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Preface to the First Edition

Computational chemistry is rapidly emerging as a subfield of theoretical chemistry,
where the primary focus is on solving chemically related problems by calculations. For
the newcomer to the field, there are three main problems:

(1) Deciphering the code. The language of computational chemistry is littered with
acronyms, what do these abbreviations stand for in terms of underlying assump-
tions and approximations?

(2) Technical problems. How does one actually run the program and what to look for
in the output?

(3) Quality assessment. How good is the number that has been calculated?

Point (1) is part of every new field: there is not much to do about it. If you want to live
in another country, you have to learn the language. If you want to use computational
chemistry methods, you need to learn the acronyms. I have tried in the present book
to include a good fraction of the most commonly used abbreviations and standard pro-
cedures.

Point (2) is both hardware and software specific. It is not well suited for a text book,
as the information rapidly becomes out of date.The average lifetime of computer hard-
ware is a few years, the time between new versions of software is even less. Problems
of type (2) need to be solved “on location”. I have made one exception, however, and
have including a short discussion of how to make Z-matrices. A Z-matrix is a conven-
ient way of specifying a molecular geometry in terms of internal coordinates, and it is
used by many electronic structure programs. Furthermore, geometry optimizations are
often performed in Z-matrix variables, and since optimizations in a good set of inter-
nal coordinates are significantly faster than in Cartesian coordinates, it is important to
have a reasonable understanding of Z-matrix construction.

As computer programs evolve they become easier to use. Modern programs often
communicate with the user in terms of a graphical interface, and many methods have
become essential “black box” procedures: if you can draw the molecule, you can also
do the calculation.This effectively means that you no longer have to be a highly trained
theoretician to run even quite sophisticated calculations.



The ease with which calculations can be performed means that point (3) has become
the central theme in computational chemistry. It is quite easy to run a series of calcu-
lations which produce results that are absolutely meaningless. The program will not
tell you whether the chosen method is valid for the problem you are studying. Quality
assessment is thus an absolute requirement. This, however, requires much more expe-
rience and insight than just running the program. A basic understanding of the theory
behind the method is needed, and a knowledge of the performance of the method for
other systems. If you are breaking new ground, where there is no previous experience,
you need a way of calibrating the results.

The lack of quality assessment is probably one of the reasons why computational
chemistry has (had) a somewhat bleak reputation. “If five different computational
methods give five widely different results, what has computational chemistry con-
tributed? You just pick the number closest to experiments and claim that you can
reproduce experimental data accurately.” One commonly sees statements of the type
“The theoretical results for property X are in disagreement. Calculation at the
CCSD(T)/6-31G(d,p) level predicts that . . . , while the MINDO/3 method gives oppos-
ing results. There is thus no clear consent from theory.” This is clearly a lack of under-
standing of the quality of the calculations. If the results disagree, there is a very high
probability that the CCSD(T) results are basically correct, and the MINDO/3 results
are wrong. If you want to make predictions, and not merely reproduce known results,
you need to be able to judge the quality of your results. This is by far the most diffi-
cult task in computational chemistry. I hope the present book will give some idea of
the limitations of different methods.

Computers don’t solve problems, people do. Computers just generate numbers.
Although computational chemistry has evolved to the stage where it often can be com-
petitive with experimental methods for generating a value for a given property of a
given molecule, the number of possible molecules (there are an estimated 10200 mole-
cules with a molecular weight less than 850) and their associated properties is so huge
that only a very tiny fraction will ever be amenable to calculations (or experiments).
Furthermore, with the constant increase in computational power, a calculation that
barely can be done today will be possible on medium-sized machines in 5–10 years.
Prediction of properties with methods that do not provide converged results (with
respect to theoretical level) will typically only have a lifetime of a few years before
being surpassed by more accurate calculations.

The real strength of computational chemistry is the ability to generate data (for
example by analyzing the wave function) from which a human may gain insight, and
thereby rationalize the behaviour of a large class of molecules. Such insights and ration-
alizations are much more likely to be useful over a longer period of time than the raw
results themselves. A good example is the concept used by organic chemists with mol-
ecules composed of functional groups, and representing reactions by “pushing elec-
trons”. This may not be particular accurate from a quantum mechanical point of view,
but it is very effective in rationalizing a large body of experimental results, and has
good predictive power.

Just as computers do not solve problems, mathematics by itself does not provide
insight. It merely provides formulas, a framework for organizing thoughts. It is in this
spirit that I have tried to write this book. Only the necessary (obviously a subjective
criterion) mathematical background has been provided, the aim being that the reader
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should be able to understand the premises and limitations of different methods, and
follow the main steps in running a calculation. This means that I in many cases have
omitted to tell the reader of some of the finer details, which may annoy the purists.
However, I believe the large overview is necessary before embarking on a more strin-
gent and detailed derivation of the mathematics. The goal of this book is to provide
an overview of commonly used methods, giving enough theoretical background to
understand why for example the AMBER force field is used for modelling proteins
but MM2 is used for small organic molecules. Or why coupled cluster inherently is an
iterative method, while perturbation theory and configuration interaction inherently
are non-iterative methods, although the CI problem in practice is solved by iterative
techniques.

The prime focus of this book is on calculating molecular structures and (relative)
energies, and less on molecular properties or dynamical aspects. In my experience, pre-
dicting structures and energetics are the main uses of computational chemistry today,
although this may well change in the coming years. I have tried to include most
methods that are already extensively used, together with some that I expect to become
generally available in the near future. How detailed the methods are described depends
partly on how practical and commonly used the methods are (both in terms of com-
putational resources and software), and partly reflects my own limitations in terms of
understanding. Although simulations (e.g. molecular dynamics) are becoming increas-
ingly powerful tools, only a very rudimentary introduction is provided in Chapter 16.
The area is outside my expertise, and several excellent textbooks are already available.

Computational chemistry contains a strong practical element. Theoretical methods
must be translated into working computer programs in order to produce results. Dif-
ferent algorithms, however, may have different behaviours in practice, and it becomes
necessary to be able to evaluate whether a certain type of calculation can be carried
out with the available computers. The book thus contains some guidelines for evalu-
ating what type of resources necessary for carrying out a given calculation.

The present book grew out of a series of lecture notes that I have used for teaching
a course in computational chemistry at Odense University, and the style of the book
reflects its origin. It is difficult to master all disciplines in the vast field of computa-
tional chemistry. A special thanks to H. J. Aa. Jensen, K. V. Mikkelsen, T. Saue, S. P. A.
Sauer, M. Schmidt, P. M. W. Gill, P.-O. Norrby, D. L. Cooper, T. U. Helgaker and H. G.
Petersen for having read various parts of the book and providing input. Remaining
errors are of course my sole responsibility.A good part of the final transformation from
a set of lecture notes to the present book was done during a sabbatical leave spent
with Prof. L. Radom at the Research School of Chemistry, Australia National Univer-
sity, Canberra, Australia. A special thanks to him for his hospitality during the stay.

A few comments on the layout of the book. Definitions, acronyms or common
phrases are marked in italic; these can be found in the index. Underline is used for
emphasizing important points. Operators, vectors and matrices are denoted in bold,
scalars in normal text. Although I have tried to keep the notation as consistent as pos-
sible, different branches in computational chemistry often use different symbols for
the same quantity. In order to comply with common usage, I have elected sometimes
to switch notation between chapters. The second derivative of the energy, for example,
is called the force constant k in force field theory, the corresponding matrix is denoted
F when discussing vibrations, and called the Hessian H for optimization purposes.
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I have assumed that the reader has no prior knowledge of concepts specific to com-
putational chemistry, but has a working understanding of introductory quantum
mechanics and elementary mathematics, especially linear algebra, vector, differential
and integral calculus. The following features specific to chemistry are used in the
present book without further introduction. Adequate descriptions may be found in a
number of quantum chemistry textbooks (J. P. Lowe, Quantum Chemistry, Academic
Press, 1993; I. N. Levine, Quantum Chemistry, Prentice Hall, 1992; P. W. Atkins, Mole-
cular Quantum Mechanics, Oxford University Press, 1983).

(1) The Schrödinger equation, with the consequences of quantized solutions and
quantum numbers.

(2) The interpretation of the square of the wave function as a probability distribution,
the Heisenberg uncertainty principle and the possibility of tunnelling.

(3) The solutions for the hydrogen atom, atomic orbitals.
(4) The solutions for the harmonic oscillator and rigid rotor.
(5) The molecular orbitals for the H2 molecule generated as a linear combination of

two s-functions, one on each nuclear centre.
(6) Point group symmetry, notation and representations, and the group theoretical

condition for when an integral is zero.

I have elected to include a discussion of the variational principle and perturbational
methods, although these are often covered in courses in elementary quantum mechan-
ics. The properties of angular momentum coupling are used at the level of knowing
the difference between a singlet and triplet state. I do not believe that it is necessary
to understand the details of vector coupling to understand the implications.

Although I have tried to keep each chapter as self-contained as possible, there are
unavoidable dependencies. The part in Chapter 3 describing HF methods is a prereq-
uisite for understanding Chapter 4. Both these Chapters use terms and concepts for
basis sets which are treated in Chapter 5. Chapter 5, in turn, relies on concepts in Chap-
ters 3 and 4, i.e. these three chapters form the core for understanding modern elec-
tronic structure calculations. Many of the concepts in Chapters 3 and 4 are also used
in Chapters 6, 7, 9, 11 and 15 without further introduction, although these five chap-
ters probably can be read with some benefits without a detailed understanding of
Chapters 3 and 4. Chapter 8, and to a certain extent also Chapter 10, are fairly advanced
for an introductory textbook, such as the present, and can be skipped. They do,
however, represent areas that are probably going to be more and more important in
the coming years. Function optimization, which is described separately in Chapter 14,
is part of many areas, but a detailed understanding is not required for following the
arguments in the other chapters. Chapters 12 and 13 are fairly self-contained, and form
some of the background for the methods in the other chapters. In my own course I
normally take Chapters 12, 13 and 14 fairly early in the course, as they provide back-
ground for Chapters 3, 4 and 5.

If you would like to make comments, advise me of possible errors, make clarifica-
tions, add references, etc., or view the current list of misprints and corrections, please
visit the author’s website (URL: http://bogense.chem.ou.dk/~icc).
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Preface to the 
Second Edition

The changes relative to the first edition are as follows:

• Numerous misprints and inaccuracies in the first edition have been corrected. Most
likely some new ones have been introduced in the process, please check the book
website for the most recent correction list and feel free to report possible problems.
Since web addresses have a tendency to change regularly, please use your favourite
search engine to locate the current URL.

• The methodologies and references in each chapter have been updated with new
developments published between 1998 and 2005.

• More extensive referencing. Complete referencing is impossible, given the large
breadth of subjects. I have tried to include references that preferably are recent,
have a broad scope and include key references. From these the reader can get an
entry into the field.

• Many figures and illustrations have been redone. The use of colour illustrations has
been deferred in favour of keeping the price of the book down.

• Each chapter or section now starts with a short overview of the methods, described
without mathematics. This may be useful for getting a feel for the methods, without
embarking on all the mathematical details. The overview is followed by a more
detailed mathematical description of the method, including some key references
which may be consulted for more details. At the end of the chapter or section, some
of the pitfalls and the directions of current research are outlined.

• Energy units have been converted from kcal/mol to kJ/mol, based on the general
opinion that the scientific world should move towards SI units.

• Furthermore, some chapters have undergone major restructuring:

° Chapter 16 (Chapter 13 in the first edition) has been greatly expanded to include
a summary of the most important mathematical techniques used in the book. The
goal is to make the book more self-contained, i.e. relevant mathematical tech-
niques used in the book are at least rudimentarily discussed in Chapter 16.



° All the statistical mechanics formalism has been collected in Chapter 13.

° Chapter 14 has been expanded to cover more of the methodologies used in mole-
cular dynamics.

° Chapter 12 on optimization techniques has been restructured.

° Chapter 6 on density functional methods has been rewritten.

° A new Chapter 1 has been introduced to illustrate the similarities and differences
between classical and quantum mechanics, and to provide some fundamental
background.

° A rudimentary treatment of periodic systems has been incorporated in Chapters
3 and 14.

° A new Chapter 17 has been introduced to describe statistics and QSAR methods.

° I have tried to make the book more modular, i.e. each chapter is more self-con-
tained. This makes it possible to use only selected chapters, e.g. for a course, but
has the drawback of repeating the same things in several chapters, rather than
simply cross-referencing.

Although the modularity has been improved, there are unavoidable interdependen-
cies. Chapters 3, 4 and 5 contain the essentials of electronic structure theory, and most
would include Chapter 6 describing density functional methods. Chapter 2 contains a
description of empirical force field methods, and this is tightly coupled to the simula-
tion methods in Chapter 14, which of course leans on the statistical mechanics in
Chapter 13. Chapter 1 on fundamental issues is of a more philosophical nature, and
can be skipped. Chapter 16 on mathematical techniques is mainly for those not already
familiar with this, and Chapter 17 on statistical methods may be skipped as well.

Definitions, acronyms and common phrases are marked in italic. In a change from
the first edition, where underlining was used, italic text has also been used for empha-
sizing important points.

A number of people have offered valuable help and criticisms during the updating
process. I would especially like to thank S. P. A. Sauer, H. J. Aa. Jensen, E. J. Baerends
and P. L. A. Popelier for having read various parts of the book and provided input.
Remaining errors are of course my sole responsibility.

Specific comments on the preface to the first edition

Bohacek et al.1 have estimated the number of possible compounds composed of H, C,
N, O and S atoms with 30 non-hydrogen atoms or fewer to be 1060. Although this
number is so large that only a very tiny fraction will ever be amenable to investiga-
tion, the concept of functional groups means that one does not need to evaluate all
compounds in a given class to determine their properties. The number of alkanes
meeting the above criteria is ∼1010: clearly these will all have very similar and well-
understood properties, and there is no need to investigate all 1010 compounds.

Reference

1. R. S. Bohacek, C. McMartin, W. C. Guida, Med. Res. Rev., 16 (1996), 3.

xx PREFACE TO THE SECOND EDITION



1 Introduction

Chemistry is the science dealing with construction, transformation and properties of
molecules.Theoretical chemistry is the subfield where mathematical methods are com-
bined with fundamental laws of physics to study processes of chemical relevance.1

Molecules are traditionally considered as “composed” of atoms or, in a more general
sense, as a collection of charged particles, positive nuclei and negative electrons. The
only important physical force for chemical phenomena is the Coulomb interaction
between these charged particles. Molecules differ because they contain different nuclei
and numbers of electrons, or because the nuclear centres are at different geometrical
positions. The latter may be “chemically different” molecules such as ethanol and
dimethyl ether, or different “conformations” of for example butane.

Given a set of nuclei and electrons, theoretical chemistry can attempt to calculate
things such as:

• Which geometrical arrangements of the nuclei correspond to stable molecules?
• What are their relative energies?
• What are their properties (dipole moment, polarizability, NMR coupling constants,

etc.)?
• What is the rate at which one stable molecule can transform into another?
• What is the time dependence of molecular structures and properties?
• How do different molecules interact?

The only systems that can be solved exactly are those composed of only one or two
particles, where the latter can be separated into two pseudo one-particle problems by
introducing a “centre of mass” coordinate system. Numerical solutions to a given accu-
racy (which may be so high that the solutions are essentially “exact”) can be gener-
ated for many-body systems, by performing a very large number of mathematical
operations. Prior to the advent of electronic computers (i.e. before 1950), the number
of systems that could be treated with a high accuracy was thus very limited. During
the sixties and seventies, electronic computers evolved from a few very expensive, dif-
ficult to use, machines to become generally available for researchers all over the world.
The performance for a given price has been steadily increasing since and the use of
computers is now widespread in many branches of science. This has spawned a new
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field in chemistry, computational chemistry, where the computer is used as an “exper-
imental” tool, much like, for example, an NMR spectrometer.

Computational chemistry is focused on obtaining results relevant to chemical prob-
lems, not directly at developing new theoretical methods. There is of course a strong
interplay between traditional theoretical chemistry and computational chemistry.
Developing new theoretical models may enable new problems to be studied, and
results from calculations may reveal limitations and suggest improvements in the
underlying theory. Depending on the accuracy wanted, and the nature of the system
at hand, one can today obtain useful information for systems containing up to several
thousand particles. One of the main problems in computational chemistry is selecting
a suitable level of theory for a given problem, and to be able to evaluate the quality
of the obtained results. The present book will try to put the variety of modern com-
putational methods into perspective, hopefully giving the reader a chance of estimat-
ing which types of problems can benefit from calculations.

1.1 Fundamental Issues
Before embarking on a detailed description of the theoretical methods in computa-
tional chemistry, it may be useful to take a wider look at the background for the the-
oretical models, and how they relate to methods in other parts of science, such as
physics and astronomy.

A very large fraction of the computational resources in chemistry and physics is used
in solving the so-called many-body problem. The essence of the problem is that 
two-particle systems can in many cases be solved exactly by mathematical methods,
producing solutions in terms of analytical functions. Systems composed of more than
two particles cannot be solved by analytical methods. Computational methods can,
however, produce approximate solutions, which in principle may be refined to any
desired degree of accuracy.

Computers are not smart – at the core level they are in fact very primitive. Smart
programmers, however, can make sophisticated computer programs, which may make
the computer appear smart, or even intelligent. But the basics of any computer
program consist of a doing a few simple tasks such as:

• Performing a mathematical operation (adding, multiplying, square root, cosine, . . .)
on one or two numbers.

• Determining the relationship (equal to, greater than, less than or equal to, . . .)
between two numbers.

• Branching depending on a decision (add two numbers if N > 10, else subtract one
number from the other).

• Looping (performing the same operation a number of times, perhaps on a set of
data).

• Reading and writing data from and to external files.

These tasks are the essence of any programming language, although the syntax, data
handling and efficiency depend on the language. The main reason why computers are
so useful is the sheer speed with which they can perform these operations. Even a
cheap off-the-shelf personal computer can perform billions (109) of operations per
second.
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Within the scientific world, computers are used for two main tasks: performing
numerically intensive calculations and analyzing large amounts of data. Such data can,
for example, be pictures generated by astronomical telescopes or gene sequences in
the bioinformatics area that need to be compared. The numerically intensive tasks are
typically related to simulating the behaviour of the real world, by a more or less sophis-
ticated computational model. The main problem in such simulations is the multi-scale
nature of real-world problems, spanning from sub-nano to millimetres (10−10 − 10−3) in
spatial dimensions, and from femto- to milliseconds (10−15 − 10−3) in the time domain.

1.2 Describing the System
In order to describe a system we need four fundamental features:

• System description – What are the fundamental units or “particles”, and how many
are there?

• Starting condition – Where are the particles and what are their velocities?
• Interaction – What is the mathematical form for the forces acting between the 

particles?
• Dynamical equation – What is the mathematical form for evolving the system in

time?

The choice of “particles” puts limitations on what we are ultimately able to describe. If
we choose atomic nuclei and electrons as our building blocks, we can describe 
atoms and molecules, but not the internal structure of the atomic nucleus. If we choose
atoms as the building blocks, we can describe molecular structures, but not the details of
the electron distribution.If we choose amino acids as the building blocks,we may be able
to describe the overall structure of a protein, but not the details of atomic movements.
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Quarks

Electrons

Atoms Molecules Macro molecules

Nuclei
Protons 
Neutrons

Figure 1.1 Hierarchy of building blocks for describing a chemical system

The choice of starting conditions effectively determines what we are trying to
describe. The complete phase space (i.e. all possible values of positions and velocities
for all particles) is huge, and we will only be able to describe a small part of it. Our
choice of starting conditions determines which part of the phase space we sample, for
example which (structural or conformational) isomer or chemical reaction we can
describe. There are many structural isomers with the molecular formula C6H6, but if
we want to study benzene, we should place the nuclei in a hexagonal pattern, and start
them with relatively low velocities.

The interaction between particles in combination with the dynamical equation deter-
mines how the system evolves in time. At the fundamental level, the only important
force at the atomic level is the electromagnetic interaction. Depending on the choice
of system description (particles), however, this may result in different effective forces.



In force field methods, for example, the interactions are parameterized as stretch, bend,
torsional, van der Waals, etc., interactions.

The dynamical equation describes the time evolution of the system. It is given as a
differential equation involving both time and space derivatives, with the exact form
depending on the particle masses and velocities. By solving the dynamical equation the
particles’ position and velocity can be predicted at later (or earlier) times relative to
the starting conditions, i.e. how the system evolves in the phase space.

1.3 Fundamental Forces
The interaction between particles can be described in terms of either a force (F) or a
potential (V). These are equivalent, as the force is the derivative of the potential with
respect to the position r.

(1.1)

Current knowledge indicates that there are four fundamental interactions, at least
under normal conditions, as listed in Table 1.1.

F r
V
r
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∂
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Table 1.1 Fundamental interactions

Name Particles Range (m) Relative strength

Strong interaction Quarks <10−15 100
Weak interaction Quarks, leptons <10−15 0.001
Electromagnetic Charged particles ∞ 1
Gravitational Mass particles ∞ 10−40

Quarks are the building blocks of protons and neutrons, and lepton is a common
name for a group of particles including the electron and the neutrino. The strong inter-
action is the force holding the atomic nucleus together, despite the repulsion between
the positively charged protons. The weak interaction is responsible for radioactive
decay of nuclei by conversion of neutrons to protons (β decay). The strong and weak
interactions are short-ranged and are only important within the atomic nucleus.

Both the electromagnetic and gravitational interactions depend on the inverse dis-
tance between the particles, and are therefore of infinite range. The electromagnetic
interaction occurs between all charged particles, while the gravitational interaction
occurs between all particles with a mass, and they have the same overall functional
form.

(1.2)

In SI units Celec = 9.0 × 109 Nm2 C−2 and Cgrav = 6.7 × 10−11 Nm2 kg−2, while in atomic units
Celec = 1 and Cgrav = 2.4 × 10−43. On an atomic scale, the gravitational interaction is com-
pletely negligible compared with the electromagnetic interaction. For the interaction
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between a proton and an electron, for example, the ratio between Velec and Vgrav is 1039.
On a large macroscopic scale, such as planets, the situation is reversed. Here the grav-
itational interaction completely dominates, and the electromagnetic interaction is
absent.

On a more fundamental level, it is believed that the four forces are really just dif-
ferent manifestations of a single common interaction, because of the relatively low
energy regime we are living in. It has been shown that the weak and electromagnetic
forces can be combined into a single unified theory, called quantum electrodynamics
(QED). Similarly, the strong interaction can be coupled with QED into what is known
as the standard model. Much effort is being devoted to also include the gravitational
interaction into a grand unified theory, and string theory is currently believed to hold
the greatest promise for such a unification.

Only the electromagnetic interaction is important at the atomic and molecular 
level, and in the large majority of cases, the simple Coulomb form (in atomic units) is
sufficient:

(1.3)

Within QED, the Coulomb interaction is only the zeroth-order term, and the complete
interaction can be written as an expansion in terms of the (inverse) velocity of light,
c. For systems where relativistic effects are important (i.e. containing elements from
the lower part of the periodic table), or when high accuracy is required, the first-order
correction (corresponding to an expansion up to 1/c2) for the electron–electron inter-
action may be included:

(1.4)

The first-order correction is known as the Breit term, and a1 and a2 represent 
velocity operators. Physically, the first term in the Breit correction corresponds to mag-
netic interaction between the two electrons, while the second term describes a “retar-
dation” effect, since the interaction between distant particles is “delayed” relative to
interactions between close particles, owing to the finite value of c (in atomic units,
c ~137).

1.4 The Dynamical Equation
The mathematical form for the dynamical equation depends on the mass and velocity
of the particles, and can be divided into four regimes.

Newtonian mechanics, exemplified by Newton’s second law (F = ma), applies for
“heavy”, “slow-moving” particles. Relativistic effects become important when the
velocity is comparable to the speed of light, causing an increase in the particle mass m
relative to the rest mass m0. A pragmatic borderline between Newtonian and rela-
tivistic (Einstein) mechanics is ~1/3c, corresponding to a relativistic correction of a few
percent.

Light particles display both wave and particle characteristics, and must be described
by quantum mechanics, with the borderline being approximately the mass of a proton.
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Electrons are much lighter and can only be described by quantum mechanics, while
atoms and molecules, with a few exceptions, behave essentially as classical particles.
Hydrogen (protons), being the lightest nucleus, represents a borderline case, which
means that quantum corrections in some cases are essential. A prime example is the
tunnelling of hydrogen through barriers, allowing reactions involving hydrogen to
occur faster than expected from transition state theory.

A major difference between quantum and classical mechanics is that classical
mechanics is deterministic while quantum mechanics is probabilistic (more correctly,
quantum mechanics is also deterministic, but the interpretation is probabilistic).
Deterministic means that Newton’s equation can be integrated over time (forward 
or backward) and can predict where the particles are at a certain time. This, for
example, allows prediction of where and when solar eclipses will occur many thou-
sands of years in advance, with an accuracy of meters and seconds. Quantum mechan-
ics, on the other hand, only allows calculation of the probability of a particle being at
a certain place at a certain time. The probability function is given as the square of a
wave function, P(r,t) = Ψ2(r,t), where the wave function Ψ is obtained by solving either
the Schrödinger (non-relativistic) or Dirac (relativistic) equation. Although they
appear to be the same in Figure 1.2, they differ considerably in the form of the 
operator H.

For classical mechanics at low velocities compared with the speed of light, Newton’s
second law applies.

(1.5)

If the particle mass is constant, the derivative of the momentum p is the mass times
the acceleration.

(1.6)
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Figure 1.2 Domains of dynamical equations



Since the force is the derivative of the potential (eq. (1.1)), and the acceleration is the
second derivative of the position r with respect to time, it may also be written in a dif-
ferential form.

(1.7)

Solving this equation gives the position of each particle as a function of time, i.e. r(t).
At velocities comparable with the speed of light, Newton’s equation is formally

unchanged, but the particle mass becomes a function of the velocity, and the force is
therefore not simply a constant (mass) times the acceleration.

(1.8)

For particles with small masses, primarily electrons, quantum mechanics must be
employed. At low velocities, the relevant equation is the time-dependent Schrödinger
equation.

(1.9)

The Hamiltonian operator is given as a sum of kinetic and potential energy operators.

(1.10)

Solving the Schrödinger equation gives the wave function as a function of time, and
the probability of observing a particle at a position r and time t is given as the square
of the wave function.

(1.11)

For light particles moving at a significant fraction of the speed of light, the Schrödinger
equation is replaced by the Dirac equation.

(1.12)

Although it is formally identical to the Schrödinger equation, the Hamiltonian opera-
tor is significantly more complicated.

(1.13)

The a and b are 4 × 4 matrices, and the relativistic wave function consequently has
four components.Traditionally, these are labelled the large and small components, each
having an a and b spin function (note the difference between the a and b matrices and
a and b spin functions). The large component describes the electronic part of the wave
function, while the small component describes the positronic (electron antiparticle)
part of the wave function, and the a and b matrices couple these components. In the
limit of c → ∞, the Dirac equation reduces to the Schrödinger equation, and the two

H p VDirac = ⋅ +( ) +c mca b 2

HΨ Ψ= i
t

∂
∂

P t tr r, ,( ) = ( )Ψ2

H T V

T
p

Schrodinger˙̇ = +

= = − ∇
2

2

2
1

2m m

HΨ Ψ= i
t

∂
∂

m
m

v c
=

−
0

2 21

− =∂
∂

∂
∂

V
r

r
m

t

2

2

1.4 THE DYNAMICAL EQUATION 7



large components of the wave function reduce to the a and b spin-orbitals in the
Schrödinger picture.

1.5 Solving the Dynamical Equation
Both the Newton/Einstein and Schrödinger/Dirac dynamical equations are differen-
tial equations involving the derivative of either the position vector or wave function
with respect to time. For two-particle systems with simple interaction potentials 
V, these can be solved analytically, giving r(t) or Ψ(r,t) in terms of mathematical 
functions. For systems with more than two particles, the differential equation 
must be solved by numerical techniques involving a sequence of small finite time 
steps.

Consider a set of particles described by a position vector ri at a given time ti. A small
time step ∆t later, the positions can be calculated from the velocities, acceleration,
hyperaccelerations, etc., corresponding to a Taylor expansion with time as the variable.

(1.14)

The positions a small time step ∆t earlier were (replacing ∆t with −∆t)

(1.15)

Addition of these two equations gives a recipe for predicting the positions a time step
∆t later from the current and previous positions, and the current acceleration, a method
known as the Verlet algorithm.

(1.16)

Note that all odd terms in the Verlet algorithm disappear, i.e. the algorithm is correct
to third order in the time step. The acceleration can be calculated from the force, or
equivalently, the potential.

(1.17)

The time step ∆t is an important control parameter for a simulation. The largest value
of ∆t is determined by the fastest process occurring in the system, typically being an
order of magnitude smaller than the fastest process. For simulating nuclear motions,
the fastest process is the motion of hydrogens, being the lightest particles. Hydrogen
vibrations occur with a typical frequency of 3000cm−1, corresponding to ~1014 s−1, and
therefore necessitating time steps of the order of one femtosecond (10−15 s).

1.6 Separation of Variables
As discussed in the previous section, the problem is solving a differential equation with
respect to either the position (classical) or wave function (quantum) for the particles
in the system. The standard method of solving differential equations is to find a set of
coordinates where the differential equation can be separated into less complicated
equations. The first step is to introduce a centre of mass coordinate system, defined as
the mass-weighted sum of the coordinates of all particles, which allows the translation
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of the combined system with respect to a fixed coordinate system to be separated from
the internal motion. For a two-particle system, the internal motion is described in terms
of a reduced mass moving relative to the centre of mass, and this can be further trans-
formed by introducing a coordinate system that reflects the symmetry of the interac-
tion between the two particles. If the interaction only depends on the interparticle
distance (e.g. Coulomb or gravitational interaction), the coordinate system of choice
is normally a polar (two-dimensional) or spherical polar (three-dimensional) system.
In these coordinate systems, the dynamical equation can be transformed into solving
one-dimensional differential equations.

For more than two particles, it is still possible to make the transformation to the
centre of mass system. However, it is no longer possible to find a set of coordinates
that allows a separation of the degrees of freedom for the internal motion, thus pre-
venting an analytical solution. For many-body (N > 2) systems, the dynamical equation
must therefore be solved by computational (numerical) methods. Nevertheless, it is
often possible to achieve an approximate separation of variables based on physical
properties, for example particles differing considerably in mass (such as nuclei and
electrons). A two-particle system consisting of one nucleus and one electron can be
solved exactly by introducing a centre of mass system, thereby transforming the
problem into a pseudo-particle with a reduced mass (m = m1m2/(m1 + m2)) moving rel-
ative to the centre of mass. In the limit of the nucleus being infinitely heavier than the
electron, the centre of mass system becomes identical to that of the nucleus. In this
limit, the reduced mass becomes equal to that of the electron which moves relative to
the (stationary) nucleus. For large, but finite, mass ratios, the approximation m ≈ me is
unnecessary but may be convenient for interpretative purposes. For many-particle
systems, an exact separation is not possible, and the Born–Oppenheimer approxima-
tion corresponds to assuming that the nuclei are infinitely heavier than the electrons.
This allows the electronic problem to be solved for a given set of stationary nuclei.
Assuming that the electronic problem can be solved for a large set of nuclear coordi-
nates, the electronic energy forms a parametric hypersurface as a function of the
nuclear coordinates, and the motion of the nuclei on this surface can then be solved
subsequently.

If an approximate separation is not possible, the many-body problem can often be
transformed into a pseudo one-particle system by taking the average interaction into
account. For quantum mechanics, this corresponds to the Hartree–Fock approxima-
tion, where the average electron–electron repulsion is incorporated. Such pseudo one-
particle solutions often form the conceptual understanding of the system, and provide
the basis for more refined computational methods.

Molecules are sufficiently heavy that their motions can be described quite accurately
by classical mechanics. In condensed phases (solution or solid state), there is a strong
interaction between molecules, and a reasonable description can only be attained by
having a large number of individual molecules moving under the influence of each
other’s repulsive and attractive forces. The forces in this case are complex and cannot
be written in a simple form such as the Coulomb or gravitational interaction. No ana-
lytical solutions can be found in this case, even for a two-particle (molecular) system.
Similarly, no approximate solution corresponding to a Hartree–Fock model can be 
constructed. The only method in this case is direct simulation of the full dynamical
equation.
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1.6.1 Separating space and time variables

The time-dependent Schrödinger equation involves differentiation with respect to
both time and position, the latter contained in the kinetic energy of the Hamiltonian
operator.

(1.18)

For (bound) systems where the potential energy operator is time-independent 
(V(r,t) = V(r)), the Hamiltonian operator becomes time-independent and yields the
total energy when acting on the wave function. The energy is a constant, independent
of time, but depends on the space variables.

(1.19)

Inserting this in the time-dependent Schrödinger equation shows that the time and
space variables of the wave function can be separated.

(1.20)

The latter follows from solving the first-order differential equation with respect to time,
and shows that the time dependence can be written as a simple phase factor multiplied
with the spatial wave function. For time-independent problems, this phase factor is nor-
mally neglected, and the starting point is taken as the time-independent Schrödinger
equation.

(1.21)

1.6.2 Separating nuclear and electronic variables

Electrons are very light particles and cannot be described by classical mechanics, while
nuclei are sufficiently heavy that they display only small quantum effects. The large
mass difference indicates that the nuclear velocities are much smaller than the elec-
tron velocities, and the electrons therefore adjust very fast to a change in the nuclear
geometry.

For a general N-particle system, the Hamiltonian operator contains kinetic (T) and
potential (V) energy for all particles.

(1.22)
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The potential energy operator is the Coulomb potential (eq. (1.3)). Denoting nuclear
coordinates with R and subscript n, and electron coordinates with r and subscript e,
this can be expressed as follows.

(1.23)

The above approximation corresponds to neglecting the coupling between the nuclear
and electronic velocities, i.e. the nuclei are stationary from the electronic point of view.
The electronic wave function thus depends parametrically on the nuclear coordinates,
since it only depends on the position of the nuclei, not on their momentum. To a good
approximation, the electronic wave function thus provides a potential energy surface
upon which the nuclei move, and this separation is known as the Born–Oppenheimer
approximation.

The Born–Oppenheimer approximation is usually very good. For the hydrogen mol-
ecule (H2) the error is of the order of 10−4 au, and for systems with heavier nuclei the
approximation becomes better. As we shall see later, it is possible only in a few cases
to solve the electronic part of the Schrödinger equation to an accuracy of 10−4 au, i.e.
neglect of the nuclear-electron coupling is usually only a minor approximation com-
pared with other errors.

1.6.3 Separating variables in general

Assume that a set of variables can be found where the Hamiltonian operator H for
two particles/variables can be separated into two independent terms, with each only
depending on one particle/variable:

(1.24)

Assume furthermore that the Schrödinger equation for one particle/variable can be
solved (exactly or approximately):

(1.25)

The solution to the two-particle problem can then be composed of solutions of one-
variable Schrödinger equations.

(1.26)

This can be generalized to the case of N particles/variables:

(1.27)
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The properties in eq. (1.27) may be verified by inserting the entities in the Schrödinger
equation (1.21).

1.7 Classical Mechanics
1.7.1 The Sun–Earth system

The motion of the Earth around the Sun is an example of a two-body system that can
be treated by classical mechanics. The interaction between the two “particles” is the
gravitational force.

(1.28)

The dynamical equation is Newton’s second law, which in differential form can be
written as in eq. (1.29).

(1.29)

The first step is to introduce a centre of mass system, and the internal motion becomes
motion of a “particle” with a reduced mass given by eq. (1.30).

(1.30)

Since the mass of the Sun is 3 × 105 times larger than that of the Earth, the reduced
mass is essentially identical to the Earth’s mass (m = 0.999997mEarth). To a very good
approximation, the system can therefore be described as the Earth moving around the
Sun, which remains stationary.

The motion of the Earth around the Sun occurs in a plane, and a suitable coordi-
nate system is a polar coordinate system (two-dimensional) consisting of r and q.
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Figure 1.3 A polar coordinate system

The interaction depends only on the distance r, and the differential equation
(Newton’s equation) can be solved analytically.The bound solutions are elliptical orbits
with the Sun (more precisely, the centre of mass) at one of the foci, but for most of
the planets, the actual orbits are close to circular. Unbound solutions corresponding to
hyperbolas also exist, and could for example describe the path of a (non-returning)
comet.

Each bound orbit can be classified in terms of the dimensions (largest and smallest
distance to the Sun), with an associated total energy. In classical mechanics, there are
no constraints on the energy, and all sizes of orbits are allowed. If the zero point for



the energy is taken as the two particles at rest infinitely far apart, positive values of
the total energy correspond to unbound solutions (hyperbolas, with the kinetic energy
being larger than the potential energy) while negative values correspond to bound
orbits (ellipsoids, with the kinetic energy being less than the potential energy). Bound
solutions are also called stationary orbits, as the particle position returns to the same
value with well-defined time intervals.

1.7.2 The solar system

Once we introduce additional planets in the Sun–Earth system, an analytical solution
for the motions of all the planets can no longer be obtained. Since the mass of the Sun
is so much larger than the remaining planets (the Sun is 1000 times heavier than
Jupiter, the largest planet), the interactions between the planets can to a good approx-
imation be neglected. For the Earth, for example, the second most important force is
from the Moon, with a contribution that is 180 times smaller than that from the Sun.
The next largest contribution is from Jupiter, being approximately 30000 times smaller
(on average) than the gravitational force from the Sun. In this central field model, the
orbit of each planet is determined as if it were the only planet in the solar system, and
the resulting computational task is a two-particle problem, i.e. elliptical orbits with the
Sun at one of the foci. The complete solar system is the unification of nine such orbits,
and the total energy is the sum of all nine individual energies.

A formal refinement can be done by taking the average interaction between the
planets into account, i.e. a Hartree–Fock type approximation. In this model, the orbit
of one planet (e.g. the Earth) is determined by taking the average interaction with all
the other planets into account. The average effect corresponds to spreading the mass
of the other planets evenly along their orbits.

The Hartree–Fock model represents only a very minute improvement over the inde-
pendent orbit model for the solar system, since the planetary orbits do not cross. The
effect of a planet inside the Earth’s orbit corresponds to adding its mass to the Sun,
while the effect of the spread-out mass of a planet outside the Earth’s orbit is zero.
The Hartree–Fock model for the Earth thus consists of increasing the Sun’s effective
mass with that of Mercury and Venus, i.e. a change of only 0.0003%. For the solar
system there is thus very little difference between totally neglecting the planetary
interactions and taking the average effect into account.

The real system, of course, includes all interactions, where each pair interaction
depends on the actual distance between the planets. The resulting planetary motions
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Figure 1.4 Bound and unbound solutions to the classical two-body problem



cannot be solved analytically, but can be simulated numerically. From a given starting
condition, the system is allowed to evolve for many small time steps, and all interac-
tions are considered constant within each time step. By sufficiently small time steps,
this yields a very accurate model of the real many-particle dynamics, and will display
small wiggles of the planetary motion around the elliptical orbits calculated by either
of the two independent-particle models.

Since the perturbations due to the other planets are significantly smaller than the
interaction with the Sun, the “wiggles” are small compared with the overall orbital
motion, and a description of the solar system as planets orbiting the Sun in elliptical
orbits is a very good approximation to the true dynamics of the system.

1.8 Quantum Mechanics
1.8.1 A hydrogen-like atom

A quantum analogue of the Sun–Earth system is a nucleus and one electron, i.e. a
hydrogen-like atom. The force holding the nucleus and electron together is the
Coulomb interaction.
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Figure 1.5 A Hartree–Fock model for the solar system

Figure 1.6 Modelling the solar system with actual interactions



(1.31)

The interaction again only depends on the distance, but owing to the small mass of the
electron, Newton’s equation must be replaced with the Schrödinger equation. For
bound states, the time-dependence can be separated out, as shown in Section 1.6.1,
giving the time-independent Schrödinger equation.

(1.32)

The Hamiltonian operator for a hydrogen-like atom (nuclear charge of Z) can in
Cartesian coordinates and atomic units be written as eq. (1.33), with M being the
nuclear and m the electron mass (m = 1 in atomic units).

(1.33)

The Laplace operator is given by eq. (1.34).

(1.34)

The two kinetic energy operators are already separated, since each only depends on
three coordinates. The potential energy operator, however, involves all six coordinates.
The centre of mass system is introduced by the following six coordinates.

(1.35)

Here the X, Y, Z coordinates define the centre of mass system, and the x, y, z coordi-
nates specify the relative position of the two particles. In these coordinates the Hamil-
tonian operator can be rewritten as eq. (1.36).

(1.36)

The first term only involves the X, Y and Z coordinates, and the ∇2
XYZ operator is obvi-

ously separable in terms of X, Y and Z. Solution of the XYZ part gives translation of
the whole system in three dimensions relative to the laboratory-fixed coordinate
system. The xyz coordinates describe the relative motion of the two particles in terms
of a pseudo-particle with a reduced mass m relative to the centre of mass.
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The potential energy becomes very simple, but the kinetic energy operator becomes
complicated.

(1.38)

The kinetic energy operator,however, is almost separable in spherical polar coordinates,
and the actual method of solving the differential equation can be found in a number of
textbooks. The bound solutions (negative total energy) are called orbitals and can be
classified in terms of three quantum numbers, n, l and m, corresponding to the three
spatial variables r, q and j. The quantum numbers arise from the boundary conditions
on the wave function, i.e. it must be periodic in the q and j variables, and must decay to
zero as r → ∞. Since the Schrödinger equation is not completely separable in spherical
polar coordinates, there exist the restrictions n > l ≥ |m|.The n quantum number describes
the size of the orbital, the l quantum number describes the shape of the orbital, while the
m quantum number describes the orientation of the orbital relative to a fixed coordinate
system.The l quantum number translates into names for the orbitals:

• l = 0 : s-orbital
• l = 1 : p-orbital
• l = 2 : d-orbital, etc.

The orbitals can be written as a product of a radial function, describing the behaviour
in terms of the distance r between the nucleus and electron, and spherical harmonic
functions Ylm representing the angular part in terms of the angles q and j. The orbitals
can be visualized by plotting three-dimensional objects corresponding to the wave
function having a specific value, e.g. Ψ2 = 0.10.
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Figure 1.7 A spherical polar coordinate system

For the hydrogen atom, the nucleus is approximately 1800 times heavier than the 
electron, giving a reduced mass of 0.9995melec. Similar to the Sun–Earth system, the
hydrogen atom can therefore to a good approximation be considered as an electron
moving around a stationary nucleus, and for heavier elements the approximation
becomes better (with a uranium nucleus, for example, the nucleus/electron mass ratio
is ~430000). Setting the reduced mass equal to the electron mass corresponds to
making the assumption that the nucleus is infinitely heavy and therefore stationary.

The potential energy again only depends on the distance between the two particles,
but in contrast to the Sun–Earth system, the motion occurs in three dimensions, and
it is therefore advantageous to transform the Schrödinger equation into a spherical
polar set of coordinates.



The orbitals for different quantum numbers are orthogonal and can be chosen to be
normalized.

(1.39)

The orthogonality of the orbitals in the angular part (l and m quantum numbers)
follows from the shape of the spherical harmonic functions, as these have l nodal planes
(points where the wave function is zero). The orthogonality in the radial part (n
quantum number) is due to the presence of (n–l–1) radial nodes in the wave function.

In contrast to classical mechanics, where all energies are allowed, wave functions
and associated energies are quantized, i.e. only certain values are allowed. The energy
only depends on n for a given nuclear charge Z, and is given by eq. (1.40).

(1.40)

Unbound solutions have a positive total energy and correspond to scattering of an
electron by the nucleus.

1.8.2 The helium atom

Like the solar system, it is not possible to find a set of coordinates where the
Schrödinger equation can be solved analytically for more than two particles (i.e. for
many-electron atoms). Owing to the dominance of the Sun’s gravitational field, a
central field approximation provides a good description of the actual solar system, but
this is not the case for an atomic system.The main differences between the solar system
and an atom such as helium are:

(1) The interaction between the electrons is only a factor of two smaller than between
the nucleus and electrons, compared with a ratio of at least 1000 for the solar
system.

(2) The electron–electron interaction is repulsive, compared with the attraction
between planets.
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Table 1.2 Hydrogenic orbitals obtained from solving the Schrödinger equation

n l m Ψn,l,m(r,q,j) Shape and size

1 0 0 Y0,0(q,j)e−Zr

2 0 0 Y0,0(q,j)(2 − Zr)e−Zr/2

1 ±1, 0 Y1,m(q,j)Zre−Zr/2

3 0 0 Y0,0(q,j)(27 − 18Zr + 2Z2r2)e−Zr/3

1 ±1, 0 Y1,m(q,j)Zr(6 − Zr)e−Zr/3

2 ±2, ±1, 0 Y2,m(q,j)Z2r2e−Zr/3



(3) The motion of the electrons must be described by quantum mechanics owing to
the small electron mass, and the particle position is determined by an orbital, the
square of which gives the probability of finding the electron at a given position.

(4) Electrons are indistinguishable particles having a spin of 1/2. This fermion charac-
ter requires the total wave function to be antisymmetric, i.e. it must change sign
when interchanging two electrons. The antisymmetry results in the so-called
exchange energy, which is a non-classical correction to the Coulomb interaction.

The simplest atomic model would be to neglect the electron–electron interaction, and
only take the nucleus–electron attraction into account. In this model each orbital for
the helium atom is determined by solving a hydrogen-like system with a nucleus and
one electron, yielding hydrogen-like orbitals, 1s, 2s, 2p, 3s, 3p, 3d, etc., with Z = 2. The
total wave function is obtained from the resulting orbitals subject to the aufbau and
Pauli principles. These principles say that the lowest energy orbitals should be filled
first and only two electrons (with different spin) can occupy each orbital, i.e. the elec-
tron configuration becomes 1s2. The antisymmetry condition is conveniently fulfilled
by writing the total wave function as a Slater determinant, since interchanging any two
rows or columns changes the sign of the determinant. For a helium atom, this would
give the following (unnormalized) wave function, with the orbitals given in Table 1.2
with Z = 2.

(1.41)

The total energy calculated by this wave function is simply twice the orbital energy,
−4.000 au, which is in error by 38% compared with the experimental value of −2.904
au. Alternatively, we can use the wave function given by eq. (1.41), but include the 
electron–electron interaction in the energy calculation, giving a value of −2.750 au.

A better approximation can be obtained by taking the average repulsion between the
electrons into account when determining the orbitals, a procedure known as the
Hartree–Fock approximation. If the orbital for one of the electrons were somehow
known, the orbital for the second electron could be calculated in the electric field of the
nucleus and the first electron, described by its orbital. This argument could just as well
be used for the second electron with respect to the first electron.The goal is therefore to
calculate a set of self-consistent orbitals, and this can be done by iterative methods.

For the solar system, the non-crossing of the planetary orbitals makes the
Hartree–Fock approximation only a very minor improvement over a central field
model. For a many-electron atom, however, the situation is different since the position
of the electrons is described by three-dimensional probability functions (square of the
orbitals), i.e. the electron “orbits” “cross”. The average nucleus–electron distance for
an electron in a 2s-orbital is larger than for one in a 1s-orbital, but there is a finite
probability that a 2s-electron is closer to the nucleus than a 1s-electron. If the 1s-
electrons in lithium were completely inside the 2s-orbital, the latter would experience
an effective nuclear charge of 1.00, but owing to the 2s-electron penetrating the 1s-
orbital, the effective nuclear charge for an electron in a 2s-orbital is 1.26. The 2s-elec-
tron in return screens the nuclear charge felt by the 1s-electrons, making the effective
nuclear charge felt by the 1s-electrons less than 3.00. The mutual screening of the 
two 1s-electrons in helium produces an effective nuclear charge of 1.69, yielding a total
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The equal mass of all the electrons and the strong interaction between them makes
the Hartree–Fock model less accurate than desirable, but it is still a big improvement
over an independent orbital model. The Hartree–Fock model typically accounts for
~99% of the total energy, but the remaining correlation energy is usually very impor-
tant for chemical purposes. The correlation between the electrons describes the
“wiggles” relative to the Hartree–Fock orbitals due to the instantaneous interaction
between the electrons, rather than just the average repulsion. The goal of correlated
methods for solving the Schrödinger equation is to calculate the remaining correction
due to the electron–electron interaction.

1.9 Chemistry
The Born–Oppenheimer separation of the electronic and nuclear motions is a cor-
nerstone in computational chemistry. Once the electronic Schrödinger equation has
been solved for a large number of nuclear geometries (and possibly also for several
electronic states), the potential energy surface (PES) is known.The motion of the nuclei
on the PES can then be solved either classically (Newton) or by quantum
(Schrödinger) methods. If there are N nuclei, the dimensionality of the PES is 3N, i.e.
there are 3N nuclear coordinates that define the geometry. Of these coordinates, three
describe the overall translation of the molecule, and three describe the overall rota-
tion of the molecule with respect to three axes. For a linear molecule, only two coor-
dinates are necessary for describing the rotation. This leaves 3N − 6(5) coordinates to
describe the internal movement of the nuclei, which for small displacements may be
chosen as “vibrational normal coordinates”.
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Table 1.3 Helium atomic energies in various approximations

Wave function Zeff Energy (au)

He+ exponential orbital, no electron–electron repulsion 2.00 −4.000
He+ exponential orbital, including electron–electron repulsion 2.00 −2.750
Optimum single exponential orbital 1.69 −2.848
Best orbital, Hartree–Fock limit −2.862
Experimental −2.904

energy of −2.848 au, which is a significant improvement relative to the model with
orbitals employing a fixed nuclear charge of 2.00.

Although the effective nuclear charge of 1.69 represents the lowest possible energy
with the functional form of the orbitals in Table 1.2, it is possible to further refine the
model by relaxing the functional form of the orbitals from a strict exponential.
Although the exponential form is the exact solution for a hydrogen-like system, this
is not the case for a many-electron atom. Allowing the orbitals to adopt best possible
form, and simultaneously optimizing the exponents (“effective nuclear charge”), gives
an energy of −2.862 au. This represents the best possible independent-particle model
for the helium atom, and any further refinement must include the instantaneous cor-
relation between the electrons. By using the electron correlation methods described in
Chapter 4, it is possible to reproduce the experimental energy of −2.904 au.



It should be stressed that nuclei are heavy enough that quantum effects are almost
negligible, i.e. they behave to a good approximation as classical particles. Indeed, if
nuclei showed significant quantum aspects, the concept of molecular structure (i.e. dif-
ferent configurations and conformations) would not have any meaning, since the nuclei
would simply tunnel through barriers and end up in the global minimum. Dimethyl
ether, for example, would spontaneously transform into ethanol. Furthermore, it would
not be possible to speak of a molecular geometry, since the Heisenberg uncertainty
principle would not permit a measure of nuclear positions with an accuracy smaller
than the molecular dimension.

Methods aimed at solving the electronic Schrödinger equation are broadly referred
to as “electronic structure calculations”. An accurate determination of the electronic
wave function is very demanding. Constructing a complete PES for molecules con-
taining more than three or four atoms is virtually impossible. Consider, for example,
mapping the PES by calculating the electronic energy for every 0.1Å over say a 1Å
range (a very coarse mapping). With three atoms, there are three internal coordinates,
giving 103 points to be calculated. Four atoms already produce six internal coordinates,
giving 106 points, which is possible to calculate, but only with a very determined effort.
Larger systems are out of reach. Constructing global PES’s for all but the smallest mol-
ecules is thus impossible. By restricting the calculations to the “chemically interesting”
part of the PES, however, it is possible to obtain useful information. The interesting
parts of a PES are usually nuclear arrangements that have low energies. For example,
nuclear movements near a minimum on the PES, which corresponds to a stable mol-
ecule, are molecular vibrations. Chemical reactions correspond to larger movements,
and may in the simplest approximation be described by locating the lowest energy path
leading from one minimum on the PES to another.

These considerations lead to the following definition:

Chemistry is knowing the energy as a function of the nuclear coordinates.

The large majority of what are commonly referred to as molecular properties may sim-
ilarly be defined as:

Properties are knowing how the energy changes upon adding a perturbation.

In the following we will look at some aspects of solving the electronic Schrödinger
equation or otherwise construct a PES, how to deal with the movement of nuclei on
the PES, and various technical points of commonly used methods. A word of caution
here: although it is the nuclei that move, and the electrons follow “instantly” (accord-
ing to the Born–Oppenheimer approximation), it is common also to speak of “atoms”
moving. An isolated atom consists of a nucleus and some electrons, but in a molecule
the concept of an atom is not well defined. Analogously to the isolated atom, an atom
in a molecule should consist of a nucleus and some electrons. But how does one par-
tition the total electron distribution in a molecule such that a given portion belongs 
to a given nucleus? Nevertheless, the words nucleus and atom are often used 
interchangeably.

Much of the following will concentrate on describing individual molecules. Experi-
ments are rarely done on a single molecule; rather they are performed on macroscopic
samples with perhaps 1020 molecules. The link between the properties of a single mol-
ecule, or a small collection of molecules, and the macroscopic observable is statistical
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mechanics. Briefly, macroscopic properties, such as temperature, heat capacity, entropy,
etc., are the net effect of a very large number of molecules having a certain distribu-
tion of energies. If all the possible energy states can be determined for an individual
molecule or a small collection of molecules, statistical mechanics can be used for 
calculating macroscopic properties.
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2 Force Field Methods

2.1 Introduction
As mentioned in Chapter 1, one of the major problems is calculating the electronic
energy for a given nuclear configuration to give a potential energy surface. In force
field (FF) methods, this step is bypassed by writing the electronic energy as a para-
metric function of the nuclear coordinates, and fitting the parameters to experimental
or higher level computational data. The “building blocks” in force field methods are
atoms, i.e. electrons are not considered as individual particles. This means that bonding
information must be provided explicitly, rather than being the result of solving the elec-
tronic Schrödinger equation.

In addition to bypassing the solution of the electronic Schrödinger equation, the
quantum aspects of the nuclear motion are also neglected. This means that the dynam-
ics of the atoms is treated by classical mechanics, i.e. Newton’s second law. For time-
independent phenomena, the problem reduces to calculating the energy at a given
geometry. Often the interest is in finding geometries of stable molecules and/or dif-
ferent conformations, and possibly also interconversion between conformations. The
problem is then reduced to finding energy minima (and possibly also some first-order
saddle points) on the potential energy surface.

Molecules are described by a “ball and spring” model in force field methods, with
atoms having different sizes and “softness” and bonds having different lengths and
“stiffness”.1 Force field methods are also referred to as molecular mechanics (MM)
methods. Many different force fields exist, and in this Chapter we will use Allinger’s
MM2 and MM3 (Molecular Mechanics versions 2 and 3) to illustrate specific details.2

The foundation of force field methods is the observation that molecules tend to be
composed of units that are structurally similar in different molecules. All C—H bond
lengths, for example, are roughly constant in all molecules, being between 1.06 and 
1.10Å. The C—H stretch vibrations are also similar, between 2900 and 3300cm−1,
implying that the C—H force constants are also comparable. If the C—H bonds are
further divided into groups, for example those attached to single-, double- or triple-
bonded carbon, the variation within each of these groups becomes even smaller. The

Introduction to Computational Chemistry, Second Edition. Frank Jensen.
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same grouping holds for other feature as well, e.g. all C=O bonds are approximately
1.22Å long and have vibrational frequencies of approximately 1700cm−1, all double-
bonded carbons are essentially planar, etc. The transferability also holds for energetic
features. A plot of the heat of formation for linear alkanes, i.e. CH3(CH2)nCH3, against
the chain length n produces a straight line, showing that each CH2 group contributes
essentially the same amount of energy. (For a general discussion of estimating heat of
formation from group additivities, see Benzon.3)
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Table 2.1 MM2(91) atom types

Type Symbol Description Type Symbol Description

1 C sp3-carbon 28 H enol or amide
2 C sp2-carbon, alkene 48 H ammonium
3 C sp2-carbon, carbonyl, imine 36 D deuterium
4 C sp-carbon 20 lp lone pair

22 C cyclopropane 15 S sulfide (R2S)
29 C· radical 16 S+ sulfonium (R3S+)
30 C+ carbocation 17 S sulfoxide (R2SO)
38 C sp2-carbon, cyclopropene 18 S sulfone (R2SO2)
50 C sp2-carbon, aromatic 42 S sp2-sulfur, thiophene
56 C sp3-carbon, cyclobutane 11 F fluoride
57 C sp2-carbon, cyclobutene 12 Cl chloride
58 C carbonyl, cyclobutanone 13 Br bromide
67 C carbonyl, cyclopropanone 14 I iodide
68 C carbonyl, ketene 26 B boron, trigonal
71 C ketonium carbon 27 B boron, tetrahedral
8 N sp3-nitrogen 19 Si silane
9 N sp2-nitrogen, amide 25 P phosphine

10 N sp-nitrogen 60 P phosphor, pentavalent
37 N azo or pyridine (–N=) 51 He helium
39 N+ sp3-nitrogen, ammonium 52 Ne neon
40 N sp2-nitrogen, pyrrole 53 Ar argon
43 N azoxy (−N=N−O) 54 Kr krypton
45 N azide, central atom 55 Xe xenon
46 N nitro (–NO2) 31 Ge germanium
72 N imine, oxime (=N−) 32 Sn tin
6 O sp3-oxygen 33 Pb lead
7 O sp2-oxygen, carbonyl 34 Se selenium

41 O sp2-oxygen, furan 35 Te tellurium
47 O− carboxylate 59 Mg magnesium
49 O epoxy 61 Fe iron (II)
69 O amine oxide 62 Fe iron (III)
70 O ketonium oxygen 63 Ni nickel (II)
5 H hydrogen, except on N or O 64 Ni nickel (III)

21 H alcohol (OH) 65 Co cobalt (II)
23 H amine (NH) 66 Co cobalt (III)
24 H carboxyl (COOH)

Note that special atom types are defined for carbon atoms involved in small rings, such as cyclopropane and
cyclobutane. The reason for this will be discussed in Section 2.2.2.



The picture of molecules being composed of structural units (“functional groups”)
that behave similarly in different molecules forms the very basis of organic chemistry.
Molecular structure drawings, where alphabetic letters represent atoms and lines rep-
resent bonds, are used universally. Organic chemists often build ball and stick, or CPK
space-filling, models of their molecules to examine their shapes. Force field methods
are in a sense a generalization of these models, with the added feature that the atoms
and bonds are not fixed at one size and length. Furthermore, force field calculations
enable predictions of relative energies and barriers for interconversion of different
conformations.

The idea of molecules being composed of atoms, which are structurally similar in
different molecules, is implemented in force field models as atom types. The atom type
depends on the atomic number and the type of chemical bonding it is involved in. The
type may be denoted with either a number or a letter code. In MM2, for example, there
are 71 different atom types (type 44 is missing). Type 1 is an sp3-hybridized carbon,
and an sp2-hybridized carbon may be type 2, 3 or 50, depending on the neighbour
atom(s). Type 2 is used if the bonding is to another sp2-carbon (simple double bond),
type 3 is used if the carbon is bonded to an oxygen (carbonyl group) and type 50 is
used if the carbon is part of an aromatic ring with delocalized bonds. Table 2.1 gives a
complete list of the MM2(91) atom types, where (91) indicates the year when the
parameter set was released. The atom type numbers roughly reflect the order in which
the corresponding functional groups were parameterized.

2.2 The Force Field Energy
The force field energy is written as a sum of terms, each describing the energy required
for distorting a molecule in a specific fashion.

(2.1)

Estr is the energy function for stretching a bond between two atoms, Ebend represents
the energy required for bending an angle, Etors is the torsional energy for rotation
around a bond, Evdw and Eel describe the non-bonded atom–atom interactions, and
finally Ecross describes coupling between the first three terms.

E E E E E E EFF str bend tors vdw el cross= + + + + +
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Figure 2.1 Illustration of the fundamental force field energy terms

Given such an energy function of the nuclear coordinates, geometries and relative
energies can be calculated by optimization. Stable molecules correspond to minima on
the potential energy surface, and they can be located by minimizing EFF as a function
of the nuclear coordinates. Conformational transitions can be described by locating



transition structure on the EFF surface. Exactly how such a multi-dimensional function
optimization may be carried out is described in Chapter 12.

2.2.1 The stretch energy

Estr is the energy function for stretching a bond between two atom types A and B. In
its simplest form, it is written as a Taylor expansion around a “natural”, or “equilib-
rium”, bond length, R0. Terminating the expansion at second order gives eq. (2.2).

(2.2)

The derivatives are evaluated at R = R0 and the E(0) term is normally set to zero, since
this is just the zero point for the energy scale. The second term is zero as the expan-
sion is around the equilibrium value. In its simplest form the stretch energy can thus
be written as eq. (2.3).

(2.3)

Here kAB is the “force constant” for the A—B bond. This is the form of a harmonic
oscillator, with the potential being quadratic in the displacement from the minimum.

The harmonic form is the simplest possible, and sufficient for determining most equi-
librium geometries. There are certain strained and crowded systems where the results
from a harmonic approximation are significantly different from experimental values,
and if the force field should be able to reproduce features such as vibrational fre-
quencies, the functional form for Estr must be improved. The straightforward approach
is to include more terms in the Taylor expansion.

(2.4)

This of course has a price: more parameters have to be assigned.
Polynomial expansions of the stretch energy do not have the correct limiting behav-

iour.The cubic anharmonicity constant k3 is normally negative, and if the Taylor expan-
sion is terminated at third order, the energy will go toward −∞ for long bond lengths.
Minimization of the energy with such an expression can cause the molecule to fly apart
if a poor starting geometry is chosen. The quartic constant k4 is normally positive and
the energy will go toward +∞ for long bond lengths if the Taylor series is terminated
at fourth order. The correct limiting behaviour for a bond stretched to infinity is that
the energy should converge towards the dissociation energy. A simple function that
satisfies this criterion is the Morse potential.4

(2.5)

Here D is the dissociation energy and a is related to the force constant. The Morse
function reproduces the actual behaviour quite accurately over a wide range of dis-
tances, as seen in Figure 2.2.There are, however, some difficulties with the Morse poten-
tial in actual applications. For long bond lengths the restoring force is quite small.
Distorted structures, which may either be a poor starting geometry or one that devel-
ops during a simulation, will therefore display a slow convergence towards the 
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equilibrium bond length. For minimization purposes and simulations at ambient tem-
peratures (e.g. 300K) it is sufficient that the potential is reasonably accurate up to 
~40kJ/mol above the minimum (the average kinetic energy is 3.7kJ/mol at 300K). In
this energy range there is little difference between a Morse potential and a Taylor
expansion, and most force fields therefore employ a simple polynomial for the stretch
energy. The number of parameters is often reduced by taking the cubic, quartic, etc.,
constants as a predetermined fraction of the harmonic force constant. A popular
method is to require that the nth-order derivative at R0 matches the corresponding
derivative of the Morse potential. For a fourth-order expansion this leads to the 
following expression.

(2.6)

The a constant is the same as that appearing in the Morse function, but may be taken
as a fitting parameter. An alternative method for introducing anharmonicity is to 
use the harmonic form in eq. (2.3) but allow the force constant to depend on the bond
distance.5

Figure 2.2 compares the performance of various functional forms for the stretch
energy in CH4. The “exact” form is taken from electronic structure calculations ([8,8]-
CASSCF/aug-cc-pVTZ). The simple harmonic approximation (P2) is seen to be accu-
rate to about ±0.1Å from the equilibrium geometry and the quartic approximation
(P4) up to ±0.3Å. The Morse potential reproduces the real curve quite accurately up
to an elongation of 0.8Å, and becomes exact again in the dissociation limit.

For the large majority of systems, including simulations, the only important chemi-
cal region is within ~40kJ/mol of the bottom of the curve. In this region, a fourth-order
polynomial is essentially indistinguishable from either a Morse or the exact curve, as
shown in Figure 2.3, and even a simple harmonic approximation does a quite good job.

E R k R R Rstr
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Figure 2.2 The stretch energy for CH4



Until now, we have used two different words for the R0 parameter, the “natural” or
the “equilibrium” bond length. The latter is slightly misleading. The R0 parameter is
not the equilibrium bond length for any molecule! Instead it is the parameter which,
when used to calculate the minimum energy structure of a molecule, will produce a
geometry having the experimental equilibrium bond length. If there were only one
stretch energy in the whole force field energy expression (i.e. a diatomic molecule), R0

would be the equilibrium bond length. However, in a polyatomic molecule the other
terms in the force field energy will usually produce a minimum energy structure with
bond lengths slightly longer than R0. R0 is the hypothetical bond length if no other
terms are included, and the word “natural” bond length is a better description of this
parameter than “equilibrium” bond length. Essentially all molecules have bond lengths
that deviate very little from their “natural” values, typically by less than 0.03Å. For
this reason a simple harmonic is usually sufficient for reproducing experimental
geometries.

For each bond type, i.e. a bond between two atom types A and B, there are at least
two parameters to be determined, kAB and R0

AB. The higher order expansions, and the
Morse potential, have one additional parameter (a or D) that needs to be determined.

2.2.2 The bending energy

Ebend is the energy required for bending an angle formed by three atoms A—B—C,
where there is a bond between A and B, and between B and C. Similarly to Estr, Ebend

is usually expanded as a Taylor series around a “natural” bond angle and terminated
at second order, giving the harmonic approximation.
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Figure 2.3 The stretch energy for CH4



(2.7)

While the simple harmonic expansion is adequate for most applications, there may be
cases where higher accuracy is required. The next improvement is to include a third-
order term, analogous to Estr. This can give a very good description over a large range
of angles, as illustrated in Figure 2.4 for CH4. The “exact” form is again taken from
electronic structure calculations (MP2/aug-cc-pVTZ). The simple harmonic approxi-
mation (P2) is seen to be accurate to about ±30° from the equilibrium geometry and
the cubic approximation (P3) up to ±70°. Higher order terms are often included in
order also to reproduce vibrational frequencies. Analogous to Estr, the higher order
force constants are often taken as a fixed fraction of the harmonic constant. The con-
stants beyond third order can rarely be assigned values with high confidence owing to
insufficient experimental information. Fixing the higher order constant in terms of the
harmonic constant of course reduces the quality of the fit. While a third-order poly-
nomial is capable of reproducing the actual curve very accurately if the cubic constant
is fitted independently, the assumption that it is a fixed fraction (independent of the
atom type) of the harmonic constant deteriorates the fit, but it still represent an
improvement relative to a simple harmonic approximation.

E kbend
ABC ABC ABC ABC ABCq q q q−( ) = −( )0 0

2
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Figure 2.4 The bending energy for CH4

In the chemically important region below ~40kJ/mol above the bottom of the energy
curve, a second-order expansion is normally sufficient.

Angles where the central atom is di- or trivalent (ethers, alcohols, sulfides, amines
and enamines) present a special problem. In these cases, an angle of 180° corresponds
to an energy maximum, i.e. the derivative of the energy with respect to the angle should
be zero and the second derivative should be negative. This may be enforced by suit-
able boundary conditions on Taylor expansions of at least order three. A third-order



polynomial fixes the barrier for linearity in terms of the harmonic force constant and
the equilibrium angle (∆E≠ = k(q − q0)2/6). A fourth-order polynomial enables an inde-
pendent fit of the barrier to linearity, but such constrained polynomial fittings are rarely
done. Instead, the bending function is taken to be identical for all atom types, for
example a fourth-order polynomial with cubic and quartic constants as a fixed fraction
of the harmonic constant.

These features are illustrated for H2O in Figure 2.5, where the “exact” form is taken
from a parametric fit to a large amount of spectroscopic data.6 The simple harmonic
approximation (P2) is seen to be accurate to about ±20° from the equilibrium geome-
try and the cubic approximation (P3) up to ±40°. Enforcing the cubic polynomial to
have a zero derivative at 180° (P3′) gives a qualitatively correct behaviour, but reduces
the overall fit, although it is still better than a simple harmonic approximation.
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Figure 2.5 The bending energy for H2O

Although such refinements over a simple harmonic potential clearly improve the
overall performance, they have little advantage in the chemically important region up
to ~40kJ/mol above the minimum. As for the stretch energy term, the energy cost for
bending is so large that most molecules only deviate a few degrees from their natural
bond angles. This again indicates that including only the harmonic term is adequate
for most applications.

As noted above, special atom types are often defined for small rings, owing to the
very different equilibrium angles for such rings. In cyclopropane, for example, the
carbons are formally sp3-hybridized, but have equilibrium CCC angles of 60°, in con-
trast to 110° in an acyclic system. With a low-order polynomial for the bend energy,
the energy cost for such a deformation is large. For cyclobutane, for example, Ebend will
dominate the total energy and cause the calculated structure to be planar, in contrast
to the puckered geometry found experimentally.



For each combination of three atom types,A, B and C, there are at least two bending
parameters to be determined, kABC and q0

ABC.

2.2.3 The out-of-plane bending energy

If the central B atom in the angle ABC is sp2-hybridized, there is a significant energy
penalty associated with making the centre pyramidal, since the four atoms prefer to
be located in a plane. If the four atoms are exactly in a plane, the sum of the three
angles with B as the central atom should be exactly 360°, however, a quite large pyra-
midalization may be achieved without seriously distorting any of these three angles.
Taking the bond distances to 1.5Å, and moving the central atom 0.2Å out of the plane,
only reduces the angle sum to 354.8° (i.e. only a 1.7° decrease per angle). The corre-
sponding out-of-plane angle, c, is 7.7° for this case. Very large force constants must be
used if the ABC, ABD and CBD angle distortions are to reflect the energy cost asso-
ciated with the pyramidalization. This would have the consequence that the in-plane
angle deformations for a planar structure would become unrealistically stiff. Thus a
special out-of-plane energy bend term (Eoop) is usually added, while the in-plane angles
(ABC, ABD and CBD) are treated as in the general case above. Eoop may be written
as a harmonic term in the angle c (the equilibrium angle for a planar structure is zero)
or as a quadratic function in the distance d, as given in eq. (2.8) and shown in Figure
2.6.

(2.8)

Such energy terms may also be used for increasing the inversion barrier in sp3-
hybridized atoms (i.e. an extra energy penalty for being planar), and Eoop is also some-
times called Einv. Inversion barriers are in most cases (e.g. in amines, NR3) adequately
modelled without an explicit Einv term, the barrier arising naturally from the increase
in bond angles upon inversion. The energy cost for non-planarity of sp2-hybridized
atoms may also be accounted for by an “improper” torsional energy, as described in
Section 2.2.4.

For each sp2-hybridized atom there is one additional out-of-plane force constant to
be determined, kB.

E k E d k doop
B
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Figure 2.6 Out-of-plane variable definitions

2.2.4 The torsional energy

Etors describes part of the energy change associated with rotation around a B—C bond
in a four-atom sequence A—B—C—D, where A—B, B—C and C—D are bonded.



Looking down the B—C bond, the torsional angle is defined as the angle formed by
the A—B and C—D bonds as shown in Figure 2.7. The angle w may be taken to be in
the range [0°,360°] or [−180°,180°].

The torsional energy is fundamentally different from Estr and Ebend in three aspects:

(1) A rotational barrier has contributions from both the non-bonded (van der Waals
and electrostatic) terms, as well as the torsional energy, and the torsional param-
eters are therefore intimately coupled to the non-bonded parameters.

(2) The torsional energy function must be periodic in the angle w : if the bond is rotated
360° the energy should return to the same value.

(3) The cost in energy for distorting a molecule by rotation around a bond is often
low, i.e. large deviations from the minimum energy structure may occur, and a
Taylor expansion in w is therefore not a good idea.

To encompass the periodicity, Etors is written as a Fourier series.

(2.9)

The n = 1 term describes a rotation that is periodic by 360°, the n = 2 term is periodic
by 180°, the n = 3 term is periodic by 120°, and so on. The Vn constants determine the
size of the barrier for rotation around the B—C bond. Depending on the situation,
some of these Vn constants may be zero. In ethane, for example, the most stable con-
formation is one where the hydrogens are staggered relative to each other, while the
eclipsed conformation represents an energy maximum. As the three hydrogens at each
end are identical, it is clear that there are three energetically equivalent staggered, and
three equivalent eclipsed, conformations. The rotational energy profile must therefore
have three minima and three maxima. In the Fourier series only those terms that have
n = 3, 6, 9, etc., can therefore have Vn constants different from zero.

For rotation around single bonds in substituted systems, other terms may be neces-
sary. In the butane molecule, for example, there are still three minima, but the two
gauche (torsional angle ~±60°) and anti (torsional angle ~180°) conformations now
have different energies. The barriers separating the two gauche and the gauche and
anti conformations are also of different height. This may be introduced by adding a
term corresponding to n = 1.

For the ethylene molecule, the rotation around the C=C bond must be periodic by
180°, and thus only n = 2, 4, etc., terms can enter. The energy cost for rotation around
a double bond is of course much higher than that for rotation around a single bond in
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Figure 2.7 Torsional angle definition



ethane, which would be reflected in a larger value of the V2 constant. For rotation
around the C=C bond in a molecule such as 2-butene, there would again be a large
V2 constant, analogous to ethylene, but in addition there are now two different orien-
tations of the two methyl groups relative to each other, cis and trans. The full rotation
is periodic with a period of 360°, with deep energy minima at 0° and 180°, but slightly
different energies of these two minima. This energy difference would show up as a V1

constant, i.e. the V2 constant essentially determines the barrier and location of the
minima for rotation around the C=C bond, and the V1 constant determines the energy
difference between the cis and trans isomers.

Molecules that are composed of atoms having a maximum valence of four (essen-
tially all organic molecules) are with a few exceptions found to have rotational pro-
files showing at most three minima. The first three terms in the Fourier series in eq.
(2.9) are sufficient for qualitatively reproducing such profiles. Force fields that are
aimed at large systems often limit the Fourier series to only one term, depending on
the bond type (e.g. single bonds only have cos(3w) and double bonds only cos(2w)).

Systems with bulky substituents on sp3-hybridized atoms are often found to have
four minima, the anti conformation being split into two minima with torsional angles
of approximately ±170°. Other systems, notably polyfluoroalkanes, also split the gauche
minima into two, often called gauche (angle of approximately ±50°) and ortho (angle
of approximately ±90°) conformations, creating a rotational profile with six minima.7

Rotations around a bond connecting sp3- and sp2-hybridized atoms (such as CH3NO2)
also display profiles with six minima.8 These exceptions from the regular three minima
rotational profile around single bonds are caused by repulsive and attractive van der
Waals interactions, and can still be modelled by having only terms up to cos(3w) in the
torsional energy expression. Higher order terms may be included to modify the
detailed shape of the profile, and a few force fields employ terms with n = 4 and 6.
Cases where higher order terms probably are necessary are rotation around bonds to
octahedral coordinated metals, such as Ru(pyridine)6 or a dinuclear complex such as
Cl4Mo–MoCl4. Here the rotation is periodic by 90° and thus requires a cos(4w) term.

It is customary to shift the zero point of the potential by adding a factor of one to
each term. Most rotational profiles resemble either the ethane or ethylene examples
above, and a popular expression for the torsional energy is given in eq. (2.10).

(2.10)

The + and − signs are chosen such that the one-fold rotational term has a minimum
for an angle of 180°, the two-fold rotational term has minima for angles of 0° and 180°,
and the three-fold rotational term has minima for angles of 60°, 180° and 300° (−60°).
The factor 1/2 is included such that the Vi parameters directly give the height of the
barrier if only one term is present. A more general form for eq. (2.10) includes a phase
factor, i.e. cos(nw − t), but for the most common cases of t = 0° or 180°, it is completely
equivalent to eq. (2.10). Figure 2.8 illustrates the functional behaviour of the three indi-
vidual terms in eq. (2.10).

The Vi parameters may also be negative, which corresponds to changing the 
minima on the rotational energy profile to maxima, and vice versa. Most commonly
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Figure 2.8 Torsional energy functions



encountered rotational profiles can be obtained by combining the three Vi parameters.
Figure 2.9 shows an example with one anti and two less stable gauche minima and with
a significant cis barrier, corresponding to the combination V1 = 0.5, V2 = −0.2, V3 = 0.5
in eq. (2.10).

As mentioned in Section 2.2.3, the out-of-plane energy may also be described by an
“improper” torsional angle. For the example shown in Figure 2.6, a torsional angle
ABCD may be defined, even though there is no bond between C and D. The out-of-
plane Eoop may then be described by an angle wABCD, for example as a harmonic func-
tion (w − w0)2 or eq. (2.10) with a large V2 constant. Note that the definition of such
improper torsional angles is not unique, the angle wABDC (for example) is equally good.
In practice there is little difference between describing Eoop as in eq. (2.8) or as an
improper torsional angle.

For each combination of four atom types, A, B, C and D, there are generally three
torsional parameters to be determined, V1

ABCD, V2
ABCD and V3

ABCD.

2.2.5 The van der Waals energy

Evdw is the van der Waals energy describing the repulsion or attraction between atoms
that are not directly bonded. Together with the electrostatic term Eel (Section 2.2.6),
it describes the non-bonded energy. Evdw may be interpreted as the non-polar part of
the interaction not related to electrostatic energy due to (atomic) charges. This may
for example be the interaction between two methane molecules, or two methyl groups
at different ends of the same molecule.

Evdw is zero at large interatomic distances and becomes very repulsive for short dis-
tances. In quantum mechanical terms, the latter is due to the overlap of the electron
clouds of the two atoms, as the negatively charged electrons repel each other. At inter-
mediate distances, however, there is a slight attraction between two such electron
clouds from induced dipole–dipole interactions, physically due to electron correla-
tion (discussed in Chapter 4). Even if the molecule (or part of a molecule) has no 
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permanent dipole moment, the motion of the electrons will create a slightly uneven
distribution at a given time. This dipole moment will induce a charge polarization in
the neighbour molecule (or another part of the same molecule), creating an attraction,
and it can be derived theoretically that this attraction varies as the inverse sixth power
of the distance between the two fragments.

The induced dipole–dipole interaction is only the leading term of such induced mul-
tipole interactions: there are also contributions from induced dipole–quadrupole,
quadrupole–quadrupole, etc., interactions. These vary as R−8, R−10, etc., and the R−6

dependence is only the asymptotic behaviour at long distances. The force associated
with this potential is often referred to as a “dispersion” or “London” force.9 The van
der Waals term is the only interaction between rare gas atoms (and thus the reason
why say argon can become a liquid and a solid) and it is the main interaction between
non-polar molecules such as alkanes.

Evdw is very positive at small distances, has a minimum that is slightly negative at a
distance corresponding to the two atoms just “touching” each other, and approaches
zero as the distance becomes large. A general functional form that fits these conditions
is given in eq. (2.11).

(2.11)

It is not possible to derive theoretically the functional form of the repulsive interac-
tion, it is only required that it goes toward zero as R goes to infinity, and it should
approach zero faster than the R−6 term, as the energy should go towards zero from
below.

A popular function that obeys these general requirements is the Lennard-Jones (LJ)
potential,10 where the repulsive part is given by an R−12 dependence (C1 and C2 are suit-
able constants).

(2.12)

The Lennard-Jones potential can also be written as in eq. (2.13).

(2.13)

Here R0 is the minimum energy distance and e the depth of the minimum. There are
no theoretical arguments for choosing the exponent in the repulsive part to be 12, this
is purely a computational convenience, and there is evidence that an exponent of 9 or
10 gives better results.

The Merck Molecular Force Field (MMFF) uses a generalized Lennard-Jones poten-
tial where the exponents and two empirical constants are derived from experimental
data for rare gas atoms.11 The resulting buffered 14-7 potential is shown in eq. (2.14).
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From electronic structure theory it is known that the repulsion is due to overlap of the
electronic wave functions, and furthermore that the electron density falls off approxi-
mately exponentially with the distance from the nucleus (the exact wave function for
the hydrogen atom is an exponential function). There is therefore some justification
for choosing the repulsive part as an exponential function. The general form of the
“Exponential – R−6” Evdw function, also known as a “Buckingham” or “Hill” type 
potential,12 is given in eq. (2.15).

(2.15)

A, B and C are here suitable constants. It is sometimes written in a slightly more con-
voluted form as shown in eq. (2.16).

(2.16)

Here R0 and e have been defined in eq. (2.13), and a is a free parameter. Choosing 
an a value of 12 gives a long-range behaviour identical to the Lennard-Jones poten-
tial, while a value of 13.772 reproduces the Lennard-Jones force constant at the equi-
librium distance. The a parameter may also be taken as a fitting constant. The
Buckingham potential has a problem for short interatomic distances where it “turns
over”. As R goes toward zero, the exponential becomes a constant while the R−6 term
goes toward −∞. Minimizing the energy of a structure that accidentally has a very short
distance between two atoms will thus result in nuclear fusion! Special precautions
therefore have to be taken for avoiding this when using Buckingham-type potentials.

A third functional form, which has an exponential dependence and the correct
general shape, is the Morse potential, eq. (2.5). It does not have the R−6 dependence
at long range, but as mentioned above, in reality there are also R−8, R−10, etc., terms.
The D and a parameters of a Morse function describing Evdw will of course be much
smaller than for Estr, and R0 will be longer.

For small systems, where accurate interaction energy profiles are available, it has
been shown that the Morse function actually gives a slightly better description than a
Buckingham potential, which again performs significantly better than a Lennard-Jones
12-6 potential.13 This is illustrated for the H2—He interaction in Figure 2.10, where the
Buckingham and Morse parameters have been derived from the minimum energy and
–distance (e and R0) and by matching the force constant at the minimum.

The main difference between the three functions is in the repulsive part at short dis-
tances, the Lennard-Jones potential is much too hard, and the Buckingham also tends
to overestimate the repulsion. Furthermore, it has the problem of “inverting” at short
distances. For chemical purposes, however, these “problems” are irrelevant, since ener-
gies in excess of 400kJ/mol are sufficient to break most bonds and will never be
encountered in actual calculations. The behaviour in the attractive part of the poten-
tial, which is essential for intermolecular interactions, is very similar for the three 
functions, as shown in Figure 2.11.

Part of the better description for the Morse and Buckingham potentials is due to
the fact that they have three parameters, while the Lennard-Jones only employs two.
Since the equilibrium distance and the well depth fix two constants, there is no 
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Figure 2.10 Comparison of Evdw functionals for the H2—He potential
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Figure 2.11 Comparison of Evdw functionals for the attractive part of the H2—He potential



additional flexibility in the Lennard-Jones function to fit the form of the repulsive
interaction.

Most force fields employ the Lennard-Jones potential, despite the known inferior-
ity to an exponential-type function. Let us examine the reason for this in a little more
detail.

Essentially all force field calculations use atomic Cartesian coordinates as the vari-
ables in the energy expression. To obtain the distance between two atoms one needs
to calculate the quantity shown in eq. (2.17).

(2.17)

In the exponential-type potentials, the distance is multiplied by a constant and used as
the argument for the exponential. Computationally, it takes significantly more time
(typical factor of ~5) to perform mathematical operations such as taking the square
root and calculating exponential functions than to do simple multiplication and addi-
tion. The Lennard-Jones potential has the advantage that the distance itself is not
needed, only R raised to even powers. Using square roots and exponential functions is
thus avoided. The power of 12 in the repulsive part is chosen as it is simply the square
of the power of 6 in the attractive part. Calculating Evdw for an exponential-type poten-
tial is computationally more demanding than for the Lennard-Jones potential. For
large molecules, the calculation of the non-bonded energy in the force field energy
expression is by far the most time-consuming, as will be demonstrated in Section 2.5.
The difference between the above functional forms is in the repulsive part of Evdw,
which is usually not very important. In actual calculations, the Lennard-Jones poten-
tial gives results comparable with the more accurate functions, and it is computation-
ally more efficient.

The van der Waals distance, R0
AB, and softness parameters, eAB, depend on both atom

types A and B. These parameters are in all force fields written in terms of parameters
for the individual atom types. There are several ways of combining atomic parameters
to di-atomic parameters, some of them being quite complicated.11 A commonly used
method is to take the van der Waals minimum distance as the sum of two van der Waals
radii, and the interaction parameter as the geometrical mean of the atomic “softness”
constants.

(2.18)

In some force fields, especially those using the Lennard-Jones form in eq. (2.12), the
R0

AB parameter is defined as the geometrical mean of atomic radii, implicitly via the
geometrical mean rule used for the C1 and C2 constants.

For each atom type there are two parameters to be determined, the van der Waals
radius and atomic softness, R0

A and eA. It should be noted that since the van der Waals
energy is calculated between pairs of atoms, but parameterized against experimental
data, the derived parameters represent an effective pair potential, which at least partly
includes many-body contributions.

The van der Waals energy is the interaction between the electron clouds surround-
ing the nuclei. In the above treatment, the atoms are assumed to be spherical, but there
are two instances where this may not be a good approximation. The first is when one
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AB A B
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(or both) of the atoms is hydrogen. Hydrogen has only one electron, which always is
involved in bonding to the neighbour atom. For this reason the electron distribution
around the hydrogen nucleus is not spherical; rather the electron distribution is dis-
placed towards the other atom. One way of modelling this anisotropy is to displace the
position, which is used in calculating Evdw, inwards along the bond. MM2 and MM3 use
this approach with a scale factor of ~0.92, i.e. the distance used in calculating Evdw is
between points located 0.92 times the X—H bond distance, as shown in Figure 2.12.
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Figure 2.12 Illustration of the distance reduction that can be used for Evdw involving hydrogens

The electron density around the hydrogen will also depend significantly on the
nature of the X atom. For example, electronegative atoms such as oxygen or nitrogen
will lead to smaller effective van der Waals radius for the hydrogen than when it is
bonded to carbon. Many force fields therefore have several different types of hydro-
gen, depending on whether they are bonded to carbon, nitrogen, oxygen, etc., and this
may depend further on the type of the neighbour (e.g. alcohol or acid oxygen) – see
Table 2.1.

The other case where the spherical approximation may be less than optimal is for
atoms having lone pairs, such as oxygen and nitrogen.The lone pair electrons are more
diffuse than the electrons involved in bonding, and the atom is thus “larger” in the lone
pair direction. Some force fields choose to model lone pairs by assigning pseudo-atoms
at the lone pair positions. Pseudo-atoms (type 20 in Table 2.1) behave as any other
atom type with bond distances and angles, and have their own van der Waals param-
eters. They are significantly smaller than normal hydrogen atoms, and thus make the
oxygen or nitrogen atom “bulge” in the lone pair direction. In some cases, sulfur is also
assigned lone pairs, although it has been argued that the second row atoms are more
spherical owing to the increased number of electrons, and therefore should not need
lone pairs.

It is unclear whether it is necessary to include these effects to achieve good models.
The effects are small, and it may be that the error introduced by assuming spherical
atoms can be absorbed in the other parameters. Introducing lone pair pseudo-atoms,
and making special treatment for hydrogens, again make the time-consuming part of
the calculation, the non-bonded energy, even more demanding. Most force fields thus
neglect these effects.

Hydrogen bonds require special attention. Such bonds are formed between hydro-
gens attached to electronegative atoms such as oxygen and nitrogen, and lone pairs,
especially on oxygen and nitrogen.They have bond strengths of typically 10–20kJ/mol,
where normal single bonds are 250–450kJ/mol and van der Waals interactions are
0.5–1.0kJ/mol. The main part of the hydrogen bond energy comes from electrostatic
attraction between the positively charged hydrogen and negatively charged 



heteroatom (see Section 2.2.6). Additional stabilization may be modelled by assigning
special deep and short van der Waals interactions (via large e and small R0 param-
eters). This does not mean that the van der Waals radius for a hydrogen bonded to an
oxygen is especially short, since this would affect all van der Waals interactions involv-
ing this atom type. Only those pairs of interactions that are capable of forming hydro-
gen bonds are identified (by their atoms types) and the normal Evdw parameters are
replaced by special “hydrogen bonding” parameters. The functional form of Evdw may
also be different. One commonly used function is a modified Lennard-Jones potential
of the form shown in eq. (2.19).

(2.19)

In some cases EH-bond also includes a directional term such as (1 − cos wXHY) or 
(cos wXHY)4 multiplied with the distance-dependent part in eq. (2.19).The current trend
seems to be that force fields are moving away from such specialized parameters and/or
functional forms, and instead are accounting for hydrogen bonding purely by electro-
static interactions.

2.2.6 The electrostatic energy: charges and dipoles

The other part of the non-bonded interaction is due to internal (re)distribution of 
the electrons, creating positive and negative parts of the molecule. A carbonyl 
group, for example, has a negatively charged oxygen and a positively charged carbon.
At the lowest approximation, this can be modelled by assigning (partial) charges to
each atom. Alternatively, the bond may be assigned a bond dipole moment. These 
two descriptions give similar (but not identical) results. Only in the long distance 
limit of interaction between such molecules do the two descriptions give identical
results.

The interaction between point charges is given by the Coulomb potential, with e
being a dielectric constant.

(2.20)

The atomic charges can be assigned by empirical rules,14 but are more commonly
assigned by fitting to the electrostatic potential calculated by electronic structure
methods, as discussed in the next section. Since hydrogen bonding is to a large extent
due to attraction between the electron-deficient hydrogen and an electronegative atom
such as oxygen or nitrogen, a proper choice of partial charges may adequately model
this interaction.

The MM2 and MM3 force fields use a bond dipole description for Eel. The interac-
tion between two dipoles is given by eq. (2.21).

(2.21)

The angles c, aA and aB are defined as shown in Figure 2.13.
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When properly parameterized, there is little difference in the performance of the
two ways of representing Eel. There are exceptions where two strong bond dipoles are
immediate neighbours (for example a-halogen ketones). The dipole model will here
lead to a stabilizing electrostatic interaction for a transoid configuration (torsional
angle of 180°), while the atomic charge model will be purely repulsive for all torsional
angles (since all 1,3-interactions are neglected). In either case, however, a proper rota-
tional profile may be obtained by suitable choices of the constants in Etors. The atomic
charge model is easier to parameterize by fitting to an electronic wave function, and
is preferred by almost all force fields.

The “effective” dielectric constant e can be included to model the effect of sur-
rounding molecules (solvent) and the fact that interactions between distant sites may
be “through” part of the same molecule, i.e. a polarization effect. A value of 1 for e
corresponds to a vacuum, while a large e reduces the importance of long-range
charge–charge interactions. Typically, a value between 1 and 4 is used, although there
is little theoretical justification for any specific value. In some applications the dielec-
tric constant is made distance dependent (e.g. e = e0RAB, changing the Coulomb inter-
action to QAQB/e0(RAB)2) to model the “screening” by solvent molecules. There is little
theoretical justification for this, but it increases the efficiency of the calculation as a
square root operation is avoided (discussed in Section 2.2.5), and it seems to provide
reasonable results.

How far apart (in terms of number of bonds between them) should two atoms be
before a non-bonded energy term contributes to EFF? It is clear that two atoms directly
bonded should not have an Evdw or Eel term – their interaction is described by Estr. It
is also clear that the interaction between two hydrogens at each end of say
CH3(CH2)50CH3 is identical to the interaction between two hydrogens belonging to two
different molecules, and they therefore should have an Evdw and an Eel term. But where
should the dividing line be? Most force fields included Evdw and Eel for atom pairs that
are separated by three bonds or more, although 1,4-interactions are in many cases
scaled down by a factor between 1 and 2. This means that the rotational profile for 
an A—B—C—D sequence is determined both by Etors and Evdw and Eel terms for the
A—D pair. In a sense, Etors may be considered as a correction necessary for obtaining
the correct rotational profile once the non-bonded contribution has been accounted
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for. Some force fields have chosen also to include Evdw for atoms that are 1,3 with
respect to each other – these are called Urey–Bradley force fields. In this case, the
energy required to bend a three atom sequence is a mixture of Ebend and Evdw. Most
modern force fields calculate Estr between all atoms pairs that are 1,2 with respect to
each other in terms of bonding, Ebend for all pairs that are 1,3, Etors between all pairs
that are 1,4, and Evdw and Eel between all pairs that are 1,4 or higher.

For polar molecules, the electrostatic energy dominates the force field energy func-
tion, and an accurate representation is therefore important for obtaining good results.
Within the partial charge model, the atomic charges are normally assigned by fitting
to the molecular electrostatic potential (MEP) calculated by an electronic structure
method. The electrostatic potential fesp at a point r is given by the nuclear charges and
electronic wave function as shown in eq. (2.22).

(2.22)

The fitting is done by minimizing an error function of the form shown in eq.
(2.23), under the constraint that the sum of the partial charges Qi is equal to the total
molecular charge. The electrostatic potential is sampled at a few thousand points in
the near vicinity of the molecule.

(2.23)

The set of linear equations arising from minimizing the error function are often poorly
conditioned, i.e. the calculated partial charges are sensitive to small details in the fitting
data.15 The physical reason for this is that the electrostatic potential is primarily deter-
mined by the atoms near the surface of the molecule, while the atoms buried within
the molecule have very little influence on the external electrostatic potential. A
straightforward fitting therefore often results in unrealistically large charges for the
non-surface atoms. The problem can to some extend be avoided by adding a hyper-
bolic penalty term for having non-zero partial charges, since this ensures that only
those charges that are important for the electrostatic potential have values significantly
different from zero.16 This Restrained ElectroStatic Potential (RESP) fitting scheme has
been used in for example the AMBER force field. Other constraints are also often
imposed, such as constraining the charges on the three hydrogens in a methyl group
to be equal, or the sum of all charges in a subgroups (such as a methyl group or an
amino acid) to be zero.

The non-bonded energies are modelled by pair-interactions, but if the parameters
are obtained by fitting to experimental data, they will include the average part of many-
body effects. For the electrostatic energy, the three-body effect may be considered as
the interaction between two atomic charges being modified because a third atom or
molecule polarizes the charges. The dipole moment of water, for example, increases
from 1.8 debye in the gas phase to an effective value of 2.5 debye in the solid state.17

Even when the partial charges are obtained by fitting to electronic structure data, the
average many-body effect is often approximately accounted for by increasing the fitted
charges by 10–15%, or by fitting to data that are known to overestimate the polarity
(e.g. Hartree–Fock results).
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2.2.7 The electrostatic energy: multipoles and polarizabilities

Obtaining a good description of the electrostatic interaction between molecules (or
between different parts of the same molecule) is one of the big problems in force field
work. Many commercial applications of force field methods are aimed at designing
molecules that interact in a specific fashion. Such interactions are usually pure non-
bonded, and for polar molecules such as proteins, the electrostatic interaction is very
important.

The modelling of the electrostatic energy by (fixed) atomic charges has four main
deficiencies:

(1) The fitting of atomic charges to electrostatic potentials focuses on reproducing
intermolecular interactions, but the electrostatic energy also plays a strong role in
the intramolecular energy, which determines conformational energies. For polar
molecules the (relative) conformational energies are therefore often of signifi-
cantly lower accuracy than for non-polar systems.

(2) The partial charge model gives a rather crude representation of the electrostatic
potential surrounding a molecule, with errors often being in the 10–20kJ/mol
range. For a given (fixed) geometry, the molecular electrostatic potential can be
improved either by adding non-nuclear-centred partial charges, or by including
higher order (dipole, quadrupole, etc.) electric moments.

(3) The coupling of electric charges and higher order moments with the geometry is
neglected. Analysis has shown that both partial charges and higher order electric
moments depend significantly on the geometry, i.e. these quantities do not fulfil
the requirement of “transferability”.

(4) Only two-body interactions are included, but for polar species the three-body con-
tribution is quite significant, perhaps 10–20% of the two-body term.18 A rigorous
modelling of these effects requires inclusion of atomic polarizabilities, but can be
partly included in the two-body interaction by empirically increasing the interac-
tion by 10–20%.

The non-bonded terms together with the torsional energy determine the internal (con-
formational) degrees of freedom, and the torsional parameters are usually obtained as
a residual correction to reproduce rotational barriers and energetic preferences after
the assignment of the non-bonded parameters. The electrostatic energy is unimportant
for non-polar systems such as hydrocarbons and is therefore often completely neg-
lected. The conformational space in such cases is consequently determined by Evdw and
Etors. Since the van der Waals interaction is short-ranged, this means that the transfer-
ability assumption inherent in force field methods is valid, and torsional parameters
determined for small model systems can also be used for predicting conformations for
large systems.

For polar systems, however, the long-range electrostatic interaction is often the
dominating energy term, and the transferability of torsional parameters determined
for small model systems becomes more problematic. Clearly the variation of the elec-
trostatic energy with the geometry must be accurately modelled in order for the tor-
sional parameters to be sufficiently transferable. The use of partial atomic charges
determined by fitting to the electrostatic potential is an integral part of most force
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fields, but only a few experimental force fields are at present capable of including
higher order electric moment and/or atomic polarizabilities.

The representation of the electrostatic potential for a fixed geometry can be sys-
tematically improved by including non-atom-centred charges19 or by including higher
order moments. The Distributed Multipole Analysis (DMA) developed by A. Stone
provides an exact method for expanding the electrostatic potential in terms of multi-
pole moments distributed at a number of positions within the molecule, and these
moments can be derived directly from the wave function without a fitting procedure
(see Section 9.2).20 By restricting the positions to only atoms and bond midpoints, an
accurate representation of the electrostatic potential can be obtained by including up
to quadrupole moments at each site. The DMA-derived multipoles are sensitive to the
reference data (i.e. wave function quality and basis set), and a better stability can be
obtained by fitting a set of multipoles to the electrostatic potential on a molecular
surface,21 by fitting multipoles to the DMA multipoles,22 or by fitting atomic charges
to match the atomic multipole moments.23 Such fitted multipole methods typically
reduce the required moments by one or two, i.e. fitted charges and dipoles can repro-
duce DMA results including up to quadrupoles or octopoles. Unfortunately, the 
addition of non-nuclear-centred charges or multipoles significantly increases the 
computational time for force field calculations as they add to the non-bonded terms,
the number of which grows as N 2

atom.
The coupling of the electrostatic energy with the geometry can be modelled by the

fluctuating charge model, where the charges are allowed to adjust to changes in the
geometry based on electronegativity equalization.24 Consider the following expansion
of the energy as a function of the number of electrons N.

(2.24)

The first derivative is the electronegativity c, except for a change in sign (∂E/∂N = −c),
while the second derivative is the hardness h. Although these have well-defined finite-
value approximations in terms of ionization potentials and electron affinities (Section
15.2), they are usually treated as empirical parameters within a force field environ-
ment. For an atom in a molecule, the change in the number of electrons is equal to
minus the change in the atomic charge (−∆N = ∆Q). Taking the expansion point as the
one with no atomic charges gives eq. (2.25).

(2.25)

Terminating the expansion at second order, adding a term corresponding to the inter-
action of the charges with an external potential f, and summing over all sites gives an
expression for the electrostatic energy.

(2.26)

Switching to a vector-matrix notation and requiring that the energy is stationary with
and without an external potential gives eq. (2.27).
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(2.27)

Subtraction of these two equations leads to a recipe for the charge transfer due to the
external potential.

(2.28)

Since the potential depends on the charges at all sites, this must be solved iteratively.

(2.29)

Once the iterations have converged, the electrostatic energy is given by the simple
Coulomb form in eq. (2.20).

The fluctuating charge model is a simple way of introducing a coupling between the
electrostatic energy and geometry, but it should only be considered as a first approxi-
mation, as it is unable to account for example for the charge polarization of a planar
molecule where the external field is perpendicular to the molecule plane. An explicit
incorporation of polarization can be done by including an atomic polarization tensor,25

and this also implicitly accounts for some of the geometry dependence of the atomic
charges. The polarization contribution to the electrostatic interaction is at the lowest
order given by a dipolar term (mind) arising from the electric field (F = ∂f/∂r) created
by the electric moments at other sites multiplied by the polarizability tensor (a).26

(2.30)

Note that since the (atomic) hardness is inversely related to the average polarizabil-
ity, the charge transfer in eq. (2.28) is essentially the average polarizability times the
potential. As each of the atoms contributes to the electric field at a given position (eq.
(2.29) with additional contributions from dipole moments), the set of atomic dipoles
must be solved self-consistently by iterative methods. For molecular dynamics simula-
tions, the change in the induced dipoles or charges with geometry can be treated by
an extended Lagrange method (Section 14.2.5), where fictive masses are assigned to
the dipoles or charges, and progressed along with the other variables in a simulation.24

When adding multipole and/or polarizability terms, a decision has to be made on
which interactions to include and which to neglect, and either the multipole order or
the distance dependence of the interaction can be used as a guiding criterion. The dis-
tance dependence on the interactions between multipoles is given in Table 2.2.
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Table 2.2 Distance dependence of multipole interactions

Q µ Θ Ξ

Q R−1 R−2 R−3 R−4

µ R−2 R−3 R−4 R−5

Θ R−3 R−4 R−5 R−6

Ξ R−4 R−5 R−6 R−7



If all interactions between multipoles up to quadrupoles are included, then only
some of the interactions having R−4 and R−5 distance dependencies are accounted 
for. Alternatively, if the distance dependence is taken as the deciding factor, then
quadrupoles are required for including all interaction of order R−3 or lower, but 
the dipole–quadrupole and quadrupole–quadrupole interactions should not be
included.

The polarizability in eq. (2.30) corresponds to an electric field inducing a 
dipole moment, but higher order polarizabilities giving induced quadrupole and 
octopole moments are also possible, although these will usually be significantly smaller.
It is at present unclear how many multipole moments, which interaction and level 
of polarizability should be included for a balanced description. The charge-induced
dipole interaction has a distance dependence of R−4, while the dipole-induced 
dipole interaction is R−6, suggesting that the former should be included when 
quadrupole moments are incorporated. There is also no clear picture of what kind of
improvement for the calculated results can be obtained by including these higher order
effects.

Incorporation of electric multipole moments, fluctuating charges and atomic polar-
izabilities significantly increases the number of fitting parameters for each atom type
or functional unit, and only electronic structure methods are capable of providing a
sufficient number of reference data. Electronic structure calculations, however, auto-
matically include all of the above effects, and also have higher order terms. The data
must therefore be “deconvoluted” in order to extract suitable multipole and polariza-
tion parameters for use in force fields.27 A calculated set of distributed dipole moments,
for example, must be decomposed into permanent and induced contributions, based
on an assigned polarizability tensor. Furthermore, only the lowest non-vanishing mul-
tipole moment is independent of the origin of the coordinate system, i.e. for a non-
centrosymmetric neutral molecule the dipole moment is unique, but the quadrupole
moment depends on where the origin is placed.

It should be noted that the transfer of polarization data from gas-phase calculations
to a condensed phase may lead to errors. The close spatial arrangement of the mole-
cules in a condensed phase will display quantum mechanical exchange phenomena,
which will reduce the effective polarization. The possibility of charge transfer between
molecules, however, can lead to an enhancement of the polarization relative to the gas-
phase result.28 It is therefore likely that polarizable force fields will need to be re-tuned
to reproduce experimental results, unless of course the quantum mechanical effects
are incorporated directly.

The addition of multipole moments increases the computational time for the elec-
trostatic energy, since there now are several components for each pair of sites, and for
multipoles up to quadrupoles the evaluation time increases by almost an order of mag-
nitude. If bond midpoints are added as multipole sites, the number of non-bonded
terms furthermore increases by a factor of ~4 over only using atomic sites. Inclusion
of polarization further increases the computational complexity by adding an iterative
procedure for evaluating the induced dipole moments, although recent advances have
reduced the computational overhead to only a factor of 2 over a fixed charge model.29

Advanced force fields with a description beyond fixed partial charges of the electro-
static energy have consequently only seen limited use so far. Nevertheless, the neglect
of multipole moments and polarization is probably the main limitation of modern force
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fields, at least for polar systems, and future improvements in force field techniques must
include such effects.

2.2.8 Cross terms

The first five terms in the general energy expression, eq. (2.1), are common to all force
fields. The last term, Ecross, covers coupling between these fundamental, or diagonal,
terms. Consider for example a molecule such as H2O. It has an equilibrium angle of
104.5° and an O—H distance of 0.958Å. If the angle is compressed to say 90°, and the
optimal bond length is determined by electronic structure calculations, the equilibrium
distance becomes 0.968Å, i.e. slightly longer. Similarly, if the angle is widened, the
lowest energy bond length becomes shorter than 0.958Å. This may qualitatively be
understood by noting that the hydrogens come closer together if the angle is reduced.
This leads to an increased repulsion between the hydrogens, which can be partly alle-
viated by making the bonds longer. If only the first five terms in the force field energy
are included, this coupling between bond distance and angle cannot be modelled. It
may be taken into account by including a term that depends on both bond length and
angle. Ecross may in general include a whole series of terms that couple two (or more)
of the bonded terms.

The components in Ecross are usually written as products of first-order Taylor expan-
sions in the individual coordinates. The most important of these is the stretch/bend
term, which for an A—B—C sequence may be written as in eq. (2.31).

(2.31)

Other examples of such cross terms are given in eq. (2.32).

(2.32)

The constants involved in these cross terms are usually not taken to depend on all the
atom types involved in the sequence. The stretch/bend constant, for example, in prin-
ciple depends on all three atoms, A, B and C. However, it is usually taken to depend
only on the central atom, i.e. kABC = kB, or chosen as a universal constant independent
of atom type. It should be noted that cross terms of the above type are inherently
unstable if the geometry is far from equilibrium. Stretching a bond to infinity, for
example, will make Estr/bend go toward −∞ if q is less than q0. If the bond stretch energy
itself is harmonic (or quartic) this is not a problem as it approaches +∞ faster. However,
if a Morse type potential is used, special precautions will have to be made to avoid
long bonds in geometry optimizations and simulations.

Another type of correction, which is related to cross terms, is modification of 
parameters based on atoms not directly involved in the interaction described by the
parameter. Carbon–carbon bond lengths, for example, become shorter if there are 
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electronegative atoms present at either end. Such electronegativity effects may be
modelled by adding a correction to the natural bond length R0

AB based on the atom C
attached to the A—B bond.30

(2.33)

Other effects, such as hyperconjugation, can be modelled by allowing the natural bond
length to depend on the adjacent torsional angle.31 The hyperconjugation effect can be
thought of as weakening of a s-bond by donation of electron density into an adjacent
empty p*-bond, as illustrated in Figure 2.14.

R R R0 0 0
AB C AB C− = + ∆
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Figure 2.14 Illustrating the elongation of the C—H bond by hyperconjugation

Since the conjugation can only take place when the s-orbital is aligned with the p-
system, the resulting bond elongation will depend on the torsional angle, which can be
modelled by an energy term such as in eq. (2.34).

(2.34)

2.2.9 Small rings and conjugated systems

It has already been mentioned that small rings present a problem as their equilibrium
angles are very different from their acyclic cousins. One way of alleviating this problem
is to assign new atom types. If a sufficient number of cross terms is included, however,
the necessary number of atom types can actually be reduced. Some force fields have
only one sp3-carbon atom type, covering bonding situations from cyclopropane to
linear alkanes with the same set of parameters. The necessary flexibility in the param-
eter space is here transferred from the atom types to the parameters in the cross terms,
i.e. the cross terms modify the diagonal terms such that a more realistic behaviour is
obtained for large deviations from the natural value.

One additional class of bonding that requires special consideration in force fields is
conjugated systems. Consider for example 1,3-butadiene. According to the MM2 type
convention (Table 2.1), all carbon atoms are of type 2. This means that the same set of
parameters is used for the terminal and central C—C bonds. Experimentally, the bond
lengths are 1.35 and 1.47Å, i.e. very different, which is due to the partial delocaliza-
tion of the p-electrons in the conjugated system.32 The outer C=C bond is slightly
reduced in double bond character (and thus has a slightly longer bond length than in
ethylene) while the central bond is roughly halfway between a single and a double
bond. Similarly, without special precautions, the barriers for rotation around the ter-
minal and central bonds are calculated to be the same, and assume a value characteri-
stic of a localized double bond, ~230kJ/mol. Experimentally, however, the rotational
barrier for the central bond is only ~25kJ/mol.33
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There are two main approaches for dealing with conjugated systems. One is to iden-
tify certain bonding combinations and use special parameters for these cases, analo-
gously to the treatment of hydrogen bonds in Evdw. If four type 2 carbons are located
in a linear sequence, for example, they constitute a butadiene unit and special stretch
and torsional parameters should be used for the central and terminal bonds. Similarly,
if six type 2 carbons are in a ring, they constitute an aromatic ring and a set of special
aromatic parameters are used. Or the atom type 2 may be changed to a type 50, iden-
tifying from the start that these carbons should be treated with a different parameter
set. The main problem with this approach is that there are many such “special” cases
requiring separate parameters. Three conjugated double bonds, for example, may
either be linearly or cross-conjugated (1,3,5-hexatriene and 2-vinyl-1,3-butadiene),
each requiring a set of special parameters different from those used for 1,3-butadiene.
The central bond in biphenyl will be different from the central bond in 1,3-butadiene.
Modelling the bond alterations in fused aromatics such as naphthalene or phenan-
threne requires complicated bookkeeping to keep track of all the different bond
lengths, etc.

The other approach, which is somewhat more general, is to perform a simple elec-
tronic structure calculation to determine the degree of delocalization within the p-
system. This approach is used in the MM2 and MM3 force fields, often denoted MMP2
and MMP3.34 The electronic structure calculation is of the Pariser–Pople–Parr (PPP)
type (Section 3.10.3), which is only slightly more advanced than a simple Hückel cal-
culation. From the calculated p-molecular orbitals, the p-bond order r for each bond
can be calculated. Since the bond length, force constant and rotational energy depend
on the p-bond order, these constant can be parameterized based on the calculated r.
The connections used in MMP2 are given in eq. (2.35), with ni being the number of
electrons in the ith MO and bBC being a resonance parameter.

(2.35)

The natural bond length varies between 1.503Å and 1.337Å for bond orders between
0 and 1 – these are the values for pure single and double bonds between two sp2-
carbons. Similarly, the force constant varies between the values used for isolated single
and double bonds. The rotational barrier for an isolated double bond is 250kJ/mol,
since there are four torsional contributions for a double bond.

This approach allows a general treatment of all conjugated system, but requires the
addition of a second level of iterations in a geometry optimization.At the initial geom-
etry, a PPP calculation is performed, the p-bond orders are calculated and suitable
bond parameters (R0

AB, kAB and V 2
ABCD) are assigned. These parameters are then used

for optimizing the geometry.The optimized geometry will usually differ from the initial
geometry, thus the parameters used in the optimization are no longer valid. At the
“optimized” geometry, a new PPP calculation is performed and a new set of 
parameters derived.The structure is re-optimized, and a new PPP calculation is carried
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out, etc. This is continued until the geometry change between two macro iterations is 
negligible.

For commonly encountered conjugated systems such as butadiene and benzene, the
ad hoc assignment of new parameters is usually preferred as it is simpler than the com-
putationally more demanding PPP method. For less common conjugated systems, the
PPP approach is more elegant and has the definite advantage that the common user
does not need to worry about assigning new parameters. If the system of interest con-
tains conjugation, and a force field that uses the parameter replacement method is
chosen, the user should check that proper bond lengths and reasonable rotational bar-
riers are calculated (i.e. that the force field has identified the conjugated moiety and
contains suitable substitution parameters). Otherwise, very misleading results may be
obtained without any indication from the force field of problems.

2.2.10 Comparing energies of structurally different molecules

The force field energy function has a zero point defined implicitly by the zero points
chosen for each of the terms. For the three bonding terms, stretch, bend and torsion,
this is at the bottom of the energy curve (natural bond lengths and angles), while for
the two non-bonded terms, it is at infinite separation. The zero point for the total force
field energy is therefore a hypothetical system, where all the bond distances, angles
and torsional angles are at their equilibrium values, and at the same time, all the non-
bonded atoms are infinitely removed from each other. Except for small systems such
as CH4, where there are no non-bonded terms, this is a physically unattainable situa-
tion. The force field energy, EFF, is often called the steric energy, as it is in some sense
the excess energy relative to a hypothetical molecule with non-interacting fragments,
but the numerical value of the force field function has no physical meaning!

Relative values, however, should ideally reflect conformational energies. If all atom
and bond types are the same, as in cyclohexane and methyl-cyclopentane, the energy
functions have the same zero point, and relative stabilities can be directly compared.
This is a rather special situation, however, and stabilities of different molecules can
normally not be calculated by force field techniques. For comparing relative stabilities
of chemically different molecules such as dimethyl ether and ethyl alcohol, or for com-
paring with experimental heat of formations, the zero point of the energy scale must
be the same.

In electronic structure calculations, the zero point for the energy function has all
particles (electrons and nuclei) infinitely removed from each other, and this common
reference state allows energies for systems with different numbers of particles to be
directly compared. If the same reference is used in force field methods, the energy func-
tion becomes an absolute measure of molecular stability. The difference relative to the
normal reference state for force field functions is the sum of all bond dissociation ener-
gies, at least for a simple diagonal force field. If correction terms are added to the
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Figure 2.15 Illustration of the two-level optimization involved in a MMP2 calculation



normal force field energy function based on average bond dissociation energies for
each bond type, the energy scale become absolute, and can be directly compared with
e.g. ∆Hf. Such bond dissociation energies again rest on the assumption of transferabil-
ity, for example that all C—H bonds have dissociation energies close to 400kJ/mol. In
reality, the bond dissociation energy for a C—H bond depends on the environment:
the value for the aldehyde C—H bond in CH3CHO is 366kJ/mol while it is 410kJ/mol
for C2H6.35 This can be accounted for approximately by assigning an average bond dis-
sociation energy to a C—H bond, and a smaller correction based on larger structural
units, such as CH3 and CHO groups. The MM2 and MM3 force fields use an approach
where such bond dissociation energies and structural factors are assigned based on
fitting to experimental data, and this approach is quite successful for reproducing
experimental ∆Hf values.

(2.36)

These heat of formation parameters may be considered as shifting the zero point of
EFF to a common origin. Since corrections from larger moieties are small, it follows
that energy differences between systems having the same groups (for example methyl-
cyclohexane and ethyl-cyclopentane) can be calculated directly from differences in
steric energy.

If the heat of formation parameters are derived based on fitting to a large variety
of compounds, a specific set of parameters is obtained.A slightly different set of param-
eters may be obtained if only certain “strainless” molecules are included in the para-
meterization. Typically molecules such as straight-chain alkanes and cyclohexane are
defined to be strainless. By using these strainless heat of formation parameters, a strain
energy may be calculated as illustrated in Figure 2.16.
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Figure 2.16 Illustrating the difference between steric energy and heat of formation

Deriving such heat of formation parameters requires a large body of experimental
∆Hf values, and for many classes of compounds there are not sufficient data available.
Only a few force fields, notably MM2 and MM3, also attempt to parameterize heats of
formation. Most force fields are only concerned with reproducing geometries and pos-
sibly conformational relative energies, for which the steric energy is sufficient.

2.3 Force Field Parameterization
Having settled on the functional description and a suitable number of cross terms, the
problem of assigning numerical values to the parameters arises. This is by no means
trivial.36 Consider for example MM2(91) with 71 atom types. Not all of these can form



stable bonds with each other, hydrogens and halogens can only have one bond, etc.
For the sake of argument, however, assume that the effective number of atom types
capable of forming bonds between each other is 30.

• Each of the 71 atom types has two van der Waals parameters, R0
A and eA, giving 142

parameters.
• There are approximately 1/2 × 30 × 30 = 450 possible different Estr terms, each requir-

ing at least two parameters, kAB and R0
AB, for a total of at least 900 parameters.

• There are approximately 1/2 × 30 × 30 × 30 = 13500 possible different Ebend terms,
each requiring at least two parameters, kABC and q 0

ABC, for a total of at least 27000
parameters.

• There are approximately 1/2 × 30 × 30 × 30 × 30 = 405000 possible different Etors

terms, each requiring at least three parameters, V1
ABCD, V 2

ABCD and V 3
ABCD, for a total

of at least 1215000 parameters.
• Cross terms may add another million possible parameters.

To achieve just a rudimentary assignment of the value of one parameter, at least 3–4
independent data should be available. To parameterize MM2 for all molecules
described by the 71 atom types would thus require of the order of 107 independent
experimental data, not counting cross terms, which clearly is impossible. Furthermore,
the parameters that are the most numerous, the torsional constants, are also the ones
that are the hardest to obtain experimental data for. Experimental techniques nor-
mally probe a molecule near its equilibrium geometry. Getting energetical information
about the whole rotational profile is very demanding and has only been done for a
handful of small molecules. In recent years, it has therefore become common to rely
on data from electronic structure calculations to derive force field parameters. Calcu-
lating for example rotational energy profiles is computationally fairly easy. The so-
called “Class II” and “Class III” force fields rely heavily on data from electronic
structure calculations to derive force field parameters, especially the bonded param-
eters (stretch, bend and torsional).

While the non-bonded terms are relatively unimportant for the “local” structure,
they are the only contributors to intermolecular interactions, and the major factor in
determining the global structure of a large molecule, such as protein folding. The elec-
trostatic part of the interaction may be assigned based on fitting parameters to the
electrostatic potential derived from an electronic wave function, as discussed in Section
2.2.6. The van der Waals interaction, however, is difficult to calculate reliably by elec-
tronic structure methods, requiring a combination of electron correlation and very
large basis sets, and these parameters are therefore usually assigned based on fitting
to experimental data for either the solid or liquid state.37

For a system containing only a single atom type (e.g. liquid argon), the R0 (atomic
size) and e (interaction strength) parameters can be determined by requiring that the
experimental density and heat of evaporation are reproduced, respectively. Since the
parameterization implicitly takes many-body effects into account, a (slightly) different
set of van der Waals parameters will be obtained if the parameterization instead
focuses on reproducing the properties of the crystal phase. For systems where several
atom types are involved (e.g. water), there are two van der Waals parameters for each
atom type, and the experimental density and heat of evaporation alone therefore give
insufficient data for a unique assignment of all parameters. Although one may include
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additional experimental data, for example the variation of the density with tempera-
ture, this still provides insufficient data for a general system containing many atom
types. Furthermore, it is possible that several combinations of van der Waals param-
eters for different atoms may be able to reproduce properties of a liquid, i.e. even if
there are sufficient experimental data, the derived parameter set may not be unique.
One approach for solving this problem is to use electronic structure methods to deter-
mine relative values for van der Waals parameters, for example using a neon atom as
the probe, and determine the absolute values by fitting to experimental values.38

An alternative procedure is to derive the van der Waals parameters from other phys-
ical (atomic) properties. The interaction strength eij between two atoms is related to
the polarizabilities ai and aj, i.e. the ease with which the electron densities can be dis-
torted by an electric field. The Slater–Kirkwood equation39 (2.37) provides an explicit
relationship between these quantities, which has been found to give good results for
the interaction of rare gas atoms.

(2.37)

Here C is a constant for converting between the units of e and a, and Ni
eff is the effec-

tive number of electrons, which may be taken either as the number of valence elec-
trons or treated as a fitting parameter. The R0 parameter may similarly be taken from
atomic quantities. One problem with this procedure is that the atomic polarizability
will of course be modified by the bonding situation (i.e. the atom type), which is not
taken into account by the Slater–Kirkwood equation.

The above considerations illustrate the inherent contradiction in designing highly
accurate force fields.To get a high accuracy for a wide variety of molecules, and a range
of properties, many functional complex terms must be included in the force field
expression. For each additional parameter introduced in an energy term, the potential
number of new parameters to be derived grows with the number of atom types to a
power between 1 and 4. The higher accuracy that is needed, the more finely the fun-
damental units must be separated, i.e. the more atom types must be used. In the
extreme limit, each atom that is not symmetry related, in each new molecule is a new
atom type. In this limit, each molecule will have its own set of parameters to be used
just for this one molecule. To derive these parameters, the molecule must be subjected
to many different experiments, or a large number of electronic structure calculations.
This is the approach used in “inverting” spectroscopic data to produce a potential
energy surface. From a force field point of view, the resulting function is essentially
worthless, it just reproduces known results. In order to be useful, a force field should
be able to predict unknown properties of molecules from known data on other 
molecules, i.e. a sophisticated form for inter- or extrapolation. If the force field 
becomes very complicated, the amount of work required to derive the parameters may
be larger than the work required for measuring the property of interest for a given
molecule.

The fundamental assumption of force fields is that structural units are transferable
between different molecules. A compromise between accuracy and generality must
thus be made. In MM2(91) the actual number of parameters compared with the 
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theoretical estimated possible (based on the 30 effective atom types above) is shown
in Table 2.3.

As seen from Table 2.3, there are a large number of possible compounds for which
there are no parameters, and on which it is then impossible to perform force field cal-
culations (a good listing of available force field parameters is Osawa and Lipkowitz40).
Actually, the situation is not as bad as it would appear from Table 2.3. Although only
~0.2% of the possible combinations for the torsional constants has been parameter-
ized, these encompass the majority of the chemically interesting compounds. It has
been estimated that ~20% of the ~15 million known compounds can be modelled by
the parameters in MM2, the majority with a good accuracy. However, the problem of
lacking parameters is very real, and anyone who has used a force field for all but the
most rudimentary problems has encountered the problem. How does one progress if
there are insufficient parameters for the molecule of interest?

There are two possible routes. The first is to estimate the missing parameters by 
comparison with force field parameters for similar systems. If, for example, there are
missing torsional parameters for rotation around a H—X—Y—O bond in your mole-
cule, but parameters exist for H—X—Y—C, then it is probably a good approximation
to use the same values. In other cases, it may be less obvious what to choose. What if
your system has an O—X—Y—O torsion, and parameters exist for O—X—Y—C and
C—X—Y—O, but they are very different? What do you choose then, one or the other,
or the average? After a choice has been made, the results should ideally be evaluated
to determine how sensitive they are to the exact value of the guessed parameters. If
the guessed parameters can be varied by ±50% without seriously affecting the final
results, the property of interest is insensitive to the guessed parameters, and can be
trusted to the usual degree of the force field. If, on the other hand, the final results vary
by a factor of two when the guessed parameters are changed by 10%, a better esti-
mate of the critical parameters should be sought from external sources. If many param-
eters are missing from the force field, such an evaluation of the sensitivity to parameter
changes becomes impractical, and one should consider either the second route
described below, or abandon force field methods altogether.

The second route to missing parameters is to use external information, experimen-
tal data or electronic structure calculations. If the missing parameters are bond length
and force constant for a specific bond type, it is possible that an experimental bond
distance may be obtained from an X-ray structure and the force constant estimated
from measured vibrational frequencies, or missing torsional parameters may be
obtained from a rotational energy profile calculated by electronic structure calcula-
tions. If many parameters are missing, this approach rapidly becomes very time-
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Table 2.3 Comparison of possible and actual number of MM2(91) parameters

Term Estimated number of parameters Actual number of parameters

Evdw 142 142
Estr 900 290
Ebend 27000 824
Etors 1215000 2466



consuming, and may not give as good final results as you may have expected from the
“rigorous” way of deriving the parameters. The reason for this is discussed below.

Assume now that the functional form of the force field has been settled. The next
task is to select a set of reference data – for the sake of argument let us assume 
that they are derived from experiments, but they could also be taken from electronic
structure calculations. The problem is then to assign numerical values to all the 
parameters such that the results from force field calculations match the reference data
set as close as possible. The reference data may be of very different types and accu-
racy, containing bond distances, bond angles, relative energies, vibrational frequencies,
dipole moments, etc. These data of course have different units, and a decision must be
made how they should be weighted. How much weight should be put on reproducing
a bond length of 1.532Å relative to an energy difference of 10kJ/mol? Should the same
weight be used for all bond distances, if for example one distance is determined 
to 1.532 ± 0.001Å while another is known only to 1.73 ± 0.07Å? The selection is 
further complicated by the fact that different experimental methods may give slightly
different answers for say the bond distance, even in the limit of no experimental uncer-
tainty. The reason for this is that different experimental methods do not measure 
the same property. X-ray diffraction, for example, determines the electron distribu-
tion, while microwave spectroscopy primarily depends on the nuclear position.
The maximum in the electronic distribution may not be exactly identical to the 
nuclear position, and these two techniques will therefore give slightly different bond
lengths.

Once the question of assigning weights for each reference data has been decided,
the fitting process can begin. It may be formulated in terms of an error function.41

(2.38)

The problem is to find the minimum of ErrF with the parameters as variables. From
an initial set of guess parameters, force field calculations are performed for the whole
set of reference molecules and the results compared with the reference data. The devi-
ation is calculated and a new improved set of parameters can be derived. This is con-
tinued until a minimum has been found for the ErrF function. To find the best set 
of force field parameters corresponds to finding the global minimum for the multi-
dimensional ErrF function. The simplest optimization procedure performs a cyclic 
minimization, reducing the ErrF value by varying one parameter at a time. More
advanced methods rely on the ability to calculate the gradient (and possibly also the
second derivative) of the ErrF with respect to the parameters. Such information may
be used in connection with optimization procedure as described in Chapter 12.

The parameterization process may be done sequentially or in a combined fashion.
In the sequential method, a certain class of compounds, such as hydrocarbons, is para-
meterized first. These parameters are held fixed, and a new class of compounds, for
example alcohols and ethers, are then parameterized. This method is in line with the
basic assumption of force field, i.e. that parameters are transferable. The advantage is
that only a fairly small number of parameters is fitted at a time. The ErrF is therefore
a relatively low dimensional function, and one can be reasonably certain that a “good”
minimum has been found (although it may not be the global minimum). The 
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disadvantage is that the final set of parameters necessarily provides a poorer fit (as
defined from the value of the ErrF) than if all the parameters are fitted simultaneous.

The combined approach tries to fit all the constants in a single parameterization step.
Considering that the number of force field parameters may be many thousands, it is
clear that the ErrF function will have a very large number of local minima. To find the
global minimum of such a multivariable function is very difficult. It is thus likely that
the final set of force field parameters derived by this procedure will in some sense be
less than optimal, although it may still be “better” than that derived by the sequential
procedure. Furthermore, many of the parameter sets that give low ErrF values (includ-
ing the global minimum) may be “non-physical”, e.g. force constants for similar bonds
being very different. Due to the large dimensionality of the problem, such combined
optimizations require the ability to calculate the gradient of the ErrF with respect to
the parameters, and writing such programs is not trivial. There is also a more funda-
mental problem when new classes of compounds are introduced at a later time than
the original parameterization. To be consistent, the whole set of parameters should be
re-optimized. This has the consequence that (all) parameters change when a new class
of compounds is introduced, or whenever more data are included in the reference set.
Such “time-dependent” force fields are clearly not desirable. Most parameterization
procedures therefore employ a sequential technique, although the number of com-
pound types parameterized in each step varies.

There is one additional point to be mentioned in the parameterization process 
that is also important for understanding why the addition of missing parameters by
comparison with existing data or from external sources is somewhat problematic.
This is the question of redundant variables, as can be exemplified by considering
acetaldehyde.
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Figure 2.17 The structure of acetaldehyde

In the energy bend expression there will be four angle terms describing the geom-
etry around the carbonyl carbon, an HCC, an HCO, a CCO, and an out-of-plane bend.
Assuming the latter to be zero for the moment, it is clear that the other three angles
are not independent. If the qHCO and qCCO angle are given, the qHCC angle must be 360°
− qHCO − qCCO. Nevertheless, there will be three natural angle parameters, and three
force constants associated with these angles. For the whole molecule there are six
stretch terms, nine bending terms and six torsional terms (count them!) in addition to
at least one out-of-plane term. This means that the force field energy expression has
22 degrees of freedom, in contrast to the 15 (3Natom − 6) independent coordinates 
necessary to completely specify the system. The force field parameters, as defined by
the EFF expression, are therefore not independent.

The implicit assumption in force field parameterization is that, given sufficient
amounts of data, this redundancy will cancel out. In the above case, additional data 
for other aldehydes and ketones may be used (at least partly) for removing this 



ambiguity in assigning angle bend parameters, but in general there are more force field
parameters than required for describing the system. This clearly illustrates that force
field parameters are just that, parameters. They do not necessarily have any direct con-
nection with experimental force constants. Experimental vibrational frequencies can
be related to a unique set of force constants, but only in the context of a non-
redundant set of coordinates.

It is also clear that errors in the force field due to inadequacies in the functional
forms used for each of the energy terms will to some extent be absorbed by the param-
eter redundancy. Adding new parameters from external sources, or estimating missing
parameters by comparison with those for “similar” fragments, may partly destroy this
cancellation of errors. This is also the reason why parameters are not transferable
between different force fields, the parameter values are dependent on the functional
form of the energy terms, and are mutually correlated. The energy profile for rotating
around a bond, for example, contains contributions from the electrostatic, the van der
Waals and the torsional energy terms. The torsional parameters are therefore inti-
mately related to the atomic partial charges, and cannot be transferred to another force
field.

The parameter redundancy is also the reason that care should be exercised when
trying to decompose energy differences into individual terms. Although it may be pos-
sible to rationalize the preference of one conformation over another by for example
increased steric repulsion between certain atom pairs, this is intimately related to the
chosen functional form for the non-bonded energy, and the balance between this and
the angle bend/torsional terms. The rotational barrier in ethane, for example, may be
reproduced solely by an HCCH torsional energy term, solely by an H—H van der
Waals repulsion or solely by H—H electrostatic repulsion. Different force fields will
have (slightly) different balances of these terms, and while one force field may con-
tribute a conformational difference primarily to steric interactions, another may have
the major determining factor to be the torsional energy, and a third may “reveal” that
it is all due to electrostatic interactions.

2.3.1 Parameter reductions in force fields

The overwhelming problem in developing force fields is the lack of enough high quality
reference data. As illustrated above, there are literally millions of possible parameters
in even quite simple force fields. The most numerous of these are the torsional param-
eters, followed by the bending constants. As force fields are designed for predicting
properties of unknown molecules, it is inevitable that the problem of lacking parame-
ters will be encountered frequently. Furthermore, many of the existing parameters may
be based on very few reference data, and therefore be associated with substantial
uncertainty.

Many modern force field programs are commercial. Having the program tell the user
that his or her favourite molecule cannot be calculated owing to lack of parameters is
not good for business. Making the user derive new parameters, and getting the program
to accept them, may require more knowledge than the average user, who is just inter-
ested in the answer, has. Many force fields thus have “generic” parameters. This is just
a fancy word for the program making more or less educated guesses for the missing
parameters.
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One way of reducing the number of parameters is to reduce the dependence on atom
types. Torsional parameters, for example, can be taken to depend only on the types of
the two central atoms. All C—C single bonds would then have the same set of tor-
sional parameters. This does not mean that the rotational barrier for all C—C bonds
is identical, since van der Waals and/or electrostatic terms also contribute. Such a
reduction replaces all tetra-atomic parameters with diatomic constants, i.e. VABCD →
VBC. Similarly, the triatomic bending parameters may be reduced to atomic constants
by assuming that the bending parameters only depend on the central atom type (kABC

→ kB, q 0
ABC → q 0

B). Generic constants are often taken from such reduced parameter
sets. In the case of missing torsional parameters, they may also simply be omitted, i.e.
setting the constants to zero.A good force field program informs the user of the quality
of the parameters used in the calculation, especially if such generic parameters are
used, and this is useful for evaluating the quality of the results. Some programs unfor-
tunately use the necessary number of generic parameters to carry out the calculations
without notifying the user. In extreme cases, one may perform calculations on mole-
cules for which essentially no “good” parameters exist, and get totally useless results.
The ability to perform a calculation is no guarantee that the results can be trusted!

The quality of force field parameters is essential for judging how much faith can be
put in the results. If the molecule at hand only uses parameters that are based on many
good quality experimental results, then the computational results can be trusted to be
almost of experimental quality. If, however, the employed parameters are based only
on a few experimental data, and/or many generic parameters have been used, the
results should be treated with care. Using low quality parameters for describing an
“uninteresting” part of the molecule, such as a substituted aromatic ring in a distant
side chain, is not problematic. In some cases, such uninteresting parts may simply be
substituted by other simpler groups (for example a methyl group). However, if the low
quality parameters directly influence the property of interest, the results may poten-
tially be misleading.

2.3.2 Force fields for metal coordination compounds

Coordination chemistry is an area that is especially plagued with the problems of
assigning suitable functions for describing the individual energy terms and deriving
good parameters.42 The bonding around metals is much more varied than for organic
molecules, where there are just two, three or four bonds. Furthermore, for a given
number of ligands, more than one geometrical arrangement is usually possible. A four-
coordinated metal, for example, may either be tetrahedral or square planar, and a five-
coordinated metal may either have a square pyramidal or trigonal bipyramidal
structure. This is in contrast to four-coordinated atoms such as carbon or sulfur that
are always very close to tetrahedral. The increased number of ligands combined with
the multitude of possible geometries significantly increases the problem of assigning
suitable functional forms for each of the energy terms. Consider for example a “simple”
compound such as Fe(CO)5, which has a trigonal bipyramid structure.

It is immediately clear that a C—Fe—C angle bend must have three energy minima
corresponding to 90°, 120° and 180°, indicating that a simple Taylor expansion around
a (single) natural value is not suitable. Furthermore, the energy cost for a geometrical
distortion (bond stretching and bending) is usually much smaller around a metal atom
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than for a carbon atom. This has the consequence that coordination compounds are
much more dynamic, displaying phenomena such as pseudo-rotations, ligand exchange
and large geometrical variations for changes in the ligands. In iron pentacarbonyl there
exists a whole series of equivalent trigonal bipyramid structures that readily intercon-
vert, i.e. the energy cost for changing the C—Fe—C angle from 90° to 120° and to 180°
is small. Deviations up to 30° from the “natural” angle by introducing bulky sub-
stituents on the ligands are not uncommon. Furthermore, the bond distance for a given
metal–ligand is often sensitive to the nature of the other ligands. An example there is
the trans effect, where a metal–ligand bond distance can vary by perhaps 0.2Å depend-
ing on the nature of the ligand on the opposite side.

Another problem encountered in metal systems is the lack of well-defined bonds.
Consider for example an olefin coordinated to a metal – should this be considered as
a single bond between the metal and the centre of the C—C bond, or as a metallocy-
clopropane with two M—C bonds? A cyclopentadiene ligand may similarly be mod-
elled either with a single bond to the centre of the ring, or with five M—C bonds. In
reality, these represent limiting behaviours, and the structures on the left in Figure 2.19
correspond to a weak interaction while those on the right involve strong electron dona-
tion from the ligand to the metal (and vice versa).A whole range of intermediate cases
is found in coordination chemistry. The description with bonds between the metal and
all the ligand atoms suffers from the lack of (free) rotation of the ligand. The coordi-
nation to the “centre” of the ligand may be modelled by placing a pseudo-atom at that
position, and relating the ligand atoms to the pseudo-atom (a pseudo-atom is just a
point in space, also sometimes called a dummy atom, see Appendix D). Alternatively
the coordination may be described entirely by non-bonded interactions (van der Waals
and electrostatic).

One possible, although not very elegant, solution to these problems is to assign dif-
ferent atom types for each bonding situation. In the Fe(CO)5 example, this would mean
distinguishing between equatorial and axial CO units. There would then be three 
different C—Fe—C bending terms, Ceq—Fe—Ceq, Ceq—Fe—Cax and Cax—Fe—Cax, with
natural angles of 120°, 90° and 180°, respectively. This approach sacrifices the dynam-
ics of the problem: interchanging an equatorial and axial CO no longer produces ener-
getically equivalent structures. Similarly, the same metal atom in two different
geometries (such as tetrahedral and square planar) would be assigned two different
types, or in general a new type for each metal in a specific oxidation and spin state,
and with a specific number of ligands. This approach encounters the parameter “ex-
plosion”, as discussed above. It also biases the results in the direction of the user’s
expectations – if a metal atom is assigned a square planar atom type, the structure will
end up close to square planar, even though the real geometry may be tetrahedral. The
object of a computational study, however, is often a series of compounds that have
similar bonding around the metal atom. In such cases, the specific parameterization
may be quite useful, but the limitations should of course be kept in mind. Most force
field modelling of coordination compounds to date have employed this approach,
tailoring an existing method to also reproduce properties (most notably geometries)
of a small set of reference systems.

Part of the problems may be solved by using more flexible functional forms for the
individual energy terms, most notably the stretching and bending energies. The stretch
energy may be chosen as a Morse potential (eq. (2.5)), allowing for quite large distor-
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tions away from the natural distance, and also being able to account for dissociation.
However, phenomena such as the trans effect are inherently electronic in nature
(similar to the delocalization in conjugated systems) and are not easily accounted for
in a force field description.

The multiple minima nature of the bending energy, combined with the low barriers
for interconversion, resembles the torsional energy for organic molecules. An expan-
sion of Ebend in terms of cosine or sine functions to the angle is therefore more natural
than a simple Taylor expansion in the angle. Furthermore, bending around a metal
atom often has an energy maximum for an angle of 180°, with a low barrier. The fol-
lowing examples have a zero derivative for a linear angle, and are reasonable for
describing bond bending such as that encountered in the H2O example (Figure 2.5).

(2.39)

(2.40)

The latter functional form contains a constant n that determines the periodicity of the
potential (t is a phase factor), and allows bending energies with multiple minima, anal-
ogously to the torsional energy. It does, however, have problems of unwanted oscilla-
tions if an energy minimum with a natural angle close to 180° is desired (this requires

E k nbend q q t( ) = + +( )( )1 cos
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n to be large, creating many additional minima). It is also unable to describe situations
where the minima are not regularly spaced, such as the Fe(CO)5 system (minima for
angles of 90°, 120° and 180°). The performance of eqs (2.39) and (2.40) for the H2O
case is given in Figure 2.20, which can be compared with Figure 2.5.

The barrier towards linearity is given implicitly by the force constant in both the
potentials in eqs (2.39) and (2.40). A more general expression, which allows even quite
complicated energy functionals to be fitted, is a Fourier expansion.

(2.41)

An alternative approach consists of neglecting the L—M—L bending terms, and
instead includes non-bonded 1,3-interactions. The geometry around the metal is then
defined exclusively by the van der Waals and electrostatic contributions (i.e. placing
the ligands as far apart as possible), and this model is known as Points-On-a-Sphere
(POS).43 It is basically equivalent to the Valence Shell Electron-Pair Repulsion
(VSEPR) model, with VSEPR focusing on the electron pairs that make up a bond, and
POS focusing on the atoms and their size.44 For alkali, alkaline earth and rare earth
metals, where the bonding is mainly electrostatic, POS gives quite reasonable results,
but it is unable to model systems where the d-orbitals have a preferred bonding
arrangement. Tetracoordinated metal atoms, for example, will in such models always
end up being tetrahedral, although d8-metals are normally square planar. An explicit
coupling between the geometry and the occupancy of the d-orbitals can be achieved
by adding a ligand field energy term to the force field energy function,45 but this is not
(yet) part of the mainstream force field programs.
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n
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The final problem encountered in designing force fields for metal complexes is the
lack of sufficient numbers of experimental data. Geometrical data for metal com-
pounds are much scarcer than for organic structures, and the soft deformation poten-
tials mean that vibrational frequencies are often difficult to assign to specific modes.
Deriving parameters from electron structure calculations is troublesome because the
presence of multiple ligands means that the number of atoms is quite large, and the
metal atom itself contains many electrons. Furthermore, there are often many differ-
ent low-lying electronic states owing to partly occupied d-orbitals, indicating that single
reference methods (i.e. Hartree–Fock type calculations) are insufficient for even a
qualitative correct wave function. Finally, relativistic effects become important for
some of the metals in the lower part of the periodic system.These effects have the con-
sequence that electronic structure calculations of a sufficient quality are computa-
tionally expensive to carry out.

2.3.3 Universal force fields

The combination of many atom types and the lack of a sufficient number of reference
data have have prompted the development of force fields with reduced parameters
sets, such as the Universal Force Field (UFF).46 The idea is to derive di-, tri- and tetra-
atomic parameters (Estr, Ebend, Etors) from atomic constants (such as atom radii, ioniza-
tion potentials, electronegativities, polarizabilities, etc.). Such force fields are in
principle capable of describing molecules composed of elements from the whole peri-
odic table, and these have been labelled as “all elements” in Table 2.4 below. They give
less accurate results compared with conventional force fields, but geometries are often
calculated qualitatively correctly. Relative energies, however, are much more difficult
to obtain accurately, and conformational energies for organic molecules are generally
quite poor. Another approach is to use simple valence bonding arguments (e.g.
hybridization) to derive the functional form for the force field, as employed in the
VALBOND approach.47

2.4 Differences in Force Fields
There are many different force fields in use. They differ in three main aspects:

(1) What is the functional form of each energy term?
(2) How many cross terms are included?
(3) What types of information are used for fitting the parameters?

There are two general trends. If the force field is designed primarily to treat large
systems, such as proteins or DNA, the functional forms are kept as simple as possible.
This means that only harmonic functions are used for Estr and Ebend (or these term are
omitted, forcing all bond lengths and angles to be constant), no cross terms are
included, and the Lennard-Jones potential is used for Evdw. Such force fields are often
called “harmonic”, “diagonal” or “Class I”. The other branch concentrates on repro-
ducing small- to medium-size molecules to a high degree of accuracy.These force fields
will include a number of cross terms, use at least cubic or quartic expansions of Estr

and Ebend, and possibly an exponential-type potential for Evdw. The current efforts 
in developing small-molecule force fields go in the direction of not only striving to
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Table 2.4 Comparison of functional forms used in common force fields;49 the torsional energy, Etors, is in
all cases given as a Fourier series in the torsional angle

Force field Types Estr Ebend Eoop Evdw Eel Ecross Molecules

AMBER 41 P2 P2 imp. 12–6 charge none proteins, nucleic
12–10 acids,

carbohydrates
CFF91/93/95 48 P4 P4 P2 9–6 charge ss,bb,st, general

sb,bt,btb
CHARMM 29 P2 P2 imp. 12–6 charge none proteins
COSMIC 25 P2 P2 Morse charge none general
CVFF 53 P2 or P2 P2 12–6 charge ss,bb,sb, general

Morse btb
DREIDING 37 P2 or P2(cos) P2(cos) 12–6 or charge none general

Morse Exp–6
EAS 2 P2 P3 none Exp–6 none none alkanes
ECEPP fixed fixed fixed 12–6 and charge none proteins

12–10
EFF 2 P4 P3 none Exp–6 none ss,bb,sb, alkanes

st,btb
ENCAD 35 P2 P2 imp. 12–6 charge none proteins, nucleic

acids
ESFF 97 Morse P2(cos) P2 9–6 charge none all elements
GROMOS P2 P2 P2(imp.) 12–6 charge none proteins, nucleic

acids,
carbohydrates

MM2 71 P3 P2+P6 P2 Exp–6 dipole sb general
MM3 153 P4 P6 P2 Exp–6 dipole or sb,bb,st general (all

charge elements)
MM4 P6 P6 imp. Exp–6 charge ss,bb,sb, general

tt,st,tb,
btb

MMFF 99 P4 P3 P2 14–7 charge sb general
MOMEC P2 P2 P2 Exp–6 none none metal coordination
NEMO fixed fixed none Exp–6 quad, polar none special
OPLS 41 P2 P2 imp. 12–6 charge none proteins, nucleic

acids,
carbohydrates

PFF P2 P2 imp. 12–6 polar none proteins
PROSA 41 P2 P2 imp. 12–6 polar none proteins
QMFF 32 P4 P4 P2 9–6 charge ss,sb,st,bb, general

bt,btb
SDFF P4 P4 9–6 charge, ss,st,tt hydrocarbons

dipole,
polar

TraPPE fixed P2 fixed 12–6 charge none C, N, O
compounds

TRIPOS 31 P2 P2 P2 12–6 charge none general
UFF 126 P2 or cos(nq) imp. 12–6 charge none all elements

Morse
YETI 17 P2 P2 imp. 12–6 and charge none proteins

12–10

Notation: Pn: Polynomial of order n; Pn(cos): polynomial of order n in cosine to the angle; cos(nq): Fourier term(s) in cosine to
the angle; Exp–6: exponential + R−6; n − m: R−n + R−m Lennard-Jones type potential; quad: electric moments up to quadrupoles;
polar: polarizable; fixed: not a variable; imp.: improper torsional angle; ss: stretch–stretch; bb: bend–bend: sb: stretch–bend;
st: stretch–torsional; bt: bend–torsional; tt: torsional–torsional; btb: bend–torisional–bend.
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Table 2.5 Comparison of stretch energy parameters for different force fields

Force field R0 (Å) k (mdyn/Å)

C—C C—O C—F C=O C—C C—O C—F C=O

MM2 1.523 1.402 1.392 1.208 4.40 5.36 5.10 10.80
MM3 1.525 1.413 1.380 1.208 4.49 5.70 5.10 10.10
MMFF 1.508 1.418 1.360 1.222 4.26 5.05 6.01 12.95
AMBER 1.526 1.410 1.380 1.220 4.31 4.45 3.48 8.76
OPLS 1.529 1.410 1.332 1.229 3.73 4.45 5.10 7.92

reproduce geometries and relative energies, but also vibrational frequencies, and these
are often called “Class II” force fields. Further refinements by allowing parameters to
depend on neighbouring atom types, e.g. for modelling hyperconjugation, and includ-
ing electronic polarization effects have been denoted “Class III” force fields.

Force fields designed for treating macromolecules can be simplified by not consid-
ering hydrogens explicitly – the so-called united atom approach (an option present in
for example the AMBER, CHARMM, GROMOS and DREIDING force fields).
Instead of modelling a CH2 group as a carbon and two hydrogens, a single “CH2 atom”
may be assigned, and such a united atom will have a larger van der Waals radius to
account also for the hydrogens. The advantage of united atoms is that they effectively
reduce the number of variables by a factor of ~2–3, thereby allowing correspondingly
larger systems to be treated. Of course the coarser the atomic description is, the less
detailed the final results will be. Which description, and thus which type of force field
to use, depends on what type of information is sought. If the interest is in geometries
and relative energies of different conformations of say hexose, then an elaborate force
field is necessary. However, if the interest is in studying the dynamics of a protein con-
sisting of hundreds of amino acids, a crude model where whole amino acids are used
as the fundamental unit may be all that is possible, considering the sheer size of the
problem.48

Table 2.4 gives a description of the functional forms used in some of the common
force fields. The torsional energy is in all cases written as a Fourier series, typically of
order 3. Many of the force fields undergo developments, and the number of atom types
increases as more and more systems become parameterized, and Table 2.4 may thus
be considered as a “snapshot” of the situation when the data were collected. The “uni-
versal” type force fields, described in Section 2.3.3, are in principle capable of cover-
ing molecules composed of elements from the whole periodic table, and these have
been labelled as “all elements”.

Even for force fields employing the same mathematical form for an energy term
there may be significant differences in the parameters Table 2.5 below shows the vari-
ability of the parameters for the stretch energy between different force fields. It should
be noted that the stretching parameters are among those that vary the least between
force fields.

It is perhaps surprising that force constants may differ by almost a factor of two, but
this is of course related to the stiffness of the stretch and bending energies. Very few
molecules have bond lengths deviating more than a few hundredths of an angstrom



from the reference value, and the associated energy contribution will be small regard-
less of the force constant value. Stated another way, the minimum energy geometry is
insensitive to the exact value of the force constant.

2.5 Computational Considerations
Evaluation of the non-bonded energy is by far the most time-consuming step, and this
can be exemplified by the number of individual energy terms for the linear alkanes
CH3(CH2)n−2CH3 shown in Table 2.6.

2.5 COMPUTATIONAL CONSIDERATIONS 65

Table 2.6 Number of terms for each energy contribution in CH3(CH2)n−2CH3

n Natoms Estr Ebend Etors Evdw

10 32 31 (5%) 30 (10%) 81 (14%) 405 (70%)
20 62 61 (3%) 60 (6%) 171 (8%) 1710 (83%)
50 152 151 (1%) 300 (3%) 441 (4%) 11025 (93%)

100 302 301 (1%) 600 (1%) 891 (2%) 44550 (96%)
N (N − 1) 2(N − 2) 3(N − 5) 1–

2
N(N − 1) − 3N + 5

The number of bonded contributions, Estr, Ebend and Etors, grow linearly with the
system size, while the non-bonded contributions, Evdw (and Eel), grow as the square of
the system size. This is fairly obvious as, for a large molecule, most of the atom pairs
are not bonded, or not bonded to a common atom, and thus contribute with an Evdw

term. For CH3(CH2)98CH3, which contains a mere 302 atoms, the non-bonded terms
already account for ~96% of the computational effort. For a 1000 atom system, the
percentage is 98.8%, and for 10000 atoms it is 99.88%. In the limit of large molecules,
the computational time for calculating the force field energy grows approximately as the
square of the number of atoms. The majority of these non-bonded energy contributions
are numerically very small, as the distance between the atom pairs is large. A consid-
erable saving in computational time can be achieved by truncating the van der Waals
potential at some distance, say 10Å. If the distance is larger than this cutoff, the con-
tribution is neglected. This is not quite as clean as it may sound at first. Although it is
true that the contribution from a pair of atoms is very small if they are separated by
10Å, there may be a large number of such atom pairs. The individual contribution falls
of quickly, but the number of contributions also increases. Many force fields use cutoff
distances around 10Å, but it has been shown that the total van der Waals energy only
converges if the cutoff distance is of the order of 20Å. However, using a cutoff of 
20Å may significantly increase the computational time (by a factor of perhaps 5–10)
relative to a cutoff of 10Å.

The introduction of a cutoff distance does not by itself lead to a significant compu-
tational saving, since all the distances must be computed prior to the decision on
whether to include the contribution or not. A substantial increase in computational
efficiency can be obtained by keeping a non-bonded or neighbour list over atom pairs.
From a given starting geometry, a list is prepared over the atom pairs that are within
the cutoff distance plus a smaller buffer zone. During a minimization or simulation,
only the contributions from the atom pairs on the list are evaluated, which avoids the



calculation of distances between all pairs of atoms. Since the geometry changes during
the minimization or simulation, the non-bonded list must be updated once an atom
has moved more than the buffer zone or simply at (fixed) suitable intervals, for
example every 10 or 20 steps.

The use of a cutoff distance reduces the scaling in the large system limit from N 2
atom

to Natom since the non-bonded contributions are then only evaluated within the local
“sphere” determined by the cutoff radius. A cutoff distance of ~10Å, however, is so
large that the large system limit is not achieved in practical calculations. Furthermore,
the updating of the neighbour list still involves calculating all distances between atom
pairs. The actual scaling is thus N n

atom, where n is between 1 and 2, depending on the
details of the system. In most applications, however, it is not the energy of a single
geometry that is of interest, but that of an optimized geometry. The larger the mole-
cule, the more degrees of freedom, and the more complicated the geometry optimiza-
tion is. The gain by introducing a non-bonded cutoff is partly offset by the increase in
computational effort in the geometry optimization. Thus as a rough guideline the
increase in computational time upon changing the size of the molecule can be taken
as N 2

atom.
The introduction of a cutoff distance, beyond which Evdw is set to zero, is quite rea-

sonable as the neglected contributions rapidly become small for any reasonable cutoff
distance. This is not true for the other part of the non-bonded energy, the Coulomb
interaction. Contrary to the van der Waals energy, which falls of as R−6, the
charge–charge interaction varies as R−1. This is actually only true for the interaction
between molecules (or fragments) carrying a net charge. The charge distribution in
neutral molecules or fragments makes the long range interaction behave as a
dipole–dipole interaction. Consider for example the interaction between two carbonyl
groups. The carbons carry a positive and the oxygens a negative charge. Seen from a
distance it looks like a bond dipole moment, not two net charges. The interaction
between two dipoles behaves like R−3, not R−1, but an R−3 interaction still requires a
significantly larger cutoff than the van der Waals R−6 interaction.

Table 2.7 shows the interaction energy between two carbonyl groups in terms of the
MM3 Evdw and Eel, the latter described either by an atomic point charge or a bond
dipole model. The bond dipole moment is 1.86 debye, corresponding to atomic charges
of ±0.32 separated by a bond length of 1.208Å. For comparison, the interaction
between two net charges of 0.32 is also given.

From Table 2.7 it is clearly seen that Evdw becomes small (less than ~0.01kJ/mol)
beyond a distance of ~10Å. The electrostatic interaction reaches the same level of
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Table 2.7 Comparing the distance behaviour of non-bonded energy contributions (kJ/mol)

Distance (Å) Evdw Edipole–dipole Epoint charges Enet charges

5 −0.92 1.665 1.598 28.5
10 −0.0060 0.208 0.206 14.2
15 −0.00054 0.0617 0.0614 9.5
20 −9.5 × 10−5 0.0260 0.0259 7.1
30 −8.4 × 10−6 0.00770 0.00770 4.7
50 −3.9 × 10−7 0.00167 0.00167 2.8

100 −6.1 × 10−9 0.000208 0.000208 1.4



importance at a distance of ~30Å. The table also shows that the interaction between
point charges behaves as a dipole–dipole interaction, i.e. an R−3 dependence. The inter-
action between net charges is very long-range – even at 100Å separation there is a 
1.4kJ/mol energy contribution. The “cutoff” distance corresponding to a contribution
of ~0.01kJ/mol is of the order of 14000Å!

There are different ways of implementing a non-bonded cutoff. The simplest is to
neglect all contributions if the distance is larger than the cutoff. This is in general not
a very good method as the energy function becomes discontinuous. Derivatives of the
energy function also become discontinuous, which causes problems in optimization
procedures and when performing simulations.A better method is to use two cutoff dis-
tances between which a switching function connects the correct Evdw or Eel smoothly
with zero. Such interpolations solve the mathematical problems associated with opti-
mization and simulation, but the chemical significance of the cutoff of course still
remains. This is especially troublesome in simulation studies where the distribution of
solvent molecules can be very dependent on the use of cutoffs.The modern approaches
for evaluating the electrostatic contribution is the use of fast multipole or Ewald sum
methods (see Section 14.3), both of which are able to calculate the electrostatic energy
exactly (to within a specified numerical precision) with an effort that scales less than
quadratic with the number of particles (linear for fast multipole, N3/2 for Ewald and 
N ln N for particle mesh Ewald methods). These methods require only slightly more
computer time than using a cutoff-based method, and give much better results.

2.6 Validation of Force Fields
The quality of a force field calculation depends on two quantities: the appropriateness
of the mathematical form of the energy expression, and the accuracy of the parame-
ters. If elaborate forms for the individual interaction terms have been chosen, and a
large number of experimental data is available for assigning the parameters, the results
of a calculation may be as good as those obtained from experiments, but at a fraction
of the cost. This is the case for simple systems such as hydrocarbons. Even a force field
with complicated functional forms for each of the energy contributions contains only
relatively few parameters when carbon and hydrogen are the only atom types, and
experimental data exist for hundreds of such compounds. The parameters can there-
fore be assigned with a high degree of confidence. Other well-known compound types,
such as ethers and alcohol, can achieve almost as good results. For less common species,
such as sulfones, or polyfunctional molecules, much less experimental information is
available, and the parameters are less well defined.

Force field methods are primarily geared to predicting two properties: geometries
and relative energies. Structural features are in general much easier to predict than
relative energies. Each geometrical feature depends only on a few parameters. For
example bond distances are essentially determined by R0 and the corresponding force
constant, bond angles by q0, and conformational minima by V1, V2 and V3. It is there-
fore relatively easy to assign parameters that reproduce a given geometry. Relative
energies of different conformations, however, are much more troublesome since they
are a consequence of many small contributions, i.e. the exact functional form of the
individual energy terms and the balance between them. The largest contributions to
conformational energy differences are the non-bonded and torsional terms, and it is
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therefore important to have good representations of the whole torsional energy profile.
Even though a given force field may be parameterized to reproduce rotational energy
profiles for ethane and ethanol, and contains a good description of hydrogen bonding
between two ethanol molecules, there is no guarantee that it will be successful in
reproducing the relative energies of different conformations of say 1,2-dihydrox-
yethane.50 For large systems, it is inevitable that small inaccuracies in the functional
forms for the energy terms and parameters will influence the shape of the whole energy
surface to the point where minima may disappear or become saddle points. Essentially
all force fields, no matter how elaborate the functional forms and parameterization,
will have artificial minima, and fail to predict real minima, even for quite small systems.
For cyclododecane (which is one of the largest molecules to have been subjected to
an exhaustive search), the MM2 force field predicts 122 different conformations, but
the MM3 surface contains only 98 minima.51 Given that cyclododecane belongs to a
class of well-parameterized molecules, the saturated hydrocarbons, and that MM2 and
MM3 are among the most accurate force fields, this clearly illustrates the point.

Validation of a force field is typically done by showing how accurately it reproduces
reference data, which may or may not have been used in the actual parameterization.
Since different force fields employ different sets of reference data, it is difficult to
compare their accuracies directly. Indeed there is no single “best” force field, each has
its advantages and disadvantages. They perform best for the type of compounds that
have been used in the parameterization, but may give questionable results for other
systems. Table 2.8 gives typical accuracies for ∆Hf that can be obtained with the MM2
force field.
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Table 2.8 Average errors in heat of formation (kJ/mol) by MM252

Compound type Average error in ∆Hf

Hydrocarbons 1.8
Ethers and alcohols 2.1
Carbonyl compounds 3.4
Aliphatic amines 1.9
Aromatic amines 12.1
Silanes 4.5

The average error is the difference between the calculated and experimental ∆Hf.
In this connection is should be noted that the average error in the experimental data
for the hydrocarbons is 1.7kJ/mol, i.e. MM2 essentially reproduce the experiments to
within the experimental uncertainty.

There is one final thing that needs to be mentioned in connection with the valida-
tion of a force field, namely the reproducibility. The results of a calculation are deter-
mined completely by the mathematical expressions for the energy terms and the
parameter set (assuming that the computer program is working correctly).A new force
field is usually parameterized for a fairly small set of functional groups initially, and
may then evolve by addition of parameters for a larger diversity later. This sometimes
has the consequence that some of the initial parameters must be modified to give an
acceptable fit. Furthermore, new experimental data may warrant changes in existing
parameters. In some cases, different sets of parameters are derived by different



research groups for the same types of functional group. The result is that the parame-
ter set for a given force field is not constant in time, and sometimes not in geograph-
ical location either. There may also be differences in the implementation details of the
energy terms. The Eoop in MM2, for example, is defined as a harmonic term in the
bending angle (Figure 2.6), but may be substituted by an improper torsional angle in
some computer programs. The consequence is that there often are several different
“flavours” of a given force field, depending on the exact implementation, the original
parameter set (which may not be the most recent), and any local additions to the
parameters. A vivid example is the MM2 force field, which exists in several different
implementations that do not give the exact same results but are nevertheless denoted
as “MM2” results.

2.7 Practical Considerations
It should be clear that force field methods are models of the real quantum mechani-
cal systems. The neglect of electrons as individual particles forces the user to define
explicitly the bonding in the molecule prior to any calculations. The user must decide
how to describe a given molecule in terms of the selected force field. The input to a
calculation consists of three sets of information:

(1) Which atom types are present?
(2) How are they connected, i.e. which atoms are bonded to each other?
(3) A start guess of the geometry.

The first two sets of information determine the functional form of EFF, i.e. enable the
calculation of the potential energy surface for the molecule. Normally the molecule
will then be optimized by minimizing EFF, which requires a starting guess of the geom-
etry. The information necessary for the program to perform the calculation is read via
a file on the computer, and in older programs, the input file had to be prepared man-
ually by the user. All the above three sets of information, however, can be uniquely
defined from a (three-dimensional) drawing of a molecule. Modern programs there-
fore have a graphical interface that allows the molecule simply to be drawn on the
screen or constructed from pre-optimized fragments. The interface then automatically
assigns suitable atom types based on the selected atomic symbols and the connectiv-
ity, and converts the drawing to Cartesian coordinates.

2.8 Advantages and Limitations of Force Field Methods
The main advantage of force field methods is the speed with which calculations can be
performed, enabling large systems to be treated. Even with a desktop personal com-
puter, molecules with several thousand atoms can be optimized. This puts the appli-
cations in the region of modelling biomolecular macromolecules, such as proteins and
DNA, and molecular modelling is now used by most pharmaceutical companies. The
ability to treat a large number of particles also makes force field models the only real-
istic method for performing simulations where solvent effects or crystal packing can
be studied (Chapter 14).

For systems where good parameters are available, it is possible to make very good
predictions of geometries and relative energies of a large number of molecules in a
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short time. It is also possible to determine barriers for interconversion between dif-
ferent conformations, although this is much less automated. One of the main problems
is of course the lack of good parameters. If the molecule is slightly out of the ordinary,
it is very likely that only poor quality parameters exist, or none at all. Obtaining suit-
able values for these missing parameters can be a frustrating experience. Force field
methods are good for predicting properties for classes of molecules where a lot of
information already exists. For unusual molecules, their use is very limited.

Finally, force field methods are “zero-dimensional”. It is not possible to assess the
probable error of a given result within the method. The quality of the result can only
be judged by comparing to other calculations on similar types of molecules for which
relevant experimental data exist.

2.9 Transition Structure Modelling
Structural changes can be divided into two general types: those of a conformational
nature and those involving bond breaking/forming. There are intermediate cases, such
as bonds involving metal coordination, but since metal coordination is difficult to
model anyway, we will neglect such systems at present. The bottleneck for structural
changes is the highest energy point along the reaction path, called the Transition State
or Transition Structure (TS) (Chapter 13). Conformational TS’s have the same atom
types and bonding for both the reactant and product, and can be located on the force
field energy surface by standard optimization algorithms. Since conformational
changes are often localized to rotation around a single bond, simply locating the
maximum energy structure for rotation (so-called “torsional angle driving”, see Section
12.4.1) around this bond often represents a good approximation of the real TS.

Modelling TS’s for reactions involving bond breaking/forming within a force field
methodology is much more difficult.53 In this case, the reactant and product are not
described by the same set of atom types and/or bonding. There may even be a differ-
ent number of atoms at each end of the reaction (for example lone pairs disappear-
ing).This means that there are two different force field energy functions for the reactant
and product, i.e. the energy as a function of the reactant coordinate is not continuous.
Nevertheless, methods have been developed for modelling differences in activation
energies between similar reactions by means of force field techniques, and three
approaches are described below.

2.9.1 Modelling the TS as a minimum energy structure

One of the early applications of TS modelling was the work on steric effects in SN2
reactions by DeTar and coworkers, and it has more recently been advocated by Houk
and coworkers.54 The approach consists of first locating the TS for a typical example
of the reaction with electronic structure methods, often at the Hartree–Fock or density
functional theory level. The force field function is then modified such that an energy
minimum is created with a geometry that matches the TS geometry found by the elec-
tronic structure method. The modification defines new parameters for all the energy
terms involving the partly formed/broken bonds.The stretch energy terms have natural
bond lengths taken from the electronic structure calculation, and force constants that
are typically half the strength of normal bonds. Bond angle terms are similarly 
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modified with respect to equilibrium values and force constants, the former taken from
the electronic structure data and the latter usually estimated.These modifications often
necessitate the definition of new “transition state” atom types. Once the force field
parameters have been defined, the structure is minimized as usual. Sometimes a few
cycles of parameter adjustments and re-optimizations are necessary for obtaining a set
of parameters capable of reproducing the desired TS geometry. P.-O. Norrby has
described a partly automated method for simultaneously optimizing all the parame-
ters to reproduce the reference structure.55 When the modified force field is capable of
reproducing the reference TS geometry, it can be used for predicting TS geometries
and relative energies of reactions related to the model system. As long as the differ-
ences between the systems are purely “steric”, it can be hoped that relative energy dif-
ferences (between the reactant and the TS model) will correlate with relative activation
energies. Purely electronic effects, such as Hammett-type effects due to para-substitu-
tion in aromatic systems, can of course not be modelled by force field techniques.

2.9.2 Modelling the TS as a minimum energy structure on the
reactant/product energy seam

There are two principal problems with the above modelling technique. First, the TS is
modelled as a minimum on the energy surface, while it should be a first-order saddle
point. This has the consequence that changes in the TS position along the reaction
coordinate due to differences in the reaction energy will be in the wrong direction
(Section 15.6). In many cases, this is probably not important. For reactions having a
reasonable barrier, the TS geometry appears to be relatively constant, which may be
rationalized in terms of the Marcus equation (Section 15.5). Comparing reactions that
differ in terms of the steric hindrance at the TS, however, may be problematic, as the
TS changes along the reaction coordinate will be in the wrong direction. The second
problem is the more or less ad hoc assignment of parameters. Even for quite simple
reactions, many new parameters must be added. Inventing perhaps 40 new parameters
for reproducing maybe five relative activation energies raises the nagging question as
to whether TS modelling is just a fancy way of describing five data points by 40 
variables.56

Both of these problems are eliminated in the intersecting potential energy surface
modelling technique called SEAM.57 The force field TS is here modelled as the lowest
point on the seam of the reactant and product energy functions, as shown in Figure
2.21. Locating the minimum energy structure on the seam is an example of a con-
strained optimization; the energy should be minimized subject to the constraint that
the reactant and product energies are identical.Although this is computationally some-
what more complicated than the simple minimization required in the Houk approach,
it can be handled in a quite efficient manner.

In the SEAM approach only the force field parameters for describing the reactant
and products are necessary, alleviating the problem of assigning parameters specific
for the TS. Furthermore, differences in reactivity due to differences in reaction energy
or steric hindrance at the TS are automatically included. The question is how accu-
rately the lowest energy point on the seam resembles the actual TS. This is difficult to
evaluate rigorously as it is intimately connected with the accuracy of the force field
used for describing the reactant and product structures. It is clear that the TS will have
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bond distances and angles significantly different from equilibrium structures. This
method of TS modelling therefore requires a force field that is accurate over a much
wider range of geometries than normal. Especially important is the stretch energy,
which must be able to describe bond breaking. A polynomial expansion is therefore
not suitable, and for example a Morse function is necessary. Similarly, the repulsive
part of the van der Waals energy must be fairly accurate, which means that Lennard-
Jones potentials are not suitable and should be replaced by, for example, Buckingham-
type potentials. Furthermore, many of the commonly employed cross terms (Section
2.2.8) become unstable at long bonds lengths and must be modified. When such mod-
ifications are incorporated, however, the intersecting energy surface model appears to
give surprisingly good results.

There are of course also disadvantages in this approach: these are essentially the
same as the advantages! The SEAM method automatically includes the effect of dif-
ferent reaction energies, since a more exothermic reaction will move the TS toward
the reactant and lower the activation energy (Section 15.5). This, however, requires
that the force field be able to calculate relative energies of the reactant and product,
i.e. the ability to convert steric energies to heat of formation. As mentioned in Section
2.2.10, there are only a few force fields that have been parameterized for this. In prac-
tice, this is not a major problem since the reaction energy for a prototypical example
of the reaction of interest can be obtained from experimental data or estimated. Using
the normal force field assumption of transferability of heat of formation parameters,
the difference in reaction energy is thus equal to the difference in steric energy. Only
the reaction energy for a single reaction of the given type therefore needs to be esti-
mated and relative activation energies are not sensitive to the exact value used.

If the minimum energy seam structure does not accurately represent the actual TS
(compared for example with that obtained from an electronic structure calculation)
the lack of specific TS parameters becomes a disadvantage. In the Houk approach, it
is fairly easy to adjust the relevant TS parameters to reproduce the desired TS geom-
etry. In the intersecting energy surface method, the TS geometry is a complicated result
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Figure 2.21 Modelling a transition structure as a minimum on the intersection of two potential
energy surfaces



of the force field parameters for the reactant and product, and the force field energy
functions. Modifying the force field parameters, or the functional form of some of the
energy terms, in order to achieve the desired TS geometry without destroying the
description of the reactant/product, is far from trivial. A final disadvantage, which is
inherent to the SEAM method, is the implicit assumption that all the geometrical
changes between the reactant and product occurs in a “synchronous” fashion, albeit
weighted by the energy costs for each type of distortion. “Asynchronous” or “two-
stage” reactions (as opposed to two-step reactions that involve an intermediate), where
some geometrical changes occur mainly before the TS, and others mainly after the TS,
are difficult to model by this method.

Since the TS is given in terms of the diabatic energy surfaces for the reactant and
product, it is also clear that activation energies will be too high. For evaluating rela-
tive activation energies of similar reactions this is not a major problem since the impor-
tant aspect is the relative energies. The overestimation of the activation energy can be
improved by adding a “resonance” term to the force field, as discussed in the next
section.

2.9.3 Modelling the reactive energy surface by interacting force field
functions or by geometry-dependent parameters

Within a valence bond approach (Chapter 7), the reaction energy surface can be con-
sidered as arising from the interaction of two diabatic surfaces. The adiabatic surface
can be generated by solving a 2 × 2 secular equation involving the reactant and product
energy surfaces, Er and Ep.

(2.42)

A. Warshel has pioneered the Extended Valence Bond (EVB) method,58 where the
reactant and product surfaces are described by force field energy functions, and Truhlar
has more recently generalized the approach by the Multi-Configurations Molecular
Mechanics (MCMM) method.59 In either case, the introduction of the interaction term
V generates a continous energy surface for transforming the reactant into the product
configuration, and the TS can be located analogously to energy surfaces generated by
electronic structure methods. The main drawback of this method is the somewhat arbi-
trary interaction element, and the fact that the TS must be located as a first-order
saddle point, which is significantly more difficult than locating minima or minima on
seams. It can be noted that the SEAM method corresponds to the limiting case where
V → 0 in the EVB method.

Another way of creating a continous surface connecting the reactant and product
energy functions is to make the force field parameters dependent on the geometry,
which is an approach used in the ReaxFF method.60 The force constant for stretching
a bond, for example, should decrease and approach zero as the bond length increases
towards infinity. The energy function in this case depends directly on the atomic 
coordinates via the energy term in eq. (2.3), but also indirectly via the geometry
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dependence of the parameters.Achieving a smooth and realistic variation of the energy
with geometry requires quite elaborate interpolation functions, which makes the para-
meterization non-trivial.

2.10 Hybrid Force Field Electronic Structure Methods
Force field methods are inherently unable to describe the details of bond
breaking/forming or electron transfer reactions, since there is an extensive rearrange-
ment of the electrons. If the system of interest is too large to treat entirely by elec-
tronic structure methods, there are two possible approximate methods that can be
used. In some cases, the system can be “pruned” to a size that can be treated by replac-
ing “unimportant” parts of the molecule with smaller model groups, e.g. substitution
of a hydrogen or methyl group for a phenyl ring. For studying enzymes, however, it is
usually assumed that the whole system is important for holding the active size in the
proper arrangement, and the “backbone” conformation may change during the reac-
tion. Similarly, for studying solvation, it is not possible to “prune” the number of solvent
molecules without severely affecting the accuracy of the model. Hybrid methods have
been designed for modelling such cases, where the active size is calculated by elec-
tronic structure methods (usually semi-empirical, low-level ab initio or density func-
tional methods), while the backbone is calculated by a force field method.61 Such
methods are often denoted Quantum Mechanics – Molecular Mechanics (QM/MM).
Formally, the partition can be done by dividing the Hamiltonian and resulting energy
into three parts.

(2.43)

The QM and MM regions are described completely analogously to the corresponding
isolated system, using the techniques discussed in Chapters 2–6.The main problem with
QM/MM schemes is deciding how the two parts should interact (i.e. HQM/MM). The
easiest situation is when the two regions are not connected by covalent bonds, as for
example when using an MM description for modelling the effect of solvation on a QM
system. If the two regions are connected by covalent bonding, as for example when
using a QM model for the active site in an enzyme and describing the backbone by an
MM model, the partitioning is somewhat more difficult.

The lowest level of interaction is called mechanical embedding. In this case, only the
bonded and steric energies of the two regions are included in the interaction term, i.e.
QM atoms have additional forces generated by the MM framework, and vice versa,
but there is no interaction between the electronic parts of the two regions. The QM
atoms are assigned van der Waals parameters and included in an MM non-bonded
energy expression, as illustrated by a Lennard-Jones potential in eq. (2.44).

(2.44)

The QM atoms may also be assigned partial charges, for example from a population
analysis, and charge–charge interactions between the QM and MM atoms included 
by a classical expression such as eq. (2.20). If the two regions are bonded there are
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additional terms corresponding to stretching and bending interactions. The mechani-
cal embedding model is rarely a useful level of approximation, as the wave function
of the QM region does not respond to changes in the MM region.

The next level of improvement is called electronic embedding, where the atoms in
the MM regions are allowed to polarize the QM region. Partial charges on the MM
atoms can be incorporated into the QM Hamiltonian analogously to nuclear charges
(i.e. adding Vne-like terms to the one-electron matrix elements in eq. (3.56)), and the
QM atoms thus feel the electric potential due to all the MM atoms.

(2.45)

The non-bonded mechanical term in eq. (2.44) is still needed in order to prevent the
MM atoms from drifting into the QM region. The electronic embedding allows the
geometry of MM atoms to influence the QM region, i.e. the wave function in the QM
region becomes coupled to the MM geometry. An interesting computational issue
arises when the number of MM atoms is large and the QM region is small, since the
calculation of the one-electron integrals associated with VQM/MM may become a domi-
nating factor, rather than the two-electron integrals associated with the QM region
itself, but in most cases the inclusion of the VQM/MM term only marginally increases the
computational effort over a mechanical embedding.

A further refinement, often called polarizable embedding, can be made by allowing
the QM atoms also to polarize the MM region, i.e. the electric field generated by the
QM region influences the MM electric moments (atomic charges and dipoles). This of
course requires that a polarizable force field is employed (Section 2.2.7), and necessi-
tates a double iterative procedure for allowing the electric fields in both the QM and
MM regions to be determined in a self-consistent fashion. This substantially increases
the computational cost, and since polarizable force fields are not yet commonly used
anyway, most QM/MM methods employ the electronic embedding approximation. An
exception is the effective fragment method, often used for modelling solvation, where
both quadrupoles and polarizabilities are included for the MM atoms.62

In many cases, the QM and MM regions belong to the same molecule, and the divi-
sion between the two parts must be done by cutting one or more covalent bonds. This
leaves one or more unpaired electrons in the QM part, which must be properly ter-
minated. In most cases, the dangling bonds are terminated by adding “link” atoms, typ-
ically a hydrogen. For semi-empirical methods, it can also be a pseudo-halogen atom
with parameters adjusted to provide a special link atom.63 Alternatively, the termina-
tion can be in the form of a localized molecular or generalized hybrid orbital.64 At
present, there does not seem to be a clear consensus on whether one or the other
approach provides the best results, but the link atom method is somewhat simpler to
implement. When the link atom procedure is used, the link atom(s) is only present in
the QM calculation, and is not seen by the MM framework. A number of choices must
also be made for which and how many of the MM bend and torsional terms that involve
one or more QM atoms are included. Bending terms involving two MM and one QM
atoms are usually included, but those involving one MM and two QM atoms may be
neglected. Similarly, the torsional terms involving only one QM atom are usually
included, but those involving two or three QM atoms may or may not be neglected.
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The concept of mixing methods of different accuracy has been generalized in the
ONIOM (our own n-layered integrated molecular orbital molecular mechanics) method
to include several (usually two or three) layers, for example using relatively high-level
theory in the central part, a lower level electronic structure theory in an intermediate
layer and force field to treat the outer layer.65 The original ONIOM method only
employed mechanical embedding for the QM/MM interface, but more recent exten-
sions have also included electronic embedding.66 The ONIOM method employs an
extrapolation scheme based on assumed additivity, in analogy to the CBS, Gn and Wn
methods discussed in Section 5.7. For a two-layer scheme, the small (model) system is
calculated at both the low and high levels of theory, while the large (real) system is
calculated at the low level of theory. The result for the real system at the high theo-
retical level is estimated by adding the change between the high and low levels of
theory for the model system to the low level results for the real system, as illustrated
in Figure 2.22 and eq. (2.46).
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Figure 2.22 Illustration of the ONIOM extrapolation method

(2.46)

A similar extrapolation can be done for multi-level ONIOM models, although it
requires several intermediate calculations. It should be noted that derivatives of the
ONIOM model can be constructed straightforwardly from the corresponding deriva-
tive of the underlying methods, and it is thus possible to perform geometry optimiza-
tions and vibrational analysis using the ONIOM energy function.

QM/MM methods are often used for modelling solvent effects, with the solvent
treated by MM methods, but in some cases the first solvation shell is included in the
QM region. If such methods are used in connection with dynamical sampling of the
configurational space, it is possible that MM solvent molecules can enter the QM
regions, or QM solvent molecules can drift into the MM region. In order to handle
such situations, there must be a procedure for allowing solvent molecules to switch
between a QM and MM description. In order to ensure a smooth transition, a transi-
tion region can be defined between the two parts, where a switching function is
employed to make a continuous transition between the two descriptions.67

The main problem with QM/MM methods is that there is no unique way of decid-
ing which part should be treated by force field and which by quantum mechanics, and
QM/MM methods are therefore not “black box” methods. The “stitching” together of
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the two regions is certainly not unique, and the many possible combinations of force
field and QM methods make QM/MM methods still somewhat experimental. Fur-
thermore, the inability to perform calibration studies of large systems by pure QM
methods makes it difficult to evaluate the severity of the approximations included in
QM/MM methods.
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3 Electronic Structure
Methods: Independent-
Particle Models

If we are interested in describing the electron distribution in detail, there is no substi-
tute for quantum mechanics. Electrons are very light particles and they cannot be
described correctly even qualitatively by classical mechanics. We will in this chapter
and in Chapter 4 concentrate on solving the time-independent Schrödinger equation,
which in shorthand operator form is given in eq. (3.1).

(3.1)

If solutions are generated without reference to experimental data, the methods are
usually called ab initio (latin: “from the beginning”), in contrast to semi-empirical
models, which are described in Section 3.10.

An essential part of solving the Schrödinger equation is the Born–Oppenheimer
approximation, where the coupling between the nuclei and electronic motion is neg-
lected. This allows the electronic part to be solved with the nuclear positions as param-
eters, and the resulting potential energy surface (PES) forms the basis for solving the
nuclear motion.The major computational effort is in solving the electronic Schrödinger
equation for a given set of nuclear coordinates.

The dynamics of a many-electron system is very complex, and consequently requires
elaborate computational methods. A significant simplification, both conceptually and
computationally, can be obtained by introducing independent-particle models, where
the motion of one electron is considered to be independent of the dynamics of all other
electrons.An independent-particle model means that the interactions between the par-
ticles is approximated, either by neglecting all but the most important one, or by taking
all interactions into account in an average fashion. Within electronic structure theory,
only the latter has an acceptable accuracy, and is called Hartree–Fock (HF) theory. In
the HF model, each electron is described by an orbital, and the total wave function is
given as a product of orbitals. Since electrons are indistinguishable fermions (particles
with a spin of 1/2), however, the overall wave function must be antisymmetric (change

HΨ Ψ= E
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sign upon interchanging any two electrons), which is conveniently achieved by arrang-
ing the orbitals in a Slater determinant. The best set of orbitals is determined by the
variational principle, i.e. the HF orbitals give the lowest energy within the restriction
of the wave function being a single Slater determinant. The shape of a given molecu-
lar orbital describes the probability of finding an electron, where the attraction to all
the nuclei and the average repulsion to all the other electrons are included. Since the
other electrons are described by their respective orbitals, the HF equations depend on
their own solutions, and must therefore be solved iteratively. When the molecular
orbitals are expanded in a basis set, the resulting equations can be written as a matrix
eigenvalue problem. The elements in the Fock matrix correspond to integrals of one-
and two-electron operators over basis functions, multiplied by density matrix elements.
The HF equations in a basis set can thus be obtained by repeated diagonalizations of
a Fock matrix.

The HF model is a kind of branching point, where either additional approximations
can be invoked, leading to semi-empirical methods, or it can be improved by adding
additional determinants, thereby generating models that can be made to converge
towards the exact solution of the electronic Schrödinger equation.1
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HΨ = EΨ

Ψ = single determinant

HF equations

Semi-empirical
methods

Convergence to 
exact solution

Addition of
more determinants

Additional
approximations

Figure 3.1 The HF model as a starting point for more approximate or more accurate treatments

Semi-empirical methods are derived from the HF model by neglecting all integrals
involving more than two nuclei in the construction of the Fock matrix. Since the HF
model by itself is only capable of limited accuracy, such approximations will by them-
selves lead to a poor model. The success of semi-empirical methods relies on turning
the remaining integrals into parameters, and fitting these to experimental data, espe-
cially molecular energies and geometries. Such methods are computationally much
more efficient than the ab initio HF method, but are limited to systems for which
parameters exist.

HF theory only accounts for the average electron–electron interactions, and con-
sequently neglects the correlation between electrons. Methods that include electron
correlation require a multi-determinant wave function, since HF is the best single-
determinant wave function. Multi-determinant methods are computationally much
more involved than the HF model, but can generate results that systematically
approach the exact solution of the Schrödinger equation. These methods are described
in Chapter 4.

Density Functional Theory (DFT) in the Kohn–Sham version can be considered as
an improvement on HF theory, where the many-body effect of electron correlation 
is modelled by a function of the electron density. DFT is, analogously to HF, an 



independent-particle model, and is comparable to HF computationally, but provides
significantly better results. The main disadvantage of DFT is that there is no system-
atic approach to improving the results towards the exact solution. These methods are
described in Chapter 6.

We will also neglect relativistic effects in this chapter, which is justifiable for the first
three rows in the periodic table (i.e. Z < 36) unless high accuracy is required, but the
effects become important for the fourth and fifth row elements, and for transition
metals. A more detailed discussion can be found in Chapter 8. Spin-dependent effects
are relativistic in origin (e.g. spin–orbit interaction), but can be introduced in an ad
hoc fashion in non-relativistic theory, and calculated as corrections (for example by
means of perturbation theory) after the electronic Schrödinger equation has been
solved. This will be discussed in more detail in Chapter 10.

A word of caution before we start. A rigorous approach to many of the derivations
requires keeping track of several different indices and validating why certain trans-
formations are possible. The derivations will be performed less rigorously here, with
the emphasis on illustrating the flow of the argument, rather than focusing on the math-
ematical details.

It is conventional to use bra-ket notation for wave functions and multi-dimensional
integrals in electronic structure theory in order to simplify the notation. The equiva-
lences are defined in eq. (3.2).

(3.2)

The bra 〈n| denotes a complex conjugate wave function with quantum number n stand-
ing to the left of the operator, while the ket |m〉 denotes a wave function with quantum
number m standing to the right of the operator, and the combined bracket denotes that
the whole expression should be integrated over all coordinates. Such a bracket is often
referred to as a matrix element, or as an overlap element when there is no operator
involved.

3.1 The Adiabatic and Born–Oppenheimer Approximations
We will start by reviewing the Born–Oppenheimer approximation in more detail.2 The
total (non-relativistic) Hamiltonian operator can be written as kinetic and potential
energies of the nuclei and electrons.

(3.3)

The Hamiltonian operator is first transformed to the centre of mass system, where it
may be written as (using atomic units, see Appendix D):

(3.4)
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Here He is the electronic Hamiltonian operator and Hmp is called the mass-polarization
(Mtot is the total mass of all the nuclei). The mass-polarization term arises because 
it is not possible to rigorously separate the centre of mass motion from the 
internal motion for a system with more than two particles. We note that He only
depends on the nuclear positions (via Vne and Vnn, see eq. (3.23)), but not on their
momenta.

Assume for the moment that the full set of solutions to the electronic 
Schrödinger equation is available, where R denotes nuclear positions and r electronic
coordinates.

(3.5)

The Hamiltonian operator is Hermitian, eq. (3.6).

(3.6)

The Hermitian property means that the solutions can be chosen to be orthogonal and
normalized (orthonormal).

(3.7)

Without introducing any approximations, the total (exact) wave function can be written
as an expansion in the complete set of electronic functions, with the expansion coeffi-
cients being functions of the nuclear coordinates.

(3.8)

Inserting eq. (3.8) into the Schrödinger equation (3.1) gives eq. (3.9).

(3.9)

The nuclear kinetic energy is a sum of differential operators.

(3.10)

We have here introduced the ∇n
2 symbol, which implicitly includes the mass depend-

ence, sign and summation. Expanding out (3.8) gives eq. (3.11).
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(3.11)

Here we have used the fact that He and Hmp only act on the electronic wave function,
and the fact that Ψi is an exact solution to the electronic Schrödinger equation (eq.
(3.5)). We will now use the orthonormality of the Ψi by multiplying from the left by a
specific electronic wave function Ψj* and integrate over the electron coordinates.

(3.12)

The electronic wave function has now been removed from the first two terms while
the curly bracket contains terms that couple different electronic states. The first two
of these are the first- and second-order non-adiabatic coupling elements, respectively,
while the last is the mass polarization. The non-adiabatic coupling elements are impor-
tant for systems involving more than one electronic surface, such as photochemical
reactions.

In the adiabatic approximation the form of the total wave function is restricted to
one electronic surface, i.e. all coupling elements in eq. (3.12) are neglected (only the
terms with i = j survive). Except for spatially degenerate wave functions, the diagonal
first-order non-adiabatic coupling elements are zero.

(3.13)

Neglecting the mass-polarization and reintroducing the kinetic energy operator gives
eq. (3.14).

(3.14)

This can also be written as in eq. (3.15).

(3.15)

The U(R) term is known as the diagonal correction, and is smaller than Ej(R) by a
factor roughly equal to the ratio of the electronic and nuclear masses. It is usually a
slowly varying function of R, and the shape of the energy surface is therefore deter-
mined almost exclusively by Ej(R).3 In the Born–Oppenheimer approximation, the
diagonal correction is neglected, and the resulting equation takes on the usual
Schrödinger form, where the electronic energy plays the role of a potential energy.

(3.16)

In the Born–Oppenheimer picture, the nuclei move on a potential energy surface (PES)
which is a solution to the electronic Schrödinger equation. The PES is independent of
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the nuclear masses (i.e. it is the same for isotopic molecules), but this is not the case
when working in the adiabatic approximation since the diagonal correction (and mass-
polarization) depends on the nuclear masses. Solving eq. (3.16) for the nuclear wave
function leads to energy levels for molecular vibrations and rotations (Section 13.5),
which in turn are the fundamentals for many forms of spectroscopy, such as infrared
(IR), Raman, microwave, etc.

The Born–Oppenheimer (and adiabatic) approximation is usually a good approxi-
mation but breaks down when two (or more) solutions to the electronic Schrödinger
equation come close together energetically.4 Consider for example stretching the bond
in the LiF molecule. Near the equilibrium distance the molecule is very polarized, i.e.
described essentially by an ionic wave function, Li+F−. The molecule, however, dissoci-
ates into neutral atoms (all bonds break homolytically in the gas phase), i.e. the wave
function at long distance is of a covalent type, Li ⋅F⋅. At the equilibrium distance, the
covalent wave function is higher in energy than the ionic, but the situation reverses as
the bond distance increases. At some point they must “cross”. However, as they have
the same symmetry, they do not actually cross, but make an avoided crossing. In the
region of the avoided crossing, the wave function changes from being mainly ionic to
covalent over a short distance, and the adiabatic, and therefore also the Born–Oppen-
heimer, approximation, breaks down. This is illustrated in Figure 3.2, where the two
states have been calculated by a state average MCSCF procedure using the aug-cc-
pVTZ basis set. The energy of the ionic state is given by the solid line, while the energy
of the covalent state is shown by the dashed line. For bond distances near 6 Å, the
lowest energy wave function suddenly switches from being almost ionic to being cova-
lent, and the two states come within ~15kJ/mol of each other. In this region the
Born–Oppenheimer approximation becomes poor.
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For the majority of systems the Born–Oppenheimer approximation introduces only
very small errors. The diagonal Born–Oppenheimer correction (DBOC) can be evalu-
ated relatively easy, as it is just the second derivative of the electronic wave function
with respect to the nuclear coordinates, and is therefore closely related to the nuclear
gradient and second derivative of the energy (Section 10.8).

(3.17)

The largest effect is expected for hydrogen-containing molecules, since hydrogen has
the lightest nucleus. The absolute magnitude of the DBOC for H2O is ~7kJ/mol,
but the effect for the barrier towards linearity is only ~0.17kJ/mol.5 For the BH mol-
ecule, the equilibrium bond length elongates by ~0.0007Å when the DBOC is included,
and the harmonic vibrational frequency changes by ~2cm−1. For systems with heavier
nuclei, the effects are expected to be substantially smaller.

When the Born–Oppenheimer approximation is expected to be poor, the non-
adiabatic corrections will be large, and a better strategy in such cases may be to take
the quantum nature of the nuclei into account directly. Starting from eq. (3.8), both
the nuclear and electronic parts may be described by determinantal-based wave func-
tions expanded in Gaussian basis sets. Each of the two wave functions (electronic and
nuclear) can be described at different levels of approximations, with mean-field
methods (i.e. Hartree–Fock) being the first step.The energy spectrum arising from such
methods directly gives both nuclear (e.g. vibrations) and electronic states, but there are
still some open questions as to how to formulate a consistent theory for actually car-
rying out such calculations.6

It should be noted that once methods beyond the Born–Oppenheimer approxima-
tion are employed, concepts such as molecular geometries become blurred and energy
surfaces no longer exist. Nuclei are delocalized in a quantum description, and a “bond
length” is no longer a unique quantity, but must be defined according to the experi-
ment that it is compared with. An X-ray structure, for example, measures the scatter-
ing of electromagnetic radiation by the electron density, neutron diffraction measures
the scattering by the nuclei, while a microwave experiment measures the moments of
inertia. With nuclei as delocalized wave packages, these quantities must be obtained
as averages over the electronic and nuclear wave function components.

3.2 Self-Consistent Field Theory
Having stated the limitations (non-relativistic Hamiltonian operator and the
Born–Oppenheimer approximation), we are ready to consider the electronic
Schrödinger equation. It can only be solved exactly for the H2

+ molecule and similar
one-electron systems. In the general case, we have to rely on approximate (numerical)
methods. By neglecting relativistic effects, we also have to introduce electron spin as
an ad hoc quantum effect. Each electron has a spin quantum number of 1/2, and in the
presence of a magnetic field there are two possible states, corresponding to alignment
along or opposite to the field. The corresponding spin functions are denoted a and b,
and obey the orthonormality conditions in eq. (3.18).
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(3.18)

To generate approximate solutions we will employ the variational principle, which
states that any approximate wave function has an energy above or equal to the exact
energy (see Appendix B for a proof). The equality holds only if the wave function is
the exact function. By constructing a trial wave function containing a number of param-
eters, we can generate the “best” trial function of the given form by minimizing the
energy as a function of these parameters.

The energy of an approximate wave function can be calculated as the expectation
value of the Hamiltonian operator, divided by the norm of the wave function.

(3.19)

For a normalized wave function the denominator is 1, and therefore Ee = 〈Ψ|He|Ψ〉.The
total electronic wave function must be antisymmetric (change sign) with respect to
interchange of any two electron coordinates (since electrons are fermions, having a
spin of 1/2).The Pauli principle, which states that two electrons cannot have all quantum
numbers equal, is a direct consequence of this antisymmetry requirement. The anti-
symmetry of the wave function can be achieved by building it from Slater determinants
(SDs).The columns in a Slater determinant are single-electron wave functions, orbitals,
while the electron coordinates are along the rows. Let us in the following assume that
we are interested in solving the electronic Schrödinger equation for a molecule. The
one-electron functions are thus molecular orbitals (MO), which are given as the
product of a spatial orbital and a spin function (a or b), also known as spin-orbitals,
which may be taken as orthonormal. For the general case of N electrons and N spin-
orbitals, the Slater determinant is given in eq. (3.20).

(3.20)

We now make one further approximation, by taking the trial wave function to consist
of a single Slater determinant. As will be seen later, this implies that electron correla-
tion is neglected, or equivalently, the electron–electron repulsion is only included as
an average effect. Having selected a single-determinant trial wave function the varia-
tional principle can be used to derive the Hartree–Fock (HF) equations, by minimiz-
ing the energy.

3.3 The Energy of a Slater Determinant
In order to derive the HF equations, we need an expression for the energy of a single
Slater determinant. For this purpose, it is convenient to write it as an antisymmetriz-
ing operator A working on the “diagonal” of the determinant, where A can be
expanded as a sum of permutations. We will denote the diagonal product by Π, and
use the symbol Φ to represent the determinant wave function.
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(3.21)

The 1 operator is the identity, while the sum over Pij generates all possible permuta-
tions of two electron coordinates, the sum over Pijk all possible permutations of 
three electron coordinates, etc. It may be shown that A commutes with H, and that A
acting twice gives the same as A acting once, multiplied with the square root of N
factorial.

(3.22)

Consider now the Hamiltonian operator. The nuclear–nuclear repulsion does not
depend on electron coordinates and is a constant for a given nuclear geometry. The
nuclear–electron attraction is a sum of terms, each depending only on one electron
coordinate. The same holds for the electron kinetic energy. The electron–electron
repulsion, however, depends on two electron coordinates.

(3.23)

We note that the zero point of the energy corresponds to the particles being at rest
(Te = 0) and infinitely removed from each other (Vne = Vee = Vnn = 0).

The operators may be collected according to the number of electron indices.

(3.24)

The one-electron operator hi describes the motion of electron i in the field of all the
nuclei, and gij is a two-electron operator giving the electron–electron repulsion.

The energy may be written in terms of the permutation operator as (using eqs (3.21)
and (3.22))
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(3.25)

The nuclear repulsion operator is independent of electron coordinates and can imme-
diately be integrated to yield a constant.

(3.26)

For the one-electron operator only the identity operator can give a non-zero contri-
bution. For coordinate 1 this yields a matrix element over orbital 1.

(3.27)

This follows since all the MOs fi are normalized. All matrix elements involving a 
permutation operator gives zero. Consider for example the permutation of electrons
1 and 2.

(3.28)

This is zero as the integral over electron 2 is an overlap of two different MOs, which
are orthogonal (eq. (3.20)).

For the two-electron operator, only the identity and Pij operators can give non-
zero contributions. A three-electron permutation will again give a least one overlap 
integral between two different MOs, which will be zero. The term arising from the 
identity operator is given by eq. (3.29).

(3.29)

The J12 matrix element is called a Coulomb integral. It represents the classical repul-
sion between two charge distributions described by f1

2(1) and f 2
2(2). The term arising

from the Pij operator is given in eq. (3.30).

(3.30)

The K12 matrix element is called an exchange integral, and has no classical analogy.
Note that the order of the MOs in the J and K matrix elements is according to the
electron indices. The energy can thus be written as in eq. (3.31).
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(3.31)

The minus sign for the exchange term comes from the factor of (−1)p in the antisym-
metrizing operator, eq. (3.21). The energy may also be written in a more symmetrical
form as in eq. (3.32).

(3.32)

The factor of 1/2 allows the double sum to run over all electrons (it is easily seen from
eqs (3.29) and (3.30) that the Coulomb “self-interaction” Jii is exactly cancelled by the
corresponding “exchange” element Kii).

For the purpose of deriving the variation of the energy, it is convenient to express
the energy in terms of Coulomb (J) and exchange (K) operators.

(3.33)

Note that the J operator involves “multiplication” with a matrix element with the same
orbital on both sides, while the K operator “exchanges” the two functions on the right-
hand side of the g12 operator.

The objective is now to determine a set of MOs that makes the energy a minimum,
or at least stationary with respect to a change in the orbitals. The variation, however,
must be carried out in such a way that the MOs remain orthogonal and normalized.
This is a constrained optimization, and can be handled by means of Lagrange multi-
pliers (see Section 12.5). The condition is that a small change in the orbitals should not
change the Lagrange function, i.e. the Lagrange function is stationary with respect to
an orbital variation.

(3.34)

The variation of the energy is given by eq. (3.35).
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The third and fifth terms are identical (since the summation is over all i and j), as are
the fourth and sixth terms. They may be collected to cancel the factor of 1/2, and the
variation can be written in terms of a Fock operator, Fi.

(3.36)

The Fock operator is an effective one-electron energy operator, describing the kinetic
energy of an electron and the attraction to all the nuclei (hi), as well as the repulsion
to all the other electrons (via the J and K operators). Note that the Fock operator is
associated with the variation of the total energy, not the energy itself. The Hamilton-
ian operator (3.23) is not a sum of Fock operators.

The variation of the Lagrange function (eq. (3.34)) now becomes eq. (3.37).

(3.37)

The variational principle states that the desired orbitals are those that make δL = 0.
Making use of the complex conjugate properties in eq. (3.38) gives eq. (3.39).

(3.38)

(3.39)

The variation of either 〈δf| or 〈δf|* should make δL = 0, i.e. the first two terms in eq.
(3.39) must cancel, and the last two terms must cancel. Taking the complex conjugate
of the last two terms and subtracting them from the first two gives eq. (3.40).

(3.40)

This means that the Lagrange multipliers are elements of a Hermitian matrix 
(lij = lji*). The final set of Hartree–Fock equations may be written as in eq. (3.41).

(3.41)

The equations may be simplified by choosing a unitary transformation (Section 16.2)
that makes the matrix of Lagrange multipliers diagonal, i.e. lij = 0 and lii = ei). This
special set of molecular orbitals (f′) is called canonical MOs, and transforms eq. (3.41)
into a set of pseudo-eigenvalue equations.
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The Lagrange multipliers are seen to have the physical interpretation of MO energies,
i.e. they are the expectation value of the Fock operator in the MO basis (multiply eq.
(3.42) by f′i* from the left and integrate).

(3.43)

The Hartree–Fock equations form a set of pseudo-eigenvalue equations as the Fock
operator depends on all the occupied MOs (via the Coulomb and exchange operators,
eqs (3.36) and (3.33)). A specific Fock orbital can only be determined if all the other
occupied orbitals are known, and iterative methods must therefore be employed for
solving the problem. A set of functions that is a solution to eq. (3.42) is called self-
consistent field (SCF) orbitals.

The canonical MOs may be considered as a convenient set of orbitals for carrying
out the variational calculation. The total energy, however, depends only on the total
wave function, which is a Slater determinant written in terms of the occupied MOs, eq.
(3.20). The total wave function is unchanged by a unitary transformation of the occu-
pied MOs among themselves (rows and columns in a determinant can be added and
subtracted without affecting the determinant itself). After having determined the
canonical MOs, other sets of MOs may be generated by forming linear combinations,
such as localized MOs, or MOs displaying hybridization, which is discussed in more
detail in Section 9.4.

The orbital energies can be considered as matrix elements of the Fock operator with
the MOs (dropping the prime notation and letting f be the canonical orbitals). The
total energy can be written either as eq. (3.32) or in terms of MO energies (using the
definition of F in eqs (3.36) and (3.43)).

(3.44)

The total energy is not simply a sum of MO orbital energies. The Fock operator con-
tains terms describing the repulsion to all other electrons (J and K operators), and the
sum over MO energies therefore counts the electron–electron repulsion twice, which
must be corrected for. It is also clear that the total energy cannot be exact, as it
describes the repulsion between an electron and all the other electrons, assuming that
their spatial distribution is described by a set of orbitals. The electron–electron repul-
sion is only accounted for in an average fashion, and the HF method is therefore also
referred to as a mean-field approximation. As mentioned previously, this is due to the
approximation of a single Slater determinant as the trial wave function.

3.4 Koopmans’ Theorem
The canonical MOs are convenient for the physical interpretation of the Lagrange mul-
tipliers. Consider the energy of an N-electron system and the corresponding system
with one electron removed from orbital number k, and assume that the MOs are iden-
tical for the two systems (eq. (3.32)).
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(3.45)

Subtracting the two total energies gives eq. (3.46).

(3.46)

The last two sums are identical and the energy difference becomes eq. (3.47).

(3.47)

As seen from eq. (3.44), this is exactly the orbital energy ek. The ionization energy
within the “frozen MO” approximation is given simply as the orbital energy, a 
result known as Koopmans’ theorem.7 Similarly, the electron affinity of a neutral mol-
ecule is given as the orbital energy of the corresponding anion, or, since the MOs are
assumed constant, as the energy of the kth unoccupied orbital energy in the neutral
species.

(3.48)

Computationally, however, there is a significant difference between the eigenvalue of
an occupied orbital for the anion and the eigenvalue corresponding to an unoccupied
orbital in the neutral species when the orbitals are expanded in a set of basis functions
(Section 3.5). Eigenvalues corresponding to occupied orbitals are well defined and they
converge to a specific value as the size of the basis set is increased. In contrast, unoc-
cupied orbitals in a sense are only the “left-over” functions in a given basis set, and
their number increases as the basis set is made larger. The lowest unoccupied eigen-
value usually converges to zero, corresponding to a solution for a free electron,
described by a linear combination of the most diffuse basis functions. Equating ion-
ization potentials to occupied orbital energies is therefore justified based on the frozen
MO approximation, but taking unoccupied orbital energies as electron affinities is
questionable, since continuum solutions are mixed in.

3.5 The Basis Set Approximation
For small highly symmetric systems, such as atoms and diatomic molecules, the
Hartree–Fock equations may be solved by mapping the orbitals on a set of grid points,
and these are referred to as numerical Hartree–Fock methods.8 However, essentially
all calculations use a basis set expansion to express the unknown MOs in terms 
of a set of known functions. Any type of basis functions may in principle be used:
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exponential, Gaussian, polynomial, cube functions, wavelets, plane waves, etc. There
are two guidelines for choosing the basis functions. One is that they should have a
behaviour that agrees with the physics of the problem, since this ensures that the 
convergence as more basis functions are added is reasonably rapid. For bound atomic
and molecular systems, this means that the functions should go toward zero as the dis-
tance between the nucleus and the electron becomes large. The second guidelineis a
practical one: the chosen functions should make it easy to calculate all the required
integrals.

The first criterion suggest the use of exponential functions located on the nuclei,
since such functions are known to be exact solutions for the hydrogen atom. Unfor-
tunately, exponential functions turn out to be computationally difficult. Gaussian func-
tions are computationally much easier to handle, and although they are poorer at
describing the electronic structure on a one-to-one basis, the computational advantages
more than make up for this. For periodic systems, the infinite nature of the problem
suggests the use of plane waves as basis functions, since these are the exact solutions
for a free electron. We will return to the precise description of basis sets in Chapter 5,
but for now simply assume that a set of Mbasis basis functions located on the nuclei has
been chosen.

Each MO f is expanded in terms of the basis functions c, conventionally called
atomic orbitals (MO = LCAO, Linear Combination of Atomic Orbitals), although they
are generally not solutions to the atomic HF problem.

(3.49)

The Hartree–Fock equations (3.42) may be written as in eq. (3.50).

(3.50)

Multiplying from the left by a specific basis function and integrating yields the
Roothaan–Hall equations (for a closed shell system).9 These are the Hartree–Fock
equations in the atomic orbital basis, and all the Mbasis equations may be collected in a
matrix notation.

(3.51)

The S matrix contains the overlap elements between basis functions, and the F matrix
contains the Fock matrix elements. Each Fab element contains two parts from the Fock
operator (eq. (3.36)), integrals involving the one-electron operators, and a sum over
occupied MOs of coefficients multiplied with two-electron integrals involving the 
electron–electron repulsion. The latter is often written as a product of a density matrix
and two-electron integrals.
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(3.52)

For use in Section 3.8, it can also be written in a more compact notation.

(3.53)

Here G ⋅D denotes the contraction of the D matrix with the four-dimensional G tensor.
The total energy (eq. (3.32)) in term of integrals over basis functions is given in 

eq. (3.54).

(3.54)

The latter expression may also be written as in eq. (3.55).

(3.55)

The one- and two-electron integrals in the atomic basis are given as eq. (3.24).

(3.56)

The two-electron integrals are often written in a notation without electron coordinates
or the g operator present.
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This is known as the physicist’s notation, where the ordering of the functions is given
by the electron indices. They may also be written in an alternative order with both
functions depending on electron 1 on the left, and the functions depending on elec-
tron 2 on the right, this is known as the Mulliken or chemist’s notation.

(3.58)

The bra-ket notation has the electron indices 〈12|12〉, while the parenthesis notation
has the order (11|22). In many cases the integrals are written with only the 
indices given, i.e. 〈cacb|cgcd〉 = 〈ab|gd 〉. Since Coulomb and exchange integrals often 
are used as their difference, the following double-bar notations are also used 
frequently.

(3.59)

The Roothaan–Hall equation (3.51) is a determination of the eigenvalues of the Fock
matrix (see Section 16.2.3 for details). To determine the unknown MO coefficients cai,
the Fock matrix must be diagonalized. However, the Fock matrix is only known if all
the MO coefficients are known (eq. (3.52)).The procedure therefore starts off by some
guess of the coefficients, forms the F matrix, and diagonalizes it. The new set of coef-
ficients is then used for calculating a new Fock matrix, etc. This is continued until the
set of coefficients used for constructing the Fock matrix is equal to those resulting from
the diagonalization (to within a certain threshold). This set of coefficients determines
a self-consistent field solution.
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Figure 3.3 Illustration of the SCF procedure

The potential (or field) generated by the SCF electron density is identical to that
produced by solving for the electron distribution. The Fock matrix, and therefore the
total energy, only depends on the occupied MOs. Solving the Roothaan–Hall equa-
tions produces a total of Mbasis MOs, i.e. there are Nelec occupied and Mbasis − Nelec unoc-
cupied, or virtual, MOs. The virtual orbitals are orthogonal to all the occupied orbitals,



but have no direct physical interpretation, except as electron affinities (via Koopmans’
theorem).

In order to construct the Fock matrix in eq. (3.51), integrals between all pairs of basis
functions and the one-electron operator h are needed. For Mbasis functions there are of
the order of M 2

basis such one-electron integrals. These one-electron integrals are also
known as core integrals, as they describe the interaction of an electron with the whole
frame of bare nuclei. The second part of the Fock matrix involves integrals over four
basis functions and the g two-electron operator.There are of the order of M 4

basis of these
two-electron integrals. In conventional HF methods, the two-electron integrals are cal-
culated and saved before the SCF procedure is begun, and is then used in each 
SCF iteration. Formally, in the large basis set limit the SCF procedure involves a 
computational effort that increases as the number of basis functions to the fourth 
power. It will be shown below that the scaling may be substantially smaller in actual
calculations.

For the two-electron integrals, the four basis functions may be located on one, two,
three or four different atomic centres. It has already been mentioned that exponen-
tial-type basis functions (c � exp(−ar)) are fundamentally better suited for electronic
structure calculations. However, it turns out that the calculation of especially three-
and four-centre two-electron integrals is very time-consuming for exponential func-
tions. Gaussian functions (c � exp(−ar2)) are much easier for calculating two-electron
integrals. This is due to the fact that the product of two Gaussians located at two dif-
ferent positions (RA and RB) with different exponents (a and b) can be written as a
single Gaussian located at an intermediate position RC between the two original.
This allows compact formulas for all types of one- and two-electron integrals to be
derived.

(3.60)

As the number of basis functions increases, the accuracy of the MOs improves. In the
limit of a complete basis set (infinite number of basis functions), the results are iden-
tical to those obtained by a numerical HF method, and this is known as the
Hartree–Fock limit. This is not the exact solution to the Schrödinger equation, only the
best single-determinant wave function that can be obtained. In practical calculations,
the HF limit is never reached, and the term Hartree–Fock is normally used also to
cover SCF solutions with an incomplete basis set. Ab initio HF methods, where all the
necessary integrals are calculated from a given basis set, are one-dimensional. As the
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size of the basis set is increased, the variational principle ensures that the results
become better (at least in an energetic sense). The quality of a result can therefore be
assessed by running calculations with an increasingly larger basis set.

3.6 An Alternative Formulation of the Variational Problem
The objective is to minimize the total energy as a function of the molecular orbitals,
subject to the orthogonality constraint. In the above formulation, this was handled by
means of Lagrange multipliers. The final Fock matrix in the MO basis is diagonal, with
the diagonal elements being the orbital energies. During the iterative sequence, i.e.
before the orbitals have converged to an SCF solution, the Fock matrix is not diago-
nal. Starting from an initial set of molecular orbitals, the problem may also be formu-
lated as a rotation of the orbitals (unitary transformation) in order to make the
operator diagonal.10 Since the operator depends on the orbitals, the procedure again
becomes iterative.

The orbital rotation is given by a unitary matrix U, which can be written as an expo-
nential transformation.

(3.61)

The X matrix contains the parameters describing the unitary transformation of the
Mbasis orbitals, being of the size of Mbasis × Mbasis. The orthogonality is incorporated by
requiring that the X matrix is antisymmetric, xij = −xji.

(3.62)

Normally the orbitals are real, and the unitary transformation becomes an orthogonal
transformation. In the case of only two orbitals, the X matrix contains the rotation
angle a, and the U matrix describes a 2 × 2 rotation. The connection between X and
U is illustrated in Section 16.2 (Figure 16.3) and involves diagonalization of X (to give
eigenvalues of ± ia), exponentiation (to give complex exponentials that may be written
as cos a ± isin a), followed by back-transformation.

(3.63)

In the general case, the X matrix contains rotational angles for rotating all pairs of
orbitals.

It should be noted that the unoccupied orbitals do not enter the energy expression
(eq. (3.32)), and a rotation between the virtual orbitals can therefore not change the
energy. A rotation between the occupied orbitals corresponds to making linear com-
binations of these, but this does not change the total wave function or the total energy.
The occupied–occupied and virtual–virtual blocks of the X matrix can therefore be
chosen as zero. The variational parameters are the elements in the X matrix that
describe the mixing of the occupied and virtual orbitals, i.e. there are a total of Nocc ×
(Mbasis − Nocc) parameters. The goal of the iterations is to make the off-diagonal ele-
ments in the occupied–virtual block of the Fock matrix zero. Alternatively stated, the
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off-diagonal elements are the gradients of the energy with respect to the orbitals, and
the stationary condition is that the gradient vanishes.

Using the concepts from Chapter 16, the variational problem can be considered as
a rotation of the coordinate system. In the original function space, the basis functions,
the Fock operator depends on all the Mbasis functions, and the corresponding Fock
matrix is non-diagonal. By performing a rotation of the coordinate system to the
molecular orbitals, however, the matrix can be made diagonal, i.e. in this coordinate
system the Fock operator only depends on Nocc functions.

3.7 Restricted and Unrestricted Hartree–Fock
So far there has not been any restriction on the MOs used to build the determinantal
trial wave function. The Slater determinant has been written in terms of spin-orbitals,
eq. (3.20), being products of a spatial orbital and a spin function (a or b). If there are
no restrictions on the form of the spatial orbitals, the trial function is an Unrestricted
Hartree–Fock (UHF) wave function.11 The term different orbitals for different spins
(DODS) is also sometimes used. If the interest is in systems with an even number of
electrons and a singlet type of wave function (a closed shell system), the restriction
that each spatial orbital should have two electrons, one with a and one with b spin, is
normally made. Such wave functions are known as Restricted Hartree–Fock (RHF).
Open-shell systems may also be described by restricted type wave functions, where the
spatial part of the doubly occupied orbitals is forced to be the same, and this is known
as Restricted Open-shell Hartree–Fock (ROHF). For open-shell species, a UHF treat-
ment leads to well-defined orbital energies, which may be interpreted as ionization
potentials (Section 3.4). For an ROHF wave function, it is not possible to choose a
unitary transformation that makes the matrix of Lagrange multipliers in eq. (3.41) 
diagonal, and orbital energies from an ROHF wave function are consequently not
uniquely defined and cannot be equated to ionization potentials by a Koopmans-type
argument.
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The UHF wave function allows different spatial orbitals for the two electrons in an
orbital. As restricted type wave functions put constraints on the variation parameters,
the energy of a UHF wave function is always lower than or equal to a corresponding
R(O)HF type wave function. For singlet states near the equilibrium geometry, it is
usually not possible to lower the energy by allowing the a and b MOs to be different.
For an open-shell system such as a doublet, however, it is clear that forcing the a and
b MOs to be identical is a restriction. If the unpaired electron has a spin, it will inter-
act differently with the other a electrons than with the b electrons, and consequently
the optimum a and b orbitals will be different. The UHF description, however, has the
disadvantage that the wave function is not an eigenfunction of the S2 operator (unless
it is equal to the RHF solution), where the S2 operator evaluates the value of the total
electron spin squared.This means that a “singlet” UHF wave function may also contain
contributions from higher lying triplet, quintet, etc., states. Similarly, a “doublet” UHF
wave function will contain spurious (non-physical) contributions from higher lying
quartet, sextet, etc., states. This will be discussed in more detail in Section 4.4.

Semi-empirical methods (Section 3.10) sometimes employ the so-called half-electron
method for describing open-shell systems, such as doublets and triplets. In this model
a doublet state is described by putting two “half” electrons in the same orbitals with
opposite spins, i.e. constructing an RHF type wave functions where all electron spins
are paired. A triplet state may similarly be modelled as having two orbitals, each occu-
pied by two half electrons with opposite spin. The main motivation behind this artifi-
cial construct is that open- and closed shell systems (such as a triplet and singlet state)
will have different amounts of electron correlation. Since semi-empirical methods
perform the parameterization based on single-determinant wave functions, the half-
electron method cancels the difference in electron correlations, and allows open- and
closed shell systems to be treated on an equal footing in terms of energy. It has the
disadvantage that the open-shell nature is no longer present in the wave function; it is
for example not possible to calculate spin densities (i.e. where the unpaired electron(s)
is(are) most likely to be).

3.8 SCF Techniques
As discussed in Section 3.6, the Roothaan–Hall (or Pople–Nesbet for the UHF case)
equations must be solved iteratively since the Fock matrix depends on its own solu-
tions. The procedure illustrated in Figure 3.3 involves the following steps:

(1) Calculate all one- and two-electron integrals.
(2) Generate a suitable start guess for the MO coefficients.
(3) Form the initial density matrix.
(4) Form the Fock matrix as the core (one-electron) integrals + the density matrix

times the two-electron integrals.
(5) Diagonalize the Fock matrix. The eigenvectors contain the new MO coefficients.
(6) Form the new density matrix. If it is sufficiently close to the previous density

matrix, we are done, otherwise go to step 4.

There are several points hidden in this scheme. Will the procedure actually converge
at all? Will the SCF solution correspond to the desired energy minimum (and not a
maximum or saddle point)? Can the number of iterations necessary for convergence
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be reduced? Does the most efficient method depend on the type of computer and/or
the size of the problem?

Let us look at some of the SCF techniques used in practice.

3.8.1 SCF convergence

There is no guarantee that the above iterative scheme will converge. For geometries
near equilibrium and using small basis sets, the straightforward SCF procedure often
converges unproblematically. Distorted geometries (such as transition structures) and
large basis sets containing diffuse functions, however, rarely converge, and metal com-
plexes, where several states with similar energies are possible, are even more trouble-
some. There are various tricks that can be tried to help convergence:12

(1) Extrapolation. This is a method for trying to make the convergence faster by
extrapolating previous Fock matrices to generate a (hopefully) better Fock matrix
than the one calculated directly from the current density matrix. Typically, the last
three matrices are used in the extrapolation.

(2) Damping. The reason for divergence, or very slow convergence, is often due to
oscillations. A given density matrix Dn gives a Fock matrix Fn, which, upon diago-
nalization, gives a density matrix Dn+1. The Fock matrix Fn+1 from Dn+1 gives a
density matrix Dn+2 that is close to Dn, but Dn and Dn+1 are very different, as illus-
trated in Figure 3.5. The damping procedure tries to solve this by replacing the
current density matrix with a weighted average, D′n+1 = wDn + (1 − w)Dn+1. The
weighting factor w may be chosen as a constant or changed dynamically during
the SCF procedure.
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(3) Level shifting. This technique13 is perhaps best understood in the formulation of a
rotation of the MOs that form the basis for the Fock operator (Section 3.6). At
convergence, the Fock matrix elements in the MO basis between occupied and
virtual orbitals are zero. The iterative procedure involves mixing (making linear
combinations of) occupied and virtual MOs. During the iterative procedure, these
mixings may be large, causing oscillations or making the total energy increase. The
degree of mixing may be reduced by artificially increasing the energy of the virtual
orbitals. If a sufficiently large constant is added to the virtual orbital energies, it
can be shown that the total energy is guaranteed to decrease, thereby forcing con-
vergence. The more the virtual orbitals are raised in energy, the more stable is the



convergence, but the rate of convergence also decreases with level shifting. For
large enough shifts, convergence is guaranteed, but it is likely to occur very slowly,
and may in some cases converge to a state that is not the ground state.

(4) Direct inversion in the iterative subspace (DIIS). This procedure was developed by
P. Pulay and is an extrapolation procedure.14 It has proved to be very efficient in
forcing convergence and in reducing the number of iterations at the same time,
and it is now one of the most commonly used methods for helping SCF conver-
gence. The idea is as follows. As the iterative procedure runs, a sequence of Fock
and density matrices (F0, F1, F2, . . . and D0, D1, D2, . . .) are produced. At each iter-
ation, it is also assumed that an estimate of the “error” (E0, E1, E2, . . .) is available,
i.e. how far the current Fock/density matrix is from the converged solution. The
converged solution has an error of zero, and the DIIS method forms a linear com-
bination of the error indicators that, in a least squares sense, is a minimum (as close
to zero as possible). In the function space generated by the previous iterations 
we try to find the point with lowest error, which is not necessarily one of the 
points actually calculated. It is common to use the trace (sum of diagonal elements)
of the matrix product of the error matrix with itself as a scalar indicator of the
error.

(3.64)

Minimization of the ErrF subject to the normalization constraint is handled by the
Lagrange method (Section 12.5), and leads to the following set of linear equations,
where l is the multiplier associated with the normalization.

(3.65)

In iteration n the A matrix has dimension (n + 1) × (n + 1), where n usually is 
less than 20. The coefficients c can be obtained by directly inverting the A
matrix and multiplying it onto the b vector, i.e. in the “subspace” of the “iterations”
the linear equations are solved by “direct inversion”, thus the name DIIS.
Having obtained the coefficients that minimize the error function at iteration n,
the same set of coefficients is used for generating an extrapolated Fock matrix 
(F*) at iteration n, which is used in place of Fn for generating the new density
matrix.
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(3.66)

The only remaining question is the nature of the error function. Pulay suggested
the difference FDS − SDF (S is the overlap matrix), which is related to the gradi-
ent of the SCF energy with respect to the MO coefficients, and this has been found
to work well in practice.A closely related method uses the energy as the error indi-
cator, and has the acronym EDIIS.15

(5) “Direct minimization” techniques. The variational principle indicates that we want
to minimize the energy as a function of the MO coefficients or the corresponding
density matrix elements, as given by eq. (3.54). In this formulation, the problem is
no different from other types of non-linear optimizations, and the same types of
technique, such as steepest descent, conjugated gradient or Newton–Raphson
methods can be used (see Chapter 12 for details).

As mentioned in Section 3.6, the variational procedure can be formulated in
terms of an exponential transformation of the MOs, with the (independent) vari-
ational parameters contained in an X matrix. Note that the X-variables are pre-
ferred over the MO coefficients in eq. (3.54) for optimization, since the latter are
not independent (the MOs must be orthonormal). The exponential may be written
as a series expansion, and the energy expanded in terms of the X-variables describ-
ing the occupied–virtual mixing of the orbitals.16

(3.67)

The first and second derivatives of the energy with respect to the X-variables (E′(0)
and E″ (0)) can be written in terms of Fock matrix elements and two-electron inte-
grals in the MO basis.17 For an RHF type wave function these are given in eq.
(3.68).

(3.68)

The gradient of the energy is an off-diagonal element of the molecular Fock matrix,
which is easily calculated from the atomic Fock matrix. The second derivative,
however, involves two-electron integrals that require an AO to MO transforma-
tion (see Section 4.2.1), and is therefore computationally expensive.

In a density matrix formulation, the energy depends on the density matrix ele-
ments as variables, and can formally be written as the trace of the contraction of
the density matrix with the one-electron matrix h and the two-electron matrix G,
with the latter depending implicitly on D.

(3.69)

The density matrix elements cannot be varied freely, however, as the orbitals 
must remain orthonormal, and this constraint can be formulated as the density
matrix having to be idempotent, DSD = D. It is difficult to ensure this during an
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optimization step, but the non-idempotent density matrix derived from taking an
optimization step can be “purified” by the McWeeny procedure.18

(3.70)

The idempotency condition ensures that each orbital is occupied by exactly one
electron. E. Cancès has shown that relaxing this condition to allow fractional occu-
pancy during the optimization improves the convergence, a procedure named
relaxed constraint algorithm (RCA)19 and which was subsequently improved using
ideas from the DIIS algorithm, leading to the EDIIS (Energy DIIS) method.15 The
optimization in terms of density matrix elements has the potential advantage that
the matrix becomes sparse for large systems, and can therefore be solved by tech-
niques that scale linearly with the system’s size.20

The Newton–Raphson method has the advantage of being quadratically con-
vergent, i.e. sufficiently near the minimum it converges very fast.The main problem
in using Newton–Raphson methods for wave function optimization is computa-
tional efficiency. The exact calculation of the second derivative matrix is somewhat
demanding, and each iteration in a Newton–Raphson optimization therefore takes
longer than the simple Roothaan–Hall iterative scheme. Owing to the fast con-
vergence near the minimum, a Newton–Raphson approach normally takes fewer
iterations than for example DIIS, but the overall computational time is still a factor
of ~2 longer. Alternative schemes, where an approximation to the second deriva-
tive matrix is used (pseudo-Newton–Raphson), have also been developed, and
they are often competitive with DIIS.21 It should be kept in mind that the simple
Newton–Raphson is unstable, and requires some form of stabilization, for example
by using the augmented Hessian techniques discussed in Section 12.2.22 Alterna-
tively, for large system (thousands of basis functions) the optimization may be
carried out by conjugate gradient methods, but the convergence characteristic of
these methods is significantly poorer.23 Direct minimization methods have the
advantage of a more stable convergence for difficult systems, where DIIS may
display problematic behaviour or converge to solutions that are not the global
minimum.

3.8.2 Use of symmetry

From group theory it may be shown that an integral can only be non-zero if the inte-
grand belongs to the totally symmetric representation. Furthermore, the product of
two functions can only be totally symmetric if they belong to the same irreducible rep-
resentation. As both the Hamiltonian and Fock operators are totally symmetric (oth-
erwise the energy would change by a rotation of the coordinate system), integrals of
the following type can only be non-zero if the basis functions involving the same elec-
tron coordinate belong to the same representation.

(3.71)

Similar considerations hold for the two-electron integrals.
By forming suitable linear combinations of basis functions (symmetry-adapted func-

tions), many one- and two-electron integrals need not be calculated as they are known
to be exactly zero owing to symmetry. Furthermore, the Fock (in an HF calculation)

c c c c c ca b a b a b1 1 1 1 1 11 1 1( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫d d dr F r H r

D D Dpurified = −3 22 3
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or Hamiltonian matrix (in a configuration interaction (CI) calculation) will become
block-diagonal, as only matrix elements between functions having the same symmetry
can be non-zero.The saving depends on the specific system, but as a guideline the com-
putational time is reduced by roughly a factor corresponding to the order of the point
group (number of symmetry operations). Although the large majority of molecules do
not have any symmetry, a sizeable proportion of the small molecules for which ab initio
electronic structure calculations are possible are symmetric. Almost all ab initio pro-
grams employ symmetry as a tool for reducing the computational effort.

3.8.3 Ensuring that the HF energy is a minimum, and the correct minimum

The standard iterative procedure produces a solution where the variation of the HF
energy is stationary with respect to all orbital variations, i.e. the first derivatives of the
energy with respect to the MO coefficients are zero. In order to ensure that this cor-
responds to an energy minimum, the second derivatives should also be calculated.24

This is a matrix the size of the number of occupied MOs multiplied by the number of
virtual MOs (identical to that arising in quadratic convergent SCF methods (Section
3.8.1)), and the eigenvalues of this matrix should all be positive in order to be an energy
minimum. Of course only the lowest eigenvalue is required to probe whether the solu-
tion is a minimum. A negative eigenvalue means that it is possible to get to a lower
energy state by “exciting” an electron from an occupied to an unoccupied orbital, i.e.
the solution is unstable. In practice, the stability is rarely checked – it is assumed that
the iterative procedure has converged to a minimum. It should be noted that a posi-
tive definite second-order matrix only ensures that the solution is a local minimum;
there may be other minima with lower energies.

The problem of convergence to saddle points in the wave function parameter space
and the existence of multiple minima is rarely a problem for systems composed of ele-
ments from the first two rows in the periodic table. For systems having more than one
metal atom with several partially filled d-orbitals, however, care must be taken to
ensure that the iterative procedure converges to the desired solution. Consider for
example the Fe2S2 system in Figure 3.6, where the d-electrons of two Fe atoms are
coupled through the sulfur bridge atoms.

3.8 SCF TECHNIQUES 105

S

S

R

R

R

R

Fe Fe

R

RR

R

High-spin coupling

Low-spin coupling

Figure 3.6 Two different singlet states generated by coupling either two high-spin or two low-spin
states



Each of the two Fe atoms is formally in the +III oxidation state, and therefore has
a d5 configuration. A high-spin state corresponding to all the ten d-electrons being
aligned can readily be described by a singledeterminant wave function, but the situa-
tion is more complicated for a low-spin singlet state. A singlet HF wave function must
have an equal number of orbitals with a and b electron spin, but this can be obtained
in several different ways. If each metal atom is in a high-spin state, an overall singlet
state must have all the d-orbitals on one Fe atom occupied by electrons with a spin,
while all the d-orbitals on the other Fe atom must be occupied by electrons with b spin.
An alternative singlet state, however, can be generated by coupling the single unpaired
electron from the two Fe centres in a low-spin configuration. Each of these two wave
functions will be valid minima in the orbital parameter space, but clearly describe com-
plexes with different properties. Note also that neither of these two singlet wave func-
tions can be described by an RHF type wave function. UHF type wave functions with
the above two types of spin coupling can be generated, but will often be severely spin
contaminated. One can consider other spin coupling schemes to generate an overall
singlet wave function, and the situation becomes more complicated if intermediate
(triplet, pentet, etc.) spin states are desired, and for mixed valence states (Fe2+/Fe3+).
The complications further increase when larger clusters are considered, as for example
with the Fe4S4 moiety involved in electron transfer in the photosystem I and nitroge-
nase enzymes.

The question as to whether the energy is a minimum is closely related to the concept
of wave function stability. If a lower energy RHF solution can be found, the wave func-
tion is said to possess a singlet instability. It is also possible that an RHF type wave
function is a minimum in the coefficient space, but is a saddle point if the constraint
of double occupancy of each MO is relaxed. This indicates that a lower energy wave
function of the UHF type can be constructed, and this is called a triplet instability. It
should be noted that in order to generate such UHF wave functions for a singlet state,
an initial guess of the SCF coefficients must be specified that has the spatial parts of
at least one set of a and b MOs different. There are other types of such instabilities,
such as relaxing the constraint that the MOs should be real (allowing complex orbitals),
or the constraint that a MO should only have a single spin function. Relaxing the latter
produces the “general” HF method, where each MO is written as a spatial part having
a spin plus another spatial part having b spin.25 Such wave functions are no longer
eigenfunctions of the Sz operator, and are rarely used.

Another aspect of wave function instability concerns symmetry breaking, i.e. the
wave function has a lower symmetry than the nuclear framework.26 It occurs, for
example, with the allyl radical with an ROHF type wave function. The nuclear geom-
etry has C2v symmetry, but the C2v symmetric wave function corresponds to a (first-
order) saddle point. The lowest energy ROHF solution has only Cs symmetry, and
corresponds to a localized double bond and a localized electron (radical). Relaxing the
double occupancy constraint, and allowing the wave function to become UHF, re-
establishes the correct C2v symmetry. Such symmetry breaking phenomena usually
indicate that the type of wave function used is not flexible enough for even a qualita-
tively correct description.
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3.8.4 Initial guess orbitals

The quality of the initial guess orbitals influences the number of iterations necessary
for achieving convergence. As each iteration involves a computational effort propor-
tional to M 4

basis, it is of course desirable to generate as good a guess as possible. Dif-
ferent start orbitals may in some cases result in convergence to different SCF solutions,
or make the difference between convergence and divergence. One possible way of 
generating a set of start orbitals is to diagonalize the Fock matrix consisting only of
the one-electron contributions, the “core” matrix. This corresponds to initializing 
the density matrix as a zero matrix, totally neglecting the electron–electron repulsion
in the first step. This is generally a poor guess, but it is available for all types of 
basis set and is easily implemented. Essentially all programs therefore have it as an
option.

More sophisticated procedures involve taking the start MO coefficients from a semi-
empirical calculation, such as Extended Hückel Theory (EHT) or Intermediate
Neglect of Differential Overlap (INDO) (Sections 3.13 and 3.10). The EHT method
has the advantage that it is readily parameterized for all elements, and it can provide
start orbitals for systems involving elements from essentially the whole periodic table.
An INDO calculation normally provides better start orbitals, but at a price. The INDO
calculation itself is iterative, and it may suffer from convergence problems, just as the
ab initio SCF itself.

Many systems of interest are symmetric. The MOs will transform as one of the irre-
ducible representations in the point group, and most programs use this to speed up
calculations. The initial guess for the start orbitals involves selecting how many 
MOs of each symmetry should be occupied, i.e. the electron configuration.
Different start configurations produce different final SCF solutions. Many programs
automatically select the start configuration based on the orbital energies of the start-
ing MOs, which may be “wrong” in the sense that it does not produce the desired solu-
tion. Of course, a given solution may be checked to see if it actually corresponds to an
energy minimum, but as stated above, this is rarely done. Furthermore, there may be
several (local) minima, thus the verification that the found solution is an energy
minimum is no guarantee that it is the global minimum. A particular case is open-shell
systems having at least one element of symmetry, as the open-shell orbital(s) 
determine the overall wave function symmetry. An example is the N2

+ radical cation,
where two states of Σg and Πu symmetry exist with a difference of only ~70kJ/mol in
energy.

The reason different initial electron configurations may generate different final solu-
tions is because matrix elements between orbitals belonging to different representa-
tions are exactly zero, thus only orbitals belonging to the same representation can mix.
Forcing the program to run the calculation without symmetry usually does not help.
Although turning the symmetry off will make the program actually calculate all matrix
elements, those between MOs of different symmetry will still be zero (except for
numerical inaccuracies). It is therefore often necessary to specify manually which
orbitals should be occupied initially to generate the desired solution.
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3.8.5 Direct SCF

The number of two-electron integrals formally grows as the fourth power of the size
of the basis set. Owing to permutation symmetry (the following integrals are identical
〈c1c2|c3c4〉 = 〈c3c2|c1c4〉 = 〈c1c4|c3c2〉 = 〈c3c4|c1c2〉 = 〈c2c1|c4c3〉 = 〈c4c1|c2c3〉 = 〈c2c3|c4c1〉 =
〈c4c3|c2c1〉) the total number is approximately 1/8 M 4

basis. Each integral is a floating point
number associated with four indices indicating which basis functions are involved in
the integral. Storing a floating point number in double precision (which is necessary
for calculating the energy with an accuracy of ~14 digits) requires 64 bits = 8 bytes. A
basis set with 100 functions thus generates ~12 × 106 integrals, requiring ~100 Mbytes
of disk space or memory. The disk space required for storing the integrals rises rapidly,
thus a basis set with 1000 functions requires ~1000 Gbytes of disk space (or memory).
This is out of reach for most computers. In practice, the storage requirement is some-
what less, since many of the integrals are small, and can be ignored. Typically, a cutoff
around ~10−10 is employed: if the integral is less than this value it is not stored, and
consequently makes a zero contribution to the construction of the Fock matrix in the
iterative procedure. However, the disk space requirement effectively limits conven-
tional HF methods to basis sets smaller than ~500 functions.

Older computers had only very limited amounts of memory, and disk storage of the
integrals was the only option. Modern machines often have quite significant amounts
of memory – a few hundred Gbytes is not uncommon. For small- and medium-sized
systems, it may be possible to store all the integrals in memory instead of on disk. Such
“in-core” methods are very efficient for performing an HF calculation. The integrals
are only calculated once, and each SCF iteration is just a multiplication of the integral
tensor with a density matrix to form the Fock matrix (eq. (3.53)0. Essentially all
machines have optimized routines for doing matrix multiplication efficiently. The only
limitation is the quartic (M 4

basis) growth of the memory requirement with basis set 
size, which in practice restricts such in-core methods to basis sets with less than ~200
functions.

The disk space (or memory) requirement can be reduced dramatically by perform-
ing the SCF in a direct fashion.27 In the direct SCF method, the integrals are calculated
from scratch in each iteration. At first this would appears to involve a computational
effort that is larger than a conventional HF calculation by a factor close to the number
of iterations. There are, however, a number of considerations that often makes direct
SCF methods computationally quite competitive or even advantageous.

In disk-based methods, all the integrals are first calculated and written to disk. To
reduce the disk space requirement, the four indices associated with each integral are
“packed” into a single number, and written to disk. The whole set of integrals must be
read in each iteration, and the indices “unpacked” before the integrals are multiplied
with the proper density matrix elements and added to the Fock matrix. Typically, half
the time in an SCF procedure is spent calculating the integrals and writing them to
disk, the other half is spent reading, unpacking and forming the Fock matrix maybe 20
times. In a direct approach, there is no overhead due to packing/unpacking of indices,
or writing/reading of integrals.

In disk-based methods, only integrals larger than a certain cutoff are saved. In direct
methods, it is possible to ignore additional integrals. The contribution to a Fock matrix
element is a product of density matrix elements and two-electron integrals. In disk-
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based methods, the density matrix is not known when the integrals are calculated, and
all integrals above the cutoff must be saved and processed in each iteration. In direct
methods, however, the density matrix is known at the time when the integrals are cal-
culated. Thus if the product of the density matrix elements and the integral is less than
the cutoff, the integral can be ignored. Of course, this is only a saving if an estimate of
the size of the integral is available before it is actually calculated. One such estimate
is the Schwarz inequality (eq. (3.72)), but more advanced screening methods have also
been developed.28

(3.72)

The number of two-centre integrals on the right-hand side is quite small (of the order
of M 2

basis) and can easily be calculated beforehand. Thus if the product of the density
matrix elements and the upper limit of the integral is less than the cutoff, the integral
does not need to be calculated. In practice, integrals are calculated in batches, where
a batch is a collection of integrals having the same exponent. For a 〈pp|pp〉 type batch
there are thus 81 individual integrals, a 〈dd|dd〉 type batch has 625 individual integrals,
etc. The integral screening is normally done at the batch level, i.e. if the largest term
is smaller than a given cutoff, the whole batch can be neglected.

The above integral screening is even more advantageous if the Fock matrix is formed
incrementally. Consider two sequential density and Fock matrices in the iterative 
procedure (eq. (3.53)).

(3.73)

The change in the Fock matrix depends only on the change in the density matrix. Com-
bined with the above screening procedure, it is thus only necessary to calculate those
integrals to be multiplied with density matrix elements that have changed significantly
since the last iteration. As the SCF converges, there are fewer and fewer integrals that
need to be calculated.

The formal scaling of HF methods is M 4
basis, since the total number of two-electron

integrals increases as M 4
basis. As just seen, however, we do not need to calculate all the

two-electron integrals – many can be neglected without affecting the final results. The
observed scaling is therefore less than the quartic dependence, but the exact power
depends on how the size of the problem is increased. If the number of atoms is
increased for a fixed basis set per atom, the scaling depends on the dimensionality of
the atomic arrangement and the size of the atomic basis. The most favourable case is
a small compact basis set (such as a minimum basis) and an essential one-dimensional
system, such as polyacetylene, H—(C≡C)n—H, or linear alkanes. In this case, the
scaling is close to M 2

basis once the number of functions exceeds ~100.A two-dimensional
arrangement of atoms (such as a slab of graphite) has a slightly larger exponent
dependence, while a three-dimensional system (such as a diamond structure) has a
power dependence close to M 2.3

basis.29 It should be noted that most molecular systems
have a dimensionality between two and three – the presence of “holes” in the struc-
ture reduces the effective dimensionality to below three. With a larger basis set,
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especially if diffuse functions are present, the screening of integrals becomes much less
efficient, or equivalently, the molecular system must be significantly larger to achieve
the limiting scaling. In practice, however, the increase in the total number of basis func-
tions is often not due to an enlargement of the molecular system, but rather to the use
of an increasingly larger basis set per atom for a fixed sized molecule. For such cases,
the observed scaling is often worse than the theoretical M 4

basis dependence, since the
integral screening becomes less and less efficient.

The combination of these effects means that the increase in computational time for
a direct SCF calculation compared with a disk-based method is less than initially
expected. For a medium-sized SCF calculation that requires say 20 iterations, the
increase in CPU time may only be a factor of 2 or 3. Due to the more efficient screen-
ing, however, the direct method actually becomes more and more advantageous rela-
tive to disk-based methods as the size of the system increases. At some point, direct
methods will therefore require less CPU time than a conventional method. Exactly
where the cross-over point occurs depends on the way the number of basis functions
is increased, the machine type and the efficiency of the integral code. Small compact
basis sets in general experience the cross-over point quite early (perhaps around 100
functions) while it occurs later for large extended basis sets. Since conventional disk-
based methods are limited to 200–300 basis functions, direct methods are normally the
only choice for large calculations. Direct methods are essentially only limited by the
available CPU time, and calculations involving up to several thousand basis functions
have been reported.

Although direct methods for small- and medium-size systems require more CPU
time than disk-based methods, this is in many cases irrelevant. For the user the deter-
mining factor is the time from submitting the calculation to the results being available.
Over the years the speed of CPUs has increased much more rapidly than the speed of
data transfer to and from disk. Most modern machines have very slow data transfer to
disk compared with CPU speed. Measured by the elapsed wall clock time, disk-based
HF methods are often the slowest in delivering the results, despite the fact that they
require the least CPU time. Simply speaking, the CPU may be spending most of its
time waiting for data to be transferred from disk. Direct methods, on the other hand,
use the CPU with a near 100% efficiency. For machines without fast disk transfer (such
as workstation-type machines) the cross-over point for direct versus conventional
methods in terms of wall clock time may be so low that direct methods are always 
preferred.

Finally, it should be mentioned that there is a strong research effort towards design-
ing computational chemistry programs to run on parallel computers. These types of
machines have more than one CPU, typically in the range 10–1000. Making direct SCF
calculations run efficiently in a parallel fashion is fairly easy: each processor is given
the task of calculating a certain batch of integrals and the total Fock matrix is simply
the sum of contributions from each individual CPU.

3.8.6 Reduced scaling techniques

The computational bottleneck in HF methods is the calculation of the two-electron
Coulomb and exchange terms arising from the electron–electron repulsion. In non-
metallic systems, the exchange term is quite short-ranged, while the Coulomb interac-
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tion is long-ranged. In the large system limit, the Coulomb integrals thus dominate the
computational cost. By using the screening techniques described in the previous
section, the scaling in the large system limit will eventually be reduced from Mbasis

4 to
Mbasis

2. Similar considerations hold for DFT methods (Chapter 6). Although an Mbasis
2

scaling is quite modest, it is clear that a reduction down to linear scaling will be advan-
tageous in order to move the calculations into the thousand atoms regime.30

The Fast Multipole Moment (FMM) method (Section 14.3) was originally developed
for calculating interactions between point charges. A direct calculation involves a
summation over all pairs, i.e. a computational effort that increases with Mbasis

2.The idea
in FMM is to split the total interaction into a near- and a far-field. The near-field is
evaluated directly, while the far-field is calculated by dividing the physical space into
boxes, and the interaction between all the charges in one box and all the charges in
another is approximated as interactions between multipoles located at the centre of
the boxes. The further away from each other two boxes are, the larger the boxes can
be for a given accuracy, thereby reducing the formal Mbasis

2 behaviour to linear scaling,
i.e. proportional to Mbasis.

The original FMM has been refined by also adjusting the accuracy of the multipole
expansion as a function of the distance between boxes, producing the very Fast Multi-
pole Moment (vFMM) method.31 Both of these have been generalized to continuous
charge distributions, as is required for calculating the Coulomb interaction between
electrons in a quantum description.32 The use of FMM methods in electronic structure
calculations enables the Coulomb part of the electron–electron interaction to be cal-
culated with a computational effort that depends linearly on the number of basis func-
tions, once the system becomes sufficiently large.

Instead of dividing the physical space into a near- and far-field, the Coulomb 
operator itself may be partitioned into a short- and long-ranged part.33 The short-
ranged operator is evaluated exactly, while the long-ranged part is evaluated for
example by means of a Fourier transformation. The net effect is again that the total
Coulomb interaction can be calculated with a computational effort that only scales 
linearly with system size.

Although the exchange term in principle is short-ranged, and thus should 
benefit significantly from integral screening, this is normally not observed in practical
calculations. This has been attributed to basis set incompleteness,34 and this insight
allowed a formulation of a more aggressive screening technique that enables the
exchange part of the electron–electron interaction also to be reduced to an order Mbasis

method.
Another approach for achieving linear scaling is to break the system into smaller

parts, perform a calculation on each subsection, and subsequently piece these results
together.35 This divide and conquer strategy relies on the nearsightedness of molecu-
lar systems, i.e. the local electronic wave function is rarely sensitive to molecular fea-
tures further away than 15–20Å. There are of course exceptions, such as large
conjugated systems, or long-range charge transfer, which are problematic to treat by
these methods.

The use of methods with a reduced scaling does not necessarily lead to a reduced
computational cost for systems that can be studied by the available resources. The
cross-over point for when the linear scaling methods becomes competitive with tradi-
tional methods may be so high that is it of little practical use. At present, there is little
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available data, but test calculations indicate that the cross-over point involves several
thousand basis functions, at least for large systems with modest basis sets.

An alternative approach is to accept a relatively large formal scaling, and focus on
reducing the prefactor in the computationally expensive step. Methods relying on the
so-called resolution of the identity for splitting the calculation of four-index integrals
into three- and two-index quantities belong to this class. At the HF level, the formal
scaling is (only) reduced from Mbasis

4 to Mbasis
3, but actual timings show that the total

computational cost is reduced by roughly an order of magnitude, without compromis-
ing the accuracy.36 Furthermore, the efficiency gain increases with the basis set size, i.e.
these methods become very favourable even for small systems when large basis sets
are used for achieving high accuracy.

Since the HF method may be formulated and implemented in several different way,
a practical question is which of these methods will be the fastest computationally for
a given problem.The scaling only determines which method will be the fastest for large
systems, i.e. for N → ∞. An equally important parameter is the prefactor, i.e. the pro-
portionality constant between computational time and system size. A method with a
favourable scaling will often have a larger prefactor than a method with a more
demanding scaling behaviour. Figure 3.7 illustrates a quartic, quadratic and linear
scaling algorithm with different prefactors.
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Figure 3.7 Method scaling with system size

For systems smaller than N1, the most efficient method is the quartic one, the quad-
ratic algorithm is the most efficient for systems sizes between N1 and N2, while the
linear scaling method becomes the most efficient beyond N2. Note that N2 may be so
large that the total computational resources may be exhausted before the cross-over
point is reached.

With the advent of methods that enable the construction of the Fock matrix to 
be done with a computational effort that scales linearly with systems size, the 



diagonalization step for solving the HF equations eventually becomes the computa-
tional bottleneck, since matrix diagonalization depends on the third power of the
problem size, and this cross-over occurs for a few thousand basis functions. As dis-
cussed in Section 3.8.1, however, it is possible to reformulate the SCF problem in terms
of a minimization of an energy functional that depends directly on the density matrix
elements or orbital rotation parameters. This functional can then be minimized for
example by conjugate gradient methods (Section 12.2.2), taking advantage of the fact
that the density matrix becomes sparse for large systems. The HF method therefore
appears to have reached the “holy grail” of quantum chemistry, i.e. linear scaling with
system size.

3.9 Periodic Systems
Periodic systems can be described as a fundamental unit cell being repeated to form
an infinite system.The periodicity can be in one dimension (e.g. a polymer), two dimen-
sions (e.g. a surface) or three dimensions (e.g. a crystal), with the latter being the most
common. The unit cell in three dimensions can be characterized by three vectors a1, a2

and a3 spanning the physical space, with the length and the angles between them defin-
ing the shape.37 There are seven possible shapes, the simplest of which is cubic, where
all vector lengths are equal and all angles are 90°.

3.9 PERIODIC SYSTEMS 113

a1

a2

a3

Figure 3.8 A cubic unit cell defined by three vectors

A unit cell can have atoms (or molecules) occupying various positions within the
cell (corners, sides, centre), and the combination of a unit cell and its occupancy is
called a Bravais lattice, of which there are fourteen possible forms. The periodic (infi-
nite) system can then be generated by translation of the unit cell (Bravais lattice) by
lattice vectors t.

The reciprocal cell is defined by three vectors b1, b2 and b3 derived from the a1, a2

and a3 vectors of the direct cell, and obeying the orthonormality condition aibj = 2πδij.

(3.74)

The reciprocal cell of a cubic cell with side length L is also a cube, with the side length
2π/L.The equivalent of a unit cell in reciprocal space is called the (first) Brillouin zone.
Just as a point in real space may be described by a vector r, a “point” in reciprocal
space may be described by a vector k. Since k has units of inverse length, it is often
called a wave vector. It is also closely related to the momentum and energy, e.g. the
momentum and kinetic energy of a (free) particle described by a plane wave of the
form eik ⋅ r is k and 1/2k2, respectively.
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The periodicity of the nuclei in the system means that the square of the wave func-
tion must display the same periodicity. This is inherent in the Bloch theorem (eq.
(3.75)), which states that the wave function value at equivalent positions in different
cells are related by a complex phase factor involving the lattice vector t and a vector
in the reciprocal space.

(3.75)

Alternatively stated, the Bloch theorem indicates that a crystalline orbital (f) for the
nth band in the unit cell can be written as a wave-like part and a cell-periodic part (j),
called a Bloch orbital.

(3.76)

The Bloch orbital can be expanded into a basis set of plane wave functions (cPW).

(3.77)

Alternatively, the basis set can be chosen as a set of nuclear-centred (Gaussian) basis
functions, from which a set of Bloch orbitals can be constructed.

(3.78)

The problem has now been transformed from treating an infinite number of orbitals
(electrons) to only treating those within the unit cell. The price is that the solutions
become a function of the reciprocal space vector k within the first Brillouin zone. For
a system with Mbasis functions, the variation problem can be formulated as a matrix
equation analogous to eq. (3.51).

(3.79)

The k appears as a parameter in the equation similarly to the nuclear positions in
molecular Hartree–Fock theory. The solutions are continuous as a function of k, and
provide a range of energies called a band, with the total energy per unit cell being cal-
culated by integrating over k space. Fortunately, the variation with k is rather slow for
non-metallic systems, and the integration can be done numerically by including rela-
tively few points.38 Note that the presence of the phase factors in eq. (3.76) means that
the matrices in eq. (3.79) are complex quantities.

For a given value of k, the solution of eq. (3.79) provides Mbasis orbitals. In molecu-
lar systems, the molecular orbitals are filled with electrons according to the aufbau
principle, i.e. according to energy. The same principle is used for periodic systems, and
the equivalent of the molecular HOMO (highest occupied molecular orbital) is the
Fermi energy level. Depending on the system, two situations can occur.
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• The number of electrons is such that a certain number of (non-overlapping) bands
are completely filled, while the rest are empty.

• The number of electrons is such that one (or more) band(s) are only partly 
filled.

The first situation is analogous to that for molecular systems having a closed-shell
singlet state. The energy difference between the “top” of the highest filled band and
the “bottom” of the lowest empty band is called the band gap, and is equivalent to the
HOMO–LUMO gap in molecular systems. The second situation is analogous to an
open-shell electronic structure for a molecular system, and corresponds to a band gap
of zero. Systems with a band gap of zero are metallic, while those with a finite band
gap are either insulators or semiconductors, depending on whether the band gap is
large or small compared with the thermal energy kT.

As mentioned above, the basis functions within a unit cell can be either localized
(Gaussian) or delocalized (plane wave) functions. For a Gaussian basis set, the com-
putational problem of constructing the Fk matrix is closely related to the molecular
cases, involving multi-dimensional integrals over kinetic and potential energy opera-
tors. The periodic boundary condition means that the terms involving the potential
energy operators in eq. (3.79) become infinite sums over t vectors. Since the operators
involve both positive and negative quantities and only decay as r−1, they require special
care to ensure convergence to a definite quantity, as for example Ewald sum39 or fast
multipole methods.40 For a plane wave basis, the construction of the energy matrix can
be done efficiently by using fast Fourier transform (FFT) methods for switching
between the real and reciprocal space. All local potential operators are easily evalu-
ated in real space, while the kinetic energy is just the square operator in reciprocal
space. FFT methods have the big advantage that the computational cost only increases
as NlnN, with N being the number of grid points in the Fourier transform.

The solution of eq. (3.79) can be done by repeated diagonalization of the Fk matrix,
analogously to the situation for non-periodic systems. A plane wave basis, however,
often involves several thousand functions, which means that alternative methods are
used for solving the equation.

3.10 Semi-Empirical Methods
The cost of performing an HF calculation scales formally as the fourth power of the
number of basis functions. This arises from the number of two-electron integrals nec-
essary for constructing the Fock matrix. Semi-empirical methods reduce the computa-
tional cost by reducing the number of these integrals.41 Although linear scaling
methods can reduce the scaling of ab initio HF methods to ~Mbasis, this is only the lim-
iting behaviour in the large basis set limit, and ab initio methods will still require a sig-
nificantly larger computational effort than semi-empirical methods.

The first step in reducing the computational problem is to consider only the valence
electrons explicitly; the core electrons are accounted for by reducing the nuclear charge
or introducing functions to model the combined repulsion due to the nuclei and core
electrons. Furthermore, only a minimum basis set (the minimum number of functions
necessary for accommodating the electrons in the neutral atom) is used for the valence
electrons. Hydrogen thus has one basis function, and all atoms in the second and third
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rows of the periodic table have four basis functions (one s- and one set of p-orbitals,
px, py and pz). The large majority of semi-empirical methods to date use only s- and p-
functions, and the basis functions are taken to be Slater type orbitals (see Chapter 5),
i.e. exponential functions.

The central assumption of semi-empirical methods is the Zero Differential Overlap
(ZDO) approximation, which neglects all products of basis functions that depend on
the same electron coordinates when located on different atoms. Denoting an atomic
orbital on centre A as mA (it is customary to denote basis functions with m, n, l and s
in semi-empirical theory, while we are using ca, cb, cg and cd for ab initio methods), the
ZDO approximation corresponds to mAnB = 0. Note that it is the product of functions
on different atoms that is set equal to zero, not the integral over such a product. This
has the following consequences (eqs (3.51 and (3.56)):

(1) The overlap matrix S is reduced to a unit matrix.
(2) One-electron integrals involving three centres (two from the basis functions and

one from the operator) are set to zero.
(3) All three- and four-centre two-electron integrals, which are by far the most numer-

ous of the two-electron integrals, are neglected.

To compensate for these approximations, the remaining integrals are made into param-
eters, and their values are assigned based on calculations or experimental data. Exactly
how many integrals are neglected, and how the parameterization is done, defines the
various semi-empirical methods.

Rewriting eq. (3.52) with semi-empirical labels gives the following expression for 
a Fock matrix element, where a two-electron integral is abbreviated as 〈mn|ls〉
(eq. (3.57)).

(3.80)

Approximations are made for the one- and two-electron parts as follows.

3.10.1 Neglect of Diatomic Differential Overlap Approximation (NDDO)

In the Neglect of Diatomic Differential Overlap (NDDO) approximation there are no
further approximations than those mentioned above. Using m and n to denote either
an s- or p-type (px, py or pz) orbital, the NDDO approximation is defined by eqs
(3.81)–(3.83).

Overlap integrals (eq. (3.51)):

(3.81)

One-electron operator (eq. (3.24)):

(3.82)

Here Z′a denotes that the nuclear charge has been reduced by the number of core 
electrons.
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One-electron integrals (eq. (3.56)):

(3.83)

Due to the orthogonality of the atomic orbitals, the first one-centre matrix element in
eq. (3.83) is zero unless the two functions are identical.

(3.84)

Two-electron integrals (eq. (3.57)):

(3.85)

3.10.2 Intermediate Neglect of Differential Overlap Approximation (INDO)

The Intermediate Neglect of Differential Overlap (INDO) approximation neglects all
two-centre two-electron integrals that are not of the Coulomb type, in addition to those
neglected by the NDDO approximations. Furthermore, in order to preserve rotational
invariance, i.e. the total energy should be independent of a rotation of the coordinate
system, integrals such as 〈mA|Va|mA〉 and 〈mAnB|mAnB〉 must be made independent of the
orbital type (i.e. an integral involving a p-orbital must be the same as with an s-orbital).
This has as a consequence that one-electron integrals involving two different functions
on the same atom and a Va operator from another atom disappear. The INDO method
involves the following additional approximations, beside those for NDDO.

One-electron integrals (eq. (3.83)):

(3.86)

Two-electron integrals are approximated as in eq. (3.87), except that one-centre inte-
grals 〈mAlA|nAsA〉 are preserved.

(3.87)

The surviving integrals are commonly denoted by g.

(3.88)

The INDO method is intermediate between the NDDO and CNDO methods in terms
of approximations.

3.10.3 Complete Neglect of Differential Overlap Approximation (CNDO)

In the Complete Neglect of Differential Overlap (CNDO) approximation all the
Coulomb two-electron integrals are subjected to the condition in eq. (3.87), including
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the one-centre integrals, and are again parameterized as in eq. (3.88). The approxi-
mations for the one-electron integrals in CNDO are the same as for INDO. The
Pariser–Pople–Parr (PPP) method can be considered as a CNDO approximation where
only π-electrons are treated.

The main difference between CNDO, INDO and NDDO is in the treatment of the
two-electron integrals. While CNDO and INDO reduce these to just two parameters
(gAA and gAB), all the one- and two-centre integrals are retained in the NDDO 
approximation. Within an sp-basis, however, there are only 27 different types of 
one- and two-centre integrals, while the number rises to over 500 for a basis contain-
ing both s-, p- and d-functions.

3.11 Parameterization
An ab initio HF calculation with a minimum basis set is rarely able to give more than
a qualitative picture of the MOs, and it is of very limited value for predicting quan-
titative features. Introducing the ZDO approximation decreases the quality of the
(already poor) wave function, i.e. a direct employment of the above NDDO/INDO/
CNDO schemes is not useful. To “repair” the deficiencies due to the approximations,
parameters are introduced in place of some or all of the integrals.

There are three methods that can be used for transforming the NDDO/
INDO/CNDO approximations into working computational models.

(1) The remaining integrals can be calculated from the functional form of the atomic
orbitals.

(2) The remaining integrals can be made into parameters, which are assigned values
based on a few (usually atomic) experimental data.

(3) The remaining integrals can be made into parameters, which are assigned values
based on fitting to many (usually molecular) experimental data.

Method (2) derives specific atomic properties, such as ionization potentials and 
excitation energies, in terms of the parameters, and assigns their values accordingly.
Method (3) takes the parameters as fitting constants, and assign their values based on
a least squares fit to a large set of experimental data, analogously to the fitting of force
field parameters (Section 2.3).

The CNDO, INDO and NDDO methods use a combination of methods (1) and (2)
for assigning parameters.42 Some of the non-zero integrals are calculated from the
atomic orbitals, and others are assigned values based on atomic ionization potentials
and electron affinities. Many different versions exist; they differ in the exact way in
which the parameters have been derived. Some of the names associated with these
methods are CNDO/1, CNDO/2, CNDO/S, CNDO/FK, CNDO/BW, INDO/1, INDO/2,
INDO/S and SINDO1.These methods are rarely used in modern computational chem-
istry, mainly because the “modified” methods described below usually perform better.
Exceptions are INDO-based methods, such as SINDO143 and INDO/S.44 SINDO
(Symmetric orthogonalized INDO) methods employ the INDO approximations
described above, but not the ZDO approximation for the overlap matrix. The INDO/S
method (INDO parameterized for Spectroscopy) is especially designed for calculating
electronic spectra of large molecules or systems involving heavy atoms.
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The group centred around M. J. S. Dewar has used a combination of methods (2)
and (3) for assigning parameter values, resulting in a class of commonly used methods.
The molecular data used for parameterization are geometries, heats of formation,
dipole moments and ionization potentials. These methods are denoted “modified” as
their parameters have been obtained by fitting.

3.11.1 Modified Intermediate Neglect of Differential Overlap (MINDO)

Three versions of Modified Intermediate Neglect of Differential Overlap (MINDO)
models exist, MINDO/1, MINDO/2 and MINDO/3. The first two attempts at parame-
terizing INDO gave quite poor results, but MINDO/3, introduced in 1975,45 produced
the first general purpose quantum chemical method that could successfully predict
molecular properties at a relatively low computational cost. The parameterization of
MINDO contains diatomic variables in the two-centre one-electron term, thus the bAB

parameters must be derived for all pairs of bonded atoms. The Im parameters are ion-
ization potentials.

(3.89)

MINDO/3 has been parameterized for H, B, C, N, O, F, Si, P, S and Cl, although certain
combinations of these elements have been omitted. MINDO/3 is rarely used in modern
computational chemistry, having been succeeded in accuracy by the NDDO methods
below. Since there are parameters in MINDO that depend on two atoms, the number
of parameters rises as the square of the number of elements. It is unlikely that MINDO
will be parameterized beyond the abovementioned in the future.

3.11.2 Modified NDDO models

The MNDO, AM1 and PM3 methods46 are parameterizations of the NDDO model
where the parameterization is in terms of atomic variables, i.e. referring only to the
nature of a single atom. MNDO, AM1 and PM3 are derived from the same basic
approximations (NDDO), and differ only in the way in which the core–core repulsion
is treated and in how the parameters are assigned. Each method considers only the
valence s- and p-functions, which are taken as Slater type orbitals with corresponding
exponents zs and zp.
The one-centre one-electron integrals have a value corresponding to the energy of a
single electron experiencing the nuclear charge (Us or Up) plus terms from the poten-
tial due to all the other nuclei in the system (eq. (3.83)). The latter is parameterized in
terms of the (reduced) nuclear charges Z′ and a two-electron integral.

(3.90)
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The two-centre one-electron integrals given by the second equation in eq. (3.83) are
written as a product of the corresponding overlap integral multiplied by the average
of two atomic “resonance” parameters, b.

(3.91)

The overlap element Smn is calculated explicitly (note that this is not consistent 
with the ZDO approximation, and the inclusion is the origin of the “Modified”
label).

There are only five types of one-centre two-electron integrals surviving the NDDO
approximation within a sp-basis (eq. (3.85)).

(3.92)

The G-type parameters are Coulomb terms, while the H parameter is an exchange 
integral. The Gp2 integral involves two different types of p-functions (i.e. px, py or 
pz).

There are a total of 22 different two-centre two-electron integrals arising from an sp-
basis, and these are modelled as interactions between multipoles. Electron 1 in an
〈sm|sm〉 type integral, for example, is modelled as a monopole, in an 〈sm|pm〉 type inte-
gral as a dipole and in a 〈pm|pm〉 type integral as a quadrupole. The dipole and quadru-
pole moments are generated as fractional charges located at specific points away from
the nuclei, where the distance is determined by the orbital exponents zs and zp. The
main reason for adapting a multipole expansion of these integrals was the limited com-
putational resources available when these methods were developed initially. In the
limit of the two nuclei being placed on top of each other, a two-centre two-electron
integral becomes a one-centre two-electron integral, which puts boundary conditions
on the functional form of the multipole interaction. The bottom line is that all two-
centre two-electron integrals are written in terms of the orbital exponents and the one-
centre two-electron parameters given in eq. (3.92).

The core–core repulsion is the repulsion between nuclear charges, properly reduced
by the number of core electrons. The “exact” expression for this term is simply the
product of the charges divided by the distance, Z′AZ′B/RAB. Due to the inherent
approximations in the NDDO method, however, this term is not cancelled by 
electron–electron terms at long distances, resulting in a net repulsion between
uncharged molecules or atoms even when their wave functions do not overlap. The
core–core term must consequently be modified to generate the proper limiting behav-
iour, which means that two-electron integrals must be involved. The specific functional
form depends on the exact method, and is given below.

Each of the MNDO, AM1 and PM3 methods involves at least 12 parameters per
atom, orbital exponents: zs/p; one-electron terms: Us/p and bs/p; two-electron terms: Gss,
Gsp, Gpp, Gp2, Hsp; and parameters used in the core–core repulsion, a, and for the AM1
and PM3 methods also a, b and c constants, as described below.
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3.11.3 Modified Neglect of Diatomic Overlap (MNDO)

The core–core repulsion of the Modified Neglect of Diatomic Overlap (MNDO)
model47 has the form given in eq. (3.93).

(3.93)

The a exponents are taken as fitting parameters.
Interactions involving O—H and N—H bonds are treated differently.

(3.94)

In addition, MNDO uses the approximation zs = zp for some of the lighter elements.
The Gss, Gsp, Gpp, Gp2 and Hsp parameters are taken from atomic spectra, while the
others are fitted to molecular data. Although MNDO has been succeeded by the AM1
and PM3 methods, it is still used for some types of calculations where MNDO is known
to give better results.

Some known limitations of the MNDO model are:

(1) Branched and sterically crowded hydrocarbons (such as neopentane) are pre-
dicted to be too unstable, relative to their straight-chain analogues.

(2) Four-membered rings are too stable.
(3) Weak interactions are unreliable, for example MNDO does not predict hydrogen

bonds.
(4) Hypervalent molecules, such as sulfoxides and sulfones, are too unstable.
(5) Activation energies for bond breaking/forming reactions are too high.
(6) Non-classical structures are predicted to be unstable relative to classical struc-

tures (for example ethyl radical).
(7) Proton affinities are poorly predicted.
(8) Oxygen-containing substituents on aromatic rings are out-of-plane (for example

nitrobenzene).
(9) Peroxide bonds are too short by ~0.17Å

(10) The C—X—C angle in ethers and sulfides is too large by ~9°.

MNDOC48 (C for correlation) has the same functional form as MNDO, however, elec-
tron correlation is explicitly calculated by second-order perturbation theory. The 
derivation of the MNDOC parameters is done by fitting the correlated MNDOC
results to experimental data. Electron correlation in MNDO is only included implic-
itly via the parameters, from fitting to experimental results. Since the training set only
includes ground state stable molecules, MNDO has problems treating systems where
the importance of electron correlation is substantially different from “normal” mole-
cules. MNDOC consequently performs significantly better for system where this is not
the case, such as transition structures and excited states.

3.11.4 Austin Model 1 (AM1)

After some experience with MNDO, it became clear that there were certain system-
atic errors. For example, the repulsion between two atoms that are 2–3Å apart is too
high. This has as a consequence that activation energies in general are too large. The
source was traced to a too repulsive interaction in the core–core potential. In order to
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remedy this, the core–core function was modified by adding Gaussian functions, and
the whole model was re-parameterized. The result was called Austin Model 1 (AM1)49,
in honour of Dewar’s move to the University of Austin at the time. The core–core
repulsion of AM1 has the form given in eq. (3.95).

(3.95)

Here k is between 2 and 4, depending on the atom. It should be noted that the Gauss-
ian functions were added more or less as patches onto the underlying parameters,
which explains why a different number of Gaussians is used for each atom. As for
MNDO, the Gss, Gsp, Gpp, Gp2 and Hsp parameters are taken from atomic spectra, while
the rest, including the ak, bk and ck constants, are fitted to molecular data.

Some known improvements and limitations of the AM1 model are:

(1) AM1 does predict hydrogen bonds with an approximately correct strength, but the
geometry is often wrong.

(2) Activation energies are much improved over MNDO.
(3) Hypervalent molecules are improved over MNDO, but still have significantly

larger errors than other types of compounds.
(4) Alkyl groups are systematically too stable by ~8kJ/mol per CH2 group.
(5) Nitro compounds are systematically too unstable.
(6) Peroxide bonds are too short by ~0.17Å.
(7) Phosphor compounds have problems when atoms are ~3Å apart, producing wrong

geometries. P4O6 for example is predicted to have P—P bonds differing by 0.4Å,
although experimentally they are identical.

(8) The gauche conformation in ethanol is predicted to be more stable than the trans.

3.11.5 Modified Neglect of Diatomic Overlap, Parametric Method 
number 3 (PM3)

The parameterization of MNDO and AM1 had been done essentially by hand, taking
the Gss, Gsp, Gpp, Gp2 and Hsp parameters from atomic data and varying the rest until
a satisfactory fit had been obtained. Since the optimization was done by hand, only 
relatively few reference compounds could be included. J. J. P. Stewart made the 
optimization process automatic by deriving and implementing formulas for the deriv-
ative of a suitable error function with respect to the parameters.50 All parameters could
then be optimized simultaneously, including the two-electron terms, and a signifi-
cantly larger training set with several hundred data could be employed. In this re-
parameterization, the AM1 expression for the core–core repulsion (eq. (3.85)) was
kept, except that only two Gaussians were assigned to each atom. These Gaussian
parameters were included as an integral part of the model, and allowed to vary freely.
The resulting method was denoted Modified Neglect of Diatomic Overlap, Parametric
Method Number 3 (MNDO-PM3 or PM3 for short), and is essentially AM1 with all
the parameters fully optimized. In a sense, it is the best set of parameters (or at least
a good local minimum) for the given set of experimental data. The optimization
process, however, still requires some human intervention in selecting the experimen-
tal data and assigning appropriate weight factors to each set of data.
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Some known limitations of the PM3 model are:

(1) Almost all sp3-nitrogens are predicted to be pyramidal, which is contrary to experi-
mental data.

(2) Hydrogen bonds are too short by ~0.1Å.
(3) The gauche conformation in ethanol is predicted to be more stable than the trans.
(4) Bonds between Si and Cl, Br and I are underestimated, the Si—I bond in H3SiI,

for example, is too short by ~0.4Å.
(5) H2NNH2 is predicted to have a C2h structure, while the experimental result is C2,

and ClF3 is predicted to have a D3h structure, while the experimental result is C2v.
(6) The charge on nitrogen atoms is often of “incorrect” sign and “unrealistic”

magnitude.

Some common limitations of MNDO, AM1 and PM3 are:

(1) Rotational barriers for bonds that have partly double bond character are signifi-
cantly too low. The barrier for rotation around the central bond in butadiene is
calculated to be only 2–8kJ/mol, in contrast to the experimental value of 
25kJ/mol.51 Similarly, the rotational barrier around the C—N bond in amides is
calculated to be 30–50kJ/mol, which is roughly a factor of two smaller than the
experimental value.A purely ad hoc fix has been made by adding a force field rota-
tional term to the C—N bond that raises the value to ~100kJ/mol and brings it
into better agreement with experimental data.

(2) Weak interactions, such as van der Waals complexes or hydrogen bonds, are poorly
predicted. Either the interaction is too weak, or the minimum energy geometry is
wrong.

(3) Conformational energies for peptides are poorly reproduced.52

(4) The bond length to nitrosyl groups is underestimated. The N—N bond in N2O3, for
example, is ~0.7Å too short.

(5) Although MNDO,AM1 and PM3 have parameters for some metals, these are often
based on only a few experimental data. Calculations involving metals should thus
be treated with care.

The MNDO, AM1 and PM3 methods have been parameterized for most of the main
group elements,53 and parameters for many of the transition metals are also being
developed under the name PM3(tm), which includes d-orbitals. The PM3(tm) set of
parameters are determined exclusively from geometrical data (X-ray) since there are
very few reliable energetic data available for transition metal compounds

3.11.6 Parametric Method number 5 (PM5) and PDDG/PM3 methods

Two approaches have appeared that try to further improve on the performance of the
PM3 method. The PM5 (PM4 being an unpublished experimental version) method re-
introduces diatomic parameters for the core–core repulsion, and the published results
suggest that PM5 represent a slight improvement on the PM3 results.54 No details of
the methodology and parameterization have been published so far.

A similar approach using Pairwise Distance Directed Gaussian (PDDG) in connec-
tion with the MNDO and PM3 methods has also been reported.55 The idea is related
to the concept used in AM1 and PM3 by introducing parameterized Gaussian func-
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tions for describing the core–core repulsion, except that the modification is based on
interatomic distances, although the parameters are still purely atomic. The latter pre-
vents the exponential increase in parameters with the number of atoms. The available
results suggest a slight improvement over the regular MNDO or PM3 methods, but it
is difficult to assess whether the improvement is simply due to more fitting parameters
or to fundamentally better modelling of the underlying physical problem.

3.11.7 The MNDO/d and AM1/d methods

With only s- and p-functions included, the MNDO/AM1/PM3 methods are unable to
treat a large part of the periodic table. Furthermore, from ab initio calculations it is
known that d-orbitals significantly improve the results for compounds involving second
row elements, especially hypervalent species. The main problem in extending the
NDDO formalism to include d-orbitals is the significant increase in distinct two-elec-
tron integrals that ultimately must be assigned suitable values. For an sp-basis there
are only five one-centre two-electron integrals, while there are 17 in an spd-basis. Sim-
ilarly, the number of two-centre two-electron integrals rises from 22 to 491 when d-
functions are included.

Thiel and Voityuk have constructed a workable NDDO model that also includes d-
orbitals for use in connection with MNDO, called MNDO/d.56 With reference to the
above description for MNDO/AM1/PM3, it is clear that there are immediately three
new parameters: zd, Ud and bd (eqs (3.90) and (3.91)). Of the 12 new one-centre two-
electron integrals, only one (Gdd) is taken as a freely varied parameter. The other 11
are calculated analytically based on pseudo-orbital exponents, which are assigned such
that the analytical formulas regenerate Gss, Gpp and Gdd.

With only s- and p-functions present, the two-centre two-electron integrals can be
modelled by multipoles up to order 4 (quadrupoles), however, with d-functions present
multipoles up to order 16 must be included. In MNDO/d all multipoles beyond order
4 are neglected. The resulting MNDO/d method typically employs 15 parameters per
atom, and it currently contains parameters for the following elements (beyond those
already present in MNDO): Na, Mg, Al, Si, P, S, Cl, Br, I, Zn, Cd and Hg. Recently this
technology has been used in connection with the AM1 model as well, which at least
for phosphorous yields a further improvement.57

3.11.8 Semi Ab initio Method 1

The philosophy behind the Semi Ab Initio Method 1 (SAM1 and SAM1D) model is
slightly different from the other “modified” methods.58 It is again based on the NDDO
approximation, but instead of replacing all integrals with parameters, the one- and two-
centre two-electron integrals are calculated directly from the atomic orbitals. These
integrals are then scaled by a function containing adjustable parameters to fit experi-
mental data (RAB being the interatomic distance).

(3.96)

The advantage is that basis sets involving d-orbitals are readily included (defining the
SAM1D method), making it possible to perform calculations on a larger fraction of
the periodic table. The SAM1 method explicitly uses the minimum STO-3G basis set,
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124 ELECTRONIC STRUCTURE METHODS: INDEPENDENT-PARTICLE MODELS



but it is in principle also possible to use extended basis sets with this model. The actual
calculation of the integrals makes the SAM1 method somewhat slower than
MNDO/AM1/PM3, but only by a factor of ~2.The SAM1/SAM1D methods have been
parameterized for these elements: H, Li, C, N, O, F, Si, P, S, Cl, Fe, Cu, Br and I.Although
the SAM1 method was proposed in 1993, no details of the functional form or para-
meterization have been published, and there do not appear to have been any recent
developments.

3.12 Performance of Semi-Empirical Methods
The electronic energy (including the core–core repulsion) calculated by MINDO,
MNDO, MNDO/d,AM1 and PM3 is, in analogy with ab initio methods, the total energy
relative to a situation where the nuclei (with their core electrons) and the valence elec-
trons are infinitely separated. The electronic energy is normally converted to a heat of
formation by subtracting the electronic energy of the isolated atoms that make up the
system, and adding the experimental atomic heat of formation. It should be noted that
thermodynamic corrections (e.g. zero point energies, see Section 13.5.5) should not be
added to the ∆Hf values, as these are included implicitly by the parameterization.

(3.97)

Some typical errors in heat of formation for the MNDO, AM1 and PM3 methods are
given in Table 3.1.59 The exact numbers of course depend on which, and how many,
compounds have been selected for comparison, thus the numbers should only be taken
as a guideline for the accuracy expected.
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Table 3.1 Average heat of formation error (kJ/mol)

Compounds Number of compounds MNDO AM1 PM3

H, C, N, O 276 77 44 33
F 133 352 207 47
Si 78 96 87 59
All normal valent 607 102 62 47
Hypervalent 106 437 261 72
All 713 193 116 49

Some typical errors in bond distances are given in Table 3.2.

Table 3.2 Average errors in bond distances (Å)

Bond to: MNDO AM1 PM3

H 0.015 0.006 0.005
C 0.002 0.002 0.002
N 0.015 0.014 0.012
O 0.017 0.011 0.006
F 0.023 0.017 0.011
Si 0.030 0.019 0.045



The negative charge on nitrogen produced by PM3 is significantly smaller than by
the other methods, but it should be noted that atomic charges are not well-defined
quantities, as discussed in Chapter 9. Nevertheless, it may indicate that the electrostatic
potential generated by a PM3 wave function is of lower quality than one generated by
the AM1 method.

Table 3.4 shows a comparison for some of the elements that have been parameter-
ized for the MNDO, MNDO/d, AM1, PM3, SAM1 and SAM1D methods.

Considering that the parameters for the MNDO/d method for all first row elements
(which are present in most of the training set of compounds) are identical to MNDO,
the improvement by addition of d-functions is quite impressive. It should also be noted
that MNDO/d only contains 15 parameters, compared with 18 for PM3, and that some
of the 15 parameters are taken from atomic data (analogous to the MNDO/AM1 para-
meterization), and are not used in the molecular data fitting as in PM3.

The apparent accuracy of 20–40kJ/mol for calculating heats of formation with semi-
empirical methods is slightly misleading. Normally the interest is in relative energies
of different species, and since the heat of formation errors are essentially random,
relative energies may not be predicted as well (two random errors of 40kJ/mol may
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Table 3.3 Mulliken charges in formamide with different methods

MNDO AM1 PM3 HF/6–31G(d,p) MP2/6–31G(d,p)

C 0.37 0.26 0.16 0.56 0.40
N −0.49 −0.62 −0.13 −0.73 −0.63
O −0.39 −0.40 −0.38 −0.56 −0.43

Angles are typically predicted with an accuracy of a few degrees. The average errors
for MNDO, AM1 and PM3 are 4.3°, 3.3° and 3.9°, respectively. Ionization potentials
are typically accurate to 0.5–1.0eV.Average errors for MNDO,AM1 and PM3 are 0.78,
0.61 and 0.57eV, respectively. Average errors for dipole moments are 0.45, 0.35 and
0.38 debye, respectively.

Since AM1 contains more adjustable parameters than MNDO, and since PM3 can
be considered to be a version of AM1 with all the parameters fully optimized, it is
expected that the error decreases in the order MNDO > AM1 > PM3. This is indeed
what is observed in the above tables. It should be noted, however, that the data in the
tables refer to averages, thus for specific compounds or classes of compounds the order-
ing may be different. Bonds between silicon and iodine with PM3 are examples where
a specific compound may be poorly described, although the average description for all
compounds is better. It is clear that the PM3 method will perform better than AM1 in
an average sense since the two-electron integrals are optimized to give a better fit to
the given molecular data set. This does not mean, however, that PM3 necessarily will
perform better than AM1 (or MNDO) for properties not included in the training set.
Indeed it has been argued that the AM1 method tends to give more “realistic” values
for atomic charges than PM3, especially for compounds involving nitrogen. An often
quoted example is formamide, and the Mulliken population analysis by different
methods is given in Table 3.3.



add up to an error of 80kJ/mol). This is in contrast to ab initio methods, which are
usually better at predicting relative rather than absolute energies, since errors in this
case tend to be systematic and at least partly cancel out when comparing similar
systems.

3.13 Hückel Theory
3.13.1 Extended Hückel theory

The Hückel methods perform the parameterization on the Fock matrix elements 
(eq. (3.50)), and not at the integral level, as do NDDO/INDO/CNDO. This means 
that Hückel methods are non-iterative and they only require a single diagonalization
of the Fock (Hückel) matrix. The Extended Hückel Theory (EHT) or Method (EHM),
developed primarily by R. Hoffmann, again only consider the valence electrons.60

It makes use of Koopmans’ theorem (eq. (3.47)) and assigns the diagonal elements in
the F matrix to be atomic ionization potentials. The off-diagonal elements are para-
meterized as averages of the diagonal elements, weighted by an overlap integral. The
overlap integrals are actually calculated, i.e. the ZDO approximation is not invoked.
The basis functions are taken as Slater type orbitals, with the exponents assigned
according to the rules of Slater.61

(3.98)

The K constant is usually taken as 1.75, as this value reproduces the rotational barrier
in ethane. An essentially identical approach has been used for periodic systems within
the physics community, where it is here known as the tight binding model.62 Recent
work in this area has used an approach to parameterize against density functional
results, thereby providing a computationally very efficient model capable of yielding
fairly accurate results.63

F I

F K I I S
mm m

mn m n mn

= −
= − +( )1

2
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Table 3.4 Average heat of formation error (kJ/mol)

Compounds Number of MNDO AM1 PM3 MNDO/d SAM1 SAM1D
compounds

Al 29 92 44 69 21
Si 84 50 36 25 26 33 47
P 43 162 61 72 32 60 63
S 99 203 43 31 23 35 33
Cl 85 165 122 44 16 46 20
Br 51 68 64 34 14 36 22
I 42 106 91 56 17 28 28
Zn 18 88 71 62 21
Hg 37 57 38 32 9
Si, P, S, Cl, Br, I 404 132 67 40 21 39 34
Al, Si, P, S, Cl, 488 122 64 42 21
Br, I, Zn, Hg



Since the diagonal elements only depend on the nature of the atom (i.e. the nuclear
charge), this means for example that all carbon atoms have the same ability to attract
electrons.After having performed a Hückel calculation, the actual number of electrons
associated with atom A, rA, can be calculated according to eq. (3.99) (see Section 9.1,
eqs (9.5) and (9.4)).

(3.99)

The effective (net) atomic charge QA is given as the (reduced) nuclear charge minus
the electronic contribution.

(3.100)

In general, it is unlikely that all carbon atoms have the exact same charge, i.e. owing
to the different environments their ability to attract electrons is no longer equal. This
may be argued to be inconsistent with the initial assumption of all carbons having the
same diagonal elements in the Hückel matrix. In order to achieve “self-consistency”,
a diagonal element Fmm belonging to atom A may be modified by the calculated atomic
charge.

(3.101)

The w parameter determines the weight of the charge on the diagonal elements. Since
QA is calculated from the results (MO coefficients, eq. (3.99)) but enters the Hückel
matrix that produces the results (by diagonalization), such schemes become iterative.
Methods where the matrix elements are modified by the calculated charge are often
called charge iteration or self-consistent (Hückel) methods. Similar self-consistent
charge models are used within the tight binding formalism.64

The main advantage of extended Hückel theory is that only atomic ionization poten-
tials are required, and it is easily parameterized to the whole periodic table. Extended
Hückel theory can be used for large systems involving transition metals, where it often
is the only possible computational model. The very approximate method of extended
Hückel theory makes it unsuitable for geometry optimizations without additional 
modifications,65 or for calculations of energetic features at any reasonable level of accu-
racy. It is primarily used for obtaining qualitatively correct MOs, which can for example
be used as an initial guess of the density matrix for ab initio SCF calculations, or for
use in connection with qualitative theories, as discussed in Chapter 15. Orbital ener-
gies (and thereby the total energy), however, in many cases show the correct trend for
geometry perturbations corresponding to bond bending or torsional changes, and thus
qualitative features regarding molecular shapes may often be predicted or rationalized
from EHT calculations.

3.13.2 Simple Hückel theory

In the simple Hückel model the approximations are taken to the limit.66 Only planar
conjugated systems are considered. The σ-orbitals, which are symmetric with respect
to a reflection in the molecular plane, are neglected. Only the π-electrons (antisym-
metric with respect to the molecular mirror plane) are considered. The overlap matrix

F I Qmm m w= − + A

Q ZA A A= ′ − r

r a b ab
ba

A

AO

A

AOMO

= ∑∑∑
∈

n c c Si i i
i
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is taken as a unit matrix and a diagonal element of the F matrix is assigned a value of
a, which depends on the atom type. Off-diagonal elements are taken either as b
(depending on the two atom types) or zero, conditioned on whether the two atoms are
“neighbours” (i.e. connected by a σ-bond) or not.

(3.102)

Atoms are assigned “types”, much as in force field methods, i.e. the parameters depend
on the nuclear charge and the bonding situation. The aA and bAB parameters for atom
types A and B are related to the corresponding parameters for sp2-hybridized carbon
by means of the dimensionless constants hA and kAB.

(3.103)

The carbon parameters aC and bCC are normally just denoted a and b, and are rarely
assigned numerical values. Simple Hückel theory thus only considers the connectivity
of the π-atoms: there is no information about the molecular geometry entering the cal-
culation (e.g. whether some bonds are shorter or longer than others, or differences in
bond angles).

In analogy to extended Hückel theory, there are also charge iterative methods for
simple Hückel theory. The equivalent of eq. (3.99) is given in eq. (3.104).

(3.104)

Eq. (3.101) becomes eq. (3.105).

(3.105)

where nA is the number of π-electrons involved from atom A.
The Hückel method is essentially only used for educational purposes or for very

qualitative orbital considerations. It has the ability to produce qualitatively correct
MOs, involving a computational effort that is within reach of doing by hand.

3.14 Limitations and Advantages of Semi-Empirical Methods
The neglect of all three- and four-centre two-electron integrals reduces the construc-
tion of the Fock matrix from a formal order of M4

basis to M 2
basis. However, the time

required for diagonalization of the F matrix grows as the cube of the matrix size, thus
semi-empirical methods formally scale as the cube of the number of basis functions in
the limit of large molecules. Diagonalization of a matrix becomes significant when the
size exceeds ~10000 × 10000. Several iterations are required for solving the SCF equa-
tions, and usually the geometry is also optimized, requiring several calculations at dif-
ferent geometries. This places the current limit of semi-empirical methods at around
1000 atoms. It should be noted that the conventional method of solving the HF equa-
tions by diagonalizing the Fock matrix rapidly becomes the rate-limiting step in semi-
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empirical methods. Recent developments have therefore concentrated on formulating
alternative methods for obtaining the SCF orbitals without the need for diagonaliza-
tion.67 Such methods display linear scaling with the number of atoms, allowing calcu-
lations to be performed for systems containing several thousand atoms.

The parameterization of MNDO/AM1/PM3 is performed by adjusting the constants
involved in the different methods such that the results of HF calculations fit experi-
mental data as closely as possible. This is in a sense wrong. We know that the HF
method cannot give the correct result, even in the limit of an infinite basis set and
without approximations. The HF results lack electron correlation, as will be discussed
in Chapter 4, but the experimental data of course include such effects. This may be
viewed as an advantage, the electron correlation effects are implicitly taken into
account in the parameterization, and we need not perform complicated calculations to
improve deficiencies in the HF procedure. However, it becomes problematic when the
HF wave function cannot describe the system even qualitatively correctly, as with for
example biradicals and excited states. In such cases, additional flexibility can be intro-
duced in the trial wave function by adding more Slater determinants, for example by
means of a CI procedure (see Chapter 4 for details). But electron correlation is then
taken into account twice, once in the parameterization at the HF level, and once explic-
itly by the CI calculation.

Semi-empirical methods share the advantages and disadvantages of force field
methods: they perform best for systems where much experimental information is
already available but they are unable to predict totally unknown compound types. The
dependence on experimental data is not as severe as for force field methods, owing to
the more complex functional form of the model. The NDDO methods require only
atomic parameters, not di-, tri- and tetra-atomic parameters as do force field methods.
Once a given atom has been parameterized, all possible compound types involving this
element can be calculated. The smaller number of parameters and the more complex
functional form has the disadvantage compared with force field methods that it is very
difficult to “repair” a specific problem by re-parameterization. The lack of a reason-
able rotational barrier in amides, for example, cannot be attributed to an “improper”
value for a single (or a few) parameter(s). Too low a rotational barrier in a force field
model can easily be fixed by increasing the values of the corresponding torsional
parameters.The clear advantage of semi-empirical methods over force field techniques
is the ability to describe bond breaking and bond forming reactions.

Semi-empirical methods are zero-dimensional, just as force field methods are. There
is no way of assessing the reliability of a given result within the method. This is due to
the selection of a minimum basis set. The only way of judging results is by calibration,
i.e. by comparing the accuracy of other calculations on similar systems with experi-
mental data.

Semi-empirical models provide a method for calculating the electronic wave func-
tion, which may be used for predicting a variety of properties. There is nothing to
hinder the calculation of say the polarizability of a molecule (the second derivative of
the energy with respect to an external electric field), although it is known from ab initio
calculations that good results require a large polarized basis set including diffuse func-
tions, and the inclusion of electron correlation. Semi-empirical methods such as AM1
or PM3 only have a minimum basis (lacking polarization and diffuse functions), elec-
tron correlation is only included implicitly by the parameters, and no polarizability
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data have been used for deriving the parameters. Whether such calculations can
produce reasonable results, as compared with experimental data, is questionable, and
careful calibration is certainly required. Again it should be emphasized: The ability to
perform a calculation is no guarantee that the results can be trusted!
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4 Electron Correlation
Methods

The Hartree–Fock method generates solutions to the Schrödinger equation where the
real electron–electron interaction is replaced by an average interaction (Chapter 3).
In a sufficiently large basis set, the HF wave function is able to account for ~99% of
the total energy, but the remaining ~1% is often very important for describing chem-
ical phenomena. The difference in energy between the HF and the lowest possible
energy in the given basis set is called the Electron Correlation (EC) energy.1 Physically,
it corresponds to the motion of the electrons being correlated, i.e. on the average they
are further apart than described by the HF wave function. As shown below, an 
unrestricted Hartree–Fock (UHF) type of wave function is, to a certain extent, able to
include electron correlation. The proper reference for discussing electron correlation
is therefore a restricted (RHF) or restricted open-shell (ROHF) wave function,
although many authors use a UHF wave function for open-shell species. In the RHF
case, all the electrons are paired in molecular orbitals. The two electrons in an MO
occupy the same physical space, and differ only in the spin function.The spatial overlap
between the orbitals of two such “pair”-electrons is (exactly) one, while the overlap
between two electrons belonging to different pairs is (exactly) zero, owing to the ortho-
normality of the MOs. The latter is not the same as saying that there is no repulsion
between electrons in different MOs, since the electron–electron repulsion integrals
involve products of MOs (〈fi|fj〉 = 0 for i ≠ j, but 〈fifj|g|fifj〉 and 〈fifj|g|fjfi〉 are not nec-
essarily zero).

Naively it may be expected that the correlation between pairs of electrons belong-
ing to the same spatial MO would be the major part of the electron correlation.
However, as the size of the molecule increases, the number of electron pairs belong-
ing to different spatial MOs grows faster than those belonging to the same MO. Con-
sider for example the valence orbitals for CH4. There are four intraorbital electron
pairs of opposite spins, but there are twelve interorbital pairs of opposite spins, and
twelve interorbital pairs of same spin. A typical value for the intraorbital pair correla-
tion of a single bond is ~80kJ/mol, while that of an interorbital pair (where the two

Introduction to Computational Chemistry, Second Edition. Frank Jensen.
© 2007 John Wiley & Sons, Ltd



MOs are spatially close, as in CH4) is ~8kJ/mol. The interpair correlation is therefore
often comparable to the intrapair contribution.

Since the correlation between opposite spins has both intra- and interorbital con-
tributions, it will be larger than the correlation between electrons having the same spin.
The Pauli principle (or, equivalently, the antisymmetry of the wave function) has the
consequence that there is no intraorbital correlation from electron pairs with the same
spin. The opposite spin correlation is sometimes called the Coulomb correlation, while
the same spin correlation is called the Fermi correlation, i.e. the Coulomb correlation
is the largest contribution. Another way of looking at electron correlation is in terms
of the electron density. In the immediate vicinity of an electron, there is a reduced
probability of finding another electron. For electrons of opposite spin, this is often
referred to as the Coulomb hole, and the corresponding phenomenon for electrons of
same spin is the Fermi hole. This hole picture is discussed in more detail in connection
with density functional theory in Chapter 6.

Another distinction is between dynamic and static electron correlation.The dynamic
contribution is associated with the “instant” correlation between electrons, such as
between those occupying the same spatial orbital. The static part is associated with
electrons avoiding each other on a more “permanent” basis, such as those occupying
different spatial orbitals. The latter is also sometimes called a near-degeneracy effect,
as it becomes important for systems where different orbitals (configurations) have
similar energies. The electron correlation in a helium atom is almost purely dynamic,
while the correlation in the H2 molecule at the dissociation limit is purely static (here
the bonding and antibonding MOs become degenerate). At the equilibrium distance
for H2 the correlation is mainly dynamic (resembles the He atom), but this gradually
changes to static correlation as the bond distance is increased. Similarly, the Be atom
contains both static (near degeneracy of the 1s22s2 and 1s22p2 configurations) and
dynamical correlation. There is therefore no clear-cut way of separating the two types
of correlation, although they form a conceptually useful way of thinking about corre-
lation effects.

The HF method determines the energetically best one-determinant trial wave func-
tion (within the given basis set). It is therefore clear that, in order to improve on HF
results, the starting point must be a trial wave function that contains more than one
Slater determinant (SD) Φ. This also means that the mental picture of electrons resid-
ing in orbitals has to be abandoned and the more fundamental property, the electron
density, should be considered. As the HF solution usually gives ~99% of the correct
answer, electron correlation methods normally use the HF wave function as a starting
point for improvements.

A generic multi-determinant trial wave function can be written as in eq. (4.1), where
a0 is usually close to one.

(4.1)

Electron correlation methods differ in how they calculate the coefficients in front of
the other determinants, with a0 being determined by the normalization condition.

As mentioned in Chapter 5, one can think of the expansion of an unknown MO in
terms of basis functions as describing the MO “function” in the “coordinate system”
of the basis functions. The multi-determinant wave function (eq. (4.1)) can similarly be

Ψ Φ Φ= +
=
∑a ai
i

i0
1

HF
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considered as describing the total wave function in a “coordinate” system of Slater
determinants.The basis set determines the size of the one-electron basis (and thus limits
the description of the one-electron functions, the MOs), while the number of deter-
minants included determines the size of the many-electron basis (and thus limits the
description of electron correlation).
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Figure 4.1 Progression from atomic orbitals (AO) (basis functions), to molecular orbitals (MO), to
Slater determinants (SD) and to a many-electron (ME) wave function
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Figure 4.2 Excited Slater determinants generated from an HF reference

4.1 Excited Slater Determinants
The starting point is usually an RHF calculation, where a solution of the
Roothaan–Hall equations for a system with N electrons and M basis functions will
yield 1/2Nelec occupied MOs and Mbasis − 1/2Nelec unoccupied (virtual) MOs. Except for
a minimum basis, there will always be more virtual than occupied MOs. A Slater deter-
minant is constructed from 1/2Nelec spatial MOs multiplied by the two spin functions to
yield Nelec spin-orbitals. A whole series of determinants may be generated by replac-
ing MOs that are occupied in the HF determinant by MOs that are unoccupied. These
can be denoted according to how many occupied HF MOs have been replaced by un-
occupied MOs, i.e. Slater determinants that are singly, doubly, triply, quadruply, etc.,
excited relative to the HF determinant, up to a maximum of Nelec excited electrons.
These determinants are often referred to as Singles (S), Doubles (D), Triples (T),
Quadruples (Q), etc.

The total number of determinants that can be generated depends on the size of 
the basis set: the larger the basis, the more virtual MOs, and the more excited 



determinants can be constructed. If all possible determinants in a given basis set are
included, all the electron correlation (in the given basis) is (or can be) recovered. For an
infinite basis, the Schrödinger equation is then solved exactly. Note that “exact” is this
context is not the same as the experimental value, as the nuclei are assumed to have 
infinite masses (Born–Oppenheimer approximation) and relativistic effects are 
neglected. Methods that include electron correlation are thus two-dimensional, the larger
the one-electron expansion (basis set size) and the larger the many-electron expansion
(number of determinants), the better the results.This is illustrated in Figure 4.3.
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Figure 4.3 Convergence to the exact solution

In order to calculate total energies with a “chemical accuracy” of ~4kJ/mol 
(~1kcal/mol), it is necessary to use sophisticated methods for including electron cor-
relation and large basis sets, which only is computationally feasible for small systems.
The focus is therefore on calculating relative energies, where error cancellation can
improve the accuracy of the calculated results. The important chemical changes take
place in the valence orbitals, with the core orbitals being almost independent of the
molecular environment. In many cases, the interest is therefore only in calculating the
correlation energy associated with the valence electrons. Limiting the number of deter-
minants to only those that can be generated by exciting the valence electrons is known
as the frozen-core approximation. In some cases, the highest virtual orbitals corre-
sponding to the antibonding combinations of the core orbitals are also removed from
the correlation treatment ( frozen virtuals). The frozen-core approximation is not jus-
tified in terms of total energy; the correlation of the core electrons gives a substantial
energy contribution. However, it is essentially a constant factor, which drops out when
calculating relative energies. Furthermore, if we really want to calculate the core 
electron correlation, the standard basis sets are insufficient. In order to represent the
angular correlation, higher angular momentum functions with the same radial size as
the filled orbitals are needed, e.g. p- and d-functions with large exponents for corre-
lating the 1s-electrons, as discussed in Section 5.4.6. Just allowing excitations of the
core electrons in a standard basis set does not “correlate” the core electrons.



There are three main methods for calculating electron correlation: Configuration
Interaction (CI), Many-Body Perturbation Theory (MBPT) and Coupled Cluster (CC).
A word of caution before we describe these methods in more details. The Slater deter-
minants are composed of spin-MOs, but since the Hamiltonian operator is independ-
ent of spin, the spin dependence can be factored out. Furthermore, to facilitate
notation, it is often assumed that the HF determinant is of the RHF type, rather than
the more general UHF type. Finally, many of the expressions below involve double
summations over identical sets of functions. To ensure only the unique terms are
included, one of the summation indices must be restricted. Alternatively, both indices
can be allowed to run over all values, and the overcounting corrected by a factor of
1/2. Various combinations of these assumptions result in final expressions that differ by
factors of 1/2, 1/4, etc., from those given here. In the present chapter, the MOs are always
spin-MOs, and conversion of a restricted summation to unrestricted is always noted
explicitly.

Finally a comment on notation. The quality of a calculation is given by the level of
theory (i.e. how much electron correlation is included) and the size of the basis set. In
a commonly used “/”-notation, introduced by J.A. Pople, this is denoted as “level/basis”.
If nothing further is specified, this implies that the geometry is optimized at this level
of theory. As discussed in Section 5.7, the geometry is usually much less sensitive to
the theoretical level than relative energies, and high-level calculations are therefore
often carried out using geometries optimized at a lower level. This is denoted as
“level2/basis2//level1/basis1”, where the notation after the “//” indicates the level at
which the geometry is optimized.

4.2 Configuration Interaction
This is the oldest and perhaps the easiest method to understand, and is based on the
variational principle (Appendix B), analogous to the HF method. The trial wave func-
tion is written as a linear combination of determinants with the expansion coefficients
determined by requiring that the energy should be a minimum (or at least stationary),
a procedure known as Configuration Interaction (CI).2 The MOs used for building the
excited Slater determinants are taken from a Hartree–Fock calculation and held fixed.
Subscripts S, D,T, etc., indicate determinants that are Singly, Doubly,Triply, etc., excited
relative to the HF configuration.

(4.2)

This is an example of a constrained optimization, the energy should be minimized
under the constraint that the total CI wave function is normalized. Introducing a
Lagrange multiplier (Section 12.5), this can be written as

(4.3)

The first bracket is the energy of the CI wave function and the second bracket is the
norm of the wave function. In terms of determinants (eq. (4.2)), these can be written
as in eq. (4.4).
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(4.4)

The diagonal elements in the sum involving the Hamiltonian operator are energies of
the corresponding determinants.The overlap elements between different determinants
are zero as they are built from orthogonal MOs (eq. (3.20)). The variational procedure
corresponds to setting all the derivatives of the Lagrange function (eq. (4.3)) with
respect to the ai expansion coefficients equal to zero.

(4.5)

If there is only one determinant in the expansion (a0 = 1, ai≠0 = 0), the latter equation
shows that the Lagrange multiplier l is the (CI) energy.

As there is one equation (4.5) for each i, the variational problem is transformed into
solving a set of CI secular equations. Introducing the notation Hij = 〈Φi|H|Φj〉, the sta-
tionary conditions in eq. (4.5) can be written as in eq. (4.6)

(4.6)

This can also be written as a matrix equation.

(4.7)

Solving the secular equations is equivalent to diagonalizing the CI matrix (see Section
16.2.4). The CI energy is obtained as the lowest eigenvalue of the CI matrix, and the
corresponding eigenvector contains the ai coefficients in front of the determinants in
eq. (4.2). The second lowest eigenvalue corresponds to the first excited state, etc.

4.2.1 CI Matrix elements

The CI matrix elements Hij can be evaluated by the strategy employed for calculating
the energy of a single determinant used for deriving the Hartree–Fock equations
(Section 3.3). This involves expanding the determinants in a sum of products of MOs,
thereby making it possible to express the CI matrix elements in terms of MO integrals.
There are, however, some general features that make many of the CI matrix elements
equal to zero.

The Hamiltonian operator (eq. (3.23)) does not contain spin, thus if two determi-
nants have different total spin the corresponding matrix element is zero. This situation
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occurs if an electron is excited from an a spin-MO to a b spin-MO, such as the second
S-type determinant in Figure 4.2. When the HF wave function is a singlet, this excited
determinant is (part of) a triplet. The corresponding CI matrix element can be written
in terms of integrals over MOs, and the spin dependence can be separated out. If there
is a different number of a and b spin-MOs, there will always be at least one integral
〈a|b 〉 = 0. That matrix elements between different spin states are zero may be fairly
obvious. If we are interested in a singlet wave function, only singlet determinants can
enter the expansion with non-zero coefficients. However, if the Hamiltonian operator
includes for example the spin–orbit operator, matrix elements between singlet and
triplet determinants are not necessarily zero, and the resulting CI wave function will
be a mixture of singlet and triplet determinants.

Consider now the case where an electron with a spin is moved from orbital i to
orbital a. The first S-type determinant in Figure 4.2 is of this type. Alternatively, the
electron with b spin could be moved from orbital i to orbital a. Both of these excited
determinants will have an Sz value of 0, but neither are eigenfunctions of the S2 oper-
ator. The difference and sum of these two determinants describe a singlet state and the
Sz = 0 component of a triplet, as illustrated in Figure 4.4.
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Triplet CSFSinglet CSF

Figure 4.4 Forming configurational state functions from Slater determinants

Such linear combinations of determinants, which are proper spin eigenfunctions, are
called Spin-Adapted Configurations (SAC) or Configurational State Functions (CSF).
The construction of proper CSFs may involve several determinants for higher excited
states. The first D-type determinant in Figure 4.2 is already a proper CSF, but the
second D-type excitation must be combined with five other determinants correspon-
ding to rearrangement of the electron spins to make a singlet CSF (actually there are
two linearly independent CSFs that can be made). By making suitable linear com-
binations of determinants the number of non-zero CI matrix elements can therefore
be reduced.

If the system contains symmetry, there are additional CI matrix elements that
become zero. The symmetry of a determinant is given as the direct product of the sym-
metries of the MOs.The Hamiltonian operator always belongs to the totally symmetric
representation, thus if two determinants belong to different irreducible representa-
tions, the CI matrix element is zero. This is again fairly obvious: if the interest is in a
state of a specific symmetry, only those determinants that have the correct symmetry
can contribute.

The Hamiltonian operator consists of a sum of one-electron and two-electron oper-
ators, eq. (3.24). If two determinants differ by more than two (spatial) MOs there will
always be an overlap integral between two different MOs that is zero (same argument
as in eq. (3.28)). CI matrix elements can therefore only be non-zero if the two 



determinants differ by 0, 1 or 2 MOs, and they may be expressed in terms of integrals
of one- and two-electron operators over MOs. These connection are knows as the
Slater–Condon rules. If the two determinants are identical, the matrix element is simply
the energy of a single-determinant wave function, as given by eq. (3.32). For matrix
elements between determinants differing by 1 (exciting an electron from orbital i to
a) or 2 (exciting two electrons from orbitals i and j to orbitals a and b) MOs, the results
are given in eq. (4.8) (compare with eq. (3.33), where the g operator is implicit in the
notation for the two-electron integrals (eq. (3.57)).

(4.8)

The matrix element between the HF and a singly excited determinant is a matrix
element of the Fock operator (eq. (3.36)) between two different MOs.

(4.9)

This is an occupied–virtual off-diagonal element of the Fock matrix in the MO basis,
and is identical to the gradient of the energy with respect to an occupied–virtual mixing
parameter (except for a factor of 4), see eq. (3.68). If the determinants are constructed
from optimized canonical HF MOs, the gradient is zero, and the matrix element is zero.
This may also be realized by noting that the MOs are eigenfunctions of the Fock oper-
ator, eq. (3.42).

(4.10)

The disappearance of matrix elements between the HF reference and singly excited
states is known as Brillouin’s theorem. The HF reference state therefore only has non-
zero matrix elements with doubly excited determinants, and the full CI matrix acquires
a block diagonal structure.

In order to evaluate the CI matrix elements we need one- and two-electron inte-
grals over MOs. These can be expressed in terms of the corresponding AO integrals
and the MO coefficients.
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Figure 4.5 Structure of the CI matrix



(4.11)

Such MO integrals are required for all electron correlation methods. The two-electron
AO integrals are the most numerous and the above equation appears to involve a com-
putational effect proportional to M 8

basis (M 4
basis AO integrals each multiplied by four sets

of Mbasis MO coefficients). However, by performing the transformation one index at a
time, the computational effort can be reduced to M 5

basis.

(4.12)

Each step now only involves multiplication of M 4
basis integrals with Mbasis coefficients,

i.e. the M 8
basis dependence is reduced to four M 5

basis operations. In the large basis set limit,
all electron correlation methods formally scale as at least M 5

basis, since this is the scaling
for the AO to MO integral transformation.The transformation is an example of a “rota-
tion” of the “coordinate” system consisting of the AOs, to one where the Fock opera-
tor is diagonal, the MOs (see Section 16.2). The diagonal system allows a much more
compact representation of the matrix elements needed for the electron correlation
treatment. The coordinate change is also known as a four index transformation, since
it involves four indices associated with the basis functions.

4.2.2 Size of the CI matrix

The excited Slater determinants are generated by removing electrons from occupied
orbitals, and placing them in virtual orbitals. The number of excited SDs is thus a com-
binatorial problem, and therefore increases factorially with the number of electrons
and basis functions. Consider for example a system such as H2O with a 6-31G(d) basis.
For the purpose of illustration, let us for a moment return to the spin-orbital descrip-
tion. There are 10 electrons and 38 spin-MOs, of which 10 are occupied and 28 are
empty. There are K10,n possible ways of selecting n electrons out of the 10 occupied
orbitals, and K28,n ways of distributing them in the 28 empty orbitals. The number of
excited states for a given excitation level is thus K10,n ⋅K28,n, and the total number of
excited determinants will be a sum over 10 such terms. This is also equivalent to K38,10,
the total number of ways 10 electrons can be distributed in 38 orbitals.

(4.13)

Many of these excited determinants will of course have different spin multiplicity
(triplet, pentet, etc., states for a singlet HF determinant), and can therefore be left out
in the calculation. Generating only the singlet CSFs, the number of configurations at
each excitation level is shown in Table 4.1.

The number of determinants (or CSFs) that can be generated grows wildly with the
excitation level! Even if the C2v symmetry of H2O is employed, there is still a total of
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7536400 singlet CSFs with A1 symmetry. If all possible determinants are included, we
have a full CI wave function and there is no truncation in the many-electron expan-
sion besides that generated by the finite one-electron expansion (size of the basis set).
This is the best possible wave function within the limitations of the basis set, i.e. it
recovers 100% of the electron correlation in the given basis. For the water case with
a medium basis set, this corresponds to diagonalizing a matrix of size 30046752 ×
30046752, which is impossible. However, normally the interest is only in the lowest 
(or a few of the lowest) eigenvalue(s) and eigenvector(s), and there are special 
iterative methods (Section 4.2.4) for determining one (or a few) eigenvector(s) of a
large matrix.

In the general case of N electrons and M basis functions the total number of singlet
CSFs that can be generated is given by eq. (4.14).

(4.14)

For H2O with the above 6-31G(d) basis there are ~30 × 106 CSFs (N = 10, M = 19),
and with the larger 6-311G(2d,2p) basis there are ~106 × 109 CSFs (N = 10, M = 41).
For H2C=CH2 with the 6-31G(d) basis there are ~334 × 1012 CSFs (N = 16,
M = 38).

One of the recent large-scale full CI calculations considered H2O in a DZP type
basis with 24 functions. Allowing all possible excitations of the 10 electrons generates
451681246 determinants.3 The variational wave function thus contains roughly half a
billion parameters, i.e. the formal size of the CI matrix is of the order of half a billion
squared. Although a determination of the lowest eigenvalue of such a problem can be
done in a matter of hours on a modern computer, the result is a single number, the
ground state energy of the H2O molecule. Due to basis set limitations, however, it is
still some 0.2au (~500kJ/mol) larger than the experimental value. The computational
effort for extracting a single eigenvalue and eignvector scales essentially linearly with
the number of CSFs, and it is possible to handle systems with up to a few billion 
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Table 4.1 Number of singlet CSFs as a function of excitation level for H2O with a 6-31G(d) basis

Excitation level n Number of nth excited CSF Total number of CSFs

1 71 71
2 2485 2556
3 40040 42596
4 348530 391126
5 1723540 2114666
6 5033210 7147876
7 8688680 15836556
8 8653645 24490201
9 4554550 29044751

10 1002001 30046752



determinants. The factorial growth of the number of determinants with the size of the 
basis set, however, makes the full CI method unfeasible for all but the very smallest
systems. Full CI calculations are thus not a routine computational procedure for includ-
ing electron correlation, but they are a very useful reference for developing more
approximate methods, as the full CI gives is the best results that can be obtained in
the given basis.

4.2.3 Truncated CI methods

In order to develop a computationally tractable model, the number of excited deter-
minants in the CI expansion (eq. (4.2)) must be reduced.Truncating the excitation level
at one (CI with Singles (CIS)) does not give any improvement over the HF result as
all matrix elements between the HF wave function and singly excited determinants are
zero. CIS is equal to HF for the ground state energy, although higher roots from the
secular equations may be used as approximations to excited states. It has already been
mentioned that only doubly excited determinants have matrix elements with the HF
wave function different from zero, thus the lowest CI level that gives an improvement
over the HF result is to include only doubly excited states, yielding the CI with Doubles
(CID) model. Compared with the number of doubly excited determinants, there are
relatively few singly excited determinants (see for example Table 4.1), and including
these gives the CISD method. Computationally, this is only a marginal increase in effort
over CID. Although the singly excited determinants have zero matrix elements with
the HF reference, they enter the wave function indirectly as they have non-zero matrix
elements with the doubly excited determinants. In the large basis set limit the CISD
method scales as M 6

basis.
The next level in improvement is inclusion of the triply excited determinants, giving

the CISDT method, which is an M 8
basis method. Taking into account also quadruply

excited determinants yields the CISDTQ method which is an M 10
basis method. As shown

below, the CISDTQ model in general gives results close to the full CI limit, but even
truncating the excitation level at four produces so many configurations that it can only
be applied to small molecules and small basis sets. The only CI method that is gener-
ally applicable for a large variety of systems is CISD. For computationally feasible
systems (i.e. medium-size molecules and basis sets), it typically recovers 80–90% of the
available correlation energy. The percentage is highest for small molecules; as the mol-
ecule gets larger the CISD method recovers less and less of the correlation energy,
which is discussed in more detail in Section 4.5.

Since only doubly excited determinants have non-zero matrix elements with the HF
state, these are the most important. This may be illustrated by considering a full CI cal-
culation for the Ne atom in a [5s4p3d] basis, where the 1s-electrons are omitted from
the correlation treatment.4 The contribution to the full CI wave function from each
level of excitation is given in Table 4.2.

The weight is the sum of a2
i coefficients at the given excitation level, eq. (4.2). The

CI method determines the coefficients from the variational principle, thus Table 4.2
shows that the doubly excited determinants are by far the most important in terms 
of energy. The singly excited determinants are the second most important, followed 
by the quadruples and triples. Excitations higher than four make only very small 

4.2 CONFIGURATION INTERACTION 143



contributions, although there are actually many more of these highly excited determi-
nants than the triples and quadruples, as illustrated in Table 4.1.

The relative importance of the different excitations may qualitatively be understood
by noting that the doubles provide electron correlation for electron pairs. Quadruply
excited determinants are important as they primarily correspond to products of double
excitations. The singly excited determinants allow inclusion of multi-reference charac-
ter in the wave function, i.e. they allow the orbitals to “relax”.Although the HF orbitals
are optimum for the single-determinant wave function, that is no longer the case when
many determinants are included. The triply excited determinants are doubly excited
relative to the singles, and can then be viewed as providing correlation for the “multi-
reference” part of the CI wave function.

While singly excited states make relatively small contributions to the correlation
energy of a CI wave function, they are very important when calculating properties
(Chapter 10). Molecular properties measure how the wave function changes when a
perturbation, such as an external electric field, is added. The change in the wave func-
tion introduced by the perturbation makes the MOs no longer optimal in the varia-
tional sense. The first-order change in the MOs is described by the off-diagonal
elements in the Fock matrix, as these are essentially the gradient of the HF energy
with respect to the MOs. In the absence of a perturbation, these are zero, as the HF
energy is stationary with respect to an orbital variation (eq. (3.39)). As shown in eqs
(4.8) and (4.9), the Fock matrix off-diagonal elements are CI matrix elements between
the HF and singly excited states. For molecular properties, the singly excited states thus
allow the CI wave function to “relax” the MOs, i.e. letting the wave function respond
to the perturbation.

4.2.4 Direct CI methods

As illustrated above, even quite small systems at the CISD level result in millions of
CSFs. The variational problem is to extract one or possibly a few of the lowest eigen-
values and eigenvectors of a matrix the size of millions squared. This cannot be done
by standard diagonalization methods where all the eigenvalues are found. There are,
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Table 4.2 Weights of excited configurations for
the neon atom

Excitation level Weight

0 9.6 × 10−1

1 9.8 × 10−4

2 3.4 × 10−2

3 3.7 × 10−4

4 4.5 × 10−4

5 1.9 × 10−5

6 1.7 × 10−6

7 1.4 × 10−7

8 1.1 × 10−9



however, iterative methods for extracting one, or a few, eigenvalues and eigenvectors
of a large matrix. The CI problem eq. (4.7) may be written as in eq. (4.15).

(4.15)

The H matrix contains the matrix element between the CSFs in the CI expansion, and
the a vector the expansion coefficients. The idea in iterative methods is to generate a
suitable guess for the coefficient vector and calculate (H − EI)a. This will in general
not be zero, and the deviation may be used for adding a correction to a, forming an
iterative algorithm. If the interested is in the lowest eigenvalue, a suitable start eigen-
vector may be one that only contains the HF configuration, i.e. {1,0,0,0, . . .}. Since the
H matrix elements are essentially two-electron integrals in the MO basis (eq. (4.8)),
the iterative procedure may be formulated as integral driven, i.e. a batch of integrals
are read in (or generated otherwise) and used directly in the multiplication with the
corresponding a-coefficients. The CI matrix is therefore not needed explicitly, only the
effect of its multiplication with a vector containing the variational parameters, and
storage of the entire matrix is avoided. This is the basis for being able to handle CI
problems of almost any size, and is known as direct CI. Note that it is not “direct” in
the sense used to describe the direct SCF method, where all the AO integrals are cal-
culated as needed. The direct CI approach just assumes that the CI matrix elements
(e.g. two-electron integrals in the MO basis) are available as required, traditionally
stored in a file on a disk. There are several variations on how the a-vector is adjusted
in each iteration, and the most commonly used versions are based on the Davidson
algorithm.5

4.3 Illustrating how CI Accounts for Electron Correlation, and
the RHF Dissociation Problem
Consider the H2 molecule in a minimum basis consisting of one s-function on each
centre, cA and cB. An RHF calculation will produce two MOs, f1 and f2, being the sum
and difference of the two AOs. The sum of the two AOs is a bonding MO, with
increased probability of finding the electrons between the two nuclei, while the dif-
ference is an antibonding MO, with decreased probability of finding the electrons
between the two nuclei.

H I a 0−( ) =E
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Figure 4.6 Molecular orbitals for H2



The HF wave function will have two electrons in the lowest energy (bonding) MO.

(4.16)

We have here neglected the normalization constants for both the MOs and the deter-
minantal wave function. The bar above the MO indicates that the electron has a b spin
function, no bar indicates an a spin function. In this basis, there are one doubly (Φ1)
and four singly excited Slater determinants (Φ2–5).

(4.17)

Configurations Φ4 and Φ5 are clearly the Sz = 1 and Sz = −1 components of a triplet
state. The plus combination of Φ2 and Φ3 is the Sz = 0 component of the triplet, and the
minus combination is a singlet configuration, Figure 4.4. The H2 molecule belongs to
the D∞h point group, and the two MOs transform as the sg (f1) and su (f2) represen-
tations. The singly excited CSF (Φ2 − Φ3) has overall Σu symmetry, while the HF (Φ0)
and doubly excited determinant (Φ1) have Σg. The full 6 × 6 CI problem therefore
blocks into a 2 × 2 block of singlet Σg states, a 1 × 1 block of singlet Σu, and a 3 × 3
block of triplet Σu states. Owing to the orthogonality of the spin functions, the triplet
block is already diagonal.

The full CI for the 1Σg states involves only two configurations, the reference HF and
the doubly excited determinant.
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Figure 4.7 Structure of the full CI matrix for the H2 system in a minimum basis



(4.18)

In eq. (4.18) the electron coordinate is given implicitly by the order in which the
orbitals are written, i.e. f1f1[ab − ba] = f1(1)f1(2)[a(1)b(2) − b(1)a(2)]. Ignoring the
spin functions (which may be integrated out since H is spin independent), the deter-
minants can be expanded in AOs.

(4.19)

The first two terms on the right-hand side have both electrons on the same nuclear
centre, and they describe ionic contributions to the wave function, H+H−. The later two
terms describe covalent contributions to the wave function, H⋅H⋅. The HF wave func-
tion thus contains equal amounts of ionic and covalent contributions.

The full CI wave function may be written in terms of AOs as in eq. (4.20), with the
optimum values of the a0 and a1 coefficients determined by the variational procedure.

(4.20)

The HF wave function constrains both electrons to move in the same bonding orbital.
By allowing the doubly excited state to enter the wave function, the electrons can
better avoid each other, as the antibonding MO is now also available. The antibond-
ing MO has a nodal plane (where f2 = 0) perpendicular to the molecular axis (Figure
4.6), and the electrons are able to correlate their movements by being on opposite sides
of this plane. This left–right correlation is a molecular equivalent of the atomic radial
correlation discussed in Section 5.2.

Consider now the behaviour of the HF wave function Φ0 (eq. (4.19)) as the distance
between the two nuclei is increased toward infinity. Since the HF wave function is an
equal mixture of ionic and covalent terms, the dissociation limit is 50% H+H− and 50%
H⋅H⋅. In the gas phase, all bonds dissociate homolytically, and the ionic contribution
should be 0%. The HF dissociation energy is therefore much too high. This is a general
problem with RHF type wave functions: the constraint of doubly occupied MOs is
inconsistent with breaking bonds to produce radicals. In order for an RHF wave 
function to dissociate correctly, an even-electron molecule must break into two 
even-electron fragments, each being in the lowest electronic state. Furthermore, the
orbital symmetries must match. There are only a few covalently bonded systems that
obey these requirements (the simplest example is HHe+). The wrong dissociation limit
for RHF wave functions has several consequences:

(1) The energy for stretched bonds is too high. Most transition structures have partly
formed/broken bonds, thus activation energies are too high at the RHF level.

(2) The too steep increase in energy as a function of the bond length causes the
minimum on a potential energy curve to occur too “early” for covalently bonded
systems, and equilibrium bond lengths are too short at the RHF level.
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(3) The too steep increase in energy as a function of the bond length causes the cur-
vature of the potential energy surface near the equilibrium to be too large, and
vibrational frequencies, especially those describing bond stretching, are in general
too high.

(4) The wave function contains too much “ionic” character, and RHF dipole moments
(and also atomic charges) are in general too large.

It should be noted that dative bonds, such as in metal complexes and charge transfer
species, in general have RHF wave functions that dissociate correctly, and the equi-
librium bond lengths in these cases are normally too long.

The dissociation problem is solved in the case of a full CI wave function in this
minimum basis. As seen from eq. (4.20), the ionic term can be made to disappear 
by setting a1 = −a0. The full CI wave function generates the lowest possible energy
(within the limitations of the chosen basis set) at all distances, with the optimum
weights of the HF and doubly excited determinant determined by the variational prin-
ciple. In the general case of a polyatomic molecule and large basis set, correct disso-
ciation of all bonds can be achieved if the CI wave function contains all determinants
generated by a full CI in the valence orbital space. The latter corresponds to a full CI
if a minimum basis is employed, but is much smaller than a full CI if an extended basis
is used.

4.4 The UHF Dissociation, and the Spin 
Contamination Problem
The dissociation problem can also be “solved” by using a wave function of the UHF
type. Here the a and b bonding MOs are allowed to “localize”, thereby reducing the
MO symmetries to C∞v.

(4.21)

The optimum value of c is determined by the variational principle. If c = 1, the 
UHF wave function is identical to RHF. This will normally be the case near the 
equilibrium distance. As the bond is stretched, the UHF wave function allows each 
of the electrons to localize on a nucleus, causing c to go towards 0. The point where
the RHF and UHF descriptions start to differ is often referred to as the RHF/UHF
instability point. This is an example of symmetry breaking, as discussed in Section 
3.8.3. The UHF wave function correctly dissociates into two hydrogen atoms, but 
the symmetry breaking of the MOs has two other, closely connected, consequences:
introduction of electron correlation and spin contamination. To illustrate these 
concepts, we need to look at the Φ0 UHF determinant, and the six RHF determinants
in eqs (4.16) and (4.17) in more detail. We will again ignore all normalization 
constants. The six RHF determinants can be expanded in terms of the AOs as in 
eq. (4.22).
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(4.22)

Subtracting and adding Φ2 and Φ3 produces a pure singlet (1Φ−) and the Sz = 0 com-
ponent of the triplet (3Φ+) wave function.

(4.23)

Performing the expansion of the Φ0
UHF determinant (eq. (4.21)) gives eq. (4.24).

(4.24)

Adding and subtracting factors of cAcBab and cBcAba allow this to be written as in
eq. (4.25).

(4.25)

Since 0 ≤ c ≤ 1, the first term shows that UHF orbitals reduce the ionic contribution
relative to the covalent structures, compared with the RHF case, eq. (4.19). This is the
same effect as for the CI procedure (eq. (4.20)), i.e. the first term shows that the UHF
wave function partly includes electron correlation.

The first term in eq. (4.25) can be written as a linear combination of the Φ0 and Φ1

determinants, and describes a pure singlet state. The last part of the UHF determinant,
however, has terms identical to two of those in the triplet 3Φ+ combination, eq. (4.23).
If we had chosen the alternative set of UHF orbital with the a spin being primarily on
centre B in eq. (4.21), we would have obtained the other two terms in 3Φ+, i.e. the last
term in eq. (4.25) breaks the symmetry. The UHF determinant is therefore not a pure
spin state, it contains both singlet and triplet spin states. This feature is known as spin
contamination. For c = 1, the UHF wave function is identical to RHF, and Φ0

UHF is a
pure singlet. For c = 0, the UHF wave function only contains the covalent terms, which
is the correct dissociation behaviour, but also contains equal amounts of singlet and
triplet character. When the bond distance is very large, the singlet and triplet states
have identical energies, and the spin contamination has no consequence for the energy.
In the intermediate region where the bond is not completely broken, however, spin
contamination is important.

Compared with full CI, the UHF energy is too high as the higher lying triplet state
is mixed into the wave function. The variational principle guarantees that the UHF
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energy is lower than or equal to the RHF energy since there are more variational
parameters.The full CI energy is the lowest possible (for the given basis set) as it recov-
ers 100% of the correlation energy. The UHF wave function thus lowers the energy by
introducing some electron correlation, but at the same time raises the energy by includ-
ing higher energy spin states. At the single-determinant level, the variational principle
guarantees that the first effect dominates. If the second effect dominated, the UHF
would collapse to the RHF solution. The correlation energy in general increases as a
bond is stretched, and the instability point can thus be viewed as the geometry where
the correlation effect becomes larger than the spin contamination. Pictorially, the dis-
sociation curves appear as shown in Figure 4.8.
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Figure 4.8 Bond dissociation curves for H2

Another way of viewing spin contamination is to write the UHF wave function as a
linear combination of pure R(O)HF determinants, e.g. for a singlet state.

(4.26)

Since the UHF wave function is multi-determinantal in terms of R(O)HF determi-
nants, it follows that it to some extent includes electron correlation (relative to the
RHF reference).

The amount of spin contamination is given by the expectation value of the S2

operator, 〈S2〉. The theoretical value for a pure spin state is Sz(Sz + 1), i.e. 0 for a singlet
(Sz = 0), 0.75 for a doublet (Sz = 1/2), 2.00 for a triplet (Sz = 1), etc. A UHF “singlet”
wave function will contain some amounts of triplet, quintet, etc., states, increasing the
〈S2〉 value from its theoretical value of zero for a pure spin state. Similarly, a UHF
“doublet” wave function will contain some amounts of quartet, sextet, etc., states.
Usually the contribution from the next higher spin state than the desired is the most
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important. The 〈S2〉 value for a UHF wave function is operationally calculated from
the spatial overlap between all pairs of a and b spin-orbitals.

(4.27)

If the a and b orbitals are identical, there is no spin contamination, and the UHF wave
function is identical to RHF.

By including electron correlation in the wave function, the UHF method introduces
more biradical character into the wave function than RHF. The spin contamination
part is also purely biradical in nature, i.e. a UHF treatment in general will overesti-
mate the biradical character of the wave function. Most singlet states are well described
by a closed shell wave function near the equilibrium geometry and, in those cases, it
is not possible to generate a UHF solution that has a lower energy than the RHF.There
are systems, however, for which this does not hold. An example is the ozone molecule,
where two types of resonance structures can be drawn.
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Figure 4.9 Resonance structures for ozone

The biradical resonance structure for ozone requires two singly occupied MOs, and
it is clear that an RHF type wave function, which requires all orbitals to be doubly
occupied, cannot describe this. A UHF type wave function, however, allows the a and
b orbitals to be spatially different, and can to a certain extent incorporate both reso-
nance structures. Systems with biradical character will in general have a (singlet) UHF
wave function different from an RHF.

As mentioned above, spin contamination in general increases as a bond is stretched.
This has important consequences for transition structures, which contain elongated
bonds. While most singlet systems have identical RHF and UHF descriptions near the
equilibrium geometry, it will normally be possible to find a lower energy UHF solu-
tion in the TS region. However, since the spin contamination is not constant along the
reaction coordinate, and since the UHF overestimates the biradical character, it is pos-
sible that the TS actually becomes a minimum on the UHF energy surface. In other
words, the spin contamination may severely distort the shape of the potential energy
surface. This may qualitatively be understood by considering the “singlet” UHF 
wave function as a linear combination of a singlet and a triplet states, as shown in
Figure 4.10.

The degree of mixing is determined by the energy difference between the pure
singlet and triplet states (as shown for example by second-order perturbation theory,
see Section 4.8), which in general decreases along the reaction coordinate. Even if the
mixing is not large enough to actually transform a TS to a minimum, it is clear that the
UHF energy surface will be much too flat in the TS region. Activation energies calcu-
lated at the UHF level will always be lower than the RHF value, but may be either
higher or lower than the “correct” value, depending on the amount of spin contami-
nation, since RHF normally overestimates activation energies.



From the above it should be clear that UHF wave functions that are spin contami-
nated (more than a few percent deviation of 〈S2〉 from the theoretical value of Sz(Sz +
1)) have disadvantages. For closed shell systems, an RHF procedure is therefore nor-
mally preferred. For open-shell systems, however, the UHF method has been widely
used. It is possible to use an ROHF type wave function for open-shell systems, but this
leads to computational procedures that are somewhat more complicated than for the
UHF case when electron correlation is introduced.

The main problem with the UHF method is the spin contamination, and there have
been several proposals on how to remove these unwanted states. There are three
strategies that can be considered for removing the contamination:

• During the SCF procedure.
• After the SCF has converged.
• After electron correlation has been added to the UHF solution.

A popular method of removing unwanted states is to project them out with a suitable
projection operator (in the picture of the wave function being described in the coor-
dinate system consisting of determinants, the components of the wave function along
the higher spin states is removed). As mentioned above, the next higher spin state is
usually the most important, and in many cases it is a quite good approximation to only
remove this state. After projection, the wave function is then renormalized. If only the
first contaminant is removed, this may in extreme cases actually increase the 〈S2〉 value.

Performing the projection during the SCF procedure produces a wave function for
which it is difficult to formulate a satisfactory theory for including electron correlation
by means of perturbation or coupled cluster methods (Sections 4.8 and 4.9). Projec-
tions of the converged UHF wave function will lower the energy (although the pro-
jected UHF (PUHF) energy is no longer variational), since the contributions of the
higher lying states are removed, and only the correlation effect remains. However, the
problem of artificial distortion of the energy surface is even more pronounced at 
the PUHF level than with the UHF method itself. For example, it is often found that
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a false minimum is generated just after the RHF/UHF instability point on a bond dis-
sociation curve. Furthermore, the derivatives of the PUHF energy are not continuous
at the RHF/UHF instability point. Projection of the wave function after electron 
correlation has been added, however, turns out to be a viable pathway. This has 
mainly been used in connection with perturbation methods, to be described in 
Section 4.8.2.

4.5 Size Consistency and Size Extensivity
As mentioned above, full CI is impossible except for very small system. The only gen-
erally applicable method is CISD. Consider now a series of CISD calculations in order
to construct the interaction potential between two H2 molecules as a function of the
distance between them. Relative to the HF wave function, there will be determinants
that correspond to single excitations on only one of the H2 fragments (S-type deter-
minants), single excitations on both (D-type determinants), and double excitations
only on one of the H2 fragments (also D-type determinants). This will be the case at
all intermolecular distances, even when the separation is very large. In that case,
however, the system is just two H2 molecules, and we could consider calculating the
energy instead as twice the energy of one H2 molecule. A CISD calculation on one H2

molecule would generate singly and doubly excited determinants, and multiplying this
by two would generate determinants that are triply and quadruply excited for the com-
bined H4 system. A CISD calculation of two H2 molecules separated by say 100Å will
therefore not give the same energy as twice the results from a CISD calculation on
one H2 molecule (the latter will be lower). This problem is referred to a Size Incon-
sistency. A very similar, but not identical concept, is Size Extensivity. Size consistency
is only defined if the two fragments are non-interacting (separated by say 100Å), while
size extensivity implies that the method scales properly with the number of particles,
i.e. the fragments can be interacting (separated by say 5Å). Full CI is size consistent
(and extensive), but all forms of truncated CI are not. The lack of size extensivity is
the reason why CISD recovers less and less electron correlation as the systems grow
larger.

4.6 Multi-Configuration Self-Consistent Field
The Multi-Configuration Self-Consistent Field (MCSCF) method can be considered as
a CI where not only are the coefficients in front of the determinants (eq. (4.2)) opti-
mized by the variational principle, but the MOs used for constructing the determinants
are also optimized.6 The MCSCF optimization is iterative like the SCF procedure (if
the “multi configuration” is only one, it is simply HF). Since the number of MCSCF
iterations required for achieving convergence tends to increase with the number of
configurations included, the size of MCSCF wave functions that can be treated is some-
what smaller than for CI methods.

When deriving the HF equations only the variation of the energy with respect to an
orbital variation was required to be zero, which is equivalent to the first derivatives of
the energy with respect to the MO expansion coefficients being equal to zero. The HF
equations can be solved by an iterative SCF method, and there are many techniques
for helping the iterative procedure to converge (Section 3.8). There is, however, no
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guarantee that the solution found by the SCF procedure is a minimum of the energy
as a function of the MO coefficients. In order to ensure that a minimum has been found,
the matrix of second derivatives of the energy with respect to the MO coefficients can
be calculated and diagonalized, with a minimum having only positive eigenvalues. This
is rarely checked for SCF wave functions; in the large majority of cases the SCF pro-
cedure converges to a minimum without problems. MCSCF wave functions, on the
other hand, are much harder to converge, and much more prone to converge on solu-
tions that are not minima. MCSCF wave function optimizations are therefore normally
carried out by expanding the energy to second order in the variational parameters
(orbital and configurational coefficients), analogously to the second-order SCF 
procedure described in Section 3.8.1, and using the Newton–Raphson-based methods
described in Section 12.2.3 to force convergence to a minimum.

MCSCF methods are rarely used for calculating large fractions of the correlation
energy. The orbital relaxation usually does not recover much electron correlation, and
it is more efficient to include additional determinants and keep the MOs fixed (CI) if
the interest is just in obtaining a large fraction of the correlation energy. Single-
determinant HF wave functions normally give a qualitatively correct description of 
the electron structure, but there are many examples where this is not the case.
MCSCF methods can be considered as an extension of single-determinant methods to
give a qualitatively correct description.

Consider again the ozone molecule with the two resonance structures shown in
Figure 4.9. Each type of resonance structure essentially translates into a different
determinant. If more than one non-equivalent resonance structure is important, this
means that the wave function cannot be described even qualitatively correctly at the
RHF single-determinant level (benzene, for example, has two equivalent cyclohexa-
triene resonance structures, and is adequately described by an RHF wave function). A
UHF wave function allows some biradical character, with the disadvantages discussed
in Section 4.4. Alternatively, a second restricted type CSF (consisting of two determi-
nants) with two singly occupied MOs may be included in the wave function. The sim-
plest MCSCF for ozone contains two configurations (often denoted TCSCF), with the
optimum MOs and configurational weights determined by the variational principle.
The CSFs entering an MCSCF expansion are pure spin states, and MCSCF wave func-
tions therefore do not suffer from the problem of spin contamination.

Our definition of electron correlation uses the RHF energy as the reference. For
ozone, both the UHF and the TCSCF wave functions have lower energies, and include
some electron correlation. This type of “electron correlation” is somewhat different
from the picture presented at the start of this chapter. In a sense it is a consequence
of our chosen zero point for the correlation energy, the RHF energy. The energy low-
ering introduced by adding enough flexibility in the wave function to be able to qual-
itatively describe the system is sometimes called the static electron correlation. This is
essentially the effect of allowing orbitals to become (partly) singly occupied instead of
forcing double occupation, i.e. describing near-degeneracy effects (two or more con-
figurations having almost the same energy). The remaining energy lowering by corre-
lating the motion of the electrons is called dynamical correlation. The problem is that
there is no rigorous way of separating these effects. In the ozone example the energy
lowering by going from RHF to UHF, or to a TCSCF, is almost pure static correlation.
Increasing the number of configurations in an MCSCF will recover more and more of
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the dynamical correlation, until, at the full CI limit, the correlation treatment is exact.
As mentioned above, MCSCF methods are mainly used for generating a qualitatively
correct wave function, i.e. recovering the “static” part of the correlation.

The major problem with MCSCF methods is selecting which configurations are nec-
essary to include for the property of interest. One of the most popular approaches is
the Complete Active Space Self-Consistent Field (CASSCF) method (also called Full
Optimized Reaction Space (FORS)). Here the selection of configurations is done by
partitioning the MOs into active and inactive spaces. The active MOs will typically be
some of the highest occupied and some of the lowest unoccupied MOs from an RHF
calculation. The inactive MOs have either 2 or 0 electrons, i.e. always either doubly
occupied or empty. Within the active MOs a full CI is performed and all the proper
symmetry-adapted configurations are included in the MCSCF optimization. Which
MOs to include in the active space must be decided manually, by considering the
problem at hand and the computational expense. If several points on the potential
energy surface are desired, the MCSCF active space should include all those orbitals
that change significantly, or for which the electron correlation is expected to change.
A common notation is [n,m]-CASSCF, which indicates that n electrons are distributed
in all possible ways in m orbitals.

As for any full CI expansion, the CASSCF becomes unmanageably large even for
quite small active spaces.A variation of the CASSCF procedure is the Restricted Active
Space Self-Consistent Field (RASSCF) method.7 Here the active MOs are divided into
three sections, RAS1, RAS2 and RAS3, each having restrictions on the occupation
numbers (excitations) allowed. A typical model consists of the configurations in the
RAS2 space being generated by a full CI (analogously to CASSCF), or perhaps limited
to SDTQ excitations. The RAS1 space consists of MOs that are doubly occupied in
the HF reference determinant, and the RAS3 space consists of MOs that are empty in
the HF. Configurations additional to those from the RAS2 space are generated by
allowing for example a maximum of two electrons to be excited from the RAS1 and
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Figure 4.11 Illustrating the CAS and RAS orbital partitions



a maximum of two electrons to be excited to the RAS3 space. In essence, a typical
RASSCF procedure thus generates configurations by a combination of a full CI in a
small number of MOs (RAS2) and a CISD in a somewhat larger MO space (RAS1
and RAS3).

The full CI expansion within the active space severely restricts the number of
orbitals and electrons that can be treated by CASSCF methods. Table 4.3 shows how
many singlet CSFs are generated for an [n,n]-CASSCF wave function (eq. (4.13)),
without reductions arising from symmetry.
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Table 4.3 Number of configurations generated
in an [n,n]-CASSCF wave function

n Number of CSFs

2 3
4 20
6 175
8 1764

10 19404
12 226512
14 2760615

The factorial increase in the number of CSFs effectively limits the active space for
CASSCF wave functions to fewer than 10–12 electrons/orbitals. Selecting the “impor-
tant” orbitals to correlate therefore becomes very important. The goal of MCSCF
methods is usually not to recover a large fraction of the total correlation energy, but
rather to recover all the changes that occur in the correlation energy for the given
process. Selecting the active space for an MCSCF calculation requires some insight
into the problem. There are a few rules of thumb that may be of help in selecting a
proper set of orbitals for the active space:

(1) For each occupied orbital, there will typically be one corresponding virtual orbital.
This leads naturally to [n,m]-CASSCF wave functions where n and m are identi-
cal or nearly so.

(2) Including all the valence orbitals, i.e. the space spanned by a minimum basis set,
leads to a wave function that can correctly describe all dissociation pathways.
Unfortunately, a full valence CASSCF wave function rapidly becomes unmanage-
ably large for realistic-sized systems.

(3) The orbital energies from an RHF calculation may be used for selecting the impor-
tant orbitals. The highest occupied and lowest unoccupied are usually the most
important orbitals to include in the active space. This can be partly justified by the
formula for the second-order perturbation energy correction (Section 4.8.1): the
smaller the orbital energy difference, the larger contribution to the correlation
energy. Using RHF orbital energies for selecting the active space may be prob-
lematic in two situations.The first is when extended basis sets are used, where there
will be many virtual orbitals with low energies, and the exact order is more or less
accidental. Furthermore, RHF virtual orbitals basically describe electron attach-
ment (via Koopmans’ theorem, Section 3.4), and are therefore not particularly well



suited for describing electron correlation. An inspection of the form of the orbitals
may reveal which to choose: they should be the ones that resemble the occupied
orbitals in terms of basis function contribution. The second problem is more fun-
damental. If the real wave function has significant multi-configurational character,
then the RHF may be qualitatively wrong, and selecting the active orbitals 
based on a qualitatively wrong wave function may lead to erroneous results. The
problem is that we wish to include the important orbitals for describing the multi-
determinant nature, but these are not known until the final wave function is known.

(4) An attempt to overcome this self-referencing problem is to use the concept of
natural orbitals. The natural orbitals are those that diagonalize the density matrix,
and the eigenvalues are the occupation numbers. Orbitals with occupation
numbers significantly different from 0 or 2 (for a closed shell system) are usually
those that are the most important to include in the active space. An RHF wave
function will have occupation numbers of exactly 0 or 2, and some electron cor-
relation must be included to obtain orbitals with non-integer occupation numbers.
This may for example be done by running a preliminary MP2 or CISD calculation
prior to the MCSCF. Alternatively, a UHF (when different from RHF) type wave
function may also be used. The total UHF density, which is the sum of the a and
b density matrices, will also provide fractional occupation numbers since UHF
includes some electron correlation. The procedure may still fail. If the underlying
RHF wave function is poor, the MP2 correction may also give poor results, and
selecting the active MCSCF orbitals based on MP2 occupation number may again
lead to erroneous results. In practice, however, selecting active orbitals based on
for example MP2 occupation numbers appears to be quite efficient, and better than
using RHF orbital energies.

In a CASSCF type wave function the CI coefficients do not have the same significance
as for a single-reference CI based on HF orbitals. In a full CI (as in the active space
of the CASSCF), the orbitals may be rotated among themselves without affecting the
total wave function. A rotation of the orbitals, however, influences the magnitude of
the coefficients in front of each CSF. While the HF coefficient in a single-reference
CISD gives some indication of the “multi-reference” nature of the wave function, this
is not the case for a CASSCF wave function, where the corresponding CI coefficient
is arbitrary.

It should be noted that CASSCF methods inherently tend to give an unbalanced
description, since all the electron correlation recovered is in the active space, with none
in the inactive space, or between the active and inactive electrons.8 This is not a
problem if all the valence electrons are included in the active space, but this is only
possible for small systems. If only part of the valence electrons are included in the
active space, the CASSCF method tends to overestimate the importance of “biradical”
structures. Consider for example acetylene where the hydrogens have been bent 60°
away from linearity (this may be considered a model for ortho-benzyne). The in-plane
“π-orbital” now acquires significant biradical character. The true structure may be
described as a linear combination of the following three configurations.

The structure on the left is biradical, while the two others are ionic, corresponding
to both electrons being at the same carbon. The simplest CASSCF wave function that
can qualitatively describe this system has two electrons in two orbitals, giving the three
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configurations shown above. The dynamical correlation between the two active elec-
trons will tend to keep them as far apart as possible, i.e. favouring the biradical struc-
ture. Consider now a full valence CASSCF wave function with ten electrons in ten
orbitals.This will analogously tend to separate the two electrons in each bond with one
being at each end. The correlation of the electrons in the C—H bonds, for example,
will place more electron density on the carbon atoms. This in turn favours the ionic
structures in Figure 4.12 and disfavours the biradical, i.e. the dynamical correlation of
the other electrons may take advantage of the empty orbital in the ionic structures but
not in the biradical structure. These general considerations may be quantified by con-
sidering the natural orbital occupancies for increasingly large CASSCF wave functions,
as shown in Table 4.4 with the 6-31G(d,p) basis.
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Figure 4.12 Important configurations for a bend acetylene model

Table 4.4 Natural orbital occupation numbers for the distorted
acetylene model in Figure 4.12; only the occupation numbers for the
six “central” orbitals are shown

n5 n6 n7 n8 n9 n10

RHF 2.00 2.00 2.00 0.00 0.00 0.00
UHF 2.00 1.72 1.30 0.70 0.28 0.01
[2,2]-CASSCF 2.00 2.00 1.62 0.38 0.00 0.00
[4,4]-CASSCF 2.00 1.85 1.67 0.33 0.14 0.00
[10,10]-CASSCF 1.97 1.87 1.71 0.30 0.13 0.02

The [4,4]-CASSCF also includes the two out-of-plane π-orbitals in the active space,
while the [10,10]-CASSCF generates a full-valence CI wave function. The unbalanced
description for the [2,2]-CASSCF is reminiscent of the spin contamination problem
for UHF wave functions, although the effect is much less pronounced. Nevertheless,
the overestimation may be severe enough to alter the qualitative shape of energy sur-
faces, for example turning transition structures into minima, as illustrated in Figure
4.10. MCSCF methods are therefore not “black box” methods such as for example HF
and MP (Section 4.8.1); selecting a proper number of configurations, and the correct
orbitals, to give a balanced description of the problem at hand requires some experi-
mentation and insight.

4.7 Multi-Reference Configuration Interaction
The CI methods described so far consider only CSFs generated by exciting electrons
from a single determinant. This corresponds to having an HF type wave function 
as the reference. However, an MCSCF wave function may also be chosen as the 



reference. In that case, a CISD involves excitations of one or two electrons out of all
the determinants that enter the MCSCF, defining the Multi-Reference Configuration
Interaction (MRCI) method. Compared with the single-reference CISD, the number
of configurations is increased by a factor roughly equal to the number of configura-
tions included in the MCSCF. Large-scale MRCI wave functions (many configurations
in the MCSCF) can generate very accurate wave functions, but are also computation-
ally very intensive. Since MRCI methods truncate the CI expansion, they are not size 
extensive.

Even truncating the (MR) CI expansion at the singles and doubles level frequently
generates more configurations than can be handled readily. A further truncation is
sometimes performed by selecting only those configurations that have an “interaction”
with the reference configuration(s) above a selected threshold, where the “interaction”
is evaluated by second-order perturbation theory (Section 4.8). Such state-selected CI
(or MCSCF) methods all involve a preset cutoff below which configurations are neg-
lected. This may cause problems for comparing energies of different geometries, since
the potential energy surface may become discontinuous, i.e. at some point the impor-
tance of a given configuration drops below the threshold, and the contribution sud-
denly disappears.

4.8 Many-Body Perturbation Theory
The idea in perturbation methods is that the problem at hand only differs slightly from
a problem that has already been solved (exactly or approximately). The solution to the
given problem should therefore in some sense be close to the solution to the already
known system. This is described mathematically by defining a Hamiltonian operator
that consists of two parts, a reference (H0) and a perturbation (H′). The premise of
perturbation methods is that the H′ operator in some sense is “small” compared with
H0. Perturbation methods can be used in quantum mechanics for adding corrections
to solutions that employ an independent-particle approximation, and the theoretical
framework is then called Many-Body Perturbation Theory (MBPT).

Let us assume that the Schrödinger equation for the reference Hamiltonian opera-
tor is solved.

(4.28)

The solutions for the unperturbed Hamiltonian operator form a complete set (since
H0 is Hermitian) which can be chosen to be orthonormal, and l is a (variable) param-
eter determining the strength of the perturbation. At present, we will only consider
cases where the perturbation is time-independent, and the reference wave function is
non-degenerate. To keep the notation simple, we will furthermore only consider the
lowest energy state. The perturbed Schrödinger equation is given by eq. (4.29).

(4.29)

If l = 0, then H = H0, Ψ = Φ0 and W = E0. As the perturbation is increased from zero
to a finite value, the new energy and wave function must also change continuously, and
they can be written as a Taylor expansion in powers of the perturbation parameter l.

HΨ Ψ= W

H H H

H

= + ′
= = ∞

0

0 0 1 2

l
Φ Φi i iE i , , , . . . ,
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(4.30)

For l = 0, it is seen that Ψ0 = Φ0 and W0 = E0, and this is the unperturbed, or zeroth-
order wave function and energy. The Ψ1, Ψ2, . . . and W1, W2, . . . are the first-order,
second-order, etc., corrections. The l parameter will eventually be set equal to 1, and
the nth-order energy or wave function becomes a sum of all terms up to order n.

It is convenient to choose the perturbed wave function to be intermediately nor-
malized, i.e. the overlap with the unperturbed wave function should be 1. This has the
consequence that all correction terms are orthogonal to the reference wave function.

(4.31)

Once all the correction terms have been calculated, it is trivial to normalize the total
wave function.

With the expansions (eq. (4.30)), the Schrödinger equation (eq. (4.29)) becomes eq.
(4.32).

(4.32)

Since this holds for any value of l, we can collect terms with the same power of l to
give eq. (4.33).

(4.33)

These are the zero-, first-, second-, nth-order perturbation equations. The zeroth-order
equation is just the Schrödinger equation for the unperturbed problem. The first-order
equation contains two unknowns, the first-order correction to the energy, W1, and the
first-order correction to the wave function, Ψ1. The nth-order energy correction can be
calculated by multiplying from the left by Φ0 and integrating, and using the “turnover
rule” 〈Φ0|H0|Ψi〉 = 〈Ψi|H0|Φ0〉*.

(4.34)
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From this it would appear that the (n − 1)th-order wave function is required for cal-
culating the nth-order energy. However, by using the turnover rule and the nth- and
lower order perturbation equations (4.33), it can be shown that knowledge of the nth-
order wave function actually allows a calculation of the (2n + 1)th-order energy.

(4.35)

Up to this point, we are still dealing with undetermined quantities, energy and wave
function corrections at each order. The first-order equation is one equation with two
unknowns. Since the solutions to the unperturbed Schrödinger equation generate a
complete set of functions, the unknown first-order correction to the wave function can
be expanded in these functions. This is known as Rayleigh–Schrödinger perturbation
theory, and the l1 equation in eq. (4.33) becomes eq. (4.36).

(4.36)

Multiplying from the left by Φ0* and integrating yields eq. (4.37), where the orthonor-
mality of the Φis is used (this also follows directly from eq. (4.35)).

(4.37)

The last equation shows that the first-order correction to the energy is an average of
the perturbation operator over the unperturbed wave function.

The first-order correction to the wave function can be obtained by multiplying eq.
(4.33) from the left by a function other than Φ0 (Φj) and integrating to give eq. (4.38).

(4.38)

The expansion coefficients determine the first-order correction to the perturbed wave
function (eq. (4.36)), and they can be calculated from the known unperturbed wave
functions and energies.The coefficient in front of Φ0 for Ψ1 cannot be determined from
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the above formula, but the assumption of intermediate normalization (eq. (4.31))
makes c0 = 0. Starting from the second-order perturbation equation (4.33), analogous
formulas can be generated for the second-order corrections. Using intermediate nor-
malization (c0 = d0 = 0), the second-order energy correction is given by eq. (4.39).

(4.39)

The last equation shows that the second-order energy correction may be written in
terms of the first-order wave function (ci) and matrix elements over unperturbed states.
The second-order wave function correction is given by eq. (4.40).

(4.40)

The formulas for higher order corrections become increasingly complex; the third-
order energy correction for example is given in eq. (4.41).

(4.41)

The main point, however, is that all corrections can be expressed in terms of matrix
elements of the perturbation operator over unperturbed wave functions, and the
unperturbed energies.

4.8.1 Møller–Plesset perturbation theory

So far, the theory has been completely general. In order to apply perturbation theory
to the calculation of correlation energy, the unperturbed Hamiltonian operator must
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be selected. The most common choice is to take this as a sum over Fock operators,
leading to Møller–Plesset (MP) perturbation theory.9 The sum of Fock operators counts
the (average) electron–electron repulsion twice (eq. (3.44)), and the perturbation
becomes the exact Vee operator minus twice the 〈Vee〉 operator. The operator associ-
ated with this difference is often referred to as the fluctuation potential. This choice is
not really consistent with the basic assumption that the perturbation should be small
compared with H0. However, it does fulfil the other requirement that solutions to the
unperturbed Schrödinger equation should be known. Furthermore, this is the only
choice that leads to a size extensive method, which is a desirable feature.

(4.42)

The zeroth-order wave function is the HF determinant, and the zeroth-order energy
is just a sum of MO energies.

(4.43)

Recall that the orbital energy is the energy of an electron in the field of all the nuclei
and includes the repulsion to all other electrons, eq. (3.44), and therefore counts the
electron–electron repulsion twice. The first-order energy correction is the average of
the perturbation operator over the zeroth-order wave function (eq. (4.37)).

(4.44)

This yields a correction for the overcounting of the electron–electron repulsion at
zeroth order. Comparing eq. (4.44) with the expression for the total energy in eq. (3.32),
it is seen that the first-order energy (sum of W0 and W1) is exactly the HF energy. Using
the notation E(MPn) to indicate the correction at order n, and MPn to indicate the
total energy up to order n, we have eq. (4.45).

(4.45)

Electron correlation energy thus starts at order two with this choice of H0.
In developing perturbation theory, it was assumed that the solutions to the unper-

turbed problem formed a complete set. This in general means that there must be an
infinite number of functions, which is impossible in actual calculations. The lowest
energy solution to the unperturbed problem is the HF wave function, additional higher
energy solutions are excited Slater determinants, analogous to the CI method.
When a finite basis set is employed, it is only possible to generate a finite number 
of excited determinants. The expansion of the many-electron wave function is there-
fore truncated.
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Let us look at the expression for the second-order energy correction, eq. (4.39). This
involves matrix elements of the perturbation operator between the HF reference and
all possible excited states. Since the perturbation is a two-electron operator, all matrix
elements involving triple, quadruple, etc., excitations are zero. When canonical HF
orbitals are used, matrix elements with singly excited states are also zero, as indicated
in eq. (4.46).

(4.46)

The first bracket is zero owing to Brillouin’s theorem (Section 4.2.1), and the second
set of brackets is zero owing to the orbitals being eigenfunctions of the Fock opera-
tors and orthogonal to each other. The second-order correction to the energy, which is
the first contribution to the correlation energy, thus only involves a sum over doubly
excited determinants. These can be generated by promoting two electrons from occu-
pied orbitals i and j to virtual orbitals a and b. The summation must be restricted such
that each excited state is only counted once.

(4.47)

The matrix elements between the HF and a doubly excited state are given by two-
electron integrals over MOs (eq. (4.8)). The difference in total energy between two
Slater determinants becomes a difference in MO energies (essentially Koopmans’
theorem), and the explicit formula for the second-order Møller–Plesset correction is
given in eq. (4.48).

(4.48)

Once the two-electron integrals over MOs are available, the second-order energy cor-
rection can be calculated as a sum over such integrals. There are of the order of M 4

basis

integrals, thus the calculation of the energy (only) increases as M 4
basis with the system

size. However, the transformation of the integrals from the AO to the MO basis grows
as M 5

basis (Section 4.2.1). MP2 is an M 5
basis method, but fairly inexpensive as not all two-

electron integrals over MOs are required. Only those corresponding to the combina-
tion of two occupied and two virtual MOs are needed. In practical calculations, this
means that the MP2 energy for systems with a few hundred basis functions can be cal-
culated at a cost similar to or less than what is required for calculating the HF energy.
MP2 typically accounts for 80–90% of the correlation energy, and it is the most 
economical method for including electron correlation.

The formula for the first-order correction to the wave function (eq. (4.38)) similarly
only contains contributions from doubly excited determinants. Since knowledge of the
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first-order wave function allows calculation of the energy up to third order (2n + 1 =
3, eq. (4.35)), it is immediately clear that the third-order energy also only contains con-
tributions from doubly excited determinants. Qualitative speaking, the MP2 contribu-
tion describes the correlation between pairs of electrons while MP3 describes the
interaction between pairs. The formula for calculating this contribution is given in eq.
(4.41) and involves a computational effort that formally increases as M 6

basis. The third-
order energy typically accounts for 90–95% of the correlation energy.

The formula for the second-order correction to the wave function (eq. (4.40)) con-
tains products of the type 〈Φj|H′|Φi〉〈Φi|H′|Φ0〉. The Φ0 is the HF determinant and the
last bracket can only be non-zero if Φi is a doubly excited determinant.This means that
the first bracket only can be non-zero if Φj is either a singly, doubly, triply or quadru-
ply excited determinant (since H′ is a two-electron operator). The second-order wave
function allows calculation of the fourth- and fifth-order energies, and these terms
therefore have contributions from determinants that are singly, doubly, triply or
quadruply excited.The computational cost of the fourth-order energy without the con-
tribution from the triply excited determinants, MP4(SDQ), increases as M 6

basis, while
the triples contribution increases as M 7

basis. MP4 is still a computationally feasible model
for many molecular systems, requiring a time similar to CISD. In typical calculations,
the T contribution to MP4 will take roughly the same amount of time as the SDQ con-
tributions, but the triples are often the most important at fourth order. The full fourth-
order energy typically accounts for 95–98% of the correlation energy.

The fifth-order correction to the energy also involves S, D, T and Q contributions,
and the sixth-order term introduces quintuple and sextuple excitations. The working
formulas for the MP5 and MP6 contributions are so complex that actual calculations
are only possible for small systems. The computational effort for MP5 increases as
M 8

basis and for MP6 as M 9
basis. There is very little experience with the performance of

MPn beyond MP4.
As shown in Table 4.2, the most important contribution to the energy in a CI pro-

cedure comes from doubly excited determinants. This is also shown by the perturba-
tion expansion, the second- and third-order energy corrections only involve doubles.
At fourth order the singles, triples and quadruples enter the expansion for the first
time. This is again consistent with Table 4.2, which shows that these types of excita-
tions are of similar importance.

CI methods determine the energy by a variational procedure, and the energy is con-
sequently an upper bound to the exact energy. There is no such guarantee for pertur-
bation methods, and it is possible that the energy will be lower than the exact energy.
This is rarely a problem and may in fact be advantageous. Limitations in the basis set
often mean that the error in total energy is several au (thousands of kJ/mol) anyway.
In the large majority of cases, the interest is not in total energies but in energy differ-
ences. Having a variational upper bound for two energies does not give any bound for
the difference between these two numbers.The main interest is therefore that the error
remains relatively constant for different systems, and the absence of a variational
bound can allow for error cancellations. The lack of size extensivity of CI methods, on
the other hand, is disadvantageous in this respect. The MP perturbation method is size
extensive, but other forms of MBPT are not. It is now generally recognized that size
extensivity is an important property, and the MP form of MBPT is used almost 
exclusively.
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The main limitation of perturbation methods is the assumption that the zeroth-order
wave function is a reasonable approximation to the real wave function, i.e. the per-
turbation operator is sufficiently “small”. The more poorly the HF wave function
describes the system, the larger are the correction terms, and the more terms must be
included to achieve a given level of accuracy. If the reference state is a poor descrip-
tion of the system, the convergence may be so slow or erratic that perturbation
methods cannot be used. Actually, it is difficult to assess whether the perturbation
expansion is convergent or not, although the first few terms for many systems show a
behaviour that suggests that it is the case. This may to some extent be deceptive, as it
has been demonstrated that the convergence properties depend on the size of the basis
set,10 and the majority of studies have employed small- or medium-sized basis sets. A
convergent series in for example a DZP type basis may become divergent or oscillat-
ing in a larger basis, especially if diffuse functions are present.

The convergence properties for the perturbation series can be analyzed by consid-
ering the partitioned Hamiltonian in eq. (4.28), with l being a parameter connecting
the reference system (l = 0) with the real physical system (l = 1).11 For analyzing the
convergence behaviour, we must allow l also to have complex values.

(4.49)

For a given l value, the (exact) energy of the ground state can be written as an infi-
nite summation of all perturbation terms.

(4.50)

The mathematical theory of infinite series states that this summation is only conver-
gent within a given radius R, i.e. the infinite series in eq. (4.50) only has a well-defined
value if |l| < R. Since we are interested in the situation where l = 1, this translates into
the condition R > 1. The convergence radius is determined by the smallest value of l
where another state becomes degenerate with the ground state, i.e. the MP perturba-
tion series is only convergent if there are no excited states that become degenerate
with the ground state within the circle in the complex plane corresponding to |l| = 1.
This includes non-physical situations where l is negative, i.e. where the perturbation
corresponds to the electron–electron interaction being attractive. In MP theory 
the zeroth-order energy is the sum of orbital energies, which includes the average 
electron–electron interaction twice, and the first-order energy correction W1 is the 
negative of the average electron–electron interaction (eq. 4.44). Since W1 is signifi-
cantly smaller for excited states than for the ground state (more diffuse orbitals), this
means that a negative l value will raise the ground state more in energy than an excited
state, and this may be sufficient to overcome the energy separation at l = 0. This is
especially true when diffuse basis functions are included, since they preferentially
improve the description of excited states, and such intruder states are the reason for
the non-convergent behaviour of the MP perturbation series. A complete search 
for intruder states within the complex plane corresponding to |l| = 1 is difficult even
for simple systems, and a less rigorous search for avoided crossings along the real axis
is also demanding. Establishing the convergence or divergence of the MP expansion
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on a case-by-case basis is unmanageable, and one is therefore limited to observing the
behaviour for the first few terms.

In the ideal case, the HF, MP2, MP3 and MP4 results show a monotonic convergence
towards a limiting value, with the corrections being of the same sign and numerically
smaller as the order of perturbation increases. Unfortunately, this is not the typical
behaviour. Even in systems where the reference is well described by a single determi-
nant, oscillations in a given property as a function of perturbation order are often
observed. An analysis by Cremer and He indicates that a smooth convergence (of the
total energy) is only expected for systems containing well-separated electron pairs, and
that oscillations occur when this is not that case.12 The latter encompass system con-
taining lone pairs and/or multiple bonds, covering the large majority of molecules. It
should be noted that one cannot conclude anything about the convergence properties
of the whole perturbation series from either the monotonic or oscillating behaviour of
the first few terms.

In practice, only low orders of perturbation theory can be carried out, and it is often
observed that the HF and MP2 results differ considerably, the MP3 result moves back
towards the HF, and MP4 away again. For “well-behaved” systems the correct answer
is often somewhere between the MP3 and MP4 results. MP2 typically overshoots the
correlation effect, but often gives a better answer than MP3, at least if medium-sized
basis sets are used. Just as the first term involving doubles (MP2) tends to overesti-
mate the correlation effect, it is often observed that MP4 overestimates the effect of
the singles and triples contributions, since they enter the series for the first time at
fourth order.
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Figure 4.13 Typical oscillating behaviour of results obtained with the MP method

When the reference wave function contains substantial multi-reference character, a
perturbation expansion based on a single determinant will display poor convergence.
If the reference wave function suffers from symmetry breaking (Section 3.8.3), the MP
method is almost guaranteed to give absurd results. The questionable convergence of
the MP method has caused it to be significantly less popular in recent years, although



MP2 continues to be a computationally cheap way of including the majority of the
electron correlation effect.

4.8.2 Unrestricted and projected Møller–Plesset methods

When the reference is an RHF type wave function the dissociation limit will normally
be incorrect. As a bond is stretched, RHF gives an increasingly poorer description of
the wave function, and consequently causes the perturbation series to break down.The
use of a UHF wave function allows a correct dissociation limit in terms of energy but
at the cost of introducing spin contamination (Sections 4.3 and 4.4). It is straightfor-
ward to derive an MP method based on a UHF reference wave function (UMP): in
this case the unperturbed Hamiltonian operator is a sum of the a and b Fock opera-
tors. The addition of electron correlation decreases the spin contamination of the wave
function (in the full CI limit the spin contamination is zero) but the improvement is
usually small at low orders (2–4) of perturbation theory. As illustrated in Section 4.4,
the UHF energy is lower than that of RHF owing to the inclusion of some electron
correlation (mainly static), but it also contains some amounts of higher energy spin
states. Since MP methods recover a large part of the electron correlation (both static
and dynamical), the net effect at the UMP level is an increase in energy due to spin
contamination. In the dissociation limit, this has no consequence, as the different spin
states have equal energies. In the intermediate region, where the bond is not com-
pletely broken, it is usually observed that the RMPn energy is lower than the UMPn
energy, although the RHF energy is higher than the UHF (see also Section 11.5.2). The
spin contamination in UHF wave functions causes an UMPn expansion to converge
more slowly than RMPn.13 For open-shell systems, where RHF cannot be used, this
would suggest that the reference wave function should be of the ROHF type, instead
of UHF. Formulation of ROHF-based perturbation methods, however, is somewhat
more difficult than for the UHF case. The reason is that for an ROHF wave function
is it not possible to choose a set of MOs that makes the matrix of Lagrange multipli-
ers diagonal (eqs (3.40) and (3.41)). There is thus not a unique set of canonical MOs
to be used in the perturbation expansion, which again has the consequence that several
choices of the unperturbed Hamiltonian operator are possible.14 Different ROMP
methods therefore give different energies, and there are no firm theoretical grounds
for choosing one over the other. In practice, however, different choices of the unper-
turbed Hamiltonian operator lead to similar results, and perturbation calculations
based on ROHF type wave functions are now routine.

While projection methods for removing spin contamination are not recommended
at the HF level, they work quite well at the UMP level. Formulas have been derived
for removing all contaminants at the UMP2 level, and also the first few states at the
UMP3 and UMP4 levels.15 The associated acronyms are PUMP and PMP, denoting
slightly different methods, although in practice they give similar results. For singlet
wave functions with bond lengths only slightly longer than the RHF/UHF instability
point, such PUMP methods tend to give results very similar to those based on an RHF
wave function. At longer bond lengths the RMP perturbation series eventually breaks
down, while the PUMP methods approach the correct dissociation limit. It would
therefore appear that PUMP methods should always be preferred.There are, however,
also some computational factors to consider. First, UMP methods are by nature a factor
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of ~2 more expensive since there are twice as many MO coefficients. Second, the pro-
jection itself also uses CPU time.This is especially true if many of the higher spin states
need to be removed, or for projection at the MP4 level. Third, it is difficult to formu-
late derivatives of projected wave functions, which limits PUMP methods to the cal-
culation of energies. A rule of thumb says that for uncomplicated systems the RMP4
treatment gives acceptable accuracy (relative errors of the order of a ~10kJ/mol) up
to bond lengths ~1.5 times the equilibrium length. Longer bonds are better treated by
PUMP methods (see also Section 11.5.2). Most transition structures have bond lengths
shorter than ~1.5 times the equilibrium length and RMP4 often gives quite accurate
activation energies.

Just as single-reference CI can be extended to MRCI, it is also possible to use per-
turbation methods with a multi-determinant reference wave function. A formulation
of MR-MBPT methods, however, is not straightforward. The main problem here is
similar to that with ROMP methods: the choice of the unperturbed Hamiltonian oper-
ator. Several different choices are possible, which will give different answers when the
theory is carried out only to low order. Nevertheless, there are now several different
implementations of MP2 type expansions based on a CASSCF reference, denoted
CASMP2 or CASPT2.16 Experience of their performance is still somewhat limited.

4.9 Coupled Cluster
Perturbation methods add all types of corrections (S, D,T, Q, etc.) to the reference wave
function to a given order (2, 3, 4, etc.). The idea in Coupled Cluster (CC) methods is to
include all corrections of a given type to infinite order.17 Let us start by defining an exci-
tation operator T as in eq. (4.51).

(4.51)

The Ti operator acting on an HF reference wave function Φ0 generates all ith excited
Slater determinants.

(4.52)

In coupled cluster theory it is customary to use the term amplitudes for the expansion
coefficients t, which are equivalent to the ai coefficients in eq. (4.1).

Using intermediate normalization, a CI wave function can be generated by allow-
ing the excitation operator to work on an HF wave function.

(4.53)

The corresponding coupled cluster wave function, on the other hand, is defined in eq.
(4.54).

(4.54)
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From eqs (4.51) and (4.54) the exponential operator may be written as in eq. (4.55).

(4.55)

The first term generates the reference HF and the second all singly excited states. The
first parenthesis generates all doubly excited states, which may be considered as con-
nected (T2) or disconnected (T 1

2). The second parenthesis generates all triply excited
states, which again may be either “true” (T3) or “product” triples (T2T1, T 1

3). The
quadruply excited states can similarly be viewed as composed of five terms, a true
quadruple and four product terms. Physically, a connected type such as T4 corresponds
to four electrons interacting simultaneous, while a disconnected term such as T 2

2 cor-
responds to two non-interacting pairs of interacting electrons. By comparison with the
CI wave function in eq. (4.53), it is seen that the CC wave function at each excitation
level contains additional terms arising from products of excitations.

With the coupled cluster wave function in eq. (4.54) the Schrödinger equation
becomes eq. (4.56).

(4.56)

At this point, one could proceed analogously to CI and evaluate the energy as an
expectation value of the CC wave function, and use the variational principle to deter-
mine the amplitudes.

(4.57)

Expansion of the numerator and denominator according to eq. (4.54) unfortunately
leads to a series of non-vanishing terms all the way up to order Nelec, which makes a
variational coupled cluster approach unmanageable for all but the smallest systems.18

The standard formulation of coupled cluster theory instead proceeds by projecting
the coupled cluster Schrödinger equation (4.56) onto the reference wave function.
Multiplying from the left by Φ 0* and integrating gives eq. (4.58).

(4.58)

Expanding out the exponential in eq. (4.54) and using the fact that the Hamiltonian
operator contains only one- and two-electron operators (eq. (3.24)) we get eq. (4.59).

(4.59)
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Note that the infinite expansion of the exponential operator in eqs (4.58) and (4.59)
terminates at the 1 and T2 levels, in contrast to TN in eq. (4.57). Furthermore, when
using HF orbitals for constructing the Slater determinants, the first matrix elements in
eq. (4.59) are zero (Brillouin’s theorem) and the second matrix elements are just two-
electron integrals over MOs (eq. (4.8)).

(4.60)

The coupled cluster correlation energy is therefore determined completely by the
singles and doubles amplitudes and the two-electron MO integrals.

Equations for the amplitudes can be obtained by projecting the Schrödinger equa-
tion (4.56) onto the space of singly, doubly, triply, etc., excited determinants. While this
can be done analogously to eq. (4.58), a more elegant formulation is possible by using
a similarity transformation of the Hamiltonian operator. Consider eq. (4.56) where we
multiply from the left by e−T.

(4.61)

Just as eT is an excitation operator working on the function to the right, e−T is a deex-
citation operator working on the function to the left. Multiplying with Φ 0* from the left
and integrating leads directly to the energy equation.

(4.62)

Note that equation (4.62) can be considered as the expectation value of a similarity
transformed (non-Hermitian) Hamiltonian. Since e−T tries to generate deexicitations
from the reference Φ 0*, which is impossible, eq. (4.62) is identical to eq. (4.58).

Equations for the amplitudes are obtained by multiplying with an excited state.

(4.63)

The deexcitation operator e−T working on 〈Φm
e | now generates the reference wave func-

tion in addition to the singly excited state.

(4.64)

Only the indicated terms survive in the expansion when the orthogonality of the Slater
determinants and the nature of the Hamiltonian operator (only one- and two-electron
terms) are considered.The terms involving singly excited states and the reference wave
function are again zero owing to Brillouin’s theorem, and the remaining terms form a
coupled set of equations with single, double and triple amplitudes as the variables.

Similarly, e−T working on 〈Φ mn
ef | generates both the reference and singly excited states,

in addition to the doubly excited states.

(4.65)
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Equation (4.65) now in addition has quadruple amplitudes, and additional terms cou-
pling the lower order amplitudes. More equations connecting amplitudes may be
obtained by projection against a triple, quadruple, etc., excited determinant.

4.9.1 Truncated coupled cluster methods

So far, everything has been exact. If all cluster operators up to TN are included in T,
all possible excited determinants are generated and the coupled cluster wave function
is equivalent to full CI. This is, as already stated, impossible for all but the smallest
systems. The cluster operator must therefore be truncated at some excitation level.
When the T operator is truncated, some of the terms in the amplitude equations will
become zero, and the amplitudes derived from these approximate equations will no
longer be exact. The energy calculated from these approximate singles and doubles
amplitudes (eq. (4.60)) will therefore also be approximate. How severe the approxi-
mation is depends on how many terms are included in T. Including only the T1 oper-
ator does not give any improvement over HF, as matrix elements between the HF and
singly excited states are zero. The lowest level of approximation is therefore T = T2,
referred to as Coupled Cluster Doubles (CCD) Compared with the number of doubles,
there are relatively few singly excited states. Using T = T1 + T2 gives the CCSD model,
which is only slightly more demanding than CCD, and yields a more complete model.
Both CCD and CCSD involve a computational effort that scales as M 6

basis in the limit
of a large basis set. The next higher level has T = T1 + T2 + T3, giving the CCSDT
model.19 This involves a computational effort that scales as M 8

basis and is more demand-
ing than CISDT. It (and higher order methods such as CCSDTQ) can consequently
only be used for small systems, and CCSD is the only generally applicable coupled
cluster method.

Let us look in a bit more detail at the CCSD method. In this case, we have from eq.
(4.55).

(4.66)

The CCSD energy is given by the general CC equation (4.60), and amplitude equa-
tions are derived from (4.64).

(4.67)

The notation (ti
atj

btk
c + . . . ) indicates that terms involving permutations of the indices

are omitted. From eq. (4.65) we obtain eq. (4.68).
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(4.68)

Equations (4.67) and (4.68) involve matrix elements between singles and triples, and
between doubles and quadruples. However, since the Hamiltonian operator only con-
tains one- and two-electron operators, these are actually identical to matrix elements
between the reference and a doubly excited state. Consider for example 〈Φm

e |H|Φ ijk
abc〉.

Unless m equals either i, j or k, and e equals either a, b or c, there will be one overlap
integral between different MOs which makes the matrix element zero. If for example
m = k and e = c, then the MO integral over these indices factor out as 1, and the rest
is equal to a matrix element 〈Φ0|H|Φij

ab〉. Similarly, the matrix element 〈Φmn
ef |H|Φijkl

abcd〉,
between a doubly and a quadruply excited determinant, is only non-zero if mn matches
up with two of the ijkl indices, and ef matches up with abcd. Again, such non-zero
matrix elements are equal to matrix elements between the reference and a doubly
excited determinant, eq. (4.8).

All the matrix elements can be evaluated in terms of MO integrals, and the expres-
sions in eqs (4.67) and (4.68) form coupled non-linear equations for the singles and
doubles amplitudes. The equations contain terms up to quartic in the amplitudes, e.g.
(t i

a)4 (since H contains one- and two-electron operators), and must be solved by 
iterative techniques. Once the amplitudes are known, the energy and wave function
can be calculated. The important aspect in coupled cluster methods is that excitations
of higher order than the truncation of the T operator enter the amplitude 
equation. Quadruply excited states, for example, are generated by the T 2

2 operator in
CCSD, and they enter the amplitude equations with a weight given as a product of
doubles amplitudes. Quadruply excited states influence the doubles amplitudes, and
thereby also the CCSD energy. It is the inclusion of these products of excitations that
makes coupled cluster theory size extensive. For the case of a single H2 molecule,
a CISD calculation is equivalent to CCSD, and is also equivalent to a full CI calcula-
tion. For two H2 molecules separated by 100 Å, however, a CISD is not equivalent 
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to a full CI (it is missing the T and Q excitations), but a CCSD calculation is still equiv-
alent to a full CI.

4.10 Connections between Coupled Cluster, Configuration
Interaction and Perturbation Theory
The general cluster operator is given by eq. (4.69), where terms have been collected
according to the excitation they generate.

(4.69)

Each of the operators in a given parenthesis generates all the excited determinants of
the given type. Both T2 and T1

2 generate all doubly excited determinants, and the terms
in eq. (4.69) generate all determinants that are included in a CISDTQ calculation. The
cluster expansion can be viewed as a method of dividing up the contributions from
each excitation type. The total contribution from double excitations is the sum of two
terms, one that is the square of the singles contributions and the remaining is (by def-
inition) the connected doubles. Similarly, the total contribution from triple excitations
is a sum of three terms, the cube of the singles contributions, the product of the singles
and doubles contribution, and the remaining is the connected triples.

The T1 effect is small when canonical HF orbitals are used, although not zero since
singles enter indirectly via the doubly excited states (note that if non-canonical orbitals
are used, the T1 term can be large). From CI we know that the effect of doubles is the
most important (Section 4.2.3). In coupled cluster theory the doubles contribution is
divided into T 1

2 and T2. If T1 is small, then T1
2 must also be small, and the most impor-

tant term is T2. For the triple excitations, T 1
3 must be negligible, and T1T2 is small owing

to T1. The most important contribution is therefore from connected triples T3. For the
quadruple excitations, all the terms involving T1 must again be small, and since T2 is
large, we expect the disconnected quadruples T 2

2 to be the dominant term. This again
suggests that the connected quadruples term T4 is small, which is reasonable since it
correspond to a simultaneous correlation of four electrons. Higher order excitations
will always contain terms appearing as powers and/or products of T2 and T3, which will
normally dominate. Higher order connected terms, Tn with n > 4, are therefore
expected to have small effects. This is consistent with the physical picture that con-
nected Tn operators correspond to n electrons interacting simultaneously. As n
becomes large, this is increasingly improbable. It should be noted, however, that the
higher order cluster operators (T4, T5, . . . ) are expected to become more and more
important as the number of electrons increases.

The principal deficiency of CISD is the lack of the T 2
2 term, which is the main reason

for CISD not being size extensive. Furthermore, this term becomes more and more
important as the number of electrons increases, and CISD therefore recovers a smaller
and smaller percentage of the correlation energy as the system increases. There are
various approximate corrections for this lack of size extensivity that can be added to
standard CISD.The most widely known of these is the Davidson correction, sometimes
denoted CISD+Q(Davidson), where the quadruples contribution is approximated as
in eq. (4.70), with a0 being the coefficient for the HF reference wave function.
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(4.70)

If the renormalization of the wave function is also taken into account, the (1 − a 0
2)

quantity is divided by a0
2, and the corresponding correction is called the renormalized

Davidson correction. The effect of higher order excitations is thus estimated from the
correlation energy obtained at the CISD level times a factor that measures how impor-
tant the single-determinant reference is at the CISD level. The Davidson correction
does not yield zero for two-electron systems, where CISD is equivalent to full CI, and
it is likely that it overestimates the higher order corrections for systems with few elec-
trons. More complicated correction schemes have also been proposed,20 but are rarely
used.

Coupled cluster is closely connected with Møller–Plesset perturbation theory, as
mentioned at the start of this section. The infinite Taylor expansion of the exponential
operator (eq. (4.54)) ensures that the contributions from a given excitation level are
included to infinite order. Perturbation theory indicates that doubles are the most
important, since they are the only contributors to MP2 and MP3.At fourth order, there
are contributions from singles, doubles, triples and quadruples. The MP4 quadruples
contribution is actually the disconnected T 2

2 term in the coupled cluster language, and
the triples contribution corresponds to T3. This is consistent with the above analysis,
the most important is T2 (and products thereof) followed by T3. The CCD energy is
equivalent to MP∞(D) where all disconnected contributions of products of doubles
are included. If the perturbation series is reasonably converged at fourth order, we
expect that CCD will be comparable to MP4(DQ), and CCSD will be comparable to
MP4(SDQ). The MP2, MP3 and MP4(SDQ) results may be obtained in the first iter-
ation for the CCSD amplitudes, allowing a direct test of the convergence of the MP
series. This also points out the principal limitation of the CCSD method: the neglect
of the connected triples. Including T3 in the T operator leads to the CCSDT method
which, as mentioned above, is too demanding computationally for all but the smallest
systems. Alternatively, the triples contribution may be evaluated by perturbation
theory and added to the CCSD results. Several such hybrid methods have been pro-
posed, but only the method with the acronym CCSD(T) is commonly used.21 In this
case, the triples contribution is calculated from the formula given by MP4, but using
the CCSD amplitudes instead of the perturbation coefficients for the wave function
corrections and adding a term arising from fifth-order perturbation theory, describing
the coupling between singles and triples. Higher order hybrid methods such as
CCSD(TQ), where the connected quadruples contribution is estimated by fifth-order
perturbation theory, are also possible, but they are again so demanding that they can
only be used for small systems.22

As mentioned, the singles make a fairly small contribution to the correlation energy
when canonical HF orbitals are used. Brueckner theory is a variation of coupled cluster
where the orbitals used for constructing the Slater determinants are optimized such
that the contribution from singles is exactly zero, i.e. ti

a = 0.23 The lowest level of 
Brueckner theory includes only doubles, giving the acronym BD. Although BD in
theory should be slightly better than CCSD, since it includes orbital relaxation, they
give in practice essentially identical results (differences between BD and CCSD are of
fifth-order or higher in terms of perturbation theory). This is presumably rooted in the
fact that the singles in CCSD introduce orbital relaxation.24 The computational cost is

∆ ∆E a EQ CISD= −( )1 0
2
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also very similar for CCSD and BD.25 Similarly, BD(T) is essentially equivalent to
CCSD(T),26 and BD(TQ) to CCSD(TQ).

Since the singly excited determinants effectively relax the orbitals in a CCSD cal-
culation, non-canonical HF orbitals can also be used in coupled cluster methods. This
allows for example the use of open-shell singlet states (which require two Slater deter-
minants) as reference for a coupled cluster calculation.27

Another commonly used method is Quadratic CISD (QCISD). It was originally
derived from CISD by including enough higher order term to make it size extensive.28

It has since been shown that the resulting equations are identical to CCSD where some
of the terms have been omitted.29 The omitted terms are computationally inexpensive,
and there appears to be no reason for using the less complete QCISD over CCSD (or
QCISD(T) in place of CCSD(T)), although in practice they normally give very similar
results.30 There are a few other methods that may be considered either as CISD with
the addition of extra terms to make them approximately size extensive, or as approx-
imate versions of CCSD. Some of the methods falling into this category are Averaged
Coupled-Pair Functional (ACPF) and Coupled Electron Pair Approximation (CEPA).
The simplest form of CEPA, CEPA-0, is also known as Linear Coupled Cluster Doubles
(LCCD).

More recently two new intermediate coupled cluster methods have been defined,
known as CC2 and CC3.31 As already mentioned, the single excitations allow the MOs
to relax from their HF form but do not give any direct contribution to the energy due
to Brillouin’s theorem. For studying properties that measure the response of the energy
to a perturbation, the HF orbitals are no longer optimum, and the singles are at least
as important as the doubles. The CC2 method is derived from CCSD by only includ-
ing the doubles contribution arising from the lowest (non-zero) order in perturbation
theory, where the perturbation is defined as in MP theory (i.e. as the true electron–
electron potential minus twice the average repulsion). The amplitude equations cor-
responding to multiplication of a doubly excited determinant in the CCSD equations
(eq. (4.68)) thereby reduce to an MP2-like expression, and the t2 amplitudes may be
expressed directly in terms of the t1 amplitudes and MO integrals. The iterative pro-
cedure therefore only involves the t1 amplitudes. CC2 may loosely be defined as MP2
with the added feature of orbital relaxation arising from the singles. Similarly, CC3 is
an approximation to the full CCSDT model, where the triples contribution is approx-
imated by the expression arising from the lowest non-vanishing order in perturbation
theory. The triples amplitudes can then be expressed directly in terms of the singles
and doubles amplitudes, and MO integrals. Both in terms of computational cost and
accuracy, the following progression is expected, although the CC2 and CC3 models are
so new that there are few data for comparison.

(4.71)

Analogously to MP methods, coupled cluster theory may also be based on a UHF ref-
erence wave function. The resulting UCC methods again suffer from spin contamina-
tion of the underlying UHF, but the infinite nature of coupled cluster methods is
substantially better at reducing spin contamination relative to UMP.32 Projection
methods analogous to the PUMP case have been considered but are not commonly
used. ROHF-based coupled cluster methods have also been proposed but appear to
give results very similar to UCC, especially at the CCSD(T) level.33

HF CC2 < CCSD < CC3 < CCSDT<<
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Standard coupled cluster theory is based on a single-determinant reference wave
function. It suffers from the same problem as MP, in that it works best if the zeroth-
order wave function is sufficiently “good”. Owing to the summation of contributions
to infinite order, however, coupled cluster is somewhat more tolerant to a poor refer-
ence wave function than MP methods. Since the singly excited determinants allow the
MOs to relax in order to describe the multi-reference character in the wave function,
the magnitude of the singles amplitude is an indication of how good the HF single
determinant is as the reference. The T1-diagnostic defined as the norm of the singles
amplitude vector divided by the square root of the number of electrons has been sug-
gested as an internal evaluation of the quality of a CCSD wave function.34

(4.72)

Specifically, if T1 < 0.02, the CCSD(T) method is expected to give results close the full
CI limit for the given basis set. If T1 is larger than 0.02, it indicates that the reference
wave function has significant multi-determinant character, and multi-reference
coupled cluster should preferentially be employed. Such methods are being devel-
oped,35 but have not yet seen any extensive use. The T1-diagnostic in eq. (4.70) is not
completely independent of the system size, and other diagnostics have also been 
proposed.36

4.10.1 Illustrating correlation methods for the beryllium atom

The beryllium atom has four electrons (1s22s2 electron configuration) and the ground
state wave function contains significant multi-reference character owing to the pres-
ence of the low-lying 2p-orbital. The correlation energies calculated with MP, CI and
CC methods in a 4s2p basis set (cc-pVDZ basis augmented with one set of tight s- and
p-functions for correlating the 1s-electrons) are given in Table 4.5.37

T
N
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Table 4.5 Correlation energies for the beryllium atom in a 4s2p basis set

Level ∆Ecorr (au) % Level ∆Ecorr (au) % Level ∆Ecorr (au) %

MP2 0.053174 67.85
MP3 0.067949 86.70 CISD 0.075277 96.05 CCSD 0.078176 99.75
MP4 0.074121 94.58 CCSD(T) 0.078361 99.99
MP5 0.076918 98.15 CISDT 0.075465 96.29 CCSDT 0.078364 99.99
MP6 0.078090 99.64
MP7 0.078493 100.15 CISDTQ 0.078372 100 CCSDTQ 0.078372 100

Since beryllium only has four electrons, CISDTQ is a full CI treatment and com-
pletely equivalent to a CCSDTQ calculation. The multi-reference character displays
itself as a relatively slow convergence of the perturbation series, with millihartree accu-
racy being attained at the MP6 level and inclusion of terms up to MP20 is required in
order to converge the energy to within 10−6 au of the exact answer. Note also that the
correlation energy is overestimated at order seven, i.e. the perturbation series oscil-
lates at higher orders.The contribution from triply excited states is minute, as expected



for a system with two well-separated electron pairs, i.e. CISDT is only a marginal
improvement over CISD.

The coefficients in the CISDTQ and CCSDTQ wave functions (using intermediate
normalization) for the dominating excitations are given in Table 4.6.

There is little difference between the full CI and CCSD coefficients for the three
most important doubly excited states. The quadruply excited states enter the CI wave
function with non-negligible weights, contributing ~4% of the correlation energy
(Table 4.5), but as shown in the last column of Table 4.6, these contributions are esti-
mated very well by the product terms in the CC wave function. The CCSD energy in
Table 4.5 and the t4 amplitude in Table 4.6 show that the quadruply excited states in
the CI wave function are mainly of the product type, and not a true quadruply excited
state. It is this feature that makes CC superior to CI-based methods.

4.11 Methods Involving the Interelectronic Distance
The necessity of going beyond the HF approximation is due to the fact that electrons
are further apart than described by the product of their orbital densities, i.e. their
motions are correlated. This arises from the electron–electron repulsion operator,
which is a sum of terms of the type shown in eq. (4.73).

(4.73)

Without these terms, the Schrödinger equation can be solved exactly, with the solution
being a Slater determinant composed of orbitals.

The electron–electron repulsion operator has a singularity for r12 = 0 which results
in the exact wave function having a cusp (discontinuous derivative),38 since the kinetic
energy must cancel the infinity of the potential energy to give a finite result.

(4.74)

The cusp condition implies that the exact wave function must be linear in the inter-
electronic distance for small values of r12.

(4.75)

It would therefore seem natural that the interelectronic distance should be a neces-
sary variable for describing electron correlation. For two-electron systems, extremely
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Table 4.6 Coefficients for dominating excited states

Excitation Type aCISDTQ tCCSDTQ tCCSDTQ ⋅ tCCSDTQ

2s2 → 2p2 D −0.18612 −0.18523
2s2 → 2s′2 D −0.04341 −0.04376
1s2 → 1s′2 D −0.02171 −0.02170
1s22s2 → 1s′22p2 Q 0.00407 4 ⋅10−7 0.00402
1s22s2 → 1s′22s′2 Q 0.00092 0.00095



accurate wave functions may be generated by taking a trial wave function consisting
of an orbital product times an expansion in electron coordinates, as given in eq. (4.76),
and variationally optimizing the ai and Cklm parameters.

(4.76)

Expansions such as eq. (4.76) are known as Hylleraas type wave functions.39 For the
hydrogen molecule, it is possible to converge the total energy to ~10−9 au, which is more
accurate than what can be determined experimentally. In fact, the prediction that the
experimental dissociation energy for H2 was wrong, based on calculations, was one of
the first hallmarks of quantum chemistry.40 Such wave functions unfortunately become
impractical for more than 3–4 electrons.

All electron correlation methods based on expanding the N-electron wave function
in terms of Slater determinants built from orbitals (one-electron functions) suffer from
an agonizingly slow convergence. Literally millions or billions of determinants are
required for obtaining results that in an absolute sense are close to the exact results.
This is due to the fact that products of one-electron functions are poor at describing
the cusp behaviour of the wave function when two electrons are close together. At the
second-order perturbation level (i.e. MP2) it may be shown that the error in the cor-
relation energy behaves asymptotically as (l + 1/2)−4, where l is the highest angular
momentum in the basis set. For a general wave function the convergence is (l + 1/2)−4

+ (l + 1/2)−5 + (l + 1/2)−6 + . . . This means that the total energy will converge as 
(L + 1)−3 + (L + 1)−4 + (L + 1)−5 + . . . , if the basis set is saturated up to angular momen-
tum L.41 For sufficiently large values of L the convergence is thus ~(L + 1)−3, which is
quite slow.

In order to achieve a high accuracy, it would seem desirable to explicitly include
terms in the wave functions that are linear in the interelectronic distance. This is the
idea in the R12 methods developed by Kutzelnigg and coworkers.42 The first-order cor-
rection to the HF wave function only involves doubly excited determinants (eq. (4.38)).
In R12 methods additional terms are included, which is essentially the HF determi-
nant multiplied with rij factors.

(4.77)

The exact definition is slightly more complicated, since the wave function has to be
properly antisymmetrized and projected onto the actual basis but, for illustration, the
above form is sufficient. Such R12 wave functions may then be used in connection with
the CI, MBPT or CC methods described above. Consider for example a CI calculation
with an R12 type wave function. The energy is given by eq. (4.78), where the aijab and
bij parameters in (4.77) are optimized variationally.

(4.78)

The overwhelming problem is that matrix elements from eq. (4.78) now involve 
integrals depending on three and four electron coordinates. Consider for example the
following terms arising from the rij operator written out in terms of the one- and 
two-electron operators (h and g, eq. (3.24)).

E = Ψ ΨR R12 12H

Ψ Φ Φ ΦR HF HF12 = + +∑ ∑a b rijab ij
ab

ijab
ij ij

ij

Ψ r r e e C r r r r rr r
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1 2 1 2 1 2 12
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(4.79)

The g operator leads to integrals over molecular orbitals of the type shown in eq. (4.80).

(4.80)

Not only are such integrals difficult to calculate but, when the MOs are expanded in
a basis set consisting of Mbasis AOs, there will be of the order of M 6

basis three-electron
integrals and of the order of M 8

basis four-electron integrals. Such methods are therefore
inherently more expensive than for example the full CCSDT model.

The trick for turning the R12 method into a viable computational tool is to avoid
calculating the three- and four-electron integrals, without jeopardizing the accuracy. In
a complete basis, a three-electron integral may be written in terms of products of 
two-electron integrals by inserting a “resolution of the identity” between the two 
operators.

(4.81)

The first reduction occurs since the r12 and r 13
−1 operators only involve two electron 

coordinates, the second reduction is due to the two delta functions. Three- and 
four-electron integrals can therefore be written as a sum over products of integrals
involving only two electron coordinates. In a finite basis set, the resolution is not exact,
and the identities in eq. (4.81) become approximations.The beauty of the R12 methods
is that this error can be controlled, albeit at the price of calculating and handling a sig-
nificantly larger number (and different types) of two-electron integrals. In the original
method, the basis set for the resolution of the identity was the same as for expanding
the orbitals and therefore needed to be large for the identity resolution to be reason-
ably fulfilled.43 In more recent work an auxiliary basis set was used for the identity res-
olution, which significantly improved the computational efficiency.44

The significance of R12 methods is that the energy error in terms of angular momen-
tum of the basis set now behaves approximately as (L + 1)−7, which is a significant
improvement over standard methods. It should be noted that in the limit of a com-
plete basis set the MP2-R12 (for example) will give the same result as a traditional
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MP2 calculation, i.e. the R12 approach speeds up the basis set convergence, but does
not change the fundamental characteristics of the MP2 method. The drawback is that
R12 methods work inefficiently with small basis sets. While the convergence changes
from (L + 1)−3 to (L + 1)−7, the effective improvement only becomes significant for
quite high L values. Recent work has investigated whether other correlation factors
may be incorporated in order to speed up the basis set convergence.45

4.12 Direct Methods
Conventional HF methods rely on storing the two-electron integrals over atomic
orbitals on disk, and reading them in each SCF iteration, while direct methods gener-
ate the integrals as they are needed (Section 3.8.5). This is an easy change in algorithm
since the HF energy is expressed directly in terms of AO integrals. Methods involving
electron correlation, however, require matrix elements between Slater determinants,
which can be expressed in terms of integrals over MOs (eq. (4.8)). Conventional
methods for the integral transformation (Section 4.2.1) read the AOs, perform the mul-
tiplications with the MO coefficients (eq. (4.12)), and write the MO integrals to disk.
These can then be read in and used in the correlation treatment. Although the number
of MO integrals typically is somewhat smaller than the number of AO integrals (for
example MO integrals involving four virtual orbitals may not be needed), the disk
space requirements are still significant if more than a few hundred basis functions are
used. To eliminate the disk space requirements, and remove the relatively inefficient
data transfer step for reading/writing to disk, it is desirable also to have direct algo-
rithms for electron correlation methods. Direct in this context means that the integrals
are calculated as needed and then discarded. The need for integrals over MOs instead
of AOs, however, makes the development of direct methods in electron correlation
somewhat more complicated than at the HF level.

Consider for example the MP2 energy expression given in eq. (4.82).46

(4.82)

The MO integrals are given in eq. (4.83).

(4.83)

Since each MO integral in principle contains contributions from all the AO integrals,
a straightforward calculation of an MO integral each time it is needed will involve a
generation of all the AO integrals. In other words, it would be necessary to recalculate
the AO integrals ~O2V2 times (O and V being the number of occupied and virtual
orbitals, respectively), compared with the 15–20 times in an SCF calculation. The MP2
method would therefore change from being an M 5

basis to an M 8
basis method, which clearly

is an unacceptably large penalty for a direct method.
The M 8

basis dependence is a consequence of performing the four index transforma-
tion with all four indices at once. As shown in Section 4.2.1, it is advantageous to
perform the transformation one index at a time.

f f f f c c c ca b g d a b g d
dgba

i j k l i j k l

MMMM

c c c c= ∑∑∑∑
basisbasisbasisbasis

E MP i j a b i j b a

i j a ba bi j

2( ) =
−( )

+ − −<<
∑∑ f f f f f f f f

e e e e

virocc

4.12 DIRECT METHODS 181



(4.84)

By choosing the right order of the transformation the scaling can be reduced consid-
erably. In eq. (4.84) the indices corresponding to the occupied orbitals may be trans-
formed before the virtuals. There are of the order of M 4

basis of the AO integrals,
〈cacb|cgcd〉, but only OM 3

basis of the quarter transformed integrals, 〈ficb|cgcd〉. Instead of
storing and reading the AO integrals from the SCF step, they can be recalculated in
the transformation step, reducing the storage from M 4

basis to OM 3
basis. The subsequent

quarter transformations require less storage, i.e. the next transformation with an occu-
pied index reduces the number of integrals to O2M 2

basis, the third to O2VMbasis, and the
last to O2V2. Since the MP2 energy can be written as a sum of contributions from each
occupied orbital, the occupied orbitals can be treated one at a time, i.e. first sum all
contributions of 〈f1cb|cgcd〉 then 〈f2cb|cgcd〉, etc. This reduces the necessary storage to
only order M 3

basis. It may be further reduced to OVMbasis by proper scheduling of the
evaluation order of the remaining three indices. The OVMbasis number of integrals is
much less than the original M 4

basis, and will in many cases fit into memory.The net result
is that disk storage is effectively eliminated, or at least greatly reduced. If only one
occupied orbital is treated at a time, O integral evaluations are required, however, the
more memory that is available, the more of the occupied orbitals can be treated in a
single sweep, decreasing the number of integral evaluations.

The above is an example of how direct algorithms may be formulated for methods
involving electron correlation. It illustrates that it is not as straightforward to apply
direct methods at the correlated level, as at the SCF level. However, the steady increase
in CPU performance, and especially the evolution of multi-processor machines, favours
direct (and semi-direct where some intermediate results are stored on disk) algorithms.47

4.13 Localized Orbital Methods
Ab initio calculations involving electron correlation usually build on a set of canoni-
cal HF orbitals and this leads to a computational effort that increases as a rather high
power of the system size, i.e. M5–M8. Considering that the fundamental physical force
is only between pairs of particles, this scaling is “non-physical”. One of the reasons for
the high scaling is the fact that canonical orbitals are delocalized over the whole mol-
ecule, i.e. essentially all orbitals make a (small) contribution to the wave function for
a specific part of the molecule. This suggestd that a set of localized orbitals may be a
better starting point, since a single or only a few orbitals would then contribute the
large majority at a given point, and the remaining contributions could simply be neg-
lected. Alternatively, the problem may be formulated directly in the atomic orbital
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basis, since the basis functions are naturally localized on a single atom. Such local MP2
and local CC methods have started to appear, but are not yet commonly used.48 These
methods are somewhat more complicated to formulate as the Fock matrix is only diag-
onal in the canonical orbitals. Nevertheless, methods based on localized orbitals hold
the promise of a near-linear scaling with problem size in the large-scale limit. It is at
present not clear exactly how large the systems need to be to reach the “large-scale”
limit, but the present methods appear to have cross-over points in terms of computa-
tional resources in the few hundred atoms region.

The use of localized orbitals will only lead to a computational saving if it is com-
bined with criteria for neglecting a (large) fraction of the terms, and such criteria all
involve one or more cutoff distances. A formal problem with local orbital-based
methods is the risk of producing non-continuous energy surfaces, e.g. during a geom-
etry optimization a given atomic distance may increase beyond one of the cutoff values,
and some of the correlation contributions suddenly drop to zero. The energy will thus
experience a discontinuity upon increasing an interatomic distance by an infinitesimal
amount, leading to corresponding discontinuities in the gradient and second deriva-
tives. This in turn may lead to problems in the geometry optimization and/or vibra-
tional frequencies. These errors can of course be controlled by choosing cutoff
distances sufficiently large that the discontinuities are well below chemical significance,
but large cutoff distances are counterproductive from a computational efficiency point
of view, and a compromise is necessary. It is at present unclear how large this problem
is in practice.49 Another aspect is that the total energy is often only accurate to a few
millihartrees (~1kJ/mol), and different implementations may thus give slightly differ-
ent results. Finally, it should be noted that there are certain systems, typically having
stretched bond (TS) or being aromatic, where it is difficult to obtain localized orbitals,
or where more than one set of localized orbitals are possible, and a small geometry
change may in such cases suddenly switch from one localization to another.

Another method for reducing the computational cost relies on the so-called “reso-
lution of the identity” technique, where the calculation of four-index integrals is
replaced by three- and two-index quantities, via the use of an auxiliary basis set.
Although the formal scaling is unchanged, the computational prefactor is significantly
reduced, leading to an overall efficiency gain of approximately an order of magnitude.50

These methods furthermore have the appealing feature that the efficiency gain
increases with the size of the basis set, e.g. for basis sets such as cc-pVQZ the gain is
over two orders of magnitude. A similar idea is used in the Cholesky decomposition
method, where the number of required two-electron integrals for a given accuracy is
reduced by decomposition of the full two-integral matrix,51 and in methods where
advanced integral screening protocols are used.52 The divide and conquer method has
also been used in correlated calculations, where the full system is broken into smaller
subsections that are treated separately, and the results subsequently assembled to that
of the full system.53

4.14 Summary of Electron Correlation Methods
The only generally applicable methods are CISD, MP2, MP3, MP4, CCSD and
CCSD(T). CISD is variational, but not size extensive, while MP and CC methods are
non-variational but size extensive. CISD and MP are in principle non-iterative
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methods, although the matrix diagonalization involved in CISD is usually so large that
it has to be done iteratively. Solution of the coupled cluster equations must be done
by an iterative technique since the parameters enter in a non-linear fashion. In terms
of the most expensive step in each of the methods they may be classified according to
how they formally scale in the large system limit, as shown in Table 4.7.
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Table 4.7 Limiting scaling in terms of basis set size M for 
various methods

Scaling CI methods MP methods CC methods (iterative)

M5 CIS MP2 CC2
M6 CISD MP3 CCSD
M7 MP4 CC3, CCSD(T)
M8 CISDT MP5 CCSDT
M9 MP6
M10 CISDTQ MP7 CCSDTQ

We have so far been careful to use the wording “formal scaling”. As already dis-
cussed, HF is formally an M4 method but in practice the scaling may be reduced all
the way down to M1. Similarly, MP2 is formally an M5 method. However, an MP2 cal-
culation consists of three main parts: the HF calculation, the AO to MO integral trans-
formation, and the MP2 energy calculation. Only the second part has a formal scaling
of M5, the others are (formal) M4 steps. In the large system limit, the transformation
required for the MP2 procedure will become the most expensive step, however, in prac-
tice where calculations may be restricted to a few hundred basis functions, it is often
observed that the MP2 step takes less time than the HF step. The formal scaling only
indicates what the rate limiting step will be in the large system limit. Whether this limit
actually is reached in practical calculations is another matter.

The lower value of M5 scaling for methods involving electron correlation arises from
the transformation of the two-electron integrals from the AO to MO basis, but if the
transformation is carried out with one of the indices belonging to an occupied MO
first, the scaling is actually the number of occupied orbitals (O) times M4. If we con-
sider making the system larger by doubling the fundamental unit (for example calcu-
lations on a series of increasingly larger water clusters), keeping the basis set per atom
constant, O scales linearly with M, and we arrive at the M5 scaling. This assumption
(increasing system size) is the basis for Table 4.7. More often, however, a series of cal-
culations is performed on the same system with increasingly larger basis sets. In this
case, the number of electrons (occupied orbitals) is constant and the scaling is M4.
Many of the commonly employed methods for electron correlation (including for
example MP2, MP3, MP4, CISD, CCSD and CCSD(T)) scale in fact as M4 when the
number of occupied orbitals is constant.

In terms of accuracy with a medium-sized basis set the following order is often
observed.

(4.85)

All of these are single-determinant-based methods. Multi-reference methods can-
not easily be classified as the quality of the results depends heavily on the size of the

HF << MP2 < CISD < MP4 SDQ CCSD MP CCSD T( ) < < ( )~ 4



reference. A two-configurational reference is only a slight improvement over HF, but
including all configurations generates a full CI. The ordering above is only valid when
the HF reference is a “good” zeroth-order description of the system. The more multi-
reference character in the wave function, the better the “infinite” order coupled cluster
performs relative to perturbation methods.

MP3 has not been included in the above comparison. As already mentioned, MP3
results are often inferior to those at MP2. In fact, MP2 often gives surprisingly good
results, especially if large basis sets are used.54 Furthermore, it should be kept in mind
that the MP perturbation series in many cases may actually be divergent, although cor-
rections carried out to low order (i.e. 2–4) rarely display excessive oscillations.

HF results should by modern standards be considered as model calculations, like
semi-empirical methods such as AM1 and PM3. Minimal basis HF calculations often
give results that are worse than AM1 or PM3, but at a computational cost of maybe
100 times as much. Medium and large basis set HF calculations usually do not give
absolute results that are particularly close to experimental values, but since the errors
to a certain degree are systematic (such as all vibrational frequencies being overesti-
mated by ~10%), they can be used with more or less “empirical” corrections to treat
systems for which correlated calculations are not possible. The distinct advantage of
ab initio methods is the ability to treat all systems at an equal level of accuracy, inde-
pendent of whether experimental data exist or not. A detailed assessment of the level
of accuracy that can be expected at a given level of theory is difficult to establish as it
is heavily dependent on the quality of the basis set. Given a sufficiently large basis set,
however, the CCSD(T) method is able to meet the goal of an accuracy of ~4kJ/mol
(~1kcal/mol) for most systems. Even with less complete methods (such as MP4) and
medium-size basis sets such as DZP or TZP, it is often possible to get accuracies of the
order of a few tens of kJ/mol.

The use of CI methods has been declining in recent years at the expense of MP and
especially CC methods. It is now recognized that size extensivity is important for
obtaining accurate results. Excited states, however, are somewhat difficult to treat by
perturbation or coupled cluster methods, and CI- or MCSCF-based methods have been
the preferred methods here. More recently linear response methods (Section 10.9)
have been developed for coupled cluster wave functions, and which allow calculation
of excited state properties.

Finally, a few words on the size of systems that can be treated. The limiting param-
eters will again be taken as the number of basis functions although, as noted above, a
more detailed breakdown in terms of occupied and virtual MOs can be done. Note
also that a given limit in terms of basis functions may translate either into a large
molecular system with a small basis per atom or a small molecular system with a very
large basis set on each atom. The ordering in eq. (4.85) suggests three levels of elec-
tron correlation: none (HF), MP2, or extended (MP4 or CCSD(T)). HF methods are
in general possible with up to ~5000 basis functions, MP2 is fairly routine up to ~800
basis functions, while the advanced correlation methods are limited to ~300–400 basis
functions. With a DZP basis set these values translate into roughly 200, 30 and 10 CH2

fragments, respectively. The limits hold for just calculating the energy at a single geom-
etry. If more advanced features are desired, such as optimizing the geometry or calcu-
lating frequencies, the limits drop to roughly half of the above. Unfortunately, MP2
and higher correlated methods require basis sets larger than DZP to fully exploit the
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inherent accuracy in these methods, and this further reduces the size of the systems
that can be handled.

With the continuing advances of computer hardware and more efficient algorithms,
these limits are gradually being shifted upwards. Owing to the rather steep scaling with
system size, however, they will (barring a fundamental breakthrough) give a rough idea
of the size of systems that can be handled also in the future. Currently the speed of
computer hardware improves by a factor of two in a timespan of about 18 months. In
other words, a factor of 10 in terms of performance for the same price is gained roughly
every 5 years. Owing to the scaling between 4 and 7 of the various methods, however,
a factor of 10 increase in raw speed only translates into an increase of system size of
1.7 (M4 scaling) or 1.4 (M7 scaling). Linear scaling methods in Hartree–Fock methods
will of course benefit fully from increased computational speed.

4.15 Excited States
The development of HF and correlated methods in the previous chapters has focused
on the electronic ground state. In some cases it is also of interest to consider elec-
tronically excited states. It is useful to distinguish between two cases, depending on
whether the excited state has the same or a different symmetry than the lower state(s).
The different symmetry case is easy to handle, as the lowest energy state of a given
symmetry may be handled completely analogously to the ground state. An HF wave
function may be obtained by a proper specification of the occupied orbitals, and the
resulting wave function can be improved by adding electron correlation by for example
CI, MP or CC methods. The only caveat may be that the state is an open shell, which
often requires a (small) MCSCF wave function for an adequate zeroth-order 
description.

Excited states having lower energy solutions of the same symmetry are somewhat
more difficult to treat. It is difficult to generate an HF type wave function for such
states, as the variational optimization will collapse to the lowest energy solution of the
given symmetry.The lack of a proper HF solution means that perturbation and coupled
cluster methods are not well suited for calculating excited states, although excited state
properties (for example excitation energies) may be calculated directly with response
methods (Section 10.9). Response methods can be based on for example a coupled
cluster wave function. It is, however, relatively easy to generate higher energy states
by CI methods: this simply corresponds to using the (n + 1)th eigenvalue from the diag-
onalization of the CI matrix as a description of the nth excited state (the second root
is the first excited state, etc.). Such a CI procedure will normally employ a set of HF
orbitals from a calculation on the lowest energy state, and the CI procedure is there-
fore biased against the excited states.

The simplest description of an excited state is the orbital picture where one electron
has been moved from an occupied to an unoccupied orbital, i.e. an S-type determinant
as illustrated in Figure 4.2. The lowest level of theory for a qualitative description of
excited states is therefore a CI including only the singly excited determinants, denoted
CIS. CIS gives wave functions of roughly HF quality for excited states, since no orbital
optimization is involved. For valence excited states, for example those arising from
excitations between π-orbitals in an unsaturated system, this may be a reasonable
description. There are, however, normally also quite low-lying states that essentially
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correspond to a double excitation, and those require the inclusion of at least the
doubles as well, i.e. CISD.

A more balanced description requires MCSCF-based methods where the orbitals
are optimized for each particular state, or optimized for a suitable average of the
desired states (state-averaged MCSCF). It should be noted that such excited state
MCSCF solutions correspond to saddle points in the parameter space for the wave
function, and second-order optimization techniques are therefore almost mandatory.
In order to obtain accurate excitation energies it is normally necessarily also to include
dynamical correlation, for example by the CASPT2 method.

Excited states involve electrons that are more loosely bound than in the ground
state, and they thus usually require basis sets with diffuse functions for a proper
description. This is especially true for so-called Rydberg states, which may be consid-
ered as an electron orbiting a positively charged molecule. Such states resemble an
atomic system, with the molecular cation playing the rule of the nucleus, and can be
characterized as having s-, p-, d- etc. character. Rather than using a regular basis set
with diffuse functions on each nucleus, such Rydberg states can be modelled by having
a single set of diffuse functions located at the molecular centre of mass.55

4.16 Quantum Monte Carlo Methods
Monte Carlo methods refer to techniques for obtaining the value of a multi-dimen-
sional integral of a function by randomly probing its value within the whole variable
space, and estimating the integral by statistical averaging. In the limit of an infinite
number of sampling points, the result is identical to that obtained from an analytical
integration, but for a finite number of points, the calculated value is given as an average
with an associated standard deviation.The standard deviation, the uncertainty, depends
inversely on the square root of the number of sampling points.

Since the square of the wave function represent a probability function, the associ-
ated energy can be calculated by Quantum Monte Carlo (QMC) methods. For a
(approximate) variational wave function, the energy can be re-written as in eq. (4.86).

(4.86)

The last equation shows that the energy can be calculated as an integral of the local
energy function Φ−1HΦ weighted with the probability density P. In principle, this inte-
gral could be calculated by numerical quadrature methods, such as the Simpson’s trape-
zoidal rule, but this becomes very inefficient when the number of variables is large. For
a system with N electrons, the dimensionality of the problem is 3Nelec, and the integral
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can be estimated much more efficiently by sampling the function point-wise within the
whole function space. Estimating the functional value by a random sampling of points
within the integration limits, weighted by the probability factors, is called variational
QMC.56 The generation of points is done using a Metropolis algorithm, as discussed in
more detail in Section 14.1, and the calculated energy is simply the average of the local
energies over the sampling points.

(4.87)

An improvement of the variational QMC can be obtained by the diffusion QMC
approach. Consider the time-dependent Schrödinger equation, where the time is
replaced with an imaginary time variable t = it.

(4.88)

For a free electron, the Hamiltonian is only kinetic energy, and the resulting equation
is identical to that describing a diffusion process.

(4.89)

Addition of a potential energy results in a generalized diffusion equation.

(4.90)

The generalized diffusion equation can be solved by a random walk procedure and, in
the long time limit, the resulting distribution converges to the ground state wave func-
tion.This can be seen by expanding an approximate wave function in terms of the exact
wave functions (eq. (1.20)).

(4.91)

The exponential dependence on the energy means that the high energy states decay
faster than the low energy ones and, in the long (imaginary) time limit, only the ground
state wave function survives.

The main problem with QMC methods is the requirement of an antisymmetric 
wave function, since the electrons are fermions.The antisymmetry means that the wave
function has both positive and negative regions, and consequently 3Nelec − 1 dimen-
sional surfaces where the wave function is zero. These surfaces are called nodes, and
correspond to zero-probability regions of space. Clearly, a procedure that indiscrimi-
nately samples the nodal regions will yield inaccurate answers. QMC methods thus
require a guiding function, a trial wave function, for determining how to sample the
huge phase space most efficiently and in agreement with the fermion nature of the
electrons.
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A suitable trial wave function can be constructed from a Hartree–Fock wave 
function multiplied with a suitable correlation function, often taken as a Jastrow factor
J(r).

(4.92)

The functional forms of the one- and two-electrons terms c and u are chosen such that
they model the nuclear–electron and electron–electron cusp conditions, respectively,
and the parameters inherent in these functions are variationally optimized by the QMC
procedure.

In order to maintain the wave function antisymmetry, the diffusion QMC is normally
used within the fixed node approximation, i.e. the nodes are fixed by the initial trial
wave function. Unfortunately, the location of nodes for the exact wave function is far
from trivial to determine, although simple approximations such as HF can give quite
reasonable estimates.57 The fixed node diffusion QMC thus determines the best wave
function with the nodal structure of the initial trial wave function. If the trial wave
function has the correct nodal structure, the QMC will provide the exact solution to
the Schrödinger equation, including the electron correlation energy. It should be noted
that the region near the nuclei contributes most to the statistical error in QMC
methods, and in many applications the core electrons are therefore replaced by a
pseudopotential.

The scaling of QMC methods is N 3
basis, but the prefactor makes these methods

roughly two orders of magnitude more expensive than independent-particle models
such as HF and DFT. The relatively low-order scaling, however, makes QMC compet-
itive with for example coupled cluster methods even for relatively small systems. The
main disadvantage of QMC is the statistical error in the calculated results, which only
decays as the inverse square root of the number of sampling points. Generating highly
accurate results is thus computationally expensive, although the calculations are well
suited for running on large parallel computers. Furthermore, the statistical uncertainty
makes it difficult to calculate nuclear forces and second derivatives, which are essen-
tial for optimizing structures and calculating vibrational frequencies. Finally, the accu-
racy of the results is tightly coupled to the form of the trial wave function, and a poor
trial wave function can generate poor-quality results.
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5 Basis Sets

Ab initio methods try to derive information by solving the Schrödinger equation
without fitting parameters to experimental data. Actually, ab initio methods also make
use of experimental data, but in a somewhat more subtle fashion. Many different
approximate methods exist for solving the Schrödinger equation, and which one to use
for a specific problem is usually chosen by comparing the performance against known
experimental data. Experimental data thus guides the selection of the computational
model, rather than directly entering into the computational procedure.

One of the approximations inherent in essentially all ab initio methods is the intro-
duction of a basis set. Expanding an unknown function, such as a molecular orbital, in
a set of known functions is not an approximation if the basis set is complete. However,
a complete basis set means that an infinite number of functions must be used, which
is impossible in actual calculations. An unknown MO can be thought of as a function
in the infinite coordinate system spanned by the complete basis set. When a finite basis
set is used, only the components of the MO along those coordinate axes correspon-
ding to the selected basis functions can be represented. The smaller the basis set, the
poorer the representation. The type of basis functions used also influence the accuracy.
The better a single basis function is able to reproduce the unknown function, the fewer
basis functions are necessary for achieving a given level of accuracy. Knowing that the
computational effort of ab initio methods scales formally as at least M 4

basis, it is of course
of prime importance to make the basis set as small as possible, without compromising
the accuracy.1 The expansion of the molecular orbitals leads to integrals of quantum
mechanical operators over basis functions, and the ease with which these integrals can
be calculated also depends on the type of basis function. In some cases the accuracy-
per-function criterion produces a different optimum function type than the efficiency-
per-function criterion.

5.1 Slater and Gaussian Type Orbitals
There are two types of basis functions (also called Atomic Orbitals (AO), although
they in general are not solutions to an atomic Schrödinger equation) commonly used
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in electronic structure calculations: Slater Type Orbitals (STO) and Gaussian Type
Orbitals (GTO). Slater type orbitals2 have the functional form shown in eq. (5.1).

(5.1)

Here N is a normalization constant and Yl,m are spherical harmonic functions. The
exponential dependence on the distance between the nucleus and electron mirrors the
exact orbitals for the hydrogen atom. However, the STOs do not have any radial nodes;
nodes in the radial part are introduced by making linear combinations of STOs. The
exponential dependence ensures a fairly rapid convergence with increasing numbers
of functions, however, as noted in Section 3.5, the calculation of three- and four-centre
two-electron integrals cannot be performed analytically. STOs are primarily used for
atomic and diatomic systems where high accuracy is required, and in semi-empirical
methods where all three- and four-centre integrals are neglected.They can also be used
with density functional methods that do not include exact exchange and where the
Coulomb energy is calculated by fitting the density into a set of auxiliary functions.

Gaussian type orbitals3 can be written in terms of polar or Cartesian coordinates as
shown in eq. (5.2).

(5.2)

The sum of lx, ly and lz determines the type of orbital (for example lx + ly + lz = 1 is a
p-orbital). Although a GTO appears similar in the two set of coordinates, there is a
subtle difference. A d-type GTO written in terms of the spherical functions has five
components (Y2,2, Y2,1, Y2,0, Y2,−1, Y2,−2), but there appear to be six components in the
Cartesian coordinates (x2, y2, z2, xy, xz, yz). The latter six functions, however, may be
transformed to the five spherical d-functions and one additional s-function (x2 + y2 +
z2). Similarly, there are ten Cartesian “f-functions” that may be transformed into seven
spherical f-functions and one set of spherical p-functions. Modern programs for eval-
uating two-electron integrals are geared to Cartesian coordinates and they generate
pure spherical d-functions by transforming the six Cartesian components to the five
spherical functions.When only one d-function is present per atom the saving by remov-
ing the extra s-function is small, but if many d-functions and/or higher angular momen-
tum functions ( f-, g-, h-, etc., functions) are present, the saving can be substantial.
Furthermore, the use of only the spherical components reduces the problems of linear
dependence for large basis sets, as discussed below.

The r2 dependence in the exponential makes the GTOs inferior to the STOs in two
respects. At the nucleus a GTO has a zero slope, in contrast to a STO which has a
“cusp” (discontinuous derivative), and GTOs consequently have problems represent-
ing the proper behaviour near the nucleus. The other problem is that the GTO falls
off too rapidly far from the nucleus compared with an STO, and the “tail” of the wave
function is consequently represented poorly. Both STOs and GTOs can be chosen to
form a complete basis, but the above considerations indicate that more GTOs are nec-
essary for achieving a certain accuracy compared with STOs. A rough guideline says
that three times as many GTOs as STOs are required for reaching a given level of
accuracy. Figure 5.1 shows how a 1s-STO can be modelled by a linear combination of
three GTOs.
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The increase in the number of GTO basis functions, however, is more than com-
pensated for by the ease of which the required integrals can be calculated. In terms of
computational efficiency, GTOs are therefore preferred and are used almost univer-
sally as basis functions in electronic structure calculations. Furthermore, essentially all
applications take the GTOs to be centred at the nuclei. For certain types of calcula-
tions the centre of a basis function may be taken not to coincide with a nucleus, for
example being placed at the centre of a bond or between non-bonded atoms for
improving the calculation of van der Waals interactions.

5.2 Classification of Basis Sets
Having decided on the type of function (STO/GTO) and the location (nuclei), the most
important factor is the number of functions to be used. The smallest number of func-
tions possible is a minimum basis set. Only enough functions are employed to contain
all the electrons of the neutral atom(s). For hydrogen (and helium) this means a single
s-function. For the first row in the periodic system it means two s-functions (1s and 2s)
and one set of p-functions (2px, 2py and 2pz). Lithium and beryllium formally only
require two s-functions, but a set of p-functions is usually also added. For the second
row elements, three s-functions (1s, 2s and 3s) and two sets of p-functions (2p and 3p)
are used.

The next improvement of the basis sets is a doubling of all basis functions, produc-
ing a Double Zeta (DZ) type basis. The term zeta stems from the fact that the expo-
nent of STO basis functions is often denoted by the Greek letter z. A DZ basis thus
employs two s-functions for hydrogen (1s and 1s′), four s-functions (1s, 1s′, 2s and 2s′)
and two sets of p-functions (2p and 2p′) for first row elements, and six s-functions and
four sets of p-functions for second row elements. The importance of a DZ over a
minimum basis can be illustrated by considering the bonding in the HCN molecule.
The H—C bond will primarily consist of the hydrogen s-orbital and the pz-orbital on C.
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The π-bond between C and N will consist of the px (and py) orbitals of C and N, and 
will have a more diffuse electron distribution than the H—C σ-bond. The optimum 
exponent for the carbon p-orbital will thus be smaller for the x-direction than for the 
z-direction. If only a single set of p-orbitals is available (minimum basis), a compro-
mise will be necessary. A DZ basis, however, has two sets of p-orbitals with different
exponents. The tighter function (larger exponent) can enter the H—C σ-bond with a
large coefficient, while the more diffuse function (small exponent) can be used pri-
marily for describing the C—N π-bond. Doubling the number of basis functions thus
allows for a much better description of the fact that the electron distribution is differ-
ent in different directions.
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C NH

Figure 5.2 A double zeta basis allows for different bonding in different directions

The chemical bonding occurs between valence orbitals. Doubling the 1s-functions in
for example carbon allows for a better description of the 1s-electrons. However, the
1s-orbital is essentially independent of the chemical environment, being very close to
the atomic case. A variation of the DZ type basis only doubles the number of valence
orbitals, producing a split valence basis. In actual calculations, a doubling of the core
orbitals would rarely be considered, and the term DZ basis is used also for split valence
basis sets (or sometimes VDZ, for valence double zeta).

The next step up in basis set size is a Triple Zeta (TZ). Such a basis contains three
times as many functions as the minimum basis, i.e. six s-functions and three p-functions
for the first row elements. Some of the core orbitals may again be saved by only split-
ting the valence, producing a triple split valence basis set. Again the term TZ is used
to cover both cases. The names Quadruple Zeta (QZ) and Quintuple or Pentuple Zeta
(PZ or 5Z, but not QZ) for the next levels of basis sets are also used, but large basis
sets are often given explicitly in terms of the number of basis functions of each type.

So far, only the number of s- and p-functions for each atom (first or second row in
the periodic table) has been discussed. In most cases, higher angular momentum func-
tions are also important, and these are denoted polarization functions. Consider again
the bonding in HCN in Figure 5.2.The H—C bond is primarily described by the hydro-
gen s-orbital(s) and the carbon s- and pz-orbitals. It is clear that the electron distribu-
tion along the bond will be different than perpendicular to the bond. If only s-functions
are present on hydrogen, this cannot be described. However, if a set of p-orbitals is
added to hydrogen, the pz component can be used for improving the description of the
H—C bond. The p-orbital introduces a polarization of the s-orbital(s). Similarly, d-
orbitals can be used for polarizing p-orbitals, f-orbitals for polarizing d-orbitals, etc.
Once a p-orbital has been added to polarize a hydrogen s-orbital, it may be argued
that the p-orbital should now be polarized by adding a d-orbital, which should be polar-
ized by an f-orbital, etc. For independent-particle wave functions, where electron cor-
relation is not considered, the first set of polarization functions (i.e. p-functions for



hydrogen and d-functions for heavy atoms) is by far the most important, and will in
general describe most of the important charge polarization effects.

If methods including electron correlation are used, higher angular momentum func-
tions are essential. Electron correlation describes the energy lowering by the electrons
“avoiding” each other, beyond the average effect taken into account by Hartree–Fock
methods. Two types of correlation can be identified, an “in–out” and an “angular” cor-
relation. The in-out or radial correlation refers to the situation where one electron is
close to, and the other far from, the nucleus. To describe this, the basis set needs func-
tions of the same type, but with different exponents. The angular correlation refers to
the situation where two electrons are on opposite sides of the nucleus. To describe this,
the basis set needs functions with the same magnitude exponents, but different angular
momentum. For example, to describe angular correlation of an s-function, p-functions
(and d-, f-, g-functions, etc.) are needed. The angular correlation is of similar impor-
tance as the radial correlation, and higher angular momentum functions are conse-
quently essential for correlated calculations. Although these should properly be
labelled correlation functions, they also serve as polarization functions for HF wave
functions, and it is common to denote them as polarization functions.

Normally only the correlation of the valence electrons is considered, and the expo-
nents of the polarization functions should be of the same magnitude as the valence s-
and p-functions (actually slightly larger in order to have the same maximum in the
radial distribution function). In contrast to HF methods, the higher angular momen-
tum functions (beyond the first set of polarization functions) are quite important. Or
alternatively formulated, the convergence in terms of angular momentum is slower for
correlated wave functions than at the HF level. For a basis set that is complete up to
angular momentum L, numerical analysis suggests the asymptotic convergence at the
HF level is exponential (i.e. ~exp(− )), while it is ~L−3 at correlated levels.4

Polarization functions are added to the chosen sp-basis. Adding a single set of polar-
ization functions (p-functions on hydrogens and d-functions on heavy atoms) to the
DZ basis forms a Double Zeta plus Polarization (DZP) type basis. There is a variation
where polarization functions are only added to non-hydrogen atoms. This does not
mean that polarization functions are not important on hydrogen. However, hydrogen
often has a “passive” role, sitting at the end of bonds that do not take active part in
the property of interest. The error introduced by not including hydrogen polarization
functions is often rather constant and, as the interest is usually in energy differences,
tends to cancel out. As hydrogen often accounts for a large number of atoms in the
system, a saving of three basis functions for each hydrogen is significant. If hydrogen
plays an important role in the property of interest, it is of course not a good idea to
neglect polarization functions on hydrogen.

Similarly to the sp-basis sets, multiple sets of polarization functions with different
exponents may be added. If two sets of polarization functions are added to a TZ sp-
basis, a Triple Zeta plus Double Polarization (TZ2P) type basis is obtained. For larger
basis sets with many polarization functions the explicit composition in terms of number
and types of functions is usually given. At the HF level there is usually little gained by
expanding the basis set beyond TZ2P, and even a DZP type basis set usually gives
“good” results (compared with the HF limit). Correlated methods, however, require
more, and higher angular momentum, polarization functions to achieve the same level
of convergence.

L
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Before moving on we need to introduce the concept of basis set balance. In princi-
ple, many sets of polarization functions may be added to a small sp-basis, but this is a
poor idea. If an insufficient number of sp-functions has been chosen for describing the
fundamental electron distribution, the optimization procedure used in obtaining the
wave function (and possibly also the geometry) may try to compensate for inadequa-
cies in the sp-basis by using higher angular momentum functions, thereby producing
artefacts. A rule of thumb says that the number of functions of a given type should at
most be one less than the type with one lower angular momentum. A 3s2p1d basis is
balanced, but a 3s2p2d2f1g is too heavily polarized. It may not be necessary to polar-
ize the basis all the way up, thus a 5s4p3d2f1g basis is balanced, but if it is known 
(for example by comparison with experimental data) that f- and g-functions are 
unimportant, they may be left out. Furthermore, it may be that two d-functions are 
sufficient for the given purpose, although a 5s4p1d basis would be considered 
underpolarized.

Another aspect of basis set balance is the occasional use of mixed basis sets, for
example a DZP quality on the atoms in the “interesting” part of the molecule and a
minimum basis for the “spectator” atoms. Another example would be the addition of
polarization functions for only a few hydrogens that are located “near” the reactive
part of the system. For a large molecule, this may lead to a substantial saving in the
number of basis functions. It should be noted that this may bias the results and can
create artefacts. For example, a calculation on the H2 molecule with a minimum basis
at one end and a DZ basis at the other end will predict that H2 has a dipole moment,
since the variational principle will preferentially place the electrons near the centre
with the most basis functions. The majority of calculations are therefore performed
with basis sets of the same quality (minimum, DZP, TZ2P, . . .) on all atoms, possibly
removing polarization and/or diffuse (small exponent) functions on hydrogen. Even
so, it may be argued that small basis sets inherently tend to be unbalanced. Consider
for example the LiF molecule in a minimum or DZ type basis. This will have a very
ionic structure, Li+F−, with nearly all the valence electrons being located at the fluo-
rine. In terms of number of basis functions per electron, the Li basis is thus of a much
higher quality than the F basis, and thereby unbalanced. This effect of course dimin-
ishes as the size of the atomic basis set increases.

Except for very small systems, it is impractical to saturate the basis set such that the
absolute error in the energy is reduced below chemical accuracy, say 4kJ/mol. The
important point in choosing a balanced basis set is to keep the error as constant as
possible. The use of mixed basis sets should therefore only be done after careful con-
sideration. Furthermore, the use of small basis sets for systems containing elements
with substantially different numbers of valence electrons (such as LiF) may produce
artefacts.

Having decided on the number of basis functions (from a consideration of the prop-
erty of interest and the computational cost), the question becomes: how are the values
for the exponents in the basis functions chosen? The values for the s- and p-functions
are typically determined by performing variational HF calculations for the atoms, using
the exponents as variational parameters. The exponent values that give the lowest
energy are the “best”, at least for the atom. In some cases, the optimum exponents are
chosen based on minimizing the energy of a wave function that includes electron cor-
relation. The HF procedure cannot be used for determining exponents of polarization
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functions for atoms. By definition these functions are unoccupied in atoms, and there-
fore make no contribution to the energy. Suitable polarization exponents may be
chosen by performing variational calculations on molecular systems (where the HF
energy does depend on polarization functions) or on atoms with correlated wave func-
tions. Since the main function of higher angular momentum functions is to recover
electron correlation, the latter approach is usually preferred. Often only the optimum
exponent is determined for a single polarization function, and multiple polarization
functions are generated by splitting the exponents symmetrically around the optimum
value for a single function. The splitting factor is typically taken in the range 2–4. For
example if a single d-function for carbon has an exponent value of 0.8, two polariza-
tion functions may be assigned with exponents of 0.4 and 1.6 (splitting factor of 4). The
details of how the exponents are determined for various basis sets are discussed in the
following sections.

5.3 Even- and Well-Tempered Basis Sets
The optimization of basis function exponents is an example of a highly non-linear opti-
mization problem (Chapter 12). When the basis set becomes large, the optimization
problem is no longer easy. The basis functions start to become linearly dependent (the
basis set approaches completeness) and the energy becomes a very flat function of the
exponents. Analyses of basis sets that have been optimized by variational methods
reveal that the ratio between two successive exponents is approximately constant.
Taking this ratio to be constant reduces the optimization problem to only two param-
eters for each type of basis function, independent of the size of the basis. Such basis sets
have been labelled even-tempered basis sets, with the ith exponent given as zi = ab i,
where a and b are fixed constants for a given type of function and nuclear charge. It
was later discovered that the optimum a and b constants to a good approximation can
be written as functions of the size of the basis set, M.5

(5.3)

The constants a, a′, b and b′ depend only on the atom type and the type of function (s
or p). Even-tempered basis sets have the advantage that it is easy to generate a
sequence of basis sets that are guaranteed to converge towards a complete basis. This
is useful if the attempt is to extrapolate a given property to the basis set limit. The dis-
advantage is that the convergence is somewhat slow, and an explicitly optimized basis
set of a given size will usually give a better answer than an even-tempered basis of the
same size.

Even-tempered basis sets have the same ratio between exponents over the whole
range. From chemical considerations it is usually preferable to cover the valence region
better than the core region.This may be achieved by well-tempered basis sets.6 The idea
is similar to the even-tempered basis sets, with the exponents being generated by a
suitable formula containing only a few parameters to be optimized. The exponents in
a well-tempered basis of size M are generated according to eq. (5.4).

z ab
b
a b

i
i i M

b M b

a a

= =
( ) = + ′

= −( ) + ′

; , , ... ,

ln ln ln

ln ln

1 2

1

198 BASIS SETS



(5.4)

The a, b, g and d parameters are optimized for each atom. The exponents are the same
for all types of angular momentum functions, and s-, p- and d-functions (and higher
angular momentum) consequently have the same radial part.

A well-tempered basis set has four parameters, compared with two for an even-tem-
pered one, and is consequently capable of giving a better result for the same number
of functions. Petersson et al.7 have proposed a somewhat more general parameteriza-
tion based on expanding the logarithmic exponents in a polynomial of order K in the
basis function number.

(5.5)

Setting K = 1 is equivalent to generating an even-tempered basis set. The optimization
of the parameters ak becomes problematic for K larger than 2, since the polynomials
are non-orthogonal, and increasing K thus significantly changes all the expansion coef-
ficients. This problem can be alleviated by using Legendre polynomials instead, since
these are orthogonal, and this significantly improves the optimization.

(5.6)

It has been found that a fourth-order polynomial (K = 3) expansion produces much
better results than the well-tempered formula, despite having the same number of vari-
ables. Furthermore, the results from a fourth-order Legendre parameterization with M
basis functions is comparable to those from a fully optimized basis set with M − 1 func-
tions, i.e. the penalty in reducing the number of optimization variables from M to four
is only one function. The Legendre parameterization furthermore solves the potential
problem of variational collapse, i.e. two neighbouring exponents collapsing to the same
value during optimization, and eq. (5.6) thus provides an efficient way of systemati-
cally approaching the basis set limit.

Optimization of basis sets is not something the common user needs to worry about.
Optimized basis sets of many different sizes and qualities are available either in the
forms of tables, websites8 or stored internally in the computer programs. The user
“merely” has to select a suitable basis set. However, if the interest is in specialized
properties the basis set may need to be tailored to meet the specific needs. For example
if the property of interested is an accurate value for the electron density at the nucleus
(for example for determining the Fermi contact contribution to spin–spin coupling 
(see Section 10.7.6)) then basis functions with very large exponents are required.
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Alternatively, for calculating hyperpolarizabilites, very diffuse functions are required.
In such cases, the basis function optimization is in terms of the property of interest,
and not in terms of energy, i.e. basis functions are added until the change upon addi-
tion of one extra function is less than a given threshold.

5.4 Contracted Basis Sets
One disadvantage of all energy-optimized basis sets is the fact that they primarily
depend on the wave function in the region of the inner-shell electrons. The 1s-
electrons account for a large part of the total energy, and minimizing the energy will
tend to make the basis set optimum for the core electrons, and less so for the valence
electrons. However, chemistry is mainly dependent on the valence electrons. Further-
more, many properties (for example polarizability) depend mainly on the wave func-
tion “tail” (far from the nucleus), which energetically is unimportant. An
energy-optimized basis set that gives a good description of the outer part of the wave
function therefore needs to be very large, with the majority of the functions being used
to describe the 1s-electrons with an accuracy comparable with the outer electrons in
an energetic sense. This is not the most efficient way of designing basis sets for describ-
ing the outer part of the wave function. Instead energy-optimized basis set are usually
augmented explicitly with diffuse functions (basis functions with small exponents).
Diffuse functions are needed whenever loosely bound electrons are present (for
example anions or excited states) or when the property of interest is dependent on the
wave function tail (for example polarizability).

The fact that many basis functions focus on describing the energetically important,
but chemically unimportant, core electrons is the foundation for contracted basis sets.
Consider for example a basis set consisting of ten s-functions (and some p-functions)
for carbon. Having optimized these ten exponents by a variational calculation on a
carbon atom, maybe six of the ten functions are found primarily to be used for describ-
ing the 1s-orbital, and two of the four remaining describe the “inner” part of the 2s-
orbital. The important chemical region is the outer valence. Out of the ten functions,
only two are actually used for describing the chemically interesting phenomena. Con-
sidering that the computational cost increases as the fourth power (or higher) of the
number of basis functions, this is inefficient. As the core orbitals change very little
depending on the chemical bonding situation, the MO expansion coefficients in front
of these inner basis functions also change very little.The majority of the computational
effort is therefore spent describing the chemically uninteresting part of the wave func-
tion, which is furthermore almost constant.

Consider now making the variational coefficients in front of the inner basis func-
tions constant, i.e. they are no longer parameters to be determined by the variational
principle. The 1s-orbital is thus described by a fixed linear combination of say six basis
functions. Similarly, the remaining four basis functions may be contracted into only two
functions, for example by fixing the coefficient in front of the inner three functions. In
doing this the number of basis functions to be handled by the variational procedure
has been reduced from ten to three.

Combining the full set of basis functions, known as the primitive GTOs (PGTOs),
into a smaller set of functions by forming fixed linear combinations is known as 
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basis set contraction, and the resulting functions are called contracted GTOs 
(CGTOs).

(5.7)

The previously introduced acronyms DZP,TZ2P, etc., refer to the number of contracted
basis functions. Contraction is especially useful for orbitals describing the inner (core)
electrons, since they require a relatively large number of functions for representing 
the wave function cusp near the nucleus, and furthermore are largely independent of
the environment. Contracting a basis set will always increase the energy, since it is a
restriction of the number of variational parameters, and makes the basis set less 
flexible, but it will also reduce the computational cost significantly. The decision is 
thus how much loss in accuracy is acceptable compared with the gain in computational
efficiency.

The degree of contraction is the number of PGTOs entering the CGTO, typically
varying between one and ten. The specification of a basis set in terms of primitive and
contracted functions is done by the notation (10s4p1d/4s1p) → [3s2p1d/2s1p].The basis
in parenthesis is the number of primitives with heavy atoms (first row elements) before
the slash and hydrogen after. The basis in the square brackets is the number of con-
tracted functions. Note that this does not indicate how the contraction is done, it only
indicates the size of the final basis (and thereby the size of the variational problem in
HF calculations).

There are two different ways of contracting a set of primitive GTOs to a set of con-
tracted GTOs: segmented and general contraction. Segmented contraction is the older
method, and the one used in the above example. A given set of PGTOs is partitioned
into smaller sets of functions that are made into CGTOs by determining suitable coef-
ficients. A 10s basis set may be contracted to 3s by taking the inner six functions as
one CGTO, the next three as the second CGTO and the one remaining PGTO as the
third “contracted” GTO.

(5.8)

In a segmented contraction each primitive as a rule is used only in one contracted func-
tion, i.e. the primitive set of functions is partitioned into disjoint sets. In some cases it
may be necessary to duplicate one or two PGTOs in two adjacent CGTOs. The con-
traction coefficients can be determined by a variational optimization of the atomic HF
energy, where both the exponents and contraction coefficients are optimized simulta-
neously. It should be noted that this optimization often produces multiple minima, and
selecting a suitable “optimum” solution may be non-trivial.9

In a general contraction all primitives (on a given atom) enter all the contracted
functions, but with different contraction coefficients.
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(5.9)

One popular way of obtaining general contraction coefficients is from Atomic Natural
Orbitals (ANOs), to be discussed in Section 5.4.5. The difference between segmented
and general contraction may be illustrated as shown in Figure 5.3.
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Figure 5.3 Illustrating segmented and general contraction

In reality, there are very few truly segmented or general contracted basis sets.
General contracted basis sets normally leave the outermost function(s) uncontracted,
and a Gram–Schmidt type orthogonalization can be used for partly segmenting the
inner functions.10 The disjoint nature of the primitive set of functions in a segmented
contraction, on the other hand, often necessitates a duplication of one or more func-
tions, i.e. effectively a general contraction.The segmented–general classification should
thus be seen as limiting cases, with actual basis sets having varying characteristics of
both types.

There are many different contracted basis sets available in the literature or built into
programs, and the average user usually only needs to select a suitable quality basis for
the calculation. Below is a short description of some basis sets that often are used in
routine calculations.The contractions are given for a first row element (such as carbon),
while the corresponding ones for other elements can be found in the references.

5.4.1 Pople style basis sets

STO-nG basis sets These are Slater type orbitals consisting of n PGTOs.11 This is a
minimum type basis where the exponents of the PGTO are determined by fitting to
the STO, rather than optimizing them by a variational procedure. Although basis sets
with n = 2–6 have been derived, it has been found that using more than three PGTOs
for representing the STO gives little improvement, and the STO-3G basis is a widely
used minimum basis. This type of basis set has been determined for many elements of
the periodic table. The designation of the carbon STO-3G basis is (6s3p) → [2s1p].



k-nlmG basis sets These basis sets, designed by Pople and coworkers, and are of the
split valence type, with the k in front of the dash indicating how many PGTOs are used
for representing the core orbitals.The nlm after the dash indicate both how many func-
tions the valence orbitals are split into, and how many PGTOs are used for their rep-
resentation. Two values (nl) indicate a split valence, while three values (nlm) indicate
a triple split valence. The values before the G (for Gaussian) indicate the s- and p-
functions in the basis; the polarization functions are placed after the G. These types of
basis sets have the further restriction that the same exponent is used for both the s-
and p-functions in the valence. This increases the computational efficiency, but of
course decreases the flexibility of the basis set. The exponents and contraction coeffi-
cients have been optimized by variational procedures at the HF level for atoms.

3-21G This is a split valence basis, where the core orbitals are a contraction of three
PGTOs, the inner part of the valence orbitals is a contraction of two PGTOs and the
outer part of the valence is represented by one PGTO.12 The designation of the carbon
3-21G basis is (6s3p) → [3s2p]. Note that the 3-21G basis contains the same number
of primitive GTOs as the STO-3G, however, it is much more flexible as there are twice
as many valence functions that can combine freely to make MOs.

6-31G This is also a split valence basis, where the core orbitals are a contraction of
six PGTOs, the inner part of the valence orbitals is a contraction of three PGTOs and
the outer part of the valence is represented by one PGTO.13 The designation of the
carbon 6-31G basis is (10s4p) → [3s2p]. In terms of contracted basis functions it con-
tains the same number as 3-21G, but the representation of each function is better since
more PGTOs are used.

6-311G This is a triple split valence basis, where the core orbitals are a contraction
of six PGTOs and the valence split into three functions, represented by three, one and
one PGTOs, respectively, i.e. (11s5p) → [4s3p].14

To each of these basis sets can be added diffuse15 and/or polarization functions.16 Diffuse
functions are normally s- and p-functions and consequently go before the G. They are
denoted by + or ++, with the first + indicating one set of diffuse s- and p-functions on
heavy atoms, and the second + indicating that a diffuse s-function is added also to hydro-
gen.The argument for only adding diffuse functions on non-hydrogen atoms is the same
as for only adding polarization functions on non-hydrogens (Section 5.2). Polarization
functions are indicated after the G, with a separate designation for heavy atoms and
hydrogen. The 6-31+G(d) is a split valence basis with one set of diffuse sp-functions on
heavy atoms only and a single d-type polarization function on heavy atoms. A 6-
311++G(2df,2pd) is similarly a triple split valence with additional diffuse sp-functions,
two d-functions and one f-function on heavy atoms, and diffuse s- and two p- and one d-
functions on hydrogen.The largest standard Pople style basis set is 6-311++G(3df,3pd).
These types of basis set have been derived for hydrogen and the first row elements, and
some of the basis sets have also been derived for second and higher row elements. The
composition in terms of contracted and primitive functions is given in Table 5.1.

If only one set of polarization functions is used, an alternative notation in terms of
* is also widely used. The 6-31G* basis is identical to 6-31G(d), and 6-31G** is iden-
tical to 6-31G(d,p). A special note should be made for the 3-21G* basis. The 3-21G
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basis is basically too small to support polarization functions (it become unbalanced).
However, the 3-21G basis by itself performs poorly for hypervalent molecules, such 
as sulfoxides and sulfones. This can be improved substantially by adding a set of d-
functions. The 3-21G* basis has only d-functions on second row elements (it is some-
times denoted 3-21G(*) to indicate this), and should not be considered a polarized
basis. Rather the addition of a set of d-functions is an ad hoc repair of a known flaw.

5.4.2 Dunning–Huzinaga basis sets

Huzinaga has determined uncontracted energy-optimized basis sets up to (10s6p) for
first row elements.17 This was latter extended to (14s9p) by van Duijneveldt,18 and up
to (18s13p) by Partridge.19 Dunning has used the Huzinaga primitive GTOs to derive
various contraction schemes, and these are known as Dunning–Huzinaga (DH) type
basis sets.20 A DZ type basis can be made by a contraction of the (9s5p) PGTO to
[4s2p]. The contraction scheme is 6,1,1,1 for s-functions and 4,1 for the p-functions. A
widely used split valence type basis is a contraction of the same primitive set to [3s2p]
where the s-contraction is 7,2,1 (note that one primitive enters twice). A widely used
TZ type basis (actually only a triple split valence) is a contraction of the (10s6p) to
[5s3p], with the contraction scheme 6,2,1,1,1 for s-functions and 4,1,1 for p-functions.
Again, a duplication of one of the s- and p-primitives has been allowed.

McLean and Chandler have developed a similar set of contracted basis sets from
Huzinaga primitive optimized sets for second row elements.21 A DZ type basis is
derived by contracting (12s8p) → [5s3p], and a TZ type is derived by contracting
(12s9p) → [6s5p]. The latter contraction is 6,3,1,1,1,1 for the s-functions (note a dupli-
cation of one function) and 4,2,1,1,1 for the p-functions, and is often used in connec-
tion with the Pople 6-311G when second row elements are present.

The Dunning–Huzinaga type basis sets do not have the restriction of the Pople style
basis sets of equal exponents for the s- and p-functions, and they are therefore some-
what more flexible, but computationally also more expensive. The major determining
factor, however, is the number of basis functions and less so the exact description of
each function. Normally there is little difference in the performance between differ-
ent DZ or different TZ type basis sets.

The primary reason for the popularity of the Pople and DH style basis sets is the
extensive calibration available. There have been so many calculations reported with
these basis sets that it is possible to get a fairly good idea of the level of accuracy that
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Table 5.1 Composition in terms of contracted and primitive basis functions for some Pople style
basis sets

Basis Hydrogen First row elements Second row elements

Contracted Primitive Contracted Primitive Contracted Primitive

STO-3G 1s 3s 2s1p 6s3p 3s2p 9s6p
3-21G 2s 3s 3s2p 6s3p 4s3p 9s6p
6-31G(d,p) 2s1p 4s 3s2p1d 10s4p 4s3p1d 16s10p
6-311G(2df,2pd) 3s2p1d 5s 4s3p2d1f 11s5p 6s4p2d1fa 13s9pa

a McLean–Chandler basis set



can be attained with a given basis. This is of course a self-sustaining procedure, the
more calculations that are reported with a given basis, the more popular it becomes,
since the calibration set becomes larger and larger.

5.4.3 MINI, MIDI and MAXI basis sets

Tatewaki and Huzinaga have optimized minimum basis sets for a large part of the peri-
odic table at the HF level.22 The MINI-n (n = 1–4) basis sets are all minimum basis sets
with three PGTOs in the 2s CGTO, and a varying number of PGTOs in the 1s and 2p
CGTOs. In terms of PGTOs, the MINI-1 is (3s,3s,3p), the MINI-2 is (3s,3s,4p), the
MINI-3 is (4s,3s,3p) and the MINI-4 is (4s,3s,4p). These MINI basis sets in general
perform better than STO-3G, but it should be kept in mind that they are still minimum
basis sets. The MIDI-n basis sets are identical to MINI-n, except that the outer valence
function is decontracted. The MAXI-n basis sets all employ four PGTOs for the 2s
CGTO and from five to seven PGTOs for the 1s and 2p CGTOs. The valence orbitals
are split into three or four functions, and MAXI-1 is (9s5p) → [4s3p] (contraction
5,2,1,1 and 3,1,1), MAXI-3 is (10s6p) → [5s4p] (contraction 6,2,1,1,1 and 3,1,1,1) and
MAXI-5 is (11s7p) → [5s4p] (contraction 7,2,1,1,1 and 4,1,1,1).

5.4.4 Ahlrichs type basis sets

The group centred around R. Ahlrichs has designed basis sets of DZ, TZ and QZ
quality for the elements up to Kr.The Split Valence Polarized (SVP) basis set is a [3s2p]
contraction of a (7s4p) set of primitive functions (contraction 5,1,1 and 3,1), while the
Triple Zeta Valence (TZV) basis set is a [5s3p] contraction of an (11s6p) set of primi-
tive functions (contraction 6,2,1,1,1 and 4,1,1).23 More recently, the series has been
extended by a Quadruple Zeta Valence (QZV) basis set, being a [7s4p] contraction of
a (15s8p) set of primitive functions with the contraction 8,2,1,1,1,1,1 and 5,1,1,1.24 Note
that both the TZV and QZV basis sets employ more contracted s-functions than indi-
cated by the TZ and QZ acronyms. The s- and p-exponents and corresponding con-
traction coefficients are optimized at the HF level, while the polarization functions are
taken from the cc-pVxZ basis sets.

5.4 CONTRACTED BASIS SETS 205

Table 5.2 Composition in terms of contracted and primitive basis functions for the Ahlrichs type
basis sets

Basis Hydrogen First row elements Second row elements

Contracted Primitive Contracted Primitive Contracted Primitive

SVP 2s1p 4s 3s2p1d 7s4p 4s3p1d 10s7p
TZV 3s2p1d 5s 5s3p2d1f 11s6p 5s4p2d1f 14s9p
QZV 4s3p2d1f 7s 7s4p3d2f1g 15s8p 9s6p4d2f1g 20s14p

5.4.5 Atomic natural orbital basis sets

All of the above basis sets are of the segmented contraction type. Modern contracted
basis sets aimed at producing very accurate wave functions often employ a general



contraction scheme. The Atomic Natural Orbitals (ANO) and correlation consistent
basis sets below are of the general contraction type.

The idea in the ANO type basis sets is to contract a large PGTO set to a fairly small
number of CGTOs by using natural orbitals from a correlated calculation on the free
atom, typically at the CISD level.25 The natural orbitals are those that diagonalize the
density matrix, and the eigenvalues are called orbital occupation numbers (see Section
9.5). The orbital occupation number is the number of electrons in the orbital. For an
RHF wave function, ANOs would be identical to the canonical orbitals with occupa-
tion numbers of exactly 0 or 2. When a correlated wave function is used, however, the
occupation number may have any value between 0 and 2.The ANO contraction selects
the important combinations of the PGTOs from the magnitude of the occupation
numbers. A large primitive basis, typically generated as an even-tempered sequence,
may generate several different contracted basis sets by gradually lowering the selec-
tion threshold for the occupation number. The nice feature of the ANO contraction is
that it more or less “automatically” generates balanced basis sets, e.g. for neon the
ANO procedure generates the following basis set: [2s1p], [3s2p1d], [4s3p2d1f] and
[5s4p3d2f1g]. Furthermore, in such a sequence the smaller ANO basis sets are true
subsets of the larger, since the same set of primitive functions is used.

5.4.6 Correlation consistent basis sets

The primary disadvantage of ANO basis sets is that a very large number of primitive
GTOs are necessary for converging towards the basis set limit. Dunning and cowork-
ers have proposed a somewhat smaller set of primitives that yields comparable results
to the ANO basis sets.26 The correlation consistent (cc; the convention is to use lower
case letters as the acronym, to distinguish it from coupled cluster (CC)) basis sets are
geared towards recovering the correlation energy of the valence electrons. The name
correlation consistent refers to the fact that the basis sets are designed such that func-
tions that contribute similar amounts of correlation energy are included at the same
stage, independent of the function type. For example, the first d-function provides a
large energy lowering, but the contribution from a second d-function is similar to that
from the first f-function. The energy lowering from a third d-function is similar to that
from the second f-function and the first g-function. The addition of polarization func-
tions should therefore be done in the order: 1d, 2d1f and 3d2f1g. An additional feature
of the cc basis sets is that the energy error from the sp-basis should be comparable
with (or at least not exceed) the correlation error arising from the incomplete polar-
ization space, and the sp-basis therefore also increases as the polarization space is
extended.The s- and p-basis set exponents are optimized at the HF level for the atoms,
while the polarization exponents are optimized at the CISD level, and the primitive
functions are contracted by a general contraction scheme using natural orbital 
coefficients.

Several different sizes of cc basis sets are available in terms of final number of con-
tracted functions. These are known by their acronyms: cc-pVDZ, cc-pVTZ, cc-pVQZ,
cc-pV5Z and cc-pV6Z (correlation consistent polarized Valence Double/Triple/Quadru-
ple/Quintuple/Sextuple Zeta). The composition in terms of contracted and primitive
(for the s- and p-part) functions is shown in Table 5.3. Note that each step up in terms
of quality increases each type of basis function by one, and adds a new type of higher
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order polarization function. For second row systems it has been found that the per-
formance is significantly improved by adding an extra tight d-function.27

The energy-optimized cc-basis sets can be augmented with diffuse functions, indi-
cated by adding the prefix aug- to the acronym.28 The augmentation consists of adding
one extra function with a smaller exponent for each angular momentum, i.e. the aug-
cc-pVDZ has additionally one s-, one p- and one d-function, the cc-pVTZ has 1s1p1d1f
extra for non-hydrogens and so on.The cc-basis sets may also be augmented with addi-
tional tight functions (large exponents) if the interest is in recovering core–core and
core–valence electron correlation, producing the acronyms cc-pCVXZ (X = D, T, Q,
5). The cc-pCVDZ has additionally one tight s- and one p-function, the cc-pCVTZ has
2s2p1d tight functions, the cc-pCVQZ has 3s3p2d1f and the cc-pCV5Z has 4s4p3d2f1g
for non-hydrogens.29

5.4.7 Polarization consistent basis sets

The basis set convergence of electron correlation methods is inverse polynomial in the
highest angular momentum functions included in the basis set, while the convergence
of the independent-particle HF and DFT methods is exponential.30 This difference in
convergence properties suggests that the optimum basis sets for the two cases will also
be different, especially should low angular momentum functions be more important
for HF/DFT methods than for electron correlation methods as the basis set becomes
large. Since DFT methods (Chapter 6) are rapidly becoming the preferred method for
routine calculations, it is of interest to have basis sets that are optimized for DFT type
calculations, and that are capable of systematically approaching the basis set limit. The
polarization consistent (pc) basis sets are developed analogously to the correlation 
consistent basis sets except that they are optimized for DFT methods.31 The name indi-
cates that they are geared towards describing the polarization of the (atomic) electron
density upon formation of a molecule, rather than describing the correlation energy.
Since there is little difference between HF and DFT, and even less difference between
different DFT functionals, these basis sets are suitable for independent-particle
methods in general.

The polarization consistent basis sets again employ an energetic criterion for deter-
mining the importance of each type of basis function. The level of polarization beyond
the isolated atom is indicated by a value after the acronym, i.e. a pc-0 basis set is 
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Table 5.3 Composition in terms of contracted and primitive basis functions for the correlation con-
sistent basis sets

Basis Hydrogen First row elements Second row elements

Contracted Primitive Contracted Primitive Contracted Primitive

cc-pVDZ 2s1p 4s 3s2p1d 9s4p 4s3p2d 12s8p
cc-pVTZ 3s2p1d 5s 4s3p2d1f 10s5p 5s4p3d1f 15s9p
cc-pVQZ 4s3p2d1f 6s 5s4p3d2f1g 12s6p 6s5p4d2f1g 16s11p
cc-pV5Z 5s4p3d2f1g 8s 6s5p4d3f2g1h 14s8p 7s6p5d3f2g1h 20s12p
cc-pV6Z 6s5p4d3f2g1h 10s 7s6p5d4f3g2h1i 16s10p 8s7p6d4f3g2h1i 21s14p



unpolarized, pc-1 contains a single polarization function with one higher angular
momentum, pc-2 contains polarization functions up to two beyond that required for
the atom, etc. In contrast to the cc-pVxZ basis sets, the importance of the polarization
functions must be determined at the molecular level, since the atomic energies only
depend on s- and p-functions (at least for elements in the first two rows in the peri-
odic table). For the DZ and TZ type basis sets (pc-1 and pc-2), the consistent polar-
ization is the same as for the cc-pVxZ basis sets (1d and 2d1f), but at the QZ and 5Z
levels (pc-3 and pc-4) there are one and two additional d-functions (4d2f1g and
6d3f2g1h), respectively. The s- and p-basis set exponents are optimized at the DFT
level for the atoms, while the polarization exponents are selected as suitable average
values from optimizations for a selection of molecules.The primitive functions are sub-
sequently contracted by a general contraction scheme by using the atomic orbital coef-
ficients.

For properties dependent on the wave function tail, such as electric moments and
polarizabilities, the convergence towards the basis set limit can be improved by explic-
itly adding a set of diffuse functions, producing the acronym aug-pc-n.

5.4.8 Basis set extrapolation

The main advantage of the ANO, correlation consistent and polarization consistent
basis sets is the ability to generate a sequence of basis sets that converges toward the
basis set limit in a systematic fashion. For example, from a series of calculations with
the 3-21G, 6-31G(d,p), 6-311G(2d,2p) and 6-311++G(3df,3pd) basis sets it may not be
obvious whether the property of interest is “converged” with respect to further
increases in the basis, and it is difficult to estimate what the basis set limit would be.
This is partly due to the fact that different primitive GTOs are used in each of these
segmented basis sets, and partly due to the lack of higher angular momentum func-
tions. From the same (large) set of primitive GTOs, however, increasingly large ANO
basis sets may be generated by a general contraction scheme that allows an estimate
of the basis set limiting value. Similarly, the cc-pVxZ basis sets consistently reduce
errors (both HF and correlation) for each step up in quality. In test cases it has been
found that the cc-pVDZ basis can provide ~65% of the total (valence) correlation
energy, the cc-pVTZ ~85%, cc-pVQZ ~93%, cc-pV5Z ~96% and cc-pV6Z ~98%, with
similar reductions of the HF error.
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Table 5.4 Composition in terms of contracted and primitive basis functions for the polarization con-
sistent basis sets

Basis Hydrogen First row elements Second row elements

Contracted Primitive Contracted Primitive Contracted Primitive

pc-0 2s 3s 3s2p 5s3p 4s3p 8s6p
pc-1 2s1p 4s 3s2p1d 7s4p 4s3p1d 11s8p
pc-2 3s2p1d 6s 4s3p2d1f 10s6p 5s4p2d1f 13s10p
pc-3 5s4p2d1f 9s 6s5p4d2f1g 14s9p 6s5p4d2f1g 17s13p
pc-4 7s6p3d2f1g 11s 8s7p6d3f2g1h 18s11p 7s6p6d3f2g1h 20s16p



Given the systematic nature of the cc basis sets, several different schemes have been
proposed for extrapolation to the infinite basis set limit, using the highest angular
momentum Lmax included in the basis set as the extrapolating parameter.32 At the HF
and DFT levels the convergence is expected to be exponential, and indeed functions
of the form shown in eq. (5.10) in connection with the cc-pVxZ basis sets usually
provide a good fit.33

(5.10)

An alternative fitting function (eq. (5.11)) for use with the pc-n basis sets has been
shown to improve the accuracy of absolute energies by almost an order of magnitude,
although relative energies are only marginally improved.34 The number of s-functions
(Ns) in the basis set is here used as the main extrapolating parameter.

(5.11)

Exponential forms like eq. (5.10) have also been used for extrapolating the total energy
at correlated levels of theory with the cc-pVxZ basis sets.Theoretical analysis, however,
suggest that the correlation energy itself (i.e. not the total energy, which includes the
HF contribution) should converge with an inverse power dependence, with the leading
term for singlet electron pairs being (L + 1)−3 while the leading term for triplet pairs
is (L + 1)−5.35 The theoretical assumption underlying these results is that the basis set
is saturated in the radial part (e.g. a TZ type basis set should be complete in the s-,
p-, d- and f-function space).This is not the case for the correlation consistent basis sets:
even for the cc-pV6Z basis set, the errors due to insufficient numbers of s- to i-func-
tions are comparable with that from neglect of functions with angular momentum
higher than i-functions. Nevertheless, it has been found that extrapolations based on
only the leading L−3 term give good results when compared with accurate results gen-
erated by for example R12 methods.36 This has the advantage that the infinite basis set
result can be estimated from only two calculations with basis sets having maximum
angular momentum N and M according to eq. (5.12).

(5.12)

It has been suggested that a separate extrapolation of the singlet (opposite spin) and
triplet (same spin) correlation energies with A + B(L + 1/2)−3 and A + B(L + 1/2)−5 func-
tion forms, respectively, may provide better results.37

The main difficulty in using the cc-pVxZ or pc-n basis sets is that each step up in quality
roughly doubles the number of basis functions. The fitting functions in eqs (5.10) and
(5.11) contain three parameters, and therefore require at least three calculations 
with increasingly larger basis sets. The simplest sequence is cc-pVDZ, cc-pVTZ and 
cc-pVQZ, but the cc-pVDZ basis is too small to give good extrapolated values for the
correlation energy, and a better sequence is cc-pVTZ, cc-pVQZ and cc-pV5Z. The
requirement of performing calculations with at least the cc-pVQZ basis places severe
constraints on the size of the systems that can be treated.The extrapolation based on eq.
(5.12) has the advantage of requiring only two reference calculations. It should be noted
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that the B parameter in eq. (5.11) varies little from system to system, and taking this to
be a universal constant also reduces eq. (5.11) to a two-parameter fitting function.

Perhaps the most interesting aspect of the analyses that led to the development of
the correlation consistent basis sets is the fact that high angular momentum functions
are necessary for achieving high accuracy. While d-polarization functions are sufficient
for a DZ type basis, a TZ type should also include f-functions. Similarly, it is ques-
tionable to use a QZ type basis for the sp-functions without also including three d-,
two f- and one g-function in order to systematically reduce the errors. It can therefore
be argued that an extension of for example the 6-31G(d,p) to 6-311G(d,p) is incon-
sistent as the second set of d-orbitals (and second set of p-orbitals for hydrogen) and
a set of f-functions (d-functions for hydrogen) will give similar contributions as the
extra set of sp-functions. Similarly, the extension of the 6-311G(2df,2pd) basis to 6-
311G(3df,3pd) may be considered inconsistent, as the third d-function is expected to
be as important as the fourth valence set of sp-functions, the second set of f-functions
and the first set of g-functions, all of which are neglected.

In the search for a basis set converged value, other approximations should be kept
in mind. Basis sets with many high angular momentum functions are normally designed
for recovering a large fraction of the correlation energy. In the majority of cases, only
the electron correlation of the valence electrons is considered (frozen-core approxi-
mation), since the core orbitals usually are insensitive to the molecular environment.
As the valence space approaches completeness in terms of basis functions, the error
from the frozen-core approximation will at some point become comparable to the
remaining valence error. From studies of small molecules, where good experimental
data are available, it is suggested that the effect of core electron correlation for unprob-
lematic systems is comparable with the change observed upon enlarging the cc-pV5Z
basis, i.e. of a similar magnitude as the introduction of h-functions.38 Improvements
beyond the cc-pV6Z basis set have been argued to produce changes of similar magni-
tude to those expected from relativistic corrections for first row elements, and further
increases to cc-pV7Z and cc-pV8Z type basis sets would be comparable with correc-
tions due to breakdown of the Born–Oppenheimer approximation for systems with
hydrogen. Within the non-relativistic realm, it would therefore appear that basis 
sets larger than cc-pV6Z would be of little use, except for extrapolating to the non-
relativistic, clamped nuclei limit for testing purposes. In attempts at obtaining results
of “spectroscopic accuracy” (~0.01kJ/mol), a brute force calculation with for example
the cc-pV7Z quality basis set combined with explicit extrapolation has been shown to
become problematic,37 and such high-quality results must probably be obtained by
explicit correlated techniques, such as the R12 method discussed in Section 4.11.

There is a practical aspect of using large basis sets, especially those including diffuse
functions, that requires special attention, namely the problem of linear dependence.
Linear dependence means that one (or more) of the basis functions can be written as
a linear combination of the other, i.e. the basis set is overcomplete. A diffuse function
has a small exponent and consequently extends far away from the nucleus on which it
is located. An equally diffuse function located on a nearby atom will therefore span
almost the same space. A measure of the degree of linear dependence in a basis set
can be obtained from the eigenvalues of the overlap matrix S (eq. (3.51)). A truly lin-
early dependent basis will have at least one eigenvalue of exactly zero, and the small-
est eigenvalue of the S matrix is therefore an indication of how close the actual basis

210 BASIS SETS



set is to linear dependence. As described in Section 16.2.3, solution of the SCF equa-
tions requires orthogonalization of the basis by means of the S−1/2 matrix (or a related
matrix that makes the basis orthogonal). If one of the S matrix eigenvalues is close to
zero, this means that the S−1/2 matrix is essentially singular, which in turn will cause
numerical problems if trying to carry out an actual calculation. In practice, there is
therefore an upper limit on how close to completeness a basis set can be chosen to be,
and this limit is determined by the finite precision with which the calculations are
carried out. If the selected basis set turns out to be too close to linear dependence to
be handled, the linear combinations of basis functions with low eigenvalues in the S
matrix may be discarded.

5.5 Plane Wave Basis Functions
Rather than starting with basis functions aimed at modelling the atomic orbitals (STOs
or GTOs), and forming linear combination of these to describe orbitals for the whole
system, one may use functions aimed directly at the full system. For modelling
extended (infinite) systems, for example a unit cell with periodic boundary conditions,
this suggests the use of functions with an “infinite” range. The outer valence electrons
in metals behave almost like free electrons, which leads to the idea of using solutions
for the free electron as basis functions. The solutions to the Schrödinger equation for
a free electron in one dimension can be written either in terms of complex exponen-
tials or cosine and sine functions.

(5.13)

Note that the energy depends quadratically on the k factor. For infinite systems,
the molecular orbitals coalesce into bands, since the energy spacing between distinct
levels vanishes. The electrons in a band can be described by orbitals expanded in 
a basis set of plane waves, which in three dimensions can be written as a complex 
function.

(5.14)

The wave vector k plays the same role as the exponent z in a GTO (eq. (5.2)), and is
related to the energy by means of eq. (5.13) (conventionally given in units of eV). As
seen in eq. (5.14), k can also be thought of as a frequency factor, with high k values
indicating a rapid oscillation. The permissible k values are given by the unit cell trans-
lational vector t, i.e. k ⋅ t = 2πm, with m being a positive integer. This leads to a typical
spacing between k vectors of ~0.01eV, and the size of the basis set is thus uniquely
characterized by the highest energy k vector included. A typical energy cutoff of 
200eV thus corresponds to a basis set with ~20000 functions, i.e. plane wave basis sets
tend to be significantly larger than typical Gaussian basis sets. Note, however, that the
size of a plane wave basis set depends only on the size of the periodic cell, not on the
actual system described within the cell. This is in contrast to the linear increase with
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system size for nuclear-centred Gaussian functions, i.e. plane wave basis sets become
more favourable for large systems.

While plane wave basis sets have primarily been used for periodic systems, they can
also be used for molecular species by using a supercell approach, where the molecule
is placed in a sufficiently large unit cell such that it does not interact with its own image
in the neighbouring cells.39 Placing a relatively small molecule in a large supercell to
avoid self-interaction consequently requires many plane wave functions, and such cases
are handled more efficiently by localized Gaussian functions. A three-dimensional
periodic system, on the other hand, may be better described by a plane wave basis than
with nuclear-centred basis functions.

Plane wave basis functions are ideal for describing delocalized slowly varying elec-
tron densities, such as the valence bands in a metal. The core electrons, however, are
strongly localized around the nuclei, and the valence orbitals have a number of rapid
oscillations in the core region to maintain orthogonality. Describing the core region
adequately thus requires a large number of rapidly oscillating functions, i.e. a plane
wave basis with very large kmax. The singularity of the nucleus–electron potential is fur-
thermore almost impossible to describe in a plane wave basis, and this type of basis
set is therefore used in connection with pseudopotentials (Section 5.9) for smearing
the nuclear charge and modelling the effect of the core electrons. Note that a
pseudopotential is also required for smearing the potential near the nucleus in hydro-
gen, even though hydrogen does not have core electrons.

5.6 Recent Developments and Computational Issues
Recent developments have attempted to combine localized and plane wave basis func-
tions, i.e. describing the core region by radial polynomials or Gaussian functions, and
the valence region by plane waves.40 This price of this approach is increased compu-
tational complexity, since new integrals involving different types of basis function are
required.

Harrison and coworkers have recently proposed a multi-resolution procedure where
the molecular orbitals are expanded into a set of wavelets.41 The essence of the method
is to place the molecule in a suitably sized box, and to repeatedly subdivide the space
by a factor of 2, leading to 2n boxes at level n. The part of the orbitals within each box
is expanded into a set of Legendre polynomials of order k, the first few of which are
given in eq. (5.6). By increasing the number of boxes and the number of Legendre
polynomials, the accuracy can be tuned to any desired degree. For small systems,
this approach has been shown to be able to provide HF energies accurate to within
10−6 au.42 There are a few technical issues regarding how to treat the singularity of the
nuclear-electron potential and whether the nuclei are located at box boundaries or not,
but these do not appear to be especially problematic. One significant advantage of the
multi-resolution method is that it is by construction a linear scaling method.

The computational problem is formally the same whether a Gaussian, plane wave
or polynomial basis is used – calculate matrix elements of quantum mechanical oper-
ators over basis functions and solve the variational problem by an iterative procedure
– but the nature of the functions results in some differences. With a GTO basis the
matrix elements are calculated directly, while with a plane wave basis the matrix ele-
ments involving the potential energy can be generated by simple multiplication, as long
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as the operator is local. The Coulomb operator is local, as is the exchange operator in
density functional theory, but the exchange energy at the Hartree–Fock level involves
a non-local operator. Incorporating HF exchange with plane wave basis sets is there-
fore somewhat more difficult than with GTO basis sets,43 and this difference at least
partly explains why density functional methods have dominated in solid-state physics,
while HF traditionally has been preferred for molecular systems. Another reason is of
course that HF theory cannot describe metallic systems – the large band gap predicted
by HF makes all periodic systems insulators or semiconductors.

A GTO basis will typically have 10–20 functions per atom, with perhaps a few
hundred functions for the whole system. A plane wave basis, on the other hand, will
often have tens of thousands of functions. In a traditional implementation, the varia-
tional problem is solved by repeated diagonalization of a Fock-type matrix but this
becomes problematic when the number of basis functions exceeds a few thousand
owing to the cubic scaling of matrix diagonalization. For large plane wave basis sets,
the variational problem is therefore often solved by other methods, such as conjugate
gradient optimization, quenched dynamics methods or DIIS type extrapolations.44 In
Car–Parrinello type dynamics (Section 14.2.5), the variational problem is solved by
propagating the orbital parameters with fictive masses along with the nuclear degrees
of freedom. The computational scaling of solving the variations problem with these
methods is N2

electronMbasis, i.e. the computational time increases linearly with the number
of plane wave functions.

A significant advantage of plane wave basis sets is that they are independent of the
nuclear positions.This means that the problem of basis set superposition error (Section
5.10) does not occur, and the calculation of the gradient of the energy is easy, as it is
given directly by the Hellman–Feynman force, i.e. there are no components associated
with the change of basis function position (“Pulay forces”).

5.7 Composite Extrapolation Procedures
In principle, the large majority of systems can be calculated with a high accuracy by
using a highly correlated method such as CCSD(T) and performing a series of calcu-
lations with systematically larger basis sets in order to extrapolate to the basis set limit.
In practice, even a single water molecule is demanding to treat in this fashion (Chapter
11).Various approximate procedures have therefore been developed for estimating the
“infinite correlation, infinite basis” limit (Figure 4.3) as efficiently as possible. These
models rely on the fact that different properties converge with different rates as the
level of sophistication increases, and that effects from extending the basis set to a
certain degree are additive. There are four main steps in these procedures:

(1) Selecting the geometry.
(2) Selecting a basis set for calculating the Hartree–Fock energy.
(3) Estimating the electron correlation energy.
(4) Estimating the energy from translation, rotation and vibrations.

Given a predefined target accuracy, the error from each of these four steps should be
reduced below the desired tolerance. The error at a given level may be defined as 
the change that would occur if the calculation were taken to the “infinite correlation,
infinite basis” limit. A typical target accuracy is ~4kJ/mol (~1kcal/mol), the so-called
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“chemical accuracy”, although some of the more recent methods aim for an accuracy
of ~1kJ/mol.

Geometries converge relatively fast: at the HF level with a DZP type basis the
“geometry error” is often already ~4kJ/mol or less, and an MP2 or DFT geometry opti-
mized with a DZP basis set is normally sufficient for most applications. The transla-
tional and rotational contributions are trivial to calculate, as they depend only on the
molecular mass and the geometry (Sections 13.5.1 and 13.5.2), and are very small in
absolute values. The error from these can be neglected. The vibrational effect is mainly
the zero point energy, and it requires calculation of the frequencies. An accurate pre-
diction of frequencies is fairly difficult. However, since the absolute value of the zero
point energy is small, a large relative error is tolerable. Furthermore, the errors in cal-
culated frequencies are to a certain extent systematic and can therefore be improved
by a uniform scaling.45

The HF error depends only on the size of the basis set.The energy, however, behaves
asymptotically as ~exp(− ),where L is the highest angular momentum in the basis set.
For example, with a basis set of TZP quality (4s3p2d1f for first row elements) the results
are already quite stable.Combined with the fact that an HF calculation is the least expen-
sive ab initio method, this means that the HF error is rarely the limiting factor.

The main problem is estimating the correlation effect. All electron correlation
methods have a rather steep increase in computational cost as the size of the basis is
enlarged, and the convergence in terms of the highest angular momentum in the basis
is quite slow (~L−3). The main contribution to the correlation energy is from pairs of
electrons in the same spatial MO. This effect is reasonably well described at the MP2
level, but requires a large basis set in order to recover a large fraction of the absolute
value. The remaining correlation energy is much harder to calculate: coupled cluster is
the preferred method here but, since the absolute value is substantially smaller than
the MP2 correlation energy, a smaller basis can be employed. This means that the rel-
ative error is quite large but the absolute error is of the same magnitude as the cor-
relation error from the MP2 calculation with the large basis.

In the Gaussian-1 (G1), Gaussian-2 (G2),46 Gaussian-3 (G3)47 and Complete Basis
Set (CBS) models, calculations from different levels of theory are combined with the
goal of producing energy differences accurate to about 4kJ/mol, as compared with
experimental results. They have been calibrated on a reference set of 125 atomic and
molecular properties (atomization energies, ionization potentials, electron and proton
affinities) that is often referred to as the G2 or G2-1 data set.48 A somewhat larger set
of data, called G2-2, has been used more recently.49 The ability to accurately calculate
atomization energies (corresponding to dissociating molecules into isolated atoms)
enables the prediction of absolute values of heat of formation, since the atomic values
are known experimentally. The main difference between the Gn and CBS methods is
the way they try to extrapolate the correlation energy, as described below. Both the
Gn and CBS methods come in different flavours, depending on the exact combinations
of methods used for obtaining the above four contributions.

As an example, the G2(MP2) method involves the following steps:50

(1) The geometry is optimized at the HF/6-31G(d) level and the vibrational frequen-
cies are calculated. To correct for the known deficiencies at the HF level, these are
scaled by 0.893 to produce zero point energies.

L
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(2) The geometry is re-optimized at the MP2/6-31G(d) level, which is used as the ref-
erence geometry.

(3) An MP2/6-311+G(3df,2p) calculation is carried out, which automatically yields the
corresponding HF energy.

(4) The energy is calculated at the QCISD(T)/6-311G(d,p) level. This automatically
generates the MP2 value as an intermediate result, and the difference between 
the QCISD(T) and MP2 energies is taken as an estimate of the higher order cor-
relation energy. The G2 method (not G2(MP2)) performs additional MP4 calcu-
lations with larger basis sets to get a better estimate of the higher order correlation
energy.

(5) To correct for electron correlation beyond QCISD(T) and basis set limitations, an
empirical correction is added to the total energy, ∆Eemp = −0.00481Na − 0.00019Nb,
where it is assumed that the number of b electrons is larger than or equal to the
number of b electrons. The numerical constants are determined by fitting to the
reference data. It should be noted that this correction makes the G2 methods non-
size extensive.

The net effect of steps (3)–(5) is that a single calculation at the QCISD(T)/6-
311+G(3df,2p) is replaced by a series of calculations at lower levels, which in combi-
nation yields a comparable accuracy in significantly less computer time.51

The main difference among the G2 models is the way the electron correlation
beyond MP2 is estimated. The G2 method itself performs a series of MP4 and
QCISD(T) calculations, G2(MP2) only does a single QCISD(T) calculation with the
6-311G(d,p) basis, while G2(MP2,SVP) (SVP stands for split valence polarization)
reduces the basis set to only 6-31G(d).52 An even more pruned version, G2(MP2,SV),
uses the unpolarized 6-31G basis for the QCISD(T) part, which increases the mean
absolute deviation (MAD) to 9kJ/mol. That it is possible to achieve such good per-
formance with this small a basis set for QCISD(T) partly reflects the importance of
the large basis MP2 calculation and partly the absorption of errors in the empirical
correction.

A comparison between G1, G2, G2(MP2), G2(MP2,SVP) and G353 is shown in Table
5.5, and for the reference G2 data set the MADs vary from 4.3 to 6.3 kJ/mol. There 
are other variations of the G2 methods in use, for example involving DFT methods
for geometry optimization and frequency calculation54 or CCSD(T) instead of
QCISD(T),55 with slightly varying performance and computational cost. The errors
with the G2 method are comparable with those obtained directly from calculations at
the CCSD(T)/cc-pVTZ level, at a significantly lower computational cost.56

The main difference between the Gn and CBS models is the extrapolation of the
correlation energy. The Gn methods assume basis set additivity and add an empirical
correction to recover some of the remaining correlation energy. The CBS procedures,
on the other hand, attempt to perform an explicit extrapolation of the calculated
values. The main part of the correlation energy is due to electron pairs, i.e. described
by doubly excited configurations. In terms of perturbation theory, this may again be
divided into contributions from different orders, the most important being from second
order (MP2). By using pair natural orbitals (being eigenvectors of the density matrix,
see Section 9.5) as the expansion parameter, and assuming that enough pairs have been
included to reach the asymptotic limit, it may be shown that the MP2 energy 
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calculated by a limited natural orbitals expansion (of the size Nij) behaves as 1/Nij, and
can therefore be extrapolated to the complete basis set limit.

There are several different CBS methods, each having their own set of prescriptions
and resulting computational cost and accuracy, and they are known by the acronyms
CBS-4, CBS-q, CBS-Q and CBS-APNO.57

As an explicit example, we will take the CBS-Q model,58 which computationally is
similar to the G2(MP2) method:

(1) The geometry is optimized at the HF/6-31G(d†) level (d† denotes that the expo-
nents for the d-functions are taken from the 6-311G(d) basis), and the vibrational
frequencies are calculated. To correct for the known deficiencies at the HF level,
these are scaled by 0.918 to produce zero point energies.

(2) The geometry is re-optimized at the MP2/6-31G(d†) level, which is used as the ref-
erence geometry.

(3) An MP2/6-311+G(2df,2p) calculation is carried out, which automatically yields the
corresponding HF energy. The MP2 result is extrapolated to the basis set limit by
the pair natural orbital method.

(4) The energy is calculated at the MP4(SDQ)/6-31G(d,p) and QCISD(T)/6-31+G(d†)
level to estimate the effect from higher order electron correlation.

(5) Corrections due to remaining correlation effects are estimated by an empirical
expression,

∆E C Sii ii
i

emp = − 



∑∑0 00533

2
2

. m
m
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Table 5.5 Computational levels in the G1/G2/G3 models

Method Geometry HF and MP2 Higher order Thermo MAD 
correlation [scale factor] (kJ/mol)

G1 MP2/6-31G(d) 6-311G(2df,p) MP4/6-311G(d,p) HF/6-31G(d) 6.3
MP4/6-311+G(d,p) [0.893]
MP4/6-311G(2df,p)
QCISD(T)/6-311G(d,p)

G2 MP2/6-31G(d) 6-311+G(3df,2p) MP4/6-311G(d,p) HF/6-31G(d) 6.2
MP4/6-311+G(d,p) [0.893]
MP4/6-311G(2df,p)
QCISD(T)/6-311G(d,p)

G2(MP2) MP2/6-31G(d) 6-311+G(3df,2p) QCISD(T)/6-311G(d,p) HF/6-31G(d) 6.3
[0.893]

G3 MP2/6-31G(d) 6-311++G(2df,2p) QCISD(T)/6–31G(d) HF/6-31G(d) 4.3
MP4/6-31G(d) [0.893]
MP4/6-31+G(d)
MP4/6-31G(2df,p)

Geometry = level at which the structure is optimized
Higher order correlation = method(s) for estimating higher order correlation effects
Thermo = level at which the thermodynamic corrections are calculated [vibrational scale factor]
MAD = mean absolute deviation relative to the reference data set



where the sum over Cmii is the trace of the first-order wave function coefficients
for the natural orbital pair ii, |S|ii is the absolute value of the spatial overlap
between the a and b spin components of the ith MO, and the factor 0.00533 is
determined by fitting to the reference data. This empirical correction is size 
extensive.

(6) For open-shell species the UHF method is used, which in some cases suffers from
spin contamination. To correct for this an empirical correction based on the devi-
ation of 〈S2〉 from the theoretical value is added for the CBS-4 and CBS-Q
methods, ∆Eemp = −0.0092[〈S2〉 − Sz(Sz − 1)], where the factor of −0.0092 is derived
by fitting.

The use of the smaller basis for the QCISD(T) calculation means that the CBS-Q
model is computationally faster than G2(MP2), but nevertheless gives slightly lower
errors. A comparison among the four CBS models is shown in Table 5.6 (p. 218).

It should be noted that the G2-1 data set, with two exceptions (SO2 and CO2), only
includes data for molecules containing one or two heavy (non-hydrogen) atoms. It is
likely that the typical error for a given model to a certain extent depends on the size
of the system, i.e. the G2 method is presumably not able to predict the heat of 
formation of say C60 (if it were computationally feasible) with an accuracy of ~6kJ/mol.
Furthermore, the properties included (atomization energies, ionization potentials,
electron and proton affinities) all correspond to energy differences between well-sep-
arated systems: atomization energies are energy differences between a molecule and
isolated atoms, and the other three properties correspond to removal or addition of a
single electron or proton. As illustrated in Chapter 11, such energy differences are
easier to calculate than between systems containing half broken/formed bond. As 
with any scheme that has been parameterized on experimental data, it is questionable
to assume that the typical accuracy for a selected set of properties will be true in
general. A good performance for the G2 data set does not necessarily indicate that the
same level of accuracy can be obtained over a wide variety of geometries, for example
including transition structures. A modified version of the G2 method, denoted 
G2Q, involving geometry optimization and frequency calculation at the QCISD/6-
311G(d,p) level, has been advocated by Durant and Rohlfing for use with transition
structures.59

The G3 and CBS-APNO methods are capable of calculating average atomization
energies to within 2–4kJ/mol, but the maximum error for the reference data set is often
significantly larger. Since it is difficult to know in advance whether the particular
system of interest behaves as the average or the exceptional case, the predicted value
must realistically be assumed to have an uncertainty of perhaps 10–20kJ/mol. Part of
the reason for the relatively large spread in the errors is the assumption of additivity
in basis sets effect, which has little theoretical foundation, although the empirical cor-
rections at least partly absorb some of these errors.

If higher accuracy is desired, for example “sub-chemical” (~0.5kJ/mol) or “spectro-
scopic accuracy” (~1cm−1, ~0.01kJ/mol), a number of other factors must also be 
considered:

(1) Correlation of the core and core–valence electrons. This becomes progressively
more important as heavier elements are considered.
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(2) Inclusion of high-order correlation effects, such as connected triple, quadruple and
quintuple excitations.

(3) Relativistic effects, such as mass–velocity, Darwin and spin–orbit coupling pertur-
bative corrections, or more sophisticated relativistic treatments. Obviously, these
corrections become important even at the chemical accuracy level if elements from
the lower part of the periodic table are considered.

(4) Non-Born–Oppenheimer corrections. These will be most important for systems
containing hydrogen.

(5) Basis set superposition corrections.
(6) Anharmonic vibrations.
(7) Vibrational–rotational coupling.

At present, there is no standard procedure for achieving “spectroscopic accuracy”, but
Martin and coworkers have developed W1, W260 and W3 methods61 aimed at a target
accuracy of ~1kJ/mol on the average for atomization energies, with worst-case systems
having errors below ~5kJ/mol. The Wn methods all rely on an explicit extrapolation
to the infinite basis set limit for the HF and correlation energies, and addition of rel-
ativistic effects. The W3 method is the most sophisticated of these, and consists of the
following steps:

(1) The geometry is optimized at the CCSD(T)/cc-pVQZ level.
(2) Anharmonic frequencies are calculated at the CCSD(T)/cc-pVQZ level.
(3) The HF limit is estimated by extrapolating the results from the aug-cc-pVQZ and

aug-cc-pV5Z basis sets.
(4) The valence correlation energy is estimated from two-point extrapolation for

CCSD, CCSD(T) and CCSDT calculations. The effects of higher order correlation
effects are estimated from CCSDTQ/cc-pVDZ results scaled by an empirical
factor of 1.25.

(5) Relativistic corrections are estimated by comparing the results from a
Douglas–Kroll CCSD(T)/aug-pRVQZ (relativistic version of the aug-cc-pVQZ
basis) calculation with non-relativistic CCSD(T)/aug-pVQZ results.

The W3 method provides a mean absolute error of 0.8kJ/mol for 30 molecules, with
the worst case having an error of ~2kJ/mol, and these values can be compared 
with the average experimental error of 0.6kJ/mol for the same set of data.61 It can 
be noted that the experimental data were carefully selected to have small experimen-
tal uncertainties, a more typical experimental error is 5–10kJ/mol. Such explicit 
extrapolation procedures are thus capable of yielding results with accuracies 
comparable to experimental methods, and may soon surpass experiments as the pre-
ferred method for obtaining geometry and stability data for small- and medium-sized
systems.

There are a few other correction procedures that may be considered as extrapola-
tion schemes.The Scaled External Correlation (SEC) and Scaled All Correlation (SAC)
methods scale the correlation energy by a factor such that calculated dissociation
energy agrees with the experimental value.62
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The SEC acronym refers to the case where the reference wave function is of the
MCSCF type and the correlation energy is calculated by a MR-CISD procedure.When
the reference is a single determinant (HF), the SAC nomenclature is used. In the latter
case the correlation energy may be calculated for example by MP2, MP4 or CCSD,
producing acronyms such as MP2-SAC, MP4-SAC and CCSD-SAC. In the SEC/SAC
procedure, the scale factor F is assumed to be constant over the whole surface. If more
than one dissociation channel is important, a suitable average F may be used.

The Parameterized Configuration Interaction (PCI-X) method63 simply takes the cor-
relation energy and scales it by a constant factor X (typical value ~1.2), i.e. it is assumed
that the given combination of method and basis set recovers a constant fraction of the
correlation energy.

The introduction of various empirical corrections, such as scale factors for frequen-
cies and energy corrections based on the number of electrons and degree of spin con-
tamination, blurs the distinction between whether they should be considered ab initio,
or as belonging to the semi-empirical class of methods such as AM1 and PM3. Never-
theless, the accuracy that these methods are capable of delivering makes it possible to
calculate absolute stabilities (heat of formation) for small- and medium-sized systems
that rival (or surpass) experimental data, often at a substantially lower cost than that
for actually performing the experiments.

5.8 Isogyric and Isodesmic Reactions
The most difficult part in calculating absolute stabilities (heat of formation) is the cor-
relation energy. For calculating energies relative to isolated atoms, the goal of the
Gn/CBS models, essentially all the correlation energy of the bond being broken must
be recovered. This in turn necessitates large basis sets and sophisticated correlation
methods. This is also the reason why ab initio energies are not converted into heat of
formation, as is normally done for semi-empirical methods (eq. (3.97)), since the result-
ing values are poor unless a very high level of theory is employed.

In many cases, however, it is possible to choose less demanding reference systems
than the isolated atoms. Consider for example calculating the C—H dissociation
energy of CH4. In a direct calculation this is given as the difference in total energy of
CH4 and CH3 + H.

E E
E E

F

F
D D
D D

SEC SAC ref
corr ref

e e

e e

corr ref
exp ref

= + −

= ( ) − ( )
( ) − ( )
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CH4                          CH3 + H

Figure 5.4 Dissociation of CH4

In order to calculate an accurate value for this energy difference, essentially all the
electron correlation (and HF) energy for the C—H bond must be recovered.

Consider now the reaction in Figure 5.5.



The difference between the two reactions in Figures 5.4 and 5.5 is that the latter has
the same number of electron pairs on both sides, and such reactions are called isogyric.
The task of calculating all the correlation energy of a C—H bond is replaced by cal-
culating the difference in correlation energy between a C—H and an H—H bond. The
latter will benefit from cancellation of errors, and therefore stabilize much earlier in
terms of theoretical level. Isogyric reactions can thus be used for obtaining relative
values. In the above example the CH4 dissociation energy is given relative to that of
H2. By using the experimental value for H2, the CH4 dissociation energy may be cal-
culated quite accurately even at relatively low levels of theory.

The concept may be taken one step further. It is often possible to set up reactions
where not only the number of electron pairs is constant, but also the formal type of
bonds is the same on both sides. Consider for example calculating the stability of
propene by the reaction in Figure 5.6.
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H2C    CH    CH3 + CH4 H2C    CH2 + H3C    CH3

Figure 5.6 An example of an isodesmic reaction

CH4 + H                         CH3 + H2

Figure 5.5 An example of an isogyric reaction

In this case the number of C=C, C—C and C—H bonds is the same on both sides,
and the “reaction” energy is therefore relatively easy to calculate since the electron
correlation is to a large extent the same on both sides. Such reactions that conserve
both the number and types of bonds are called isodesmic reactions. Combining the cal-
culated energy difference for the left- and right-hand sides with experimental values
for H2C=CH2, H3C—CH3 and CH4, the (absolute) stability of propene can be
obtained reasonably accurate at a quite low level of theory. It does, however, require
that the experimental values for the chosen reference compounds be available. Fur-
thermore, there are several possible ways of constructing isodesmic or isogyric reac-
tions (e.g. replacing H with Cl in Figure 5.5), i.e. such methods are not unique.

5.9 Effective Core Potentials
Systems involving elements from the lower part of the periodic table have a large
number of core electrons. These are, as already mentioned, unimportant in a chemical
sense, but it is necessary to use a large number of basis functions to expand the cor-
responding orbitals, otherwise the valence orbitals will not be properly described (due
to a poor description of the electron–electron repulsion). In the lower half of the peri-
odic table relativistic effects further complicate matters (see Chapter 8). These two
problems may be “solved” simultaneous by modelling the core electrons by a suitable
function, and treating only the valence electrons explicitly.

The function modelling the core electrons is usually called an Effective Core Poten-
tial (ECP) in the chemical community,64 while the physics community uses the term
Pseudopotential (PP).44 The neglect of an explicit treatment of the core electrons, anal-
ogous to the semi-empirical methods in Section 3.10, often gives quite good results at
a fraction of the cost of a calculation involving all electrons, and part of the relativis-



tic effects (especially the scalar effects) may also be taken care of, without having to
perform the full relativistic calculation.

There are four major steps in designing a pseudopotential:

(1) Generate a good-quality all-electron wave function for the atom. This will typi-
cally be from a numerical Hartree–Fock, a relativistic Dirac–Hartree–Fock or a
density functional calculation.

(2) Replace the valence orbitals by a set of nodeless pseudo-orbitals. The regular
valence orbitals will have radial nodes in order to make them orthogonal to the
core orbitals, and the pseudo-orbitals are designed such that they behave correctly
in the outer part, but without the nodal structure in the core region.

(3) Replace the core electrons by a potential parameterized by expansion into a suit-
able set of analytical functions of the nuclear–electron distance, for example a
polynomial or a set of spherical Bessel or Gaussian functions. Since relativistic
effects are mainly important for the core electrons, this potential can effectively
include relativity. The potential may be different for each angular momentum.

(4) Fit the parameters of the potential such that the solutions of the Schrödinger (or
Dirac) equation produce pseudo-orbitals matching the all-electron valence
orbitals.

Molecular systems have traditionally been described by Gaussian type basis sets, while
plane waves have been favoured for extended (periodic) systems, and this difference
has resulted in some differences for the corresponding pseudopotentials. When using
Gaussian functions for describing the valence orbitals, it is natural to also use Gauss-
ian functions to describe the ECP. Since Gaussian functions are continuous, there is no
fixed distance to characterize the extent of the core potential and the quality of the
ECP is determined by the number of electrons chosen to be represented by the ECP.
For transition metals, it is clear that the outer (n + 1)s-, (n + 1)p- and (n)d-orbitals con-
stitute the valence space. While such “full-core” potentials give reasonable geometries,
it has been found that the energetics are not always satisfactory. Better results can be
obtained by also including the orbitals in the next lower shell in the valence space,
albeit at an increase in the computational cost. For silver with an atomic number of
47, for example, one may consider two different choices of core size, where the elec-
trons replaced by an ECP are indicated in italic and the remaining electrons in bold:

• “Large-core” ECP: 11 electrons considered explicitly:
(1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (4s)2 (3d)10 (4p)6 (4d)10 (5s)1

• “Small-core” ECP: 19 electrons considered explicitly:
(1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (4s)2 (3d)10 (4p)6 (4d)10 (5s)1

• All-electron ECP: 47 electrons considered explicitly:
(1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (4s)2 (3d)10 (4p)6 (4d)10 (5s)1

The shape of the resulting 5s-(pseudo)-orbital for these choices is shown in 
Figure 5.7.

The gain by using ECPs is largest for atoms in the lower part of the periodic table,
especially those where relativistic effects are important. Since fully relativistic results
are scarce, the performance of ECPs is somewhat difficult to evaluate by comparing
with other calculations,65 but they often reproduce known experimental results,
thereby justifying the approach. ECPs have also been designed for first row elements
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(Li—Ne),66 although the savings in these cases are marginal relative to all electron cal-
culations.

The size of a plane wave basis set is given by the highest energy wave, which is
inversely related to the smallest variation of the wave function that can be described.
The singularity of the nuclear potential (Vne) and the resulting strongly localized core
electrons are essentially impossible to describe by any reasonable-sized plane wave
basis set. Pseudopotentials are therefore used for smearing the nuclear charge and
modelling the core electrons. These potentials are typically characterized by a “core
radius” rc (which may depend on the angular momentum of the valence orbitals), i.e.
the pseudopotentials used in connection with plane waves have a finite physical extent.
The potential for distances smaller than rc is described by a suitable analytical func-
tion, typically a polynomial or spherical Bessel function, and the pseudo-wave func-
tion and its first and second derivatives are required to match those of the reference
wave function at rc. It is clear that a “hard” (small rc) pseudopotential will require more
plane wave basis functions for describing the region beyond rc than a “soft” (large rc)
pseudopotential, but a too large rc will deteriorate the quality of the calculated results
and also make the pseudopotential less transferable.

The norm-conserving pseudopotentials proposed by Hamann, Schlüter and Chiang
require in addition to the above matching conditions at rc that the integral of the square
of the reference and pseudo-wave from 0 to rc agrees, i.e. conservation of the wave
function norm.67 For the late first row elements (C—F) and the 3d transition-metals
(Sc—Zn), these pseudopotentials are rather “hard” and therefore require a relatively
large energy cutoff for the plane waves. Vanderbilt proposed to relax the norm-
conserving requirement to give the so-called ultrasoft pseudopotentials,68 thereby
reducing the necessary number of plane wave for expanding the valence orbitals by
roughly a factor of 2.
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While there is essentially no basis set error when using plane waves for expanding
the orbitals, the requirement of using a pseudopotential to describe the core region
means that there is a fundamental limitation in how accurate the results can be. For
systems composed of elements from the first two rows in the periodic table, the error
in DFT calculations is roughly equivalent to that imposed by using a Gaussian basis
set of TZP quality in an all-electron calculation.69 An implicit limitation of pseudopo-
tential methods is of course the inability to describe molecular properties that depend
directly on the core electrons (as in X-ray photoelectron spectroscopy) or the electron
density near the nucleus (as in NMR shielding and coupling constants).

The Projector Augmented Wave (PAW) method is usually also considered a
pseudopotential method, although it formally retains all the core electrons.70 Indeed,
the Vanderbilt ultrasoft pseudopotential can be derived by linearization of two terms
in the PAW expression. The PAW wave function is written as a valence term expanded
in a plane wave basis plus a contribution from the region within the core radius of each
nucleus, evaluated on a grid. The contribution from a core region is expanded as a 
difference between two sets of densities, one arising from the (all-electron) atomic
orbitals, the other from a set of nodeless pseudo-atomic orbitals, i.e. this term allow
the wave function within the core region to adjust for different environments. In all
the applications so far, however, the (all-electron) atomic orbitals have been kept fixed
at their form for the isolated atoms, i.e. a “frozen-core” approach. If the atomic orbitals
were fully optimized, the PAW would be essentially equivalent to the all-electron
mixed basis sets methods discussed in Section 5.6.40 While the PAW method in princi-
ple should be better than using pseudopotential method, very few explicit comparisons
have so far been performed.

A closely related idea arising from the chemical community is the use of the frozen-
core approximation.71 The core electrons are here included in the treatment, but the
corresponding orbitals are fixed at their atomic values and represented by a fixed
expansion in a suitable basis set. This preserves the full electron–electron interaction
but ignores the change in the core orbitals due to the molecular environment. For first
row systems the savings are marginal but for heavier elements the computational cost
may be significantly reduced. The frozen-core approximation may furthermore be
useful for calculations using relativistic wave functions, as it effectively prevents a vari-
ational collapse.

A common feature of all pseudopotential methods is that the parameters depend
on the employed method, i.e. the potential derived for e.g. the Local Spin Density
Approximation (LSDA) functional (Section 6.5.1) is different from that derived from
a generalized gradient functional such as Perdew–Burke–Ernzerhof (PBE) (Section
6.5.2). In practice, the difference is relatively small and pseudopotentials optimized for
one functional are often used for other functionals without re-optimization.

5.10 Basis Set Superposition Errors
By far the most common type of basis set for molecular applications is centred on the
nuclei.As a complete basis set cannot be used in practice, the M 4

basis (or worse) increase
in computational effort limits practical calculations to hundreds or a few thousand
basis functions at best. For most systems this means that absolute errors in the energy
from basis set incompleteness are quite large, maybe several au (thousands of kJ/mol).
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The interest is usually in relative energies, however, and the primary goal is therefore
to make the error as constant as possible. This is one of the reasons why it is impor-
tant to choose a “balanced” basis set. The first, perhaps obvious, step is that the same
basis set must be used when comparing energies: comparing energies of two isomers
where the 6-31G basis set has been used for one of them, and the DH basis set for the
other, is meaningless, although both basis sets are of double zeta quality.

Fixing the position of the basis functions to the nuclei allows for a compact basis set,
otherwise sets of basis functions positioned at many points in the geometrical space
would be needed. When comparing energies at different geometries, however, the
nuclear fixed basis set introduces an error. The quality of the basis set is not the same
at all geometries, owing to the fact that the electron density around one nucleus may
be described by functions centred at another nucleus. This is especially troublesome
when calculating small effects, such as energies of van der Waals complexes and hydro-
gen bonds. Consider for example the hydrogen bond between two water molecules.
The simplest approach consists of calculating the energy of the dimer and subtracting
two times the energy of an isolated molecule (assuming a size extensive method). The
electron distribution within each water molecule in the dimer is very close to that of
the monomer. In the dimer, however, basis functions from one molecule can help com-
pensate for the basis set incompleteness on the other molecule, and vice versa. The
dimer will therefore be artificially lowered in energy, and the strength of the hydrogen
bond overestimated. This effect is known as the Basis Set Superposition Error (BSSE).
In the limit of a complete basis set, the BSSE will be zero, and adding more basis func-
tions will not give any improvement. The conceptually simplest approach for elimi-
nating BSSE is therefore to add more and more basis functions, until the interaction
energy no longer changes. Unfortunately, this requires very large basis sets. Since non-
bonded interactions are weak, the desired accuracy is often ~0.5kJ/mol. Using the cor-
relation consistent basis sets, the water dimer interaction energy stabilizes at this level
with the aug-cc-pVTZ basis (184 basis functions for H2O) at the HF level, but requires
(at least) the aug-cc-pV5Z basis (574 basis functions) at the MP2 level.72 As inclusion
of electron correlation is mandatory for calculating the dispersion interaction between
molecules, even the water dimer potential is computationally challenging.

An approximate way of assessing BSSE is the Counterpoise (CP) correction.73 In this
method the BSSE is estimated as the difference between monomer energies with the
regular basis and the energies calculated with the full set of basis functions for the
whole complex. Consider two molecules A and B, each having regular nuclear-centred
basis sets denoted with subscripts a and b, and the complex AB having the combined
basis set ab. The geometries of the two isolated molecules and of the complex are first
optimized or otherwise assigned. The geometries of the A and B molecules in the
complex will usually be slightly different than for the isolated species, and the complex
geometry will be denoted with a*. The dimer energy minus the monomer energies is
the directly calculated complexation energy.

(5.16)

To estimate how much of this complexation energy is due to BSSE, four additional
energy calculations are needed. Using the a basis set for A, and the b basis set for B,
the energies of each of the two fragments are calculated with the geometry they have

∆E E E Ecomplexation ab a bAB * A B= ( ) − ( ) − ( )
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in the complex. Two additional energy calculations of the fragments at the complex
geometry are then carried out with the full ab basis set. This means that the energy of
A is calculated in the presence of both the normal a basis functions and with the b
basis functions of fragment B located at the corresponding nuclear positions, but
without the B nuclei present, and vice versa. Such basis functions located at fixed points
in space are often referred to as ghost orbitals. The fragment energy for A will be
lowered due to these ghost functions, since the a basis becomes more complete. The
CP correction is defined in eq. (5.17).

(5.17)

The counterpoise-corrected complexation energy is then given as DEcomplexation − DECP.
For regular basis sets, this typically stabilizes at the basis set limiting value much earlier
than uncorrected values, but this is not necessarily the case if diffuse functions are
included in the basis set. Note that ∆ECP is an approximate correction: it gives an esti-
mate of the BSSE effect but does not provide either an upper or lower limit.

There are variations of this method. For example may it be argued that the full set
of ghost orbitals should not be used, since some of the functions in the complex are
used for describing the electrons of the other component, and only the virtual orbitals
are available for “artificial” stabilization. However, it appears that the method of full
counterpoise correction (using all basis functions as ghost orbitals) gives the best
results.

It is usually observed that the CP correction for methods including electron corre-
lation is larger and more sensitive to the size of the basis set than at the HF (or DFT)
level.This is in line with the fact that the HF wave function converges much faster with
respect to the size of the basis set than correlated wave functions.

There have also been attempts at developing methods where the BSSE is excluded
explicitly in the computational expressions. An example of this is the Chemical Hamil-
tonian Approach (CHA),74 but such methods are not yet commonly used.

The BSSE is always present, also in calculating energies of “normal” species, for
example the differential stability of ethanol and dimethyl ether, or the conformational
difference between staggered and eclipsed ethane.75 Indeed, part of what is often
referred to as the “basis set effect” (the change in relative energies when the basis is
enlarged) should more correctly be considered as intramolecular BSSE. For intermol-
ecular (non-bonded) interactions the CP correction is well defined, although it may
not be as accurate as desired. For intramolecular cases, however, it is difficult to define
a unique procedure for estimating the BSSE, and it is almost always ignored.

5.11 Pseudospectral Methods
The goal of pseudospectral methods76 is to reduce the formal M4 dependence of the
Coulomb and exchange operators in the basis set representation (two-electron inte-
grals, eq. (3.52)) to M3. This can be accomplished by switching between a grid repre-
sentation in the physical space (the three-dimensional Cartesian space) and the spectral
representation in the function space (the basis set).

Consider the following Coulomb contribution to the Fab element of the Fock matrix
(eq. (3.52)); similar considerations hold for the exchange contribution.

∆E E E E ECP ab ab a bA * B * A * B *= ( ) + ( ) − ( ) − ( )
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(5.18)

Written out in terms of the actual integral, this is given by eq. (5.19).

(5.19)

For a specific point in space for coordinate 1, rg, the integration over coordinate 2 may
be carried out as shown in eq. (5.20).

(5.20)

The last integral may be written in terms of atomic quantities, as in eq. (5.21).

(5.21)

The Agd integral is just a three-centre one-electron integral, which can be evaluated
analytically. The integration over coordinate 1 may then be approximated as a sum
over a finite set of grid points in the physical space.

(5.22)

As the number of grid points increases, this approximation becomes better. The reduc-
tion in the formal scaling from M4 to ~M3 comes from the fact that the summations
involve GM2 operations, G being the number of grid points, which will typically be lin-
early dependent on the number of basis functions M, i.e. GM2 ~ M3.

Unfortunately, the above formula does not work well unless a very large number of
grid points are used.This is due to an effect known as aliasing, where the physical space
Coulomb operator J(rg) acting on the basis function cb produces a result that has com-
ponents outside the basis set. In practice the J(rg)cb product is therefore fitted to a
larger dealiasing basis set, typically constructed from the original basis set by adding
functions with exponents intermediate to those already present, and polarization func-
tions with one higher angular momentum than already present.

(5.23)

The full set of dealiasing basis is denoted c*s, and contains M* functions. The weights
W*ab are assigned based on a least squares fitting procedure. A similar scheme may be
constructed for the exchange operator K. By careful control of the grid size and the
dealiasing basis, and by analytical evaluation of the one-centre (and sometimes also
the two-centre) Coulomb and exchange contributions, which are computationally
insignificant compared with the three- and four-centre integrals, pseudospectral
methods can provide energies at the same accuracy as fully analytical methods.
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While the formal scaling of pseudospectral methods is M3, compared with M4 for all-
integral methods, the effective scaling has been found to be very similar for the two
approaches in actual calculations where integral screening is employed to eliminate
small contributions to the Fock matrix.77 The prefactor for pseudospectral methods,
however, is somewhat smaller and leads to an order of magnitude faster computational
time for medium-sized systems. It is unclear how the timing of pseudospectral methods
compares with linear scaling methods discussed in Section 3.8.6 for large systems.
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6 Density Functional
Methods

The basis for Density Functional Theory (DFT) is the proof by Hohenberg and Kohn1

that the ground state electronic energy is determined completely by the electron
density r (see Appendix B for details). In other words, there exists a one-to-one cor-
respondence between the electron density of a system and the energy. The “intuitive”
proof of why the density completely defines the system is due to E. B. Wilson,2 who
argued that:

• The integral of the density defines the number of electrons.
• The cusps in the density define the position of the nuclei.
• The heights of the cusps define the corresponding nuclear charges.

The significance of the Hohenberg–Kohn theorem is perhaps best illustrated by com-
paring it with the wave function approach. A wave function for an N electron system
contains 4N variables, three spatial and one spin coordinate for each electron.The elec-
tron density is the square of the wave function, integrated over N − 1 electron coor-
dinates, and each spin density only depends on three spatial coordinates, independent
of the number of electrons. While the complexity of a wave function increases expo-
nentially with the number of electrons, the electron density has the same number of
variables, independent of the system size. The “only” problem is that although it has
been proven that each different density yields a different ground state energy, the func-
tional connecting these two quantities is not known. The goal of DFT methods is to
design functionals connecting the electron density with the energy.3,4

A note on semantics: a function is a prescription for producing a number from a set
of variables (coordinates). A functional is a prescription for producing a number from
a function, which in turn depends on variables. A wave function and the electron
density are thus functions, while the energy depending on a wave function or an elec-
tron density is a functional. We will denote a function depending on a set of variables
with parenthesis, f(x), while a functional depending on a function is denoted with
brackets, F[f].

Introduction to Computational Chemistry, Second Edition. Frank Jensen.
© 2007 John Wiley & Sons, Ltd



Early attempts at designing DFT models (actually predating wave mechanics) tried
to express all the energy components as a functional of the electron density but these
methods had poor performance, and wave function-based methods were consequently
preferred. The success of modern DFT methods is based on the suggestion by Kohn
and Sham in 1965 that the electron kinetic energy should be calculated from an aux-
iliary set of orbitals used for representing the electron density.5 The exchange–corre-
lation energy, which is a rather small fraction of the total energy, is then the only
unknown functional, and even relatively crude approximations for this term provide
quite accurate computational models. The simplest model is the local density approx-
imation, where the electron density is assumed to be slowly varying, such that the
exchange–correlation energy can be calculated using formulas derived for a uniform
electron density.A significant improvement in the accuracy can be obtained by making
the exchange–correlation functional dependent also on the first derivative of the
density, and further refinements also add the second derivative and mix Hartree–Fock
exchange into the functional. Density functional theory is conceptually and computa-
tionally very similar to Hartree–Fock theory, but provides much better results and has
consequently become a very popular method. The main problem in DFT is the inabil-
ity to systematically improve the results, and the known failure to describe certain
important features, such as van der Waals interactions.

6.1 Orbital-Free Density Functional Theory
Compared with the wave mechanics approach, it seems clear that the energy functional
may be divided into three parts, kinetic energy, T[r], attraction between the nuclei and
electrons, Ene[r], and electron–electron repulsion, Eee[r] (the nuclear–nuclear repul-
sion is a constant within the Born–Oppenheimer approximation). Furthermore, with
reference to Hartree–Fock theory (eq. (3.32)), the Eee[r] term may be divided into
Coulomb and exchange parts, J[r] and K[r], implicitly including correlation energy in
all the terms. The Ene[r] and J[r] functionals are given by their classical expressions,
where the factor of 1/2 in J[r] allows the integration to be over all space for both 
variables.

(6.1)

Early attempts of deducing functionals for the kinetic and exchange energies 
considered a uniform electron gas, where it may be shown that T[r] and K[r] are given
by eq. (6.2).
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The energy functional ETF[r] = TTF[r] + Ene[r] + J[r] is known as Thomas–Fermi (TF)
theory, while inclusion of the KD[r] exchange part (first derived by Bloch,6 but com-
monly associated with the name of Dirac7) constitutes the Thomas–Fermi–Dirac
(TFD) model.

The assumption of a uniform electron gas is fair for the valence electrons in certain
metallic (periodic) systems, but is poor for atoms and molecules. A serious flaw from
a chemical point of view is it that neither TF nor TFD theories predict bonding: mol-
ecules simply do not exist.

The kinetic and exchange functionals can be improved by the addition of terms
depending on the derivative(s) of the electron density. This is equivalent to consider-
ing a non-uniform electron gas and performing a Taylor-like expansion with the density
as a variable.8,9 The expansion for the kinetic energy is given in eq. (6.3), where odd
terms vanish owing to the rotational invariance of the energy with respect to r.

(6.3)

The T2 correction contains the von Weizsacker kinetic energy, tW, where l has a value
of 1/9. Various empirical values for l have been used in cases where the expansion is
terminated after the T2 term, motivated by the fact that the von Weizsacker expres-
sion is equivalent to the Hartree–Fock kinetic energy for one- and two-electron
systems. The kinetic energy at the Thomas–Fermi level is typically underestimated by
~10%, which is reduced to ~1% by addition of the T2 term, while inclusion of the T4

correction leads to an overestimation of slightly larger magnitude. In terms of absolute
energies, this is comparable to the HF method, but energy differences (e.g. atomiza-
tion energies) are calculated with much lower accuracy than with the HF model. Unfor-
tunately, the sixth- and higher order T terms diverge in regions far from the nuclei,
preventing further improvements.

The second-order exchange term K2 is given in eq. (6.4) and the K4 term has an
expression similar to T4, except that not all the expansion coefficients are known.10

(6.4)

Addition of gradient correction terms improves the Thomas–Fermi results, for example
bonding is then allowed, but the lack of sufficient error cancellation and the divergence
of higher order corrections means that this is not a viable approach for constructing
DFT models capable of yielding results comparable with those obtained by wave
mechanics methods.

Although there have been some recent attempts at constructing such orbital-free (as
opposed to the Kohn–Sham version discussed in the next section) T and K function-
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als depending directly on the electron density, the accuracy is still too low to be of
general use.11 If such functionals could be derived, however, the full potential of DFT
in having only three variables independent of system size could be fully realized.

6.2 Kohn–Sham Theory
The foundation for the use of DFT methods in computational chemistry is the intro-
duction of orbitals, as suggested by Kohn and Sham (KS).5 The main flaw in orbital-
free models is the poor representation of the kinetic energy, and the idea in the KS
formalism is to split the kinetic energy functional into two parts, one which can be cal-
culated exactly, and a small correction term. The price to be paid is that orbitals are
re-introduced, thereby increasing the complexity from 3 to 3N variables, and that elec-
tron correlation re-emerges as a separate term. The KS model is closely related to the
HF method, sharing identical formulas for the kinetic, electron–nuclear and Coulomb
electron–electron energies.

The division of the electron kinetic energy into two parts, with the major contribu-
tion being equivalent to the HF kinetic energy, can be justified as follows. Assume for
the moment a Hamiltonian operator of the form in eq. (6.5) with 0 ≤ l ≤ 1.

(6.5)

The external potential operator Vext is equal to Vne for l = 1, but for intermediate l
values it is assumed that Vext(l) is adjusted such that the same density is obtained for
l = 1 (the real system), for l = 0 (a hypothetical system with non-interacting electrons)
and for all intermediates l values. For the l = 0 case, the electrons are non-
interacting, and the exact solution to the Schrödinger equation is given as a Slater
determinant composed of (molecular) orbitals, fi, and the exact kinetic energy 
functional is given in eq. (6.6).

(6.6)

The subscript S denotes that it is the kinetic energy calculated from a Slater determi-
nant. The l = 1 case corresponds to interacting electrons, and eq. (6.6) is therefore only
an approximation to the real kinetic energy, but a substantial improvement over the
TF formula (eq. (6.2)).

Another way of justifying the use of eq. (6.6) for calculating the kinetic energy is by
reference to natural orbitals (eigenvectors of the density matrix, Section 9.5).The exact
kinetic energy can be calculated from the natural orbitals (NO) arising from the exact
density matrix.

(6.7)
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The orbital occupation numbers ni (eigenvalues of the density matrix) will be between
0 and 1, corresponding to the number of electrons in the (spin) orbital. Representing
the exact density will require an infinite number of natural orbitals, with the Nelec first
having occupation numbers close to 1, and the remaining close to 0. Since the exact
density matrix is not known, an (approximate) density can be written in terms of a set
of auxiliary one-electron functions, i.e. orbitals.

(6.8)

This corresponds to eq. (6.7) with occupation numbers of exactly 1 or 0. The “missing”
kinetic energy from eq. (6.6) is thus due to the occupation numbers deviating from
being exactly 1 or 0. Since the occupation numbers of an HF (single-determinant) wave
function are also exactly 1 or 0, the missing kinetic energy can also be considered as
the (kinetic) correlation energy.

The key to Kohn–Sham theory is to calculate the kinetic energy under the assump-
tion of non-interacting electrons (in the same sense that HF orbitals in wave mechan-
ics describe non-interacting electrons) from eq. (6.6). In reality, the electrons are
interacting, and eq. (6.6) does not provide the total kinetic energy. However, just as
HF theory provides ~99% of the correct answer, the difference between the exact
kinetic energy and that calculated by assuming non-interacting orbitals is small. The
remaining kinetic energy is absorbed into an exchange–correlation term, and a general
DFT energy expression can be written as in eq. (6.9)

(6.9)

By equating EDFT to the exact energy, this expression defines Exc, i.e. it is the part that
remains after subtraction of the non-interacting kinetic energy, and the Ene and J poten-
tial energy terms.

(6.10)

The first parenthesis in eq. (6.10) may be considered as the kinetic correlation energy,
while the last contains both potential correlation and exchange energy.

The task in developing orbital-free models is to derive approximations to the kinetic,
exchange and correlation energy functionals, while the corresponding task in
Kohn–Sham theory is to derive approximations to the exchange–correlation energy
functional only. For the neon atom, for example, the kinetic energy is 128.9au, the
exchange energy is −12.1au, and the correlation energy is −0.4au (as calculated by
wave mechanics methods). Since the exchange–correlation energy is roughly a factor
of 10 smaller than the kinetic energy, Kohn–Sham theory is much less sensitive to inac-
curacies in the functional(s) than orbital-free theory. While orbital-free theory is a true
density functional theory (three variables), Kohn–Sham methods are independent-
particle models (3N variables), analogous to Hartree–Fock theory, but are still much
less complicated than many-particle (correlation) wave function models.

6.3 Reduced Density Matrix Methods
Before embarking on a more detailed analysis of how to design exchange–correlation
energy functionals in Kohn–Sham theory, it may be instructive to take a slight detour
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and consider methods using reduced density matrices, rather than the electron density
itself. We will start by defining the first- and second-order reduced density matrices 
g1 and g2.

(6.11)

We will ignore electron spin, except when required. The corresponding reduced spin
density matrices are defined completely analogously to eq. (6.11), if the r variables are
taken to represent both spatial and spin coordinates.

The diagonal components of the first-order density matrix (setting r′1 = r1) gives the
electron density function r1, often written without the subscript 1 when higher order
densities are not involved.

(6.12)

The integral is the probability of finding an electron (it does not matter which, since
they are indistinguishable) at position r1, and the Nelec prefactor ensures that the density
integrates to the number of electrons.

The corresponding second-order density matrix yields the electron pair-density upon
setting r′1 = r1 and r′2 = r2.

(6.13)

The integral is the probability of finding an electron at position r1 and another elec-
tron at position r2, and the Nelec(Nelec − 1) prefactor ensures that r2 integrates to the
number of electron pairs (note that the number of unique electron pairs is only
1/2Nelec(Nelec − 1)).

The exact kinetic and potential energies are given by the (exact) first- and second-
order density matrices, with an implicit summation over electron spin.

(6.14)

Note that the potential energy terms in eq. (6.14) can be written in terms of r1 and r2;
only the kinetic energy requires g1.

For the special case of a single-determinant wave function, the first- and second-
order reduced density matrices are given by eq. (6.15).
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(6.15)

Using eq. (6.15) in eq. (6.14) is readily seen to provide the Hartree–Fock energy expres-
sion, eq. (3.31).

Since g1 can be obtained by straightforward integration of g2, an appealing idea is to
use the elements of g2 as variables for solving the Schrödinger equation or its equiva-
lent density formulation by a variational procedure. Unfortunately, the g2 elements
cannot be varied freely, since they must correspond to an antisymmetric wave func-
tion.12 Although a formal solution of this N-representability problem exists,13 it does
not lend itself to an efficient computational implementation. Recent work by D.
Mazziotti, however, has shown that good approximations to the N-representability can
be obtained by enforcing positive semi-definiteness (non-negative eigenvalues) of
three matrices during the optimization of g2.14 These three matrices are the two-parti-
cle density matrix g2 itself and the corresponding representations in terms of hole–hole
and particle–hole creations, commonly denoted D, Q and G. The semi-definite condi-
tion arises since these matrices describe probabilities. Performing such constrained
optimizations is a non-trivial computational task, but recently a method has been pro-
posed that (only) scales as M 6

basis, making such calculation tractable for general
systems.15 The accuracy of the results can be improved by imposing semipositivity of
higher order density matrices, albeit at a significantly higher computational cost. It is
at present unclear exactly what the limitations of these methods are in terms of accu-
racy and computational costs.

The electron density matrix r1 can be diagonalized to produce eigenvalues and
eigenvectors, called occupation numbers ni and natural orbitals f i

NO. The g1 can be
written in term of these quantities (compare with eq. (6.15), but note that the sum-
mation now includes all orbitals, since ni ≠ 0 in general).

(6.16)

As an alternative to using g2 as the fundamental variable, the first-order reduced
density matrix, or its parameterization in terms of natural orbitals and occupation
numbers, can be used. The N-representability problem for g1 is easy to fulfil, since the
only requirements are that the eigenvalues are between 0 and 1, and that they sum to
Nelec. The task in this case is to derive a suitable approximation for the Vee energy term
in terms of g1, rather than r2.16 The Coulomb and exchange parts of Vee are given by
the analogous formula (eqs (6.14) and (6.15)) using natural orbitals and occupation
numbers, leaving the correlation energy as the only unknown function of g1. The cor-
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relation part can be incorporated by multiplying the orbital products with functions of
the occupation numbers as shown in eq. (6.17).

(6.17)

The choice of f(ni,nj) = g(ni,nj) = ninj implies the Hartree–Fock model, and optimiza-
tion of the occupation numbers and natural orbitals with this choice indeed returns
the HF wave function, i.e. the HF wave function cannot be improved by allowing frac-
tional occupation numbers. The f(ni,nj) function is usually set equal to ninj, since this is
just the Coulomb interaction, and the exchange–correlation part is modelled by
g(ni,nj).17 Modelling the exchange–correlation energy by a g(ni,nj) function is still in its
infancy.

The Hohenberg–Kohn theorem, which states that the energy is uniquely determined
by the one-electron density r1, forms the basis for what is commonly called density
functional theory. As discussed in Section 6.1, it is difficult to construct a sufficiently
accurate total energy functional depending only on r1. The Kohn–Sham version,
where only the exchange–correlation part of the energy must be estimated as a 
functional of r1, provides viable models, and these will be discussed in more detail in
Section 6.5.

Perhaps the most surprising result of the Hohenberg–Kohn theorem is that the cor-
relation energy is completely determined by the one-electron density function r1. Elec-
tron correlation is inherently a two-electron phenomenon, and it is difficult to envision
how an accurate correlation functional depending on only the one-electron density
should be constructed from theoretical arguments, although one certainly can under-
stand that the correlation will affect the electron density. Indeed, the interpretation of
electron correlation in terms of correlation holes, as discussed in the next section,
requires the two-electron density r2. P. M. W. Gill has suggested that one could con-
sidered a quantity similar to the second-order reduced density matrix, except that the
arguments are the position and momentum of the two electrons.18

(6.18)

The W2 is called the second-order Wigner intracule and represents a quasi-probability
function for finding two electrons at positions r1 and r2 with momentum p1 and p2. It
cannot be interpreted as a genuine probability function, as it can achieve negative
values. Since one would expect the correlation energy to depend on the distance
between the two electrons, the relative momentum between them and the orientation
of the distance and momentum difference vectors, Gill has suggested that the corre-
sponding W intracule depending on the “internal” coordinates may contain informa-
tion sufficient for determining the correlation energy.
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(6.19)

Analogously to density functional methods, the task is to construct a correlation kernel
G that yields the correlation energy upon integration with the W intracule, and use this
in connection with the exchange energy calculated at the Hartree–Fock level. Given
that the intracule is based on physical principles underlying the correlation phenom-
enon, it may be possible to use theoretical arguments for deriving useful approxima-
tions to the correlation kernel. Preliminary results for atoms using simple correlation
kernels are sufficiently accurate that this may represent a viable approach.

The differences between wave mechanics and density-based methods can be sum-
marized as follows:

• Wave mechanics employs the exact Hamiltonian operator, but makes approxima-
tions in the form of the wave function.

• Density functional methods make approximations in the energy functional (Hamil-
tonian), but allow a free variation of the electron density r1. The functional must
therefore implicitly enforce the N-representability. This is difficult to achieve in
orbital-free methods, but the Kohn–Sham approach with a determinantal orbital
product takes care of the majority of this problem. Furthermore, in orbital-free
methods the kinetic energy functional is unknown, and since this is equal in magni-
tude to the total energy, even minor inaccuracies cause large errors. In the
Kohn–Sham version only the exchange–correlation functional is unknown, and since
this is a relatively minor component of the total energy, the results are less sensitive
to inaccuracies in the functional.

• Methods using the first-order reduced density matrix as variable can be chosen to
strictly enforce the N-representability of g1, and employ the exact energy functional
for all the terms except the correlation energy. The latter, however, inherently
depends on g2, which in this approach must be approximated as a function of g1. One
can argue that Hartree–Fock belongs to this class of methods, with implicit neglect
of the electron correlation.

• Methods using the second-order reduced density matrix as variable employ the exact
energy functional in terms of g2, but must make approximations for enforcing the N-
representability of g2.

Solving the Schrödinger equation by means of reduced density matrices has many
appealing features, such as being able to describe the whole potential energy curve
with equal accuracy and to account for a very large fraction of the correlation energy.
The methods using the second-order reduced density matrix look especially interest-
ing, although so far results have only been reported for small systems.

6.4 Exchange and Correlation Holes
We now return to the problem of expressing the exchange–correlation energy as a
functional of r (=r1). Since the exchange energy is by far the largest contributor to Exc
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(cf. the values for the neon atom in Section 6.2), one may reasonably ask why not cal-
culate this term “exactly” from orbitals (analogous to the kinetic energy), by the
formula known from wave mechanics (eq. (3.31)), and only calculate the computa-
tionally difficult part, the correlation energy, by DFT. Although this has been tried, it
gives poor results. The basic problem is that the DFT definitions of exchange and cor-
relation energies are not completely equivalent to their wave mechanics counterparts.19

The DFT exchange energy may be defined by the same formula as in HF theory (eq.
(3.30)), except that Kohn–Sham orbitals are used. This leads to a non-local potential,
i.e. the exchange potential at a given point is strongly dependent on the density at
distant points. The correlation energy in wave mechanics is defined as the difference
between the exact energy and the corresponding Hartree–Fock value. Both the
exchange and correlation energies have a short- and long-range part (in terms of the
distance between two electrons). The long-range correlation is essentially the “static”
correlation energy (i.e. the “multi-reference” part, see Section 4.6) while the short-
range part is the “dynamical” correlation.The long-range part of the correlation energy
in wave mechanics effectively cancels the delocalized part of the exchange energy. The
definitions of exchange and correlation in DFT (at least in current implementations)
are local (short range), since they only depend on the density at a given point and the
immediate vicinity (via derivatives of the density). The cancellation at long range is
(or should be) implicitly built into the exchange–correlation functional. Calculating the
exchange energy by wave mechanics and the correlation by DFT thus destroys the can-
cellation, although recent work has attempted to address this problem by separating
the correlation functional into a long- and short-range part, and use this in connection
with HF exchange.20

A more detailed discussion of these features is most easily given in terms of exchange
and correlation holes. Electrons avoid each other owing to their electric charges, and
the energy associated with this repulsion is given classically by the Coulomb equation
(eq. 6.1). Quantum mechanically, however, this repulsion must be modified to take into
account that electrons have spins of 1/2. The Pauli principle states that two fermions
(particles with half-integer spin) cannot occupy the same spatial position, or equiva-
lently, that the total wave function must be antisymmetric upon interchange of any two
particles. This leads to the exchange energy (see Section 3.3), which can be considered
as a quantum correction to the classical Coulomb repulsion. The exchange term is
already present in Hartree–Fock theory, and must also be incorporated into DFT. In
addition, there is a dynamical effect where electrons tend to avoid each other more
than given by an HF wave function, and this is the correlation energy calculated by
wave mechanics methods.

These qualitative considerations can be put into quantitative terms by probability
holes. If electrons did not have charge or spin, the probability of finding an electron at
a given position would be independent of the position of a second electron, and the
electron pair-density r2 would be given as a simple product of two one-electron den-
sities r1, with a proper normalization factor.

(6.20)

Since electrons have both charge and spin, however, there is a reduced probability of
finding an electron near another electron. We can write this formally in terms of a con-
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ditional probability factor hxc(r1,r2) that includes the 1/Nelec self-interaction factor in 
eq. (6.20).

(6.21)

The reduced probability is called the exchange–correlation hole, and can be written in
terms of r2 and r1 by solving eq. (6.21).

(6.22)

The exchange–correlation hole represents the reduced probability of finding electron
2 at a position r2 given that electron 1 is located at r1. The exchange part of hxc is called
the Fermi hole, while the dynamical correlation gives rise to the Coulomb hole. Since
exchange only occurs between electrons of the same spin, the total hole can also be
written in terms of individual spin contributions.

(6.23)

From the definitions of r2 and r1, it follows that the integral of hxc over r2 equals −1.

(6.24)

A similar argument for the separate spin densities shows that the Fermi hole itself is
negative everywhere and integrates to −1, which means that the integral of the
Coulomb hole is 0. The Fermi (exchange) hole describes a static reduction in the prob-
ability function corresponding to one electron. The Coulomb (correlation) function,
on the other hand, reduces the probability of finding an electron near the reference
electron, but increases the probability of finding it far from the reference electron.

The exchange energy in Hartree–Fock theory is a non-local function, i.e. the HF
exchange hole is delocalized over the whole system (or at least a large part of it). For
a diatomic system, for example, the exchange hole is delocalized over both nuclei.
When electron correlation is added explicitly, the left–right correlation to a large extent
serves to cancel the delocalized nature of the HF exchange hole. The exchange func-
tional in DFT, on the other hand, is local, i.e. the cancellation of the delocalized HF
exchange hole by the left–right correlation in wave function approaches should be
inherent in the functional, and this is the main difference between the definitions of
exchange and correlation in wave function and current density functional descriptions.

A closely related phenomenon is the electron self-interaction energy. The Coulomb
energy functional given in eq. (6.1) only depends on r1. This means that the density
arising from a single electron will interact with itself (e.g. there will be a non-zero 
electron–electron Coulomb repulsion even for a one-electron system), and this 
self-repulsion is clearly non-physical. For a multi-electron system, there will be such a 
self-interaction term for the density associated with each electron, although it is diffi-
cult to define this rigorously. The HF model takes care of this problem elegantly, since
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the expression for the exchange energy exactly cancels the Coulomb self-interaction
(eq. (3.32)).

Within the DFT model, a one-electron system should have an exchange energy
exactly opposing the Coulomb energy, Ex = −J, and the correlation energy should be
zero. In a multi-electron system, one may thus consider part of the exchange energy
as a correction for the self-interaction energy, with the remaining being the “true”
Fermi hole. In this view, the self-interaction correction is the major part of the exchange
energy, with the “true” Fermi hole being comparable to the Coulomb (correlation)
hole. It should be noted, however, that such a partitioning is not invariant to a unitary
transformation of the occupied orbitals.21 The self-interaction cancellation by the
exchange energy is not guaranteed in DFT, and very few of the current exchange–cor-
relation functionals are completely self-interaction-free. It has been proven that a com-
pletely self-interaction-free local potential does not exist.22 Perdew and Zunger have
suggested an approximate correction scheme, where each orbital becomes self-
interaction-free.23 The procedure formally changes the underlying functional and
destroys the invariance of the energy with respect to mixing of the occupied orbitals.
Since it is furthermore computationally quite expensive and often degrades the quality
of the results by overcorrecting the error, it has seen little use.24 Other versions have
been proposed, each having different computational and theoretical disadvantages.25

These concepts can be illustrated for the H2 molecule for increasing internuclear dis-
tances.26 In wave mechanics, the ground state for H2 has two electrons of opposite spin
in the same spatial orbital, and the exchange hole is thus entirely the self-interaction
correction (no same-spin exchange).

(6.25)

For the case of H2, this is just the negative of the occupied molecular orbital and, by
symmetry arguments, the HF exchange hole at each nucleus thus integrates to −1/2,
independent of the internuclear separation. This delocalization is clearly non-physical
in the dissociation limit, since the correct wave function must have one electron local-
ized at each nucleus. This means that for a reference electron near nucleus A, the total
probability hole is localized at nucleus A. The correlation hole must therefore exactly
cancel the exchange hole at nucleus B, while increasing the hole at nucleus A in order
to integrate to −1 (Figure 6.1), and this is the reason why the wave function correla-
tion energy increases as a function of internuclear distance.

Within wave mechanics, the exchange hole is static and delocalized over the whole
molecule, while the long-range part of the electron correlation is dynamical and serves
to cancel the exchange hole away from the reference electron.

6.5 Exchange–Correlation Functionals
The difference between various DFT methods is the choice of functional form for the
exchange–correlation energy. It can be proven that the exchange–correlation poten-
tial is a unique functional, valid for all systems, but an explicit functional form of this
potential has been elusive, except for special cases such as a uniform electron gas. It is
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possible, however, to derive a number of properties that the exact functional should
have, of which some of the more important ones are:27

(1) The energy functional should be self-interaction-free, i.e. the exchange energy for
a one-electron system, such as the hydrogen atom, should exactly cancel the
Coulomb energy, and the correlation energy should be zero. Although these seem
like obvious requirements, none of the common functionals have this property.

(2) When the density becomes constant, the uniform electron gas result should be
recovered. While this surely is a valid mathematical requirement, and important
for applications in solid-state physics, it may not be as important for chemical appli-
cations, as molecular densities are relatively poorly described by uniform electron
gas methods.

(3) The coordinate scaling of the exchange energy should be linear, i.e. multiplying
the electron coordinates with a constant factor should result in a similar linear
scaling of the exchange energy.28

(6.26)

(4) No direct scaling law applies for the correlation energy, but scaling the electron
coordinates by a factor larger than 1 should increase the magnitude of the corre-
lation (and vice versa).28 In the low density limit, the scaling becomes linear, as for
the exchange energy.

(6.27)

(5) As the scaling parameter goes to infinity, the correlation energy for a finite system
approaches a negative constant.

− [ ] > − [ ] >E Ecc r l r ll ; 1

r l r l l l
r l r

l

l

x y z x y z

E E

, , , ,

x x

( ) = ( )
[ ] = [ ]

3

244 DENSITY FUNCTIONAL METHODS

Exchange hole

Correlation hole

Total hole

AB

Figure 6.1 Illustrating the exchange and correlation holes for the H2 molecule at the dissociation
limit, with the reference electron located near nucleus A and the vertical axis representing 
probability



(6) The Lieb–Oxford condition places an upper bound for the exchange–correlation
energy relative to the Local Density Approximation (LDA) (see Section 6.5.1)
exchange energy.29

(6.28)

(7) The exchange potential should show an asymptotic −r−1 behaviour as r → ∞.30 Fur-
thermore, the exchange–correlation potential is discontinous as a function of the
number of electrons, by an amount corresponding to the difference between the
ionization potential and electron affinity.31

(8) The correlation potential should show an asymptotic −1/2ar−4 behaviour, with a
being the polarizability of the Nelec − 1 system.

The difference in scaling behaviour (points 3 and 4) is a strong argument for separat-
ing the corresponding exchange and correlation functionals but, on the other hand, it
implies a difficult task for getting the correlation component to exactly cancel the long-
range exchange component.

Exchange–correlation functionals have, in analogy with other (partly) empirical
methods, a mathematical form containing parameters.There are two main philosophies
for assigning values to these parameters, either by requiring the functional to fulfil the
above criteria (or a suitable selection thereof), or by fitting the parameters to experi-
mental data, although in practice a combination of these approaches is often used. The
quality of exchange–correlation functionals will ultimately have to be settled by com-
paring the performance with experiments or high-level wave mechanics calculations.
Such calibration studies, however, only evaluate the quality for the chosen selection of
systems and properties. It has indeed been found that the “best” functionals depend
on the system and properties, some being good for molecular systems, others for delo-
calized (periodic) systems, and others again for properties such as excitation energies
or NMR chemical shifts. At present, there are no clear “standard” methods, like MP2
and CCSD in traditional ab initio theory, although the hybrid methods discussed below
usually give good performance. Since DFT is an active area of research, new and
improved functionals are likely to emerge. It should be noted that many of the pro-
posed functionals have never made it past the research stage and are not available in
commonly available programs. Below we will give a short summary of functionals that
have been proposed by different research groups.32 We will give the explicit forms for
some of the more commonly used functionals for illustration, although they do not
contain much physical insight by themselves.

It is customary to separate Exc into two parts, a pure exchange Ex and a correlation
part Ec, which seems reasonable based on the discussion of the exchange and correla-
tion holes above, and their different scaling properties. It should be noted, however,
that only the combined exchange–correlation hole has a physical meaning, and it could
be argued that this calls for a combined Exc. Early work tended to focus on only one
of the components, and subsequently combined these, while the current trend is to con-
struct the two parts in a combined fashion.

Each of the exchange and correlation energies is often written in term of the energy
per particle (energy density), ex and ec.
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As mentioned at the start of Chapter 4, the correlation between electrons of parallel
spin is different from that between electrons of opposite spin. The exchange energy is
“by definition” given as a sum of contributions from the a and b spin densities, as
exchange energy only involves electrons of same spin. The kinetic energy, the
nuclear–electron attraction and Coulomb terms are trivially separable in terms of elec-
tron spin.

(6.30)

The total density is the sum of the a and b contributions, r = ra + rb, and these are
identical (ra = rb) for a closed shell singlet. Functionals for the exchange and correla-
tion energies may be formulated in terms of separate spin densities, however, they are
often given instead as functions of the spin polarization z (normalized difference
between ra and rb), and the radius of the effective volume containing one electron, rs.

(6.31)

In the formulas below it is implicitly assumed that the exchange and correlation ener-
gies are summed over both a and b densities.

The difference between various wave function-based methods is how the electron
correlation is included, and the quality of these methods can be characterized by an
ordering parameter, such as the perturbation order or the level of excitations included.
There are no similar theoretically founded ordering parameters for DFT methods, as
the exchange–correlation functionals to a large extent are empirical. A heuristic char-
acterization can be done by considering the fundamental variables used for defining
the exchange–correlation functional. J. P. Perdew has suggested such a “Jacob’s ladder”
approach, where one can expect or at least hope for an improvement in the accuracy
for each step up the ladder,33 and this is the approach taken here to systematize the
plethora of functionals that has been proposed.

6.5.1 Local Density Approximation

In the Local Density Approximation (LDA) it is assumed that the density locally can
be treated as a uniform electron gas, or equivalently that the density is a slowly varying
function.The exchange energy for a uniform electron gas is given by the Dirac formula
(eq. (6.2)).

(6.32)

In the more general case, where the a and b densities are not equal, LDA (where the
sum of the a and b densities is raised to the 4–3 power) has been virtually abandoned
and replaced by the Local Spin Density Approximation (LSDA) (which is given as the
sum of the individual densities raised to the 4–3 power, eq. (6.33)).
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(6.33)

LSDA may also be written in terms of the total density and a spin-polarization 
function.

(6.34)

For closed shell systems, LSDA is equal to LDA and, since this is the most common
case, LDA is often used interchangeably with LSDA, although this is not true in the
general case.The Xα method proposed by Slater in 195134 can be considered as an LDA
method where the correlation energy is neglected and the exchange term is as given
in eq. (6.35).

(6.35)

With a = 2/3 this is identical to the Dirac expression. The original Xa method used a =
1, but a value of 3/4 has been shown to give better agreement for atomic and molecu-
lar systems. The name Slater is often used as a synonym for the L(S)DA exchange
energy involving the electron density raised to the 4/3 power.

The analytical form for the correlation energy of a uniform electron gas, which is
purely dynamical correlation, has been derived in the high and low density limits.35 For
intermediate densities, the correlation energy has been determined to a high precision
by quantum Monte Carlo methods (Section 4.16). In order to use these results in DFT
calculations, it is desirable to have a suitable analytic interpolation formula, and such
formulas have been constructed by Vosko, Wilk and Nusair (VWN) and by Perdew and
Wang (PW), and are considered to be accurate fits.36 The VWN parameterization is
given in eq. (6.36), where a slightly different spin-polarization function has been used.

(6.36)

The ec(rs,z ) and ea(rs) functions are parameterized as in eq. (6.37), with A, x0, b and c
being suitable fitting constants. Several slightly different parameterizations were pro-
posed in the original paper, which has caused some confusion, since different imple-
mentations have used different parameterizations, and therefore produce slightly
different numerical results.

(6.37)
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The PW parameterization for ec/a is given in eq. (6.38), with a, a, b1, b2, b3 and b4 again
being fitting parameters.

(6.38)

The LSDA method is an exact DFT method for the special case of a uniform electron
gas, except for small differences depending on the interpolation formula chosen for
the correlation energy. For molecular systems, the LSDA approximation underesti-
mates the exchange energy by ~10%, thereby creating errors that are larger than the
whole correlation energy. Electron correlation is overestimated, often by a factor close
to 2, and bond strengths are as a consequence overestimated, often by ~100kJ/mol.
Despite the simplicity in the fundamental assumptions, LSDA methods are often found
to provide results with an accuracy similar to that obtained by wave mechanics
Hartree–Fock methods. It has furthermore been used extensively in the physics com-
munity for describing extended systems, such as metals, where the approximation of a
slowly varying electron density is quite valid.

6.5.2 Gradient-corrected methods

Improvements over the LSDA approach must consider a non-uniform electron gas. A
step in this direction is to make the exchange and correlation energies dependent not
only on the electron density but also on derivatives of the density. The first-order cor-
rection for the exchange energy is given in eq. (6.4), and the corresponding quantity
for the correlation energy is also known.37 While inclusion of the first-order exchange
term improves the exchange energy, inclusion of the first-order correlation correction
often makes the correlation energy positive. A straightforward inclusion of these first-
order terms leads to a model that performs worse than the simple LSDA model. The
main reason for the success of the LSDA approach is that it fulfils the requirements
of the Fermi hole integrating to −1, and the Coulomb hole to 0, while the addition of
gradient terms destroys these important properties.

In Generalized Gradient Approximation (GGA) methods, the first derivative of the
density is included as a variable, and in addition it is required that the Fermi and
Coulomb holes integrate to the required values of −1 and 0. GGA methods are also
sometimes referred to as non-local methods, although this is somewhat misleading
since the functionals only depend on the density (and derivative) at a given point, not
on a space volume as the Hartree–Fock exchange energy.

One of the earliest and most popular GGA exchange functionals was proposed by
A. D. Becke (B or B88) as a correction to the LSDA exchange energy.38

(6.39)

The b parameter is determined by fitting to known data for the rare gas atoms using
the dimensionless gradient variable x. The B88 exchange functional has the correct
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asymptotic behaviour for the energy density (but not for the exchange potential).39 It
reduces the error in the exchange energy by almost two orders of magnitude relative
to the LSDA result, and thus represents a substantial improvement for a simple func-
tional form containing only one adjustable parameter.

Handy and Cohen have investigated several forms related to eq. (6.39) where the
parameters were optimized with respect to exchange energies calculated at the HF
level. The best resulting model had two parameters and was labelled OPTX (OPTi-
mized eXchange).40 It was also found that no significant improvement could be made
by including higher order derivatives (discussed in the next section). Hamprecht,
Cohen, Tozer and Handy have further extended the B97 model discussed in the next
section, but using only the pure density components (i.e. no exact exchange) to a func-
tional containing 15 parameters which were fitted to experimental and ab initio data,
giving the acronyms HCTH93, HCTH147 and HCTH407, where the number referring
to the number of molecules in the fitting data set.41

There have similarly been various GGA functionals proposed for the correlation
energy. One popular functional is due to Lee, Yang and Parr (LYP),42 which has the
rather intimidating form shown in eq. (6.40).

(6.40)

The a, b, c and d parameters are determined by fitting to data for the helium 
atom. Although not obvious from the form shown in eq. (6.40), the LYP functional
does not include parallel spin correlation when all the spins are aligned (e.g. the 
LYP correlation energy for 3He is zero). The LYP correlation functional is often com-
bined with the B88 or OPTX exchange functional to produce the BLYP and 
OLYP acronyms.

J. P. Perdew and coworkers have proposed several related exchange–correlation
functionals based on removing spurious oscillations in the Taylor-like expansion to 
first order and ensuring that the exchange and correlation holes integrate to 
the required values of −1 and 0. The associated acronyms are PW86 (Perdew–Wang
1986),43 PW91 (Perdew–Wang 1991)44 and PBE (Perdew–Burke–Ernzerhof).45

These three functionals should be considered as refinements of the same underlying
model, i.e. the PBE version should be used in favour of the PW86 and PW91 
versions. The exchange part is written as an enhancement factor multiplied onto 
the LSDA functional, where the dimensionless gradient variable x is defined in eq.
(6.39).
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(6.41)

The correlation part is similarly written as an enhancement factor added to the LSDA
functional, where the t variable is related to the x variable by means of yet another
spin-polarization function.

(6.42)

The a, b, c and d parameters in these functionals are non-empirical, i.e. they are not
obtained by fitting to experimental data, but derived from some of the conditions in
Section 6.5.The PW91 functional has been tuned to improve the performance for weak
interactions, producing the mPW91 acronym.46 The PBE functional has similarly been
slightly modified (RPBE) to improve the performance for periodic systems,47 but this
modification actually destroys the hole condition (eq. (6.24)) for the exchange energy.
An alternative modification using one additional parameter to give the acronym
mPBE has also been proposed.48

The KT3 (Keal–Tozer) functional has been constructed as a combination of LDA
and OPTX exchange combined with the LYP correlation functional, and modified with
an additional gradient term, all multiplied with fitting coefficients, as shown in eq.
(6.43).49

(6.43)

The a, b and c coefficients have been optimized with respect to experimental quanti-
ties such as atomization energies and geometries, while the d and e parameters are
fitted to NMR nuclear shielding constants. The primary focus of KT3 and earlier ver-
sions (KT1 and KT2) is to provide a functional suitable for calculating shielding con-
stants, which other standard functionals have difficulties with.

6.5.3 Higher order gradient or meta-GGA methods

The logical extension of GGA methods is to allow the exchange and correlation 
functionals to depend on higher order derivatives of the electron density, with the
Laplacian (∇2r) being the second-order term.Alternatively, the functional can be taken
to depend on the orbital kinetic energy density t, which for a single orbital is identi-
cal to the von Weizsäcker kinetic energy tW (eq. (6.3)).
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(6.44)

The orbital kinetic energy density and the Laplacian of the density essentially carry
the same information, since they are related via the orbitals and the effective poten-
tial (all potential terms in the KS equation).

(6.45)

This may also be seen from the gradient expansion of t for slowly varying densities.50

(6.46)

Inclusion of either the Laplacian or orbital kinetic energy density as a variable leads
to the so-called meta-GGA functionals, and functionals which in general use orbital
information may also be placed in this category. Calculation of the orbital kinetic
energy density is numerically more stable than calculation of the Laplacian of the
density, and the two t functions in eq. (6.44) are common components of meta-GGA
functionals.

One of the earliest attempts to include kinetic energy functionals was by Becke and
Roussel (BR), who proposed the exchange functional shown in eq. (6.47).51

(6.47)

A similar correlation functional shown in eq. (6.48) was proposed somewhat later by
A. D. Becke (B95) and is one of the few functionals that does not have the self-inter-
action problem.52

(6.48)

Here s runs over a and b spins, xs is defined in eq. (6.39) with the implicit spin depend-
ence denoted by the subscript s, a and b are fitting parameters, and ec

PW is the
Perdew–Wang parameterization of the LSDA correlation functional (eq. (6.38)).

The HCTH functional has been extended to also include the kinetic energy density
as a variable, producing the acronym t-HCTH.53 The VSXC (Voorhis–Scuseria
eXchange–Correlation) functional similarly includes the kinetic energy density 
and contains 21 parameters that are fitted to experimental data.54 The TPSS
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(Tao–Perdew–Staroverov–Scuseria) exchange–correlation functional, on the other
hand, is a non-empirical version that represents a further development of the PKZB
(Perdew–Kurth–Zupan–Blaha) functional,55 and can be considered as the next
improvement over the PBE functional.56

6.5.4 Hybrid or hyper-GGA methods

From the Hamiltonian in eq. (6.5) and the definition of the exchange–correlation
energy in eq. (6.10), an exact connection can be made between the exchange–correla-
tion energy and the corresponding hole potential connecting the non-interacting ref-
erence and the actual system (see appendix B for details). The resulting equation is
called the Adiabatic Connection Formula (ACF)57 and involves integration over the
parameter l, which “turns on” the electron–electron interaction.

(6.49)

In the crudest approximation (taking Vxc
hole to be linear in l), the integral is given as

the average of the values at the two end-points.

(6.50)

In the l = 0 limit, the electrons are non-interacting and there is consequently no cor-
relation energy, only exchange energy. Furthermore, since the exact wave function in
this case is a single Slater determinant composed of KS orbitals, the exchange energy
is exactly that given by Hartree–Fock theory (eq. (3.33)). If the KS orbitals were iden-
tical to the HF orbitals, the exchange energy would be precisely the energy calculated
by HF wave mechanics methods. The last term in eq. (6.50) is still unknown. Approx-
imating it by the LSDA result defines the Half-and-Half (H + H) method.58

(6.51)

Since the GGA methods give a substantial improvement over LDA, a generalized
version of the H+H method may be defined by writing the exchange energy as a com-
bination of LSDA, exact exchange and a gradient correction term. The correlation
energy may similarly be taken as the LSDA formula plus a gradient correction term.
Models that include exact exchange are often denoted hybrid methods, the Adiabatic
Connection Model (ACM) and Becke 3 parameter functional (B3) methods are exam-
ples of such hybrid models, with the popular B3LYP method defined by eq. (6.52).59

An alternative version uses the PW91 correlation functional and has the acronym
B3PW91, and an O3LYP combination has also been used.

(6.52)

The a, b and c parameters are determined by fitting to experimental data and depend
on the chosen forms for E x

GGA and E c
GGA, with typical values being a ~ 0.2, b ~ 0.7 and

c ~ 0.8. Subsequent versions denoted B97 and B98 employed ten fitting parameters,60

but the improvements were rather marginal relative to the three parameters version.
The t-HCTH functional has been augmented with exact exchange to produce the

acronym t-HCTH-hybrid.61 The PBE functional has also been improved by addition
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of exact exchange to give the PBE0 functional (also denoted PBE1PBE in the litera-
ture),62 where the mixing coefficient for the exact exchange is argued to have a value
of 0.25 from perturbation arguments.63 Similarly, the third-rung TPSS functional has
been augmented with ~10% exact exchange to give the TPSSh method.64

Inclusion of exact HF exchange is often found to improve the calculated results,
although the optimum fraction to include depends on the specific property of interest.
The improvement of new functionals by inclusion of a suitable fraction of 
exact exchange is now a standard feature. At least part of the improvement may 
arise from reducing the self-interaction error, since HF theory is completely self-
interaction-free.

6.5.5 Generalized random phase methods

At the fifth level of the Jacob’s ladder classification, the full information of the KS
orbitals is employed, i.e. not only the occupied but also the virtual orbitals are included.
The formalism here becomes similar to those used in the random phase approxima-
tion (Section 10.9), but very little work has appeared on such methods. Inclusion of
the virtual orbitals is expected to significantly improve on, for example, dispersion
(such as van der Waals) interactions, which is a significant problem for almost all
current functionals.

One approach that can be considered as falling into this category is the class of Opti-
mized Effective Potential (OEP) methods.65 The central idea is that the energy as a
functional of the density is unknown (or at least the exchange–correlation part is), but
the energy as a function of the orbitals is well known from wave function theory to a
given order in the correlation, as defined for example by a perturbation expansion.
Since the density is given by the sum of the square of the orbitals, this implicitly defines
the energy as a function of the density. By requiring that the density derived from a
Kohn–Sham calculation using a single-determinant wave function exactly matches 
the density derived from a (correlated) wave function, this implicitly defines the
exchange–correlation potential.

The reference wave functions have so far been based on an MBPT type expansion
(Section 4.8).The OEP1 method is defined by terminating the reference density at first
order in the perturbation series. Since correlation only enters the perturbation expan-
sion at order two, this yields the exchange-only potential. Terminating the expansion
at second order defines the OEP2 method and corresponds to constructing a KS deter-
minant that yields the (generalized) MP2 density. From the condition that the MP2-
like density matrix matches that from the KS determinant, one may derive a set of
coupled equations at the orbital level that provides the exchange–correlation poten-
tial correct to second order in the correlation. The OEP2 method is computationally
equivalent to an iterative MP2 calculation, i.e. such calculations are computationally
more expensive than standard DFT methods. Furthermore the OEP2 method has basis
set requirements similar to other correlated wave function methods and thus cannot
benefit from the faster basis set convergence of other DFT methods. Not surprisingly,
OEP2 provides results of roughly MP2 quality although, in favourable cases, the per-
formance may approach those from coupled cluster calculations. It does have the desir-
able feature that it can describe for example dispersion interactions, which are
problematic with almost all traditional functionals.
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Whether one should consider the OEP method as a density or wave functional
theory is an open question, as it clearly tries to combine the best of both worlds. It has
the advantage of being able to systematically improve the results towards the exact
limit, but inherits also the wave function disadvantages of a slow convergence with
respect to basis set size.

6.5.6 Functionals overview

The introduction of GGA and hybrid functionals during the early 1990s yielded a
major improvement in terms of accuracy for chemical applications, and resulted in the
Nobel prize being awarded to W. Kohn and J.A. Pople in 1998. Progress since this initial
exciting developments has been slower, and the (in)famous B3LYP functional59 pro-
posed in 1993 still represents one of the most successful in terms of overall perform-
ance. Unfortunately, neither the addition of more fitting parameters, the addition of
more variables in the functionals, nor imposing more fundamental restrictions for the
functional form have (yet) provided models with a significantly better overall per-
formance.66 Although the performance for a given property can be improved by tai-
loring the functional form or parameters, such measures often result in the
deterioration of the results for other properties.

It should be noted that the implicit cancellation of the long-range part of the
exchange and correlation energies implies that the two functional parts should be at
the same level of the ladder, and preferably developed in an integrated fashion. A
popular topic in the literature is to search for a magic combination of exchange and
correlation functionals, perhaps with a few adjustable scaling parameters and a choice
of basis set, in order to reproduce a selected set of experimental data. This is not a the-
oretically justified procedure and should be considered merely as data fitting without
much physical relevance. Nevertheless, such a procedure can of course be taken as an
“experimental” fitting function that can be useful for predicting specific properties for
a series of compounds.

Table 6.1 shows an overview of commonly used functionals given by their acronym,
and placed in the Jacob’s ladder classification. One may furthermore differentiate the
functionals based on their use (or lack) of experimental data for assigning values to
the parameters in the functional forms. The non-empirical ones such as the PW86,
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Table 6.1 Perdew classification of exchange–correlation functionals

Level Name Variables Examples

1 Local density r LDA, LSDA, Xa

2 GGA r, ∇r BLYP, OPTX, OLYP, PW86, PW91, PBE,
HCTH

3 Meta-GGA r, ∇r, ∇2r or t BR, B95, VSXC, PKZB, TPSS, t-HCTH
4 Hyper-GGA r, ∇r, ∇2r or t H+H, ACM, B3LYP, B3PW91, O3LYP, PBE0,

HF exchange TPSSh, t-HCTH-hybrid
5 Generalized RPA r, ∇r, ∇2r or t OEP2

HF exchange
Virtual orbitals



PW91, PBE and TPSS functionals use the free parameters to fulfil as many of the
requirements in Section 6.5 as possible at each level. Empirical ones such as the BLYP,
B3LYP, HTCT and VSXC, on the other hand, attempt to improve the performance by
fitting the free parameters to give good agreement with experimental data. This means
that these functionals often perform (slightly) better than the non-empirical ones for
systems that resemble those in the parameterization set. Since the parameterization
data are usually molecular systems, this means that they are often preferred for chem-
ical purposes, but often give inferior performance for, for example, periodic systems
such as metals. Note also that most common functionals belong to levels 2 and 4, as
inclusion of HF exchange historically has preceded the development of functionals
using derivatives beyond first order. As one moves along the rungs of the ladder, it is
expected (or hoped) that the accuracy will improve, but there is no guarantee that this
is the case.

6.6 Performance and Properties of Density Functional Methods
An evaluation of the performance of the plethora of different functionals for a variety
of properties is a major undertaking.4 We will here just quote two sets of results:

(1) Root Mean Square (RMS) errors of atomization energies, ionization potentials,
electron and proton affinities over the data set of 407 compounds selected from
the G3 data set against experimental data.67 In addition the RMS error for the
residual gradient at the experimental equilibrium geometry is taken as a measure
of the accuracy of the functionals for predicting equilibrium geometries. It should
be noted that the evaluation data are the same data used for optimizing the param-
eters in the HTCT functional, and this functional will therefore naturally display
good performance. The results are obtained by using a TZP type basis set.

(2) Mean Absolute Deviation (MAD) of atomization energies over the 223 molecules
in the G3 data set against experimental data.64 The results were obtained using the
6-311++G(3df,3pd) basis set.

While results with the above basis sets are not converged to the basis set limit, the
residual basis set errors are presumably well below the inherent errors in the func-
tionals, and the performance thus reflects the quality of the exchange–correlation func-
tionals (Table 6.2).

Note that the performance ordering of the functionals is not the same for the two
sets of results. Only a minor part of this discrepancy can be attributed to the differ-
ence in basis sets, the remaining discrepancy is due to differences in the data sets.

The LSDA method performs somewhat better than Hartree–Fock, but all the gra-
dient-corrected methods are clearly far superior. The PW91 and PBE functionals are
somewhat poorer than the other GGA functionals, reflecting the fact that these do not
contain parameters that have been fitted to give a good performance for these systems.
Hybrid methods including exact exchange tend to perform (slightly) better than the
corresponding pure functionals (e.g. BLYP/B3LYP and PBE/PBE0), but several of the
more recent “pure” functionals such as OLYP and VSXC are comparable to for
example B3LYP. Since the inclusion of HF exchange is computationally expensive for
implementations relying on plane waves for expanding the orbitals, or for programs
taking advantage of various density fitting schemes, this represent a computational
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advantage more than a fundamental theoretical improvement. In general, it is found
that DFT methods often give geometries and vibrational frequencies for stable mole-
cules of the same or better quality than MP2, at a computational cost similar to HF.
For systems containing multi-reference character, where MP2 usually fails badly, DFT
methods are often found to generate results of a quality comparable to those obtained
with coupled cluster methods68 (see also Section 11.7.3). Handy and Cohen have
argued that the BLYP and B3LYP forms are probably close to the optimum with
respect to performance for a functional depending only on the gradients of the
density.69

A significant advantage is that DFT methods based on unrestricted determinants
(analogous to UHF, Section 3.7) for open-shell systems are not very prone to 
“spin contamination”, i.e. 〈S2〉 is normally close to Sz(Sz + 1) (see also Sections 4.4 and
11.5.3). This is a consequence of electron correlation being included in the single-
determinantal wave function (by means of Exc). Actually, it has been argued that “spin
contamination” is not well defined in DFT methods, and that 〈S2〉 should not be equal
to Sz(Sz + 1).70 The argument is that real systems display “spin polarization”, i.e. there
are point in space where ra is larger than rb (assuming that the number of a _electron
is larger than the number of b electrons). This effect cannot be achieved by a restricted
open-shell type determinant (analogous to ROHF), only by an unrestricted treatment
that allows the a _and b orbitals to be different. It is somewhat unclear whether this
argument hold for cases with 〈S2〉 values very different from Sz(Sz + 1), as in for example
systems with multiple open-shell fragments.71 Another consequence of the presence of
Exc is that restricted type determinants are much more stable toward symmetry break-
ing to an unrestricted determinant (Section 3.8.3) than Hartree–Fock wave functions.
For ozone (Section 4.4), for example, it is not possible to find a lower energy solution
corresponding to UHF for “pure” DFT methods (such as LSDA or BLYP), although
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Table 6.2 Comparison of the performance of DFT methods

Functional RMS (gradient) RMS (kJ/mol) MAD (kJ/mol)

HF 35 649 885
LSDA 16 439 510
PW91 15 80 99
PBE 16 87 93
PKBZ 21 75 29
BLYP 19 41 40
PBE0 11 50 28
OLYP 14 40 25
B3LYP 11 40 21
VSXC 11 39 14
HTCT 11 33 30
t-HCTH 11 31
t-HCTH-hybrid 10 26
TPSS 24
TPSSh 16



those including exact exchange (such as B3LYP) display a triplet instability. This
“inverse” symmetry breaking is in some cases problematic. In radical cations, for
example, DFT methods usually refuse to localize the spin and charge, and thereby
create unrealistic energy surfaces.

The Lagrange multipliers arising in Hartree–Fock theory from the orthogonality
constraints of the orbitals are molecular orbital energies, and the occupied orbital ener-
gies correspond to ionization potentials in a frozen orbital approximation via Koop-
mans’ theorem. The corresponding Lagrange multipliers in DFT do not have the same
formal relationship, since Koopmans’ theorem does not hold unless the exact
exchange–correlation functional is employed. For approximate XC functionals, the
Lagrange multipliers can be interpreted as the derivative of the total energy with
respect to the occupation number of the orbital, often called the Janak theorem72 but
discussed first by Slater,73 and this is of course also closely related to experimentally
measured ionization potential.

(6.53)

The Lagrange multipliers may also be considered as approximations to ionization
potentials using relaxed orbitals, and in practice give quite accurate results for the
valence orbitals.74 In earlier work the orbital energies resulting from Kohn–Sham cal-
culations were not considered to have any physical relevance, since they often showed
poor agreement with ionization potentials, and orbital energy differences correlated
poorly with excitation energies. It is now clear that part of the poor agreement was
due to the self-interaction error embedded in LDA and GGA methods, while more
modern functionals yield much improved results.

Another difference is that the unoccupied orbital energies in Hartree–Fock theory
are determined in the field of N electrons and therefore correspond to adding an elec-
tron, i.e. the electron affinity. The virtual orbitals in density functional theory, on the
other hand, are determined in the field of N − 1 electrons and therefore correspond to
exciting an electron, i.e. unoccupied orbitals in DFT tend to be significantly lower in
energy than the corresponding HF ones, and the highest occupied molecular
orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gaps are therefore
much smaller with DFT methods than for HF. This also means that orbital energy dif-
ferences in DFT are reasonable estimates of excitation energies, in contrast to HF
methods where excitation energies involve additional Coulomb and exchange inte-
grals. The LSDA method usually underestimates the HOMO–LUMO gap, leading to
the incorrect prediction of metallic behaviour for certain semiconducting materials.

Although it is clear that there are many similarities between wave mechanics HF
theory and DFT, there is an important difference. If the exact Exc[r] was known, DFT
would provide the exact total energy, including electron correlation. DFT methods
therefore have the potential of including the computationally difficult part in wave
mechanics, the correlation energy, at a computational effort similar to that for deter-
mining the uncorrelated HF energy. Although this certainly is the case for approxi-
mations to Exc[r] (as illustrated above), this is not necessarily true for the exact Exc[r].
It may well be that the exact Exc[r] functional is so complicated that the computational
effort for solving the KS equations will be similar to that required for solving the
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Schrödinger equation (exactly) with a wave mechanics approach. Indeed, unless one
believes that the Schrödinger equation contains superfluous information, this is likely
to be the case. Since exact solutions are generally not available in either approach, the
important question is instead what the computational cost is for generating a solution
of a given accuracy. In this respect, DFT methods have very favourable characteristics.

6.7 DFT Problems
Despite the many successes of DFT, there are some areas where the current functionals
are known to perform poorly.

• Weak interactions due to dispersion forces (part of van der Waals type interactions)
arise from electron correlation in wave function methods, but this is poorly described
by current DFT methods.75 Rare gas atoms should show a slight attraction, but most
functionals display a purely repulsive energy curve, and those that do predict an
attraction underestimate the effect and the variation between systems.76 Further-
more, none have the correct R−6 limiting behaviour in the long distance limit,
although very recent developments appear to provide quite accurate results with
only a single parameter.77 In some approaches, an empirical attraction term is added
that improves the performance,78 but this is clearly an ad hoc repair. Owing to the
general overestimation of bond strengths, LSDA does predict an attraction between
rare gas atoms, but significantly overestimates the magnitude. Hydrogen bonding,
however, is mainly electrostatic and is reasonably well accounted for by many DFT
functionals.

• Loosely bound electrons, such as anions arising from systems with relatively low
electron affinities, represent a problem for exchange–correlation functionals that do
not include self-interaction corrections or correct for the incorrect long-range behav-
iour of the exchange–correlation potential. Since loosely bound electrons by defini-
tion have most of the associated density far from the nuclei, this may cause the
self-interaction error to be larger than the actual binding energy, and thus lead erro-
neously to an unbound electron. In actual calculations using a limited basis set, this
may not be obvious, since the outer electron is confined by the most diffuse basis
function. A positive HOMO energy, however, is a clear warning sign, and extending
the basis set with many diffuse functions in such cases may cause the outer electron
to drift away from the atom. This means that only systems with high electron affini-
ties have a well-defined basis set limiting value. Nevertheless, a medium-sized basis
set with a single set of diffuse functions will in many cases give a reasonable esti-
mate of the experimental electron affinity.79 The basis set confines the outer electron
to be in the correct physical space, and the exchange–correlation functional gives a
reasonable estimate of the energy of this density. It should be noted that the rela-
tively good performance is in essence due to a correct physical description, rather
than a correct theoretical methodology.

• For chemically bonded systems, analysis80 similar to the H2 system in Section 6.4
suggest that bonds involving:

° two-centre two-electrons (e.g. normal covalent bonds),

° two-centre four-electrons (e.g. steric repulsion between closed shell systems), and
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° three-centre three-electrons (e.g. radical abstraction) should be reasonably
described by gradient-corrected methods. Systems involving:

° two-centre one-electron (e.g. radical cations),

° two-centre three-electrons (e.g radical anions), and

° three-centre four electrons (e.g. atom transfer transition structures)
are, however, predicted to be too stable. The dissociation of charged odd-electron
systems is a problem for most DFT methods, with the dissociation energy profile dis-
playing an artificial barrier and an incorrect dissociation energy, often in error by as
much as 100kJ/mol. Transition structures are similarly predicted to be too stable
(barriers are underestimated) by functionals that do not included exact exchange.
Since Hartree–Fock overestimates activation barriers, hybrid methods involving
exact exchange, however, often give reasonable barriers.

• The absence of a wave function makes a direct description of excited states with 
the same symmetry as the ground state problematic. Excited states must be orthog-
onal to the ground state, which is easy to enforce if the spatial or spin symmetry
differ, but difficult to ensure for excited states having the same spatial and spin 
symmetry. Excited state properties, however, can be calculated by time-dependent
DFT (linear response) methods, since the excited state is never needed explicitly.
Such calculations can give for example excitation energies and transition moments,
as well as gradients of the excited surface, which allows excited states to be 
optimized.

• The accuracy of excitation energies is typically ~0.5eV for valence states, but
Rydberg states, where the electron is excited into a diffuse orbital, can be in error
by several eV. This problem has the same physical reason as the anion problem
above, and can be solved by using corrections for the asymptotic behaviour of the
exchange–correlation potential.81,82 Such Asymptotic Corrected (AC) functionals
display much improved predictions for response properties.

• The exchange–correlation functional is inherently local, depending only on the
density and possibly its derivatives at a given point, and this causes DFT methods
to be inherently unsuitable for describing charge transfer systems, where an electron
is transferred over a large distance. Such systems are predicted to have excitation
energies that are too low by several eV.83

• Relative energies of states with different spin multiplicity are often poorly described.
In HF theory, the energy difference between a singlet and triplet state with the same
orbital occupancy is given by an exchange integral. In DFT, this must be described
by the exchange–correlation functional, which only depends on the electron density.
If the two spin states arise from the same electron configuration the two electron
densities are very similar, and this makes the results sensitive to the details of the
exchange–correlation functional. These problems are especially problematic for
transition metal systems, where several low-energy spin states are often possible, and
many of these cannot be described by a single determinant. Pure DFT methods
favour low spin states while HF favours high spin states, and hybrid methods with
a suitable parameterized amount of exact exchange perform better.84 These problem
can perhaps be improved by adding current density terms to the DFT formalism but
this is not yet a commonly used procedure since it requires that the orbitals be
allowed to become complex.
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• Individual spatial components of a spin multiplet may have different energies, even
in the absence of a magnetic field. The boron atom, for example, has the electron
configuration 1s22s22p1, and the single p-electron can be in either a p−1, p0 or p+1

orbital. These should all have the same energy, but since the density associated with
the p0 orbital is different from that of a p±1 orbital, their energies as a result differ
by ~25kJ/mol. This is clearly non-physical, but can be significantly improved by
introducing current density terms.85

6.8 Computational Considerations
The strength of DFT is that only the total density needs to be considered. In order to
calculate the kinetic energy with sufficient accuracy, however, orbitals have to be re-
introduced. Nevertheless, Kohn–Sham DFT displays a computational cost similar to
HF theory, with the possibility of providing more accurate (exact, in principle) results.

Once an exchange–correlation functional has been selected, the computational
problem is very similar to that encountered in wave mechanics HF theory: determine
a set of orthogonal orbitals that minimizes the energy. Since the J[r] (and Exc[r]) func-
tional depends on the total density, a determination of the orbitals involves an itera-
tive sequence. The orbital orthogonality constraint may be enforced by the Lagrange
method (Section 12.5), again in complete analogy with wave mechanics HF methods
(eq. (3.34)).

(6.54)

Requiring the variation of L to vanish provides a set of equations involving an effective
one-electron operator (hKS), similar to the Fock operator in wave mechanics (eq. (3.36)).

(6.55)

The effective potential contains the nuclear contribution, the electronic Coulomb
repulsion and the exchange–correlation potential, which is given as the derivative of
the energy (eq. (6.29)) with respect to the density.

(6.56)

A unitary transformation that makes the matrix of the Lagrange multiplier diagonal
may again be chosen, producing a set of canonical KS orbitals. The resulting pseudo-
eigenvalue equations are known as the Kohn–Sham equations.

(6.57)

The KS orbitals can be determined completely by a numerical procedure, analogously
to numerical HF methods. In practice, such procedures are limited to small systems,
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and essentially all calculations employ an expansion of the KS orbitals in an atomic
basis set.

(6.58)

The basis functions are often the same as used in wave mechanics for expanding the
HF orbitals, although basis functions specifically optimized for DFT have recently been
proposed (see Section 5.4.7 for details).

The variational procedure again leads to a matrix equation in the atomic orbital
basis that can be written in the following form (compare to eq. (3.51)).

(6.59)

The hKS matrix is analogous to the Fock matrix in wave mechanics, and the one-elec-
tron and Coulomb parts are identical to the corresponding Fock matrix elements. The
exchange–correlation part, however, is given in terms of the electron density, and pos-
sibly also involves derivatives of the density or orbitals.

(6.60)

Since the Vxc functional depends on the integration variables implicitly via the elec-
tron density, these integrals cannot be evaluated analytically but must be generated by
a numerical integration.

(6.61)

As the number of grid points G goes to infinity, the approximation becomes exact. In
practice, the number of points is selected based on the desired accuracy of the final
results, i.e. if the energy is only required with an accuracy of 10−3, the number of inte-
gration points can be smaller than if the energy is required with an accuracy of 10−5.86

There are also some technical skills involved in selecting the optimum distribution of
a given number of points to yield the best accuracy, i.e. the points should be dense
where the function Vxc varies most. The grid is usually selected as being spherical
around each nucleus, making it dense in the radial direction near the nucleus, and dense
in the angular part in the valence space. For typical applications, 1000–10000 points
are used for each atom.87 It should be noted that only the larger of such grids approach
saturation, i.e. in general the energy will depend on the number (and location) of grid
points. In order to compare energies for different systems, the same grid must there-
fore be used. The grid plays the same role for Exc as the basis set for the other terms.
Just as it is improper to compare energies calculated with different basis sets, it is not
justified to compare DFT energies calculated with different grid sizes. Furthermore, an
incomplete grid may lead to “grid superposition errors” analogous to basis set super-
position errors (Section 5.10).

With an expansion of the orbitals in basis functions, the number of integrals neces-
sary for solving the KS equations rises as M 4

basis, owing to the Coulomb integrals in the
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J functional (and possibly also “exact” exchange in the hybrid methods). The number
of grid points for the numerical Exc integration (eq. (6.61)) increases linearly with the
system size, and the computational effort for the exchange–correlation term rises as
GM 2

basis, i.e. a cubic dependence of the system size. When the Coulomb (and possibly
“exact” exchange) term is evaluated directly from integrals over basis functions, DFT
methods scale formally as M 4

basis. However, as discussed in Section 3.8.6, the Coulomb
(and exchange) part can be calculated with an effort that scales only as M 1

basis for large
systems with for example fast multipole methods. The numerical integration required
for the exchange and correlation parts may also be reduced to a computation cost that
scales linearly with system size, i.e. with modern techniques DFT methods have true
linear scaling.88 This opens up the possibility of performing accurate calculations on
systems containing thousands of atoms, which is likely to have impacts on many areas
outside traditional computational chemistry.

Nevertheless, the formal M 4
basis scaling has spawned approaches that reduce the

dependence to M 3
basis. This may be achieved by fitting the electron density to a linear

combination of functions, and using the fitted density in evaluating the J integrals in
the Coulomb term.

(6.62)

The density fitting functions may be the same as those used in expanding the orbitals,
but more often an auxiliary basis that is optimized for density fitting is used. The fitting
constants a′a are often chosen such that the Coulomb energy arising from the differ-
ence between the exact and fitted densities is minimized, subject to the constraint of
charge conservation.89 The J integrals then become eq. (6.63), which only involves three
basis functions, thereby reducing the computational effort to M 3

basis.

(6.63)

Alternative versions where the Coulomb part of the Kohn–Sham matrix is assembled
using plane waves as the auxiliary basis have also been proposed and, properly 
implemented, these achieve linear scaling even for small systems and for large 
basis sets.90

The use of grid-based techniques for the numerical integration of the exchange–cor-
relation contribution has some disadvantages when derivatives of the energy are
desired. For this reason, there is also interest in developing grid-free DFT methods
where the exchange–correlation potential is expressed completely in terms of analyt-
ical integrals.91

The computational cost of a DFT calculation depends strongly on the implementa-
tion strategy. The use of DFT in the chemical community has to a large extent been
introduced by modifying existing programs designed for wave function methods, and
in these cases the numerical integration of the exchange–correlation energy adds a
small overhead relative to an HF calculation. Programs designed for DFT from the
outset, on the other hand, can exploit the reductions arising from density fitting, and
can consequently run significantly faster than a wave function HF calculation.92

Furthermore, the use of grid-based methods for evaluating the Coulomb and
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exchange–correlation contributions means that almost any kind of basis functions can
be used, including Slater type orbitals.

Finally, DFT methods are one-dimensional just like HF methods, and increasing the
size of the basis set allows a better and better description of the KS orbitals. Since the
DFT energy depends directly on the electron density, it has an exponential conver-
gence with respect to basis set size, analogously to HF methods, and a polarized triple
zeta type basis usually gives results close to the basis set limit.

6.9 Final Considerations
Should DFT methods be considered ab initio or semi-empirical? If ab initio is taken
to mean the absence of fitting parameters, LSDA methods are ab initio but gradient-
corrected methods may or may not be.The LSDA exchange energy contains no param-
eters and the correlation functional is known accurately as a tabulated function of the
density.The use of a parameterized interpolation formula in practical calculations does
not represent fitting in order to improve the performance for atomic and molecular
systems. Some gradient-corrected methods (e.g. the B88 exchange and the LYP corre-
lation), however, contain parameters that are fitted to give the best agreement with
experimental atomic data, but the number of parameters is significantly smaller than
for semi-empirical methods. The semi-empirical PM3 method (Section 3.11.5), for
example, has 18 parameters for each atom, while the B88 exchange functional only has
one fitting constant, valid for the whole periodic table. Functionals such as VSXC con-
tains a moderate number of parameters (21), while other functionals such as PBE are
derived entirely from theory and can consequently be considered “pure” ab initio.

If ab initio is taken to mean that the method is based on theory, which in principle
is able to produce the exact results, DFT methods are ab initio. The only caveat is that
current methods cannot yield the exact results, even in the limit of a complete basis
set, since the functional form of the exact exchange–correlation energy is not known.
At present it is easier to systematically improve on a wave function description than
adding corrections to the energy functional in DFT. Methods using reduced density
matrices are still in their infancy, but promising results have been obtained in recent
years.

It is perhaps a little disturbing that seemingly very different functionals give similar-
quality results.93 Levy and Perdew94 and others95 have shown how wave functions of
near exact quality (such as CCSD(T)) can be “inverted” by a “constrained search”
method to give near exact KS orbitals and corresponding exchange–correlation poten-
tials. Comparisons of such “exact” Vxc potentials with those discussed in the previous
subsections have revealed large deviations and erroneous functional behaviour.96 Since
many of these functionals perform well in practical applications, it is clear that the per-
formance is not particularly sensitive to details in the functional, and that the good
performance to some extent is due to error cancellations.

Although gradient-corrected DFT methods have been shown to give impressive
results, even for theoretically difficult problems, the lack of a systematic way of extend-
ing a series of calculations to approach the exact result is a major drawback of DFT.
The results converge toward a certain value as the basis set is increased, but theory
does not allow an evaluation of the errors inherent in this limit (such as the system-
atic overestimation of vibrational frequencies with wave mechanics HF methods). Fur-
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thermore, although a progression of methods such as LSDA, BLYP and B3LYP has
provided successively lower errors for a suitable set of reference data (such as that
used for calibrating the Gaussian-2 model), there is no guarantee that the same pro-
gression will provide better and better results for a specific property of a given system.
Indeed, LSDA methods may in some cases provide better results, even in the limit of
a large basis set, than either of the more “complete” gradient-corrected models. The
quality of a given result can therefore only be determined by comparing the perform-
ance for similar systems where experimental or high-quality wave mechanics results
are available. In this respect, DFT resembles semi-empirical methods. Nevertheless,
DFT methods, especially those involving gradient corrections and hybrid methods, are
significantly more accurate (and the errors are much more uniform) than those of for
example the MNDO family, and DFT is consequently a valuable tool for systems where
a (very) high accuracy is not needed.
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7 Valence Bond Methods

Essentially all practical calculations for generating solutions to the electronic
Schrödinger equation have been performed with molecular orbital methods. The
zeroth-order wave function is constructed as a single Slater determinant and the MOs
are expanded in a set of atomic orbitals, the basis set. In a subsequent step the wave
function may be improved by adding electron correlation with either CI, MP or CC
methods. There are two characteristics of such approaches: (1) the one-electron func-
tions, the MOs, are delocalized over the whole molecule, and (2) an accurate treatment
of the electron correlation requires many (millions or billions) “excited” Slater deter-
minants. The delocalized nature of the MOs is partly a consequence of choosing the
Lagrange multiplier matrix to be diagonal (canonical orbitals, eq. (3.42)), they may in
a subsequent step be mixed to form localized orbitals (see Section 9.4) without affect-
ing the total wave function. Such a localization, however, is not unique. Furthermore,
delocalized MOs are at variance with the basic concept in chemistry that molecules
are composed of structural units (functional groups) which to a very good approxi-
mation are constant from molecule to molecule. The MOs for propane and butane, for
example, are quite different, although “common” knowledge is that they contain CH3

and CH2 units that in terms of structure and reactivity are very similar for the two mol-
ecules. A description of the electronic wave function as having electrons in orbitals
formed as linear combinations of all (in principle) atomic orbitals is also at variance
with the chemical language of molecules being composed of atoms held together by
bonds, where the bonds are formed by pairing unpaired electrons contained in atomic
orbitals. Finally, when electron correlation is important (as is usually the case), the need
to include many Slater determinants obscures the picture of electrons residing in
orbitals.

There is an equivalent way of generating solutions to the electronic Schrödinger
equation that conceptually is much closer to the experimentalist’s language, known as
Valence Bond (VB) theory.1 We will start by illustrating the concepts for the H2 mol-
ecule, and note how it differs from MO methods.
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7.1 Classical Valence Bond Theory
A single-determinant MO wave function for the H2 molecule within a minimum basis
consisting of a single s-function on each nucleus is given in eq. (7.1) (see also Section
4.3).

(7.1)

We have here ignored the normalization constants. The Slater determinant may be
expanded in AOs, as shown in eq. (7.2).

(7.2)

This shows that the HF wave function consists of equal amounts of ionic (cAcA and
cBcB) and covalent (cAcB and cBcA) terms. In the dissociation limit only the covalent
terms are correct, but the single-determinant description does not allow the ratio of
covalent to ionic terms to vary. In order to provide a correct description, a second
determinant is necessary.

(7.3)

By including the doubly excited determinant Φ1, built from the antibonding MO, the
amounts of the covalent and ionic terms may be varied, and this is determined com-
pletely by the variational principle (eq. (4.20)).

(7.4)

This two-configurational CI wave function allows a qualitatively correct description of
the H2 molecule at all distances and in the dissociation limit, where the weights of the
two configurations become equal.

The classical VB wave function, on the other hand, is build from the atomic frag-
ments by coupling the unpaired electrons to form a bond. In the H2 case, the two elec-
trons are coupled into a singlet pair, properly antisymmetrized. The simplest VB
description, known as a Heitler–London (HL) function, includes only the two covalent
terms in the HF wave function.

(7.5)

Just as the single-determinant MO wave function may be improved by including
excited determinants, the simple VB-HL function may also be improved by adding
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terms that correspond to higher energy configurations for the fragments, in this case
ionic structures.

(7.6)

(7.7)

The final description, either in terms of a CI wave function written as a linear combina-
tion of two determinants build from delocalized MOs (eq. (7.4)), or as a VB wave func-
tion written in terms of two VB-HL structures composed of AOs (eq. (7.7)), is identical.

For the H2 system, the amount of ionic HL structures determined by the variational
principle is 44%, close to the MO-HF value of 50%. The need for including large
amounts of ionic structures in the VB formalism is due to the fact that pure atomic
orbitals are used.

Consider now a covalent VB function built from “atomic” orbitals that are allowed
to distort from the pure atomic shape.

(7.8)

Such a VB function is known as a Coulson–Fischer (CF) type. The c constant is fairly
small (for H2, c is ~0.04), but by allowing the VB orbitals to adopt the optimum shape,
the need for ionic VB structures is strongly reduced. Note that the two VB orbitals in
eq. (7.8) are not orthogonal – the overlap is given by eq. (7.9).

(7.9)

Compared with the overlap of the undistorted atomic orbitals used in the HL wave
function, which is just SAB, it is seen that the overlap is increased (c is positive), i.e. the
orbitals distort such that they overlap better in order to make a bond. Although the
distortion is fairly small (a few percent), this effectively eliminates the need for includ-
ing ionic VB terms. When c is variationally optimized, the MO-CI, VB-HL and VB-CF
wave functions (eqs (7.4), (7.7) and (7.8)) are all completely equivalent. The MO
approach incorporates the flexibility in terms of an “excited” determinant, the VB-HL
in terms of “ionic” structures, and the VB-CF in terms of “distorted” atomic orbitals.

In the MO-CI language, the correct dissociation of a single bond requires the addi-
tion of a second doubly excited determinant to the wave function. The VB-CF wave
function, on the other hand, dissociates smoothly to the correct limit, the VB-orbitals
simply reverting to their pure atomic shapes, with the overlap disappearing.

7.2 Spin-Coupled Valence Bond Theory
The generalization of a Coulson–Fischer type wave function to the molecular case with
an arbitrary-size basis set is known as Spin-Coupled Valence Bond (SCVB) theory.2

It is again instructive to compare with the traditional MO approach, taking the CH4

molecule as an example. The MO single-determinant description (RHF, which is iden-
tical to UHF near the equilibrium geometry) of the valence orbitals is in terms of four
delocalized orbitals, each occupied by two electrons with opposite spin. The C—H

f f c c c c c c
f f

A B A B A A B B

A B AB

= +( ) + +( )
= +( ) +

1 2

1 4

2

2

c c

c S c

ΦCF A B B A

A A B

B B A

= +( ) −[ ]
= +
= +

f f f f ab ba
f c c
f c c

c

c

Ψ Φ ΦHL HL
cov

HL
ion= +a a0 1

ΦHL
ion

A A B B= +( ) −[ ]c c c c ab ba

270 VALENCE BOND METHODS



bonding is described by four different, orthogonal molecular orbitals, each expanded
in a set of AOs.

(7.10)

Here A is the usual antisymmetrizer (eq. (3.21)) and a bar above a MO indicates that
the electron has a b spin function, no bar indicates an a spin function.

The SCVB description, on the other hand, considers the four bonds in CH4 as arising
from coupling of a single electron at each of the four hydrogen atoms with a single
unpaired electron at the carbon atom. Since the ground state of the carbon atom is a
triplet, corresponding to the electron configuration 1s22s22p2, the first step is formation
of four equivalent “hybrid” orbitals by mixing three parts p-function with one part s-
function, generating four equivalent “sp3-hybrid” orbitals. Each of these singly occu-
pied hybrid orbitals can then couple with a hydrogen atom to form four equivalent
C—H bonds. The electron spins are coupled such that the total spin is a singlet, which
can be done in several different ways. The coupling of four electrons to a total singlet
state, for example, can be done either by coupling two electrons in a pair to a singlet,
and then coupling two singlet pairs, or by first coupling two electrons in a pair to a
triplet, and subsequently coupling two triplet pairs to an overall singlet.
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Figure 7.1 Two possible schemes for coupling four electrons to an overall singlet

The Θ N
S,i symbol is used to designate the ith combination of spin functions coupling

N electrons to give an overall spin of S, and there are f N
S number of ways of doing this.

The value of f N
S is given by eq. (7.11).

(7.11)

For a singlet wave function (S = 0), the number of coupling schemes for N electrons
is given in Table 7.1.

f
S N

N S N S
S
N = +( )

+ +( ) −( )
2 1

11
2

1
2

!
! !

Table 7.1 Number of possible spin coupling
schemes for achieving an overall singlet state

N f0
N

2 1
4 2
6 5
8 14

10 42
12 132
14 429



For the eight valence electrons in CH4 there are 14 possible spin couplings result-
ing in an overall singlet state. The full SCVB function may be written (again neglect-
ing normalization) as in eq. (7.12).

(7.12)

There are now eight different spatial orbitals, fi, four of which are essentially carbon
sp3-hybrid orbitals, with the other four being close to atomic hydrogen s-orbitals. The
expansion of each of the VB-orbitals in terms of all the basis functions located on all
the nuclei allows the orbitals to distort from the pure atomic shape. The SCVB wave
function is variationally optimized, both with respect to the VB-orbital coefficients cai

and the spin coupling coefficients ai. The result is that a complete set of optimum “dis-
torted” atomic orbitals is determined together with the weight of the different spin
couplings. Each spin coupling term (in the so-called Rumer basis) is closely related to
the concept of a resonance structure used in organic chemistry textbooks. An SCVB
calculation of CH4 gives as a result that one of the spin coupling schemes completely
dominates the wave function, namely that corresponding to the electron pair in each
of the C—H bonds being singlet coupled. This is the quantum mechanical analogue of
the graphical representation of CH4 shown in Figure 7.2.

Each of the lines represents a singlet-coupled electron pair between two orbitals
that strongly overlap to form a bond, and the drawing in Figure 7.2 is the only impor-
tant “resonance” form.
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Figure 7.2 A representation of the dominating spin coupling in CH4

Consider now the π-system in benzene. The MO approach will generate linear com-
binations of the atomic p-orbitals, producing six π-orbitals delocalized over the whole
molecule with four different orbital energies (two sets of degenerate orbitals).

The stability of benzene can be attributed to the large gap between the HOMO and
LUMO orbitals.

A SCVB calculation considering only the coupling of the six π-electrons, gives a
somewhat different picture. The VB π-orbitals are strongly localized on each carbon,
resembling p-orbitals that are slightly distorted in the direction of the nearest neigh-
bour atoms. It is now found that five spin coupling combinations are important, these



are shown in Figure 7.4, where a bold line indicates two electrons coupled into a singlet
pair.

Each of the two first VB structures contributes ~40% to the wave function, and each
of the remaining three contributes ~6%.3 The stability of benzene in the SCVB picture
is due to resonance between these VB structures. It is furthermore straightforward to
calculate the resonance energy by comparing the full SCVB energy with that calcu-
lated from a VB wave function omitting certain spin coupling functions.

The MO wave function for CH4 may be improved by adding configurations corre-
sponding to excited determinants, i.e. replacing occupied MOs with virtual MOs.
Allowing all excitations in the minimal basis valence space and performing the full
optimization corresponds to an [8,8]-CASSCF wave function (Section 4.6). Similarly,
the SCVB wave function in eq. (7.12) may be improved by adding ionic VB structures
such as CH3

−/H+ and CH3
+/H−, and this corresponds to exciting an electron from one

of the singly occupied VB orbitals into another VB orbital, thereby making it doubly
occupied. The importance of these excited/ionic terms can again be determined by the
variational principle. If all such ionic terms are included, the fully optimized SCVB+CI
wave function is for all practical purposes identical to that obtained by the MO-
CASSCF approach (the only difference is a possible slight difference in the descrip-
tion of the carbon 1s-core orbital).

Both types of wave function provide essentially the same total energy, and thus
include the same amount of electron correlation. The MO-CASSCF wave function
attributes the electron correlation to interaction of 1764 configurations, the
Hartree–Fock reference and 1763 excited configurations, with each of the 1763 con-
figurations providing only a small amount of the correlation energy. The SCVB wave
function (which includes only one resonance structure), however, contains 90+% of
the correlation energy, and only a few percent is attributed to “excited” structures. The
ability of SCVB wave functions to include electron correlation is due to the fact that
the VB orbitals are strongly localized and, since they are occupied by only one elec-
tron, they have the built-in feature of electrons avoiding each other. In a sense, an
SCVB wave function is the best wave function that can be constructed in terms of prod-
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Figure 7.3 Molecular orbital energies in benzene

Figure 7.4 Representations of important spin coupling schemes in benzene



ucts of spatial orbitals. By allowing the orbitals to become non-orthogonal, the large
majority (80–90%) of what is called electron correlation in an MO approach can be
included in a single-determinant wave function composed of spatial orbitals, multiplied
by proper spin coupling functions.

There are a number of technical complications associated with optimizing the SCVB
wave function due to the non-orthogonal orbitals. The MO-CI or MO-CASSCF
approaches simplify considerably owing to the orthogonality of the MOs, and thereby
also of the Slater determinants. Computationally, the optimization of an SCVB wave
function, where N electrons are coupled in all possible ways, is similar to that required
for constructing an [N,N]-CASSCF wave function. This effectively limits the size of
SCVB wave functions to coupling of 12–16 electrons. The actual optimization of the
wave function is usually done by a second-order expansion of the energy in terms of
orbital and spin coupling coefficients, and employing a Newton–Raphson type scheme,
analogously to MCSCF methods (Section 4.6). The non-orthogonal orbitals have the
disadvantage that it is difficult to add dynamical correlation on top of an SCVB wave
function by perturbation or coupled cluster theory, although (non-orthogonal) CI
methods are straightforward. SCVB+CI approaches may also be used to describe
excited states, analogously to MO-CI methods.

It should be emphasized again that the results obtained from an [N,N]-CASSCF and
a corresponding N-electron SCVB wave function (or SCVB+CI and MRCI) are vir-
tually identical. The difference is in the way the results can be analyzed. Molecules in
the SCVB picture are composed of atoms held together by bonds, where bonds are
formed by (singlet) coupling of the electron spins between (two) overlapping orbitals.
These orbitals are strongly localized, usually on a single atom, and are basically atomic
orbitals slightly distorted by the presence of the other atoms in the molecule. The VB
description of a bond as the result of two overlapping orbitals is in contrast to the MO
approach where a bond between two atoms arises as a sum over (small) contributions
from many delocalized molecular orbitals. Furthermore, the weight of the different
ways spin couplings in an SCVB wave function carries a direct analogy with chemical
concepts such as “resonance” structures.

The SCVB method is a valuable tool for providing insight into the problem. This is
to a certain extent also possible from an MO type wave function by localizing the
orbitals or by analyzing the natural orbitals (see Sections 9.4 and 9.5 for details).
However, there is no unique method for producing localized orbitals, and different
methods may give different orbitals. Natural orbitals are analogous to canonical
orbitals delocalized over the whole molecule. The SCVB orbitals, in contrast, are
uniquely determined by the variational procedure, and there is no freedom to further
transforming them by making linear combinations without destroying the variational
property.

The primary feature of SCVB is the use of non-orthogonal orbitals, which allows a
much more compact representation of the wave function. An MO-CI wave function
of a certain quality may involve many thousands of Slater determinants, while a similar-
quality VB wave function may be written as only a handful of “resonating” VB struc-
tures. Furthermore, the VB orbitals, and spin couplings, of a C—H bond in say propane
and butane are very similar, in contrast to the vastly different MO descriptions of the
two systems. The VB picture is thus much closer to the traditional descriptive language
used with molecules composed of functional groups. The widespread availability of

274 VALENCE BOND METHODS



programs for performing CASSCF calculations, and the fact that CASSCF calculations
are computationally more efficient owing to the orthogonality of the MOs, have
prompted developments of schemes for transforming CASSCF wave functions to VB
structures, denoted CASVB.3 A corresponding procedure using orthogonal orbitals
(which introduce large weights of ionic structures) has also been reported.4

7.3 Generalized Valence Bond Theory
The SCVB wave function allows all possible spin couplings to take place and has no
restrictions on the form of the orbitals. The Generalized Valence Bond (GVB) method
can be considered as a reduced version of the full problem where only certain subsets
of spin couplings are allowed.5 For a typical case of a singlet system, the GVB method
has two (non-orthogonal) orbitals assigned to each bond, and each pair of electrons in
a bond are required to couple to a singlet pair. The coupling of such singlet pairs will
then give the overall singlet spin state. This is known as Perfect Pairing (PP), and is one
of the many possible spin coupling schemes, and such two-electron two-orbital pairs
are called geminal pairs. Just as an orbital is a wave function for one electron, a geminal
is a wave function for two electrons. In order to reduce the computational problem,
the Strong Orthogonality (SO) condition is normally imposed on the GVB wave func-
tion. This means that orbitals belonging to different pairs are required to be ortho-
gonal. While the perfect pairing coupling typically is the largest contribution to the full
SCVB wave function, the strong orthogonality constraint is often a quite poor approxi-
mation, and may lead to artefacts. For diazomethane, for example, the SCVB wave
function is dominated (91%) by the PP coupling, leading to the conclusion that the
molecule has essentially normal C=N and N=N π-bonds, perpendicular to the plane
defined by the CH2 moiety.6 Taking into account also the in-plane bonding, this suggest
that diazomethane is best described with a triple bond between the two nitrogens,
thereby making the central nitrogen “hypervalent”, as illustrated in Figure 7.5.
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Figure 7.6 A representation of the GVB wave function for diazomethane

Figure 7.5 A representation of the SCVB wave function for diazomethane

There are strong overlaps between the VB orbitals, the smallest overlap (between
the carbon and terminal nitrogen) is ~0.4, and that between the two orbitals on the
central nitrogen is ~0.9. The GVB-SOPP approach, however, forces these geminal 
pairs to be orthogonal, leading to the conclusion that the electronic structure of 
diazomethane has a very strong diradical nature, as illustrated in Figure 7.6.
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8 Relativistic Methods

The central theme in relativity is that the speed of light, c, is constant in all inertia
frames (coordinate systems that move with respect to each other). Augmented with
the requirement that physical laws should be identical in such frames, this has as a con-
sequence that time and space coordinates become “equivalent”. A relativistic descrip-
tion of a particle thus requires four coordinates, three space and one time coordinate.1

The latter is usually multiplied by c to have units identical to the space variables.
A change between different coordinate systems can be described by a Lorentz trans-

formation, which may mix space and time coordinates.The postulate that physical laws
should be identical in all coordinate systems is equivalent to the requirement that
equations describing the physics must be invariant (unchanged) to a Lorentz trans-
formation. Considering the time-dependent Schrödinger equation (8.1), it is clear that
it is not Lorentz invariant since the derivative with respect to space coordinates is of
second order, but the time derivative is only first order. The fundamental structure of
the Schrödinger equation is therefore not relativistically correct.

(8.1)

For use below, we have elected here to explicitly write the electron mass as m, although
it is equal to one in atomic units.

One of the consequences of the constant speed of light is that the mass of a particle,
which moves at a substantial fraction of c, increases over the rest mass m0.

(8.2)

The energy of a 1s-electron in a hydrogen-like system (one nucleus and one electron)
is −Z2/2, and classically this is equal to minus the kinetic energy, 1/2mv2, owing to the
virial theorem (E = −T = 1/2V). In atomic units (m = 1) the classical velocity of a 1s-
electron is thus Z. The speed of light in atomic units is 137.036, and it is clear that 
relativistic effects cannot be neglected for the core electrons in heavy nuclei. For atoms
with large Z, the 1s-electrons are relativistic and thus heavier, which has the effect that
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the 1s-orbital shrinks in size, by the same factor as the mass increases (eq. (8.2)). In
order to maintain orthogonality, the higher s-orbitals also contract. This provides a
more effective screening of the nuclear charge for the higher angular momentum
orbitals, which consequently increase in size. For p-orbitals the spin–orbit interaction,
which mixes s- and p-orbitals, counteracts the inflation. The net effect is that p-orbitals
are relatively unaffected in size, while d- and f-orbitals become larger and more diffuse.

In terms of total energy, the relativistic correction becomes comparable to the cor-
relation energy already for Z~10, while it becomes comparable to the exchange energy
for Z~50. Since the majority of the relativistic effects are concentrated in the core
orbitals, there is a large error cancellation for molecular properties. Relativistic effects
for geometries and energetics are normally negligible for the first three rows in the
periodic table (up to Kr, Z = 36, corresponding to a “mass correction” of 1.04), the
fourth row represents an intermediate case, while relativistic corrections are necessary
for the fifth and sixth rows, and for lanthanide/actinide metals. For effects involving
electron spin (e.g. spin–orbit coupling), which are purely relativistic in origin, there is
no non-relativistic counterpart, and the “relativistic correction” is of course everything.

Although an in-depth treatment of relativistic effects is outside the scope of this
book, it may be instructive to point out some of the features and problems in a rela-
tivistic quantum description of atoms and molecules. Furthermore, we will require
some operators derived from a relativistic treatment for calculating molecular prop-
erties in Chapter 10.

8.1 The Dirac Equation
For a free electron, Dirac proposed that the (time-dependent) Schrödinger equation
should be replaced by eq. (8.3).

(8.3)

Here a and b are 4 × 4 matrices, a is written in terms of the three Pauli 2 × 2 spin
matrices s, and b in term of a 2 × 2 unit matrix I.

(8.4)

Except for a factor of 1/2, the sx,y,z matrices can be viewed as representations of the sx,
sy and sz spin operators, respectively, when the a and b spin functions are taken as (1,0)
and (0,1) vectors.

(8.5)
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The a function is an eigenfunction of the sz operator with an eigenvalue of 1/2, and the
b function similarly has an eigenvalue of −1/2.

The Dirac equation is of same order in all variables (space and time), since the
momentum operator p (= −i∇) involves a first-order differentiation with respect to the
space variables. It should be noted that the free electron rest energy in eq. (8.3) is mc2,
equal to 0.511MeV, while this situation is defined as zero in the non-relativistic case.
The zero point of the energy scale is therefore shifted by 5.11 × 105 eV, a large amount
compared with the binding energy of 13.6eV for a hydrogen atom. The two (relativ-
istic and non-relativistic) energy scales may be aligned by subtracting the electron rest
energy, which corresponds to replacing the b matrix in eq. (8.3) by b¢.

(8.6)

The Dirac equation corresponds to satisfying the requirements of special relativity in
connection with the quantum behaviour of the electron. Special relativity considers
only systems that move with a constant velocity with respect to each other, which can
hardly be considered a good approximation for the movement of an electron around
a nucleus. A relativistic treatment of accelerated systems is described by general rela-
tivity, which is a gravitational theory. For atomic systems, however, the gravitational
interaction between electrons and nuclei (or between electrons) is insignificant com-
pared with the electrostatic interaction. Furthermore, a consistent theory describing
the quantum aspects of gravitation has not yet been developed.

The Dirac equation is four-dimensional, and the relativistic wave function conse-
quently contains four components. Two of the degrees of freedom are accounted for
by assigning an intrinsic magnetic moment (spin), while the other two are inter-
preted as two different particles, electron and positron. The positronic solutions show
up as a continuum of “negative” energy states, having energies below −2mc2,
as illustrated in Figure 8.1. Note that the spacing between bound states has been 
exaggerated, as the binding energy is of the order of eV while 2mc2 is of the order of
MeV.
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It is conventional to write the relativistic wave function as in eq. (8.7).

(8.7)

Here ΨL and ΨS are the large and small components of the wave function, and a and
b indicate the usual spin functions. Note that the spatial parts of ΨLa/ΨLb, and ΨSa/ΨSb,
are not necessarily identical. For electrons, the large component reduces to the solu-
tions of the Schrödinger equation when c → ∞ (the non-relativistic limit), and the small
component disappears. The small component of the electronic wave function corre-
sponds to a coupling with the positronic states.

8.2 Connections Between the Dirac and Schrödinger Equations
8.2.1 Including electric potentials

In the presence of an electric potential V (e.g. from nuclei), the time-independent Dirac
equation may be written as in eq. (8.8), where we have again explicitly indicated the
electron mass.

(8.8)

Since a and b¢ are block matrices in terms of s and I, eq. (8.8) can be factored out in
two equations.

(8.9)

Here ΨL and ΨS are (large and small) two-component wave functions that include the
a and b spin functions. The latter equation can be solved for ΨS.

(8.10)

The inverse quantity can be factorized as in eq. (8.11).

(8.11)

Eq. (8.10) may then be written as in eq. (8.12).

(8.12)

The top equation in (8.9) then becomes eq. (8.13).

(8.13)
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In the non-relativistic limit (c → ∞) the K factor is 1, and the first term becomes 
(s ⋅p)(s ⋅p). Using the vector identity (s ⋅p)(s ⋅p) = p ⋅p + is(p × p), this gives the non-
relativistic kinetic energy p2/2m, since the vector product of any vector with itself is
zero (p × p = 0). The equation for the large component therefore reduces to the
Schrödinger equation.

(8.14)

The electron spin is still present in eq. (8.14), since ΨL is a two-component wave func-
tion, but this can trivially be separated out since the operators do not contain any spin
dependence.

In the non-relativistic limit the small component of the wave function is given by
eq. (8.15).

(8.15)

For a hydrogenic wave function (ΨL ≈ e−Zr), this gives eq. (8.16) in atomic units (setting
m = 1).

(8.16)

For a hydrogen atom the small component accounts for only ~0.4% of the total wave
function and 10−3% of the electron density, but for a uranium 1s-electron it is a third
of the wave function and ~10% of the density.

We may obtain relativistic corrections by expanding the K factor in eq. (8.11).

(8.17)

This is only valid when E − V << 2mc2, however all atoms have a region close to the
nucleus where this is not fulfilled (since V → −∞ for r → 0). Inserting (8.17) in (8.13),
assuming a Coulomb potential −Z/r (i.e. V is the attraction to a nucleus), gives after
renormalization of the (large component) wave function and some rearrangement the
terms shown in eq. (8.18).

(8.18)

Eq. (8.18) is called the Pauli equation. The first two terms are the usual non-
relativistic kinetic and potential energy operators, the p4 term is called the mass–
velocity correction, and is due to the dependence of the electron mass on the 
velocity. The next is the spin–orbit term (s is the electron spin and l is the angular
momentum operator r × p), which corresponds to an interaction of the electron 
spin with the magnetic field generated by the movement of the electron. The 
last term involving the δ function is the Darwin correction, which corresponds to a 
correction that can be interpreted as the electron making a high-frequency oscillation
around its mean position, sometimes referred to as Zwitterbewegung. The mass–
velocity and Darwin corrections are often collectively called the scalar relativistic 
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corrections. Since they have opposite signs, they do to a certain extent cancel each
other.

Owing to the divergence of the K expansion near the nuclei, the mass–velocity and
Darwin corrections can only be used as first-order corrections. Inclusion of such opera-
tors in a variational sense will result in a collapse of the wave function. An alternative
method is to partition eq. (8.11) as in eq. (8.19), which avoids the divergence near the
nucleus.

(8.19)

In contrast to eq. (8.17), the factor E/(2mc2 − V) is always much smaller than 1, and
K¢ may be expanded in powers of E/(2mc2 − V), analogously to eq. (8.17). Keeping
only the zeroth-order term (i.e. setting K¢ = 1) gives the Zeroth-Order Regular Approxi-
mation (ZORA) method, eq. (8.20).2

(8.20)

Note that in this case the spin–orbit coupling is already included in zeroth order.
Including the first-order term from an expansion of K¢ defines the First-Order Regular
Approximation (FORA) method.A disadvantage of these methods is that they are not
gauge invariant.3

8.2.2 Including both electric and magnetic potentials

The presence of a magnetic field can be included in the so-called minimal coupling by
addition of a vector potential A to the momentum operator p, forming a generalized
momentum operator p, which for an electron (charge of −1) is given by eq. (8.21).

(8.21)

The magnetic field is defined as the curl of the vector potential.

(8.22)

For an external magnetic field, it is conventional to write the vector potential as in eq.
(8.23).

(8.23)

Here RG is the gauge origin, i.e. the “zero” point for the vector potential. The 
gauge origin is often taken as the centre of mass for the system, but this is by no 
means unique. The results from an exact calculation will be independent of RG but, for
approximate calculations, this is not guaranteed, and the results may thus depend on 
where the gauge origin is chosen. Such gauge-dependent properties are clearly unde-
sirable, since different values can be generated by selecting different (arbitrary) gauge
origins.
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With the generalized momentum operator p replacing p, the time-independent Dirac
equation may be separated analogously to the procedure in Section 8.2.1 to give the
equivalent of eq. (8.13).

(8.24)

Taking the non-relativistic limit corresponding to K = 1 gives (s ⋅p)(s ⋅p) for the first
term. Using again the vector identity (s ⋅p)(s ⋅p) = p ⋅p + is(p × p), this may be written
as in eq. (8.25).

(8.25)

In contrast to the situation without a magnetic field, the latter vector product no longer
disappears. The p × p term can be expanded by inserting the definition of p from eq.
(8.21).

(8.26)

The first and last terms are zero (since a × a = 0). With p = −i∇ the other two terms
yield eq. (8.27).

(8.27)

The two last terms cancel (since a × b = −b × a), and the curl of the vector potential is
the magnetic field, eq. (8.22). The final result is given in eq. (8.28).

(8.28)

The s ⋅B term is called the (spin) Zeeman interaction, and represents the interaction
of an (external) magnetic field with the intrinsic magnetic moment associated with the
electron. As noted in eq. (8.5), s represents the spin operator (except for a factor of
1/2), and the s ⋅B/2m interaction can (in atomic units) also be written as s ⋅B, with s
being the electron spin operator. In a more refined treatment, by including quantum
field corrections, it turns out that the electron magnetic moment is not exactly equal
to the spin. It is conventional to write the interaction as gemBs ⋅B where the Bohr mag-
neton mB (= eh- /2m) has a value of 1/2 in atomic units and the electronic g-factor ge is
approximately equal to 2.0023 (the deviation from the value of 2 (exactly) is due to
quantum field fluctuations).

Although electron spin is often said to arise from relativistic effects, the above shows
that spin naturally arises in the non-relativistic limit of the Dirac equation. It may also
be argued that electron spin is actually present in the non-relativistic case, as the kinetic
energy operator p2/2m is mathematically equivalent to (s ⋅p)2/2m. If the kinetic energy
is written as (s ⋅p)2/2m in the Schrödinger Hamiltonian, then electron spin is present
in the non-relativistic case, although it would only have consequences in the presence
of a magnetic field.
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The Dirac equation automatically includes effects due to electron spin, while this
must be introduced in a more or less ad hoc fashion in the Schrödinger equation (the
Pauli principle). Furthermore, once the spin–orbit interaction is included, the total elec-
tron spin is no longer a “good” quantum number: an orbital no longer contains an
integer number of a and b spin functions. The proper quantum number in relativistic
theory is therefore the total angular momentum obtained by vector addition of the
orbital and spin moments.

Turning now to the p2 term in eq. (8.28), it can with the use of eq. (8.21) be expanded
into eq. (8.29).

(8.29)

The p2 gives the usual (non-relativistic) kinetic energy operator. Since p = −i∇, the 
p ⋅A term gives eq. (8.30).

(8.30)

The Coulomb gauge is defined by ∇⋅A = 0, and in this gauge we have p ⋅A = A ⋅p. The
two terms involving A in eq. (8.29) can be evaluated by inserting the expression for
the vector potential (8.23).

(8.31)

Here the vector identities a × b ⋅c = a ⋅b × c and (a × b) ⋅(c × d) = (a ⋅c)(b ⋅d) − (a ⋅d)(c ⋅b)
have been used. In addition to the Zeeman term for electron spin (eq. (8.28)), the pres-
ence of a magnetic field introduces two new terms, being linear and quadratic in the
field. The linear operator represents an (orbital) Zeeman type interaction of the mag-
netic field with the magnetic moment generated by the movement of the electron, as
described by the angular momentum operator LG, while the quadratic term gives rise
to a component of the magnetizability in a perturbation treatment, as discussed in
Section 10.7.6.

8.3 Many-Particle Systems
A fully relativistic treatment of more than one particle would have to start from a full
QED treatment of the system (Chapter 1), and perform a perturbation expansion in
terms of the radiation frequency. There is no universally accepted way of doing 
this, and a full relativistic many-body equation has not yet been developed. For many-
particle systems it is assumed that each electron can be described by a Dirac operator
(ca ⋅p + b¢mc2) and the many-electron operator is a sum of such terms, in analogy with
the kinetic energy in non-relativistic theory. Furthermore, potential energy operators
are added to form a total operator equivalent to the Hamiltonian operator in non-
relativistic theory. Since this approach gives results that agree with experiments, the
assumptions appear justified.
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The Dirac operator incorporates relativistic effects for the kinetic energy. In order
to describe atomic and molecular systems, the potential energy operator must also 
be modified. In non-relativistic theory, the potential energy is given by the Coulomb
operator.

(8.32)

According to this equation, the interaction between two charged particles depends
only on the distance between them, but not on time. This cannot be correct when rela-
tivity is considered, as it implies that the attraction/repulsion between two particles
occurs instantly over the distance r12, violating the fundamental relativistic principle
that nothing can move faster than the speed of light. The interaction between distant
particles must be “later” than between particles that are close, and the potential is con-
sequently “retarded” (delayed). The relativistic interaction requires a description,
Quantum ElectroDynamics (QED), which involves exchange of photons between
charged particles. The photons travel at the speed of light and carry the information
equivalent to the classical Coulomb interaction. The relativistic potential energy 
operator becomes complicated and cannot be written in closed form. For actual cal-
culations, it may be expanded in a Taylor series in 1/c and, for chemical purposes, it is
normally only necessary to include terms up to 1/c2. In this approximation, the poten-
tial energy operator for the electron–electron repulsion is given by eq. (8.33).

(8.33)

Note that the subscript on the a-matrices refers to the particle, and a here includes all
of the ax, ay and az components in eq. (8.4). The first correction term in the square
bracket is called the Gaunt interaction, and the whole term in the square bracket 
is the Breit interaction. The Dirac matrices appear since they represent the velocity
operators in a relativistic description. The Gaunt term is a magnetic interaction (spin)
while the other term represents a retardation effect. Equation (8.33) is more often
written in the form shown in eq. (8.34).

(8.34)

Relativistic corrections to the nuclear–electron attraction (Vne) are of order 1/c3 (owing
to the much smaller velocity of the nuclei) and are normally neglected.

An expansion in powers of 1/c (or, equivalently, in powers of the fine-structure 
constant a = 1/c in atomic units) is a standard approach for deriving relativistic 
correction terms. Taking into account electron (s) and nuclear spins (I), and 
indicating explicitly an external electric potential by means of the field (F = −∇f, or 
−∇f − ∂A/∂t if time dependent), an expansion up to order 1/c2 of the Dirac Hamil-
tonian including the Coulomb–Breit potential gives the following set of operators,4

where the QED correction to the electron spin has been introduced by means of the
gemB factor. Note that many of these operators arise from the minimal coupling of the
magnetic field via the generalized momentum operator, as discussed in more detail in
Section 10.10.7.
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One electron operators:

(8.35)

Here Fi and Bi indicate the (electric and magnetic) fields at the position of particle i.
H e

Zeeman has the s ⋅B term from eq. (8.28) and a relativistic correction, and H e
mv is the

mass–velocity correction, as is also present in eq. (8.18). H e
SO and H e

Darwin are spin–orbit
and Darwin type correction with respect to an external electric field. It should be noted
that the generalized momentum operator contains magnetic fields via the vector poten-
tial p = p + A, and eq. (8.35) therefore implicitly includes higher order effects.

Two electron operators:

The sums run over all values of i and j, excluding the i = j term, and there is conse-
quently a factor of 1/2 included to avoid overcounting. HSO

ee is a spin–orbit operator,
describing the interaction of the electron spin with the magnetic field generated by its
own movement, as given by the angular momentum operator rij × pi. H ee

SOO is a
spin–other-orbit operator, describing the interaction of an electron spin with the mag-
netic field generated by the movement of the other electrons, as given by the angular
momentum operator rij × pj. H SS

ee and H OO
ee are spin–spin and orbit–orbit terms, account-

ing for additional magnetic interactions, where the orbit–orbit term comes from the
Breit correction to Vee (eq. (8.34)). The (two-electron) Darwin interaction H ee

Darwin con-
tains a δ function, which arise from the divergence of the field (∇⋅F) from the 
(electron–electron) potential energy operator, i.e. ∇⋅ (∇(1/r)) = −4πδ(r). The spin–spin
interaction HSS

ee also has a δ function, which comes from taking the curl of the vector
potential associated with the magnetic dipole corresponding to the electron spin. A
mathematical reformulation leads to a term involving the divergence of the r/r3
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(8.36)



operator, giving ∇⋅ (r/r3) = (4π/3)δ(r). Such terms are often called contact interactions,
since they depend on the two particles being at the same position (r = 0). In the
spin–spin case, it is normally called the Fermi Contact (FC) term.
Operators involving one nucleus and one electron:

(8.37)

The HSO
ne operator is the one-electron part of the spin–orbit interaction, while the

HSO
ee and H ee

SOO operators in eq. (8.36) define the two-electron part. The one-electron
term dominates and the two-electron contribution is often neglected or accounted 
for approximately by introducing an effective nuclear charge in HSO

ne (corresponding 
to a screening of the nucleus by the electrons). The effect of the spin–orbit operators
is to mix states having different total spin, as for example singlet and triplet 
states.

The equivalent of the spin–other-orbit operator in eq. (8.36) splits into two contri-
butions, one involving the interaction of the electron spin with the magnetic field gen-
erated by the movement of the nuclei, and one describing the interaction of the nuclear
spin with the magnetic field generated by the movement of the electrons. Only the
latter survives within the Born–Oppenheimer approximation, and it is normally
denoted the Paramagnetic Spin–Orbit (PSO) operator.The spin–spin term is analogous
to that in eq. (8.36), while the term describing the orbit–orbit interaction disappears
owing to the Born–Oppenheimer approximation. The spin–orbit and (one-electron)
Darwin terms are the same as given in eq. (8.18), except for the quantum field 
correction factor of gemB.

All of the terms in eqs (8.35)–(8.37) may be used as perturbation operators in con-
nection with non-relativistic theory,5 as discussed in more detail in Chapter 10. It should
be noted, however, that some of the operators are inherently divergent and should not
be used beyond a first-order perturbation correction.

8.4 Four-Component Calculations
Although relativistic effects can be included by perturbative operators describing 
corrections to the non-relativistic wave function, this rapidly becomes cumbersome 
if higher order corrections are required, and it is then perhaps more satisfying to
include relativistic effects by solving the Dirac equation directly. The simplest approxi-
mative wave function is a single determinant constructed from four-component one-
electron functions, called spinors, having large and small components multiplied with
the two spin functions. The spinors are the relativistic equivalents of the spin-orbitals
in non-relativistic theory. With such a wave function, the relativistic equation 
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corresponding to the Hartree–Fock equation is the Dirac–Fock equation, which in its
time-independent form (setting p = p and m = 1 in eq. (8.8)) can be written as in 
eq. (8.38).

(8.38)

The requirement that the wave function should be stationary with respect to a varia-
tion in the orbitals, results in an equation that is formally the same as in non-relativistic
theory, FC = SCe (eq. (3.51)). However, the presence of solutions for the positronic
states means that the desired solution is no longer the global minimum (Figure 8.1),
and care must be taken that the procedure does not lead to variational collapse. The
choice of basis set is an essential component in preventing this. Since practical calcu-
lations necessarily use basis sets that are far from complete, the large and small com-
ponent basis sets must be properly balanced. The large component corresponds to the
normal non-relativistic wave function, and has similar basis set requirements.The small
component basis set is chosen to obey the kinetic balance condition, which follows from
(8.15).

(8.39)

The use of kinetic balance ensures that the relativistic solution smoothly reduces to
the non-relativistic wave function as c is increased. The presence of the momentum
operator in eq. (8.39) means that the small component basis set must contain functions
that are derivatives of the large component basis set, making the former roughly twice
the size of the latter. This means that there are ~8 times as many large–small two-
electron integrals and ~16 times as many small–small integrals, than there are
large–large type integrals. A relativistic calculation thus requires roughly 25 times as
many two-electron integrals compared with a non-relativistic calculation.

When the Dirac operator is invoked, the point charge model of the nucleus also
becomes problematic. For a non-relativistic hydrogen atom, the orbitals have a cusp
(discontinuous derivative) at the nucleus. However, the relativistic solutions have a sin-
gularity. A singularity is much harder to represent in an approximate treatment (such
as an expansion in a Gaussian basis) than a cusp. Consequently, a (more realistic) finite-
size nucleus is often used in relativistic methods. A finite nucleus model removes the
singularity of the orbitals, which now assume a Gaussian type behaviour within the
nucleus. Neither experiments nor theory, however, provide a good model for how 
the positive charge is distributed within the nucleus. The wave function and energy will
of course depend on the exact form used for describing the nuclear charge distribu-
tion. A popular choice is either a uniformly charged sphere, where the radius is pro-
portional to the nuclear mass to the 1/3 power, or a Gaussian charge distribution (which
facilitates the calculation of the additional integrals) with the exponent depending on
the nuclear mass. Note that this implies that the energy (and derived properties)
depends on the specific isotope, not just the atomic charge, i.e. the results for say 37Cl
will be (slightly) different from 35Cl. The difference between a finite and a point charge
nuclear model is large in terms of total energy (~1au), however, the exact shape for
the finite nucleus is not important. For valence properties, any “reasonable” model
gives essentially the same results.

c csmall large= ⋅s p
2c

c c Ea b⋅ + ′ +[ ] =p V2 Ψ Ψ
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8.5 Relativistic Effects
The differences due to relativity can be described as:

(1) Differences in the dynamics due to the velocity-dependent mass of the electron.
This alters the size of the orbitals: s- and p-orbitals contract while d- and f-orbitals
expand.

(2) New (magnetic) interactions in the Hamiltonian operator due to electron spin.The
spin–orbit coupling, for example, destroys the picture of an orbital having a defi-
nite spin.

(3) Introduction of “negative” energy (positron) states.The coupling between the elec-
tronic and positronic states introduces a “small” component in the electronic wave
function. This leads to a change in the shape of the orbitals: relativistic orbitals, for
example, do not have nodes.

(4) Modification of the potential operator due to the finite speed of light. In the lowest
order approximation, this corresponds to addition of the Breit operator to the
Coulomb interaction.

Results from fully relativistic calculations are scarce, and there is no clear consensus
on which effects are the most important.The Breit (Gaunt) term is believed to be small
and many relativistic calculations neglect this term, or include it as a perturbational
term evaluated from the converged wave function. For geometries, the relativistic con-
traction of the s-orbitals normally means that bond lengths become shorter.

Working with a full four-component wave function and the Dirac–Fock operator is
significantly more complicated than solving the Roothaan–Hall equations. The spin
dependence can no longer be separated out, and the basis set for the small component
of the wave function must contain derivatives of the corresponding large component
basis. This means that the basis set becomes three to four times as large as in the non-
relativistic case for a comparable accuracy. Furthermore, the presence of magnetic
terms (spin) in the Hamiltonian operator means that the wave function contains both
real and imaginary parts, yielding a factor of two in complexity. In practice, a (single-
determinant) Dirac–Fock–Coulomb calculation is about two orders of magnitude more
expensive than the corresponding non-relativistic Hartree–Fock case, although imple-
mentation of integral screening techniques is likely to reduce this factor.6 Since heavy
atom systems by definition contain many electrons, even small systems (in terms of the
number of atoms) are demanding. A relativistic calculation for a single radon atom
with a DZP quality basis, for example, is computationally equivalent to a non-
relativistic calculation of a C13H28 alkane, for a comparable quality in term of basis set
limitations. To further complicate matters, there are many more systems that cannot
be adequately described by a single-determinant wave function in a relativistic 
treatment owing to the spin–orbit coupling, and therefore require MCSCF type wave
functions.

Since working with the full four-component wave function is so demanding, various
approximative methods have been developed where the small component of the wave
function is “eliminated” to a certain order in 1/c or approximated (such as the
Foldy–Wouthuysen7 or Douglas–Kroll transformations,8 thereby reducing the four-
component wave function to only two components. A description of such methods is
beyond the scope of this book.

8.5 RELATIVISTIC EFFECTS 289



290 RELATIVISTIC METHODS

Ta
bl

e 
8.

1
Pr

op
er

ti
es

 o
f 

th
e 

si
xt

h 
gr

ou
p 

di
hy

dr
id

es

Sy
st

em
N

on
-r

el
at

iv
is

ti
c

R
el

at
iv

is
ti

c 
co

rr
ec

ti
on

To
ta

l e
ne

rg
y 

(a
u)

R
eq

(Å
)

q e
q

(°
)

∆E
at

om
(k

J/
m

ol
)

To
ta

l e
ne

rg
y 

(a
u)

R
eq

(Å
)

q e
q

(°
)

∆E
at

om
(k

J/
m

ol
)

H
2O

−7
6.

05
4

0.
93

91
10

7.
75

64
3.

8
−0

.0
55

−0
.0

00
03

−0
.0

7
−1

.6
H

2S
−3

98
.6

41
1.

34
29

94
.2

3
51

4.
1

−1
.1

07
−0

.0
00

15
−0

.0
9

−4
.5

H
2S

e
−2

40
0.

97
7

1.
45

30
93

.1
4

45
9.

4
−2

8.
62

8
−0

.0
02

60
−0

.2
7

−1
3.

3
H

2T
e

−6
61

2.
79

7
1.

65
57

92
.5

7
39

2.
5

−1
82

.0
72

−0
.0

07
20

−0
.5

8
−3

7.
7

H
2P

o
−2

06
76

.7
09

1.
75

39
92

.2
1

35
0.

2
−1

55
5.

82
2

−0
.0

10
60

−1
.6

2
−1

26
.8



Table 8.1 illustrates the magnitude of relativistic effects for dihydrides of the sixth
main group in the periodic table, where the relativistic calculations are of the
Dirac–Fock–Coulomb type (i.e. a single-determinant wave function and neglecting the
Breit interaction).9 The relativistic correction to the total energy is significant: even for
a first row species such as H2O is the difference 0.055au (145kJ/mol). It increases
rapidly down the periodic table, and reaches ~7% of the total energy for H2Po, but the
equilibrium distances and angles change only marginally. Similarly, the atomization
energy (for breaking both X—H bonds completely) is remarkably insensitive to the
large changes in the total energies. This is of course due to a high degree of cancella-
tion of errors, the major relativistic correction is associated with the inner-shell elec-
trons of the heavy atom, with the correction being almost constant for the atom and
the molecule. For the lighter elements the effect on the atomization energies is almost
solely due to the spin–orbit interaction in the triplet X atom (e.g. H2O → 3O + 22H)
which is not present in the singlet H2X molecule.

Similar results have been obtained for the fourth group tetrahydrides, CH4, SiH4,
SbH4, GeH4 and PbH4, where the Gaunt term has been shown to give corrections typi-
cally an order of magnitude less than the other relativistic changes.10 The general con-
clusion is that relativistic effects for geometries and energetics can normally be
neglected for molecules containing only first and second row elements.This is also true
for third row elements, unless a high accuracy is required. Although the geometry and
atomization energy changes for H2S and H2Se in Table 8.1 may be considered signifi-
cant, it should be noted that the errors due to incomplete basis sets and neglect of elec-
tron correlation are much larger than the relativistic corrections. The experimental
geometries for H2S and H2Se, for example, are 1.3356Å and 92.12°, and 1.4600Å and
90.57°, respectively. While the relativistic contraction of the H—Se bond is 0.0026Å,
the basis set and electron correlation error is 0.0070Å. Relativistic effects typically
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become comparable to those from electron correlation at atomic numbers ~40–50. For
molecules involving atoms beyond the fourth row in the periodic table, however,
relativistic effects cannot be neglected for quantitative work. It should be noted that
an approximate inclusion of the scalar relativistic effects, most notably the change in
orbital size, can be modelled by replacing the inner electrons with a relativistic
pseudopotential, as discussed in Section 5.9.

Relativistic methods can be extended to include electron correlation by methods
analogous to the non-relativistic cases, e.g. CI, MCSCF, MP and CC. Such methods are
currently at the development stage.11 Once relativistic effects are considered, one may
thus expand the two-dimensional Figure 4.2 with a third axis describing how accurate
the relativistic effects are treated, for example measured in terms of one-, two- or four-
component wave functions.
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9 Wave Function Analysis

The previous chapters have focused on various methods for obtaining more or less
accurate solutions to the Schrödinger equation. The natural “byproduct” of determin-
ing the electronic wave function is the energy. However, there are many other prop-
erties that may be derived. Although the quantum mechanical description of a
molecule is in terms of positive nuclei surrounded by a cloud of negative electrons,
chemistry is still formulated as “atoms” held together by “bonds”.This raises questions
such as: given a wave function, how can we define an atom and its associated electron
population, or how do we determine whether two atoms are bonded?

Atomic charge is an example of a property often used for discussing/rationalizing
structural and reactivity differences.1 There are three commonly used methods for
assigning a charge to a given atom:

(1) Partitioning the wave function in terms of the basis functions.
(2) Fitting schemes.
(3) Partitioning the electron density into atomic domains.

9.1 Population Analysis Based on Basis Functions
The electron density r (probability of finding an electron) at a certain position r from
a single molecular orbital containing one electron is given as the square of the MO ø.

(9.1)

Assuming that the MO is expanded in a set of normalized, but non-orthogonal, basis
functions χ, this can be written as in eq. (9.2) (see also eq. (3.49)).

(9.2)
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Integrating and summing over all occupied MOs gives the total number of electrons,
Nelec.

(9.3)

We may generalize this by introducing an occupation number (number of electrons),
n, for each MO. For a single-determinant wave function, this will be either 0, 1 or 2,
while it may be a fractional number for a correlated wave function (Section 9.5).

(9.4)

The sum of the product of MO coefficients and the occupation numbers is the
density matrix defined in eq. (3.52), and the sum over the product of the density and
overlap matrices elements is the number of electrons.

The Mulliken Population Analysis uses the D ⋅S matrix for distributing the electrons
into atomic contributions2 (D ⋅S is the entrywise product matrix, Section 16.1, i.e. the
products of elements, not elements of the product matrix). A diagonal element DaaSaa

is the number of electrons in the a AO, and an off-diagonal element DabSab is (half)
the number of electrons shared by AOs a and b (there is an equivalent DbaSba element).
The contributions from all AOs located on a given atom A may be summed up to give
the number of electrons associated with atom A. This requires a decision on how a
contribution involving basis functions on different atoms should be divided. The sim-
plest, and the one used in the Mulliken scheme, is to partition the contribution equally
between the two atoms. The Mulliken electron population is thereby defined as in 
eq. (9.5).

(9.5)

The gross charge on atom A is the sum of the nuclear and electronic contributions.

(9.6)

The Mulliken method corresponds to a partitioning of the D ⋅S matrix product,
another commonly used method is the Löwdin partitioning, which uses the S

1/2·D ⋅S1/2

matrix for analysis.3 These are mathematically related as shown in eq. (9.7).

(9.7)

The Löwdin method is equivalent to a population analysis of the density matrix in
the orthogonalized basis set (Section 13.2) formed by transforming the original set of
functions by S−1/2.

(9.8)

The Mulliken and Löwdin methods are just particular examples of a whole family
of population analysis using Sn ⋅D ⋅S1−n matrices.4 The Mulliken and Löwdin methods
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give different atomic charges but mathematically there is nothing to indicate which of
these partitionings gives the “best” result. It should be noted, however, that the Löwdin
method is not rotationally invariant if the basis set contains Cartesian polarizations
functions rather than spherical functions.5 The lack of rotational invariance means that
symmetry equivalent atoms may end up having different charges.

There are some common problems with all population analyses based on partition-
ing the wave function in terms of basis functions:

(1) The diagonal elements may be larger than two. This implies more than two elec-
trons in an orbital, violating the Pauli principle.

(2) The off-diagonal elements may become negative. This implies a negative 
number of electrons between two basis functions, which clearly is physically 
impossible.

(3) There is no objective reason for dividing the off-diagonal contributions equally
between the two orbitals. It may be argued that the most “electronegative” (which
then needs to be defined) atom (orbital) should receive most of the shared 
electrons.

(4) Basis functions centred on atom A may have a small exponent, such that they effec-
tively describe the wave function far from atom A. Nevertheless, the electron
density is counted as only belonging to A.

(5) The dipole, quadrupole, etc., moments are in general not conserved, i.e. a set of
population atomic charges does not reproduce the original multipole moments.

The Mulliken scheme suffers from all of the above, while the Löwdin method solves
problems (1), (2) and (3). In the orthogonalized basis, all off-diagonal elements are 0,
and the diagonal elements are restricted to values between 0 and 2.

Problem (4) is especially troublesome, as a few examples for the water molecule will
demonstrate. A reasonable description of the wave function can be obtained by an HF
single determinant with a DZP basis set. An equally good wave function (in terms of
energy) may be constructed by having a very large number of basis functions centred
on oxygen, and none on the hydrogens. The latter will, according to the above popu-
lation analysis, have a +1 charge on hydrogen, and a −2 charge on oxygen. Worse,
another equally good wave function may be constructed by having a large number of
basis functions only on the hydrogens.This will give charges of −4 for each of the hydro-
gens and +8 for the oxygen. Or the basis functions can be taken to be non-
nuclear-centred, in which case the electrons are not associated with any nuclei at all,
i.e. atomic charges of +1 and +8!

The fundamental problem is that basis functions often describe electron density near
nucleus other than the one they are centred on.An s-type Gaussian function on oxygen
with an exponent of 0.15, for example, has a maximum in the radial distribution (r2ø2)
that peaks at 0.97 Å, i.e. at the distance where the hydrogen nuclei are located. Atomic
charges calculated from a Mulliken or Löwdin analysis will therefore not converge to
a constant value as the size of the basis set is increased. Enlarging the basis set involves
the addition of more and more diffuse basis functions, often leading to unpredictable
changes in the atomic charges. This is a case where a “better” theoretical procedure is
actually counterproductive. Basis function derived population analyses are therefore
most useful for comparing trends in electron distributions, when small- or medium-
sized basis sets (which only contain relatively tight functions) are used.
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The density matrix can also be used for generating information about bond
strengths. A quantitative measure is given by the Bond Order (BO). It was originally
defined from bond distances as shown in eq. (9.9).6

(9.9)

If the bond orders for ethane, ethylene and acetylene are defined to be 1, 2 and 3,
respectively, the a constant is found to have a value of approximately 0.3 Å. For bond
orders less than 1 (i.e. breaking and forming single bonds), it appears that a value of
0.6 Å is a more appropriate proportionality constant. A “Mulliken” style measure of
the bond strength between atoms A and B can be defined from the density matrix as
eq. (9.10) (note that this involves elements of the product of the D and S matrices).7

(9.10)

This will again be basis set dependent, but not nearly as sensitive as atomic charges.
The concept can be generalized to higher order quantities, i.e three-, four-, five-, etc.,
centre bond indices, which are derived from products of DS elements.8

Population analysis with semi-empirical methods requires a special comment. These
methods normally employ the ZDO approximation, i.e. the overlap S is a unit matrix.
The population analysis can therefore be performed directly on the density matrix. In
some cases, however, a Mulliken population analysis is performed with D ⋅S, which
requires an explicit calculation of the S matrix.

9.2 Population Analysis Based on the Electrostatic Potential
One area where the concept of atomic charges is deeply rooted is in force field methods
(Chapter 2). A significant part of the non-bonded interaction between polar molecules
is described in terms of electrostatic interactions between fragments having an inter-
nal asymmetry in the electron distribution.The fundamental interaction is between the
ElectroStatic Potential (ESP), also called the Molecular Electrostatic Potential (MEP),
generated by one molecule (or fraction thereof) and the charged particles of another.
The ESP at position r is given as a sum of contributions from the nuclei and the elec-
tronic wave function.

(9.11)

The first part of the potential is trivially calculated from the nuclear charges and
positions, but the electronic contribution requires knowledge of the wave function.The
latter is not available in force field methods, and the simplest way of modelling the
electrostatic potential is to assign partial charges to each atom (Section 2.2.6). Atomic
charges may be treated as regular force field parameters, and assigned values based on
fitting to experimental data, such as dipole, quadrupole, octopole, etc., moments, but
there are rarely enough data to allow a unique assignment.

A common way of deriving partial atomic charges in force fields is to choose a set
of parameters that in a least squares sense generates the best fit to the actual electro-
static potential as calculated from an electronic wave function.9 The electrostatic
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potential stretches far beyond the molecular dimension (the Coulomb interaction falls
off as R−1 (charge) or as R−3 (dipole)), but the most important region is just beyond
the van der Waals distance.The potential is sampled by placing a suitable grid of points
around each nucleus with distances from just outside the van der Waals radius to about
twice that distance, with a typical sampling having a few hundred points for each atom.
The atomic charges are determined as those parameters that reproduce the electro-
static potential as closely as possible at these points, subject to the constraint that the
sum is equal to the total molecular charge. In some cases, the atomic charges may also
be constrained to reproduce for example the dipole moment. Additional constraints
such as forcing the total charge of a subgroup (such as a methyl group or an amino
acid) to be zero are also often employed as this improves the parameter transferabil-
ity and computational issues related to calculating the electrostatic energy.The various
schemes for deriving atomic charges differ in the number and location of points used
in the fitting, and whether additional constraints beyond preservation of charge are
added, and may produce slightly different results. In many cases, the fitted set of
charges is uniformly increased by 10–20% to model the fact that polarization in 
condensed phases will increase the effective dipole moment relative to the isolated
molecule case (Section 2.2.7), or the charges are derived by fitting to an ESP 
which naturally overestimates the charge polarization (for example HF/6-31G(d),
Section 4.3).

The electrostatic potential depends directly on the wave function and therefore con-
verges as the size of the basis set and amount of electron correlation is increased. Since
the potential depends directly on the electron density (r = |Ψ|2), it is in general found
to be fairly insensitive to the level of sophistication, i.e. an HF calculation with a DZP
type basis set already gives quite good results. One might thus anticipate that atomic
charges based on fitting to the electrostatic potential would lead to well-defined values.
This, however, is not the case. Besides the already mentioned dependence on the sam-
pling points, another problem is that a straightforward fitting tends to give conforma-
tionally dependent charges.10 The three hydrogens in a freely rotating methyl group,
for example, may end up having significantly different charges, or two conformations
may give two widely different sets of fitted parameters. This is a problem in connec-
tion with force field methods that rely on the fundamental assumption that parame-
ters are transferable between similar fragments, and consequently atoms that are easily
interchanged (e.g. by bond rotation) should have identical parameters. Conformation-
ally dependent charges can be modelled in force field methods by fluctuating charge
or polarization models (Section 2.2.7), but.this leads to significantly more complicated
force fields, and consequently loss of computational efficiency.

One way of eliminating the problem with conformationally dependent charges is to
add additional constraints, for example forcing the three hydrogens in a methyl group
to have identical charges11 or averaging over different conformations.12 A more fun-
damental problem is that the fitting procedure becomes statistically underdetermined
for large systems, although the severity of this depends on how the fitting is done.13

The difference between the true electrostatic potential and that generated by a set of
atomic charges on say 80% of the atoms is not significantly reduced by having fitting
parameters on all atoms. The electrostatic potential experienced outside the molecule
is mainly determined by the atoms near the surface, and consequently the charges on
atoms buried within a molecule cannot be assigned with any great confidence. Even
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Figure 9.1 Generation of dipole and quadupole moments by charges

The Distributed Multipole Analysis (DMA) developed by A. Stone uses the fact that
the electrostatic potential arising from the charge overlap between two basis functions
can be written in terms of a multipole expansion around a point between the two
nuclei.17 These moments can be calculated directly from the density matrix and the
basis functions, and are not a result of a fitting procedure. The multipole expansion is
furthermore finite, the highest non-vanishing term is given as the sum of the angular
momenta for the two basis functions, e.g. the product of two p-functions gives at most
rise to a quadrupole moment. For Gaussian orbitals the expansion point is given in eq.
(9.12), where RA and RB are the positions of the two nuclei, and a and b are the expo-
nents of the basis functions (this follows since the product of two Gaussians is a single
Gaussian located between the two original, eq. (3.60)).

(9.12)

If such distributed multipoles are assigned for each pair of basis functions, the elec-
trostatic potential as seen from outside the charge distribution is reproduced exactly.
This, however, would mean that ~Mbasis

2 different sites are required. In practice, only
the nuclei and possibly the midpoints of all bonds are selected as multipole points, and
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for a medium-sized molecule, it may only be statistically valid to assign charges to
perhaps half the nuclei. Having a full set of atomic charges thus forms a redundant set:
many different sets of charges may be chosen, all of which are capable of reproducing
the true electrostatic potential to almost the same accuracy. Although a very large
number of sampling points (several thousand) may be chosen to be fitted by relatively
few (perhaps 20–30) parameters, the fact that the sampling points are highly correlated
makes the problem underdetermined. In practical applications, additional penalty
terms are therefore often added, to ensure that only those atoms that contribute sig-
nificantly in a statistical sense acquire non-zero charges.14

Another problem with atomic charges determined by fitting is related to the absolute
accuracy.Although inclusion of charges on all atoms does not significantly improve the
results over that determined from a reduced set of parameters, the absolute deviation
between the true and fitted electrostatic potentials can be quite large. Interaction ener-
gies as calculated by an atom-centred charge model in a force field may be off by
several kJ/mol per atom in certain regions of space just outside the molecular surface,
an error of one or two orders of magnitude larger than the van der Waals interaction.
In order to improve the description of the electrostatic interaction, additional non-
nuclear-centred charges may be added,15 or dipole, quadrupole, etc., moments may be
added at nuclear or bond positions.16 These descriptions are essentially equivalent since
a dipole may be generated as two oppositely charged monopoles, a quadrupole as four
monopoles, etc.



all the pair expansion points are moved to the nearest multipole point. By moving the
origin, the termination after a finite number of terms is destroyed, and an infinite sum
over all moments must be used for an exact representation. Since most of the pair
expansion points are rather close to either a nucleus or the centre of a bond, the higher
order moments are usually quite small. Furthermore, since the majority of the elec-
tron density can be represented with just s- and p-functions for elements belonging to
the first or second row of the periodic table, it follows that a representation in terms
of charges, dipoles and quadrupoles located on all nuclei and bond centres gives a quite
accurate representation of the electrostatic potential. If only nuclear-centred multi-
poles are used, an expansion up to quadrupoles will typically generate an electrostatic
potential of the same quality as a model based on fitted atomic charges. A disadvan-
tage of the DMA approach is that the calculated multipole moments are quite sensi-
tive to the employed basis set, in analogy with other analysis based directly on the basis
functions used for representing the wave function. Alternatively, multipoles may be
fitted to either the electrostatic potential18 or the DMA multipoles.19 Such fitted mul-
tipole methods typically reduce the required moments by one or two, i.e. fitted charges
and dipoles can reproduce DMA results including up to quadrupoles or octopoles.

9.3 Population Analysis Based on the Electron Density
The examples in Section 9.1 illustrate that it would be desirable to base a population
analysis on properties of the wave function or electron density itself, and not on the
basis set chosen for representing the wave function. The electron density is the square
of the wave function integrated over Nelec − 1 coordinates (it does not matter which
coordinates since the electrons are indistinguishable).

(9.13)

Some textbooks state that it is impossible to define a unique atomic charge since
there is no quantum mechanical operator associated with charge. This is not true: the
electronic charge operator is simply the negative of the number operator (the charge
from an electron is −1). The problem is in the definition of an “atom” within a mole-
cule. If the total molecular volume could somehow be divided into subsections, each
belonging to one specific nucleus, then the electron density could be integrated to give
the number of electrons present in each of these atomic basins Ω, and the (net) atomic
charge Q is then obtained by adding the nuclear charge Z.

(9.14)

The division into atomic basins requires a choice to be made as to whether a certain
point in space belongs to one nucleus or another, and several different schemes have
been proposed.

9.3.1 Atoms In Molecules

Perhaps the most rigorous way of dividing a molecular volume into atomic subspaces
is the Atoms In Molecules (AIM) method of R. Bader.20 The electron density is a 
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function of three spatial coordinates, and it may be analyzed in terms of its topology
(maxima, minima and saddle points). In the large majority of cases it is found that the
only maxima in the electron density occur at the nuclei (or very close to them), which
is reasonable since they are the only sources of positive charge. The nuclei thus act as
attractors of the electron density. At each point in space the gradient of the electron
density points in the direction of the strongest (local) attractor. This forms a rigorous
way of dividing the physical space into atomic subspaces: starting from a given point
in space a series of infinitesimal steps may be taken in the gradient direction until an
attractor is encountered. The collection of all such points forms the atomic basin 
associated with the attractor (nucleus). If the negative of the electron density is con-
sidered, the attractors are local minima, and a basin is then defined as points which
end up at the local minimum by a steepest descent minimization (Section 12.2.1). In
the other direction (away from other nuclei) the gradient goes asymptotically to zero,
and the atomic basin stretches into infinity in this direction. The border between 
two three-dimensional atomic basins is a two-dimensional surface, as illustrated in
Figure 9.2.

300 WAVE FUNCTION ANALYSIS

Figure 9.2 Dividing surface between two atomic basins
Reprinted with permission from The Americal Chemical Society.21

The carbon and hydrogen atomic basins in cyclopropane are shown in Figure 9.3.
Once the molecular volume has been divided up, the electron density may be inte-

grated within each of the atomic basins to give atomic charges and dipole, quadrupole,
etc., moments. As the dividing surface is rigorously defined in terms of the electron
density, these quantities will converge to specific values as the quality of the wave func-
tion is increased. Furthermore, as only the electron density is involved, the results are
fairly insensitive to the theoretical level used for generating the wave function. If the
net charges are taken as nuclear centred (analogous to partial charges for force field
methods), they do not reproduce the molecular dipole, quadrupole, etc., moments, nor
do they yield a good representation of the molecular electrostatic potential, and they
are therefore not suitable for transferring to a force field environment for modelling
purposes. If, however, the dipole moments of the atomic basins are also considered,
the total molecular dipole moment is reproduced, and similarly for higher order
moments.The dipole moment of CO, for example, is close to zero (0.122 debye), despite
calculated AIM charges of ±1.1. The large dipole moment generated by the charge



transfer is almost exactly cancelled by compensating atomic dipoles. The AIM method
is often criticized for generating too large atomic charges for polar bonds, but it should
be recognized that this is largely due to the neglect of higher order moments.

A more fundamental problem in the AIM approach is the presence of non-nuclear
attractors in certain metallic systems, such as lithium and sodium clusters.23 While these
are of interest by themselves, they spoil the picture of electrons associated with nuclei,
forming atoms within molecules. It should be noted that non-nuclear attractors can
also be found for other systems such as ethyne when a low level of theory is used for
calculating the electron density.

9.3 POPULATION ANALYSIS BASED ON THE ELECTRON DENSITY 301

(a)

(b)

Figure 9.3 Hydrogen and carbon AIM basins for cyclopropane; dots indicate bond and ring critical
points22



For a point on a dividing surface between two atomic basins the gradient of the
density must necessarily be tangential to the surface. Following the gradient path for
such a point leads to a stationary point on the surface where the total derivative is
zero, marked with a dot in Figure 9.2. The basin attractor is also a stationary point on
the electron density surface.The second derivative of the electron density, the Hessian,
is a function of the three (Cartesian) coordinates, i.e. it is a 3 × 3 matrix. At stationary
points, it may be diagonalized and the number of negative eigenvalues determined.
The basin attractor is an overall maximum, it has three negative eigenvalues. Other
stationary points are usually found between nuclei that are “bonded”. Such points have
a minimum in the electron density in the direction of the nuclei, and a maximum in
the perpendicular directions, i.e. there is one positive and two negative eigenvalues in
the Hessian. These are known as bond critical points. If the negative of the electron
density is considered instead, the attractors are minima (all positive eigenvalues in the
second derivative matrix) and the bond critical points are analogous to transition struc-
tures (one negative eigenvalue). Comparing with potential energy surfaces (Section
13.1), the (negative) electron density surface may be analyzed in terms of “reaction
paths” connecting “transition structures” with minima. Such paths trace the maximum
electron density connecting the two nuclei, and may be taken as the molecular “bond”.
It should be noted that bond critical points are not necessarily located on a straight
line connecting two nuclei: small strained rings such as cyclopropane, for example, have
bond paths that are significantly curved, as illustrated in Figure 9.3. Indeed, the degree
of bending tends to correlate with the strain energy.

The value of the electron density at the bond critical point correlates with the
strength of the bond, the bond order. As mentioned above, there are certain systems
such as metal clusters that have non-nuclear-centred attractors. The corresponding
bond critical points have electron densities at least an order of magnitude smaller than
“normal” single bonds, and the value of the density at the local maximum is only
slightly larger than at the bond critical point. The non-nuclear-centred attractors are
thus only weakly defined, and may be considered as a special kind of metal bonding,
where a “sea” of electrons with weak local maxima surrounds the positive nuclei, which
are strong local maxima. In certain cases, bond critical points may also be found
between atoms that are not bonded, but experience a strong steric repulsion, corre-
sponding to situations where two atoms are forced to be closer than the sum of their
van der Waals radii. Such systems usually have values of the electron density at the
bond critical point that are at least an order of magnitude smaller than ordinary
“bonded” atoms.24

There are two other types of critical points, having either one or no negative eigen-
values in the density Hessian. The former are usually found in the centre of a ring
(illustrated in Figure 9.3 for cyclopropane), and are consequently denoted as a ring
critical point. The latter are typically found at the centre of a cage (e.g. cubane), and
are denoted as a cage critical point. They correspond to local minima in the electron
density in two or three directions.

The second derivative of the electron density, the Laplacian ∇2r, provides informa-
tion on where electron density is depleted or increased. At a bond critical point the
sign of the Laplacian has been used for characterizing the nature of the bond, i.e. a
negative value indicates a covalent bond, while a positive value indicates an ionic bond
or a van der Waals interaction.
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The division of the molecular volume into atomic basins follows from a deeper
analysis based on the principle of stationary action. The shapes of the atomic basins,
and the associated electron densities, in a given functional group are very similar in
different molecules.25 The local properties of the wave function are therefore trans-
ferable to a very good approximation, which rationalizes the basis for organic chem-
istry, i.e. functional groups react similarly in different molecules. It may be shown that
any observable molecular property may be written as a sum of corresponding atomic
contributions.

(9.15)

The total energy, for example, may be written as a sum of atomic energies, and these
atomic energies are again almost constant for the same structural units in different
molecules. The atomic basins are probably the closest quantum mechanical analogy to
the chemical concepts of atoms within a molecule. The good degree of transferability
furthermore provides a rationale for defining atom types in force field methods.

9.3.2 Voronoi, Hirshfeld and Stewart atomic charges

The AIM approach partitions the physical space into atomic basins based on a topo-
logical analysis of the electron density itself, but several other methods have been 
proposed for dividing the space into atomic contributions.

Voronoi charges are based on dividing the physical space according to a distance cri-
terion, i.e. a given point in space belongs to the nearest nucleus. This is reminiscent of
the Mulliken equal partitioning, except that it is the physical space between two nuclei
that is divided equally to each side, not the Hilbert space defined by the basis func-
tions.The atomic basins are bounded by planes perpendicular to the interatomic bonds,
and are called Voronoi polyhedra or Voronoi cells. Voronoi charges tend to be rather
large.A modified approach where these dividing planes are moved away from the bond
midpoint by a distance related to the relative atom sizes, defined by their van der Waals
radii, has also been proposed, and this gives significantly smaller charges.26

Hirshfeld (or stockholder) charges are based on using atomic densities for parti-
tioning the molecular electron density.27 The promolecular density is defined as the sum
of atomic densities placed at the nuclear geometries in the molecule. The actual molec-
ular electron density at each point in space is then partitioned by weighting factors
according to the promolecular contributions.

(9.16)

Hirshfeld charges may be considered as a soft-boundary version of the Voronoi
charges. An ambiguity in the Hirshfeld method is the source of the atomic densities.
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The normal approach is to use spherically averaged ground state densities for neutral
atoms but, in some cases, other valence configurations may be considered.28 Further-
more, the level of theory (method and basis set) for calculating the atomic density is
a potential variable.

Stewart atoms are defined as the spherical densities centred at the nuclei that in a
least squares sense fit the molecular density as well as possible, and the resulting den-
sities can be integrated to yield atomic charges and higher order electric moments.29

The Stewart atomic densities often have small negative contributions far from the
nuclei, and the resulting charges are often large and counterintuitive, but give good
representations of the molecular electrostatic potential.

9.3.3 Generalized atomic polar tensor charges

The derivative of the dipole moment with respect to the nuclear coordinates 
determines intensities of IR absorptions (Section 10.1.5). A central quantity in this
respect is the Atomic Polar Tensor (APT), which for a given atom is defined in 
eq. (9.17).

(9.17)

Such a matrix is not independent of the coordinate system, but the trace is. J.
Cioslowski has proposed a definition of atomic charges as one-third of the trace over
the APT, denoted Generalized Atomic Polar Tensor (GAPT) charges.30 The charge on
atom A is defined in eq. (9.18).

(9.18)

Since the dipole moment itself is the first derivative of the energy with respect to an
external electric field (Section 10.1.1), a calculation of GAPT charges requires the
second derivative of the energy. This is a computationally expensive method for gen-
erating atomic charges, but if vibrational frequencies are calculated anyway, GAPT
charges may be determined with very little additional effort. Dipole derivatives deter-
mine intensities of IR absorptions and GAPT charges are therefore directly related to
experimentally observable quantities. The GAPT charges are computationally expen-
sive to generate, and are sensitive to the amount of electron correlation in the wave
function, which has limited the general use of GAPT charges.

9.4 Localized Orbitals
A Hartree–Fock wave function can be written as a single Slater determinant, com-
posed of a set of orthonormal MOs (eqs (9.19) and (3.20)).
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(9.19)

For computational purposes, it is convenient to work with canonical MOs, i.e. those
that make the matrix of Lagrange multipliers diagonal, and that are eigenfunctions of
the Fock operator at convergence (eq. (3.42)). This corresponds to a specific choice of
a unitary (orthogonal) transformation of the occupied MOs. Once the SCF procedure
has converged, however, other sets of orbitals may be chosen by forming linear com-
binations of the canonical MOs. The total wave function, and thus all observable prop-
erties, is independent of such a rotation of the MOs.

(9.20)

The traditional view of molecular bonds is that they are due to an increased prob-
ability of finding electrons between two nuclei, as compared with a sum of the contri-
butions of the pure atomic orbitals. The canonical MOs are delocalized over the whole
molecule and do not readily reflect this, since the density between two nuclei is the
result of many small contributions from many (all) the MOs.There is furthermore little
similarity between MOs for systems which by chemical measures should be similar,
such as a series of alkanes. The canonical MOs therefore do not reflect the concept of
functional groups, nor do they readily allow identification of the bonding properties of
the system.

The goal of Localized Molecular Orbitals (LMO) is to define MOs that are spatially
confined to a relatively small volume, and therefore clearly display which atoms are
bonded and furthermore have the property of being approximately constant between
structurally similar units in different molecules.A set of LMOs may be defined by opti-
mizing the expectation value of a two-electron operator Ω.31

(9.21)

The expectation value depends on the uij parameters in eq. (9.20), i.e. this is again a
function optimization problem (Chapter 12). In practice, however, the localization is
often done by performing a series of 2 × 2 orbital rotations (Section 16.2). It should
be noted that the unitary transformation of the orbitals preserves the orthogonality,
i.e. the resulting LMOs are also orthogonal.

Since all observable properties depend only on the total electron density, and not
the individual MOs, there is no unique choice for Ω.

The Boys localization scheme uses the square of the distance between two electrons
as the operator, and minimizes the expectation value.32
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This corresponds to determining a set of LMOs that minimizes the spatial extent,
i.e. they are as compact as possible. For extended (periodic) systems described by plane
wave basis functions, the equivalent of the Boys LMOs is called Wannier orbitals.33

Feng et al.34 have shown that the Boys LMOs can be made even more compact by
10–25% by allowing the localized orbitals to be non-orthogonal, but this requires a
general optimization procedure, rather than a simple unitary transformation.

The Edmiston–Ruedenberg localization scheme uses the inverse of the distance
between two electrons as the operator, and maximizes the expectation value.35

(9.23)

This corresponds to determining a set of LMOs that maximizes the self-repulsion
energy.

The von Niessen localization scheme uses the δ function of the distance between two
electrons as the operator, and maximizes the expectation value.36

(9.24)

This corresponds to determining a set of LMOs that maximizes the “self-charge”.
The Pipek–Mezey localization scheme corresponds to maximizing the sum of the

Mulliken atomic charges.37 The contribution to atom A is given in eq. (9.25).

(9.25)

The function to be maximized is given in eq. (9.26).

(9.26)

There is little experience with the von Niessen method but, for most molecules, the
other three schemes tend to give very similar LMOs. The main exception is systems
containing both σ- and π-bonds, such as ethylene. The Pipek – Mezey procedure will
preserve the σ/π-separation, while the Edmiston–Ruedenberg and Boys schemes
produce bent “banana” bonds. Similarly, for planar molecules that contain lone pairs
(such as water or formaldehyde), the Pipek–Mezey method will produce one in-plane
σ-type lone pair and one out-of-plane π-type lone pair, while the Edmiston–
Ruedenberg and Boys schemes produce two equivalent “rabbit ear” lone pairs. The
canonical MOs and the Boys and Pipek – Mezey LMOs for ethylene are shown in
Figure 9.4 for the valence orbitals.

9.4.1 Computational considerations

It may be shown that minimization of 〈Ω〉Boys is equivalent to maximizing the distance
between centroids of the orbitals, defined by the following functional.
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It is also equivalent to maximizing the distance from the (arbitrary) origin of the
coordinate system, i.e. maximizing the following functional.

(9.28)

The dipole integrals in the molecular basis may be obtained from the corresponding
AO integrals.

(9.29)

This is a process that increases as the cube of the basis set size, and the optimiza-
tion of the 〈Ω′〉Boys function is therefore an M 3
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Figure 9.4 Canonical and localized molecular valence orbitals for ethylene



localization in the above formulation requires standard two-electron integrals over
MOs, analogous to those used in electron correlation methods (eq. (4.11)), and it there-
fore involves a computational effort that increases as M5

basis. Since only integrals involv-
ing occupied MOs are needed, the transformation is not particular time-consuming for
reasonably sized systems,38 but it will ultimatively require a significant effort for large
systems. Recent work by Head-Gordon and coworkers39 has shown that the problem
can be reformulated as a series of iterative one-index transformations, which reduces
the formal scaling to M3

basis. The von Niessen method may be shown to involve a com-
putational effort that increases as M5

basis, while the Pipek–Mezey charge localization
only involves overlap integrals between basis functions, and consequently has an M3

basis

computational dependence.
Although the localization by an energy criterion (Edmiston–Ruedenberg) may be

considered more “fundamental” than one based on distance (Boys) or atomic charge
(Pipek–Mezey), the difference in computational effort means that the Boys or
Pipek–Mezey procedures are often used in practice, especially since there is normally
little difference in the shape of the final LMOs.

Localized molecular orbitals are generally found to reflect the usual picture of
bonding, i.e. they are localized between two nuclei, or in some cases, such as diborane,
extended over three nuclei. Although they indicate which atoms are bonded, they do
not directly give any information about the strength of the bonds. Furthermore, local-
izing a set of MOs basically corresponds to determining orbitals containing electron
pairs. In structures with delocalized electrons (e.g. transition structures) it may be dif-
ficult to achieve a proper localization of the MOs, and molecules with several reso-
nance structures, such as benzene, may have more than one set of (equivalent) LMOs.
It should be noted that LMOs are often used as starting points for local electron cor-
relation methods, as discussed in Section 4.13.

9.5 Natural Orbitals
The electron density calculated from a wave function is given as the square of the func-
tion, |Ψ|2 = Ψ*Ψ. The reduced density matrix of order k, γk, is defined by eq. (9.30).40

(9.30)

Note that the coordinates for Ψ* and Ψ are different. Of special importance in elec-
tronic structure theory are the first- and second-order reduced density matrices, γ1(r1,r′1)
and γ2(r1,r2,r′1,r′2), since the Hamiltonian operator only contains one- and two-electron
operators. Integrating the first-order density matrix over coordinate 1 yields the
number of electrons, Nelec, while the integral of the second-order density matrix over
coordinates 1 and 2 is Nelec(Nelec − 1), i.e. the number of electron pairs. The first-order
density matrix may be diagonalized, and the corresponding eigenvectors and eignval-
ues are called Natural Orbitals (NO) and Occupation Numbers. The corresponding
eigenfunctions for the second-order density matrix are called Natural Geminals. For a
single-determinant RHF wave function, the first-order density matrix is identical to
the density matrix used in the formation of the Fock matrix (eq. (3.52)), and the natural
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orbitals have occupation numbers of either 0 or 2 (exactly). Since there are 1/2Nelec

orbitals with degenerate eigenvalues of 2, the HF natural orbitals are not uniquely
defined and they may be any linear combination of the canonical orbitals. For a multi-
determinant wave function (MCSCF, CI, MP or CC) the occupation numbers may
assume fractional values between 0 and 2. UHF wave functions (when different from
RHF) will in general also give fractional occupations.

The original definition of natural orbitals was in terms of the density matrix from a
full CI wave function, i.e. the best possible for a given basis set.41 In that case, the
natural orbitals have the significance that they provide the fastest convergence. In
order to obtain the lowest energy for a CI expansion using only a limited set of orbitals,
the natural orbitals with the largest occupation numbers should be used.

When natural orbitals are determined from a wave function that only includes a
limited amount of electron correlation (i.e. not full CI), the convergence property is
not rigorously guaranteed but, since most practical methods recover 80–90% of the
total electron correlation, the occupation numbers provide a good guideline for how
important a given orbital is. This is the reason why natural orbitals are often used 
for evaluating which orbitals should be included in an MCSCF wave function 
(Section 4.6).

9.6 Natural Atomic Orbital and Natural Bond Orbital Analysis
The concept of natural orbitals may be used for distributing electrons into atomic and
molecular orbitals, and thereby deriving atomic charges and molecular bonds.The idea
in the Natural Atomic Orbital (NAO) and Natural Bond Orbital (NBO) analysis devel-
oped by Weinhold and coworkers42 is to use the one-electron density matrix for defin-
ing the shape of the atomic orbitals in the molecular environment, and to derive
molecular bonds from electron density between atoms.

Let us assume that the basis functions have been arranged such that all orbitals
located on centre A are before those on centre B, which are before those on centre 
C, etc.

(9.31)

The density matrix can be written in terms of blocks of basis functions belonging to
a specific centre, as shown in eq. (9.32).

(9.32)

The natural atomic orbitals for atom A in the molecular environment may be defined
as those that diagonalize the DAA block, NAOs for atom B as those that diagonalize
the DBB block, etc.These NAOs will in general not be orthogonal, and the orbital occu-
pation numbers will therefore not sum to the total number of electrons. To achieve a
well-defined division of the electrons, the orbitals should be orthogonalized.

The NAOs will normally resemble the pure atomic orbitals (as calculated for an iso-
lated atom), and may be divided into a “natural minimal basis” (corresponding to the
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occupied atomic orbitals for the isolated atom), and a remaining set of natural
“Rydberg” orbitals based on the magnitude of the occupation numbers. The minimal
set of NAOs will normally be strongly occupied (i.e. having occupation numbers sig-
nificantly different from zero), while the Rydberg NAO usually will be weakly occu-
pied (i.e. having occupation numbers close to zero). There are as many NAOs as the
size of the atomic basis set, and the number of Rydberg NAOs thus increases as the
basis set is enlarged. It is therefore desirable that the orthogonalization procedure pre-
serves the form of the strongly occupied orbitals as much as possible, which is achieved
by using an occupancy-weighted orthogonalizing matrix. If all orbital occupancies are
exactly 2 or 0, the orthogonalization is identical to the Löwdin method (eq. (9.8)). The
procedure is as follows:

(1) Each of the atomic blocks in the density matrix is diagonalized to produce a set
of non-orthogonal NAOs, often denoted “pre-NAOs”.

(2) The strongly occupied pre-NAOs for each centre are made orthogonal to all the
strongly occupied pre-NAOs on the other centres by an occupancy-weighted 
procedure.

(3) The weakly occupied pre-NAOs on each centre are made orthogonal to the
strongly occupied NAOs on the same centre by a standard Gram – Schmidt 
orthogonalization.

(4) The weakly occupied NAOs are made orthogonal to all the weakly occupied NAOs
on the other centres by an occupancy-weighted procedure.
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Figure 9.5 Illustration of the orthogonalization order in the NAO analysis

The final set of orthogonal orbitals are simply denoted NAOs, and the diagonal ele-
ments of the density matrix in this basis are the orbital populations. Summing all con-
tributions from orbitals belonging to a specific centre produces the atomic charge. If
is usually found that the natural minimal NAOs contribute 99+% of the electron
density, and they form a very compact representation of the wave function in terms of
atomic orbitals. The further advantage of the NAOs is that they are defined from the
density matrix, guaranteeing that the electron occupation is between 0 and 2, and that
they converge to well-defined values as the size of the basis set is increased. Further-
more, the analysis may also be performed for correlated wave functions. The disad-



vantage is that the NAOs may still extend quite far from the atom upon which they
are derived, and analogously to the Mulliken approach, these NAOs may describe elec-
tron density that is near another nucleus but are counted as belonging to the nucleus
upon which they are centred.

Once the density matrix has been transformed to the NAO basis, bonds between
atoms may be identified from the off-diagonal blocks. The procedure involves the 
following steps:

(1) NAOs for an atomic block in the density matrix that have occupation numbers
very close to 2 (say > 1.999) are identified as core orbitals. Their contributions to
the density matrix are removed.

(2) NAOs for an atomic block in the density matrix that have large occupancy
numbers (say > 1.90) are identified as lone pair orbitals. Their contributions to the
density matrix are also removed.

(3) Each pair of atoms (AB,AC, BC, . . .) are now considered, and the two-by-two sub-
blocks of the density matrix (with the core and lone pair contributions removed)
are diagonalized. Natural bond orbitals are identified as eigenvectors that have
large eigenvalues (occupation numbers larger than say > 1.90).

(4) If an insufficient number of NBOs are generated by the above procedure (sum of
occupation numbers for core, lone pair and bond orbitals significantly less than the
number of electrons), the criteria for accepting an NBO may be gradually lowered
until a sufficiently large fraction of the electrons has been assigned to bonds.Alter-
natively, a search may be initiated for three-centre bonds. The contributions to the
density matrix from all diatomic bonds are removed, and all three-by-three sub-
blocks are diagonalized. Such three-centre bonds are quite rare, boron systems
being the most notable exception.

Once NBOs have been identified, they may be written as linear combinations of the
NAOs, forming a localized picture of which “atomic” orbitals are involved in the
bonding.

9.7 Computational Considerations
Population analysis based on basis functions (such as Mulliken or Löwdin) require
insignificant computational time. The NAO analysis involves only matrix diagonaliza-
tion of small subsets of the density matrix, and also requires a negligible amount of
computer time, although it is more involved than a Mulliken or Löwdin analysis. The
determination of ESP fitted charges requires an evaluation of the potential at many
(often several thousand) points in space, and a subsequent solution of a matrix equa-
tion for minimizing the least squares expression. For large systems, this is no longer
completely trivial in terms of computer time. The AIM population analysis requires a
complete topological analysis of the electron density surface, and a subsequent numer-
ical integration of the atomic basins. For medium-sized systems and medium-quality
wave functions, such an analysis may be more time-consuming than determining the
wave function itself. Voronoi and Hirshfeld charges similarly require a numerical inte-
gration of the electron density, and the determination of Stewart atoms has proven to
be computationally quite difficult. GAPT charges require calculation of the second
derivative of the wave function, which is computationally demanding, especially for
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large molecules and/or correlated wave functions. There is little doubt that these com-
putational considerations partly explain the popularity of especially the Mulliken pop-
ulation analysis, despite its well-known shortcomings. For analysis purposes, the NAO
procedure is an attractive method, but for modelling purposes (i.e. force field charges)
ESP charges are clearly the logical choice.

9.8 Examples
Tables 9.1 and 9.2 give some examples of atomic charges and bond orders calculated
by various methods as a function of the basis set at the HF level of theory. It is evident
that the Mulliken and Löwdin methods do not converge as the basis set is increased,
and the values in general behave unpredictably. In particular, the presence of diffuse
functions leads to absurd behaviours, as the aug-cc-pVXZ basis sets illustrate for CH4.
Note also that for sufficiently large basis sets, the charge on oxygen in H2O can be cal-
culated to be less than that on carbon in CH4! The ESP fitted charges, as well as those
derived by the NAO and AIM procedures, attain well-defined values as the basis set
is enlarged, and they are rather insensitive to the presence of diffuse functions. The
charges assigned by these three methods, however, differ significantly, e.g. the carbon
in CH4 may be assigned charges between +0.20 (AIM) and −0.74 (NAO).

312 WAVE FUNCTION ANALYSIS

Table 9.1 Atomic charges for carbon in CH4 (RCH = 1.092 Å)

Basis Mulliken Löwdin ESP fit NAO AIM

STO-3G −0.25 −0.14 −0.37 −0.20 +0.22
3-21G −0.79 −0.38 −0.44 −0.90 −0.05
6-31G(d,p) −0.47 −0.43 −0.36 −0.88 +0.22
6-311G(2df,2pd) +0.08 +0.12 −0.36 −0.70 +0.17
cc-pVDZ −0.15 −0.31 −0.30 −0.80 +0.30
cc-pVTZ −0.36 −0.02 −0.34 −0.72 +0.14
cc-pVQZ −0.27 +0.08 −0.35 −0.74 +0.25
cc-pV5Z −0.07 +0.17 −0.35 −0.74 +0.20
aug-cc-pVDZ +0.55 +0.05 −0.34 −0.78 +0.31
aug-cc-pVTZ −1.18 +0.30 −0.36 −0.72 +0.13
aug-cc-pVQZ −0.97 +0.62 −0.35 −0.75 +0.25
aug-cc-pV5Z −0.58 +0.70 −0.35 −0.74 +0.20

The Voronoi, Hirshfeld and Stewart charges with the 6-31G(d,p) basis set are +1.85, −0.10 and −0.58,
respectively.26
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10 Molecular Properties

The focus in Chapters 3 and 4 is on determining the wave function and its energy 
at a given geometry in the absence of external fields (electric or magnetic). While 
relative energies are certainly of interest, there are many other molecular properties
that can be calculated by electronic structure methods. Most properties may be 
defined as the response of a wave function, an energy or an expectation value of an
operator to a perturbation, where the perturbation may be any kind of operator not
present in the Hamiltonian used for solving the Schrödinger equation. It may for
example be terms arising in a relativistic treatment (e.g. spin–orbit interactions), which
can be added as perturbations in non-relativistic theory. It may also be external fields
(electric or magnetic) or an internal perturbation, such as a nuclear or electron spin.
If we furthermore include “perturbations” such as adding or removing an electron,
electron affinities and ionization potentials are also included in this definition. There
are a few remaining properties that cannot easily be characterized as a response to a
perturbation, most notably transition moments, which determine absorption intensi-
ties. These depend on matrix elements between two different wave functions.

We will here consider four types of perturbations:

• External electric field (F)
• External magnetic field (B)
• Nuclear magnetic moment (nuclear spin, I)
• Change in the nuclear geometry (R)

The first two, electric and magnetic fields, may either be time independent, which lead
to static properties, or time dependent, leading to dynamic properties. Time-dependent
fields are usually associated with electromagnetic radiation characterized by a fre-
quency, and static properties may be considered as the limiting case of dynamic prop-
erties when the frequency goes to zero. We will focus on the static case here, and again
concentrate on properties of a single molecule for a fixed geometry. A direct compar-
ison with (gas phase) experimental macroscopic quantities may be done by proper
averaging over for example vibrational and rotational states. We will furthermore con-
centrate on the electronic contribution to properties; the corresponding nuclear 
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contribution (if present) is normally trivial to calculate as it is independent of the wave
function.1

The nuclear magnetic moment may be considered as an artificial perturbation, since
it is an inherent part of a given nucleus (isotope). In most applications, however, the
nucleus is modelled as a point particle with an electric charge, and the magnetic
moment needs only to be included in the Hamiltonian if the interest is in magnetic
interactions involving the nucleus. These interactions are furthermore small and can
be treated as a perturbative correction. One may analogously also neglect terms in the
Hamiltonian involving electron spins, but one cannot neglect the electron spin in the
wave function.The fermion character of the electrons leads to the requirement of wave
function antisymmetry, which must be accounted for right from the outset for any
theory. With a spin-free Hamiltonian, the spin dependence in the wave function can
be integrated out. When properties related to magnetic interactions with the electron
spin are desired, the spin-dependent terms in the Hamiltonian can be re-introduced
and treated as perturbations.

There are three main methods for calculating the effect of a perturbation:

• Derivative techniques.
• Perturbation theory based on the energy.
• Perturbation theory based on expectation values of properties, often called response

or propagator methods.

The derivative formulation is perhaps the easiest to understand. In this case, the energy
is expanded in a Taylor series in the perturbation strength l.

(10.1)

The nth-order property is the nth-order derivative of the energy, ∂nE/∂ln. Note that
the perturbation is usually a vector, and the first derivative is therefore also a vector,
the second derivative a matrix, the third derivative a (third-order) tensor, etc.

10.1 Examples of Molecular Properties
10.1.1 External electric field

The interaction of an electronic charge distribution r(r) with an electric potential f(r)
gives an energy contribution.

(10.2)

Since the electric field (F = −∂f/∂r) is normally fairly uniform at the molecular level,
it is useful to write E as a multipole expansion.

(10.3)

Here q is the net charge (monopole), m is the (electric) dipole moment, Q is the
quadrupole moment, and F and F′ are the field and field gradient (∂F/∂r), respectively.
The dipole moment and electric field are vectors, and the mF term should be inter-
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preted as the dot product (mF = mxFx + myFy + mzFz). The quadrupole moment and field
gradient are 3 × 3 matrices, and QF′ denotes the sum of all product terms. For an exter-
nal field it is rarely necessary to go beyond the quadrupole term, but for molecular
interactions the octupole moment may also be important (it is for example the first
non-vanishing moment for spherical molecules such as CH4).

In the absence of an external field, the unperturbed dipole and quadrupole moments
may be calculated from the electronic wave function as simple expectation values.

(10.4)

The minus sign for the dipole moment arises from the negative charge on the electron.
The superscript t denotes a transposition of the r-vector, i.e. converting it from a
column to a row vector. The rrt notation therefore indicates the outer product of r with
itself, and the quadrupole moment is thus a 3 × 3 matrix, where the Qxy component is
calculated as the expectation value of xy.

The presence of a field influences the wave function and leads to induced dipole,
quadrupole, etc., moments. For the dipole moment this may be written as in eq. (10.5).

(10.5)

Here m0 is the permanent dipole moment, a is the (dipole) polarizability, b is the (first)
hyperpolarizability, g is the second hyperpolarizability, etc. The quadrupole moment
may similarly be expanded in the field by means of a quadrupole polarizability, hyper-
polarizability, etc.

For a homogeneous field (i.e. the field gradient and higher derivatives are zero), the
total energy of a neutral molecule may be written as a Taylor expansion, where all the
derivatives are evaluated at F = 0. There will be a derivative for each individual com-
ponent of the field, which rapidly leads to a large number of indices and summations
in a proper mathematical formulation. In order to avoid this notational cluttering,
we will adopt a slightly non-standard notation where the field is indicated by a vector
notation, implying that derivatives should be taken along all the individual field 
components.

(10.6)

According to eq. (10.3) we also have that ∂E/∂F = −m, where m is given by the expres-
sion in eq. (10.5). Differentiation of eq. (10.6) with respect to F gives eq. (10.7).

(10.7)

Comparing eqs (10.5) and (10.7) shows that the first derivative is the (permanent)
dipole moment m0, the second derivative is the polarizability a, the third derivative is
the hyperpolarizability b, etc.
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10.1.2 External magnetic field

The interaction with a magnetic field may similarly be written in terms of magnetic
dipole, quadrupole, etc., moments (there is no magnetic monopole, corresponding to
electric charge). Since the magnetic interaction is substantially smaller in magnitude
than the electric, only the dipole term is normally considered.

(10.9)

The dipole moment m0 for an unperturbed system depends on the total angular
momentum, which may be written in terms of the orbital angular momentum opera-
tor LG and the total electron spin S.

(10.10)

Here RG is the gauge origin (discussed in Section 10.7), and the electronic ge-factor is
a constant approximately equal to 2.0023. The orbital part of the permanent magnetic
dipole moment will be zero for all non-degenerate wave functions (i.e. belonging to
A, B or Σ representations), since the LG operator is purely imaginary (p = −i∇) and
the wave function in such cases is real. Similarly, only open-shell states (doublet, triplet,
etc.) have the spin part of the magnetic dipole moment different from zero. Since the
large majority of stable molecules are closed shell singlets, it follows that permanent
magnetic dipole moments are quite rare. The presence of a field, however, may induce
a magnetic dipole moment, with the quantity corresponding to the electric polariz-
ability being the magnetizability x (the corresponding macroscopic quantity is called
the magnetic susceptibility c).

(10.11)

The energy can again be expanded in a Taylor series.

(10.12)

As for the electric field, this leads to the definition of the dipole and magnetizability
as first and second derivatives of the total energy with respect to the magnetic field.

(10.13)

10.1.3 Internal magnetic moments

The perturbation can also be an internal magnetic moment I, arising from a nuclear
spin (the gAmN factor for converting from spin to magnetic moment has been neglected
here).
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The first derivative is the nuclear–electron hyperfine coupling constant A, while the
second derivative with respect to two different nuclear spins is the NMR coupling con-
stant J (Planck’s constant appears owing to the convention of reporting coupling con-
stants in Hertz, and the factor of 1/2 disappears since we implicitly only consider distinct
pairs of nuclei). The corresponding interaction between two electron spins determines
the zero field splitting of the individual components of a triplet (or higher multiplet)
state in the absence of a magnetic field.

10.1.4 Geometry change

The change in energy for moving a nucleus can also be written as a Taylor expansion.

(10.15)

The first derivative is the gradient g, the second derivative is the force constant
(Hessian) H, the third derivative is the anharmonicity K, etc. If the R0 geometry is a
stationary point (g = 0) the force constant matrix may be used for evaluating harmonic
vibrational frequencies and normal coordinates, q, as discussed in Section 16.2.2. If
higher order terms are included in the expansion, it is possible also to determine
anharmonic frequencies and phenomena such as Fermi resonance.

10.1.5 Mixed derivatives

Mixed derivatives refer to cross terms if the energy is expanded in more than one per-
turbation. There are many such mixed derivatives that translate into molecular prop-
erties, a few of which are given below.

The change in the dipole moment with respect to a geometry displacement along a
normal coordinate q is related to the intensity of an IR absorption. In the so-called
double harmonic approximation (terminating the expansion at first order in the elec-
tric field and geometry), the intensity is (except for some constants) given by eq.
(10.16).

(10.16)

Only fundamental bands can have an intensity different from zero in the double har-
monic approximation. Including higher order terms in the expansion allows the cal-
culation of intensities of overtone bands, as well as adding contributions to the
fundamental bands.

The intensity of a Raman band in the harmonic approximation is given by the deriv-
ative of the polarizability with respect to a normal coordinate.
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The mixed derivative of an external and a nuclear magnetic field (nuclear spin) is the
NMR shielding tensor s.

(10.18)

The corresponding quantity related to the electron spin is the ESR g-tensor.
Table 10.1 gives some examples of properties that may be calculated from deriva-

tives of a certain order with respect to the above four perturbations.

(10.19)

All of these properties can be calculated at various levels of sophistication (electron
correlation and basis sets). It should be noted that dynamic properties, where one or
more of the external electric and/or magnetic fields are time dependent, may involve
one or several different frequencies. Time-dependent properties are discussed in
Section 10.9.
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Table 10.1 Examples of properties that may be calculated as derivatives of the energy

nF nB nI nR Property

0 0 0 0 Energy
1 0 0 0 Electric dipole moment
0 1 0 0 Magnetic dipole moment
0 0 1 0 Hyperfine coupling constant
0 0 0 1 Molecular (nuclear) gradient
2 0 0 0 Electric polarizability
0 2 0 0 Magnetizability
0 0 2 0 Nuclear spin–spin coupling
0 0 0 2 Harmonic vibrational frequencies
1 0 0 1 Infrared absorption intensities
1 1 0 0 Optical rotation, circular dichroism
0 1 1 0 Nuclear magnetic shielding
3 0 0 0 (first) Electric hyperpolarizability
0 3 0 0 (first) Hypermagnetizability
0 0 0 3 (cubic) Anharmonic corrections to vibrational frequencies
2 0 0 1 Raman intensities
3 0 0 1 Hyper-Raman effects
2 1 0 0 Magnetic circular dichroism (Faraday effect)
1 0 0 2 Infrared intensities for overtone and combination bands
4 0 0 0 (second) Electric hyperpolarizability
0 4 0 0 (second) Hypermagnetizability
0 0 0 4 (quartic) Anharmonic corrections to vibrational frequencies
2 0 0 2 Raman intensities for overtone and combination bands
2 2 0 0 Cotton–Mutton effect



10.2 Perturbation Methods
Let us first look at some general features. The presence of a perturbation will give rise
to extra terms in the Hamiltonian, and we will in the following need to consider oper-
ators that are both linear and quadratic in the perturbation.

(10.20)

H0 is the normal electronic Hamiltonian operator, and the perturbations are described
by the operators P1 and P2, with l determining the strength. Based on an expansion in
exact wave functions, Rayleigh–Schrödinger perturbation theory (Section 4.8) gives the
first- and second-order energy corrections.

(10.21)

The first-order term is identical to eq. (4.37), while the second-order equation corre-
sponds to eq. (4.39) with an additional term involving the expectation value of P2 over
the unperturbed wave function. The first-order energy correction is identified with the
first-order property, the second-order correction is the second-order property, etc.
Although these expressions only hold for exact wave functions, they may also be used
for approximative wave functions. The methodology of how the general expressions
can be reduced to formulas involving molecular integrals is analogous to that used in
Section 3.3.

The first-order term is simply the expectation value of the perturbation operator
over the unperturbed wave function, and is easy to calculate. The second-order prop-
erty, however, involves a sum over all excited states. In some cases, mainly associated
with semi-empirical methods, second-order properties are evaluated directly from 
eq. (10.21), known as Sum Over States (SOS) methods. Since this involves a determi-
nation of all excited states, it is very inefficient for ab initio methods. A computation-
ally efficient way of calculating such properties is by means of response methods
(Section 10.9).

10.3 Derivative Techniques
Derivative techniques consider the energy in the presence of the perturbation, perform
an analytical differentiation of the energy n times to derive a formula for the nth-order
property, and let the perturbation strength go to zero.

Let us write the energy as in eq. (10.22).

(10.22)

This is strictly true for HF, MCSCF and CI wave functions, and can be generalized to
MP and CC methods as shown in Section 10.4. The perturbation-dependent terms in
the operator are written explicitly, while the wave function dependence is implicit,
via the parameterization (orbital and state coefficients) and possibly also the basis
functions.
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The first derivative of the energy can be written as in eq. (10.23).

(10.23)

For real wave functions the first and third terms are identical. Letting the perturbation
strength go to zero yields eq. (10.24).

(10.24)

The wave function depends on the perturbation indirectly, via parameters in the wave
function (C), and possibly also the basis functions (c). The wave function parameters
may be orbital coefficients (HF), state coefficients (CI, MP, CC) or both (MCSCF).

(10.25)

Assuming for the moment that the basis functions are independent of the perturba-
tion (∂c/∂l = 0), the derivative (10.24) may be written as in eq. (10.26).

(10.26)

If the wave function is variationally optimized with respect to all parameters (HF or
MCSCF, but not CI), the last term disappears since the energy is stationary with respect
to a variation of the MO/state coefficients (H0, P1 and P2 do not depend on the param-
eters C).

(10.27)

Variational wave functions thus obey the Hellmann–Feynman theorem.

(10.28)

In such cases, the expression from first-order perturbation theory (10.21) yields a result
identical to the first derivative of the energy with respect to l. For wave functions 
that are not completely optimized with respect to all parameters (CI, MP or CC), the
Hellmann–Feynman theorem does not hold, and a first-order property calculated as
an expectation value will not be identical to that obtained as an energy derivative.
Since the Hellmann–Feynman theorem holds for an exact wave function, the differ-
ence between the two values becomes smaller as the quality of an approximate wave
function increases. However, for practical applications the difference is not negligible.
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It has been argued that the derivative technique resembles the physical experiment
more, and consequently formula (10.24) should be preferred over (10.21).

The second derivative of the energy can for a real wave function be written as in eq.
(10.29).

(10.29)

In the limit of the perturbation strength going to zero this reduces to eq. (10.30).

(10.30)

The implicit wave function dependence on C allows the derivative to be written as in
eq. (10.31).

(10.31)

For a variationally optimized wave function, the first term is again zero (eq. (10.27)).
Furthermore, the second term, which involves calculation of the second derivative 
of the wave function with respect to the parameters, can be avoided. This can be 
seen by differentiating the stationary condition eq. (10.27) with respect to the 
perturbation.

(10.32)

The second derivative in eq. (10.31) therefore reduces to eq. (10.33).

(10.33)

In a more compact notation, this can be written as eq. (10.34).

(10.34)

This shows that only the first-order change in the wave function is necessary. For exact
wave functions eq. (10.34) becomes identical to the perturbation expression (10.21),
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since the first derivative of the wave function may then be expanded in a complete set
of eigenfunctions (eq. (4.36)).

(10.35)

10.4 Lagrangian Techniques
For variationally optimized wave functions (HF or MCSCF) there is a 2n + 1 rule, anal-
ogous to the perturbational energy expression (eq. (4.35)): knowledge of the nth deriv-
ative (also called the response) of the wave function is sufficient for calculating a
property to order 2n + 1. For non-variational wave functions eq. (10.30) suggests that
the nth-order wave function response is required for calculating the nth-order prop-
erty. This may be avoided, however, by a technique first illustrated for CISD geome-
try derivatives by Handy and Schaefer, often referred to as the Z-vector method.2 It
has later been generalized to cover other types of wave functions and derivatives by
formulating it in terms of a Lagrange function.3

The idea is to construct a Lagrange function that has the same energy as the non-
variational wave function but which is variational in all parameters. Consider for
example a CI wave function, which is variational in the state coefficients (a) but not
in the orbital coefficients (c), since they are determined by the stationary condition for
the HF wave function (note that we employ lower case c for the orbital coefficients
but capital C to denote all wave function parameters, i.e. C contains both a and c).

(10.36)

Consider now the Lagrange function given in eq. (10.37).

(10.37)

Here k contains a set of Lagrange multipliers. The derivatives of the Lagrange func-
tion with respect to a, c and k are given in eq. (10.38).

(10.38)

The first two derivatives are zero due to the properties of the CI and HF wave func-
tions, eq. (10.36). The last equation is zero by virtue of the Lagrange multipliers, i.e. we
choose k such that ∂LCI/∂c = 0. It may be written more explicitly in eq. (10.39).
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(10.39)

Note that no new operators are involved, only derivatives of the CI or HF wave func-
tion with respect to the MO coefficients. The matrix elements can thus be calculated
from the same integrals as the energy itself, as discussed in Sections 3.3 and 4.2.1.

The derivative with respect to a perturbation can now be written as in eq. (10.40).

(10.40)

Expanding out the terms gives eq. (10.41).

(10.41)

The second term disappears since the CI wave function is variational in the state coef-
ficients, eq. (10.36). The three terms involving the derivative of the MO coefficients
(∂c/∂l) also disappear owing to our choice of the Lagrange multipliers, eq. (10.39). If
we furthermore adapt the definition that ∂H/∂l = P1 (eq. (10.20)), the final derivative
may be written as eq. (10.42).

(10.42)

Here the Lagrange multipliers k are determined from eq. (10.39).
What has been accomplished? The original expression (10.26) contains the deriva-

tive of the MO coefficients with respect to the perturbation (∂c/∂l), which can be
obtained by solving the CPHF equations (Section 10.5 below). For geometry deriva-
tives, for example, there will be 3Natom different perturbations, i.e. we need to solve
3Natom sets of CPHF equations. The Lagrange expression (10.42), on the other hand,
contains a set of Lagrange multipliers k that are independent of the perturbation, i.e.
we need only to solve one equation for k, eq. (10.39). Furthermore, the CPHF equa-
tions involve derivatives of the basis functions, while the equation for k only involves
integrals of the same type as for calculating the energy itself.

The Lagrange technique may be generalized to other types of non-variational wave
functions (MP and CC), and to higher order derivatives. It is found that the 2n + 1 rule
is recovered, i.e. if the wave function response is known to order n, the (2n + 1)th-order
property may be calculated for any type of wave function.

10.5 Coupled Perturbed Hartree–Fock
Although a calculation of the wave function response can be avoided for the first deriv-
ative, it is necessary for second (and higher) derivatives. Eq. (10.32) gives directly an
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equation for determining the (first-order) response, which is structurally the same as
eq. (10.39). For a Hartree–Fock wave function, an equation for the change in the MO
coefficients may also be formulated from the HF equation, eq. (3.51).

(10.43)

The superscript (0) here denotes the unperturbed system. The orthonormality of the
molecular orbitals (eq. (3.20)) can be expressed as in eq. (10.44).

(10.44)

Expanding each of the F, C, S and e matrices in terms of a perturbation parameter (e.g.
F = F(0) + lF(1) + l2F(2) + . . .) and collecting all the first-order terms (analogous to the
strategy used in Section 4.8) gives eq. (10.45).

(10.45)

The orthonormality condition becomes eq. (10.46).

(10.46)

Equation (10.45) is the first-order Coupled Perturbed Hartree–Fock (CPHF) equation.4

The perturbed MO coefficients are given in terms of unperturbed quantities and the
first-order Fock, Lagrange (e) and overlap matrices.The F(1) term is given in eq. (10.47).

(10.47)

Here h is the one-electron (core) matrix, D the density matrix and G the tensor con-
taining the two-electron integrals.The density matrix is given as a product of MO coef-
ficients (eq. (3.52)).

(10.48)

The S(1), h(1) and g(1) quantities are (first) derivatives of one- and two-electron integrals
over basis functions.

(10.49)

The derivatives of the integrals may involve derivatives of the basis functions or the
operator, or both (see Section 10.8). Using eqs (10.48) and (10.47) in eq. (10.45) gives
a set of linear equations relating C(1) to S(1), h(1), g(1) and C(0).
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Just as the variational condition for an HF wave function can be formulated either
as a matrix equation or in terms of orbital rotations (Sections 3.5 and 3.6), the CPHF
may also be viewed as a rotation of the molecular orbitals. In the absence of a per-
turbation, the molecular orbitals make the energy stationary, i.e. the derivative of the
energy with respect to a change in the MOs is zero. This is equivalent to the statement
that the off-diagonal elements of the Fock matrix between the occupied and virtual
MOs are zero.

(10.50)

When a perturbation is introduced, the stationary condition means that the orbitals
must change, which may be described as a mixing of the unperturbed MOs. In other
words, the stationary orbitals in the presence of a perturbation are given by a unitary
transformation of the unperturbed orbitals (see also Section 3.6).

(10.51)

The U matrix describes how the MOs change, i.e. it contains the derivatives of the MO
coefficients. In the absence of a perturbation, U is the identity matrix.

Let us now explicitly make U(1) the matrix containing the first-order changes in the
MO coefficients.

(10.52)

In terms of the matrix formulation in eqs (10.45) and (10.46), the equivalent of eq.
(10.51) is eq. (10.53).

(10.53)

An equation for the U(1) elements can be obtained from the condition that the Fock
matrix is diagonal, and by expanding all involved quantities to first order.

(10.54)

The 〈fi|h|fa〉(1) and 〈fifk|g|fafk〉(1) elements are integral derivatives with respect to the
perturbation, analogous to eq. (10.49), but expressed in terms of molecular orbitals.
Inserting these expansions into the 〈fi|F|fa〉 = 0 condition and collecting all terms that
are first order in l gives a matrix equation that can be written as

(10.55)

The A(0) matrix contains only unperturbed quantities (〈fi|h|fa〉(0) and 〈fifk|g|fafk〉(0)),
while the B(1) matrix contains first derivatives (〈fi|h|fa〉(1) and 〈fifk|g|fafk〉(1)).
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Since the energy is independent of a rotation among the occupied or virtual orbitals,
only the mixing of occupied and virtual orbitals is determined by requiring that the
energy be stationary. The occupied–occupied and virtual–virtual mixing may be fixed
from the orthonormality condition (eq. (10.46)) or, equivalently, by requiring the per-
turbed Fock matrix to be diagonal also in the occupied–occupied and virtual–virtual
blocks. Without these additional requirements, the procedure is called Coupled
Hartree–Fock (CHF), as opposed to CPHF.

The CPHF equations are linear and can be solved by standard matrix operations.
The size of the U matrix is the number of occupied orbitals times the number of virtual
orbitals, which in general is quite large, and the CPHF equations are therefore nor-
mally solved by iterative methods. Furthermore, as illustrated above, the CPHF equa-
tions may be formulated either in an atomic orbital or molecular orbital basis.
Although the latter has computational advantages in certain cases, the former is more
suitable for use in connection with direct methods (where the atomic integrals are cal-
culated as required), as discussed in Section 3.8.5.

There is one CPHF equation to be solved for each perturbation. If it is an electric
or magnetic field, there will in general be three components (Fx, Fy, Fz), if it is a geom-
etry perturbation there will be 3Natom (actually only 3Natom − 6 independent) compo-
nents. Since the A(0) matrix is independent of the nature of the perturbation, such
multiple CPHF equations are often solved simultaneously.

The CPHF procedure may be generalized to higher order. Extending the expansion
to second order allows the derivation of an equation for the second-order change in
the MO coefficients, by solving a second-order CPHF equation, etc.

For perturbation-dependent basis sets (e.g. geometry derivatives) the (first-order)
CPHF equations involve (first) derivatives of the one- and two-electron integrals with
respect to the perturbation. For basis functions that are independent of the perturba-
tion (e.g. an electric field), these derivatives are zero. Typically the solution of each
CPHF equation (for each perturbation) requires approximately half of the time
required for solving the HF equations themselves. For basis set dependent perturba-
tions, the first-order CPHF equations are only needed for calculating second (and
higher) derivatives, which have terms involving second (and higher) derivatives of the
integrals themselves, and solving the CPHF equations is usually not the computational
bottleneck in these cases.

Without the Lagrange technique for non-variational wave functions (CI, MP and
CC), the nth-order CPHF is needed for the nth derivative. Consider for example the
MP2 energy correction.

(10.56)

The derivative of a molecular integral is given by eq. (10.57).

(10.57)

This requires both the derivative of the MO coefficients and the two-electron integrals
in the AO basis. The denominator leads to derivatives of the MO energies, which can
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be obtained by solving the CPHF equations. A straightforward differentiation of eq.
(10.56) thus leads to a formula where the first-order response is required.

Let us exemplify some of the above generalizations for the case of an HF wave 
function.

10.6 Electric Field Perturbation
10.6.1 External electric field

If the perturbation is a homogeneous electric field F (F = Fr), the perturbation oper-
ator P1 (eq. (10.21)) is the position vector r and P2 is zero. Assuming that the basis
functions are independent of the electric field (as is normally the case), the first-order
HF property, the dipole moment, is given by the derivative formula (10.24) as shown
in eq. (10.58) (since an HF wave function obeys the Hellmann–Feynman theorem).

(10.58)

This is equivalent to the expression from first-order perturbation theory, (10.21). For
non-variational wave functions the dipole moment calculated by the two approaches
will be different, since the derivative of the wave function with respect to the field will
not be zero. The second-order property, the dipole polarizability, is given by the deriv-
ative formula eq. (10.34) as shown in eq. (10.59).

(10.59)

Second-order perturbation theory eq. (10.21) yields eq. (10.60).

(10.60)

10.6.2 Internal electric field

Although nuclei are often modelled as point charges in quantum chemistry, they do in
fact have a finite size. The internal structure of the nucleus leads to a quadrupole
moment for nuclei with spin larger than 1/2 (the dipole and octopole moments vanish
by symmetry). This leads to an interaction term that is the product of the quadrupole
moment with the field gradient (F′ = ∇F) created by the electron distribution.

(10.61)

10.7 Magnetic Field Perturbation
The situation is somewhat more complicated when the perturbation is a magnetic field.
An electric field interacts directly with the charged particles (electrons and nuclei),
and adds a potential energy term to the Hamiltonian operator. A magnetic field,

H Q FQ A
A

N

= − ′
=

∑
1

nuclei

a = −
−≠

∑2
2

00

Ψ ΨHF r i

ii E E

a = − ∂
∂

= ∂
∂

2

2
2

EHF HF
HF

F F
r

Ψ Ψ

m = − ∂
∂

= −EHF
HF HF

F
rΨ Ψ

10.7 MAGNETIC FIELD PERTURBATION 329



however, interacts with the magnetic moments generated by the movement of the
charged particles (electrons), i.e. a magnetic perturbation changes the kinetic energy
operator. The generalized (also called the canonical) momentum operator p is defined
in eq. (10.62).

(10.62)

Here q is the charge and A is the vector potential associated with the magnetic field B
(more correctly, the magnetic induction or flux density, being different from the mag-
netic field by a factor of 4π ⋅10−7 Hm−1), with the latter being given as the curl of the
vector potential.

(10.63)

Only the kinetic energy of the electrons is considered within the Born–Oppenheimer
approximation, and the generalized momentum becomes (q = −1) eq. (10.64).

(10.64)

The vector potential is not uniquely defined since the gradient of any scalar function
may be added (the curl of a gradient is always zero). For an external magnetic field, it
is conventional to write it as in eq. (10.65).

(10.65)

Here RG is referred to as the gauge origin, i.e. the centre of the vector potential. One
may verify by explicit calculation that the curl of Aext in eq. (10.64) indeed gives Bext.

A nucleus with a non-zero spin acts as a magnetic dipole, giving rise to a vector
potential AA and producing the associated magnetic field by taking the curl.

(10.66)

Here gAmNIA is the magnetic moment of nucleus A and RA is the position (the nucleus
is the natural gauge origin). The BA expression determines the magnetic field at posi-
tion r (not necessarily indicating an electron) due to a magnetic nucleus at position
RA. The δ function in the last term in the BA expression arises from the quantum
mechanical possibility of r − RA = 0, i.e. the magnetic field directly at the nuclear posi-
tion. Note that the presence of c−2 emerges from the units of magnetic field (m0/4π =
c−2 in atomic units), and does not indicate a relativistic origin.

The spin associated with an electron also acts as a magnetic dipole (−gemBsi), giving
rise to a vector potential Ae and associated magnetic field.

(10.67)

A

B

e
e B

2

e
e B

2

= − × −( )
−

= −
−

− −( ) −( ) ⋅( )
−

− −( )









g
c

g
c

i i

i

i

i

i i i

i

i i

m

m p d

s r r

r r

s

r r

r r r r s

r r
s r r

3

3 5
3

8
3

A

B

A
A N

2

A A

A

A
A N

2

A

A

A A A

A

A A

= × −( )
−

= −
−

− −( ) −( ) ⋅( )
−

− −( )









g
c

g
c

m

m p d

I r R

r R

I

r R

r R r R I

r R
I r R

3

3 5
3

8
3

A Bext ext Gr r R( ) = × −( )1
2

p = +p A

B A= ∇ ×

p = −p Aq

330 MOLECULAR PROPERTIES



The Be expression similarly determines the magnetic field at position r due to an elec-
tron at position ri.

The introduction of the generalized momentum operator in the one-electron kinetic
energy part of the Dirac equation leads to three new interaction terms, as shown in
eq. (8.29) and (8.30). It should be noted that the last two terms will also show up in a
non-relativistic treatment when the magnetic vector potential is included, and only the
s ⋅B term should be considered a relativistic effect.

(10.68)

If there is more than one type of magnetic field present there will be an additional
mixed AA′ term. Depending on the type of magnetic interactions present, these give
operators as shown below. To simplify the expressions, we will use the notations riA =
ri − RA, rij = ri − rj and RAB = RA − RB.

In addition to the magnetic terms arising from the expansion of the generalized
momentum operator, there are also magnetic perturbation terms arising from rela-
tivistic corrections, as discussed in Section 8.2. These corrections may be derived by an
expansion in the inverse speed of light. For consistency, we will in the following only
consider terms up to order c−2, with the exception of the indirect nuclear spin–spin cou-
pling, where the lowest non-vanishing term is of order c−4. Furthermore, in the rest of
this section the summation over the number of electrons and nuclei has been omitted
for clarity.

10.7.1 External magnetic field

For an external magnetic field, the three terms in eq. (10.68) becomes eqs
(10.69)–(10.71).

(10.69)

(10.70)

(10.71)

Here the vector identities a ×b ⋅c = a ⋅b×c and (a ×b) ⋅ (c×d) = (a ⋅c)(b ⋅d) − (a ⋅d)(c ⋅b)
have been used, and the angular momentum operator LG is defined implicitly by 
eq. (10.70). The presence of a magnetic field thus introduces three new terms, two 
being linear and one being quadratic in the field. The spin-Zeeman term s ⋅Bext

describes the interaction of the electron spin with the magnetic field, while 1/2Bext ⋅
LG is the orbital-Zeeman term describing the interaction of the magnetic field with 
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the magnetic moment associated with the movement of the electron. For a many-
electron system, the spin-Zeeman term becomes S ⋅Bext, where S indicates the total
molecular spin. The quadratic P ξ

2 operator arising from 1/2A2
ext may be written as in eq.

(10.72).

(10.72)

Here rt
iGriG is the inner (dot) product times a unit matrix (i.e. riG ⋅ riGI) and riGrt

iG is the
outer product, i.e. a 3 × 3 matrix containing the products of the x, y, z components,
analogous to the quadrupole moment, eq. (10.4). Note that both the LG and Pξ

2 oper-
ators are gauge dependent.

10.7.2 Nuclear spin

The gemBs ⋅B term in eq. (10.68) in connection with BA in eq. (10.66) gives three terms,
which conventionally are collected in two operators.

(10.73)

H SD
ne is a (one electron) Spin-Dipolar and HFC

ne is a Fermi Contact operator, and their
sum is the HSS

ne operator in eq. (8.37).
The AA ⋅p term in eq. (10.68) gives the Paramagnetic Spin–Orbit operator.

(10.74)

H ne
PSO is identical to eq. (8.37).
The 1/2A 2

A term in eq. (10.68) gives a Diamagnetic Spin–Orbit operator, which is an
operator of order c−4. Although we otherwise only consider terms up to order c−2, the
nuclear spin–spin coupling constant only contains terms of order c−4, which is why we
need to include H nn

DSO.

(10.75)

When both nuclear spins and an external magnetic field are present, there is an addi-
tional mixed Aext ⋅AA term arising from the expansion of the generalized momentum
operator.

(10.76)

This nuclear Diamagnetic Shielding operator contributes to the NMR shielding 
tensor.
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10.7.3 Electron spin

The gemBs ⋅B term in eq. (10.68) in connection with Be in eq. (10.67) gives three terms,
which again are collected in two operators.

(10.77)

PSD
ee is a (two-electron) Spin-Dipolar and PFC

ee is a Fermi Contact operator, with the sum
being equal to the HSS

ee operator in eq. (8.36).
The Ae ⋅p term in eq. (10.67) gives the two-electron part of the spin–orbit 

operator.

(10.78)

HSO
ee is equivalent to the sum of H SO

ee and H ee
SOO in eq. (8.36).

The 1/2A2
e term in eq. (10.68) gives an operator analogous to eq. (10.75), but that

depends on two electron spins instead of two nuclear spins. This, however, is an order
c−4 operator compared with the order c−2 operators PSD

ee and P FC
ee (eq. (10.77)) describ-

ing spin–spin interactions, and is therefore neglected.
The Ae ⋅AA term in eq. (10.68) gives a coupling between the electronic and nuclear

spins, and is again an operator of order c−4. Compared with the order c−2 operators P SD
ne

and PFC
ne (eq. (10.73)), it is again neglected.

When both electron spin and an external magnetic field are considered, there is a
mixed Aext ⋅Ae term.

(10.79)

This electronic Diamagnetic Shielding operator contributes to the ESR g-tensor.

10.7.4 Classical terms

The expansion of the generalized momentum operator only involves the magnetic
interactions in the electronic part of the wave function. Since the corresponding
nuclear part has been separated out by the Born–Oppenheimer approximations, we
need to add a few terms corresponding to the (classical) interaction of the nuclear
magnetic moments with an external magnetic field and between nuclei.

The nuclear spin-Zeeman term is analogous to the electronic term in eq. (10.69),
except that the electron magnetic moment of −gemBs is replaced by the nuclear 
magnetic moment gAmNI. The nuclear magneton mN is defined analogously to the 
Bohr magneton mB, but using the proton mass mp instead of the electron mass (mN =
eh- /2mp = 2.723 × 10−4 in atomic units), while the gA factor depends on the specific
nucleus (isotope).
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(10.80)

The term involving two nuclei is analogous to the electron–electron spin-dipole term
in eq. (10.77). The corresponding Fermi contact term disappears since nuclei cannot
occupy the same position at energies relevant for chemistry. Note that the direct
spin–spin coupling is independent of the electronic wave function; it only depends on
the molecular geometry.

(10.81)

10.7.5 Relativistic terms

The most important relativistic corrections are the one-electron spin–orbit operator,
and the relativistic correction to the spin-Zeeman operator.

(10.82)

(10.83)

Other relativistic corrections, such as the mass–velocity and Darwin terms, affect 
the wave function but do not lead to operators associated with molecular 
properties.

10.7.6 Magnetic properties

Table 10.2 shows the perturbation operators arising from inclusion of a magnetic field
and relativistic effects. The last three columns indicate the perturbation order with
respect to an external (Bext) and internal nuclear (I) magnetic field, and with respect
to the inverse speed of light. Only the most important operators up to order c−2 have
been included, with the exception of the diamagnetic nuclear spin–spin coupling oper-
ator, since the leading term for this quantity is of order c−4.

As seen from eq. (10.21), the first-order property is given as an expectation value of
operators linear in the perturbation. The second-order property contains two contri-
butions, an expectation value over quadratic (or bilinear) operators and a sum over
products of matrix elements involving linear operators connecting the ground and
excited states.

The first-order property with respect to an external field is the magnetic dipole
moment m (eq. (10.10)). When field-independent basis functions are used, the HF 
magnetic dipole moment is given as the expectation value of the 1/2LG and S (total 
electron spin) operators over the unperturbed wave function, eqs (10.21) and (10.24).
Since the LG operator is imaginary it can only yield a non-zero result for spatially
degenerate wave functions and the expectation value of S is only non-zero for 
non-singlet states.
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(10.84)

The second-order term, the magnetizability ξ, has two components. The derivative
expression (10.34) is given by eq. (10.85).

(10.85)

Second-order perturbation theory (eq. (10.21)) yields eq. (10.86).

(10.86)

The first term is referred to as the diamagnetic contribution, while the latter is the para-
magnetic part of the magnetizability. The total spin operator S gives no contribution
to the paramagnetic term, since the ground and excited states are orthogonal in the
spatial part. Each of the two components depends on the selected gauge origin.
However, for exact wave functions the gauge dependecies cancel exactly. For approx-
imate wave functions this is not guaranteed, and as a result the total property may
depend on where the origin for the vector potential (eq. (10.65)) has been chosen.

The first-order term with respect to a nuclear magnetic moment I is the hyperfine
coupling tensor A, giving the coupling the between the nuclear and electronic mag-
netic moments.5 The leading order term (c−2) can be evaluated as a simple expectation
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Table 10.2 Magnetic perturbation operators

Origin Operator Equation Name Perturbation order

Bext I c−n

S⋅Bext S 10.69 Electron spin-Zeeman 1 0 0
Aext⋅p 1/2LG 10.70 Orbital-Zeeman 1 0 0
1/2A2

ext P2
ζ 10.71 Diamagnetic magnetizability 2 0 0

s⋅BA Pne
SD 10.73 Nuclear–electron spin-dipole 0 1 2

Pne
FC 10.73 Nuclear–electron Fermi contact 0 1 2

AA⋅p Pne
PSO 10.74 Paramagnetic spin–orbit 0 1 2

1/2A2
A Pnn

DSO 10.75 Diamagnetic nuclear spin–spin 0 2 4
AA⋅A ext Pne

DS 10.76 Diamagnetic NMR shielding 1 1 2
s⋅Be Pee

SD 10.77 Electron–electron spin-dipole 0 0 2
Pee

FC 10.77 Electron–electron Fermi contact 0 0 2
Ae⋅p Pee

SO 10.78 Two-electron spin–orbit 0 0 2
Ae⋅A ext Pee

DS 10.79 Diamagnetic ESR shielding 1 0 2
Classic IA 10.80 Nuclear spin-Zeeman 1 1 0
Classic Pnn

SS 10.81 Nuclear spin–spin coupling 0 2 0
Relativistic Pne

SO 10.82 One-electron spin–orbit 0 0 2
Relativistic p2s 10.83 Electron spin-Zeeman, rel. corr. 1 0 2

Note that the spin-Zeeman term involves the total electron spin S.



value of the PFC
ne and P DS

ne operators.The former provides the isotropic part of the tensor,
while the latter gives the anisotropic part.

(10.87)

The second-order property related to two nuclear spins IA and IB is the nuclear
spin–spin coupling tensor. The direct interaction is determined entirely by the molec-
ular geometry and given by eq. (10.81). For rapidly tumbling molecules (solution or
gas phase) this contribution averages out to zero, but it is significant for solid-state
NMR.

The indirect spin–spin coupling between nuclei A and B, which is the one observed
in solution phase NMR, contains several contributions, all being of order c−4.

(10.88)

The first part can be evaluated as the expectation value of Pnn
DSO (eq. (10.75).The second

part corresponds to all combinations of operators that are linear in the nuclear spin,
i.e. PFC

ne , P SD
ne and Pne

PSO (eqs (10.73) and (10.74)). PFC
ne and PSD

ne contain the electron spin
operators and for a singlet ground state (as is usually the case), this means that the
excited state Ψi in the summation must be a triplet state. Since Pne

PSO does not depend
on electron spin, the combination of Pne

PSO with either P FC
ne or P SD

ne gives zero contribu-
tion. For rapidly tumbling molecules, it can be shown the cross term between PFC

ne and
PSD

ne averages out. For the trace (sum of the diagonal terms) of the 3 × 3 coupling matrix
J, which is the observed coupling constant, only the three “diagonal” terms (P1 = P′1)
in eq. (10.88) thus survive. The Fermi contact term is the most important for one-bond
couplings (1J) in singly bonded systems, but the other three contributions become
important for multiple-bonded systems and for longer-range couplings (2J, 3J).6

The first-order term with respect to total electron spin S is the spin–orbit splitting
of open-shell molecules with a net angular momentum, as for example NO with a 2Π
ground state.

(10.89)

The second-order property related to two electron spins is the Zero Field Splitting
(ZFS) tensor D, which is responsible for making the three individual components of
a triplet state non-degenerate, with a typical magnitude being of the order of a few
cm−1.7 It again contains second- and first-order contributions, the latter arising from
the spin–orbit operator containing both the one- and two-electron contributions.

(10.90)

The PFC
ee operator just introduces a uniform shift of all energy levels, and thus produces

no observable effect on the splitting of the energy levels.
The interaction of an external magnetic field with a nuclear spin gives a Zeeman

splitting of the energy levels by the IA ⋅Bext term (Table 10.2). The details of the split-
ting, however, depend on the molecular environment, since the local magnetic field 
at a nuclear position is shielded by the electrons relative to the external field, Blocal =
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(1 − s)Bext. The NMR shielding tensor s, which is the mixed second derivative with
respect to a nuclear spin and an external magnetic field, has, by analogy with the mag-
netizability, a diamagnetic and paramagnetic part.6,8 The diamagnetic part arises from
PDS

ne , while the paramagnetic contribution contains products of matrix elements involv-
ing operators linear in B or I. These are given by the angular momentum operator
1/2LG, eq. (10.70) and by the paramagnetic spin–orbit operator Pne

PSO, eq. (10.74).Written
in terms of the perturbation formula (10.21), the expression for the nuclear shielding
for atom A becomes eq. (10.91).

(10.91)

All the operators PDS
ne , Pne

PSO and LG are gauge dependent, and each of the dia- and para-
magnetic terms consequently depends on the chosen gauge. The shielding tensor is a
3 × 3 matrix, which can be diagonalized to give three eigenvalues. These principal com-
ponents can be observed by solid-state NMR, but for rapidly tumbling molecules, as
in solution phase, only the average can be observed, corresponding to one-third of the
trace of the shielding tensor.

The ESR equivalent of the NMR shielding is called the g-tensor, and can be 
considered as the mixed second derivative with respect to the electron spin and 
an external magnetic field.9 It is a 3 × 3 tensor, and can be written as the diagonal 
component for the free electron plus a small correction due to the molecular 
environment.

(10.92)

The diagonal term ge1 arises from the spin-Zeeman term S ⋅Bext, while the anisotropic
part has two contributions. The direct term arises from the PDS

ee operator (eq. (10.79))
and the relativistic correction from the spin-Zeeman term (eq. (10.83)), with additional
contributions coming from the combination of 1/2LG and the spin–orbit operators PSO

ne

and PSO
ee .

(10.93)

It should be noted that the formulas in eqs (10.84)–(10.93) have been derived by con-
sidering only the operators from the leading order in the inverse speed of light. One
may obtain relativistic corrections by carrying out the expansion to higher orders, but
this rapidly becomes quite involved,8,9 as many different operators and their combi-
nations can make contributions to a given property. For systems where relativistic
effects are important, a full four-component type calculation (Section 8.4) becomes
attractive, at least conceptually, since it automatically includes all effects without the
necessity of multiple perturbation operators.
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10.7.7 Gauge dependence of magnetic properties

There are two factors that make the calculation of magnetic properties somewhat more
complicated than the corresponding electric properties. First, the angular momentum
operator LG is imaginary (eq. (10.10)), implying that the wave function must be allowed
to be complex. Second, the presence of the gauge origin in the operators means that
the results may be origin dependent. An exact wave function will of course give origin-
independent results, as will a Hartree–Fock wave function if a complete basis set is
employed. In practice, however, a finite basis must be employed, and standard basis
sets will yield results that depend on where the user has chosen the origin of the gauge.
The centre of mass is often used in actual calculations, but this is by no means a unique
choice. The gauge error depends on the distance between the wave function and the
gauge origin, and some methods try to minimize the error by selecting separate gauges
for each (localized) molecular orbital. Two such methods are known as Individual
Gauge for Localized Orbitals (IGLO)10 and Localized Orbital/local oRiGin (LORG).11

A more recent implementation, which eliminates the gauge dependence for prop-
erties, is to make the basis functions explicitly dependent on the magnetic field by inclu-
sion of a complex phase factor referring to the position of the basis function (usually
the nucleus).

(10.94)

Such orbitals are known as London Atomic Orbitals (LAO) or Gauge Including/Invari-
ant Atomic Orbitals (GIAO).12 The effect is that matrix elements involving GIAOs only
contain a difference in vector potentials, thereby removing the reference to an absolute
gauge origin. For the overlap and potential energy, it is straightforward to see that
matrix elements become independent of the gauge origin.

(10.95)

The kinetic energy is slightly more complicated, but it can be shown that the relation
shown in eq. (10.96) holds.

(10.96)

Note that RG has been replaced by RB in the last bracket. The use of GIAOs as basis
functions makes all matrix elements, and therefore all properties, independent of the
gauge origin. The wave function itself, however, is expressed in term of the basis func-
tions, and therefore becomes gauge dependent, by means of a complex phase factor.
The use of perturbation-dependent basis functions has the further advantage of greatly
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reducing the need for high angular momentum basis functions, i.e. the property is typ-
ically calculated with an accuracy comparable to that of the unperturbed system.13

While LAOs/GIAOs were proposed well before the advent of modern computa-
tional chemistry, it was only owing to developments in calculating (geometrical) deriv-
atives of the energy (and wave function) that it became practical to use field-dependent
orbitals.14

10.8 Geometry Perturbations
The general formula for the first derivative of the energy with respect to a change in
geometry, the molecular (nuclear) gradient, is given by eq. (10.24).

(10.97)

The first term is the Hellmann–Feynman force and the second is the wave function
response. The latter contains contributions from a change in the basis functions, the
state and the MO coefficients.

(10.98)

The state and MO dependence disappears for HF, DFT and MCSCF type wave func-
tions owing to the variational nature (∂Ψ/∂a = 0 and ∂Ψ/∂c = 0). For traditional basis
sets consisting of nuclear-centred Gaussian functions, the basis functions are clearly
perturbation dependent since the functions move along with the nuclei, and standard
perturbation theory is therefore not suitable for calculating molecular gradients. For a
plane wave basis, however, the basis functions are independent of a geometry pertur-
bation, and the molecular gradient is just the Hellmann–Feynman term.

Since geometry derivatives are important for optimizing geometries, it may be useful
to look in more detail at the quantities involved in calculating first and second deriv-
atives of a Hartree–Fock wave function with a Gaussian type basis set, with the expres-
sions for density functional methods being very similar. These formulas are most easily
derived directly from the HF energy expressed in terms of the atomic quantities (eq.
(3.54)).15

(10.99)

Differentiation (using l as a general geometrical displacement of a nucleus) yields eq.
(10.100).
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The third and fourth terms are identical and may be collected to cancel the factor of
1/2. Rearranging the terms gives eq. (10.101).

(10.101)

The first two terms involve products of the density matrix with derivatives of the
atomic integrals, while the two next terms can be recognized as derivatives of the
density matrix times the Fock matrix (eq. (3.52)).

(10.102)

The derivative in eq. (10.102) of the nuclear repulsion (third term) is trivial since it
does not involve electron coordinates. The one-electron derivatives are given in eq.
(10.103).

(10.103)

The central term is recognized as the Hellmann–Feynman force. The two-electron
derivatives in eq. (10.102) become eq. (10.104).

(10.104)

The central term is again the Hellmann–Feynman force, which vanishes since the two-
electron operator g is independent of the nuclear positions.

The last term in eq. (10.102) involves a change in the density matrix, i.e. the MO
coefficients.
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(10.105)

Since the HF wave function is variationally optimized, the explicit calculation of the
density derivatives can be avoided, as first derived by Pulay.16 The last term in eq.
(10.102) may with eq. (10.105) be written as in eq. (10.106).

(10.106)

By virtue of the HF condition (FC = SCe), eq. (10.106) may be written in terms of
overlap integrals and MO energies.

(10.107)

Finally, since the MOs are orthonormal, the derivatives of the coefficients may be
replaced by derivatives of the overlap matrix.

(10.108)

The final derivative of the energy may thus be written as in eq. (10.109).

(10.109)

Here the energy-weighted density matrix W has been introduced.

(10.110)

Consider now the case where the perturbation l is a specific nuclear displacement,
Xk → Xk + ∆Xk.The derivatives of the one- and two-electron integrals are of two types,
those involving derivatives of the basis functions, and those involving derivatives of
the operators. The latter are given in eq. (10.111).
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(10.111)

The derivative of the core operator h is a one-electron operator similar to the
nuclear–electron attraction required for the energy itself (eq. (3.56)). The two-electron
part yields zero, and the Vnn term is independent of the electronic wave function. The
remaining terms in eqs (10.103), (10.104) and (10.109) all involve derivatives of the
basis functions. When these are Gaussian functions (as is usually the case) the deriva-
tive can be written in terms of two other Gaussian functions, having one lower and
one higher angular momentum.

(10.112)

The derivative of a p-function can thus be written in terms of an s- and a d-type Gauss-
ian function. The one- and two-electron integrals involving derivatives of basis func-
tions are therefore of the same type as those used in the energy expression itself, the
only difference is the angular momentum, and the fact that there are roughly three
times as many of these derivative integrals than for the energy itself. Of all the terms
in eq. (10.109), the only significant computational effort is the derivatives of the two-
electron integrals. Note, however, that the density matrix elements are known at the
time when these integrals are calculated, and screening procedures analogous to those
used in direct SCF techniques (Section 3.8.5) can be used to avoid calculating integrals
that make insignificant contributions to the final result.

The second derivative of the energy with respect to a geometry change can be
written as in eq. (10.113).

(10.113)
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The first four terms only involve derivatives of operators and AO integrals. However,
for the last three terms we need the derivative of the density matrix and MO energies.
These can be obtained by solving the first-order CPHF equations (Section 10.5).

The calculation of the second derivatives is substantially more involved than calcu-
lating the first derivative, typically by an order of magnitude, and for large systems, a
full calculation of the Hessian (force constant) matrix may thus be prohibitively expen-
sive. If the second derivatives are required only for characterizing the nature of a sta-
tionary point (minimum or saddle point), the full Hessian is not required: only a few
of the lowest eigenvalues are of interest. As shown by Deglmann and Furche, the
lowest eigenvalues may be extracted by iterative techniques without explicit con-
struction of the full second derivatives, leading to a substantial saving for large
systems.17

10.9 Response and Propagator Methods
The perturbation and derivative approaches in sections 10.2 and 10.3 are not suitable
for time-dependent properties since there is no well-defined energy function is such
cases. The equivalent of eq. (10.20) for a time-dependent perturbation is eq. (10.114).

(10.114)

The perturbation is usually an oscillating electric field, which we can write as in eq.
(10.115).

(10.115)

Here wk is the frequency of the field, Fk is the corresponding field strength and Q is
the perturbation operator. The QFk term should again be interpreted as a sum over all
products of components. In most cases the field can be represented by its linear approx-
imation, i.e. Q is the dipole operator r and Fk is a vector containing the x, y and z com-
ponents of the field. Concentrating on a uniform field of strength F with a single
frequency, eq. (10.115) reduces to eq. (10.116).

(10.116)

The expectation value of a given operator P can be expanded according to perturba-
tions Q, R, . . .

(10.117)

The first-, second-, third-, etc., order terms are called the linear, quadratic, cubic, etc.,
responses, and may be interpreted as the change in the property P due to the pertur-
bations Q, R, . . . Note that the linear response is a second-order quantity in the ter-
minology of eq. (10.1), while the quadratic response is a third-order quantity, etc.

For the case where P = Q = R = r (the position operator), the expansion describes
the response of the expectation value of the dipole operator 〈Ψ0|r|Ψ0〉 to a uniform
electric field, with the first-order term being the polarizability, eq. (10.5). In the limit
where w → 0 (i.e. where the perturbation is time independent), the linear response is
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identical to the second-order perturbation formula for a constant electric field (eq.
(10.60)), i.e. the 〈〈r;r〉〉0 term determines the static polarizability a. Choosing a non-zero
value for w corresponds to a time-dependent field, i.e. 〈〈r;r〉〉w determines the frequency-
dependent polarizability. Similarly, the second-order term 〈〈r;r,r〉〉0 determines the first
hyperpolarizability b for a constant field. In the dynamic case, the higher order prop-
erties may involve several different frequencies. The corresponding property may be
written as b(−w;w1,w2), with w = w1 + w2, where w1 and w2 are associated with the two
perturbations. The b(−2w;w,w) quantity, for example, determines the second harmonic
generation (frequency doubling), while b(−w;w,0) is associated with the electro-optical
Pockels effect.

By suitable choices for the P, Q, R, . . . operators a whole variety of properties may
be calculated.18 The polarizability corresponding to imaginary frequencies, for example,
provides the van der Waals dispersion coefficients, with the leading term depending on
the inverse sixth power of the interatomic distance between atoms A and B.19

(10.118)

An alternative formulation of response theory is in terms of propagators, also known
as Greens functions.20 For two time-dependent operators P(t) and Q(t), a propagator
may be defined as in eq. (10.119).

(10.119)

Here the ± sign depends on whether P and Q are number-conserving operators or not,
and q(x) is the Heaviside step function (q(x) = 0 for x < 0 and q(x) = 1 for x > 0). The
propagator may be Fourier transformed to an energy representation, also called a spec-
tral or frequency representation.

(10.120)

Here h is an infinitesimally small number that ensures that the transformation is also
valid when w = ±(Ei − E0).

If the P/Q operators correspond to removal or addition of an electron, the propa-
gator is called an electron propagator. The poles of the propagator (where the denom-
inator is zero) correspond to ionization potentials and electron affinities.

If the P/Q operators are number-conserving operators, the propagator is called a
Polarization Propagator (PP), and is completely equivalent to the response formula-
tion in eq. (10.117). The 〈〈r;r〉〉w propagator, for example, is given in eq. (10.121) and
can be compared with the expression for the static case in eq. (10.60).

(10.121)

The poles correspond to excitation energies, and the residues (numerator at the 
poles) to transition moments between the reference and excited states (excitation or
deexcitation).
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Although eq. (10.120) for the propagator appears to involve the same effort as the
perturbation approach (sum over all excited states, eq. (10.21)), the actual calculation
of the propagator is somewhat different. Returning to the time representation of the
polarization propagator, it may be written in terms of a commutator.

(10.122)

The Heisenberg equation of motion is shown in eq. (10.123).

(10.123)

When used for the propagator, it yields eq. (10.124).

(10.124)

Moving back to the frequency representation, and using the fact that 〈〈[P,H];Q〉〉 =
〈〈P;[H,Q]〉〉 allows eq. (10.124) to be written as in eq. (10.125).

(10.125)

This shows that a propagator may be written as an expectation value of a commuta-
tor plus another propagator involving a commutator with the Hamiltonian. Applying
this formula iteratively gives eq. (10.126).

(10.126)

The propagator may thus be written as an infinite series of expectation values of
increasingly complex operators over the reference wave function.

We now define identity and Hamiltonian superoperators as in eq. (10.127).

(10.127)

Here the “super” reflects that the ˆ-operators work on operators rather than functions.
The binary product corresponding to a bracket is in superoperator space defined as in
eq. (10.128).

(10.128)

The infinite sum eq. (10.126) can then be written as an inverse.

(10.129)
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of the identity” in the operator space (remember that superoperators work on 
operators).

(10.130)

For the electron propagator we may write h as in eq. (10.131).

(10.131)

Here h1 corresponds to addition or removal of an electron, h3 to addition or removal
of an electron while simultaneously generating a single excitation or deexcitation, h5

to addition or removal of an electron while simultaneously generating a double exci-
tation or deexcitation, etc.

For the polarization propagator we may write h as in eq. (10.132).

(10.132)

Here h2 generates all single excitations and deexcitations, h4 all double excitations and
deexcitations, etc.

So far everything is exact. A complete manifold of excitation operators, however,
means that all excited states are considered, i.e. a “full CI” approach.Approximate ver-
sions of propagator methods may be generated by restricting the excitation level, i.e.
truncating h. A complete specification furthermore requires a selection of the refer-
ence, normally taken as an HF, MCSCF or MP wave function.

The simplest polarization propagator corresponds to choosing an HF reference and
including only the h2 operator, known as the Random Phase Approximation (RPA),
which is identical to Time-Dependent Hartree–Fock (TDHF), with the corresponding
density functional version called Time-Dependent Density Functional Theory
(TDDFT).21 For the static case (w = 0) the resulting equations are identical to those
obtained from a coupled Hartree–Fock approach (Section 10.5). When used in con-
junction with coupled cluster wave functions, the approach is usually called Equation
Of Motion (EOM) methods.22

Splitting the h2 operator into an excitation and deexcitation part, h2 = {e,d}, allows
the propagator to be written as two property vectors times an inverse matrix, often
called the principal propagator.

(10.133)

The A and B matrices and P/Q vectors are defined in eq. (10.134).

(10.134)

The A matrix involves elements between singly excited states while B is given by
matrix elements between doubly excited states and the reference. The P/Q elements
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are matrix elements of the operator between the reference and a singly excited state.
If P = r this is a transition moment, and in the general case it is often denoted a “prop-
erty gradient”, by analogy with the case where the operator is the Hamiltonian (eq.
(3.68)).

(10.135)

The matrix elements may be reduced to orbital energies and two-electron integrals, as
described in Section 4.2.1. Although it is not clear from this derivation, the principal
propagator in eq. (10.123) is related to the A matrix in the CHF eq. (10.55), i.e. (A −
B) in eq. (10.133) is the same as A in eq. (10.55).

Since the dimension of the principal propagator matrix may be large, it is impracti-
cal to calculate the inverse matrix in eq. (10.133) directly. In practice, the propagator
is therefore calculated in two step, by first solving for an intermediate vector X (cor-
responding to U in eq. (10.53)).

(10.136)

Multiplying it onto the property gradient gives eq. (10.137).

(10.137)

The X vector in eq. (10.136) may be determined by iterative techniques, analogous to
those used in direct CI (Section 4.2.4), i.e. the principal propagator matrix is never con-
structed explicitly. If the Q vector is set equal to zero in eq. (10.136), the equation cor-
responds to determining the poles of the principal propagator, i.e. the excitation
energies. This is an eigenvalue problem, and finding the principal propagator for a CI
wave function is equivalent to diagonalizing the CI Hamiltonian matrix (Section 4.2).
For other types of reference wave functions (e.g. HF, MCSCF or MP), the propagator
formulation allows a generalization of calculating excitation energies.

The RPA method may be improved either by choosing an MCSCF reference wave
function, leading to the MCRPA method, or by extending the operator manifold
beyond h2. By expanding the two parts of the propagator (property vector and princi-
pal propagator) as a function of the fluctuation potential (difference between the HF
and exact electron–electron repulsion), it may be shown that RPA corresponds to ter-
minating the expansion at first order. In the Second-Order Polarization Propagator
Approximation (SOPPA), the expansion is carried out through second order, which
may be shown to require inclusion of the h4 operator, and corresponds to choosing an
MP wave function as the reference. The Higher RPA (HRPA) method may be con-
sidered as an approximation to SOPPA, where the part involving the h4 operator is
neglected.A full third-order propagator model has not been implemented, but a hybrid
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method called SOPPA(CCSD) has been proposed, where the first- and second-order
perturbation coefficients are replaced with the corresponding coupled cluster ampli-
tudes (eqs (4.36), (4.39) and (4.52)) and this incorporates some of the higher order
effects.23 It tends to perform somewhat better for cases where the HF reference con-
tains significant multi-reference character.

Although the formal expression for the propagator and the second-order perturba-
tion formula are identical, involving a sum over all excited states, the final practical
expressions for the propagator refer only to the reference wave function, and the basic
computational problem involves matrix elements between Slater determinants, and
matrix manipulations. Modern implementations of propagator methods are computa-
tionally related to the derivative techniques discussed in Section 10.3. The significance
is that propagator methods allow a calculation of a property directly, without having
to construct all the excited states explicitly, i.e. avoiding the sum over states method.
This also means that there are no excited wave functions directly associated with a
given propagator method. The RPA method includes all singly and some doubly
excited states, and typically generates results that are better than those from a CI cal-
culation with single excitations only (if the B matrix is neglected in eq. (10.136), the
results are identical to CIS), but not as good as CISD. Similarly, the SOPPA method
involves an expansion through second order, and typically gives results of MP2 quality,
or slightly better.

10.10 Property Basis Sets
The basis set requirements for obtaining a certain accuracy of a given molecular prop-
erty is usually different from that required for a corresponding accuracy in energy.
There is no analogy to the variational principle for properties, since the value in general
is not bound. Basis sets for properties must therefore be tailored by adding functions
until the desired accuracy is obtained. Given the nature of the perturbation, the spe-
cific needs may be very different. An electric field, for example, measures how easily
the wave function distorts, i.e. it is primarily dependent on the most loosely bound elec-
trons since they are the ones that are most easily polarized. The important part of the
wave function is thus the “tail”, necessitating diffuse function in the basis set. Fur-
thermore, an electric field polarizes the electron cloud, and polarization functions are
therefore also important. For perturbation-independent basis functions, there is a “2n
+ 1” rule, i.e. if the unperturbed system is reasonably described by basis functions up
to angular momentum L, then a basis set that includes functions up to angular momen-
tum L + n can predict properties up to order 2n + 1. A minimum description of mol-
ecules containing first and second row atoms require s- and p-functions, implying that
d-functions are necessary for the polarizability and the first hyperpolarizability, and f-
functions should be included for the second and third hyperpolarizability.A more real-
istic description, however, would include d-functions for the unperturbed system,
necessitating f-functions for the polarizability.

A completely different type of property is for example spin–spin coupling constants,
which contain information about the interactions of electronic and nuclear spins. One
of the operators is a δ function (Fermi contact, eq. (10.73)), which measures the quality
of the wave function at a single point, the nuclear position. Since Gaussian functions
have an incorrect behaviour at the nucleus (zero derivative compared with the “cusp”
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displayed by an exponential function), this requires the addition of a number of very
“tight” functions (large exponents) in order to predict coupling constants accurately.
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11 Illustrating the
Concepts

In this chapter we will illustrate some of the methods described in the previous sec-
tions. It is of course impossible to cover all types of bonding and geometries, but for
highlighting the features we will look at the H2O molecule. This is small enough that
we can employ the full spectrum of methods and basis sets, and illustrate some general
trends.

11.1 Geometry Convergence
The experimental geometry for H2O has a bond length of 0.9578Å and an angle of
104.49°.1,2 Let us investigate how the calculated geometry changes as a function of the
theoretical sophistication.

11.1.1 Ab Initio methods

We will look at the convergence as a function of basis set and amount of electron cor-
relation (Figure 4.3). For independent-particle methods (HF and DFT) we will use the
polarization consistent basis sets (pc-n), while for correlated methods (MP2 and
CCSD(T)) we will use the correlation consistent basis sets (cc-pVXZ, X = D, T, Q, 5,
6). Table 11.1 shows how the geometry changes as a function of basis set at the HF
level of theory, where the quality of the basis sets is indicated by the maximum angular
momentum function (Lmax) included in the basis set.

The HF results are clearly converged with the cc-pV5Z and pc-3 basis sets, and the
HF limit predicts a bond length that is too short, reminiscent of the incorrect dissoci-
ation of the single-determinant wave function (Section 4.3). As a consequence, the
bond angle becomes too large, owing to an overestimation of the repulsion between
the two hydrogens. The underestimation of bond lengths at the HF level is quite
general for covalent bonds, while the overestimation of bond angles is not. Although
the increased repulsion/attraction between atom pairs in general is overestimated
owing to too short bond lengths and too large charge polarization, these factors may
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pull in different directions for a larger molecule, and bond angles may either be too
large or too small. Note that the bond length decreases as the basis set is enlarged,
thus a minimum or DZP type basis may give bond lengths that are longer than the
experimental value for some systems. At the HF limit, however, covalent bond lengths
will normally be too short.

The geometry variation at the MP2 level is shown in Table 11.2, with the change rel-
ative to the HF level given as ∆ values.
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Table 11.1 H2O geometry as a function of basis set at the HF level of theory

Lmax Basis ROH (Å) qHOH (°) Basis ROH (Å) qHOH (°)

1 pc-0 0.9619 113.08
2 cc-pVDZ 0.9463 104.61 pc-1 0.9464 105.59
3 cc-pVTZ 0.9406 106.00 pc-2 0.9392 106.41
4 cc-pVQZ 0.9396 106.22 pc-3 0.9396 106.34
5 cc-pV5Z 0.9396 106.33 pc-4 0.9396 106.34
6 cc-pV6Z 0.9396 106.33

Table 11.2 H2O geometry as a function of basis set at the MP2 level
of theory

Basis ROH (Å) qHOH (°) ∆ROH (Å) ∆qHOH (°)

cc-pVDZ 0.9649 101.90 0.0186 −2.71
cc-pVTZ 0.9591 103.59 0.0185 −2.48
cc-pVQZ 0.9577 104.02 0.0181 −2.20
cc-pV5Z 0.9579 104.29 0.0184 −2.04
cc-pV6Z 0.9581 104.34 0.0185 −1.99

Including electron correlation at the MP2 level increases the bond length by about
0.018Å, fairly independently of the basis set. As a consequence, the bond angle
decreases, by about 2°. Note that the convergence in terms of basis set is much slower
than at the HF level. From the observed behaviour the MP2 basis set limit may be esti-
mated as 0.9582 ± 0.0001Å and 104.40° ± 0.04°, which is already in good agreement
with the experimental values. H2O at the equilibrium geometry is a system where the
HF is a good zeroth-order wave function, and perturbation methods should conse-
quently converge fast. Indeed, the MP2 method recovers ~94% of the electron corre-
lation energy, as shown in Table 11.7.

The variation at the CCSD(T) level is shown in Table 11.3, with the change relative
to the MP2 level given as ∆ values.

Table 11.3 H2O geometry as a function of basis set at the CCSD(T)
level of theory

Basis ROH (Å) qHOH (°) ∆ROH (Å) ∆qHOH (°)

cc-pVDZ 0.9663 101.91 0.0014 0.01
cc-pVTZ 0.9594 103.58 0.0003 0.06
cc-pVQZ 0.9579 104.12 0.0002 0.10
cc-pV5Z 0.9580 104.38 0.0001 0.09



Additional correlation with the CCSD(T) method gives only small changes relative
to the MP2 level, and the effect of higher order correlation diminishes as the basis set
is enlarged. For H2O the CCSD(T) method is virtually indistinguishable from CCSDT,
and presumably very close to the full CI limit.3

The HF wave function contains equal amounts of ionic and covalent contributions
(Section 4.3). For covalently bonded systems, such as H2O, the HF wave function is too
ionic, and the effect of electron correlation is to increase the covalent contribution.
Since the ionic dissociation limit is higher in energy than the covalent, the effect is that
the equilibrium bond length increases when correlation methods are used. For dative
bonds, such as metal–ligand compounds, the situation is reversed. In this case the HF
wave function dissociates correctly, and bond lengths are normally too long. Inclusion
of electron correlation adds attraction between ligands (dispersion interaction), which
causes the metal–ligand bond lengths to contract.

The MP2 and CCSD(T) values in Tables 11.2 and 11.3 are for correlation of the
valence electrons only, i.e. the frozen-core approximation. In order to assess the effect
of core electron correlation, the basis sets need to be augmented with tight polariza-
tion functions. The corresponding MP2 results are shown in Table 11.4, where the ∆
values refer to the change relative to the valence-only MP2 with the same basis set.
Essentially identical changes are found at the CCSD(T) level.
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Table 11.4 H2O geometry as a function of basis set at the MP2 level
of theory including all electrons in the correlation

Basis ROH (Å) qHOH (°) ∆ROH (Å) ∆qHOH (°)

cc-pCVDZ 0.9643 101.91 −0.0005 0.04
cc-pCVTZ 0.9580 103.63 −0.0008 0.11
cc-pCVQZ 0.9569 104.14 −0.0009 0.12
cc-pCV5Z 0.9570 104.41 −0.0009 0.12
cc-pCV6Z 0.9572 104.47 −0.0009 0.13

The effect of core electron correlation is small: a small decrease of the bond length
and a corresponding small increase in bond angle. Addition of the CCSD(T)-MP2
changes (Table 11.3) to the MP2 basis set limiting results in Table 11.4 gives a bond
length of 0.9573Å and an angle of 104.56°. Further basis set increases will presumably
lead to increases of ~0.0002Å and ~0.08°. Relativistic effects at the Dirac–Fock–Breit
level of theory have been reported to give changes of 0.00016Å and −0.07°.2 Includ-
ing these corrections allows a final predicted structure of 0.9577Å and 104.57°, which
can be compared with the experimental values of 0.9578Å and 104.49°.

These results show that ab initio methods can give results of very high accuracy, pro-
vided that sufficiently large basis sets are used. Unfortunately, the combination of
highly correlated methods, such as CCSD(T), and large basis sets means that such cal-
culations are computationally expensive. For the H2O system a CCSD(T) calculation



with the cc-pV5Z basis is already quite demanding. The results also show, however,
that a quite respectable level of accuracy is reached at the MP2/cc-pVTZ level, which
is applicable to a much larger variety of molecules. Furthermore, the errors at a given
level are quite systematic, and relative values (comparing for example changes in
geometries upon introduction of substitutents) will be predicted with a substantially
higher accuracy.

It should also be noted that the effect of electron correlation at the MP2 level (rel-
ative to HF) is largely independent of the basis set, but there is a significant coupling
between the basis set and the higher order correlation (beyond MP2) effect. The
importance of higher order electron correlation decreases as the basis set is enlarged.
This suggests that it is better to invest a given amount of computer time in perform-
ing a large basis set MP2 calculation than a highly correlated calculation with a modest
basis, at least when the HF is a good zeroth-order wave function.

11.1.2 Density functional methods

The two variables in DFT methods are the basis set and the choice of the
exchange–correlation potential. The performance for six popular functionals on the
geometry for the pc-n basis sets is given in Tables 11.5 and 11.6. The LSDA functional
employs the uniform electron gas approximation, the BLYP, PBE and HCTH func-
tionals are of the gradient-corrected type, while the B3LYP and PBE0 are hybrid types
that contain a fraction of Hartree–Fock exchange (Section 6.5.4). The grid size for the
numerical integration of the exchange–correlation energy is sufficiently large that the
error from incomplete grids can be neglected.
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Table 11.5 H2O bond distances (Å) as a function of basis set with
various DFT functionals

Basis LSDA BLYP PBE HCTH B3LYP PBE0

pc-0 0.9878 0.9962 0.9936 0.9854 0.9841 0.9806
pc-1 0.9764 0.9791 0.9763 0.9656 0.9683 0.9645
pc-2 0.9696 0.9706 0.9689 0.9589 0.9604 0.9574
pc-3 0.9700 0.9704 0.9689 0.9589 0.9604 0.9576
pc-4 0.9700 0.9704 0.9689 0.9590 0.9604 0.9576

Table 11.6 H2O bond angles (°) as a function of basis set with
various DFT functionals

Basis LSDA BLYP PBE HCTH B3LYP PBE0

pc-0 111.82 109.27 109.40 109.43 110.72 110.93
pc-1 104.15 103.24 103.09 103.22 104.06 103.99
pc-2 105.10 104.56 104.27 104.52 105.19 104.98
pc-3 104.98 104.52 104.21 104.44 105.13 104.90
pc-4 104.98 104.52 104.21 104.42 105.13 104.90



The geometry displays a convergence characteristic similar to the wave mechanics
HF method (Table 11.1). A TZP type basis (pc-2) gives good results, and a QZP type
(pc-3) is essentially converged to the basis set limiting value. The basis set limiting
values can be compared with the experimental values of 0.9578Å and 104.48°, and the
deviations are thus the inherent errors associated with the functionals. For this partic-
ular molecule and property, the HCTH and PBE0 functionals perform best.

11.2 Total Energy Convergence
The total energy in ab initio theory is given relative to the separated particles, i.e. bare
nuclei and electrons.The experimental value for an atom is the sum of all the ionization
potentials; for a molecule there are in addition contributions from the molecular 
bonds and associated zero point energies.The experimental value for the total energy of
H2O is −76.480au and the estimated contribution from relativistic effects is −0.045au.
Including also a mass correction of 0.0028au (a non-Born–Oppenheimer effect 
that accounts for the difference between finite and infinite nuclear masses) allows the
“experimental” non-relativistic energy to be estimated as −76.438 ± 0.003au.4

For the cc-pVDZ basis set, the full CI result is available,5 which allows an assess-
ment of the performance of various approximate methods. The percent of the electron
correlation recovered by different methods is shown in Table 11.7.
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Table 11.7 Percent electron correlation recov-
ered by various methods in the cc-pVDZ basis

Method %EC

MP2 94.0
MP3 97.0
MP4 99.5
MP5 99.8
CCSD 98.3
CCSD(T) 99.7
CISD 94.5
CISDT 95.8
CISDTQ 99.9

As already mentioned, the H2O molecule is an easy system, where the HF wave func-
tion provides a good reference. Furthermore, since there are only ten electrons in H2O
the effect of higher order electron correlation is small. The intraorbital correlation
between electron pairs dominates the correlation energy for such a small system, and
the doubly excited configurations, which mainly describe the pair correlation, accounts
for a large fraction of the total correlation energy. Consequently even the simple 
MP2 method performs exceedingly well, and the CCSD(T) result is for practical pur-
poses identical to the full CI result. For such simple systems, the MP2 and MP3 percent
correlations are probably significantly higher than would be expected for a larger
system.

The calculated total energy as a function of basis set and electron correlation
(valence electrons only) at the experimental geometry is given in Table 11.8. As the



cc-pVXZ basis sets are fairly systematic in how they are extended from one level to
the next, there is some justification for extrapolating the results to the “infinite” basis
set limit (Section 5.4.6). The HF energy is expected to have an exponential behaviour,
and a functional form6 of the type A + B(L + 1)exp(−C ) with L = 4, 5 and 6 yields
an infinite basis set limit of −76.0675au, in good agreement with the estimated HF limit
of −76.0674au.7

L
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Table 11.8 Total energy (+76 au) as a function of basis set and electron correlation (valence only)

Method cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z cc-pV∞Z

HF −0.0268 −0.0571 −0.0648 −0.0670 −0.0674 −0.0675
MP2 −0.228 −0.319 −0.348 −0.359 −0.363 −0.369
MP3 −0.235 −0.323 −0.349 −0.358 −0.361 −0.365
MP4 −0.241 −0.333 −0.361 −0.371 −0.374 −0.378
MP5 −0.241 −0.332 −0.359
CCSD −0.238 −0.325 −0.351 −0.360 −0.362 −0.365
CCSD(T) −0.241 −0.332 −0.360 −0.369 −0.372 −0.376
CISD −0.230 −0.314 −0.339 −0.348 −0.350 −0.353

Table 11.9 Total energy (+76 au) as a function of basis set and electron correlation (all electrons)

Method cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z cc-pCV∞Z %EC

HF −0.0272 −0.0573 −0.0649 −0.0671 −0.0683 0.0
MP2 −0.269 −0.375 −0.408 −0.419 −0.429 97.3
MP3 −0.276 −0.380 −0.410 −0.420 −0.429 97.3
MP4 −0.282 −0.391 −0.422 −0.433 −0.443 101.1
MP5 −0.282 −0.389
CCSD −0.279 −0.382 −0.411 −0.421 −0.430 97.6
CCSD(T) −0.282 −0.390 −0.421 −0.431 −0.440 100.3
CISD −0.269 −0.368 −0.397 −0.406 −0.414 93.3

The correlation energy is expected to have an inverse power dependence on the
highest angular momentum once the basis set reaches a sufficient (large) size. Extrap-
olating the correlation contribution for L = 5 and 6 with a function of the type A +
BL−3 yield the cc-pV∞Z values in Table 11.8. The extrapolated CCSD(T) energy is 
−76.376au, yielding a valence correlation energy of −0.308au.

The magnitude of the core correlation can be evaluated by including the oxygen 1s-
electrons and using the cc-pCVXZ basis sets, with the results shown in Table 11.9.

The HF energies change very little upon inclusion of the tight basis functions, but
the HF limit is estimated with less accuracy as the extrapolation is done using basis
sets with lower angular momentum functions than in Table 11.8. Using the HF result
from Table 11.8, the extrapolated CCSD(T) correlation energy is −0.372au. Assuming
that the CCSD(T) method provides 99.7% of the full CI value, as indicated in 
Table 11.7, the extrapolated correlation energy becomes −0.373au, well within 
the error limits on the estimated experimental value of −0.371 ± 0.003au. The core 
(and core–valence) electron correlation is thus 0.065au, which is comparable to the



value for the valence electrons (i.e. 0.308 divided between four electron pairs is 
0.077au).

The percent of the total correlation energy is given in parenthesis in Table 11.9; in
the infinite basis set limit the MP2 method recovers 97.3%. Notice, however, that while
the perturbation series is smoothly convergent with the cc-pVDZ basis, it becomes
oscillating with the larger basis set. With the cc-pCVTZ basis, the MP5 result is higher
in energy than MP4, and with the cc-pCV5Z the MP3 result is higher than the MP2
value. This may be an indication that the perturbation series is actually divergent in a
sufficiently large basis set. The extrapolated MP4 value is in perfect agreement with
the experimental estimate, but this is probably fortuitous. The CISD method performs
rather poorly, yielding results that are worse than MP2 but at a cost similar to an MP4
calculation.

Since the CCSD(T) result is essentially equivalent to a full CI (Table 11.7), the data
show that the cc-pCVDZ basis is able to provide 69% of the total correlation energy.
The corresponding values for the cc-pCVTZ, cc-pCVQZ and cc-pCV5Z basis sets are
90%, 96% and 98%, respectively. Slightly lower percentages have been found in other
systems.8 This illustrates the slow convergence of the correlation energy as a function
of basis set. Each step up in basis set quality roughly doubles the number of functions.
The cc-pCVDZ basis is capable of recovering 69% of the correlation energy, and
improving the basis from cc-pCVDZ to cc-pCVTZ allows an additional 21% to be cal-
culated. The next step up gives only 6% and the expansion from cc-pCVQZ to cc-
pCV5Z only 2%. The last 5–10% of the correlation energy is therefore hard to get,
requiring very large basis sets. This slow convergence is the principal limitations of tra-
ditional ab initio methods. The CCSD(T)/cc-pCV5Z total energy is still 18kJ/mol off
the experimentally derived non-relativistic value, with the remaining error being dis-
tributed roughly equally between incomplete basis set and incomplete electron corre-
lation effects. These errors are comparable to the Born–Oppenheimer correction of 
7kJ/mol, and substantially smaller than the relativistic correction of 118kJ/mol.
Calculating the total energy with an accuracy of a few kJ/mol is thus only borderline
possible for this simple system.

Although the total energy calculated by DFT methods should in principle converge
to the “experimental” value (−76.438au), there are no upper or lower bounds for the
currently employed methods with approximate exchange–correlation functionals.
Indeed, all the gradient-corrected methods used here (BLYP, PBE and HCTH) give
total energies well below the “experimental” value with the pc-4 basis set.

11.3 Dipole Moment Convergence
As examples of molecular properties we will look at how the dipole moment and har-
monic vibrational frequencies converge as a function of level of theory.

11.3.1 Ab Initio methods

The experimental value for the dipole moment is 1.847 debye,9 and the calculated value
at various levels of theory is shown in Table 11.10.

The dipole moment may be considered as the response of the wave function (energy)
to the presence of an external electric field, in the limit where the field strength is van-
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ishingly small (Section 10.1.1). It is consequently sensitive to the representation of the
wave function “tail”, i.e. far from the nuclei, and diffuse functions are therefore
expected to be important. Although the results with the regular cc-pVXZ basis sets
may be converging, the rate of convergence is slow, as compared with the results for
the basis sets augmented with diffuse functions. This illustrates that care must be taken
when calculating properties other than the total energy, as standard basis sets may not
be able to describe important aspects of the wave function.

The HF dipole moment is too large, which is quite general, as the HF wave function
overestimates the ionic contribution. The MP2 procedure recovers the large majority
of the correlation effect, but the convergence with the aug-cc-pVXZ basis sets is not
smooth, and does not readily allow an extrapolation. The CCSD(T) result with the 
aug-cc-pVQZ basis is very close to the experimental value, although remaining 
basis set effects and further correlation may change the value slightly. As expected for
this property, the effect of core correlation is small, as shown by MP2 calculations in
Table 11.11.
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Table 11.10 H2O dipole moment (debye) as a function of theory (valence correlation only); the
experimental value is 1.847 debye

Basis HF MP2 CCSD(T) Basis HF MP2 CCSD(T)

cc-pVDZ 2.057 1.964 1.936 aug-cc-pVDZ 2.000 1.867 1.848
cc-pVTZ 2.026 1.922 1.903 aug-cc-pVTZ 1.984 1.852 1.839
cc-pVQZ 2.008 1.904 1.890 aug-cc-pVQZ 1.982 1.858 1.848
cc-pV5Z 2.003 1.895 1.884 aug-cc-pV5Z 1.982 1.861

Table 11.11 H2O dipole moment (debye) as a function of theory
(all electrons)

Basis HF MP2 CCSD(T)

aug-cc-pCVDZ 2.001 1.868 1.849
aug-cc-pCVTZ 1.983 1.857 1.843

11.3.2 Density functional methods

Table 11.10 establishes that diffuse functions are mandatory for calculating dipole
moments, and only the aug-pc-n basis set have been used with DFT methods. The cal-
culated results are given in Table 11.12.

The calculated dipole moment is remarkably insensitive to the size of the basis set,
once polarization functions have been included (i.e. at least aug-pc-1). Note that the
LSDA value in this case is substantially better than the GGA functionals (BLYP, PBE
and HCTH), i.e. this is a case where the theoretically “poorer” method provides better
results than the more advanced gradient methods. Inclusion of “exact” exchange
(B3LYP and PBE0) again improves the performance, and provides results very close
to the experimental value, even with relatively small basis sets.



11.4 Vibrational Frequency Convergence
The experimental values for the fundamental vibrational frequencies are 1595,
3657 and 3756cm−1, while the corresponding harmonic values are 1649, 3832 and 
3943cm−1.10 The differences due to anharmonicity are thus 54, 175 and 187cm−1, i.e.
3–5% of the harmonic values.

11.4.1 Ab Initio methods

The calculated harmonic frequencies at the HF level are given in Table 11.13.
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Table 11.12 H2O dipole moment (debye) as a function of DFT func-
tional and basis set; the experimental value is 1.847 debye

Basis LSDA BLYP PBE HCTH B3LYP PBE0

aug-pc-0 2.721 2.602 2.618 2.605 2.655 2.675
aug-pc-1 1.823 1.762 1.760 1.758 1.821 1.826
aug-pc-2 1.837 1.781 1.779 1.782 1.837 1.842
aug-pc-3 1.834 1.778 1.774 1.779 1.833 1.837
aug-pc-4 1.833 1.778 1.774 1.777 1.833 1.836

Table 11.13 H2O HF harmonic frequencies (cm−1) as a function of
basis set

Basis v1 v2 v3

pc-0 1690 3966 4145
pc-1 1751 4120 4233
pc-2 1744 4138 4239
pc-3 1748 4131 4232
pc-4 1748 4130 4231
Experimental 1649 3832 3943

Vibrational frequencies are examples of a slightly more complicated property. The
frequencies are obtained from the force constant matrix (second derivative of the
energy), evaluated at the equilibrium geometry (Section 16.2.2). Both the equilibrium
geometry and the shape of the energy surface depend on the theoretical level. Part of
the change in frequencies is due to changes in the geometry since the force constant
in general decreases with increasing bond length.

The HF vibrational frequencies are too high by about 7% relative to the experi-
mental harmonic values, and by 10–13% relative to the anharmonic values. This over-
estimation is due to the incorrect dissociation and the corresponding bond lengths
being too short (Table 11.1), and is consequently quite general. Vibrational frequen-
cies at the HF level are therefore often scaled by ~0.9 to partly compensate for these
systematic errors.11

The inclusion of electron correlation normally lowers the force constants, since the
correlation energy increases as a function of bond length. This usually means that



vibrational frequencies decrease, although there are exceptions (vibrational frequen-
cies also depend on off-diagonal force constants). The values calculated the MP2 and
CCSD(T) levels are shown in Tables 11.14 and 11.15.

The MP2 treatment recovers the majority of the correlation effect, and the CCSD(T)
results with the cc-pVQZ basis sets are in good agreement with the experimental
values. The remaining discrepancies of 9, 13 and 10cm−1 are mainly due to basis set
inadequacies, as indicated by the MP2/cc-pV5Z results. The MP2 values are in
respectable agreement with the experimental harmonic frequencies, but of course still
overestimate the experimental fundamental ones by the anharmonicity. For this
reason, calculated MP2 harmonic frequencies are often scaled by ~0.97 for comparing
with experimental results.11

The effect of core electron correlation is small, as shown in Table 11.16. It should be
noted that the valence and core correlation energy per electron pair is of the same
magnitude. However, the core correlation is almost constant over the whole energy
surface, and consequently contributes very little to properties depending on relative
energies, such as vibrational frequencies. It should be noted that relativistic corrections
for the frequencies are expected to be of the order of 1cm−1 or less.12
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Table 11.14 H2O MP2 harmonic frequencies (cm−1) as a function of
basis set (only valence electrons are correlated)

Basis v1 v2 v3

cc-pVDZ 1678 3852 3971
cc-pVTZ 1651 3855 3976
cc-pVQZ 1643 3855 3978
cc-pV5Z 1636 3849 3974
Experimental 1649 3832 3943

Table 11.15 H2O CCSD(T) harmonic frequencies (cm−1) as a function
of basis set (only valence electrons are correlated)

Basis v1 v2 v3

cc-pVDZ 1690 3822 3928
cc-pVTZ 1669 3841 3946
cc-pVQZ 1659 3845 3952
Experimental 1649 3832 3943

Table 11.16 H2O MP2 harmonic frequencies (cm−1) as a function of
basis set (all electrons are correlated)

Basis v1 v2 v3

cc-pCVDZ 1679 3853 3973
cc-pCVTZ 1651 3857 3976



For comparing with experimental frequencies (which necessarily are anharmonic),
there is normally little point in improving the theoretical level beyond MP2 with a TZP
type basis set unless anharmonicity constants are calculated explicitly.Although anhar-
monicity can be approximately accounted for by scaling the harmonic frequencies by
~0.97, the remaining errors in the harmonic force constants at this level are normally
smaller than the corresponding errors due to variations in anharmonicity.

11.4.2 Density functional methods

The harmonic frequencies calculated with various DFT methods as a function of basis
set are shown in Tables 11.17–11.19.
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Table 11.17 H2O lowest harmonic frequency (cm−1) as a function 
of basis set with various DFT functionals; the experimental value is
1649cm−1

Basis LSDA BLYP PBE HCTH B3LYP PBE0

pc-0 1474 1535 1539 1567 1565 1578
pc-1 1548 1597 1596 1627 1628 1635
pc-2 1544 1595 1590 1617 1625 1630
pc-3 1549 1597 1594 1621 1629 1635
pc-4 1550 1598 1594 1621 1629 1635  

Table 11.18 H2O second lowest harmonic frequency (cm−1) as a
function of basis set with various DFT functionals; the experimental
value is 3832cm−1

Basis LSDA BLYP PBE HCTH B3LYP PBE0

pc-0 3588 3453 3510 3574 3620 3691
pc-1 3690 3611 3664 3760 3767 3835
pc-2 3730 3669 3710 3796 3811 3870
pc-3 3718 3667 3707 3794 3807 3865
pc-4 3718 3666 3706 3794 3807 3865

Table 11.19 H2O highest harmonic frequency (cm−1) as a function
of basis set with various DFT functionals; the experimental value is
3943cm−1

Basis LSDA BLYP PBE HCTH B3LYP PBE0

pc-0 3787 3641 3699 3767 3806 3879
pc-1 3817 3727 3784 3884 3882 3955
pc-2 3842 3772 3816 3909 3915 3977
pc-3 3827 3768 3811 3905 3909 3970
pc-4 3827 3768 3811 3905 3909 3970



The convergence as a function of basis set is similar to that observed for the HF
method. The hybrid B3LYP and PBE0 functionals again show the best performance.
At the basis set limit, the deviations from the experimental harmonic frequencies are
~30cm−1, which is comparable to the results obtained with the MP2 method (Table
11.14). It is also clear from Tables 11.17–11.19 that inclusion of “exact” exchange
(B3LYP and PBE0) substantially improves the performance. The “pure” DFT gradi-
ent methods, BLYP and PBE, have errors of ~150cm−1 for the stretching frequencies
and ~50cm−1 for the angle bending.

11.5 Bond Dissociation Curves
As seen in Table 11.9, it is very difficult to converge the total energy to an accuracy of
a few kJ/mol. The total energy, however, is in almost all cases irrelevant; the important
quantity is the relative energy. Let us now examine how the shape of a potential energy
surface depends on the theoretical level. We will look at two cases: stretching one of
the O—H bonds in H2O, and the HOH bending potential.The O—H dissociation curve
is a case where the main change is associated with the difference in electron correla-
tion between the two electrons in the bond being stretched. It should be noted that
transition structures typically have bonds that are elongated by 0.5–0.8Å, and the per-
formance for the dissociation curve in this range will model the behaviour for describ-
ing bond breaking/forming reactions. The HOH bending energy, on the other hand,
does not involve any bond breaking, and should therefore be less sensitive to the level
of theory.

11.5.1 Basis set effect at the Hartree–Fock level

Figure 11.1 shows the bond dissociation curves at the HF level with the STO-3G, 3-
21G, 6-31G(d,p), cc-pVDZ and cc-pVQZ basis sets.

The total energy drops considerably upon going from the STO-3G to the 3-21G and
again to the 6-31G(d,p) basis. This is primarily due to the improved description of the
oxygen 1s-orbital.The two different types of DZP basis sets, 6-31G(d,p) and cc-pVDZ,
give very similar results, and the improvement upon going to the cc-pVQZ basis is rel-
atively minor.

More important than the total energy is the shape of the curve, i.e. the energy rela-
tive to the equilibrium value which is shown in Figure 11.2.

The minimal STO-3G basis increases much more steeply than the other basis sets,
while the 3-21G is slightly too low in the ∆R range of 0.3–1.3Å. Considering that the
STO-3G and 3-21G basis set have the same number of primitive GTOs (Section 5.4.1),
it is clear that uncontraction of the valence orbitals greatly improves the flexibility.
The 6-31G(d,p), cc-pVDZ and cc-pVQZ basis sets give essentially identical curves,
i.e. improvement of the basis set beyond DZP has a very minor effect at the HF 
level. Note also that the total energy for the 6-31G(d,p) basis is ~0.05au (~130kJ/mol,
Figure 11.1) above the HF limit, but this error is constant to within a few kJ/mol over
the whole range.
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Figure 11.1 Bond dissociation curves for H2O at the HF level (absolute energies)
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Figure 11.2 Bond dissociation curves for H2O at the HF level (relative energies)



11.5.2 Performance of different types of wave function

We will now look at how different types of wave function behave when the O—H bond
is stretched. The basis set used in all cases is the aug-cc-pVTZ, and the reference curve
is taken as the [8,8]-CASSCF result, which is slightly larger than a full valence CI. As
mentioned in Section 4.6, this allows a correct dissociation, and since all the valence
electrons are correlated, it will generate a curve close to the full CI limit. The bond
dissociation energy calculated at this level is 511kJ/mol, which is comparable to the
experimental value of 527kJ/mol.

H2O is a closed shell singlet and the HF wave function near the equilibrium geom-
etry is of the RHF type. As one of the bonds is stretched, however, a UHF type will
become lower in energy at some point (Section 4.4). Beyond this instability point, elec-
tron correlation methods may be based either on the RHF or UHF reference. The
UHF wave function will be spin contaminated, which has some consequences as shown
below. It should be noted that for open-shell species one similarly has the option of
using eithern a ROHF or UHF reference wave function, but in such cases they will be
different at all geometries, also near the equilibrium. In many cases, however, the UHF
wave function is only slightly spin contaminated, and both approaches will then give
similar results.

Figure 11.3 illustrates the behaviour of the single-determinant wave functions, RHF,
UHF and PUHF (projected UHF, Section 4.4) The RHF energy continues to increase
as the bond is stretched since it has the wrong dissociation limit, while the UHF con-
verges to a value of 366kJ/mol. At the equilibrium geometry the two electrons in the
O—H bonding orbital are correlated, but this correlation energy disappears once the
bond is broken. The UHF wave function correctly describes the dissociation limit in
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Figure 11.3 RHF, UHF and PUHF dissociation curves for H2O



terms of energy, but does not recover any of the electron correlation at equilibrium
(by definition, since UHF = RHF here). The difference between the UHF dissociation
energy and the CASSCF value is therefore a measure of the amount of electron cor-
relation in the O—H bond. With the present basis set this is 140kJ/mol, a typical value
for the correlation energy between two electron in the same spatial MO.

At the dissociation limit the UHF wave function is essentially an equal mixture of
a singlet and triplet state, as discussed in Section 4.4. Removal of the triplet state by
projection (PUHF) lowers the energy in the intermediate range, but has no effect when
the bond is completely broken since the singlet and triplet states are degenerate here.

The RHF/UHF instability point with this basis occurs when the bond is stretched
0.42Å. Figure 11.4 shows the behaviour of the energy curves in more detail in this
region. It is seen that the PUHF has a discontinuous derivative at the instability point,
and there is furthermore a shallow minimum right after the instability point, at an elon-
gation of ~0.50Å.
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Figure 11.4 RHF, UHF and PUHF dissociation curves for H2O near the instability point

Since the RHF curve is too high in the transition structure region (∆R ~ 0.5–0.8Å),
it is clear that RHF activation energies in general will be too large. UHF activation
energies may either be too high or too low, but the PUHF value will essentially always
be too low. Furthermore, the shape of a spin contaminated UHF energy surface will
be too flat, and PUHF surfaces will be qualitatively wrong in the TS region. Spin 
contaminated UHF wave functions should consequently not be used for geometry
optimizations.

The corresponding difference between restricted, unrestricted and projected unre-
stricted wave functions at the MP2 level is shown in Figure 11.5.

The RMP2 rises too high, owing to the wrong dissociation limit of the underlying
RHF. Both the UMP2 and PUMP2 dissociation energies are in reasonable agreement
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Figure 11.5 RMP2, UMP2 and PUMP2 dissociation curves for H2O
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Figure 11.6 RMP2, UMP2 and PUMP2 dissociation curves for H2O near the instability point

with the CASSCF value, but it is clear that the UMP2 energy is too high in the “inter-
mediate” range owing to spin contamination. The PUMP2 curve on the other hand,
traces the reference CASSCF values closely. Figure 11.6 shows the curves in more
detail near the RHF/UHF instability point.
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Figure 11.7 RMP2, RMP3 and RMP4 dissociation curves for H2O

The UMP2 energy is higher than the RMP2, although the UHF energy is lower than
the RHF. At the HF level, the UHF energy is lowest owing to a combination of spin
contamination and inclusion of electron correlation (Section 4.8.2). Since the MP2 pro-
cedure recovers most of the electron correlation, only the energy rising effect due to
spin contamination remains, and the UMP2 energy becomes higher than RMP2.
Removing the unwanted spin components makes the PUMP2 energy very similar to
RMP2 for elongations less than ~1Å, but is significantly better at longer bond lengths
owing to the correct dissociation of the UHF wave function.The RMP2 energy follows
the “exact” curve closely out to a ∆R of ~0.5Å, and is in respectable agreement out to
~1.0Å. RMP2 activation energies are therefore often in quite reasonable agreement
with experimental or higher level theoretical values. It should also be noted that the
discontinuity at the PUHF level essentially disappears when the projection is carried
out on the MP2 wave function.

Figure 11.7 and 11.8 show the effect of extending the perturbation series at the RMP
and UMP levels.

Addition of more terms in the perturbation series improves the results, although 
the effect of MP3 compared with MP2 is minute. As the bond is stretched more than
~1.5Å, the perturbation series breaks down owing to the RHF wave function becom-
ing a too poor reference, and the energies start to decrease. The RMP4 method per-
forms well out to an elongation of ~1.0Å, and in the TS region where the bond is
stretched 0.5–0.8Å, the MP4 error is less than a few kJ/mol. Although real transition
structures usually have more than one breaking/forming bond, and therefore are more
sensitive to correlation effects, it is often found that the MP4 method with a suitable
large basis can reproduce activation energies to within a few kJ/mol.

The improvement by extending the perturbation series beyond second order is small
when a UHF wave function is used as the reference, i.e. the higher order terms do very



little to reduce the spin contamination. In the dissociation limit the spin contamina-
tion is inconsequential, and the MP2, MP3 and MP4 results are all in reasonable agree-
ment with the “exact” CASSCF result (but too high compared with the experimental
result due to basis set limitations).

Figures 11.9 and 11.10 compare the performance of the CCSD and CCSD(T)
methods, based on either an RHF or UHF reference wave function.

11.5 BOND DISSOCIATION CURVES 367

0

100

200

300

400

500

600

700

–0.5 0.0 0.5 1.0 1.5 2.0

CASSCF
UMP2
UMP3
UMP4

E
ne

rg
y 

(k
J/

m
ol

)

∆ROH (Å)

Figure 11.8 UMP2, UMP3 and UMP4 dissociation curves for H2O
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Figure 11.9 RCCSD and RCCSD(T) dissociation curves for H2O
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Figure 11.10 UCCSD and UCCSD(T) dissociation curves for H2O

Compared with the RMPn curves (Figure 11.7), it can be seen that the infinite nature
of coupled cluster performs somewhat better as the reference wave function becomes
increasingly poor. While the RMP4 energy curve follows the “exact” out to an elon-
gation of ~1.0Å, the CCSD(T) has the same accuracy out to ~1.5Å. Eventually,
however, the wrong dissociation limit of the RHF wave also makes the coupled cluster
methods break down, and the energy starts to decrease.

The spin contamination makes the UCC energy curves somewhat too high in the
intermediate region, but the infinite nature of coupled cluster methods is significantly
better at removing unwanted spin states as compared with UMPn methods (Figure
11.8).

The only generally applicable CI method is CISD, where the singly and doubly
excited configurations are treated variationally.These are also part of the MP4 method,
which additionally has a term arising from disconnected quadruples, i.e. products of
D-configurations, as well as a term due to (connected) triples. The CCSD method
includes effects due to higher order products of singles and doubles, i.e. sextuples, octu-
ples, etc. It is the inclusion of the product excitations that makes the MP and CC
methods size extensive. Considering only the single and double excitations, and prod-
ucts thereof, allows a comparison between methods, and the performance of the CISD,
MP4(SDQ) and CCSD models are shown in Figure 11.11.



It can be clearly seen that the CISD curve is worse than either of the other two,
which are essentially identical out to a ∆R of 1.3Å. The size inconsistency of the CISD
method also has consequences for the energy curve where the bond is only half broken.
Figure 11.11 illustrates why the use of CI methods has declined over the years: they
normally give less accurate results compared with MP or CC methods, but at a similar
or higher computational cost. Furthermore, it is difficult to include the important triply
excited configurations in CI methods (CISDT scales as M8

basis), but relatively easy in
MP or CC methods (MP4 and CCSD(T) scales as M 7

basis).

11.5.3 Density functional methods

The performance of various DFT methods resembles the HF results. A restricted type
determinant leads to an incorrect dissociation, while an unrestricted determinant has
the energetically correct dissociation limit. Figure 11.12 shows the performance 
of restricted and unrestricted type determinants with the BLYP and B3LYP 
functionals.

It is immediately clear that DFT methods do not have the “spin contamination”
problem in the intermediate region; indeed, spin contamination is not well defined in
DFT.13 Furthermore, as electron correlation is implicitly included, DFT methods 
are closer in shape to the CASSCF curve. Removing the “spin contamination” by 
projection methods results in discontinuous derivatives and artificial minima, analo-
gously to the PUHF case in Figures 11.3 and 11.4, and should consequently not be
employed.14
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Figure 11.11 RMP4(SDQ), RCCSD and CISD dissociation curves for H2O



11.6 Angle Bending Curves
The angle bending in H2O occurs without breaking any bonds, and the electron cor-
relation energy is therefore relatively constant over the whole curve. The HF, MP2 and
MP4 bending potentials are shown in Figure 11.13, where the reference curve is taken
from a parametric fit to a large number of spectroscopic data.15

The HF and MP2 methods underestimate the barrier for linearity by 1 and 2kJ/mol,
respectively, while the CCSD(T) result is too high by 1kJ/mol. The HF curve is slightly
too high for small bond angles, while both the MP2 and CCSD(T) results are within a
few tenths of a kJ/mol of the exact result over the whole curve. Compared with the
bond dissociation discussed above, it is clear that relative energies of conformations
that have similar bonding are fairly easy to calculate.While the HF and MP2 total ener-
gies with the aug-cc-pVTZ basis are ~1000 and ~300kJ/mol higher than the exact
values at the equilibrium geometry (Table 11.8), these errors are essentially constant
over the whole surface.

11.7 Problematic Systems
The H2O case is an example of a system where it is relatively easy to obtain good
results. Nature is not always so kind; let us look at a couple of “theoretically difficult”
cases.
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Figure 11.12 Bond dissociation curve for DFT methods
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Figure 11.13 Angle bending curves for H2O

11.7.1 The geometry of FOOF

The FOOF molecule has an experimental geometry with an O—O bond length of 
1.217Å and an F—O bond of 1.575Å.16 The calculated bond distances at different
levels of theory with the aug-cc-pVTZ basis set are given in Table 11.20.

The results in Table 11.20 clearly show that the results are very sensitive to the inclu-
sion of electron correlation.The MP4(SDQ) geometry is very similar to the CCSD one

Table 11.20 Bond distance (Å) in FOOF with the aug-cc-pVTZ 
basis set

Method ROO RFO

HF 1.300 1.356
MP2 1.166 1.619
MP3 1.300 1.427
MP4(SDQ) 1.291 1.453
CCSD 1.288 1.449
CCSD(T) 1.234 1.545
CISD 1.295 1.389
SVWN 1.188 1.559
BLYP 1.206 1.632
PBE 1.198 1.606
HCTH 1.176 1.609
B3LYP 1.227 1.523
PBE0 1.233 1.479
Experimental 1.217 1.575



but inclusion of the triply excited configurations in the full MP4(SDTQ) method has
a huge effect. The F—O bonds are elongated to the point (>2.5Å) where perturbation
theory breaks down since the underlying RHF wave function becomes extremely poor.
The MP4(SDTQ) model basically does not predict a stable FOOF molecule.The triples
also have a large effect at the CCSD(T) level, but it is clear that the effect is wildly
overestimated with the MP4 method. Although the results are not converged with
respect to basis set (aug-cc-pVTZ), the remaining changes are of the order of a few
thousandths of an angstrom.17 Even with the sophisticated CCSD(T) model, the geom-
etry errors are thus ~0.03Å.

The DFT methods are all well behaved and perform surprisingly well for such a dif-
ficult system, with the B3LYP results being comparable to CCSD. The main problem
is of course that there is no way of systematically improving the structure, or knowing
beforehand whether DFT will be able to give a good description for the specific
problem.

11.7.2 The dipole moment of CO

The experimental value for the dipole moment of CO is 0.122 debye, with the polar-
ity C−O+, for a bond length of 1.1281Å.18 Calculated values with the aug-cc-pVXZ basis
sets19 are given in Table 11.21.
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Table 11.21 Dipole moment (debye) for CO; the experimental value is 0.122 debye

Method aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z

HF −0.259 −0.266 −0.265 −0.264
MP2 0.296 0.280 0.275 0.273
MP3 0.076 0.047 0.036 0.032
MP4 0.220 0.222 0.216 0.214
CCSD 0.097 0.070 0.059 0.055
CCSD(T) 0.141 0.127 0.118 0.115
CISD 0.050 0.023 0.011 0.008
LSDA 0.232 0.226 0.229 0.229
BLYP 0.187 0.184 0.185 0.185
PBE 0.229 0.224 0.224 0.224
HCTH 0.194 0.181 0.175 0.179
B3LYP 0.091 0.086 0.087 0.088
PBE0 0.107 0.101 0.102 0.102

The HF level (as usual) overestimates the polarity, in this case leading to an incor-
rect direction of the dipole moment. The MP perturbation series oscillates, and it is
clear that the MP4 result is far from converged. The CCSD(T) method apparently
recovers the most important part of the electron correlation, and is very close to the
full CCSDT result in an augmented DZP basis.20 However, even with the aug-cc-pV5Z
basis sets, there is still a discrepancy of ~0.01 debye relative to the experimental value.
The DFT methods are not particularly accurate, although for this specific problem the
PBE0 method gives a reasonably good result.



11.7.3 The vibrational frequencies of O3

Ozone is an example of a molecule where the single-reference RHF is quite poor, since
there is considerable biradical character in the wave function (as illustrated in Figure
4.9).The harmonic vibrational frequencies derived from experiments are 716, 1089 and
1135cm−1, where the band at 1089cm−1 corresponds to an asymmetric stretch.21 As this
nuclear motion changes the relative weights of the ionic and biradical structures, the
frequency is very sensitive to the quality of the wave function.Although the wave func-
tion is equally poor for all the frequencies, the two other vibrations (symmetric stretch
and angle bending) conserve the C2v symmetry, and thus benefit from a significant can-
cellation of errors. The calculated frequencies at different levels of theory with the 
cc-pVTZ basis are given in Table 11.22 together with the mean absolute deviation
(MAD).
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Table 11.22 Harmonic frequencies (cm−1) for O3 with the 
cc-pVTZ basis

Method v1 v2 v3 MAD

HF 867 1418 1537 294
MP2 743 2241 1166 403
MP3 798 1713 1364 312
MP4 695 1592 1107 184
CCSD 762 1266 1278 122
CCSD(T) 716 1054 1153 18
CCSDTa 717 1117 1163 19
CCSDT(Q)a 709 1112 1133 6
CISD 815 1535 1407 272
[2,2]-CASSCF 799 1497 1189 182
[2,2]-CASPT2b 737 1268 1318 128
[12,9]-CASPT2b 692 1003 1092 51
LSDA 744 1147 1248 66
BLYP 683 980 1129 49
PBE 710 1057 1184 29
HCTH 742 1111 1227 47
B3LYP 746 1193 1251 83
PBE0 777 1295 1322 151
Experimental 716 1089 1135

a Data from Kucharski and Bartlett22

b Data from Ljubic and Sabljic23

The simple picture with ozone as a resonance structure between ionic and biradical
forms suggests that a two-configuration wave function should be able to give a quali-
tatively correct description. The [2,2]-CASSCF and [2,2]-CASPT2 results, however,
show that dynamical correlation is also very important. The poor RHF reference wave
function is clearly seen by the MPn results, with the MP2 value being in error by a
factor of 2 for the asymmetric stretch, and the MP4 result is in error by ~500cm−1 for
n2, despite reproducing n1 and n3 to within 30cm−1. The coupled cluster methods are
less sensitive to the quality of the HF wave function, and are in somewhat better 



agreement with the experimental values. The CCSD(T) results are within ~20cm−1 of
the experimental values, but part of this agreement is accidental as seen by the CCSDT
and CCSDT(Q) results, and even the CCSDT(Q) model has errors of ~25cm−1. Part
of this discrepancy may be due to basis set errors, although the results for the CASPT2
method indicate that larger basis sets will further increase the value of the vibrational
frequencies.23 The DFT methods perform well, yielding results comparable to those at
the CCSD or CCSD(T) levels, at a fraction of the computational cost. Even the local
density functional gives acceptable results, but this is a case where the hybrid DFT
methods (B3LYP and PBE0) perform worse than the pure DFT ones. It can be noted
that the cc-pVTZ basis set is sufficiently large that the DFT results are essentially con-
verged, and the results in Table 11.22 thus reflect the intrinsic accuracy of the differ-
ent DFT methods.

11.8 Relative Energies of C4H6 Isomers
The elaborate treatment for the H2O system is only possible because of its small size.
For larger systems, less rigorous methods must be employed. Let us as a more realis-
tic example consider a determination of the relative stability of the C4H6 isomers shown
in Figure 11.14.

There are experimental values for the first eight structures,24 which allows an eval-
uation of the performance of different methods. This in turn enables an estimate of
how much trust should be put in the predicted values for structures 9, 10 and 11.
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Figure 11.14 C4H6 isomers



An investigation may start by optimizing the geometries by semi-empirical methods,
as this will give initial estimates of the energetics and provide reasonable starting
geometries for higher level ab initio calculations. Relative energies and associated
errors relative to the experimental values for different semi-empirical methods are
shown in Table 11.23.
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Table 11.23 Energies (kJ/mol) relative to 1 calculated by semi-
empirical methods

Isomer MINDO/3 MNDO AM1 PM3 SAM1 Exp

2 −83 −17 9 −5 −23 36
3 5 9 66 28 58 47
4 −14 19 30 29 8 52
5 −16 30 32 20 15 55
6 8 37 74 56 63 91
7 74 147 202 160 185 107
8 42 103 145 110 118 133
9 84 132 158 122 143

10 232 349 354 318 255
11 227 354 378 336 336
MAD 72 39 31 33 39

Table 11.24 Energies (kJ/mol) relative to 1 calculated at the HF level with various basis sets

Isomer STO-3G 3-21G 6-31G(d,p) pc-1a pc-2a ZPE Exp

2 −54 15 30 35 31 −3 36
3 −52 75 54 74 66 +4 47
4 36 47 54 59 56 −3 52
5 −22 38 56 62 55 −1 55
6 24 107 85 98 94 0 91
7 48 191 126 148 140 +4 107
8 73 182 136 151 145 −2 133
9 93 198 155 168 163 −3

10 216 350 304 320 314 −7
11 188 324 295 317 312 −3
MAD 67 31 6 15 11

a HF/6-31G(d,p) geometry

MINDO/3 clearly has severe problems with some of the conjugated systems. The
MNDO/AM1/PM3 family performs somewhat better, although none of them can
predict the correct ordering. The SAM1 method is not an improvement for this case.
The mean absolute deviation (MAD) for the predicted stabilities is ~30kJ/mol, which
is a typical accuracy for semi-empirical methods.

The next step up in terms of theory is ab initio HF with increasingly larger basis sets.
Table 11.24 shows the results for various basis sets, where the geometries have been
optimized with the STO-3G, 3-21G and 6-31G(d,p) basis sets, but the latter used for
the pc-n basis sets.



The minimum STO-3G basis performs worse than the semi-empirical methods, at a
substantially higher computational cost. From experience, it is known that the geom-
etry usually changes little beyond a DZP type basis, and relative energies change little
beyond a TZP type basis set. Indeed, the change by increasing the basis set beyond pc-
2 is less than 1kJ/mol, i.e. the pc-2 results reflect the inherent error of the HF model.
Note that the 6-31G(d,p) basis set yields smaller errors than the larger pc-2, i.e with a
medium-sized basis set there are some (fortuitous) cancellations of errors from incom-
plete basis and neglect of electron correlation. The HF method underestimates the sta-
bility of some isomers (3, 7 and 8), and the singlet–triplet energy difference between
10 and 11 is qualitatively incorrect. Since 11 has one fewer electron pair than 10, this
stability is reversed once correlation is taken into account. With errors up to 
~20kJ/mol, there is little point in including for example differences in zero point ener-
gies (HF/6-31G(d,p) values scaled11 with a factor of 0.92), as these are only a few
kJ/mol. Including them in the above data in general only changes the MAD values by
~1kJ/mol.

The next level up for improving the results would be to include electron correlation,
and the MP2 method clearly is an obvious first choice. Correlated calculations 
require polarization functions, and at least a DZP type basis is mandatory. The results
at the MP2/6-31G(d,p) level using the HF/6-31G(d,p) optimized geometries is shown
in the first column in Table 11.25. The largest error is now reduced to less than 
~25kJ/mol. Furthermore, as a good fraction of the correlation energy is recovered,
the singlet carbene 10 is stabilized relative to 11 by ~35kJ/mol. The change by 
further increasing the basis set (e.g. cc-pVQZ) is of the order of 1kJ/mol, i.e. the last
column reflects the inherent error of the MP2 model. The mean error for the first eight
systems is approximately the same for the MP2 and HF methods, but the singlet–triplet
energy difference for the carbenes 10 and 11 is significantly improved by the MP2 
treatment. Including the differences in zero point energies (MP2/6-31G(d,p) values
scaled11 with a factor of 0.97) again only lead to changes in the MAD values of 
1–2kJ/mol.
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Table 11.25 MP2 energies (kJ/mol) relative to 1

Isomer 6-31G(d,p)a 6-31G(d,p)b cc-pVDZb cc-pVTZb ZPE Exp

2 23 20 24 22 −2 36
3 32 33 36 39 +5 47
4 51 51 55 53 −1 52
5 45 42 45 42 −1 55
6 67 69 76 74 +2 91
7 84 85 93 89 +6 107
8 109 109 118 117 0 133
9 125 125 134 132 −1

10 340 343 342 347 −5
11 375 376 379 393 0
MAD 16 16 11 13

a HF/6-31G(d,p) geometry
b MP2/6-31G(d,p) geometry



Addition of electron correlation beyond MP2 improves the agreement with exper-
iments to ~4kJ/mol, as shown in Table 11.26, and essentially all of the advanced
methods provide similar accuracy for these (uncomplicated) systems. The composite
G3 method that tries to estimate the QCISD(T)/6-311++G(2df,2p) results by additiv-
ity of lower level calculations provides similar results. From the observed accuracy of
~4kJ/mol for structures 2–8, the energetics of species 9–11 may be assumed to be reli-
able to the same level of accuracy.

If further refinements are required, several factors must be considered:

• The MP2/6-31G(d,p) geometry should be re-optimized at a better level, for example
coupled cluster and/or with a better basis set.

• Larger basis sets should be used with for example the CCSD(T) method.
• Zero point energy corrections should be included, perhaps evaluated with a better

method than MP2/6-31G(d,p).

Results from various DFT methods with the pc-2 basis set are shown in Table 11.27.
In general they give results of MP2 quality or better.
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Table 11.26 Energies (kJ/mol) relative to 1 at different levels calculated with the cc-pVDZ basis
sets at the MP2/6-31G(d,p) optimized geometry

Isomer HF MP2 MP3 MP4 CISD CCSD CCSD(T) G3 Exp

2 38 24 41 33 35 38 40 36 36
3 9 36 42 44 42 45 47 54 47
4 56 55 54 54 54 54 55 50 52
5 63 45 61 54 58 5 60 55 55
6 91 76 81 84 79 83 86 83 91
7 134 93 109 112 108 115 118 117 107
8 144 118 129 129 128 132 133 131 133
9 161 134 144 144 145 146 148 144

10 304 342 326 331 316 321 328 331
11 300 379 372 381 348 370 379 395
MAD 9 11 5 4 4 4 4 4

Table 11.27 Energies relative to 1 calculated at DFT levels with the pc-2 basis set

Isomer LSDA BLYP PBE HCTH B3LYP PBE0 Exp

2 35 41 37 35 38 34 36
3 25 74 45 51 65 36 47
4 40 45 42 42 46 44 52
5 66 68 67 66 65 62 55
6 52 92 67 63 85 62 91
7 66 145 96 85 131 84 107
8 104 141 117 108 136 112 133
9 123 161 136 129 155 131

10 337 353 336 331 346 326
11 385 401 373 358 394 361
MAD 22 14 11 14 10 14



Calculating the relative energies of a series of hydrocarbons is of course well suited
for force field methods, although a comparison of stabilities for isomers containing dif-
ferent number of “functional” groups (CH3, CH2, etc.) means that only force fields that
are able to convert steric energies to heat of formation can be used (Section 2.2.10).
Even for these relatively simple compounds, however, there are several “unusual” fea-
tures for which adequate parameters are lacking. The straight MM2 and MM3 force
fields lack parameters for the cyclopropenes 8 and 9, the methylene-cyclopropane 6
and the allene 4 for MM3. The carbenes 10 and 11 are of course outside the capabili-
ties of force field methods. Table 11.28 compares the performance of the MM2 and
MM3 methods, along with MMX, which is a modified MM2 model,25 where parameters
have been added to allow calculations on 4, 6, 8, and 9.
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Table 11.28 Energies relative to 1 calculated by force field methods

Isomer MM2 MM3 MMX Exp

2 46 44 47 36
3 54 53 48 47
4 57 53 52
5 61 61 62 55
6 91 91
7 112 113 100 107
8 142 133
9 133
MAD (7) (7) 5

The performance is (as expected) very good. MMX provides relative (and absolute)
stabilities with a MAD of only 5kJ/mol, which are on a par with the results from the
sophisticated G3 composite model in Table 11.26. Considering that force field calcu-
lations require a factor of ~105 less computer time for these systems than the ab initio
methods combined in Table 11.26, this clearly stresses that knowledge of the strengths
and weakness of different theoretical tools is important in selecting a proper model
for answering a given question.
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12 Optimization
Techniques

Many problems in computational chemistry can be formulated as an optimization of
a multi-dimensional function.1 Optimization is a general term for finding stationary
points of a function, i.e. points where the first derivative is zero. In the majority of cases,
the desired stationary point is a minimum, i.e. all the second derivatives are positive.
In some cases, the desired point is a first-order saddle point, i.e. the second derivative
is negative in one, and positive in all other, directions. In a few special cases, a higher
order saddle point is desired.

Most optimization methods determine the nearest stationary point, but a multi-
dimensional function may contain many (in some cases very many!) different station-
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ary points of the same kind. The minimum with the lowest value is called the global
minimum, while all the others are local minima. Some examples:

• The energy as a function of nuclear coordinates. Both minima and first-order saddle
points (transition structures) are of interest.The energy function may be of the force
field type, or from solving the electronic Schrödinger equation.

• An error function depending on parameters. Only minima are of interest, and the
global minimum is usually (but not always) desired. This may for example be deter-
mination of parameters in a force field, a set of atomic charges, or a set of localized
molecular orbitals.

• The energy of a wave function containing variational parameters, such as a
Hartree–Fock (one Slater determinant) or multi-configurational (many Slater deter-
minants) wave function. Parameters are typically the molecular orbital and config-
urational state coefficients, but may also be for example basis function exponents.
Usually only minima are desired, although in some cases saddle points may also be
of interest (excited states).

When the parameters enter the function to be optimized in a quadratic fashion, the sta-
tionary points can be obtained by solving a set of linear equations by standard matrix
techniques. In most cases, however, the parameters enter the function in a non-linear
fashion, which require iterative methods for locating the stationary points.The latter can
be further divided into methods for locating minima, and methods for locating saddle
points.The problem of optimizing quadratic functions is treated in Section 12.1, minima
and saddle points of general functions in Sections 12.2 and 12.4, respectively, while
methods for global optimization are covered in Section 12.6. Optimization of functions
subject to external constraints is dealt with in Section 12.5.Finally,Section 12.8 describes
methods for following reactions paths, which may be considered either as solving partial
differential equations or as a constrained optimization problem.

12.1 Optimizing Quadratic Functions
Data fitting is a typical example of an optimization problem where the parameters
enter the function in a quadratic fashion. Consider for example the problem of deter-
mining a set of force field partial charges Qi by minimizing an error function measur-
ing the fit to the electrostatic potential sampled at a number of points surrounding the
molecule (Section 2.2.6).

(12.1)

We will at present ignore the constraint that the sum of the charges must be equal to
the total molecular charge; this can be dealt with by the techniques in Section 12.5.
The ErrF in eq. (12.1) can be generalized as in eq. (12.2), with yj being the reference
values, ai the fitting parameters (Qi) and xij the coefficients corresponding to the inverse
distances |Ri − rj|.
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The best set of parameters is determined by setting all the first derivatives of ErrF to
zero.

(12.3)

By rearrangement, this gives a set of coupled linear equations.

(12.4)

These N equations with N unknowns can also be written in a matrix-vector notation.

(12.5)

The formal solution can be obtained by multiplying with the inverse X matrix.

(12.6)

In actual applications, the X matrix may be singular, or nearly so, and the inverse matrix
either does not exist or is prone to numerical errors. A singular matrix indicates that
at least one of the linear equations can be written as a combination of the other equa-
tions, and such cases can be handled by singular value decomposition methods, as dis-
cussed in Section 16.2. Indeed, for the example of determining partial charges by fitting
to the electrostatic potential, the equations determining the charges on the atoms far
from the molecular surface are often poorly conditioned, i.e. the external electrostatic
potential is only weakly dependent on the charges on the buried atoms.

Other examples of optimizing functions that depend quadratically of the parame-
ters include the energy of Hartree–Fock (HF) and configuration interaction (CI) wave
functions. Minimization of the energy with respect to the MO or CI coefficients leads
to a set of linear equations. In the HF case, the xij coefficients depend on the para-
meters ai, and must therefore be solved iteratively. In the CI case, the number of para-
meters is typically 106–109, and a direct solution of the linear equations is therefore
prohibitive, and special iterative methods are used instead. The use of iterative tech-
niques for solving the CI equations is not due to the mathematical nature of the
problem, but due to computational efficiency considerations.
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12.2 Optimizing General Functions: Finding Minima
The simple-minded approach for minimizing a function is to step one variable at a time
until the function has reached a minimum, and then switch to another variable. This
requires only the ability to calculate the function value for a given set of variables. As
the variables are not independent, however, several cycles through the whole set are
necessary for finding a minimum. This is impractical for more than five–ten variables,
and may not work anyway.

The Simplex method represents a more efficient approach using only function values
for constructing an irregular polyhedron in parameters space, and moving this poly-
hedron towards the minimum, while allowing the size to contract or expands to
improve the convergence.2 It is better than the simple-minded “one-variable-at-a-time”
approach, but becomes too slow for many-dimensional functions.

Since optimization problems in computational chemistry tend to have many vari-
ables, essentially all commonly used methods assume that at least the first derivative
of the function with respect to all variables, the gradient g, can be calculated analyti-
cally (i.e. directly, and not as a numerical differentiation by stepping the variables).
Some methods also assume that the second derivative matrix, the Hessian H, can be
calculated.

It should be noted that the target function and its derivative(s) are calculated with
a finite precision, which depends on the computational implementation. A stationary
point can therefore not be located exactly, the gradient can only be reduced to a certain
value. Below this value, the numerical inaccuracies due to the finite precision will
swamp the “true” functional behaviour. In practice, the optimization is considered con-
verged if the gradient is reduced below a suitable “cutoff” value, or if the function
change between two iterations becomes sufficiently small. Both these criteria may in
some cases lead to problems, as a function with a very flat surface in a certain region
may meet the criteria without containing a stationary point.

There are three classes of commonly used optimization methods for finding minima,
each having their advantages and disadvantages.

12.2.1 Steepest descent

The gradient vector g points in the direction where the function increases most, i.e. the
function value can always be lowered by stepping in the opposite direction. In the
Steepest Descent (SD) method, a series of function evaluations are performed in 
the negative gradient direction, i.e. along a search direction defined as d = −g. Once
the function starts to increase, an approximate minimum may be determined by inter-
polation between the calculated points. At this interpolated point, a new gradient is
calculated and used for the next line search.

The steepest descent algorithm is sure-fire. If the line minimization is carried out
sufficiently accurately, it will always lower the function value, and is therefore guaran-
teed to approach a minimum. It has, however, two main problems. Two subsequent line
searches are necessarily perpendicular to each other; if there was a gradient compo-
nent along the previous search direction, the energy could be further lowered in this
direction. The steepest descent algorithm therefore has a tendency for each line search
to partly spoil the function lowering obtained by the previous search. The steepest

12.2 OPTIMIZING GENERAL FUNCTIONS: FINDING MINIMA 383



descent path oscillates around the minimum path, as illustrated in Figure 12.2, and this
is particularly problematic for surfaces having long narrow valleys.

Furthermore, as the minimum is approached, the rate of convergence slows down.
The steepest descent will actually never reach the minimum, it will crawl towards it at
an ever decreasing speed.

An accurate line search requires several function evaluations along each search
direction. Often the minimization along the line is only carried out fairly crudely, or a
single step is simply taken along the negative gradient direction. In the latter case, the
step size is varied dynamically during the optimization; if the previous step reduced
the function value, the next step is taken with a slightly longer step size, but if the func-
tion values increased, the step size is reduced. Without an accurate line search, the
guarantee for lowering of the function value is lost, and the optimization may poten-
tially end up in an oscillatory state.

By its nature, the steepest descent method can only locate function minima. The
advantage is that the algorithm is very simple, and requires only storage of a gradient
vector. It is furthermore one of the few methods that is guaranteed to lower the func-
tion value. Its main use is to quickly relax a poor starting point, before some of the
more advanced algorithms take over, or as a “backup” algorithm if the more sophisti-
cated methods are unable to lower the function value.

12.2.2 Conjugate gradient methods

The main problem with the steepest descent method is the partial “undoing” of the
previous step. The Conjugate Gradient (CG) method tries to improve on this by per-
forming each line search not along the current gradient but along a line that is con-
structed such that it is “conjugate” to the previous search direction(s). If the surface is
purely quadratic, the conjugate direction criterion guarantees that each successive min-
imization will not generate gradient components along any of the previous directions,
and the minimum is reached after at most Nvar steps. The first step is equivalent to a
steepest descent step, but subsequent searches are performed along a line formed as
a mixture of the current negative gradient and the previous search direction.

(12.7)d g di i i i= − + −b 1
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Figure 12.2 Steepest descent minimization



There are several ways of choosing the b value. Some of the names associated with
these methods are Fletcher–Reeves (FR), Polak–Ribiere (PR) and Hestenes–Stiefel
(HS). Their definitions of b are given in eq. (12.8).

(12.8)

For non-quadratic surfaces, the conjugate property does not hold rigorously and, for
real problems, the CG algorithm must often be restarted (i.e. setting b = 0) during the
optimization. The PR formula for b has a tendency of restarting the procedure more
gracefully than the other two, and is usually preferred in practice. The conjugate prop-
erty holds best for near-quadratic surfaces, and the convergence properties of CG
methods can be improved by scaling the variables by a suitable pre-conditioner matrix,
for example containing (approximate) inverse second derivatives. Conjugate gradient
methods have much better convergence characteristics than the steepest descent, but
they are again only able to locate minima. They do require slightly more storage than
the steepest descent, since two (current gradient and previous search direction) vectors
must be stored, but this is rarely a problem.

12.2.3 Newton–Raphson methods

The Newton–Raphson (NR) method expands the true function to second order around
the current point x0.

(12.9)

Requiring the gradient of the second-order approximation in eq. (12.9) to be zero pro-
duces the step in eq. (12.10).

(12.10)

In the coordinate system (x′) where the Hessian is diagonal (i.e. performing a unitary
transformation, see Section 16.2), the NR step may be written as in eq. (12.11).

(12.11)

Here fi is the projection of the gradient along the Hessian eigenvector with eigenvalue
ei (the gradient component pointing in the direction of the ith eigenvector).

As the real function contains terms beyond second order, the NR formula can be
used iteratively for stepping towards a stationary point. Near a minimum, all the
Hessian eigenvalues are positive (by definition), and the step direction is opposite to
the gradient direction, as it should be. If, however, one of the Hessian eigenvalues is
negative, the step in this direction will be along the gradient component, and thus
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increase the function value. In this case, the optimization may end up at a stationary
point with one negative Hessian eigenvalue, a first-order saddle point. In general, the
NR method will attempt to converge on the “nearest” stationary point, regardless of
whether this is a minimum, saddle point or maximum.

Another problem is the use of the inverse Hessian for determining the step size. If
one of the Hessian eigenvalues becomes close to zero, the step size goes toward infin-
ity (except if the corresponding gradient component fi is exactly zero). The NR step is
thus without bound, and it may take the variables far outside the region where the
second-order Taylor expansion is valid. The latter region is often described by a “Trust
Radius”. In some cases, the NR step is taken as a search direction along which the
function is minimized, analogously with the steepest descent and conjugate gradient
methods. The augmented Hessian methods described below are normally more 
efficient.

The advantage of the NR method is that the convergence is second order near a sta-
tionary point. If the function only contains terms up to second order, the NR step will
go to the stationary point in a single step. In general, the function contains higher order
terms, but the second-order approximation becomes better and better as the station-
ary point is approached. Sufficiently close to the stationary point, the gradient is
reduced quadratically, i.e. if the gradient norm is reduced by a factor of 2 between two
iterations, it will go down by a factor of 4 in the next iteration, and a factor of 16 in
the next. The quadratic convergence, however, is often only observed very close to the
stationary point, and the NR method typically only displays linear convergence.

Besides the abovementioned problems with step control, there are also other com-
putational aspects that tend to make the straightforward NR problematic for many
problem types. The true NR method requires calculation of the full second derivative
matrix, which must be stored and inverted (diagonalized). For some types of function,
a calculation of the Hessian is computationally demanding. For others, the number of
variables is so large that manipulating a matrix the size of the number of variables
squared is impossible. The following two sections address some solutions to these 
problems.

12.2.4 Step control

There are two aspects in step control, one is controlling the total length of the step,
such that it does not exceed the region in which the second-order Taylor expansion is
valid, and the second is making sure that the step direction is correct. If the optimiza-
tion is towards a minimum, the Hessian should have all positive eigenvalues in order
for the step to be in the correct direction. If, however, the starting point is in a region
where the Hessian has negative eigenvalues, the NR step will take it towards a saddle
point or maximum. Both these problems can be solved by introducing a shift para-
meter l (compare to eq. (12.11)).

(12.12)

If l is chosen to be below the lowest Hessian eigenvalue, the denominator is always
positive, and the step direction will thus be correct. Furthermore, if l goes towards 
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−∞, the step size goes towards zero, i.e. the step size can be made arbitrarily small.
Methods that modify the nature of the Hessian matrix by a shift parameter are known
by names such as “augmented Hessian”, “level-shifted Newton–Raphson”, “norm-
extended Hessian” or “Eigenvector Following” (EF), depending on how l is chosen.We
will here mention two popular methods for choosing l.

The Rational Function Optimization (RFO) expands the function in terms of a
rational approximation instead of a straight second-order Taylor series (eq. (12.9)).3

(12.13)

The S matrix is eventually set equal to a unit matrix which leads to the following equa-
tion for l.

(12.14)

This is a one-dimensional equation in l which can be solved by standard (iterative)
methods. There will in general be one more solution than the number of degrees of
freedom, but by choosing the lowest l solution, it is ensured that the resulting step will
be towards a minimum.The RFO step calculated from eq. (12.12) will always be shorter
than the pure NR step (eq. (12.11)), but there is no guarantee that it will be within the
trust radius. If the RFO step is too long, it may be scaled down by a simple multi-
plicative factor, however, if the factor is much smaller than 1, it follows that the result-
ing step may not be the optimum for the given trust radius.

Another way of choosing l is to require that the step length be equal to the trust
radius R, which is in essence the best step on a hypersphere with radius R.This is known
as the Quadratic Approximation (QA) method.4

(12.15)

This may again have multiple solutions, but by choosing the lowest l value, the mini-
mization step is selected. The maximum step size R may be taken as a fixed value, or
allowed to change dynamically during the optimization. If the actual energy change
between two steps agrees well with that predicted from the second-order Taylor expan-
sion, the trust radius for the next step may be increased, and vice versa.

12.2.5 Obtaining the Hessian

The second problem, the computational aspect of calculating the Hessian, is often
encountered in electronic structure calculations. Here the calculation of the second
derivative matrix can be an order of magnitude more demanding than calculating the
gradient. In such cases, an updating scheme may be used instead. The idea is to start
off with an approximation to the Hessian, maybe just a unit matrix. The initial step will
thus resemble a steepest descent step. As the optimization proceeds, the gradients 
at the previous and current points are used for making the Hessian a better ap-
proximation for the actual system. After two steps, the updated Hessian is a rather
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good approximation to the exact Hessian in the direction defined by these two points
(but not in the other directions). There are many such updating schemes, some of the
commonly used are associated with the names Davidon–Fletcher–Powell (DFP),
Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Powell. For minimizations, the
BFGS update eq. (12.16) is usually preferred, as it tends to keep the Hessian positive
definite.

(12.16)

For saddle point searches, the updating must allow the Hessian to develop negative
eigenvalues, and the Powell or updates based on combining several methods are
usually employed.5

The use of approximate Hessians within the NR method is known as pseudo-
Newton–Raphson or variable metric methods. It is clear that they do not converge as
fast as true NR methods, where the exact Hessian is calculated in each step, but if for
example five steps can be taken for the same computational cost as one true NR step,
the overall computational effort may be less. True NR methods converge quadratically
near a stationary point, while pseudo-NR methods display a linear convergence. Far
from a stationary point, however, the true NR method will typically also only display
linear convergence.

Pseudo-NR methods are usually the best choice in geometry optimizations using an
energy function calculated by electronic structure methods. The quality of the initial
Hessian of course affects the convergence when an updating scheme is used.The use of
an exact Hessian at the first point often gives a good convergence, however, this may not
be the most cost-efficient strategy. In many cases, a quite reasonable Hessian for a
minimum search may be generated by simple rules connecting for example bond lengths
and force constants.6 Alternatively, the initial Hessian may be taken from a calculation
at a lower level of theory. As an initial exploration of an energy surface is often carried
out at a low level of theory, followed by frequency calculations to establishing the nature
of the stationary points, the resulting force constants can be used for starting an 
optimization at higher levels. This is especially useful for transition structure searches
that require a quite accurate Hessian.The success of this strategy relies on the fact that
the qualitative structure of an energy surface is often fairly insensitive to the level of
theory, although there certainly are many examples where this is not the case.

12.2.6 Storing and diagonalizing the Hessian

The last potential problem of all NR-based methods is the storage and handling of the
Hessian matrix. For methods where the calculation of the Hessian is easy but the
number of variables is large, this may be a problem. A prime example here is geome-
try optimization using a force field energy function. The computational effort for 
calculating the Hessian goes up roughly as the square of the number of atoms.
Diagonalization of the Hessian matrix required for the NR optimization, however,
depends on the cube of the matrix size, i.e. it goes up as the cube of the number 
of atoms. Since matrix diagonalization becomes a significant factor around a size of
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1000 × 1000, it is clear that NR methods should not be used for force field optimiza-
tions beyond a few hundred atoms. For large systems the computational effort for pre-
dicting the geometry step will completely overwhelm the calculation of the energy,
gradient and Hessian. The conjugate gradient method avoids handling of the Hessian
and only requires storage of two vectors, and it is therefore usually the method of
choice for force field optimizations.

For large systems many of the off-diagonal elements in the Hessian are very small,
essentially zero (the coupling between distant atoms is very small), and the Hessian
for large systems is therefore a sparse matrix. NR methods that take advantage of this
fact by neglecting off-diagonal blocks, are denoted truncated NR. Some force field pro-
grams use an extreme example of this where only the 3 × 3 submatrices along the diag-
onal are retained. These 3 × 3 matrices contain the coupling elements between the x,
y and z coordinates for a single atom. The task of inverting say a 3000 × 3000 matrix
is thus replaced by inverting 1000 3 × 3 matrices, reducing the computational cost for
the diagonalization by a factor of 106. If the NR step is not taken directly, but rather
used as a direction along which the function is minimized, truncated NR methods start
to resemble the conjugate gradient method, although it is somewhat more complicated
to implement.

12.2.7 Extrapolations: the GDIIS method

Newton–Raphson methods can be combined with extrapolation procedures, and the
best known of these is perhaps the Geometry Direct Inversion in the Iterative Subspace
(GDIIS),7 which is directly analogous to the DIIS for electronic wave functions
described in Section 3.8.1. In the GDIIS method, the NR step is not taken from the
last geometry but from an interpolated point with a corresponding interpolated gra-
dient based on the previously calculated points on the surface.

(12.17)

The interpolated geometry and gradient are generated by requiring that the norm of
an error vector is minimum, subject to a normalization condition.

(12.18)

The are two common choices for the error vector, either a “geometry” or “gradient”
vector, with the latter being preferred in more recent work.8

(12.19)

The DIIS approach attempts to find a low-gradient point within the subspace already
searched. For optimizing electronic wave functions, there is usually only one minimum
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and the DIIS extrapolation significantly improve both the convergence rate and sta-
bility. For geometry optimizations, however, the target function is usually complicated
and contains many minima and saddle points, making DIIS extrapolations much less
useful or even disadvantageous. It is not uncommon for an optimization to move across
a flat part of the surface before entering the local minimum region. This will result in
the gradient being small for several steps, and then increasing as the minimum is
approached. In such cases, the DIIS procedure will attempt to pull the structure back
to the flat energy region, since this is where the gradient is small, and DIIS will in such
cases be counterproductive.

12.3 Choice of Coordinates
Naively one may think that any set of coordinates that uniquely describes the func-
tion is equally good for optimization. This is not the case! A “good” set of coordinates
may transform a divergent optimization into a convergent one, or increase the rate of
convergence. We will look specifically at the problem of optimizing a geometry given
an energy function depending on nuclear coordinates, but the same considerations hold
equally well for other types of optimization. We will furthermore use the straight
Newton–Raphson formula (12.10) to illustrate the concepts.

Given the first and second derivatives, the NR formula calculates the geometry step
as the inverse of the Hessian times the gradient.

(12.20)

In the coordinate system (x′) where the Hessian is diagonal, the step may be written
as in eq. (12.21).

(12.21)

Essentially all computational programs calculate the fundamental properties, the
energy and derivatives, in Cartesian coordinates. The Cartesian Hessian matrix has the
dimension 3Natom × 3Natom. Of these, three describe the overall translation of the mol-
ecule, and three describe the overall rotation. In the molecular coordinate system, there
are only 3Natom − 6 coordinates needed for uniquely describing the nuclear positions.
Moving all the atoms in say the x-direction by the same amount does not change the
energy, and the corresponding gradient component (and all higher derivatives) is zero.
The Hessian matrix should therefore have six eigenvalues identical to zero, and the
corresponding gradient components, fi, should also be identical zero. In actual calcu-
lations, however, these values are certainly small, but not exactly zero. Numerical inac-
curacies may introduce errors of perhaps 10−14–10−16, and this can have rather drastic
consequences. Consider for example a case where the gradient in the x-translation
direction is calculated to be 10−14, while the corresponding Hessian eigenvalue is 
10−16, leading to an NR step in this direction of 100! This illustrates that care should be
taken if redundant coordinates (i.e. more than are necessary for uniquely describing
the system) are used in the optimization. In the case of Cartesian geometry optimiza-
tion, the six translational and rotational degrees of freedom can be removed by 
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projecting these components out of the Hessian prior to formation of the NR step
(Section 16.4). The calculated “steps” in the zero eigenvalue directions are then simply
neglected.

Another way of removing the six translational and rotational degrees of freedom is
to use a set of internal coordinates. For a simple acyclic system, these may be chosen
as Natom − 1 distances, Natom − 2 angles and Natom − 3 torsional angles, as illustrated in
the construction of Z-matrices in Appendix D. In internal coordinates the six transla-
tional and rotational modes are automatically removed (since only 3Natom − 6 coordi-
nates are defined), and the NR step can be formed straightforwardly. For cyclic systems,
a choice of 3Natom − 6 internal variables that span the whole optimization space may
be somewhat more problematic, especially if symmetry is present.

Diagonalization of the Hessian is an example of a linear transformation; the eigen-
vectors are just linear combinations of the original coordinates. A linear transforma-
tion does not change the convergence/divergence properties, or the rate of
convergence. We can form the NR step directly in Cartesian coordinates by inverting
the Hessian and multiplying it with the gradient vector (eq. (12.20)), or we can trans-
form the coordinates to a system where the Hessian is diagonal, form the ratios −fi/ei

(eq. (12.21)) and back-transform to the original system. Both methods generate the
exact same NR step (except for rounding-off errors). Since we need to give consider-
ation to the six translational and rotational modes, however, the diagonal representa-
tion is advantageous.

The transformation from a set of Cartesian coordinates to a set of internal coordi-
nates, which may for example be distances, angles and torsional angles, is an example
of a non-linear transformation. The internal coordinates are connected with the Carte-
sian coordinates by means of square root and trigonometric functions, not simple linear
combinations. A non-linear transformation will affect the convergence properties. This
can be illustrate by considering a minimization of a Morse type function (eq. (2.5))
with D = a = 1 and x = ∆R.

(12.22)

We will consider two other variables obtained by a non-linear transformation: y = e−x

and z = ex. The minimum energy is at x = 0, corresponding to y = z = 1. Consider an
NR optimization starting at x = −0.5, corresponding to y = 1.6587 and z = 0.6065. Table
12.1 shows that the NR procedure in the x-variable requires four iterations before x
is less than 10−4. In the y-variable the optimization only requires one step to reach the
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Morse e( ) = −[ ]−1

2

12.3 CHOICE OF COORDINATES 391

Table 12.1 Convergence for different choices of variables

Iteration x y z

0 −0.5000 1.6487 0.6065
1 −0.2176 1.0000 0.7401
2 −0.0541 0.8667
3 −0.0041 0.9570
4 0.0000 0.9951
5 0.9999
6 1.0000



y = 1 minimum exactly! The optimization in the z-variable takes six iterations before
the value is within 10−4 of the minimum.

Consider now the same system starting from x = 0.30 (y = 0.7408 and z = 1.3499)
and x = 1.00 (y = 0.3679 and z = 2.7183). The first optimization step in the x-variable
for the first case overshoots the minimum but then converges in three additional steps.
With the z-variable the first step results in an “non-physical” negative value, and 
subsequent steps do not recover. With the second set of starting conditions, both the
x- and z-variable optimizations diverge toward the x = ∞ limit. In both cases the y-
variable optimization converges (exactly) in one step.

The reason for this behaviour is seen when plotting the three functional forms as
shown in Figures 12.3.
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Table 12.2 Convergence for different choices of variables

Iteration xstart = 0.30 xstart = 1.00

x y z x y z

0 0.3000 0.7408 1.3499 1.0000 0.3679 2.7183
1 −0.2381 1.0000 −0.2229 3.3922 1.0000 4.6352
2 −0.0633 −0.3020 4.4283 7.3225
3 −0.0055 −0.4110 5.4405 11.2981
4 0.0000 −0.5628 6.4449 17.2354
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Figure 12.3 Morse curves as a function of x, y and z

The horizontal axis covers the same range of x-variables for all three figures. In the
x-variable space the second derivative is negative beyond x = ln2 (= 0.69), and if the
optimization is started at larger x-values, the optimization is no longer a minimization,
but a maximization toward the x = ∞ asymptote. The function in the y-variable is a
parabola, and the second-order expansion of the NR method is exact. All starting
points consequently converge to the minimum in a single step. The transformation to
the z-variable introduces a singularity at z = 0, and it can be seen from Figure 12.3 that
the curve shape is much less quadratic than the original function. Using y as a variable
is an example of a “good” non-linear transformation, while z is an example of a “poor”
non-linear transformation.

These examples show that non-linear transformations may strongly affect the con-
vergence properties of an optimization. The more “harmonic” the energy function is,



the faster the convergence. One should therefore try to choose a set of coordinates
where the third and higher order derivatives are as small as possible. Cartesian coor-
dinates are not particularly good in this respect but have the advantage that conver-
gence properties are fairly uniform for different systems. A “good” set of internal
coordinates may speed up the convergence but a “bad” set of coordinates may slow it
down or cause divergence. For acyclic systems the abovementioned internal coordi-
nates consisting of Natom − 1 distances, Natom − 2 angles and Natom − 3 torsional angles
are normally better than Cartesian coordinates. Cyclic systems, however, are notori-
ously difficult to choose a good set of internal coordinates for. Cyclopropane, for
example, has three C–C bonds and three CCC angles, but only three independent vari-
ables (not counting the hydrogens). Choosing two distances and one angle introduces
a strong coupling between the angle and distances due to the “remote” C–C bond,
which is described indirectly by the other three variables. Cartesian coordinates may
display better convergence characteristics in such systems.

Another problem is when very soft modes are present. A prototypical example is
rotation of a methyl or hydroxy group. Near the minimum the energy changes very
little as a function of the torsional angle, i.e. the corresponding Hessian eigenvalue is
small. Consequently, even a small gradient may produce a large change in geometry.
The potential is not very harmonic, and the result is that the optimization spends many
iterations flopping from side to side. A similar problem is encountered in optimization
of molecular clusters where the optimum structure is governed by weak van der Waals
type interactions.

The problem of an “optimum” choice of coordinates has been addressed by Pulay
and coworkers, who suggested using Natural Internal Coordinates.9 The atoms are first
classified into three types: “terminal” (having only one bond), “ring” (part of a ring)
or “internal”. All distances between bonded atoms are used as variables. The ring and
internal atoms are assumed to have a local symmetry depending on the number of ter-
minal atoms attached to them, i.e. an internal atom with three terminal bonds has local
C3v symmetry, one with two terminal bonds has C2v, a ring has local Dnh symmetry, etc.
Suitable linear combinations of bending and torsional angles are then formed such that
the coupling between these coordinates is exactly zero if the local symmetry is the
exact symmetry. This will usually not be the case, but the local symmetry coordinates
tend to minimize the coupling, and thus the magnitude of third and higher derivatives,
thereby improving the NR performance. Natural internal coordinates appear to be a
good choice for optimization to minima on an energy surface, since the bonding pattern
is usually well defined for stable molecules. For locating transition structures, however,
it is much less clear whether natural internal coordinates offer any special advantage.
The bonding pattern is not as well defined for TS’s, and a “good” set of coordinates at
the starting geometry may become ill behaved during the optimization. For loosely
bound complexes, it has been suggested that coordinates depending on the inverse dis-
tance or scaled by an inverse reference distance should improve the convergence.10

In the original formulation, a set of 3Natom − 6 independent natural internal coordi-
nates was chosen. It was latter discovered that the same optimization characteristics
could be obtained by using all distances and bending and torsional angles between
atoms within bonding distance as variables.11 Such a set of coordinates will in general
be redundant (i.e. the number of coordinates is larger than 3Natom − 6), and special care
must be taken to handle this. More recently, it has been argued that an “optimum” set
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of non-redundant coordinates may be extracted from a large set of (redundant) inter-
nal coordinates by selecting the eigenvectors corresponding to non-zero eigenvalues
of the square of the matrix defining the transformation from Cartesian to internal
coordinates. These linear combinations have been denoted delocalized internal coor-
dinates, and are in a sense a generalization of the natural internal coordinates.12 A
major advantage is that delocalized internal coordinates can be generated automati-
cally without any user involvement.

In summary, the efficiency of Newton–Raphson-based optimizations depends on the
following factors:

(1) Hessian quality (exact or updated).
(2) Step control (augmented Hessian, choice of shift parameter(s)).
(3) Coordinates (Cartesian, internal).
(4) Trust radius update (maximum step size allowed).

A comparison of various combinations of these can be found in reference 13.

12.4 Optimizing General Functions: Finding Saddle Points
(Transition Structures)
Locating minima for functions is fairly easy. If everything else fails, the steepest descent
method is guaranteed to lower the function value. Finding first-order saddle points,
transition structures (TS), is much more difficult. There are no general methods that
are guaranteed to work! Many different strategies have been proposed, the majority
of which can be divided into two general categories, those based on interpolation
between two minima,14 and those using only local information.15 Interpolation methods
assume that the reactant and product geometries are known, and that a TS is located
somewhere “between” these two end-points. It should be noted that many of the
methods in this group do not actually locate the TS, they only locate a point close to
it. Local methods propagate the geometry using only information about the function
and its first and possibly also second derivatives at the current point, i.e. they require
no knowledge of the reactant and/or product geometries. Local methods usually
require a good estimate of the TS in order to converge. Once the TS has been found,
the whole reaction path may be located by tracing the intrinsic reaction coordinate
(Section 12.8), which corresponds to a steepest descent path in mass-weighted coordi-
nates, from the TS to the reactant and product.

12.4.1 One-structure interpolation methods: coordinate driving, linear and
quadratic synchronous transit, and sphere optimization

The intuitively simple approach for locating a TS is to select one or a few internal
“reaction” coordinates, i.e. those that describes the main difference between the reac-
tant and product structures.A typical example is a torsional angle for describing a con-
formational TS, or two bond distances for a bond breaking/forming reaction. The
selected coordinate(s) is (are) fixed at certain values, while the remaining variables are
optimized, thereby adiabatically mapping the energy as a function of the reaction vari-
able(s), and such methods are often called “coordinate driving”. The goal is to find a
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geometry where the residual gradients for the fixed variables are “sufficiently” small.
The success of this method depends on the ability to choose a good set of reaction
variables, with a good choice being equated with large coefficients for the selected vari-
ables in the actual reaction coordinate vector at the TS (as given by the Hessian eigen-
vector with a negative eigenvalue). The reaction coordinate at the TS, however, is only
known after the TS has actually been found, making the choice strongly user-biased,
and impossible to verify a priori.

If only one or two variables change significantly between reactant and product, the
coordinate driving usually works well, and the constrained optimized geometry with
the smallest residual gradient is a good approximation to the TS. Some typical exam-
ples are rotation of a methyl group (reaction variable is the torsional angle), the HNC
to HCN rearrangement (reaction variable is the HCN angle) and SN2 reactions of the
type X + CH3Y → XCH3 + Y (reaction variables are the XC and CY distances). Good
approximations to many conformational TS’s can be generated by “driving” a selected
torsional angle, and this is often the basis for conformational analysis using force field
energy functions. It should be stressed that the highest energy structure located in this
fashion is not exactly the TS, but it is usually a very good approximation to it. A
mapping with more than two reaction variables becomes cumbersome, and rarely leads
anywhere.

If a bad choice of reaction variables has been made, “hysteresis” is often observed.
This is the term used when the optimization suddenly changes the geometry drasti-
cally for a small change in the fixed variable(s). Furthermore, a series of optimizations
made by increasing the fixed variable(s) to a given value may produce a different result
than when decreasing the fixed variable(s) to the same point. This indicates that the
chosen reaction variable(s) do not contribute strongly to the actual reaction coordi-
nate at the TS. Some TS’s have reaction vectors that are not dominated by a few inter-
nal variables, and such TS’s are difficult to find by constrained optimization methods.
In some cases, another set of (internal) coordinates may alleviate the problem, but
finding these is part of the “black magic” involved in locating TS’s.

The Linear Synchronous Transit (LST) method may be considered as a coordinate
driving method where all (Cartesian or internal) coordinates are varied linearly
between the reactant and product, and no optimization is performed.16 The assump-
tion is that all variables change at the same rate along the reaction path, and the TS
estimate is simply the highest energy structure along the interpolation line. The
assumed synchronous change for all variables is rarely a good approximation, and only
for simple systems does LST lead to a reasonable estimate of the TS. The Quadratic
Synchronous Transit (QST) approximates the reaction path by a parabola instead of
a straight line. After the maximum on the LST is found, the QST is generated by min-
imizing the energy in the directions perpendicular to the LST path, and the QST path
may then be searched for an energy maximum. These methods are illustrated in Figure
12.4, where the Intrinsic Reaction Coordinate (IRC) represents the “true” reaction
coordinate.

Bell and Crighton refined the method by performing the minimization from the LST
maximum in the directions conjugate to the LST instead of the orthogonal directions
as in the original formulation.17 A more recent variation of QST, called Synchronous
Transit-guided Quasi-Newton (STQN), uses a circle arc instead of a parabola for the
interpolation, and uses the tangent to the circle for guiding the search towards the TS
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region.18 Once the TS region is located, the optimization is switched to a quasi-
Newton–Raphson (Section 12.4.6).

The Sphere optimization technique involves a sequence of constrained optimizations
on hyperspheres with increasingly larger radii, using the reactant (or product) geom-
etry as a constant expansion point.19 The lowest energy point on each successive hyper-
sphere thus traces out a low energy path on the energy surface, as illustrated in Figure
12.5. The sphere method may be considered as a coordinate driving algorithm where
the driving coordinate is the distance to the minimum. Ohno and Maeda have sug-
gested a variation where the optimization is done in vibrational normal coordinates
scaled by the square root of the corresponding Hessian eigenvalues.20 This makes all
directions equivalent in an energetic sense, and potentially allows more saddle points
to be found, but at the expense of searching the full variable space rather than just the
low-energy region. They have suggested that an exhaustive search along all the normal
mode directions can potentially find all the TS’s connected with a given minimum.
Tracing the IRC from all these TS’s will lead to other minima, which then can be sub-
jected to a TS search, thereby potentially tracing out all possible reaction paths for a
given system.
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Figure 12.4 Illustration of the linear and quadratic synchronous transit methods; energy maxima
and minima are denoted by * and •, respectively

Figure 12.5 Illustration of the sphere method; energy minima on the hyperspheres are denoted by
•, while R indicates a (local) minimum in the full variable space



Barkema and Mousseau have suggested a closely related dynamical version where
the gradient at a given point is split into two components parallel and perpendicular
to the vector from the minimum to the current point.21 The gradient component in the
perpendicular directions is followed in the downhill direction, while the structure is
advanced in the uphill direction along the parallel component.

It should be noted that the success or failure of LST/QST, as with all optimizations,
depends on the coordinates used in the interpolation. Consider for example the HNC
to HCN rearrangement. In Cartesian coordinates, the LST path preserves the linear-
ity of the reactant and product, and thus predicts that the hydrogen moves through the
nitrogen and carbon atoms. In internal coordinates, however, the angle changes from
0° to 180°, and the LST will in this case locate a much more reasonable point with the
hydrogen moving around the C–N moiety.
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Figure 12.6 LST path in Cartesian and internal coordinates

For large complex systems, the LST path, even in internal coordinates, may involve
geometries where two or more atoms clash and it may be difficult or impossible to
obtain a function value, for example due to an iterative (SCF) procedure failing to 
converge.

12.4.2 Two-structure interpolation methods: saddle, line-then-plane, ridge
and step-and-slide optimizations

The methods in Section 12.4.1 all optimize one geometrical structure, and differ pri-
marily in how they parameterize the reaction path.The methods in this section operate
with two geometrical structures, which attempt to bracket the saddle point and grad-
ually converge on the TS from the reactant and product sides.

In the Saddle algorithm,22 the lowest of the reactant and product minima is first iden-
tified. A trial structure is generated by displacing the geometry of the lower energy
species a fraction (for example 0.05) towards the high energy minimum.The trial struc-
ture is then optimized, subject to the constraint that the distance to the high-energy
minimum is constant. The lowest energy structure on the hypersphere becomes the
new interpolation end-point, and the procedure is repeated. The two geometries will
(hopefully) gradually converge on a low-energy structure intermediate between the
original two minima, as illustrated in Figure 12.7.



A related idea is used in the Line-Then-Plane (LTP) algorithm,23 where the con-
strained optimization is done in the hyperplane perpendicular to the interpolation line
between the two end-points, rather than on a hypersphere.

The Ridge method initially locates the energy maximum along the LST path con-
necting the reactant and product, and defines two points on either side of the energy
maximum.24 These points are allowed to relax in the downhill direction a given dis-
tance, and a new energy maximum is located along the interpolation line connecting
the two relaxed points, and the cycle is repeated. As the saddle point is approached,
the two ridge points gradually contract on the actual TS.This method requires a careful
adjustment of the magnitude of the “side” and “downhill” steps as the optimization
proceeds.

The Step-and-Slide algorithm25 is a variation where the reactant and product struc-
tures are stepped along the LST line until they have energies equal to a preset value.
Both structures are then optimized with respect to minimizing the distance between
them, subject to being on an isoenergetic contour surface. The energy is increase, fol-
lowed by another step-and-slide optimization, and this sequence is continued until the
distance between the two structures decreases to zero, i.e. converging on the saddle
point.

12.4.3 Multi-structure interpolation methods: chain, locally updated planes,
self-penalty walk, conjugate peak refinement and nudged elastic band

The methods in this section operate with multiple (more than two) structures or images
connecting the reactant and product, and are often called chain-of-state methods.
Relaxation of the images will in favourable cases not only lead to the saddle point, but
also to an approximation of the whole reaction path. The initial distribution of struc-
tures will typically be along a straight line connecting the reactant and product (LST),
but may also involve one or more intermediate geometries to guide the search in a
certain direction.

The Self-Penalty Walk (SPW) method approximates the reaction path by minimiz-
ing the average energy along the path, given as a line integral between the reactant
and product geometries (R and P).26
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Figure 12.7 Illustration of the saddle method; energy minima on the hyperspheres are denoted 
by •



(12.23)

The line element dl(x) belongs to the reaction path, which has a total length of L. In
practice, the line integral is approximated as a finite sum of M points, where M typi-
cally is of the order of 10–20.

(12.24)

In order to avoid all points aggregating near the minima (reactant and product), con-
straints are imposed for keeping the distance between two neighbouring points close
to the average distance. Furthermore, repulsion terms between all points are also
added to keep the reaction path from forming loops. The resulting target function
TSPW(R,P) may then be minimized by for example a conjugate gradient method.

(12.25)

The g, l and r parameters are suitable constants for weighting the distance and repul-
sion constraints relative to the average path energy. In the original version of SPW, the
TS is estimated as the grid point with the highest energy after minimization of the
target function, but Ayala and Schlegel have implemented a version where one of 
the points is optimized directly to the TS and the remaining points form an approxi-
mation to the IRC path.27

The Chain method initially calculates the energy at a series of points placed at
regular intervals (spacing of dmax) along a suitable reaction coordinate.28 The highest
energy point is allowed to relax by a maximum step size of dmax along a direction
defined by the gradient component orthogonal to the line between by the two neigh-
bouring points. This process is repeated with the new highest energy point until the
gradient becomes tangential to the path (within a specified threshold). When this
happens, the current highest energy point cannot be further relaxed, and is instead
moved to a maximum along the path.
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Figure 12.8 Illustration of the SPW method; optimized path points are denoted by x



During the relaxation the chain may form loops, in which case intermediate point(s)
is (are) discarded. Similarly, it may be necessary to add points to keep the distance
between neighbours below dmax.

The Locally Updated Planes (LUP) minimization is related to the chain method,
where the relaxation is done in the hyperplane perpendicular to the reaction coordi-
nate, rather than along a line defined by the gradient.29 Furthermore, all the points are
moved in each iteration, rather than one at a time.

The Conjugate Peak Refinement (CPR) method may be considered as a dynamical
version of the chain method, where points are added or removed based on a sequence
of maximizations along line segments and minimizations along the conjugate direc-
tions.30 The first cycle is analogous to the Bell and Crighton version of the QST: loca-
tion of an energy maximum along a line between the reactant and product, followed
by a sequential minimization in the conjugate directions. The corresponding point
becomes a new path point, and an attempt is made to locate an LST maximum between
the reactant and midpoint, and between the midpoint and product. If such a maximum
is found, it is followed by a new conjugate minimization, which then defines a new
intermediate point, etc. The advantage over the chain and LUP methods is that points
tend to be distributed in the important region near the TS, rather than uniformly over
the whole reaction path.

In practice, it may not be possible to minimize the energy in all the conjugate direc-
tions, since the energy surface in general is not quadratic. Once the gradient compo-
nent along the LST path between two neighbouring points exceeds a suitable tolerance
during the sequential line minimizations, the optimization is terminated and the geom-
etry becomes a new interpolation point. It may also happen that one of the interpola-
tion points has the highest energy along the path without being sufficiently close to a
TS (as measured by the magnitude of the gradient), in which case the point is removed
and a new interpolation is performed.

The Nudged Elastic Band (NEB) method defines a target function (“elastic band”)
as the sum of energies of all images and adds a penalty term having the purpose of
distributing the points along the path.31 A single spring constant k will distribute the
images evenly along the path, but it may also be taken to depend on the energy in
order to provide a better sampling near the saddle point.
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Figure 12.9 Illustration of the chain method; initial points along the path are denoted by x, and
relaxed points are denoted by •



A straightforward minimization of TNEB gives a reaction path that has a tendency of
cutting corners if the spring constant k is too large, and a problem of points sliding
down towards the minima if the spring constant is too small. These problems can of
course be solved by employing a large number of points, but that would render the
optimization inefficient. The “corner-cutting” and “down-sliding” problems for a man-
ageable number of points can be alleviated by “nudging” the elastic band, i.e. using
only the component of the spring force parallel to the tangent of the path, and only
the perpendicular component of the energy force in the optimization of TNEB. Since
the reaction path is represented by a discrete set of points, the tangent to the path at
a given point must be estimated from the neighbouring points, and different defini-
tions influence the optimization efficiency. Furthermore, the different projection of the
two force parts and the fact that the projection direction is different for each point
mean that there is not a well-defined target function to minimize, and implementation
of for example conjugate gradient or Newton–Raphson optimization schemes is not
straightforward. The minimization can instead be done using a Newtonian dynamics
method (e.g. velocity Verlet, Section 14.2.1), where the velocity is quenched regularly,
which effectively corresponds to a steepest descent algorithm with a dynamical step
size. As discussed in Section 12.2.1, this is a rather inefficient optimization method, and
minimization of TNEB therefore often requires a large number of iterations. The mag-
nitude of the spring constant also influences the optimization efficiency; a small value
causes an erratic coverage of the reaction path, while a large value focuses the effort
on distributing the points rather than on finding the reaction path, and consequently
slows the convergence down.

Despite the optimization issue, the NEB method is one of the most popular inter-
polation methods, and several improvements and variations have been reported. In the
Climbing Image (CI-NEB) version, one of the images is allowed to move along the
elastic band to become the exact saddle point.32 The String Method (SM) attempts to
solve the optimization problem by re-distributing the points after each optimization
cycle, thereby dispensing with the requirement of using the projected spring force in
the optimization.33 An adaptive version of NEB has also been proposed, which grad-
ually increases the number of images and concentrates the points near the important
saddle point region.34 The problem of generating a suitable initial path when the LST
path is unsuitable has been addressed by gradually adding images from the reactant
and product sides.35

12.4.4 Characteristics of interpolation methods

Interpolation methods have the following characteristics:

(1) There may not be a TS connecting two minima directly. The algorithm may then
find an intermediate geometry having a gradient substantially different from zero,
i.e. no nearby stationary point. This is primarily a problem for the one-structure
methods in Section 12.4.1.

(2) The TS found is not necessarily one that connects the two minima used in the inter-
polation. A calculation of the IRC path may reveal that it is a TS for a different
reaction. This is primarily a problem for the one- and two-structure methods in
sections 12.4.1 and 12.4.2.
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(3) There may be several TS’s (and therefore at least one minimum) between the two
selected end-points. Some algorithms may find one of these, and the two connect-
ing minima can then be found by tracing the IRC path, or all the TS’s and inter-
mediate minima may be located. Multi-structure methods (e.g. NEB) are examples
of the latter behaviour.

(4) The reaction path formed by a sequence of points generated by constrained opti-
mizations may be discontinuous. For methods where two points are gradually
moved from the reactant and product sides (e.g. saddle and LTP), this means that
the distance between end-points does not converge towards zero.

(5) There may be more than one TS connecting two minima. As many of the inter-
polation methods starts off by assuming a linear reaction coordinate between the
reactant and product, the user needs to guide the initial search (for example by
adding various intermediate structures) to find more than one TS.

(6) A significant advantage is that the constrained optimization can usually be carried
out using only the first derivative of the energy. This avoids an explicit, and com-
putationally expensive, calculation of the second derivative matrix.

(7) For the one- and two-structure methods, each successive refinement of the TS esti-
mate requires either location of an energy maximum or minimum along a one-
dimensional path (typically a line), or a constrained optimization in an N − 1
dimensional hyperspace. A path minimization or maximization will normally
involve several function evaluations, while a multi-dimensional minimization
requires several gradient calculations. Geometry changes are often quite small in
the endgame, but each step may still require a significant computational effort
involving many function and/or gradient calculations. In such cases, it is often
advantageous to switch to one of the Newton–Raphson methods described in
Section 12.4.6, but the dimensionality of the problem may prevent this.

(8) The multi-structure methods in Section 12.4.3 involve an optimization of a target
function with M images each having 3Natom coordinates, i.e. optimization of a func-
tion with ~3MNatom variables. Since the number of iterations typically increases
with the number of variables, the optimization of the target function often requires
a large number (several hundred or thousand) of gradients.

(9) The multi-structure methods are quite tolerant towards the presence of many 
soft degrees of freedom, which often causes problems with the local optimization
methods described in Sections 12.4.5–12.4.7. Multi-structure methods such as 
NEB are therefore well suited for large systems such as extended (periodic)
systems.

12.4.5 Local methods: gradient norm minimization

Since transition structures are points where the gradient is zero, they may in principle
be located by minimizing the gradient norm. This is in general not a good approach
for two reasons:

(1) There are typically many points where the gradient norm has a minimum without
being zero.

(2) Any stationary point has a gradient norm of zero, thus all types of saddle points
and minima/maxima may be found, not just TS’s.
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Figure 12.10 shows an example of a one-dimensional function and its associated gra-
dient norm. It is clear that a gradient norm minimization will only locate one of the
two stationary points if started near x = 1 or x = 9. Most other starting points will con-
verge on the shallow part of the function near x = 5. The often very small convergence
radius makes gradient norm minimizations impractical for routine use.

12.4.6 Local methods: Newton–Raphson

By far the most common local methods are based on the augmented Hessian
Newton–Raphson approach. Sufficiently close to the TS, the standard NR formula will
locate the TS rapidly. Sufficiently close means that the Hessian should have exactly
one negative eigenvalue, and the eigenvector should be in the correct direction, along
the “reaction coordinate”. Furthermore, the NR step should be inside the trust radius.
By using augmented Hessian techniques, the convergence radius may be enlarged over
the straight NR approach, and first-order saddle points may be located even when
started in a region where the Hessian does not have the correct structure, as long as
the lowest eigenvector is in the “correct” direction.

Near a first-order saddle point the NR step maximizes the energy in one direction
(along the Hessian TS eigenvector) and minimizes the energy along all other direc-
tions. Such a step may be enforced by choosing suitable shift parameters in the aug-
mented Hessian method, i.e. the step is parameterized as in eq. (12.12). The
minimization step is similar to that described in Section 12.2.4 for locating minima, the
only difference is for the unique TS mode.
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Figure 12.10 An example of a function and the associated gradient norm



In the Partitioned Rational Function Optimization (P-RFO), two shift parameters
are employed.36

(12.27)

The l for the minimization modes is determined as for the RFO method, eq. (12.14).
The equation for lTS is quadratic and by choosing the solution that is larger than eTS it
is guaranteed that the step component in this direction is along the gradient, i.e. a max-
imization. As for the RFO step, there is no guarantee that the total step length will be
within the trust radius.

The Quadratic Approximation (QA) method uses only one shift parameter, requir-
ing that lTS = −l, and restricts the total step length to the trust radius (compare with
eq. (12.15)).37

(12.28)

The exact same formula may be derived using the concept of an “image potential”
(obtained by inverting the sign of fTS and lTS), and the QA name is often used together
with the TRIM acronym, which stand for Trust Radius Image Minimization.38

The ability of augmented Hessian methods for generating a search toward a first-
order saddle point, even when started in a region where the Hessian has all positive
eigenvalues, suggests that it may be possible to start directly from a minimum and
“walk” to the TS by following a selected Hessian eigenvector uphill. Such mode fol-
lowings, however, are only possible if the eigenvector being followed is only weakly
coupled to the other eigenvectors (i.e. third and higher derivatives are small). All NR-
based methods assume that one of the Hessian eigenvectors points in the general direc-
tion of the TS, but this is only strictly true when the higher order derivatives are small.
If this is not the case, NR-based methods may fail to converge even when started from
a “good” geometry, where the Hessian has one negative eigenvalue. Note also that the
magnitude of the higher derivatives depends on the choice of coordinates, i.e. a “good”
choice of coordinates may transform a divergent optimization into a convergent one.

All NR methods assume that a reasonable guess of the TS geometry is available.
Generating this guess is part of the magic, but some of the interpolating schemes
described in Sections 12.4.1–12.4.3 may be useful in this respect.

There are two main problems with all NR-based methods. One is the already men-
tioned need for a good starting geometry. The other is the requirement of a Hessian,
which is quite expensive in terms of computer time for electronic structure methods.
Contrary to minimizations, TS optimizations cannot start with a diagonal matrix and
update it as the optimization proceeds. An NR TS search requires the definition of a
direction along which to maximize the energy, the reaction vector, i.e. the start Hessian
should preferably have one negative eigenvalue. Normally the Hessian needs to be cal-
culated explicitly at the first step; at subsequent step the Hessian may be updated. An
interesting alternative is to use a force field Hessian for starting the optimization, since
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this effectively removes one of the more expensive steps in a TS optimization.39 If 
the geometry changes substantially during the optimization, however, it may be nec-
essarily to recalculate the Hessian at certain intervals. Owing to the relatively high cost
of calculating the energy, gradient and especially the Hessian, pseudo-Newton–
Raphson methods have traditionally been the preferred algorithm with ab initio wave
functions.

12.4.7 Local methods: the dimer method

The main problem with Newton–Raphson methods is the need for generating (calcu-
lating or updating) and manipulating (storing and diagonalizing) the Hessian matrix.
The main function of the Hessian for saddle point optimization is to provide the direc-
tion along which the energy should be maximized. Sufficiently near the TS, the direc-
tion is along the eigenvector corresponding to the lowest eigenvalue. Determination
of this direction, however, can be done without calculating the Hessian by placing two
symmetrically displaced images, a dimer, and minimizing the sum of their energies,
subject to a constant distance between them.40 After minimization the lowest mode
direction is given by the line connecting the two images, and it can be used for dis-
placing the central structure, followed by a new dimer optimization. Since the dimer
optimization can be done using only first derivatives, this alleviates the need for the
Hessian matrix. There is relatively little experience with this method so far, but one
would expect it to have the same requirements as Newton–Raphson-based methods,
i.e. a good starting geometry is required for a stable convergence to the TS. Whether
the added computational cost of optimizing each dimer configuration outweighs the
saving by not having an explicit Hessian is unclear, and will in any case depend on the
size of the system.

12.4.8 Coordinates for TS searches

The choice of a “good” set of coordinates is even more critical in TS optimizations than
for minimizations. A good set of coordinates enlarges the convergence region, relax-
ing the requirement of a good starting geometry. On the other hand, a poor set of coor-
dinates decreases the convergence radius, forcing the user to generate a starting point
very close to the actual TS in order for NR methods to work. Furthermore, NR
methods are best suited for relatively “stiff” systems; large flexible systems with many
small eigenvalues in the Hessian are better handled by some of the interpolations
methods, such as NEB.

Mapping out whole reaction pathways by locating minima and connecting TS’s is
often computationally demanding. The (approximate) geometries of many of the
important minima are often known in advance, and as mentioned above, energy min-
imizations are fairly uncomplicated. Locating TS’s is much more involved. On a multi-
dimensional energy surface, there will in general not be TS’s connecting all pairs of
minima. It is, however, essentially impossible to prove that a TS does not exist.

Symmetry can sometimes be used to facilitate the location of TS’s. For some reac-
tions, especially those where the reactant and product are identical, the TS will have a
symmetry different from the reactant/product. The reaction vector will belong to one
of the non-totally symmetric representations in the point group. The TS can therefore
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be located by constraining the geometry to a certain symmetry and minimizing the
energy. Consider for example the SN2 reaction of Cl− with CH3Cl. The reactant and
product have C3v symmetry, but the TS has D3h symmetry. Minimizing the energy under
the constraint that the geometry should have D3h symmetry will produce the lowest
energy structure within this symmetry, which is the TS.
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Figure 12.11 The TS for an identity SN2 reaction has a higher symmetry than the reactant/product

For non-identity reactions, it is often useful to start a search for stationary points by
minimizing high-symmetry geometries. A subsequent frequency calculation on the
symmetry-constrained (and minimized) structure will reveal the nature of the station-
ary point. If it is a minimum or TS we have already obtained useful information. If it
turns out to be a higher order saddle point, the normal coordinates associated with the
imaginary frequencies show how the symmetry should be lowered to produce lower
energy species, which may be either minima or TS’s. As calculations on highly sym-
metric geometries are computationally less expensive than on non-symmetric struc-
tures, it is often a quite efficient strategy to start the investigation by concentrating on
structures with symmetry.

12.4.9 Characteristics of local methods

Local methods have the following characteristics:

(1) A starting geometry close to the saddle point is needed. Especially for reactions
that are not dominated by a few (internal) reaction variables, it may be difficult to
generate such a guess. In many cases, the convergence radius is small, i.e. the start-
ing geometry must be (very) close to the saddle point in order to converge.

(2) Hessian-based methods (Section 12.4.6) require explicit calculation of the second
derivative matrix, which may be computationally expensive. Furthermore, for large
systems, an explicit handling of the Hessian matrix becomes problematic.

(3) Systems with many soft vibrational modes are often problematic, as the resulting
low Hessian eigenvalues interfere with the negative curvature along the reaction
vector.

(4) If a good starting geometry and Hessian is available, the convergence is rapid, often
requiring only a few tens of gradient calculations.

12.4.10 Dynamic methods

The methods in Sections 12.4.1–12.4.8 focus on finding a TS connecting a reactant 
and product, and the resulting activation energy can provide reaction rates via the
Arrhenius or Eyring formula (eqs (13.39) and (13.40)). For large complex systems,



however, the concept of a single “structure” becomes blurred. In cycloheptadecane, for
example, there are hundreds of conformations within 10kJ/mol of the global minimum,
and any experimentally observed property at room temperature will be a Boltzmann
average over many individual conformations. The reaction rate for a large system will
similarly be a Boltzmann average over perhaps hundreds of TS’s, and a single reaction
path connecting two minima via a saddle point no longer dominates the reaction rate.41

A systematic location of all minima (conformations) and corresponding TS’s followed
by a Boltzmann averaging is a possibility, but this rapidly becomes unmanageable even
for medium-sized systems. For large systems, one is therefore forced to perform a sam-
pling of the TS’s in order to estimate the reaction rate, in analogy with the ensemble
averaging discussed in Section 13.6 for minima. Standard molecular dynamics methods
(Section 14.2.1) only sample the low-energy part of the surface, and are therefore
unsuitable for the (high-energy) saddle point region. A specific part of the surface can
be sample by a biasing potential, as for example in the umbrella sampling technique
(Section 14.2.9). Such an approach, however, requires a priori knowledge of the reac-
tion path or at least the saddle point region. Alternatively, a dynamics simulation 
may be initiated in the transition state region and the trajectory followed in both 
directions.42

12.5 Constrained Optimization Problems
In some cases, there are restrictions on the variables used to describe the function, as
for example:

(1) Certain geometrical constraints may be imposed. Experimental data, for example,
may indicate that some atom pairs are within a certain distance of each other, or
one may for analysis reasons want to impose certain geometrical restrictions on a
molecular structure.

(2) Fitting atomic charges to give a best match to a calculated electrostatic potential.
The constraint is that the sum of atomic charges should equal the net charge of
the molecule.

(3) A variation of wave function coefficients is subject to constraints such as main-
taining orthogonality of the MOs, and normalization of the MOs and the total wave
function.

(4) Finding conical intersections between different energy surfaces. The constraint is
that two different energy functions should have the same energy for the same set
of nuclear coordinates.

There are three main methods for enforcing constraints during function optimization:

(1) Penalty functions
(2) Lagrange undetermined multipliers
(3) Projection methods.

The penalty function approach adds a term of the type k(r − r0)2 to the function to be
optimized. The variable r is constrained to be near the target value r0, and the “force
constant” k describes how important the constraint is compared with the unconstrained
optimization. By making k arbitrarily large, the constraint may be fulfilled to any given
accuracy. It cannot, however, make the constraint variable exactly equal to r0. This
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would require the constant k to go towards infinity, and in practice cause numerical
problems when it becomes sufficiently large compared with the other terms. The
penalty function approach is often used for restricting geometrical variables, such as
distances or angles, during geometry optimizations with force field methods. It may
also be used for “driving” a selected variable (Section 12.4.1), such as a torsional angle.
In certain cases, the constraint is not to limit a variable to a single value, but rather to
keep it between lower and upper limits. This is typically the situation for refining a
force field structure subject to constraints imposed by experimental nuclear Over-
hauser effect (NOE) data, and in such cases, the penalty function may be taken as a
“flat bottom” potential, i.e. the penalty term is zero within the limits and rises har-
monically outside the limits.The gradient for the penalty function simply has one addi-
tional term from each constraint, and the penalty function may be optimized using the
methods described in Sections 12.2.1–12.2.3.

A more elegant method of enforcing constraints is the Lagrange method. The func-
tion to be optimized depends on a number of variables, f(x1, x2, . . . xN), and the con-
straint condition can always be written as another function, g(x1, x2, . . . xN) = c. Define
now a Lagrange function as the original function minus (or plus) a constant times the
constraint condition.

(12.29)

If there is more than one constraint, one additional multiplier term is added for each
constraint. The optimization is then performed on the Lagrange function by requiring
that the gradient components with respect to the x- and l-variable(s) are equal to zero.
The multiplier(s) l can in many cases be given a physical interpretation at the end. In
the variational treatment of an HF wave function (Section 3.3), the MO orthogonal-
ity constraints turn out to be MO energies, and the multiplier associated with nor-
malization of the total CI wave function (Section 4.2) becomes the total energy.

The Lagrange method increases the number of variables by one for each constraint,
which is counterintuitive since introduction of a constraint should decrease the number
of variables by one. For simple objective and constraint functions, the reduction can
be obtained by solving the constraint condition for one of the variables, and substi-
tuting it into the object function.

(12.30)

In the large majority of cases, however, the object and constraint functions are so com-
plicated that an analytical elimination of a variable is essentially intractable, and this
is especially true when there is more than one constraint. The main exception is when
the constraint equation is linear, in which case it can be considered as a vector in the
coordinate space. Instead of eliminating a variable explicitly, the constraint condition
can be fulfilled by removing the corresponding component of the object function by
projection (Section 16.4), and performing the optimization on fp.

(12.31)

A general (non-linear) constraint condition can be approximately fulfilled by 
projecting out the first-order (linear) Taylor approximation to the function. Since the
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optimization normally proceeds by iterative methods, the linear approximation may
be sufficient in each step. Alternatively, a micro-iterate based on successive linear
approximations may be performed in each optimization of the objective function.

12.6 Conformational Sampling and 
the Global Minimum Problem
The methods described in Section 12.2 can only locate the “nearest” minimum, which
is normally a local minimum, when starting from a given set of variables. In some cases,
the interest is in the lowest of all such minima, the global minimum; in other cases it
is important to sample a large (preferably representative) set of local minima. Con-
sidering that the number of minima typically grows exponentially with the number of
variables, the global optimization problem is an extremely difficult task for a multi-
dimensional function.43 It is often referred to as the multiple minima or combinatorial
explosion problem in the literature.

Consider for example determining the lowest energy conformations of linear
alkanes, CH3(CH2)n+1CH3, by a force field method, with three possible energy minima
for rotation around each C–C bond. For butane, there are thus three conformations,
one anti and two gauche (which are symmetry equivalent). These minima may be gen-
erated by starting optimizations from three torsional angles separated by 120°. In the
CH3(CH2)n+1CH3 case there are n such rotatable bonds, giving a possible 3n different
conformations, and in order to find the global minimum, the energy must be calculated
for all of them. Assume for the sake of argument that each conformation optimization
takes one second of computer time. Table 12.3 gives the number of possible confor-
mations, and the time required for optimizing them all.
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Table 12.3 Possible conformations for linear alkanes, CH3(CH2)n+1CH3

n Number of possible conformations (3n) Time (1 conformation = 1 second)

1 1 3 seconds
5 243 4 minutes

10 59049 16 hours
15 14348907 166 days

It is clear that if the degrees of freedom exceed ~15–20, a systematic search becomes
impossible. For the linear alkanes, it is known in advance that anti conformations in
general are favoured over gauche, thus we may put some restrictions on the search,
such as having a maximum of three gauche interactions in total. For most systems,
however, there are no good guidelines for such a priori selections. Furthermore, for
some cases the sampling interval must be less than 120°; in ring systems it may be more
like 60°, increasing the potential number of conformations to 6n. Cycloheptadecane is
a frequently used test case for conformational searching, and various methods have
established that there are 262 different conformations within 12kJ/mol of the global
minimum with the MM2 force field.44 In the early 1990s, this system was close to the
limit for being able to establish the global minimum, but with the increase in computer
hardware performance such systems can now be treated within a few hours of 



computer time. Nevertheless, the exponential increase in the number of conformations
means that it is impossible to perform a complete sampling of systems with more than
~20 degrees of freedom.

The total number of conformations for a given resolution of each variable (e.g. 120°
steps) can be thought of as branches in a combinatorial tree, as illustrated in Figure
12.12.
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Figure 12.12 Visualizing conformations as a combinatorial tree

For a reasonable sized system, there may be certain combinations of torsional angle
that always lead to high-energy structures, for example by atoms clashing. These com-
binations correspond to specific branches in the combinatorial tree (illustrated by
dashed lines in Figure 12.12), and it is clear that these may be pruned from the search
at an early stage. This allows somewhat larger systems to be treated compared with a
brute force combinatorial search, but the number of possible conformations still
increases rapidly with the size of the system.45

Finding “reasonable” minima for large biomolecular systems is heavily dependent
on selecting a “good” starting geometry. One way of attempting this is by “building
up” the structure. A protein, for example, may be built from amino acids, which have
been optimized to their global minimum, and/or smaller fragments of the whole struc-
ture may be subjected to a global minimum search. By combining such pre-optimized
fragments, it is hoped that the starting geometry for the whole protein will also be
“near” the global minimum for the full system.46

The systematic, or grid, search is only possible for small molecules. For larger
systems, there are methods that can be used for perturbing a geometry from one local
minimum to another. Some commonly used methods for conformational sampling are:

(1) Stochastic and Monte Carlo methods
(2) Molecular dynamics
(3) Simulated annealing
(4) Genetic algorithms
(5) Diffusion methods
(6) Distance geometry methods.

None of these are guaranteed to find the global minimum, but they may in many cases
generate a local minimum that is close in energy to the global minimum (but not nec-
essarily close in terms of structure). A brief description of the ideas in these methods
is given below. For simplicity, we assume that the optimization is of an energy as a func-
tion of atomic coordinates, but it is of course equally valid for any function depending
on a set of parameters.



12.6.1 Stochastic and Monte Carlo methods

These methods starts from a given geometry, which is typically a (local) minimum, and
new configurations are generated by adding a random “kick” to one or more atoms.
In Monte Carlo (MC) methods, the new geometry is accepted as a starting point 
for the next perturbing step if it is lower in energy than the current. Otherwise, the
Boltzmann factor e−∆E/kT is calculated and compared with a random number between
0 and 1. If e−∆E/kT is less than this number, the new geometry is accepted, otherwise the
next step is taken from the old geometry. This generates a sequence of configurations
from which geometries may be selected for subsequent minimization. In order to have
a reasonable acceptance ratio, however, the step size must be fairly small, and is often
chosen to give an acceptance ratio of ~0.5.

In stochastic methods, the random kick is somewhat larger and is usually performed
on all the atoms, and a standard minimization is carried out starting at the perturbed
geometry.47 The efficiency of the optimization can be improved by first re-adjusting all
bond lengths to values close to their starting values. The optimization may or may not
produce a new minimum, and a database of all unique structures is gradually built up.
A new perturbed geometry is then generated from one of the structures in the data-
base and minimized, etc. There are several variations on how this is done:

• The length of the perturbing step is important; a small kick essentially always return
the geometry to the starting minimum, a large kick may produce high-energy struc-
tures, which minimize to high-energy local minima.

• The perturbing step may be done directly in Cartesian coordinates or in a selected
set of internal coordinates, such as torsional angles. The Cartesian procedure has the
disadvantage that many of the perturbed geometries are high in energy as two (or
more) atoms are moved close together by the kick, although this can be partly alle-
viated by an adjustment of the bond lengths prior to the optimization. The use of
torsional angles as variables is highly efficient for acyclic systems but is problematic
for cyclic and confined structures. Cyclic structures can be treated by opening the
ring, performing a random perturbation of the torsional angles, and attempting to
re-close the ring. In the majority of cases this is not possible, and this results in many
trial structures being discarded.

• The perturbing step may be taken either from the last minimum found or from all
the previous found minima, weighted by a probability factor such that low-energy
minima are used more often than high-energy structures.

Kolossvary and Guida have proposed generating the perturbing step along the eigen-
vectors with small eigenvalues obtained by diagonalizing the Hessian matrix at each
minimum, a method called low-mode search.48 The premise is that the soft deforma-
tion modes for a given structure is likely to lead to low-energy transition structures,
and consequently to other low-energy minima.The strategy is thus similar to the eigen-
vector-following tactic discussed in Section 12.4.6 for locating transition structures,
except that that no attempt is made to find the actual TS. The interest is only in per-
turbing the geometry sufficiently to get “past” the TS, such that a minimization will
locate a new minimum.The advantage of the low-mode search is that the search is con-
centrated on the low-energy part of the energy surface, and the method furthermore
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essentially solves the problem of generating trial structures for ring systems. The
number of acceptable trial structures generated by the open–perturb–re-close method
is often very low, only a few percent, resulting in an inefficient search. Since the Hessian
eigenvalues contain information about the coupling of the internal (torsional) coordi-
nates, the low-mode technique can generate trial structures without opening and re-
closing ring.

The disadvantage of the low-mode search is that it requires calculating and diago-
nalizing the Hessian matrix for each minimum found, which becomes problematic for
systems with more than a few hundred atoms. In order to use the method for large
systems, the soft Hessian modes can be calculated by an iterative procedure requiring
only the gradient.49 Although this solves the problem of calculating and diagonalizing
the Hessian, the computational effort for determining the low-mode directions is still
substantial. It has been suggested that for e.g. proteins, the low-mode directions for
one minimum can be reused for other minima as well, thereby avoiding the expensive
mode calculation.

The main problem with stochastic methods is generating trial structures. In small
flexible molecules, the torsional angles form a good set of coordinates for randomly
perturbing the geometry. For cyclic and confined structures, however, a perturbation
of a single torsional angle will usually lead to a high-energy structure, either because
the remaining (cyclic) structure becomes strained, or because of atoms clashing into
each other. The low-mode technique solves this by determining the proper combina-
tions of internal coordinates to avoid this, but the Hessian diagonalization prevents its
use for systems with thousands of atoms. Stochastic methods are therefore primarily
useful for searching the conformational space for flexible extended systems, but not
for confined molecules such as proteins and DNA. Stochastic methods, however, have
the big advantage that they can generate conformations separated by large energy bar-
riers, since the random kick is performed without calculating any energies along the
perturbing step, i.e. the conformations can “tunnel” through large energy barriers.

12.6.2 Molecular dynamics

Molecular Dynamics (MD) methods solve Newton’s equation of motion for atoms on
an energy surface (see Section 16.3.1). The available energy for the molecule is dis-
tributed between potential and kinetic energy, and molecules are thus able to over-
come barriers separating minima if the barrier height is less than the total energy minus
the potential energy. Given a high-enough energy, which is closely related to the sim-
ulation temperature, the dynamics will sample the whole surface but will also require
an impractically long simulation time. Since quite small time steps must be used for
integrating Newton’s equation, the simulation time is short (pico- or nanoseconds).
Combined with the use of “reasonable” temperatures (a few hundreds or thousands
of degrees), this means that only the local area around the starting point is sampled,
and that only relatively small barriers (a few tens of a kJ/mol) can be overcome. Dif-
ferent (local) minima may be generated by selecting configurations at suitable inter-
vals during the simulation and subsequently minimizing these structures. MD methods
use the inherent dynamics of the system to search out the low-energy deformation
modes and they can be used for sampling the conformational space for large confined
systems. MD methods are typically used for sampling the conformational space when
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the starting geometry is derived from experimental information, such as an X-ray or
NMR structure. The main disadvantage of MD is the inability to overcome barriers
larger than the internal energy determined by the simulation temperature. Since this
is one of the advantages of MC methods, it is no surprise that mixed MC/MD methods
have been developed.50

12.6.3 Simulated annealing

Both MD and MC methods employ a temperature as a guiding parameter for gener-
ating or accepting new geometries. At sufficiently high temperatures and long run
times, all the conformational space is sampled. In Simulated Annealing (SA) tech-
niques, the initial temperature is chosen to be high, maybe 2000–3000K.51 An MD or
MC run is then initiated, during which the temperature is slowly reduced. Initially the
molecule is allowed to move over a large area, but as the temperature is decreased, it
becomes trapped in a minimum. If the cooling is done infinitely slowly (implying an
infinite run time), the resulting minimum is the global minimum. In practice, however,
an MD or MC run is so short that only the local area is sampled. The name, simulated
annealing, comes from the analogy of growing crystals. If a melt is cooled slowly, large
single crystals can be formed. Such a single crystal represents the global energy
minimum for a solid state. A rapid cooling produces a glass (local minimum), i.e. a 
disordered solid.

12.6.4 Genetic algorithms

Genetic Algorithms (GA) or Evolutionary Algorithms take their concepts and termi-
nology from biology.52 The idea is to have a “population” of structures, each charac-
terized by a set of “genes”. The “parent” structures are allowed to generate “children”
having a mixture of the parent genes, allowing for “mutations” to occur in the process.
The best species from a population are selected based on Darwin’s principle, survival
of the fittest, and carried on to the next “generation”, while the less fit structures are
discarded.

Consider for example a molecule having 20 torsional angles, which may have ~109

possible conformations. The species in an initial population of say 100 different con-
formations are characterized by their fitness, for example a low energy is equivalent
to a good structure. These 100 structures are allowed to produce offspring with a 
probability depending on their fitness, i.e. low-energy structures are more likely to 
contribute to the next generation than high-energy conformations. Two child 
conformations can be generated by taking the first n torsional angles from one of the
parents and the remaining 20 − n from the other (“single-point cross-over”), with the
second child being the complementary. A small amount of mutation is usually allowed
in the process, i.e. randomly changing angles to produce conformations outside the
range contained in the current population. Having generated say 100 such children,
their (minimized) energies are determined and a suitable portion of the best parent
and children structures are carried over to the next generation. The population is then
allowed to evolve for perhaps a few hundred generations. There are many variations
on the GA method: varying the size of the population, the mutation rate, the 
breading selection, the ratio of children to parents surviving to the next generation,
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single- or multi-point cross-over, etc. Genetic algorithms have become popular in
recent years as they are easy to implement and have proven to be robust for locating
a point in parameter space close to the global minimum. If the parameters are coded
into genes the sampling is pointwise, and the final structures should therefore be
refined using a standard gradient optimization. Alternatively, the trial structures may
be subjected to a local optimization, making the parameter space continuous.53

12.6.5 Diffusion methods

In Diffusion Methods the energy function is changed such that it will eventually contain
only one minimum.54 The function may be changed for example by adding a contri-
bution proportional to the local curvature of the function (second derivative). This
means that minima are raised in energy, and saddle points (and maxima) are reduced
in energy (negative curvature). Eventually only one minimum remains. Using the
single minimum geometry of the modified potential, the process can be reversed,
ending up with a minimum on the original surface that often (but not necessarily) is
the global minimum.The mathematical description of this process turns out to be iden-
tical to the differential equation describing diffusion.
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Figure 12.13 Illustration of the diffusion method

12.6.6 Distance geometry methods

The idea in Distance Geometry methods is that trial geometries can be generated from
a set of lower and upper bounds on distances between all pairs of atoms.55 The method



was originally developed for generating possible geometries based on experimental
information such as NMR NOE effects, which place certain constraints on the distance
between protons that may be far from each other in terms of bonding. The bonding
information itself, however, also places restrictions on distances between all pairs of
atoms. Once a set of upper and lower bounds for all pair distances has been assigned,
many different trial sets of distances may be generated by selecting random numbers
between these limit. Such a random distance matrix can then be translated into a three-
dimensional structure, a procedure known as embedding. Distance geometry can thus
be used for generating trial conformations that can be optimized using conventional
methods. The main advantage of distance geometry method is the ease with which
distant constraints between atoms far apart in terms of bonding can be translated into
valid trial structures. Without such constraints, some of the other methods in this
section are usually more efficient in searching the conformational space.

From the above it may be clear that MD, MC and stochastic methods tend to pri-
marily sample the local area, generating a relatively large number of local minima in
the process. The use of a larger step size in stochastic methods normally means that
they are more efficient than MC or MD. Simulated annealing and diffusion methods,
on the other hand, are primarily geared to locating the global minimum, and will in
general only produce one final structure, this being the best estimate of the global
minimum. Genetic algorithms also focus on the global minimum, but the final popu-
lation contains a distribution of low-energy structures. Distance geometry methods are
more or less random searches, where “impossible” structures are excluded. Simulated
annealing normally explores a significantly smaller space than genetic algorithms, but
there is currently no clear consensus on which method is better for locating the global
minimum. It is most likely that the best method will depend on the problem at hand.

12.7 Molecular Docking
An important example of a global optimization problem is determining the best align-
ment of two molecules with respect to each other, typically trying to fit a small mole-
cule into a large protein structure, a process called docking. Given an X-ray structure
of an enzyme, preferably with a bound ligand to identify the active site, the ligand can
be removed, and other (virtual) compounds may be docked into the active site to pos-
sibly identify new molecules with a stronger binding affinity. Since many drugs act by
inhibiting specific enzymes, docking is an important element in drug design and lead
optimization.

The process of docking a ligand into the active site of a rigid enzyme has six degrees
of freedom, three translational and three rotational, besides those arising from the
ligand conformations. The three translational degrees of freedom can be sampled on
a grid, for example by placing the ligand centre of mass within a central box with grid
points every 1Å, which for even a rather small 10 × 10 × 10Å box generates ~1000
possible points. For each of these points, the overall rotational orientation of the ligand
must be sampled, for example by the Euler angles, typically generating a few hundred
possibilities. A specific set of intermolecular translational and rotational variables is
called a pose, and each ligand conformation may thus have ~105 possible poses, even
on a rather coarse grid. Even though the majority of these can be rejected based on
for example atom pair distances between the ligand and receptor, the combinatorial
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space is still large for even a relatively small ligand. A systematic sampling is often too
demanding, and global optimization schemes such as genetic algorithms are often
employed for solving the optimization problem. Since the interest is typically to dock
perhaps thousands of ligands for (virtual) screening a library of compounds, this fur-
thermore calls for a fast method for estimating the binding energy. Given that the
binding energy is the Gibbs free energy, this is clearly a challenging task.

A standard force field energy-only attempt to calculate the enthalpic interaction and
an estimate of the free energy by simulation methods (Section 14.5) is much too expen-
sive computationally. Instead, the non-bonded part of a force field function can be aug-
mented with empirical terms, hopefully capturing some of the entropy and solvent
effects, and the resulting scoring function can be parameterized against experimental
binding data.The entropy terms are typically structural descriptors, such as the number
of torsional degrees of freedom and the number of hydrogen acceptors and donors,
the argument being that the fixing of torsional angles by binding to the enzyme causes
a rather constant loss of entropy for each entity.56

(12.32)

The ai weighting factors can then be fitted to actual binding data for specific
protein–ligand systems.

Developing scoring functions capable of accurately ranking binding energies is an
active area of research but it is probably fair to say that no general scoring function has
yet been developed. Some scoring functions employ only force field terms, such as the
first two in eq. (12.32), others parameterize it entirely from descriptive terms, such as 
the last three in eq. (12.32), and some employs a mixture of these. It should be noted that
the interaction of the enzyme atoms with potential ligand atoms at the grid points in the
active site is the same for all ligands and their poses, and can therefore be pre-computed
to save computational resources.The main purpose of the scoring function is to rapidly
rank a large number of poses, from which a smaller number of promising candidates may
be subjected to more refined methods for estimating the binding energies.

The main problem of docking ligands into an active site generated by removing an
existing ligand from an X-ray structure is that the hole left behind naturally bears a
strong resemblance to the compound removed.There will thus be a tendency of finding
compounds differing only slightly from the already-known inhibitor. The fundamental
problem is that the flexibility of the enzyme is neglected, i.e. the protein is able to some
extent to adapt to the different shapes of the active site for different ligands. Taking
the enzyme conformational degrees of freedom into consideration during the docking
increases the computational problem to essentially unmanageable proportions. A
heuristic proposition is to reduce the van der Waals parameters of the enzyme atoms
at the surface of the active site, thereby allowing larger ligands to be docked. Subse-
quently, the original van der Waals parameters can be re-introduced followed by relax-
ation of the enzyme structure. Such methods are at the forefront of current research.

12.8 Intrinsic Reaction Coordinate Methods
The optimization methods described in Sections 12.2–12.4 concentrate on locating sta-
tionary points on an energy surface.The important points for discussing chemical reac-
tions are minima, corresponding to reactant(s) and product(s), and saddle points,
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corresponding to transition structures. Once a TS has been located, it should be 
verified that it indeed connects the desired minima. At the TS the vibrational 
normal coordinate associated with the imaginary frequency is the reaction coordinate
(Section 16.2.2), and an inspection of the corresponding atomic motions may be a
strong indication that it is the “correct” TS. A rigorous proof, however, requires a 
determination of the Minimum Energy Path (MEP) from the TS to the connecting
minima. If the MEP is located in mass-weighted coordinates, it is called the Intrinsic
Reaction Coordinate (IRC).57 The IRC path is of special importance in connection 
with studies of reaction dynamics, since the nuclei will usually stay close to the 
IRC, and a model for the reaction surface may be constructed by expanding the energy
to for example second order around points on the IRC (Section 14.2.7). The IRC is
formally the reaction path taken in the limit of a zero temperature, and for a modest
temperature the deviation from this path is usually small. For high temperatures,
however, the favoured dynamical path will tend to be the shortest path, regardless of
the fact that this may be significantly higher in energy than along the (longer) IRC
path.

The IRC path is defined by the differential equation (12.33).

(12.33)

Here x are the (mass-weighted) coordinates, s is the path length and t is the (negative)
normalized gradient. Determining the IRC requires solving eq. (12.33) starting from a
geometry slightly displaced from the TS along the normal coordinate for the imagi-
nary frequency.

The simplest method for integrating eq. (12.33) is the Euler method. A series of 
steps are taken in the opposite direction of the normalized gradient at the current
geometry xn.

(12.34)

This corresponds to a steepest descent minimization with a fixed step size ∆s. As dis-
cussed in Section 12.2.1, such an approach tends to oscillate around the true path and
consequently requires a small step size to follow the IRC accurately.

A more advanced method is the Runge–Kutta (RK) algorithm. The idea here 
is to generate some intermediate steps that allow a better and more stable estimate 
of the next geometry for a given step size. The second-order Runge–Kutta (RK2)
method first calculates the gradient at a point corresponding to an Euler step with 
half the step size. The gradient at the halfway point is then used for taking the full 
step.

(12.35)

The fourth-order Runge–Kutta (RK4) method generates four intermediate gradients,
and combines the steps as follows.
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(12.36)

Another method for following the IRC which does not rely on integration of the dif-
ferential equation (12.33) has been developed by Gonzales and Schlegel (GS).58 The
idea is to generate points on the IRC by means of a series of constrained optimiza-
tions. The algorithm is illustrated in Figure 12.14.
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Figure 12.14 Illustration of the Gonzales–Schlegel constrained optimization method for following
an IRC

An expansion point is generated by taking a step along the current direction with a
step size of 1/2∆s. The energy is then minimized on a hypersphere with radius 1/2∆s,
located at the expansion point. This is an example of a constrained optimization that
can be handled by means of a Lagrange multiplier (Section 12.5). The GS procedure
ensures that the tangent to the IRC path is correct at each point.

Although it is clear that RK4 is more stable and accurate than the Euler method for
a given step size, this does not necessarily mean that it is the most efficient method.
Since the RK4 method requires four gradient calculations for each step, the simple
Euler can employ a step size 4 times as small for the same computational cost.
Similarly, although the Gonzales–Schlegel method appears to be quite tolerant for
large step sizes, each constrained optimization may take a significant number of gra-
dient calculations to converge, which could also be used for advancing the Euler algo-
rithm at a slower pace. Nevertheless, the Gonzales–Schlegel method appears at present
to be one of better methods for accurately following the IRC path. Which algorithm
is the optimum will depend on the system at hand and the required accuracy of the
IRC path. If only the nature of the two minima on each side of the TS is required, a
crude IRC is sufficient, and a simple Euler algorithm may be the most cost efficient.
For use in connection with reaction path methods (Section 14.2.7), however, the IRC
needs to be located very accurately, and a sophisticated method and a small step size
may be required.
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13 Statistical Mechanics
and Transition 
State Theory

The separation of the nuclear and electronic degrees of freedom by the Born–
Oppenheimer approximation leads to a mental picture of a chemical reaction as nuclei
moving on a potential energy surface. The easiest path from one minimum to another,
i.e. for transforming one chemical species to another, is along the reaction path having
the lowest energy. The highest energy point along this path is the transition structure,
and the energy relative to the reactant completely determines the reaction rate within
Transition State Theory (TST). Transition state theory is a semi-classical theory where
the quantum nature is taken into account by means of the quantization of vibrational
and rotational energy states. The connection between the properties of a single mole-
cule and the experimental conditions employing a very large number of species is given
by statistical mechanics, which provides a framework for performing the statistical
averaging over a very large number of possible energy distributions. For an ideal gas
the averaging can be performed in a closed analytical form within the rigid-rotor 
harmonic-oscillator approximation. For systems in condensed states, i.e. liquid or solid
states, the averaging must be done by explicitly sampling the phase space.

13.1 Transition State Theory
Consider a chemical reaction of the type A + B → C + D. The rate of reaction may be
written as in eq. (13.1), with krate being the rate constant.

(13.1)

If krate is known, the concentration of the various species can be calculated at any given
time from the initial concentrations. At the microscopic level, the rate constant is a
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function of the quantum states of A, B, C and D, i.e. the electronic, translational, rota-
tional and vibrational quantum numbers. The macroscopic rate constant is an average
over such “microscopic” rate constants, weighted by the probability of finding a 
molecule with a given set of quantum numbers. For systems in equilibrium, the prob-
ability of finding a molecule in a certain state depends on its energy by means of the
Boltzmann distribution, and the macroscopic rate constant thereby becomes a func-
tion of temperature.

Stable molecules correspond to minima on the potential energy surface within the
Born–Oppenheimer approximation and a chemical reaction can be described as nuclei
moving from one minimum to another. In the lowest level of approximation, the
motion is assumed to occur along the path of least energy, and this path forms the basis
for transition state theory.1 The Transition State is the configuration that divides the
reactant and product parts of the surface (i.e. a molecule that has reached the transi-
tion state will continue on to product), while the geometrical configuration of the
energy maximum along the reaction path is called the Transition Structure. The tran-
sition state is thus a macroscopic ensemble with a Boltzmann energy distribution, while
the transition structure refers to the microscopic system. The two terms are often used
interchangeably, and share the same acronym, TS. In the multi-dimensional case, the
TS is a first-order saddle point on the potential energy surface, a maximum in the reac-
tion coordinate direction and a minimum along all other coordinates.
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Figure 13.1 Schematic illustration of a reaction path

TST is a semi-classical theory where the dynamics along the reaction coordinate is
treated classically, while the perpendicular directions take into account the quantiza-
tion of for example the vibrational energy. It furthermore assumes an equilibrium
energy distribution among all possible quantum states at all points along the reaction
coordinate. The probability of finding a molecule in a given quantum state is propor-
tional to e−∆E/kT, which is a Boltzmann distribution. Assuming that the molecules at the
TS are in equilibrium with the reactant, the macroscopic rate constant can be expressed
as in eq. (13.2).



(13.2)

∆G≠ is the Gibbs free energy difference between the TS and reactant, and k is 
Boltzmann’s constant.Actually, the TST expression only holds if all molecules that pass
from the reactant over the TS go on to product. The dividing surface separating the
reactant from the product is a hyperplane perpendicular to the reaction coordinate at
the TS. The TST assumption is that no re-crossings occur for a given temperature, i.e.
all molecules passing through the dividing surface will go on to form product. Note
that this indicates that the rate constant calculated from eq. (13.2) will always be an
upper limit to the true rate constant. In more refined models, the dividing surface may
be located by minimizing the flux through the surface, i.e. forming the dynamical bot-
tleneck for the reaction, for example by taking dynamics and entropy effects into
account. To allow for “re-crossings”, where a molecule passes over the TS but is
reflected back to the reactant side, a transmission coefficient k is sometimes introduced.
This factor also allows for the quantum mechanical phenomenon of tunnelling, i.e. mol-
ecules that have insufficient energy to pass over the TS may tunnel through the barrier
and appear on the product side. The transmission coefficient is difficult to calculate but
is usually close to 1 and rarely falls outside the range 0.5–2. At low temperatures the
tunnelling contribution dominates, leading to k > 1, while the re-crossing effect is the
most important at high temperatures, giving k < 1. For the majority of reactions 
the calculated accuracy in ∆G≠ introduces errors much larger than a factor of 2 and
the transmission coefficient is usually ignored.

From the TST expression in eq. (13.2) it is clear that if the free energy of the reac-
tant and TS can be calculated, the reaction rate follows trivially. Similarly, the equilib-
rium constant for a reaction can be calculated from the free energy difference between
the reactant(s) and product(s).

(13.3)

The Gibbs free energy is given in terms of the enthalpy and entropy, G = H − TS, and
the enthalpy and entropy for a macroscopic ensemble of particles may be calculated
from properties of a relatively few molecules by means of statistical mechanics, as dis-
cussed in Section 13.4.

The picture in Figure 13.1 relates to chemical reactions occurring on a single energy
surface, as is typical for a thermal reaction. Photochemical reactions, on the other hand,
occur on at least two and possibly more surfaces. The reaction is initiated by absorp-
tion of a photon to produce an excited state with the same nuclear coordinates as the
ground state. This geometry will rarely be a stationary point on the excited surface,
and the resulting nuclear movements may be explored by minimization or dynamical
methods analogous to those on the ground state (Chapters 12 and 14). At some point,
however, the system must return to the ground electronic surface. While this can occur
by a radiative transition (fluorescence or phosphorescence), it may also occur by a non-
radiative process where the excess energy is transferred to vibrational energy on the
ground state surface. The probability for the latter process depends on the energy dif-
ference between the two surfaces, and therefore has a tendency of occurring at nuclear
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geometries where the two surfaces “touch” each other, a point known as a conical inter-
section.2 Two energy surfaces of the same symmetry cannot cross for a diatomic system,
and instead make an avoided crossing, as illustrated in Figure 3.2. In a multi-
dimensional system, however, there is no such restriction, and two energy surfaces may
have the same energy for the same set of nuclear coordinates. Locating such conical
intersections is a constrained optimization problem, involving finding a set of nuclear
coordinates where two different energy functions have the same value, and also
involves the non-adiabatic coupling elements between different wave functions, as 
discussed in Section 3.1.

A conical intersection may be thought of as a “funnel” in the N − 2 dimensional 
subspace that serves as the dynamical bottleneck for a photochemical reaction, analo-
gously to the TS for a thermal reaction. It should be noted, however, that the transition
between the excited and ground state surfaces may occur over quite a wide range of
nuclear configurations, making the concept of a single “transition structure” somewhat
blurred. Furthermore, for many systems it is the movement on the excited state surface
to achieve the geometry of the conical intersection that limits the reaction rate, and not
the actual transition between the two surfaces at the conical intersection.

13.2 Rice–Ramsperger–Kassel–Marcus Theory
The canonical TST theory in Section 13.1 assumes fast energy exchange with the sur-
roundings, i.e. that the reacting molecule is in thermal equilibrium with the environ-
ment. For unimolecular reactions in the gas phase this assumption may not hold,
especially not if the pressure is low (e.g. fragmentations in a mass spectrometer).Alter-
natively, TST may be formulated in terms of the total energy, also known as micro-
canonical TST. When applied to unimolecular reactions, this is usually known as
Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The fundamental assumption here
is that no re-crossing occurs for a given total energy of the molecule.

Consider a reaction where a molecule A acquires energy by collision with a mole-
cule M (which may be the same as A) to form an energized molecule A*, with the
energy being distributed between the translation, rotation and vibrational degrees of
freedom.The vibrational energy can be transferred between the different modes owing
to vibrational anharmonicity, and if it is higher than the activation energy E≠, it may
at some point accumulate in a specific mode to reach an activated state A# (transition
state) leading to a chemical product P.

(13.4)

Assuming that the decay rate k# for the activated A# is much faster than k2, the rate
for production of P can be written in terms of the k1, k−1 and k2 constants by making
a steady state approximation for A*, as shown in eq. (13.5).

(13.5)
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The effective rate constant keff is thus a function of the concentration of M, i.e. the
pressure of the gas. The amount of energy transferred to A* by M will be a variable,
and the rate constants for the activation and reaction (but not the deactivation) will
depend on the energy, i.e. k1(E) and k2(E).The effective rate constant in a small energy
interval around E is obtained by rearranging eq. (13.5).

(13.6)

The ratio k1/k−1 is the equilibrium constant for the first step in eq. (13.4) and dk1(E)/k−1

is the probability of A* being in a state with energy E, P(E). The k−1[M] factor is the 
collision frequency for deactivation that is usually denoted by w.The unimolecular rate
constant can be obtained by integrating the effective rate constant over all energies
higher than the activation energy.

(13.7)

The probability factor P(E) is given by a Boltzmann distribution for the reactant, while
k2(E) is determined by the number of vibrational quantum states for the activated state
A#. The details are sufficiently complex that the reader is referred to more specialized
textbooks,3 but the essence of eq. (13.7) is that the rate constant can be evaluated from
the geometries and vibrational frequencies of the reactant and activated complex. In
the fast energy exchange limit (i.e. w → ∞) the RRKM expression becomes equivalent
to the TST expression (eq. (13.2)). RRKM calculations typically assume harmonic
vibrations, which may be poor for high-barrier reactions where the vibrational anhar-
monicity significantly increases the state count. An exact calculation of all the anhar-
monic vibrational states, however, is a significant computational undertaking.

13.3 Dynamical Effects
The inherent assumption of both TST and RRKM is that the internal (vibrational)
energy redistribution is significantly faster than the timescale for breaking/forming a
bond. This means that the reaction rate only depends on the total amount of internal
energy, not on how the energy is acquired. In other words, the reaction is independent
of whether the energy is supplied by excitation of bending or stretching vibrations. In
the large majority of chemical reactions, this is probably a valid assumption. For certain
reactions where the reaction path involves an intermediate, however, the product dis-
tribution indicates that the energy is not completely randomized for the intermediate,
i.e. the timescale for internal redistribution is comparable to that for the progression
along the reaction coordinate.4 A specific example is shown in Figure 13.2.

The reaction in Figure 13.2 involves a biradical intermediate and if it has a suffi-
ciently long lifetime, the thermal randomization of the energy should lead to a sym-
metric product distribution. Experimentally, however, the exo product is found to be
favoured over the endo isomer by 4 :1. Given that the potential energy surface is sym-
metric, this has been interpreted as a non-statistical distribution of the internal kinetic
energy in the bond-forming step.5 The bond-breaking reaction occurs from a sample
of molecules with a Boltzmann energy distribution, but the small fraction of molecules
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that in a given timeframe actually reacts must necessarily have the energy localized in
the C−N bonds. The molecules passing over the first TS (breaking the C−N bonds)
therefore enter the biradical minimum on the potential energy surface with the nuclear
kinetic energy in a non-random fashion. In the example shown in Figure 13.2, a direct
continuation of the nuclear movement arising from breaking both the C−N bonds leads
to the exo product. The favouring of the exo product can thus be explained by the 
molecules “surfing” over the intermediate minimum on the potential energy surface,
rather than being trapped and thermally randomized. Describing such effects requires
an explicit simulation of the dynamics, as discussed in Section 14.2.

13.4 Statistical Mechanics
Most experiments are performed on macroscopic samples, containing perhaps 
~1020 particles. Calculations, on the other hand, are performed on relatively few 
particles, typically 1–103, or up to 106 in special cases. The (macroscopic) result of an
experimental measurement can be connected with properties of the microscopic
system. The temperature, for example, is related to the average kinetic energy of the
particles.

(13.8)

The connection between properties of a microscopic system and a macroscopic sample
is provided by statistical mechanics.

At a temperature of 0K, all molecules are in their energetic ground state but at a
finite temperature there is a distribution of molecules in all possible (quantum) energy
states. The relative probability P of a molecule being in a state with an energy e at a
temperature T is given by a Boltzmann factor.

(13.9)

The exponential dependence on the energy means that there is a low (but non-zero)
probability for finding a molecule in a high-energy state.This decreased probability for
high-energy states is partly offset by the fact that there are many more states with high
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energy than low energy. The most probable energy of a molecule in a macroscopic
ensemble is therefore not necessarily the one with lowest energy, and a typical distri-
bution is shown in Figure 13.3.

The key feature in statistical mechanics is the partition function.6 Just as the wave
function is the cornerstone in quantum mechanics (from which everything else can be
calculated by applying proper operators), the partition function allows calculation of
all macroscopic functions in statistical mechanics.

The partition function for a single molecule is usually denoted q, and is defined as
a sum of exponential terms involving all possible quantum energy states.

(13.10)

The partition function can also be written as a sum over all distinct energy levels, mul-
tiplied with a degeneracy factor gi that indicates how many states there are with the
same energy ei.

(13.11)

The partition function can be considered as an average excited state number-
operator, since it is the probability-weighted sum of energy states, each counted with
a factor of 1. It may also be viewed as the normalization factor for the Boltzmann 
probability distribution.

(13.12)

The partition function q is for a single particle; the corresponding quantity Q for a col-
lection of N non-interacting particles (ideal gas) is given in eq. (13.13).
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If the particles are interacting (liquid or solid state), the partition function Q must be
calculated by summing over all energy states Ei for the whole system. Note that Q here
describes the whole system consisting of N interacting particles, and the energy states
Ei are consequently for all the particles.

(13.14)

Owing to the closely spaced energy levels, quantum effects can often be neglected and
the state distribution treated as continuous. This corresponds to replacing the discrete
sum over energies by an integral over all coordinates (r) and momentum (p), called
the phase space.

(13.15)

More correctly, the partition function in eq. (13.15) should be written in terms of the
Hamiltonian for the system, i.e. replacing E with H. The kinetic and potential energy
components, however, can be separated (H = T + V). In the absence of potential energy,
the Hamiltonian is purely kinetic energy and the system is an ideal gas. The interest-
ing component is therefore the potential energy part in the partition function, which
we denote by E. In the large majority of cases, the energy E is of the force field type
described in Chapter 2.

The significance of the partition function Q is that thermodynamic functions, such
as the internal energy U and Helmholtz free energy A (A = U − TS) can be calculated
from it.

(13.16)

Macroscopic observables, such as pressure P and heat capacity at constant volume CV,
may be calculated as derivatives of thermodynamic functions.

(13.17)

Other thermodynamic functions, such as the enthalpy H, the entropy S and Gibbs free
energy G, may be constructed from these relations.

(13.18)

Note the difference between energetic properties such as U, P and H, which all depend
on derivatives of Q, and entropic properties such as A, S and G, which depend directly
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on Q. For simplicity, we will use U and A for illustrations in the following, but other
quantities such as H and S can be treated completely analogously.

In order to calculate the partition function q (Q), one needs to know all possible
quantum states for the system. In principle, these can be calculated by solving the
nuclear Schrödinger equation, once a suitable potential energy surface is available, for
example from solving the electronic Schrödinger equation. Such a rigorous approach
is only possible for di- and triatomic systems. For an isolated polyatomic molecule, the
energy levels for a single conformation can be calculated within the rigid-rotor 
harmonic-oscillator (RRHO) approximation, where the electronic, vibrational and
rotational degrees of freedom are assumed to be separable. Additional conformations
can be included straightforwardly by simply offsetting the energy scale relative to the
most stable conformation. An isolated molecule corresponds to an ideal gas state, and
the partition function can be calculated exactly for such a system within the RRHO
approximation, as discussed in Section 13.5.

For a condensed phase (liquid, solution, solid) the intermolecular interaction is 
comparable to or larger than a typical kinetic energy, and no separation of degrees of
freedom is possible. Calculating the partition function by summing over all energy
levels, or integrating over all phase space, is therefore impossible. It is, however, pos-
sible by sampling to estimate differences in Q and derivatives such as ∂ ln Q/∂T from
a representative sample of the phase space, as discussed in Section 13.6.

13.5 The Ideal Gas, Rigid-Rotor 
Harmonic-Oscillator Approximation
For an isolated molecule, the total energy can be approximated as a sum of terms
involving translational, rotational, vibrational and electronic states, and this is a good
approximation for the large majority of systems. For linear, “floppy” (soft bending
potential) molecules the separation of the rotational and vibrational modes may be
problematic. If two energy surfaces come close together (avoided crossing), the sepa-
rability of the electronic and vibrational modes may be a poor approximation (break-
down of the Born–Oppenheimer approximation, Section 3.1).

There are in principle also energy levels associated with nuclear spins. In the absence
of an external magnetic field, these are degenerate and consequently contribute a con-
stant term to the partition function. As nuclear spins do not change during chemical
reactions, we will ignore this contribution.

The assumption that the energy can be written as a sum of terms implies that the
partition function can be written as a product of terms. As the enthalpy and entropy
contributions involve taking the logarithm of q, the product of q’s thus transforms into
sums of enthalpy and entropy contributions.

(13.19)

For each of the partition functions the sum over allowed quantum states runs to infin-
ity. However, since the energies become larger, the partition functions are finite. Let
us examine each of the q factors in a little more detail.

e e e e etot trans rot vib elec

tot trans rot vib elec
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13.5.1 Translational degrees of freedom

The translational degrees of freedom can be exactly separated from the other 3N − 3
coordinates. The allowed quantum states for the translational energy are determined
by placing the molecule in a “box”, i.e. the potential is zero inside the box but infinite
outside.The only purpose of the box is to allow normalization of the translational wave
function, i.e. the exact size is not important. The solutions to the Schrödinger equation
for such a “particle in a box” are standing waves, cosine and sine functions. The energy
levels are associated with a quantum number n, and depend only on the total molec-
ular mass M.

(13.20)

Although the energy levels are quantized, the energy difference between levels is so
small that the distribution can be treated as continuous. The summation involved in
the partition function can therefore be replaced by an integral (an integral is just a
sum in the limit of infinitely small contributions).

(13.21)

Inserting the energy expression and performing the integration gives eq. (13.22).

(13.22)

The only molecular parameter that enters is the total molecular mass M. The volume
depends on the number of particles. It is customary to work on a molar scale, in which
case V is the volume of 1mol of (ideal) gas.

13.5.2 Rotational degrees of freedom

In the lowest approximation, the rotation of a molecule is assumed to occur with a
geometry that is independent of the rotational and vibrational quantum numbers. A
more refined treatment allows the geometry to “stretch” with rotational energy, which
may be described by adding a “centrifugal” correction, and such corrections are typi-
cally of the order of a few percent. The presence of vibrational anharmonicity will fur-
thermore cause the effective geometry to depend on the vibrational quantum state.
Within the rigid-rotor approximation these effects are neglected, i.e. the rotation of the
molecule is assumed to occur with a fixed geometry.

The energy levels calculated from the Schrödinger equation for a diatomic “rigid
rotor” are given in terms of a quantum number J running from zero to infinity, and the
moment of inertia I.

(13.23)

The moment of inertia is calculated from the atomic masses m1 and m2 and the dis-
tances r1 and r2 of the nuclei relative to the centre of mass.
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(13.24)

For all molecules, except very light species such as H2 and LiH, the moment of inertia
is so large that the spacing between the rotational energy levels is much smaller than
kT at ambient temperatures. As for qtrans, this means that the summation in eq. (13.10)
can be replaced by an integral.

(13.25)

Performing the integration yields eq. (13.26).

(13.26)

The symmetry index s is 2 for a homonuclear system and 1 for a heteronuclear
diatomic molecule.

For a polyatomic molecule, the equivalent of eq. (13.24) is a 3 × 3 matrix.

(13.27)

Here the coordinates are again relative to the centre of mass. By choosing a suitable
coordinate transformation, this matrix may be diagonalized (Section 16.2), with the
eigenvalues being the moments of inertia and the eigenvectors called principal axes of
inertia.

For a general polyatomic molecule, the rotational energy levels cannot be written in
a simple form.A good approximation, however, can be obtained from classical mechan-
ics, resulting in the following partition function.

(13.28)

Here Ii are the three moments of inertia. The symmetry index s is the order of the
rotational subgroup in the molecular point group (i.e. the number of proper symme-
try operations); for H2O it is 2, for NH3 it is 3, for benzene it is 12, etc. The rotational
partition function requires only information about the atomic masses and positions
(eq. (13.27)), i.e. the molecular geometry.

13.5.3 Vibrational degrees of freedom

In the lowest approximation, the molecular vibrations may be described as those of a
harmonic oscillator. This can be derived by expanding the energy as a function of the
nuclear coordinates in a Taylor series around the equilibrium geometry. For a diatomic
molecule, the only relevant coordinate is the internuclear distance R.
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The first term may be taken as zero, since this is just the zero point for the energy. The
second term (the gradient) vanishes since the expansion is around the equilibrium
geometry. Keeping only the lowest non-zero term results in the harmonic approxima-
tion, where k is the force constant.

(13.30)

Including higher order terms leads to anharmonic corrections to the vibration, and
such effects are typically of the order of a few percent.The energy levels obtained from
the Schrödinger equation for a one-dimensional harmonic oscillator (diatomic system)
are given in eq. (13.31).

(13.31)

Here n is a quantum number running from zero to infinity and n is the vibrational fre-
quency given in terms of the force constant k (∂2E/∂R2) and the reduced mass m.

In contrast to the translational and rotational energy levels, the spacing between
vibrational energy levels is comparable to kT for temperatures around 300K, and the
summation for qvib (eq. (13.10)) cannot be replaced by an integral. Due to the regular
spacing, however, the infinite summation can be written in a closed form.

(13.32)

In the infinite sum, each successive term is smaller than the previous by a constant
factor (e−hn/kT, which is <1), and can therefore be expressed in a closed form. Calculat-
ing the vibrational partition function for a harmonic oscillator thus requires the second
derivative of the energy and the atomic masses.

For a polynuclear molecule, the force constant k is replaced by a 3Natom × 3Natom

matrix containing all the second derivatives of the energy with respect to the coordi-
nates. By mass-weighting and transforming to a new coordinate system called the
vibrational normal coordinates, this may be brought to a diagonal form (see Section
16.2.2 for details). In the vibrational normal coordinates, the 3N-dimensional
Schrödinger equation can be separated into 3N one-dimensional equations, each
having the form of a harmonic oscillator. Of these, three describe the overall transla-
tion and three (two for a linear molecule) describe the overall rotation, leaving 3N −
6(5) vibrations.

If the stationary point is a minimum on the energy surface, the eigenvalues of the
force constant matrix are all positive. If, however, the stationary point is a TS, one (and
only one) of the eigenvalues is negative. This corresponds to the energy being a
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maximum in one direction and a minimum in all other directions. The “frequency” for
the “vibration” along the eigenvector with a negative force constant will formally be
imaginary, as it is the square root of a negative number (eq. (13.31)), and for a TS there
are thus only 3N − 7 vibrations.

Within the harmonic approximation, the vibrational degrees of freedom are decou-
pled in the normal coordinate system. Since the energy of the 3N − 6 vibrations can
be written as a sum, the partition function can be written as a product over 3N − 6
vibrational partition functions.

(13.33)

The vibrational frequencies are needed for calculating qvib, and can be obtained from
the force constant matrix and atomic masses.

13.5.4 Electronic degrees of freedom

The electronic partition function involves a sum over electronic quantum states. These
are the solutions to the electronic Schrödinger equation, i.e. the lowest (ground) state
and all possible excited states. In almost all molecules, the energy difference between
the ground and excited states is large compared with kT, which means that only the
first term (the ground state energy) in the partition function summation (eq. (13.11))
is important.

(13.34)

Defining the zero point for the energy as the electronic energy of the reactant, the elec-
tronic partition functions for the reactant and TS is given in eq. (13.35).

(13.35)

The ∆E≠ term is the difference in electronic energy between the reactant and TS, and
g0 is the electronic degeneracy of the (ground state) wave function. The degeneracy
may be either in the spin part (g0 = 1 for a singlet, 2 for a doublet, 3 for a triplet, etc.)
or in the spatial part (g0 = 1 for wave functions belonging to an A, B or Σ representa-
tion in the point group, 2 for an E, ∆ or Φ representation, 3 for a T representation,
etc.). The large majority of stable molecules have non-degenerate ground state wave
functions, and consequently g0 = 1.

13.5.5 Enthalpy and entropy contributions

Given the partition function, the enthalpy and entropy terms may be calculated by car-
rying out the required differentiations in eq. (13.18). For one mole of molecules, the
results for a non-linear system are (R being the gas constant)
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(13.36)

(13.37)

The rotational terms are slightly different for a linear molecule, and the vibrational
terms will contain one vibrational contribution more.

(13.38)

The vibrational enthalpy consists of two parts, the first being a sum of 1/2hn contribu-
tions giving the zero point energies. The second part depends on temperature, and is
a contribution from molecules that are not in the vibrational ground state. This con-
tribution goes toward zero as the temperature goes to zero where all molecules are 
in the ground state. Note also that the sum over vibrational frequencies runs over 
3N − 6 for the reactant(s), but only 3N − 7 for the TS. At the TS, one of the normal
vibrations has been transformed into the reaction coordinate, which formally has an
imaginary frequency.

In order to calculate ∆G≠ = GTS − Greactant, we need ∆H ≠ and ∆S≠. ∆H ≠
elec is directly

the difference in electronic energy between the TS and reactant. Except for compli-
cated reactions involving several electronic states of different degeneracy (e.g. singlet
molecules reacting via a triplet TS), ∆S≠

elec is zero.
For unimolecular reactions ∆H ≠

trans, ∆H ≠
rot and ∆S ≠

trans are zero, while ∆S ≠
rot may be

slightly different from zero owing to a change in geometry (thereby changing the
moments of inertia). The ∆H ≠

vib contribution is usually a few kJ/mol negative, as there
is one less vibration at the TS (lack of zero point energy). The TS is normally some-
what more ordered than the reactant, typically giving a slightly negative ∆S ≠

vib.
For bimolecular reactions (i.e. where the reactant is two separate molecules) ∆H ≠

trans

and ∆H≠
rot contribute a constant −4RT. The translational and rotational entropy

changes are substantially negative, −30 to −50J/mol ⋅K, due to the fact that there are
six translational and six rotational modes in the reactants but only three of each at the
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TS. The six remaining degrees of freedom are transformed into the reaction coordi-
nate and five new vibrations at the TS. These additional vibrations usually make ∆H≠

vib

a few kJ/mol positive, and ∆S≠
vib positive by 5–10J/mol ⋅K For bimolecular reactions,

the entropy typically raises the free energy barrier by 40–60kJ/mol, relative to the elec-
tronic energy alone.

Similarly, in order to calculate ∆G0 = Gproduct − Greactant we need ∆H0 and ∆S0.The gen-
eralization for the electronic, translational and rotational contributions to ∆H≠ and ∆S≠

given above also holds for ∆H0 and ∆S0. The considerations for a unimolecular reac-
tion hold for reactions where the number of reactant and product molecules is the
same, while the generalizations for a bimolecular reaction correspond to an addition
where two reactants form a single product molecule (the reverse process being a frag-
mentation). The vibrational contribution to ∆H0 and ∆S0 for a “number-conserving”
reaction is usually small, since there is the same number of vibrational modes in the
reactant and product. For an addition reaction, the number of vibrational modes
increases by six, and the contributions to ∆H0 and ∆S0 are again slightly positive, typi-
cally by a few kJ/mol and 5–10J/mol ⋅K

Tables 13.1–13.3 give some examples of the magnitude of each term for two bimol-
ecular reactions (Diels–Alder and SN2 reactions, forming either one or two molecules
as the product) and a unimolecular rearrangement (Claisen reaction).
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Table 13.1 Diels–Alder reaction of butadiene and ethylene to form
cyclohexene

∆H ‡ ∆S ‡ −T∆S‡ ∆H0 ∆S0 −T∆S0

Electronic 75 0 0 −220 0 0
Vibrational 14 5 −7 32 2 −2
Rotational −4 −11 14 −4 −13 17
Translational −6 −35 44 −6 −35 44
Total 79 -41 51 -198 -46 58
Experimental 105 -41 52 -166 -45 56

+

+ –OH CH3OH + F–

O O

CH3F

Figure 13.4 The Diels–Alder, SN2 and Claisen reactions

All values have been calculated at the MP2 level with the 6-31G(d) basis for the
Diels–Alder and Claisen reactions, and the 6-31+G(d) basis for the SN2 reaction. ∆H
and T∆S values are given in kJ/mol at a temperature of 300K (RT = 2.5kJ/mol), ∆S
values are in J/mol ⋅K.



It should be noted that the experimental activation enthalpy for the Diels–Alder
reaction is 105 ± 8kJ/mol,7 i.e. the MP2/6-31G(d) value is ~25kJ/mol too low. Similarly,
the calculated reaction energy of −198kJ/mol is in rather poor agreement with the
experimental value of −166kJ/mol. The SN2 reaction refers to the situation in the gas
phase where the reactants initially form an ion–dipole complex, pass over the TS and
form another ion-dipole complex. The energies given above are relative to the isolated
reactants, which is the reason for the low activation energy. Note also that the rota-
tional contribution to the reaction enthalpy is not zero; this is due to the fact that one
of the reactants is a diatomic molecule, while one of the products is an atom (which
has no rotational term). The MP2/6-31G(d) activation enthalpy for the Claisen reac-
tion is again somewhat lower than the experimental value of 125kJ/mol,8 while the cal-
culated activation entropy is in good agreement with the experimental value.

In summary, to calculate rate and equilibrium constants we need to calculate ∆G≠

and ∆G0. This can be done within the RRHO approximation if the geometry, energy
and force constants are known for the reactant, TS and product. The translational and
rotational contributions are trivial to calculate, while the vibrational frequencies
require the full force constant matrix (i.e. all energy second derivatives), which may
be a significant computational effort.

The above treatment has made some assumptions, such as harmonic frequencies and
“sufficiently small” energy spacing between the rotational levels. If a more elaborate
treatment is required, the summation for the partition functions must be carried out
explicitly. An approximate account for vibrational anharmonicity can be obtained by
using the harmonic form for the partition function (and resulting enthalpy and entropy
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Table 13.3 Claisen rearrangement of allyl vinyl ether to form 
5-hexenal

∆H‡ ∆S‡ −T∆S‡ ∆H0 ∆S0 −T∆S0

Electronic 98 0 0 −98 0 0
Vibrational −5 −9 11 1 0 0
Rotational 0 0 0 0 0 0
Translational 0 0 0 0 0 0
Total 93 -9 11 -97 0 0
Experimental 125 -8 10

Table 13.2 SN2 reaction of OH− with CH3F to form CH3OH and F−

∆H‡ ∆S‡ −T∆S‡ ∆H0 ∆S0 −T∆S0

Electronic 21 0 0 −105 0 0
Vibrational 9 7 −9 11 1 −2
Rotational −3 0 0 −3 −4 5
Translational -6 -27 34 0 0 0
Total 21 -21 26 -97 -3 4



terms, eqs (13.36) and (13.37)), but using calculated anharmonic frequencies.The latter
can be obtained from the third derivative and partial (diagonal components only)
fourth-order derivatives of the energy with respect to the nuclear geometry.9

Many molecules have internal rotations around bonds with quite small barriers. In
the above treatment, they are assumed to be described by simple harmonic vibrations,
which may be a poor approximation. The calculated “vibrational frequency” for a low-
barrier rotation is often close to zero, and inspection of eq. (13.36) shows that the
enthalpy term in such cases approaches a constant factor of RT. The entropy term (eq.
(13.37)), however, goes towards infinity as the frequency approaches zero. Calculating
the energy levels and partition function for a hindered rotor is somewhat compli-
cated,10 and is rarely done. If the barrier is very low, the motion may be treated as a
free rotor, in which case it contributes a constant factor of RT to the enthalpy and 1/2R
to the entropy. The enthalpy contribution is thus asymptotically correct when a 
low-barrier internal rotation is treated as a harmonic frequency, but the entropy term
is not. Even minor inaccuracies in the calculated frequency may thus lead to 
large errors in the entropy contribution for small frequencies, and care must be taken
in such cases. A specific problem arises in bimolecular addition reactions (or the
reverse fragmentation reaction), where six translational and six rotational degrees of
freedom in the reactants are transformed into three translational and three rotational
degrees of freedom in the product, i.e. creating six new internal degrees of freedom.
At the TS, several of these often correspond to low-barrier internal rotations, which
may be problematic to treat as harmonic vibrations.11 Although the vibrational entropy
reaches a value of 1/2R already for a harmonic frequency of around 400cm−1, the 
difference relative to a hindered internal rotor only becomes significant for frequen-
cies below 100cm−1 and rotational barriers comparable to RT (~3kJ/mol at room 
temperature).

It should also be noted that the thermodynamic contributions in eqs (13.36) and
(13.37) are calculated using the most common atomic isotopes, while the experimen-
tal quantities of course represent an ensemble of molecules containing a statistical
mixture of isotopomers. It is straightforward but tedious to construct the thermody-
namic contributions corresponding to a mixture of molecules with different atomic 
isotopes.12 Since the resulting changes are substantially smaller than the error due to
neglect of vibrational anharmonicity, such improvements are usually not considered.

As can be seen from Tables 13.1–13.3, the electronic energy difference between the
reactant/TS and reactant/product is the most important contribution to ∆G≠ and ∆G0.
The electronic energy is furthermore the most difficult to calculate accurately. Let us
consider three cases.

(1) The error in ∆E≠/∆E0 is ~50kJ/mol. It is clear that spending significant amounts of
computer time in order to include vibrational, rotational and translational correc-
tions has little value.

(2) The error in ∆E≠/∆E0 is ~5kJ/mol. The corrections from vibrations, rotations and
translation now become important, and should be included. However, sophisti-
cated treatments such as anharmonic vibrations are unimportant.

(3) The error in ∆E≠/∆E0 is ~0.5kJ/mol. Corrections from vibrations, rotations and
translation are clearly necessary. Explicit calculation of the partition functions for
anharmonic vibrations, and internal rotations may be considered. However, at this
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point other factors also become important for the activation energy. These include
for example:
(a) The position of the TS has been assumed to be at the maximum on the elec-

tronic energy surface, whereas in reality it should be at the maximum on the
∆G surface. This would include entropy effects and thus allow the position 
of the TS to depend on temperature. Such treatments are referred to as 
Variational Transition State Theory (VTST)13 and are important for reaction
with small (or zero) enthalpy barriers, such as recombination of radicals or
carbene additions.14

(b) The possibility of re-crossings and tunnelling (which requires a quantum
description of the nuclear motion) should be included in order to produce a
transmission coefficient. Tunnelling can be estimated from the imaginary fre-
quency at the TS, but an accurate estimate requires elaborate calculations.
The re-crossing effect requires simulation of the dynamics of the reaction,
again a substantial computational problem.

Calculating the electronic barrier with an accuracy of ~0.5kJ/mol is only possible for
very simple systems. An accuracy of ~5kJ/mol is usually considered a good, but hard
to get, level of accuracy. The situation is slightly better for relative energies of stable
species, but a ~5kJ/mol accuracy still requires significant computational effort. Ther-
modynamic corrections beyond the rigid-rotor/harmonic vibrations approximation are
therefore rarely performed.

A prediction of ∆E≠/∆E0 to within ~0.5kJ/mol may produce a ∆G≠/∆G0 accurate to
maybe ~1 kJ/mol. This corresponds to an error of a factor of ~1.5 (at T = 300K) in the
rate/equilibrium constant, which is poor compared with what is routinely obtained by
experimental techniques. Calculating ∆G≠/∆G0 to within ~5kJ/mol is still only possible
for fairly small systems. This corresponds to predicting the absolute rate constant, or
the equilibrium distribution, to within a factor of 10.Theoretical calculations are there-
fore not very useful for predicting absolute rate or equilibrium constants. Relative
rates, however, are somewhat easier. Often the interest is not in how fast a certain
product is formed, but rather on what the rate difference is between two reactions. The
absolute rate (only) influences how long the total reaction time will be, or how high
the temperature should be. Rate differences, on the other hand, determine what the
ratio between products is. When comparing calculated activation parameters for
similar reactions, one can always hope for some “cancellation of errors”. Theoretical
methods are most useful for predicting and rationalizing different reaction pathways,
not in predicting absolute rates.

The activation enthalpies and entropies in principle depend on temperature 
(eqs (13.36) and (13.37)), but only weakly so, and for a limited temperature range they
may be treated as constants. Obtaining these quantities experimentally is possible by
measuring the reaction rate as a function of temperature, and plotting ln(krate/T)
against T −1.

(13.39)
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Such plots should produce a straight line with the slope being equal to −∆H≠/R and
the intercept equal to ln(k/h) + ∆S≠/R. As the available temperature range often 
is ~100°C, the error in ∆H≠ will typically be 0.5–2kJ/mol. The activation entropy is
determined by extrapolating outside the data points to T = ∞ (1/T = 0), and is usually
somewhat less well defined; a typical error may be 5J/mol ⋅K.

Experimentalists often analyze their data in terms of an Arrhrenius expression
instead of the TST expression eq. (13.39) by plotting ln(krate) against T −1.

(13.40)

The connection with the TST expression (13.39) may be established from the defini-
tion in eq. (13.40) of the activation energy.

(13.41)

This produces the relationship shown in eq. (13.42).

(13.42)

Here ∆n is the change in the number of molecules from the reactant to the TS, i.e.
∆n = 0 for a unimolecular reaction, −1 for a bimolecular reaction, etc. For a solution
phase reaction ∆n is approximately 0.

Note that for a reaction taking place by multiple reaction paths (e.g. conformational
TS’s), the observed activation energy is obtained from the observed rate constant,
which is a sum over individual rate constants.

(13.43)

The presence of multiple reaction paths with similar activation energies will thus 
result in an effective activation energy that is lower than the activation energy of the
lowest TS.

13.6 Condensed Phases
For a single molecule in the rigid-rotor harmonic-oscillator approximation, the
(quantum) energy states are sufficiently regular to allow an explicit construction of the
partition function. For a collection of many interacting particles (condensed phase),
the relevant energy states are those describing the vibrations, and translation and 
rotation of molecules relative to each other. For such systems, the energy levels are
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not only numerous but also so irregularly spaced that it is impossible to derive 
them directly from molecular quantities. It is consequently not possible to construct
the partition function explicitly. It is, however, possible to estimate derivatives of 
Q and differences in Q by a representative sample of the system. Condensed phases
can be modelled by periodic boundary conditions, and configurations generated 
by either molecular dynamics or Monte Carlo procedures, as discussed in Section 
14.1.

We can derive formal expressions for U and A from eqs (13.14) and (13.16) by using
the fact that ∂ ln Q/∂T = Q−1∂Q/∂T.

(13.44)

The Boltzmann probability function P can be written either in a discrete energy 
representation or in a continuous phase space formulation.

(13.45)

Here Q−1 is a normalization factor. The internal energy U in eq. (13.44) can thus be
written as in eq. (13.46).

(13.46)

Eq. (13.46) shows that U is simply a sum of energies weighted by the probability of
being in that state, i.e. U is the average (potential) energy of the system. Since high-
energy states occur with a low probability, only the low-energy region of the phase
space is important for the internal energy.

A similar expression may be derived for A by substituting 1 with eE/kTe−E/kT in eq.
(13.44) and summing over all Nstates.

(13.47)

The ln(Nstates) term is constant and corresponds to a change of the zero point, and can
consequently be neglected. Alternatively, A may be written as an integral over phase
space.
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In contrast to U (eq. (13.46)), the Helmholtz free energy A depends exponentially on
the energy, i.e. although high-energy states occur infrequently, they contribute signifi-
cantly owing to the exponential weighting factor. Alternatively stated, U depends only
on the derivative of Q, while A depends directly on Q.

It is not possible to carry out the summation over all states, or equivalently integrate
over all phase space in eqs (13.46)–(13.48).The U and A values could in principle be cal-
culated by sampling the phase space in a random fashion (Monte Carlo type integra-
tion), but such an approach will suffer from an extremely slow convergence as the large
majority of points will have high energies, and consequently contribute with a very small
probability. If, however, a representative collection of configurations can be generated,
the sum over all states can be approximated by an average over a finite set of configura-
tions. Representative here means that the number of configurations with a given energy
is proportional to that given by the Boltzman distribution, and that all “important” parts
of the phase space are sampled. For a finite number of points M, it is possible to calcu-
late the average value of a given property X according to eq. (13.49), where the points
can be denoted either by their energies or by their positions and momentum.

(13.49)

In a typical simulation the number of sampling points is perhaps ~106, which repre-
sents only an infinitesimal fraction of the 6Natom-dimensional phase space (a rough 10
point sampling in each dimension would give 106N points). As already mentioned,
however, the vast majority of the huge phase space is high in energy and is not acces-
sible at normal temperatures. Consider for example placing 1000 water molecules at
random in a box with a dimension corresponding to a density of 1g/cm3. If any two
water molecules have a significant overlap, there will be a large repulsive interaction,
and therefore a vanishing probability of such a configuration occurring. Placing all 1000
water molecules in the box without any two molecules having an overlap is difficult,
and will essentially never occur by a random placement. Starting from an energy-
minimized structure and allowing the system to evolve by a molecular dynamics algo-
rithm, however, will only sample those configurations where no serious molecular over-
laps occur, i.e. the important low-energy region.

The “magic” in simulations is generating an ensemble that yields a good represen-
tation of the “important” phase space for the given property. A collection of configu-
rations is called an ensemble, and eq. (13.49) is called an ensemble average, with the
subscript indicating what is being averaged over. There are two main techniques for
generating an ensemble, Monte Carlo and molecular dynamics, which are discussed in
Chapter 14. These methods are based on the ergodic hypothesis (which can be proven
rigorously only for a hard-sphere gas), which makes the assumption that the average
obtained by following a small number of particles over a long time is equivalent to
averaging over a large number of particles for a short time. Taken to the limit, this
implies that a time average over a single particle is equivalent to an average of a large
number of particles at any given time snapshot, i.e. time-averaging is equivalent to
ensemble-averaging.
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Alternatively stated, the ergodic hypothesis implies that no matter where a system is
started, it is possible to get to any other point in phase space. For U and A, this leads
to the following expressions.

(13.51)

In general, a macroscopic observable can be calculated as an average over a corre-
sponding microscopic quantity. The average value of for example U calculated from
eq. (13.51) has a statistical uncertainty s(U), which is the square root of the variance
s2 (eq. (17.2), making the approximation M − 1 ≈ M for large samples).

(13.52)

The statistical uncertainty is therefore inversely proportional to the square root to the
number of sampling points M.

(13.53)

Increasing the sample size from 1000 to 4000 thus reduces the standard deviation by
a factor of 2. How well the calculated average (from eq. (13.49)) resembles the “true”
value, however, depends on whether the ensemble is representative. If a large number
of points are collected from a small part of the phase space, the property may be cal-
culated with small statistical error, but a large systematic error (i.e. the value may be
precise, but inaccurate). As it is difficult to establish that the phase space is adequately
sampled, this can be a very misleading situation, i.e. the property appears to have been
calculated accurately but may in fact be significantly in error. Different parts of the
phase space may furthermore be important for different properties. An ensemble that
gives an accurate value for one property may not necessarily be suitable for another
property. Energy properties, such as U, H and CV, depend on the derivative of Q for
which the low-energy region of the phase space is important, while entropic proper-
ties, such as A, S and G, depend directly on Q, where the whole phase space is impor-
tant. Since Monte Carlo and molecular dynamics techniques preferentially sample the
low-energy region, it is computationally difficult to achieve a reasonable statistical
error for entropic quantities.

With standard MC or MD simulations, the ensemble reflects the temperature and
only configurations that are accessible at the given temperature are represented to any
significant extent. This makes it impossible to calculate the absolute value of the
entropy, but it is possible to calculate differences in entropy properties. Using the
Helmholtz free energy for illustration, we can consider two systems A and B described
by two different energy functions EA and EB. The energy difference is given in eq.
(13.54) and involves a ratio of the corresponding partition functions.
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Analogously to eqs (13.51), the difference can be evaluated as an ensemble 
average.

(13.55)

The important difference is that the exponential now involves an energy difference 
EB − EA. Provided that this is sufficiently small compared with kT, the ensemble
average will show much better convergence than the absolute entropy of either system.
If the energy difference is large compared with kT, we may introduce intermediates
states between A and B that can be described in term of a coupling parameter l
(0 ≤ l ≤ 1). The simplest approach involves a linear interpolation but more compli-
cated connections can also be used.15

(13.56)

The sampling can then be performed for each value of l, and all the intermediate
results added together to provide the difference SA − SB. It should be noted that a
system corresponding to an intermediate value of l does not necessarily represent an
actual physically realizable system. If, for example, the objective is to calculate the sol-
vation entropy difference between acetone and propane in a solvent, a value of l = 0.5
corresponds to a “molecule” with “half” a carbonyl oxygen and two “half” hydrogen
atoms on the central carbon. Such artificial intermediate systems do not represent
special problems in terms of calculation.

The preference of standard MC or MD methods for sampling the low-energy region
of a surface is a result of the way one configuration is propagated to the next. In MC
methods the probability for accepting a trial move depends on the ratio of the change
in energy relative to the temperature, while MD methods have a velocity (direction
and magnitude) depending on the temperature. Recently an alternative MC method
has been proposed where the transition probability instead depends on the inverse
density of states, rather than the energy.16 This in principle makes it possible to simu-
late an ensemble that provides a uniform coverage of the whole phase space, and there-
fore allows calculation of absolute values of entropies and free energies. Since the
density of states is unknown a priori, the method requires a sequence of simulations
where the density of state diagram is gradually constructed and refined.

The main problem in estimating thermodynamic quantities from simulations is the
assumption that the generated set of configurations forms a representative set. In prac-
tice, this is impossible to guarantee or verify, making simulations somewhat of a “black
art”. For configurations generated by molecular dynamics, a typical simulation time is
of the order of nanoseconds, and it is clear that this is a much too short a timespan to
adequately sample all the phase space. There is thus a real risk of a simulation being
trapped in a small volume of the phase space during the whole simulation, and thereby
providing a misleading sampling. In order to evaluate the sensitivity of the results,
several simulations are often performed with different starting conditions.
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14 Simulation Techniques

The analysis of a potential energy surface by locating the minima and saddle points
(Chapter 12) corresponds to modelling the system at a temperature of 0K,where all mol-
ecules are in their ground electronic, vibrational and rotational states. The effects of a
finite temperature can be incorporated by means of the statistical mechanics methods
discussed in Chapter 13. For a system of non-interacting molecules (ideal gas), the par-
tition function can be evaluated quite accurately by the rigid-rotor harmonic-oscillator
approximation from relatively simple quantities for the isolated molecule (geometry
and vibrational frequencies). Similar approaches are possible for crystalline solid states,
where the translational symmetry implies that only properties for the unit cell are
required for describing the whole system. For other systems, most notably liquids and
solutions, the macroscopic quantities derived from the partition function must be esti-
mated from a representative sampling of the phase space. Simulation refers to methods
aimed at generating a representative sampling of a system at a finite temperature.1

Electronic structure methods are typically used for solving the Schrödinger equa-
tion for a single or a few molecules, infinitely removed from all other molecules. Phys-
ically this corresponds to the situation occurring in the gas phase under low pressure
(vacuum). Experimentally, however, the majority of chemical reactions are carried out
in solution. Biologically relevant processes also occur in solution, aqueous systems with
rather specific pH and ionic conditions. Most reactions are both qualitatively and quan-
titatively different under gas and solution phase conditions, especially those involving
ions or polar species. Molecular properties are also sensitive to the environment. Sim-
ulations are therefore intimately related with describing solute–solvent interactions,
but such effects can also be modelled with less rigorous methods.

There are two major techniques for generating an ensemble: Monte Carlo and
molecular dynamics.

In Monte Carlo (MC) methods,2 a sequence of points in phase space is generated
from an initial geometry by adding a random “kick” to the coordinates of a randomly
chosen particle (atom or molecule). The new configuration is accepted if the energy
decreases and with a probability of e−∆E/kT if the energy increases. This Metropolis
procedure3 ensures that the configurations in the ensemble obey a Boltzmann 
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distribution, and the possibility of accepting higher energy configurations allows MC
methods to climb uphill and escape from a local minimum. In order to have a reason-
able acceptance ratio, however, the step size must be fairly small.This effectively means
that even a few millions MC steps (a typical computational limit) only explore the local
phase space around the starting geometry.

Monte Carlo methods generate configurations in a random fashion, and the Metrop-
olis selection procedure ensures that a proper ensemble is generated. The geometry
perturbation in each step may be “non-physical”, which is actually an advantage since
two consecutive geometries may be separated by a high energy barrier. MC methods
thus have the possibility of “tunnelling” between energetically separated regions of
phase space, thereby giving a better coverage. The perturbations may be carried out
in both internal and Cartesian coordinates, and it is quite easy to freeze out certain
degrees of freedom, as for example sampling only the torsional angle space. MC
methods are inherently non-deterministic, as each configuration only depends on the
previous point and a few random numbers, and two simulations starting from the same
geometry will not generate the same sampling since the random numbers will be dif-
ferent. MC simulations require only the ability to evaluate the energy of the system,
which may be advantageous if calculating the first derivative is difficult or time-
consuming. Furthermore, since only a single particle is moved in each step, only the
energy changes associated with this move must be calculated, not the total energy for
the whole system. A disadvantage of MC methods is the lack of the time dimension
and atomic velocities, and they are therefore not suitable for studying time-dependent
phenomena or properties depending on momentum.

Molecular Dynamics (MD) methods generate a series of time-correlated points in
phase space (a trajectory) by propagating a starting set of coordinates and velocities
according to Newton’s second equation by a series of finite time steps. A typical time
step is ~10−15 s and a simulation involving 106 steps thus “only” covers ~10−9 s. This is
substantially shorter than many important phenomena, and MD methods, in analogy
with MC, tend to only sample the region in phase space close to the starting condition.
Furthermore, MD methods simulate the physical evolution of configurations and can
easily become trapped in energy wells.

MD simulations are cumbersome to run in anything but Cartesian coordinates, and
it is somewhat difficult to enforce constraints on the system. MD simulations require
small time steps and tend to spend a significant effort describing relatively unimpor-
tant bond stretching and angle bending motions. Furthermore, the ability to climb over
energy barriers is limited, as any uphill motion will generate a force trying to pull the
system back towards the minimum. MD is in principle deterministic, and starting two
simulations with the exact same initial coordinates and velocities should give the same
trajectory. Even slight differences (~10−8) in the starting conditions, however, rapidly
lead to uncorrelated trajectories within a few thousand time steps owing to an expo-
nential divergence. Furthermore, the numerical errors generated in each time step will
gradually add up to become significant. As different computers (and compilers)
produce different round-off errors, this means that MD simulations in practice are non-
deterministic and exhibit chaotic behaviour on timescales longer than ~50ps. MD sim-
ulations implicitly have both atomic velocities and time dependence, and are thus
suitable for modelling for example transport phenomena and diffusion. Running an
MD simulation requires the ability to calculate the force (first derivative of the energy)
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on all particles in the system in addition to the energy. For parameterized energy func-
tions, such as those used in force field methods, this is not a limitation as forces can be
calculated almost as easily as the energy. Furthermore, since all particles are moved in
each step, the whole energy function (and gradient) must be recomputed at each step.

The inherently non-deterministic nature of MC methods and the non-deterministic
behaviour of actual MD simulations might be considered as potential problems. In
reality the only concern is generating a representative sample of the phase space, and
chaotic behaviour may actually help in obtaining a more complete sampling. The
random and chaotic elements in simulations, however, make troubleshooting and iden-
tification of programming bugs somewhat more problematic than for many other types
of computer programs. Verifying that a new simulation program is valid cannot easily
be done by comparing exact numbers with another program, as even running the same
program on different types of machines may produce different results. Programming
bugs that produce small (systematic) errors may thus be swamped by the statistical
errors inherent in all simulations and so escape detection. Development of simulation
packages must therefore be done with care, involving monitoring many different quan-
tities to ensure that the implementation is valid.4

The result of a simulation or an experiment involves averaging over both the number
of molecules and time, but usually with significantly different averaging lengths, and it
is not completely obvious that the calculated quantities are directly comparable with
the experiments. An IR spectrum, for example, records averages over a sample con-
taining perhaps 1018 molecules over the timeframe of perhaps 10−14 s (the interaction
time of radiation with molecules), i.e. essentially a snapshot of the quantum states for
a large selection of molecules. A simulation on the other hand, may follow the molec-
ular motions of perhaps 103 molecules for 10−9 s. The ergodic hypothesis makes the
assumption that the average obtained by following a small number of particles over a
long time is equivalent to averaging over a large number of particles for a short time.
Taken to the limit, this implies that a time average over a single particle is equivalent
to an average of a large number of particles at any given time snapshot, i.e. time-
averaging is equivalent to ensemble-averaging.

(14.1)

Alternatively stated, the ergodic hypothesis implies that no matter where a system is
started, it is possible to get to any other point in phase space. MC techniques perform
an ensemble average, while MD performs a time average.

A simulation can be characterized by quantities such as volume (V), pressure (P),
total energy (E), temperature (T), number of particles (N), chemical potential (m), etc.,
but not all of these are independent. For a constant number of particles, either the
volume or the pressure can be fixed, but not both. Similarly, either the total energy or
the temperature can be fixed, but not both, and a constant chemical potential is incom-
mensurable with a constant number of particles. The ensemble is labelled according to
the fixed quantities, as shown in Table 14.1, with the remainder being derived from the
simulation data, and thus displaying a statistical fluctuation.

An MC simulation employs the temperature as the parameter for deciding accept-
ance or rejection of trial moves, and MC simulations are therefore naturally of the
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NVT type. An MD simulation, on the other hand, preserves energy and is therefore
naturally of the NVE type, but other ensembles for both MC and MD can be gener-
ated by the techniques described in Section 14.2.2. Table 14.2 summarizes some of the
differences between MC and MD.
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Table 14.1 Constants in different ensembles, and corresponding equilibrium states

N P V T E m Acronym Equilibrium Name

✕ ✕ ✕ NVT A has minimum Canonical
✕ ✕ ✕ NVE S has maximum Micro-canonical
✕ ✕ ✕ NPT G has minimum Isothermal-isobaric

✕ ✕ ✕ VEm (PV) has maximum Grand canonical

N = number of particles; P = pressure; V = volume; T = temperature; E = energy; m = chemical potential;
A = Helmholtz free energy; S = entropy; G = Gibbs free energy

Table 14.2 Differences between Monte Carlo and molecular 
dynamics methods

Property MC MD

Basic information needed Energy Gradient
Particles moved in each step One All
Coordinates Any Cartesian
Constraints Easy Difficult
Atomic velocities No Yes
Time dimension No Yes
Deterministic No (Yes)
Sampling Non-physical Physical
Natural ensemble NVT NVE

It is probably no surprise that hybrid MC/MD methods have been devised, trying
to capture the best of both methods.5 These combined methods typically perform an
MD simulation with an occasional MC step thrown in, in order to give a better cov-
erage of the phase space. Alternatively, a trial step may be generated by an MD recipe,
using a somewhat larger time step than for pure MD, and this trial step is then accepted
or rejected based on an MC criterion.

14.1 Monte Carlo Methods
On of the advantages of Monte Carlo methods is the ease with which they can be
implemented in computer programs. The heart of the algorithm is a random number
generator, and the ability to calculate the energy of the system for a given set of coor-
dinates. Although truly random numbers are difficult to come by, several implemen-
tations of pseudo-random number generators are available.A pseudo-random number
generator indicates a computer implementation of an algorithm that produces a
sequence of seemingly random numbers, but the sequence is repeated (exactly) after
some period. A good pseudo-random number generator is characterized by having a



long periodicity, and within this periodicity the numbers do not show any systematic
correlation with each other. As long as the simulation only uses numbers from within
one period, the random aspect is fulfilled and the simulation data should be valid.

An MC simulation starts from a suitable set of coordinates for all the particles. The
set of coordinates is perturbed in a random fashion and the new geometry is accepted
as a starting point for the next perturbing step if it is lower in energy than the current.
If the new geometry is higher in energy, the Boltzmann factor e−∆E/kT is calculated and
compared with a random number between 0 and 1. If e−∆E/kT is larger than this number
the new geometry is accepted, otherwise the old configuration is added to the sam-
pling (again), and a new perturbing step is attempted.

The main variation of MC methods is how the perturbing step is done. For a system
composed of spherical particles (atoms), the only variables are the centre of mass of
each particle, and the trial moves are simple translations of particles. For rigid non-
spherical particles, the three rotational degrees of freedom must also be sampled, while
for flexible molecules, it is usually also of interest to sample the internal degrees of
freedom (conformations, vibrations). The latter can be done in Cartesian coordinates,
or selectively in for example only the torsional variables.

A key point in MC methods is to ensure that the chain of configurations arises from
a symmetric probability decision. Symmetric in this context means that each step is
reversible, i.e. the probability of undoing a step by the next move is equal to the prob-
ability of generating the step, sometimes also called the detailed balance condition. If
this is not fulfilled, the properties derived from the resulting ensemble can (but do not
necessarily) display systematic errors, which are usually hard to detect. Generating
random moves corresponding only to translations in the positive direction, rather than
both positive and negative directions, will almost be sure to lead to artefacts, although
one might think that this would be acceptable in a system subjected to periodic bound-
ary conditions. The detailed balance condition is obeyed when a single random parti-
cle is subjected to a single random perturbation in each step, but this is not the case if
a random perturbing step is applied sequentially to all the particles. Nevertheless, it
has been shown that the sequential update obeys a weaker balance condition and does
in fact generate a proper Boltzmann distribution.6 From a computational point of view,
a procedure where only one particle is moved in each trial step is usually more effi-
cient than a trial step consisting of moving all particles. When only a single particle is
moved, only the change in the energy related to this particle is required, not the whole
energy function. This makes the evaluation of each trial move somewhat faster than a
single time step in an MD simulation. Furthermore, if many (all) particles are allowed
to move in each trial step, the acceptance ratio usually becomes prohibitively small,
unless very small perturbations are selected.

The size of the perturbing step is an important control parameter. A small step will
give a high acceptance ratio but only a slow change of configurations. A large step, on
the other hand, gives a low acceptance ratio and therefore a sampling consisting of
only a few relatively widely distributed points in the configuration space. The optimum
step size can formally be defined as the one that gives the fastest convergence of a
given property for a given amount of computer time, but this is difficult to translate
into an optimum acceptance ratio. Lacking a more objective criterion, a heuristic
acceptance ratio around 0.5 is usually selected, although slightly smaller ratios in many
cases may give a better sampling.
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The ability to generate non-physical moves means that attention must be paid to the
molecular stereochemistry. A random move of atoms makes it possible to invert the
configuration of a chiral atom, a process that in reality may require large amounts of
energy, but one that can easily be generated by moving a single atom. A Monte Carlo
procedure must therefore be able to detect such chirality changes and reject such
moves.

The procedure of making random moves of a single or several (all) particles gives
MC methods a drawback for describing correlated motions. Exploring the conforma-
tional space of a larger molecule such as a protein in a solvent is inefficient, since
several simultaneous perturbations of torsional angles are required for generating
acceptable conformational changes. Such correlated movements are difficult to gener-
ate by random perturbations in either Cartesian or internal coordinates, and almost
impossible if only single particle movements are employed in each trial step. MC
methods are therefore best for exploring the translational and rotational space for rel-
atively small molecules, such as a solvent or solution, and internal degrees of freedom
for small molecules.

14.1.1 Generating non-natural ensembles

A standard MC simulation generates an NVT ensemble, i.e. the pressure and energy
will fluctuate. It is quite easy to generate other types of ensembles by MC methods,
the most important being the NPT ensemble, since this is directly related to most
experimental conditions. A constant pressure necessarily means that the volume must
be able to change. For simulating an NPT ensemble, the total volume of the system is
treated as an additional variable and subjected to random perturbations.7 The accept-
ance criterion for a volume change is the same as for particle moves, except that the
energy change is augmented with two additional terms, i.e. ∆E → ∆E + P∆V − NkTln
(1 + ∆V/V).

14.2 Time-Dependent Methods
At a finite temperature, the average kinetic energy is directly related to the tempera-
ture and the molecule(s) explores a part of the surface with energies lower than the
typical kinetic energy. One possible way of simulating the behaviour at a finite tem-
perature is by allowing the system to evolve according to the relevant dynamical equa-
tion (Section 1.4). For nuclei, this is normally Newton’s second law, although the
(nuclear) Schrödinger equation must be used for including quantum effects, such as
zero point vibrational energy and tunnelling. A dynamics simulation is also required
if the interest is in studying time-dependent phenomena, such as transport, and the
results of a simulation can yield information about the spectral properties, such as the
IR spectrum.

A dynamics simulation requires a set of initial coordinates and velocities, and an
interaction potential (energy function). For a short time step, the interaction may be
considered constant, allowing a set of updated positions and velocities to be estimated,
at which point the new interaction can be calculated. By taking a (large) number of
(small) time steps, the time behaviour of the system can be obtained. Since the phase
space is huge, and the fundamental time step is short, the simulation will only explore
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the region close to the starting point, and several different simulations with different
starting conditions are required for estimating the stability of the results.

14.2.1 Molecular dynamics methods

Nuclei are heavy enough that they, to a good approximation, behave as classical 
particles and the dynamics can thus be simulated by solving Newton’s second equa-
tion, F = ma, which in differential form can be written as in eq. (14.2).

(14.2)

Here V is the potential energy at position r. The vector r contains the coordinates 
for all the particles, i.e. in Cartesian coordinates it is a vector of length 3Natom. The 
left-hand side is the negative of the energy gradient, also called the force (F) on the
particle(s).

Given a set of particles with positions ri, the positions a small time step Dt later are
given by a Taylor expansion.

(14.3)

The velocities vi are the first derivatives of the positions with respect to time (dr/dt) at
time ti, the accelerations ai are the second derivatives (d2r/dt2) at time ti, the hyperac-
celerations bi are the third derivatives, etc. The positions a small time step ∆t earlier
are derived from eq. (14.3) by substituting ∆t with −∆t.

(14.4)

Addition of eqs (14.3) and (14.4) gives a recipe for predicting the position a time step
∆t later from the current and previous positions, and the current acceleration.The latter
can be calculated from the force, or equivalently, the potential.

(14.5)

This is the Verlet algorithm8 for solving Newton’s equation numerically. Note that the
term involving the change in acceleration (b) disappears, i.e. the equation is correct to
third order in ∆t. At the initial point, the previous positions are not available, but can
be estimated from a first-order approximation of eq. (14.3).

(14.6)

At each time step, the acceleration must be evaluated from the forces, eq. (14.5), which
then allows the atomic positions to be propagated in time and thus generate a trajec-
tory.As the step size ∆t is decreased, the trajectory becomes a better and better approx-
imation to the “true” trajectory, until the practical problems of finite numerical
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accuracy arise (e.g. the forces cannot be calculated with infinite precision).A small time
step, however, means that more steps are necessary for propagating the system a given
total time, i.e. the computational effort increases inversely with the size of the time
step.

The Verlet algorithm has the numerical disadvantage that the new positions are
obtained by adding a term proportional to ∆t2 to a difference in positions (2ri − ri−1).
Since ∆t is a small number and (2ri − ri−1) is a difference between two large numbers,
this may lead to truncation errors due to finite precision. The Verlet algorithm fur-
thermore has the disadvantage that velocities do not appear explicitly, which is a
problem in connection with generating ensembles with constant temperature, as dis-
cussed in Section 14.2.2.

The numerical aspect and the lack of explicit velocities in the Verlet algorithm can
be remedied by the leap-frog algorithm.9 Performing expansions analogous to eqs
(14.3) and (14.4) with half a time step followed by subtraction gives eq. (14.7).

(14.7)

The velocity is obtained by analogous expansions to give eq. (14.8).

(14.8)

Eqs (14.7) and (14.8) define the leap-frog algorithm, and it is seen that the position
and velocity updates are out of phase by half a time step. In terms of theoretical accu-
racy it is also of third order, as the Verlet algorithm, but the numerical accuracy is
better. Furthermore, the velocities appear directly, which facilitates a coupling to an
external heat bath (Section 14.2.2). The disadvantage is that the positions and veloci-
ties are not known at the same time, they are always out of phase by half a time step.
The latter abnormality can be removed by the velocity Verlet algorithm, where the
equations used to propagate the atoms are given in eq. (14.9).10

(14.9)

The preference of Verlet and leap-frog type algorithms over for example Runge–Kutta
methods (Section 12.8) in MD simulations is that they are time-reversible, which in
general tend to improve the energy conservation over long simulation times.11

The above solves the dynamical equation by a numerical integration of Newton’s
second equation. In some cases, it is useful to rewrite the equations in a more general
form. Denoting a generalized coordinate with q and its conjugate moment by p (p =
m∂q/∂t), eq. (14.2) becomes eq. (14.10).

(14.10)

This can also be formulated in terms of a Lagrange function L.

(14.11)
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Using the fact that T = p2/2m, it can be seen that the Lagrange equation is completely
equivalent to the Newton formulation.

Yet another formulation is given by the Hamilton function H and eq. (14.12), which
again may be verified to be completely equivalent to eq. (14.2).

(14.12)

The main advantage of the Lagrange and Hamilton formulations is that any set of non-
redundant variables can be used, while the Newton formulation focuses on spatial
coordinates and corresponding velocities. The main difference between the Lagrange
and Hamilton formulations is that the former is a single second-order differential equa-
tion, while the latter is a coupled set of first-order differential equations. Depending
on the system, one of them may be easier to solve than the other.

The time step employed is an important control parameter for a simulation. The
maximum time step that can be taken is determined by the rate of the fastest process
in the system, i.e. typically an order of magnitude smaller than the fastest process. Mol-
ecular motions (rotations and vibrations) typically occur with frequencies in the range
1011–1014 s−1 (corresponding to wavenumbers of 3–3300cm−1), and time steps of the
order of femtoseconds (10−15 s) or less are required to model such motions with suffi-
cient accuracy.This means that a total simulation time of 1 nanosecond (10−9 s) requires
~106 time steps, and 1 microsecond (10−6) requires ~109 time steps. A million time steps
is already a significant computational effort and typical simulation times are in the
nano- or picosecond range. Unfortunately, many interesting phenomena occur on a
substantially longer time scale: protein folding and chemical reactions, for example,
occur on the order of milliseconds or seconds. Furthermore, a single trajectory may
not be adequate for representing the dynamics, thus requiring that many runs must be
carried out with different starting conditions (positions and velocities) and be prop-
erly averaged.

For molecules, the fastest processes are the stretching vibrations, especially those
involving hydrogen.These degrees of freedom, however, have relatively little influence
on many properties. It is therefore advantageous to freeze all bond lengths involving
hydrogen atoms, which allow longer time steps to be taken, and consequently longer
simulation times to be obtained for the same computational cost. As all atoms move
individually according to Newton’s equation, constraints must be applied for keep-
ing bond lengths fixed. This is normally done by either the SHAKE12 (Verlet) or
RATTLE13 (velocity Verlet) algorithms, where the distance constraints are incorpo-
rated by the method of Lagrange undetermined multipliers (Section 12.5). The atoms
are first allowed to move under the influence of the forces, and subsequently forced to
obey the constraints by making a few sequential passes through all the variables.

Enforcement of bond length constraints typically allows the time step to be
increased by a factor of 2 or 3. Angles may also be frozen by adding a distance con-
straint on atoms that are 1,3 relative to each other. Angle bending, however, affects
calculated properties more than bond stretching and fixing them may often introduce
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unacceptable errors. Angle constraints are therefore used less frequently. A simulation
can also be performed using fixed molecular geometries, i.e. only the positions and rel-
ative orientations of individual molecules are allowed to change. In such cases, the
natural variables to propagate in time are the centre of mass position and the three
Euler angles of each molecule.

14.2.2 Generating non-natural ensembles

A standard MD simulation generates an NVE ensemble, i.e. the temperature and pres-
sure will fluctuate. The total energy is a sum of the kinetic and potential energies, and
can be calculated from the positions and velocities.

(14.13)

Owing to the finite precision with which the atomic forces are evaluated, and the finite
time step used, the total energy is not exactly constant, but this error can be controlled
by the magnitude of the time step. Indeed, preservation of the energy to within a given
threshold may be used to define the maximum permissible time step.

The temperature of the system is proportional to the average kinetic energy.

(14.14)

The number of constraints is typically three, corresponding to conservation of linear
momentum. Note that for 1 mole of particles, eq. (14.14) reduces to the familiar expres-
sion 〈Ekin〉 = 3/2RT. Since the kinetic energy is the difference between the total energy
(almost constant) and the potential energy (depends on the positions), the kinetic
energy will vary significantly, i.e. the temperature will be calculated as an average value
with an associated fluctuation. Similarly, if the volume of the system is fixed, the pres-
sure will fluctuate.

Although the NVE is the natural ensemble generated by an MD simulation, it is
possible also to generate NVT or NPT ensembles by MD techniques by modifying the
velocities or positions in each time step. As indicated in eq. (14.14) the instant value
of the temperature is given by the average of the kinetic energy. If this is different from
the desired temperature, all velocities may be scaled by a factor of (Tdesired/Tactual)1/2 in
each time step to achieve the desired temperature. Such an “instant” correction pro-
cedure actually alters the dynamics, such that the simulation no longer corresponds to
a canonical (NVT) ensemble. Performing the scaling at larger intervals introduces
some periodicity into the simulation, which is also undesirable. Alternatively the
system may be coupled to a “heat bath”, which gradually adds or removes energy
to/from the system with a suitable time constant, often called a thermostat.14 The kinetic
energy of the system is again modified by scaling the velocities, but the rate of heat
transfer is controlled by a coupling parameter t.

(14.15)
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Thermostat methods such as eq. (14.15) are widely used but again do not produce a
canonical ensemble. They do produce correct averages but give incorrect fluctuations
of properties. In Nosé–Hoover methods15 the heat bath is considered an integral part
of the system and assigned fictive dynamic variables, which are evolved on an equal
footing with the other variables. These methods are analogous to the extended
Lagrange methods described in Section 14.2.5, and can be shown to produce true
canonical ensembles.

The pressure can similarly be held (approximately) constant by coupling to a “pres-
sure bath”. Instead of changing the velocities of the particles, the volume of the system
is changed by scaling all coordinates according to eq. (14.16).

(14.16)

Here the constant k is the compressibility of the system. Such barostat methods are
again widely used, both in MC and MD simulations, but do not produce strictly correct
ensembles.Alternatively, the pressure may be maintained by a Nosé–Hoover approach
in order to produce a correct ensemble.

14.2.3 Langevin methods

Molecular dynamics methods generate detailed information about all the particles in
the system and are therefore well suited for calculating collective properties. In other
cases, the major interest is in the dynamics of a single molecule, in which case the sur-
rounding molecules can be modelled by only including the average interactions. This
average interaction is assumed to have a friction term (with a friction coefficient z)
proportional to the atomic velocity, and a random component (Frandom) that averages
to zero. These terms are in addition to the normal intramolecular forces (Fintra) and
possibly also external forces, for example from an electric field. The random force is
associated with a temperature and adds energy to the system, while the friction term
removes energy. The random force is typically taken to have a Gaussian distribution
with a mean value of zero.

(14.17)

Eq. (14.17) is called the Langevin equation of motion, and gives rise to stochastic or
Brownian dynamics.16 The magnitude of the friction coefficient determines the impor-
tance of the intramolecular forces compared with the friction term, and large values
of z lead to the Brownian dynamics limit.

14.2.4 Direct methods

The major computational effort in a molecular or Langevin dynamic simulation is the
calculation of the forces on all particles at each time step. In principle, any type of
energy function can be used: force field, semi-empirical, ab initio electronic structure
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or DFT methods. Owing to the small time step required, and the resulting many force
evaluations necessary, the large majority of simulations are performed with parame-
terized energy functions of the force field type. For studying macromolecules and sol-
vation, general force fields of the type discussed in Chapter 2 are normally used. While
these may be of sufficient accuracy for simulating structural properties, they are unable
to describe chemical reactions or to achieve high accuracy. For such cases, a “global”
energy surface may be constructed by fitting high-level ab initio results and experi-
mental data to a suitable functional form.17 For sufficiently small time steps, the result
of a simulation is determined entirely by the quality of the energy surface. To obtain
“converged” results for the dynamics, the energy surface must be accurate to better
than 1kJ/mol, over the whole surface that is accessible at the given energy (tempera-
ture). Constructing such high-quality “global” energy surfaces is very demanding and
has only been done for a few systems. As mentioned in Chapter 1, the sheer dimen-
sionality prevents an adequate sampling of a surface by point calculations for more
than three or four atoms, and high-level dynamics have thus been limited to systems
of this size.

Even for low-dimensional surfaces (three to six atoms), it is often difficult to design
a well-behaved fitting function capable of yielding a balanced description of all reac-
tion channels. A simulation of the reaction between an oxygen atom and methane, for
example, requires a balanced energy description of the following (stable) species, as
well as the reaction paths connecting these:

• CH4 + 1,3O
• CH3OH
• H2CO + H2

• 1,3HCOH (cis and trans) + H2

• CH3O + H
• 1,3CH2 + H2O
• CH3 + OH

Note that both singlet and triplet energy surfaces are important for this reaction.
Achieving a high-quality surface will require a large number of MR-CI type calcula-
tions, and designing a suitable interpolation function to reproduce the experimental
energy differences between all the above exit channels is a non-trivial exercise.

The surface design and fitting process can be bypassed by performing the dynamics
“directly”, i.e. by calculating the required energies and forces in each time step of a
simulation. The advantage is that a fitting function is not required, there is no para-
meterization step, and only the part of the surface actually visited by the dynamics has
to be calculated. The disadvantage is that the same (or almost the same) points may
be calculated many times, and if many trajectories are required, the total amount of
points calculated may be larger than required for performing a global fit. Furthermore,
it is difficult to add empirical corrections to the calculated surface. In a global fit
approach, deficiencies in the employed computational method can be partly alleviated
by enforcing energy differences between experimentally known species in the para-
meterization step. In some cases, the employed electronic structure method is pre-
modified in direct approaches in order to give better agreements with experimental
quantities. The latter has especially been used in connection with semi-empirical
methods such as AM1 and PM3, where the atomic parameters can be re-tuned to
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model a specific reaction surface better than the defaults parameters, a procedure
called Specific Reaction Parameterization (SRP).18

14.2.5 Extended Lagrange techniques (Car–Parrinello methods)

Traditionally, direct dynamics with electronic structure methods have been done using
a converged wave function at each time step. In order to fulfil energy conservation
over the whole simulation length, however, such Born–Oppenheimer dynamics require
a very tight convergence of the wave function in each time step, otherwise the elec-
trons will create an artificial frictional term on the nuclei, and this makes the proce-
dure computationally expensive.19 In an elegant breakthrough by Car and Parrinello
(CP),20 it was shown that it is not necessary to fully converge the wave function in each
time step. After having determined a converged wave function at the first point, the
essence of the CP technique is to let the wave function parameters (orbitals) evolve
simultaneously with the changes in nuclear positions. This can be achieved by includ-
ing the wave function parameters as variables with fictive “masses” in the dynamics,
analogous to the nuclear positions and masses. Since this involves generalized vari-
ables, the Lagrange formulation (eq. (14.11)) for the dynamical equation is conven-
ient. The use of such extended Lagrange functions for describing the evolution of a
system with both “real” (nuclear/electronic) and “fictive” (method parameters) is quite
general, and is for example also used in force field methods incorporating fluctuating
charges and/or polarization.

For the case of the CP method, the nuclear contributions are given by eq. (14.18).

(14.18)

We now add contributions corresponding to treating the orbital expansion coefficients
as variables with fictive masses mi.

(14.19)

The two potential energies can be combined to a single term depending on both the
nuclear positions and the orbital coefficients.

(14.20)

The orbital orthogonality constraints can be included by addition of terms involving
Lagrange multipliers.
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(14.21)

The resulting dynamical equations then become eq. (14.22)

(14.22)

The constraint forces are handled iteratively, analogously to the constraint of fixed
bond lengths in the SHAKE algorithm.

If the nuclear positions R are kept constant and the fictive orbital kinetic energy Torb

is quenched, the resulting algorithm is essentially a steepest descent minimization of
the electronic energy with respect to the orbital coefficients. This is done at the initial
point, but at subsequent points the orbital parameters are allowed to evolve along with
the nuclear position according to the dynamical equation. This means that the nuclear
forces are not strictly correct since the electronic wave function is not converged in
the orbital parameter space. This error, however, can be controlled by suitable choices
of the fictive masses associated with the orbital parameters, i.e. small values provide
results close to the “true” Born–Oppenheimer results, but also require the use of small
time steps since the resulting “orbital parameter frequency” is high.21 Typically, the
fictive masses are taken to be a few hundred atomic units, giving time steps of ~0.1
femtoseconds, i.e. roughly an order of magnitude smaller than for classical molecular
dynamics. It should be noted that the optimum value for the fictive masses depends
on the system, and for metals and semiconductors, for example, it is difficult to choose
suitable values. Systems containing hydrogen are especially problematic, since the
proton mass (1836au) is only a factor of 5–10 higher than the fictive orbital parameter
mass. This in some cases leads to a coupling of these degrees of freedom, but this can
be partly countered by using deuterium instead of hydrogen.

In the CP approach, the total energy is conserved, and this now includes the fictive
kinetic energy of the orbital parameters. The “real” system of course has no orbital
kinetic energy, and this must therefore be kept small compared with the other terms in
order for the CP method to provide realistic simulation results. The magnitude of the
fictive masses for the orbital parameters serves as a coupling parameter between the
nuclear and parameter kinetic energies. In an equilibrium condition, the temperature
associated with the nuclei and orbital parameters are the same, but it is usually desirable
to have the parameter kinetic energy to be significantly lower (a value of zero corre-
sponds to the Born–Oppenheimer case). This can be obtained by continuously remov-
ing the fictive kinetic energy associated with the orbital parameters, while compensating
for the energy loss by adding energy to the nuclei. In practice this can be obtained by
allowing the orbital parameters to interact with a “heat bath”of a low temperature,while
the nuclei interact with a heat bath of the desired simulation temperature.
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The CP technique can be used both in a “static” sense, for simultaneously optimiz-
ing the wave function and the nuclear positions by periodically quenching the kinetic
energies, but it can also be used in a “dynamical” sense for sampling the (nuclear) phase
space. The main advantage of the CP technique is the much better error cancellation
compared with a Born–Oppenheimer dynamics, i.e. even with non-converged wave
function parameters, the long-term energy conservation is fulfilled to a quite high accu-
racy. The coupling of the real and fictive parameters builds a self-correction into the
CP method, i.e. if the nuclei at some point get slightly “ahead” of the electron cloud,
they will be slowed down, thus allowing the electrons to “catch up” with the nuclei.
Similarly, if the electronic parameters get ahead of the nuclei, the nuclei will be accel-
erated owing to the Coulomb attraction.

Such ab initio simulations can in principle be carried out with any type of wave func-
tion but they are still significantly more expensive computationally than traditional
parameterized energy functions.The CP method was originally implemented with DFT
methods using plane waves as the basis set but more recently the technique has also
been used with other types of methods (e.g. HF or MP2) and Gaussian type basis func-
tions, where the density matrix elements are used as variables instead of the molecu-
lar orbital coefficients.22 The great advantage over force field type functions is that
electronic structure methods are able to describe bond breaking/formation, i.e. CP
methods allow a direct simulation of chemical reactions and processes such as hydro-
gen exchange in water. Even with the CP technique, however, the use of ab initio elec-
tronic structure calculations (HF, DFT) is so expensive that only picosecond simulation
can be carried out, compared with nano- or microsecond simulations with parameter-
ized energy functions.

The CP method may be considered as a semi-classical dynamics approach where the
electrons are treated quantum mechanically while the nuclear motion is treated clas-
sically. The latter implies that for example zero point vibrational effects are not
included, nor can nuclear tunnelling effects be described; this requires fully quantum
methods, as described in the next section.

14.2.6 Quantum methods using potential energy surfaces

In order to incorporate quantum effects into the nuclear motions (vibrational effects
and tunnelling), the time-dependent (nuclear) Schrödinger equation must be used in
place of Newton’s equation.

(14.23)

Here T is the kinetic energy operator and V is the potential energy. The square of the
wave function is the probability of finding a particle at a given position. Heisenberg’s
uncertainty principle means that a quantum description of a nucleus must be a con-
tinuous function, not a single specific position as in classical mechanics.23 Such a con-
tinuous function is often denoted a wave package and may be modelled by Gaussian
functions (semi-classical methods) or numerically (quantum methods). Analogously to
classical dynamics, the wave function may be propagated through a series of small, but
finite, time steps.
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(14.24)

Each time step thus involves a calculation of the effect of the Hamiltonian operator
acting on the wave function. In fully quantum methods, the wave function is often rep-
resented on a grid of points, these being the equivalent of basis functions for an elec-
tronic wave function. The effect of the potential energy operator is easy to evaluate,
as it just involves a multiplication of the potential at each point with the value of the
wave function. The kinetic energy operator, however, involves the derivative of the
wave function, and a direct evaluation would require a very dense set of grid points
for an accurate representation.

The kinetic energy operator is proportional to the square of the momentum, T =
p2/2m. In a momentum representation (i.e. using the particle momentum instead of
position as variables), T is a simple multiplication operator, analogous to V in position
space. The transformation from position to momentum space can be achieved by a
Fourier transformation. A numerical solution of the time-dependent Schrödinger
equation can thus be done by switching back and forth between a position and momen-
tum representation of the wave function, evaluating the effect of V in position space,
and the effect of T in momentum space. Analogously to the leap-frog algorithm for
the classical case (eqs (14.7) and (14.8)), the update of the wave function by the poten-
tial and kinetic energy operators may be chosen to be out of phase by half a time step
to improve the accuracy. The key to the popularity of this approach is the presence of
highly efficient computer routines for performing Fourier transformations.

The requirement of an accurate global energy surface is even more important for a
quantum mechanical treatment than for the classical case, since the wave function
depends on a finite part of the surface, not just a single point. The updating of the posi-
tions and velocities are computationally inexpensive in the classical case, once the
forces are available, but the requirement of two Fourier transformations in each time
step makes the quantum propagation a significant computational issue. Furthermore,
the representation of the wave function on a grid effectively limits the dimensionality
to a maximum of three, i.e. di- and triatomic systems (one and three internal coordi-
nates, respectively). Larger systems necessitate freezing some of the coordinates, or
treating them classically.24

14.2.7 Reaction path methods

The main problem in dynamical studies is the requirement of a continuous energy
surface over a wide range of geometries.A simulation will normally be done with spec-
ification of an energy (or a temperature), and a surface must thus be available for all
nuclear configurations that have an energy lower than the chosen simulation value. For
quantum methods, the surface must also be available at higher energies as the wave
function has a tail that penetrates into classically “forbidden” areas.

Traditionally, such “global” energy surfaces have been constructed by fitting a suit-
able functional form to energies (and possibly also first and second derivatives) cal-
culated by ab initio methods at a large number (perhaps a few hundreds or thousands)
of geometries.25 The function may be further refined by including experimental data
(such as vibrational frequencies and geometries) in the fitting. For “large” systems (i.e.
more than three or four atoms) the generation of an adequate number of fitting points
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is prohibitively expensive. In order to treat large systems, it is necessary to concentrate
the computational effort on the “chemically important” part of the potential energy
surface.

In the simplest description, a chemical reaction takes place along the lowest energy
path connecting the reactant and product, passing over the transition structure (Section
13.1) as the highest point. This is the Minimum Energy Path (MEP), which in mass-
weighted coordinates is called the Intrinsic Reaction Coordinate (IRC) (Section 12.8).
The idea in Reaction Path (RP) methods26 is to only consider the energy surface in 
the immediate vicinity of a suitable one-dimensional reaction path, which usually 
(but not necessarily) is taken as the IRC. The potential is typically expanded to second
order along the reaction path, corresponding to modelling the perpendicular degrees
of freedom as harmonic vibrational frequencies. The reaction path potential may be
generated by a series of frequency calculations at points along the IRC, and the point-
wise potential made continuous by interpolation.The potential may be generated prior
to the reaction path calculation, or generated “on the fly” in a “direct” fashion.27

Moyano and Collins have proposed a hybrid method where all the points calculated
are stored and used for interpolation if the required point is sufficiently close to prior
points.28 This approach thus starts out as a direct type dynamics but ends up with an
implicitly parameterized surface for sufficiently long simulations times. For long 
simulation times or for running many trajectories, the savings by interpolation can be
substantial.

The reaction path method may be generalized by having two “reaction coordinates”
(a reaction surface) treated explicitly and the remaining degrees of freedom treated
approximately, or by having three “reaction coordinates” (a reaction volume).29 These
generalizations are useful for performing mixed classical–quantum dynamics, where
the dynamics with the reaction coordinate(s) are treated quantum mechanically while
the remaining degrees of freedom are treated classically.

The inclusion of dynamical effects allows the calculation of corrections to simple
transition state theory, often described by a transmission coefficient k to be multiplied
with the TST rate constant (Section 13.1), or used in connection with variational TST
(Section 13.5). Classical dynamics allow corrections due to re-crossing to be calculated,
while a quantum treatment is necessary for including tunnelling effects. Owing to the
stringent requirement of a highly accurate global energy surface, there are only a few
systems that have been subjected to a rigorous analysis.

The tunnelling effect is sometimes approximated by inclusion of a semi-classical cor-
rection based on tunnelling through the barrier along the minimum energy path (i.e.
the IRC). The Bell correction is based on the assumption that the (one-dimensional)
energy curve near the transition state can be approximated by a parabola.30 This yields
a correction factor that only depends on the activation energy ∆E≠ and the magnitude
of the imaginary frequency ni, i.e. the curvature of the potential energy surface at the
TS.

(14.25)
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Except for reactions with low barriers (i.e. <40kJ/mol at T = 300K) or at high tem-
peratures, the quantity ∆E≠/kT is large and the last series can be neglected. The tun-
nelling correction is then given completely in terms of the magnitude of the imaginary
frequency. For small values of u≠ the first term may be Taylor expanded to give eq.
(14.26).

(14.26)

The first-order term is known as the Wigner correction.31

It is possible to derive tunnelling corrections for functional forms of the energy
barrier other than an inverted parabola, but these cannot be expressed in analytical
form. Since any barrier can be approximated by a parabola near the TS, and since tun-
nelling is most important for energies just below the top, they tend to give results in
qualitative agreement with the Bell formula.

The main approximation of such one-dimensional corrections is that the tunnelling
is assumed to occur along the MEP. This may be a reasonable assumption for reactions
having either early or late (close to either reactant or product) transition states. For
reactions where bond breaking and formation are both significant at the TS (as is
usually the case), the dominant tunnelling effect is “corner cutting” (Figure 14.1), i.e.
the favoured tunnel path is not along the MEP. Although the energy increases away
from the MEP, the barrier also becomes narrower on the concave side of the reaction
path, which favours the tunnelling probability.
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Figure 14.1 A contour plot illustration of the “corner cutting” tunnelling path

Truhlar and coworkers have developed various approximate schemes for including
tunnelling in multi-dimensional systems.32 In the Minimum Energy Path Semi-classical
Adiabatic Ground state (MEPSAC) approximation the tunnelling is assumed to occur
along the MEP, analogous to the Bell approach, but for an arbitrary shape of the energy
surface. The Small Curvature Semi-classical Adiabatic Ground state (SCSAC) approx-
imation allows tunnelling to occur within one vibrational half-amplitude perpendicu-
lar to the reaction path, while the Large Curvature Ground state (LCG) approximation



allows tunnelling to occur outside this region. The SCSAC method requires a knowl-
edge of the (generalized) frequencies along the IRC (Section 12.8), which can be
obtained by calculating the force constant matrix at suitable intervals and interpolat-
ing the results. The LCG methods require additional calculations away from the IRC.

14.2.8 Non-Born–Oppenheimer methods

The methods in Sections 14.2.5 and 14.2.6 attempt to include nuclear quantum cor-
rections based on the Born–Oppenheimer separation of the nuclear and electronic
degrees of freedom, i.e. solving the nuclear dynamics on a potential energy surface
obtained by solving the electronic Schrödinger equation. When quantum corrections
such as tunnelling are large, however, it is an implicit warning that the Born–Oppen-
heimer approximation may also be problematic. Rather than trying to improve on the
underlying model by adding correction terms, it may be both easier and better to treat
the nuclei within a quantum framework from the start.

Methods that treat all of the electron and nuclear degrees of freedom within a com-
bined quantum framework are starting to appear; so far they are mostly based on a
mean-field (i.e. Hartree–Fock) approximation where the coupling of the nuclear and
electron motions is included in an average fashion. Both conceptual and computational
developments are required before such methods can be considered mature.33 One clear
advantage of these methods is the ability to implicitly include both tunnelling and
vibrational effects, and to selectively treat some nuclei as classical, thereby allowing a
simplification for large systems.

In the spirit of the Car–Parrinello approach, the whole set of variables (nuclei and
wave function parameters) may also be allowed to evolve simultaneously by solving
the time-dependent Schrödinger equation. Örhn and coworkers have developed an
Electron–Nuclear Dynamics (END) method,34 where both the orbitals describing the
electronic wave function and the nuclear degrees of freedom are described by expan-
sion into a Gaussian basis set, which moves along with the nuclei. Such an approach
in principle allows a complete solution of the combined nuclear–electron Schrödinger
equation without having to invoke approximations beyond those imposed by the basis
set. Inclusion of the electronic parameters in the dynamics, however, means that the
fundamental time step is short, and this results in a high computational cost for even
quite short simulations and simple wave functions.

14.2.9 Constrained sampling methods

The reaction path methods described in Section 14.2.7 focuses on the lowest energy
reaction path on the electronic energy surface. The activation energy related to the
experimental reaction rate, however, depends on the free energy, i.e. one would opti-
mally like to locate the reaction path on the free energy surface. For small systems, this
can be done by adding finite temperature corrections to the enthalpy and entropy in
a rigid-rotor harmonic-oscillator approximation based on a second-order expansion of
the energy around each point (eqs (13.36) and (13.37)). For large systems, however,
the harmonic approximation is less suitable and a more complete sampling by dynam-
ical methods is usually desired. This will also yield information about the dynamics in
the perpendicular direction around the reaction path.
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A straightforward sampling of the reaction path is not possible since the dynamics
at ordinary temperatures only very rarely visit the high-energy region near the TS
(unless the activation energy is close to zero). In order to achieve a sampling of a spe-
cific region of the energy surface with molecular dynamics or Monte Carlo methods,
the sampling must be biased towards a specific volume of phase space. Analogously to
the optimization of functions with constraints (Section 12.5), this can be done by two
different methods, a penalty and a Lagrange type approach.

The penalty approach corresponds to augmenting the energy surface with a biasing
potential U, for example a harmonic function centred at position r0 with a suitable
width kU.

(14.27)

By making the biasing potential sufficiently steep (large kU), the energy of the aug-
mented energy surface far from r0 will become so high in energy that only the region
near r0 will be sampled at ambient temperatures, and this technique is called umbrella
sampling.35 The ensemble calculated with the augmented potential V′ will of course be
non-Boltzmann, but this can be deconvoluted as shown in eq. (14.28).

(14.28)

Here 〈〉V′ indicates an average over the ensemble generated by the augmented poten-
tial. By performing a series of simulations with biasing potentials located at different
positions along the reaction path, the free energy along the reaction path, often called
the Potential of Mean Force (PMF), can be simulated.

The Lagrange approach constrains the sampling to the (N − 1)-dimensional subspace
corresponding to a specific value of the reaction coordinate, where the constraint is
fulfilled by means of an additional term in the Hamiltonian involving a Lagrange mul-
tiplier. This is related to the extended Lagrange techniques discussed in Section 14.2.5
and is usually referred to as Blue Moon sampling in the literature, and the Lagrange
multiplier are called holonomic constraints.36

The main disadvantage of the umbrella or Blue Moon sampling techniques is that
the location of the biasing potential must be selected manually and an a priori knowl-
edge of an approximate reaction coordinate is therefore required. Once this has been
selected, the free energy along this path can be calculated. Since the sampling explores
a (small) region around the selected path, the calculated PMF may deviate slightly
from the initial selection. If desired, this updated PMF can then be used for a new
series of simulations with biasing potentials located along the previously calculated
PMF.37 Such adaptive umbrella sampling methods should in principle converge on the
true PMF but, in practice, the convergence is sensitive to the selection of a suitable
initial reaction path.

14.3 Periodic Boundary Conditions
A realistic model of a solution requires at least several hundred solvent molecules. To
prevent the outer solvent molecules from boiling off into space and minimizing surface
effects, periodic boundary conditions are normally employed. The solvent molecules
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are placed in a suitable box, often (but not necessarily) having a cubic geometry 
(it has been shown that simulation results using any of the five types of space-filling
polyhedra are equivalent38). This box is then duplicated in all directions, i.e. the central
box is surrounded by 26 identical cubes, which are again surrounded by 98 boxes,
etc.
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Figure 14.2 Periodic boundary condition

If a solvent molecule leaves the central box through the right wall, its image will
enter the box through the left wall from the neighbouring box. This means that the
resulting solvent model becomes quasi-periodic, with a periodicity equal to the dimen-
sions of the box.

As mentioned in Section 2.2.5, the electrostatic interaction is long-ranged and 
will extend beyond the boundary of a box. Truncating the interaction by using a 
cutoff distance of say 10Å gives discontinuous energies and forces, and has some 
rather unfortunate consequences in giving non-physical distributions of the solvent
molecules near the cutoff distance and producing “hot” and “cold” spots. A switching
function approach, where the interaction is gradually reduced to zero over a range of
a few angstroms performs significantly better.39 The switching function is multiplied
onto the real potential and has the effect of smoothly reducing the potential from 
its real value to zero over a distance range from R1 to R2. An example of a third-
order switching function that has zero first derivatives at both limits40 is shown in eq.
(14.29).

(14.29)

An alternative form for the central part that also has vanishing second derivatives at
both limits is given in eq. (14.30).

(14.30)

A variation of this is to use a shifting function, which corresponds to a switching func-
tion with R1 = 0. Such functions modify the potential for all r values less than R2 and
an example is given in eq. (14.31).
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(14.31)

The use of both switching and shifting functions modifies the model, since the poten-
tial and forces are changed, and therefore affects the results of the simulation.Whether
these changes are significant relative to the other approximations in the model depends
on the specific system and properties.

Figure 14.3 shows the energy function of two unit charges interacting with a
Coulomb potential, one that has been subjected to the switching function eq. (14.29)
with R1 = 10Å and R2 = 12Å, and one that has been subjected to the shifting function
eq. (14.31) with the same limits.
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Figure 14.3 Difference between original, switched and shifted Coulomb potentials

Methods have also been developed where the electrostatic interaction is treated
“exactly” (to within a numerical threshold), but without having to perform the N 2 sum-
mation over all atoms. Ewald sum methods have been developed for periodic systems
(such as crystals) but can also be applied to quasi-periodic models arising by applying
periodic boundary conditions. The idea in these methods is to split the interaction into
a “near”- and “far”-field contribution.41 The near-field contribution is obtained by
embedding each point charge in a screening potential, taken as a Gaussian function
with an exactly opposing charge centred at the position of the point charge. Outside
the range of the screening function, essentially given by the width of the Gaussian, the
net charge is thus zero, and the interaction between these screened point charges is
therefore short-ranged and can be evaluated directly. In order to recover the original
point charge interaction, the effect of the screening potentials must be subtracted
again.This compensating term is an interaction between Gaussian charge distributions,



which is long-ranged. Since it is a smooth charge distribution, however, it can be eval-
uated efficiently in reciprocal space by Fourier transform methods. The only free
parameter is the width of the Gaussian potential. A narrow Gaussian function makes
the direct-space part converge rapidly, but the reciprocal-space part converge slowly,
and vice versa for a wide Gaussian function. The optimum width is given by the con-
dition that the computational effort is distributed equally between the direct and recip-
rocal sums.
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Screened point charges

Compensating charges

Figure 14.4 Illustration of the Ewald method

A key point in these methods is the existence of computationally efficient methods
for performing Fourier transformations, which reduces the scaling from N2 to N3/2. A
related method is the Particle Mesh Ewald (PME) method, which scales (only) as
Nln(N).42

The Fast Multipole Moment (FMM) method similarly splits the contribution into a
near- and far-field, and calculates the near-field exactly.43 The far-field energy is calcu-
lated by dividing the physical space into boxes, and the interaction between all mole-
cules in one box with all molecules in another is approximated as interactions between
multipoles located at the centres of the boxes. The further away from each other two
boxes are, the larger the boxes can be for a given accuracy, thereby reducing the formal
N2 scaling into something that approaches linear scaling. The prefactor, however, is
rather large and when properly implemented it appears that the cross-over point,
where FMM becomes faster than PME, is around 105 particles. FMM furthermore
works best when the particles are relatively uniformly distributed; for a non-uniform
distribution of particles, the multipole order must be significantly increased in order
to achieve a given accuracy. A disadvantage of FMM is that the maximum error (rel-
ative to an exact calculation) is significantly larger than for Ewald type methods, i.e.
there are certain particle pairs for which the error is larger than the average error by
perhaps a factor of 10. FMM, in contrast to Ewald-based methods, however, does not
have the requirement of periodicity, i.e. it is capable of modelling large non-periodic
systems.

The original FMM has been refined by also adjusting the accuracy of the multipole
expansion as a function of the distance between boxes, producing the very Fast Multi-
pole Moment (vFMM) method.44

The exact calculation of the electrostatic interaction, albeit by treating the system
as being pseudo-crystalline, has been shown to give significantly different results than
a simple truncation scheme45 and also different from a switching function approach.46

Given the existence of computationally efficient methods for performing for example
PME, there seems to be little reason for employing a non-physical truncation of the
electrostatic interaction.



14.4 Extracting Information from Simulations
A necessary (but not sufficient) requirement for producing a representative sampling
is that the system is in equilibrium. The starting configuration may be generated by
completely random positions (and velocities for MD), but is more often taken either
from a previous simulation or by placing the particles at or near the lattice points of
a suitable crystal. The system is then equilibrated by running perhaps 104–105 MC or
MD steps, followed by perhaps 105–107 production steps.Various quantities, such as the
average potential energy or correlation functions, can be monitored to validate
whether equilibrium has been achieved.

The averaging in eq. (14.1) should be over configurations that are uncorrelated, and
this is not the case for nearby points in an MD trajectory or sequence of MC steps.
The whole set of points should therefore be divided into blocks with a length that is
sufficiently long to make equivalent points in two neighbouring blocks uncorrelated,
but preferably also with a length that is sufficiently short so that no information is lost.
Flyvbjerg and Pedersen have shown how to determine the optimum block length by
a sequence of statistical analyses.47 For the original data set the mean and variance are
calculated according to eq. (14.32).

(14.32)

The variance calculated from eq. (14.32) is only valid for uncorrelated data, which is
not the case for the original data. In order to get a realistic estimate of the true vari-
ance, we must perform a data compression to filter out the dependence, i.e. find the
block size for producing uncorrelated data and calculate the variance using this block-
ing. The method of Flyvbjerg and Pedersen consists of performing a sequence of data
compressions by averaging two neighbouring points, thereby reducing the data size by
a factor of 2, and calculating the corresponding variance (the mean is unchanged).
The variance divided by the number of data points at a given level, s 2/(N′ − 1), will
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Figure 14.5 Illustration of the fast multipole moment method



initially increase and then level off to a constant value as the data within two con-
secutive blocks become uncorrelated. The point where the value becomes constant is
the optimum block size for the given property and the s 2/(N′ − 1) quantity can be
taken as the estimate of the true variance of the property.The distance between (uncor-
related) data in MD methods has the dimension of time and is called the correlation
time. It is important to recognize that different properties may have different correla-
tion times, and for some properties it may be comparable to or exceed the total length
of the simulation. A clear advantage of the above procedure for determining the
optimum block size is that the statistical error bars associated with the variance can
also be calculated, i.e. the standard deviation of the variance (eq. (14.33)).

(14.33)

Here the prime notation indicates the data set at a given compression level. Eq. (14.33)
clearly illustrates that the estimate of the variance becomes increasingly uncertain as
the number of data blocks decreases, i.e. when the data has been compressed into only
two blocks, the (relative) standard deviation is . In order to determine whether it
is actually possible to obtain uncorrelated data from the simulation, a plot of s2/(N′ −
1) against compression level should therefore include the associated statistical error
from eq. (14.33). If the statistical errors impinge on a conclusion as to whether a con-
stant plateau has been reached, this is an indication that the simulation length is insuf-
ficient for obtaining valid estimates of the given quantity.

Ensembles generated by MC techniques are naturally of the constant NVT type,
while MD methods naturally generate a constant NVE ensemble. Both MC and MD
methods, however, may be modified to simulate other ensembles, as described in Sec-
tions 14.1.1 and 14.2.2. Of special importance is the constant NPT condition, which
directly relates to most experimental conditions. The primary advantage of MD
methods is that time appears explicitly, i.e. such methods are natural for simulating
time-dependent properties, such as correlation functions, and for calculating proper-
ties that depend on particle velocities. Furthermore, if the relaxation time for a given
process is (approximately) known, the required simulation time can be estimated
beforehand (i.e. it must be at least several multiples of the relaxation time).

In order to reduce the statistical error, the averaging in eq. (14.1) is typically per-
formed on 103–105 points in phase space. The requirement of calculating this many
points and associated energies for a model consisting of several hundred particles
means that the use of ab initio methods is extremely demanding, even for small systems
and simple wave functions. Semi-empirical electronic structure methods may be used
for small systems, implicitly accepting the low accuracy of these methods, but the large
number of calculations necessary still makes this computationally intensive. The large
majority of simulations are therefore carried out with an energy surface generated by
a parameterized function of the force field type.

The expressions derived from statistical mechanics (Section 13.4) are often rewrit-
ten into computationally more suitable forms that may be evaluated from the basic
descriptors: positions r, velocities v or momenta p and energies E. The temperature is
related to the average kinetic energy.
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(14.34)

In a standard MC simulation the temperature is fixed (NVT conditions), while it is a
derived quantity in a standard MD simulation (NVE conditions).

The pressure is related to the product of positions and forces (for pairwise 
potentials).

(14.35)

Here the first part is for an ideal gas.
The internal (potential) energy is directly a sum of energies, which is normally given

as a sum over pairwise interactions (i.e. van der Waals and electrostatic contribution
in a force field description).

(14.36)

The internal energy will fluctuate around a mean value that may be calculated by aver-
aging over the number of configurations, 〈U〉M.

The heat capacity at constant volume is the derivative of the energy with respect to
temperature at constant volume (eq. (13.17).There are several ways of calculating such
response properties.The most accurate is to perform a series of simulations under NVT
conditions and thereby determine the behaviour of 〈U〉M as a function of T (for
example by fitting to a suitable function). Subsequently this function may be differen-
tiated to give the heat capacity. This approach has the disadvantage that several sim-
ulations at different temperatures are required. Alternatively, the heat capacity can be
calculated from the fluctuation of the energy around its mean value.

(14.37)

This approach requires only a single simulation. Since the fluctuation has a longer
relaxation time than the energy itself, the ensemble average in eq. (14.37) must be over
a larger number of points than for 〈U〉M to achieve a similar statistical error, i.e. the
efficiency obtained by avoiding multiple simulations is partly lost owing to a longer
simulation time required. Another disadvantage is that eq. (14.37) involves taking dif-
ferences between large numbers, which is susceptible to round-off errors.

Distribution functions measure the (average) value of a property as a function of an
independent variable. A typical example is the radial distribution function g(r) that
measures the probability of finding a particle as a function of distance from a “typical”
particle relative to that expected from a completely uniform distribution (i.e. an ideal
gas with density N/V). The radial distribution function is defined in eq. (14.38).
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Here N(r,∆r) is the number of molecules between r and r + ∆r from another particle,
and 4πr2 ∆r is the volume of a spherical shell with thickness ∆r.

For a solution, the radial distribution function will typically have a structure as shown
in Figure 14.6 for a simulation of a benzene radical anion in water.48

Figure 14.6 displays the radial distribution function of hydrogen relative to the
centre of mass of the benzene radical anion. At short distances, the probability is zero
due to van der Waals repulsion. The distribution function then rises sharply to a value
of ~1.7 for a distance of ~1.8Å, indicating that it is 1.7 times more likely to find par-
ticles with this separation than in an ideal gas. This corresponds to water molecules
that are located above or below the molecular plane. A second peak occurs at ~3.2Å,
which corresponds to water molecules located around the edge of the benzene mole-
cule. The integral under a peak gives the number of solvent molecules of a given type.
At long range the distribution function levels off to a value of 1, i.e. the particles no
longer sense each other and behave as in an ideal gas.

For molecules, the radial distribution function can be extended with orientational
degrees of freedom to characterize the angular distribution.

Correlation functions measure the relationship between two variables, x and y. A
common definition is given in eq. (14.39).

(14.39)

The correlation function is a number between −1 and 1, where 1 indicates that the two
quantities are completely correlated, −1 that they are (completely) anti-correlated, and
0 means that they are independent (uncorrelated).
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Figure 14.6 A typical radial distribution function



Often such correlation functions are time dependent and measure how the correla-
tion between two quantities changes over time. They may be normalized by the cor-
responding static (i.e. t = t0) limit.

(14.40)

Notice that the averaging is done over the number of particles N and t0, but not the
number of configurations M. Since an MD simulation produces a set of time-connected
configurations, the number of a given configuration is directly related to the simula-
tion time.

In the case where x and y are the same, Cxx(t) is called an autocorrelation function;
if they are different, it is called a cross-correlation function. For an autocorrelation
function, the initial value at t = t0 is 1, and it approaches 0 as t → ∞. How fast it
approaches 0 is measured by the relaxation time. The Fourier transforms of such cor-
relation functions are often related to experimentally observed spectra; the far IR spec-
trum of a solvent, for example, is the Fourier transform of the dipole autocorrelation
function.49

(14.41)

14.5 Free Energy Methods
As noted in Section 13.6, it is difficult to calculate entropic quantities with any rea-
sonable accuracy within a finite simulation time. It is, however, possible to calculate
differences in such quantities.50 Of special importance is the Gibbs free energy, since it
is the natural thermodynamic quantity under normal experimental conditions (con-
stant temperature and pressure, Table 14.1), but we will illustrate the principle with
Helmholtz free energy instead (constant temperature and volume). As indicated in eq.
(13.6) the fundamental problem is the same. There are two commonly used methods
for calculating differences in free energy: Thermodynamic Perturbation and Thermo-
dynamic Integration.51

14.5.1 Thermodynamic perturbation methods

The difference in entropy properties between two systems A and B can be calculated
by an ensemble average, as discussed in Section 13.6.

(14.42)

Since the energy difference must be small compared with kT, the transformation from
A to B must usually be broken into several intermediate steps described by a l param-
eter, and the total free energy change is given as the sum of changes in each step.

(14.43)

To test the quality of the averaging, the perturbation is usually run in both directions
(i.e. A → B and B → A), and the difference is taken as a measure of how well ∆A is
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statistically converged. It should be noted that (too) short simulation times may lead
to forward- and backward-calculated values that are in good agreement, without the
energy difference being calculated accurately. Establishing a reliable estimate of the
statistical error requires running several independent simulations and carefully ana-
lyzing the size of the perturbation steps and the correlation times for the various
processes occurring in the system.52 Calculation of free energy differences by 
means of eq. (14.42) is often called Thermodynamic Perturbation53 or Free Energy
Perturbation (FEP).

Instead of performing a series of simulations with a fixed energy function as in eq.
(14.42), it may also be allowed to change continuously during a single simulation by
changing l slightly in each time step. This is called the Slow Growth method and
requires that the increase in l is slow enough that the system essentially remains at
equilibrium at all times. This is difficult to ensure in practice,54 and the slow growth
method is therefore less commonly used.

14.5.2 Thermodynamic integration methods

Given an energy function as in eq. (14.43), the partition function, and thereby also the
free energy, is a function of l.

(14.44)

Differentiating this expressions yields eq. (14.45).

(14.45)

Here the definition of Q (eq. (13.4)) has been used. Replacing the right-hand side by
an ensemble average and integrating over l gives eq. (14.46).

(14.46)

The left-hand side is the desired free energy difference, and the right-hand side may
be approximated by a discrete sum.

(14.47)

The use of eq. (14.47) for calculating ∆A is normally called Thermodynamic Integra-
tion (TI).55 The difference between eqs (14.42) and (14.47) is that the former averages
over finite differences in energy functions, while the latter averages over a differenti-
ated energy function. For parameterized energy functions, it is fairly easy to form the
energy derivative with respect to the coupling parameter analytically, and the averag-
ing in (14.47) is therefore no more complicated than averaging over energy differences
as in eq. (14.42). Furthermore, it should be noted that the computational cost of per-
forming the averaging is negligible compared with the cost of generating the ensem-
ble, and the same ensemble can therefore be used to calculate the free energy
difference by either eq. (14.42) or (14.47). This allows a measure of the reliability of
the calculated value to be obtained.
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Free energy calculations are often combined with thermodynamic cycles to calculate
properties that would otherwise require impossible long simulation times.56 A direct
calculation of for example solvating acetone in water would require simulating the
transfer of an acetone molecule from the gas phase (vacuum) to an aqueous phase,
followed by solvent reorganization. If we wish to calculate the solvation energy of
acetone relative to propane, this would require a second (impossibly long) simulation
of transferring a propane molecule into the aqueous phase. Alternatively, the differ-
ence in solvation may be calculated by means of the thermodynamic cycle shown in
Figure 14.7.
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Figure 14.7 An example of a thermodynamic cycle for calculating differences in solvation energies

Since G is a state function, the difference in solvation energy, ∆Gsolv,A − ∆Gsolv,B, which
is difficult to calculate, may instead be obtained as ∆∆Gsolv − ∆∆Ggas. If A and B are
different molecules, such as acetone and propane, the ∆∆G values correspond to non-
physical transformations.Theoretically, however, it is quite easy to transform an oxygen
atom into two hydrogens. The ∆∆Ggas value corresponds to differences in the internal
(translational, rotational and vibrational) degrees of freedom, which can be calculated
as discussed in Section 13.5. This difference also is part of ∆∆Gsolv, but if the internal
energy levels are assumed to be independent of solvent, the solvent part of ∆∆Gsolv is
directly the difference in solvation.

In the acetone/propane example, the A to B change means that the oxygen atom
gradually disappears, and two hydrogens gradually appear at the appropriate positions.
In the force field energy expression, this corresponds to reducing or increasing van der
Waals parameters and atomic charges, as well as changing all other parameters that
are affected by the change in atom types. For l = 0.5, the A/B “molecule” thus con-
sists of a CH3—C—CH3 framework, with the central carbon having “half” a carbonyl
oxygen and two “half” hydrogens attached. Absolute values of solvation energies may
be calculated by transforming a solvent molecule to the solute, but if they are struc-
turally very different it may require long simulation times to ensure that equilibrium
is attained.

The technique of thermodynamic cycles may be used for calculating relative free
energies for a variety of other cases. Differential binding of two ligands to an enzyme,
for example, requires transforming one ligand into the other in a pure solution, and
when bound to the enzyme. The strength of free energy methods is that differences in
free energies may be obtained with a statistical accuracy of a few kJ/mol, at quite rea-
sonable computational costs. Whether the calculated values agree with experimental
results depends on the quality of the force field, but there are models for many sol-
vents that are capable of providing an accuracy of better than a few kJ/mol in terms
of absolute values.



The basic requirement of free energy perturbation or thermodynamic integration
methods is that the non-physical transformation is carried out in sufficiently small steps
that the sampling of the phase space at two successive points overlaps. Even for quite
similar systems, this often means that the transformation must be broken into 10–20
steps, with each step requiring extensive sampling, and this makes such methods com-
putationally intensive. In the Linear Interaction Energy (LIE) method, only the phys-
ical end-points for the thermodynamic cycle in Figure 14.7 are subjected to a
simulation.The difference in binding free energy is then parameterized as a linear com-
bination of the difference in the non-polar (van der Waal) and polar (electrostatic)
interactions between the ligands and surroundings (enzyme or solvent).57

(14.48)

The b constant is expected to have a value of 0.5 from theoretical arguments. Opti-
mization of the three parameters against experimental binding energies for the
P450cam system confirms that the optimum b value is close to 0.5, while α and g have
values of ~0.18 and ~−4.5.58 It is unclear to what extent these parameter values will
depend on the specific system but the LIE offers a computational saving of an order
of magnitude or more compared with FEP or TI methods.

14.6 Solvation Models
An important aspect of computational chemistry is to evaluate the effect of the envi-
ronment, such as a solvent. Methods for evaluating the solvent effect may broadly be
divided into two types: those describing the individual solvent molecules and those that
treat the solvent as a continuous medium.59 Combinations are also possible, for
example by explicitly considering the first solvation shell and treating the rest by a con-
tinuum model. Each of these may be subdivided according to whether they use a clas-
sical or quantum mechanical description. By far the most important solvent is water,
and since it is also one of the most difficult systems to model, the majority of methods
have been focused on water, and we will use this for exemplification in the following.

The effects of solvation can be partitioned into two main groups:

• Non-specific (long-range) solvation

° Polarization

° Dipole orientation
• Specific (short-range) solvation

° Hydrogen bonds

° van der Waals interaction

° Solvent shell structure

° Solvent–solute dynamics

° Charge transfer effects

° Hydrophobic effects (entropy effects).

The non-specific effects are primarily solvent polarization and orientation of the
solvent electric multipole moments by the solute, where the dipole interaction is
usually the most important. These effects cause a screening of charge interactions,
leading to the (macroscopic) dielectric constant being larger than 1. The microscopic
interactions are primarily located in the first solvation shell, although the second 
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solvation shell may also be important for multiple-charged ions.The microscopic inter-
actions depend on the specific nature of the solvent molecule, such as the shape and
the ability to form hydrogen bonds.

A molecular description involves periodic boundary conditions and sampling the
phase space by simulation methods. Such methods are in principle capable of account-
ing for all of the above solvent effects but the quality of the results will of course
depend on how realistically the solvent–solute and solvent–solvent interactions are
described. The requirement of many (hundreds or thousands of) solvent molecules to
form a realistic model means that force field methods are often the primary choice
from computational considerations. Since polarizable force fields are not yet in
common use, this means that a major part of the non-specific solvation is lacking.
Car–Parrinello methods using density functional theory for describing the interaction
are significantly more expensive and can therefore only give a limited sampling of the
phase space. They can account for the polarization but usually have a poor description
of the van der Waals interaction. Semi-empirical electronic structure methods (AM1,
PM3) are in general not sufficiently accurate for calculating intermolecular potentials.
Mixed QM/MM methods, where the solute is described by a (quantum) electronic
structure method and the solvent by a (classical) force field can account for the polar-
ization of the solute, but the back-polarization again requires a polarizable force field.

Methods involving an explicit description of the solvent molecules require, analo-
gously with other many-body methods, a sampling of the phase space. Since this is
computationally expensive, there is a strong interest in developing methods where the
solvent is modelled in a less rigorous fashion. The solvent–solute dynamics can be
taken into account in an average fashion by the Langevin dynamics method (Section
14.2.3).The non-specific effects of solvation can be modelled by considering the solvent
as a homogeneous medium with a dielectric constant, as will be discussed in more detail
in the next section.

14.7 Continuum Solvation Models
Continuum models60 consider the solvent as a uniform polarizable medium with a
dielectric constant of e, and with the solute M placed in a suitably shaped hole in the
medium (Figure 14.8).61
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Figure 14.8 Reaction field model



Creation of a hole in the medium costs energy, i.e. this is a destabilization, while dis-
persion interactions between the solvent and solute add a stabilization (this is roughly
the van der Waals energy between solvent and solute). In principle, there may also be
a repulsive component, thus the dispersion term is sometimes denoted dispersion/
repulsion. The electric charge distribution of M will polarize the medium (induce
charge moments), which in turn acts back on the molecule, thereby producing an elec-
trostatic stabilization. The solvation (free) energy may thus be written as in eq. (14.49).

(14.49)

Reaction field models differ in five aspects:

(1) How the size and shape of the hole are defined.
(2) How the cavity/dispersion contribution is calculated.
(3) How the charge distribution of M is represented.
(4) How the solute M is described, either classical (force field) or quantum (semi-

empirical or ab initio).
(5) How the dielectric medium is described.

The dielectric medium is normally taken to have a constant value of e, but may for
some purposes also be taken to depend for example on the distance from M. For
dynamical phenomena it can also be allowed to be frequency dependent,62 i.e. the
response of the solvent is different for a “fast” reaction, such as an electronic transi-
tion, and a “slow” reaction, such as a molecular reorientation. It should be noted that
e is the only parameter characterizing the solvent, and solvents having the same e value
(such as acetone, e = 20.7, and 1-propanol, e = 20.1, or benzene, e = 2.28, and carbon
tetrachloride, e = 2.24) are thus treated equally. The hydrogen bonding capability of 
1-propanol compared with acetone will in reality most likely make a difference, and
the solvent dynamics of an almost spherical CCl4 will be different from the planar
benzene molecule.

The simplest shape for the hole is a sphere or an ellipsoid. This has the advantage
that the electrostatic interaction between M and the dielectric medium may be calcu-
lated analytically. More realistic models employ molecular shaped holes, generated for
example by interlocking spheres located on each nucleus. Taking the atomic radius as
a suitable factor (a typical value is 1.2) times a van der Waals radius defines a van der
Waals surface. Such as surface may have small “pockets” where no solvent molecules
can enter and a more appropriate descriptor may be defined as the surface traced out
by a spherical particle of a given radius (a typical radius of 1.4Å to model a water mol-
ecule) rolling on the van der Waals surface. This is denoted the Solvent Accessible
Surface (SAS) and is illustrated in Figure 14.9.

Since an SAS is computationally more expensive to generate than a van der Waals
surface, and since the difference is often small, a van der Waals surface is often used
in practice. Furthermore, a very small displacement of an atom may alter the SAS in
a discontinuous fashion, as a cavity suddenly becomes too small to allow a solvent mol-
ecule to enter. Alternatively, the cavity may be calculated directly from the wave func-
tion, for example by taking a surface corresponding to an electron density of 0.001.63

It is generally found that the shape of the hole is importan, and that molecular shaped
cavities are necessary to be able to obtain good agreement with experimental data
(such as solvation energies). It should be emphasized, however, that reaction field
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models are incapable of modelling specific (short-range) solvation effects, i.e. those
occurring within the first solvation sphere.

The energy required to create the cavity (entropy factors and loss of solvent–solvent
van der Waals interactions), and the stabilization due to van der Waals interactions
between the solute and solvent (which may also contain a small repulsive component),
is usually assumed to be proportional to the surface area. The corresponding energy
terms may be taken simply as being proportional to the total SAS area (a single pro-
portionality constant), or parameterized by having a constant x specific for each atom
type (analogous to van der Waals parameters in force field methods), with the x param-
eters being determined by fitting to experimental solvation data.

(14.50)

(14.51)

For solvent models where the cavity/dispersion interaction is parameterized by fitting
to experimental solvation energies, the use of a few explicit solvent molecules for the
first solvation sphere is not recommended, as the parameterization represents a best
fit to experimental data without any explicit solvent present. The electrostatic compo-
nent of eq. (14.49) can be described at several different levels of approximation, as dis-
cussed in the following sections.

14.7.1 Poisson–Boltzmann methods

The Poisson equation is a second-order differential equation describing the connec-
tion between the electrostatic potential f, the charge distribution r and the dielectric
constant e.64

(14.52)

Note that the dielectric “constant” may depend on the position. When it is independ-
ent of the position (i.e. truly a constant), eq. (14.52) becomes eq. (14.53).
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Figure 14.9 On a surface generated by overlapping van der Waals spheres there will be areas
(hatched) that are inaccessible to a solvent molecule (dotted sphere)



If the charge distribution is a point charge, the solution of eq. (14.53) reduces to the
Coulomb interaction. Eq. (14.52) can be used for describing for example the solvation
of a protein in water, where the protein region is taken to have a low dielectric con-
stant (2 < e < 5) while the solvent has a high dielectric constant (e = 78). The bound-
ary between the two regions is typically taken as the SAS.

The Poisson equation can be modified by taking into account a (thermal) Boltzmann
distribution of ions in the solvent. The negative ions will accumulate where the poten-
tial is positive, and vice versa, subject to a thermal fluctuation. The charge densities
from a collection of ions with charges q and −q and concentration c are given by 
eq. (14.54).

(14.54)

Addition of these contributions to eq. (14.52) leads to the Poisson–Boltzmann
Equation (PBE).

(14.55)

Here I is the ion strength of the solution, and the k 2 factor is inversely related to the
Debye–Hückel length, measuring how far the electrostatic effects extend into the solu-
tion. The sinh(qf(r)/kT) term only applies for the region corresponding to the solvent,
i.e. for r outside the cavity. Since qf/kT is dimensionless, the PBE is often written in
terms of a reduced potential u instead.

(14.56)

If the potential is sufficiently small (i.e. the solute is not strongly charged), the sinh(x)
function can be expanded in a Taylor series, sinh(x) ≈ x + x3/6 +. . . . Keeping only the
first term gives the Linearised Poisson–Boltzmann Equation (LPBE).

(14.57)

All of these equations ((14.52)–(14.57)) are differential equations that must be solved
numerically, typically by a grid representation, and the results give information about
the electrostatic potential at any point in space. It can be mapped onto the surface of
the solute where it may suggest regions for interaction with other polar molecules. It
can also be used for generating the reaction field, defined as the difference between
the potential in the presence of a solvent (e = 78) and in vacuum (e = 1), i.e. freac =
fsolv − fvac. Multiplication of the reaction field with the solute charges in either a 
continuous (r) or partial charge (Q) description gives the electrostatic component of
the free energy.

(14.58)
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14.7.2 Born/Onsager/Kirkwood models

The numerical aspects of solving the Poisson or Poisson–Boltzmann equations make
them too demanding for use in connections with for example geometry optimizations
of macromolecules. For certain special cases, however, the Poisson equation (14.52) can
be solved analytical, and this forms the basis for many approximate models for esti-
mating the electronic component in eq. (14.49).

The simplest reaction field model is a spherical cavity, where only the lowest order
electric moment of the molecule is taken into account. For a net charge q in a cavity
of radius a, the difference in energy between a vacuum and a medium with a dielec-
tric constant of e is given by the Born model.65

(14.59)

It can be noted that the Born model predicts equal solvation energies for positive and
negative ions of the same size, which is not the observed behaviour in solvents such as
water. Furthermore, the reciprocal dependence on the dielectric constant means that
the calculated solvent effect is sensitive to the variation of e in the low dielectric limit
but virtually unaffected by large differences in the high dielectric limit. Changing e
from 1 to 2 gives a factor of 1/2 in eq. (14.59) but there is virtually no difference between
a solvent with a dielectric constant of 30 (e.g. acetonitrile) and one with a dielectric
constant of 78 (e.g. water), although in actual experiments there may be a significant
difference.

Using partial atomic charges in eq. (14.59) is often called the generalized Born
model, which has been used especially in connection with force field methods in the
Generalized Born/Surface Area (GB/SA) model.66 In this case, the Coulomb interac-
tion between the partial charges (eq. (2.20)) is combined with the Born formula by
means of a function fij depending on the internuclear distance and Born radii for each
of the two atoms, ai and aj.

(14.60)

The effective Born radius for a given atom depends on the nature and position of all
the atoms. In practice, the dependence on the other atoms is relatively weak, and
updates of the ai parameters can be done at suitable intervals, for example when updat-
ing the non-bonded list in an optimization or simulation. The boundary between the
solute and solvent is usually taken as a modified van der Waals surface generated from
the unification of atomic van der Waals radii scaled by a suitable factor. The cavity/dis-
persion terms are parameterized according to the SAS, as in eq. (14.51). The GB/SA
model provides a very fast method of incorporating solvent effects, and it is further-
more relatively easy to formulate gradients of the energy function, making it possible
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to perform optimization and simulations. It has been shown to reproduce the results
from Poisson–Boltzmann calculations rather accurately, but it should be noted that the
results are somewhat sensitive to the magnitude of the partial charges.

The dipole in a spherical cavity is known as the Onsager model,67 which for a dipole
moment of m leads to an energy stabilization given by eq. (14.61).

(14.61)

The Kirkwood model68 refers to a general multipole expansion in a spherical cavity,
while the Kirkwood–Westheimer model arises for an ellipsoidal cavity.69

The charge distribution of the molecule can be represented either as atom-centred
partial charges or as a multipole expansion. For a neutral molecule, the lowest order
approximation considers only the dipole moment. This may be a quite poor approxi-
mation, and fails completely for symmetric molecules that do not have a dipole
moment. For obtaining converged results, it is often necessarily to extend the expan-
sion up to order six or more, i.e. including dipole, quadrupole, octupole, etc., moments.
Furthermore, only for small and symmetric molecules can the approximation of a
spherical or ellipsoidal cavity be considered realistic. The use of the Born/
Onsager/Kirkwood models should therefore only be considered as a rough estimate
of the solvent effects, and quantitative results can rarely be obtained.

14.7.3 Self-consistent reaction field models

A classical description of the molecule M in Figure 14.9 can be a force field with
(partial) atomic charges, while a quantum description involves calculation of the elec-
tronic wave function. The latter may be either a semi-empirical model, such as AM1
or PM3, or more sophisticated electronic structure methods, i.e. HF, DFT, MCSCF,
MP2, CCSD, etc. When a quantum description of M is employed, the calculated elec-
tric moments induce charges in the dielectric medium, which in turn acts back on the
molecule, causing the wave function to respond and thereby changing the electric
moments, etc. The interaction with the solvent model must thus be calculated by an
iterative procedure, leading to various Self-Consistent Reaction Field (SCRF) models.

The interaction of a fixed dipole moment with a polarizable medium is given by eq.
(14.61). This, however, is not an SCRF model, as the dipole moment and stabilization
are not calculated in a self-consistent way. When the back-polarization of the medium
is taken into account, the dipole moment changes, depending on how polarizable the
molecule is. Taking only the first-order effect into account, the stabilization is given by
eq. (14.62).

(14.62)

Here a is the molecular polarizability, i.e. the first-order change in the dipole moment
with respect to an electric field. In the SCRF model the full polarization is taking 
into account, i.e. the initial dipole moment generates a polarization of the medium,
which changes the dipole moment, which in turn generates a slightly different polar-
ization, etc.
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For spherical or ellipsoidal cavities the Poisson equation can be solved analytically,
but for molecular shaped surfaces it must be done numerically. This is typically done
by reformulating it in terms of a surface integral over surface charges, and solving this
numerically by dividing the surface into smaller fractions each having an associated
charge s(rs). The surface charges are related to the electric field F (the derivative of
the potential f) perpendicular to the surface by eq. (14.63).

(14.63)

Once s(rs) is determined the associated potential is added as an extra term to the
Hamiltonian operator.

(14.64)

The potential fs from the surface charge is given by the molecular charge distribution
(eq. (14.64)), but also enters the Hamiltonian and thus influences the molecular wave
function. The procedure is therefore iterative.

For the case of the Onsager model (spherical cavity, dipole moment only) the term
added to the molecular Hamiltonian operator is given by eq. (14.65).

(14.65)

Here r is the dipole moment operator (i.e. the position vector), and R is proportional
to the molecular dipole moment, with the proportionality constant depending on the
radius of the cavity and the dielectric constant.

(14.66)

At the HF level of theory, the fs operator corresponds to the addition of an extra term
to the Fock matrix elements (Section 3.5).

(14.67)

The additional integrals are just expectation values of x, y and z coordinates, and their
inclusion requires very little additional computational effort. Generalization to higher
order multipoles is straightforward.

In connection with electronic structure methods (i.e. a quantum description of M),
the term SCRF is quite generic and it does not by itself indicate a specific model.
Typically, however, the term is used for models where the cavity is either spherical or
ellipsoidal, the charge distribution is represented as a multipole expansion, often ter-
minated at quite low orders (for example only including the charge and dipole terms),
and the cavity/dispersion contributions are neglected. Such a treatment can only be
used for a qualitative estimate of the solvent effect, although relative values may be
reasonably accurate if the molecules are polar (dominance of the dipole electrostatic
term) and sufficiently similar in size and shape (cancellation of the cavity/dispersion
terms).
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The cavity size in the Born/Onsager/Kirkwood models strongly influences the cal-
culated stabilization. Unfortunately, there is no consensus on how to choose the cavity
radius. In some cases, the molecular volume is calculated from the experimental density
of the solvent and the cavity radius is defined by equating the cavity volume to the
molecular volume. Alternatively, the cavity size may be derived from the (experimen-
tal) dielectric constant and the calculated dipole moment and polarizability.70 In any
case, the underlying assumption of these models is that the molecule is roughly spher-
ical or ellipsoidal, which is only generally true for small compact molecules.

More sophisticated models employ molecular shaped cavities, but there is again no
consensus on the exact procedure. The cavity is often defined based on van der 
Waals radii of the atoms in the molecule multiplied with an empirical scale factor.
Alternatively, the molecular volume may be calculated directly from the electronic
wave function, for example by using a contour surface corresponding to an electron
density of 0.001.

The Polarizable Continuum Model (PCM) employs a van der Waals cavity formed
by interlocking atomic van der Waals radii scaled by an empirical factor, a detailed
description of the electrostatic potential, and parameterizes the cavity/dispersion 
contributions based on the surface area.71 The COnductor-like Screening MOdel
(COSMO) also employs molecular shaped cavities, and represents the electrostatic
potential by partial atomic charges. COSMO was originally implemented for semi-
empirical methods but has also been used in connection with ab initio methods.72 It
may be considered as a limiting case of the PCM model, where the dielectric constant
is set to infinity. The Solvation Models (SMx, where x = 1–5) developed by Cramer and
Truhlar are generalized Born type models used in connection with the semi-empirical
AM1 and PM3 methods.73 The partial atomic charges are calculated from the wave-
function, and the dispersion/cavity terms in eq. (14.49) are parameterized based on the
solvent exposed surface area, eq. (14.51). The version number of these models reflects
increasingly sophisticated parameterizations.

The “mixed” solvent models, where the first solvation shell is accounted for by
including a number of solvent molecules, implicitly include the solute–solvent
cavity/dispersion terms, although the corresponding terms between the solvent mole-
cules and the continuum are usually neglected. Once discrete solvent molecules are
included, however, the problem of configurations sampling arises. Furthermore, a para-
meterization of the continuum model against experimental data must be done by
explicitly taking the first solvation shell into account. Nevertheless, in many cases, the
first solvation shell is by far the most important, and mixed models may yield sub-
stantially better results than pure continuum models, at the price of an increased com-
putational cost.

Given the diversity of the various SCRF models, and the fact that solvation ener-
gies in water may range from a few kJ/mol for say ethane to perhaps several hundred
kJ/mol for an ion, it is difficult to evaluate just how accurately continuum methods may
in principle be able to represent solvation. It seems clear, however, that molecular
shaped cavities must be employed, the electrostatic polarization needs a description
either in terms of atomic charges or quite high order multipoles, and cavity and dis-
persion terms must be included. Properly parameterized, such models appear to be
able to give absolute values with an accuracy of a few kJ/mol.74 Comparison with results
obtained by explicit solvent modelling, however, suggests that the electrostatic 
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component is underestimated by continuum models by roughly a factor of 2, while the
non-bonded part is essentially uncorrelated with the surface area.75

Inclusion of solvent effects may change the geometry, charge distribution and con-
formational preferences. Employing a PCM type solvation water model in connection
with the B3LYP/aug-cc-pVTZ method for example leads to an increase of the C=O
bond length in acetamide by 0.015Å, while the C—N bond is reduced by a similar
amount.The calculated dipole moment correspondingly changes from 3.9 to 5.2 debye.
Since solvation preferentially stabilizes the more polar systems, it may also change the
conformational preference of molecules. Using the above computational model for
example changes the energy difference between the anti (no dipole moment by sym-
metry) and gauche (gas phase dipole moment of 2.8 debye) conformations of 1,2-
dichloroethane from 6.7kJ/mol in the gas phase to 1.1kJ/mol in solution. Molecular
properties are in many cases also sensitive to the environment, but a detailed discus-
sion of this is outside the scope of this book.23
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15 Qualitative Theories

Although sophisticated electronic structure methods may be able to accurately predict
a molecular structure or the outcome of a chemical reaction, the results are often hard
to rationalize. Generalizing the results to other similar systems therefore becomes dif-
ficult. Qualitative theories, on the other hand, are unable to provide accurate results
but they may be useful for gaining insight, for example why a certain reaction is
favoured over another. They also provide a link to many concepts used by experi-
mentalists. Frontier molecular orbital theory considers the interaction of the orbitals
of the reactants and attempts to predict relative reactivities by second-order pertur-
bation theory. It may also be considered as a simplified version of the Fukui function,
which considered how easily the total electron density can be distorted. The 
Woodward–Hoffmann rules allow a rationalization of the stereochemistry of certain
types of reactions, while the more general qualitative orbital interaction model can
often rationalize the preference for certain molecular structures over other possible
arrangements.

15.1 Frontier Molecular Orbital Theory
Frontier Molecular Orbital (FMO) theory attempts to predict relative reactivity based
on properties of the reactants. It is commonly formulated in term of perturbation
theory, where the energy change in the initial stage of a reaction is estimated and
“extrapolated” to the transition state.1 For a reaction where two different modes of
reaction are possible, this may be illustrated as shown in Figure 15.1.

The reaction mode that involves the least energy change in the initial stage is
assumed also to have the lowest activation energy. FMO theory uses a low-order per-
turbation expansion with the reactants as the unperturbed reference, and it is clear
that such a treatment can only be used to follow the reaction a short part of the whole
reaction pathway.

The change in the energy can be derived from second-order perturbation theory
(Section 4.8) and is given in equation (15.1).2
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(15.1)

Here A and B denote atoms in each of the two interacting molecules. The V operator
contains all the potential energy operators from both molecules, and the 〈cA|V|cB〉 inte-
gral is a “resonance” type integral between two atomic orbitals, one from each mole-
cule. The rA is the electron density on atom A, and the first term in (15.1) represents
a repulsion (〈cA|V|cB〉 is a negative quantity) between occupied MOs (steric repulsion).
This will usually lead to a net energy barrier for a reaction. The second term repre-
sents an attraction or repulsion between charged parts of the molecules, QA being the
(net) charge on atom A. The last term is a stabilizing interaction (ei − ea < 0) due to
mixing of occupied MOs on one molecule with unoccupied MOs on the other, cai/caa.

being MO coefficients and ei/ea MO energies. The summation is over all pairs of occu-
pied/unoccupied MOs.

If we are comparing reactions that have approximately the same steric requirements,
the first term is roughly constant. If the species are very polar the second term will
dominate, and the reaction is charge controlled. This means for example that an elec-
trophilic attack is likely to occur at the most negative atom or, in a more general sense,
along a path where the electrostatic potential is most negative. If the molecules are
non-polar, the third term in eq. (15.1) will dominate and the reaction is said to be
orbital controlled. This means that the reaction will occur where the molecular orbital
coefficients are largest.

All other things being equal, the largest contribution to the double summation over
orbital pairs in the third term will arise when the denominator is smallest. This corre-
sponds to the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied
Molecular Orbital (LUMO) pair of orbitals. FMO theory considers only this one con-
tribution in the whole summation. From a purely numerical consideration this is cer-
tainly not a good approximation: the contributions from all the other pairs are much
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larger than the single HOMO–LUMO term. Nevertheless, it is possible to rationalize
many trends in terms of FMO theory and thus the result justifies the means. If we fur-
thermore consider a matrix element 〈cai|V|caa. 〉 to be non-zero only between atoms
where new bonds are being formed (where it is furthermore assumed to be roughly
constant), the deciding factor becomes a sum over products of MO coefficients from
the HOMO on one fragment with LUMO coefficients on the other. A few examples
should help clarify this.

The reaction of a nucleophile involves the addition of electrons to the reactant, i.e.
interaction of the HOMO of the nucleophile with the LUMO of the reactant. If there
is more than one possible centre of attack, the preferred reaction mode is predicted
to occur on the atom having the largest LUMO coefficient. Figure 15.2 shows that the
orbital component shows preference for addition to the 4-position of acrolein (as a
model for unsaturated carbonyl compounds in general), with the second most reactive
position being C2. The net charges, however, prefer position 2, as it is the most posi-
tive carbon. Experimentally, it is found that attack at the 4-position is usually favoured
(especially with “soft” nucleophiles such as organocuprates), but addition at the 2-
position is also observed (and may dominate with “hard” nucleophiles such as organo-
lithium compounds).3 This is consistent with the reaction switching from being orbital
controlled to charge controlled as the nucleophile becomes more ionic.
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Figure 15.2 AM1 LUMO coefficients for acrolein with net charges in parenthesis

Figure 15.3 AM1 HOMO coefficients for furan

Similarly, the reaction of an electrophile will involve the HOMO of the reactant,
i.e. the reaction should occur preferentially on the atom having the largest HOMO
coefficient. The coefficients for furan shown in Figure 15.3 indicate that electrophilic
substitution should preferentially occur at the 2-position, again in agreement with
experimental results.4

Consider now the reaction between butadiene and ethylene, where both 2+2 and
4+2 reaction modes are possible.The qualitative appearances of the butadiene HOMO
and ethylene LUMO are given in Figure 15.4. The MO coefficients are given as a, b
and c, where a > b > c.



For the 2+2 pathway the FMO sum becomes (ab − ac)2 = a2(b − c)2 while for the 
4+2 reaction it is (ab + ab)2 = a2(2b)2. As (2b)2 > (b − c)2, it is clear that the 4+2 reac-
tion has the largest stabilization, and therefore increases least in energy in the initial
stages of the reaction (eq. (15.1), remembering that the steric repulsion will cause a
net increase in energy). The 4+2 reaction should consequently have the lowest activa-
tion energy, and therefore occur more easily than the 2+2. This is indeed what is
observed: the Diels–Alder reaction occurs readily but cyclobutane formation is not
observed between non-polar dienes and dieneophiles.

The appearance of the difference in MO energies in the denominator in eq. (15.1)
suggests that a smaller gap between the diene HOMO and dieneophile LUMO in 
a Diels–Alder reaction should lower the activation energy. If the diene is made 
more electron-rich (electron-donating substituents), or the dieneophile more electron-
deficient (electron-withdrawing substituents), the reaction should proceed faster. This
is indeed the observed trend. For the reaction between cyclopentadiene and cya-
noethylenes (mono-, di-, tri- and tetra-substituted), the correlation is reasonably quan-
titative, as shown in Figure 15.5.5

This is of course a rather extreme example, as the reaction rates differ by ~107, and
rate differences of over a factor of 100 are observed for quite similar HOMO–LUMO
differences. For a more varied set of compounds where the reaction rates are more
similar, the correlation is often quite poor.

FMO theory can also be used for explaining the stereochemistry of the Diels–Alder
reaction, as can be illustrated by the reaction between 2-methylbutadiene and cya-
noethylene. These may react to give two different products, the “para” and/or “meta”
isomer.

The MO coefficients for the p-orbitals on the butadiene HOMO and ethylene
LUMO (taken from AM1 calculations) are given in Figure 15.6. The FMO sum for the
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Figure 15.4 FMO theory favours the 4+2 over the 2+2 reaction
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Figure 15.6 FMO rationalizes the stereochemistry of substituted Diels–Alder reactions

“para” isomer is (0.594 × 0.682 + 0.517 × 0.552)2 = 0.690, while the sum for the “meta”
isomer is (0.594 × 0.552 + 0.517 × 0.682)2 = 0.680. FMO theory thus predicts that the
“para” isomer should dominate, as is indeed observed (experimental ratio 70 :30). If
cyanoethylene is replaced by 1,1-dicyanoethylene, the LUMO coefficients change to
0.708 and −0.511. The corresponding “para” and “meta” FMO sums change to 0.685
and 0.670, i.e. a larger difference between the two isomers. This is again reflected in
the experimental data, where the ratio is 91 :9. The regiochemistry is thus determined
by matching the two largest sets of coefficients and the two smaller sets, rather than
making two sets of large/small.

FMO theory was developed at a time when detailed calculations of reaction paths
were unfeasible. As many sophisticated computational models, and methods for actu-
ally locating the transition state, have become widespread, the use of FMO arguments
for predicting reactivity has declined. The primary goal of computational chemistry,
however, is not to provide numbers, but to provide understanding. As such, FMO



theory still forms a conceptual model that can be used for rationalizing trends without
having to perform time-consuming calculations.

15.2 Concepts from Density Functional Theory
The success of FMO theory is not because the neglected terms in the second-order
perturbation expansion (eq. (15.1)) are especially small; an actual calculation will
reveal that they completely swamp the HOMO–LUMO contribution. The deeper
reason is that the shapes of the HOMO and LUMO resemble features in the total elec-
tron density, which determines the reactivity. There are also other quantities derived
from density functional theory that directly relate to the properties and reactivity of
molecules, and these are discussed in this section.6

A reaction will in general involve a change in the electron density, which may be
quantified in terms of the Fukui function.7

(15.2)

The Fukui function indicates the change in the electron density at a given position
when the number of electrons is changed. We may define two finite difference versions
of the function, corresponding to addition or removal of an electron.

(15.3)

The f+ function is expected to reflect the initial part of a nucleophilic reaction, and
the f− function an electrophilic reaction, i.e. the reaction will typically occur where the
f± function is large.8 For radical reactions the appropriate function is an average of f+

and f−.

(15.4)

The change in the electron density for each atomic site can be quantified by using the
change in the atomic charges, although this of course suffers from the usual problems
of defining atomic charges, as discussed in Chapter 9. The f± functions may also be
written in terms of orbital contributions.

(15.5)

In the frozen MO approximation the last terms are zero and the Fukui functions are
given directly by the contributions from the HOMO and LUMO. The preferred site of
attack is therefore at the atom(s) with the largest MO coefficients in the
HOMO/LUMO, in exact agreement with FMO theory. The Fukui function(s) may be
considered as the equivalent (or generalization) of FMO methods within density func-
tional theory (Chapter 6).

f
n

f
n

i

ii

N

i

ii

N

+
=

−
=

−

( ) = ( ) + ( )

( ) = ( ) + ( )

∑

∑

r r
r

r r
r

f ∂f
∂

f ∂f
∂

LUMO
2

HOMO
2

elec

elec

2

1

2

1

1

f f f N N0
1
2

1
2 1 1r r r r r( ) = ( ) − ( )( ) = ( ) − ( )( )+ − + −r r

f

f
N N

N N

+ +

− −

( ) = ( ) − ( )
( ) = ( ) − ( )
r r r

r r r

r r
r r

1

1

f
N

r
r( ) = ( )∂r

∂ elec

492 QUALITATIVE THEORIES



In the Atoms In Molecules approach (Section 9.3), the Laplacian ∇2 (trace of the
second-derivative matrix with respect to the coordinates) of the electron density meas-
ures the local increase or decrease of electrons. Specifically, if ∇2r is negative, it marks
an area where the electron density is locally concentrated, and therefore susceptible
to attack by an electrophile. Similarly, if ∇2r is positive, it marks an area where the
electron density is locally depleted, and therefore susceptible to attack by a nucle-
ophile. It has in general been found that a map of negative values of ∇2r resembles
the shape of the HOMO, and a map of positive values of ∇2r resembles the shape of
the LUMO.

The fact that features in the total electron density are closely related to the shapes
of the HOMO and LUMO provides a much better rationale than the perturbation der-
ivation as to why FMO theory works as well as it does. It should be noted, however,
that improvements in the wave function do not lead to better performance of the FMO
method. Indeed, the use of MOs from semi-empirical methods usually works better
than data from ab initio wave functions. Furthermore, it should be kept in mind that
only the HOMO orbital converges to a specific shape and energy as the basis set is
improved in an ab initio calculation; the LUMO is normally determined by the most
diffuse functions in the basis. The Fukui functions, on the other hand, can be calculated
for any type of wave function.

Besides the already mentioned Fukui function, there are a couple of other com-
monly used concepts that can be connected with density functional theory (Chapter
6).9 The electronic chemical potential m is given as the first derivative of the energy with
respect to the number of electrons, which in a finite difference version is given as the
average of the ionization potential (IP) and electron affinity (EA). Except for a dif-
ference in sign, this is also the Mulliken definition of electronegativity c.10

(15.6)

It should be notes that there are several other definitions of electronegativity, which
do not necessarily agree on the ordering of the elements.11

The second derivative of the energy with respect to the number of electrons is the
hardness h (the inverse quantity h−1 is called the softness), which again may be approx-
imated in term of the ionization potential and electron affinity.

(15.7)

The electrophilicity, which measures the total ability to attract electrons, is defined as
in eq. (15.8).12

(15.8)

A local version of the electrophilicity can be obtained by multiplying w with the rele-
vant Fukui function. These concepts play an important role in the Hard and Soft Acid
and Base (HSAB) principle, which states that hard acids prefer to react with hard
bases, and vice versa.13 By means of Koopmans’ theorem (Section 3.4) the hardness is
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related to the HOMO–LUMO energy difference. A “hard” molecule thus has a large
HOMO–LUMO gap, and is expected to be chemically unreactive, i.e. hardness is
related to chemical stability. A small HOMO–LUMO gap, on the other hand, indicates
a “soft” molecule, and from second-order perturbation theory it also follows that a
small gap between occupied and unoccupied orbitals will give a large contribution to
the polarizability (Section 10.6.1), i.e. softness is a measure of how easily the electron
density can be distorted by external fields, for example generated by another mole-
cule. In terms of the perturbation equation (15.1), a hard–hard interaction is primarily
charge controlled, while a soft–soft interaction is orbital controlled. Both FMO and
HSAB theories may be considered as being limiting cases of chemical reactivity
described by the Fukui function.8

15.3 Qualitative Molecular Orbital Theory
Frontier molecular orbital theory is closely related to various schemes of qualitative
orbital theory where interactions between fragment MOs are considered.14 Ligand field
theory, as commonly used in systems involving coordination to metal atoms, can be
considered as a special case where only the d-orbitals on the metal and selected orbitals
of the ligands are considered.

Two interacting orbitals will in general produce two new orbitals, having lower and
higher energies than the non-interacting orbitals. The magnitude of the changes is
determined by the orbital energy difference ea − eb and the overlap Sab. The overlap
depends on the symmetries of the orbitals (orbitals of different symmetry have zero
overlap), and the distance between them (the shorter the distance, the larger the
overlap). The energies of the new orbitals can be calculated from the variational prin-
ciple, and the qualitative result is shown in Figure 15.7.

(15.9)

There are two important features. The change in orbital energies is dependent on the
magnitude of the overlap, |Sab|, and inversely proportional to the energy difference of

∆ ∝
−

Sab

a be e
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Figure 15.7 Linear combination of two orbitals leads to two new orbitals with different energies



the original orbitals, |ea − eb|. Furthermore, the effect is largest for the highest energy
orbital (antibonding combination), i.e. ∆1 > ∆2)

If the two initial orbitals contain one, two or three electrons, the interaction will lead
to a lower energy, with the stabilization being largest for the case of two electrons (e.g.
a filled orbital interacting with an empty orbital). If both initial orbitals are fully occu-
pied, the interaction will be destabilizing, i.e. a steric type repulsion. By adapting a set
of HOMO and LUMO orbitals for atomic or molecular fragments, the favourable
interactions may be identified based on overlap and energy considerations. Qualita-
tive MO theory may thus be considered as an intramolecular form of FMO theory,
with suitably chosen fragments.

Consider for example the two conformations for propene shown in Figure 15.8:
which should be the more stable?
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Conformation 1 Conformation 2

Figure 15.8 Possible propene conformations

Figure 15.9 Fragment orbitals for propene

By “chemical intuition”, the most important interaction is likely to be between the
(filled) hydrogen s-orbitals and the (empty) π-orbital. The CH3 group as a fragment
has C3v symmetry, and the three proper (symmetry adapted) linear combinations of
the s-orbitals, together with the antibonding π-orbital, are given in Figure 15.9. The f1

orbital is lowest in energy, while the f2 and f3 orbitals are degenerate in perfect C3v

symmetry.
The f1 and f2 orbitals have a different symmetry than the π*-orbital and can conse-

quently not interact (S = 0). The interaction of the f3 orbital with the π* system in the
two conformations is shown in Figure 15.10.



The overlap between the nearest carbon p-orbital and f3 is the largest contribution,
but it is the same in the two conformations. The overlap with the distant carbon p-
orbital is of opposite sign, and largest in conformation 2, since the distance is shorter.
The total overlap between the f3 and π*-orbitals is thus largest for conformation 1,
which implies a larger stabilizing interaction, and it should consequently be lowest in
energy. Indeed, conformation 2 is a transition structure for interconverting equivalent
conformations corresponding to 1.

It is important to realize that whenever qualitative or frontier molecular orbital
theory is invoked, the description is within the orbital (Hartree–Fock or density func-
tional) model for the electronic wave function. In other words, rationalizing a trend in
computational results by qualitative MO theory is only valid if the effect is present at
the HF or DFT level. If the majority of the variation is due to electron correlation, an
explanation in terms of interacting orbitals is not appropriate.

The interacting fragment orbital analysis can be put on more quantitative terms by
performing explicit energy decomposition analysis of HF or DFT wave functions. The
extended transition state (ETS) approach decomposes the energy change into four
terms.15

(15.10)

The energy change can for example be formation of a bond, and the analysis can be
performed at various points along the reaction path. The preparation energy ∆Eprep

describes the cost for perturbing the nuclear geometry from the optimum for the frag-
ment to that of the species of interest. The electrostatic term ∆Eelstat describes the
Coulomb interaction between the two fragment charge densities, while ∆EPauli describes
the repulsion due to antisymmetrization and re-normalization of the two fragment
wave functions when they are combined into one. Finally, ∆Eorb describes the stabiliz-
ing interaction due to mixing of occupied and unoccupied orbitals of the two frag-
ments. The two central terms, ∆Eelstat and ∆EPauli, may loosely be associated with the
steric repulsion.

An alternative decomposition, due to K. Morokuma, partitions the interaction
energy into five terms.16

(15.11)

The electrostatic term ∆Eelstat is the Coulomb interaction between the electron densi-
ties of the fragments, analogous to the corresponding ETS quantity. The polarization

∆ ∆ ∆ ∆ ∆ ∆E E E E E E= + + + +elstat pol CT exchange mix

∆ ∆ ∆ ∆ ∆E E E E E= + + +prep elstat Pauli orb
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Figure 15.10 Fragment orbital interaction



term ∆Epol describes the stabilization due to induced electric moments, while the charge
transfer term ∆ECT is a stabilization due to transfer of charge between the two frag-
ments. The exchange term ∆Eexchange is analogous to the Pauli term in eq. (15.10),
describing the repulsion due to the exchange energy arising from the antisymmetriza-
tion of the fragment wave functions. Finally, the mix term ∆Emix contains the residual
interaction not accounted for by the first four terms. The Morokuma energy decom-
position is most useful for analyzing weak interactions; for strong interactions the
mixing term often accounts for a significant part of the total interaction, thus obscur-
ing the decomposition.The Morokuma energy decomposition has been combined with
the NBO analysis (Section 9.6), which partly alleviates some of the instabilities in the
original method.17

15.4 Woodward–Hoffmann Rules
The Woodward–Hoffmann (W–H) rules are qualitative statements regarding relative
activation energies for two possible modes of reaction, which may have different stere-
ochemical outcomes.18 For simple systems, the rules may be derived from a conserva-
tion of orbital symmetry, but they may also be generalized by an FMO treatment with
conservation of bonding. Let us illustrate the Woodward–Hoffmann rules with a couple
of examples, the preference of the 4 + 2 over the 2 + 2 product for the reaction of buta-
diene with ethylene, and the ring-closure of butadiene to cyclobutene.

A face-to-face reaction of two π-orbitals to form a cyclobutane involves the forma-
tion of two new C—C σ-bonds. The reaction may be imagined to occur under the
preservation of symmetry, in this case C2v, i.e. concerted (one-step, no intermediates)
and synchronous (both bonds are formed at the same rate).
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Figure 15.11 Reaction of two ethylenes to form cyclobutane under C2v symmetry

Both the reactant and product orbitals may be classified according to their behav-
iour with respect to the two mirror planes present, being either Symmetric (no change
of sign) or Antisymmetric (change of sign). The energetic ordering of the orbitals
follows from a straightforward consideration of the bonding/antibonding properties.
Since orbitals of different symmetries cannot mix, conservation of orbital symmetry
establishes the correlation between the reactant and product sides.

The orbital correlation diagram shown in Figure 15.12 indicates that an initial elec-
tron configuration of (π1 + π2)2(π1 − π2)2 (ground state for the reactant) will end up as
a doubly excited configuration (σ1 + σ2)2(σ*1 + σ*2)2 for the cyclobutane product. This
by itself indicates that the reaction should be substantially uphill in terms of energy. It
may be put on a more sound theoretical footing by looking at the state correlation
diagram in Figure 15.13.



The ground state wave function for the whole system (all four active and the remain-
ing core and valence electrons) is symmetric with respect to both mirror planes, while
the first excited state is antisymmetric. The intended correlation is indicated with
dashed lines, the lowest energy configuration for the reactant correlates with a doubly
excited configuration of the product, and vice versa. Since these configurations have
the same symmetry (SS), an avoided crossing is introduced, leading to a significant
barrier for the reaction. The presence of a reaction barrier due to symmetry conser-
vation for the orbitals makes this a Woodward–Hoffmann forbidden reaction. The 
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Figure 15.12 Orbital correlation diagram for cyclobutane formation



reaction for the excited state, however, does not encounter a barrier and is therefore
denoted an allowed reaction.

The same conclusion may be reached directly from a consideration of the frontier
orbitals. Formation of two new σ-bonds requires interaction of the HOMO of one
fragment with the LUMO on the other. When the interaction is between orbital lobes
on the same side (Suprafacial) of each fragment (2s + 2s), this leads to the picture
shown in Figure 15.14.
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Figure 15.13 State correlation diagram for cyclobutane formation

Figure 15.14 2s + 2s HOMO–LUMO interaction leading to two new σ-bonds

It is clearly seen that the HOMO–LUMO interaction leads to the formation of one
bonding and one antibonding orbital, i.e. this is not a favourable interaction. The FMO
approach also suggests that the 2 + 2 reaction may be possible if it could occur with
bond formation on opposite sides (Antarafacial) for one of the fragments.

Although the 2s + 2a reaction is Woodward–Hoffmann allowed, it is sterically so hin-
dered that thermal 2 + 2 reactions in general are not observed. Photochemical 2 + 2
reactions, however, are well known.19

The 4s + 2s reaction of a diene with a double bond can in a concerted and synchro-
nous reaction be envisioned to occur with the preservation of Cs symmetry.

The corresponding orbital correlation diagram is shown in Figure 15.17.
In this case the orbital correlation diagram shows that the lowest energy electron

configuration in the reactant, (π1)2(π2)2(π3)2, correlates directly with the lowest energy



electron configuration in the product, (σ1)2(σ2)2(π1)2. This is also shown by the corre-
sponding state correlation diagram, Figure 15.18.

In this case, there is no energetic barrier due to unfavourable orbital correlation,
although other factors lead to an activation energy larger than zero. The direct corre-
lation of ground state configurations for the reactant and product indicates a (rela-
tively) easy reaction, and is an allowed reaction. The lowest excited state for the
reactant, however, does not correlate with the lowest excited product state, and the
photochemical reaction is consequently forbidden.

The FMO approach again indicates that the 4s + 2s interaction should lead directly
to formation of two new bonding σ-bonds, i.e. this is an allowed reaction.

The preference for a concerted 4s + 2s reaction is experimentally supported by
observations that show that the stereochemistry of the diene and dieneophile is carried
over to the product, for example a trans,trans-1,4-disubstituted diene results in the two
substituents ending up in a cis configuration in the cyclohexene product.20

The ring-closure of a diene to a cyclobutene can occur with rotation of the two
termini in the same (Conrotatory) or opposite (Disrotatory) directions. For suitably
substituted compounds, these two reaction modes lead to products with different 
stereochemistry.

The disrotatory path has Cs symmetry during the whole reaction, while the conro-
tatory mode preserve C2 symmetry. The orbital correlation diagrams for the two pos-
sible paths are shown as Figures 15.21 and 15.22.

It is seen that only the conrotatory path directly connects the reactant and product
ground state configurations. Taking into account also the excited states leads to the
state correlation diagram in Figure 15.23.

The conrotatory path is Woodward–Hoffmann allowed for a thermal reaction, while
the corresponding photochemical reaction is predicted to occur in a disrotatory
fashion.
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Figure 15.15 2s + 2a HOMO–LUMO interaction leading to two new σ-bonds

Figure 15.16 Reaction of butadiene and ethylene to form cyclohexene under Cs symmetry
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Figure 15.17 Orbital correlation diagram for cyclohexene formation

Figure 15.18 State correlation diagram for cyclohexene formation
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Figure 15.19 4s + 2s HOMO–LUMO interaction leading to two new σ-bonds

Figure 15.20 Two possible modes of closing a diene to cyclobutene

Figure 15.21 Orbital correlation diagram for the disrotatory ring-closure of butadiene



The same conclusion may again be reached by considering only the HOMO or-
bital. For the conrotatory path the orbital interaction leads directly to a bonding
orbital, while the orbital phases for the disrotatory motion lead to an antibonding
orbital.
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Figure 15.22 Orbital correlation diagram for the conrotatory ring-closure of butadiene

Disrotatory Conrotatory

Figure 15.23 State correlation diagram for the dis- and conrotatory ring-closure of butadiene



While the orbital and state diagrams can only be rigorously justified in the simple
parent system where symmetry is present, the addition of substituents normally only
alters the shape of the relevant orbitals slightly. The nodal structure of the orbitals is
preserved for a large range of substituted systems, and the “preservation of bonding”
displayed by the FMO type diagrams consequently have a substantially wider 
predictive range. It may be used for analyzing reactions where there is no symmetry
element present under the whole reaction, as in for example the [1,5]-hydrogen shift
in 1,3-pentadiene.

In the suprafacial migration the interaction of the pentadienyl radical singly occu-
pied orbital with the hydrogen s-orbital is seen to involve breaking and making bonds
where the orbital phases match. For the antarafacial path, however, the orbital in the
product ends up being antibonding, i.e. a [1,5]-hydrogen migration is predicted to occur
suprafacially, in agreement with experiments.21
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Figure 15.24 HOMO orbital for the ring-closure of butadiene

Figure 15.25 FMO interactions for the [1,5]-hydrogen shift in 1,3-pentadiene

Figure 15.26 FMO interactions for allowed modes of the [1,5]-methyl shift in 1,3-hexadiene



In the general case, the transferring group may migrate with either retention or inver-
sion of its stereochemistry. A [1,5]-CH3 migration, for example, is thermally allowed if
it occurs suprafacial with retention of the CH3 configuration, or if it occurs antarafa-
cial with inversion of the methyl group.

The Woodward–Hoffmann allowed reactions can be classified according to how
many electron are involved, and whether the reaction occurs thermally or photo-
chemically, as shown in Table 15.1.
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Table 15.1 Woodward–Hoffmann allowed reactions

Reaction type Number of electrons Thermally allowed Photochemically allowed

Ring-closure 4n Conrotatory Disrotatory
4n + 2 Disrotatory Conrotatory

Cycloadditions 4n Supra–antara or Supra–supra or
antara–supra antara–antara

4n + 2 Supra–supra or Supra–antara or
antara–antara antara–supra

Migrations 4n Antara–retention or Supra–retention or
supra–inversion antara–inversion

4n + 2 Supra–retention or Antara–retention or
antara–inversion supra–inversion

The state correlation diagrams give an indication of the minimum theoretical level
necessary for describing a reaction. For allowed reactions, the reactant configuration
smoothly transforms into the product configuration by a continuous change of the
orbitals, and they are consequently reasonably described by a single-determinant wave
function along the whole reaction path. Forbidden reactions, on the other hand, nec-
essarily involve at least two configurations since there is no continuous orbital trans-
formation that connects the reactant and product ground states. Such reactions
therefore require MCSCF type wave functions for a qualitative correct description.

While the state correlation diagram for the 2s + 2s reaction (Figure 15.13) indicates
that the photochemical reaction should be allowed (and cyclobutanes are indeed
observed as one of the products from such reactions), the implication that the product
ends up in an excited state is not correct.Although the reaction starts out on the excited
surface, it will at some point along the reaction path return to the lowest energy surface,
and the product is formed in its ground state. The transition from the upper to the
lower energy surface will normally occur at a geometry where the two surfaces “touch”
each other, i.e. they have the same energy, and this is known as a conical intersection.22

Achieving the proper geometry for a transition between the two surfaces is often the
dynamical bottleneck, and a conical intersection may be considered the equivalent of
a TS for a photochemical reaction. As conical intersections involve two energy sur-
faces, MCSCF-based methods are required and non-adiabatic coupling elements
(Section 3.1) are important. Locating a geometry corresponding to a conical intersec-
tion for a multi-dimensional system may be done using constrained optimization tech-
niques (Section 12.5).

In some cases, the product of a pericyclic reaction will itself be subject to a further
pericyclic rearrangement. Such cascade reactions are often synthetically useful, as they



may form complicated products in a single step. Depending on the exact system, two
pericyclic reactions may occur with an intermediate, or occur in a single kinetic step,
but with a very asynchronous bond breaking/formations. M. T. Reetz has coined the
name dyotropic reaction for two sigmatropic shifts occurring in tandem,23 while the
term bispericyclic has been used in the more general case.24

15.5 The Bell–Evans–Polanyi Principle/Hammond
Postulate/Marcus Theory
The simpler the idea, the more names, could be the theme of this section.25 The over-
riding idea is simple: for similar reactions, the more exothermic (endothermic) reac-
tion will have the lower (higher) activation energy. This was formulated independently
by Bell, Evans and Polanyi (BEP) in the 1930s, and is commonly known as the BEP
principle.26 The Hammond postulate relates the position of the transition structure to
the exothermicity: for similar reactions, the more exothermic (endothermic) reaction
will have the earlier (later) TS.27 Compared with FMO theory, which tries to estimate
relative activation energies from the reactant properties, the BEP principle tries to esti-
mate relative activation energies from product properties (reaction energies). The
above qualitative statements have been put on a more quantitative footing by the
Marcus equation. This equation was originally derived for electron transfer reactions,28

but it has since been shown that the same equation can be derived from a number of
different assumptions, three of which will be illustrated below.

Let us assume a reaction coordinate x running from 0 (reactant) to 1 (product).
The energy of the reactant as a function of x is taken as a simple parabola with a 
“force constant” of a. The energy of the product is also taken as a parabola with 
the same force constant, but offset by the reaction energy ∆E0. The position of the 
TS (x≠) is taken as the point where the two parabolas intersect, as shown in 
Figure 15.27.
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Figure 15.27 Transition structure as the intersection of two parabolas



The TS position is calculated by equating the two energy expressions.

(15.12)

For a thermoneutral reaction (∆E0 = 0) the TS is exactly halfway between the reactant
and product (as expected), while it becomes earlier and earlier as the reaction becomes
more and more exothermic (∆E0 negative).The activation energy is given in eq. (15.13).

(15.13)

Let us define the activation energy for a (possible hypothetical) thermoneutral reac-
tion as the intrinsic activation energy, ∆E0

≠. As seen from eq. (15.13), a = 4∆E0
≠. The TS

position and activation energy expressed in terms of ∆E0
≠ are given in eq. (15.14).

(15.14)

The latter is, except for a couple of terms related to solvent reorganization, the Marcus
equation. It should be noted that such curve-crossing models have been used in con-
nection with VB methods to rationalize chemical reactivity and selectivity in a more
general sense.29

The central idea in the Marcus treatment is that the activation energy can be decom-
posed into a component characteristic of the reaction type, the intrinsic activation
energy, and a correction due to the reaction energy being different from zero. Similar
reactions should have similar intrinsic activation energies, and the Marcus equation
obeys both the BEP principle and the Hammond postulate. Except for very exo- or
endothermic reactions (or a very small ∆E0

≠), the last term in the Marcus equation is
small, and it is seen that roughly half the reaction energy enters the activation energy.
Note, however, that the activation energy is a parabolic function of the reaction energy.
Thus for sufficiently exothermic reactions the equation predicts that the activation
energy should increase as the reaction becomes more exothermic. The turnover occurs
when ∆E0 = −4∆E0

≠. Much research has gone into proving such an “inverted” region,
but experiments with very exothermic reactions are difficult to perform.30

An alternative way of deriving the Marcus equation is again to assume a reaction
coordinate running from 0 to 1. The intrinsic activation energy is taken as a parabola
centred at x = 1/2. The reaction energy is taken as progressing linearly along the reac-
tion coordinate. Adding these two contributions, and evaluating the position of the TS
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and the activation energy in terms of ∆E0 and ∆E0
≠, again leads to the Marcus 

equation.
Actually, the assumptions can be made even more general. The energy as a function

of the reaction coordinate can always be decomposed into an “intrinsic” term, which
is symmetric with respect to x = 1/2, and a “thermodynamic” contribution, which is anti-
symmetric. Denoting these two energy functions h2 and h1, it can be shown that the
Marcus equation can be derived from the “square” condition, h2 = h1

2.31 The intrinsic
and thermodynamic parts do not have to be parabolas and linear functions, as in Figure
15.28, they can be any type of functions. As long as the intrinsic part is the square of
the thermodynamic part, the Marcus equation is recovered.

The idea can be taken one step further. The h2 function can always be expanded in
a power series of even powers of h1, i.e. h2 = c2h1

2 + c4h1
4 + . . . . The exact values of the

c-coefficients only influence the appearance of the last term in the resulting Marcus-
like equation (eq. (15.14)). As already mentioned, this is usually a small correction
anyway. For reactions where the reaction energy is less than or similar to the activa-
tion energy, there is thus a quite general theoretical background for the following
statement: For similar reactions, the difference in activation energy is roughly half the
difference in reaction energy.The trouble here is the word “similar”. How similar should
reactions be in order for the intrinsic activation energy to be constant? And how do
we calculate or estimate the intrinsic activation energy? We will return to the latter
question shortly.

The Marcus equation provides a nice conceptual tool for understanding trends 
in reactivity.32 Consider for example the degenerate Cope rearrangement of 1,5-
hexadiene and the ring-opening of Dewar benzene (bicyclo-[2,2,0]hexa-2,5-diene) to
benzene.

The experimentally observed activation energies are 142 and 96kJ/mol,
respectively.33 The Cope reaction is an example of a Woodward–Hoffmann allowed
reaction ([3,3]-sigmatropic shift) while the ring-opening of Dewar benzene is a 
Woodward–Hoffmann forbidden reaction (the cyclobutene ring-opening must neces-
sarily be disrotatory, otherwise the benzene product ends up with a trans double bond).
Why does a forbidden reaction have a lower activation energy than an allowed reac-
tion? This is readily explained by the Marcus equation. The Cope reaction is ther-
moneutral (reactant and product are identical) and the activation energy is purely
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Figure 15.28 Decomposition of a reaction barrier into a parabola and a linear term



intrinsic, while the ring-opening is exothermic by 297kJ/mol, and therefore has an
intrinsic barrier of 218kJ/mol. The “forbidden” reaction occurs only because it has a
huge driving force in terms of a much more stable product, while the allowed reaction
occurs even without a net energy gain.

The goal of understanding chemical reactivity is to be able to predict how the acti-
vation energy depends on properties of the reactant and product. Decomposing the
activation energy into two terms, an intrinsic and a thermodynamic contribution, does
not solve the problem. The reaction energy is relatively easy to obtain, from experi-
ments, various theoretical methods or estimates based on additivity. But how does one
estimate the intrinsic activation energy? It is purely a theoretical concept – the acti-
vation energy for a thermoneutral reaction. But most reactions are not thermoneutral,
and there is no way of measuring such an intrinsic activation energy. For a series of
“closely related” reactions it may be assumed to be constant, but the question then
becomes: how closely related should reactions be?

Alternatively, it may be assumed that the intrinsic component can be taken as an
average of the two corresponding identity reactions. Consider for example the SN2 reac-
tion of OH− with CH3Cl. The two identity reactions are OH− + CH3OH and Cl− +
CH3Cl. These two reactions are thermoneutral and their activation energies, which are
purely intrinsic, can in principle be measured by isotopic substitution (for example 35Cl−

+ CH3
37Cl → CH3

35Cl + 37Cl−). From the reaction energy for the OH− + CH3Cl reac-
tion, and the assumption that the intrinsic barrier is the average of the two identity
reactions, the activation energy can be calculated. An example of the accuracy of this
procedure for the series of SN2 reactions OH− + CH3X is given in Table 15.2.
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∆E#  = 142 kJ/mol 
∆E0  =     0 kJ/mol 
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Figure 15.29 The Cope rearrangement and Dewar benzene ring-opening reaction

Table 15.2 Comparing experimental activation barriers (kJ/mol) to
those calculated by the Marcus equation for the reaction OH− + CH3X

∆G‡ (identity) ∆G0 (exp.) ∆G‡ (exp.) ∆G‡ (Marcus)

OH− 170
F− 133 −94 109 108
Cl− 111 −92 103 98
Br− 99 −98 95 90
I− 97 −89 97 93

Again this averaging procedure can only be expected to work when the reactions
are sufficiently “similar”, which is difficult to quantify a priori. The Marcus equation is



therefore more a conceptual tool for explaining trends than for deriving quantitative
result.

15.6 More O’Ferrall–Jencks Diagrams
The BEP/Hammond/Marcus treatment only considers changes due to energy differ-
ences between the reactant and product, i.e. changes in the TS position along the reac-
tion coordinate. It is often useful also to include changes that may occur in a direction
perpendicular to the reaction coordinate. Such two-dimensional diagrams are associ-
ated with the names of More O’Ferrall and Jencks (MOJ diagrams).34

Consider for example the Cope rearrangement of 1,5-hexadiene. Since the reaction
is degenerate the TS will have D2h symmetry (the lowest energy TS has a conforma-
tion resembling a chair-like cyclohexane). It is, however, not clear how strong the
forming and breaking C—C bonds are at the TS. If they both are essentially full C—
C bonds, the reaction may be described as bond formation followed by bond break-
ing. The TS therefore has the character of being a 1,4-biradical, as illustrated by path
B in Figure 15.30. Alternatively, the C—C bonds may be very weak at the TS, corre-
sponding to a situation where bond breaking occurs before bond formation, and the
TS can be described as two weakly interacting allyl radicals (path C). The intermedi-
ate situation, where both bonds are roughly half formed/broken can be described as
having a delocalized structure similar to benzene, i.e. an “aromatic” type TS (path A).
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Figure 15.30 MOJ diagram for the Cope rearrangement of 1,5-hexadiene

In such MOJ diagrams the x- and y-coordinates are normally taken to be bond
orders (Section 9.1) or (1 − bond order) for the breaking and forming bonds, such that
the coordinates run from 0 to 1. A third axis corresponding to the energy is implied,
but rarely drawn.

At the TS, the energy along the reaction path is a maximum, while it is a minimum
in the perpendicular direction(s). A one-dimensional cut through the (0,0) and (1,1)



corners for path A in Figure 15.30 thus corresponds to Figure 15.28. A similar cut
through the (0,1) and (1,0) corners will display a normal (as opposed to inverted) par-
abolic behaviour, with the TS being at the minimum on the curve. The whole energy
surface corresponding to Figure 15.29 will have the qualitative appearance as shown
in Figure 15.31.
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Figure 15.31 MOJ diagram corresponding to Figure 15.30 with the energy as the vertical axis

There is good evidence that the Cope reaction in the parent 1,5-hexadiene has an
“aromatic” type TS, corresponding to path A in Figure 15.30, i.e. a “central” or “diag-
onal” reaction path. The importance of MOJ diagrams is that they allow a qualitative
prediction of changes in the TS structure for a series of similar reactions. The addition
of substituents that stabilize the product relative to the reactant corresponds to a low-
ering of the (1,1) corner, thereby moving the TS closer to the (0,0) corner, i.e. towards
the reactant. The one-dimensional BEP/Hammond/Marcus treatment thus corre-
sponds to changes along the (0,0)–(1,1) diagonal.

Substituents that do not change the overall reaction energy may still have an influ-
ence on the TS geometry. Consider for example 2,5-diphenyl-1,5-hexadiene. The reac-
tion is still thermoneutral but the phenyl groups will preferentially stabilize the
1,4-biradical structure, i.e. lower the energy of the (1,0) corner. From Figure 15.31 it is
clear that this will lead to a TS that is shifted towards this corner, i.e. moving the reac-
tion from path A towards B in Figure 15.30. Similarly, substituents that preferentially
stabilize the bis-allyl radical structure (such as 1,4-diphenyl-1,5-hexadiene) will perturb
the reaction towards path C, since the (0,1) corner is lowered in energy relative to the
other corners.

From such MOJ diagrams it can be inferred that changes in the system that alter the
relative energy along the reaction diagonal (lower-left to upper-right) imply changes
in the TS in the opposite direction. Changes that alter the relative energy perpendicu-
lar to the reaction diagonal (upper-left to lower-right) imply changes in the TS in the
same direction as the perturbation.



The structures in the (1,0) and (0,1) corners are not necessarily stable species; they
may correspond to hypothetical structures. In the Cope rearrangement, it appears that
the reaction only involves a single TS, independent of the number and nature of sub-
stituents. The reaction path may change from B → A → C depending on the system,
but there are no intermediates along the reaction coordinate.

In other cases, one or both of the perpendicular corners may correspond to a
minimum on the potential energy surface, and the reaction mechanism can change
from being a one-step reaction to two-step. An example of this would be elimination
reactions. The x-axis in this case corresponds to the breaking bond between carbon
and hydrogen, while the y-axis is the breaking bond between the other carbon and the
leaving group.
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Figure 15.32 MOJ diagram for elimination reactions

An E2 type reaction has simultaneous breaking of the C—H and C—L bonds while
forming the B—H bond, and corresponds to the diagonal path A in Figure 15.32. Path
C involves initial loss of the leaving group to form a carbocation (upper-left corner),
followed by loss of H+ (which is picked up by the base), i.e. this corresponds to an E1
type mechanism involving two TS’s and an intermediate. Path B, on the other hand,
involves formation of a carbanion, followed by elimination of the leaving group in a
second step, i.e. an E1cb mechanism. Substituents that stabilize the carbocation thus
shift the reaction from an E2 to an E1 type mechanism, while anionic stabilizing sub-
stituents will shift the reaction towards an E1cb path.

In principle MOJ diagrams can be extended to more dimensions, for example by
also including the B—H bond order in the above elimination reaction, but this is rarely
done, not least because of the problems of illustrating more than two dimensions.
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16 Mathematical Methods

Computational chemistry relies on computers to solve the complicated mathematical
equations describing the physics behind the model. The language for deriving and
describing these models is mathematics, and this chapter summarizes some of the com-
monly used mathematical concepts and techniques used in computational chemistry.

16.1 Numbers, Vectors, Matrices and Tensors
Some physical quantities, such as the total molecular mass or charge, can be specified
by a single number, referring to the magnitude of the quantity in a given set of units.
The mathematical term for such a number is a scalar. Other quantities require a set of
numbers, as for example three scalars for specifying the position of a particle in a coor-
dinate system. A coordinate system is defined by the origin (“zero point”), the direc-
tions of the coordinate axes, and the units along the axes. Two common examples are
Cartesian {x,y,z} and spherical polar {r,q,j} systems. The same point in space can be
specified either by the Cartesian x, y, z coordinates {0.500, 0.866, 1.000} or by the spher-
ical polar r, q, j coordinates {2, 30, 60} with angles measured in degrees.

x = r sinθ cosϕ 
y = r sinθ sinϕ 
z = r cosθ

x

z

r

yθ

ϕ

Figure 16.1 Cartesian and spherical polar coordinate systems

The direction from the origin to the point specified by the three coordinates repre-
sents a vector, having a length and a direction. Another example of a 3-vector is the
velocity of a particle {vx,vy,vz}, or alternatively {∂x/∂t, ∂y/∂t, ∂z/∂t}. For a system with 
N particles, the positions or velocities of all particles can be specified by a vector of
length 3N, i.e. {x1,y1,z1,x2,y2, . . . ,yN,zN} or {vx1,vy1,vz1,vx2,vy2, . . . ,vyN,vzN}.

Introduction to Computational Chemistry, Second Edition. Frank Jensen.
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(16.1)

The notation for such vectors is often generalized to simply x = {x1,x2,x3, . . . ,xN−1,xN},
where N now refers to the total number of elements, i.e. equal to 3N in the above 
notation.

A complex number z can be interpreted as a 2-vector in an xy-coordinate system,
z = x + iy, where i is the symbol for and x and y are real numbers. Here x and y
are referred to as the real and imaginary parts of z. Alternatively, the complex number
can be associated with polar coordinates, i.e. the distance r from the origin and the
angle q relative to the real axis.
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x

y

θ

r

  z
z = x + iy 

z = reiθ = rcos(θ) + irsin(θ) 

Figure 16.2 Imaginary numbers interpreted as a point in a two-dimensional coordinate system

The complex conjugate of a complex number z is denoted by z* and is obtained by
changing the sign of the imaginary part, i.e. z* = x − iy or equivalently z* = re−iq.

The concept of complex numbers can be generalized to hypercomplex numbers, with
the next level being a 4-vector, called a quarternion, i.e. q = q0 + iq1 + jq2 + kq3, with
q0, q1, q2, q3 being real numbers. A quarternion has a real part, q0, and the three 
imaginary components q1, q2, q3. The latter can be considered as a vector in a three-
dimensional space, where each of the unit vectors have the property i2 = j2 = k2 = −1.
As one moves up in dimensions in this generalization, common mathematical laws
gradually get lost. Quarternions, for example, do not obey the commutative law (qaqb

≠ qbqa), while octonions (8-vectors) in addition do not obey the associative law ((qaqb)qc

≠ qa(qbqc)). Quarternions are encountered for example in relativistic (4-component)
quantum mechanics, and they also form a more natural basis for parameterizing the
rotation of a three-dimensional structure, rather than the traditional three Euler
angles.1 The latter involve trigonometric functions that are both computationally
expensive to evaluate and display singularities. Furthermore, the quarternion formu-
lation treats all the coordinate axes as equivalent, while the Euler parameterization
makes the z-axis a special direction.

Vectors can also arise from mathematical operations on functions of coordinates, as
for example the gradient being the first derivative of an energy function.

(16.2)

In such cases, it is implicit that the first gradient element is the derivative with respect
to the first variable, etc.
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The second derivative of the energy is an ordered two-dimensional set of numbers,
called a matrix.

(16.3)

The third derivative of the energy is an ordered three-dimensional set of numbers,
called a tensor, which can be arranged in a cube. Corresponding higher order deriva-
tives can be thought of as ordered sets of numbers in “hypercubes”, called N-order
tensors for a hypercube of dimension N.

Ordered sets of numbers may collectively be called tensors, with a matrix being a
second-order tensor, and a vector a first-order tensor. Since tensors of order higher
than two are relatively rare, the terms vector and matrix are more commonly used.
Sometimes it is also convenient to consider a vector as a 1 × N or N × 1 matrix, and a
scalar as a 1 × 1 matrix.

The conversion between a 1 × N and an N × 1 vector, or from an M × N matrix to
an N × M matrix, is done by transposition, indicated by a superscript t. Transposition
simply interchanges the ijth element with the jith element.

(16.4)

If the matrix elements are complex, the adjoint matrix is defined by complex conju-
gation of the elements followed by transposition, and is denoted with a superscript †.
Hermitian matrices are very common in quantum chemistry, and are defined as being
self-adjoint, i.e. A = A†. If all the matrix elements are real, the matrix is called sym-
metric, i.e. A = At.

The addition and subtraction of matrices, which now encompass vectors as well, is
directly the addition and subtraction of the elements, analogous to the rules for scalars.

(16.5)

The multiplication of matrices, however, is somewhat different. In standard matrix mul-
tiplications, the ijth element in the product is formed by multiplying the elements of
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the ith row with the elements of the jth coloumn, and adding all the terms. For the mul-
tiplication of two 2 × 2 matrices the result is given in eq. (16.6).

(16.6)

Note that this means that matrix multiplication is not necessarily commutative.

(16.7)

This is perhaps most easily seen by multiplying two rectangular matrices. The result of
multiplying a 2 × 3 matrix with a 3 × 2 matrix is a 2 × 2 matrix.

(16.8)

While the result of multiplying a 3 × 2 matrix with 2 × 3 matrix is a 3 × 3 matrix.

(16.9)

Even for square matrices, however, the matrix product AB is not necessarily equal to
BA.

In some cases the matrix elements are multiplied together element by element,
which is called an entrywise product, and denoted with a “dot” between the two 
matrices.

(16.10)

For vectors, which can be considered 1 × N or N × 1 matrices, the result of multiply-
ing a 1 × N matrix with an N × 1 matrix is a 1 × 1 matrix, or a scalar. This is called an
inner or dot product.

(16.11)

The length (or norm) of a vector follows directly from the interpretation of a vector
as a directional line from the origin to a point in space, and is defined as the square
root of the dot product of the vector with itself. If the vector components are complex
numbers the transposition is replaced by the adjoint instead.
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The “physical” interpretation of a dot product of two vectors is related to the angle
between them, specifically for two vectors of unit length, the dot product is the cosine
of the angle.

(16.13)

A dot product of +1 means that the two (unit) vectors are aligned, a value of −1 means
that they are aligned, but pointing in opposite directions, while a dot product of 0
means that the two vectors are orthogonal.

The opposite of a dot product is multiplication of an N × 1 matrix with a 1 × N matrix
to give an N × N matrix, and is called an outer product.

(16.14)

The inner and outer products of two vectors produce a scalar and a matrix, respec-
tively.Two 3-vectors may also be multiplied together to generate a new 3-vector, a pro-
cedure called a vector or cross product, with the result given by eq. (16.15).

(16.15)

The vector product gives a vector perpendicular to both of the original vectors with 
a length of |a||b|sin a (compare with eq. (16.13)), and is therefore zero if the two 
original vectors are aligned. It follows trivially that a × a = 0 for any vector a, and that
a × b = −b × a.

A matrix determinant is denoted |A| and is given explicitly for the 2 × 2 and 3 × 3
cases in eqs (16.16) and (16.17).

(16.16)

(16.17)

The determinant of larger matrices is similarly given as a sum of N! terms, each being
the product of N elements. A convenient procedure for the evaluation consists of
decomposing the determinant according to a row (or column), with each element being
multiplied with a sub-determinant formed by removing the elements of the corre-
sponding rows and columns, and a factor (−1)(i+j).

(16.18)

This procedure can be applied recursively until only 1 × 1 determinants remain.
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Only square matrices have determinants, and those with determinants equal to eiq

(Figure 16.2 with r = 1) are called unitary. A unitary matrix, where all the elements are
real (i.e. not complex), is called orthogonal and obviously has a determinant equal 
to +1 or −1. We will in general use the unitary notation, although in most cases the
matrices are actually orthogonal.

Determinants have a number of important properties:

(1) Interchanging two rows or columns in a matrix changes the sign of the determi-
nant. This property is used for parameterizing wave functions in terms of 
Slater determinants, as the wave function antisymmetry is thereby automatically
fulfilled (Section 3.2).

(2) Adding a row (or a fraction thereof) to another row leaves the determinant
unchanged, and similarly for columns. This allows for example representation of 
a wave function either in terms of canonical or localized molecular orbitals
(Section 9.4).

(3) If two rows or columns are identical except for a multiplicative constant, the deter-
minant is zero. This is easily seen, since one of these rows/columns can be made
into a zero-vector by subtraction of the two, and expansion according to this zero
row/column by eq. (16.18) will give zero. Such matrices may arise owing to linear
dependencies of the rows or colums.

Division by matrices is done formally by multiplying with the inverse of a matrix, where
the inverse is defined such that multiplication of a matrix with its inverse produces a
unit matrix.

(16.19)

The elements of a matrix inverse are given by the elements of the matrix itself, and
the inverse of the matrix determinant. Specifically, the ijth element in the A−1 matrix
is given as the inverse of |A| times the determinant of the sub-matrix corresponding
to removing the jth row and ith column, and a factor (−1)(i+j). Note the transposition,
the ijth element in the inverse matrix is formed from the sub-matrix corresponding to
the jith element in the original matrix. For a 3 × 3 matrix, this is exemplified by the b1j

elements in eq. (16.20).

(16.20)

It thus follows that only square matrices with determinants different from zero have
an inverse matrix. Rectangular matrices can be defined to have a generalized inverse
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matrix. Such generalized inverse matrices, and more complicated matrix algebra, such
as calculating functions of matrices, are considered in the next section. It should 
be noted that for orthogonal matrices the inverse is simply the transposed matrix,
A−1 = At, for unitary matrices the transposition must be accompanied by a complex
conjugation also, i.e. A−1 = A†. The names and properties of some special matrices are
shown in Table 16.1.
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Table 16.1 Some special matrices and their names

Name Properties

Complex conjugate A*, complex conjugate all elements
Transposed At, interchange elements ij and ji
Adjoint A†, interchange and complex conjugate elements ij and ji
Symmetric At = A
Antisymmetric At = −A
Hermitian A† = A
Anti-Hermitian A† = −A
Inverse A−1A = AA−1 = I
Orthogonal |A| = ±1, real elements, A−1 = At

Unitary |A| = eiq, complex elements, A−1 = A†

Matrices arise for example in solving a system of linear equations, where the formal
solution can be obtained by multiplication with A−1 on both sides.

(16.21)

It thus follows that a solution only exists if A−1 exists, i.e. if |A| is non-zero. In actual
calculations, it is rare that matrix determinants are exactly zero. If |A| is very small, the
solution vector x becomes sensitive to small details in the original A matrix. Such
systems are called ill-conditioned, and should be treated by single value decomposition,
as described in the next section.

For the special case of the right-hand side (b-vector) in eq. (16.21) being zero, only
the trivial x = 0 solution exists if A−1 exists. A non-trivial solution is therefore only pos-
sible if A−1 does not exist, which is equivalent to the condition that |A| is zero. Linear
dependence in the A matrix is thus a condition for a non-trivial solution, and the result-
ing x-vector is obtained as a parametric solution of one or more variables.These param-
eters can be fixed for example by requiring that the x-vector(s) are normalized and
mutually orthogonal.

16.2 Change of Coordinate System
In many cases, it is possible to simplify a problem by choosing a particular coordinate
system. It is therefore important to be able to describe how vectors and matrices
change when switching from one coordinate system to another.
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Some coordinate transformations are non-linear, such as converting from a Carte-
sian to a spherical polar system. Here the r, q, j coordinates are related to the x, y, z
coordinates by square root and trigonometric functions, as shown in Figure 16.1. Other
coordinate transformations are linear, with the new coordinates given as linear com-
binations of the old ones. A linear transformation can be described as a rotation of the
coordinate system.
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Figure 16.3 Rotation of a coordinate system

For the 2 × 2 case, the new coordinates x′ and y′ are related to the original x and y
coordinates by means of a 2 × 2 matrix containing cosines and sines of the rotational
angle a.

(16.22)

The rotation matrix is a unitary (orthogonal) matrix U, since the determinant is equal
to 1 (cos2a + sin2a = 1). The significance of a unitary matrix is that it describes a rota-
tion of the coordinate system without changing the length of the coordinate axes. A
unitary matrix with a determinant of −1 describes a rotation of the coordinate system,
followed by inverting the directions of the coordinate axis, i.e. an improper rotation in
the language of point group symmetry.

The connection between the primed and unprimed coordinate systems is given by
the unitary matrix in eq. (16.22), and can be written as in eq. (16.23).

(16.23)

The inverse operation U−1 corresponds to rotation with the angle −a, and back-
transforms the primed coordinates to the unprimed ones.

(16.24)

x = U−1x′

It is easily verified that the matrix product U−1U gives a 2 × 2 unit matrix.
Consider now a (multi-dimensional) linear function f defined by the action of a

matrix A on a vector x.
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In the rotated coordinate system the corresponding connection is given by eq. (16.26).

(16.26)

By using the transformations (16.23) between the two coordinate systems, and the fact
that a unit matrix of the form U−1U can be freely inserted, we get eq. (16.27).

(16.27)

Changing the coordinate system thus changes a matrix by pre- and post-multiplication
of a unitary matrix and its inverse, a procedure called a similarity transformation. Since
the U matrix describes a rotation of the coordinate system in an arbitrary direction,
one person’s U may be another person’s U−1. There is thus no significance whether the
transformation is written as U−1AU or UAU−1, and for an orthogonal transformation
matrix (U−1 = Ut), the transformation may also be written as UtAU or UAUt.

For the case of a symmetric (a12 = a21) 2 × 2 matrix, the similarity transformed matrix
elements are given in eq. (16.28).

(16.28)

The off-diagonal element a12′ can be made to vanish by choosing a specific rotational
angle, as shown in eq. (16.29).

(16.29)

In the new coordinate system, the A′ matrix is simplified, as it only contains diagonal
elements.
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An N × N Hermitian (or real symmetric) matrix can always be brought to a diagonal
form by a multi-dimensional rotation of the coordinate system, and there are efficient
standard computational procedures for diagonalizing matrices. The simplest method
consists of an iterative series of 2 × 2 rotations as in eq. (16.28) which reduces the off-
diagonal elements to zero. The rotational matrix U contains elements corresponding
to products of cosines and sines of rotational angles. The elements of the A matrix in
diagonal form (e) are called eigenvalues, and the columns of the unitary rotation matrix
are called eigenvectors. In matrix notation the diagonalization can be written as in 
eq. (16.31).

(16.31)

A Hermitian matrix will always have real eigenvalues and orthogonal eigenvectors.
Matrix diagonalizations play an important role in many areas of computational chem-
istry, and scientific computations in general, since they correspond to selecting a coor-
dinate system where the variables are (approximately) independent of each other.
Furthermore, the magnitude of the eigenvalues indicates the variation along that par-
ticular direction. For applications with many variables, it may be possible to describe
a significant fraction of the whole variation by taking only a few selected eigenvector
directions into account, and this forms the basis for principal component analysis, as
discussed in Section 17.4.3.

It can be shown that a matrix determinant is independent of a change in the coor-
dinate system, and in the diagonal representation the determinant is simply the product
of the eigenvalues. A non-zero determinant is thus equivalent to all the eigenvalues
being different from zero. Furthermore, the trace of a matrix, defined as the sum of the
diagonal elements, is also invariant to a change of the coordinate system, as can be ver-
ified for a 2 × 2 case from eq. (16.28). In the diagonal representation the trace is given
by the sum of the eigenvalues.

An alternative way of introducing matrix eigenvalues and eigenvectors is to require
non-zero x-solutions to eq. (16.32).

(16.32)

This is a set of linear equations in the form of eq. (16.21) with the right-hand side being
zero, and a non-trivial solution therefore only exists when the determinant is zero.

(16.33)

Expansion of the determinant (16.33) according to eq. (16.18) produces an Nth-order
polynomial in e, which can be solved to give N roots (eigenvalues). If some of these
are identical, they are called degenerate eigenvalues. For each eigenvalue eq. (16.32)
can be solved to produce the corresponding eigenvector. In the non-degenerate case
(all ei being different) the one free parameter can be fixed by normalization. For degen-
erate eigenvectors, the normalization condition must be augmented with a mutual
orthogonality condition (Section 16.4) in order to fix all the free parameters.

In the coordinate system (x′) where the A′ matrix is diagonal, it is easy to see that
eq. (16.33) holds since the (A′-eI) matrix has at least one column consisting of only

A I− =e 0

Ax x

A I x 0

=
−( ) =

e
e
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zeroes. In this diagonal representation, it is furthermore clear that the eigenvectors are
simply unit vectors along the primed coordinate axes, and the eigenvectors in the
unprimed coordinate system are therefore given by the elements of the Ut transfor-
mation matrix.

(16.34)

While the polynomial method can be used for solving small eigenvalue problems by
hand, all computational implementations rely on iterative similarity transform
methods for bringing the matrix to a diagonal form. The simplest of these is the Jacobi
method, where a sequence of 2 × 2 rotations analogous to eqs (16.28)–(16.30) can be
used to bring all the off-diagonal elements below a suitable threshold value.

In the diagonal form, the matrix e contains only elements along the diagonal. The
diagonal elements can be treated like regular numbers, allowing calculation of 
functions of matrices. Calculating for example A

1/2 proceeds by first transforming it 
to a diagonal form, taking the square root of the diagonal elements, and back-
transforming to the original coordinate system. This procedure in general allows 
calculation of functions of matrices, such as eA, ln(A) or cos(A).
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Figure 16.4 Construction of functions of matrices

This also provides an alternative way of calculating the inverse of a matrix, by simply
taking the inverse of the eigenvalues in the diagonal representation and back-
transforming the matrix to the original representation.

In some cases, the A matrix may have eigenvalues that are zero or nearly so. The
number of non-zero eigenvalues is called the rank of the matrix A, and corresponds
to the number of independent rows/columns in the matrix. In actual applications, it is
rare that an eigenvalue is exactly zero, but a very small value will clearly give numer-
ical problems for constructing matrices such as A−1 or ln(A) The ratio between the
largest and smallest eigenvalue is called the condition number, and large values (>106)
indicate that the A matrix is close to having linear dependencies. Singular value decom-
position constructs A−1 by inverting only those eigenvalues larger than a suitable
threshold and setting the rest to zero, before back-transformation to the original coor-
dinate system.

For an N × M (N > M) rectangular matrix A, a generalized inverse can be defined
by the matrix (AtA)−1At. Such generalized inverse matrices correspond to obtaining



the best solution in a least squares sense for an over-determined system of linear equa-
tions, as for example arises in statistical applications. Consider for example a system
of equations analogous to eq. (16.21), but with more b solution elements than x vari-
ables (n > m).

(16.35)

Multiplication from the left by At and by the inverse of AtA leads to the formal solu-
tion, i.e. (AtA)−1At acts as the inverse to the rectangular A matrix.

16.2.1 Examples of changing the coordinate system

From the “separability” theorem (Section 1.6.3) it follows that if an operator (e.g. the
Hamiltonian) depending on N coordinates can be written as a sum of operators that
only depend on one coordinate, the corresponding N coordinate wave function can 
be written as a product of one-coordinate functions, and the total energy as a sum of
energies.

(16.36)

Instead of solving one equation with N variables, the problem is transformed into
solving N equations with only one variable. When the differential operator is trans-
formed into a matrix representation, the separation is equivalent to finding a coordi-
nate system where the representation is diagonal.

Consider a matrix A expressed in a coordinate system {x1, x2, x3, . . . , xN}. The coor-
dinate axes are the xi vectors, and these may be simple Cartesian axes, or one-
variable functions, or many-variable functions. The matrix A is typically defined by an
operator working on the coordinates. Some examples are:

(1) The force constant matrix in Cartesian coordinates (Section 13.5.3)
(2) The Fock matrix in basis functions (atomic orbitals, Section 3.5)
(3) The CI matrix in Slater determinants (Section 4.2).
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Finding the coordinates where these matrices are diagonal corresponds to finding:

(1) The vibrational normal coordinates
(2) The molecular orbitals
(3) The state coefficients, i.e. CI wave function(s).

The coordinate axes are usually orthonormal, but this is not a requirement, since they
can be orthogonalized by the methods in Section 16.4.

16.2.2 Vibrational normal coordinates

The potential energy is approximated by a second-order Taylor expansion around the
stationary geometry x0.

(16.37)

The energy for the expansion point, V(x0), may be chosen as zero, and the first deriv-
ative is zero since x0 is a stationary point.

(16.38)

Here F is a 3Natom × 3Natom (force constant) matrix containing the second derivatives
of the energy with respect to the coordinates.

The nuclear Schrödinger equation for an Natom system is given by eq. (16.39).

(16.39)

Eq. (16.39) is first transformed to mass-dependent coordinates by a G matrix con-
taining the inverse square root of atomic masses (note that atomic, not nuclear, masses
are used, which is in line with the Born–Oppenheimer approximation that the elec-
trons follow the nuclei).

(16.40)

A unitary transformation is then introduced that diagonalizes the F⋅G (entrywise
product, eq. (16.10)) matrix, yielding eigenvalues ei and eigenvectors qi. The kinetic
energy operator is still diagonal in these coordinates.

y m x

y m x

G
m m

y
E

i i i

i i i

ij
i j

ii

N

=
∂
∂

= ∂
∂

=

− ∂
∂





 + ⋅( )





=
=
∑

∆

Ψ Ψ

2

2

2

2

1
2

2

2
1
2

1

3

1

1

atom
t

nuc nuc nucy F G y

− ∂
∂





 +





=
=
∑ 1

2

2

2
1
2

1

3

m x
E

i ii

Natom
t

nuc nuc nuc∆ ∆ Ψ Ψx F x

V ∆ ∆ ∆x x F x( ) = 1
2

t

V V
V d V

d
x x

x
x x x x

x
x x( ) ≈ ( ) + 



 −( ) + −( ) 



 −( )0 0

1
2 0

2

2 0
d
d

t
t

526 MATHEMATICAL METHODS



(16.41)

In the q-coordinate system, the vibrational normal coordinates, the 3Natom-dimensional
Schrödinger equation can be separated into 3Natom one-dimensional Schrödinger 
equations, which are just in the form of a standard harmonic oscillator, with the solu-
tions being Hermite polynomials in the q-coordinates. The eigenvectors of the F⋅G
matrix are the (mass-weighted) vibrational normal coordinates, and the eigenvalues 
ei are related to the vibrational frequencies as shown in eq. (16.42) (analogous to 
eq. (13.31)).

(16.42)

When this procedure is carried out in Cartesian coordinates, there should be six (five
for a linear molecule) eigenvalues of the F⋅G matrix being exactly zero, corresponding
to the translational and rotational modes. In real calculations, however, these values
are not exactly zero. The three translational modes usually have “frequencies” very
close to zero, typically less than 0.01cm−1. The deviation from zero is due to the fact
that numerical operations are only carried out with a finite precision, and the 
accumulations of errors will typical give inaccuracies in n of this magnitude. The resid-
ual “frequencies” for the rotational modes, however, may often be as large as 10–
50cm−1. This is due to the fact that the geometry cannot be optimized to a gradient of
exactly zero, again due to numerical considerations. Typically, the geometry optimiza-
tion is considered converged if the root mean square (RMS) gradient is less than 
~10−4–10−5 au, corresponding to the energy being converged to ~10−5–10−6 au. The 
residual gradient shows up as vibrational frequencies for the rotations of the above
magnitude.

If there are real frequencies of the same magnitude as the “rotational frequencies”,
mixing may occur and result in inaccurate values for the “true” vibrations. For 
this reason, the translational and rotational degrees of freedom are normally 
removed by projection (Section 16.4) from the force constant matrix before 
diagonalization.

If the stationary point is a minimum on the energy surface, the eigenvalues of the F
and F⋅G matrices are all positive. If, however, the stationary point is a transition state
(TS), one (and only one) of the eigenvalues is negative. This corresponds to the energy
being a maximum in one direction and a minimum in all other directions. The “fre-
quency” for the “vibration” along the eigenvector with a negative eigenvalue will for-
mally be imaginary, as it is the square root of a negative number (eq. (16.42)).
The corresponding eigenvector is the direction leading downhill from the TS towards
the reactant and product. At the TS, the eigenvector for the imaginary frequency is the
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reaction coordinate. The whole reaction path may be calculated by sliding downhill to
each side from the TS.This can be performed by taking a small step along the TS eigen-
vector, calculating the gradient and taking a small step in the negative gradient direc-
tion. The negative of the gradient always points downhill, and by taking a sufficiently
large number of such steps an energy minimum is eventually reached. This is equiva-
lent to a steepest descent minimization, but more efficient methods are available (see
Section 12.8 for details). The reaction path in mass-weighted coordinates is called the
Intrinsic Reaction Coordinate (IRC).

The vibrational Hamiltonian is completely separable within the harmonic approxi-
mation, with the vibrational energy being a sum of individual energy terms and the
nuclear wave function being a product of harmonic oscillator functions (Hermite poly-
nomial in the normal coordinates). When anharmonic terms are included in the poten-
tial, the Hamiltonian is no longer separable, and the resulting nuclear Schrödinger
equation can be solved by techniques completely analogous to those used for solving
the electronic problem. The vibrational SCF method is analogous to the electronic
Hartree–Fock method, with the nuclear harmonic oscillator functions playing the same
role as the orbitals in electronic structure theory. Corrections beyond the mean-field
approximation can be added by configuration interaction, perturbation theory or
coupled cluster methods.2

It should be noted that the force constant matrix can be calculated at any geo-
metry, but the transformation to normal coordinates is only valid at a stationary point,
i.e. where the first derivative is zero. At a non-stationary geometry, a set 3Natom − 7 gen-
eralized frequencies may be defined by removing the gradient direction from the force
constant matrix (for example by projection techniques, Section 16.4) before transfor-
mation to normal coordinates.

16.2.3 Energy of a Slater determinant

The variational problem is to minimize the energy of a single Slater determinant by
choosing suitable values for the molecular orbital (MO) coefficients, under the con-
straint that the MOs remain orthonormal.With f being an MO written as a linear com-
bination of the basis functions (atomic orbitals) c, this leads to a set of secular
equations, F being the Fock matrix, S the overlap matrix and C containing the coeffi-
cients (Section 3.5).

(16.43)

The basis functions (coordinate system) in this case are non-orthogonal, with the
overlap elements contained in the S matrix. By multiplying from the left by S−1/2 and
inserting a unit matrix written in the form S−1/2S

1/2, eq. (16.43) may be reformulated as
eq. (16.44).
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(16.44)

The latter equation is now in a standard form for determining the eigenvalues of 
the F′ matrix. The eigenvectors contained in C′ can then be back-transformed to the
original coordinate system (C = S−1/2C′). This is an example of a symmetrical orthogo-
nalization (Section 16.4) of the initial coordinate system, the basis functions c. Solving 
eq. (16.43) corresponds to rotating the original space of basis functions into one of
molecular orbitals where the Fock matrix is diagonal.

16.2.4 Energy of a CI wave function

The variational problem may again be formulated as a secular equation, where the
coordinate axes are many-electron functions (Slater determinants) Φi, which are
orthogonal (Section 4.2).

(16.45)

The a matrix contains the coefficients of the CI wave function.This problem may again
be considered as selecting a basis where the Hamiltonian operator is diagonal (eq. (4.6)
and Figure 4.5). In the initial coordinate system, the Hamiltonian matrix will have
many off-diagonal elements, but it can be diagonalized by a suitable unitary transfor-
mation. The diagonal elements are energies of many-electron CI wave functions, being
approximations to the ground and exited states. The corresponding eigenvectors
contain the expansion coefficients ai.

16.2.5 Computational considerations

Finally, a few practical considerations. The time required for diagonalizing a matrix
grows as the cube of the size of the matrix, and the amount of computer memory nec-
essary for storing the matrix grows as the square of the size. Diagonalizing matrices up
to ~100 × 100 takes insignificant amounts of time, unless there are extraordinarily many
such matrices. Matrices up to ~1000 × 1000 pose no particular problems, although some
consideration should be made as to whether the time required for diagonalization is
significant relative to other operations. Matrices larger than this require consideration.
Just storing all the elements in a 10000 × 10000 matrix takes ~1 GB of memory (or
disk space) on a computer. Determining all eigenvalues and eigenvectors of such a
matrix takes a long time. For large-scale problems in quantum chemistry, however, one
is usually not interested in all the eigenvalues and eigenvectors. In solving the CI matrix
equation, for example, typically only the lowest eigenvalue and eigenvector is of 
interest, since this is the ground state energy and wave function. Large-scale diago-
nalizations are therefore normally solved by special iterative schemes, which extract a
few selected roots and eigenvectors.
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16.3 Coordinates, Functions, Functionals, 
Operators and Superoperators
A function is a recipe for producing a scalar from another set of scalars, for example
calculating the energy E from a set of (nuclear) coordinates x.

(16.46)

A functional is a recipe for producing a scalar from a function, for example calculat-
ing the exchange–correlation energy Exc from an electron density r depending on a set
of (electronic) coordinates x.

(16.47)

An operator is a recipe for producing a function from another function, for example
the kinetic energy operator acting on a wave function. The operator in this case con-
sists of differentiating the function twice with respect to the coordinates, adding the
results and dividing by twice the particle mass.

(16.48)

A superoperator is a recipe for producing an operator from another operator.This level
of abstraction is rarely used, but is for example employed in some formulations of
propagator theory (Section 10.9).

(16.49)

In the abstract function (or operator) space, often called a Hilbert space, it is possible
to consider the functions (or operators) as vectors. The bra–ket notation is defined as
in eq. (16.50).

(16.50)

The equivalent of a vector dot product is defined as the integral of the product of the
two functions.

(16.51)

The combination of a bra and a ket is called a bracket, and the bracket notation is 
often also used for the dot product of regular coordinate vectors (eq. (16.11)). By 
analogy with coordinate vectors, the bracket of two functions measures the “angle” or
overlap between the functions, with a value of zero indicating that the two functions
are orthogonal.

The norm of a function is defined as the square root of the bracket of the function
with itself.
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The bracket notation can also be used in connection with functions and operators, as
in the example in eq. (16.53).

(16.53)

Operator algebra shares the characteristic with matrix algebra; indeed, matrices can
be considered as representations of operators in a given set of functions (coordinate
system).

Most operators in computational chemistry are linear.

(16.54)

Operators are associative, but not necessarily commutative.

(16.55)

The commutator of two operators is denoted with square brackets and defined as in
eq. (16.56).

(16.56)

Two operators are said to commute when eq. (16.56) is zero.
Operator eigenvalues and eigenfunctions are defined analogously to eq. (16.32).

(16.57)

16.3.1 Differential operators

Differential operators, which describe the first- and higher order variations of func-
tions, represent an important class of operators in computational chemistry. For a
simple one-dimensional function, the first derivative is given by the normal rules for
differentiation.

(16.58)

For a multi-dimensional scalar function (i.e. each point in space is associated with a
number), the first derivative is a vector containing all the partial derivatives. The cor-
responding operator is called the gradient and denoted with ∇.

(16.59)

The gradient vector points in the direction where the function increases most.
Two choices are possible for defining the first derivative of a vector function (i.e.

each point in space is associated with a vector). The divergence is denoted with ∇ and
produces a scalar.
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(16.60)

The divergence measures how much the vector field “dilutes” or “contracts” at a given
point. Alternatively, the first derivative may be defined as the curl, denoted with ∇×,
which produces a vector.

(16.61)

The curl describes how fast the vector field rotates, i.e. how rapidly and in which direc-
tion the field changes.

Given the above three definitions of first derivatives, there are nine possible com-
binations for defining second derivatives. Four of these are invalid since the gradient
only works on scalar fields and the divergence and curl only work on vector fields. Two
of the remaining five combinations can be shown to be zero, leaving only three inter-
esting combinations. Figure 16.5 indicates the action of the three first derivatives (con-
version from/to scalar and vector) and their combinations.
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Figure 16.5 Possibilities for second derivatives of multi-dimensional functions, with I indicating an
invalid combination

The divergence of the gradient is commonly denoted the Laplacian, and is 
for example involved in the (non-relativistic) quantum mechanical kinetic energy 
operator. It operates on a scalar function and produces a scalar function.

(16.62)

The Laplacian measures the local depletion or concentration of the function. The 
two other combinations produce a vector from a vector function and are used less 
commonly.

16.4 Normalization, Orthogonalization and Projection
The vectors (functions) of a coordinate system may in some cases be given naturally
by the problem, and these are not always normalized or orthogonal. For computational
purposes, however, it is often advantageous to work in an orthonormal coordinate
system. We first note that normalization is trivially obtained by simply scaling each
vector by the inverse of its length.
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(16.63)

The orthogonalization of a set of non-orthogonal vectors can be done in many ways,
but the two most commonly used are Gram–Schmidt and symmetrical orthogonaliza-
tion. The Gram–Schmidt procedure corresponds to sequentially removing the compo-
nent of all previous vectors, and re-normalizing the remaining component. It should
be noted that the final set of orthogonal vectors will depend on the selection of the
first vector and the order in which the remaining vectors are orthogonalized, although
the total space spanned will of course be the same.

(16.64)

A symmetrical orthogonalization corresponds to a transformation that has the prop-
erty X†SX = I , where X denotes all the xi coordinate vectors and S contains the overlap
elements. One such transformation is given by the inverse square root of the overlap
matrix (X = S−1/2), a procedure used in solving the self-consistent field equations in
Hartree–Fock and Kohn–Sham theories, and for performing the Löwdin population
analysis (Section 9.1).

(16.65)

Alternatively, a canonical orthogonalization can be performed by using the unitary
matrix obtained by diagonalizing the overlap matrix and weighting by the inverse
square root of the eigenvalues.

(16.66)

The advantage of a canonical orthogonalization is that it allows for handling (near-)
linear dependencies in the basis by truncating the transformation matrix by removal
of columns with eigenvalues smaller than a suitable cutoff value.

In multi-dimensional coordinate systems it may often be advantageous to work in a
subset of the full coordinate system. The component of a function f along a specific
(unit) coordinate vector xk is given by the projection.

(16.67)

For a matrix representation of an operator, A, the projection onto the xk subspace is
given by pre- and post-multiplying with a Qk matrix defined as the outer vector product
of xk, or the function equivalent in a ket-bra notation.
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(16.68)

The reverse process, removing the xk subspace, is done by projecting the xk subspace
direction out by the complementary matrix Pk, with I being a unit matrix.

(16.69)

Projection onto smaller subspaces can be done similarly by adding more vectors to the
projection matrix. For the case of removing the translational and rotational degrees of
freedom from the vibrational normal coordinates, for example, the (normalized) vector
in eq. (16.70) describes a translation in the x-direction.

(16.70)

The superscript t indicates that tt
x is a row vector. The Tx matrix in eq. (16.71) removes

the direction corresponding to translation in the x-direction.

(16.71)

Extending this to include vectors for all three translational and rotational modes gives
a projection matrix for removing the six (five) translational and rotational degrees of
freedom.

(16.72)

The r-vectors are derived from the atomic coordinates and principal axes of inertia
determined by diagonalization of the matrix of inertia (eq. (13.27)).3 By forming the
matrix product PtFP, the translation and rotational directions are removed from the
force constant matrix, and consequently the six (five) trivial vibrations become exactly
zero (within the numerical accuracy of the machine).

In some cases, it can be useful to apply an internal double projection onto an aux-
iliary set of functions ki, often called insertion of a resolution of the identity. This may
for example allow separation of a composite operator.

(16.73)

When the auxiliary set of functions is complete, the procedure is an exact identity, but
the use of a finite number of functions in practice makes this an approximation, which
of course can be controlled by the size of the auxiliary basis set.
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The advantage is that insertion of a resolution of the identity can allow the 
computational problem to be separated into two less complicated problems.
An example is the occurrence of three-electron integrals in the R12 methods 
for including electron correlation (Section 4.11), where insertion of a resolution 
of the identity allows the three-electron integrals to be written as a product of 
two-electron integrals, which are significantly easier to handle. The technique is also
used in methods such as Hartree–Fock, density functional theory and second-
order perturbation theory, where the four-index two-electron integrals can be approx-
imated by three- and two-index integrals instead, leading to significant computational
savings.

16.5 Differential Equations
Many of the fundamental equations in physics (and science in general) are formulated
as differential equations.Typically, the desired mathematical function is known to obey
some relationship in terms of its first and/or second derivatives. The task is to solve
this differential equation to find the function itself. A complete treatment of the solu-
tion of differential equations is beyond the scope of this book, and only a simplified
introduction is given here. Furthermore, we will only discuss solutions of differential
equations with one variable. In most cases the physical problem gives rise to a 
differential equation involving many variables, but prior to solution these can often 
be (approximately) decoupled by separation of the variables, as discussed in 
Section 1.6.

16.5.1 Simple first-order differential equations

The simplest case is where the first derivative of the unknown function f is equal to
the value of the variable x itself times a constant c.

(16.74)

The equation can be solved formally by moving dx to the right-hand side and 
integrating.

(16.75)

The integral of df is f itself, while the integral of xdx is 1/2x2, except that any constant
a can be added. This is completely general: any first-order differential equation will
give one additional integration constant that will have to be determined by some 
other means, for example from knowing the functional value at some point. That 
the found solution indeed is a solution to the differential equation can be verified by
differentiation.
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16.5.2 Less simple first-order differential equations

Differential functions where the right-hand side depends only on the variable are rel-
atively simple. A slightly more difficult problem arises when the right-hand side
depends on the function itself.

(16.76)

The task is now to find a function that upon differentiation gives the same function,
except for a multiplicative constant. Formally it can be solved as in eq. (16.77), by sep-
arating the variables and integrating.

(16.77)

The solution is an exponential function where the integration constant can be written
as a multiplicative factor A. One may again verify that the solution indeed satisfies the
original differential equation by differentiation.

16.5.3 Simple second-order differential equations

A second-order differential equation involves the second derivative of the 
function.

(16.78)

Since the second derivative may be written as two consecutive differentiations, it can
formally be solved by applying the above techniques twice. The first integration gives
the same solution as in eq. (16.75), with an integration constant a1.

(16.79)

The second integration is now analogous to a simple first-order differential equation.

(16.80)
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Solving the second-order differential equation produces two integration constants,
which must be assigned based on knowledge of the function at two points.

16.5.4 Less simple second-order differential equations

Analogously to first-order differential equations, second-order differential equations
may have the function itself on the right-hand side, as for example in eq. (16.81).

(16.81)

Another example is when the right-hand side involves both the function and its first
derivative.

(16.82)

The right-hand side may also involve both the unknown function f and another known
function of the variable, such as x2.

(16.83)

Equations of this type are representative of the Schrödinger equation, although in 
this case it is often written in a slightly different form with the kinetic energy operator
plus the potential energy on the left-hand side, and with the c1 constant written as an
energy e.

(16.84)

Eq. (16.84) for example arises for a harmonic oscillator, where the potential energy
depends on the square of the variable.

The task in these cases is to find a function that upon differentiation twice gives
some combination of the same function, its derivative and variable. Such differential
equations cannot be solved by the above “separation of variables” technique. A
detailed discussion of how to solve second-order differential equations is beyond the
scope of this book, but we will consider two special cases that often arise in computa-
tional chemistry.

16.5.5 Second-order differential equations depending on the function itself

A second-order differential equation with the function itself on the right-hand side
times a positive constant is for example involved in solving the radial part of the
Schrödinger equation for the hydrogen atom.
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For reasons that will become clear shortly, we have written the constant as c2, rather
than c. By reference to the corresponding first-order equation (eq. (16.77)), we may
guess that a possible solution is an exponential function.

(16.86)

That this is indeed a solution can be verified by explicit differentiation twice.
Recognizing that the corresponding exponential function with a negative argument
also is a solution, we can write a more general solution as a linear combination of the
two.

(16.87)

This contains two constants A1 and A2, as required for a solution to a second-order dif-
ferential equation, and it is indeed the complete solution. The two integration con-
stants A1 and A2 must be assigned based on physical arguments. For the radial part of
the hydrogen atom, for example, the A1 constant is zero since the wave function must
be finite for all values of x, and A2 becomes a normalization constant.

A slightly different situation arises when the differential equation contains a nega-
tive constant on the right-hand side, such as that involved in solving the angular part
of the Schrödinger equation for the hydrogen atom.

(16.88)

The solutions are analogous to those above, except for the presence of a factor i in the
exponentials.

(16.89)

However, since complex exponentials can be combined to give sine and cosine 
functions, the complete solution can also be written as a linear combination of real
functions.

(16.90)

The constants A1/A2 or B1/B2 must again be assigned based on physical arguments.

16.6 Approximating Functions
Although the fundamental mathematical equations describing a physical phenomenon
are often very compact, as for example the Schrodinger equation written in operator
form HΨ = EΨ, their application to all but the simplest model systems usually leads
to equations that cannot be solved in analytical form. Even if the equations could be
solved, one may only be interested in the solution for a certain limited range of vari-
ables. In many cases, it is therefore of interest to obtain an approximate solution, and
preferably in a form where the accuracy of the solution can be improved in a system-
atic fashion. We will here consider three approaches for obtaining such approximate
solutions:
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(1) Taylor expansion: The real function is approximated by a polynomial that is con-
structed such that it becomes more and more accurate the closer the variable is to
the expansion point.Away from the expansion point, the accuracy can be improved
by including more terms in the polynomial.

(2) Basis set expansion: The unknown function is written as a (linear) combination of
known functions. The accuracy is determined by the number and mathematical
form of the expansion functions. In contrast to a Taylor expansion, which has an
error that increases as the variable is removed from the expansion point, a basis
set expansion tends to distribute the error over the whole variable range.The error
can be reduced by adding more functions in the expansion.

(3) Grid representation: This is similar to expansion in a basis set, except that the
known functions are points rather than continous functions. The accuracy is deter-
mined by the number of grid points, and their location.

16.6.1 Taylor expansion

The idea in a Taylor expansion is to approximate the unknown function by a polyno-
mial centred at an expansion point x0, typically at or near the “centre” of the variable
of interest. The coefficients of an Nth-order polynomial are determined by requiring
that the first N derivatives match those of the unknown function at the expansion point.
For a one-dimensional case this can be written as in eq. (16.91).

(16.91)

For a many-dimensional function, the corresponding second-order expansion can be
written as in eq. (16.92).

(16.92)

Here gt is a transposed vector (gradient) containing all the partial first derivatives,
and H is the (Hessian) matrix containing the partial second derivatives. In many 
cases, the expansion point x0 is a stationary point for the real function, making the 
first derivative disappear, and the zeroth-order term can be removed by a shift of the
origin.

(16.93)

A Taylor expansion is an approximation to the real function by a polynomial termi-
nated at order N. For a given (fixed) N, the Taylor expansion becomes a better approx-
imation as the variable x approaches x0. For a fixed point x at a given distance from
x0, the approximation can be improved by including more terms in the polynomial.
Except for the case where the real function is a polynomial, however, the Taylor expan-
sion will always be an approximation. Furthermore, as one moves away from the
expansion point, the rate of convergence slows down, i.e. more and more terms are
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required to reach a given accuracy. At some point the expansion may become diver-
gent, i.e. even inclusion of all terms up to infinite order does not lead to a well-defined
value, and this point is called the radius of convergence. It is determined by the dis-
tance from the expansion point to the nearest point (which may be in the complex
plane) where the function has a singularity. A Taylor expansion of the function ln
(1 + x) around x = 0, for example, has a convergence radius of 1, as the logarithm func-
tion is not defined for x = −1. Attempting to approximate ln(1 + x) by a Taylor expan-
sion for x-values near −1 or 1 will thus require inclusion of a very large number of
terms, and will not converge if x ≥ 1.

A specific example of a Taylor expansion is the molecular energy as a function of
the nuclear coordinates. The real energy function is quite complex, but for describing
a stable molecule at sufficiently low temperatures, only the functional form near the
equilibrium geometry is required. Terminating the expansion at second order corre-
sponds to modelling the nuclear motion by harmonic vibrations, while higher order
terms introduce anharmonic corrections.

For illustration, we will consider the Morse potential in reduced units.

(16.94)

Figure 16.6 shows the second-, third- and fourth-order Taylor approximations to the
Morse potential.

Approximating the real function by a second-order polynomial forms the basis for
the Newton–Raphson optimization techniques described in Section 12.2.
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16.6.2 Basis set expansion

An alternative way of modelling an unknown function is to write it as a linear combi-
nation of a set of known functions, often called a basis set. The basis functions may or
may not be orthogonal.

(16.95)

This corresponds to describing the function f in an M-dimensional space of the basis
functions c. For a fixed basis set size M, only the components of f that lie within this
space can be described, and f is therefore approximated. As the size of the basis set M
is increased, the approximation becomes better since more and more components of
f can be described. If the basis set has the property of being complete, the function f
can be described to any desired accuracy, provided that a sufficient number of func-
tions are included. The expansion coefficients ci are often determined either by varia-
tional or perturbational methods. For the expansion of the molecular orbitals in a
Hartree–Fock wave function, for example, the coefficients are determined by requir-
ing the total energy to be a minimum.

The basis set expansion can be illustrated by using polynomials as basis functions
for reproducing the Morse potential in eq. (16.94), i.e. the approximating function is
given by eq. (16.96).

(16.96)

The fitting coefficients ai can be determined by requiring that the integrated difference
in a certain range [a,b] is a minimum.

(16.97)

Taking the range to be either [0.5,2.0] or [0.2,2.5] produces the fits for a second-, third-
and fourth-order polynomial shown in Figure 16.7.

Note that the polynomial no longer has the same minimum as the Morse potential
but provides a smaller average error over the fitting range than the corresponding
Taylor polynomial. The Taylor expansion provides an exact fit at the expansion point,
which rapidly deteriorates as the variable moves away from the reference point, while
the basis set expansion provides a rather uniform accuracy over the fitting range, at
the price of sacrificing local accuracy.

16.7 Fourier and Laplace Transformations
Transforming functions between different coordinate systems can often simplify the
description. In some cases, it may also be advantageous to switch between different
representations of a function. A function in real space, for example, can be transformed
into a reciprocal space, where the coordinate axes have units of inverse length.
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Similarly, a function defined in time may be transformed into a representation of
inverse time, or frequency. Such interconversions can be done by Fourier transforma-
tions. The Fourier transform g of a function f is defined as in eq. (16.98).

(16.98)

The inverse transformation is given as in eq. (16.99).

(16.99)

The factor of 2π can also be included as the square root in both the forward and reverse
transformation or included in the complex exponent.

While the integral form of the Fourier transform is useful in analytical work, the
computational implementation is often done by a discrete representation of the func-
tion(s) on a grid, in which case the integrals are replaced by a sum over grid points.

(16.100)

In a straightforward implementation of the discrete Fourier transform, the computa-
tional time increases as the square of the number of grid points. If, however, the number
of grid points is an integer power of two, i.e. Ngrid = 2m, the Fourier transform can be
done recursively, and is called Fast Fourier Transform (FFT). The FFT involves (only)
a computational effort proportional to NgridlnNgrid, which is a substantial reduction rel-
ative to the general case of N 2

grid for large values of Ngrid.
Fourier transforms are often used in connection with periodic functions, for example

for evaluating the kinetic energy operator in a density functional calculation where the
orbitals are expanded in a plane wave basis.
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The Laplace transform is defined as in eq. (16.101), where the integral can again be
approximated as a finite sum in practical applications.

(16.101)

The inverse orbital energy differences in the MP2 method, for example, can be re-
written as a sum over the auxiliary variable r, and a sufficient accuracy can often be
obtained by including only a few points in the sum.4

16.8 Surfaces
A one-dimensional function f(x) can be visualized by plotting the functional value
against the variable x. A two-dimensional function f(x,y) can similarly be visualized by
plotting the functional value against the variables x and y. However, since plotting
devices (paper or an electronic screen) are inherently two-dimensional, the func-
tional value must be plotted in a pseudo-three-dimensional fashion, with the three-
dimensional object being imagined by the viewer’s brain. Functions with more than
two variables cannot readily be visualized.

Functions in computational chemistry typically depend on many variables, often
several hundreds, thousands or millions. For analysis purposes, it is possible to visu-
alize the behaviour of such functions in a reduced variable space, i.e. keeping some
(most) of the variables constant. Figure 16.8 shows the value of the acrolein LUMO
(lowest unoccupied molecular orbital) in a two-dimensional cut 1 Å above the molec-
ular plane.5 The magnitude and sign of the orbital is plotted along the third perpendi-
cular dimension.

g k f r rkr( ) = ( ) −
∞

∫ e d
0
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Figure 16.8 Representation of the acrolein LUMO orbital



An alternative way of visualizing multi-variable functions is to condense or contract
some of the variables. An electronic wave function, for example, is a multi-variable
function, depending on 3N electron coordinates. For an independent-particle model,
such as Hartree–Fock or density functional theory, the total (determinantal) wave func-
tion is built from N orbitals, each depending on three coordinates.

(16.102)

The electron density can be obtained by integrating the coordinates for N − 1 elec-
trons, giving a function depending on only three coordinates.

(16.103)

Functions of three variables can be visualized by generating a surface in the three-
dimensional space corresponding to a constant value of the function, e.g. r(x,y,z) =
constant. Such surfaces can be plotted, again using the viewer’s brain for generating
the illusion of a three-dimensional object.The full three-dimensional figure can be visu-
alized by plotting surfaces for different values. Figure 16.9 shows the total electron
density of cyclohexane, plotted for decreasing density values. The scales of the seven
plots are the same, i.e. the sizes of the surfaces are directly comparable.
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r = 0.50 r = 0.32 r = 0.20 r = 0.10 

r = 0.05 r = 0.01 r = 0.001 

Figure 16.9 Surfaces corresponding to the indicated value for the electron density of cyclohexane



The first box corresponds to r = 0.50, and only the core electrons for the carbon
atoms are visible. For r = 0.32 the hydrogens also appear; and bonds can be recognized
for r = 0.20. Further reduction in the electron density level used for generating the
surface obscures the bonding information, and for r = 0.001 there is little information
about the underlying molecular structure left. A surface generated by a constant value
of the electron density defines the size and shape of a molecule, but the exact size and
shape clearly depend on the value chosen. It can be noted that an isocontour value of
0.001 has often been taken to represent a van der Waals type surface.

More information can be added to surface plots by colour-coding. Orbitals, for
example, have a sign associated with the overall shape, which can be visualized by
adding two different colors or greyshading to the surface corresponding to a constant
(numerical) value of the orbital. Figure 16.10 shows the acrolein LUMO in a grey-
coded surface representation, which can be compared with the two-dimensional plot
shown in Figure 16.8.

16.8 SURFACES 545

Figure 16.10 Grey-coded surface representation of the acrolein LUMO

Figure 16.11 Electrostatic potential superimposed on a surface corresponding to a fixed value of
the electron density for acrolein

Other properties have a continuous range of values, not just a sign. An example is
the electrostatic potential, which by itself is a function of three coordinates. The com-
bined information of the molecular shape and the value of the electrostatic potential
can be visualized by colour-coding the value of the electrostatic potential onto a
surface corresponding to a constant value of the electron density. Figure 16.11 shows
the electrostatic potential for the acrolein molecule, although the greyshading does not
provide the level of detail available in a colour-coding.
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17 Statistics and QSAR

17.1 Introduction
An essential component of calculations is to calibrate new methods, and to use the
results of calculations to predict or rationalize the outcome of experiments. Both of
these types of investigation compare two types of data and the interest is in charac-
terizing how well one set of data can represent or predict the other. Unfortunately, one
or both sets of data usually contain “noise”, and it may be difficult to decide whether
a poor correlation is due to noisy data or to a fundamental lack of connection. Statis-
tics is a tool for quantifying such relationships. We will start with some philosophical
considerations and move into elementary statistical measures, before embarking on
more advanced tools.

The connection between reality and the outcome of a calculation can be illustrated
as shown in Figure 17.1.

Model → Parameters → Computational implementation → Results ↔ Reality 

Hartree–Fock → Basis set → Various cutoffs → Total energies ↔ Atomization energy 

Figure 17.1 Relationship between Model and Reality

A specific example for “Reality” could be the (experimental) atomization energy of
a molecule, defined as the energy required to separate a molecule into atoms, which is
equivalent to the total binding energy. The atomization energy is closely related to the
heat of formation, differing only by the zero point reference state and neglect of vibra-
tional effects. For the atomization energy the zero point for the energy scale is the iso-
lated atoms, while for the heat of formation it is the elements in their most stable form
(e.g. H2 and N2). Since the dissociation energies for the reference molecules can also
be measured, the atomization energy is an experimental observable quantity.

It is important to realize that each element in Figure 17.1 contains errors, and these
can be either systematic or random. A systematic error is one due either to an 
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inherent bias or to a user-introduced error. A random error is, as the name implies, a
non-biased deviation from the “true” result. A systematic error can be removed or
reduced, once the source of the error is identified. A random, also sometimes called a
statistical error, can be reduced by averaging the results of many measurements. Note
that random errors can be truly random, for example due to thermal fluctuations or a
cosmic ray affecting a detector, but may also be due to many small unrecognized sys-
tematic errors adding up to an apparent random noise.

Experimental measurements may contain both systematic and random errors. The
latter can be quantified by repeating the experiment a number of times and taking the
deviation between these results as a measure for the uncertainty of the (average)
result. Systematic errors, however, are difficult to identify. One possibility for detect-
ing these is to measure the same quantity by different methods, or using the same
method in different laboratories. The literature is littered with independent investiga-
tions reporting conflicting results for a given quantity, each with error bars smaller than
the deviation between the results. Such cases clearly indicate that at least one of the
experiments contains unrecognized systematic errors.

Theory almost always contains “errors”, but these are called “approximations” in the
community. The Hartree–Fock method, for example, systematically underestimates
atomization energies since it neglects electron correlation, and the correlation energy is
larger for molecules than for atoms. For other properties, the Hartree–Fock method has
the same fundamental flaw, neglect of electron correlation, but this may not necessarily
lead to systematic errors.For energy barriers for rotation around single bonds,which are
differences between two energies for the same molecule with (slightly) different geome-
tries, the contribution from the correlation energy is small, and Hartree–Fock calcula-
tions do not systematically over- or underestimate rotational barriers.

The use of a basis set also introduces a systematic error but the direction depends
on the specific basis set and the molecule at hand. For a system composed of first row
elements (such as C, N, O), the isolated atoms can be completely described with s- and
p-functions at the Hartree–Fock level, but molecules require the addition of higher
angular momentum (polarization) functions. Using a basis set containing only s- and
p-functions will systematically underestimate the atomization energy, while a basis set
containing few s- and p-functions but many polarization functions may overestimate
the atomization energy. In principle one should chose a balanced basis set, defined as
one where the error for the molecule is almost the same as for the atoms, but since
the number of basis functions of each kind necessarily is quantized (one cannot have
a fractional number of basis functions), this is not rigorously possible, and will depend
on the computational level in any case. A very large (complete) basis set will fulfil the
balance criteria but is usually impossible in practice.An example of a (systematic) user
error is the use of one basis set for the molecule and another for the atoms, as is some-
times done by inexperienced users of electronic structure methods.

The computational implementation of a Hartree–Fock calculation involves choos-
ing a specific algorithm for calculating the integrals and solving the HF equations. In
addition, various cutoff parameters are usually implemented for deciding whether to
neglect certain integral contributions, and a tolerance is set for deciding when the iter-
ative HF equations are considered to be converged. Since computers perform arith-
metic with a finite precision, given by the number of bits chosen to represent a number,
this introduces truncation errors, which are of a random nature (roughly as many neg-
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ative as positive deviations for a large sample). These random errors can be reduced
by increasing the number of bits per number, by using smaller cutoffs and convergence
criteria, but can never be completely eliminated. Usually these errors can be con-
trolled, and reduced to a level where they are insignificant compared with the other
approximations, such as neglect of electron correlation and the use of a finite basis set.

17.2 Elementary Statistical Measures
Statistics is a tool for characterizing a large amount of data by a few key quantities
and it may therefore also be considered as information compression. Consider a data
set containing N data points with values xi (i = 1, 2, 3, . . . , N). One important quantity
is the mean or average value, denoted with either a bar or an angle bracket.

(17.1)

The average is the “middle” point, or the “centre of gravity”, of the data set but it does
not tell how wide the data point distribution is. The data sets {3.0, 4.0, 5.0, 6.0, 7.0} and
{4.8, 4.9, 5.0, 5.1, 5.2} have the same average value of 5.0.

In computational chemistry, the mean may depend on an external parameter, such
as time. In a molecular dynamics simulation, for example, the average energy (NVT
ensemble) or temperature (NVE ensemble) will depend on the simulation time.
Indeed, a plot of the average energy or temperature against time can be used as a
measure of whether the system is sufficiently (thermal) equilibrated to provide a real-
istic model.

The width or the spread of the data set can be characterized by the second moment,
the variance.

(17.2)

The “normalization” factor is N − 1 when the average is calculated from eq. (17.1); if
the exact average is known from another source, the normalization is just N. For large
samples the difference between the two is minute and the normalization is often taken
as N. The square root of the variance (i.e. s) is called the standard deviation. The above
two data sets have standard deviations of 1.6 and 0.2, clearly showing that the first set
contains elements further from the mean than the second.

If the distribution of the data is given by a Gaussian function (exp(−ax2)), then s
determines how large a percentage of the data is within a given range of the mean.
Specifically, 68% of the data is within one s of the mean, 95% is within 2s and 99.7%
is within 3s. For experimental quantities, the measured result is often given by the
notation 〈x〉 ± s. The s is loosely called the “error bar”, reflecting the common proce-
dure of drawing a line stretching from 〈x〉 − s to 〈x〉 + s in a plot diagram. Note,
however, that for a Gaussian data distribution there is a 32% chance that the actual
value is outside this interval. Furthermore, for actual data, the distribution is rarely
exactly Gaussian. Note also that the standard deviation depends inversely on the
square root of the number of data points, i.e. for truly random errors, the standard devi-
ation can be reduced by increasing the number of points.
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The third and fourth moments are called the skew and kurtosis.

(17.3)

These quantities are dimensionless, in contrast to the first and second moments (mean
and variance). The skew, kurtosis and corresponding higher moments are rarely used.

The mean and variance are closely connected with the qualifiers accurate and precise.
An accurate measure is one where the mean is close to the real value. A precise
measure is one that has a small variance. The goal is an accurate and precise meas-
urement (many data points close to the “real” value). An accurate but imprecise meas-
urement (good mean, large variance) indicates large random and small systematic
errors, while a precise but inaccurate measurement (poor mean, small variance) indi-
cates small random but large systematic errors.

Some data sets are (almost) symmetric, such as the digits in the phone book of a
large city, containing almost the same number of elements below and above the mean
value. Others may be asymmetric, for example containing many points slightly below
the mean, but relatively few with much larger values than the mean (for example the
income profile for the US population or the Boltzmann energy distribution). Higher
order moments such as the skew can be used to characterize such cases. Two alterna-
tive quantities can also be used, the median and the mode. The median is the value in
the middle of the data points, i.e. 50% of the data are below the median and 50% are
above. The mode is the most probable element, i.e. the one that occurs with the highest
frequency. In some cases, there may be more than one maximum in the probability dis-
tribution, for example a bimodal distribution for a probability function with two
maxima. For a symmetric distribution, the median and mean are identical, and 
thus a large difference between these two quantities indicates an asymmetric 
distribution.

One should be aware that essential information can easily be lost in the data com-
pression of a statistical analysis. European women, for example, have on average 1.5
children, but none have 1.5 children (but 0, 1, 2, 3, . . . children). Such “paradoxes” are
at the root of characterizing statistics as “a precise and concise method of communi-
cating half-truths in an inaccurate way”.

17.3 Correlation Between Two Sets of Data
In science, one is often interested in whether one type of data is connected with another
type, i.e. whether the data points from one set can be used to predict the other. We will
denote such two data sets x and y, and ask whether there is a function f(x) that can
model the y data. When the function f(x) is defined or known a priori, the question is
how well the function can reproduce the y data.

Two quantities are commonly used for qualifying the “goodness of fit”, the Root
Mean Square (RMS) deviation and the Mean Absolute Deviation (MAD), which for a
set of N data points are defined in eq. (17.4).
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(17.4)

The MAD represents a uniform weighting of the errors for each data point, while the
RMS quantity has a tendency of being dominated by the (few) points with largest devi-
ations. Note that the function f(x) can be very complicated, as for example calculating
the atomization energy by the Hartree–Fock method from a set of nuclear coordinates
(Figure 17.1).

When the functional form f(x) is unknown, correlation analysis may be used to seek
an approximate function connecting the two sets of data.The simplest case corresponds
to a linear correlation.

(17.5)

We want to determine the a (slope) and b (intersection) parameters to give the best
possible fit, i.e. in a plot of y against x, we seek the best straight line.
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Figure 17.2 An approximate linear correlation between x and y

The familiar least squares linear fit arises by defining the “best” line as the one that
has the smallest deviation between the actual yi-points and those derived from eq.
(17.5), and taking the error to be the deviation squared. The equations defining a
and b can be derived by minimizing (setting the first derivations to zero) an error 
function.

(17.6)
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We note in passing that the minimum number of data points is two, since there are two
fitting parameters a and b, i.e. the correlation between any two points can be modelled
by a straight line. The data points can be weighted by wi factors, for example related
to the uncertainty with which the yi data points are measured. The actual equation for
a and b can be written in several different ways. One convenient form is by introduc-
ing some auxiliary sum-functions.

(17.7)

In terms of these quantities, the optimum a and b parameters are given by eq. (17.8).

(17.8)

The associated variances are given in eq. (17.9).

(17.9)

The “goodness of fit” for such xy-plots is commonly measured by the correlation coef-
ficient, r, which is defined in eq. (17.10).

(17.10)

By construction, the correlation coefficient is constrained to the interval [−1,1],
where r = 1 indicates that all points lie exactly on a line with a positive slope (a > 0),
r = −1 indicates that all points lie exactly on a line with a negative slope (a < 0),
while r = 0 indicates two sets of uncorrelated data. Note that the “correlation 
coefficient” is often given as r2 instead, which of course is constrained to the interval
[0,1].

The error function in eq. (17.6) is defined by the vertical distance, i.e. assuming that
the error is located mainly in the y data set. If both data sets have similar errors, the
perpendicular distance from the data points to the line can be used instead in the error
function. This, however, leads to somewhat complicated non-linear equations for the
fitting parameters,1 and is rarely used.

Non-linear correlations (e.g. a quadratic correlation, f(x) = ax2 + bx + c) 
can be treated completely analogously to the linear case above, by defining an 
error function and setting the first derivatives with respect to the fitting parameters to
zero. Non-linear correlations, however, are used much less than linear ones, for four
reasons:
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(1) Many non-linear connections can be linearized by a suitable variable transforma-
tion. An exponential dependence, for example, can be made linear by taking the
logarithm (y = aebx becomes ln(y) = ln(a) + bx).

(2) Increasing the number of fitting parameters will always produce a better fit, since
the fitting function becomes more flexible (a quadratic fitting function has three
parameters, while a linear has only two). The data set, however, usually contains
noise (random errors), and a more flexible fitting function may simply try to fit the
noise rather than improving the fit of the “true” data. For polynomial fitting func-
tions of increasing degree, oscillations of the fitting function between the data
points are often seen, which is a clear indication of “overfitting”.

(3) Any function connecting two sets of data can be Taylor expanded and, to a first
approximation, the connection will be linear. All correlations will therefore be
linear within a sufficiently “small” interval.

(4) For functions where the fitting parameters enter in a linear fashion, the equations
defining the parameters can be solved analytically. For a function with non-linear
parameters, however, the resulting equations must be solved by iterative tech-
niques, with the risk of divergence or convergence to a non-optimal solution.

Points 2–4 suggest that a non-linear fitting function should only be attempted if there
are sound theoretical reasons for expecting a non-linear correlation between the data.
One such example is the often observed parabolic dependence of the biological activ-
ity on the lipophilicity for a series of compounds. Compounds with a low lipophilicity
will have difficulty entering the cells and therefore often have a low activity. Com-
pounds with a high lipophilicity, however, will have a tendency of accumulating in the
fat cells and therefore also have a low activity. A quadratic dependence with a nega-
tive second-order term is therefore expected based on physical arguments.

17.4 Correlation between Many Sets of Data
17.4.1 Multiple-descriptor data sets and quality analysis

In the previous section there were only two sets of data, the y data, we wanted to model
and the variable x, each being a vector of dimension N × 1. In many cases, however,
one has several sets of x variables (x1, x2, x3, . . . , xM), each of which can potentially
describe some of the variation in the y data set.2 There may also be several different
sets of y data that we want to model with the same x descriptors but for simplicity we
will only consider a single set of y data. The x variables can be arranged into an N ×
M matrix.

(17.11)

The x descriptors are often derived from many different sources and may have differ-
ent units, means and variances. Prior to any correlation analysis, each x vector is usually
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centred to have a mean value of zero (i.e. subtracting the mean value from each vector
element), as this eliminates any constant terms in the correlation analysis and focuses
on describing the variation in the y data.

Each x vector may also be scaled with a suitable factor to take into account for
example different units for the variables. This, however, is non-trivial and requires
careful consideration. A common procedure, which avoids a user decision, is to nor-
malize each x vector to have a variance of 1, a procedure called autoscaling. Autoscal-
ing equalizes the variance of each descriptor and can thus amplify random noise in the
sample data and reduce the importance of a variable having a large response and a
good correlation with the y data.

Analogous to the correlation coefficient in eq. (17.10), we want a measure of the
quality of fit produced by a given correlation model. Two commonly used quantities
are the Predicted REsidual Sum of Squares (PRESS) and the correlation coefficient
R2 defined by the normalized PRESS value and the variance of the y data (sy

2).

(17.12)

R2 thus measures how well the model reproduces the variation in y, compared with a
model that just predicts the average y value for all variables.

A straightforward inclusion of more and more x variables having some relationship
with y in a correlation analysis will necessarily monotonically increase the amount of
y variation described and thus produce an R2 converging towards 1. Inclusion of vari-
ables that primarily serve to describe the noise in the y data, however, will lead to a
model with less predictive value for the real variation. This is clearly something that
should be avoided but in many cases it is not obvious when the additional components
included primarily serve to model the noise in the y data. To make an unbiased judge-
ment, it is of interest to introduce a quantity that does not measure how well the vari-
ables can fit the y data, but one that measures how well the variables can predict the
y data. Since we are ultimately interested in predicting y data from the independent
variables, such cross-validations are more useful quantities.

One possible measure is to make a correlation analysis using only N − 1 data points
and ask how well this model predicts the point left out. This can be performed for each
of the data points, i.e. a total of N correlation analyses is required. Such “leave-one-
out” or “jackknife” models give an independent measure of the predictive power of a
correlation model using a given number of variables. Either the PRESS calculated
from summing over all the N correlation models or the predictive correlation coeffi-
cient Q2, defined analogously to R2 in eq. (17.12), can be used to measure the predic-
tive capabilities of the model. Q2 has in analogy with R2 a maximum value of 1 but can
achieve negative values for models with poor predictive capabilities. A small PRESS
or a large Q2 value thus indicates a model with good predictive powers, and models
with Q2 of 0.5–0.6 are usually considered acceptable.
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Even for medium-sized data sets the leave-one-out cross-correlation model tends to
overestimate the predictive capabilities, as the predicted fraction of the sample is only
1/N, which rapidly approaches zero for a large sample. Alternative models can be gen-
erated by randomly leaving out for example k data points, rather than just one, or by
forming subgroups of the data set, and either leaving one point out in each group, or
leaving all points in one group out.

17.4.2 Multiple linear regression

For multiple-descriptor data sets, one could use the methods in Section 17.3 to derive
a correlation between y and x1, between y and x2, between y and x3, etc., to find the
xk data set giving the best correlation with y. It is very likely, however, that one of the
other x variabled can describe part of the y variation, which is not described by xk,
and a third x variable describing some of the remaining variation, etc. Since the x
vectors may be internally correlated, however, the second most important x vector
found in a one-to-one correlation is not necessarily the most important once the xk
vector has been included.

In order to use all the information in the x variables, a Multiple Linear Regression
(MLR) of the type indicated in eq. (17.13) can be attempted.

(17.13)

Note that each data set (y and xk) is a vector containing N data points, and the con-
stant corresponding to b in eq. (17.5) is eliminated if the data are centred with a mean
value of zero. Since the expansion coefficients are multiplied directly onto the x vari-
ables, MLR is independent of a possible scaling of the x data (a scaling just affects the
magnitude of the a coefficients but does not change the correlation).

The number of fitting parameters is M, and N must therefore be larger than or equal
to M, and in practice one should not attempt fitting unless N > 5M, as overfitting is
otherwise a strong possibility. The fitting coefficients contained in the a vector can be
obtained from the generalized inverse (Section 16.2) of the X matrix.

(17.14)

This procedure works fine as long as there are relatively few x variables that are not
internally correlated. In reality, however, it is very likely that some of the x vectors
describe almost the same variation, and in such cases there is a large risk of overfit-
ting the data. This can also be seen from the solution vector in eq. (17.14), the 
(XtX)−1 matrix has dimension M × M, and will be poorly conditioned (Section 16.2) 
if the x vectors are (almost) linearly dependent. Note that the presence of (experi-
mental) noise in the x data can often mask the linear dependence, and MLR methods
are therefore sensitive to noisy x data.

MLR works best if N >> M and when the x data are not internally correlated. If
either of these criteria is not fulfilled, one can try to form MLR models by selecting
subsets of the descriptors. Searching all possible combinations of descriptors from a
total of M data sets rapidly leads to a large number of possibilities, which may be
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impossible to search in a systematic fashion. Global optimization methods such as
genetic algorithms or simulated annealing (Sections 12.6.3 and 12.6.4) can be used to
hunt for the best combination of number and types of descriptors. Such optimizations
clearly should focus on maximizing the Q2 value and not the R2 value. One may also
consider weighting Q2 with a factor depending (inversely) on the number of compo-
nents, as a slight increase in Q2 by including one more components may not be bene-
ficial. Alternatively, and somewhat more systematically, one of the methods in the next
section can be used.

17.4.3 Principal component and partial least squares analysis

Multiple linear regression cannot easily handle situations where M > N or when the x
variables are (almost) linearly correlated. These problems can be removed by intro-
ducing a modified set of descriptors, so-called latent variables. The idea is to extract
linear combinations of the x variables that are orthogonal and ranked according to
their variation, and only use a limited set of these variables for performing the corre-
lation with the y variables.

The eigenvalues of the XtX matrix (eq. (17.11)) contain information on the corre-
lation between the x variables: an eigenvalue of zero indicates that one column can be
written as a linear combination of the other columns, and a small non-zero value indi-
cates that one column contains almost redundant information. The eigenvector corre-
sponding to the largest eigenvalue contains the linear combination of x descriptors
having the largest variation in the x data, the eigenvector corresponding to the second
largest eigenvalue has the second largest variations, etc. Furthermore, since the eigen-
vectors are orthogonal, different eigenvectors describe different parts of the variation.

Using the concepts in Chapter 16, the original x vectors can be thought of as being
the (non-orthogonal and unnormalized) basis vectors of an M-dimensional coordinate
system. The eigenvectors of the XtX matrix describe the same fundamental coordinate
system but with (orthonormal) basis vectors that have been rotated with respect to 
the original x vectors. We note that if there are eigenvalues close to zero then the 
effective dimension of the coordinate system is less than M. Figure 17.3 shows a two-
dimensional example where the points for the two non-orthogonal x descriptors 
have an internal correlation and display a similar variation along the two directions.
The new z variables are orthogonal and most of the variation is now located in the z1

variable, while z2 describes a much smaller variation.
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Figure 17.3 Illustrating the relationship between the original (x) and latent (z) variables



If we denote the rotated basis vectors (XtX eigenvectors) with z, we can write the
connection (neglecting normalization) as in eq. (17.15).

(17.15)

Since the XtX matrix depends on the relative magnitudes of the individual x vectors,
the z vectors depend on a possible scaling of the original x descriptors.

The idea in a Principal Component Analysis (PCA) is to use the z variables as the
descriptive variables. If all M eigenvectors are used the result is identical to using the
original x variables (i.e. MLR). However, the premise of the PCA method is to include
only a few (J) z variables, and to select them according to their eigenvalues. A series
of multiple linear regressions are done using more and more eigenvectors, first z1, then
z1 and z2, then including also z3, etc. At each stage the predictive capabilities of the
model are calculated, for example quantified by Q2. If the original x data have a rea-
sonable correlation with the y data, then a plot of Q2 against the number of variables
included will typically display an initial steep increase, but then level off or even start
to decrease slightly as the number of latent variables is increased. The point where Q2

levels off indicates that the optimal number of components has been reached, i.e. at
this point the predictive power of the model cannot be increased further by including
more components.

The main problem with the PCA method is that some of the x variables may not be
particularly good at describing the y variables, i.e. the first few PCA vectors describ-
ing the largest variation among the x variables may correlate poorly with the variation
in the y data. In such cases, a global optimization search can be made for a model based
on a relatively small number of components selected from all the PCA vectors with
eigenvalues above a suitable cutoff.

The Partial Least Squares (PLS, also sometimes called Projection to Latent Struc-
tures) method attempts to improve on the selection of the latent variables by weight-
ing the X matrix with the y vector prior to diagonalization, i.e. diagonalizing the XtyytX
(equivalent to (ytX)t(ytX)) matrix instead of XtX. This ensures that the eigenvectors
with the largest eigenvalues will be biased towards describing the variation in y. The
only difference between PCA and PLS is thus in how the latent z variables are gen-
erated, either by diagonalization of the XtX matrix, or from the corresponding y-
weighted matrix. The PLS latent variables will naturally be ordered according to their
ability to describe the y variation, alleviating the necessity for performing a combina-
torial search for which latent vectors to use in the regression. For optimal cases, a plot
of Q2 against the number of PLS components will rapidly reach a maximum and
provide a compact model with good predictive capabilities.

A disadvantage of the PLS method is the inherent bias towards selecting latent vari-
ables describing noise in the y data, i.e. x variables that only have a small internal vari-
ation but that correlate with the noise in the y data are selected as important. For this
reason, x variables with small internal variance over the y data points are often
removed from the descriptor data set prior to performing the PLS analysis. This pre-
selection procedure, however, requires user involvement and it is not always easy to
decide which variables to remove. Unfortunately, the predictive capabilities of a PLS
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model are often sensitive to elimination of one or more x variables. A global opti-
mization scheme may again be employed in such cases, i.e. performing a search for
which x components to remove from the PLS analysis in order to provide a model with
a high Q2 value.

17.4.4 Illustrative example

Consider the X and y matrices in eq. (17.16), where variables have been centred to
give a mean of zero.

(17.16)

Clearly the first two rows show a large variation in x with no change in y, i.e. these
variables are not related to the response. The last two rows display correlation and
anti-correlation, respectively, with the y data in equal amounts. Solving with MLR
equation (17.14) gives the solution vector a in eq. (17.17), which shows that both x
columns are equally important in describing the y variation. The difference between
the actual and predicted y indicates that there is a residual y variation that cannot be
modelled by the x variables.

(17.17)

Diagonalizing the XtX matrix for the PCR analysis gives eigenvalues of 4.00 and 0.04,
with corresponding (unnormalized) eigenvectors (1,1) and (1,−1). In the transformed
coordinate system, the principal components z (eq. (17.15)) are given in eq. (17.18).

(17.18)

Clearly the eigenvector corresponding to the largest eigenvalue (the first principal
component, i.e. the first column in Z) has a zero overlap with the y data, while the
second eigenvector accounts for all the important variation in the original x variables.
The PLS components arising from diagonalization of the XtyytX, on the other hand,
have eigenvalues of 0.0 and 0.08 with corresponding (unnormalized) eigenvectors (1,1)
and (1,−1). The transformed X matrix is identical to eq. (17.18), except that it is now
the second column that corresponds to the largest eigenvalue. The direction that has
the largest eigenvalue in the PCR case has an eigenvalue of zero in the PLS case,
showing that it contains no information of the y variation. In both the PCR and PLS
cases, the y variation that can be described is contained in only one component, but
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the PLS procedure identifies the most important component as the one with the largest
eigenvalue. The predicted y is identical to the MLR results (eq. (17.17)) for both PCR
and PLS; the only difference is that only one component is required, rather than two.

17.5 Quantitative Structure–Activity Relationships (QSAR)
One important application of PCA and PLS techniques is in the lead development and
optimization of new drugs in the pharmaceutical industry. From the basic chemical and
physical theories, it is clear that there must be a connection between the structure of
a molecule and its biological activity. It is also clear, however, that the connection is
very complex, and it is very unlikely that the biological activity can ever be predicted
completely a priori. A drug taken orally, for example, must first survive the digestive
enzymes and acidic conditions in the stomach, cross over into the blood stream, pos-
sibly also cross over into the brain, diffuse to the target enzyme without binding to
other enzymes, bind the target enzyme at a specific site and with a large binding con-
stant, and finally have a suitable half-life in the organism before being degraded into
non-toxic components. Each of these quantities depends on different parts of the
molecular structure and the combined effect is therefore very difficult to predict. Each
quantity, however, may possibly be correlated with (different) molecular properties,
but adequate data for each effect is rarely available.

In the initial stages of developing a new drug, the focus is usually on the binding to
the target enzyme and having a suitable lipophilicity, the latter ensuring a reasonable
transfer rate for crossing between the blood and cells. A lead compound is somehow
determined, more often than not by serendipity. From this lead, a small initial pool of
compounds is synthesized and their biological activity, of which the binding constant
to the target enzyme is an important quantity, is measured by a suitable biological
assay. At this point, statistical methods are often used to correlate the molecular struc-
ture and properties to the observed activity, a Quantitative Structure–Activity Rela-
tionship (QSAR), thereby providing a tool for “guessing” which new modified
compounds should be tried next.

In a traditional QSAR study, a variety of molecular descriptors are included. Typi-
cally, these include a measure of the lipophilicity (often taken as the partition coeffi-
cient between water and 1-octanol), electronic and steric substituent parameters
(Hammett3 and Taft constants), and pKa/b values for acidic and/or basic groups. These
are rather obvious molecular descriptors, but many other less obvious descriptors have
also been used, such as the molecular weight, IR frequencies, dipole moments, NMR
chemical shifts, etc. The philosophy is to include, rather indiscriminately, as many
descriptors as can easily be generated and then let the statistical method sort out which
of these are actually important. With many of the descriptors having only remote con-
nection with the measured activity, classical or MLR correlations are clearly not suit-
able methods. PCA or PLS methods are better at detecting poor descriptors and
dealing with the fact that the measured biological activities often have rather large
uncertainties.

Classical QSAR methods focus on correlating experimental activities with experi-
mental descriptors. This allows an identification of important structural features, such
as having a pKa value close to 5 or having an electron-withdrawing group in a para-
position of a phenyl ring, thereby limiting the field of possible new compounds to
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prepare and test. More recently, the focus has been on “virtual” (in silico) screening,
i.e. correlating experimental activities with theoretical descriptors. If a good QSAR
model can be constructed from such data, this allows prediction of the biological activ-
ities of molecules that exist only in the computer. The activity of many thousands of
(possibly computer-generated) structures can thus be predicted, and only those that
are predicted to be reasonably active need to be synthesized. The theoretical descrip-
tors can be similar to those in traditional QSAR methods, for example replacing the
experimental water–octanol partition coefficient with a corresponding theoretical esti-
mate, etc. The so-called 3D-QSAR models, however, are more representative of these
new QSAR methods, and the COmparative Molecular Field Analysis (COMFA)
method is probably one of the most popular of these.4

In the COMFA method, the molecular descriptors are taken as steric and electric
fields calculated at a large number of points surrounding each molecule. The molecule
is placed in a “box” and a few thousand points are selected between the surface of the
molecule and a few van der Waals radii outwards. At each of these points, the steric
repulsion or attraction from a probe atom (typically a carbon atom) is calculated by a
force field van der Waals term. The electric attraction or repulsion is similarly calcu-
lated by placing a point charge with magnitude +1 in each point. The complete set of
molecular descriptors thus consists of a few thousand data points, representing the
steric and electric interaction of the molecule with other (possible) atoms in the near
vicinity. Clearly these data are highly redundant; the value in a certain point will be
very close to the average of the neighbouring points. Deriving QSAR models with such
large sets of data descriptors is only possible using PCA and PLS methods. Such 3D-
QSAR methods are primarily used when the structure or identity of the receptor
enzyme is unknown. If the enzyme and binding site is known from an X-ray structure,
the testing of possible drug candidates can be done by docking methods, as described
in Section 12.7.

The main problem with 3D-QSAR methods such as COMFA is the alignment of the
molecules in the test set.5 First, it must be assumed that each of the molecules binds
to the enzyme at the same site. Second, it is not always clear that all the molecules bind
to the active site in the same overall orientation.Third, if the molecule has several con-
formations available, one has to guess or estimate which conformation actually binds
to the enzyme. Furthermore, even if the overall orientation of all the molecules is
assumed to be the same, the specific alignment is not unambiguous. Even for mole-
cules having the same major structural features, one can choose either to align on the
best RMS fit of all atoms, on only the non-hydrogen atoms, or on only the atoms in a
substructure of the molecule (e.g. a phenyl ring). Figure 17.4 illustrates the ambiguity
for aligning the compound on the right with that on the left, should the imine or nitro
group be used for alignment?
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When the molecular structure of the compounds in the training set has few or no
common elements, the alignment may instead be done based on for example the elec-
tric moments (dipole, quadrupole, etc.) or on the electrostatic potential on a suitable
molecular surface.

Since the alignment of the molecules influences the values calculated at the steric
and electric grid points, this is a feature that influences the statistical correlation. If a
successful QSAR model can be obtained from such data, however, the model will
provide information on which of the grid points are important in a steric and electric
sense. Analysis of such data provides a virtual mapping of the receptor, i.e. identifying
regions of the active site where the drug candidates should have large/small groups,
and where they should have positively/negatively charged groups.
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18 Concluding Remarks

The real world is very complex and a complete description is therefore also very com-
plicated. Only by imposing a series of often quite stringent limitations and approxi-
mations can a problem be reduced in complexity such that is may be analyzed in some
detail, as for example by calculations. A chemical reaction in the laboratory may
involve perhaps 1020 molecules surrounded by 1024 solvent molecules, in contact with
a glass surface and interacting with gases (N2, O2, CO2, H2O, etc.) in the atmosphere.
The whole system will be exposed to a flux of photons of different frequency (light)
and a magnetic field (from the earth), and possibly also a temperature gradient from
external heating. The dynamics of all the particles (nuclei and electrons) is determined
by relativistic quantum mechanics, and the interaction between particles is governed
by quantum electrodynamics. In principle the gravitational and strong (nuclear) forces
should also be considered. For chemical reactions in biological systems, the number of
different chemical components will be large, involving various ions and assemblies of
molecules behaving intermediately between solution and solid state (e.g. lipids in cell
walls).

Except for a couple of rather extreme areas (such as the combination of general rel-
ativity and quantum mechanics, or the unification of the strong and gravitational forces
with the electroweak interaction), we believe that all the fundamental physics is
known. The “only” problem is that the real world contains so many (different) com-
ponents interacting by complicated potentials that a detailed description is impossible.

As this book hopefully has given some insight into, the key is to know what to neglect
or approximate when trying to obtain answers to specific questions in pre-defined
systems. For chemical problems, only the electrostatic force needs to be considered;
the gravitational interaction is a factor of 1039 weaker and can be completely neglected.
Similarly, the strong nuclear force is so short-ranged that is has no effect on chemical
phenomena (although the brief claims regarding “cold” fusion for a period seemed to
contradict this). The weak interaction, which is responsible for radioactive decay by
the n → p + e process, is also much smaller than the electrostatic, although there have
been various estimates of whether it might give rise to a symmetry breaking (i.e. pref-
erence for one enantiomer over its mirror image) which possibly could be detected
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experimentally. Similarly, the earth’s magnetic field is so tiny that only under very
special circumstances can it have any detectable influence on the outcome of a chem-
ical reaction.

For electronic structure calculations within the wave function approach, the starting
point is usually an independent-particle model, which for electrons is the Hartree–Fock
model. The results from this model can be improved by adding electron correlation
corrections and increasing the basis set. The resulting two-dimensional diagram shown
in Figure 4.3 indicates that the “exact” result can be obtained by systematically increas-
ing the level of sophistication along both axes until convergence is reached. Usually
the desired level of accuracy is such that the convergence cannot be reached owing to
limitations in computational resources, and the results thus suffer from approximations
in the one-particle (basis set) and many-particle (configurations) space. Even if the
residual errors can be reduced below the target accuracy, the “exact” solution is still
subject to a number of limitations that must also be considered in order to compare
with the experimental results. These may for example be:

(1) Neglect of relativistic effects, by using the Schrödinger instead of the Dirac equa-
tion. This is reasonably justified in the upper part of the periodic table but not in
the lower half. For some phenomena, such as spin–orbit coupling, there is no clas-
sical counterpart and only a relativistic treatment can provide an understanding.
The relativistic effects may be incorporated by a one-component (mass–velocity
and Darwin terms), two-component (spin–orbit) or full four-component methods
(Figure 8.2).

(2) The effects of the environment, such as solvent effects. These may be modelled
for example by a continuum model, by treating the solvent as an ensemble of
classical particles (QM/MM methods), or by including them in the quantum
description (e.g. Car–Parrinello methods).

(3) Vibrational corrections. For energies, this would typically be inclusion of zero
point energies while for properties this may correspond to a vibrational averag-
ing. The corrections may again be done at several levels of accuracy, for example
using a harmonic approximation or also including anharmonic effects.

(4) Finite temperature effects. This would correspond for example to a molecular
structure not being represented as a fixed geometry but rather as an ensemble 
of structures corresponding to an average over accessible geometries at a given
temperature.

(5) Non-Born–Oppenheimer effects. The assumption of a rigorous separation of
nuclear and electronic motions is in most cases a quite good approximation and
there is a good understanding of when it will fail. Methods for going beyond the
Born–Oppenheimer approximation are still somewhat limited in term of gener-
ality and applicability.

(6) Quantum effects for the nuclei. One may argue that the vibrational effects are
the most important of these, but in some cases other effects such as tunnelling
may also be important.

(7) Quantum mechanics being replaced (wholly or partly) by classical mechanics. For
electrons such an approximation would lead to disastrous results, but for nuclei
(atoms) the quantum effects are sufficiently small that they in most cases can be
neglected.
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(8) Approximating the intermolecular interactions to only include two-body effects,
for example electrostatic forces are only calculated between pairs of fixed atomic
charges in force field techniques. Or the discrete interactions between molecules
may be treated only in an average fashion, by using Langevin dynamics instead
of molecular dynamics.

(9) Calculating ensemble or time averages over a relatively small number of points
(perhaps a few million) and a limited number of particles (perhaps a few
hundred), instead of something that approach the macroscopic sample of perhaps
1020 molecules/configurations.

(10) Finite temperature being reduced to zero kelvin, i.e. the use of static structures
to represent molecules, rather than treating them as an ensemble of molecules in
a distribution of states (translational, rotational and vibrational) corresponding
to a (macroscopic) temperature.

(11) Making approximations in the Hamiltonian describing the system, for example
semi-empirical electronic structure methods.

(12) Approximating external fields (electric or magnetic) by only considering their
linear components. For normal conditions, this will be a quite good approxima-
tion, but this is not the case in for example intense laser fields.

(13) Treating the nuclei as point particles. In reality a nucleus has a finite size 
(~10−15 m) and since the electrons can penetrate the nucleus the potential felt
inside the nucleus will differ from that of a point particle, and consequently lead
to changes in the electronic energy.

(14) QED corrections. The interaction between charged particles is normally
described by the Coulomb interaction, but when the quantization of the field is
considered, there are additional higher order correction terms.

Most of these approximations are mainly of a computational nature, as there are well-
defined methods available for going beyond the approximations, but they are compu-
tationally too demanding. The key is therefore to be able to evaluate what level of
theory (i.e. which approximations are appropriate) is required for obtaining results
that are sufficiently accurate to provide useful information about the question at hand.
Hopefully this book has given a few clues as how to select a suitable method for a
given problem.
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Appendix A

Notation
Bold quantities are operators, vectors, matrices or tensors. Plain symbols are scalars.

a Polarizability
ab Spin functions
ab Dirac 4 × 4 spin matrices
abgd Summation indices for basis functions
a, b, g, d, z Basis function exponents
aA, bAB Hückel parameters for atom A, and between atoms A and B
a Born radius for solvation cavities
abcd Summation indices for virtual MOs
an, ai, bi, ci, . . . Expansion coefficients
a Acceleration
A Helmholtz free energy
A Antisymmetrizing operator
A Vector potential
A Hyperfine coupling constant
b First hyperpolarizability
bm Resonance parameter in semi-empirical theory
B Magnetic field (magnetic induction)
c, m, n, l, s Basis functions (atomic orbitals), ab initio or semi-empirical

methods
c Electronegativity
cB Out-of-plane angle for atom B
c Magnetic susceptibility
C Gauge including basis function
c Speed of light
cai MO expansion coefficients
δ An infinitesimal variation or quantity
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δij Kronecker delta (δij = 1 for i = j, δij = 0 for i ≠ j)
δ(r) Dirac delta function (δ(r) = 0 for r ≠ 0)
∆ A finite difference or quantity
d Distance
d Deexcitation operator
D Dissociation energy
D Density matrix
Dab Density matrix element in AO basis
e Matrix eigenvalue
e van der Waals parameter
e Dielectric constant
e Energy, for one electron or as an individual term in a sum
e Energy matrix
e Excitation operator
E Energy, many particles or terms
Ee Electronic energy
E[r] Energy functional
EA Electron affinity
f Molecular orbital
f Electrostatic potential
Φ Slater determinant or similar approximate wave function
fi Gradient component along a Hessian eigenvector
F Electric field
F Force constant matrix
F Fock operator or Fock matrix
Fij, Fab Fock matrix element in MO and AO basis
g Second hyperpolarizability
gk Reduced density matrix of order k
ge Electronic g-factor
gA Nuclear g-factor
g Two-electron repulsion operator
g Gradient (first derivative)
G Gibbs free energy
Gxy Coulomb type matrix elements in semi-empirical theory (x,y =

s,p,d)
G Matrix containing square root of inverse atomic masses
h An infinitesimal scalar
h Absolute hardness
h Planck’s constant

h/2π
h Core or other effective one-electron operator
hij, hab Matrix element of a one-electron operator in MO and AO basis
hmn Matrix element of a one-electron operator in semi-empirical

theory
h, h1, h2, . . . Excitation and deexcitation operators
H Enthalpy
H Hessian (second derivative matrix of a function)

h
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H, He, Hn Hamiltonian operator or Hamiltonian matrix (general, electronic,
nuclear)

Hij Matrix element of a Hamiltonian operator between Slater 
determinants

Hxy Exchange type matrix elements in semi-empirical theory (x,y =
s,p,d)

ijkl Summation indices for occupied MOs
I Moment of inertia
I Unit matrix
I Nuclear magnetic moment or spin
IP, Im Ionization potential
J Spin–spin coupling matrix
J Coulomb operator
Jij Coulomb integral
J[r] Coulomb functional
k Lagrange multiplier
k Transmission coefficient
k Compressibility constant
k Boltzmann’s constant
k Rate constant
k, kAB... Force constant (for atoms A, B, . . .)
K Anharmonic constants (third derivative)
K Exchange operator
Kij Exchange integral
K[r] Exchange functional
l Lagrange multiplier
l General perturbation strength
l Hessian shift parameter
l, L Angular momentum quantum number
L Lagrange function
l, L Angular momentum operator
m Mulliken electronegativity, chemical potential
m Reduced mass
m Dipole moment
m0 Vacuum permeability
mB Bohr magneton
mN Nuclear magneton
m Mass, general or electron mass
MA Nuclear mass
n Vibrational frequency
ni Orbital occupation number
N Number of particles
NA Avogadro’s number
O, P, Q, R, S General operators
p Generalized momentum operator
Π Product of diagonal elements in a Slater determinant
p Momentum operator or vector
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P Pressure
Pi Legendre polynomial
P, Pij Permutation operators (permuting indices i and j)
P1, P2 Perturbation operators (one- and two-electron)
q Charge on a particle (integer)
q Partition function (one particle)
Q Atomic charge (can be fractional), fitted or from population 

analysis
Q Partition function (many particles)
q Normal or generalized coordinate
Q Predictive correlation coefficient
Q Quadrupole moment
r Electron density
r Bond order
r Position vector(s), general or electronic
rij Distance between electrons i and j
R Trust radius
R Gas constant
r, R Correlation coefficient
R Position vector, nuclear
Rij, RAB, RAB Distance between atoms or nuclei, i and j or A and B
r, q, f Polar coordinates
s Order of rotational subgroup
s Charge density
s2 Variance
sx,y,z Pauli 2 × 2 spin matrices
s Electron spin operator
S Entropy
S Switching function
S2 Spin squared operator
Sab Overlap matrix element in AO basis
q(t) Heaviside step function (q(t) = 0 for t < 0, q(t) = 1 for t > 0)
qABC Angle between atoms A, B and C
ΘN

s,i Spin coupling function
∆t Small (finite) time step
t Time
t Translational vector
t Heat or pressure bath coupling parameter
t Phase factor
t Imaginary time variable
t Orbital kinetic energy density
ti, tij Cluster amplitudes
T Temperature
T, T1, T2, . . . Cluster operator (general, single, double, . . . excitations)
T, Te, Tn Kinetic energy operator (general, electronic, nuclear)
T[r] Kinetic energy functional, exact
Ts[r] Kinetic energy functional, calculated from a Slater determinant
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U Internal energy
U Unitary matrix
Ui Matrix element of a semi-empirical one-electron operator, usually

parameterized
v Velocity
V Volume
V, VAB Potential energy (between atoms A and B)
Vij Coulomb potential between particles i and j
V[r] Potential energy functional
V, Vee, Vne, Vnn Potential (Coulomb) energy operator (general, electron–electron,

nuclear–electron, nuclear–nuclear)
w Frequency associated with an electric or magnetic field
w Harmonic vibrational frequency
wABCD Torsional angle between atoms A, B, C and D
W Two-electron operator
W Energy of an approximate wave function
Wi Perturbation energy correction at order i
Wk Wigner intracule of order k
W Energy-weighted density matrix
Wab Energy-weighted density matrix element in AO basis
W*sb Weighting factor in pseudospectral methods
x Magnetizability
xi, yi, zi Cartesian coordinates for particle i
∆xi Component in a vector
Ψ, Ψe, Ψn Exact or multi-determinant wave function (general, electronic,

nuclear)
z Spin polarization
z Friction coefficient
z Molecular surface parameter for calculating solvation energies
Z Nuclear charge, exact
Z′ Nuclear charge, reduced by the number of core electrons
〈n| Bra, referring to a function characterized by quantum number n.
|n〉 Ket, referring to a function characterized by quantum number n.
〈n|O|m〉 Bracket (matrix element) of operator O between functions n and

m
〈O〉 Average value of O
|O| Norm or determinant of O
〈〈P;Q〉〉 Propagator of P and Q
[P,Q] Commutator of P and Q ([P,Q] = PQ − QP)
∇ Gradient operator
∇2 Laplace operator
⋅ Entrywise matrix product or tensor contraction
× Cross product
∇⋅ Divergence operator
∇× Curl operator
t Vector transposition
† Complex conjugate
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Appendix B

B.1 The Variational Principle
The Variational Principle states that an approximate wave function has an energy that
is above or equal to the exact energy. The equality holds only if the wave function is
exact. The proof is as follows.

Assume that we know the exact solutions to the Schrödinger equation.

(B.1)

There are infinitely many solutions and we assume that they are labelled according to
their energies, E0 being the lowest. Since the H operator is Hermitian, the solutions
form a complete basis. We may furthermore choose the solutions to be orthogonal and
normalized.

(B.2)

An approximate wave function can be expanded in the exact solutions, since they form
a complete set.

(B.3)

The energy of an approximate wave function is calculated as in eq. (B.4).

(B.4)

Inserting the expansion (B.3) we obtain eq. (B.5).

(B.5)

Using the fact that HΨi = EiΨi and the orthonormality of the Ψi (eqs (B.1) and (B.2)),
we obtain eq. (B.6).
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(B.6)

The variational principle states that W ≥ E0 or, equivalently, W − E0 ≥ 0.

(B.7)

Since ai
2 is always positive or zero, and Ei − E0 is always positive or zero (E0 is by def-

inition the lowest energy), this completes the proof. Furthermore, in order for the equal
sign to hold, all ai≠0 = 0 since Ei≠0 − E0 is non-zero (neglecting degenerate ground states).
This in turns means that a0 = 1, owing to the normalization of Φ, and consequently the
wave function is the exact solution.

This proof shows that any approximate wave function will have an energy above or
equal to the exact ground state energy. There is a related theorem, known as Mac-
Donald’s Theorem, which states that the nth root of a set of secular equations (e.g. a
CI matrix) is an upper limit to the (n − 1)th excited exact state, within the given sym-
metry subclass.1 In other words, the lowest root obtained by diagonalizing a CI matrix
is an upper limit to the lowest exact wave functions, the second root is an upper limit
to the exact energy of the first excited state, the third root is an upper limit to the exact
second excited state, and so on.

B.2 The Hohenberg–Kohn Theorems
In wave mechanics, the electron density is given by the square of the wave function
integrated over N − 1 electron coordinates and the wave function is determined by
solving the Schrödinger equation. For a system of Nnuclei nuclei and Nelec electrons, the
electronic Hamiltonian operator contains the terms given in eq. (B.8).

(B.8)

Within the Born–Oppenheimer approximation, the last term is a constant. It is seen
that the Hamiltonian operator is uniquely determined by the number of electrons and
the potential created by the nuclei, Vne, i.e. the nuclear charges and positions. This
means that the ground state wave function (and thereby the electron density) and
ground state energy are also given uniquely by these quantities.

Assume now that two different external potentials (which may be from nuclei), Vext

and V′ext, result in the same electron density, r. Two different potentials imply that the
two Hamiltonian operators are different, H and H′, and the corresponding lowest
energy wave functions are different, Ψ and Ψ′.Taking Ψ′ as an approximate wave func-
tion for H and using the variational principle yields eq. (B.9).
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Similarly, taking Ψ as an approximate wave function for H′ yields eq. (B.10).

(B.10)

Addition of these two inequalities gives E′0 + E0 > E′0 + E0, showing that the assump-
tion was wrong. In other words, for the ground state there is a one-to-one correspon-
dence between the electron density and the nuclear potential, and thereby also with
the Hamiltonian operator and the energy. In the language of density functional theory,
the energy is a unique functional of the electron density, E[r].

Using the electron density as a parameter, there is a variational principle analogous
to that in wave mechanics. Given an approximate electron density r′ (assumed to be
positive definite everywhere) that integrates to the number of electrons, the energy
given by this density is an upper bound to the exact ground state energy, provided that
the exact functional is used.

(B.11)

B.3 The Adiabatic Connection Formula
The Hellmann–Feynman theorem (eq. (10.28)) is given in eq. (B.12).

(B.12)

With the Hamiltonian in eq. (6.5), this gives eq. (B.13).

(B.13)

Integrating over l between the limits 0 and 1 corresponds to smoothly transforming
the non-interacting reference to the real system.

(B.14)

This integration is done under the assumption that the density remains constant, i.e.
Ψ0 and Ψ1 yield the same density. For the term involving the external potential, this
allows the integration to be written in terms of the two limits.

(B.15)
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The energy of the non-interacting (E0) system is given by eq. (B.16) since Vee makes
no contribution.

(B.16)

Combining eqs (B.14), (B.15) and (B.16) yields eq. (B.17).

(B.17)

Using the fact that Vext(1) = Vne and the definition of E1 (eq. (6.9)) we obtain eq. (B.18).

(B.18)

The exchange–correlation energy can thus be obtained by integrating the
electron–electron interaction over the l variable and subtracting the Coulomb part.
The right-hand side of eq. (B.18) can be written in terms of the second-order reduced
density matrix eq. (6.14), and the definition of the exchange–correlation hole in eq.
(6.21) allows the Coulomb energy to be separated out.

(B.19)

Defining Vxc
hole as in eq. (B.20) gives the adiabatic connection formula (eq. (6.50)).

(B.20)
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Appendix C

Atomic Units
In electronic structure calculations it is convenient to work in the atomic unit (au)
system, which is defined by setting me = e = = 1. From these values follow related
quantities, as shown in Table C.1.

h

Table C.1 The atomic unit system

Symbol Quantity Value in au Value in SI units

me Electron mass 1 9.110 × 10−31 kg
e Electron charge 1 1.602 × 10−19 C
t Time 1 2.419 × 10−17 s

h/2 (atomic momentum unit) 1 1.055 × 10−34 J s
h Planck’s constant 2π 6.626 × 10−34 J s
a0 Bohr radius (atomic distance unit) 1 5.292 × 10−11 m
EH Hartree (atomic energy unit) 1 4.360 × 10−18 J
c Speed of light 137.036 2.998 × 108 m/s
a Fine structure constant (= e2/ c4πe0 = 1/c) 0.00729735 0.00729735
mB Bohr magneton (= e /2me) 1/2 9.274 × 10−24 J/T
mN Nuclear magneton 2.723 × 10−4 5.051 × 10−27 J/T
4πe0 Vacuum permittivity 1 1.113 × 10−10 C2/Jm
m0 Vacuum permeability (4π/c2) 6.692 × 10−4 1.257 × 10−6 Ns2/C2

h
h

π.h
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Appendix D

Z-Matrix Construction
All calculations need as input a molecular geometry. This is commonly given by one
of the following three methods:

(1) Cartesian coordinates
(2) Internal coordinates
(3) Via a graphical interface.

Generating Cartesian coordinates by hand is only realistic for small molecules. If,
however, the geometry is taken from outside sources, such as an X-ray structure, Carte-
sian coordinates are often the natural choice. Similarly, a graphical interface produces
a set of Cartesian coordinates for the underlying program, which carries out the actual
calculation.

Generating internal coordinates such as bond lengths and angles by hand is rela-
tively simple, even for quite large molecules. One widely used method is the Z-matrix
where each atom is specified in terms of a distance, angle and torsional angle to other
atoms. It should be noted that internal coordinates are not necessarily related to the
actual bonding, they are only a convenient method for specifying the geometry. The
internal coordinates are usually converted to Cartesian coordinates before any calcu-
lations are carried out. Geometry optimizations, however, are often done in internal
coordinates in order to remove the six (five) translational and rotational degrees of
freedom.

Construction of a Z-matrix begins with a drawing of the molecule and a suitable
numbering of the atoms. Any numbering will result in a valid Z-matrix, although
assignment of numerical values to the parameters is greatly facilitated if the bonding
and symmetry of the molecule is considered when the numbering is performed (see
the examples below). The Z-matrix specifies the position of each atom in terms of a
distance, an angle and a torsional angle relative to other atoms. The first three atoms,
however, are slightly different. The first atom is always positioned at the origin of the
coordinate system. The second atom is specified as having a distance to the first atom,
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and is placed along one of the Cartesian axis (usually x or z). The third atom is spec-
ified by a distance to either atom 1 or 2, and an angle to the other atom. All subse-
quent atoms need a distance, an angle and a torsional angle to uniquely specify the
position. The atoms are normally identified either by the chemical symbol or by their
atomic number.

If the molecular geometry is optimized by the program then only rough estimates
of the parameters are necessary. In terms of internal coordinates, this is fairly easy.
Some typical bond lengths (Å) and angles are given below.

A—H: A=C: 1.10; A=O,N: 1.00; A=S,P: 1.40
A—B: A,B=C,O,N: 1.40–1.50
A=B: A,B=C,O,N: 1.20–1.30
A≡B: A,B=C,N: 1.20
A—B: A=C, B=S,P: 1.80

Angles around sp3-hybridized atoms: 110°
Angles around sp2-hybridized atoms: 120°
Angles around sp-hybridized atoms: 180°

Torsional angles around sp3-hybridized atoms: separated by 120°
Torsional angles around sp2-hybridized atoms: separated by 180°

Such estimates allow specification of molecules with up to 50–100 atoms fairly easy.
For larger molecules, however, it becomes cumbersome. In such cases the molecule is
often built from pre-optimized fragments. This is typically done by means of a graph-
ical interface, i.e. the molecule is pieced together by selecting fragments (such as amino
acids) and assigning the bonding between the fragments.

Below are some examples of how to construct Z-matrices. Figure D.1 shows
acetaldehyde.
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Figure D.1 Atom numbering for acetaldehyde

C1 0 0.00 0 0.0 0 0.0
O2 1 1.20 0 0.0 0 0.0
H3 1 1.10 2 120.0 0 0.0
C4 1 1.50 2 120.0 3 180.0
H5 4 1.10 1 110.0 2 0.0
H6 4 1.10 1 110.0 2 120.0
H7 4 1.10 1 110.0 2 −120.0



The definition of the torsional angles is illustrated in Figure 2.7. To emphasize the sym-
metry (Cs) of the above conformation, the Z-matrix may also be given in terms of sym-
bolic variables, where variables that are equivalent by symmetry have identical names.

C1
O2 1 R1
H3 1 R2 2 A1
C4 1 R3 2 A2 3 D1
H5 4 R4 1 A3 2 D2
H6 4 R5 1 A4 2 D3
H7 4 R5 1 A4 2 −D3

R1 = 1.20
R2 = 1.10
R3 = 1.50
R4 = 1.10
R5 = 1.10
A1 = 120.0
A2 = 120.0
A3 = 110.0
A4 = 110.0
D1 = 180.0
D2 = 0.0
D3 = 120.0

Some important things to notice:

(1) Each atom must be specified in terms of atoms already defined, i.e. relative to
atoms above.

(2) Each specification atom can only be used once in each line.
(3) The specification in terms of distance, angle and torsional angle has nothing to do

with the bonding in the molecule, e.g. the torsional angle for C4 in acetaldehyde is
given to H3, but there is no bond between O2 and H3.A Z-matrix, however, is usually
constructed such that the distances, angles and torsional angles follow the bonding.
This makes it much easier to estimate reasonable values for the parameters.

(4) Distances should always be positive, and angles always in the range 0°–180°. Tor-
sional angles may be taken in the range −180°–180°, or 0°–360°.

(5) The symbolic variables show explicitly which parameters are constrained to have
the same values, i.e. H6 and H7 are symmetry equivalent and must therefore have
the same distances and angles, and a sign difference in the torsional angle.
Although the R4 and R5 (and A3 and A4) parameters have the same values ini-
tially, they will be different in the final optimized structure.

The limitation that the angles must be between 0° and 180° introduces a slight com-
plication for linear arrays of atoms, such as a cyano group.

Specification of the nitrogen in term of a distance to C2 and an angle to C1 does not
allow a unique assignment of a torsional angle since the C1—C2—N6 angle is linear,
which makes the torsional angle undefined. There are two methods for solving this
problem, either by specifying N6 relative to C1 with a long distance:
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C1
C2 1 R1
H3 1 R2 2 A1
H4 1 R2 2 A1 3 D1
H5 1 R2 2 A1 3 −D1
N6 1 R3 3 A2 4 D2

R1 = 1.50
R2 = 1.10
R3 = 2.70
A1 = 110.0
A2 = 110.0
D1 = 120.0
D2 = 120.0

Note that the variables imply that the molecule has C3v symmetry. Alternatively, a
Dummy Atom (X) may be introduced.
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Figure D.2 Atom numbering for methyl cyanide

Figure D.3 Atom numbering for methyl cyanide including a dummy atom

C1
C2 1 R1
H3 1 R2 2 A1
H4 1 R2 2 A1 3 D1
H5 1 R2 2 A1 3 −D1
X6 2 R3 1 A2 3 D2
N7 2 R4 6 A3 1 D3



R1 = 1.50
R2 = 1.10
R3 = 1.00
R4 = 1.20
A1 = 110.0
A2 = 90.0
A3 = 90.0
D1 = 120.0
D2 = 0.0
D3 = 180.0

A dummy atom is just a point in space and has no significance in the actual calcula-
tion. The above two Z-matrices give identical Cartesian coordinates. The R3 variable
has arbitrarily been given a distance of 1.00, and the D2 torsional angle of 0.0° is also
arbitrary – any other values may be substituted without affecting the coordinates of
the real atoms. Similarly, the A2 and A3 angles should just add up to 180°; their indi-
vidual values are not significant. The function of a dummy atom in this case is to break
up the problematic 180° angle into two 90° angles. It should be noted that the intro-
duction of dummy atoms does not increase the number of (non-redundant) parame-
ters, although there are formally three more variables for each dummy atom. The
dummy variables may be identified by excluding them from the symbolic variable list,
or by explicitly forcing them to be non-optimizable parameters.

When a molecule is symmetric, it is often convenient to start the numbering with
atoms lying on a rotation axis or in a symmetry plane. If there are no real atoms on a
rotation axis or in a mirror plane, dummy atoms can be useful for defining the sym-
metry element. Consider for example the cyclopropenyl system, which has D3h sym-
metry. Without dummy atoms, one of the C—C bond lengths will be given in terms of
the two other C—C distances and the C—C—C angle, and it will be complicated to
force the three C—C bonds to be identical. By introducing two dummy atoms to define
the C3 axis, this becomes easy.
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Figure D.4 Atom numbering for the cyclopropyl system

X1
X2 1 1.00
C3 1 R1 2 90.0
C4 1 R1 2 90.0 3 120.0
C5 1 R1 2 90.0 3 −120.0
H6 1 R2 2 90.0 3 0.0
H7 1 R2 2 90.0 3 120.0
H8 1 R2 2 90.0 3 −120.0



R1 = 0.80
R2 = 1.90

In this case there are only two genuine variables, the others are fixed by symmetry.
Let us finally consider two Z-matrices for optimization to transition structures, the

Diels–Alder reaction of butadiene and ethylene, and the [1,5]-hydrogen shift in (Z)-
1,3-pentadiene. To enforce the symmetries of the TS’s (Cs in both cases) it is again
advantageous to use dummy atoms.
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Figure D.5 Atom numbering for the transition structure of the Diels–Alder reaction of butadiene and
ethylene

X1
X2 1 1.00
C3 1 R1 2 90.0
C4 1 R1 2 90.0 3 180.0
C5 3 R2 1 A1 2 180.0
C6 4 R2 1 A1 2 180.0
C7 3 R3 1 A2 2 D1
C8 4 R3 1 A2 2 −D1
H9 3 R4 5 A3 6 D2
H10 3 R5 5 A4 6 −D3
H11 4 R4 6 A3 5 −D2
H12 4 R5 6 A4 5 D3
H13 5 R6 3 A5 1 −D4
H14 6 R6 4 A5 1 D4
H15 7 R7 8 A6 4 D5
H16 7 R8 8 A7 4 −D6
H17 8 R7 7 A6 3 −D5
H18 8 R8 7 A7 3 D6

R1 = 1.40
R2 = 1.40
R3 = 2.20
R4 = 1.10
R5 = 1.10



R6 = 1.10
R7 = 1.10
R8 = 1.10
A1 = 60.0
A2 = 70.0
A3 = 120.0
A4 = 120.0
A5 = 120.0
A6 = 120.0
A7 = 120.0
D1 = 60.0
D2 = 170.0
D3 = 30.0
D4 = 170.0
D5 = 100.0
D6 = 100.0

The mirror plane is defined by the two dummy atoms and the fixing of the angles 
and torsional angle of the first two carbons. The torsional angles for atoms C5 and C6
are dummy variables as they only define the orientation of the plane of the first 
four carbon atoms relative to the dummy atoms, and may consequently be fixed at
180°. Note that the C5—C6 and C7—C8 bond distances are given implicitly in terms 
of the R2/A1 and R3/A2 variables. The presence of such “indirect” variables means
that some experimentation is necessary for assigning proper values to the “direct”
variables. The forming C—C bond is given directly as one of the Z-matrix variables,
R3, which facilitates a search for a suitable start geometry for the TS optimization,
for example by running a series of constrained optimizations with fixed R3 
distances.

The [1,5]-hydrogen shift in (Z)-1,3-pentadiene is an example of a “narcissistic” reac-
tion, with the reactant and product being identical. The TS is therefore located exactly
at the halfway point, and has a symmetry different from either the reactant or product.
By suitable constraints on the geometry the TS may therefore be located by a mini-
mization within a symmetry-constrained geometry.
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Figure D.6 Atom numbering for the transition structure for the [1,5]-hydrogen shift in (Z)-1,3-
pentadiene



X1
X2 1 1.00
X3 1 1.00 2 90.0
C4 1 R1 2 90.0 3 90.0
C5 1 R1 2 90.0 3 −90.0
C6 4 R2 1 A1 2 180.0
C7 5 R2 1 A1 2 180.0
C8 1 R3 3 A2 2 180.0
H9 4 R4 6 A3 8 −D1
H10 4 R5 6 A4 8 D2
H11 5 R4 7 A3 8 D1
H12 5 R5 7 A4 8 −D2
H13 6 R6 4 A5 1 D3
H14 7 R6 5 A5 1 −D3
H15 1 R7 3 A6 2 180.0
H16 1 R8 2 A7 3 0.0

R1 = 1.30
R2 = 1.40
R3 = 2.10
R4 = 1.10
R5 = 1.10
R6 = 1.10
R7 = 3.20
R8 = 0.70
A1 = 80.0
A2 = 90.0
A3 = 120.0
A4 = 120.0
A5 = 120.0
A6 = 90.0
A7 = 60.0
D1 = 160.0
D2 = 60.0
D3 = 160.0

The mirror plane is defined by the dummy atoms. The migrating hydrogen H16 is not
allowed to move out of the plane of symmetry, and must consequently have the same
distance to C4 and C5. A minimization will locate the lowest energy structure within
the given Cs symmetry, and a subsequent frequency calculation will reveal that the opti-
mized structure is a TS, with the imaginary frequency belonging to the a″ representa-
tion (breaking the symmetry).
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3-21G basis sets 203–4, 218
dissociation curves 361
relative energies of isomers 375

3D-QSAR 560
5Z see pentuple zeta
6-21G basis sets 203–4
6-31G basis sets 203–4, 216, 218, 375–7
6-311G basis sets 203–4, 216–18
STO-3G basis sets 375–7
AC see asymptotic corrected
accuracy 550
accuracy-per-function criteria 192
ACF see adiabatic connection formula
ACM see adiabatic connection model
ACPF see averaged coupled-pair functional
addition reactions 489–90, 497–506
adiabatic approximation 84–5
adiabatic connection formula (ACF) 252,

572–3
adiabatic connection model (ACM) 252
Ahlrichs type basis sets 205
AM1 see Austin model 1
AMBER force field 42, 63–4
angle bending curves 370, 371
angular correlation 196
ANO see atomic natural orbitals
anti conformations, force field methods 31–4
approximating functions 538–41
approximations 548
APT see atomic polar tensor
asymptotic corrected (AC) functionals 259
atom types 23, 24
atomic natural orbitals (ANO) 202, 205–6
atomic polar tensor (APT) charges 304
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atomization energy 547–8
atoms in molecules (AIM) method

qualitative theories 493
wave function analysis 299–303
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Austin model 1 (AM1) 121–2, 124, 125–7, 130–1
autocorrelation functions 472
autoscaling 554
average values 549
averaged coupled-pair functional (ACPF) 176
avoided crossings 85

B3 see Becke 3 parameter functional
B3LYP

density functional methods 255–7, 264
dipole moment convergence 357–8
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geometry convergence 353
simulation techniques 484
vibrational frequency convergence 360–1

B97 model 249
basis functions 293–6
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convergence 208
correlation consistent 206–11, 219
dipole moment convergence 357, 372
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isogyric reactions 221–2
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Slater type orbitals 192–4
split valence 195, 205
superposition errors 225–7
total energy convergence 354–6
vibrational frequency convergence 359–60,

373
wave function analysis 295, 297
well-tempered 198–200

Becke 3 parameter functional (B3) 252
Becke–Roussel (BR) functional 251
Bell correction 461
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bending energies, force field methods 27–30,

59–61, 64–5
BEP see Bell–Evans–Polanyi
BFGS see Broyden–Fletcher–Goldfarb–Shanno
bimodal distribution 550
Bloch theorem 114
blue moon sampling 464
BLYP

density functional methods 255–6, 264
dipole moment convergence 357–8
dissociation curves 369–70
geometry convergence 353
vibrational frequency convergence 360–1

BO see bond order
Boltzmann distributions

condensed phases 440–1
simulation techniques 445–6
statistical mechanics 427
transition state theory 425–6

bond critical points 302
bond dissociation

basis sets 221–2, 361–2
configuration interaction 145–53
curves 361–70
density functional theory 259, 369–70
force field methods 25, 59
Hartree–Fock theory 361–2
restricted Hartree–Fock methods 145–53
transition state theory 425–6
unrestricted Hartree–Fock methods 148–53
wave function differences 363–9

bond order (BO) 296
Born model 480–1
Born–Oppenheimer approximation

chemistry principles 19, 20
electronic structure methods 80, 82–6
Hohenberg–Kohn theorems 571
molecular properties 333
rigid-rotor harmonic-oscillator approximation

429
separation of variables 9, 11
simulation techniques 457, 458–9, 463
transition state theory 422

bound solutions 13, 16
Boys localization scheme 305–8
BR see Becke–Roussel
bra-ket notation 82, 530–1
branching 2
Bravais lattices 113
Breit correction 5
Breit interaction 285, 289, 291
Brillouin zones 113–14
Brillouin’s theorem 140, 164, 171
Brownian dynamics 455
Broyden–Fletcher–Goldfarb–Shanno (BFGS)

method 388
Brueckner theory 175–6
BSSE see basis set superposition errors
Buckingham-type potentials, force field methods

36–8

cage critical points 302
canonical orthogonalization 533
Car–Parrinello (CP) methods 457–9, 476
cartesian polar systems 514–15
CASSCF see complete active space self-

consistent field
CBS see complete basis set
cc/CC see correlation consistent; coupled cluster
CCD see coupled cluster doubles
CCSD(T) model

dipole moment convergence 357, 372
dissociation curves 367–9
geometry convergence 350–2, 371–2
total energy convergence 354–6
vibrational frequency convergence 359

central field model 13
centre of mass coordinate systems 1, 8–9
CEPA see coupled electron pair approximation
CF see Coulson–Fischer
CG see conjugate gradient
CGTO see contracted Gaussian type orbitals
CHA see chemical Hamiltonian approach
chain optimization 399–400
charge controlled reactions 488
charge iteration Hückel methods 128
charges see electrostatic energies
CHARMM force field 63–4
chemical Hamiltonian approach (CHA) 227
chemist’s notation 96
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CHF see coupled Hartree–Fock
Cholesky decomposition method 183
CI see configuration interaction
CI-NEB see climbing image NEB
cis isomerism 32, 34
Claisen reactions 435–6
classical mechanics 6, 12–14

molecular properties 333–4
see also force field methods

classical valence bond (VB) theory 269–70
climbing image NEB (CI-NEB) optimization

401
CNDO see complete neglect of differential

overlap
combined parameterization 56
comparative molecular field analysis (COMFA)

560
complete active space self-consistent field

(CASSCF) method 155–8
dissociation curves 363–5, 367
valence bond theory 273–5

complete basis set (CBS) 214–18
complete neglect of differential overlap

(CNDO) approximation 117–18
complex

conjugates 82, 515
numbers 514–15

composite extrapolation procedures 213–21
condensed phases 439–43
condition number 524
conductor-like screening model (COSMO)

483
configuration interaction (CI) 137–59, 183–5

beryllium atom 177–8
coupled cluster theory 172–8
direct methods 144–5
dissociation curves 367–9
mathematical methods 525–6, 529
matrix dimensions 141–3
matrix elements 138–41
molecular properties 322
multi-configuration self-consistent field 153–8
multi-reference 158–9
optimization techniques 382
perturbation theory 165, 174–8, 183–5
quadratic 176
RHF dissociation 145–53
simulation techniques 456
size consistency 153
size extensivity 153
spin contamination 148–53
state-selected 159
truncated 143–4
UHF dissociation 148–53

configurational state functions (CSF) 139,
141–2, 144–5

conformational sampling 409–15
conical intersection 505
conjugate gradient (CG) methods 384–5

conjugate peak refinement (CPR) 400
conjugated systems 48–50, 58–62
constrained

optimization 407–9
sampling methods 463–4

continuum models 476–84
contracted basis sets 200–11

Ahlrichs type basis sets 205
atomic natural orbital basis sets 205–6
correlation consistent basis sets 206–11, 219
degree of contraction 201
Dunning–Huzinaga basis sets 204–5
extrapolation 208–11
general contraction 201–2
MINI, MIDI and MAXI 205
polarization consistent basis sets 207–8
Pople style basis sets 202–4
segmented contraction 201–2

contracted Gaussian type orbitals (CGTO)
200–6

coordinate driving 394–5
coordinate selection 390–4, 405–6
coordinate transformations 520–9

CI wave functions 529
computational considerations 529
examples 525–6
rotations 520–2
similarity transformations 522
Slater determinants 528–9
unitary transformations 526
vibrational normal coordinates 526–8

coordination compounds
force field methods 58–62
parameterization 58–62

Cope rearrangements 508–12
core–core repulsion 120
correlation

coefficients 552
energy 19
functions 471–2
illustrative example 558–9
many data sets 553–9
multiple linear regression 555–6, 558–9
multiple-descriptor data sets 553–5
partial least squares 557–9
principle component analysis 556–7, 558–9
quality analysis 553–5
two data sets 550–3

correlation consistent (cc) basis sets 206–11,
219

dipole moment convergence 357, 372
dissociation curves 361–2
geometry convergence 350–3, 371–2
relative energies of isomers 376
simulation techniques 484
total energy convergence 354–6
vibrational frequency convergence 359–60,

373
COSMO see conductor-like screening model
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Coulomb
correlation 134
gauge 284
holes 134, 242–3
integrals 89–90, 96, 228
interactions 1, 9, 238–9, 496–7
potential 465–6

Coulson–Fischer (CF) functions 270
counterpoise (CP) correction 226
coupled cluster (CC) theory 137, 169–78, 183–6

beryllium atom 177–8
configuration interaction 172–8
perturbation theory 174–8
truncated CC methods 172–4

coupled cluster doubles (CCD) 172, 176
coupled electron pair approximation (CEPA)

176
coupled Hartree–Fock (CHF) theory 328
coupled perturbed Hartree–Fock (CPHF)

theory 325–9, 343
CP see Car–Parrinello; counterpoise correction
CPHF see coupled perturbed Hartree–Fock
CPR see conjugate peak refinement
cross-correlation functions 472
cross products 518
cross terms

force field methods 47–8, 51–2, 62
molecular properties 319–20

cross-validations 554–5
crystalline orbitals 114
CSF see configurational state functions

damping 101
Darwin correction 281–2, 286
Davidson algorithm 145
Davidson correction 174–5
Davidson–Fletcher–Powell (DFP) method 388
DBOC see diagonal Born–Oppenheimer

correction
degenerate eigenvalues 523
degree of contraction 201
delocalized internal coordinates 394
density functional theory (DFT) 232–67

computational considerations 260–3
Coulomb holes 242–3
dipole moment convergence 357–8, 372
dissociation curves 369–70
electronic structure methods 81–2, 111
exchange–correlation functionals 243–55, 259
exchange–correlation holes 240–3
Fermi holes 242–3
generalized gradient approximation 248–56
generalized random phase approximations

253–4
geometry convergence 353–4
gradient-corrected methods 248–56
Hohenberg–Kohn theorem 232, 239
hyper-GGA methods 252–6
Jacob’s ladder classification 246–55

Kohn–Sham theory 235–6, 239, 257–8, 260–3
limitations 258–60
local density approximation 245, 246–8, 254,

257
mathematical methods 544
meta-GGA methods 250–2, 254–6
molecular properties 346
orbital-free 233–5
parameterization 238, 247–8
performance and properties 255–8
qualitative theories 492–4, 496
reduced density matrix methods 236–40
simulation techniques 459
time-dependent 346
vibrational frequency convergence 360–1, 374

detailed balance condition 449
determinants 518–19
DFP see Davidson–Fletcher–Powell
DFT see density functional theory
DHF see Dirac–Hartree–Fock
diagonal Born–Oppenheimer correction

(DBOC) 84, 86
diamagnetic shielding 332–3
diamagnetism 335
Diels–Alder reactions

qualitative theories 490
rigid-rotor harmonic-oscillator approximation

435–6
Z-matrix construction 580

different orbitals for different spins (DODS) 99
differential

equations 535–8
operators 531–2

diffuse functions 203
diffusion methods 414
diffusion quantum Monte Carlo 188
DIIS see direct inversion in the iterative

subspace
dimer method 405
dipole moment convergence 356–8

Ab initio methods 356–7
density functional theory 357–8, 372
problematic systems 372

dipole–dipole interactions 34–5, 40–2, 66–7
see also van der Waals energies

Dirac equation 6–8, 278–88
electric potentials 280–4
four-component calculations 287–8
magnetic potentials 282–4
many-particle systems 284–7
molecular properties 331

Dirac–Fock equation 288, 289, 291
Dirac–Fock–Breit 352
Dirac–Hartree–Fock (DHF) theory 223
direct

configuration interaction methods 144–5
electron correlation methods 181–2
minimization techniques 103–4
self-consistent field theory 108–10
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direct inversion in the iterative subspace (DIIS)
102–3, 104

dispersion forces 35
dissociation see bond dissociation
distance geometry methods, global minima

414–15
distributed multipole analysis (DMA) 44, 298–9
distribution functions 470–1
DMA see distributed multipole analysis
docking 415–16
DODS see different orbitals for different spins
dot products 517–18
double zeta (DZ) basis sets 194–7
double zeta plus polarization (DZP) 196–7, 214

wave function analysis 295, 297
Douglas–Kroll transformations 289
DREIDING force field 63–4
dummy atoms 578–82
Dunning–Huzinaga basis sets 204–5
dynamic methods 406–7
dynamical effects 425–6
dynamical equations 3, 4, 5–12

nuclear and electronic variables 10–11
separation of variables 8–12
solving 8
space and time variables 10

DZ see double zeta
DZP see double zeta plus polarization

EC see electron correlation
ECP see effective core potentials
Edmiston–Ruedenberg localization scheme

306–8
EF see eigenvector following
effective core potentials (ECP) 222–5
effective fragment method 75
efficiency-per-function criteria 192
EHT see extended Hückel theory
eigenvector following (EF) 387
Einstein dynamical equation 6, 8
electric fields

external 315, 316–17, 329
internal 329

electric potentials 280–4
electromagnetic interactions 4–5, 17–18
electron

density 299–304
propagators 344
spin 333

electron correlation (EC) methods 133–91
beryllium atom 177–8
configuration interaction 137–59, 183–5
convergence 136, 152, 154, 166–8, 180–1
coupled cluster theory 137, 169–78, 183–6
direct methods 181–2
dissociation 145–53
excited Slater determinants 135–7, 139, 146,

163–5
excited states 186–7

interelectronic distance 178–81
localized orbital methods 182–3
many-body perturbation theory 137, 159–69,

174–8
Møller–Plesset perturbation theory 162–9,

174–8
multi-configuration self-consistent field

153–8, 187
projected Møller–Plesset methods 168–9
quantum Monte Carlo methods 187–9
resolution of the identity method 180–1, 183
size consistency 153
size extensivity 153
spin contamination 148–53
summary of methods 183–6
truncated coupled cluster methods 172–4
unrestricted Møller–Plesset methods 168–9

electron–nuclear dynamics (END) method
463

electronic
chemical potential 493
degrees of freedom 433
embedding 75
Hamiltonian operators 83

electronic structure methods 80–132
adiabatic approximation 84–5
basis set approximation 93–8
Born–Oppenheimer approximations 80–92
Hartree–Fock theory 80–2, 87, 91–2, 93–100
independent-particle models 80–1
Koopmans’ theorem 92–3
parameterization 118–25, 130
periodic systems 113–15
self-consistent field theory 86–7, 92, 96–7,

100–13
semi-empirical methods 115–18
Slater determinants 81, 87–92
variational problem 98–9

electrophilic reactions 489, 492, 512
electrostatic energies

charges 40–2
computational considerations 65–7
fluctuating charge model 44–5
force field methods 40–7, 57, 65–7
multipoles 43–7
parameterization 57
polarizabilities 43–7
see also dipole–dipole interactions

electrostatic potential (ESP)
mathematical methods 545
wave function analysis 296–9, 312

END see electron–nuclear dynamics
entropy 429, 433–9
entrywise products 517
equation of motion (EOM) methods 346
ergodic hypothesis 441, 447
errors 547–9
ESP see electrostatic potential
ETS see extended transition state
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Euler algorithm 417–18
EVB see extended valence bond
even-tempered basis sets 198–200
Ewald sums 67, 466–7
exact wave functions 321
exchange energy 18
exchange integrals 238–9

basis sets 228
electronic structure methods 89–90, 96

exchange–correlation functionals 243–55
generalized gradient approximation 248–56
generalized random phase approximations

253–4
gradient-corrected methods 248–56
hyper-GGA methods 252–6
Jacob’s ladder classification 246–55
limitations 259
local density approximation 246–8, 254, 257
meta-GGA methods 250–2, 254–6

exchange–correlation holes 240–3
excited electron correlation methods 186–7
excited Slater determinants 135–7, 139, 146,

163–5
extended Hückel theory (EHT) 107, 127–8
extended Lagrange methods 45, 457–9
extended transition state (ETS) approach 496
extended valence bond (EVB) method 73
external electric fields 315, 316–17, 329
external magnetic fields 315, 318, 331–2
extrapolation 101

fast Fourier transforms (FFT) 115, 542
fast multiple sums 67
fast multipole moment (FMM) method 111,

467–8
Fermi

contact 287
contact operators 332–3, 334, 336
correlation 134
holes 134, 242–3

FF see force field methods
FFT see fast Fourier transforms
first-order differential equations 535–6
first-order regular approximation (FORA)

method 282
fixed node approximation 189
Fletcher–Reeves (FR) method 385
fluctuating charge model 44–5
fluctuation potential 163
FMM see fast multipole moment
FMO see frontier molecular orbital theory
Fock matrices see Hartree–Fock theory
Fock operators 91–2, 99, 104–5
Foldy–Wouthuysen transformations 289
FORA see first-order regular approximation
force field (FF) methods 22–79

accuracy/generality 53–5, 71–2
advantages 69–70, 72
atom types 23, 24

bending energies 27–30, 59–61, 64–5
computational considerations 65–7
conjugated systems 48–50, 58–62
coordination compounds 58–62
cross terms 47–8, 51–2, 62
differences in force fields 62–5
electrostatic energies 40–7, 57, 65–7
energy comparisons 50–1
energy types 23–51
errors 68
functional forms 62–3
functional groups 22–3, 53–4
generic parameters 57–8
hybrid force field electronic structure

methods 74–7
hydrogen bonds 39–40
hyperconjugation 48
limitations 69–70, 72–3
out-of-plane bending energies 30
parameterization 51–62, 68–9
practical considerations 69
reactive energy surfaces 73–4
relative energies of isomers 378
small rings 48–50
stretch energies 26–7, 64–5
structurally different molecules 50–1
torsional energies 30–4, 42–3, 48, 57, 63
transition structure modelling 70–4
universal force fields 62
validation of force fields 67–9
van der Waals energies 34–40, 42–3, 52–3, 57,

61, 65–7
forces 4–5
FORS see full optimized reaction space
four index transformations 141
Fourier transformations (FT) 541–2
FR see Fletcher–Reeves
free energy methods

simulation techniques 472–5
thermodynamic integration 473–5
thermodynamic perturbation 472–3

frontier molecular orbital (FMO) theory
487–92

frozen-core approximation 136
FT see Fourier transformations
Fukui function 492–4
full optimized reaction space (FORS) 155–8
functional forms 62–3
functional groups 22–3, 53–4
functionals 530
functions 530, 531
fundamental forces 4–5

GA see genetic algorithms
GAPT see generalized atomic polar tensor
gauge dependence 338–9
gauge including/invariant atomic orbitals

(GIAO) 338–9
gauge origin 282, 330
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Gaunt interaction 285, 289, 291
Gaussian type orbitals (GTO) 192–4, 200–6,

214–15
GB/SA see generalized Born/surface area
GDIIS see geometry direct inversion in the

iterative subspace
general contraction 201–2
general functions

conjugate gradient methods 384–5
coordinate selection 390–4, 405–6
GDIIS extrapolations 389–90
Hessian computation 385–9
Newton–Raphson methods 385–94
optimization techniques 381, 383–407
saddle points 381, 394–407
Simplex method 383
steepest descent method 383–4
step control 386–7

general relativity 279
generalized atomic polar tensor (GAPT)

charges 304, 311
generalized Born/surface area (GB/SA) model

480
generalized gradient approximation (GGA)

methods 248–56
generalized inverse matrices 519–20, 524–5
generalized random phase approximations

(GRPA) 253–4
generalized valence bond (GVB) theory 275
generic parameters 57–8
genetic algorithms (GA) 413–14
geometry convergence 350–4

Ab initio methods 350–3
density functional theory 353–4
problematic systems 371–2

geometry direct inversion in the iterative
subspace (GDIIS) extrapolations 389–90

geometry perturbations 315, 319, 339–43
GGA see generalized gradient approximation
ghost orbitals 227
GIAO see gauge including/invariant atomic

orbitals
Gibbs free energy 472
global minima

diffusion methods 414
distance geometry methods 414–15
genetic algorithms 413–14
molecular dynamics 412–13
Monte Carlo methods 411–12
optimization techniques 380–1, 409–15
simulated annealing 413
stochastic methods 411–12

Gonzalez–Schlegel optimization 418
gradient norm minimization 402–3
gradient-corrected methods 248–56
Gram–Schmidt orthogonalization 533
grand unified theory 5
gravitational interactions 4–5, 9
Greens functions see propagator methods

grid representation 539
GROMOS force field 63–4
GRPA see generalized random phase

approximations
GTO see Gaussian type orbitals
guache conformations 31–4
GVB see generalized valence bond

half-and-half (H + H) method 252
half-electron method 100
Hamilton formulation 453
Hamiltonian operators

density functional theory 240
dynamical equation 7
electron correlation methods 138–40, 159–66,

170–4, 179, 187–8
electronic structure methods 82–4, 87, 88, 91,

104–5
force field methods 74
mathematical methods 525, 528–9, 538
molecular properties 315–16, 332, 345–7
quantum mechanics 15
relativistic methods 283, 284, 286–7
separation of variables 10–12
simulation techniques 459–60, 482
statistical mechanics 428
superoperators 345–7

Hammett-type effects 71
Hammond postulate 506–10
Hamprecht–Cohen–Tozer–Handy (HCTH)

model 249, 251
geometry convergence 353
vibrational frequency convergence 360–1

hard and soft acid and base (HSAB) principle
493–4

harmonic expansions see Taylor expansions
Hartree–Fock (HF) theory

basis set approximation 93–8
basis sets 213, 223, 227–9
classical mechanics 13–14
coupled 328
coupled perturbed 325–9, 343
density functional theory 233, 236–40, 248,

255–7, 259, 262–3
dissociation curves 361–2
electron correlation methods 133–4, 137,

138–40, 189
electronic structure methods 80–2, 87, 91–2,

93–100
force field methods 62, 70
geometry convergence 353–4
Hartree–Fock limit 97–8
mathematical methods 541, 544
molecular properties 322, 325–9, 339–41, 346
numerical 93–8
optimization techniques 380, 382
qualitative theories 496
quantum mechanics 18–19
relativistic methods 288, 289
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separation of variables 9
Slater determinants 87, 91–2
statistical methods 551
time-dependent 346
total energy convergence 355
vibrational frequency convergence 358–9
wave function analysis 304–5
see also restricted Hartree–Fock; self-

consistent field theory; unrestricted
Hartree–Fock

HCTH see Hamprecht–Cohen–Tozer–Handy
Heisenberg uncertainty principle 20
Heitler–London (HL) functions 269–70
helium atoms 17–19
Hellmann–Feynman theorem 322–3, 339–40,

572
Helmholtz free energy

condensed phases 441–2
simulation techniques 472
statistical mechanics 428

Hermitian matrices 83, 91, 516, 523
Hermitian operators 159
Hessian computation 385–9
Hestenes–Stiefel (HS) method 385
HF see Hartree–Fock
higher order gradient methods 250–2, 254–6
higher random phase approximation (HRPA)

347
highest occupied molecular orbitals (HOMO)

488–95
Hilbert space 530
Hill-type potentials 36–8
Hirshfeld atomic charges 303–4, 311
HL see Heitler–London
Hohenberg–Kohn theorem 232, 239, 571–2
HOMO see highest occupied molecular orbitals
HRPA see higher random phase approximation
HS see Hestenes–Stiefel
HSAB see hard and soft acid and base principle
Hückel theory 107, 127–9
hybrid force field electronic structure methods

74–7
hybrid GGA methods 252–6
hydrogen bonds 39–40
hydrogen shifts 504, 580–2
hydrogen-like atoms 14–17
Hylleras type wave functions 179
hyper-GGA methods 252–6
hyperconjugation 48
hypercubes 516
hyperpolarizability 317

idempotent density matrices 103–4
IGLO see individual gauge for localized orbitals
ill-conditioned systems 520
imaginary numbers 515
independent-particle models 80–1
individual gauge for localized orbitals (IGLO)

338

INDO see intermediate neglect of differential
overlap

infrared (IR) absorption 319
initial guess orbitals 107
interactions

description 3–4
fundamental forces 4–5

interelectronic distance 178–81
intermediate neglect of differential overlap

(INDO) approximation 107, 117, 118
internal electric fields 329
internal magnetic moment see nuclear magnetic

moment
intrinsic activation energy 507–8
intrinsic reaction coordinates (IRC)

mathematical methods 528
optimization techniques 395, 416–18
simulation techniques 461, 463

introductory material see theoretical chemistry
intruder states 166
inverse matrices 519–20, 524–5
IR see infrared
IRC see intrinsic reaction coordinates
isodesmic reactions 221–2
isogyric reactions 221–2
isomers 374–8

jackknife models 554–5
Jacobi method 524
Jacob’s ladder classification 246–55
Janak theorem 257
Jastrow factors 189

k-nlmG basis sets 203
Keal–Tozer (KT) functionals 250
kinetic balance condition 288
Kirkwood model 480–1, 483
Kirkwood–Westheimer model 481
Kohn–Sham (KS) theory 235–6, 239, 257–8,

260–3
Koopmans’ theorem 92–3, 99, 493–4
KS see Kohn–Sham
KT see Keal–Tozer

Lagrange techniques
constrained sampling methods 464
electronic structure methods 90–1, 98, 102
extended 457–9
force field methods 45
molecular properties 324–5, 328
optimization techniques 408–9, 418
simulation techniques 452–3

Langevin methods 455, 476
LAO see London atomic orbitals
Laplace transforms 543
Laplacians 532
large curvature ground state (LCG)

approximation 462–3
latent variables 556
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LCAO see linear combination of atomic orbitals
LCCD see linear coupled cluster doubles
LCG see large curvature ground state
LDA see local density approximation
leap-frog algorithms 452
least squares linear fit 551
leave-one-out models 554–5
Lee–Yang–Parr (LYP) model 249–50
Legendre parameterization 199, 212
Lennard-Jones (LJ) potential 35–8, 40, 62
leptons 4–5
level shifting

Newton–Raphson methods 387
self-consistent field theory 101–2

level/basis notation 137
LIE see linear interaction energy
Lieb–Oxford condition 245
line-then-plane (LTP) optimization 398
linear combination of atomic orbitals (LCAO)

94
linear correlation 551
linear coupled cluster doubles (LCCD) 176
linear interaction energy (LIE) method 475
linear synchronous transit (LST) 395
linearised Poisson–Boltzmann equation (LPBE)

479
LJ see Lennard-Jones potential
LMOs see localized molecular orbitals
local density approximation (LDA) 245, 246–8,

254, 257
local minima 380–1, 383–90
local spin density approximation (LSDA)

basis sets 225
density functional methods 246–8, 251, 255–6,

258, 263–4
dipole moment convergence 357–8
geometry convergence 353
vibrational frequency convergence 360–1

localized molecular orbitals (LMOs) 304–8
localized orbital methods 182–3
localized orbital/local origin (LORG) 338
locally updated planes (LUP) optimization 400
London atomic orbitals (LAO) 338–9
London forces 35
long-range solvation 475–6
looping 2
loosely bound electrons 258
Lorentz transformations 277
LORG see localized orbital/local origin
Löwdin partitioning 294–6, 310, 311
lowest unoccupied molecular orbitals (LUMO)

488–95, 543–6
LPBE see linearised Poisson–Boltzmann

equation
LSDA see local spin density approximation
LST see linear synchronous transit
LTP see line-then-plane
LUMO see lowest unoccupied molecular

orbitals

LUP see locally updated planes
LYP see Lee–Yang–Parr

MacDonald’s theorem 571
McWeeny procedure 104
MAD see mean absolute deviation
magnetic fields

diamagnetic contribution 335
external 315, 318, 331–2
gauge dependence 338–9
molecular properties 315, 318–19, 329–39
nuclear magnetic moment 315, 318–19, 332
paramagnetic contribution 335

magnetic potentials 282–4
magnetizability 318, 335
many-body perturbation theory (MBPT) 137,

159–69, 183–6
beryllium atom 177–8
configuration interaction 174–8, 183–5
coupled cluster theory 174–8
Møller–Plesset perturbation theory 162–9,

174–8
projected Møller–Plesset methods 168–9
unrestricted Møller–Plesset methods

168–9
many-body problem 2
Marcus equation 71, 506–10
mass-polarization term 83–5
mass–velocity correction 281–2
mathematical methods 514–46

approximating functions 538–41
basis set expansion 539, 541
computational considerations 529
coordinate transformations 520–9
differential equations 535–8
differential operators 531–2
Fourier transformations 541–2
functionals 530
functions 530, 531
Laplace transforms 543
matrices 516–20, 523–4
normalization 532–5
numbers 514–15
operations 2
operators 530–2
orthogonalization 533–5
projection 534–5
Slater determinants 528–9
surfaces 543–6
vectors 514–15, 517, 532

matrices 516–20
determinants 518–19
eigenvalues/eigenvectors 523–4, 526–8
inverses 519–20, 524–5
multiplications 516–18
rank 524
transpositions 516
Z-matrix construction 575–82

matrix elements 82
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MAXI basis sets 205
MBPT see many-body perturbation theory
MC see Monte Carlo
MCMM see multi-configurations molecular

mechanics
MCRPA see multi-configuration random phase

approximation
MCSCF see multi-configuration self-consistent

field
MD see molecular dynamics
mean absolute deviation (MAD) 550–1
mean values 549
mean-field approximations see Hartree–Fock

theory
mechanical embedding 74–5
median 550
MEP see minimum energy path; molecular

electrostatic potential
MEPSAC see minimum energy path semi-

classical adiabatic ground state
Merck molecular force field (MMFF) 35–6
meta-GGA methods 250–2, 254–6
metal coordination compounds see coordination

compounds
methyl shifts 505
Metropolis algorithms 188
microcanonical transition state theory 424–5
MIDI basis sets 205
migrations 504
MINDO see modified intermediate neglect of

differential overlap
MINI basis sets 205
minimum basis set 194
minimum energy path (MEP) 417, 461
minimum energy path semi-classical adiabatic

ground state (MEPSAC) 462
minimum energy structures 70–3
mixed derivatives 319–20
MLR see multiple linear regression
MM (molecular mechanics) see force field

methods
MMFF see Merck molecular force field
MNDO see modified neglect of diatomic

overlap
mode 550
modified intermediate neglect of differential

overlap (MINDO) approximation 119
modified NDDO approximations 119–20
modified neglect of diatomic overlap (MNDO)

121–7, 130
MOJ see More O’Farrell–Jencks
molecular docking 415–16
molecular dynamics (MD) 445–8, 451–4

condensed phases 440–3
constrained sampling methods 464
extracting information from simulations

468–9
global minima 412–13

molecular electrostatic potential (MEP) 42, 296

molecular mechanics (MM) see force field
methods

molecular orbital theory see frontier molecular
orbital theory; qualitative molecular orbital
theory

molecular properties 315–49
basis sets 348–9
classical terms 333–4
derivative techniques 321–4
electron spin 333
examples 316–20
external electric fields 315, 316–17, 329
external magnetic fields 315, 318, 331–2
gauge dependence 338–9
internal electric fields 329
Lagrangian techniques 324–5, 328
magnetic field perturbations 315, 318–19,

329–39
mixed derivatives 319–20
nuclear geometry perturbations 315, 319,

339–43
nuclear magnetic moment 315, 318–19, 332
perturbation methods 321
propagator methods 343–8
relativistic methods 324
response methods 343–8

Møller–Plesset perturbation theory 158, 162–9,
183–6

beryllium atom 177–8
configuration interaction 174–8, 183–5
coupled cluster theory 174–8
dipole moment convergence 357, 372
geometry convergence 350–3
projected methods 168–9
total energy convergence 354–6
unrestricted methods 168–9
vibrational frequency convergence 359–60,

373
Monte Carlo (MC) methods 445–50

condensed phases 440–3
constrained sampling methods 464
density functional theory 247
extracting information from simulations

468–9
global minima 411–12
non-natural ensembles 450
see also quantum Monte Carlo

More O’Farrell–Jencks (MOJ) diagrams
510–12

Morokuma energy decomposition 496–7
Morse potentials

force field methods 25–7, 36–8, 47, 59
mathematical methods 540, 541

MRCI see multi-reference configuration
interaction

Mulliken
electronegativity 493
notation 96
population analysis 294–6, 310–12
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multi-configuration random phase
approximation (MCRPA) 347

multi-configuration self-consistent field
(MCSCF)

electron correlation methods 153–8, 187
molecular properties 322
qualitative theories 505
valence bond theory 273–5

multi-configurations molecular mechanics
(MCMM) method 73

multi-determinant wave functions
electron correlation methods 134–5
electronic structure methods 81

multi-dimensional energy surfaces 381
multi-reference configuration interaction

(MRCI) 158–9, 456
multi-reference wave functions 157
multiple linear regression (MLR) 555–6, 558–9
multiple-descriptor data sets 553–5
multipoles 43–7

N-order tensors 516
N-representability 238, 240
natural atomic orbital (NAO) analysis 309–12
natural bond orbital (NBO) analysis 309–12
natural germinals 308–9
natural internal coordinates 393–4
natural orbitals (NO) 308–9
NBO see natural bond orbital
NDDO see neglect of diatomic differential

overlap
NEB see nudged elastic band
neglect of diatomic differential overlap

(NDDO) approximation 116–17, 118,
119–20, 130

neighbour lists 65
Newton formulation 453
Newton–Raphson (NR) methods

electron correlation methods 154
electronic structure methods 103–4
mathematical methods 540
minima 385–94
optimization techniques 385–94, 403–5
saddle points 403–5

Newtonian mechanics 5–8, 12, 22
NMR see nuclear magnetic resonance
NO see natural orbitals
noise 548
non-adiabatic coupling elements 84
non-bonded energies see electrostatic energies;

van der Waals energies
non-degenerate eigenvalues 523
non-linear correlations 552–3
non-natural ensembles 450, 454–5
non-specific solvation 475–6
norm-conserving pseudopotentials 224
norm-extended Hessian 387
normalization 532–5
Nosé–Hoover methods 455

notation (Appendix A) 565–9
NR see Newton–Raphson
nuclear geometry

perturbations 315, 319, 339–43
transition state theory 423–4

nuclear magnetic moment 315, 318–19, 332
nuclear magnetic resonance (NMR) 320, 337
nucleophilic reactions 489, 492
nudged elastic band (NEB) optimization 400–1
numbers 514–15
numerical Hartree–Fock methods 93

occupation numbers 308–9
OEP see optimized effective potential
one-centre one-electron integrals 119
one-electron integrals 97, 116–18
ONIOM see our own n-layered integrated

molecular orbital molecular mechanics
Onsager model 480–1, 482, 483
operators 530–2
optimization techniques 380–420

conformational sampling 409–15
conjugate gradient methods 384–5
constrained optimization 407–9
coordinate selection 390–4, 405–6
GDIIS extrapolations 389–90
general functions 381, 383–407
global minima 380–1, 409–15
Hessian computation 385–9
intrinsic reaction coordinate methods 395,

416–18
local minima 380–1, 383–90
molecular docking 415–16
Newton–Raphson methods 385–94
quadratic functions 380–2
saddle points 381, 394–407
Simplex method 383
steepest descent method 383–4
step control 386–7

optimized effective potential (OEP) methods
253–4

optimized exchange (OPTX) model 249–50
orbital

controlled reactions 488
correlation diagrams 497–8, 501–3

orbital-free density functional theory 233–5
orbital-Zeeman term 331–2
ortho conformations 32
orthogonalization 533–5
our own n-layered integrated molecular orbital

molecular mechanics (ONIOM) method 76
out-of-plane bending energies 30
outer products 518
overlap elements 82

pairwise distance corrected Gaussian (PDDG)
approximation 123–4

paramagnetic spin–orbit (PSO) operator 287
paramagnetism 335
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parameterization
accuracy/generality 53–5, 71–2
basis sets 199, 212
combined 56
coordination compounds 58–62
density functional theory 238, 247–8
electronic structure methods 118–25, 130
force field methods 51–62
generic parameters 57–8
missing parameters 54–6
parameter reduction in force fields 57–8
redundant variables 56–7
relativistic effects 62
sequential 55–6
universal force fields 62
validation of force fields 68–9

parameterized configuration interaction (PCI-
X) method 221

parametric method number 3 (PM3) 122–4,
125–7, 130–1

parametric method number 5 (PM5) 123–4
Pariser–Pople–Parr (PPP) method 49–50, 118
partial charge models 43–4
partial least squares (PLS) 557–9
particle mesh Ewald (PME) method 467
partition functions 427–8
partitioned rational function optimization (P-

RFO) 404
Pauli equation 281
PAW see projector augmented wave
PB see Poisson–Boltzmann
PBE see Perdew–Burke–Ernzerhof;

Poisson–Boltzmann equation
PCA see principle component analysis
PCI-X see parameterized configuration

interaction
PCM see polarizable continuum model
PDDG see pairwise distance corrected Gaussian
penalty function 407–8
pentuple zeta (PZ) basis sets 195
Perdew–Burke–Ernzerhof (PBE)

basis sets 225
density functional methods 249, 255–6
dipole moment convergence 357–8
geometry convergence 353
vibrational frequency convergence 360–1, 374

Perdew–Kurth–Zupan–Blaha (PKZB)
functional 252

Perdew–Wang (PW) formula 247, 249, 255–6
perfect pairing (PP) 275
pericyclic reactions 505–6
periodic boundary conditions 464–8
periodic systems 113–15
PES see potential energy surfaces
PGTO see primitive Gaussian type orbitals
phase space 428
photochemical reactions

qualitative theories 499, 500
transition state theory 423–4

physicist’s notation 95–6
Pipek–Mezey localization scheme 306–8
PKZB see Perdew–Kurth–Zupan–Blaha
plane wave basis functions 211–12
PLS see partial least squares
PM3 see parametric method number 3
PM5 see parametric method number 5
PME see particle mesh Ewald
PMF see potential of mean force
points-on-a-sphere (POS) models 61
Poisson–Boltzmann equation (PBE) 478
Poisson–Boltzmann (PB) methods 478–9
Polak–Ribiere (PR) method 385
polarizability 43–7, 317
polarizable continuum model (PCM) 483
polarizable embedding 75
polarization 195, 196–8, 206, 228
polarization consistent basis sets 207–8
polarization propagators (PP) 344–5
Pople style basis sets 202–4
population analysis 293–304

atoms in molecules method 299–303
basis functions 293–6
electron density 299–304
electrostatic potential 296–9
generalized atomic polar tensor charges 304,

311
Hirshfeld atomic charges 303–4, 311
Mulliken 294–6, 310–12
Stewart atomic charges 304, 311
Voronoi atomic charges 303, 311

POS see points-on-a-sphere
potential energy surfaces (PES) 11, 19–21

electronic structure methods 80, 84–5
force field methods 22
simulation techniques 459–60, 469–70

potential of mean force (PMF) 464
potentials 4–5
Powell method 388
PP see perfect pairing; polarization propagators;

pseudopotential
PPP see Pariser–Pople–Parr
PR see Polak–Ribiere
pre-NAOs 310
precision 550
predicted residual sum of squares (PRESS)

554
predictive correlation coefficients 554
preservation of bonding 503–4
PRESS see predicted residual sum of squares
primitive Gaussian type orbitals (PGTO) 200–6
principal axes of inertia 431
principle component analysis (PCA)

mathematical methods 523
statistical methods 556–7, 558–9

principle propagator 346
probabilistic equations 6
projected Møller–Plesset methods 168–9,

364–7
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projected unrestricted Hartree–Fock (PUHF)
152–3, 363–5

projection 534–5
projector augmented wave (PAW) method 225
propagator methods 343–8
pseudo-atoms 39, 59
pseudo-Newton–Raphson methods 388
pseudopotential (PP) 222–4
pseudospectral methods 227–9
PSO see paramagnetic spin–orbit operator
PUHF see projected unrestricted Hartree–Fock
PW see Perdew–Wang
PZ see pentuple zeta

QA see quadratic approximation
QCI see quadratic configuration interaction
QED see quantum electrodynamics
QM/MM see quantum mechanics – molecular

mechanics methods
QMC see quantum Monte Carlo
QSAR see quantitative structure–activity

relationships
QST see quadratic synchronous transit
quadratic approximation (QA) method 387,

404
quadratic configuration interaction (QCI) 176,

215–18
quadratic functions 380–2
quadratic synchronous transit (QST) 395–6
quadruple zeta (QZ) basis sets 195
quadruple zeta valence (QZV) basis sets 205
quadrupole–quadrupole interactions 35, 46

see also multipoles
qualitative molecular orbital theory 494–7
qualitative theories 487–513

Bell–Evans–Polanyi principle 506–10
density functional theory 492–4
frontier molecular orbital theory 487–92
Hammond postulate 506–10
Marcus equation 506–10
More O’Farrell–Jencks diagrams 510–12
qualitative molecular orbital theory 494–7
Woodward–Hoffmann rules 497–506, 508

quality analysis 553–5
quantitative structure–activity relationships

(QSAR) 559–61
quantum electrodynamics (QED) 5, 285
quantum mechanics 6–7, 14–19
quantum mechanics – molecular mechanics

(QM/MM) methods 74–7, 476
quantum methods 459–60
quantum Monte Carlo (QMC) methods 187–9
quarks 4–5
quaternions 515
QZ see quadruple zeta
QZV see quadruple zeta valence

radial distribution functions 470–1
radial functions 16–17

radiative transitions 423
radius of convergence 540
Raman absorption 319
random errors 547–8
random phase approximation (RPA) 346, 347
RASSCF see restrictive active space self-

consistent field
rational function optimization (RFO) 387, 404
RATTLE algorithm 453
Rayleigh–Schrödinger perturbation theory 161,

321
RCA see relaxed constraint algorithm
reaction field model 476–7
reaction path (RP) methods 460–5
reactive energy surfaces 73–4
read/write data function 2
ReaxFF method 73–4
reciprocal cells 113
reduced

density matrix methods 236–40
scaling techniques 110–13

redundant variables 56–7
relationship determination 2
relative energies of isomers 374–8
relativistic methods 277–92

Dirac equation 278–88
effects of relativity 289–92
electric potentials 280–4
equations 6
four-component calculations 287–8
geometry convergence 352
magnetic potentials 282–4
many-particle systems 284–7
molecular properties 324
singularities 288

relaxed constraint algorithm (RCA) 104
renormalized Davidson correction 175
resolution of the identity 180–1, 183, 534–5
resonance energy 273
RESP see restrained electrostatic potential
response methods 343–8
restrained electrostatic potential (RESP) 42
restricted Hartree–Fock (RHF) methods

99–100
configuration interaction 145–53
dissociation 145–53
electron correlation methods 133, 145–53,

154, 157, 168–9
Møller–Plesset perturbation theory 168–9

restricted Møller–Plesset methods 364–7
restricted open-shell Hartree–Fock (ROHF)

methods 99–100
electron correlation methods 133, 150, 152,

168–9, 176
restrictive active space self-consistent field

(RASSCF) 155–6
RFO see rational function optimization
RHF see restricted Hartree–Fock theory
RHF dissociation 363–7
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Rice–Ramsperger–Kassel–Marcus (RRKM)
theory 424–5

ridge optimization 398
rigid-rotor harmonic-oscillator (RRHO)

approximation 429–39
bimolecular reactions 434–6
electronic degrees of freedom 433
enthalpy and entropy contributions 429,

433–9
rotational degrees of freedom 430–1
transition states 436–9
translational degrees of freedom 430
unimolecular reactions 434, 435–6
vibrational degrees of freedom 431–3

ring critical points 302
ring-closures 500–4
ring-opening reactions 508–12
RK see Runge–Kutta
RMS see root mean square
ROHF see restricted open-shell Hartree–Fock

theory
root mean square (RMS) 550
Roothaan–Hall equations

electronic structure methods 94, 96–7, 100
relativistic methods 289

rotational degrees of freedom 430–1
RP see reaction path
RPA see random phase approximation
RRHO see rigid-rotor harmonic-oscillator

approximation
RRKM see Rice–Ramsperger–Kassel–Marcus
Rumer basis 272
Runge–Kutta (RK) algorithm 417, 452
Rydberg orbitals 310
Rydberg states 187, 259

SAC see scaled all correlation; spin-adapted
configurations

saddle optimization 397
saddle points

coordinate selection 405–6
dimer method 405
dynamic methods 406–7
gradient norm minimization 402–3
interpolation methods 394–402
local methods 402–6
multi-structure interpolation methods

398–401
Newton–Raphson methods 403–5
one-structure interpolation methods 394–7
optimization techniques 381, 394–407
transition state theory 422
TS modelling 70–4
two-structure interpolation methods 397–8

SAM1/SAM1D see semi ab initio method 1
SAS see solvent accessible surfaces
scalar functions 531
scalar relativistic corrections 281–2
scalars 514

scaled all correlation (SAC) 219, 221
scaled external correlation (SEC) 219, 221
scaling

electron correlation methods 184, 189
self-consistent field theory 110–13

SCF see self-consistent field
Schrödinger equation 6–8, 10–12, 15–20

adiabatic approximation 84–5
basis sets 192, 211
Born–Oppenheimer approximation 80,

82–6
density functional theory 238, 240
Dirac equation 278, 280–4
electron correlation methods 159–66, 170–4,

178–9, 187–8
electronic structure methods 80–92
force field methods 22
mathematical methods 526–8, 538
molecular properties 315–16
relativistic methods 277, 278, 280–4
rigid-rotor harmonic-oscillator approximation

432
self-consistent field theory 87, 92
Slater determinants 81, 87–92
statistical mechanics 429

Schwartz inequality 109
SCRF see self-consistent reaction field
SCSAC see small curvature semi-classical

adiabatic ground state
SCVB see spin-coupled valence bond
SD see Slater determinants; steepest descent
SEAM method 71–3
SEC see scaled external correlation
second-order differential equations 536–8
second-order perturbation theory 487
second-order polarization propagator

approximation (SOPPA) 347–8
segmented contraction 201–2
self-consistent field (SCF) theory

basis set approximation 96–7
convergence 101–4
damping 101
direct inversion in the iterative subspace

102–3, 104
direct minimization techniques 103–4
direct SCF 108–10
electron correlation methods 152, 181–2
electronic structure methods 86–7, 92, 96–7,

100–13
extrapolation 101
initial guess orbitals 107
level shifting 101–2
minimum HF energies 105–7
molecular properties 322, 342
processing time 110
qualitative theories 505
reduced scaling techniques 110–13
Slater determinants 92
symmetry 104–5
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techniques 100–13
valence bond theory 273–5

self-consistent Hückel methods 128
self-consistent reaction field (SCRF) models

481–4
self-penalty walk (SPW) optimization 398–9
semi ab initio method 1 (SAM1/SAM1D)

124–5, 127
semi-empirical electronic structure methods

115–18
advantages 129–31
limitations 129–31
parameterization 118–25, 130
performance 125–7

separation of variables 8–12
seperability theorem 525
sequential parameterization 55–6
SHAKE algorithm 453, 458
shifting function approach 465–6
short-range solvation 475–6
similarity transformations 171, 522
simple harmonic expansions see Taylor

expansions
simple Hückel theory 128–9
Simplex method 383
simulated annealing 413
simulation techniques 445–86

Born/Onsager/Kirkwood models 480–1,
483

Car–Parrinello methods 457–9, 476
constrained sampling methods 463–4
continuum models 476–84
direct methods 455–7
extracting information from simulations

468–72
free energy methods 472–5
Langevin methods 455, 476
non-Born–Oppenheimer methods 463
non-natural ensembles 450, 454–5
periodic boundary conditions 464–8
Poisson–Boltzmann methods 478–9
potential energy surfaces 459–60
quantum methods 459–60
reaction path methods 460–5
self-consistent reaction field models 481–4
solvation methods 475–84
thermodynamic integration 473–5
thermodynamic perturbation 472–3
time-dependent methods 450–64
see also molecular dynamics; Monte Carlo

methods
SINDO see symmetric orthogonalized

intermediate neglect of differential 
overlap

single value decomposition 520, 524
singlet instability 106
singularities 288
size consistency 153
size extensivity 153

Slater determinants (SD) 18
electron correlation methods 135–7, 139, 145,

163–5, 178
electronic structure methods 81, 87–92, 99
excited 135–7, 139, 146, 163–5
mathematical methods 528–9
optimization techniques 380
valence bond theory 268, 269, 274
wave function analysis 304–5

Slater type orbitals (STO) 192–4, 202–4
Slater–Condon rules 140
Slater–Kirkwood equation 53
slow growth method 473
SM see string method
small curvature semi-classical adiabatic ground

state (SCSAC) 462–3
small rings 48–50
SO see strong orthogonality
solar system 13–14, 18–19
solvation models

Born/Onsager/Kirkwood models 480–1, 483
continuum models 476–84
Poisson–Boltzmann methods 478–9
self-consistent reaction field models 481–4
simulation techniques 475–84

solvent accessible surfaces (SAS) 477–8, 480
SOPPA see second-order polarization

propagator approximation
SOS see sum over states
special relativity 279
specific reaction parameterization (SRP) 456–7
specific solvation 475–6
sphere optimization 396–7
spherical

harmonic functions 16–17
polar systems 514–15

spin contamination 148–53
spin-adapted configurations (SAC) 139
spin-coupled valence bond (SCVB) theory

270–5
spin-Zeeman term 331–2, 333, 335, 337
spinors 287–8
split valence basis sets 195, 205
spread 549
SPW see self-penalty walk
SRP see specific reaction parameterization
standard deviation 549
standard model 5
starting condition 3
state correlation diagrams 497–9, 501–3
state-averaged multi-configuration self-

consistent field 187
state-selected configuration interaction 159
stationary orbits 13
statistical mechanics 426–9
statistical methods 547–59

correlation between many data sets 553–9
correlation between two data sets 550–3
elementary measures 549–50
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errors 547–9
illustrative example 558–9
multiple linear regression 555–6, 558–9
multiple-descriptor data sets 553–5
partial least squares 557–9
principle component analysis 556–7, 558–9
quality analysis 553–5

steepest descent (SD) method 383–4
step control 386–7
step-and-slide optimization 398
steric energy 50
Stewart atomic charges 304, 311
STO see Slater type orbitals
STO-nG basis sets 202, 204
stochastic dynamics 455
stochastic methods 411–12
stockholder atomic charges 303–4, 311
STQN see synchronous transit-guided quasi-

Newton
stretch energies 26–7, 64–5
string method (SM) 401
string theory 5
strong orthogonality (SO) condition 275
structural units see functional groups
substitution reactions

qualitative theories 489, 509
rigid-rotor harmonic-oscillator approximation

435–6
sum over states (SOS) methods 321
Sun–Earth system 12–13, 16
supercell approach 212
superoperators 345–7, 530
superposition errors 225–7
switching function approach 465–6
symmetric orthogonalized intermediate neglect

of differential overlap (SINDO)
approximation 118

symmetrical orthogonalization 533
symmetry 104–5
symmetry-breaking phenomena 106–7
synchronous transit-guided quasi-Newton

(STQN) 395–6
system description 3
systematic errors 547–8

Tao–Perdew–Staroverov–Scuseria (TPSS)
functional 252, 253

Taylor expansions
density functional theory 234, 249
force field methods 24–8, 47, 58, 59
mathematical methods 526, 539–40, 541
simulation techniques 451
statistical methods 553

TDDFT see time-dependent density functional
theory

TDHF see time-dependent Hartree–Fock
tensors 516
TF see Thomas–Fermi
TFD see Thomas–Fermi–Dirac

theoretical chemistry
chemistry 19–21
classical mechanics 6, 12–14
definitions 1–2
dynamical equations 3, 4, 5–12
fundamental forces 4–5
fundamental issues 2–3
quantum mechanics 6–7, 14–19
system description 3–4

thermal decomposition 425–6
thermal reactions

qualitative theories 499
transition state theory 423–4

thermodynamic
cycles 474–5
integration 473–5
perturbation 472–3

Thomas–Fermi (TF) theory 234
Thomas–Fermi–Dirac (TFD) model 234, 247
time-dependent density functional theory

(TDDFT) 346
time-dependent Hartree–Fock (TDHF) 346
torsional energies 30–4, 42–3, 48, 57, 63
total energy convergence 354–6
TPSS see Tao–Perdew–Staroverov–Scuseria
trans effect 59, 60
trans isomerism 32
transferability 43
transition state theory (TST) 421–6

dynamical effects 425–6
Rice–Ramsperger–Kassel–Marcus theory

424–5
rigid-rotor harmonic-oscillator approximation

436–9
variational 438
see also frontier molecular orbital theory

transition structures see saddle points
translational degrees of freedom 430
transmission coefficient 422
transoid configurations 41
triple zeta plus double polarization (TZ2P)

196–7
triple zeta plus polarization (TZP) 214, 225

geometry convergence 354
vibrational frequency convergence 360

triple zeta (TZ) basis sets 195–7
triple zeta valence (TZV) basis sets 205
triplet instability 106
truncated configuration interaction (CI)

methods 143–4
truncated coupled cluster (CC) methods 172–4
truncation errors 548–9
trust radius 386, 404
TS see transition structure
TST see transition state theory
turnover rule 160–1
two-centre one-electron integrals 120
two-centre two-electron integrals 120
two-electron integrals 82, 116–18
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TZ see triple zeta
TZ2P see triple zeta plus double polarization
TZV see triple zeta valence

UFF see universal force fields
UHF see unrestricted Hartree–Fock theory
ultrasoft pseudopotentials 224
umbrella sampling 464
unbound solutions 13, 17
unit cells 113
unitary matrices 519
unitary transformations 526
united atom approach 64
universal force fields (UFF) 62
unrestricted Hartree–Fock (UHF) methods

99–100
configuration interaction 148–53
dissociation 148–53, 363–7
electron correlation methods 133, 148–53,

154, 157, 168–9
Møller–Plesset perturbation theory 168–9
spin contamination 148–53

unrestricted Møller–Plesset methods 168–9,
364–7

Urey–Bradley force fields 42

valence bond (VB) theory 268–76
benzene 272–4
classical 269–70
generalized 275
resonance energy 273
spin-coupled 270–5

valence shell electron-pair repulsion (VSEPR)
model 61

van der Waals energies
force field methods 34–40, 42–3, 52–3, 57, 61,

65–7
mathematical methods 545
simulation techniques 471, 476
surfaces 477–8, 480, 545

variable metric methods 388
variance 549
variational

principle 570–1
problem 98–9
quantum Monte Carlo 188

variational transition state theory (VTST) 438
VB see valence bond
vectors 514–15, 517, 532
velocity Verlet algorithms 452, 453
Verlet algorithms 8, 451–3, 458
very fast multipole moment (vFMM) method

111, 467
vibrational degrees of freedom 431–3
vibrational frequency convergence 358–61

Ab initio methods 358–60

density functional theory 360–1, 374
problematic systems 373–4

vibrational normal coordinates 19, 526–8
von Weizsacker kinetic energy 234
Voorhis–Scuseria exchange–correlation (VSXC)

251–2, 263
Voronoi atomic charges 303, 311
Vosko–Wilk–Nusair (VWN) formula 247
VSEPR see valence shell electron-pair repulsion
VSXC see Voorhis–Scuseria

exchange–correlation
VTST see variational transition state theory
VWN see Vosko–Wilk–Nusair

W–H see Woodward–Hoffmann
Wannier orbitals 306
wave function analysis 293–314

atoms in molecules method 299–303
basis functions 293–6
computational considerations 306–8,

311–12
critical points 302
electron density 299–304
electrostatic potential 296–9, 312
examples 312–13
generalized atomic polar tensor charges 304,

311
Hirshfeld atomic charges 303–4, 311
localized molecular orbitals 304–8
natural atomic orbitals 309–12
natural orbitals 308–9
population analysis 293–304, 311–12
Stewart atomic charges 304, 311
Voronoi atomic charges 303, 311

wave packages 459
weak interactions 258
well-tempered basis sets 198–200
width (data) 549
Wigner correction 462
Wigner intracule 239
Woodward–Hoffmann (W–H) rules 497–506,

508
write/read data function 2

Z-matrix construction 575–82
Z-vector method 324
ZDO see zero differential overlap
Zeeman interactions 283–4, 286
zero differential overlap (ZDO) approximation

116
zero field splitting (ZFS) 336
zeroth-order regular approximation (ZORA)

method 282
ZFS see zero field splitting
ZORA see zeroth-order regular approximation
Zwitterbewegung 281




