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Preface

These notes accompany a course in hydrodynamics taught in Bonn to Master’s students. The course
has been designed for students who have completed an undergraduate degree in physics and are familiar
with the basics of thermodynamics and vector calculus. As the vast majority of undergraduate courses
do not include fluid mechanics, no prior knowledge of the subject is assumed. Also not assumed is any
knowledge of astrophysics, so that this course is accessible to students studying for a Master’s degree in
physics. However there is a definite bias towards applications in astrophysics and geophysics, as opposed
to applications in engineering – in practice this means that topics given much attention elsewhere, such as
boundary layers, pipe flow, and aerodynamics are mentioned only relatively briefly in this course. Many
of the principles are illustrated using examples from everyday experience, as in this way the student can
develop an intuitive understanding which can then be applied in other contexts. For instance, reference
is made to the hydraulic shock formed as water from a tap spreads out across the surface of a wash
basin as a connection to the phenomenon of astrophysical shocks. Phenomena in atmospheric physics
are also used as a bridge between terrestrial intuition and the astrophysical context. In fact, atmospheric
fluid mechanics has a longer history than astrophysical fluids and can be considered more ‘advanced’;
astrophysicists are well advised to learn from this neighbouring field to avoid reinventing the wheel.

At the moment these notes contain little or no material on shocks, convection or turbulence. At present,
these topics are taught as a part of this course in two lectures by M. Cantiello.

The last quarter of the course (the last two chapters of these notes) concerns magnetohydrodynamics
(MHD), essentially an extension of hydrodynamics to electrically conducting fluids; here we cannot
draw on terrestrial intuition and must rely purely on theory. These chapters are ‘stand alone’ in that they
can be read without the rest of the notes.

Jon Braithwaite
Bonn, October 2010

Suggested reading:

• L.D. Landau & E.M. Lifshitz: Fluid mechanics (Pergamon Press, 2nd edition, 1987)

• S.N. Shore: Astrophysical hydrodynamics: an introduction (Wiley-VCH, 2nd edition, 2007)

• A.R. Choudhuri: The physics of fluids and plasmas (Cambridge University Press, 1998)

• J. Pedlosky: Geophysical fluid dynamics (Springer, 2nd edition, 1990)
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• P.H. Roberts: An introduction to magnetohydrodynamics (American Elsevier, 1967)

• H.C. Spruit: Essential magnetohydrodynamics for astrophysics (http://arxiv.org/abs/1301.5572)
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Chapter 1

Introduction

We first examine what is meant by a fluid before deriving the equations of motion.

1.1 The fluid approximation

The ancient Greeks amongst others debated over two thousand years ago whether matter is made from
discrete particles or is a continuum, divisible ad infinitum. This question was not properly resolved until
well into nineteenth century (Brownian motion, etc.), by which time useful theories of thermodynamics
had already been developed, driven largely by the need to build more efficient steam engines. Therefore,
it is not necessary to think about particles in order to understand thermodynamics; it is just necessary to
accept a small number of experimentally-supported axioms (the laws of thermodynamics) and the rest of
classical thermodynamics follows. Later, when statistical mechanics was developed, it become possible
to understand where the laws of thermodynamics come from, in terms of more fundamental physics.
However, for practical purposes this is unnecessary and complicates matters.

The same is true of hydrodynamics, the study of fluid flow, which was also developed prior to the
conclusion of the atom vs. continuum debate. In many situations it is sufficient to treat a fluid as a
continuous substance. Now that we know that fluids are made of particles, we can explain some fluid
phenomena in terms of more fundamental physics, for instance we can predict the viscosity of a gas
(a macroscopic quantity) by consideration of particles, mean-free paths and so on. However, in this
course, we shall cover classical hydrodynamics, meaning without consideration for the particle nature of
matter, making only occasional reference to particles. Before deriving the equations of hydrodynamics,
it is useful to look at the fluid approximation and its limitations so that we know not to try to use
hydrodynamics where it does not apply.

In the fluid approximation, we treat the ensemble of particles as a single fluid. To describe an ensemble
of particles precisely we need to know the position and velocity of each particle (ignoring quantum
mechanics); if the number of particles is large enough to perform statistics then it makes sense to describe
the ensemble with a distribution function n:

δN(t) = N(r,u, t) δr3 δu3 (1.1)
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where δN is the number of particles in a small volume in position/velocity space at time t; r is the space
coordinate (a vector with as many components as the space has dimensions) and u is the velocity. A small
volume in physical space (i.e. δr3 = δx δy δz) can contain particles with completely different velocities.
In contrast to this, the fluid approximation describes the system in the following way. First we integrate
N over all velocity space to obtain a space density n(r, t), and then we introduce a mean velocity ū =

ū(r, t), the mean velocity of the particles1 at position r. This is arrived at by integrating N(r,u, t) u over
velocity space and dividing by n(r, t). [Hereafter the bar on the mean velocity is dropped.] Obviously in
doing this we have lost all information about the spread of particle velocities about the mean. However,
we can make up for this by noting that if we have local thermodynamic equilibrium (LTE), there is only
one degree of freedom in the spread of velocities which we characterise with temperature T = T (r, t).

In assuming LTE, we are assuming in effect that the particles in some small volume are able come into
equilibrium with each other via collisions, rather than wandering larger distances before this has been
achieved; only in this way can temperature be defined locally. For this condition to hold, it is necessary
that the mean free path of the particles is significantly less than any other length scales of interest to us.
For instance, in the Earth’s atmosphere the mean free path is of order 10−5cm while the smallest length
scales of interest to us in weather forecasting are perhaps 100m, so that we may safely treat air as a fluid.
In some contexts the fluid approximation is not applicable, for instance in the solar wind where the mean
free path of protons is 1015cm ≈ 20AU (an astronomical unit is the distance between the Sun and the
Earth). This example brings us onto another point: in the fluid approximation we are assuming that all
particle species making up a fluid are in LTE amongst themselves and with each other. In other words,
all species have the same velocity u and temperature T at any point in space and time. In the solar wind,
the electrons have a significantly shorter mean free path and may come into thermal equilibrium with
each other while the protons can still be considered collisionless. A proper study of these phenomena is
outside the scope of this course; the interested student should consider taking a course in plasma physics.

Finally it is worth noting that the equations of hydrodynamics which we derive using the fluid approx-
imation can sometimes predict situations which violate the applicability of the approximation. A good
example of this is shocks (section 6) – the fluid equations predict in some circumstances the appearance
of discontinuities in the fluid quantities such as u and T . The relevant length scale in the fluid has gone
to zero, which is clearly less than the mean free path and violates the fluid approximation! Fortunately
there is a way out of this apparently unpleasant predicament without completely abandoning the fluid
picture. [In reality, the discontinuity has a thickness roughly equal to the mean free path.]

1.2 The hydrodynamic equations

In this section the equations of hydrodynamics are derived.

We know from thermodynamics that the state of a fluid can be described in terms of a number of ‘func-
tions of state’, which in a simple fluid is two, for instance pressure and temperature; all other variables,
for instance density or entropy, can be found from the equation of state. In the following we use a simple
fluid, but the equations can easily be generalised to include more complex fluids such as a fluid in which
the mean molecular weight is not fixed, which one encounters sometimes in astrophysics, or the salinity
in an ocean or water vapour concentration in the atmosphere, for example. Note that these quantities

1If the particles do not have uniform mass, we take a mass-weighted mean. This ensures that the resulting equations respect
conservation of momentum.
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are called intensive variables as they can be defined and measured at any particular point in space, as
opposed to extensive variables such as volume or mass which are properties of a whole system. In ad-
dition to these functions of state, in a fluid flow we also need the velocity u for a complete description.
The velocity and the thermodynamic variables are functions of position r and time t.

There are three equations of hydrodynamics, which come from the conservation of momentum, mass
and energy. They are partial differential equations containing the time derivatives of the velocity and the
two thermodynamics variables. First of all, the application of Newton’s second law to a fluid element of
volume δV gives us:

ρ δV
du
dt

= δF (1.2)

where ρ is the density of the fluid and δF is the force on the fluid element. Dividing by δV and splitting
the right-hand side up into different types of force we have

ρ
du
dt

= Fbody + Fsurface

= ρg −∇P + Fvisc (1.3)

where the terms on the right hand side now represent various forces per unit volume. These forces fall
into two classes. First there are body forces such as gravity (g is the local gravitational force per unit
mass). In section 7 we look at effects of the Coriolis force present in any fluid in a rotating frame of
reference. In ionised gases there is also generally an electromagnetic body force. Secondly the surface
forces, where the force on a fluid element comes from its immediate neighbours: the pressure gradient
force, present in all fluids, and the viscous force. One can consider that the pressure is defined (apart from
some additive constant) by this equation. Alternatively pressure is defined in a non-viscous fluid as the
force per unit area exerted by a fluid element on its neighbours; the net force per unit volume appearing
above is found by equating

∮
P dS =

∫
∇P dV . In a viscous fluid the force exerted by an element on its

neighbours is generally not the same in all directions and the average is not necessarily equal to P; the
definition of pressure in this case is less straightforward – see section 5. Finally, note that the derivative
on the left-hand side of (1.3), d/dt, is the Lagrangian (co-moving) derivative, which is related to the
Eulerian (stationary) derivative ∂/∂t in the following way. Remembering that an infinitesimal change δ f
in a function f (x, t) can be expressed as

δ f =

(
∂ f
∂t

)
x
δt +

(
∂ f
∂x

)
t
δx, (1.4)

we can express the rate of change of any quantity q(r, t) in a fluid element moving with velocity u as

dq
dt
≡
∂q
∂t

+ u ·∇q; (1.5)

in other words, the co-moving rate of change of a quantity in a particular fluid element momentarily
located at r is equal to the rate of change fixed at that location r plus the spatial derivative in the direction
of the fluid velocity multiplied by the magnitude of the fluid velocity. Note that often a capital D is used
for the Lagrangian derivative instead of d.

Now we use conservation of mass to derive the second equation. Imagining a volume V with boundary
S , the rate of change of mass in the volume is equal to the mass flux ρu into the volume through the
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boundaries, giving

∂

∂t

∫
ρ dV = −

∮
ρu · dS, (1.6)∫

∂ρ

∂t
dV = −

∫
∇ · (ρu) dV, (1.7)

where the second line follows from Gauss’ theorem. Taking the time derivative inside the integrand, and
noting that this relation is valid for any volume V , gives us the usual form of the continuity equation

∂ρ

∂t
= −∇ · (ρu). (1.8)

Often, we wish to have this equation in a form containing the Lagrangian derivative. Using (1.5), we
have

dρ
dt

= −ρ∇ · u. (1.9)

So far, we have two equations (1.3) and (1.8) and three unknowns u, ρ and P. To close this set, one
option is to find some way of directly relating ρ to P without involving any new variables. This is known
as a ‘barotropic’ equation of state where ρ = ρ(P). A special case is to assume a constant density:
ρ = const, so that ρ can be replaced by a constant ρ0 in (1.3) and then (1.8) reduces to ∇ · u = 0.
However, we often have two or more independent thermodynamic variables and the equation of state
of the fluid is expressible as ρ = ρ(P, X1, X2...) where X1, X2 are some other thermodynamic variables.
For instance, the ideal gas equation of state, often applicable in astrophysics, is P = ρRT/µ where R is
the gas constant, T is temperature and µ is mean molecular weight (in atomic mass units, approximately
equal to the hydrogen atom mass). Having introduced two more thermodynamic variables, we need
two extra equations to close the set – these equations describe the evolution of thermal energy and of
chemical composition. Often (and everywhere in this course) the latter is simply µ = const; the former
is now derived.

We know that dU = dQ − PdV as a standard result of thermodynamics2 so that if we consider a unit
mass of the fluid, which has a volume 1/ρ and internal energy ε,

dε = dQ − Pd(1/ρ), (1.10)

where dQ is heat energy is deposited into the fluid from an as yet unspecified source. Making these into
time derivatives we have

dε
dt

=
Q
ρ
−

P
ρ
∇ · u (1.11)

where (1.9) has been used. Q has units energy per unit volume per unit time. Of course a new variable
ε has been introduced but the fluid has just two independent thermodynamic variables and every other
variable can be expressed as a function of those two, including ε = ε(P, ρ); in the case of an ideal gas
ε = P/ρ(γ − 1) where γ = cp/cv is the ratio of specific heats, equal to 5/3 in a monatomic gas. In this
case, with some rearrangement the energy equation can be written as

dP
dt

= (γ − 1)Q − γP∇ · u. (1.12)

2The first law of thermodynamics is dU = dQ + dW. In this context we can equate the work done on the gas to −PdV only
because the change in volume is reversible, which means that a given fluid element is pushing against neighbouring elements
with the same pressure at which the neighbouring elements are pushing back, rather than the fluid element being allowed to
expand into a neighbouring vacuum, for instance, where −PdV is non-zero but work dW = 0. In section 5 we consider viscous,
irreversible fluid flow.
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Heat rate Q could contain contributions from thermal conduction, viscous heating, dissipation of electric
currents, nuclear energy generation, release of latent heat, radiative cooling, and so on, and it should be
possible to express Q as a function of the other variables; for instance nuclear energy generation can be
expressed as a function of density, pressure and the abundance of the relevant chemical species.

Note that there are various ways of writing down the energy equation. Since specific entropy s can also
be expressed in terms of the two thermodynamic variables we have already introduced: s = s(P, ρ), as
can temperature T = T (P, ρ), we can also express the energy equation as

ds
dt

=
Q
ρT

(1.13)

to complete the set.

So, we now have three partial differential equations containing three unknowns u, P and ρ. To begin
with, rather than trying to solve the general equations we shall make some simplifications. In the next
section we look at ‘ideal fluids’, which have no diffusion of momentum or heat, and no additional heating
from any source. This means that Q = 0 and Fvisc = 0.

Exercises

1.1 A different form of the energy equation

Assuming the ideal gas equation of state, express the energy equation with dT/dt on the left-hand
side and P, ρ, u and Q on the right.
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Chapter 2

Ideal fluids: basic concepts

The equations governing the motion of an ideal fluid are:

∂u
∂t

+ (u ·∇)u = −
1
ρ
∇P + g; (2.1)

∂ρ

∂t
= −∇ · (ρu); (2.2)

ds
dt

= 0. (2.3)

These are often called the Euler equations. In the third equation, s is the specific entropy; this form may
be obtained by setting Q = 0 in (1.12).

2.1 Hydrostatics

The condition that the fluid remains stationary is:

ρg −∇P = 0. (2.4)

This relation can be used, for instance, to determine the structure of the atmosphere. Taking gravity to
be directed downwards, we have the well-known equation of hydrostatic equilibrium

dP
dz

= −ρg, (2.5)

where the z axis points upwards. In an isothermal gas atmosphere this equation is easily integrated, using
the equation of state P = ρRµT where Rµ ≡ R/µ, which is often used where mean molecular weight µ is
constant. The solution is

P = P0 exp
(
−

z
HP

)
where HP ≡

(
d ln P

dz

)−1

=
RµT

g
. (2.6)

The definition of the pressure scale height HP is valid also for non-isothermal atmospheres. In the
Earth’s atmosphere, its value is around 8 km, approximately equal to the height of Mount Everest.
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2.2 Bernoulli’s equation

Let us consider a steady flow, i.e. a flow where ∂/∂t = 0 (but the co-moving derivatives are in general
non-zero). In a steady flow the streamlines, which are defined as those lines which are everywhere along
their length tangential to the velocity, are also the paths of individual fluid elements (called path lines).
Consider a volume bounded at the sides by streamlines at each end and by a surface perpendicular to the
flow – the fluid is flowing into the volume at one end and exiting at the other end. Denoting quantities
at the inflow and outflow end of the volume with 0 and 1, the rate of change of energy in this volume
is given by the difference between the energy entering and exiting and the difference between the P dV
work done by the fluid at the ends on the fluid ahead of it, and must vanish in a steady flow:

A0u0ε0ρ0 − A1u1ε1ρ1 + A0u0P0 − A1u1P1 = 0 (2.7)

where ε is total energy per unit mass, the sum of internal, kinetic and gravitational potential:

ε ≡ ε +
1
2

u2 + Φ (2.8)

and A and u are the cross-sectional area of, and the velocity at, the ends. The mass in the volume must
also be constant in time, so that A0u0ρ0 = A1u1ρ1. Substituted back into (2.7) this gives:

ε0 +
P0

ρ0
= ε1 +

P1

ρ1
, (2.9)

which is valid for any volume in the flow, so that we can say more generally that

d
dt

(
ε +

P
ρ

)
= 0. (2.10)

Physically this represents just conservation of energy. This condition holds only in an ideal fluid, where
no energy can be transferred between neighbouring fluid elements across the streamlines since the com-
ponent of the pressure gradient perpendicular to the streamlines is of course perpendicular to the velocity.
[Note that unlike energy and mass, momentum can be transferred across streamlines.] In a viscous fluid
this is no longer true: energy can be transferred by viscous stress; also heat conduction can transfer
energy perpendicular to the flow.

The same result can be derived in a different way, providing us with a more intuitive understanding. The
momentum equation (2.1) equates the acceleration of the fluid to the force per unit mass, and taking the
dot product with u equates the rate of change of kinetic energy to the rate at which work is done by the
various forces:

u ·
du
dt

= −u ·
(
1
ρ
∇P

)
− u ·∇Φ,

d
dt

(
1
2

u2
)

= −u ·∇
(

P
ρ

)
+ Pu ·∇

(
1
ρ

)
−

dΦ

dt
(2.11)

where the pressure gradient term has been broken up into two parts, the first of which is simply (minus)
the Lagrangian time derivative of P/ρ; the second part is pressure times the Lagrangian derivative of
specific volume, which in an ideal fluid (where there is no viscous or other heating and no conduction
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of heat) can be equated to the rate of PdV work done on a unit mass – see (1.10). The gravity term is
simply the Lagrangian derivative of the specific potential energy. Collecting terms we have therefore

d
dt

(
1
2

u2 + ε + Φ +
P
ρ

)
= 0. (2.12)

This demonstrates that a change in velocity along a streamline is produced by a pressure gradient along
that streamline.

We shall see in due course that Bernoulli’s equation is an incredibly useful form of the principle of
energy conservation. Sometimes this equation appears with enthalpy h ≡ ε + P/ρ, reducing the number
of terms by one. Note that in an ideal gas it can be seen from the equation of state that ε and P/ρ are
related simply by P/ρ = (γ − 1)ε where γ is the ratio of specific heats, so that h = γε.

One device which can be easily understood with the help of this equation is the Venturi meter which
measures the flow of air through a pipe: see fig. 2.1. Another is the calculation of the flow of water out
of a hole in a barrel.

Figure 2.1: A Venturi meter, which measures the flow of air
through a pipe. As the flow is constricted the velocity in-
creases, meaning that P/ρ must decrease. Since this is an adia-
batic process we know that P/ργ is constant; given that γ is al-
ways greater than unity we see that pressure must drop through
the constriction. Note that the pressure and velocity difference
change sign if the gas is moving supersonically through the
pipe (see section 3.1), i.e. the velocity goes down as the fluid
enters the constriction.

The interpretation of various phenomena is however not always as straightforward as it seems and it is
often easier to go back to the momentum equation, considering the acceleration of, and the forces on,
a fluid element. A good example of this is the aeroplane wing: it is often said that the pressure above
the wing is lower than that below the wing because looking at the streamlines it is obvious that the air
above the wing has further to travel and must therefore be moving faster, implying a lower pressure.
This is misleading because there is no reason that the air flowing above the wing must meet up again
with its former neighbour so that it does not necessarily have to travel faster. To see the flawed argument,
consider the lift generated by a thin curved aerofoil which is tilted with respect to the flow so that the
air is deflected downwards: here the length of the streamlines above and below are the same, and yet the
aerofoil still generates lift. A good example of this kind of aerofoil is the sail of a boat in the situation
when the boat is travelling upwind or perpendicular to the wind. How is the lift generated? The easiest
explanation comes from consideration of the acceleration perpendicular to the streamlines: below the
aerofoil the airflow must curve downwards. The only thing which can produce this acceleration is a
pressure gradient perpendicular to the streamlines, namely such that the pressure near the aerofoil is
higher than that further away. Above the aerofoil the fluid must also accelerate downwards so that the
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pressure just above the aerofoil must be lower than that further away. Since the pressure further away
tends towards the ambient pressure, the pressure just above the wing must be lower than that just below
it, accounting for the lift. Alternatively, one can think of the pressure changes as arising from the inertia
of the oncoming fluid. Either way, Bernoulli’s equation does not provide us with any quick explanation.
See fig. 2.2 for an illustration of the two types of aerofoil. We see that the lift comes essentially from
the deflection of air downwards – indeed how is the aerofoil to gain momentum upwards if the air is not
given downwards momentum?

Figure 2.2: Left: two examples of
a commonly seen but misleading di-
agram of the Bernoulli effect pro-
ducing lift on an aerofoil (from the
NASA website and wikimedia.org).
The streamlines are longer over than
under the aerofoil, apparently result-
ing in a velocity and therefore pres-
sure difference. However, it is in fact
not at all obvious why the flow should
be faster over the wing than under it.
Right: the flow of air around the sail
of a boat. This time, the streamlines
immediately either side of the sail are
of equal length, and yet we still have
a velocity and pressure difference on
either side.

2.3 Sound waves

The most basic kind of wave in a fluid is the sound wave, which can propagate in any compressible fluid.
Consider a system where variables vary only in the x direction, so that any wave must also propagate in
that direction (we call this a plane wave), and the velocity in the x direction is u; in addition there is no
gravity. The momentum and mass conservation equations can be written:

∂u
∂t

+ u
∂u
∂x

= −
1
ρ

∂P
∂x
, (2.13)

∂ρ

∂t
= −

∂

∂x
(ρu). (2.14)

In order to look at the properties of low-amplitude, linear waves, it is necessary to linearise these equa-
tions. To do this, we first define some background equilibrium state with pressure P0, density ρ0 and
zero velocity, and write pressure P = P0 + δP, ρ = ρ0 + δρ where δP � P0 and δρ � ρ0. It follows
that the velocity u is also small. In addition we need some relation between the pressure and density
perturbations: we define c2

s ≡ ∂P/∂ρ. The linearised equations are

∂u
∂t

= −
1
ρ0

∂(δP)
∂x

, (2.15)
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∂(δρ)
∂t

= −ρ0
∂u
∂x
, (2.16)

δP = c2
sδρ, (2.17)

where only first-order terms have been retained. At this juncture it is worthwhile examining the condition
under which this linearisation is valid. Looking at the ratio of the two terms on the left-hand side of
(2.13), we see that we can ignore the second provided that

u
τ
�

u2

L
⇒ L � a (2.18)

where τ is the timescale, i.e. period of the waves, and a ∼ uτ is the amplitude. This condition is easily
shown to be equivalent to the conditions δP � P0 and δρ � ρ0 introduced above.

Substituting for δρ in (2.16), differentiating w.r.t. t and combining with (2.15) gives the wave equation

∂2(δP)
∂t2 = c2

s
∂2(δP)
∂x2 . (2.19)

The solution to this is
δP = A(x − cst) + B(x + cst). (2.20)

The two terms represent waves travelling in the positive and negative x-directions, respectively. If we
consider only waves travelling in the positive direction (i.e. B = 0), then whatever the form of δP at
time t = 0 is preserved in shape but is shifted a distance cst at a later time t, i.e. it moves with speed cs.
In an ideal gas, the sound speed cs =

√
γP/ρ =

√
γRT/µ, which follows from the assumption that the

motion is adiabatic and the fluid elements have constant entropy. In the Earth’s atmosphere it is equal to
around 300 m s−1; in the interstellar medium at 104 K, cs ≈ 10 km s−1.

Alternatively we could have dealt with (2.19) by assuming a solution of the form δP = Aei(kx−ωt), giving
a dispersion relation of

ω = ω(k) = kcs. (2.21)

The phase speed ω/k and group speed ∂ω/∂k are both equal to cs, which does not depend on the fre-
quency. This non-dependence of speed on frequency we call non-dispersiveness. We return to this topic
in the following sections.

2.4 Compressibility

In many situations the variations in density in a flow are small and this enables us to make approxima-
tions which simplify the equations. We can estimate the expected fractional density variation in a flow
in the following way. The system has characteristic length and time scales L and T and typical velocity
U. The sound speed is c2

s = (∂P/∂ρ)s (see section 2.3) and the Mach number is defined as M ≡ U/cs.
Ignoring the gravity term for the time being and comparing the size of the terms in the momentum
equation (2.1), we find the following sizes:

∂u
∂t

+ (u ·∇)u = −
1
ρ
∇P

U
T

U2

L
δP
ρL

M2 L
UT

M2 δρ

ρ
, (2.22)
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where δP is the typical departure of the pressure from the mean or equilibrium pressure. The third line
is given by multiplying the second by L/c2

s . Generally UT ∼ L and so the first two terms will be of
comparable size. However, we see in section 2.3 that in a stationary fluid hosting a sound wave it is
appropriate to equate L to the wavelength and T to the period, so L/T ≈ cs � U, provided that the wave
is not of large amplitude, so that the second term can be neglected and the equation ‘linearised’. The
third term must be comparable to the terms on the left, since density differences within the fluid can only
arise through the inertia of the fluid. If the motion is subsonic, i.e. if M < 0, then the fractional density
differences are small. In the literature it is customary therefore to say that the flow is incompressible
provided that M < 0.3 so that pressure differences are less than a tenth. This allows us to replace the
density ρ appearing in the momentum equation next to the pressure gradient with some constant density
ρ0:

∂u
∂t

+ (u ·∇)u = −
1
ρ0

∇P (2.23)

and the continuity equation (2.2) with
∇ · u = 0. (2.24)

In principle this completes the incompressible set of equations because we have the same number of
equations as variables. Normally though we solve for P by taking the divergence of the momentum
equation and using (2.24) to give the Laplace equation

∇2P = 0, (2.25)

which is a boundary value problem.

2.5 Steady flow of a compressible fluid: subsonic and supersonic flow

In this section we look at properties of a steady compressible flow, finding quite different behaviour
according to whether the flow is subsonic or supersonic. Gravity is assumed to be absent, so Bernoulli’s
equation is

h +
1
2

u2 = h0 (2.26)

where h ≡ ε + P/ρ is the specific enthalpy. The quantity h0 is a constant along each streamline and is
equal to the enthalpy the fluid has where the flow speed is zero. We are ignoring viscous processes and
so the entropy is constant along streamlines:

s = s0. (2.27)

Now, changes in enthalpy are given in (A.17) which in the case of specific quantities, i.e. per unit mass,
becomes dh = Tds + dP/ρ. In an ideal fluid the first term is zero so we see that changes in h and
P always have the same sign; this means that where the flow accelerates and the enthalpy drops – as
is clear from (2.26) – the pressure must also drop. Physically this comes from the fact that the gas is
being made to accelerate by the pressure gradient. While the maximum value of h along a streamline
is h0, it is not immediately obvious what the maximum value of u should be since we do not know
the minimum value of h, which is a consequence of the fact that its absolute value has not yet been
defined – as for internal energy ε only changes dh have been defined. The way out of this problem is
to recognise that the maximum velocity is where P = 0 since the flow cannot be accelerated any more
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if there is no pressure. We can then define the zero point of h to be where temperature T = 0 and
therefore P = 0. The maximum possible value of u along a streamline is then given by umax =

√
2h0.

This value is reached where the pressure goes to zero. A good example of this happening in nature is
the solar wind: gas moves from a place with finite pressure to a place with essentially zero pressure and
ignoring gravity the velocity is determined simply by the initial enthalpy. We have perfect conversion
of thermal to kinetic energy, which if we think in terms of heat engines is only possible because the
cold reservoir is at absolute zero. Microscopically we can think of a collection of particles with random
thermal velocities being released into a vacuum where after some time a particle’s position will depend
only on its initial velocity and therefore its velocity is a function only of its position; there is no spread
in velocities of particles in the same location and therefore the thermal energy has vanished.

The flow of fluid in terms of mass per unit area per unit time is ρu. This mass flux increases in the direc-
tion of the flow where streamlines converge and drops where they diverge. To calculate how it changes
along a streamline we look at the component of the momentum equation (2.1) along a streamline, which
can be written udu = −dP/ρ. We also see that since s = s(P, ρ) = s0, we must have during adiabatic
changes dP = c2dρ where c = c(P, ρ). We shall see later in section 2.3 that c is the sound speed. We
know from experience that c is real, since we want dP and dρ to have the same sign in an adiabatic
expansion or compression. Therefore udu = −c2dρ/ρ and so

d(ρu) = ρ du + u dρ = ρ du
(
1 −

u2

c2

)
(2.28)

meaning that in a subsonic flow, converging streamlines accompany acceleration, whereas acceleration
in a supersonic flow is found where the streamlines are diverging. The latter is outside of our everyday
experience and therefore somewhat counterintuitive.

The maximum possible mass flux ρu along a given streamline with stationary enthalpy h0 must occur
where u = c.

2.6 Vorticity

Let us define the circulation Γ around a closed loop as

Γ ≡

∮
u · δs (2.29)

where δs is the infinitesimal displacement along the loop. As the loop moves with the flow, the rate of
change of this circulation is

dΓ

dt
=

∮
du
dt
· δs +

∮
u ·

d
dt

(δs)

=

∫
∇ × du

dt
· δS +

∮
u · δ

(
ds
dt

)
=

∫
∇ ×

(
−

1
ρ
∇P + g

)
· δS +

∮
u · δu

=

∫ (
1
ρ2∇P ×∇ρ

)
· δS +

∮
1
2
δ
(
u2

)
,

13



where some vector calculus identities have been used. Obviously the second term on the right is zero;
the first term vanishes only in a barotropic flow where the gradients of pressure and density are parallel.
In summary, in an inviscid barotropic flow1 where the body forces such as gravity are conservative, i.e.
curl-free, we have

dΓ

dt
= 0. (2.30)

This is known as Kelvin’s circulation theorem.

Finally, we define a useful quantity: the vorticity is the curl of velocity ω ≡ ∇ × u. Using Stokes’
theorem we see that

Γ =

∮
u · ds =

∫
ω · dS (2.31)

where ds and dS are line and surface elements respectively of an infinitesimally small loop. This leads
us to the following statement: if at some point in time the vorticity vanishes at every location, then it
also vanishes at all other times. Such a flow is called irrotational.

We look at vorticity and rotation in more detail in chapter 7.

2.7 Potential flow

The conclusion of the last section is useful because we can simplify the equations by expressing a curl-
free velocity field as the gradient of a scalar: u = ∇φ. This is called potential flow or irrotational
flow, a subset of flow of an ideal fluid. First of all we make use of the vector identity (u.∇)u =

(1/2)∇(u2) − u × (∇ × u), losing the last term because the flow is irrotational, to write the momentum
equation (2.1) in the following form:

∂

∂t
(∇φ) + ∇

(
1
2

u2
)

= −∇h −∇Φ. (2.32)

where the pressure gradient term has been reorganised with the help of a new function h = h(P) where
∇h ≡ (1/ρ)∇P, making use of the barotropic condition that ρ = ρ(P), i.e. that there is only one
independent thermodynamic variable. In the case of an isentropic flow, h = ε + P/ρ is the enthalpy we
used above, otherwise it is some other function of pressure. Collecting terms we have

∂φ

∂t
+

1
2

u2 + h + Φ = f (t). (2.33)

In an unsteady irrotational inviscid barotropic flow the sum of the four terms on the left is constant in
space but not in time. In a steady flow on the other hand, we lose the first term on the left and the right
hand side becomes a constant. This is a stronger statement than the form of Bernoulli’s equation for a
rotational inviscid flow (2.12), which stated that a fluid element retains the same value of a certain quan-
tity as it moves; in other words that the quantity is constant along streamlines. Here, it is constant in all
space, i.e. along all streamlines. The difference comes from the extra assumption here of barotropicity.

1Note that in a barotropic flow the fluid does not necessarily need to have a barotropic equation of state, such as that of the
cold degenerate material that white dwarf stars are made of with P = Kργ. A fluid with a non-barotropic equation of state can
participate in a barotropic flow: for instance an ideal gas with P = ρRT could be isothermal so that T is constant everywhere in
the volume of interest or it could be isentropic with Pρ−γ constant everywhere. If however we have non-parallel pressure and
density gradients we say the flow is baroclinic, and circulation can be generated and destroyed without recourse to viscosity
or non-conservative body forces.
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Exercises

2.1 Flow of water through a hole in a barrel

Consider a barrel containing water with a hole through which water is exiting. The hole has cross-
sectional area A, which is small compared to the size of the barrel. Use Bernoulli’s equation to
calculate the time taken for a barrel containing volume of water V and height h to empty.
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Chapter 3

Some problems in one-dimensional flow

In this section we look at various phenomena and contexts in which the fluid flow can be considered one-
dimensional, in that only one space dimension appears in the equations. Flow along a pipe of varying
cross-section is an obvious example. In astrophysics, the most common context is a spherical geometry
with spherical symmetry, only the radius r appears in the equations.1

3.1 Flow through a nozzle

Imagine we have a steady flow of compressible fluid through a tube of varying cross section A between
two large volumes at pressures P0 and P1 where P0 > P1. We make the assumption that changes in the
cross-section are gradual (i.e. that the diameter of the tube changes over length scales much larger than
the diameter) and that the flow can be considered uniform across the cross-section of the tube. The fluid
begins from rest in the first reservoir with enthalpy h0 and entropy s0, whose values in the tube are given
by (2.26) and (2.27). Since the flow through the tube is steady the mass flux must be constant along the
tube:

Aρu = const (3.1)

The tube is connected smoothly to the first volume in such a way that the cross section A is large where
it joins the first reservoir and becomes smaller further away. The flow starts from rest and so is initially
subsonic; we saw in section 2.5 that as the streamlines converge – in other words as ρu increases – the
fluid accelerates. If the pressure difference between the two reservoirs is small, then the flow does not
reach the sound speed and the pressure in the tube drops from P0 at one end to P1 at the other. It is
important to note that the gas has already reached pressure P1 as it exits the tube, giving lateral pressure
balance between the emerging jet and the surroundings. Ignoring friction, the flow speed and therefore
total flow in terms of mass per unit time can be calculated from (2.26) and (2.27). The fractional
pressure difference required to reach the sound speed can be calculated from the properties of the fluid.
For instance, an ideal gas has a ratio of specific heats γ, sound speed c2 = γP/ρ, enthalpy h = c2/(γ− 1)
and the pressure and density during adiabatic expansion and compression obey P/ργ = P0/ρ

γ
0. The

1It has been said that astrophysics is the study of spheres and discs. This is a consequence of gravity and, in the latter,
angular momentum.
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Mach number M ≡ u/c during the acceleration is

M2 =
2
c2 (h0 − h)

=
2

γ − 1

c2
0

c2 − 1


=

2
γ − 1

(P0

P

) γ−1
γ

− 1

 ⇒ PM=1 = P0

(
2

γ − 1

) γ−1
γ

. (3.2)

The numerical factor is 0.49 for γ = 5/3 and 0.53 for γ = 7/5. Therefore if the pressure in the second
reservoir is equal to this PM=1 then the sound speed is reached exactly at the exit of the tube.

If the pressure of the second reservoir P1 is decreased below PM=1 then the behaviour depends on the
form of the tube. We can see from (2.28) and (3.1) that continued acceleration along the tube beyond
the sound speed can only happen if A increases. In other words, the tube must become narrower further
away from the first reservoir only until the sound speed is reached, and then it must be flared. Such a
shaped tube is called a de Laval nozzle after the Swedish engineer. If it is not flared, then the fluid cannot
accelerate beyond the sound speed and the pressure in the tube cannot drop below PM=1, meaning that
the remaining pressure drop from PM=1 and P1 must take place after the fluid has exited the tube, while
the tube fluid is mixing into the ambient fluid. In a flared tube, however, the fluid can continue to ac-
celerate past the throat, or sonic point, driven by the remaining drop in pressure from PM=1 downwards.
The pressure after the sonic point can be calculated simply from the cross-section A; if the cross-section
at the exit is such that the pressure in the tube is greater than P1, then the remaining pressure drop takes
place outside of the tube as it does with an unflared tube when P1 < PM=1. If the pressure calculated at
the exit is lower than P1 then the flow has a tendency to break away from the boundaries of the tube and
a stationary shock wave enters the tube, the details of which are very much an engineering problem and
beyond the scope of this course.

Figure 3.1: The de Laval nozzle.

3.2 Stellar winds and accretion

In this section we build on the analysis of nozzles to look at two very important astrophysical settings
– stellar winds and accretion. Fortunately it turns out that both can be analysed with the same set of
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equations.

Let us imagine a steady, spherically-symmetric wind with velocity u coming from a star. Negative u
signifies accretion. All quantities depend only on r, the distance from the origin. In nozzle parlance, the
cross-section area of the flow is 4πr2 and so conservation of mass gives 4πr2ρu =const, which we shall
use later in the form:

−
1
ρ

dρ
dr

=
1
u

du
dr

+
1
r2

dr2

dr
=

1
2u2

du2

dr
+

2
r
. (3.3)

The momentum equation (in the radial direction) is

u
du
dr

= −
1
ρ

dP
dr
−

GM
r2

1
2

du2

dr
= −

c2

ρ

dρ
dr
−

1
2

v2
esc

r
(3.4)

where v2
esc = 2GM/r is the escape velocity, a function of radius. This equation becomes, on substituting

from (3.3),

1
2

du2

dr
= c2

(
1

2u2

du2

dr
+

2
r

)
−

1
2

v2
esc

r
1
2

du2

dr

(
1 −

c2

u2

)
=

1
2r

(4c2 − v2
esc) (3.5)

which is perhaps more elegantly written

r
u2

du2

dr
=

4c2 − v2
esc

u2 − c2 , (3.6)

which we can also write in the form

r2

4rs

1
u2

du2

dr
=

1 − r/rs

1 − u2/c2 where rs ≡
GM
2c2 . (3.7)

Solutions to this equation are sketched in fig. 3.2. They fall into six categories; two which pass through
the sonic point at r = rs with u = c, and four in the quadrants separated by them. The main two solutions
of interest are the two which pass through the sonic point; the solution which is supersonic at r < rs and
subsonic at r > rs is accretion and the other is the stellar wind solution.

Although rs is a function of c which is a function of r, it is possible to make a rough estimate of the rate
of spherical accretion onto a star from an interstellar medium (ISM) of given temperature and density.
We simply assume that the sound speed at the sonic point is not too different from the sound speed
at infinity c0, an assumption which is justified by the relatively small numerical factors found in (3.2).
Taking the temperature of the ISM to be 104K, the sound speed is c =

√
γRT/µ ≈ 10 km s−1 if the gas

is neutral hydrogen/helium. The accretion radius of a star of one solar mass is therefore rs = 7 · 1013

cm which is about the radius of Jupiter’s orbit. As a star passes through the ISM the gas outside of
this radius is affected little by the gravitational pull of the star, but inside this radius the gas is falling
supersonically. Using these numbers the accretion rate is

Ṁ = 4πr2
sρc =

πG2M2ρ

c3 (3.8)
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Figure 3.2: Solutions to (3.6). So-
lutions in regions I and II are double
valued, i.e. velocity has two values
at the same radius. Solutions of type
III are supersonic everywhere, and
type IV are subsonic everywhere.
Type V has a sonic point.

which has the value 1011g s−1 or around 10−15M� yr−1 if we take the ISM density to be 1 cm−3, i.e.
ρ ∼ 10−24 g cm−3. Clearly this is not sufficient to form a star! This is why stars can only form in cold,
dense environments; this state is achieved by radiative cooling. In binary systems, stars can accrete
material much faster since the density is higher.

This analysis explains how gas at rest accretes onto a star, but it does not explain the origin of stellar
winds; for this it is necessary to look in more detail at the nature of a stellar atmosphere. We know that
the Sun is surrounded by a hot tenuous medium called the corona, which is the Latin for ‘crown’. We
can attempt to find the structure of this atmosphere by assuming that the solar corona is static, and that
the hydrostatic equation is satisfied:

∇P = ρg ⇒
dP
dr

= −ρgr (3.9)

where the form on the right hand side is given in spherical coordinates, where spherical symmetry is
assumed. In the static problem the energy equation reduces to

∇ · (K∇T ) = 0 ⇒
d
dr

(
r2K

dT
dr

)
= 0. (3.10)

which comes from the theory of heat diffusion (see section 5.7), expressing the condition that the net
heat flux into a fluid element is zero in a static equilibrium. It turns out that the thermal conductivity
K is proportional to T 5/2, which comes from kinetic theory of gases. Note the implicit assumption
here that there are no heat sources or sinks, such as radiative losses. Imposing the boundary conditions
T = T0 at r = r0, i.e. at the surface of the Sun, and T = 0 at infinity, the solution of the equation
r2T 5/2dT/dr = const is:

T
T0

=

(
r
r0

)−2/7

. (3.11)

Substituting this back into (3.9) gives:

dP
dr

= −
r2

0

r2

g0P
RµT

= −

(r0

r

)12/7 g0P
RµT0

= −

(r0

r

)12/7 P
H0

(3.12)
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where the equation of state P = ρRµT and the inverse-square law g = g0r2
0/r

2 have been used where g0 is
the gravitational acceleration at the solar surface. The pressure scale height at the surface H0 = RµT0/g0
has been defined. The solution is

ln
(

P
P0

)
=

7r0

5H0

( r
r0

)5/7

− 1

 . (3.13)

The crux of the matter is that the pressure does not drop to zero as r goes to infinity, in fact it drops
only by around three orders of magnitude if, as is the case in reality, that H0 ≈ r0/10. This asymptotic
pressure is much greater than the actual gas pressure in the interplanetary space. Somewhere we have
made an incorrect assumption! It turns out (not surprisingly) that the incorrect assumption is that the
corona is in hydrostatic equilibrium: in fact, the material is moving outwards, accelerating as it does so
and being observed as the solar wind as it passes by the Earth, where is has a velocity of around 500 km
s−1. Now, looking at (3.13) we can see that the extent to which the static solution is wrong, so to speak,
depends on the ratio H0/r0. If the atmosphere of a star is very cold and this ratio is consequently very
small, only a small correction to the static solution is required, i.e. the mass loss rate of the star is very
small. This can be thought of as a situation where the sound velocity (comparable to the thermal velocity
of the particles) is very much less than the escape velocity from the surface. To achieve significant mass
loss, a star must have a sufficiently hot atmosphere so that the sound speed is not much less than the
escape velocity. In this way the mass-loss rate of the Sun is around 10−14 M� yr−1, since the corona is
heated to around a million kelvin by some process involving magnetic fields. However, if the corona
were so hot that its sound speed approached and exceeded the escape velocity, the result would be
explosive mass loss; this corresponds to the everywhere-supersonic solution to the wind equation.

This type of wind is called a thermal wind. It is the dominant mechanism of mass loss in cool main-
sequence stars with hot coronae such as the Sun. Higher-mass main-sequence stars lack hot coronae (a
consequence of the lack of convection in their envelope) and so this mechanism does not work; in these
stars winds can still be driven by radiative mechanisms, especially as a star’s luminosity approaches
the Eddington limit. These are fundamentally different from thermal winds in that it is the outwards
momentum imparted by photons on individual particles which drives the wind, rather than thermal
energy deposited into the corona as a whole. Mathematically this takes the form of an extra term in the
momentum equation (3.4). This question of whether mass loss is driven by momentum or energy from
stars and supernovae is also often encountered in discussions of mass loss from star clusters.

Exercises

3.1 Matching exit pressure to external pressure

We wish to construct a rocket engine which converts as much of the combustion thermal energy
as possible into kinetic energy, in order to maximise propulsion. This means taking account of
the extarnal pressure. Comment on practical difficulties in building the optimum rocket engine to
work in space.

3.2 Stellar winds and mass loss
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An important but poorly understood process in stellar physics is the mass loss. A very simple
model of a stellar wind is the isothermal model. Assuming that the temperature is constant,
calculate the mass-loss rate from a star as a function of its mass M, radius R, the temperature in
the wind T and the pressure at the base of the wind (i.e. at r = R) P. Entering realistic numbers,
estimate the mass-loss rate of the Sun, and comment.

3.3 Accretion into galaxy clusters

Galaxy clusters are the largest gravitationally-bound structures in the universe. They grow by
accreting matter from their surroundings. Estimate the accretion rate, given realistic parameters.
Comment on the limits of assuming spherical symmetry.
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Chapter 4

Waves and instabilities

In this section we look at various types of waves and instabilities which are present in fluids. They can
be categorised according to the nature of the restoring force. Sound waves, where the restoring force is
pressure and which exist in any compressible fluid, we looked at in section 2.3. First, we look at various
types of gravity wave, where the restoring force is gravity (obviously), and related instabilities which
are driven by gravity. At the end of this chapter we add self-gravity to the equation, giving rise to the
so-called Jeans instability. In chapter 7 we shall look at waves which require rotation, such as inertial
waves and Rossby waves, and in chapter 8.1 we look at magnetic waves.

4.1 Surface gravity waves

The first type of gravity wave to look at is the kind which propagates in a body of water. The water
has uniform depth h and the z coordinate points upwards so the the bottom and (equilibrium) surface
of the water are at z = −h and z = 0 respectively. We need now to look at the equations of motion of
a incompressible fluid in a gravitational field; since the fluid is incompressible, the continuity equation
and the momentum equation are

∇ · u = 0; (4.1)
∂u
∂t

+ (u ·∇)u = −
1
ρ
∇P − gẑ. (4.2)

No sound waves are permitted in an incompressible medium. Formally the incompressibility condition
is equivalent to letting (∂P/∂ρ)s go to infinity, which causes the sound speed also to go to infinity. Any
disturbance to the pressure field immediately spreads to the rest of the fluid. In the real ocean, the sound
speed is not quite infinite (cs ≈ 1.5 km s−1) but is significantly faster than other relevant speeds so that
incompressibility is a good approximation. Note that the system of equations (4.1) and (4.2) provides
the correct number of equations to determine u and P, but it is not obvious how to find P: the divergence
of (4.2) is taken, so that the first and last terms vanish, and the resulting (Laplace) equation can be solved
for P.

Sound waves aside, the only other possible restoring force for a wave is gravity. Linearising the momen-
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tum equation we have
∂u
∂t

= −
1
ρ
∇P′ − gẑ (4.3)

in addition to
∇2P′ = 0, (4.4)

where again the linearisation is valid as long as the amplitude of the wave is much less than both the
wavelength λ and the depth of the liquid h. At rest, the surface of the liquid is at height z = 0 and
the lower boundary is at height z = −h. The perturbation to the height of the surface is ζ. We shall
consider only two dimensions, the horizontal dimension being x; the horizontal and vertical components
of velocity are u and w. The boundary conditions of the system are

w = 0 at z = −h; w =
dζ
dt

=
∂ζ

∂t
+ u

∂ζ

∂x
at z = ζ and P = 0 at z = ζ, (4.5)

where the first two are known as kinematic boundary conditions and the third as a dynamic boundary
condition. Now, since the motion is irrotational we may express the velocity field as the gradient of
a scalar potential ψ with the incompressibility condition as Laplace’s equation ∇2ψ = 0. The kinetic
boundary conditions can be expressed as

∂ψ

∂z
= 0 at z = −h and

∂ψ

∂z
=

dζ
dt
≈
∂ζ

∂t
at z = 0, (4.6)

where some linearisation has been performed on the second condition: the last term is dropped because
it is second order in small quantities and the conditions can be approximated to apply at z = 0 rather
than z = ζ. We now make use of the form of Bernoulli’s equation applicable in unsteady, irrotational
flows (2.33):

∂ψ

∂t
+

1
2

(u2 + w2) +
P
ρ

+ gz = f (t). (4.7)

The second term is second order and can be dropped, and the term on the right-hand side can be absorbed
into ∂ψ/∂t. Substituting from here for P into the dynamic boundary condition in (4.5) gives

∂ψ

∂t
+ gζ = 0 at z = 0 (4.8)

where the same replacement of z = ζ by z = 0 has been made as before.

We now consider solutions of the form

ζ = ζ̂ ei(kx−ωt) and ψ = ψ̂Z(z) ei(kx−ωt). (4.9)

Substituting this ψ into the incompressibility condition ∇2ψ = 0 gives

−k2 +
1
Z

d2Z
dz2 = 0 ⇒ Z(z) = ekz + ae−kz, (4.10)

where only one constant a is needed because we can absorb the rest into ψ̂. The value of a we find from
the first kinetic boundary condition of (4.6):

kek(−h) − ake−k(−h) = 0 ⇒ a = e−2kh ⇒ Z(z) = ekz + e−kz−2kh. (4.11)
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Now the second kinetic boundary condition of (4.6) and the dynamic boundary condition (4.8) become

kψ̂
(
1 − e−2kh

)
+ iωζ̂ = 0, (4.12)

−iωψ̂
(
1 + e−2kh

)
+ gζ̂ = 0. (4.13)

Eliminating ψ̂ and ζ̂ from these two simultaneous equations we finally arrive at the dispersion relation,
i.e. the relation between ω and k:

ω2 = gk tanh kh. (4.14)

We see immediately from this relation that there are two regimes – one long wavelength and one short
wavelength with dispersion relations

ω2 ≈ gk2h where kh � 1 and ω2 ≈ gk where kh � 1. (4.15)

The phase speed ω/k and group speed dω/dk are readily calculated in the two cases. The phase speeds
are:

ω

k
≈

√
gh where kh � 1 and

ω

k
≈

√
g
k

where kh � 1. (4.16)

In the long wavelength case, the group speed is the same as the phase speed and neither depend on
the wavelength. We say that the waves are non-dispersive, meaning that a wave train consisting of
various wavelengths will stay intact as it propagates. This is also true of sound waves. In the short
wavelength case, on the other hand, the group velocity is a factor of two smaller than the phase ve-
locity and more importantly they do depend on the wavelength. If we create some waves by making
a localised non-sinusoidal disturbance for a finite period of time, the initially superimposed waves of
different wavelength will propagate outwards at different speeds and so the shape of the waves will not
be preserved; in fact the waveforms will approach sinusoidality. We call this kind of wave dispersive.

We can now examine in more detail the structure of these waves in the two limits. In the long wavelength
limit these waves are normally called shallow water waves; tidal waves and tsunamis are good examples
of these at different frequencies. The function Z(z) depends only weakly on z and dZ/dz ≈ 2k2(h + z).
This derivative appears in the vertical velocity w which varies therefore from a maximum on the surface
linearly down to zero at z = −h. The horizontal velocity on the other hand is roughly constant with
depth. In addition to this we see from (4.9) that u and w are 90◦ out of phase with each other, meaning
that the particle paths are ellipses.

Deep water waves are excited on the sea by the wind (see section 4.3). Here, Z(z) and therefore also the
flow velocity decay exponentially away from the surface are negligible at z = −h. The particle paths are
circular, as can be seen by comparing the vertical and horizontal derivatives of ψ.

Aside: the shallow-water equations

We saw above that in the case where the characteristic length scale of motion in the horizontal direction
is much greater than the depth of the water, the horizontal velocity of the fluid is independent of z. In
this situation we can simplify the equations of motion at the beginning of the analysis; since ∂u/∂x is
independent of height, we see from (4.1) that ∂w/∂z is also independent of height. This means that the
continuity equation can be easily integrated over the depth of the water and thus be expressed as

∂ξ

∂t
= −h

∂u
∂x

(4.17)
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Figure 4.1: Par-
ticle paths in shal-
low and deep wa-
ter waves.

where we have made the implicit assumption that ξ � h. In addition the horizontal component of the
momentum equation can be similarly integrated to give

∂u
∂t

+ u
∂u
∂x

= −g
∂ξ

∂x
, (4.18)

which is a complete set of equations since the number of variables is now just two: u and ξ. Linearising
to drop the second term on the left-hand side of (4.18) gives the same equations as we met with sound
waves in section 2.3. The speed of the waves is

√
gh, which corresponds as expected to the long-

wavelength limit in (4.16). We use the shallow water equations again in section 7 where the y dimension
is added (intellectually trivial) and a Coriolis force is added to the momentum equation (intellectually
more interesting).

4.2 Rayleigh-Taylor instability

We now turn our attention to an instability which occurs whenever a dense fluid lies in a gravitational
field on top of a less dense fluid. The setup is similar to that in the previous section except that we now
have two fluids with a boundary between them at z = ζ. The fluid above has density ρ1 and that below
has ρ2. Furthermore, to keep things simple we shall restrict ourselves to the case where both fluids are
“deep” compared to the length scale of the disturbance at the interface. As one might intuitively expect,
the situation is unstable if ρ1 > ρ2. The kinetic boundary conditions (4.5) become

u1 = w1 = 0 as z→ ∞; u2 = w2 = 0 as z→ −∞

w1 =
dζ
dt

=
∂ζ

∂t
+ u1

∂ζ

∂x
at z = ζ; w2 =

dζ
dt

=
∂ζ

∂t
+ u2

∂ζ

∂x
at z = ζ, (4.19)
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Figure 4.2: Deep-water
waves resulting from a dis-
turbance (localised in both
time and space) on the sur-
face of a pond. Note
that the longer wavelength
modes have travelled further
than the shorter wavelength
modes.

and the pressure boundary condition (4.5) becomes P1 = P2 at z = ζ. The boundary conditions become,
using the velocity potentials ψ1 and ψ2 in the two fluids, and linearising (compare to (4.6))

∇ψ1 = 0 as z→ ∞; ∇ψ2 as z→ −∞;
∂ψ1

∂z
=
∂ψ2

∂z
=
∂ζ

∂t
at z = 0. (4.20)

The pressure condition similarly becomes

ρ1

[
∂ψ1

∂t
+ gζ

]
= ρ2

[
∂ψ2

∂t
+ gζ

]
. (4.21)

Assuming as before solutions of the form ψ1 = ψ̂1 Z(z) exp [i(kx − ωt)], this gives us the dispersion
relation

ω2 = gk
ρ2 − ρ1

ρ1 + ρ2
. (4.22)

By setting ρ1 = 0 we arrive back at the deep-water limit of the dispersion relation (4.15) we derived in
the previous section. Clearly, ω can be either real or imaginary, depending on which of the two fluids is
more dense.

In the unstable case, the growth timescale is given by

τR−T =

(
ρ1 + ρ2

ρ1 − ρ2
·
λ/2π

g

)1/2

. (4.23)

This expression contains some ratio of the densities – in this case the difference between the densities is
what drives the growth, so it is not surprising to see the fractional density difference in the expression
for the timescale. The remaining part of this expression is simply the freefall timescale over a distance
comparable to the wavelength; the shorter wavelengths grow more quickly. However, it is also important
to note that the short wavelengths become nonlinear at smaller amplitude ζ than the larger wavelengths,
and that the larger wavelengths will ultimately be crucial for the eventual turnover and/or mixing of the
fluids.
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Figure 4.3: The propaga-
tion of the tsunami of 1960
across the Pacific. Note
how the speed changes in
response to the changing
depth and how this affects
the direction of propagation.

4.3 Shear instability between two fluids: Kelvin-Helmholtz case

Before describing this instability, it is informative to have a look at the phenomenon of discontinuities in
a fluid. Imagine a fluid contains a surface and that velocity, temperature and density have different values
on either side of the surface. Such discontinuities may arise, for example, as a result of gravitational
separation of two fluids (e.g. atmosphere and ocean) or as a result of supersonic flow.

Let us transfer to a frame of reference in which the discontinuity is at rest; the components of velocity
normal and parallel to the discontinuity are u⊥ and u‖ respectively. We have now two possibilities:
u⊥ = 0 on both sides of the discontinuity, or u⊥ , 0 on both sides. In the latter case various properties of
the gas – enthalpy, specific momentum parallel to the surface, mean molecular weight and so on – must
be conserved as it passes through the discontinuity. This case will be looked at in section 6. In the case
where the fluid is not passing through the surface of discontinuity, there are different relations between
properties of the fluid on either side; the fluids may have any velocity parallel to the surface and may
actually be quite different in nature, but the pressure must be the same on both sides. It turns out that
the discontinuity in parallel velocity gives rise to an instability in which an initially planar surface of
discontinuity becomes rippled. The most obvious example is that of the wind blowing over the surface of
the sea, which excites the waves discussed in section 4.1, but many other examples occur in nature such
as the boundary between an astrophysical jet and its surroundings. This instability at surface of velocity
discontinuity is called the Kelvin-Helmholtz instability; note that the astrophysics literature contains
many references to Kelvin-Helmholtz in the case of a continuous shear flow such as those found in stars
and discs, which is strictly speaking incorrect. The existence and nature of instability in such continuous
shear flows is a topic of debate and will not be covered in this course.

Imagine two fluids separated by a horizontal planar discontinuity. The coordinate in the vertical direction
is z and that in the horizontal direction is x. The densities of the upper and lower fluids are ρ1 and ρ2,
and the undisturbed velocities in the x direction are U1 and U2. Note that there is no loss of generality,
since it is always possible to change to a frame of reference in which both velocities are parallel to the
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Figure 4.4: Simulations of the
Rayleigh-Taylor instability. K.
Kadau, University of Duisburg.

x-axis. Making the further assumption of incompressibility and inviscidity we can express the velocity
as the gradient of a scalar, since from Kelvin’s circulation theorem we see that the vorticity must be zero
everywhere at all times (see section 2.7). We can express the flow as the sum of the undisturbed flow
and a (small) perturbation:

φ1 = U1x + ψ1, (4.24)

φ2 = U2x + ψ2, (4.25)

where φ and ψ are the total and perturbation velocity potentials. The vertical perturbation to the position
of the boundary is ζ, and since the fluid does not pass through the boundary we have at the boundary

w1 = (U1 + u1)
∂ζ

∂x
+
∂ζ

∂t
(4.26)

where u1 and w1 are the perturbation velocity components in the x and z directions. Linearising this
equation, we can drop u1 and take this condition to hold at z = 0 rather than z = ξ. We have therefore at
z = 0:

∂ψ1

∂z
= U1

∂ζ

∂x
+
∂ζ

∂t
, (4.27)

∂ψ2

∂z
= U2

∂ζ

∂x
+
∂ζ

∂t
. (4.28)

We also know that the pressure must be continuous across the boundary. We can find the pressure from
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Figure 4.5: Simulations of the
Rayleigh-Taylor instability in a stel-
lar wind context. From Woitke 2006

the form of Bernoulli’s equation applicable to unsteady irrotational flow (2.33):

∂φ

∂t
+

1
2

(
(U + u)2 + w2

)
+

p
ρ

+ gz = f (t) (4.29)

which applies on both sides of the discontinuity. Equating pressure on both sides gives

ρ1

[
f1(t) −

∂φ1

∂t
−

1
2

(
(U1 + u1)2 + w2

1

)
− gζ

]
= ρ2

[
f2(t) −

∂φ2

∂t
−

1
2

(
(U2 + u2)2 + w2

2

)
− gζ

]
. (4.30)

The unperturbed state must of course also satisfy this equation, so subtracting the unperturbed state and
performing some reorganisation we find that at z = 0

ρ1

[
∂ψ1

∂t
+ U1

∂ψ1

∂x
+ gζ

]
= ρ2

[
∂ψ2

∂t
+ U2

∂ψ2

∂x
+ gζ

]
, (4.31)

where non-linear terms have been dropped. Since the motion at z → ±∞ must vanish we see that the
perturbations to f1 and f2 must also vanish since these quantities are constant in space; they can therefore
be dropped from the equation above.

Let us assume a solution of the form ψ1 = ψ̂1 Z(z) exp [i(kx − ωt)] and similar form for ψ2. For ζ there
will be no dependence on z. Since we have assumed that the fluid is incompressible we have ∇2ψ = 0,
so that

Z′′

Z
− k2 = 0 ⇒ Z = e±kz, (4.32)
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Figure 4.6: Kelvin-Helmholtz in-
stability in the laboratory. Two im-
miscible fluids of similar densities
are placed in a long narrow tank and
made to flow past one another by tip-
ping the tank and letting gravity take
its course.

where the sign in the exponent must be chosen so that solutions which diverge at infinity are dropped.
Substituting these solutions into (4.27) and (4.27) gives

−kψ̂1 = (−iω + U1ik)ζ̂, (4.33)

kψ̂2 = (−iω + U2ik)ζ̂. (4.34)

We can also substitute the solutions into (4.31)

ρ1(−iω + U1ik)ψ̂1 + ρ1gζ̂ = ρ2(−iω + U2ik)ψ̂2 + ρ2gζ̂ (4.35)

and using (4.33) and (4.34) to substitute for ψ̂1 and ψ̂2, this becomes

ρ1(U1k − ω)2 + ρ2(U2k − ω)2 = gk(ρ2 − ρ1). (4.36)

The solutions are

ω

k
=
ρ1U1 + ρ2U2 ±

√
(g/k)(ρ2 − ρ1)(ρ2 + ρ1) − ρ1ρ2(U1 − U2)2

ρ1 + ρ2
. (4.37)

It is a good idea to check at this stage that we recover (4.22) when we set U1 = U2 = 0. In the
more general case, clearly there are no real roots to this quadratic equation (except for the trivial case
U1 = U2 = ω/k) without both non-zero gravity and ρ2 > ρ1; to be more precise the condition that the
roots are real is g

k
>

ρ1ρ2

ρ2
2 − ρ

2
1

(U1 − U2)2. (4.38)

If this condition is fulfilled, the waves are stable, i.e. their amplitude is constant. If not, the two solutions
correspond to exponential growth and decay. Physically, one can think of stabilisation occurring if the
energy released by the instability does not exceed the work which needs to be done against gravity to
move the fluid vertically. An unstable mode will grow until non-linear effects become important; in the
case of ocean waves excited by the wind, this happens at a particular ratio of amplitude to wavelength,
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Figure 4.7: Schematic representa-
tion of the linear and nonlinear de-
velopment of the Kelvin-Helmholtz
instability.

Figure 4.8: Break up of a vortex
sheet into vortices.

and is visible as wave-breaking – at the onset of breaking, white froth appears. Note that the wavelength
threshold increases with increasing velocity shear, explaining why the wavelength (and therefore height)
of the largest waves on the sea is limited by the wind speed. Finally, a matter of terminology: if ω is
real, the system is said to be stable; if it is imaginary, such as in the Rayleigh-Tayler case in the previous
section where the displacement ζ increases exponentially, the system is unstable. If ω is complex and the
solution represents oscillations of exponentially increasing amplitude, we say the system is overstable.

In many astrophysical contexts, gravity can be neglected, in which case a shear flow is unstable at all
wavelengths. The timescale of the exponential growth is given by

τK−H ≡
1

Im(ω)
=

ρ1 + ρ2

(ρ1ρ2)1/2

λ/2π
∆U

(4.39)

where ∆U ≡ |U1 − U2| and λ = 2π/k. If the two densities are comparable the the growth time then
ignoring factors of order unity we have τK−H ∼ λ/∆U, or in other words, it is equal to the time taken
for one fluid to travel past the other a distance comparable to the wavelength. At shorter wavelength the
instability grows faster, indeed the growth rate diverges at small wavelength and problems are prevented
in reality by viscous damping of the shortest wavelengths.

We have now derived the dispersion relation and growth rate, but that has given us no insight into the
physical mechanism which drives this instability. There are various ways to understand the mechanism;
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Figure 4.9: Photograph taken by
the Cassini spacecraft of the Kelvin-
Helmholtz instability in the atmo-
sphere of Saturn.

the simplest to perhaps to think in terms of how we apply Bernoulli’s equation to the flow around a solid
body. Where a fluid is forced to flow over an aeroplane wing, its speed must increase and its pressure
therefore decreases. Here, consider that one fluid is forced to flow over undulations in the discontinuity
separating the two fluids; its pressure falls, encouraging the other fluid to flow further into the space
occupied by the first fluid, thereby increasing the displacement ξ.

The above describes the linear development of the instability. As the amplitude grows the instability
becomes nonlinear and eventually produces mixing of the two fluids. This provides an intuitive way of
understanding where the instability comes from: if we mix the two fluids together until they move with
a uniform velocity, whilst conserving linear momentum, the kinetic energy must be lower: imagine an
observer in an inertial frame of reference such that ρ1U1+ρ2U2 = 0, i.e. where the combined momentum
of the two fluids is zero (or rather, where the combined momentum of layers of thickness 1/k on either
side of the discontinuity is zero). Incidentally, note that the phase speed of the waves as given by the
real part of ω/k in (4.37) vanishes in this frame. Now, initially the kinetic energy is obviously non-zero;
however as the two fluids become mixed the kinetic energy does tend to zero. Every instability works off

some kind of free energy; in this instance the free energy is the kinetic energy of the shear. This kinetic
energy, which is directed in the x direction, is converted first into kinetic energy in the z direction and
eventually also into thermal energy as viscosity damps motion on short length scales. In some sense the
energy originally present wants to convert into other forms and ultimately into thermal, as that represents
the greatest entropy.

If the two fluids are in fact the same, with ρ1 = ρ2, then the equations simplify somewhat. Gravity, if
present, has no effect, and the shear discontinuity is unstable to all wavelengths. Consequently, if such
‘vortex sheets’ develop in any kind of flow, we should expect them to be unstable and break up.

Both the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities have divergent growth rate as the wave-
length goes to zero. In reality of course a fluid is viscous and without working through the equations
properly, we can estimate the shortest unstable wavelength if we know the kinematic viscosity ν. The
timescale on which any disturbance of wavenumber k is damped is given by

τvisc ≈
1

k2ν
(4.40)

and stabilisation occurs if this timescale is shorter than the growth timescale of the instability. Compar-
ing with the instability growth times given by (4.39) and (4.23) it is easily verified that an upper limit on
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Figure 4.10: Shear flow in the at-
mosphere. The properties of water
vapour near saturation enable us to
‘see’ the flow of air.

unstable wavenumber k appears.

4.4 Internal gravity waves

In the previous section we looked at gravity waves in a liquid with a free surface and between two fluids
with a discontinuity in density; the restoring force comes from the tendency of gravity to flatten out this
free surface. In this section we look at fluids in which gravity waves can propagate without the need for
any surface. For this reason, they are called internal gravity waves; density variations within the fluid
give rise to the restoring force as gravity pulls more strongly on the more dense fluid elements. Both
kinds of wave are important in geophysics, while in astrophysics the internal waves are more important
and appear in a greater variety of objects than surface waves. Note that in the astrophysical literature,
these waves (or oscillations, if the waves are ‘standing’) are often referred to as ‘g-modes’, where the
letter g refers to the nature of the restoring force. In addition, if the restoring force is pressure, one
speaks of ‘p-modes’, and of ‘r-modes’ if the restoring force comes from the rotation of the fluid body,
via the Coriolis force (see chapter 7).

Consider a fluid in hydrostatic equilibrium, i.e. where ∂P0
∂z = −ρ0g where the subscript 0 denotes the

equilibrium quantities and gravity is directed downwards along the z axis. The equilibrium quantities
are functions only of z. We look at small deviations from this equilibrium where the pressure field, for
instance, becomes P = P0 +P′. We want to look at motions which are subsonic, and where characteristic
length scales in the vertical are much less than the length scale over which the density varies due to
pressure differences (scale height Hρ). Since the sound speed c2 = (∂P/∂ρ)s, we see from the hydrostatic
equilibrium equation that Hρ ≡ (∂ ln ρ/∂z)−1 ∼ c2/g. In a gas therefore it is comparable to the pressure
scale height HP but in a liquid it is much greater, for instance in the ocean it is ≈ 200km. So we ignore
variations in density caused by pressure and keep just the variation due to entropy variation, since it is
this variation which gives rise to the phenomena of interest. The is called the Boussinesq approximation.
We have for the density

ρ′ = −αs′ where α ≡ −

(
∂ρ0

∂s0

)
P

(4.41)
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Figure 4.11: Rising cigarette smoke. This behaviour is
generic to jets of fluid passing through surrounding fluid at
rest.

where α has been defined so that it generally positive. The subsonic motion allows a simplification of
the continuity equation to

∇ · u = 0 (4.42)

and the momentum equation can be written

∂u
∂t

+ (u ·∇)u = −
1
ρ
∇P − gẑ

= −
1
ρ0

∇P′ − g
ρ′

ρ0
ẑ, (4.43)

where in reaching the second line the assumption that ρ′ � ρ0 has been used together with the hydro-
static balance equation for the equilibrium state. In our analysis of waves we can drop the second term
on the left since it is second order in u, a ‘small’ quantity. All we need now to complete the set of
equations is the evolution of entropy, which in an ideal fluid is

∂s′

∂t
+ (u ·∇)s = 0 (4.44)

which can be linearised in the wave context to give

∂s′

∂t
+ w

ds0

dz
= 0. (4.45)

We now assume solutions of the form exp[i(k · r − ωt)]. The continuity equation (4.42) becomes

k · u = 0 (4.46)

which means that the motion is perpendicular to the wavevector k. Equations (4.43) and (4.45) are

−iωu = −
1
ρ0

ikP′ + g
αs′

ρ0
ẑ, (4.47)

−iωs′ + w
ds0

dz
= 0. (4.48)

35



These three equations (4.46), (4.47) and (4.48) can be combined to eliminate u, P′ and s′ to find the
dispersion relation

ω2 = N2 sin2 θ (4.49)

where θ is the angle between the wavevector k and the vertical and N is the buoyancy frequency or
Brunt-Väisälä frequency, which has the value

N2 =
αg
ρ
·

ds
dz
. (4.50)

The first thing we see is that, since oscillations only occur ifω is real, we need a positive entropy gradient
if α is positive; if this is not the case then instead of oscillations we get convective turnover.1 The second
thing we see is that this dispersion relation is clearly quite different from those of surface gravity waves
in that the frequency depends only on the angle of the wavevector and not on its magnitude. Physically
this can be understood in the following way. A system hosting deep water surface gravity waves has
no particular length scale; the only constant appearing in the equations is g. Therefore the waves can
be made as small or as large as desired and correspondingly the frequency can have any value. In a
continuously stratified fluid, however, the change in density takes place over a finite distance Hρ. It
is impossible to make the oscillations happen faster by reducing the length scale of the disturbance,
because that also reduces the fractional difference in density and therefore the restoring force. In fact it
is impossible to make the oscillations happen faster than the buoyancy frequency N.

Note also that the frequency goes to zero when the wavevector is vertical. In this case, the motion is en-
tirely horizontal and it is clear that the restoring force vanishes. This is the reason that flows in stratified
fluids tend to reside in horizontal surfaces; for instance the motion in the atmosphere is almost perfectly
horizontal, except in those places where the entropy gradient becomes negative and convection appears.
The same is true of flows around stars; this manifests itself for instance in that chemical elements are
mixed efficiently on surfaces of constant radius but that the mixing in radius is very slow in radiative
(non-convective) zones.

4.5 Sounds waves and the Jeans instability

We saw in section 2.3 that sound waves can exist in any kind of fluid, since the only ingredient required
is pressure, which is present in every fluid. Here, we have a gravity term in the momentum equation
(2.1) g = −∇Φ where Φ is the gravitational potential. This term can give rise to an instability if the
gravitational potential is a result of the self-gravity of the fluid itself, rather than some distant fixed mass
as in the previous sections. Recalling that for a fluid of density ρ, the gravitational potential Φ is given
by the Poisson equation2

∇2Φ = 4πGρ, (4.51)

1Exceptions to α > 0 include water between 0 and 4◦C. This allows ice to form on the surface of a lake in the winter
without all the water right down to the bottom having to cool to zero first.

2The intermediate step here is 4πGρ = −∇ · g. Note the similarity with Maxwell’s equation 4πρe = ∇ · E. No constant is
required in the electromagnetic case because it is built into the definition of the unit of charge (in c.g.s., but not SI units); the
other difference is the minus sign.
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Figure 4.12: Below: internal grav-
ity waves in the laboratory, propa-
gating diagonally downards. Right:
waves excited by the passage of air
through the Straights of Gibraltar.

we can make the simplification (as in section 2.3) that all motion is in the x direction and that all
quantities have vanishing gradients in the y and z directions, making the momentum equation, continuity
equation, and self-gravity equation:

∂u
∂t

+ u
∂u
∂x

= −
1
ρ

∂P
∂x
−
∂Φ

∂x
, (4.52)

∂ρ

∂t
= −

∂

∂x
(ρu), (4.53)

∂2Φ

∂x2 = 4πGρ. (4.54)

Just as in section 2.3, we linearise these equations. We first define some background equilibrium state
with pressure P0, density ρ0 and zero velocity, writing pressure P = P0 + δP, ρ = ρ0 + δρ, Φ = Φ0 + δΦ

where δP � P0 and δρ � ρ0. It follows that the velocity u is also small. As before, we define
c2

s ≡ ∂P/∂ρ. The linearised equations are

∂u
∂t

= −
1
ρ0

∂(δP)
∂x

−
∂(δΦ)
∂x

, (4.55)

∂(δρ)
∂t

= −ρ0
∂u
∂x
, (4.56)

∂2(δΦ)
∂x2 = 4πG δρ, (4.57)

δP = c2
sδρ. (4.58)
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Substituting from (4.58) for δρ into (4.56) and (4.57) gives

1
c2

s

∂(δP)
∂t

= −ρ0
∂u
∂x
, (4.59)

∂2(δΦ)
∂x2 =

4πG
c2

s
δP. (4.60)

and then differentiating (4.55) w.r.t. x, substituting from (4.59) for u and from (4.60) for Φ, and tidying,
gives

∂2(δP)
∂t2 = c2

s
∂2(δP)
∂x2 + 4πGρ0 δP. (4.61)

We now assume solutions of the form exp[i(kx − ωt)], which upon substitution into (4.61) gives

ω2 = c2
sk2 − 4πGρ0 (4.62)

which clearly gives oscillations (i.e. real ω) only if the right-hand side is positive. The stability criterion
is often expressed as an equality in terms of the wavelength λ = 2π/k as

λ < cs

√
π

Gρ
(4.63)

where the subscript on the density has been omitted. The critical wavelength of marginal stability is
known as the Jeans length, named after the English astronomer James Jeans. Above this length scale,
gas tends to collapse under its own gravity.

Exercises

4.1 Energy density and flux

(a) Show that the average potential and kinetic energies of a wave are equal. By integrating the
work done per unit time and area Pu, derive the energy flux of the wave, and show that the group
velocity is simply the ratio of energy flux to energy density.

(b) Explore what happens as a wave moves from deep water to ever shallower water, assuming
that the energy flux is constant.

(c) By considering refraction, explain qualitatively what happens to the direction of propagation
of a wave as it approaches a beach.

4.2 Waves at interface between two liquids

(a) Imagine two liquids of different densities lying on top of each other, the more dense fluid below.
Derive the dispersion relation for gravity waves at the interface, assuming that the wavelength is
much smaller than the depth of either liquid. To do this, the boundary conditions required are the
same as those used in this section except that they must be applied to both fluids, also the dynamic
condition is that the pressure on both sides of the discontinuity is the same, but non-zero.
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(b) Construct a rudimentary experiment in a coffee cup to demonstrate the existence of these
waves. Hint: milk is denser than water.

The excitation of waves between two layers of liquid is the explanation for a phenomenon called
‘dead water’, where boats entering Norwegian fjords experience increased drag. The fjords con-
tain fresh water lying on top of salty seawater.

4.3 Stokes’ drift

By keeping second order terms, show that in the deep water case the particle paths in a wave of
finite amplitude are not quite circular but that averaged over a cycle a particle moves slightly in
the direction of wave propagation.

4.4 Alternative calculation of buoyancy frequency

Consider a fluid element in a stratified fluid. Initially the fluid element has the same pressure
and density as its surroundings at that particular height z, and it is displaced vertically from this
equilibrium position a distance δz. Calculate the restoring force on the fluid element as a function
of this displacement and use this to calculate the frequency at which the element oscillates about
its equilibrium position.

4.5 Gravitational collapse

Building on the analysis in section 4.5, show that the Jeans length can also be estimated by equat-
ing the time taken for a sound wave to travel a certain distance to the freefall time over that
distance. Furthermore, by considering a spherical cloud (of constant density, to simplify matters),
show that the Jeans length is simply the size of the cloud in which the thermal and gravitational
energies are comparable. Comment on the meaning of this, in terms of the virial theorem. Finally,
calculate the Jeans length under typical conditions in the interstellar medium. For example, in
much of the ISM cs = 10 km s−1 and ρ = 10−24 g cm−3, and in dense clouds cs = 1 km s−1 and
ρ = 10−21 g cm−3.
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Chapter 5

Viscous fluids

We now turn our attention to the form of the viscous term in the momentum equation, Fvisc. First we
take a look at the equations and then use them to solve some simple problems.

5.1 The viscous stress tensor

First it is helpful to write the momentum equation in a more suitable form:

∂

∂t
(ρui) = −

∂Ti j

∂x j
(5.1)

where Ti j is the momentum flux tensor. It is easily demonstrated that it must always be possible to write
the equation of motion in this form in situations without body forces such as gravity, by integrating over
volume and using Gauss’ theorem to express the right-hand side as a surface integral; the left-hand side
then represents the rate of change of momentum of the volume and the right-hand side the forces acting
on it at the boundaries. Also, note the similarity with the mass conservation equation. The momentum
flux tensor is given by

Ti j = ρuiu j + Pδi j − S i j. (5.2)

The first part of the momentum flux tensor is often called the Reynolds stress, while the second and third
terms together are called the stress tensor – where the viscous part thereof, S i j, is called the viscous
stress tensor.

In finding the form of S i j, the following axioms must be adhered to. First, it must vanish in the case of a
uniform velocity, which means that terms containing the velocity must be absent, and that it must instead
be made up of velocity gradients. Secondly, we know that the viscous stress is linear in these gradients.
So, the tensor must consist of only terms like ∂ui/∂x j. Now, a non-zero value of ∂ui/∂x j − ∂u j/∂xi

represents a uniform rotation of the fluid, in which case the viscous stress must also vanish; this means
that only terms ∂ui/∂x j + ∂u j/∂xi are permissible, which represent a change of size or shape of the fluid
elements. It is common at this juncture to introduce the rate of strain tensor

ei j ≡
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
. (5.3)

41



There are further properties which follow from the symmetry and rotational symmetry between the
three dimensions: the three diagonal elements must all have the same form; the tensor is symmetrical,
i.e. S i j = S ji, and the off-diagonal elements must also have the same form. Therefore we can write

S i j = aei j + bδi j
∂uk

∂xk
, (5.4)

where a and b are properties of the fluid in question. Now, it is observed in many fluids, includ-
ing monatomic gases that – to a good approximation – no energy is dissipated during an isotropic
compression or expansion. In other words, a fluid element can be compressed while its shape is
preserved, then expanded again back to its original size, and the work done by the element during
the expansion is equal to that done on the element during the compression. During such a change,
∂u1/∂x1 = ∂u2/∂x2 = ∂u3/∂x3 and bearing this in mind we can rewrite (5.4) thus:

S i j = µ

(
2ei j −

2
3
δi j
∂uk

∂xk

)
+ ζδi j

∂uk

∂xk
, (5.5)

where a and b have been replaced by µ and ζ which are called the shear and bulk viscosities, respectively;
in monatomic gases the bulk viscosity is zero. To find the physical reason for this, it is necessary to make
a brief digression from “classical” hydrodynamics and consider the constituent particles. We can con-
sider the thermal energy in a gas in thermodynamic equilibrium as being divided equally (equipartition)
between the various degrees of freedom, so that in a monatomic gas we have an energy per mole of
RT/2 for the translational kinetic energy in each of the three dimensions and the total thermal energy
per mole is 3RT/2. During an isotropic expansion, energy is extracted at the same rate from kinetic en-
ergy in each of the three dimensions whereas the expansion of a gas in a cylinder-piston system extracts
energy from just one dimension. In the latter case, the energies are brought out of equipartition and
must gradually come back to equipartition; the finite time required to do this means that the pressure
exerted on the piston during expansion is lower than it would be if the energy was redistributed instantly.
During a compression the pressure on the piston is higher, therefore a net work must be done on the gas
over a cycle consisting of expansion followed by compression; this work appears in the system as heat
energy. This difference between the irreversibility of an isotropic and a non-isotropic change in volume
is the origin of the second term inside the brackets in equation (5.5), ensuring that the stress tensor
becomes zero in the isotropic expansion case. Now, a similar process occurs during the expansion of
a gas made from diatomic or more complex molecules; at thermodynamic equilibrium, energy is split
equally between not only the three translational kinetic energies but also the rotational kinetic energy
(of which there are two degrees of freedom in the case of diatomic molecules such as those which make
up the major fraction of the Earth’s atmosphere). Even during an isotropic expansion, kinetic energy is
extracted from the three translational degress of freedom but not from the rotational and the lag between
the two gives rise to the same kind of dissipation as in the case of monatomic gas in a piston. This is the
origin of bulk viscosity.

Recall that in section 1.1 we saw that the fluid approximation consists amongst other things in assuming
that the mean-free path of particles is very much less than any other length scales of interest. This is
because the idea of a local thermodynamic equilibrium is meaningful only in a fluid element at least
as large as the mean-free path. Here, we have seen that the finite mean-free path, or rather the finite
collision timescale, gives rise to a lag between energies and non-equipartition between different degrees
of freedom. Therefore in some sense, the viscous terms in the fluid equations can be considered as
first-order in the mean-free path.
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In the case of an incompressible flow (i.e. the volume of each fluid element is not changing) with a
velocity shear, the viscous stress acts to reduce the shear by transporting momentum across the fluid.
Microscopically, this comes from individual particles transporting their momentum to another location
where the mean velocity is different. Many undergraduate syllabuses include the calculation of the
shear viscosity of a gas from consideration of momentum transport of particles in a shear flow. In
applications where accuracy is not important (e.g. astrophysics) it is not important to know the detail
of the calculation, but just that the dynamic viscosity of a gas is approximately equal to density ×
sound speed × mean-free path. In fact, this result can be obtained from a simple dimensional analysis.
Remember that the sound speed is roughly equal to the thermal speed of the particles.

Back to the fluid picture: so far we have found that the viscous force per unit volume, i.e. the term Fvisc
on the right-hand side of (1.3) can be written

Fvisc,i =
∂S i j

∂x j
=

∂

∂x j

{
µ

(
2ei j −

2
3
δi j
∂uk

∂xk

)
+ ζδi j

∂uk

∂xk

}
. (5.6)

This is a rather complicated expression, and we can get a better intuitive understanding of the physics
if we make some simplifications. First of all, in an incompressible flow we can drop the terms with the
velocity divergence. Next, we can assume that the dynamic viscosity µ is a constant and can therefore
be brought outside of the divergence, giving

Fvisc,i = µ
∂

∂x j
(2ei j) = µ

∂

∂x j

(
∂ui

∂x j
+
∂u j

∂xi

)
= µ

∂2ui

∂x2
j

, (5.7)

where the zero-divergence of the velocity field was once again used to remove the second half of the
rate of strain tensor. Defining the kinematic viscosity ν ≡ µ/ρ we can write the momentum equation as

du
dt

= −
1
ρ
∇P + g + ν∇2u. (5.8)

In this form it is easier to understand the action of viscosity – essentially it acts to smooth out variations
in the velocity field. Where there is a local minimum in ux, for example, ∇2ux is positive and so the
viscosity brings about an increase in ux. We can see from the first and last terms in (5.8) that this
smoothing happens on a timescale

τvisc ∼
L2

ν
(5.9)

where L is the characteristic length scale.

The extra viscous term in the momentum equation (5.8) fundamentally changes the nature of the equa-
tions. Without it, a problem can be entirely specified if the perpendicular component of the velocity is
set to zero at the boundaries, as we shall see in section 5.5 when we calculate the inviscid flow past a
sphere. However, with the viscous term, which contains a second order derivative of the velocity, this
boundary condition is not sufficient and something else is needed to properly constrain the solution.
What is needed is that not just the perpendicular component but also the parallel part of the velocity
must go to zero at the boundary. In fact we already know this from everyday experience, for instance
when trying to blow dust off a flat surface – some layer of dust always remains. As we shall see below,
what is happening in that there is a thin boundary layer of strong velocity shear next to the surface where
the velocity goes from zero at the surface to its value in the external flow.
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5.2 Viscous heating

Having calculated the stress tensor and therefore the effect of viscosity on the velocity field, it is now
necessary to calculate the energy dissipated as heat and add a term to the energy equation. First, we take
the dot product of velocity with the momentum equation

ρu ·
∂u
∂t

= −ρu · (u ·∇)u − u ·∇P + ui
∂S i j

∂x j
(5.10)

which allows us to calculate the Eulerian rate of change of kinetic energy density:

∂Ekin

∂t
=
∂

∂t

(
1
2
ρu2

)
=

u2

2
∂ρ

∂t
+ ρu ·

∂u
∂t

= −
u2

2
∇ · (ρu) − ρu · (u ·∇)u − u ·∇P + ui

∂S i j

∂x j

= −
u2

2
∇ · (ρu) − ρu ·∇

(
u2

2

)
−∇ · (Pu) + P∇ · u +

∂

∂x j
(uiS i j) − S i j

∂ui

∂x j

= −∇ ·
(
ρu

u2

2
+ Pu − uS

)
+ P∇ · u − S i j

∂ui

∂x j
. (5.11)

The term inside the bracket is an energy flux; integrating the equation over the volume of a fluid system
one can convert this term to a surface integral of the flux over the boundary. The next term represents
reversible conversion between thermal and kinetic energy; note that this term also appears in the energy
equation (1.11), with the opposite sign. The last term is viscous conversion of kinetic into thermal
energy. Taking the symmetry into account we can write this viscous heating as

Qvisc = S i jei j (5.12)

Note that the viscous heating is not equal to the local rate at which work is being done against viscosity
−u · Fvisc, i.e. (minus) the last term in (5.10), which depends on the velocity rather than just on velocity
gradients; part of this work is simply the transfer of momentum from one fluid element to its neighbours,
and only part of it is actually dissipated. In addition, it is clear that the viscous heating must depend
only on velocity gradients, and be positive; it is easily verified that Qvisc given in (5.12) satisfies both of
these requirements as long as the viscosities µ and ζ are positive.

5.3 Examples of viscous flow

One much studied, presumably because of its practical engineering importance, example of viscous
flow is that of flow through a pipe. Here, we shall look briefly at a physically similar but geometrically
simpler case, that of flow between two planes.

The two parallel planes, separated by a distance a, are surfaces of constant y coordinate, and the flow is
in the x direction (the x-component of the velocity is u), so that there is no dependence on z. The x and
y components of the momentum equation (5.8) are

0 = −
1
ρ

∂P
∂x

+ ν
∂2u
∂y2 (5.13)

0 = −
1
ρ

∂P
∂y

(5.14)
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where it is assumed that the flow is incompressible, that ν is constant, and that a steady flow has been
established between the two planes. Now, we see from the second of these that pressure depends only
on x, and looking at the first equation we see that the pressure gradient must be constant. Integrating the
x component equation twice in the y direction, we obtain

0 = −
y2

2
∂P
∂x

+ µu + Ay + B (5.15)

To find the constants A and B we need to specify the boundary conditions, i.e. the velocity u at y = 0
and y = a (as mentioned at the end of section 5.1, all components of the velocity must go to zero at the
boundaries) If we assume that the boundary plates are stationary and therefore set the velocity at both
boundaries to zero (akin to flow through a pipe) – which is called plane Poiseuille flow – then we find
that A = (a/2)dP/dx and B = 0, so that

u = −
a2

2µ
dP
dx

(
y
a
−

y2

a2

)
, (5.16)

so the the velocity is positive if the pressure gradient is negative, and intuitively understandable result.
Furthermore, we see that the velocity gradient ∂u/∂y is a constant, meaning that every fluid element
experiences the same shear distortion as well as pressure drop and viscous heating rate.

It is informative to briefly mention the case of plane Couette flow, which is like the plane Poiseuille flow
except that the pressure gradient is zero and the planes are moving relative to one another. Taking the
upper plate to be moving with velocity U, the solution is

u =
Uy
a
. (5.17)

The equations of viscous flow can be solved in some other, more complex situations. The first case
above can be extended to the case of flow through a circular-cross-section pipe, and a popular case for
investigation in astrophysics is the extension of the second case to flow between two concentric cylin-
ders, which is called circular Couette flow or sometimes just Couette flow. In this situation, interesting
effects can be seen at high rotation rates and/or low viscosity, in which case the flow is often called
Taylor-Couette flow. Likewise, the nature of flow through a pipe changes at low viscosity; instability
sets in and the flow changes from laminar to turbulent.

5.4 Similarity and dimensionless parameters

The value of ν can have an important effect on the properties of the flow. It is informative to compare
the size of the viscous term in the momentum equation with the other terms, along the lines of (2.22), in
a steady flow:

(u ·∇)u = −
1
ρ
∇P + ν∇2u

U2

L
δP
ρL

νU
L2 ,

U2 δP
ρ

U2

Re
where Re ≡

UL
ν
, (5.18)
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where Re is called the Reynolds number. In the case of high Reynolds number the viscous term is
small and the other two balance each other; conversely in the low Reynolds number case the viscous
force balances the pressure gradient. Not surprisingly flows in these two regimes Re � 1 and Re � 1
have rather different properties which we explore in the following sections. Note however that a high
Reynolds number does not generally mean that we can ignore viscous effects entirely; in fact as Re
→ ∞ the behaviour of a flow only tends towards the behaviour of a perfectly inviscid fluid with ν = 0
in some special cases such as small oscillations; generally the presence of even a small viscosity has a
fundamental effect, as we shall see in the next section.

This brings us to an important property of the equations of hydrodynamics, namely that since they
contain no fundamental constants they are scalable. For instance, in the simplest case of a steady incom-
pressible (subsonic) flow without gravity or viscosity, the nature of the flow is determined only by the
geometry and not by the magnitudes of the various parameters, which are L, U and ρ (we can consider
the pressure variation δP as a function of these other parameters and so it cannot be set independently).
We can set up two experiments with boundaries of the same geometry but with different densities, flow
speeds and length scales, and the two flows will have identical geometry; the two flows are similar,
hence the term similarity flows. This similarity is linked to the fact that it is impossible to make a di-
mensionless number out of combinations of L, U and ρ. In compressible flow, the sound speed c in the
medium is an extra parameter and in order to make two similar flows with different L, U and ρ, we also
need them to have the same Mach number M = U/c so that the fractional variations in density are the
same. In the same way, similar viscous flows must have the same Reynolds number, which is the only
dimensionless number it is possible to make from combinations of L, U and ρ and ν (except trivial func-
tions of Re). This is obviously of enormous practical value when testing for instance the aerodynamics
of boats in miniature water tanks. Another good example is that jets from stellar-mass black holes look
very similar to those from ‘supermassive’ black holes eight orders of magnitude more massive.

The set of dimensionless parameters grows with every additional component. Similar flows with gravity
must have the same Froude number, which is the ratio of the inertia to gravity, and similar unsteady
slows must have the same value of the Strouhal number, the ratio of the (u ·∇)u and ∂u/∂t terms. In
summary we have

Mach number
velocity

sound speed
M ≡

U
c

(5.19)

Reynolds number
inertia (steady)

viscosity
Re ≡

UL
ν

(5.20)

Froude number
inertia (steady)

gravity
Fr ≡

U2

Lg
(5.21)

Strouhal number
inertia (steady)

inertia (unsteady)
St ≡

UT
L

(5.22)

Note that the Strouhal number is infinity in a steady flow, approaches zero in small-amplitude waves
(where it is a function of the other numbers if the oscillations are excited within the fluid rather than by
some external agent), but is often of order unity in a variety of flows.
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5.5 Regimes of viscous flow: example of flow past a solid body

We looked at the difference between flows with low and high Mach numbers in sections 2.5 and 2.4; in
this section we look at the effects of having low and high Reynolds numbers, i.e. high and low viscosity,
using the context of a solid body moving through a fluid and examining the drag force on the body.
First of all though, we look at the consequences of having no viscosity at all. Note that throughout this
section, we assume the fluid is incompressible (equivalent to M � 1).

To calculate the drag force on a body, it is useful to go into the frame of reference in which the body is at
rest because in this frame the flow is steady and we lose all ∂/∂t terms. Imagine a solid sphere or radius
a moving at velocity v through an ideal (ν = 0) incompressible fluid. Transferring to the inertial frame
where the body is stationary, the fluid at a large distance from the sphere is irrotational, so the fluid must
everywhere be irrotational, and we can express the velocity as the gradient of a scalar. In addition, the
fluid is incompressible so that the continuity equation (1.8) reduces to ∇ · u = 0, so that the velocity
potential φ must satisfy Laplace’s equation ∇2φ = 0. The solution of this equation is a boundary value
problem. The velocity potential has to satisfy two boundary conditions – that the flow tends towards
uniform at infinity and that the radial component of velocity is zero at the surface of the sphere – but we
impose in this inviscid case no condition on the tangential velocity at the surface of the sphere:

φ→ −vr cos θ as r → ∞ and
∂φ

∂r
= 0 at r = a, (5.23)

using spherical coordinates comoving with the body where r is the distance from the centre of the sphere
and θ is the angle between the radius line and the direction of oncoming fluid. From undergraduate
courses in electrostatics for instance, we know that the solutions to the Laplace equation in spherical
coordinates are:

φ = A + (Br + Cr−2) cos θ + (Dr2 + Er−3)(3 cos2 θ − 1) + ..... (5.24)

We can obviously ignore A and it follows from the boundary condition at infinity that D and all coeffi-
cients of higher positive powers of r are zero. The radial derivative of φ at r = a is(

∂φ

∂r

)
r=a

= (B − 2Ca−3) cos θ − 3Ea−4(3 cos2 θ − 1) − .... (5.25)

and since this must be zero for all θ, E and higher coefficients must vanish. We also see of course that
B = 2Ca−3, leaving us with

φ = −v
(
r +

a3

2r2

)
cos θ. (5.26)

The appearance of this velocity field is illustrated in fig. 5.1.

To calculate the drag force on the sphere we need now to integrate P cos θ over the surface. From
Bernoulli’s equation we have

1
2

(∇φ)2 +
P
ρ

= const. (5.27)

We can immediately see from (5.26) that the flow speed is symmetrical upwind and downwind, meaning
that the pressure must also be symmetrical. The consequence of this is that the drag force vanishes! In
fact we could have arrived at this conclusion much more quickly: in the steady state it is easy to see that
no work is done on the fluid because after it passes by the sphere it returns exactly to its original state.
There is no mechanism in an inviscid fluid to convert kinetic energy to thermal energy.
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Figure 5.1: The flow of an inviscid incompressible fluid past a
sphere.

If we take this solution for the velocity field and calculate the corresponding size of the viscous term in
the momentum equation we find that for high Reynolds numbers this term should be negligible compared
to the other terms, and yet we know from experience that the drag force remains very much non-zero
even at very high Reynolds numbers (> 1012). The drag coefficient (defined below) as a function of
Reynolds number is plotted in fig. 5.2 (left panel). This shows that the assumption of zero viscosity
can be an incredibly bad approximation for a fluid with low viscosity. The reason for this lies at the
boundary between fluid and solid: the fluid velocity parallel to the surface of the sphere is in a fluid
with a finite viscosity constrained to go to zero at the boundary. There is no solution including this extra
boundary condition in the irrotational potential flow picture (we speak of an ‘overconstrained’ problem),
so we must accept that there is at least some region in which the flow becomes rotational, i.e. develops a
non-zero vorticity. In the case of low viscosity, this occurs only in a thin boundary layer near the surface
of the object as well as sometimes in a larger volume behind the object, depending on its geometry. An
inviscid irrotational solution applies elsewhere, but this boundary layer makes all the difference to the
drag force.

It is possible to calculate the drag force for very low Reynolds number. To do the complete calculation
is tedious and if we just want astrophysical accuracy we can make do with a dimensional argument.
Ignoring the inertial term in the momentum equation and equating the pressure gradient to the viscous
term gives

1
ρ
∇P = ν∇2u ⇒ Fdrag ≈ L2δP ∼ ρνLU (5.28)

since the drag force can be thought of as the integration over the surface area L2 of the body of the
pressure variation. This type of flow is called the Stokes regime. The full calculation introduces just a
numerical factor (in the case of a spherical body, a factor of 6π is introduced if L is the radius of the
sphere). We can now repeat the exercise for high Reynolds numbers:

1
ρ
∇P = −(u ·∇)u ⇒ Fdrag ≈ L2δP ∼ ρL2U2. (5.29)

Here we are of course also missing a numerical factor. It is common in the literature to write the drag
force as

Fdrag =
1
2

u2CdρA (5.30)

where u is the speed of the object through a stationary medium, A is the cross-sectional area of the object
as viewed from the direction of the oncoming fluid and Cd is the numerical factor (the ‘drag coefficient’)
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which depends on the geometry of the body as well as on the Reynolds number. The drag coefficient for
a sphere is plotted in fig. 5.2; the shape of this curve is a consequence of various phenomena to do with
boundary layers and ‘turbulence’, which it is not necessary to explore here in detail.

Figure 5.2: Below: Drag coefficient of
a sphere as a function of the Reynolds
number. Right: Flow past the ball
at various Reynolds numbers (from
Kundu & Cohen).

5.6 Boundary layers

Boundary layers are important in many engineering as well as geophysical contacts and occasionally
appear in astrophysics. We take a brief look at this very important phenomenon here.

Consider the flow around a thin plate aligned parallel to the flow. In the inviscid case, the velocity field
is completely unaffected by the presence of the plate; however in a real fluid we must have u = 0 at the
surface of the plate. From experiments we know that the inviscid solution does still apply in the bulk
of the volume but that there is a thin boundary layer where the viscous force is comparable to the other
forces. This layer contains a strong velocity shear, which mean that vorticity is generated. The thickness
of this boundary layer depends on the viscosity – it is thicker if the viscosity is greater. Furthermore,
the layer grows downstream, and it is possible to estimate this growth (see exercise below). Boundary
layers may be either laminar or become turbulent if a shear instability develops.
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5.7 Heat diffusion

We know from everyday experience that heat flows from hot to cold. Without going to deeply into the
thermodynamics, we can describe the flow of heat as

Fheat = −K∇T, (5.31)

where the heat flux has dimensions of energy per unit time per unit area and K is the thermal conductivity.
We have made an implicit assumption here that the conductivity is isotropic, i.e. that the fluid conducts
heat equally in all directions.1 Now, to look at the effect of heat conduction on a body of fluid we need
to know the net inflow/outflow of heat into/out of a fluid element; the net heat energy influx per unit
volume per unit time is given by

Qvol = ∇ · (K∇T ). (5.32)

which fits into the heat equation in the following way

dT
dt

= ............
1
ρcp

∇ · (K∇T ) (5.33)

and if K can be assumed constant throughout the fluid, then we can write the term above simply as κ∇2T
where we have defined a thermal diffusivity

κ ≡ K/(ρcp) and Pr ≡ ν/κ, (5.34)

where we have also defined the Prandtl number as the ratio of the thermal and kinetic diffusivities (both
have units of area per unit time). In some situations, such as convection in stars, it is thought that a flow
can behave quite differently according to whether the Prandtl number is greater than or less than unity.

Exercises

5.1 Momentum equation
Verify that the momentum equation in Einstein summation notation (5.1) with (5.2) is equivalent
to the vector-notation form (2.1), except for the gravity and viscous parts. Show that it is generally
not possible to incorporate body forces, such as gravity, into the divergence-of-a-tensor form of
the momentum equation.

5.2 Model testing
We are designing a boat which will sail at 4 m/s and is 8 m long. We shall assume that the drag on
the boat will be entirely due to buoyancy effects, i.e. generation of gravity waves. If we construct
a model 50 cm long, at what speed should the water in the testing tank be moving past the model?
[Hint: the Froude numbers must be the same.]

1Isotropic conductivity is a valid assumption in most contexts of interest but in some cases, such as low-density plasmas
where the mean-free path is greater than the gyration radius associated with the magnetic field present, the scalar K must be
replaced by a tensor.
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5.3 Growth of boundary layer

An infinitely thin solid sheet is inserted into a uniform flow such that sheet and flow are parallel.
Argue that in the inviscid case, the flow is not affected. In the case of finite viscosity, show that
a boundary layer forms and estimate the thickness of the boundary layer as a function of distance
downstream. [Hint: look at the relative sizes of terms in the momentum equation.]
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Chapter 6

Shocks

In this section we look at a phenomenon where a discontinuity in the density and pressure of a fluid
appears when there is supersonic motion of some kind. This phenomenon is in some sense non-fluid in
that the relevant length scale is of the order of the mean-free path of the particles, but we can still derive
useful results without considering microscopic processes.

6.1 Viscous vs. pressure gradient force

Let us first examine in what situation the viscous force (normally first order in λ/L, the ratio of mean
free path to characteristic length scale of the system under consideration) is comparable to the pressure
gradient force. Looking at the momentum equation

du
dt

=
1
ρ
∇P + ν∇2u (6.1)

we see that the ratio of pressure to viscous force is

FP

Fvisc
∼

P
ρL

(
νU
L2

)−1
≈

Lc2
s

Uν
≈

cs

U
L
λ

(6.2)

where U is the typical velocity. The gas relation ν ≈ csλ has been used. Clearly, while L � λ the viscous
force is relatively unimportant; however if the motion becomes supersonic (U > cs) and a discontinuity
appears (L ≈ λ) then the viscous force becomes important. In this situation we should expect kinetic
energy to be dissipated into heat.

6.2 The jump conditions

To derive relations between the pressure, density and velocity on either side of a discontinuity it is easiest
to go into the inertial frame in which the shock is at rest. In the following, quantities on either side of
the discontinuity have the subscripts 0 and 1. The fluid has velocity component u perpendicular to the
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discontinuity. By consideration of mass conservation – mass entering and leaving the discontinuity per
unit time per unit area – we have

ρ0u0 = ρ1u1. (6.3)

Next we can consider the rate of change of momentum contained within a volume spanning the discon-
tinuity, which in the steady state (in the case of unsteady flow, we consider a short interval of time) must
vanish. Contributions to increase momentum come from the momentum of the fluid entering the volume
as well as the pressure P0 acting on the volume; these must be balanced by momentum loss on the other
side:

ρ0u2
0 + P0 = ρ1u2

1 + P1. (6.4)

We now need to use conservation of energy. Again considering a volume spanning the discontinuity
and equating the rate of change of its energy, made up of internal and kinetic energy flux inwards and
outwards plus ‘pdV’ work done, to zero, we have

ρ0u0

ε0 +
u2

0

2
+

P0

ρ0

 = ρ1u1

ε1 +
u2

1

2
+

P1

ρ1

 (6.5)

where ε is the internal energy per unit mass, a function of pressure and density. Of course, this is just an
expression of Bernouilli’s equation (2.9).1 Finally we can consider velocity parallel to the discontinuity,
where conservation of momentum gives us

ρ0u0v0 = ρ1u1v1, (6.6)

where v is the component of velocity parallel to the discontinuity.

Now, there are two possible types of solution, assuming both densities and pressures are non-zero. First,
we can have u0 = u1 = 0. In this case, we see from (6.3) and (6.6) that ρ and v are unconstrained
on both sides. However from (6.4) we have P0 = P1. This kind of discontinuity is called a tangential
discontinuity, and in many contexts (particularly if the fluids on either side are of a different type or
origin) it is called a contact discontinuity. Note that if the parallel velocities are not equal, i.e. if
v0 , v1, then the flow is generally unstable (see section 4.3).

The second solution has non-zero perpendicular velocities, and is called a shock or shock wave. In this
case, we define the axes in such a way that both u0 and u1 are positive. From (6.3) and (6.6) we see that
v0 = v1. Applying mass conservation to (2.9) gives

h0 +
u2

0

2
= h1 +

u2
1

2
, (6.7)

where internal energy ε and P/ρ have been brought together into enthalpy h. Now substituting (6.3) into
(6.6) we have

ρ0u0(u0 − u1) = P1 − P0. (6.8)

Given that ρ0u0 is positive, there are now two possibilities: either u0 > u1, P0 < P1 and ρ0 < ρ1 or
u0 < u1, P0 > P1 and ρ0 > ρ1. It is left as an exercise for the student to show formally that these two
possibilities represent an increase and a decrease in entropy; since we know that entropy must increase,
only one set of solutions is permissible. If we define u0 as the velocity upstream of the shock and u1

1Here we are simply equating the inward and outward energy fluxes on two surfaces of a volume. The energy flux through
the sides of the volume is made to vanish by making the volume infinitesimally flat whilst still containing the discontinuity.
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as the velocity downstream, an increase in entropy requires that u0 > u1. This means that the gas is
compressed and heated on its passage through the shock. The energy to do this can only come from
the decrease in kinetic energy. In fact, the opposite of this would apparently violate the second law
of thermodynamics, according to which it is impossible to construct a system whose sole result is the
conversion of energy from heat to kinetic energy.

The change of state of the gas happens via microscopic processes in the shock, which generally has
a thickness of order the mean free path of the particles. An interesting feature is that the change in
the thermodynamic state of the gas is determined entirely by the macroscopic quantities on either side;
the shock itself can be thought of as adjusting itself to meet the external requirements placed upon it,
regardless of the fluid’s microscopic properties. For instance, a shock can be passed at a given speed
through two fluids which are identical except for their viscosities; in the less viscous fluid the shock
discontinuity will become thinner to allow it to dissipate the same energy as in the more viscous fluid,
and it is impossible to tell the difference between the two if one just measures the macroscopic quantities.
This behaviour is also seen for instance in magnetic reconnection.

To look at the interdependence of the variables in (6.3), (6.4) and (6.7) it is first helpful to express the
enthalpy in terms of pressure and density: in an ideal gas, h = (P/ρ)γ/(γ − 1). After some algebra, we
arrive at:

P1

P0
= 1 +

2γ
γ + 1

(
M2

0 − 1
)
, (6.9)

where M ≡ u/c is the Mach number, the velocity as a fraction of the sound speed. Note that the Mach
numbers on either side of the shock are the velocities as fractions of the sound speed on the respective
side. The fluid enters the shock supersonically (remember that we defined the directions such that
P1 > P0). After more algebra we have

M2
1 =

(γ − 1)M2
0 + 2

2γM2
0 + 1 − γ

. (6.10)

It is easily verified that M1 < 1 (except in the trivial solution where all quantities are the same on both
sides) and that it tends towards unity and M0 tends also towards unity. Therefore, the material enters
supersonically and exits subsonically. Furthermore, as M0 → ∞, M1 → (γ − 1)/2γ, so there is a limit to
the conversion of kinetic energy into heat. The density and velocity ratios are

ρ1

ρ0
=

(γ + 1)M2
0

(γ − 1)M2
0 + 2

=
u0

u1
. (6.11)

A very important point to note at this juncture is the limit on the compression factor of (γ + 1)/(γ − 1),
which is equal to 4 for a monatomic gas, in which case no more than 15/16 of the kinetic energy can be
converted into heat. Finally, the temperature ratio is

T1

T0
= 1 +

2(γ − 1)
(γ + 1)2 ·

(γM2
0 + 1)(M2

0 − 1)

M2
0

. (6.12)

As with pressure, there is no limit on the temperature ratio.

In many situations a shock is in fact ‘stationary’ in some sense, for instance where material falls onto
a compact star it becomes supersonic under the influence of gravity and then reaches a shock near the
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stellar surface. In this example, gravitational energy is released and converted into kinetic energy, and
then in the shock this energy is converted to heat, and then the heat energy converted into electromagnetic
radiation. Another example of a stationary shock is where the solar wind meets the boundary of the
Earth’s ionosphere. On Earth, a more familiar example would be a stationary hydraulic shock, which is
looked at in section 6.3. In other contexts, it makes sense to think of the shock as moving into a fluid at
rest, for instance after an explosion such as a supernova.

6.3 Hydraulic jumps

It was shown in section 4.1 that shallow water waves propagate with a speed
√

gh where h is the depth
of the water, and short-wavelength waves propagate more slowly. This is therefore the maximum speed
at which disturbances can propagate in the shallow water system. Now imagine a discontinuity in the
depth of water parallel to the line x = 0, with depth h1 on the left and h2 on the right. Relative to the
discontinuity, the water is flowing into the discontinuity from the left at speed u1 and away from it on
the right at speed u2. Mass conservation gives

h1u1 = h2u2 (6.13)

while momentum conservation gives

h1u2
1 +

1
2

gh2
1 = h2u2

2 +
1
2

gh2
2 (6.14)

where the first term on each side represents momentum advected into and out of a volume containing
the shock and the second term on each side represents the pressure exerted on that volume. [The density
of the water obviously drops out of both of these equations.] If we know h1 and u1 then we can calculate
h2 and u2. If we now considered the flow of kinetic and potential energy (hu2/2 + gh2/2)u into and
out of the volume, we would find the problem had become overconstrained. This is because our water
has only one equivalent of a thermodynamic variable, h, compared to two degrees of freedom in the
gas considered in the previous section. But does this mean energy is not conserved? The answer is that
energy is converted into a form we have not considered, i.e. disordered kinetic and heat. The rate at
which the energy is converted is

q =
u1

2
(h1u2

1 + gh2
1) −

u2

2
(h2u2

2 + gh2
2)

=
ρu1h1g(h2

1 + h2
2)(h2 − h1)

4h1h2
(6.15)

where (6.13) and (6.14) have been used. Since this energy must be positive, we can see that h2 > h1.
With the help of some algebra it is also possible to show that u1 >

√
gh1 and u2 <

√
gh2.

Although this kind of shock is of little importance in astrophysics, it is helpful to study it because it is
literally a kitchen sink experiment.
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Chapter 7

Vorticity and rotating fluids

In this section we look at vorticity in more detail as well as various phenomena in rotating systems.
First, recall that in section 2.6 vorticity was defined as ω ≡∇ × u and that circulation Γ was defined as
the integral of velocity around a (comoving) closed loop. Recall also that circulation is conserved in an
inviscid, barotropic flow where body forces are conservative.

Before looking at vortices and their behaviour, consider a small spherical fluid element of radius a which
is rotating with angular velocity Ω. The circulation of a loop around the ‘equator’ of this element is then
2πa2Ω. From (2.31) we see that the this can be expressed in terms of the vorticity in the following way

Γ =

∮
u · ds =

∫
ω · dS (7.1)

2πa2Ω = πa2ω (7.2)

2Ω = ω (7.3)

where the surface integral is taken over the equatorial plane, which is perpendicular to the vorticity. The
vorticity is simply double the angular velocity of a fluid element.

7.1 Vortices

Here, we take a look at vorticity generation, vortex tubes, and the interaction of vortices. Imagine two
basic velocity fields, with

uθ =
1
2
ω$ and uθ =

Γ

2π$
(7.4)

where the former represents solid-body rotation and the latter is irrotational (i.e. zero vorticity) every-
where except for a singularity on the axis. An everyday example of solid-body rotation would be a cup
of coffee which has come into a rotational equilibrium inside a microwave. The latter kind, called a
line vortex, does not really exist in nature; rather, the singularity is replaced with an inner cylinder of
solid-body rotation, surrounded as before by irrotational flow. This is called a Rankine vortex; it can
alternatively be described as a cylinder of constant vorticity (a vortex tube) surrounded by zero vorticity.
A tornado can well be approximated by this kind of vortex; note that the radius of the inner region is
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very small compared to the sky and cloud from which the tornado forms, so if one is only interested in
the longer length scales one can make the approximation of a perfect line vortex.

We can draw vorticity lines in the same way as we can draw streamlines. Note that the divergence of
vorticity is zero. Like magnetic fields in a conducting fluid, vortex lines can be thought of as being
‘frozen’ into the fluid. Imagine a patch S on the surface of a vortex tube. Since the vorticity is every-
where parallel to this surface, the circulation around its perimeter is zero. As the fluid moves around,
Kelvin’s circulation theorem tells us that the circulation must always remain zero; therefore so must
the vorticity perpendicular to the surface, so that the comoving patch must remain on the surface of the
vortex tube. We conclude that vortex lines are frozen into the fluid. This is analogous to the freezing of
magnetic field lines into a conducting fluid (section 8.7).

Figure 7.1: Tornadoes.

7.2 Vorticity generation

Let us take the curl of the momentum equation (5.8), taking care first to write out the Lagrangian time
derivative as Eulerian time derivative and advective term:

∂ω

∂t
+ ∇ × (u ·∇u) = −∇ ×

(
1
ρ
∇P

)
+ ∇ × g + ∇ × (ν∇2u),

∂ω

∂t
+ ∇ × (ω × u) = −∇

(
1
ρ

)
×∇P + ν∇2ω,

dω
dt

=
1
ρ2∇ρ ×∇P − ω(∇ · u) + (ω ·∇)u + ν∇2ω, (7.5)

where we have used the fact that the gravitational force is conservative (and assumed that any other
body forces present are also conservative) as well as some vector calculus identities. The first term on
the right vanishes in a barotropic flow, the next two terms on the right contain vorticity, and the last term
is the viscosity, so that we recover the conclusion (section 2.6) that if vorticity is zero everywhere at
some point in time, it is zero at all other times, provided that the flow is barotropic and inviscid and that
the body forces are conservative.

It is informative to examine the physical meaning of each of the terms on the right-hand side of (7.5).
On the right-hand side we have:
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(a) The baroclinic term. The pressure acts normal to the surface of a fluid element; imagine that
the fluid element is spherical: the total pressure force, equal to the sum of the pressure force on
surface elements, acts through the centre of the fluid element and is parallel to the gradient of
pressure. The fluid element can be made to rotate if the centre of mass does not lie on the line of
net pressure gradient force; however if ρ = ρ(P) then this is impossible. Therefore the pressure
gradient force can only bring about a linear acceleration of the fluid element and cannot act as a
torque thereupon: hence the constancy of circulation. Note that vorticity is an expression of the
rotation of a fluid element about its own centre of mass, not about any other point – fluid elements
with zero vorticity are still free to move in circles around each other. This is the reason that gravity
cannot make the fluid element rotate, as it acts through the centre of mass.

A good example of where the baroclinic term can generate torque is after heating in the atmo-
sphere, for instance after an explosion has created a hot bubble. If the bubble has uniform tem-
perature then vorticity is created at its boundary when the bubble rises, and if the bubble has a
temperature profile which gradually decreases outwards then vorticity is generated throughout the
volume; the result of this is that the bubble deforms into a rising vortex ring.

(b) The second term simply represents conservation of angular momentum as the fluid is compressed
or expands; clearly the vorticity should increase if the density increases, which happens if the
divergence of the velocity is negative, hence the minus sign above. One can also think in terms of
the vortex lines being squashed together when the density rises, increasing the density of vortex
lines and hence the vorticity.

(c) The third term represents conservation of angular momentum during ‘stretching’ of vortices. If
a fluid element is stretched out along the direction of the vorticity whilst its volume remains
constant, then the moment of inertia of the fluid element has decreased and so the angular velocity
and vorticity must increase. Again one can think in terms of vortex lines being squashed closer
together and the vorticity, which is the density of vortex lines, increasing. Note here an important
difference between two- and three-dimensional flow – it is impossible in two dimensions to stretch
a vortex.

(d) The viscous term, which has the same form as that in the original momentum equation, simply
causes vorticity to leak from local maxima to minima. It causes an isolated vortex tube of the
kind described in the previous section to become broader. It also generates vorticity in boundary
layers.

In addition, non-conservative body forces can also generate vorticity; we examine the role of the Coriolis
force in section 7.4.

7.3 Behaviour of vortices

We now look very briefly at the interaction of vortices with each other and with solid boundaries. First
we approximate a vortex with a line vortex as described above. Now, since the flow around a line vortex
is irrotational, we can write u = ∇φ where φ is a scalar potential. When two or more vortices are
present, we can simply add together the scalars belonging to each vortex in isolation to produce the
resultant velocity field. Recalling from above that vortex lines are ‘frozen’ into the fluid, we see that
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each individual vortex must move according to the sum of the velocity fields belonging to each of the
other vortices in isolation.

First let us consider two parallel vortices of equal magnitude and sense. Associated with each one is
a velocity field in which the other moves around; in this case they encircle each other. Far away from
the vortices, the two velocity fields cancel each other out. If, on the other hand, the two vortices have a
circulation of the opposite directions, the pair will move together in a straight line perpendicular to the
line between them. Anyone who has tried rowing will be familiar with vortex pairs created by an oar
travelling surprisingly large distances behind the boat.

Now imagine a vortex ring such as that created by a skillful smoker or alternative a ring which forms
after a bomb explodes in the atmosphere. Each section of the ring moves according to the velocity field
associated with the rest of the ring, with the result that the ring propagates forwards much further than
one would otherwise expect.

As a vortex approaches a boundary, we can predict what will happen with the method of images where
one imagines removing the boundary and placing an image vortex on the other side. In the case of a
single vortex near a boundary, we can recreate the flow with an image vortex of opposite spin, since the
velocity field where the boundary once was is now constrained to be parallel to it. Of course in reality
there will be a small difference between the two flows, namely that there will be a thin boundary layer,
but that can ignored in the bulk of the volume. So, a single vortex near a wall will move parallel to the
wall.

7.4 The momentum equation in a rotating frame of reference

A frame of reference which is rotating with angular velocity Ω with respect to the non-rotating, iner-
tial frame, the Lagrangian time derivatives of scalar quantities such as density and temperature must of
course be the same. However, velocity is frame dependent and so generally the Lagrangian derivative
of velocity is different in the two frames. For instance, a fluid element which is stationary in the ro-
tating frame must be experiencing an acceleration in the inertial frame. It turns out that the comoving
derivatives of velocity in the two frames are related by(

duI

dt

)
I

=

(
duR

dt

)
R

+ Ω ×Ω × rR + 2Ω × uR +
dΩ

dt
× rR (7.6)

where the comoving derivative on the left in the inertial frame is equal to the comoving derivative of the
velocity in the rotating frame plus three acceleration terms, where the subscripts I and R denote inertial
and rotating frames. A proper derivation of this can be found in any textbook, but the origin of these
terms can be understood intuitively in the following way:

(a) The first of the three terms is the centrifugal acceleration: to make anything move in a circle (i.e.
accelerate towards the centre of the circle) it is necessary to provide an inwards-directed force
(for instance from gravity) of magnitude $Ω2 per unit mass where $ is the distance from the
axis of rotation. In the rotating frame in which the fluid element is stationary, there is no longer
any acceleration towards the centre, The original inwards force therefore must be balanced by an
extra force directed outwards, the centrifugal force. Note that the centrifugal force can be written
$̂$Ω2 where $̂ is the cylindrical radius unit vector.
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(b) Unlike the centrifugal force, the Coriolis force arises only when fluid is moving within the rotating
frame; it can be thought of as accounting for conservation of angular momentum. When a fluid
element moves to a larger radius whilst preserving its angular momentum it must attain a smaller
angular velocity and therefore begin to drift backwards in the azimuthal direction relative to the
rotating frame. Similarly, if a fluid element moves in the azimuthal direction, i.e. with a different
angular velocity to the frame of reference, it experiences a different centrifugal acceleration from
the frame and so accelerates in the (cylindrical) radial direction relative to the frame. Note that
there is no component of the Coriolis force in the direction of the angular velocity Ω. Alterna-
tively, one might think of standing on the north pole and firing a projectile horizontally – in the
inertial frame the object moves in a straight line but since the Earth is rotating, an observer on the
ground will see the object curve towards the west.

(c) Finally, the third term represents the apparent acceleration a fluid element experiences when the
underlying rotation of its reference frame changes. In most situations we use a reference frame
with constant Ω and can ignore this term, as we do in all of the following.

Putting this together into a rotating-frame momentum equation, we have

du
dt

= −
1
ρ
∇P −∇Φeff − 2Ω × u + ν∇2u. (7.7)

The viscous term has been simplified in the usual way and r and u are the position and velocity vectors
in the rotating frame, the subscript R having been dropped. The centrifugal term has been absorbed into
the gravitational potential, which is possible because it is conservative:

geff ≡ g −Ω ×Ω × r = −∇Φgrav + ∇
(
1
2

Ω2$2
)

(7.8)

= −∇Φeff where Φeff ≡ Φgrav −
1
2
$2Ω2. (7.9)

7.5 The centrifugal force and the von Zeipel paradox

Since it can be absorbed into the gravitational potential, the centrifugal force merely produces a change
in the shape of equipotential surfaces. This is the reason that rotating stars and planets are flattened.
In fact rotational flattening is clearly visible with a small telescope trained on Jupiter or Saturn (see
fig. 7.2).

Figure 7.2: Rotational flattening of
Jupiter and Saturn is visible in these
images taken with a 28cm telescope.
Pictures taken by Tim Kent.
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An interesting effect of the centrifugal force in stars was discovered in 1924 by von Zeipel. Now, in a
static equilibrium in a rotating frame of reference we must have

1
ρ
∇P = −∇Φeff (7.10)

from which we see, by taking the curl, that

∇ρ ×∇P = 0. (7.11)

So we must have a barotropic relation ρ = ρ(P), and so the contours of pressure, density, temperature
and effective potential Φeff must all coincide. However, the flux of heat is proportional to −∇T , so the
flux must be greater at the poles of the star than around the equator, and the divergence of this flux must
be equal to the rate of nuclear energy generation, which is a function of the local thermodynamic state
but not of its gradient. Thus the rotation places demands on the nuclear energy generation which in
general cannot be met; there is therefore no static equilibrium in a rotating star. This is called the von
Zeipel paradox. The solution is to have a large-scale circulation, where motion adds a Coriolis term to
(7.10) as well as advecting heat.

7.6 Vorticity equation in a rotating frame

In section 7.2 we derived an equation for the Eulerian and Lagrangian time derivatives of vorticity.
Extending this procedure to include the Coriolis force, we obtain

∂ω

∂t
+ ∇ × (u ·∇u) = −∇ ×

(
1
ρ
∇P

)
+ ∇ × g −∇ × 2Ω × u

∂

∂t
(ω + 2Ω) + ∇ × ((ω + 2Ω) × u) = −∇

(
1
ρ

)
×∇P,

d
dt

(ω + 2Ω) = −∇
(
1
ρ

)
×∇P − (ω + 2Ω)(∇ · u) + [(ω + 2Ω) ·∇]u,(7.12)

where on the second and third lines Ω has been taken into the time derivative on the left-hand side on the
condition that its Eulerian and Lagrangian time derivatives, respectively, are zero. [The diffusion term
included in (7.5) has been ignored here.] So, vorticity has simply been replaced by the absolute vorticity
ω + 2Ω; in rotating systems ω is referred to as the relative vorticity. Furthermore, by comparison with
section 2.6 we find the equivalent of Kelvin’s circulation theorem, that if we define

Γ ≡

∮
(u + Ω × r) · δs (7.13)

that dΓ/dt = 0 in the absence of baroclinicity, viscosity and non-conservative body forces, as before.
Applying Stokes’ theorem we have

d
dt

∫
(ω + 2Ω) · dS = 0. (7.14)

We can see then a mechanism for generating (relative) vorticity where there was none before; if a fluid
element is changes its extent in the plane perpendicular to Ω it will start to spin relative to the rotating
frame even if it did not do so initially. An example of this is when heating on the Earth causes the air
over a region to warm up and expand laterally.
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7.7 Inertial waves

We have seen in previous sections how the pressure gradient force and gravity can both provide a restor-
ing force for waves; in this section we look at waves with the Coriolis force as the restoring agent.
To simplify the equations (avoiding solving also for sound and gravity waves at the same time as the
inertial waves we are investigating) we make the assumption of constant density, meaning that we can
automatically ignore gravity since gravity has no interesting effect on a constant-density fluid except at
the surface; we look here at waves internal to the fluid. The momentum equation is

∂u
∂t

+ (u ·∇)u = −
1
ρ
∇P − 2Ω × u + $̂$Ω2. (7.15)

We now make the usual assumption when looking at waves of small amplitude, so that we can drop the
second term above. Taking the curl of the remaining terms we have

∂

∂t
∇ × u = −2∇ × (Ω × u) (7.16)

since the curls of the centrifugal and pressure gradients forces are zero. In fact, in many situations the
centrifugal force can be ignored since it can be expressed as the gradient of a scalar; as we saw above, in
situations with gravity it can simply be added to the gravitational potential which often can be removed
completely by an adjustment to the definition of the vertical axis, in a local analysis. Now, the term on
the right of (7.16) can be rewritten in a more convenient form; with the help of a vector calculus identity
∇ × (Ω × u) = Ω(∇ · u) − (Ω ·∇)u, and noting that the incompressible continuity equation means that
the first of these two terms vanishes. Finally we set the rotation axis along the z-axis and write

∂

∂t
∇ × u = 2Ω

∂u
∂z
. (7.17)

As before, we now assume a solution of the form exp[i(k · r − ωt)]; the continuity equation gives

k · u = 0 (7.18)

and the momentum equation (7.17) becomes

ωk × u = 2Ωikzu. (7.19)

We now take the curl of both sides and noting that k and u are perpendicular we can write k × k × u =

−k2u:
−ωk2u = 2Ωikzk × u (7.20)

which we can compare with the previous form to give

ω = 2Ω
kz

k
= 2Ω cos θ (7.21)

where k is the magnitude of the wavevector k and θ is the angle between the wavevector and the rotation
axis Ω. This is a similar dispersion relation to that of internal gravity waves (4.49) in that the frequency
of the oscillations depends only on the direction of the wavevector and not on its magnitude. Here, the
frequency of the oscillations goes to zero when the wavevector is perpendicular to the rotation axis, i.e.
when the velocity field is parallel to it. It is of course obvious from the form of the Coriolis force that
motion parallel to the rotation axis experiences no restoring force.

Another interesting feature of these waves is that the energy is entirely kinetic, rather than being con-
verted back and forth between two different forms. Instead one has to think here of energy conversion
back and forth between kinetic energy of motion in two different directions.
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7.8 The Taylor-Proudman theorem

Imagine motions in a rotating fluid with characteristic length-scale, time-scale and velocity L, T and U.
Looking at the sizes of the various terms in the momentum equation we have

∂u
∂t

+ (u ·∇)u = −
1
ρ
∇P − 2Ω × u (7.22)

U
T

U2

L
δP
ρ

ΩU (7.23)

where the centrifugal force has been ignored as it can be absorbed into the equilibrium pressure gradient
force. Furthermore we assume a relation T ∼ L/U, typical of flows rather than waves, meaning that
the two terms on the left-hand side are of comparable size. The ratio of the Coriolis to inertial terms is
ΩT ; the inverse of this number is called the Rossby number after the Swedish physicist. At low Rossby
number, i.e. T−1 � Ω, the momentum equation can be approximated to

1
ρ
∇P = −2Ω × u. (7.24)

We see from this that the gradient of P in the direction of the rotation axis vanishes; furthermore we
see that this equation, which relates the velocity perpendicular to the rotation axis to the pressure gra-
dient perpendicular to it, demonstrates that the gradient of the velocity field along the rotation axis also
vanishes. Finally, taking the curl of this equation, we lose the left hand side if the fluid is incompress-
ible, and using a vector identity on the remaining term (again assuming incompressibility and therefore
∇ · u = 0) gives (Ω ·∇)u = 0. In summary, if the rotation axis is parallel to the z axis, we have

∂w
∂z

= 0 and
∂u
∂x

+
∂v
∂y

= 0 and in general
∂

∂z
= 0 (7.25)

This is called the Taylor-Proudman theorem. In the other extreme, in the limit of high Rossby number
we may ignore the Coriolis force altogether.

Taylor-Proudman ‘columns’ are thought to exist in rotating astrophysical bodies which are convective.
Instead of moving up and down in the radial direction, convective cells move up and down parallel to
the rotation axis. The best understood example of this is the Earth’s mantle.

7.9 The geostrophic approximation

As we have done before, by comparing sizes of various terms in the momentum equation we can, ac-
cording to the context, simplify it by dropping all but the largest terms. In the following we look at
the example of the Earth’s atmosphere and oceans, but the same principles are applicable in many other
astrophysical objects.

The Earth rotates considerably more slowly than the break-up spin (∼ 2 hours), so that we can ignore
the centrifugal force. Furthermore, the Earth’s atmosphere and oceans are very thin compared to its hor-
izontal extent, and the gravitational force is much stronger than inertia or the Coriolis force. Thus, for
most purposes we can assume hydrostatic equilibrium. The two horizontal components of the momen-
tum equation now contain only the vertical component of the angular velocity of the Earth’s rotation. If

64



Figure 7.3: Below: The flow of fluid
around and above an obstacle in a rotating
frame with low Rossby number. Right: A
von Karmán vortex street forms in the wake
of an obstacle, but the clouds are at much
higher altitude than the island – an illustra-
tion of the Taylor-Proudman theorem.

the colatitude (defined as 0◦ at the north pole, 90◦ at the equator and 180◦ at the south pole) is θ then we
define f ≡ 2Ω cos θ and the equations of motion are

du
dt

= −
1
ρ

∂P
∂x

+ f v (7.26)

dv
dt

= −
1
ρ

∂P
∂y
− f u (7.27)

∂P/∂z = −ρg (7.28)

where u and v are the x and y components of velocity, where x is east and y is north. Here we have
transformed to a local coordinate system where the curvature of the Earth’s surface is ignored, along
with the latitudinal variation in the Coriolis parameter f . Now, for sufficiently large-scale motions (or
equivalently at low Rossby number) the acceleration terms on the left-hand side of the x and y parts above
can be dropped; this is called the geostrophic approximation. In situations where this approximation
applies, we can calculate the velocity field if we know the pressure field; we can see from these equations
that the velocity is directed along the contours of pressure (isobars). This is the reason for the familiar
patterns of anticlockwise winds around a low-pressure area (cyclone) and clockwise winds around a
high-pressure area (anticyclone); in the southern hemisphere the directions are reversed along with the
sign of f .

7.10 Rossby waves

We conclude this section on rotating fluids with a brief look at a wave which is ubiquitous in the Earth’s
atmosphere and ocean, but which is also possibly of great importance in fast-spinning neutron stars
where it may be responsible for the emission of gravitational radiation.
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Figure 7.4: Simulations of the
Earth’s dynamo. Note the promi-
nent Taylor-Proudman convective
columns.

First of all, let us assume that the Rossby number of a system is small: Ro � 1. We shall look at the
purest kind of Rossby wave, namely that where the motion takes place on a plane, and where the motion
on that plane is incompressible. Using the shallow water equations in the linear regime we have

∂u
∂t
− f v = −g

∂ζ

∂x
(7.29)

∂v
∂t

+ f u = −g
∂ζ

∂y
(7.30)

∂u
∂x

+
∂v
∂y

= 0, (7.31)

where the Coriolis parameter f now depends on latitudinal coordinate y. To be more precise, f = f0 +βy,
which is valid as long as we are not looking at too large a region in latitude. This is called the β-plane
approximation, as opposed to the f -plane approximation where f is a constant. Cross differentiating
and subtracting from one another the horizontal momentum equations, and assuming as usual a solution
of the form ei(kx+ly−iω), we have

lωu − βv − f lv − kωv − f ku (7.32)

ku + lv = 0 (7.33)

which can easily be rearranged to give the dispersion relation

ω = −
kβ

k2 + l2
. (7.34)

We see from this that the phase speed ω/k is has the same sign as β, meaning that the waveform moves
always in the opposite direction to the rotation of the system. On Earth, the waves move to the west.
However, note that the group velocity ∂ω/∂k can be in either direction.

Alternatively we can take the curl of the momentum equation:

∇ × ∂u
∂t

+ ∇ × ((u ·∇)u) = −∇ ×
(

f k̂ × u
)

(7.35)
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Figure 7.5: A weather
forecast for 10th June
2010. Note that the wind
is parallel to the isobars.

where k̂ is the vertical unit vector. In this two-dimensional velocity field u the vorticity is parallel to
k̂ and we shall call it ψ, a scalar. After a little algebra we can rearrange to the shallow-water vorticity
equation

d
dt

( f + ψ) = −( f + ψ)∇ · u (7.36)

which is analogous to (7.12); note the different symbol used here for vorticity to avoid confusion with
oscillation frequency ω. To obtain the simplest modes we could again take ∇ · u = 0, write out the
Lagrangian derivative in its various parts and then assume a solution of the form ei(kx+ly−iω). However,
the purpose of looking at the vorticity equation is to obtain an intuitive understanding of the wave. Since
the absolute vorticity f + ψ is conserved, if material which initially has ψ = 0 moves northwards or
southwards (i.e. to a region of different f ) it will start to rotate. Therefore any perturbation to the
latitudinal velocity field will propagate to the west.

Exercises

7.1 Conservation of angular momentum

Show that the two terms −ω(∇ · u) and (ω ·∇)u in (7.5) can be written together as −ω(∇⊥ ·
u) where ∇⊥ is the divergence in a place perpendicular to ω. By considering a small rotating
spheroidal fluid element of equatorial and polar (i.e. normal and parallel to ω) radius a and b in a
velocity field, show that this represents the conservation of angular momentum as a and b change.
Now take (7.5) and using the continuity equation turn it into an expression for the Lagrangian
derivative of ω/ρ.

7.2 Behaviour of smoke rings
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Figure 7.6: A Rossby wave propagating around the
Earth.

Using the method of images, describe what happens when a vortex ring (e.g. smoke ring) ap-
proaches a wall. In addition, describe the interaction of two vortex rings, both of the same and
opposite senses of rotation, where the line joining the centres of the two rings is perpendicular to
the planes of the rings.

7.3 Tornadoes

A typical tornado can be approximated by a Rankine vortex with a core radius of 50 m, with a
wind speed at this radius of 50 m s−1. Write down an expression for the wind speed as a function
of radius, and find an expression for the pressure as a function of radius. Assuming no external
driving, find the speed and direction the tornado moves when it is a horizontal distance 200m
below a high cliff.

7.4 Rotational flattening of stars and planets

Find an approximate expression for the extent of the rotational flattening of a star as a function of
rotation period, and show that there is a lower limit to the rotation period at which the centrifugal
force is comparable to gravity. Write this limit in terms of the mean density of the star.

7.5 Water in spinning tank

A tank of water is made to rotate at a constant angular velocity. Show that the surface of the water
is a parabola shape.

7.6 Shallow-water vorticity equation

Show that it is possible to rewrite (7.36) as

d
dt

(
f + ψ

ξ

)
= 0 (7.37)
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where ξ is now the total depth of the fluid including equilibrium and perturbation depths; above it
was simply assumed that the Lagrangian derivative of ξ was zero. Comment on the consequences
of the conservation of this quantity in terms of mechanisms for generating vorticity ψ in an ocean.
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Chapter 8

Magnetohydrodynamics: equations and
basic concepts

In this section the (non-relativistic) MHD equations are derived, starting with the non-magnetic fluid
equations and then using Maxwell’s equations to add the magnetohydrodynamic terms. Following that,
some basic ideas in MHD are described, which are useful to building up an intuitive understanding of
the subject. Students who are just using these notes to learn about MHD might wish to look first at
section 1.2 to revise the derivation of the hydrodynamic equations.

8.1 The MHD equations

The MHD equations are essentially an extension of the HD equations with one extra variable: the
magnetic field. There is one extra term in the momentum equation and a new partial differential equation
called the induction equation.

We shall temporarily abandon the fluid picture, going back to individual particles with which the student
may be more familiar from previous courses. The force on a single particle of charge q moving with
velocity v in an electromagnetic field is given by:

F = q
(
E +

v
c
× B

)
, (8.1)

where E and B are the electric and magnetic fields and c is the speed of light.1 This force is normally
called the Lorentz force. Now, in MHD we are interested in the force on the fluid as a whole rather than
on individual particles – the total force per unit volume (also called the Lorentz force, confusingly) is
therefore

FLor = Fi + Fe = (niqi + neqe)E +

(
niqi

v̄i

c
+ neqe

v̄e

c

)
× B, (8.2)

where Fi is the total force on the ions, ni, qi and v̄i are the number density, charge and mean velocity of
ions and the quantities with subscript e refer to electrons. We have assumed here that all ions have the

1In some sense we can use this as the definition of E and B, by saying that the force on a particle is some function of its
charge and velocity which can be characterised by two vector fields in the form of (8.1).
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same charge and that there are no neutral particles, but it is trivial to show that a generalisation does not
affect the end result. We now define the fractional charge imbalance ratio ε ≡ (niqi + neqe)/neqe, as well
as the drift velocity as the mean velocity of the electrons relative to the fluid, i.e. vdrift ≡ v̄e − u, where
the fluid velocity u ≈ v̄i since the ions carry almost all of the momentum. Let us now rewrite (8.2) as

FLor = neqe

[
εE +

(
ε

u
c

+
vdrift

c

)
× B

]
. (8.3)

Noting that in the Earth we need ε < 10−36 so that the electric field does not overcome gravity and cause
it to explode and that in almost all astrophysical contexts ε is negligible2 we drop terms with ε (despite
the fact that normally vdrift � u; more on this in section 8.2). It is now convenient to introduce the
concept of electric current density J = neqevdrift, which with we simplify the Lorentz force (a force per
unit volume) to

FLor =
1
c

J × B. (8.4)

We still need to answer the question of the origin of this relative velocity of the electrons to the ions;
this comes essentially from the difference in force on the two species. The electrons experience a force
relative to the fluid given by

Fe − FLor = neqe

(
E +

u
c
× B

)
. (8.5)

This force will accelerate the electrons relative to the ions, and there will quickly be a balance established
between this acceleration and losses through collisions between electrons and ions. In fluids with normal
conductivity properties, the drift velocity (and therefore current) established will be proportional to this
acceleration. This gives us Ohm’s law:

J = σ
(
E +

u
c
× B

)
, (8.6)

where σ is the conductivity of the fluid, which will depend on mean free path, temperature, etc.

So far, we have added a term (8.4) to the momentum equation containing two new variables B and J.
Ohm’s law (8.6) introduces yet another new variable E, so that we need an additional two equations to
close the set. Maxwell’s equations are

∇ · E = 4πρe, (8.7)

∇ · B = 0, (8.8)

∇ × E = −
1
c
∂B
∂t
, (8.9)

∇ × B =
1
c
∂E
∂t

+
4π
c

J, (8.10)

where ρe is the net charge density.3 First of all, note that if (8.8) is satisfied at some point in time, (8.9)
ensures that it is satisfied at all other times, since the divergence of the curl of any vector field is zero.
In standard magnetohydrodynamics we now make the approximation that the charge density ρe is small;

2Except where density is low and velocities are relativistic, e.g. pulsar magnetospheres.
3Note the similarity between (8.7) and the equation relating the gravitational field to density ∇ · g = −4πGρ. No constant

is required in the electromagnetic equivalent because it is built into the unit of charge. The other difference of course is that ρe

can be either positive or negative.

72



also that the displacement current in (8.10) can be neglected, i.e. that 4πJ � ∂E/∂t. See section 8.2 for
a justification.

From Ohm’s law (8.6) we obtain an expression for the electric field E = (1/σ)J − (u/c) × B, which we
can use in conjunction with (8.9) to obtain

∂B
∂t

= −c∇ × E = ∇ ×
(
u × B −

c
σ

J
)
, (8.11)

and dropping the displacement current from (8.10) and substituting for J gives the induction equation

∂B
∂t

= ∇ × (u × B − η∇ × B) , (8.12)

where magnetic diffusivity has been defined η ≡ c2/4πσ, with units cm s−1. Finally we can substitute
for J into the Lorentz force (8.4) to give force per unit volume

FLor =
1

4π
(∇ × B) × B. (8.13)

Thus E and J have been eliminated. In summary, compared to the original hydrodynamics equations
we have one additional variable B, one additional equation (8.12) and one additional term (8.13) in the
momentum equation. Note that nothing changes if we reverse the direction of the magnetic field.

8.2 The MHD approximation

In addition to the standard conditions under which the fluid approximation is valid, e.g. collision fre-
quency, etc. we have made further approximations. We assumed that the magnetic permeability and
dielectric permittivity of the plasma can be ignored (refractive index equal to unity). We also assumed
the flow is non-relativistic. Finally we made what is known as the ‘MHD approximation’, according to
which the conductivity of the material is high enough so that the charge density ρe is low and (8.7) can
be ignored.

In the rest frame of a test particle (in which quantities are denoted with a prime), the force experienced
is F′ = qE′. In transforming to an inertial frame, we ignore terms in v2/c2 (so that the Lorentz factor
Γ ≈ 1) to obtain the lab frame relation (8.1). Returning to the fluid picture, a high conductivity σ ensures
that current can flow in order to almost neutralise the rest frame electric field E′ = E + (u/c) ×B so that
E′ � E and E ∼ (u/c)B. We can now justify neglecting the displacement current in (8.10), because it is
of order E(u/c)/L ∼ B(u/c)2/L where L is a typical length scale of the flow. This is smaller by a factor
v2/c2 than the curl of the magnetic field; meaning that J ∼ cB/L (dropping factors of 4π).

Looking at the first of Maxwell’s equations (8.7), also known as Gauss’ law, we see that ρe ∼ E/L ∼
(u/c)B/L ∼ (u/c)J/c. Since this law holds in every reference frame it follows from E′ � E that ρ′e � ρe.
Current density J can be considered equal in lab and co-moving frames since assuming that Γ ≈ 1 gives
J′ = J − ρeu; the ratio of the two terms is (u/c)2 so that J′ = J. Magnetic field can also be considered
frame-independent, since a transformation assuming Γ ≈ 1 gives B′ = B − (u/c) × E, and the electric
field E is itself smaller than the magnetic field by a factor u/c so we are left with a ratio u2/c2 between
the two terms so that B = B′.

There are obviously astrophysical contexts in which these approximations do not hold, for instance
relativistic flows such as GRB jets, or situations where plasma effects become important or where the
fluid approximation breaks down; these are outside the scope of this course.
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8.3 The magnetic and other fields

The MHD equations in the form of (8.12) and (8.13) contain magnetic field but not current density
or electric field. In fact there are only a few contexts in astrophysics where it is necessary to think
about these extra fields. In the comoving frame, i.e. the frame ‘felt’ by the fluid, we have seen that the
electric field vanishes in the case of infinite conductivity and other, non-relativistic contexts is very small
compared to the magnetic field. This, combined with the fact that the fluid is normally almost perfectly
neutral, renders its effect totally insignificant, except in special contexts where densities are very low and
velocities are relativistic, such as the magnetospheres of neutron stars. Likewise, we need only think
about current density in special situations, such as that where a limited density of charge carriers forces
the drift velocity to become relativistic and the effective conductivity becomes small.

It is therefore surprising that the literature on MHD often refers to these additional fields, including the
situations where the MHD approximation can be considered to hold perfectly. The reason for this can
historically be traced back to a transfer of understanding of terrestrial phenomena, particularly that of
electric circuits, coils, inductances and so on to the astrophysical context. However, the two contexts are
rather different. For example, consider using a battery to pass a current through a wire and measuring the
magnetic field it produces in the insulating fluid (air) surrounding it. None of these exists in astrophysics,
and it makes no more sense in MHD to say that a magnetic field is produced by a current than to say that
a current is produced by a magnetic field – the two are related by (4π/c)J = ∇×B and that is the end of
the story. In fact, the magnetic field can in some sense be considered the more fundamental (or rather,
useful) of the two, as its evolution is governed by conservation laws which do not apply to the current.
The student is advised to avoid thinking in terms of currents, electromotive forces and circuits as these
will distract from an understanding of the subject; only B is required!

8.4 A brief note concerning units

At this juncture it is worth commenting on the difference between the c.g.s. units employed here and the
S.I. units often taught in undergraduate courses. The reader will notice that the equations above contain
only one constant of nature: the speed of light c. In contrast, a glance at some of the text books reveals
that the S.I. system is burdened not only with c but also with the rather nineteenth century concepts of the
permittivity and permeability of the ether, ε0 and µ0. Another advantage of c.g.s. is that the electric and
magnetic fields have the same units. However, a word of caution: there exist variations of c.g.s. units;
here we use ‘Gaussian c.g.s.’ units, which are fairly standard in astrophysics. In this system the unit of
charge, called the statcoulomb, is defined from Coulomb’s law of the force between two point charges
F = q1q2/r2 such that two unit charges at a separation of 1 cm experience a repulsion of 1 dyne. It
can be written in terms of the other units: 1 statC = 1 g1/2 cm3/2 s−1. In S.I. units the unit of charge
is pre-defined and Coulomb’s law requires a constant 1/4πε0. Occasionally in astrophysics one comes
across Heaviside-Lorentz units which differ from Gaussian only in factors of 4π.

The unit of magnetic field in the c.g.s. system is the gauss (abbreviation G), which is equal to 10−4 tesla,
the unit in the SI system. Magnetic fields strengths in the universe range from 10−6 G in the intergalactic
medium, 0.3 − 0.6 G on the surface of the Earth, 104 G on some magnetic main-sequence stars, 9 · 105

G in a laboratory in Dresden recently, up to 109 G in white dwarfs and up to 1015 G in neutron stars.
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8.5 Magnetic diffusivity

If we assume that the electrical conductivity σ is uniform, we can rearrange the induction equation
(8.12) using the constraint ∇ · B = 0 and the vector identity ∇×∇×A = A(∇·A) −∇2A, to

∂B
∂t

= ∇ × (u × B) + η∇2B, (8.14)

where the magnetic diffusivity η, like the kinetic and thermal diffusivities ν and κ, has units cm2 s−1. We
give names to the ratios of diffusivities: the Prandtl number and magnetic Prandtl number are defined as
Pr ≡ ν/κ and Prm ≡ ν/η respectively. Note the similarity in the three diffusive terms in the equations – all
contain a diffusive coefficient multiplied by ∇2 of the relevant variable. As with the other diffusivities,
from analysis of units we see that there is a characteristic magnetic diffusive timescale, equal to L2/η

where L is the characteristic length scale of the system. This is called the Ohmic timescale. In many
contexts the Ohmic timescale is very much longer than other timescales of interest and it is possible to
ignore the diffusive term in the inductive equation. This regime is called ideal MHD. In many, if not
most, applications we can use ideal MHD.

Finally, it is worth mentioning the heating from Ohmic dissipation, known as Joule heating: per unit
volume this is equal to J · E′ where E′ is the electric field in the comoving frame (recalling that current
density is the same in both frames). Expressed differently, this means that

QJoule =
1
σ

J2 =
η

4π
(∇ × B)2. (8.15)

8.6 Different regimes in MHD

First let us summarise the set of equations we have so far, including the approximations of constant
viscosities, assuming an ideal gas equation of state P = ρRT/µ and ignoring gravity:

ρ
du
dt

= −∇P +
1

4π
(∇ × B) × B + ρν∇2u, (8.16)

∂ρ

∂t
= −∇·(ρu), (8.17)

dP
dt

= (γ − 1)Q − γP∇ · u, (8.18)

∂B
∂t

= ∇ × (u × B − η∇ × B). (8.19)

The heating rate is given by

Q = ei jS i j + ∇ · (K∇T ) +
η

4π
(∇ × B)2 + Qother, (8.20)

where ei j and S i j are the rate of strain and viscous stress tensors respectively and K is the thermal
conductivity.

Assigning typical flow parameters L, U and T =L/U – typical length scale, velocity and timescale –
and comparing the size of various terms in the equations, we can rewrite equations (8.16) and (8.19),
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dropping gravity as well as factors of order unity such as γ, in terms of non-dimensional variables and
gradients, such as u′ = Uu (where we drop the prime below), as:

du
dt

= −
c2

s

U2∇P +
v2

A

U2 (∇ × B) × B +
1

Re
∇2u,

=
1

M2

[
−∇P +

1
β

(∇ × B) × B
]

+
1

Re
∇2u, (8.21)

∂B
∂t

= ∇ × (u × B) +
1

Rem
∇2B, (8.22)

where c2
s = dP/dρ = γP/ρ and v2

A = B2/4πρ are the sound and Alfvén speeds and Re ≡ UL/ν and
Rem ≡ UL/η are the Reynolds number and magnetic Reynolds number respectively, measures of the
ratio of inertia to diffusivity of two kinds. Note that it has been assumed that the Lagrangian derivative
on the left-hand side has size of order U/T ≈ U2/L, which is generally true in flows; see section 5.4.
We can also define a plasma β ≡ 8πP/B2 ≈ c2

s/v
2
A, a (likely) ratio of the first and second terms on the

right hand side of the momentum equation. The Mach number is the ratio of flow speed to sound speed
M ≡ U/cs. Sometimes one also talks in terms of the Alfvénic Mach number MA ≡ U/vA. Also, note
that Rem/Re = Prm.

In an unmagnetised fluid, we can describe the flow with M and Re (and possibly also the Strouhal
number; see section 5.4). We have already seen that if M � 1 the flow is roughly incompressible, i.e.
that dρ/dt ≈ 0, which gives the simplified continuity equation ∇ ·u = 0. This is the regime we assumed
in simplifying the viscous force in the momentum equation. The Reynolds number characterises the
importance of viscosity.

In a magnetised medium we now have two extra parameters Rem and β; the former describes the im-
portance of diffusivite (finite conductivity) and the latter describes the relative importance of gas and
magnetic pressures. The value of the ‘plasma β’ is very important in MHD. If β � 1, one expects from
looking at the momentum equation that the Lorentz force will be much larger than the pressure gradient
force. This means that velocities of order the Alfvén speed (which can be very high) will result unless
the current ∇ × B is almost parallel to B, the so-called ‘force-free’ regime. Conversely, if β � 1 then
the magnetic field will only have much effect on the flow in directions where the Lorentz force is not
opposed by the pressure gradient or other stronger forces such as gravity.

8.7 Field lines, flux conservation and flux freezing

In the remainder of this chapter we derive some results for the case of a fluid with infinite conductivity
(η = 0) which can be considered approximately true in the more realistic case of finite conductivity.
Taking η = 0 gives the ideal MHD induction equation

∂B
∂t

= ∇ × (u × B). (8.23)

Let us define a magnetic flux φ as an integral of the normal component of B on a surface S

φ =

∫
S

B · dS (8.24)
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and then calculate the change of flux through that surface as it moves with the flow of the fluid:

dφ
dt

=

∫
S

∂B
∂t
· dS +

∮
l

(u × dl) · B, (8.25)

where the first term comes from the rate of change of flux through the surface if it were fixed in space and
the second comes from the movement of the surface from the fluid velocity u. The surface is bounded
by a line l. Substituting (8.23) into this equation and using Stokes’ theorem, the first term becomes∮

l u × B · dl. From the triple vector product rule we now see that the two terms cancel and that the flux
through the co-moving surface is constant in time.

If we now imagine the fluid being composed of small co-moving fluid elements, each threaded by a
constant flux, it becomes clear that the concept of field lines and of their being ‘frozen’ into the fluid are
useful tools in understanding MHD. This will be discussed below at greater length.

Figure 8.1: A surface S moving with the
flow, threaded by a magnetic flux φ.

Note that this result is analogous to that of freezing of vorticity in hydrodynamics. The vorticity equation
in an inviscid barotropic flow with conservative body forces can be written

∂ω

∂t
= ∇ × (u × ω), (8.26)

which has the same form as (8.23).

8.8 Magnetic pressure, tension and energy density

The Lorentz force can be written in an alternative form, making use of a vector identity and the solenoidal
constraint ∇ · B = 0

FLor =
1

4π
(∇ × B) × B = −∇

(
B2

8π

)
+

1
4π

(B ·∇)B. (8.27)

The first term looks like the pressure gradient term −∇P, so the quantity B2/8π is called the magnetic
pressure. The second term on the right is often called the magnetic tension or curvature force. However,
we need to remind ourselves that the total Lorentz force is always perpendicular to the magnetic field,
so that the components of these two terms parallel to the field must cancel. After some manipulation we
can rewrite the Lorentz force without these cancelling components as

FLor = −∇⊥
B2

8π
+ κ

B2

4π
, (8.28)

where κ = [(B/B) ·∇](B/B) is the curvature vector (directed along the radius of curvature of the field
and equal in magnitude to the reciprocal of that radius) and ∇⊥ is the part of the gradient perpendicular
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to the field. The curvature force resembles the tension in a string in that it will tend to restore a perturbed
straight field line to its original shape.

It can be shown that the magnetic pressure B2/8π is also the energy density of the magnetic field;
to demonstrate this in a non-rigorous way is reasonably straightforward. Imagine a straight tube of
infinite length with cylindrical cross section of radius a. It contains a uniform field B parallel to its
length and is surrounded by unmagnetised fluid. The curvature force vanishes everywhere and the
only place where the other part of the Lorentz force does not vanish is the boundary, where it is a
delta function directed normal to the boundary. Assuming equilibrium, this must be balanced by a
delta function in the gas pressure gradient force, i.e. a discontinuity in pressure, with the gas pressure
outside the tube is greater than that inside by a quantity B2/8π. Now imagine making an adiabatic
change in a so that the flux φ = πa2B = const. If the magnetic field has energy e per unit volume,
then the magnetic energy of the tube is E = πa2e per unit length. From the dU = −p dV relation in
thermodynamics (doing work on the magnetic field by pushing against the Lorentz force) we therefore
have dE = −(B2/8π)2πada = −φ2/(4π2a3)da and so assuming that the energy E goes to zero at a = ∞

we can integrate from a′ = ∞ to a to give∫ E

0
dE′ = −

∫ a

∞

φ2

4π2a′3
da′ =⇒ E =

φ2

8π2a2 =
B2

8π
πa2 =⇒ e =

B2

8π
. (8.29)

Figure 8.2: A section of a flux tube.

The magnetic pressure is different from the gas pressure in that it is not isotropic. To demonstrate
this, imagine a section of the aforementioned flux tube of length l, which contains magnetic energy
E = πa2lB2/8π. Stretching this section of the tube whilst keeping the cross section a fixed will not
change B so the increase in energy is simply dE = πa2dlB2/8π. Equating this to the energy dE = −P dV
again, we have −Pmagπa2dl = (B2/8π)πa2dl and so the tube has a tension per unit area of B2/8π, which
can be thought of as a negative pressure. Of course, no infinite tube exists in reality – however, we can
imagine a tube being connected to itself in a loop, which helps us to understand how the tension comes
about even though the Lorentz force is always perpendicular to the field.

If we repeat the above thought experiment with not a stretch or compression in one direction, but an
isotropic expansion or compression of a magnetised fluid element, it is easily shown that the resistance
of the magnetic field to such a compression is equivalent to an isotropic pressure of B2/24π. This is
simply the average of a pressure of B2/8π in the two directions perpendicular to the field and tension
of B2/8π parallel to it. Furthermore, it can be shown that any self-contained magnetic feature (i.e. one
without field lines crossing its boundary) exerts a mean pressure B2/24π on its surroundings, meaning
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that in equilibrium, the gas pressure outside the feature must be greater than the average pressure inside
by this quantity. This should not be surprising since magnetic field is a relativistic phenomenon and
relativistic fluids (e.g. photons, relativistic particles, gravity) exert a pressure equal to one third of their
energy density – equivalent to an adiabatic index of 4/3. However, one must always be careful when
simplifying the effect of a magnetic field to an isotropic magnetic pressure since the geometry of the
field is often crucial.

8.9 Waves

The restoring force from bending field lines and from squeezing field lines together allows the propa-
gation of waves in a magnetised fluid. The simplest form of waves propagates in a medium of initially
constant pressure and density threaded by a uniform magnetic field, and since magnetic pressure is
not isotropic it is necessary in the general case to consider the angle between the wavevector and the
magnetic field; however the equivalence of the two dimensions perpendicular to the field allows us to
drop one and consider only the remaining two dimensions. It turns out that there are three kinds of
wave in a compressible magnetised fluid: the Alfvén wave and the fast and slow magnetoacoustic (or
magnetosonic) waves. First of all we write the linearised momentum, continuity, induction and energy
equations:

∂u
∂t

= −
1
ρ
∇δP +

1
4πρ

(∇ × δB) × B (8.30)

∂δρ

∂t
= −ρ∇ · u (8.31)

∂δB
∂t

= ∇ × (u × B) (8.32)

δP = c2
sδρ (8.33)

where B is the equilibrium field which is parallel to the y-axis and quantities with δ are the perturbations
which, as well as the x and y components of the velocity field u and v, are small. Writing ρ̃ = δρ/ρ and
b = δB/B and substituting from (8.33) we can write out the equations as

∂u
∂t

= −c2
s
∂ρ̃

∂x
+ v2

A

(
∂bx

∂y
−
∂by

∂x

)
(8.34)

∂v
∂t

= −c2
s
∂ρ̃

∂y
(8.35)

∂ρ̃

∂t
= −

∂u
∂x
−
∂v
∂y

(8.36)

∂bx

∂t
=

∂u
∂y

(8.37)

∂by

∂t
= −

∂u
∂x

(8.38)

where the Alfvén speed has been defined as vA ≡ B/
√

4πρ. To work through the derivation of the disper-
sion relation is a little lengthy so we restrict ourselves here to two special cases, where the wavevector
is parallel and perpendicular to the field. In the parallel case ∂/∂x = 0 and the equations split into two
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sets, one set made of (8.35) and (8.36) containing v and ρ̃ and the other set made of (8.34) and (8.37),
containing just u and bx. The first set describes a longitudinal wave, since the motion is parallel to the
wavevector. Motion parallel to a magnetic field has no effect on it (since u × B vanishes), and this wave
is simply a sound wave. The other set describes transverse wave called an Alfvén wave which is non-
compressional (since ρ̃ is absent). It is left as an exercise for the student to derive the dispersion relation
for these waves, and to show that the propagation speed is vA.

The other special case is that of perpendicular wavevector and field, where ∂/∂y = 0. Here, v and bx

drop out of the equations and there is only one wave, a longitudinal wave called the fast magnetoacoustic
wave. It is left as an exercise to derive the dispersion relation and to show that the propagation speed is
(c2

s + v2
A)1/2. These waves are similar to sound waves, but the magnetic field provides an extra restoring

force.

If the wavevector and field are neither parallel nor perpendicular, two waves are possible (the fast and
slow magnetoacoustic waves), and the phase and group velocities are no longer parallel. These waves,
which are not easy to visualise, are compressional and involve a mixture of gas and magnetic restoring
forces.

Figure 8.3: Torsional and plane Alfvén
waves propagating along a flux tube.

Finally, a particular kind of Alfvén wave deserves a mention: the torsional Alfvén wave. Imagine a
flux tube which is perturbed not by a sideways motion but by a twisting motion – the twist propagates
along the tube.4 This kind of wave is very important in various astrophysical situations, for instance in
differentially rotating stars and in star formation, since it carries angular momentum.

8.10 Magnetic helicity

In section 8.7 we saw that the magnetic flux through a co-moving fluid surface is constant in the limit
of high conductivity. We can now look at an additional quantity which is also conserved in this limit.

4According to MHD folklore Alfvén got the idea from growing sunflowers in the Swedish arctic, where the flowers rotate
once every day during the summer to follow the Sun; at the end of the season the sun finally sets and the sunflowers ‘unwind’.
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Magnetic helicity is a global quantity defined as

H ≡
∫

V
A · B dV (8.39)

where A is the vector potential defined from B = ∇×A. Now, since the curl of the divergence of a scalar
is zero, we can add any gradient of a scalar ∇φ to the vector potential without changing the magnetic
field; however this will in general affect the magnetic helicity. It can be shown in the following way
though that magnetic helicity is gauge invariant provided that no magnetic field lines pass through the
boundary of the volume of integration. Consider some new vector potential A′ = A + ∇φ. The helicity
is now

H′ =

∫
V

[A · B + (∇φ) · B] dV (8.40)

= H +

∫
V

[∇ · (φB) − φ(∇ · B)] dV (8.41)

= H +

∮
S
φB · dS, (8.42)

since the first term on the first line is simply equal to the original helicity; the second term was expanded
with a standard vector identity to give the expression on the second line. Since the magnetic field is
solenoidal, the second of the new terms vanishes, and the first can be rewritten with the aid of Gauss’
theorem to give a surface integral. Therefore if B · dS = 0 everywhere on the boundary, helicity is gauge
invariant.

Helicity is a useful concept because of its conservation properties. It can be shown that it is perfectly
conserved in the limit of infinite conductivity. First note that by integrating the ideal MHD induction
equation (8.23) we have ∂A/∂t = u × B. Now

∂H
∂t

=

∫
V

dV [At · B + A · Bt] =

∫
V

dV [u × B · B + A ·∇ × (u × B)]

=

∫
V

dV [(u × B) ·∇ × A −∇ · (A × (u × B))]

= −

∮
S

dS · A × (u × B). (8.43)

It is sufficient then that the velocity goes to zero on the boundary of the domain.

In a fluid with finite conductivity helicity is still approximately conserved – we can see this from an
argument with units. Now, the diffusive timescale on which the magnetic field decays due to finite
conductivity, as we saw above, is τ ∼ L2/η. This is shorter on shorter length scales so that when
magnetic energy is converted to heat via Ohmic dissipation, it is mainly the small-scale structure where
the energy is converted. Helicity however has units of length times energy and is therefore present more
in the large scale components of the magnetic field than the magnetic energy, and less is therefore lost
due to diffusive processes on small scales. Often then during MHD processes where the flow contains a
range of length scales, energy is lost at the smallest scales while helicity is roughly conserved.

Helicity also has units of flux squared, and can in fact be thought of in some sense of the product of
two fluxes of different components of the magnetic field. It is often said that helicity is a measure of the
‘twist’ of the magnetic field, because a twisted field must contain at least two components. As we have
seen, that twist is conserved even as magnetic energy is lost.
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8.11 MHD equilibria

In many astrophysical contexts, we are interested in equilibrium situations where the forces are balanced.
However, before we proceed, it is important to clarify what we mean by equilibrium. If we simply set
the velocity to zero, the momentum equation (8.16) gives us a relation between P, B and ρg, so that
any combination of the three which satisfy that relation will be an equilibrium. Now, both sides of the
continuity equation (8.17) go to zero, but the heat equation (8.18) contains Q, which does generally
not go to zero when u = 0 due to its terms with κ and η. Likewise, the term with η in the induction
equation (8.19) will not in general vanish. The result of this is that the magnetic field and pressure field
will evolve, giving rise to a non-zero velocity field – a truly stationary state is in general achievable
only where κ = η = 0. However, provided that these diffusivities are small, we can still find a dynamic
equilibrium by setting u = 0 and balancing forces. This equilibrium will not change appreciably on a
dynamic timescale, i.e. the time taken for a sound or Alfvén wave to travel across the domain; rather, it
will evolve over a longer timescale due to the diffusive terms.

So, finding a (dynamic) equilibrium is simply a matter of finding a solution to the following equation:

−∇P +
1

4π
(∇ × B) × B + ρg = 0, (8.44)

together with the constraint ∇ ·B = 0. It is interesting to explore some of the properties of this equation.
First of all, note that in the non-magnetised case it reduces to the equation of hydrostatic equilibrium
which one often sees in the form ∂P/∂z = −ρg where gravity is directed downwards along the z-axis. In
the magnetised case, taking the dot product with B̂, the unit vector in the direction of the magnetic field,
gives

(B̂ ·∇)P = ρ(g · B̂) or
dP
ds

= ρgs, (8.45)

where dP/ds is the derivative along a field line and gs is the component of gravity along the field line.
In other words, in an MHD equilibrium there is hydrostatic balance along field lines.

In a situation where β � 1 and the Lorentz term in (8.44) is much smaller than the pressure and gravity
terms, we can imagine first constructing a non-magnetic equilibrium where ∇P = ρg, adding a weak
magnetic field and then making small adjustments to the pressure and density fields to balance the
Lorentz force. In principle this should be possible, because an arbitrary magnetic field and its associated
Lorentz force have two degrees of freedom – three dimensions minus the one constraint (∇ · B = 0) –
and we also have two degrees of freedom in balancing the Lorentz force since we can adjust both the
pressure and density fields independently of each other.5 Note that in a fluid with a barotropic equation
of state ρ = ρ(P) we only have one degree of freedom in adjusting the pressure and density fields, so
that depending on the context it may be either more difficult or impossible to construct an equilibrium.

In the special case without gravity we see from (8.45) that pressure is constant along field lines. Also,
the gradients in thermal pressure P and magnetic pressure B2/8π must be comparable unless we can
construct an approximately force-free field where current and magnetic field are almost parallel. Also
note that density is no longer relevant for the structure of the equilibrium, meaning that we now only
have one scalar field P to balance the Lorentz force with its two degrees of freedom, just as in the case
above with gravity and a barotropic E.O.S.

5Strictly speaking, adjusting the density field will affect the gravitational field g, but if only small adjustments to the
non-magnetic equilibrium are needed it is hard to imagine that changes in g will prevent the existence of an equilibrium.
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Exercises

8.1 Field amplification

This problem examines how a magnetic field can be amplified in a given velocity field. The effect
of the magnetic field on the velocity field is ignored, which is called the kinematic regime. Assume
ideal MHD, i.e. perfect flux freezing.

(a) An initially uniform field B0ŷ evolves in a shear flow where u = ayx̂ where a is a constant.
Find an expression for the field at time t.

(b) Consider a magnetic field in a volume with some velocity field bounded by a stationary surface
of fixed magnetic field, outside which the velocity field is zero. Initially, the field is in the lowest
energy state possible, i.e. it is a potential field. Furthermore assume that the initial field is uniform
in strength and direction, and ignore one of the dimensions perpendicular to the field. By relating
the strength of the field to the distance between neighbouring field lines, argue that the lengthening
of the field lines which results from ‘stirring’ of the fluid inevitably leads to higher energy.

(c) With the help of the continuity equation and some vector identities, write the induction equa-
tion in terms of d(B/ρ)/dt. Comment on the physical meaning. [Hint: the same was done before
for the vorticity equation.]

8.2 Tension of a flux tube

Imagine a flux tube of circular cross section with radius a and length l containing a uniform
magnetic field B.

(a) Whilst holding a constant, by considering the increase in magnetic energy whilst increasing
the length by a small quantity, calculate the tension Tmag of the tube (in units of energy per unit
length, i.e. force).

(b) The tube is in equilibrium in the lateral direction with its unmagnetised surroundings, giving
rise to a difference in gas pressure of magnitude B2/π. Now calculate the total energy required to
stretch the tube (again at constant a) by considering not only the increase in magnetic energy but
also the P dV work done against the external gas in increasing the volume of the tube, minus that
work done by the gas in the tube, showing that the tension is now double that found in part (a).
Note that this is often neglected in the literature and that the tension calculated in part (a) is often
used.

(c) Again assuming equilibrium in the lateral direction, calculate the tension in the tube again by
considering the change in magnetic energy during a stretch at constant volume, so that the gas
does no work, and constant magnetic flux.

(d) The tube is connected to itself in a circular loop of radius r where we can assume r � a.
The Lorentz force is now non-zero in the interior of the tube and points towards the centre of the
circle. By integrating this curvature force, the second term in (8.28), over the entire volume of the
tube, one finds the magnetic energy change during an infinitesimal change in r. Using that fact
that dl = 2πdr, show that this gives the same tension in the tube as that found in parts (b) and (c),
arguing that the Lorentz force at the surface of the tube can be neglected if the volume remains
constant.
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8.3 MHD waves

Starting from equations (8.34) to (8.38), derive the dispersion relations of waves where the wavevec-
tor is both parallel and perpendicular to the magnetic field, finding the phase and group velocities
in each case and showing that the waves are non-dispersive (that is, speed does not depend on
frequency). In addition, find the relation between the energy associated with the perturbation to
the magnetic field δB · B/4π, the perturbation to the gas, and the kinetic energy, showing that the
magnetic and kinetic are in equal in the parallel case, and that in the perpendicular case the kinetic
energy accounts for one half of the energy and the other two forms account for the other half.
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Chapter 9

MHD: astrophysical contexts

We now illustrate the principles introduced in the last chapter and look at some processes and phenomena
in the astrophysical contexts of the solar corona, jets and accretion discs.

9.1 The solar corona

Figure 9.1: The solar corona pho-
tographed during the eclipse of 11
August 1999.

On the photosphere of the Sun, we observe magnetic fields in the quiescent regions which are structured
on the granulation scale (∼ 1000 km) and hundreds of gauss in strength, and in addition we see active
regions with sunspots of sizes 10 to 100 times the granulation scale in which the magnetic field is in
the range 1 − 3 kG. The thermal energy density at the photosphere is about the same as a magnetic
field of ∼ kG, which we call the ‘equipartition field strength’. Since the flow speeds at and just below
the photosphere are roughly sonic, the kinetic energy density is about the same. This explains why
a field of at least around 1 kG is required to have much effect on the appearance of the photosphere.
The thermal energy density increases rapidly below the photosphere and decreases rapidly above it –
more rapidly than the magnetic energy density (pressure falls exponentially whereas the magnetic field
tends to fall geometrically on large scales) so we can think of a β = 1 surface which lies at or just
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above the photosphere. Below this surface, the magnetic field has a rather subtle effect on the flow
of gas; above this surface the magnetic field dominates. This region above the photosphere is called
the corona, although strictly speaking the two are separated by the chromosphere and the transition
region. The corona has a temperature of around 1−2 million kelvin, which contrasts to the photospheric
temperature of 5800 K – the origin of this high temperature, the ‘coronal heating problem’, is one
of the best-known unsolved problems in astrophysics. It is generally agreed that the magnetic field
transports energy through the photosphere and that it is converted from magnetic to thermal form in
the corona; what is not understood is how the magnetic energy is dissipated. Theories normally invoke
either reconnection or excitation and dissipation of magnetic waves.

Now let us look at some of the parameters in the corona: T ∼ 106 K, ρ ∼ 10−15 g cm−3, P = ρTR/µ ∼
10−1 erg cm−3, |g| ∼ 3×104 cm s−2, B ∼ 10 G. Assuming hydrostatic equilibrium this means that the
scale height H = P/ρg ∼ 3×109 cm, plasma β = 8πP/B2 ∼ 3×10−2, sound speed cs =

√
γP/ρ ∼ 107 cm

s−1, Alfvén speed vA = B/
√

4πρ ∼ 108 cm s−1.

Figure 9.2: Images of
coronal loops taken in
the Fe IX line at 171Å
by TRACE.

Looking at (8.21) it appears that the Lorentz force is much greater than the pressure gradient force. In
addition, the gravitational force is comparable to the pressure force and acts only in the vertical direction.
The Lorentz force must therefore be balanced by the inertia term on the left hand side of the momentum
equation, meaning that flow speeds are comparable to the Alfvén speed. However, structures such as
those in fig. 9.2 are observed to last for anything up to weeks, much greater than the Alfvén timescale
τA = H/vA ∼ 30 s. The only way out of this (as mentioned briefly in section 8.6) is for the Lorentz
force to be reduced by having the current and magnetic field almost parallel to each other – we call this
a ‘force-free’ field. The properties of these fields are explored in the next section. Often however we
observe loop structures in the corona which, having apparently been in such a force-free equilibrium for
some time, suddenly depart from equilibrium and convert much of their magnetic energy into heat on a
timescale comparable to the Alfvén timescale. This process is explored in section 9.1.2.

9.1.1 Force-free and potential fields

In any low β plasma we see from (8.21) that the Lorentz force cannot apparently be balanced by the
pressure gradient and it is difficult to imagine a gravitational field with the necessary geometry; balancing
the Lorentz force with inertia, the term on the left-hand side of the momentum equation (8.16), would
mean Alfvénic flow speeds and nothing approaching an equilibrium. We therefore speak of a ‘force-
free’ field, where the current and magnetic field are almost parallel so that |(∇ × B) × B| � B2/L. This
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gives:

∇ × B = αB, (9.1)

B ·∇α = 0, (9.2)

where the second equality comes from taking the divergence of the first and using the solenoidal condi-
tion ∇ · B = 0; it means that α is constant along field lines. In other words, as we follow a field line we
see that the neighbouring lines curve around it in the same sense all the way along the line – force-free
fields are ‘twisted’ in some sense. If α is a constant everywhere, we can write the Helmholtz equation
(α2 + ∇2)B = 0 by taking the curl of (9.1).

A special case is where α = 0, which we call a potential or curl-free field, where the current vanishes.
This is obviously the case in a vacuum, and is a good approximation in some other astrophysical contexts
such as above the surface of some magnetic main-sequence stars. We call it a potential field because
being curl-free we can express it as the gradient of a scalar potential B = ∇φ. Since the divergence
of the field is zero, we have the Laplace equation ∇2φ = 0. This we can solve if we know the normal
component n · B = n ·∇φ everywhere on the boundary of the domain.

Energy minima

Imagine a fixed volume with a given normal field component at the boundary; outside the volume there is
no motion and no change in the magnetic field, and no energy is injected into the volume in mechanical
or other form. One can solve for a potential field in the volume and the solution is unique. Furthermore,
it can be shown that this field has the lowest energy of all which satisfy the boundary conditions. This can
be seen by the following argument. Magnetic energy can be converted into other forms in two ways: into
kinetic energy via the Lorentz force (this can work in both ways) and into heat energy via Joule heating
(one-way conversion, see section 8.5). Any magnetic field with non-zero current will continuously be
losing energy into heat, and this cannot be replaced by conversion from kinetic, since we know from
the second law of thermodynamics that the heat energy cannot entirely be converted back in kinetic.
There can be some back-and-forth flow of energy between magnetic and kinetic, i.e. oscillations, but
these necessarily involve the magnetic field being always (except perhaps fleetingly) in a non-potential
state with non-zero Joule heating. The energy of any non-potential field must therefore drop until the
Joule heating vanishes entirely, i.e. when the current is zero everywhere – quod erat demonstrandum. If
there is no means to convert kinetic energy directly into heat (viscosity ν = 0) then all that can remain is
acoustic oscillations propagating parallel to the field lines (a special and unlikely situation), otherwise all
kinetic and all free magnetic energy is ultimately converted into heat. In summary, any field in a medium
of finite conductivity in a volume with fixed boundaries will relax to this potential field. Once this state
is reached, there is no way to extract the remaining B2/8π energy without changing the boundaries.

The situation is different if flux-freezing holds perfectly, i.e. the medium has infinite conductivity. If we
also assume zero kinetic diffusivity there is no conversion of either magnetic or kinetic energy into heat
and oscillations will not be damped. If viscosity is present, however, kinetic energy will be converted
to heat and any oscillations or ‘sloshing’ will therefore result in energy loss from magnetic/kinetic into
heat. This can only result in a stationary final state, which is presumably an energy minimum, i.e.
minimum magnetic energy and zero kinetic energy. Perturbing this state with a displacement field ξ
should therefore not affect the magnetic energy, since the energy should rise at fastest quadratically away
from the minimum. The only way this can be possible is if the energy minimum is force-free. Force-free
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states are no longer unique in the same way as the potential states – here, unlike the finite conductivity
case, flux freezing holds and so the final state now depends not only on the normal component of the
field at the boundary but on the topology of the field, i.e. how the field lines entering the volume connect
to those leaving.1

Astrophysically, both of these cases occur in many situations. An example of a potential field would
be the volume outside an intermediate mass main-sequence star – inside the star is the conductivity is
high and the Ohmic timescale is very long, so the star can contain a long-lived equilibrium which gives
an essentially fixed normal component at the surface. Outside the star the conductivity and therefore
the Ohmic timescale are much lower than in the interior so that the field relaxes to a potential field.
In the solar corona, on the other hand, the temperature and therefore conductivity are higher than in
the intermediate mass star. Moreover, the field at the surface is not static but moves on timescales of
minutes to weeks, much shorter than the Ohmic timescale, so that the field does not have time to relax
to potential. In addition, since the mean free path is so large, the kinetic diffusivity is large – very much
larger than the magnetic diffusivity, so that kinetic energy can be removed but flux freezing holds. The
field in the solar corona is indeed observed to be very close to force-free, which of course it has to be to
avoid velocities on the order of the Alfvén velocity since this is a low-β plasma where gas pressure and
gravity are not able to balance the Lorentz force, as mentioned above.

Vanishing force-free field theorem

There is a theorem which states that no equilibrium can be force-free everywhere. Imagine a force-free
equilibrium in a region of volume V surrounded by an unmagnetised region, and imagine an isotropic
expansion or contraction of the region. Under such a change, the position vector of any fluid element
changes from r to r′ and the field from B to B′. In a uniform expansion by a factor a we have r′ = ar
and from flux conservation (φ = Br2 is constant) we see that r′2B′(r′) = r2B(r). The energy of the field
after the expansion is

E′ =

∫
V′

B′2

8π
dV ′ =

1
a

∫
V

B2

8π
dV (9.3)

since dV ′ = a3dV and B′ = a−2B. The region will therefore expand until either some force opposes it, at
which point it is no longer force-free, or it reaches infinite extent and E → 0. [More generally, anything
with positive energy will tend to expand.] A force-free region must be subject to forces on its boundary.

9.1.2 Reconnection

We saw in above in section 8.6 and from equation (8.19) that the timescale over which the magnetic
diffusivity acts is τdiff ∼ L

2/η. However, we see in many astrophysical contexts such as the solar
corona that changes in global magnetic topology, i.e. deviations from flux-freezing, and the associated
dissipation of magnetic energy can occur on much shorter timescales. For instance, energy is released
during solar flares over timescales of seconds and minutes although τdiff % 106yr, assuming a standard
Spitzer conductivity. There are two possible reasons for this. The first is that somehow the diffusion is
locally brought to work on shorter length scales than the global length scaleL, the second is that there is

1In fact even given both the boundary and topological constraints, the uniqueness of the force-free field is not obvious since
local energy minima seem plausible, but that is outside the scope of this course.
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some ‘anomalous resistivity’ – higher than the standard resistivity – perhaps when the current density is
particularly high; plasma instabilities may also be involved. It seems likely that in some situations both
mechanisms must be invoked.

Producing structure on small length scales from a global configuration initially lacking such small scales
is a common phenomenon in physics. For instance, to mix two paints together so that they combine on
the microscopic scale, it is sufficient to stir with a large spoon. In a turbulent flow, large-scale driving
leads to the appearance of structure on a scale sufficiently small that the viscous dissipation timescale is
equal to the flow timescale.2 Similarly, in a shock a small length scale is produced to allow fast diffusive
conversion of kinetic to heat energy. In the example of solar flares, we do not see turbulence; rather, the
field is thought to dissipate in thin current sheets or otherwise localised features which separate regions
with different magnetic field. This process is known as ‘reconnection’.

The first model of reconnection, the Sweet-Parker mechanism, is illustrated in fig. 9.3. Material flows
perpendicular to the field lines at speed v0 towards the current sheet. This speed is equated to the
‘diffusion speed’ within the current sheet, which from the induction equation is equal to η/δ ≈ v0.
Assuming incompressibility, conservation of mass gives v0L ≈ v∗δ. Now, if we consider the force
balance in the y direction it is clear that there is an excess thermal pressure at the centre of the current
sheet, where the magnetic field vanishes, equal to the magnetic pressure at the boundaries of the sheet,
i.e. B2/8π. The material is accelerated in the x direction by this thermal pressure and escapes at the
ends of the sheet; we have from the force balance that ρv2

∗/2 ≈ B2/8π which can be rearranged to
v∗ ≈ vA = B/

√
4πρ. Now we can solve for the reconnection velocity v0:

v0 ≈
η

δ
≈

vAη

v0L
=⇒

v0

vA
≈

√
η

vAL
= ReA

−1/2, (9.4)

where Rem is the magnetic Reynolds number. This model produces reconnection speed ratios of v0/vA ∼

10−6 in the solar corona and other astrophysical plasmas, which is unfortunately rather less than the gen-
erally observed value of ∼ 0.1. One way out of this is the Petschek reconnection model in which most
of the energy is dissipated in standing shocks attached to a small central Sweet-Parker-like diffusion re-
gion. Some kind of anomalous resistivity probably also plays a role, as well as 3-D effects. Finally, note
that reconnection does not only convert magnetic energy into kinetic and thermal, but it also accelerates
particles up to relativistic speeds – this is observed in the solar corona. In general, magnetic fields are
ingredients in most cosmic-ray acceleration mechanisms.

9.2 Jets: launching, collimation and instabilities

Jets are found in many astrophysical accretion settings, for example protostars, neutron stars, AGN. In
this section we examine the magneto-centrifugal model of jet launching and collimation.

9.2.1 Launching

Imagine a Keplerian disc around a central object threaded by a magnetic field. The field which emerges
from the disc is ‘ordered’ in some sense. If, for simplicity, we assume that the field component emerging

2Opinions differ as to how this works.
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Figure 9.3: The Sweet-
Parker reconnection
mechanism. Regions of
opposing magnetic field
B∗ are brought together,
separated by a thin sheet
of thickness δ.

normal to the disc is of uniform sign and its strength varies with cylindrical radius as Bz = B0($2/$2
0 +

1)−1/2, and then assume that the field above the disc is curl-free (i.e. zero-current, force-free with α = 0)
we have the field illustrated in fig. 9.4. Near the disc the lines are inclined away from the centre because
of the greater field strength at the centre, but further from the disc they tend towards the vertical because
of the fact that flux per unit cylindrical radius increases outwards – in other words, most of the flux is
threaded through the outer disc and so from a distance the inner part is of lesser importance. We expect
that Bz ∝ Σ where Σ is the column density of the disc, so this picture of flux increasing outwards is
realistic as long as $Σ increases outwards, i.e. ∂ ln Σ/∂ ln$ > −1.

Figure 9.4: The field above a disc from
which a vertical field component Bz =

B0($2/$2
0 + 1)−1/2 emerges, assuming the

field is curl-free. Note that the field lines
curve towards the vertical. [From Spruit
et al. 1997.]

We now allow material to evaporate from the disc. Just above the disc this material will have a low
density in the sense that the magnetic energy density B2/8π is much greater than the thermal (i.e. β � 1)
and also than the kinetic ρu2/2. This means that the field must be force-free and that it is little affected by
the material. Flux freezing requires that the material flows along the field lines, and since the field lines
point away from the central object, the material is centrifugally accelerated away from the disc; it can
be shown that if the angle between the field and the vertical exceeds some threshold then this centrifugal
acceleration exceeds the downwards gravitational acceleration. The material is forced to co-rotate with
the magnetic field.

As the material is accelerated its kinetic energy density eventually exceeds the magnetic, i.e. ρu2/2 >

B2/8π or alternatively u > vA; we say that this transition happens at the ‘Alfvén surface’ which is
analogous to the sonic point in non-magnetised flows such as in the nozzle of a rocket engine. Flux
freezing holds on both sides, but whereas inside the Alfvén surface the flow follows the field lines,
outside the Alfvén surface the field lines follow the flow. This means that the material ceases to co-
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rotate with the foot points of the field lines; rather, the field lines are ‘wound up’ so that a significant
toroidal component Bt is produced.

9.2.2 Collimation

We saw above that the poloidal field may have a tendency to collimate the flow (fig. 9.4). In this section
we examine the collimation after the initial acceleration phase, when the energy in the z component of
the motion dominates and therefore uz ≈ const.

Imagine a jet with circular cross-section of radius a(z) at a distance z from the central object (outside the
Alfvén surface). It contains a spiral magnetic field with toroidal and poloidal components Bt and Bp. If
the toroidal and poloidal fluxes are both conserved as the material moves away from the source, then as
the radius of the jet changes we have Bt ∝ a−1 and Bp ∝ a−2. After the initial acceleration phase the jet
will expand ballistically with a ∝ z in the absence of significant pressure or magnetic forces. Obviously
in the non-magnetic case, if the thermal pressure in the jet is greater than that in the surroundings, the jet
will expand faster than a ∝ z – the jet will be ‘flared’. The poloidal component of the field will also tend
to make the jet flare as it exerts a pressure B2

p/8π on the jet’s surroundings; the toroidal field exerts no
pressure because its pressure and tension forces are equal and opposite. Another way of thinking about
this is in terms of the energy per unit length of the jet in the toroidal and poloidal components of the
field: Et = πa2B2

t = πΦ2
t and Ep = πa2B2

p = Φ2
p/(πa2). It is the drop in Ep which drives the expansion

of the jet. It is therefore necessary to have some external pressure for collimation to occur – one can
imagine that with some constant pressure in the ambient medium the jet would be flared near the source
and then further away would settle at constant a when its internal pressure Pjet + B2

p/8π is equal to the
external.

It is worth looking in more detail at the collimating effect of the toroidal field. A jet with Bt = Bt($)
carries a current J = ẑ(c/4π$)∂($Bt)∂$ and so the Lorentz force is

FLor = −$̂
Bt

4π$
∂($Bt)
∂$

(9.5)

where $̂ is the unit vector in the $ direction. At least near the axis this force must be directed inwards:
this effect is often referred to as ‘hoop stress’. This has lead to the misleading concept of ‘self collima-
tion’, according to which a jet can be collimated by its own toroidal magnetic field. The problem with
this is that to avoid having the energy diverge towards infinity, the partial derivative must change sign
at some radius outside which the Lorentz force is directed outwards, requiring in effect some external
pressure support.

9.2.3 Instability

We saw above that as a jet expands the poloidal field falls faster than the toroidal, which leads eventually
to an instability driven by the free energy in the toroidal field. It can be shown that the dominant modes
have azimuthal wavenumbers m = 0 (sausage mode) and m = 1 (kink mode); here we look at a simple
derivation of the instability criterion for the m = 0 mode.

A purely toroidal field is some function of cylindrical radius, B = B($). Imagine two thin annuli at radii
$ and $ + δ$ with magnetic fields B and B + δB, each of area A and therefore of thicknesses A/(2π$)
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and A/(2π($ + δ$)). The energy per unit length jet of the magnetic field in the annuli is

E =
A
8π

[
B2 + (B + δB)2

]
. (9.6)

We now exchange adiabatically the positions of the two annuli, keeping the volume of each constant. In
general, the most unstable modes of any instability will be incompressible (density unchanged), since
compressing the gas will require work to be done by the magnetic field. Since the volumes of the annuli
remain the same, the total thermal energy is unchanged. Since flux is conserved, the new fields at
locations $ and $ + δ$ are (B + δB)$/($ + δ$) and B($ + δ$)/$, so that the new energy is

E + δE =
A
8π

( (B + δB)$
$ + δ$

)2

+

(
B($ + δ$)

$

)2 . (9.7)

For stability we need the exchange to have increased the energy, i.e. δE > 0. Subtracting (9.6) from
(9.7) and dividing by A/8π we have (

(B + δB)$
$ + δ$

)2

+

(
B($ + δ$)

$

)2

− B2 − (B + δB)2 > 0 (9.8)(
1 + 2

δB
B

+
δB2

B2

)
+

(
1 + 2

δ$

$
+
δ$2

$2

) [
1 + 2

δ$

$
+
δ$2

$2 − 1 −
(
1 + 2

δB
B

+
δB2

B2

)]
> 0, (9.9)

where the zeroth and first order terms cancel; keeping only the second order terms we have

δ$

$
−
δB
B
> 0 or

∂ ln B
∂ ln$

< 1. (9.10)

This corresponds to the result of Tayler (1957). For obvious reasons, this is known as an ‘interchange’
mode. A more general treatment including the non-axisymmetric modes reveals that m ≥ 1 modes are
stable if ∂ ln B/∂ ln$ < m2/2 − 1, meaning that the m = 1 mode (the ‘kink mode’) sets in first. Note
that to avoid a current singularity we need ∂ ln B/∂ ln$ ≥ 1 on the axis, so it is impossible in practice to
construct a toroidal field which is stable everywhere. The growth timescale of all modes is comparable
to the dynamical timescale, i.e. the Alfvén timescale $/vA.

A jet contains not only a toroidal component, of course, but also an axial component Bz which can help
to stabilise the jet against this instability. We can see approximately how strong this component needs
to be by means of the following energy argument. It is clear that as the instability grows, work needs
to be done against the axial component of the field and for stability this must be greater than the energy
released from the toroidal part of the field via the instability. Now, since ξ̈ = σ2ξ where the growth
rate σ = vA/$, the m = 1 mode releases an energy per unit volume equal to 1

2ρξ̈ξ = 1
2ρσ

2ξ2. As the
axial field lines are stretched, they exert a restoring force 1

4πB2
zξ/l

2
z where lz is the length scale of the

instability in the z direction, which is equal to 1/kz = λz/2π. The work to be done therefore is 1
8πB2

zξ
2/l2z ,

which for stability needs to be greater than the energy released so that

1
8π

B2
zξ

2/l2z >
1
2
ρσ2ξ2 (9.11)

which can be rewritten as

B2
z

4πρ
1
l2z
> σ2 (9.12)
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B2
z

4πρ
$2

l2z
>

B2
$

4πρ
(9.13)

Bz

B$
>

λz

2π$
. (9.14)

The axial field therefore stabilises the shortest wavelengths, because it is the shortest wavelengths which
have to bend the axial field lines to a greater degree for a given |ξ|. Another way of expressing this result
is that instability sets in for wavelengths greater than the distance over which a field line makes one
full circle around the jet. This is often referred to in the literature as the Kruskal-Shafranov condition.
Unfortunately, the ratio λz/$ could be very large in a narrow jet so this instability is expected to be
present in essentially all collimated jets; work continues therefore on its non-linear development.

9.3 Angular momentum transport in discs

Accretion discs are found in many astrophysical contexts, such as during star formation, mass transfer
in binary systems, and accretion of gas onto supermassive black holes. When matter is accreted, it
falls deeper into a gravitational potential well and energy must be lost from the system, generally via
radiation. However, it is not possible for a disc of material in isolation to accrete entirely onto the
central object because of angular momentum conservation – angular momentum must be removed from
the accreting material by transfer to other material which does not accrete. Therefore the lowest-energy
end-state of a disc in isolation is to have an infinitesimally small amount of mass move outwards towards
infinity and infinite specific angular momentum and the rest of the mass accreted onto the central object.
This requires transport of angular momentum outwards.3 Since all systems like to relax to energy
minima, we should expect to find some mechanism operating in discs for the outward transport of
angular momentum. According to the model of Shakura & Sunyaev (1973), the observational properties
of accretion discs can be reproduced well by imagining there is some viscous stress equal in magnitude
to some fraction α of the thermal pressure P. However, microscopic viscosity is far too small to account
for values α ∼ 0.1 inferred from the observations; we turn our attention therefore to possible instabilities
which could generate turbulence and the resultant ’turbulent viscosity’.

An example of a shear instability in a differentially rotating flow is the Rayleigh instability, an inter-
change instability. Imagine exchanging two annuli of equal volume and density between two radii $
and $ + δ$ which are initially moving with angular velocities Ω and Ω + δΩ. The kinetic energies
before and after the exchange are E and E + δE:

E =
ρV
2

[
$2Ω2 + ($ + δ$)2(Ω + δΩ)2

]
, (9.15)

E + δE =
ρV
2

[
$2(Ω + δΩ)2

(
$ + δ$

$

)4
+ ($ + δ$)2Ω2

(
$

$ + δ$

)4
]
. (9.16)

δE ≈ 2ρV$2Ω2δ ln$2
[
2 +

δ ln Ω

δ ln$

]
(9.17)

3Transport is outwards in the Langrangian sense of each fluid element transfering its angular momentum to its outside
neighbour. Imagining the rate of change of angular momentum inside a fixed volume containing the central object (whose
angular momentum is increasing as it is spun up and becomes more massive) and part of a steady-state disc, we see that net
transport must be inwards; in other words, the inwards advection of angular momentum exceeds the transport though turbulent
stress, albeit only by some small amount.
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so that the stability condition is q ≡ ∂ ln Ω/∂ ln$ > −2, or in other words that the specific angular
momentum$2Ω increases outwards. An accretion disc (q = −3/2) is therefore stable to this mechanism.
However, another kind of shear instability, the magneto-rotational instability has the stability condition
that q > 0.

9.3.1 Magneto-rotational instability: physical mechanism and stability condition

The physical mechanism can be thought of in the following way. Consider two fluid elements, initially
at the same radius, one above the other so that they are threaded by the same field line. They are
given a perturbation in the radial direction, in opposite senses. Initially their angular momenta remain
unchanged so that the element which has been perturbed inwards moves faster than the other. As it
moves forwards with respect to the other, the field line connecting them is stretched so that the inner
element pulls on the outer, transferring angular momentum to it. This causes the inner element to move
further inwards and the outer element to move further outwards. In addition, in some sense the field line
can be thought of as a spring which oscillates at a frequency vA/λ where λ is the wavelength. Clearly
the spring has to have a lower intrinsic frequency than that at which it is driven in order that it can be
stretched instead of oscillating, meaning that vA/λ < Ω/2π. The field has therefore to be ‘weak’ in some
sense for the instability to proceed.

Another way of imagining the instability is the following. Consider a fluid element at radius $ threaded
by a vertical magnetic field B. In the rotating frame, in equilibrium the centrifugal force per unit mass
at any radius Ω2$ is balanced by some net inward-pointing force which in a disc is a combination of a
pressure gradient and a gravitational force. The fluid element is now displaced a distance δ$ to a radius
$ + δ$, while the magnetic field couples it to the other fluid elements on the same field line so that it
retains its original angular velocity (angular momentum is transferred to it). The inward-pointing force
at this new position is (Ω + δΩ)2($+ δ$) but the centrifugal force is now Ω2($+ δ$). In addition there
is a magnetic restoring force, giving the total (radial) force

F = Ω2($ + δ$) − (Ω + δΩ)2($ + δ$) −
B2

4πρ
δ$

(λz/2π)2 ,

= Ω2$

(1 + δ ln$) − (1 + δ ln Ω)2(1 + δ ln$) −
v2

A

Ω2

δ ln$
(λz/2π)2

 ,
= Ω2$

−2δ ln Ω −
v2

A

Ω2

δ ln$
(λz/2π)2

 ,
= −Ω2δ$

(
2q + κ2

z

)
, (9.18)

where λz is the wavelength of the perturbation in the vertical direction, v2
A = B2/4πρ is the Alfvén speed

and κz = kzvA/Ω is a dimensionless wavenumber where kz = 2π/λ is the vertical wavenumber. For
stability we need F < 0 and therefore

2q + κ2
z > 0, (9.19)

remembering that v2
A = B2/4πρ. For stability at all vertical wavenumbers, we clearly need q > 0, and in

the unstable case the maximum unstable wavelength is given by κ2
z = 2|q|; as we shall see below, these

estimates agree with the more rigorous treatment. Note that F is equal to the acceleration ∂2(δ$)/∂t2;
we can replace ∂2/∂t2 with −ω2 where ω is the oscillation frequency (if real) or the growth rate (if
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imaginary). This gives, from (9.18),

−ω2 = −Ω2
(
2q + κ2

z

)
, (9.20)

so that the growth rate will generally be comparable to the rotation frequency. This not surprising,
because the free energy source is the rotation. In this sense the instability is fundamentally different
from the instability of toroidal fields described in section 9.2.3, whose free energy source is the magnetic
field and whose growth time is comparable to the Alfvén timescale.

9.3.2 The dispersion relation

In our rotating fluid, locally we can look at a small corotating Cartesian volume at distance $0 from
the centre, rotating at Ω0, and change variables to x = $ − $0; the azimuthal direction is y and the
vertical direction z. Since Ω(x) ≈ Ω0 + qxΩ0/$0, the bulk velocity in the rotating frame is U ≈ qΩ0x
(where q = −3/2 in the Keplerian case). In a rotating frame of reference, we must generally add to the
momentum equation (8.16) both a Coriolis force −2ρΩ0 × v (where v is the total velocity field) and a
centrifugal force $̂ρ$Ω2

0, but here we can drop the centrifugal term, the steady part of the Coriolis force
coming from the basic flow Uy and the x component of the gravitational term because they cancel each
other, leaving just the Coriolis force associated with any additional velocity field u = v−Uŷ on top of the
basic flow, −2ρΩ×u. In an accretion disc we also have the vertical part of the gravitational acceleration
−ρGMz$−3

0 ẑ = −ρzΩ2
0ẑ, where the assumption is made that z � $0. This vertical stratification may be

important in realistic discs, but we shall ignore it for the time being.

A general linear analysis of the MRI is quite involved, so we make two further simplifications: the
initial magnetic field is of uniform strength and in the z direction so that B = Bẑ, and we consider only
axisymmetric modes, meaning that ∂/∂y = 0. The most unstable modes, at least for a weak field, will
be incompressible and we assume that in the following. The perturbation to the magnetic field is Bb, so
that b is dimensionless. We now linearise the MHD equations by subtracting equilibrium (zero-order)
terms in the momentum equation, and keeping terms to first order in the perturbed quantities, ignoring
the diffusive terms. Beginning with the momentum equation we have

∂tu + U ·∇u + u ·∇U = −
1
ρ
∇δP +

1
4πρ

[(∇ × (Bb)) × B + (∇ × B) × (Bb)] − 2Ω × u,

∂tu + ŷux∂xU = −
1
ρ
∇δP + v2

A(∇ × b) × ẑ − 2Ωẑ × u,

∂tu = −
1
ρ
∇δP + v2

A(∇ × b) × ẑ −Ω(2ẑ × u + qŷux), (9.21)

noting that U ·∇u = 0 and ∇ × B = 0. We can now consider perturbations which vary in space and
time as ei(k·r−ωt) so that ∂x = ikx and so on:

−iωu = −
ik
ρ
δP + iv2

A(k × b) × ẑ −Ω(2ẑ × u + qŷux), (9.22)

−iψu = −iκ
δP
ρvA

+ ivA(κ × b) × ẑ − 2ẑ × u − qŷux, (9.23)

where we have introduced a dimensionless wavenumber κ ≡ kvA/Ω and a dimensionless frequency
ψ ≡ ω/Ω. The induction equation becomes (assuming ∇ · u = 0)

∂t(Bb) = ∇ × (u × B + U × (Bb)). (9.24)
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∂tb = ∇ × (u × ẑ + Uŷ × b). (9.25)

∂tb = ∂zu + qΩŷbx, (9.26)

−iψb = iκzu/vA + qŷbx, (9.27)

iψvAb = −κz (iu − qŷux/ψ) , (9.28)

where the last line was obtained by substituting for bx back into the y component of the equation. This
can be substituted into the momentum equation (multiplied by ψ) to give:

−iψ2u = −iκψ
δP
ρvA
− κz

[
κ × (iu − qŷux/ψ)

]
× ẑ − ψ(2ẑ × u + qŷux). (9.29)

Along with the incompressibility condition we have four equations and four quantities to be eliminated,
δP and the three components of u. Therefore:

−iψ2ux = −iκxψ
δP
ρvA
− iκz(κzux − κxuz) + 2ψuy, (9.30)

−iψ2uy = −κ2
z (iuy − qux/ψ) − (2 + q)ψux. (9.31)

−iψ2uz = −iκzψ
δP
ρvA

. (9.32)

From the third of these, we see that −iκxψδP/ρvA = −iψ2uzκx/κz which, using the incompressibility
condition κxux + κzuz = 0, replaces the first term on the right hand side of the x-component equation and
reduces the set to two equations and two variables ux and uy:

−iψ2ux = iψ2ux
κ2

x

κ2
z
− iux(κ2

z + κ2
x) + 2ψuy, (9.33)

−iψ2uy = −κ2
z (iuy − qux/ψ) − (2 + q)ψux. (9.34)

Collecting terms with ux and uy gives (
iψ2 κ

2

κ2
z
− iκ2

)
ux + 2ψuy = 0, (9.35)qκ2

z

ψ
− (2 + q)ψ

 ux +
(
iψ2 − iκ2

z

)
uy = 0, (9.36)

where κ2 = κ2
x + κ2

z . Taking the determinant of A in A · u = 0 to be zero we have the following quadratic
in ψ2: (

ψ2 κ
2

κ2
z
− κ2

) (
ψ2 − κ2

z

)
+ 2ψ

qκ2
z

ψ
− (2 + q)ψ

 = 0, (9.37)

which we rearrange to:
κ2

κ2
z
ψ4 − 2

(
κ2 + 2 + q

)
ψ2 + κ2

z

(
κ2 + 2q

)
= 0. (9.38)

Solving the quadratic in ψ2 we have

ψ2 =
κ2

z

κ2

[
κ2 + 2 + q ±

√
4κ2 + (2 + q)2

]
. (9.39)
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It is straightforward to show from this that the stability condition, i.e. the condition that both roots are
postive, is 2q + κ2 > 0 which is identical to (9.19) derived above. For stability at all wavenumbers
we require q > 0, i.e. an angular velocity increasing with radius. For q < 0, there is instability for a
range of wavenumbers 0 < κ2 < 2|q| and the maximum growth rate is |ψmax| = |q|/2 at a wavenumber
κ2

z,max = (1 + q/4)|q| (and κx = 0).

9.3.3 MRI: remarks

We saw above that an accretion disc with a weak vertical magnetic field suffers an instability with some
minimum wavelength. From vertical force balance, we see that H ∼ $cs/vKep where H is the thickness
of the disc, cs is the sound speed and vKep is the Keplerian orbit speed. Evidently, if this instability is to
be effective the minimum wavelength must be less than H, so that since q = −3/2 we see from (9.19)
that

2πvA
√

3Ω
.
$cs

vKep
=⇒ β &

4π2

3γ
. (9.40)

The magnetic field must not therefore become too strong relative to the thermal pressure. Also, a strong
magnetic field would be buoyantly unstable.

We looked here at the axisymmetric modes where the unperturbed field is parallel to the rotation axis; in
reality we would expect the field to be dominated by its azimuthal component since this is the direction
of the shear. The instability does operate on a purely azimuthal field but the modes are non-axisymmetric
and the dispersion relation is more complex. Numerical nonlinear analysis of this instability shows a
steady-state dynamo effect as well as the desired angular momentum transport with a Shakura-Sunyaev
α parameter of roughly the right magnitude, 0.01 to 0.1. However, many issues remain and the instability
and how it works in discs is still far from fully understood.

Finally, note that in the non-magnetic limit vA → 0 the dispersion relation becomes

ω2

Ω2 = 2(2 + q)
k2

z

k2 , (9.41)

so that we recover the Rayleigh stability condition q > −2 derived at the beginning of this section.

Exercises

9.1 Equilibria in non-convective stars

A non-rotating upper main-sequence star is radiative apart from a small convective core, which
we can ignore here.

(a) Use the Spitzer conductivity to make an order-of-magnitude estimate of the diffusive timescale
on which any magnetic field present will evolve, and compare this to the main-sequence lifetime
of the star and to the dynamic (Alfvén) timescale for a magnetic field of 1kG.

(b) The Ohmic timescale in the interior is much greater than the main-sequence lifetime of the
star, but the Ohmic timescale in the exterior is very short. Assuming that the kinetic viscosity is
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large, show that after some time any magnetic field present settles into an equilibrium (that is, in
an energy minimum) and argue that in equilibrium, the field is potential outside the star and non-
force free in the interior. [Hints: note that the plasma-β is high inside and low outside the star, and
use the vanishing force-free field theorem. Once formed, this equilibrium evolves quasi-statically
on the interior Ohmic timescale which is much longer than other timescales of interest.]

(c) The equilibrium is axisymmetric. Using cylindrical coordinates ($, φ, z) show that the field
can be expressed as the sum of poloidal and toroidal components as

$B = ∇ψ × φ̂ + Fφ̂ (9.42)

where φ̂ is the azimuthal unit vector and ψ and F are functions of $ and z, and that the poloidal
and toroidal fields are associated with toroidal and poloidal currents, respectively. By considering
azimuthal force balance, show that contours of F in the meridional plane are parallel to those of
ψ, i.e. that F = F(ψ). [Hint: show that (∇ψ) × (∇F) = 0.]

(d) The interiors of stars have β � 1. Show that an arbitrary axisymmetric magnetic field config-
uration can be added to a star and an equilibrium constructed by making small adjustments to the
pressure and density fields. Ignore surface effects as well as any changes in the gravitational po-
tential. Argue that this result can be generalised to non-axisymmetric fields. Note: an equilibrium
does not necessarily need to be stable; it can also be unstable.

9.2 Kink instability in solar coronal loops
A coronal loop of magnetic field links two sunspots of opposite polarity. According to one theory
of solar flares, reconnection events are triggered when a loop crosses the kink instability threshold.

(a) In a straight flux tube, the growth rate of the kink m = 1 instability is comparable to the Alfvén
frequency, defined as ωA ≡ vφA/$ where vφA is the Alfvén speed associated with the azimuthal
component Bφ of the magnetic field and $ is the cylindrical radius. An axial field component Bz

can stabilise the field by providing an extra tension against which the instability must do work. In
a tube where Bφ ∝ $, by consideration of the force balance perpendicular to the tube axis show
that the stability criterion is

kzBz >
Bφ
$
, (9.43)

where kz = 2π/λz is the wavenumber of the instability. [Hint: first show what force is required
to produce the growth rate ωA and then equate this to the restoring Lorentz force from the axial
field.]

(b) We can make the approximation that the stability criterion for a curved flux tube does not differ
enormously from that in a straight tube. The field between the two sunspots is initially untwisted,
i.e. Bφ = 0 and then one of the spots slowly rotates. Calculate the energy required to twist one
sunspot up to the instability threshold by consideration of the Lorentz force in a shallow layer in
the sunspot where Bφ changes from to its value in the coronal loop. As the tube is twisted, it passes
quasi-statically through a series of force-free equilibria; show that the α parameter in the force-
free equation ∇ × B = αB increases from 0 up to some value. When the instability threshold is
passed, the field in the corona relaxes back to the lowest energy state, i.e. the curl-free field α = 0;
make an estimate of the energy released in the flare and equate this to the sunspot-rotating energy
calculated earlier.
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Appendix A

Useful information

A.1 Physical constants

speed of light c 3 × 1010 cm s−1

gravitational constant G 2/3 × 10−7 cm3 g−1 s−2

Planck constant h 2/3 × 10−26 erg s
~ = h/2π 10−27 erg s

Boltzmann constant kB 1.4 × 10−16 erg K−1

Avogadro’s number NA 6 × 1023 mol−1

gas constant R = kBNA 8.31 × 108 erg mol−1 K−1

Stefan-Boltzmann constant σSB = π2k4
B/60~3c2 5.67 × 10−5 erg cm−2 s−1 K−4

radiation constant a = 4σ/c 7.6 × 10−15 erg cm−3 K−4

fine structure constant α = e2/~c 1/137
electron charge e 4.8 × 10−10 esu

e2 1.44 × 10−7 eV cm
electron volt eV 1.6 × 10−12 erg
electron mass me 9 × 10−28 g

511 keV
proton mass mp ≈ 1 g mol−1/NA 5/3 × 10−24 g

938 MeV
proton/electron mass ratio mp/me 1836
proton-neutron mass difference mn − mp 1.3 MeV
Rydberg constant R∞ = αmec/2h 1.1 × 105 cm−1

13.6 eV
Bohr radius a0 = ~2/mee2 5.3 × 10−9 cm
classical electron radius r0 = e2/mec2 2.8 × 10−13 cm
Thompson cross section σT = (8π/3)r2

0 2/3 × 10−24 cm2

Compton electron wavelength h/mec 2.4 × 10−10 cm
~/mec 3.9 × 10−11 cm
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A.2 Astrophysical constants

Solar luminosity L� 4 × 1033 erg s−1

Solar mass M� 2 × 1033 g
Solar radius R� 7 × 1010 cm
Jupiter mass MJ 10−3 M�
Jupiter radius RJ 0.1 R�
Earth mass M⊕ 3 × 10−6 M�
Earth radius R⊕ 0.009 R�
astronomical unit AU 1.5 × 1013 cm
parsec pc 3 × 1018 cm
light year ly 1018 cm
Hubble constant H0 ≈ 71 km s−1 Mpc−1

Eddington luminosity LEdd = 4πcGMm/σT 3.3 × 104 (M/M�) L�
Schwarzschild radius rS = 2GM/c2 3 (M/M�) km

A.3 Vector identities and vector calculus identities

a · b × c = c · a × b = b · c × a (A.1)

a × (b × c) = (a · c)b − (a · b)c (A.2)

∇ ×∇φ = 0 (A.3)

∇ ·∇ × a = 0 (A.4)

∇2 = ∇ ·∇, i.e. ∇2φ = ∇ ·∇φ and ∇2a = (∇2ax,∇
2ay,∇

2az) (A.5)

∇ ×∇ × a = ∇(∇ · a) − ∇2a (A.6)

∇(a · b) = (a ·∇)b + (b ·∇)a + a ×∇ × b + b ×∇ × a (A.7)
1
2
∇a2 = (a ·∇)a + a ×∇ × a (A.8)

∇ · (a × b) = b ·∇ × a − a ·∇ × b (A.9)

∇ × (a × b) = a(∇ · b) − b(∇ · a) + (b ·∇)a − (a ·∇)b (A.10)

∇ · (φa) = a ·∇φ + φ∇ · a (A.11)

∇ × (φa) = φ∇ × a + a ×∇φ (A.12)

∇(ψφ) = ψ∇φ + φ∇ψ (A.13)

A.4 Symbols used in these notes

To avoid confusion I’ve tried to avoid symbol overlap.
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Time t s
Density ρ g cm−3

Pressure P erg cm−3

Fluid velocity u cm s−1

components thereof u, v, w
Magnetic field B gauss = erg1/2 cm−3/2

Dynamic viscosity µ g cm−1 s−1

Kinetic diffusivity ν cm2 s−1

Thermal diffusivity χ cm2 s−1

Magnetic diffusivity η cm2 s−1

Charge density ρe esu cm−3 =erg1/2 cm−5/2

Current density J esu cm−2 s−1 =erg1/2 cm−3/2 s−1

Coordinates: (spherical) radius r
cylindrical radius $

colatitude θ

azimuthal angle φ

A.5 A collection of useful results from thermodynamics

I list here a series of useful relations and concepts without going into the detail of their origin. First of
all, the zeroth law is

There are three bodies A, B and C. If A and B are both separately in equilibrium with
C, then A and B are in equilibrium with each other.

From this we can define some property of a body, temperature. If two bodies have the same temperature
then they are in thermal equilibrium with each other. Furthermore, we know from experience that the
state of a given mass of fluid can be completely specified by a number of parameters and that all other
parameters can be worked out from the equation of state. For instance, the state of a given mass of air
is completely specified by its pressure P and its volume V . Note that pressure is an intensive variable as
it can be measured at a particular point in space and does not depend on the size of the system, while
volume is an extensive variable which obviously does depend on size. We could alternatively specify
the state of air by pressure and specific volume v = 1/ρ and then calculate other variables such as
temperature from the equation of state. In the case of an ideal gas, the equation of state is

P = ρRT (A.14)

where R is a constant with units erg g−1 K−1 whose value is simply the universal gas constant divided
by the mean molecular weight. In some fluids we might need more than two variables to completely
describe the state of a fluid, for instance where the mean molecular weight is not uniform, or in some
cases we might need only one variable, in which case we speak of a barotropic equation of state ρ = ρ(P).
The first law of thermodynamics is

If the state of an otherwise isolated system is changed by the performance of work, the
amount of work needed depends solely on the change accomplished, and not on the means
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by which the work is performed, nor on the intermediate stages through which the system
passes between its initial and final states.

which can alternatively be expressed in the simpler form

Energy is conserved if heat is taken into account.

From this it is possible to demonstrate the existence of a quantity called the internal energy U which is
a function of state, i.e. it can be expressed as a function of the variables which describe the state of the
system, for instance U = U(P,V), and that changes in U are given by

dU = dQ + dW (A.15)

where dQ and dW are the heat added to and the work done on the system.

The second law states that

It is impossible to devise an engine which, working in a cycle, shall produce no effect
other than the transfer of heat from a colder to a hotter body.

but note that there are several popular ways of expressing this law and that their equivalence is not
always obvious at first glance. In a fluid where P and V are the only two independent variables

dU = TdS − PdV, (A.16)

where entropy S is a new function of state. There are more terms on the right-hand side for systems with
extra degrees of freedom; a favourite of textbooks is magnetisable systems where −PdV is replaced or
joined by H · dM. In addition, it is often useful to use a new function of state – enthalpy, defined thus:

H ≡ U + PV so that dH = TdS + VdP, (A.17)

whereby we know that it must be a function of state because it is defined as a function only of other
functions of state.

For reversible changes, it is possible to equate the terms of (A.15) and (A.16) and write

dQ = TdS and dW = −PdV. (A.18)

The heat capacities are defined as dQ/dT in a reversible change under various conditions. From (A.16)
and (A.18) we have

dQ = dU + PdV, (A.19)

from which we see that the heat capacites at constant volume CV and constant pressure CP are

CV =

(
dU
dT

)
V

and CP =

(
dU
dT

)
P

+ P
(
dV
dT

)
P
. (A.20)

It is fairly straightforward to prove that CP ≥ CV , or in other words, that the ratio of the two γ ≡

CP/CV ≥ 1. Furthermore it is possible to show that(
dP
dV

)
S

= γ

(
dP
dV

)
T

(A.21)
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which is useful because we often need to calculate the relation between pressure and volume in an
adiabatic change, and it is usually simple to calculate the two quantities on the right-hand side. For
instance, for an ideal gas γ is a constant, not depending on the state of the gas, and from the equation of
state we have (dP/dV)T = P/V , giving PVγ = const during an adiabatic change.

Extensive quantities such as V and CP can be made intensive by dividing them by the mass of the system,
giving in these cases the specific volume and specific heat capacity, meaning volume and heat capacity
per unit mass. Of course, the specific volume is simply 1/ρ.

Finally, we quote here the law of entropy increase

The entropy of an isolated system can never diminish.
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