 14.09 20.47 18.60 0.21 0.29 0.43 0.32 0.30
32223 14.21 1.94 0.20 0.24 24.75 13.35 17.49 18.42 0.18 0.28 0.44 0.28 0.26
32313 14.66 2.01 0.17 0.21 21.98 13.50 13.89 22.86 0.14 0.23 0.46 0.21 0.21
33323 16.78 1.50 0.04 0.03 10.44 9.69 1.47 17.57 0.02 0.08 0.49 0.09 0.09
dead 17.43 1.94 0.00 0.00 7.59 11.38 0.00 0.00 0.00 — —
33333 18.37 0.82 -0.06 -0.15 3.68 5.87 -6.62 21.11 -0.07 -0.10 0.48 -0.10 -0.11
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Figure 1 Comparison of values elicited from the
student sample: Observed rank,Thurstone scaling
(LCJ) based on ranks,VAS, and TTO values for the
17 empirically measured EQ-5D health states, and
the derived values of the same 17 states based on
the DC task (DCE).

6 Stolk et al.

Figure 8.1: Comparison of values elicited from the student sample: Observed rank, Thurstone scaling 

(LCJ) based on ranks, VAS, and TTO values for the 17 empirically measured EQ-5D health states, and 

the derived values of the same 17 states based on the DC task (DCE).
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figure 8.1. All methods yielded a negative value for state 33333 (rank: −0.06; LCJ: −0.15; VAS: 

−0.07; TTO: −0.1). Compared to the Dutch TTO-based valuation algorithm, the student 

sample gave on average slightly higher values for the health states (not presented). The 

intraclass correlations between the four value sets were high (>0.96). Yet the absolute 

values differed across the methods, in particular between VAS and LCJ, between TTO and 

VAS, and between TTO and LCJ. VAS values tended to be lower than TTO values. However, 

the mean ranks were similar to the VAS values. This similarity may be caused by the relation 

between the judgmental tasks of the ranking and VAS: the rank-ordered health states were 

valued using VAS in a specific order. Application of LCJ to rank data resulted in values that 

were higher than VAS and TTO values.

Comparing DC and TTO

Table 8.5 presents the parameter estimates obtained for DC, DC
dead

, and TTO. We only 

Table 8.4: Observed and rescaled Ranks, VAS, and TTO values (means, SD) for the 17 EQ-5D states.

State Ranks
Thurstone
(exploded 

ranks)

VAS 
(observed)

VAS (normalized)
TTO 

(observed)

Mean SD Rescaled LCJ Mean SD Mean SD Rescaled Mean SD

11111 1.01 0.21 1.00 - 98.83 3.35 100.00 0.00 1.00 1.00 -

11112 4.17 1.97 0.81 0.96 82.72 12.87 81.97 14.20 0.82 0.81 0.28

11211 4.20 1.78 0.81 0.92 82.07 11.46 80.99 14.53 0.81 0.83 0.25

12111 4.25 2.27 0.80 0.88 81.03 15.79 79.61 21.14 0.80 0.86 0.25

11121 4.34 1.92 0.80 0.91 81.54 13.69 80.80 14.31 0.81 0.86 0.22

21111 4.36 2.48 0.80 0.88 80.99 14.41 79.87 15.93 0.80 0.89 0.18

11113 8.25 2.99 0.56 0.64 57.50 21.18 53.98 23.79 0.54 0.52 0.44

11312 8.97 2.19 0.52 0.58 55.12 16.16 51.18 20.21 0.51 0.55 0.34

11131 9.40 2.83 0.49 0.55 51.20 19.38 46.73 22.18 0.47 0.43 0.45

22222 9.98 1.92 0.45 0.49 48.47 14.59 43.70 18.63 0.44 0.58 0.36

13311 10.27 2.76 0.44 0.52 48.26 18.14 43.71 22.84 0.44 0.51 0.38

32211 11.05 2.81 0.39 0.44 42.78 18.41 37.33 24.99 0.37 0.56 0.40

11133 12.85 2.94 0.28 0.33 31.54 18.90 24.85 23.52 0.25 0.24 0.49

23232 13.62 2.21 0.23 0.24 27.42 14.09 20.47 18.60 0.21 0.29 0.43

32223 14.21 1.94 0.20 0.24 24.75 13.35 17.49 18.42 0.18 0.28 0.44

32313 14.66 2.01 0.17 0.21 21.98 13.50 13.89 22.86 0.14 0.23 0.46

33323 16.78 1.50 0.04 0.03 10.44 9.69 1.47 17.57 0.02 0.08 0.49

dead 17.43 1.94 0.00 0.00 7.59 11.38 0.00 0.00 0.00 - -

33333 18.37 0.82 −0.06 −0.15 3.68 5.87 −6.62 21.11 −0.07 −0.10 0.48
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report the models that included the N3 parameter, because these performed slightly better 

than the models without N3. All coefficients were statistically significant, except for mobil-

ity level 2 in the TTO model.

A strong relationship was observed between the values obtained for the 243 EQ-5D states 

predicted by the DC model based on the general population and student DCE data (fig-

ure 8.2). Although more health states seem to be valued negatively by the general popula-

tion, this is mostly due to the rescaling on the basis of the TTO value for the worst EQ-5D 

state, ‘33333’. Comparison of figures 8.2 and 8.3 suggests that the parameter estimates 

Table 8.5: Parameter estimates for the models based on data derived by DCE and TTO.

General population Students

DCE DCE DCE
dead

TTO

Coef SE sign Coef SE sign Coef SE sign coef SE sign

Constant* N/A N/A N/A −0.103 0.02 0.000

MO2 −0.267 0.07 0.000 −0.364 0.08 0.000 0.297 0.07 0.000 −0.012 0.02 0.603

MO3 −1.430 0.08 0.000 −1.430 0.09 0.000 1.169 0.07 0.000 −0.091 0.03 0.001

SC2 −0.536 0.06 0.000 −0.382 0.07 0.000 0.296 0.06 0.000 −0.055 0.02 0.012

SC3 −1.092 0.08 0.000 −0.830 0.08 0.000 0.691 0.07 0.000 −0.079 0.03 0.002

UA2 −0.303 0.07 0.000 −0.515 0.08 0.000 0.410 0.07 0.000 −0.054 0.02 0.021

UA3 −0.887 0.08 0.000 −1.337 0.09 0.000 1.062 0.07 0.000 −0.169 0.03 0.000

PD2 −0.143 0.06 0.026 −0.354 0.07 0.000 0.335 0.06 0.000 −0.087 0.02 0,000

PD3 −1.330 0.08 0.000 −1.751 0.09 0.000 1.521 0.07 0.000 −0.297 0.02 0,000

AD2 −0.470 0.07 0.000 −0.516 0.08 0.000 0.424 0.07 0.000 −0.069 0.02 0.001

AD3 −1.499 0.08 0.000 −1.667 0.08 0.000 1.351 0.07 0.000 −0.231 0.02 0.000

N3 −0.599 0.12 0.000 −0.844 0.14 0.000 0.918 0.13 0.000 −0.128 0.02 0.000

Dead dummy N/A  N/A 6.066 0.16 0.000  N/A

model fits pseudo R2 0.25 pseudo R2 0.29 pseudo R2 0.46 R2 0.35

* The constant is not always estimated and has different meanings when it is, due to difference in the scale on 

which coefficients are estimated. “DCE” coefficients indicate the impact of a “one-unit” difference in the inde-

pendent variables which are 10 dummies representing jumps from the no-problem level on an EQ domain to the 

level of some or severe problems. The parameters are thus estimated relative to full health, a state on which we 

superimpose the value of 11111. On the basis of provided parameter estimates the value for EQ-5D state 33333 can 

be computed on the same arbitrary scale, which is −5.837 for the general population and −6.859 for students. A 

constant is not estimated in the multinomial (conditional) logit model, because this is a difference model so the 

constant drops out. “DCEdead” coefficients indicate the impact of a “one-unit” difference in the independent 

variable on the probability that a condition is considered to be worse than being dead. The coefficients are esti-

mated on a scale with two anchors: dead (on which we superimpose the value of 0) and a top anchor represented 

by the constant. Here the constant thus represents the value for full health. “TTO” coefficients are measured on 

an absolute scale, anchored by full health (1.0) and dead (0.0). Here, the constant represents the disutility associ-

ated with any deviation from full health in so far as it is not attributable to any of the five domains.
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The increase in the amount of explained variance (pseudo-R2)
caused by the inclusion of the interaction terms was marginal
(main effect: 0.266; main effects + interactions: 0.277).

Discussion

We have presented a systematic comparison of ranks and VAS,
TTO, and DC (DCE-derived) values for EQ-5D health states in
order to investigate whether or not modeling DCE data produces
health state values that are comparable to other conventional
valuation techniques, TTO in particular. DC values broadly rep-
licated the pattern found in TTO responses. This observation
applies to both samples (general population, students) and, in

students, to both strategies that were applied to anchor the DC
values on the full health (= 1)–dead (= 0) scale. Besides similari-
ties, there were also systematic differences. DC values were con-
sistently higher than TTO values, which were in turn higher than
VAS values. Values derived from rank data were higher when
analyzed using LCJ than when using mean ranks. Instead of the
classic case V model used here, more general Thurstonian models
with unrestricted covariance structures may be more appropriate
[29]. The results suggest a systematic difference across the
methods, with DC values being the highest of all.

The fact that differences were found between DC modeling
and TTO is in line with the findings of several other studies
where DC models have been applied in the analysis of rank or

Table 5 Parameter estimates for the models based on data derived by discrete choice experiment (DCE) and time trade-off (TTO)

DCE general
population DCE students DCEdead students TTO students

N = 438
Obs = 7,884 (438*9*2)

N = 204
Obs = 7,334 (204*18*2)

N = 204
Obs = 11,016 (204*18*3)

N = 209
Obs = 3,553 (209*17)

Coef SE Sign Coef SE Sign Coef SE Sign Coef SE Sign

Constant* -0.017 0.04 0.674 -0.094 0.04 0.028 N/A -0.103 0.02 0.000
MO2 -0.270 0.07 0.000 -0.344 0.08 0.000 0.297 0.07 0.000 -0.012 0.02 0.603
MO3 -1.454 0.08 0.000 -1.405 0.09 0.000 1.169 0.07 0.000 -0.091 0.03 0.001
SC2 -0.545 0.07 0.000 -0.374 0.07 0.000 0.296 0.06 0.000 -0.055 0.02 0.012
SC3 -1.116 0.08 0.000 -0.834 0.08 0.000 0.691 0.07 0.000 -0.079 0.03 0.002
UA2 -0.302 0.07 0.000 -0.508 0.08 0.000 0.410 0.07 0.000 -0.054 0.02 0.021
UA3 -0.914 0.08 0.000 -1.338 0.09 0.000 1.062 0.07 0.000 -0.169 0.03 0.000
PD2 -0.148 0.07 0.024 -0.370 0.07 0.000 0.335 0.06 0.000 -0.087 0.02 0.000
PD3 -1.362 0.08 0.000 -1.751 0.09 0.000 1.521 0.07 0.000 -0.297 0.02 0.000
AD2 -0.484 0.08 0.000 -0.543 0.08 0.000 0.424 0.07 0.000 -0.069 0.02 0.001
AD3 -1.530 0.08 0.000 -1.675 0.09 0.000 1.351 0.07 0.000 -0.231 0.02 0.000
N3 -0.604 0.12 0.000 -0.855 0.14 0.000 0.918 0.13 0.000 -0.128 0.02 0.000

Dead dummy N/A N/A 6.066 0.16 0.000 N/A
Model fits Log-likelihood -2035.03 Log-likelihood -1793.29 Log-likelihood -3557.94 R2 0.35

Pseudo-R2 0.26 Pseudo-R2 0.30

*In the set of DCE coefficients, the constant represents the alternative specific constant, capturing a tendency to always choose the first option. In TTO, the constant represents the disutility
associated with any deviation from full health in so far as it is not attributable to any of the five domains.
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Figure 2 DC values for the 243 EQ-5D health states derived from discrete
choice judgments by the general population (Dutch) compared with values
derived from similar judgments by Dutch students.
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Figure 3 Comparison of TTO (Dutch algorithm) values with DC (Dutch
general population) values.
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Figure 8.2: DC values for the 243 EQ-5D health states derived from discrete choice judgments by the 

general population (Dutch) compared with values derived from similar judgments by Dutch students.
The student DC values were anchored on the TTO values for 11111 and 33333 from the student TTO task carried out 

in this study. The general population DC model was anchored on TTO values for 11111 and 33333 from the Dutch 

valuation study. The differences between the DC values for the students and those for the general population 

originate from differences in responses to the DC experimental task between the two groups as well as from dif-

ferences between the TTO values from students and those from the Dutch valuation study, propagating through 

the DC values via the rescaling procedure.

The increase in the amount of explained variance (pseudo-R2)
caused by the inclusion of the interaction terms was marginal
(main effect: 0.266; main effects + interactions: 0.277).

Discussion

We have presented a systematic comparison of ranks and VAS,
TTO, and DC (DCE-derived) values for EQ-5D health states in
order to investigate whether or not modeling DCE data produces
health state values that are comparable to other conventional
valuation techniques, TTO in particular. DC values broadly rep-
licated the pattern found in TTO responses. This observation
applies to both samples (general population, students) and, in

students, to both strategies that were applied to anchor the DC
values on the full health (= 1)–dead (= 0) scale. Besides similari-
ties, there were also systematic differences. DC values were con-
sistently higher than TTO values, which were in turn higher than
VAS values. Values derived from rank data were higher when
analyzed using LCJ than when using mean ranks. Instead of the
classic case V model used here, more general Thurstonian models
with unrestricted covariance structures may be more appropriate
[29]. The results suggest a systematic difference across the
methods, with DC values being the highest of all.

The fact that differences were found between DC modeling
and TTO is in line with the findings of several other studies
where DC models have been applied in the analysis of rank or

Table 5 Parameter estimates for the models based on data derived by discrete choice experiment (DCE) and time trade-off (TTO)

DCE general
population DCE students DCEdead students TTO students

N = 438
Obs = 7,884 (438*9*2)

N = 204
Obs = 7,334 (204*18*2)

N = 204
Obs = 11,016 (204*18*3)

N = 209
Obs = 3,553 (209*17)

Coef SE Sign Coef SE Sign Coef SE Sign Coef SE Sign

Constant* -0.017 0.04 0.674 -0.094 0.04 0.028 N/A -0.103 0.02 0.000
MO2 -0.270 0.07 0.000 -0.344 0.08 0.000 0.297 0.07 0.000 -0.012 0.02 0.603
MO3 -1.454 0.08 0.000 -1.405 0.09 0.000 1.169 0.07 0.000 -0.091 0.03 0.001
SC2 -0.545 0.07 0.000 -0.374 0.07 0.000 0.296 0.06 0.000 -0.055 0.02 0.012
SC3 -1.116 0.08 0.000 -0.834 0.08 0.000 0.691 0.07 0.000 -0.079 0.03 0.002
UA2 -0.302 0.07 0.000 -0.508 0.08 0.000 0.410 0.07 0.000 -0.054 0.02 0.021
UA3 -0.914 0.08 0.000 -1.338 0.09 0.000 1.062 0.07 0.000 -0.169 0.03 0.000
PD2 -0.148 0.07 0.024 -0.370 0.07 0.000 0.335 0.06 0.000 -0.087 0.02 0.000
PD3 -1.362 0.08 0.000 -1.751 0.09 0.000 1.521 0.07 0.000 -0.297 0.02 0.000
AD2 -0.484 0.08 0.000 -0.543 0.08 0.000 0.424 0.07 0.000 -0.069 0.02 0.001
AD3 -1.530 0.08 0.000 -1.675 0.09 0.000 1.351 0.07 0.000 -0.231 0.02 0.000
N3 -0.604 0.12 0.000 -0.855 0.14 0.000 0.918 0.13 0.000 -0.128 0.02 0.000

Dead dummy N/A N/A 6.066 0.16 0.000 N/A
Model fits Log-likelihood -2035.03 Log-likelihood -1793.29 Log-likelihood -3557.94 R2 0.35

Pseudo-R2 0.26 Pseudo-R2 0.30

*In the set of DCE coefficients, the constant represents the alternative specific constant, capturing a tendency to always choose the first option. In TTO, the constant represents the disutility
associated with any deviation from full health in so far as it is not attributable to any of the five domains.
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Figure 2 DC values for the 243 EQ-5D health states derived from discrete
choice judgments by the general population (Dutch) compared with values
derived from similar judgments by Dutch students.
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Figure 3 Comparison of TTO (Dutch algorithm) values with DC (Dutch
general population) values.
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Figure 8.3: Comparison of TTO (Dutch algorithm) values with DC (Dutch general population) values.
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obtained using DCE in different samples are closer to each other than the DCE-derived 

and TTO-derived estimates. Figure 8.3 shows that DC produced higher values than TTO 

when rescaled on the basis of the TTO values for ‘33333’ and ‘11111’. The intraclass correla-

tion between the TTO and DC values was 0.93 in the general population and 0.96 among 

the students. The mean absolute difference between the student TTO and student DC was 

0.060 (SD = 0.039).

Absolute values of health states derived by different methods may be different, though in 

many applications of health-state values the main focus is on marginal differences (e.g., 

comparisons before and after a medical intervention). Therefore, marginal difference scores 

for all combinations of the 243 derived EQ-5D states were computed (29,403 combinations) 

for the TTO and the DC separately (figure 8.4). This analysis shows again that overall DC 

values are higher than TTO values and also that marginal differences between TTO and DC 

values for individual pairs of states can be as large as around 0.20.

DCE data. Salomon compared rank-based models and TTO for
EQ-5D using data from the UK general population survey. He
found that the rank-based models produced slightly higher values
[5]. Ratcliffe et al. [14] compared TTO and DC modeling for a
disease-specific outcome measure. DCE-derived values seemed
higher than TTO values. A more complex relation was found
between rank and TTO data, with better convergence for mild
states. McCabe et al. compared values derived from rank data
with SG values for SF-6D and HUI health states; the rank data

produced higher values [16]. It thus seems that TTO and DC
models are largely measuring the same latent construct (quality
of a health state), but the techniques do not produce identical
results.

The main difficulty we met in applying DC models is that
these models generate values on an arbitrary scale, not on the
metric of the quality (of life) component of the QALY scale. We
have explored the possibility of anchoring the values derived
from DCE data on the QALY scale directly by using “dead” as a
choice option. This strategy yielded values that were comparable
to those derived from the DCE where two EQ-5D states were
compared to each other and anchored on the basis of some TTO
values. Although this is a promising result with regard to the
possibility of using DC models and their associated DCEs as a
stand-alone valuation technique, further research is warranted to
explore the relationship between the outcomes of the DCEdead

approach with a DC model that is anchored on TTO. For
example, the difference between the TTO value for state
“33333” of students and the general population raises the ques-
tion whether results about comparability of the two anchoring
strategies can be generalized from students to the general
population.

If combined use of DC modeling and TTO is considered for
health state valuation, the strategy for linking DC and TTO data
may need to be further explored. Anchoring on the worst state,
33333, may have contributed to systematic differences between
TTO and DC values because of bias resulting from problems of
TTO with valuation of states worse than being dead. On the
other end of the valuation space, the DC values may be incor-
rectly anchored with respect to full health. A reliable estimation
of the difference between full health and nonoptimal states
cannot be obtained from the collected choice data, because of the
dominance issues similar to the ones pertaining to dead. The
problem can be circumvented in a valuation task involving
choices involving scenarios that vary quality of life and one other
domain of health, such as length of life or risk of dying as
suggested by Flynn et al. [18]. Nevertheless, then health state
values would be influenced by risk aversion or time preference,
characteristic TTO and SG values are criticized for. In this cir-
cumstance, a pragmatic solution may be to use a large number of
TTO values for anchoring—possibly excluding the value for state
11111—and apply statistical routines to adjust the parameters of
the DC model to fit the TTO data set. Another approach may be
the use of specific models that are suitable to deal with dominant
health states to calibrate the metric distances in this region [30].

Furthermore, in application of DC models for health state
valuation, the added value of different DC models may need to be
explored. The DC models employed in the current study are
variants of the frequently used multinomial logit model [8,25].
This model makes the simplifying assumptions that the error
terms are independently, identically distributed (the IID assump-
tion) and that the ratio of the probabilities of two alternatives i
and k does not depend on any alternatives other than i and k (the
IIA assumption). Several other models relax the IIA assumption.
Examples include the mixed logit model, the generalized extreme
value model, and the probit model [25]. The first of these is
considered the most promising for DC analysis [31]. While
mixed logit models are arguably more powerful, they also require
higher data quality. We refrained from powering our study for
these more complex models, because our aim was to make a
global comparison of TTO and DC values, and then to study the
strengths and weaknesses of various ways of anchoring relative
DC values on the QALY scale. If one considers application of DC
models for health state valuation, we would recommend larger
designs that permit estimation of more complex models to

Figure 4 Marginal difference scores between the derived values of the 243
EQ-5D states (29,403 combinations) for theTTO (Dutch students) and the DC
(Dutch students).
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Figure 5 The DC values (Dutch students) derived from discrete choices
between pairs of EQ-5D health states compared with the DC values (Dutch
students) derived from discrete choices of separate EQ-5D health states plus
being dead.
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Figure 8.4: Marginal difference scores between the derived values of the 243 EQ-5D states (29,403 

combinations) for the TTO (Dutch students) and the DC (Dutch students).

Anchoring DC values on ‘dead’

Students considered a health state to be worse than dead in about 10% of the cases. The DC 

model parameter estimates derived from the DC
dead

 data are presented in table 8.5.
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The values produced by the two different models (DC vs. DC
dead

) are congruent (figure 8.5); 

the intraclass correlation between the two value sets was 0.98, while the mean absolute 

difference between the values was 0.019 (SD 0.009). The DC
dead

 values were slightly lower 

than values derived from the DCE involving pairwise comparison of EQ-5D states, except 

for mild health states. Therefore, the difference between the DC
dead

 values and the TTO 

values was slightly smaller than the difference between the DC values and the TTO values.

Interaction terms in the DC models

The analysis of the DC models expanded with first-order interaction terms showed that ten 

of the 40 interaction terms were statistically significant. However, three main effects (mobil-

ity level 2, pain level 2, depression/anxiety level 2) were no longer statistically significant 

when compared to the main effect model. The increase in the amount of explained variance 

(pseudo R2) due to the inclusion of the interaction terms was marginal (main effect: 0.266; 

main effects + interactions: 0.277).

DCE data. Salomon compared rank-based models and TTO for
EQ-5D using data from the UK general population survey. He
found that the rank-based models produced slightly higher values
[5]. Ratcliffe et al. [14] compared TTO and DC modeling for a
disease-specific outcome measure. DCE-derived values seemed
higher than TTO values. A more complex relation was found
between rank and TTO data, with better convergence for mild
states. McCabe et al. compared values derived from rank data
with SG values for SF-6D and HUI health states; the rank data

produced higher values [16]. It thus seems that TTO and DC
models are largely measuring the same latent construct (quality
of a health state), but the techniques do not produce identical
results.

The main difficulty we met in applying DC models is that
these models generate values on an arbitrary scale, not on the
metric of the quality (of life) component of the QALY scale. We
have explored the possibility of anchoring the values derived
from DCE data on the QALY scale directly by using “dead” as a
choice option. This strategy yielded values that were comparable
to those derived from the DCE where two EQ-5D states were
compared to each other and anchored on the basis of some TTO
values. Although this is a promising result with regard to the
possibility of using DC models and their associated DCEs as a
stand-alone valuation technique, further research is warranted to
explore the relationship between the outcomes of the DCEdead

approach with a DC model that is anchored on TTO. For
example, the difference between the TTO value for state
“33333” of students and the general population raises the ques-
tion whether results about comparability of the two anchoring
strategies can be generalized from students to the general
population.

If combined use of DC modeling and TTO is considered for
health state valuation, the strategy for linking DC and TTO data
may need to be further explored. Anchoring on the worst state,
33333, may have contributed to systematic differences between
TTO and DC values because of bias resulting from problems of
TTO with valuation of states worse than being dead. On the
other end of the valuation space, the DC values may be incor-
rectly anchored with respect to full health. A reliable estimation
of the difference between full health and nonoptimal states
cannot be obtained from the collected choice data, because of the
dominance issues similar to the ones pertaining to dead. The
problem can be circumvented in a valuation task involving
choices involving scenarios that vary quality of life and one other
domain of health, such as length of life or risk of dying as
suggested by Flynn et al. [18]. Nevertheless, then health state
values would be influenced by risk aversion or time preference,
characteristic TTO and SG values are criticized for. In this cir-
cumstance, a pragmatic solution may be to use a large number of
TTO values for anchoring—possibly excluding the value for state
11111—and apply statistical routines to adjust the parameters of
the DC model to fit the TTO data set. Another approach may be
the use of specific models that are suitable to deal with dominant
health states to calibrate the metric distances in this region [30].

Furthermore, in application of DC models for health state
valuation, the added value of different DC models may need to be
explored. The DC models employed in the current study are
variants of the frequently used multinomial logit model [8,25].
This model makes the simplifying assumptions that the error
terms are independently, identically distributed (the IID assump-
tion) and that the ratio of the probabilities of two alternatives i
and k does not depend on any alternatives other than i and k (the
IIA assumption). Several other models relax the IIA assumption.
Examples include the mixed logit model, the generalized extreme
value model, and the probit model [25]. The first of these is
considered the most promising for DC analysis [31]. While
mixed logit models are arguably more powerful, they also require
higher data quality. We refrained from powering our study for
these more complex models, because our aim was to make a
global comparison of TTO and DC values, and then to study the
strengths and weaknesses of various ways of anchoring relative
DC values on the QALY scale. If one considers application of DC
models for health state valuation, we would recommend larger
designs that permit estimation of more complex models to

Figure 4 Marginal difference scores between the derived values of the 243
EQ-5D states (29,403 combinations) for theTTO (Dutch students) and the DC
(Dutch students).
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Figure 5 The DC values (Dutch students) derived from discrete choices
between pairs of EQ-5D health states compared with the DC values (Dutch
students) derived from discrete choices of separate EQ-5D health states plus
being dead.
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Figure 8.5: The DC values (Dutch students) derived from discrete choices between pairs of EQ-5D 

health states compared with the DC values (Dutch students) derived from discrete choices of 

separate EQ-5D health states plus being dead.
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Conclusions and discussion

We have presented a systematic comparison of Ranks and VAS, TTO, and DC (DCE-

derived) values for EQ-5D health states in order to investigate whether or not modelling 

DCE data produces health-state values that are comparable to other conventional valua-

tion techniques, TTO in particular. DC values broadly replicated the pattern found in TTO 

responses. This observation applies to both samples (general population, students) and to 

both strategies that were applied to anchor the DC values on the full-health (= 1) – dead (= 0) 

scale. Whether or not this degree of congruence will also be found in a sample of the general 

population remains to be seen. Besides similarities, there were also systematic differences. 

DC values were consistently higher than TTO values, which were in turn higher than VAS 

values. Values derived from rank data were higher when analysed using LCJ than when 

using mean ranks. Instead of the classic Case V model used here, more general Thurstonian 

models with unrestricted covariance structures may be more appropriate [27]. The results 

suggest a systematic difference across the methods, with DC values being the highest of all.

The fact that differences were found between DC modelling and TTO is in line with the 

findings of several other studies where DC models have been applied in the analysis of rank 

or DCE data. Salomon (2003) compared rank-based models and TTO for EQ-5D using data 

from the UK general population survey. He found that the rank-based models produced 

slightly higher values [16]. Ratcliffe et al. [11] compared TTO and DC modelling for a disease-

specific outcome measure. DCE-derived values seemed higher than TTO values. A more 

complex relation was found between rank and TTO data, with better convergence for mild 

states. McCabe et al. (2006) compared values derived from rank data with standard gamble 

values for SF-6D and HUI health states; the rank data produced higher values [13]. It thus 

seems that TTO and DC models are largely measuring the same latent construct (quality of 

a health state), but the techniques do not produce identical results.

The main difficulty we met in applying DC models is that these models generate values on 

an arbitrary scale, not on the metric of the quality (of life) component of the QALY scale. 

We have explored the possibility of anchoring the values derived from DCE data on the 

QALY scale directly by using ‘dead’ as a choice option. This strategy yielded values that 

were comparable to those derived from the DCE where two EQ-5D states were compared 

to each other and anchored on the basis of some TTO values. Although this is a prom-

ising result with regard to the possibility of using DC models and their associated DCEs 

as a stand-alone valuation technique, further research is warranted to see if the DCE
dead

 

approach always performs at least as well as a DC model that is anchored on TTO. We 

found substantial differences between the TTO values derived from students and those for 

the general population. Whether or not the comparability of two anchoring strategies will 
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hold in a general population sample depends on their responses to choices between EQ-5D 

states and being dead, which were not included in this experiment.

If combined use of DC modelling and TTO is considered for health-state valuation, the 

strategy for linking DC and TTO data may need to be further explored. Our anchoring 

strategy involved using the observed TTO value for EQ-5D state 33333 and the set value of 

1.0 for EQ-5D state 11111. Relative to these anchor points, we found that DC models produced 

higher values than TTO, but we do not know if these anchor points were well chosen. In 

future valuation studies combining DC and TTO, we might use a larger number of observed 

TTO values and then apply statistical routines to adjust the parameters of the DC model 

to fit the TTO dataset. By so doing, we might avoid some of the bias related to problems 

with the application of TTO for the valuation of states worse than being dead and see if 

that improves the comparability of TTO and DC values. This strategy might also circumvent 

the problem that the value difference between the best EQ-5D state (11111) and the other 

states cannot be reliably estimated in the DC model. Perfect health will always be chosen 

over other health states, which results in an infinite value difference. The computed relative 

distance between state 11111 and the other states will therefore not be based on empirical 

responses but modelled on basis of assumptions. Using ‘11111’ as the anchor point may 

therefore have contributed to systematic differences between TTO- and DCE-derived 

values. In the paper, we have not made a comparative evaluation of the DCE task and 

information obtained from ranking of the 17 states, nor have we given a detailed theoretical 

elaboration of their common basis. Our use of rank responses was limited to checking the 

convergence between the valuations obtained using different methods (Rank, VAS, TTO, 

and DC) including a very modest application of the classical Thurstone model.

The modern measurement of DC models builds upon the early work and basic principle of 

Thurstone’s ‘LCJ’. In fact, the class of choice- and rank-based scaling models with its lengthy 

history (1927 to the present) is one of the few areas in the social and behavioural sciences 

that has a strong underlying theory. In this respect it may be interesting to explore the 

possibility of extending or combining DC models with other closely related (fundamental) 

measurement models, e.g. Rasch models and item response theory models [28,29]. This 

might be an important area for future research.

To conclude, we believe that a strategy based on TTO data supplemented by health-state 

values derived from DC modelling may be a feasible and accurate option. Although there 

are small differences in results from the two conceptually different valuation methods, 

there seems to be a clear systematic relation that would make conversion from one method 

to the other feasible and defendable.
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Appendix: Bayesian efficient design algorithm

The Bayesian efficient design specifications were programmed in Microsoft Excel. The Excel 

code uses nested (quasi) Monte Carlo simulations to compute the design with the lowest 

D error (i.e., the highest D efficiency). Our design was computed using 1000 Halton draws 

for the inner loop (i.e., varying the values for the priors) and 2000 simulations for the outer 

loop (i.e., calculating the most efficient design for each of the 1000 sets of priors). Halton 

sequencing is a quasi Monte Carlo technique whereby, instead of drawing randomly from 

a distribution, draws are taken “smartly” to ensure that there are no gaps in the sampled 

distribution. Therefore, it needs fewer draws to adequately reflect the original distribution.

Start outer loop

1) a set of 60 pairs of states is randomly generated.

Start inner loop

 2)  A set of priors is drawn from which the utilities are calculated for each of the 120 

states contained within the set of 60 pairs.

 3)  The Fisher information matrix, its inverse, the asymptotic variance covariance 

matrix (AVC matrix), and the determinant of the AVC matrix (i.e., the D error) are 

calculated.

 4) Steps 2 and 3 are repeated.

 End inner loop

6) The overall D error is calculated (i.e., the combined D error from the inner loops).

7) Steps 1 to 6 are repeated storing the design with the lowest D error.

End outer loop
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In this thesis a number of studies are described all related to economic evaluations. As 

described in the introduction the mathematical techniques used in these studies origi-

nate from different disciplines but are all applicable in the development of the economic 

models for the assessment of cost-effectiveness of health care interventions. The outline of 

this chapter is as follows: first the results and implications of the methodological studies 

presented in this thesis are discussed. This will be followed by a broader discussion on the 

general role of mathematics in problem solving, started in chapter 1.

The first two studies included in this thesis (presented in chapters 2 and 3) are not method-

ological studies, but applied studies. They provide an illustration of the type of applications 

common in health economic research. For this reason they are part of the introduction, and 

the results from those two studies will not be addressed in this discussion, which focusses 

on methodological questions.

Sources of uncertainty in CUA outcomes

The first methodological study addressed the impact of four different methods of meta-

analysis on the outcomes (i.e. cost-effectiveness) of a probabilistic Markov model for 

Chronic Obstructive Pulmonary Disease. We’ve shown that the choice for a particular 

meta-analysis technique has an impact on the uncertainty of the outcomes of an economic 

model. In particular we found that a Bayesian random effects model results in more uncer-

tainty and a lower acceptability curve than fixed effect models and frequentist models.

This leads to the question of which model’s estimates are closest to the “truth”. Do frequentist 

and fixed effects models underestimate the uncertainty, or does the Bayesian random effects 

overestimate the uncertainty? No final decision can be made based on this study alone, 

because our study only included data from a few samples (which is typical for this type of 

study) and not from the entire population. The fact that pooled samples can generally be 

assumed to be representative for the population does not mean that this is also the case in 

this particular problem of assessing uncertainty in meta-analyses. In other words, the only 

way to objectively assess which type of meta-analysis model most accurately reflects the 

“truth” is if we know this “truth”. A follow-up study was therefore initiated where we start by 

simulating a patient population of 50,000 patients. Next we draw samples from that popula-

tion and combined the results using the different meta-analysis techniques. Finally we assess 

which meta-analysis technique produces estimates that are closest to the population values.

In the models used in economic evaluations it is common to include not only the mean 

values of the model parameters, but also the uncertainty of the model parameters in a 
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probabilistic sensitivity analysis. In the case of the quality of life estimates (i.e. utilities) this 

uncertainty is based on the differences in health status between patients. However, the utili-

ties themselves are obtained in a valuation study using a sample from the general popula-

tion. Because of this there is also uncertainty associated with the estimation of the utilities. 

This uncertainty is typically ignored. It was shown by the within state variance compared 

to the between state variance, that the majority of this uncertainty does not originate from 

a lack of fit of the utility model (i.e. low between state variance), but from differences in the 

opinions of respondents in how good or bad a health state is (i.e. high within state variance).

We showed that varying the number of states observed and number of observations per 

state results in different estimates of the uncertainty. The question is whether or not the 

amount of uncertainty present in the observed or modelled TTO values is negligible com-

pared to the heterogeneity due to differences in patient health status in the clinical trial. 

In other words, whether the uncertainty of the utility of a Markov state is dominated by 

the estimation uncertainty of the utilities, or by the patient heterogeneity with respect to 

the descriptive system. When 30 states and 300 observations per state are used for TTO 

based data, the expected uncertainty around the predicted utility values will be around 

0.01, which is smaller than the typical patient variability in health status. This implies that 

in such a case the uncertainty related to the exact value of the utilities can safely be left out 

of a probabilistic sensitivity analyses (PSA).

However, if mapping between a disease specific instrument and a utility instrument is 

applied to obtain the utilities, then an additional level of uncertainty is introduced. This 

additional uncertainty can become so large that it is no longer negligible compared to 

the patient variability in health status and should be included in the PSA of an economic 

model. This will depend strongly on the level of agreement of the descriptive systems of 

the instruments that are used in the mapping procedure. As we’ve shown in the case of 

total hip replacement, there are marked differences in content between the disease specific 

questionnaire, the Oxford Hip Score (OHS), and the generic questionnaire, the EQ-5D. 

This, together with the fact that the data on which to base the mapping did not cover the 

entire range of the QALY scale, lead us to conclude that using a mapping model to predict 

individual patients utility values based on the OHS was not feasible.

New approaches in modelling health states

In many fields of physics geometry is the default type of mathematics used (e.g. vibra-

tion and wave mechanics). This is done because the mathematics is easier to solve when 

expressed. We’ve shown that this is also the case when using an approach based on polar 
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coordinates (i.e. a geometrical approach) to model ratios. The distinct advantage over using 

an approached based on algebra is the removal of the singular behaviour that occurs when 

the denominator is (close to or) equal to zero, while the model structure itself is the same 

(i.e. the same utility model U = ∑ β
ij
 * x

ij
 + ε is estimated in both cases)

The pilot study assessing the feasibility of using DC to model EQ-5D utilities showed 

promising results. It was found that DC values broadly replicated the pattern found in 

TTO responses, although the DC values were consistently slightly higher than TTO values. 

The main difficulty in applying DC models was that these models generated values on an 

arbitrary scale, not on the metric of the quality (of life) component of the QALY scale. This 

means that DC-based values need to be anchored on the utility scale, where full health has 

a value of 1 and death has a value of 0.

However, the type of information captured in a DC task is different from that in captured 

in a TTO task. With DC respondents are asked to indicate which of two EQ-5D states they 

think is better, whereas in a TTO task, respondents are asked how much length of life they 

are willing to give up to avoid being in a particular health state. These are fundamentally 

different questions albeit on the same topic and both have their merits and problems.

TTO has as advantage that you directly ask values making the responses easy to interpret. A 

disadvantage is that it is more difficult to accurately model the data due to the high within 

state variance. An advantage of DC is that it is relatively easy to model due to limited within 

variance. However, only rank data is collected and not actual values leading to anchoring 

problems. Therefore both methods have opposing strengths and weaknesses, so they might 

be good as complementary sources of information rather than competing ones.

The role of mathematics in problem solving

The results from this thesis show that a variety of problems in health economics can be 

solved using mathematical frameworks and techniques that were developed outside this 

field. The origin and application of the mathematical techniques doesn’t matter, as long 

as you are consistent in its use. For example, if you use a geometric approach, you’ll have 

to define your problem in geometric terms, solve the geometry and interpret the results in 

geometric terms.

More in general: a real world question is answered by translating it to mathematics, solv-

ing the mathematics and translating the mathematics back into real world answers (see 

figure 9.1). Since solving the mathematics is mostly straightforward computation nowadays, 
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the most challenging steps are the translation into mathematics and the interpretation of 

the mathematical results. The researcher is completely free in their choice of mathematical 

model, given that it adequately describes the real problem. This choice is broader than the 

choice of specific (statistical) models or techniques. It also encompasses the choice of the 

basic type of mathematics that is best suited to solve the real world problem whether that is 

statistics or geometry, number theory or vector calculus.

Since all types of mathematics have been constructed based on logic and deductive 

reasoning, all of them are inherently “true” (i.e. a mathematical proof is inherently true). 

Therefore the mathematical results (if properly obtained) are also inherently “true”. The 

question therefore is not so much which type of mathematics is correct, but which type of 

mathematics addresses the problem most appropriately and makes it easiest to solve. In 

other words, the key is in the translation of the real world problem into mathematics, not 

in solving the mathematics itself. One of the most important mistakes made is the choice 

of a mathematical model that does not adequately describe the real world problem. This 

not only goes for the type of mathematics that is used, but also for the type of statistical 

technique or measure that is used. An example to illustrate this is the use of Cronbach’s 

alpha as a measure of reliability and internal consistency of a questionnaire. Cronbach’s 

alpha is a measure that can be found in most basic psychometric textbooks and is part of 

the standard psychometric measures. It assesses the amount of agreement between the 

items that make up a questionnaire.

From a psychometrics perspective (or more precisely, from the perspective of Item 

Response Theory IRT), questionnaires are constructed to measure a single underlying 

construct. From that perspective, the more agreement between the items of a questionnaire 

the better. This is because the items are assumed to form a logical consistent representation 

of the underlying construct that the questionnaire reflects. It is of course very tempting to 

Translate 
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Interpret 

Mathematical 
model 

Mathematical 
solution 

Real world 
question 

Real world 
answer 

Figure 9.1: Problem solving using mathematics.
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generalise this to all questionnaires and therefore also to use Cronbach’s alpha as a mea-

sure of reliability for EQ-5D.

However, EQ-5D was constructed with economic (utility) theory in mind rather than psy-

chometric theory. Because of these different perspectives, the theoretical basis underlying 

the EQ-5D and the typical IRT based questionnaires differs. When EQ-5D was constructed 

the idea was that even though the questionnaire was designed to assess a single concept, 

namely quality of life, it reflects not one but five different constructs (i.e. the 5 EQ-5D 

dimensions). This fundamental difference between the two perspectives has implications 

for the appropriateness of the statistical techniques that are used.

Because Cronbach’s alpha measures the level of agreement between items, the validity of its 

use depends on the combination of number of constructs and number of items. If a number 

of items are supposed to measure the same underlying construct, it is a reasonable assump-

tion that the answers have to be in agreement, and therefore that Cronbach’s alpha is a good 

measure of reliability. However with instruments like EQ-5D, there are five items, but each 

measures a different construct1. Therefore the items should not be in agreement but should 

be independent. Thus, the level of agreement between items as measured by Cronbach’s 

alpha does not reflect the reliability of EQ-5D even though it can be easily calculated.

In conclusion, I would like to remark that borrowing mathematical techniques that were 

developed in other disciplines can be very useful and rather straightforward to implement 

from a mathematical point of view, but one needs to think carefully about whether it is 

conceptually appropriate to do so.

1 This can be shown by factor analysis. However, using factor analysis in such a way can be considered 

inappropriate from an IRT point of view.
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Introduction

Health economics (HE) is a multi-disciplinary field. This is especially apparent in economic 

evaluations (EE) such as cost-utility analyses (CUA) which have become an integral part in 

the management of health care systems in many western countries. The mathematical tech-

niques employed to obtain and describe the information needed for EE originate from three 

distinct mathematical disciplines associated with economics, psychology and medicine: 

econometrics, psychometrics and (bio)statistics. This dissertation shows how ideas and 

approaches from different disciplines can be applied in solving health economic problems.

The studies described in this thesis show how more specialised techniques and approaches 

can be used outside the field where they were originally developed. In particular they are 

used in the investigation of sources of uncertainty in CUA and in the measurement and 

valuation of health related quality of life. The techniques used include Monte Carlo simula-

tion, Factor Analysis and Discrete Choice Modelling. The approaches include frequentist 

and Bayesian statistics and a regression model was based on geometry (i.e. directional 

statistics).

The first two studies included in this thesis provide an illustration of common concepts in 

health economic research: Health Related Quality of Life (HR-QoL) and economic evalu-

ations. The next three studies are related to sources of uncertainty in the outcomes of cost 

utility analyses (CUA). The final two studies introduce two new approaches in the model-

ling of health state valuations.

Age dependency of self-reported health in Europe

In order to investigate the relationship between self assessed health related quality of life 

and age as measured by E-5D, we analysed population data from 10 European countries. 

We estimated several regression models where the EQ-VAS values were the dependent vari-

able and found that a simple linear model outperformed more complex models. The linear 

model resulted in a constant = 93.12 and age parameter = −0.34 with adjusted R2 = 0.106. 

Using the mean observed EQ-VAS scores per year of age instead of the raw data, (i.e. all the 

within variance is removed), results in a dramatic increase in R2. The value of R2 increases 

from 10.7% to 93.9% while the regressions coefficients stay the same. We found that differ-

ences between countries were larger than the difference between men and women.

Modeling of the proportion of reported problems has been carried out using logistic 

regression. Again the values of R2 are low (ranging from 23% to 1%). Distinct differences 
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were found between the relation with age of the physical domains mobility, self-care and 

usual activities, and the domains pain/discomfort and anxiety/depression. The physical 

domains start with few reported problems (<5%) at age 18, that increase with age at an 

increasing rate. Pain/discomfort and anxiety/depression start out higher (18% and 19%) and 

also increase with age but at a constant rate, which is higher for pain/discomfort than for 

anxiety/depression.

Economic evaluation of Panitumumab in mCRC

Colorectal cancer is the fourth most commonly diagnosed cancer. Recently, new drugs have 

become available to treat patients with metastatic colorectal cancer (mCRC). Panitumumab 

is one of those new drugs. The objective of this study was to assess the cost-effectiveness of 

panitumumab as monotherapy in mCRC after failure of other chemotherapy regimens for 

the purpose of temporary reimbursement in the Netherlands.

A micro simulation Markov model was developed to model the cost-effectiveness of panitu-

mumab. The model contained three disease states (mCRC, progressive disease, and death) 

with time dependent transition probabilities between these states. Data from a pivotal trial 

comparing panitumumab plus Best Supportive Care (BSC) versus BSC alone in mCRC were 

used to estimate the model parameters. The base case model resulted in an estimated mean 

incremental cost-effectiveness ratio (ICER) of €64,321/QALY (95% CI [52,642; 94,187]). About 

half the patients in the trial suffered from non-mutated (wild-type) KRAS mCRC, which is 

indicative for response to panitumumab. Our model results for this subgroup of patients 

resulted in an estimated mean ICER of €64,541/QALY (95% CI [52,136; 90,706]).

An observational study with a follow-up time of 3 years is ongoing, where the focus is on 

establishing “real life” effectiveness and resource use instead of trial based efficacy and 

resource use. The results from that study will ultimately be used to re-estimate the model 

parameters and run the economic evaluation with real-life data. This will facilitate the deci-

sion on whether or not panitumumab will be considered for prolonged reimbursement in 

the Netherlands.

Impact of methods of data synthesis on CUA outcomes

Cost-effectiveness models should always be amendable to updating once new data on 

important model parameters become available. However, several methods of synthesizing 

data exist and the choice of method may affect the cost-effectiveness estimates. The goal of 
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this study was to investigate the impact of the different methods of meta-analysis on final 

estimates of cost-effectiveness from a probabilistic Markov model for COPD. We compared 

4 different methods to synthesize data for the parameters of a cost-effectiveness model for 

COPD: frequentist and Bayesian fixed-effects (FE) and random-effects (RE) meta-analyses. 

These methods were applied to obtain new transition probabilities between stable disease 

states and new event probabilities.

The four methods resulted in different estimates of probabilities and their standard errors 

(SE). The effects of using different synthesis techniques were most prominent in the estima-

tion of the standard errors. We found up to nine-fold differences in standard errors of the 

exacerbation probabilities and up to almost three-fold differences in standard errors of the 

transition probabilities. In our study we found that the frequentist FE model produced the 

lowest means and SEs, whereas the Bayesian RE model produced the highest. The estimates 

of differences between treatments in total costs, QALYs and cost-effectiveness acceptability 

curves (CEAC) also varied depending on the synthesis method. With a Bayesian RE model 

the CEAC was 15% lower than with a frequentist FE model.

These results show that the choice of synthesis technique can affect resulting model 

parameters considerably, which can in turn affect estimates of cost-effectiveness and the 

uncertainty around them.

Statistical uncertainty in TTO derived utility values

The utility values for health states that are used in cost utility analyses are generally pre-

sented and used as point estimates, implying that they are perfectly known. However, since 

utilities are based on empirical valuation studies, they can’t be perfectly known. We aimed 

to quantify the uncertainty surrounding utilities and to assess the association between the 

number of health states and respondents included in the valuation studies and the uncer-

tainty of the utilities.

We analysed the uncertainty from two of the EQ-5D valuation studies: the Dutch TTO study 

and the UK MVH study. We used ANOVA to assess the appropriateness of the two valuation 

models and the uncertainty of the estimated utility for each health state. The impact of 

the number of respondents and health states on the uncertainty was investigated using 

Monte Carlo simulation. We simulated studies that included between 14 and 42 health 

states and sample sizes ranging from n = 25 to n = 1000. The standard errors of the utilities 

in the Dutch study ranged from 0.044 to 0.010 for the different health states, or 0.028 on 

average. In the UK study they ranged from 0.013 to 0.006 (0.009 on average). Our Monte 
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Carlo results showed that the standard errors ranged from 0.095 when 17 states are valued 

by 25 respondents to 0.009 when 42 health states are valued by 1000 respondents.

Based on our results we suggest that in order to obtain a standard error of the utilities below 

0.01 on average for EQ-5D TTO valuation studies, one would require around 30 health states 

to be valued by about 300 respondents each.

Comparison of EQ-5D and Oxford Hip Score

Both disease-specific and generic patient reported outcome measures (PROMs) provide 

information about the health status of patients. Generally, disease-specific measures pro-

vide more clinical information than generic measures but do not provide a utility weight. 

The aim of this study was to assess the comparability of the information captured by a 

disease-specific measure, the Oxford Hip Score (OHS) and a generic measure, the EQ-5D, 

and the viability of mapping between them to obtain utilities for the OHS. Data for 439 NHS 

patients in England before and six months after undergoing total hip replacement were 

analysed. The information provided by the OHS and EQ-5D was assessed using principal 

component analysis and analysis of the correlation matrix. The predictive performance of 

four mapping models was based on the mean absolute error.

The results of the exploratory and confirmatory principal component analyses showed that 

the OHS data can be associated with three constructs relating to pain, mobility and self 

care. Furthermore it was shown that the “anxiety / depression” domain of the EQ-5D was 

not associated with any of the 3 constructs of the OHS, and had a maximum correlation 

of 0.3 to any of the OHS items. The differences between the OHS and the EQ-5D do not 

impede the merits of either instrument when used for their own purposes. However, even 

though estimating a mapping model via regression is quite straightforward, the conceptual 

differences between the two instruments restrict the applicability of the obtained mapping 

models. The differences in the underlying constructs between the two instruments ham-

pers the accurate predictions of individual EQ-5D patient scores based on their OHS scores.

A geometric approach to health state modelling

The value of a health state is typically described relative to the value of an optimal state, 

specifically as a ratio ranging from unity (equal to optimal health) to minus infinity. 

Incorporating potentially infinite values in the calculation of a mean value is a challenging 

issue in the econometrics of health valuation. In this study, we apply a geometric approach 
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using directional statistics. Unlike ratio statistics, directional statistics are based on polar 

coordinates (angle, radius). In the case of time trade-off (TTO) values, the range of angles is 

bounded between 45 degrees (unity) and minus 90 degrees (i.e., minus infinity); therefore, 

mean angles are well behaved and negate the impetus behind arbitrary data manipula-

tions. Using TTO responses from the seminal Measurement and Valuation of Health (MVH) 

study, we estimate 243 EQ-5D health state values by minimizing circular variance with and 

without radial weights.

For states with published values greater than zero (i.e., better-than-death), the radially 

weighted estimates are nearly identical to the published values (Mean Absolute Difference 

0.07; Lin’s rho 0.94). For worse-than-death states, the estimates are substantially lower than 

the published values (Mean Absolute Difference 0.186; Lin’s rho 0.576). For the worst EQ-5D 

state (33333), the published value (using arbitrary transformation of the data) is −0.59 and 

the directional estimate (using untransformed data) is −1.11.

By taking a geometric approach, we circumvent problems inherent to ratio statistics and the 

systematic bias introduced by arbitrary data manipulations.

Discrete choice modelling of health states

Probability models have been developed to establish the relative merit of subjective phe-

nomena by means of specific judgmental tasks involving discrete choices. The attractive-

ness of these discrete choice (DC) models, is that they are embedded in a strong theoretical 

measurement framework and are based on relatively simple judgmental tasks. The aim of 

our study was to determine whether DCE derived values are comparable to those obtained 

using other valuation techniques, in particular the time trade-off (TTO). 209 students 

completed several tasks in which we collected DC, rank, VAS and TTO responses. DC 

data were also collected in a general population sample (N = 444). The DC experiment was 

designed using a Bayesian approach and involved 60 choices between two health states 

and comparison of all health states to death. The DC data were analysed using a condi-

tional logit model. To relate DC derived values to the QALY scale, we applied and compared 

three different anchoring approaches. Although modelled DC data broadly replicated the 

pattern found in TTO responses, the DC dataset consistently produced higher values. The 

three methods for anchoring DC derived values onto the QALY scale produced similar 

results. On the basis of the high level of comparability between DC-derived values and 

TTO values, future valuation studies based on a combination of these two techniques may 

be considered.
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Conclusions and discussion

In this thesis a number of studies are described all related to economic evaluations. As 

described in the introduction the mathematical techniques used in these studies originate 

from different disciplines but are all applicable in the development of the economic models 

for the assessment of cost-effectiveness of health care interventions.

Sources of uncertainty in CUA outcomes

The first methodological study addressed the impact of four different methods of meta-

analysis on the outcomes (i.e. cost-effectiveness) of a probabilistic Markov model for 

Chronic Obstructive Pulmonary Disease. We’ve shown that the choice for a particular 

meta-analysis technique has an impact on the uncertainty of the outcomes of an economic 

model. In particular we found that a Bayesian random effects model results in more uncer-

tainty and a lower acceptability curve than fixed effect models and frequentist models.

In the models used in economic evaluations it is common to include not only the mean 

values of the model parameters, but also the uncertainty of the model parameters in a 

probabilistic sensitivity analysis. When 30 states and 300 observations per state are used for 

TTO based data of the EQ-5D, the expected uncertainty around the predicted utility values 

will be around 0.01, which is smaller than the typical patient variability in health status. 

This implies that in such a case the uncertainty related to the exact value of the utilities can 

safely be left out of a probabilistic sensitivity analyses.

However, if mapping between a disease specific instrument and a utility instrument is 

applied to obtain the utilities, then an additional level of uncertainty is introduced. This 

additional uncertainty can become so large that it is no longer negligible compared to 

the patient variability in health status and should be included in the PSA of an economic 

model. As we’ve shown in the case of total hip replacement, there are marked differences in 

content between the disease specific OHS, and the generic EQ-5D. This led us to conclude 

that using a mapping model to accurately predict individual patients utility values based on 

the OHS was not feasible.

New approaches in modelling health states

We’ve shown that when estimating ratio’s such as TTO values, a geometrical approach has 

advantages over an algebraic approach because of the removal of the singular behaviour 

that occurs when the denominator is (close to or) equal to zero, while the model structure 

itself is the same (i.e. the same utility model U = ∑ β
ij
 * x

ij
 + ε is estimated in both cases).
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Summary

The pilot study assessing the feasibility of using DC to model EQ-5D utilities showed 

promising results. It was found that DC values broadly replicated the pattern found in 

TTO responses, although the DC values were consistently slightly higher than TTO values. 

The main difficulty in applying DC models was that these models generated values on an 

arbitrary scale, not on the metric of the quality (of life) component of the QALY scale. This 

means that DC-based values need to be anchored on the utility scale, where full health has 

a value of 1 and death has a value of 0.

Conclusion

Borrowing mathematical techniques that were developed in other disciplines can be very 

useful and rather straightforward to implement from a mathematical point of view, but one 

needs to think carefully about whether it is conceptually appropriate to do so.
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Inleiding

Gezondheidseconomie (GE) is een multidisciplinair veld. Dit is vooral zichtbaar in eco-

nomische evaluaties (EE) zoals kosten-utiliteit analyses (KUA) die een integraal onderdeel 

zijn geworden in het beheer van de gezondheidszorg in veel westerse landen. De wiskun-

dige technieken die worden gebruikt bij het verkrijgen en beschrijven van de informatie die 

nodig is voor EEs zijn voornamelijk afkomstig uit drie verschillende wiskundige disciplines 

verbonden met economie, psychologie en geneeskunde: econometrie, psychometrie en 

(bio)statistiek. Dit proefschrift laat zien hoe ideeën en benaderingen uit verschillende 

disciplines kunnen worden toegepast bij het oplossen van gezondheids-economische 

problemen.

De studies beschreven in dit proefschrift laten zien hoe meer gespecialiseerde technieken 

en benaderingen kunnen worden gebruikt buiten het gebied waar ze oorspronkelijk wer-

den ontwikkeld. In het bijzonder worden zij gebruikt in het onderzoek naar bronnen van 

onzekerheid in KUA en in de meting en waardering van gezondheidsgerelateerde kwaliteit 

van leven. De gebruikte technieken zijn Monte Carlo simulatie, Factor Analyse en Discrete 

Keuze Modellering. De benaderingen omvatten frequentistische en Bayesiaanse statistiek 

en een regressiemodel gebaseerd op de geometrie (dwz directionele statistiek).

De eerste twee studies in dit proefschrift geven een illustratie van veel gebruikte concepten in 

de gezondheidszorg economisch onderzoek: gezondheidsgerelateerde kwaliteit van leven 

(KvL) en economische evaluaties. De volgende drie studies hebben betrekking op bronnen 

van onzekerheid in de uitkomsten van een KUA. De laatste twee studies introduceren twee 

nieuwe benaderingen in het modellen van waarderingen van gezondheidstoestanden.

Leeftijdsafhankelijkheid van zelf-gerapporteerde gezondheid in Europa

Om de relatie tussen zelf-beoordeelde KvL en leeftijd gemeten met EQ-5D te onderzoeken, 

hebben we bevolkinggegevens geanalyseerd uit 10 Europese landen. We schatten verschil-

lende regressiemodellen waar de EQ-VAS waarden de afhankelijke variabele waren en von-

den dat een eenvoudig lineair model beter functioneerde dan meer complexe modellen. 

Het lineaire model resulteerde in een constante = 93.12 en leeftijdsparameter = −0.34 met 

adjusted R2 = 0.106. Een model met de gemiddelde waargenomen EQ-VAS scores per leef-

tijd in plaats van de onbewerkte data (dwz. de within variantie is verwijderd), resulteerde 

in een dramatische toename van R2. De waarde van R2 stijgt van 10.7% tot 93.9%, terwijl 

de regressies coëfficiënten hetzelfde bleven. We vonden dat het verschil tussen de landen 

groter was dan het verschil tussen mannen en vrouwen.
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Modellering van het aantal gerapporteerde problemen is uitgevoerd met logistische regres-

sie. Weer de waren de waarden van R2 laag (variërend van 23% tot 1%). Duidelijke verschil-

len werden gevonden tussen de relatie met de leeftijd van de fysieke domeinen mobiliteit, 

zelfzorg en dagelijkse activiteiten, en de domeinen pijn/ongemak en angst/depressie. De 

fysieke domeinen beginnen met weinig gemelde problemen (<5%) op de leeftijd van 18 

jaar, die vervolgens toenemen met de leeftijd in toenemende mate. Pijn/ongemak en angst/

depressie beginnen hoger (18% en 19%), maar nemen toe met leeftijd met een constante 

snelheid die hoger is voor pijn/ongemak dan angst/depressie.

Economische evaluatie van panitumumab bij uitgezaaide darmkanker

Colorectale kanker is de vierde meest gediagnosticeerde vorm van kanker. Onlangs zijn er 

nieuwe medicijnen beschikbaar gekomen om patiënten met uitgezaaide colorectaalkanker 

(mCRC) te behandelen. Panitumumab is een van die nieuwe geneesmiddelen. Het doel 

van deze studie was om de kosteneffectiviteit van panitumumab te beoordelen als mono-

therapie bij mCRC na het falen van andere chemotherapie met als doel het in aanmerking 

komen voor tijdelijke vergoeding in Nederland.

Een micro-simulatie Markov-model is ontwikkeld om de kosteneffectiviteit van panitu-

mumab te modelleren. Het model bevat drie ziektetoestanden (mCRC, progressieve ziekte 

en overlijden) met tijdsafhankelijke overgangskansen tussen deze toestanden. Gegevens 

van een klinische trial waarin panitumumab plus Best Supportive Care (BSC) vergeleken 

werd met BSC alleen werden gebruikt om de modelparameters te schatten. Het model 

resulteerde in een geschatte gemiddelde incrementele kosteneffectiviteit ratio (ICER) van 

€ 64,321 / QALY (95% CI [52,642; 94,187]). Ongeveer de helft van de patiënten in de studie 

heeft een niet-gemuteerd (wild-type) KRAS gen, hetgeen indicatief is voor reactie op pani-

tumumab. Onze resultaten voor deze subgroep van patiënten resulteerde in een geschatte 

gemiddelde ICER van € 64,541 / QALY (95% CI [52,136; 90,706]).

De uiteindelijke beslissing over het al dan niet in aanmerking komen voor langdurige 

vergoeding van panitumumab in Nederland zal worden gebaseerd op data van een obser-

vationele studie. In deze observationele studie worden de kosten en effecten bepaald van 

panitumumab in de dagelijkse klinische praktijk, in plaats van in de “laboratorium setting” 

van een gerandomiseerde klinische trial. Deze data zullen gebruikt worden om opnieuw de 

parameters van het Markov model te schatten, wat uiteindelijk resulteert in een economi-

sche evaluatie voor panitumumab in de dagelijkse klinische praktijk.
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Impact van de methode van datasynthese op de resultaten van kosten-
utiliteits analyses

Kosteneffectiviteitsmodellen moet altijd aangepast kunnen worden als er nieuwe gegevens 

over belangrijke modelparameters beschikbaar komen. Echter, er bestaan verschillende 

methoden voor het combineren van data   en de gekozen methode kan de kosteneffectiviteit 

schattingen beinvloeden. Het doel van deze studie was om het effect van de verschillende 

methoden van meta-analyse te onderzoeken op de uiteindelijke schattingen van de kosten-

effectiviteit van een probabilistisch Markov model voor Chronic Obstructive Pulmonary 

Disease (COPD). We vergeleken vier verschillende methoden om gegevens voor de para-

meters van een kosten-effectiviteit model voor COPD te synthetiseren: frequentistische 

en Bayesiaanse fixed-effects (FE) en random-effects (RE) meta-analyses. Deze methoden 

werden toegepast om nieuwe overgangskansen tussen de ziekte toestanden uit het model 

te verkrijgen en om nieuwe schattingen te verkrijgen voor de kansen op een exacerbatie en 

de zwaarte van de exacerbaties.

De vier methoden hebben geleid tot verschillende schattingen van de kansen en hun 

standaardfouten (SE). De effecten van het gebruik van verschillende synthese technieken 

waren het meest prominent in de schatting van de standaardfouten. We vonden verschillen 

in de SE’s van de exacerbatiekansen van een factor 9. De SE’s voor de overgangskansen ver-

schilden tot bijna een factor 3. In onze studie vonden we dat het frequentistische FE-model 

resulteerde in de laagste gemiddelen en SE’s , terwijl het Bayesiaanse RE-model resulteerde 

in de hoogste. De schattingen van verschillen tussen de behandelingen in de totale kosten, 

QALYs en acceptability curves (CEAC) varieerde ook afhankelijk van de gekozen methode 

voor datasynthese. Met een Bayesiaanse RE model was de CEAC 15% lager dan met een 

frequentistische FE model.

Deze resultaten tonen aan dat de keuze van de synthese methode de resulterende model-

parameters aanzienlijk kan beïnvloeden, die op hun beurt weer invloed hebben op de 

schattingen van kosteneffectiviteit en de bijbehorende onzekerheid.

Statistische onzekerheid in utiliteiten gemeten met TTO

De utiliteiten voor gezondheidstoestanden die gebruikt worden in kosten utiliteit analyses 

worden veelal als puntschattingen gebruikt, waardoor geimpliceerd wordt dat deze perfect 

bekend zijn. Aangezien utiliteiten gebaseerd zijn op empirische waarderingsstudies, kun-

nen ze echter niet volledig bekend zijn. We wilden de onzekerheid rond utiliteiten kwanti-
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ficeren en de relatie bekijken tussen het aantal gezondheidstoestanden en respondenten 

opgenomen in de waarderingstudies.

We analyseerden de onzekerheid van twee van de EQ-5D waarderingstudies: de Neder-

landse time trade-off (TTO) studie en de Engelse MVH studie. We gebruikten ANOVA om 

de toepasbaarheid van de twee utiliteits modellen en de onzekerheid van de geschatte uti-

liteit voor elke gezondheidstoestand te beoordelen. De impact van het aantal respondenten 

en gezondheidstoestanden op de onzekerheid werd onderzocht met behulp van Monte 

Carlo simulatie. We simuleerde studies die tussen de 14 en 42 gezondheidstoestanden 

bevatten met een steekproefomvang variërend van n = 25 tot n = 1000. De standaardfouten 

van de utiliteiten in de Nederlandse studie varieerde 0.044 tot 0.010 voor de verschillende 

gezondheidstoestanden, of 0.028 gemiddeld. In de Engelse studie varieerden die van 0.013 

tot 0.006 (0.009 gemiddeld). Onze Monte Carlo resultaten toonden aan dat de gemiddelde 

standaard fouten varieerden van 0.095 bij 17 toestanden, elk gewaardeerd door 25 respon-

denten tot 0.009 bij 42 gezondheidstoestanden elk gewaardeerd door 1000 respondenten.

Op basis van onze resultaten stellen wij voor dat, om een gemiddelde   standaardfout van de 

utiliteiten te verkrijgen lager dan 0.01 voor EQ-5D TTO waarderingsstudies, men ongeveer 

30 gezondheidstoestanden moet laten waarderen elk door ongeveer 300 respondenten.

Vergelijking van de EQ-5D en de Oxford Hip Score

Zowel ziekte-specifieke als generieke patiënt-gerapporteerde-uitkomstmaten (PROM’s) 

geven informatie over de gezondheidstoestand van de patiënt. In het algemeen geven 

ziekte-specifieke instrumenten meer klinische informatie dan generieke instrumenten, 

maar geven zij geen utiliteiten. Het doel van deze studie was om de vergelijkbaarheid van 

een ziekte-specifiek instrument, de Oxford Hip Score (OHS), en een generiek instrument, 

de EQ-5D, te beoordelen, en om de mogelijkheid tot het verkrijgen van utiliteiten voor de 

OHS via een mapping te ondrzoeken. Gegevens van 439 NHS patiënten in Engeland (voor 

en zes maanden na een heupoperatie) werden geanalyseerd. De informatie verzameld met 

de OHS en EQ-5D werd beoordeeld met behulp van principale componenten analyse en de 

analyse van de correlatie matrix.

Uit de resultaten van de explorerende en de bevestigende principale componenten ana-

lyse bleek dat de OHS kan worden geassocieerd met drie constructen: pijn, mobiliteit en 

zelfzorg. Verder werd aangetoond dat het “angst/depressie” domein van de EQ-5D niet was 

geassocieerd met een van de drie constructen van de OHS. Het had een maximale corre-

latie van 0.3 met de items van de OHS. De verschillen tussen de OHS en de EQ-5D vormen 
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geen belemmering voor de toepasbaarheid van beide instrumenten voor hun eigen doel-

einden. Echter, hoewel het schatten van een mapping model via regressie vrij eenvoudig is, 

beperken de conceptuele verschillen tussen de twee instrumenten de toepasbaarheid van 

de verkregen mapping modellen. De verschillen in de onderliggende constructen tussen de 

twee instrumenten belemmert de nauwkeurige voorspellingen van de individuele EQ-5D 

patiënt scores op basis van hun OHS scores.

Een geometrische benadering voor het modelleren van 
gezondheidstoestanden

De waarde van een gezondheidstoestand is meestal ten opzichte van de waarde van een 

optimale toestand beschreven, specifiek als een ratio die loopt van één (gelijk aan opti-

male gezondheid) tot min oneindig. Het opnemen van potentieel oneindige waarden in 

de berekening van een gemiddelde waarde is een uitdagend probleem in de econometrie 

van gezondheidswaardering. In deze studie hanteerden wij een geometrische benadering 

met behulp van directionele statistiek. In tegenstelling tot conventionele statistiek, is 

directionele statistiek gebaseerd op poolcoördinaten (hoek, radius). In het geval van time 

trade-off waarden wordt het bereik van de hoeken begrensd tussen 45 graden (één) en min 

90 graden (dat wil zeggen, min oneindig). Dit betekent dat de gemiddelden van hoeken 

zich goed gedragen waardoor willekeurige data manipulaties niet nodig zijn. Met behulp 

van TTO antwoorden van de Engelse MVH studie, schatten wij de utiliteiten voor de 243 

EQ-5D gezondheidstoestand door het minimaliseren van de circular variance met en 

zonder radiale gewichten.

Voor toestanden met waarden groter dan nul (dat wil zeggen, beter dan de dood), zijn de 

radiaal gewogen schattingen vrijwel identiek aan de gepubliceerde waarden (gemiddelde 

absolute verschil 0,07; Lin’s rho 0,94). Voor toestanden slechter dan dood zijn de schat-

tingen zijn aanzienlijk lager dan de gepubliceerde waarden (gemiddelde absolute verschil 

0.186; Lin’s rho 0.576). Voor de ernstigste EQ-5D toestand (33333) is de gepubliceerde 

waarde (met behulp van willekeurige transformatie van de gegevens) −0.59 en de directio-

nele schatting (met niet-getransformeerde gegevens) −1,11.

Door het gerbuiken van een geometrische benadering omzeilen we de problemen die inhe-

rent zijn aan de statistiek van ratios en de daarbij horende systematische bias als gevolg van 

willekeurige data manipulaties.
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Discrete keuze modellering van gezondheidstoestanden

Waarschijnlijkheidsmodellen worden gebruikt om de relatieve waarden van subjectieve 

verschijnselen vast te stellen door middel van specifieke beoordelingstaken op basis van 

discrete keuzes. De aantrekkelijkheid van deze discrete keuze (DC) modellen is dat ze zijn 

ingebed in een sterk theoretische raamwerk en gebruik maken van relatief eenvoudige 

beoordelingstaken. Het doel van deze studie was om te bepalen of waarden verkregen met 

een DC experiment vergelijkbaar zijn met die verkregen met andere waarderingstechnie-

ken, zoals de TTO. 209 studenten voltooide diverse taken waarin DC, rangordes, VAS en 

TTO antwoorden werden verzameld. DC data werden ook verzameld in een steekproef uit 

de algemene bevolking (N = 444). Het DC experiment werd ontworpen met behulp van een 

Bayesiaanse benadering en bestond uit 60 keuzes tussen twee gezondheidstoestanden en 

de vergelijking van alle gezondheidstoestanden met “dood”. De DC data werden geana-

lyseerd met een conditional logit model. Om DC waarden te plaatsen op de QALY schaal 

hebben we drie verschillende benaderingen voor verankering vergeleken. Hoewel het DC 

model in grote lijnen het patroon van de TTO repliceerde, produceerde de DC dataset 

consistent hogere waarden. De drie methoden voor het verankeren van de DC waarden 

op de QALY schaal leidden tot vergelijkbare resultaten. Op basis van de hoge mate van ver-

gelijkbaarheid tussen DC afgeleide waarden en TTO waarden kan worden overwogen om 

toekomstige waarderingsstudies te baseren op een combinatie van deze twee technieken.

Conclusies en discussie

In dit proefschrift werd een aantal studies beschreven die allemaal gerelateerd zijn aan 

economische evaluaties. Zoals beschreven in de inleiding, zijn de wiskundige die zijn 

technieken gebruikt in deze studies afkomstig uit verschillende disciplines, maar allemaal 

toepasbaar bij het ontwikkelen van de economische modellen voor de beoordeling van 

kosteneffectiviteit van interventies in de gezondheidszorg.

Bronnen van onzekerheid in CUA uitkomsten

In de eerste methodologische studie werd ingegaan op de impact van de vier verschillende 

methoden van meta-analyse op de resultaten (dwz kosteneffectiviteit) van een probabilis-

tische Markov model voor COPD. We hebben aangetoond dat de keuze voor een bepaalde 

meta-analyse techniek een impact heeft op de onzekerheid van de uitkomsten van een eco-

nomisch model. In het bijzonder vonden wij dat een Bayesiaanse random-effects model 

resulteert in meer onzekerheid en een lagere acceptability curve dan fixed-effects modellen 

en frequentistische modellen.
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In de modellen gebruikt voor economische evaluaties is het gebruikelijk om niet alleen 

de gemiddelde waarden van de modelparameters, maar ook de onzekerheid van de 

modelparameters in een probabilistische gevoeligheidsanalyse mee te modelleren. Als 

30 gezondheidstoestanden en 300 waarnemingen per toestand worden gebruikt in een 

EQ-5D TTO studie, wordt de verwachte onzekerheid over de voorspelde utiliteitswaarden 

0.01, kleiner dan de typische variabiliteit in gezondheidstoestand tussen patienten in een 

klinische studie. Dit betekent dat in dat geval de onzekerheid met betrekking tot de exacte 

waarde van de utiliteiten betrekkelijk veilig kan worden weggelaten uit een probabilistische 

gevoeligheidsanalyses (PSA).

Echter, indien mapping tussen een ziekte specifiek instrument en een generiek instrument 

wordt toegepast om utiliteiten te verkrijgen, wordt een extra niveau van onzekerheid rond 

de utiliteiten geïntroduceerd. Deze extra onzekerheid kan zo groot zijn dat het niet langer 

verwaarloosbaar is ten opzichte van de variabiliteit in gezondheidstoestand tussen patiën-

ten en moet worden meegenomen in de PSA van een economisch model. Zoals we hebben 

laten zien in het geval van heup vervanging, zijn er duidelijke verschillen in inhoud tussen 

de ziekte specifieke OHS, en de generieke EQ-5D. Dit leidde ons tot de conclusie dat het 

gebruik van een mapping model gebaseerd op de OHS om nauwkeurig de utiliteiten voor 

individuele patiënten te bepalen niet haalbaar was.

Nieuwe benaderingen in het modelleren van utiliteiten

We hebben aangetoond dat bij het schatten van ratio’s, zoals TTO waarden, een geometri-

sche benadering voordelen heeft boven een algebraïsche benadering, door het verwijderen 

van het singuliere gedrag wanneer de noemer richting de nul gaat, terwijl de modelstruc-

tuur zelf hetzelfde is (dwz het zelfde utiliteitsmodel U = Σ βij * xij + ε wordt geschat in beide 

gevallen).

De pilot studie naar de haalbaarheid van het gebruik van DC om EQ-5D utiliteiten te 

modelleren toonde veelbelovende resultaten. Het bleek dat, in het algemeen, DC   het 

patroon van TTO repliceerde, hoewel de DC waarden steeds iets hoger waren dan TTO 

waarden. Het grootste probleem bij de toepassing van DC modellen was dat deze modellen 

waarden genereren op een willekeurige schaal en niet op de kwaliteit (van leven) compo-

nent van de QALY schaal. Dit betekent dat het DC model moeten worden verankerd op de 

utiliteitsschaal, waarbij volledige gezondheid een waarde heeft van 1 en dood een waarde 

heeft van 0.
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Conclusie

Het lenen wiskundige technieken die ontwikkeld zijn in andere disciplines kan erg handig 

zijn en (vanuit wiskundig perspectief ) relatief eenvoudig te implementeren, maar men 

moet er goed over na denken of het conceptueel juist is om dit te doen.
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