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Planck constant

Planck constant over 2w
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.. most excellent tensor paper....

€c=299792458ms* (exact)
k = 1.380 6504(24) x 102 JK*

o = 5.670 400(40) x 10° W m2K™*
+7.0x10°

Na, L = 6.022 141 79(30) x 10 mol*
+50x10°®

R=8.314 472(15) Jmol *K*

me = 9.109 382 15(45) x 10 kg
m, = 1.672 621 637(83) x 10" kg
my/m. = 1836.152 672 47(80)
e=1.602 176 487(40) x 10 C
ge = —2.002 319 304 3622(15)

0p = 5.585 694 713(46)

On = —3.826 085 45(90)

m, = 1.883531 30(11) x 10 ® kg
o' = 137.035 999 679(94)

h = 6.626 068 96(33) x 10> Js

/i = 1.054 571 628(53) x 10 Js
ap = 0.529 177 208 59(36) x 10°m
ug = 927.400 915(23) x 10 % JT*

I feel I have come to a deep and abiding understanding of

relativistic tensors.... The best explanation of tensors seen anywhere!” -- physics graduate student


http://physics.nist.gov/cuu/Constants/
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From OAD: sn=opp/ hyp
cos = adj / hyp

sn?+cosg=1
C From OAB: tan = opp / adj
la /N tan?+ 1= sec?
= (and withOAD) tan =sin/ cos
........................... sec=hyp/adj=1/cos
""""""""" From OAC: =l / opp
cosa A l/ +1=cs2
(and with OAD) =cos/ gn
© csc=hyp/opp=1/sn
Z § tan a
N .
sina
a cosa D B
Ok Ssec a

Copyright 2001 Inductive Logic. All rightsreserved.
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1 Introduction

Why Funky?

The purpose of the “Funky” series of documents is to help develop an accurate physical, conceptual,
geometric, and pictorial understanding of important physics topics. We focus on areas that don’t seem to
be covered well in most texts. The Funky series attempts to clarify those neglected concepts, and others
that seem likely to be challenging and unexpected (funky?). The Funky documents are intended for serious
students of physics; they are not “popularizations” or oversimplifications.

Physics includes math, and we’re not shy about it, but we also don’t hide behind it.

Without a conceptual understanding, math is gibberish.

This work is one of several amed at graduate and advanced-undergraduate physics students. Go to
http://physi cs.ucsd.edu/~emichels for the latest versions of the Funky Series, and for contact information.
We’re looking for feedback, so please let us know what you think.

How to Use This Document

| Thiswork isnot atext book.

There are plenty of those, and they cover most of the topics quite well. Thiswork is meant to be used
with a standard text, to help emphasize those things that are most confusing for new students. When
standard presentations don’t make sense, come here.

You should read dl of this introduction to familiarize yoursdlf with the notation and contents. After
that, this work is meant to be read in the order that most suits you. Each section stands largely alone,
though the sections are ordered logically. Simpler material generally appears before more advanced topics.
Y ou may read it from beginning to end, or skip around to whatever topic is most interesting. The “Shorts”
chapter isadiverse set of very short topics, meant for quick reading.

If you don’t understand something, read it again once, then keep reading.
Don’t get stuck on one thing. Often, the following discussion will clarify things.

The index is not yet developed, so go to the web page on the front cover, and text-search in this
document.

Why Physicists and Mathematicians Dislike Each Other

Physics goals and mathematics goals are antithetical. Physics seeks to ascribe meaning to mathematics
that describe the world, to “understand” it, physically. Mathematics seeks to strip the equations of all
physical meaning, and view them in purely abstract terms. These divergent goals set up a natural conflict
between the two camps. Each goal has its merits: the value of physicsis (or should be) self-evident; the
value of mathematical abstraction, separate from any single application, is generality: the results can be
used on awide range of applications.

Thank You

| owe a big thank you to many professors at both SDSU and UCSD, for their generosity even when |
wasn’t a real student: Dr. Herbert Shore, Dr. Peter Salamon, Dr. Arlette Baljon , Dr. Andrew Cooksy, Dr.
George Fuller, Dr. Tom O’Neil, Dr. Terry Hwa, and others.

Scope
What This Text Covers

This text covers some of the unusua or challenging concepts in graduate mathematical physics. Itis
also very suitable for upper-division undergraduate level, as well. We expect that you are taking or have
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taken such a course, and have a good text book. Funky Mathematical Physics Concepts supplements those
other sources.

What This Text Doesn’t Cover

Thistext is not a mathematical physics coursein itself, nor areview of such acourse. We do not cover
all basic mathematical concepts; only those that are very important, unusual, or especially challenging

(funky?).
What You Already Know

This text assumes you understand basic integra and differential calculus, and partia differential
equations. Further, it assumes you have a mathematical physics text for the bulk of your studies, and are
using Funky Mathematical Physics Concepts to supplement it.

Notation

Sometimes the variables are inadvertently not written in italics, but | hope the meanings are clear.
” refers to places that need more work.
TBS To be supplied (one hopes) in the future.

Interesting points that you may skip are “asides,” shown in smaller font and narrowed margins. Notes to
myself may also beincluded as asides.

Formulas: We write the integral over the entire domain as a subscript “c0”, for any number of
dimensions.

1-D: .[ dx 3-D: .[ d3x
Evaluation between limits: we use the notation [function].” to denote the evaluation of the function
between aand b, i.e,
[f(Q)] = f(b)— f(@).  Forexample, [ ot 3¢ dx=[x%o'=13-0°=1.
We write the probability of an event as “Pr(event).”

Column vectors: Since it takes a lot of room to write column vectors, but it is often important to
distinguish between column and row vectors, | sometimes save vertical space by using the fact that a
column vector is the transpose of arow vector:

=(a,b,c,d)T

o o T 9

Random variables: We use a capital letter, e.g. X, to represent the population from which instances of
arandom variable, x (lower case), are observed. In asense, X isarepresentation of the PDF of the random
variable, pdfx(X).

We denote that a random variable X comes from a population PDF as: X € pdfy, €g.: X € % To
denote that X isa constant times arandom variable from pdfy, we write: X € k pdfy, 9. X € k..

For Greek letters, pronunciations, and use, see Funky Quantum Concepts. Other math symbals:

Symbol  Definition

\v4 for all
3 there exigs
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such that

iff

if and only if

proportional to. E.g., a o« b means “aisproportiona to b”

perpendicular to

therefore

of the order of (sometimes used imprecisely as “approximately equals™)

is defined as; identically equal to (i.e., equal in all cases)

implies

leadsto

tensor product, aka outer product

el U

direct sum

In mostly older texts, German type (font: Fraktur) is used to provide still more variable names:

German German
Latin Capital Lowercase  Notes

A A a Distinguish capital from U, V
B B b
C ¢ ¢ Distinguish capital from E, G
D D D Distinguish capital from O, Q
E ¢ e Distinguish capital from C, G
F § f
G & g Distinguish capital from C, E
H 9 b
I 5 i Capita almost identical to J
J 3 j Capita almost identical to |
K R ¢
L £ [
M m m Distinguish capital from W
N N n
0 O 0 Distinguish capital from D, Q
P iy p
Q 9 q Distinguish capital from D, O
R R T Distinguish lowercase from x
S S 5 Distinguish capital from C, G, E

5/7/2015 11:21
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T T t Distinguish capital from |

U [ u Digtinguish capital from A, V
\Y D 0 Distinguish capital from A, U
W 2 0 Distinguish capital from M

X x r Distinguish lowercase fromr
v D) y

z 3 3
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2 Random Topics

What’s Hyperbolic About Hyperbolic Sine?

................ X+y=1 { +
......... %
. area= al2
XZ _ y2 = l
& area=al2 ¢
Y sina \ 4 |snha
a Ly
v Cosa “Tunit ":._: cosh a

From where do the hyperboalic trigonometric functions get their names? By analogy with the circular
functions. We usudly think of the argument of circular functions as an angle, a. But in a unit circle, the
area covered by theangle aisa/ 2 (above left):

areazizzrzzE (r=1.
2r 2
Instead of the unit circle, X¥* + y* = 1, we can consider the area bounded by the x-axis, the ray from the
origin, and the unit hyperbola, x* — y? = 1 (above right). Then the x and y coordinates on the curve are
called the hyperbolic cosine and hyperbolic sine, respectively. Notice that the hyperbola equation implies
the well-known hyperbolic identity:

X =cosha, y=8nha, xz—y2=1 = cosh?-sinh? =1,

Proving that the area bounded by the x-axis, ray, and hyperbola satisfies the standard definition of the
hyperbolic functions requires evaluating an elementary, but tedious, integral: (??isthe following right?)

a 1 X 2
area=—=—xy— dx Use =vx- -1
2 2xy .[1y y
X
a=xVx2—1—2J1Vx2—1dx
For theintegral, let x=secH, dx=tandsec do = y=vsec?6 -1=tan6
X X X Xqg 2
J\/xz—ldx=.[ Jsec?0 -1 tanesecedev:j tanzeseced9=J' 9”39 do
1 1 1 1 cos3o

Wetry integrating by parts (but fail):

dV =secOtanf db

Thisistoo hard, so we try reverting to fundamenta functions sin() and cos( ):

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 12 of 263




physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

U =sinf dV =cos30sind do = dU =cos® do, V =%cos‘29
X 2 . X X . X

2J' 5'”39 d9=2UV—2J' v dy =-Sn9 —J' cos 26 cosé do Use 5'”20 —secOtand = xy
1 cos 0 005291 1 cos” 0|,

X

_Xy_.[l secO d = xy (In|sec€+tan9|)|l—xy (In X+ X 1)1
=Xy —In|x+ Xz—l‘—,lﬂl/
a=xy—xy+In|x+ x2—1‘=lnx+ xz—l‘

e =x+Vx?-1

Solvefor xin terms of a, by squaring both sides:

e =%+ 2xX% -1+ X% —1= 2x(x+ X2 —1)—1= 2xe? -1

e —
ea
2a a
e +1=2xe
(ea+e‘a)
ef+e?=2x = xEc()shazT

The definition for sinh follows immediately from:

cosh?—sinh? =x? - y? =1= y=vx?-1

2
2 a —a
ea+e‘aj 1_\/e2""+2+e‘za 1_\/e2""—2+e‘2"’1 ~ (e —€ ) ed_eg?

2 4

sinha=y= (

Basic Calculus You May Not Know

Amazingly, many calculus courses never provide a precise definition of a “limit,” despite the fact that
both of the fundamenta concepts of calculus, derivatives and integrals, are defined as limits! So here we

go:
Basic calculusrelies on 4 major concepts:
1. Functions
2. Limits

3. Derivatives

4. Integrals

1. Functions. Briefly, (in real andysis) a function takes one or more real values as inputs, and
produces one or more real values as outputs. The inputs to a function are caled the arguments. The
simplest case is a real-valued function of areal-valued argument e.g., f(x) = sin x. Mathematicians would
write (f : R* — RY), read “f is a map (or function) from the real numbers to the real numbers.” A function
which produces more than one output may be considered a vector-valued function.

2. Limits. Definition of “limit” (for a real-valued function of asingle argument, f: R* — R"):
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L isthe limit of f(x) as x approaches a, iff for every ¢ > 0, there exigs ad (> 0) such that [f(x) — L| <e¢
whenever 0< [x—a|<J. Insymbols:

L=lim f(x) iff Ve>0,35suchthat |f(x)—L|<e whenever O<|x—a/<5.

X—a

This says that the value of the function at a doesn’t matter; in fact, most often the function is not defined at
a. However, the behavior of the function near a is important. If you can make the function arbitrarily
close to some number, L, by restricting the function’s argument to a small neighborhood around a, then L is
the limit of f asx approaches a.

Surprisingly, this definition also applies to complex functions of complex variables, where the absolute
value isthe usua complex magnitude.

2_
Example: Show that lim -2
x->1 x-1

=4,

Solution: We prove the existence of J given any ¢ by computing the necessary ¢ from ¢. Note that for

2_
2 12 =2(x+1) . Thedéfinition of alimit requires that

X1,

2x2 -2
x-1

—4{<g whenever 0<|x—]j<5.

We solve for x in terms of ¢, which will then define J in terms of . Since we don’t care what the function
isat x = 1, we can use the simplified form, 2(x + 1). When x = 1, thisis 4, so we suspect the limit = 4.
Proof:

2X+D) -4 <e = 2[(x+)-2/<e = X=-1<— or 1-— < x<1+—.
[2(x+2) -4 (x+D -2 x-4 <3 . ,

So by setting 0 = &/2, we construct the required 6 for any given ¢. Hence, for every ¢, there exists a o
satisfying the definition of a limit.

3. Derivatives. Only now that we have defined alimit, can we define a derivative:
fi(x) = lim fx+a)- (%)
AX—0 AX

4. Integrals. A smplified definition of an integral is an infinite sum of areas under a function
divided into equal subintervals (Figure 2.1, |€ft):

j f(x) dx= lim —Zf(b a) j (simplified definition) .

N—w

For practical physics, this definition would be fine. For mathematical preciseness, the actual definition of
an integral isthe limit over any possible set of subintervals, so long as the maximum of the subinterval size
goes to zero. This is called “the norm of the subdivision,” written as ||AX|:

: N
Lf(x)dXE lim Zf(xi)Axi (precise definition) .

s ]-04
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Figure 2.1 (Left) Simplified definition of an integral as the limit of a sum of equally spaced
samples. (Right) Precise definition requires convergence for arbitrary, but small, subdivisions.

Why do mathematicians require this more precise definition? It’s to avoid bizarre functions, such as:
f(x) is1if x isrationa, and zero if irrational. This means f(x) toggles wildly between 1 and 0 an infinite
number of times over any interval. However, with the simplified definition of an integral, the following is
well defined:

3.14 T
jo f (X) dx = 3.14, but jo f(x)dx=0 (with smplified definition of integral) .

But properly, and with the precise definition of an integral, both integrals are undefined. (There are other
types of integrals defined, but they are beyond our scope.)

The Product Rule
Given functions U(x) and V(x), the product rule (akathe Leibniz rule) says that for differentials,
d(UV)=UdVv+Vdu .

This leads to integration by parts, which is mostly known as an integration tool, but it is also an important
theoretical (analytic) tool, and the essence of Legendre transformations.

Integration By Pictures
We assume you are familiar with integration by parts (IBP) as a tool for performing indefinite
integrals, usualy written as:

jUdeUV—J V dU, which really means

j U(X)V '(X) dx = U (X)V(x) —j V(X) U (x) dx
ITI ITI

This comes directly from the product rule above: U dV =d(UV)-V dU , and integrate both sides. Note
that x istheintegration variable (not U or V), and x is aso the parameter to the functions U(x) and V(X).
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V() V(%)
V) = v

uav

integration
path

V(a)

U@Wv(a) [vVdu U Vdu= -Ju dv | U
= u(b), ( ' |
U@ U(b) U@ =0 V()=0 U(a{/(a) . g(b)

Figure 2.2 Three cases of integration by parts (Left) U(x) and V(X) increasing. (Middle) V(x)
decreasing to 0. (Right) V(x) progressing from zero, to finite, and back to zero.

The diagram above illustrates IBP in three cases. The léeft isthe simplest case where U(x) and V(x) are
monotonically increasing functions of x (note that x is not an axis, U and V are the axes, but x is the
integration parameter). IBP says

j U dvV=[UGVL J' V dU =[U (b)V(b)-U (a)V(a)] J' Vdu .
m

The LHS (left hand side) of the equation is the red shaded area; the term in brackets on theright isthe
big rectangle minus the white rectangle; the last term is the blue shaded area. The left diagram illustrates
IBP visualy as areas. The term in brackets is called the boundary term (or “surface term”), because in
some applications, it represents the part of the integral corresponding to the boundary (or surface) of the
region of integration.

The middle diagram illustrates another common case: that in which the surface term UV is zero. In
thiscase, UV=0at x =aand x = b, because U(a) = 0 and V(b) = 0. The shaded areaistheintegral, but the
path of integration meansthat dU > 0, but dV < 0. Therefore [V dU >0, but JU dV <O0.

Theright diagram shows the case where one of U(X) or V(X) starts and ends at 0. For illustration, we
chose V(a) = V(b) = 0. Then the surface termis zero, and we have:

b b
[U (x)V(x)]X:a1 =0 = N aU dv = _ V du .

For V(x) to start and end at zero, V(x) must grow with x to some maximum, Vi, and then decrease
back to 0. For simplicity, we assume U(X) isawaysincreasing. The V dU integrd isthe blue striped area
bel ow the curve; the U dV integral isthe areato the left of the curves. We break the dV integral into two
parts: path 1, leading up to Vi, and path 2, going back down from Vs to zero. The integral from 0 to
Vmex (path 1) isthered striped area; the integral from Vi back down to O (path 2) is the negative of the
entire (blue + red) striped area. Then the blue shaded region is the difference: (1) the (red) areato the left
of path 1 (where dV is positive, because V(X) is increasing), minus (2) the (blue + red) area to the left of
path 2, because dV is negative when V(X) is decreasing:

jUdv j”WUdV+J' UdV=jVVZZUdV—J'\:/”:‘szv

] V =Vinax 1 L 1
path1+ path2 path1 path 2 path1 path 2
b
=— Vdu.
x=a

Theoretical Importance of IBP

Besides being an integration tool, an important theoretical consequence of IBP is that the variable of
integration is changed, from dV to dU. Many times, one differential is unknown, but the other is known:
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Under an integral, integration by parts allows one to exchange a derivative
that cannot be directly evaluated, even in principle, in favor of onethat can.

The classic example of this is deriving the Euler-Lagrange equations of motion from the principle of
dtationary action. The action of a dynamic system is defined by

S= J L(q(t), 4(t)) dt .

where the lagrangian is a given function of the trgjectory q(t). Stationary action means that the action
does not change (to first order) for small changes in the trgjectory. |.e, given a small variation in the
trajectory, dq(t):

5S=0= JL(q+5qq+5q)dt S= H 5q+ %5q}dt uSe5q=%5q

oL oLd
=| | =90q+——4q|dt.
.[L)q ar oq dt q}

The quantity in brackets involves both dg(t) and its time derivative, dg-dot. We are free to vary dq(t)
arbitrarily, but that fully determines dg-dot. We cannot vary both dg and dg-dot separately. We also know
that d¢(t) = 0 at its endpoints, but dg-dot is unconstrained at its endpoints. Therefore, it would be smpler if
the quantity in brackets was written entirely in terms of dg(t), and not in terms of dg-dot. I1BP alows usto
eliminate the time derivative of dq(t) in favor of the time derivative of oL/dg-dot. Since L(q, g-dot) is
given, we can easly determine oL/dg-dot. Therefore, this is a good trade. Integrating the 2™ term in
brackets by parts gives:

L u=2t du = 4% g, av=Isqdt, v=sq
aq dt oq dt
jﬁﬂath UV—JVdU— As ja d oL
oq dt dtaq

U

The boundary term is zero because dg(t) is zero at both endpoints. The variation in action §S is now:
0S= {————_}5th=0 voq(t) .

The only way dS = 0 can be satisfied for any dq(t) isif the quantity in brackets isidentically 0. Thus IBP
has lead usto an important theoretical conclusion: the Euler-Lagrange equation of motion.

This fundamental result has nothing to do with evaluating a specific difficult integral. IBP: it’s not just
for hard integrals any more.

Delta Function Surprise

Rarely, one needs to consider the 3D §-function in coordinates other than rectangular. The 3D §-
function is written o%r — r’). For example, in 3D Green’s functions, whose definition depends on a o°-
function, it may be convenient to use cylindrical or spherical coordinates. In these cases, there are some
unexpected consequences [Wyl p280]. This section assumes you understand the basic principle of a 1D
and 3D &-function. (See the introduction to the delta function in Funky Quantum Concepts.)

Recall the defining property of 53(r - r’):

Jd3r53(r—r'):l Vet (v="foraln) = strés(r—r‘)f(r):f(r‘).
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The above definition is “coordinate free,” i.e. it makes no reference to any choice of coordinates, and is true
in every coordinate system. As with Green’s functions, it is often helpful to think of the J-function as a
function of r, which is zero everywhere except for an impulse located at r’. Aswe will see, this meansthat
it is properly a function of r and r’ separately, and should be written as 8%(r, r’) (like Green’s functions
are).

Rectangular coordinates: In rectangular coordinates, however, we now show that we can simply
break up 5°(x, y, 2) into 3 components. By writing (r — r’) in rectangular coordinates, and using the
defining integral above, we get:

r-r'=(x-x,y-y.,z-2) = J.oodx Oody wd253(x—x',y—y',z—z')=1
= 53(x—x',y—y',z—z‘)=5(x—x‘)5(y—y‘)5(z—z').
In rectangular coordinates, the above shows that we do have trandation invariance, so we can smply write:

83(x,y,2)=5(03(y)3(2) -

In other coordinates, we do not have trandation invariance. Recall the 3D infinitessmal volume
element in 4 different systems: coordinate-free, rectangular, cylindrical, and spherical coordinates:

d% =dxdydz=r dr dg dz=r?sing dr do d¢ .

The presence of r and 6 imply that when writing the 3D &-function in non-rectangular coordinates, we must
include a pre-factor to maintain the defining integral = 1. We now show this explicitly.

Cylindrical coordinates: In cylindrical coordinates, for r > 0, we have (using the imprecise notation
of [Wyl p280]):

r-r'=(r—-r'¢g—¢',z-2" =
0 27 0 3p o o
.[o er.O dqﬁj_oodzr& (r-r¢g—¢,z-2)=1
= 53(r—r',¢—¢',z—z')=%5(r—r')5(¢—¢')5(z—z),r'>0
Note the 1/r* pre-factor on the RHS. This may seem unexpected, because the pre-factor depends on

the location of 8%( ) in space (hence, no radial trandation invariance). Therectangular coordinate version of
8%() has no such pre-factor. Properly speaking, 8%( ) isn’t a function of r — r’; it is a function of r and r’

separately.

In non-rectangular coordinates, 6%( ) does not have tranglation invariance,
and includes a pre-factor which depends on the position of §°( ) in space, i.e. dependsonr’.

At r’ =0, the pre-factor blows up, so we need a different pre-factor. We’d like the defining integral to
be 1, regardless of ¢, since all values of ¢ are equivalent a the origin. This means we must drop the d(¢—
#), and replace the pre-factor to cancel the constant we get when we integrate out ¢

“ar [ dp[” dzr 53 —r'p—¢'2—2) = '=0
.[o rJ.O ¢—oo zr 6°(r—r'g—¢',z—2)=1 r'=

= 53(r—r',¢—¢',z_z')=i5(r)5(z_z-)l r'=0,
2rr

assuming that .[:dr o(r)=1
Thislast assumption is somewhat unusual, because the 5-function is usualy thought of as symmetric about

0, where the above radial integral would only be %. The assumption implies a “right-sided” J-function,
whose entire non-zero part is located at 0*. Furthermore, notice the factor of 1/r in 6(r — 0, z— Z’). This
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factor blows up a r = 0, and has no effect when r # 0. Nonetheless, it is needed because the volume
element r dr d¢ dzgoesto zeroasr — 0, and the Lr in o(r — 0, z— Z’) compensates for that.

Spherical coordinates. In spherical coordinates, we have similar considerations. First, away from the
origin, r’ > 0:

© T 2r
2 - 3 ot o _ —
jo drjodejo dgr2sn0s3(r—r'0-0"¢—¢)=1 =

% 9ﬁ(r—r‘)5(9—0‘)5(¢—¢‘), r'>0. [Wyl8.9.2p280]
n

S (r-r.0-0'9-¢)=—
r=d

Again, the pre-factor depends on the position in space, and properly speaking, 6°( ) isa function of r, r’, 6,
and & separately, not simply a function of r —r” and 6 — §’. At the origin, we’d like the defining integral to
be 1, regardless of ¢ or . So we drop the (¢ — ¢’) d(6 — €), and replace the pre-factor to cancel the
constant we get when we integrate out ¢ and 6:

© T 2r 2 . 3 , N ,
J'O er'O dejo dgr2sin0 53(r-0,0-6"¢—¢") =1 r'=0

1

= 53(r—o,9—9',¢—¢)=4m2

o(r), r'=0

assuming that J:dr o(r)=1
Again, this definition uses the modified §(r), whose entire non-zero part is located at 0°. And similar to the
cylindrical case, thisincludesthe 1/r? factor to preserve theintegral at r = 0.

2D angular coordinates. For 2D angular coordinates 6 and ¢, we have:
T 2r . >
J'O dej'o dpsnO 52(0-0'9p—¢)=1  6'>0

= 52(9—9',¢—¢')=_i|5(9—9')5(¢—¢'), 6'>0.
sing
Once again, we have a specia case when 6’ = 0: we must have the defining integral be 1 for any value of ¢.
Hence, we again compensate for the 2z from the ¢ integral:

T 2 . 2 , ,
IO dejo dgpsing 52(0-6',9—¢)=1  0'=0

1

2 ) _
= 00m099) =5 e

50), 0'=0.

Similar to the cylindrical and spherical cases, this includes a 1/(sin #) factor to preserve the integral at
6=0.

Spherical Harmonics Are Not Harmonics

See Funky Electromagnetic Concepts for a full discussion of harmonics, Laplace’s equation, and its
solutionsin 1, 2, and 3 dimensions. Hereisabrief overview.

Spherical harmonics are the angular parts of solid harmonics, but we will show that they are not truly
“harmonics.” A harmonic is a function which satisfies Laplace’s equation:

V20(r)=0,  withr typicalyin2 or 3 dimensions.

Solid harmonics are 3D harmonics: they solve Laplace’s equation in 3 dimensions. For example, one
form of solid harmonics separates into a product of 3 functionsin spherical coordinates:
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®(r,0,¢) = R()P(O)Q(¢) = (Ar' +B r*('*l))am(cose)(q sinmy + D; cosmy)

where  R(r)=Ar' +gr (" istheradia part,
P(0) = R, (cos0) is the polar angle part, the associated Legendre functions,
Q(¢) = (C, sinmy + D, cosmy) is the azimuthal part .

The spherical harmonics are just the angular (6, ¢) parts of these solid harmonics. But notice that the
angular part alone does not satisfy the 2D Laplace equation (i.e., on a sphere of fixed radius):

2
VZZ%ﬁ[rZi}L 21_ ﬁ[gngﬁj+%a_2, but for fixed r :
re or or) r“dn@ o0 00) r°sin“0 o¢

11 1 0 [ .0 ) 1 0?
=—|——|9nf— [+—————|.
r2|sing 90 90 ) sin®0 o¢?
However, direct substitution of spherical harmonics into the above Laplace operator shows that the result is
not O (welet r =1). We proceed in small steps:

2
Q(#) = Csinmp + D cosmy = §7Q<¢)=—mZQ<¢).

For integer m, the associated L egendre functions, Py(cos 6), satisfy, for given | and m:

1 i(sine%) R, (cosd) = (—'('r—:l)+ mZJ R (cosé) .

r?sing 00

Combining these 2 results (r = 1):

z N AT
v (P(9)Q(¢))—Lm9ae(sﬂ969j+gnzea ¢2}(P(9)Q(¢))

= (1 (1 +2)+ M? ) Ry, (c0SO)Q(O) ~ M* Ry (cOSO)QA(O)

= (I +1) R (cos8)Q(6)
"""""""" Hence, the spherical harmonics are not solutions of Laplace’s equation,
i.e. they are not “harmonics.”

The Binomial Theorem for Negative and Fractional Exponents

Y ou may be familiar with the binomial theorem for positive integer exponents, but it is very useful to
know that the binomial theorem aso works for negative and fractional exponents. We can use this fact to

eadly find series expansions for thingslike % and 1+x=(1+ x)ﬂz.
- X

First, let’s review the Simple case of positive integer exponents:
n(n-1 n(n-1)(n-2 I
(a+b)" =a"b° LN +Qan—2b2 eran‘sb3 4.0,
1.2 1.2-3 n!

[For completeness, we note that we can write the general form of the m™ term:
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!
mh term=—""___gn-mpm ninteger >0; minteger,0<m<n ]
(n—m)!m!

But we’re much more interested in the iterative procedure (recursion relation) for finding the (m + 1)
term from the m™ term, because we use that to generate a power series expansion. The process is this:

1. Thefirstterm (m=0) isawaysa'’ = a", with an implicit coefficient C, = 1.

2. Tofind Cp, multiply Cy, by the power of ain the m" term, (n — m),
_(n—m)

3. divideit by (m+ 1), [the number of the new term we’re finding]: me T
m+

Cm

4. lower the power of aby 1 (to n—m), and
5. raisethepower of bby 1to(m+ 1).

Thisprocedureisvalid for al n, even negative and fractional n. A simple way to remember thisis

For any real n, we generate the (m + 1)™ term from the m™" term
by differentiating with respect to a, and integrating with respect to b.

The general expansion, for any n, isthen:

n(n-1)(n-2)..(n-m+1) 1 m
- a b,

m" term=

nrea; minteger >0

Notice that for integer n> 0, thereare n+1 terms. For fractional or negative n, we get an infinite series.

Example 1: Find the Taylor series expansion of % . Sincethe Taylor seriesis unique, any method
-X

we use to find a power series expansion will give us the Taylor series. So we can use the binomial
theorem, and apply the rules above, witha =1, b = (-x):

1 a4 (Do a (D) s 2 (DE2(3) a0 e
E=(1+(—x)) =1 +T1 (—x) +Tl (—x) +Tl (—X)° +...

2

=1+ X+ X o+ X"+

Notice that al the fractions, dl the powers of 1, and all the minus signs cancel.

. Thefirst termisa? = 1Y%

(1+ x)ll2 _wz, 112 +£(—£j—1 17322 +£[—£J[—§j L sz,

Example 2: Find the Taylor series expansion of v1+ x =(1+ x)l’2

2(1) 2 2)12) 2l 2\ 2)@2:3)
— 3\l
=1+1X_£X2+3X3__“+(_1)m+1(2m 3) m
2" 8 a8 -

where  pll=p(p-2)(p-4)..(20r1)

When Does a Divergent Series Converge?
Consider the infinite series

2

T+ X+ X+ o+ XN+l

When is it convergent? Apparently, when |x| < 1. What is the value of the series when x = 2 ?
“Undefined!” you say. But there is a very important sense in which the series converges for X= 2, and it’s
valueis—1! How so?

Recall the Taylor expansion (you can use the binomia theorem, see earlier section):
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i=(1—x)_l=1+x+ X2 4+ X"

1-x

It is exactly the original infinite series above. So the series sumsto /(1 —x). Thisis defined for al x = 1.
Anditsvaluefor x=2is-1.

Why is this important? There are cases in physics when we use perturbation theory to find an
expansion of a number in an infinite series. Sometimes, the series appears to diverge. But by finding the
analytic expression corresponding to the series, we can evaluate the analytic expression at values of x that
make the series diverge. In many cases, the analytic expression provides an important and meaningful
answer to a perturbation problem. This happensin quantum mechanics, and quantum field theory.

Thisis an example of analytic continuation. A Taylor seriesis a specia case of a Laurent series, and
any function with aLaurent expansion is analytic. If we know the Laurent series (or if we know the values
of an analytic function and al its derivatives at any one point), then we know the function everywhere,
even for complex values of x. The original series is analytic around x = 0O, therefore it is analytic
everywhere it converges (everywhere it is defined). The process of extending a function which is defined
in some small region to be defined in amuch larger (even complex) region, is called analytic continuation
(see Complex Analysis, discussed € sewhere in this document).

TBS: show that the sum of theintegers1+ 2+ 3+ ... = -1/12. 7?

Algebra Family Tree

Doodad | Properties Examples
group Finite or infinite set of elements and operator rotations of a square by n x 90°

(1), with closure, associativity, identity element | - ntinuous rotations of an object

and inverses. Possibly commutative:

ab=c w/a, b, cgroup elements

ring Set of lements and 2 binary operators integers mod m

(+and *), with: polynomials p(x) mod m(x)

« commutative group under +

* left and right distributivity:

ab+c)=ab+ac, (a+b)c=ac+hbc

« usually multiplicative associativity
integral | A ring, with: integers
domain, | ¢ commutative multiplication polynomials, even abstract polynomials,
or * multiplicative identity (but no inverses) with abstract variable x, and coefficients
domain | « nozerodivisors (= cancdlation is valid): from a “field”

ab=0onlyifa=0orb=0

field “rings with multiplicative inverses (& integers with arithmetic modulo 3 (or any

identity)” prime)

« commutative group under addition real numbers

+ commutative group (excluding 0) under complex numbers

multiplication.

o distributivity, multiplicative inverses

Allows solving smultaneous linear equations.

Field can be finite or infinite
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vector « field of scalars physical vectors
Space * group of vectors under +. real or complex functions of space:
Allows solving simultaneous vector equations | f(X, Y, 2)
for unknown scalars or vectors. kets (and bras)
Finite or infinite dimensional .
Hilbert | vector space over field of complex numbers real or complex functions of space:
space with: f(x, v, 2
* a conjugate-bilinear inner product, quantum mechanical wave functions

<av|ow> = (a*)b<vjw>,

VWS> = <wiv>*

a, b scalars, and v, w vectors
» Mathematiciansrequireit to be infinite
dimensional; physicists don’t.

Convoluted Thinking

Convolution arises in many physics, engineering, statistics, and other mathematica aress.
a()
f(t)
t t

Two functions, f(t) and g(t).

R T v. | 9(ALD) AT A (A D)
Y f(o | increasing f(2 ‘

j x_ ) N
(f*g)(Aty)" 4 U () (XA v (f*o)at) °

(Left) (f *g)(Atg), Aty < 0. (Middle) (f *g)(Aty), Aty > 0. (Right) (fFO)(Aty), At, > At,.
The convolution is the magenta shaded area.

Given two functions, f(t) and g(t), the convolution of f(t) and g(t) is a function of a time-displacement,
At, defined by (see diagram above):

(f*g)(at)= j_oo dr f(r)g(At —7)where theintegral covers somedomain of interest
When At < 0, the two functions are “backing into each other” (above left). When At > 0O, the two functions
are “backing away from each other” (above middle and right).

Of course, we don’t require functions of time. Convolution is useful with a variety of independent
variables. E.g., for functions of space, f(x) and g(x), f*g(AX) is a function of spatial displacement, AX.

Notice that convolution is
(1) commutative: frg=g*f

(2) linear in each of the two functions:
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f*kg=k(f*g)=(Kk)*g, and
f*(g+h)=f*g+f*h.

The verb “to convolve” means “to form the convolution of.” We convolve f and g to form the convolution
f*g.
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3 Vectors

Small Changes to Vectors

Projection of a Small Change to a Vector Onto the Vector

dr r—r' g

dr
dr =d|r|

IF=r|=r—r-¢
r=|rl

(Lefty A small change to a vector, and its projection onto the vector.
(Right) Approximate magnitude of the difference between abig and small vector.

It is sometimes useful (in orbital mechanics, for example) to relate the changein a vector to the change
in the vector’s magnitude. The diagram above (left) leads to a somewhat unexpected result:

dr-f =dr or (multiplying both sidesby r and using r = rf)
r-dr=rdr

And since thisistrue for any small change, it isalso true for any rate of change (just divide by dt):
r-f=rfr

Vector Difference Approximation

It is sometimes useful to approximate the magnitude of a large vector minus a small one. (In
electromagnetics, for example, this is used to compute the far-fiedd from a small charge or current
distribution.) The diagram above (right) shows that:

|r—r'|z|r|—r'~f, |r|>>|r'|

Why (r, 6, ¢) Are Not the Components of a Vector

(r, 8, ¢ are parameters of a vector, but not components. That is, the parameters (r, 6, ¢) uniquely
define the vector, but they are not components, because you can’t add them. This is important in much
physics, e.g. involving magnetic dipoles (ref Jac problem on mag dipole field). Components of a vector
are defined as coefficients of basis vectors. For example, the components v = (X, y, 2) can multiply the
basis vectors to construct v:

V=XR+W+22
Thereisno similar equation we can write to construct v from it’s spherical components (r, 8, ¢). Position
vectors are displacements from the origin, and thereareno £, 0, ¢ defined at the origin.
Put another way, you can always add the components of two vectors to get the vector sum:
Let w = (a,b, c) rectangular components. Then v+w=(a+x)X+(b+y)y+(c+2)2
We can’t do this in spherical coordinates:
Let W = (ry, 0y, 4,,) SPherical components. Then  v+w=#(r, +1,,0,+ 0.4, +dy)

However, at a point off the origin, the basis vectors f, 8, ¢ are well defined, and can be used as a basis

for general vectors. [In differential geometry, vectors referenced to a point in space are called tangent
vectors, because they are “tangent” to the space, in a higher dimensional sense. See Differential Geometry
elsewherein this document.]
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Laplacian’s Place

What is the physical meaning of the Laplacian operator? And how can | remember the Laplacian
operator in any coordinates? These questions are related because understanding the physical meaning
allows you to quickly derive in your head the Laplacian operator in any of the common coordinates.

Let’s take a step-by-step look at the action of the Laplacian, first in 1D, then on a 3D differential
volume dement, with physical examples at each step. After rectangular, we go to spherical coordinates,
because they illustrate all the principlesinvolved. Finaly, we apply the conceptsto cylindrical coordinates,
aswell. Wefollow thisoutline:

1. Overview of the Laplacian operator

2. 1D examples of heat flow
3. 3D heat flow in rectangular coordinates
4. Examples of physical scalar fields [temperature, pressure, electric potential (2 ways)]
5. 3D differentid volume elementsin other coordinates
6. Description of the physical meaning of Laplacian operator terms, such as
vr, & 28 i[rzﬂ), ﬂi(ﬂﬂj_
or or or or or or

Overview of Laplacian operator: Let the Laplacian act on a scalar field T(r), a physical function of
space, e.q. temperature. Usually, the Laplacian represents the net outflow per unit volume of some physical
quantity: something/volume, e.g., something/m®. The Laplacian operator itself involves spatial second-
derivatives, and so carries units of inverse area, say m 2.

1D Example: Heat Flow: Consider atemperature gradient along aline. It could be a perpendicular
wire through the wall of arefrigerator (below left). ItisalD system, i.e. only the gradi ent along the wire
matters.

metal current
wire carrying wire
Refrigerator Ml Room Refrigerator Warmer

«. Room

temperature
temperature

Let the left and right sides of the wire be in therma equilibrium with the refrigerator and room, at 2 C
and 27 C, respectively. Thewireis passive, and can neither generate nor dissipate heat; it can only conduct
it. Let the 1D therma conductivity be k = 100 mW-cm/C. Consider the part of the wire insde the insulated
wall, 4 cm thick. How much heat (power, Js or W) flows through the wire?

P= kd—T = (100 mW-cm/C)E =625mW .
dx 4cm

There is no heat generated or dissipated in the wire, so the heat that flows into the right side of any
segment of the wire (differential or finite) must later flow out the left side. Thus, the heat flow must be
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congtant aong the wire. Since heat flow is proportional to dT/dx, dT/dx must be constant, and the
temperature profileis linear. In other words, (1) since no hegt is created or lost in the wire, heat-in = heat-
out; (2) but heat flow ~ dT/dx; so (3) the change in the temperature gradient is zero:

a(ar) o o
dx\ dx dx?

(At the edges of the wall, the 1D approximation breaks down, and the inevitable nonlineerity of the
temperature profile in the x direction is offset by heat flow out the sides of the wire.)

Now consider a current carrying wire which generates heat al along its length from its resistance
(diagram above, right). The hesat that flows into the wire from the room is added to the heat generated in
the wire, and the sum of the two flowsinto therefrigerator. The heat generated in alength dx of wireis

Pyen =1 2,o dx where p =resistance per unit length, and |2p =const .

In seady state, the net outflow of heat from a segment of wire must equal the heat generated in that
segment. In an infinitesimal segment of length dx, we have heat-out = heat-in + heat-generated:

Pout =FBn+ Fgen = ar —ﬂ +|2de
dXa an+dx
d_T _d_T =—|2de
dXa+dx an
d(dT ) s K N
—| —|dX=-1"pdx = — =
dx(dxj P o7

The negative sign means that when the temperature gradient is positive (increasing to the right), the
heat flow is negative (to the l€ft), i.e. the heat flow is opposite the gradient. Many physical systems have a
similar negative sign. Thusthe 2 derivative of the temperature is the negative of heat outflow (net inflow)
from a segment, per unit length of the segment. Longer segments have more net outflow (generate more
hest).

3D Rectangular Volume Element

Now consider a 3D bulk resistive material, carrying some current. The current generates heat in each
volume element of material. Consider the heat flow in the x direction, with this volume element:

z

Outflow surface area
flow Iisthesameasinflow

The temperature gradient normal to the y-z face drives a heat flow per unit area, in W/m? For a net
flow to the right, the temperature gradient must be increasing in magnitude (becoming more negative) as
we move to the right. The change in gradient is proportional to dx, and the heat outflow flow is
proportional to the area, and the changein gradient:

_ 2
P.ut = Pn =—ki[d—Tjdx dydz = Fou —Fn __ AT
dx | dx dx dy dz dx?

Thus the net heat outflow per unit volume, due to the x contribution, goes like the 2™ derivative of T.
Clearly, asmilar argument applies to they and z directions, each also contributing net heat outflow per unit
volume. Therefore, the total heat outflow per unit volume from all 3 directions is smply the sum of the
heat flowsin each direction:
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2 2 2
P =Rn __ | 0T 07T 0T
dx dy dz o oy o

We see that in all cases, the

| net outflow of flux per unit volume = changein (flux per unit area), per unit distance

We will use this fact to derive the Laplacian operator in spherical and cylindrical coordinates.
General Laplacian

We now generalize. For the Laplacian to mean anything, it must act on a scalar field whose gradient
drives a flow of some physical thing.

Example 1: My favorite is T(r) = temperature. Then VT(r) drives heat (energy) flow, heat per unit
time, per unit area:

heat/t _ o _ _kvT(r) where k= thermal conductivity
area
g = heat flow vector
oT .
Then m ~ ¢, = radial component of heat flow
r

Example 2: T(r) = pressure of an incompressible viscous fluid (e.g. honey). Then VT(r) drives fluid
mass (or volume) flow, mass per unit time, per unit area:

It =j=-kVT(r) where k= someviscous friction coefficient
area
j =mass flow density vector
or . )
Then m ~ j, =radial component of mass flow
r

Example 3: T(r) = eectric potential in a resisive material. Then VT(r) drives charge flow, charge
per unit time, per unit area

charge/t =j=-oVT(r) where o =dectrical conductivity
area
j = current density vector
or . ) .
Then m ~ j, =radial component of current density .
r

Example 4: Here we abstract a little more, to add meaning to the common equations of
electromagnetics. Let T(r) = electric potential in a vacuum. Then VT(r) measures the energy per unit
distance, per unit area, required to push a fixed charge density p through a surface, by a distance of dn,
normal to the surface:

energy/distance = pVT(r) where p = eectric charge volume density .
area

Then OT/or ~ net energy per unit radius, per unit area, to push charges of density p out the same
distance through both surfaces.

In thefirst 3 examples, we use the word “flow” to mean the flow in time of some physical quantity, per
unit area. In the last example, the “flow” is energy expenditure per unit distance, per unit area. The
requirement of “per unit area” is essential, as we soon show.
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Laplacian In Spherical Coordinates

To understand the Laplacian operator terms in other coordinates, we need to take into account two
effects:

1. Theoutflow surface area may be different than the inflow surface area

2. The derivatives with respect to angles (6 or ¢) need to be converted to rate-of-change per unit
distance.

We’ll see how these two effects come into play as we develop the spherical terms of the Laplacian
operator. The cylindrical terms are smplifications of the spherica terms.

Spherical radial contribution: We first consider the radial contribution to the spherical Laplacian
operator, from this volume e ement:

z
Outflow surface area dQ=sn6dgpdo
] isdifferentialy

larger than inflow
do

Sh
flow "%
dr %

The differential volume eement has thickness dr, which can be made arbitrarily small compared to the
lengths of the Sides. The inner surface of the dement has arear? dQ. The outer surface hasinfinitesimally
more area. Thus the radial contribution includes both the “surface-area” effect, but not the “converting-
derivatives” effect.

The increased area of the outflow surface means that for the same flux-density (flow) on inner and
outer surfaces, there would be a net outflow of flux, since flux = (flux-density)(area). Therefore, we must
take the derivative of the flux itself, not the flux density, and then convert the result back to per-unit-
volume. Wedo thisin 3 steps:

flux = (area)( flux-density) ~ (rzdg)(ij

or
d(fl
(flux) =i(r2dQ)(iJ
dr or or
d( flux
outflow _ d(flux) _ 1 Q(rzdg)(ijzii(rz)[ij
volume (area)dr r2dQ or or) r2or or
The constant dQ factor from the area cancels when converting to flux, and back to flux-density. In

other words, we can think of the fluxes as per-steradian.

We summarize the stages of the spherical radial Laplacian operator as follows:
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10 ,0
V2 T =—=—2r2Z1(r
TO=5 75 TO

agT =radial flux per unit area
r

(area)( flow per unit area)

rzaﬁT = radial flux, per unit solid-angle =
r

dQ
aﬁrza—T = changein radial flux per unit length, per unit solid-angle; positive isincreasing flux
r r
10 20 . , : )
——r“—T =changein radial flux per unit length, per unit area
r2or or
= net outflow of flux per unit volume
1 0.2 94
2o o
radial flow
per unit area

e — |
radial flux
per steradian

e — |
changein radial flux per
unit length per steradian

]

changein radial flux per
unit length, per unit area

Following the stepsin the example of heat flow, let T(r) = temperature. Then

%T = radial heat flow per unit area, W/m?
Wiaitts

r2 9 T _ radial heat flux, W/solid-angle= ————
or steradian

airzaiT = changein radia heat flux per unit length, per unit solid-angle
r r

10 20 :

——r“—T =net outflow of heat flux per unit volume

r2or or

Spherical azimuthal contribution: The spherical ¢ contribution to the Laplacian has no area-change,
but does require converting derivatives. Consider the volume e ement:

Z
l Outflow surface area

isidentical toinflow

flow
do

The inflow and outflow surface areas are the same, and therefore area-change contributes nothing to the
derivatives.

However, we must convert the derivatives with respect to ¢ into rates-of-change with respect to
distance, because physically, the flow is driven by a derivative with respect to distance. In the sphericd ¢
case, the effective radius for the arc-length along the flow isr sin 6, because we must project the position
vector into the plane of rotation. Thus, (6/0¢) is therate-of-change per (r sin §) meters. Therefore,
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1 0

rate-of-change-per-meter = ————
rsinf o¢

Performing the two derivative conversions, we get

1 o0 1 0

VzTr = —_ —T(r
oT(") rsind 8¢ rsind o¢ )
1 0 . .
———T =azimuthal flux per unit area
rsing og¢
o 1 0 . . . .
————T =changein (azimutha flux per unit area) per radian
o¢ rsing o¢
1 o0 1 0

— T = change in (azimuthal flux per unit ar er unit distance
rsing d¢ rsin@ o¢ gein( P )P

= net azimuthal outflow of flux per unit volume

2
L o0 1 o, 1 &,
rsind o¢ rsind og¢ r>sin®0 o¢®
e — |
azimuthd flux
per unit area
e — |
changein (azimuthal flux
per unit area) per radian

changein (azimuthal flux per
unit area) per unit distance

Notice that the r? sin” # in the denominator is not a physical area; it comes from two derivative
conversions.

Spherical polar angle contribution:

z flow
Outflow surface area
N isdifferentially

Y do larger than inflow
X«

The volume element is like a wedge of an orange: it gets wider (in the northern hemisphere) as 4
increases. Therefore the outflow area is differentidly larger than the inflow area (in the northern

hemisphere). In particular, area=(rsing)dr, but we only need to keep the § dependence, because the
factors of r cancd, just like dQ did in the spherical radial contribution. So we have

areaccsing.

In addition, we must convert the 6/06 to arate-of-change with distance. Thus the spherical polar angle
contribution has both area-change and derivative-conversion.

Following the steps of converting to flux, taking the derivative, then converting back to flux-density,
we get
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110 10

V2, T(r)=———=—snf=—T(r
o T =Gnarae v a0 "
190 1 ffiux per unit area
r oo
sinQEiT = 6-flux, per unit radius= (are)(flux per unit area)
r oo dr
0o . 10 s ) . )
—sind=—T = changein (Q-flux per unit radlus), per radian
00 r oo
la%sineiiT = changein (é-flux per unit radius), per unit distance
r r
EEE A RPEE changein (6-flux per unit area), per unit distance
snor 06 roo
= net outflow of flux per unit volume
L1000 L 00y
snd r 00 r oo r2sing 00 00
O-flux per
unit area
O-flux, per
unit radius

e — |
changein (6-flux per
unit radius), per radian

L ]
changein (6-flux per unit
radius), per unit distance
1

changein (6-flux per unit
area), per unit distance

Notice that the r? in the denominator isnot a physical area; it comes from two derivative conversions.
Cylindrical Coordinates

The cylindrical terms are simplifications of the spherical terms.

Z
Radial outflow Sﬂ rafnageza?ﬂzr,ve , flow
| surface area 19 ’ identical to
| differentially larger o
than inflow s dz \
XY flow Gr d7 |

Cylindrical radial contribution: The picture of the cylindrical radial contribution is essentialy the
same as the spherical, but the “height” of the dab is exactly constant. We dtill face the issues of varying
inflow and outflow surface areas, and converting derivatives to rate of change per unit distance. The
change in areais due only to the arc length r d¢, with the z (height) fixed. Thus we write the radial result
directly:
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Vzr T(r) =££r£T(r) (Cylindrical Coordinates)

ror or

§T =radia flow per unit area
r

(flow per unit area)(area)
d¢ dz

raﬁT =radia flux per unit angle =
r

aﬁragT = changein (radid flux per unit angle), per unit radius
r or

10 0 : . : . ,
—a—ra—T = changein (radia flux per unit ared), per unit radius
ror or

= net outflow of flux per unit volume

1 0 0

e
r or or

| E—
radid flow
per unit area
e — |

radial flux
per radian

e — |
changein radial flux per
unit length per radian
L ]
changein (radial flux per
unit area), per unit radius

Cylindrical azimuthal contribution: Like the spherical case, the inflow and outflow surfaces have
identical areas. Therefore, the ¢ contribution is similar to the spherical case, except thereisno sin 6 factor;
r contributes directly to the arc-length and rate-of-change per unit distance:

1010

V2 T(r) ==——=—T(r
s T =2 PYPEY (r)
10 . .
——T = azimuthal flux per unit area
r o¢
010 . . . .
—=—T =changein (azimuthal flux per unit area) per radian
opr o¢
1010 . . . -
——=—T = changein (azimutha flux per unit area) per unit distance
rogr og
= net azimuthal outflow of flux per unit volume
10 10 1 02
—_—— ——T =
rog rog r? 0¢?
azimuthal flow
per unit area

I —
changein azimuthal
flow per radian

e — |
changein (azimuthal flux per
unit area) per unit distance

Cylindrical z contribution: Thisisidentica to therectangular case: theinflow and outflow areas are
the same, and the derivativeis already per unit distance, ergo: (add cylindrical volume element picture??)
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0 0

V2T(r) =——=T(
T(0)=——T()
aiT = vertical flux per unit area
z
0 0 . . . -
a—a—T = changein (vertical flux per unit area) per unit distance
z 0z
= net outflow of flux per unit volume
2
2 or %,
oz 0z, oz
vertical flux

per unit area

e — |
change in (vertica flux per
unit area) per unit distance

Vector Dot Grad Vector

In electromagnetic propagation, and elsewhere, one encounters the “dot product” of a vector field with
the gradient operator, acting on a vector field. What is thisv -V operator? Here, v(r) is a given vector
fidd. Thesmpleview isthat v(r) -V isjust anotationa shorthand for

0 0
v(r)-Vz(vX&+vya—y+vzaJ,

ox oy oz

by the usua rules for adot product in rectangular coordinates.

There is a deeper meaning, though, which is an important bridge to the topics of tensors and
differential geometry.

b N . N[O, 0. O, 0 0 0
ecause v(r)-Vz(va+vyy+vzz)- —X+—Y+—2|= VX&-FVyE-FVzE

We can view the v -V operator as simply the dot product of the vector field v(r)
with the gradient of a vector field.

You may think of the gradient operator as acting on a scalar field, to produce a vector field. But the
gradient operator can also act on a vector field, to produce a tensor field. Here’s how it works: You are
probably familiar with derivatives of a vector fied:

0
Let A(X,y,2z) bea vector field. Then%= %miw%z isa vector field.
oX OX OX OX
A
OX
A oA | oA
Writing spatial vectors as column vectors,  A=| A |, and —= =
OX OX
& o
OX
Similarly, A and A are also vector fields.
oy 0z

By therulefor total derivatives, for asmall displacement (dx, dy, d2),
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oA A AN (oA oA oA

dA, ox oy oz ox oy oz
da=|dA, |=Lax+ Loy + Loz AN | [ T 2 PV e PPV 2 Py

ox oy oz X oy oy ox oy oy

oA, OA, OA, || dz| | 9A oA, oA,

ox oy oz X oy oz

This says that the vector dA is a linear combination of 3 column vectors 0A/0x, 0Aldy, and 0A/0z,
weighted respectively by the displacements dx, dy, and dz The 3 x 3 matrix above is the gradient of the
vector field A(r). Itisthenatura extension of the gradient (of a scalar field) to a vector field. Itisarank-2
tensor, which meansthat given avector (dx, dy, dz), it produces a vector (dA) which isalinear combination
of 3 (column) vectors (VA), each welghted by the components of the given vector (dx, dy, dz).

Notethat VA and V-A are very different: the former isarank-2 tensor field, the latter is a scalar field.

This concept extends further to derivatives of rank-2 tensors, which are rank-3 tensors: 3 x 3 x 3 cubes
of numbers, producing alinear combination of 3 x 3 arrays, weighted by the components of a given vector
(dx, dy, dz). Andsoon.

Note that in other coordinates (e.g., cylindrical or spherical), VA is not given by the derivative of its
components with respect to the 3 coordinates. The components interact, because the basis vectors aso
change through space. That leads to the subject of differentiadl geometry, discussed esewhere in this

document.

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 35 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

4 Green’s Functions

Green’s functions are a method of solving inhomogeneous linear differential equations (or other linear
operator equations):

L{f(x)} =5s(x), where £{ }isalinear operator .
We use them when other methods are hard, or to make a useful approximation (the Born approximation).
Sometimes, the Green’s function itself can be given physical meaning, as in Quantum Field Theory.
Green’s functions can generate particular (i.e. inhomogeneous) solutions, and sol utions matching boundary

conditions. They don’t generate homogeneous solutions (i.e., where the right hand side is zero). We
explore Green’s functions through the following steps:

1. Extremely brief review of the §-function.

Thetired, but inevitable, el ectromagnetic example.

Linear differentid equations of one variable (1-dimensional), with sources.
Dédtafunction expansons.

Green’s functions of two variables (but 1 dimension).

o o A~ WD

When you can collapse a Green’s function to one variable (“portable Green’s functions”:
trandational invariance)

Dealing with boundary conditions: at least 5 (67?) kinds of BC
Green-like methods: the Born approximation

~

You will find no references to “Green’s Theorem” or “self-adjoint” until we get to non-homogeneous
boundary conditions, because those topics are unnecessary and confusing before then. We will see that:

The biggest hurdle in understanding Green’s functions is the boundary conditions.

Dirac Delta Function

Recall that the Dirac é-function isan “impulse,” an infinitely narrow, tall spike function, defined as
a
o(x)=0, for x=0, and .[ d(xX)dx=1, Va> 0 (theareaunder the d-functionis1) .
-a
The linearity of integration implies the delta function can be offset, and weighted, so that

b+a
J wo (X—b) dx=w va>0.

b-a

Since the 3-function is infinitely narrow, it can “pick out” a single value from a function:

J;+a5(x—b)f(x) dx = f (b) va>0.

[It alsoimplies §(0) — oo, but we don’t focus on that here.]
(See Funky Quantum Concepts for more on the delta function).
The Tired, But Inevitable, Electromagnetic Example

You probably have seen Poisson’s equation relating the electrostatic potential at a point to a charge
distribution creating the potentid (in gaussian units):

(1) -V(r) =4rp(r) where ¢ = electrostatic potential, p = charge density .
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We solved this by noting three things: (1a) electrostatic potential, ¢, obeys “superposition:” the
potential due to multiple charges is the sum of the potentials of the individual charges; (1b) the potentia is
proportional to the source charge; and (2) the potential dueto a point chargeis:

o(r)= ql (point charge at origin) .
r

The properties (1a) and (1b) above, taken together, define alinear relationship:
Given pi() (), and  pp(r) > go(1)
Then apy(r)+po(r) — trotal (1) = agy (r) + ho(r)

To solve Eq (1), we break up the source charge digribution into an infinite number of little point
charges spread out over space, each of charge p d°. The solution for ¢ is the sum of potential from al the
point charges, and the infinite sum isan integral, so wefind ¢ as

1
r=r|
Note that the charge “distribution” for a point charge is a d-function: infinite charge density, but finite

total charge. [We have also implicitly used the fact that the potential is trandationaly invariant, and
depends only on the distance from the source. We will remove thisrestriction later.]

o) = pr)dr

But all of this followed from simple mathematical properties of Eq (1) that have nothing to do with
electromagnetics. All we used to solve for ¢ was that the left-hand sde is a linear operator on ¢ (so
superposition applies), and we have a known solution when the right-hand side is a delta function:

1 .
“V2 ¢(r) = 47p(r) and ;vj| ,|= Sr-rY) .
. —_—— — . r—r — -
linear unknown  given " source” linear L given point
operator function  Function operator | " "source"atr’
solution

The solution for a given p isa sum of delta-function solutions. Now we generalize all thisto arbitrary
(for now, 1D) linear operator equations by letting r — X, ¢ — f, —=V?> — £, p — s, and call the known &-
function solution G(x):

Given c{f(x)}=s(x) and  L£{G(X)}=5(x), then f(x):.[ s(x") dx' G(x—x") .

assuming, as above, that our linear operator, and any boundary conditions, are trandationally invariant.
A Fresh, New Signal Processing Example

If this example doesn’t make sense to you, just skip it. Signal processing folk have long used a
Green’s function concept, but with different words. A time-invariant linear system (TILS) produces an
output which isalinear operation on its input:

o(t) = M{i(t)} where  M{ }isalinear operation taking input to output

In this case, we aren’t given M{}, and we don’t solve for it. However, we are given a measurement

(or computation) of the system’s impulse response, called h(t) (not to be confused with a homogeneous
solution to anything). If you poke the system with a very short spike (i.e., if you feed an impulse into the
system), it responds with h(t).

h(t) = M{5(t)} where  h(t) is the system's impul se response .

Note that the impulse response is spread out over time, and usually of (theoreticaly) infinite duration.
h(t) fully characterizes the system, because we can approximate any input function as a series of impulses,
and sum up al theresponses. Therefore, we find the output for any input, i(t), with:
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o(t) =J.o;i(t')h(t—t')dt'.

h(t) acts like a Green’s function, giving the system response at time t to adeltafunction at t = 0.
Linear differential equations of one variable, with sources
We wish to solve for f(x), given s(x):
£{f(x)} =s(x), where £{ }isalinear operator

s(x) is called the"source," or forcing function
E L f(x) = ¢’ f 2f(x) =
9., ¥+a) (x)=y (X)) + 0T (X) =5(x)

We ignore boundary conditions for now (to be dealt with later). The differential equations often have
3D space astheir domain. Note that we are not differentiating s(x), which will be important when we get to
the delta-function expansion of §(x).

Green’s functions solve the above equation by first solving a related equation: if we can find afunction
(i.e., a “Green’s function”) such that

L{G(X)} =5 (x), where  §(x) isthe Dirac delta function
E.g., [d—2+ a)ZJG(x) =5(X)
a2

then we can use that Green’s function to solve our original eguation.

This might seem weird, because 4(0) — o, but it just means that Green’s functions often have
discontinuitiesin them or their derivatives. For example, suppose G(x) is a step function:

G =0, X<O} Then LG=5(%).
=1, x>0 dx

Now suppose our source isn’t centered at the origin, ie., S(X)=6(x—a). If £{ } is trandation
invariant [along with any boundary conditions], then G() can till solve the equation by trand ation:

L{f(9)} =s(x)=5(x-a), = f(x)=G(x—a) isasolution.

If S(x) isaweighted sum of delta functions at different places, then because £{ } islinear, the solution is
immediate; we just add up the solutions from all the 3-functions:

c{fO}=s9=2 Wo(x-x) = F()=3 WG(x-x).

Usually the source §(x) is continuous. Then we can use 3-functions as a basis to expand (x) as an infinite
sum of delta functions (described in amoment). The summation goes over to an integral, and a solution is
X=X’
® w—s(x)dx’'
L{F O} =59 =D ws(x-X) -

i=1
L{f (N} =s(x) = de' S(X)5 (X~ X') and  f(X) =J' dx’ S(x)G(x - X)

We can show directly that f(x) is a solution of the origina equation by plugging it in, and noting that
£{ } actsinthex domain, and “goes through” (i.e., commutes with) any operation in x’:
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c{f(x)}:c{j dx's(x')G(x—x‘)}
=J' dx’ S(x) £ {G(x—x)} moving £{ } inside theintegral

=I dx' s(x)5(x—x") = s(x) 6() picksout thevalue of s(x). QED.

We now digress for amoment to understand the J-function expansion.
Delta Function Expansion

As in the EM example, it is frequently quite useful to expand a given function s(x) as a sum of J-
functions:

N
S(X) zz Wo(x—x%), where w aretheweightsof the basisdeltafunctions.
i=1

[This same expansion is used to characterize the “impulse-response” of linear systems)

Approximating a function W = area
with deltafunctions S(x) ~ (%) AX
9
N=8
L
N=16
il ———
X ' - '

;—Ax—vi

On the left, we approximate s(x) first with N = 8 §-functions (green), then with N = 16 J-functions
(red). Aswedouble N, the weight of each J-function is roughly cut in half, but there are twice as many of
them. Hence, the integral of the J-function approximation remains about the same. Of course, the
approximation gets better as N increases. As usual, we let the number of d-functions go to infinity: N — oo.

On the right above, we show how to choose the weight of each J-function: its weight is such that its
integral approximates the integral of the given function, s(x), over the interval “covered” by the J-function.
In the limit of N — oo, the approximation becomes arbitrarily good.

In what sense is the J-function series an approximation to s(x)? Certainly, if we need the derivative

s(x), the delta-function expansion is terrible. However, if we want the integral of (x), or any integra
operator, such asan inner product or a convolution, then the delta-function seriesis a good approximation:

For J' s(x) dx or J' f* (x)s(x) dx or j f (X' X)(x) dx,

N
then S(X) ~ z WO (X—%) where  w = s(x)Ax
i=1
AsN — oo, we expand s(X) in an infinite sum (an integral) of J-functions:
X —X'

Ax—dx'
W —s(x)dx’

() = Y W(x-x) - () = [ o S (x-x)
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which if you think about it, follows directly from the definition of J(x).

[Aside: Delta-functions are a continuous set of orthonormal basis functions, much like sinusoids from
quantum mechanics and Fourier transforms. They satisfy al the usua orthonormal conditions for a continuous
basis, i.e. they are orthogonal and nor malized:

j © dxs(x—a)s(x—b) =5(@-b) ]
Note that in thefinal solution of the prior section, we integrate (x) times other stuff:
£ (%) =j dx’ S(X)G(x— ).

and integrating S(x) is what makes the §-function expansion of s(x) valid.
Introduction to Boundary Conditions

We now incorporate a simple boundary condition. Consider a 2D problem in the plane

L{f (% y)}=s(xY) inside the boundary
f (boundary) = 0, where the boundary is given.

We define the vector r = (X, y), and recall that
o(r)=5(X)5(y), so that S(r—=r)=6(x=xY(y-vy).
[Some references use the notation 8A(r) for a 2D &-function.]

Boundary condition does
NOT translate with r’

1 Boundary condition
f(boundary) = 0 boundary remains fixed

e, 1

of f(x,y)

(Left) The domain of interest, and its boundary. (Right) A solution meeting the BC for the
source at (0, 0) does not trand ate to another point and still meet the BC.

The boundary condition removes the trand ation invariance of the problem. The delta-function
response of L{G(r)} trandates, but the boundary condition does not. I.e., asolution of

£{G(r)}=6(r), and G(boundary)=0 = L{G(r —r)}=8(r-r)
BUT doesNOT = G(boundary—-r")=0.

| With boundary conditions, for each source point r', we need a different Green’s function!

The Green’s function for a source point r', cal it G+(r), must satisfy both:
L{G ()} =6(r -1 and G, (boundary) =0.

We can think of thisasa Green’s function of two arguments, r and r', but really, r isthe argument, and r'is

a parameter. In other words, we have a family of Green’s functions, G(r), labeled by the location of the
delta-function, r'.
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Example: ReturningtoalD exampleinr: Find the Green’s function for the equation

2
% f(r)=s(r), ontheinterva [0,1], subject to f(o=f@=0.
r

Solution: The Green’s function equation replaces the source S(r) with 5(r —r'):

o2
FGr-(r)zé(r—r').

Note that G,-(r) satisfies the homogeneous equation on either side of r’:

d2
FGr-(r * rl)=0.

The full Green’s function simply matches two homogeneous solutions, one to the left of r’, and another to
the right of r’, such that the discontinuity at r’ creates the required d-function there. First we find the
homogeneous solutions:

2

d—z h(r)=0 Integrate both sides:

dr

di h(r)=C where Cisan integration constant. Integrate again:
r

h(r)=Cr+D where C,D arearbitrary constants

There are now 2 cases. (left) r <r', and (right) r >r'.
integration constants.

Left case: r<r' = G (r)=Cr+D

Each solution requires its own set of

Only theleft boundary condition gppliestor <r': G, (0)=0 = D=0
Right case: r-r' = G (r)=Er+F
Only theright boundary condition appliestor >r': G, ()=0 = E+F=0, F=-E
So far, we have:
Left case: G(r <r") =Cr Right case: G(r>r)=Er—-E.

The integration constants C and E are as-yet unknown. Now we must match the two solutionsat r =r',
and introduce a delta function there. The 3-function must come from the highest derivativein £{ }, in this
case the 2" derivative, because if G’(r) had a delta function, then the 2™ derivative G>’(r) would have the
derivative of a 3-function, which cannot be canceled by any other term in £{ }. Since the derivative of a

step (discontinuity) is a §-function, G’(r) must have a discontinuity, so that G’’(r) has a 8-function. And
findly, if G’(r) has adiscontinuity, then G(r) has a cusp (aka “kink” or sharp point).

We can find G(r) to satisfy all this by matching G(r) and G’(r) of the left and right Green’s functions,
at the point where they meet, r =r’;
Left: iGr-(r<r')=C Right : iGr-(r>r')=E
dr dr

There must bea unit step in the derivative acrossr =r':
C+1=E

So we diminate E in favor of C. Also, G(r) must be continuous (or else G’(r) would have a &-
function), which means

Gu(r=r"_)=G.(r=r',)= Cr'=(C+)r-C-1, C=r-1.
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yielding the final Green’s function for the given differential equation:
G (r<r)=(r-1r, G (r>r)=r'r—r'=r'(r-1).

Here’s a plot of these Green’s functions for different values of r'":

G.(r) G.(r) G.(r)
05+ 05+ 05+
r=0.3 r=0.5 r=0.8
0 +V4+: r 0 +V: r 0 «W: r
05+ 05+ 05+
0 1 0 1 0 1

To find the solution f(x), we need to integrate over r'; therefore, it is convenient to write the Green’s
function as atrue function of two variables:

G(r;r)=G,.(r) = £{G(r;r'}=6(r-r", and  G(boundary;r)=0,

where the “;” between r and r' emphasizes that G(r ; r*) isafunction of r, parameterized by r'. |.e., we can
till think of G(r; r') as a family of functions of r, where each family member is labeled by r’, and each
family member satisfies the homogeneous boundary condition.

It isimportant here that the boundary condition is zero, so that any sum of Green’s functions still
satisfies the boundary condition.

Our particular solution to the origina equation, which now satisfies the homogeneous boundary
condition, is

f(r) = J'dr S(r)G(r:r) = J' drs(r) (1) J'dr S(r) (r'-1)r

G(r r), r>r' G(ryr),r<r'
which satisfies  f (boundary) =0

Summary: To solve £{G,.(X)} = 5(x—x'), we break G(X) into left- and right- sides of X’. Each side
satisfies the homogeneous equation, £{G,.(x)}=0, with arbitrary constants. We use the matching

conditions to achieve the 3-function at x’, which generates a set of simultaneous equations for the unknown
constants in the homogeneous solutions. We solve for the constants, yielding the left-of-x* and right-of-x’
pieces of the complete Green’s function, Ge(X).

Aside: It is amusing to notice that we use solutions to the homogeneous equation to construct the Green’s
function. We then use the Green’s function to construct the particular solution to the given (inhomogeneous)
equation. So we are ultimately constructing a particular solution from a homogeneous solution. That’s not like
anything we learned in undergraduate differentia equations.

When Can You Collapse a Green’s Function to One Variable?

“Portable” Green’s Functions. When we first introduced the Green’s function, we ignored boundary
conditions, and our Green’s function was a function of one variable, r. If our source wasn’t at the origin,
we just shifted our Green’s function, and it was a function of just (r —r’). Then we saw that with (certain)
boundary conditions, shifting doesn’t work, and the Green’s function is a function of two variables, r and
r’. In generd, then, under what conditions can we write a Green’s function in the simpler form, as a
function of just (r —r’)?

When both the differential operator and the boundary conditions are trand ation-invariant,
the Green’s function is aso trandation-invariant.
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We can say it’s “portable.” This is fairly common: differential operators are translation-invariant (i.e,
they do not explicitly depend on position), and BCs at infinity are trandation-invariant. For example, in
E&M it is common to have equations such as

~V24(r) = p(r), with boundary condition ¢(x)=0.

Because both the operator —V2 and the boundary conditions are translation invariant, we don’t need to
introduce r' explicitly as a parameter in G(r). As we did when introducing Green’s functions, we can take
the origin asthe location of the delta-function to find G(r), and use translation invariance to “move around”
the delta function:

G(r;r)=G, (r)=G(r-r) and L{G(r—r)} =80 —-r1))
with BC G()=0
Non-homogeneous Boundary Conditions

So far, we’ve dealt with homogeneous boundary conditions by requiring G, .(r) = G(r ;r’) to be zero

on the boundary. There are different kinds of boundary conditions, and different ways of dealing with each
kind.

[Note that in general, constraint conditions don’t have to be specified at the boundary of anything. They are
really just “constraints” or “conditions.” For example, one constraint is often that the solution be a “normalized”
function, which is not a statement about any boundaries. But in most physical problems, at least one condition
does occur at aboundary, so we defer to this, and limit ourselves to boundary conditions.]

Boundary Conditions Specifying Only Values of the Solution

In one common case, we are given a general (inhomogeneous) boundary condition, m(r) along the
boundary of theregion of interest. Our problem is now to find the complete solution c(r) such that

£{c(r)}=s(r), and  c(boundary) = m(boundary).

One approach to find ¢(r) is from eementary differential equations: we find a particular solution f(x) to
the given equation, that doesn’t necessarily meet the boundary conditions. Then we add a linear
combination of homogeneous sol utions to achieve the boundary conditions, while preserving the solution of
the non-homogeneous equation. Therefore, we (1) first solve for f(r), as above, such that

£{f(r)}=s(r), and f (boundary) =0, using a Green's function satisfying
£{G(r;r)}=6(-r) and G(boundary;r" =0

(2) We then find homogeneous solutions hi(r) which are non-zero on the boundary, using ordinary
methods (see any differential equationstext):

£{h(r)}=0, and h (boundary) = 0.

Recall that in finding the Green’s function, we aready had to find homogeneous solutions, since every
Green’s function iSa homogeneous solution everywhere except at the 3-function position, r'.

(3) Finally, we add a linear combination of homogeneous solutions to the particular solution to yield a
complete solution which satisfies both the differential equation and the boundary conditions:

Ah(r) + Ahy(r) +...= m(r), L{AN )+ A (r)+..1=0 by superposition

c(r)y=f(r)+Ah(r)+ Ah(r)+.. Therefore,
E{C(r)} = E{ f(r)+ Ah(r)+ Ah(r)+ }
=L{f(r)}=s(r) and c(boundary = m(boundary)

Continuing Example: In our 1D example above, we have:
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L{ }=§r—22 and  G.(r<r)=(r-1r, G (r>r)=r'(r-1),
satisfying BC:  G,.(0)=G, () =0 = f(0)=f@®=0, Vs(r)

We now add boundary conditions to the original problem. We must satisfy ¢(0) = 2, and ¢(1) = 3, in
addition to the original problem. Our linearly independent homogeneous solutions are:

h()=Ar  h(r)=A (aconstant).
To satisfy the BC, we need
hO)+h0)=2 =  Ay=2
h®+h®=3 =  A=1

and our complete solution is
1
c(r) =“Odr's(r')G(r;r')}+r+2.

Boundary Conditions Specifying a Value and a Derivative

Another common kind of boundary conditions specifies a value and a derivative for our complete
solution. For example, in 1D:

c(0)=1 and c'(0)=5.

But recall that our Green’s function does not have any particular derivative at zero. When we find the
particular solution, f(x), we have no idea what it’s derivative at zero, f '(0), will be. And in particular,
different source functions, (r), will produce different f(r), with different values of f '(0). Thisisbad. Inthe
previous case of BC, f(r) was zero at the boundaries for any s(r). What we need with our new BC is f(0) =
0 and f '(0) = O for any S(r). We can easly achieve this by using a different Green’s functionl We
subjected our first Green’s function to the boundary conditions G(0; r’) = 0 and G(1; r’) = 0 specifically to
give the same BC tof(r), so we could add our homogeneous sol utions independently of s(r). Therefore, we
now choose our Green’s function BC to be:

G(0;r)=0 and  G'(O;r)=0, with  L{G(r;r)}=8(r-r").

We can see by inspection that this leads to a new Green’s function:

G(r;r)=0 r<r', and G(r;ry=r—r" r>r".
G(r;r) G(r;r) G(r;r)
0.5 0.5 / 0.5
0 +— b T 0« ; b T 0« / r
rr=0.3 rr=0.5 rr=0.8
0 1 0 1 0

The 2" derivative of G(r; r’) 1s everywhere 0, and the first derivative changes from 0 to 1 at r’.
Therefore, our new particular solution f(r) also satisfies:

f(r):J:dr' s(r)G(r;r" and f(0)=0, f'(0)=0, Wvs(r).

We now construct the compl ete solution using our homogeneous sol utions to meet the BC:
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h(r) = Ar hy(r)=4A, (aconstant)
h(0)+h(0)=1 = A=1
h'(0)+hy'(0)=5= A =5. Then

1
c(r)=D0dr's(r')G(r;r')}+5r+1

In general, the Green’s function dependsnot only on the particular operator, but also on the kind
of boundary conditions specified.

Boundary Conditions Specifying Ratios of Derivatives and Values

Another kind of boundary conditions specifies aratio of the solution to its derivative, or equivalently,
specifies a linear combination of the solution and its derivative be zero. This is equivalent to a
homogeneous boundary condition:

or equivalently, if c(0) =0 c'(0)—ac(0)=0.
c(0)

This BC arises, for example, in some quantum mechanics problems where the normalization of the
wave-function is not yet known; the ratio cancels any normalization factor, so the solution can proceed
without knowing the ultimate normalization. Note that thisis only asingle BC. If our differential operator
is 2™ order, there is one more degree of freedom that can be used to achieve normalization, or some other
condition. (This BC is sometimes given as fc'(0) — ac(0) = 0, but this smply multiplies both sides by a
constant, and fundamentally changes nothing.)

Also, this condition is homogeneous. a linear combination of functions which satisfy the BC aso
satisfiesthe BC. Thisismost easily seen from the form given above, right:

If d'(0) - 2d(0) = 0, and  €(0)—ae0) =0,
then c(r) = Ad(r)+ Be(r) satisfies ¢'(0) —ac(0) =0
because ¢'(0) —ac(0) = A(d'(0) - «d(0)) + B(e'(0) - z&(0))
Therefore, if we choose a Green’s function which satisfies the given BC, our particular solution f(r)
will aso satisfy the BC. Thereisno need to add any homogeneous solutions.
Continuing Example: In our 1D example above, with £ = d?/dr?, we now specify BC:
c'(0)—2c(0)=0.

Since our Green’s functions for this operator are always two connected line segments (because their 2"
derivatives are zero), we have

r<r': G(r;r)=Cr+D, D =0 sothat c(0) =0
r>r': G(r;ir)y=Er+F
BCatO: C-2D=0

With this BC, we have an unused degree of freedom, so we choose D = 1, implying C = 2. We must
find E and F so that G(r; r’) is continuous, and G’(r; r’) has a unit step at r’. The latter condition requires
that E = 3, and then continuity requires

Cr'+D=Er'+F = 2r'+1=3r+F, F=-r'+1 So
r<r': G(r;r)=2r+1 and r>r': G(r;r)=3r-r'+1
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G(r;r) G(r;r) G(r;r
4.0 1 4.0 4.0 1 i
251 25 § 25 i
16| A | |
1 «E— b 1 : b 1« — 1
r=03 1 | r=05 1 |, =081
0 0 0

and our complete solution isjust
1
c(r)=f(N)=] drsrIcin).

Boundary Conditions Specifying Only Derivatives (Neumann BC)

Another common kind of BC specifies derivatives at points of the solution. For example, we might
have

c'(0)=0 and c'®=1.

Then, analogous to the BC specifying two values for c( ), we choose a Green’s function which has zeros for
its derivatives at 0 and 1:

iG(r=0;r')=0 and iG(r=1;r')=0.
dr dr

Then the sum (or integral) of any number of such Green’s functions also satisfies the zero BC:
1
f(r)=JOdr's(r)G(r ) satisfies f'(0)=0 and f'(1)=0.

We can now form the compl ete sol ution, by adding homogeneous sol utions that satisfy the given BC:
o(r)=f(r)+Ah'(r)+ Ahy'(r)  where ARy '(0)+ Ah,'(0) =0
and AR @)+ A M)=1

Example: We cannot use our previous example where £{ } = d¥/dr?, because there isno solution to

d—ZG(r'r')—é(r—r‘) with iG(r—O'r‘)—iG(r—l'r‘)—O
dr? dr ’ dr ’ '

This is because the homogenous solutions are straight line segments; therefore, any solution with a zero
derivative at any point must be aflat line. So we choose another operator as our example:

3D Boundary Conditions: Yet Another Method
More TBS: why self-adjoint. Ref Canadian web site.
TBS: Using Green’s theorem.

Green-Like Methods: The Born Approximation

In the Born approximation, and similar problems, we have our unknown function, now called y(x), on
both sides of the equation:

D) L{y(}=yw (¥ .

The theory of Green’s functions still works, so that
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v (9= [ )G x) ox,

but this doesn’t solve the equation, because we still have w on both sides of the equation. We could try
rearranging Eq (1):

L{y (¥} -w(x)=0 which isthesame as
£{w (¥} =0, with £y (X} = £{w (¥} -y (x)

But recall that Green’s functions require a source function, §(x) on the right-hand side. The method of
Green’s functions can’t solve homogeneous equations, because it yields

L{y()}=s()=0 BN w(x):j S(X)G(x; X) dx‘=J 0dx'=0.

which is a solution, but not very useful. So Green’s functions don’t work when y(x) appears on both sides.
However, under the right conditions, we can make a useful approximation. If we have an approximate
solution,

LIy O} =y,
then we can expand
v )=y Q0+ )+ @00+
where  w® is1¥ order perturbation, y? is2™ order, .... .

Now we can use »%(x) as the source term, and use the method of Green’s functions, to get a better
approximation to y(x):

Ly (0} =y () = O =] vOI6(xx) dx
where  G(x;x) isthe Green'sfunctionfor £,ie  L{G(x;x)}=5(x-x).

yOX) + y(x) is caled the first Born approximation of w(x). Of course, this process can be
repeated to arbitrarily high accuracy:

y/(z)(x):.[ v )G X) dx' ... y/(ml)(x):.[ v ™ ()G (x;x) dx.

This process assumes that the Green’s function is “small” enough to produce a converging sequence.
The first Born approximation is valid when y9(x) << y©(x) everywhere, and in many other, less stringent
but harder to quantify, conditions. The extension to higher order approximations is straightforward: the
Born approximation is valid when y”(x) << y©(x).

TBS: areal QM example.

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 47 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

5 Complex Analytic Functions

For areview of complex numbers and arithmetic, see Funky Quantum Concepts.

Notation: In this chapter, z w are always complex variables;, X, vy, r, ¢ are always real variables.
Other variables are defined as used.

A complex function of a complex variable f(2) is analytic over some domain if it has an infinite
number of continuous derivatives in that domain. It turns out, if f(2) is once differentiable on a domain,
then it isinfinitely differentiable, and therefore analytic on that domain.

A necessary condition for analyticity of f(2) = u(x, y) + iv(x, y) near z is that the Cauchy-Riemann
equations hold, to wit:

x oy x X

oy oy x oy T x oy

A sufficient condition for analyticity of f(z) = u(x, y) + iv(X, y) near % is that the Cauchy-Riemann
equations hold, and the first partia derivatives of f exist and are continuous in a neighborhood of z,. Note
that if the first derivative of a complex function is continuous, then all derivatives are continuous, and the
function isanalytic. This condition implies

of . of ou . ov .[au .av] ou oV ou  ov o ou
= +iZt | = = = =—,and -——

Vu=v&=0

Vu-vVv=0 = "level lines" are perpendicular

.[22 f (2) dzis countour independent if f (z) issingle-valued
4

Note that a function can be andytic in some regions, but not others. Singular points, or singularities,
arenot in the domain of analyticity of the function, but border the domain [Det def 4.5.2 p156]. E.g., Vzis
singular at 0, because it is not differentiable, but it is continuous at 0. Poles are singularities near which the
function is unbounded (infinite), but can be made finite by multiplication by (z— z)* for some finite k [Det
pl65]. Thisimpliesf(z) can bewritten as:
f(2)=a(z-2) X+ 1(z—29) .. +a(z-27) T +rag+ay(z—2zp)  +....

The value k is caled the order of the pole. All poles are singularities. Some singularities are like
“poles” of infinite order, because the function is unbounded near the singularity, but it is not a pole because
it cannot be made finite by multiplication by any (z— z)*, for example €”%. Such asingularity is called an
essential singularity.

A Laurent series expansion of afunction is smilar to a Taylor series expansion, but the sum runs from
—o0 to +oo, instead of from 1 to . In both cases, an expansion is about some point, Z:

- S n 1" (z)
Taylor series.  1(2) = f(z0)+ ) _bn(z-2) where  ty, =— 00
“~ !
Laurent series.  f(2) = i an(z-2)" where a, =i<.|5 _ @ 4
i ’ 27i Jaround z, (z- Zo)k+l

[Det thm 4.6.1 p163] Analytic functions have Taylor series expansions about every point in the
domain. Taylor series can be thought of as special cases of Laurent series. But analytic functions also have
Laurent expansions about isolated singular points, i.e. the expansion point is not even in the domain of
analyticity! The Laurent seriesis valid in some annulus around the singularity, but not across branch cuts.
Note that in general, the a, and by could be complex, but in practice, they are often real.

Properties of analytic functions:
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1. Ifitisdifferentiable once, it isinfinitely differentiable.

2. The Taylor and Laurent expansions are unique. This means you may use any of several methods
to find them for a given function.

3. If you know afunction and all its derivatives at any point, then you know the function everywhere
in its domain of anayticity. This follows from the fact that every anaytic function has a Laurent
power series expansion. It implies that the value throughout aregion is completely determined by
its values at a boundary.

4. Ananaytic function cannot have alocal extremum of absolute value. (Why not??)

Residues

Mostly, we use complex contour integrals to evaluate difficult real integrals, and to sum infinite series.
To evaluate contour integrals, we need to evaluate residues. Here, we introduce residues. Theresidue of a
complex function at a complex point z is the a; coefficient of the Laurent expansion about the point z,.
Residues of singular points are the only ones that interest us. (In fact, residues of branch points are not
defined [Sea sec 13.1].)

Common ways to evaluate residues
1. Theresidue of aremovable singularity is zero. This s because the function is bounded near the
singularity, and thusa ; must be zero (or € se the function would blow up at z):

Fora;#0,as z—>7z,, a,

— 0 = a_=0.
VAN
2. Theresdueof asimplepoleat z (i.e., apole of order 1) is
ay=Ilim(z-2)f(2).
-7,

3. Extending the previous method: the residue of a pole at 7, of order kis

1 k-l k
a,= lim zZ— f(2) ,
-1 (k—l)! 77 dzk_l( ZO) (2)
which follows by substitution of the Laurent series for f(2), and direct differentiation. We show it
here, noting that poles of order mimply that a, = 0 for k <-m, so we get:

k+1

(D =a(z-2) "  +a(z-2) M+ ray(z-2) Tragra(z-z) +..

(2-20) () =&y + a1 (2- )" + ..+ a4 (2— 2) T+ g (2- 7)) + 2y (2-29) " + .
k-1 k+1)!
%(z—zo)k f(2) =(k—l)!a_l(z—zo)k‘1+%ao(z—zo)k +%a1(z—zo)k+l+...
k-1
ZILn;O%(z—zo)k f(2) = (k-1)lay
k-1
- bt
P@

4. If f(2) can be written as f(2) = , where P is continuous & z, and Q'(z) = 0 (and is

Q(2)

continuous a z), then f(z) hasasimple pole at z, and
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Resf(2)= dP(ZO) zg,((z‘))). Why? Near 75, Q(2) =(z-2)Q'(%).
o Qw “
Z gy

P(zg) _ Plz)
2-75)Q(z) Q%)
5. Find the Laurent series, and hence its coefficient of (z— z)*. This is sometimes easy if f(2) is

given in terms of functions with well-known power series expansions. See the sum of series
examplelater.

Then: Resf(2)= lim (z—2)f(2)= lim (z-
e Rest ()= lim (2-2)f(2)= lim (2 Zo)(

Wewill includereal-life examples of most of these aswe go.

Contour Integrals

Contour integration is an invaluable tool for evaluating both rea and complex-valued integras.
Contour integrals are used all over advanced physics, and we could not do physics as we know it today
without them. Contour integrals are mostly useful for evaluating difficult ordinary (real-valued) integras,
and sums of series. In many cases, a function is analytic except a a set of distinct points. In this case, a
contour integra may enclose, or pass near, some points of non-analyticity, i.e. singular points. It isthese
singular pointsthat allow usto evaluate the integral.

Y ou often |et the radius of the contour integral go to oo for some part of the contour:
imaginary
CR

R

>real

Any arc where

éﬂc'f(z)|_>~|z|l+g ,  &>0.

has an integral of O over thearc.

i Beware that this is often stated incorrectly as “any function which goes to zero faster than 1/|z| has
1 acontour integral of 0.” The problem is that it has to have an exponent <-1; it is not sufficient to

|z|i+1 <ﬁ , but the contour integral still diverges.

\ besimply smaller than 1/|Z. E.g.

Jordan’s lemma: ??.

Evaluating Integrals

Surprisingly, we can use complex contour integrals to evaluate difficult real integrals. The main point
is to find a contour which (a) includes some known (possibly complex) multiple of the desired (red)
integral, (b) includes other segments whose values are zero, and (c) includes a known set of poles whose
residues can be found. Then you simply plug into the residue theorem:

(ﬁcf(z)dz=27ri z Res f(z), where 1z, arethefiniteset of isolated singularities .

n residues
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We can see this by considering the contour integral around the unit circle for each term in the Laurent
series expanded about 0. First, consider the z° term (the constant term). We seek the value of cj}o dz. dzis

a small complex number, representable as a vector in the complex plane. The diagram below (left) shows
the geometric meaning of dz. Below (right) shows the geometric approximation to the desired integral.

Imaginary

4

do

n\dz = 60 dg

o unit
" circle

real

(Left) Geometric description of dz.

3
y,

PR
o
N

(Right) Approximation of cj}o dz asasum of 32 small complex terms (vectors).

We see that all the tiny dz elements add up to zero: the vectors add head-to-tail, and circle back to the
starting point. The sum vector (displacement from start) iszero. Thisistrue for any large number of dz, so

we have

(j)odz=0.

Next, consider the z* term, (j) (EJ dz, and a change of integration variable to 6:
o\ z

. . 2r . . 2r
Let z=€? dz=ig?ds: cJS (1) dz=j e—'eié9d9=j ido = 27i .
O\ zZ 0 0

| The change of variable maps the complex contour and z into an ordinary integral of area variable. |

Geometrically, as z goes positively (counter-clockwise) around the unit circle (below left), z* goes
around the unit circle in the negative (clockwise) direction (below middle). Itscomplex angle, arg(l/2) = -
0, wherez= €’. As z goes around the unit circle, dz has infinitesmal magnitude & = d¢, and argument 6 +
n/4. Hence, the product of (1/2) dz aways has argument of —6 + 6 + ©/4 = n/4; it is always purely

imaginary.
Imaginary Imaginary
Path of z= &? PaJ;hon: [
around unit __|B e'’around D
circle unit circle
Zreal L~ real
D A, JV B

Paths of z, 1/z, and dz in the complex plane

Imaginary

Path of dz=
eig? around
unit circle
real

\[Am

A
BY |
\\
C
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The magnitude of (1/2) dz = db; thusthe integral around thecircleis 2ri. Multiplying the integrand by
some constant, a ; (theresidue), just multiplies the integral by that constant. And any contour integral that
encloses the pole 1/z and no other singularity has the same value. Hence, for any contour around the origin

. Cﬁo a,ztdz
a,z dz=2zi(a4) = a,=——.
gSO 1 (a1) 1 o
Now consider the other terms of the Laurent expansion of f(z). We already showed that the a, 2 term,
which on integration gives the product a, dz, rotates uniformly about al directions, in the positive (counter-
clockwise) sense, and sumsto zero. Hence the a, term contributes nothing to the contour integral.

The a,7" dz product rotates uniformly twice around all directions in the positive sense, and of course,
still sums to zero. Higher powers of z Ssimply rotate more times, but always an integer number of times
around the circle, and hence always sum to zero.

Similarly, a,z? and al more negative powers, rotate uniformly about all directions, but in the
negative (clockwise) sense. Hence, all these terms contribute nothing to the contour integral.

Soin the end:

Theonly term of the Laurent expansion about O that contributes to the contour integral isthe
residueterm, a-1z-1.

The smplest contour integral: Evaluate | =.[OO 21
0 x°+1

We know from elementary calculus (let x = tan u) that | = z/2. We can find this easily from the residue
theorem, using the following contour:

ax .

imaginary

A 4

“C” denotes a contour, and “I” denotes the integral over that contour. We let the radius of the arc go to
infinity, and we see that the closed contour integral Ic = | + | + Ig. But Iz =0, because f(R — «) < 1/R%.
Thenl =1c/2. f(2) haspolesat +i. The contour enclosesonepoleati. ltsresidueis

. 1 1 1 . .1
Res f (i) = = =—. lc =27i ) Resf =2ri—=
O=43 2] 2 c =27i) Res f(z,) =2ni =7
—|z +1) z= n
dz 2
|=|_C=£
2 2

Note that when evaluating areal integrd with complex functions and contour integrds, thei’s always
cancel, and you get a real result, as you must. It’s a good check to make sure this happens.

Choosing the Right Path: Which Contour?

The path of integration is fraught with perils. How will | know which path to choose? There isno
universal answer. Often, many pathslead to the same truth. Still, many paths|ead nowhere. All we can do
is use wisdom as our guide, and take one step in a new direction. If we end up where we started, we are
grateful for what we learned, and we start anew.

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 52 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

We here examine several useful and general, but oft neglected, methods of contour integration. We
use a some sample problems to illustrate these tools. This section assumes a familiarity with contour
integration, and its use in evaluating definite integrals, including the residue theorem.

R
Example: Evauate I=J. szxdx.
= ¥

The integrand is everywhere nonnegative, and somewhere positive, and it is in the positive direction,
so | must be positive. We observe that the given integrand has no poles. It has only a removable
singularity at x = 0. If we areto use contour integrals, we must somehow create apole (or afew), to usethe
residue theorem. Simple poles (i.e. 1%-order) are sometimes best, because then we can also use the
indented contour theorem.

Imaginary Imaginary

»real \

Contours for the two exponential integras: (left) positive (counter-clockwise) exp(22);
(right) negative (clockwise) exp(—22)

To use a contour integral (which, a priori, may or may not be a good idea), we must do two things: (1)
create a pole; and (2) close the contour. The same method does both: expand the sin( ) in terms of
exponentids:

. . \2
» a2 w (62— w A2z © w 2z
I=J. SN de=J. (—z)dz=—E .[ ez dz- %dz+.|. © >—dz|.
-0 X -0 (2|) Zz 4 4 -0 7 4

2

All three integrals have poles at z= 0. If we indent the contour underneath the origin, then since the
function is bounded near there, the limit as r — O leaves the original integral unchanged (above left). The
first integral must be closed in the upper half-plane, to keep the exponential small. The second integra can
be closed in either half-plane, since it ~ 1/Z. The third integral must be closed in the lower half-plane,
again to keep the exponential small (aboveright). Note that all three contours must use an indentation that
preserves the value of the original integral. An easy way to insure thisis to use the same indentation on all
three.

Now the third integral encloses no poles, so is zero. The 2™ integral, by inspection of its Laurent
series, has a residue of zero, so is aso zero. Only the first integral contributes. By expanding the
exponential in a Taylor series, and dividing by 7, we find itsresidue is 2i. Using the residue theorem, we
have:

2

| =J'j°wsjzzxdx=—%[2ni(2i)}=n.

Example: Evaluate | = [ * Mz‘m(bx) dx [B&C p?? Q1].
X

Thisinnocent looking problem has a number of funky aspects:
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e Theintegrand istwo terms. Separately, each term diverges. Together, they converge.

e Theintegrand is even, so if we choose a contour that includes the whole real line, the contour
integral includes twice theintegra we seek (twice ).

e The integrand has no poles. How can we use any residue theorems if there are no poles?
Amazingly, we can create a useful pole.

e A typical contour includes an arc at infinity, but cos(2) is ill-behaved for z far off the real-axis.
How can we tame it?

o  Wewill seethat thisintegral leads to the indented contour theorem, which can only be applied to
simplepoles, i.e, first order poles (unlike the residue theorem, which appliesto al poles).

Each of these funky features is important, and each arises in practical real-world integrals. Let us
consider each funkinessin turn.

1. Theintegrandistwoterms. Separately, each term diverges. Together, they conver ge.
Near zero, cos(X) ~ 1. Therefore, the zero endpoint of either term of the integral looks like

1anyvvhere
dx=—-= — 40,

J-anymmerecosax d anywhere 1
Zodr X~J‘ el
0 X2 XO

0 X2

Thus each term, separately, diverges. However, the difference is finite. We see this by power series
expanding cos(x):

2 4 2,2 12,2
. XX _ax® b 4
cos(x)—l—E+Z—... = Cos(ax)—cos(bx)_—T+T+O(x) and
_ 2 12 2_ .2
Mz_a_+b_+o(xz)=b o) =
X 2 2 2

2
which isto say, isfinite.

anywhere cos(ax) — cos(bx) dx ~ b2 -a
I 0 X2

2. Theintegrand iseven, so if we choose a contour that includesthe wholereal ling, the contour
integral includestwice theintegral we seek (twicel).

Perhaps the most common integration contour (below |eft) coversthered ling and an infinitely distant
arc from +oo back to —o. When our real integral (I in this case) is only from O to oo, the contour integral
includes more than we want on the real axis. If our integrand is even, the contour integral includes twice
the integral we seek (twice l). This may seem trivial, but the point to notice is that when integrating from
—o to 0, dx isstill positive (below middle).

dmaginary f(x) even
R
< . X
d real Sdx>0 7

(Left) A common contour.
(Right) An even function hasintegral over the real-line twice that of O to infinity.

Note that if the integrand is odd (below left), choosing this contour cancels out the original (real)
integral from our contour integral, and the contour is of no use. Or if the integrand has no even/odd
symmetry (below middle), then this contour tells us nothing about our desired integral. In these cases, a
different contour may work, for example, one which only indudes the positive real axis (below right).
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L_\\Hdpo . — \ | "

(Left) An odd function has zero integral over thereal line. (Middle) An asymmetric function has
unknown integral over therea line. (Right) A contour containing only the desired real integral.

‘f(x) odd ‘ f(x) asymmetric imaginary

3. Theintegrand has no poles. How can we use any residue theorems if there are no poles?
Amazingly, we can create a useful pole.

This isthe funkiest aspect of this problem, but illustrates a standard tool. We are given areal-valued
integral with no poles. Contour integration is usually useless without a pole, and a residue, to help us
evaluate the contour integral. Our integrand contains cos(x), and that is related to exp(ix). We could try
replacing cosines with exponentiass,

_ exp(iz) + exp(-iz)
2

but this only rearranges the algebra; fundamentally, it buys us nothing. The trick here is to notice that we
can often add a made-up imaginary term to our origina integrand, perform a contour integration, and then
simply taketherea part of our result:

Cosz

(does no good) .

Given | :j:g(x) d let  f(z)=g(@+ih(zx.  Then 1= Re{j:f(z) dz}.

For this trick to work, ih(z) must have no rea-valued contribution over the contour we choose, so it
doesn’t mess up the integral we seek. Often, we satisfy this requirement by choosing ih(2) to be purely
imaginary on the real axis, and having zero contribution elsewhere on the contour. Given an integrand
containing cos(x), asin our example, anatural choice for ih(2) isi sin(z), because then we can write the new
integrand as a smple exponential:

cos(x) = f(2) =cox(2) +isin(z) =exp(iz) .

In our example, the corresponding substitution yields

I =J‘°° wdx N | =Re{J'°° exp(|ax)—exp(|bx)dx}.
0 2 o v

Examining this substitution more closely, we find a wonderful consequence: this substitution
introduced apole! Recall that

. 2 isnz .(1 z
San=Z—§+... = =il ==—=+....

We now have asimple poleat z= 0, with residuei.

By choosing to add an imaginary term to the integrand, we now have a pole that we can work with
to evaluate a contour integral!

It’s like magic. In our example integral, our residue is:

isnaz—isinbz .[a—b
=i +

2 z

j and resdue=i(a-b).
z

Note that if our original integrand contained sin(x) instead of cos(x), we would have made a similar
substitution, but taken theimaginary part of the result:
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b b
Given | =jasin(x) dx, let f(z)=cox(2)+isin(z). Then | =|m{ja f(2) dz}.
4. A typical contour includes an arc at infinity, but cos(2) is ill-behaved for zfar off the real-

axis. How can wetameit?

Thisisrelated to the previous funkiness. We’re used to thinking of cos(X) as a nice, bounded, well-
behaved function, but thisisonly true when x isreal.

When integrating cos(z) over a contour, we must remember that
cos(z) blows up rapidly off thered axis.

In fact, cos(2) ~ exp(Im{z}), so it blows up extremely quickly off the real axis. If we’re going to
evaluate a contour integral with cos(2) in it, we must cancedl its divergence off the real axis. Thereisonly
one function which can exactly cancel the divergence of cos(z), andthat is+ i sin(z). The plus sgn cancels
the divergence above the red axis; the minus sign cancels it below. There is nothing that cancels it
everywhere. We show this cancellation smply:

Let Z=X+iy
cosz+isinz =exp(iz) = exp(i (x+iy)) = exp(ix) exp(-y) and
lexp(ix) exp(-y)| = |exp(ix)| - |exp(-y)| = exp(-Y)

For z above the real axis, this shrinks rapidly. Recall that in the previous step, we added i sin(x) to our
integrand to give us a pole to work with. We see now that we also need the same additional term to tame
the divergence of cos(2) off therea axis. For the contour we’ve chosen, no other term will work.

5. We will see that this integral leads to the indented contour theorem, which can only be
applied to simple pales, i.e,, first order poles (unlike the residue theorem, which appliesto all
poles).

We’re now at thefinal step. Wehave apoleat z=0, but it is right on our contour, not inside it. If the
pole were inside the contour, we would use the residue theorem to evaluate the contour integral, and from
there, we’d find the integral on the real axis, cut it in half, and take the real part. That is the integral we
seek.

But the pole is not inside the contour; it is on the contour. The indented contour theorem allows us to
work with poles on the contour. We explain the theorem geometrically in the next section, but state it
briefly here:

Indented contour theorem: For asimple pole, theintegral of an arc of tiny radius around the pole,
of angle §, equals (i¢)(residue). See diagram below.

imaginary imaginary Asp 50,
arc . .
| ) jarc f(2) dz= (i0)(residue)
2 T XN
T real \ real

(Left) A tiny arc around asmple pole. (Right) A magnified view; welet p — 0.

Note that if we encircle the pole completely, 6 = 27, and we have the special case of the residue theorem
for asmple pole:

¢ 7 (2) dz = 2ri(residue) .

However, the residue theorem istrue for all poles, not just smple ones (see The Residue Theorem earlier).

Putting it all together: We now solve the original integral using al of the above methods. First, we
add i sn(2) to theintegrand, which is equivalent to replacing cos(z) with exp(i2):
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I ﬂ“”de - | =Re{J'°° exp(iax) —exp(ibx) dx}
0 2 . >
Define J=|; el _zeXp(le) dx, 0 | =Re{J}

X

We choose the contour shown below left, with R — oo, and p — O.
simaginary imaginary

R \Cr C,

C, P
« - »L, real « f »L, real

There are no poles enclosed, so the contour integral is zero. The contour includes twice the desired
integral, so define;
_ exp(iaz) — exp(ibz) _ _
f(2)= > : Then <j>f(z) dz_jCRf(z) dz+2J +ij f(2) dz=0. (5.1)

For Cr, [f(?)| < R, s0 asR — oo, the integral goes to 0. For C,, theresidueisi(a - b), and the arc is =
radiansin the negative direction, so the indented contour theorem says:

lim jcp f(2) dz=—(xi)i(a-b)=x(a-b).
Plugging into (5.1), we finaly get
23 +z(a-b)=0 = I=Re{J}=%(b—a).

In this exampl e, the contour integral J happened to be red, sotaking | = Re{J} istrivial, but in general,
there’s no reason why J must bereal. It could well be complex, and we would need to take the real part of
it.

Toillustrate thisand more, we evaluate the integra again, now with the alternate contour shown above

right. Again, there are no poles enclosed, so the contour integral is zero. Again, the integral over Cg = 0.
We then have:

@f(z)dz:WqC f(z)o|z+J+jC f(2) dz=0

And - lim jcp f(2) dz=—(iz/2)i(a-b) =%(a—b)

Theintegrd over C, isdown theimaginary axis:
Let Z=X+iy=0+iy =iy, then dz=idy
J- f2) dz=j exp(iaz)—exp(ibz) dzzjo exp(—ay)—exp(—by)i dy
C, C, 2 © _y2

z
We don’t know what this integral is, but we dont care! Infact, it is divergent, but we see that it is purely
imaginary, so will contribute only to the imaginary part of J. But we seek | = Re{J}, and therefore

| = lim Re{J} iswell-defined.

p—0

Therefore we ignore the divergent imaginary contribution from C,. We then have
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i (something) + J +%(a—b)=0 = | =Re{J} =%(b—a).

as before.

Evaluating Infinite Sums

Perhaps the simplest infinite sum in the world is S= ziz The genera method for using contour
n
n=1
integrals is to find an countably infinite set of residues whose values are the terms of the sum, and whose
contour integral can be evaluated by other means. Then

lc=2ri) Resf(z)=27iS = s=tc .
—~ 2ri

The hard part is finding the function f(z) that has theright resdues. Such afunction must first have poles at
all theintegers, and then also have residues a those poles equal to the terms of the series.

To find such a function, consider the complex function = cot(zz). Clearly, this has poles at all red
integer z, dueto the sin(z2) function in the denominator of cot(z). Hence,

:1,

For z, = n (integer), R$[ﬂ COt(zn)} _ Reﬁ{ﬂ cos(ﬂzn)} o cos(nzn)

sin(zz,) m cos(7z,)
P2 _ P

whereinthelast sepweused if Q(z2)=0 then Res——==
® @ 220 Qz)

Thus 7 cot(nz) can be used to generate lots of infinite sums, by simply multiplying it by a continuous
function of z that equals the terms of the infinite series when zisinteger. For example, for the sum above,

, if thisisdefined.

S= zn—lz , we smply define:
n=1

f(z):izncot(zrz), and itsresidues are R&sf(zn):iz, nz0.
z n

[In general, tofind ZS(n) , define

n=1

f(2)=s(9)[zcot(zz)], anditsresiduesare Res f(2) = s(n).

However, now you may have to deal with theresiduesfor n< 0]

Continuing our example, now we need the residue at n = 0. Since cot(2) has a smple pole at zero,
cot(2)/Z has a 3" order pole at zero. We optimistically try tedious brute force for an m" order pole with m
=3, only to find that it fails:

meotzz . | 1 d? gmceotnz . |1 d?
Res =lim z =lim| =—=nzcotnz
=0 7° 20| 2! dz2 72 z-0| 2! gz2
1sin2 Z-n2
mr, d 2 n, d|cosrzsnrgz—nz| n,. d Temm
=—|Im—|:C0t7'[Z—7'[ZCSC 7'[Z:|=—|Im— > =—lim— —
2200z 2200z sin“rz 22500z sin“rz
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U VdU-Udv

Use d—
\Y; V32

. 1. .
smzzzz(zrcos27rz—7z)— —sin2rz—-rxz|27rsinrzcosrz
wcotrz . 2
Res———=—_lim —
z=0 z 2 20 an“rz

sinzz(x ooserz—n)—(ésinan—zrz)choszz

2 z-0 Sin37ZZ

Use L’hopital’s rule:

reotrz 7w, 1 . .
Res == lim ———————| ncosrz(wcos2rz—r)+sinrz(-2x sin2rz-1)
-0 7 2 250 37sin?
z Z 7T SIN™ T ZCOStZ

—(ncosan—n)choszz—(%sin an—zrz)ansinnz}

—nzcoszzz(cosZ:zz—l)+sin:zz(—Z:zsin27zz—1)—an(;sinhz—nzjsinnz
=2 lim —
2 z-0 3rsinN“rzcosrz

At this point, we give up on brute force, because we see from the denominator that we’ll have to use
L’Hopital’s rule twice more to eliminate the zero there, and the derivatives will get untenably comp licated.

But in 2 lines, we can find the a ; term of the Laurent series from the series expansions of sin and cos.
The Z* coefficient of cot(z) becomes the z* coefficient of f(2) = cot(2)/Z:

cotz= 2 L7 /2 —(1j—1_ Z12 ~Gj(1— 2212)(1+ zzle)z(%j(l— 213) =%—§

snz z-72°/6+.. \z)1-7°/6
1 nz cotrz n?
cotrz~r——— = esrw > =——
nZ 3 z=0 Z 3

Now we take a contour integral over acircle centered at the origin: (no good, because cot(zz) blows up
every integer | ?77)

imaginary
IC

ASR— o, Ic — 0. Hence:

&1 > 1 2 q © 1 _K 2
IC:O:ZEI(Z¥+KO+§?] = K0+ZZ?:O, 2_2270:%,

n=-1 n=1 n=1
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Multi-valued Functions

Many functions are multi-valued (despite the apparent oxymoron), i.e. for a single point in the
domain, the function can have multiple values. An obvious example is a square-root function: given a
complex number, there are two complex square roots of it. Thus, the square root function is two-valued.
Ancther example is arc-tangent: given any complex number, there are an infinite number of complex
numbers whose tangent is the given complex number.

[picture??]

We refer now to “nice” functions, which are locally (i.e., within any small finite region) analytic, but
multi-valued. If you’re not careful, such “multi-valuedness” can violate the assumptions of analyticity, by
introducing discontinuities in the function. Without analyticity, all our developments break down: no
contour integrals, no sums of series. But, you can avoid such a breakdown, and preserve the tools we’ve
developed, by treating multi-valued functions in a slightly special way to insure continuity, and therefore
analyticity.

A regular function, or region, is analytic and sngle valued. (You can get a regular function from a
multi-valued one by choosing a Riemann sheet. More below.)

A branch point is a point in the domain of a function f(Z) with this property: when you traverse a
closed path around the branch point, following continuous values of f(2), f(2) has a different value a the end
point of the path than at the beginning point, even though the beginning and end point are the same point in
the domain. Example TBS: squareroot around the origin. Sometimes branch points are also singularities.

A branch cut is an arbitrary (possibly curved) path connecting branch points, or running from a
branch point to infinity (“connecting” the branch point to infinity). If you now evaluate integrals of
contours that never cross the branch cuts, you insure that the function remains continuous (and thus
analytic) over the domain of theintegral.

When the contour of integration is entirely in the domain of analyticity of the integrand,
“ordinary” contour integration, and the residue theorem, are valid.

This solves the problem of integrating across discontinuities. Branch cuts are like fences in the domain
of the function: your contour integral can’t cross them. Note that you’re free to choose your branch cuts
wherever you like, so long as the function remains continuous when you don’t cross the branch cuts.
Connecting branch pointsis one way to insure this.

A Riemann sheet is the complex plane plus a choice of branch cuts, and a choice of branch. This
defines adomain on which afunction isregular.

A Riemann surfaceis a continuous joining of Riemann sheets, gluing the edges together. This “looks
like” sheets layered on top of each other, and each sheet represents one of the multiple values a multi-

valued analytic function may have. TBS: consider \/(z—-a)(z-b) .

imagjnary imaginary

« real real

branch cut - “Zbranch cuts—*
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6 Conceptual Linear Algebra

Ingtead of lots of summation signs, we describe linear algebra concepts, visualizations, and ways to
think about linear operations as algebraic operations. This allows fast understanding of linear algebra
methods that is extremely helpful in amost all areas of physics. Tensors rely heavily on linear algebra
methods, so this section is a good warm-up for tensors. Matrices and linear algebra are aso critical for
guantum mechanics.

Caution In this section, vector means a column or row of numbers. In other sections, “vector”
has a more genera meaning.

In this section, we use bold capitals for matrices (A), and bold lower-case for vectors (a).
Matrix Multiplication

It is often helpful to view a matrix as a horizontal concatenation of column-vectors. You can think of
it asarow-vector, where each element of the row-vector isitself a column vector.

|
| |
A=aibic or A= e
| |
|

Equally valid, you can think of a matrix as a vertical concatenation of row-vectors, like a column-
vector where each dement isitself arow-vector.

Matrix multiplication is defined to be the operation of linear transformation, e.g., from one set of
coordinates to ancther. The following properties follow from the standard definition of matrix
multiplication:

Matrix timesa vector: A matrix B times a column vector v, is aweighted sum of the columns of B:

7NN
B, B, By
Bv=|B, B, By

B?»l B32 BSS
_/

We can visualize this by laying the vector on its side above the columns of the matrix, multiplying
each matrix-column by the vector component, and summing the resulting vectors:

v v’ v a
B, B, By|V x x x By By B
Bv=B, B, Bg| V' |=|B,|+|B,|+]|Bs =V By [+V'| By, [+V'| By
By By By Vv B B, B B, B, By
| B B, B; |

The columns of B are the vectors which are weighted by each of theinput vector components, v'.

Another important way of conceptualizing a matrix times a vector: the resultant vector isacolumn of
dot products. Thei™ eement of the result isthe dot product of the given vector, v, with thei™ row of B.
Writing B as a column of row-vectors:
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rl rl r1-V
B = rz - BV = rz V|= r2°V .
r3 r3 r3'V

This view derives from the one above, where we lay the vector on its side above the matrix, but now
consider the effect on each row separately: it is exactly that of a dot product.

In linear algebra, even if the matrices are complex, we do not conjugate the left vector in these dot
products. If they need conjugation, the application must conjugate them separately from the matrix
multiplication, i.e. during the construction of the matrix.

We use this dot product concept later when we consider a change of basis.

Matrix timesa matrix: Multiplying amatrix B times another matrix C is defined as multiplying each
column of C by the matrix B. Therefore, by definition, matrix multiplication distributes to the right across
the columns:

[ [ | |
| | | | | |

Let sziyiz,then BC=BxiyEZEBxiByiBz.
| | | | | |
[ [ I I

[Matrix multiplication also distributes to the left across the rows, but we don’t use that as much.]

Determinants

This section assumes you’ve seen matrices and determinants, but probably didn’t understand the
reasons why they work.

The determinant operation on amatrix produces a scalar. It isthe only operation (up to a constant
factor) which is (1) linear in each row and each column of the matrix; and (2) antisymmetric under
exchange of any two rows or any two columns.

The above two rules, linearity and antisymmetry, allow determinants to help solve simultaneous linear
equations, as we show later under “Cramer’s Rule.” In more detail:

1. The determinant is linear in each column-vector (and row-vector). This means that multiplying
any column (or row) by a scalar multiplies the determinant by that scalar. E.g.,

| | | | | |

I I I I I I I I I I
detkaibic=kdetaibic; and deta+dibic=detaibic+detdibic.

| | | | | | | | | |

| | | | | |

2. Thedeterminant is anti-symmetric with respect to any two column-vectors (or row-vectors). This
means swapping any two columns (or rows) of the matrix negates its determinant.

The above properties of determinantsimply some others:

3. Expanson by minors/cofactors (see below), whose derivation proves the determinant operator is
unigue (up to a constant factor).

4. The determinant of a matrix with any two columns equa (or proportionad) is zero. (From anti-
symmetry, swap the two equal columns, the determinant must negate, but its negative now equals
itself. Hence, the determinant must be zero.)

|

I I
detbibic=—detbbc = det| b

| |

|

o
(9]
Il
o
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5. det|A|-det|B|=det|AB|. Thisis crucially important. It also fixes the overall constant factor of
the determinant, so that the determinant (with this property) is a completely unique operator.

6. Adding a multiple of any column (row) to any other column (row) does not change the
determinant:

|

| |
deta+kbibic=deta

| |

|

7. det|A + B|#det|A| + det|B|. Thedeterminant operator is not distributive over matrix addition.
8. det|kA|=K"det|A|.

The ij-th minor, M;;, of an nxn matrix (A = Ay,) is the product A; times the determinant of the (n-
1)x(n-1) matrix formed by crossing out thei-th row and j-th column:

jth column

A - : Aﬂ Al A

1mn - 1in-1

ith row - Mij EA“- det

'0;11 A;m AIrH,l o A|mlml

A cofactor isjust aminor with aplus or minus sign affixed:
Cj = (D" My = (-1 A, det [[A] without i™ row and j" column].

Cramer’s Rule

It’s amazing how many textbooks describe Cramer’s rule, and how few explain or derive it. I spent
years looking for this, and finaly found it in [Arf ch 3]. Cramer’s rule is a turnkey method for solving
simultaneous linear equations. It is horribly inefficient, and virtually worthless above 3 x 3, however, it
does have important theoretical implications. Cramer’s rule solves for n equationsin n unknowns:

Given Ax=b, where A isacoefficient matrix,
x isa vector of unknowns, x;
b isavector of constants, b

To solve for the i unknown x, we replace the i column of A with the constant vector b, take the
determinant, and divide by the determinant of A. Mathematically:

Let A=[a |a, |- |a,] where g isthei™ columnof A. Wecansolvefor x as

o

|
I
i
det|a; [
|
|
I
|

Q
]

|
i
|
.
|
|

|
det|A|

where a isthei™ column of A
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This seems pretty bizarre, and one has to ask, why does this work? It’s quite simple, if we recall the
properties of determinants. Let’s solve for X, noting that all other unknowns can be solved analogoudly.
Start by simply multiplying x; by det|A|:

[
| | |
| | |
b
x det|A| = det|xy 1@, 1 ... 1 &,
b
| | |
[
[
b
R adding a multiple of any column to
=det|xa +Xa, 18, I ... 1 &, ) )
A another doesn't change the determinant
b
[
[
| | |
| | |
b , :
= det| X8y + Xl + ... Xy@y 18 . 1 8y ditto (n— 2) moretimes
b
| | |
[
[ [
| | | | | |
| | | | | |
b b - :
=det|/Ax 13, | ... 1@, =detb1a, I...14, rewriting the first column
b b
| | | | | |
[ [
[
| | |
| | |
b
detb 1@, 1 ... 1 &,
b
| | |
N . = L
' det| A
Area and Volume as a Determinant
Cc a
N e /
(c.d)
(cd) rmmrmmmmm e > S
,/’ d ///
,1/ d (a,b) ,/
b
(a,0) c a c

Determining areas of regions defined by vectorsis crucial to geometric physicsin many areas. Itisthe
essence of the Jacobian matrix used in variable transformations of multiple integrals. What is the area of
the paralelogram defined by two vectors? This is the archetypal area for generalized (oblique, non-
normal) coordinates. We will proceed in aseries of steps, gradually becoming more general.

First, consider that the first vector is horizontal (above left). Theareaissmply base x height: A =ad.
We can obviously write this as a determinant of the matrix of column vectors, though it is as-yet contrived:
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ac
A=det =ad-(0)c=ad.
0d

For a genera paralelogram (above right), we can take the big rectangle and subtract the smaller
rectangles and triangles, by brute force:

A=(a+c)(b+ d)—2bc—2[%jod —2@)@:,36%(1 +cb+ od — 2bc—td — af

=ad —bc =det
b d

ac‘

This is smple enough in 2-D, but is incomprehensibly complicated in higher dimensions. We can
achieve the same result more generally, in a way that allows for extension to higher dimensons by
induction. Start again with the diagram above left, where the first vector ishorizontal. We can rotate that
to arrive a any arbitrary pair of vectors, thus removing the horizontal restriction:

a c
Let R = therotation matrix.  Then the rotated vectors are R{O} and R{d}
a c a ¢ a c a c
det|R R =det| R = (d det = det
0 d 0 d 0 d 0 d

The final equdity is because rotation matrices are orthogonal, with det = 1. Thus the determinant of
arbitrary vectors defining arbitrary paralelograms equals the determinant of the vectors spanning the
parallel ogram rotated to have one side horizontal, which equal sthe area of the parallelogram.

What about the sign? If we reverse the two vectors, the area comes out negative! That’s ok, because
in differential geometry, 2-D areas are signed: positive if we travel counter-clockwise from the first vector
to the 2", and negative if wetravel clockwise. The above areas are positive.

In 3-D, the signed volume of the parallelepiped defined by 3 vectors a, b, and ¢, is the determinant of
the matrix formed by the vectors as columns (positive if abc form a right-handed set, negative if abc are a
left-handed set). We show this with rotation matrices, smilar to the 2-D case: Firg, assume that the
parallelogram defined by bce liesin the x-y plane (b, = ¢, = 0). Then the volumeissimply (area of the base)
x height:

a b

|
V = (area of base)(height)={det‘b i CU(az)=det a, b, ¢l
|

a, 0 O

A

where the last equality is from expansion by cofactors along the bottom row. But now, as before, we
can rotate such a paralldepiped in 3 dimensonsto get any arbitrary parallelepiped. As before, the rotation
matrix is orthogonal (det = 1), and does not change the determinant of the matrix of column vectors.

This procedure generdizes to arbitrary dimensions: the sgned hyper-volume of a paralléelepiped
defined by n vectorsin n-D space is the determinant of the matrix of column vectors. Thesgnis positive if
the 3-D submanifold spanned by each contiguous subset of 3 vectors (ViVaVa, VoVaVy, VaVaVs, ...) IS right-
handed, and negated for each subset of 3 vectorsthat is |eft-handed.

The Jacobian Determinant and Change of Variables

How do we change multiple variablesin amultipleintegra? Given
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” f(a,b,c) dadbdc and the change of variablestou,v,w:
a=a(u,v,w), b =b(u, v, w), c=c(u,v,w). Thesimplistic
” f(ab,c)dadbdc — I” f [a(u,v,w), b(u,v,w),c(u,v,w)] dudvdw (wrong!)

fails, because the “volume” du dv dw associated with each point of f(-) is different than the volume da
db dcin the original integral.

Example of new-coordinate volume element (du dv dw), and its corresponding old-coordinate
volume element (da db dc). The new volume element is a rectangular paralelepiped. The old-
coordinate parallel epiped has Sdes straight to first order in the original integration variables.

In the diagram above, we see that the “volume” (du dv dw) is smaller than the old-coordinate “volume”
(da db dc). Note that “volume” is a relative measur e of volume in coordinate space; it has nothing to do
with a “metric” on the space, and “distance” need not even be defined.

There is a concept of relative “volume” in any space, even if there is no definition of “distance.”
Relative volume is defined as products of coordinate differentials.

Theintegrand is constant (to first order in the integration variables) over the whole volume element.

Without some correction, the weighting of f(-) throughout the new-coordinate domain is different than
the original integral, and so the integrated sum (i.e,, theintegral) is different. We correct this by putting in
the original-coordinate differential volume (da db dc) as a function of the new differential coordinates, du,
dv, dw. Of courseg, this function varies throughout the domain, so we can write

mf(a,b,c) dadodc - mf[a(u,v,w),b(u,v,w),c(u,v,w)]V(u,v,w) du dv dw

where  V(u,v,w) takes(du dv dw) — (da db dc)

To find V(-), consider how the a-b-c space vector daa is created from the new u-v-w space. It has
contributions from displacementsin all 3 new dimensions, u, v, and w:

daa = a—adu+%dv+@dw a Smilarly,
ou ov ow

aob = Pau+ Pavs P awlp
ou ov oW

dcéz[@du+@dv+ﬁdwjé
ou ov ow

The volume defined by the 3 vectors dud, dw, and dwmv maps to the volume spanned by the

corresponding 3 vectorsin the original a-b-c space. The a-b-¢ space volume is given by the determinant of
the components of the vectors da, db, and dc (written asrows below, to match equations above):
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ga,, 98y, 924 oda oa oOa

ou ov ow ou ov ow
volume=deta—bdu a—bdv a—de=deta—b b a—b(dudvdw).

ou ov ow ou ov ow

Cau Lo a a e

ou ov oW ou ov ow

where the last equality follows from linearity of the determinant. Note that all the partial derivatives
arefunctions of u, v, and w. Hence,

% o ca
ou ov

% b a—EJ(U,V,W) [the Jacobian ],  and
ou ov

e &
ou ov

2 2|

V (u,v,w) = det

23 2

J'J' f(abc)dadodc  — J'J'J'f[a(u,v,w),b(u,v,w),c(u,v,w)]J(u,v,w)dudvdw

QED.
Expansion by Cofactors

Let us construct the determinant operator from itstwo defining properties: linearity, and antisymmetry.
First, we’ll define a linear operator, then we’ll make it antisymmetric. [This section is optional, though
instructive.]

We first construct an operator which islinear in the first column. For the determinant to be linear in
the first column, it must be a sum of terms each containing exactly one factor from the first column:

A Ap e A
Let A= Afl A” j:‘ AQ” Then  detA=Ay(...)+ Ay(.)++Ag(..).
A Az o A

To be linear in the first column, the parentheses above must have no factors from the first column (else
they would be quadratic in some components). Now to aso be linear in the 2 column, all of the
parentheses above must be linear in al the remaining columns. Therefore, to fill in the parentheses we
need alinear operator on columns 2...n. But that is the same kind of operator we set out to make: a linear
operator on columns 1..n. Recursion is clearly called for, therefore the parentheses should be filled in with
more determinants:

detA = Ayy(det My )+ Ay (detM, ) +---+ Ay (detM ) (sofar).

We now note that the determinant is linear both in the columns, and in therows. This means that det
M1 must not have any factors from the first row or the first column of A. Hence, M ; must be the submatrix
of A with thefirst row and first column stricken out.
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1% column 12 column
1% row _' NT T d v 'Aln ] ’7 1 AlZ A.n
Ar Ap Pon 2nd row Aot Pon
Aj - My, LAy A | oM, e
L An A An | 1 Az An

Similarly, M, must be the submatrix of A with the 2" row and first column stricken out. And so on,
through M, which must be the submatrix of A with the n™ row and first column stricken out. We now
have an operator that islinear in al the rows and columns of A.

So far, this operator isnot unique. We could multiply each term in the operator by a constant, and till
preserve linearity in all rows and columns.

det A = kA, (det My)+ky Ay (detM )+ + K, Ay (detM ) .

We choose these constants to provide the 2™ property of determinants: antisymmetry. The determinant
is antisymmetric on interchange of any two rows. We start by considering swapping the first two rows:
DeﬂneA’ = (A W|th Al* > Az*).

I All AiZ Aln 1 1 . ’L\‘Qn :
swap swapped
( Ay . . Aon C M A An
AJ — A AJ ->M '1, etc.
L Au An | LA Az An |

Recall that M strikes out the first row, and M, strikes out the 2™ row, so swapping row 1 with row 2
replaces the first two terms of the determinant:

detA = kA, (det M)+ koA (detM ) +... — det A'=k Ay (det M '} )+ koA q (detM ') +...

But M’; = M, andM’zle. So we have:

- detA'=Iq Ay (det M)+ koA, (detMy)+....

Thislagt form isthe same as det A, but with k; and k; swapped. To make our determinant antisymmetric,
we must choose constants k; and k; such that terms 1 and 2 are antisymmetric on interchange of rows 1 and
2. This smply means that k; = —k,. So far, the determinant is unique only up to an arbitrary factor, so we
choose the smplest such constants: k; =1, k, =-1.

For M3 through M,,, swapping the first two rows of A swaps the first two rows of M5 through M°;;;

Pon
An

L —
{ LA Am‘

L Ae o An

Since M3 through M, appear indde determinant operators, and such operators are defined to be

antisymmetric on interchange of rows, terms 3 through n also change sign on swapping the first two rows
of A. Thus al the terms 1 through n change sign on swapping rows 1 and 2, and det A = —det A”.

1A22

SNapped ( 1 A12

etc.

> M,
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We are ailmost done. We have now a unique determinant operator, with k; = 1, k, = -1. We must
determine ks through k,. So consider swapping rows 1 and 3 of A, which must also negate our determinant:

At A2 - o An Hr————An
S| | Ay Py swapped| | Aoy Ay, .. Ay
Ay . L Ao AY . A, .. A |>MY,  dc
Ar - A R R
Again, M”4 through M”, have rows 1 & 3 swapped, and thus terms 4 through n are negated by their
determinant operators. Also, M”, (formed by striking out row 2 of A) hasitsrows 1 & 2 swapped, and is
also thus negated.

The terms remaining to be accounted for are A, (det M;) and kyAy (detM ;). The new M”, is the

same as the old M 3, but with itsfirst two rows swapped. Similarly, the new M”; isthe same asthe old M,
but with itsfirst two rows swapped. Hence, both terms 1 and 3 are negated by their determinant operators,
so we must choose ks = 1 to preserve that negation.

Finally, proceeding in this way, we can consider swapping rows 1 & 4, etc. We find that the odd
numbered k’s are all 1, and the even numbered k’s are all —1.

We could also have started from the beginning by linearizing with column 2, and then we find that the
k are opposite to those for column 1: this time for odd numbered rows, koq = —1, and for even numbered
rows, Ke,en = +1. The K’s simply alternate sign. This leads to the final form of cofactor expansion about any
column c:

det A = (-1 A (det M)+ (—2) 2" Ay (detM 5 ) +---+ (-D)™C A (detM ) .

Note that:

We can perform a cofactor expansion down any column,
or across any row, to compute the determinant of a matrix.

We usually choose an expansion order which includes as many zeros as possible, to minimize the
computations needed.

Proof That the Determinant Is Unique

If we compute the determinant of a matrix two ways, from two different cofactor expansions, do we
get the same result? Yes. We here prove the determinant is unique by showing that in a cofactor
expansion, every possi ble combination of € ements from the rows and columns appears exactly once. This
is true no matter what row or column we expand on. Thus all expansions include the same terms, but just
written in adifferent order.

Also, this complete expansion of all combinations of elements is a useful property of the cofactor
expansion which has many applications beyond determinants. For example, by performing a cofactor
expansion without the dternating signs (in other word, an expansion in minors), we can fully symmetrize a
set of functions (such as boson wave functions).

The proof: let’s count the number of terms in a cofactor expansion of a determinant for an nxn matrix.
We do this by mathematical induction. For the first level of expansion, we choose a row or column, and
construct n terms, where each term includes a cofactor (a sub-determinant of an -1 x n—1 matrix). Thus,
the number of termsin an nxn determinant is n times the number of termsin an n-1 x n-1 determinant. Or,
turned around,

#termsin (n+1x n+1) = (n+1)(#termsinnxn).
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Thereisonetermin a 1x1 determinant, 2 termsin a 2x2, 6 termsin a 3x3, and thus n! termsin an nxn
determinant. Each term is unique within the expansion: by construction, no term appears twice as we work
our way through the cofactor expanson.

Let’s compare this to the number of terms possible which are linear in every row and column: we have
n choices for the first factor, n—1 choices for the second factor, and so on down to 1 choice for the last
factor. That is, there are n! ways to construct terms linear in all the rows and columns. That is exactly the
number of terms in the cofactor expansion, which means every cofactor expansion is a sum of all possible
terms which arelinear in therows and columns. This proves that the determinant is unique up to a sign.

To prove the sign of the cofactor expansion is aso unique, we can consider one specific term in the
sum. Consider the term which is the product of the main diagonal elements. Thisterm is always positive,
since TBS ??

Getting Determined

You may have noticed that computing a determinant by cofactor expansion is computationally
infeasible for n > ~15. Therearen! terms of n factors each, requiring O(n - n!) operations. For n = 15, this
is ~10™ operations, which would take about a day on afew GHz computer. For n = 20, it would take years.

s there a better way? Fortunately, yes. It can be done in O(n®) operations, so one can easily compute
the determinant for n = 1000 or more. We do this by using the fact that adding a multiple of any row to
ancther row does not change the determinant (which follows from anti-symmetry and linearity).
Performing such row operations, we can convert the matrix to upper-right-triangular form, i.e, al the
elementsof A’ below the main diagonal are zero.

(AL, A, o AL A
All ALZ Aln Oll A.2 All,n 1 Alln
Az A2 Az 2 2,n-1 2n
N e - A=| oo : :
. . ‘ . 0 0 o AIn—l,n—l AIn—l,n
A Az o A 0 0 .. 0 Aw |

By construction, det|A’| = det)A|. Using the method of cofactors on A’, we expand down the first
column of A’ and first column of every submatrix in the expansion. E.g.,

|—A|' X N
AT X
A V4 V4
A': Z2Z 7
L}
Ay |

Only the first term in each expansion survives, because all the others are zero. Hence, det|A’| is the
product of its diagonal elements:

n
detA = detA‘=HA‘ii where A, arethediagonal elementsof A'.
i=1

Let’s look at the row operations needed to achieve upper-right-triangular form. We multiply the first
row by (A / Ar) and subtract it from the 2™ row. This makes the first element of the 2™ row zero (below
eft):
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At Ay A Ay Ar A2 As An Ar A2 Az An
A 0 By By By N 0 By By Bu 5 0 By By By
Ay A As Ay 0 By By By 0 0 Gy G
A An Az Ay 0 By By By 0 0 Cy Cy

Perform this operation for rows 3 through n, and we have made the first column below row 1 all zero
(above middle). Similarly, we can zero the 2™ column below row 2 by multiplying the (new) 2™ row by
(Bs2 / Byy) and subtracting it from the 3" row. Perform this again on the 4™ row, and we have the first two
columns of the upper-right-triangular form (above right). lterating for the first (n — 1) columns we
complete the upper-right-triangular form. The determinant is now the product of the diagona elements.

About how many operations did that take? There are n(n — 1)/2 row-operations needed, or O(n?).
Each row-operation takes from 1 to n multiplies (average n/2), and 1 to n additions (average n/2), summing
to O(n) operations. Total operationsisthen of order

O(n)O(n2)~O(n3).

TBS: Proof that det/AB| = det|A| det|B|

Advanced Matrices

Getting to Home Basis

We often wish to change the basis in which we express vectors and matrix operators, e.g. in quantum
mechanics. We use a transformation matrix to transform the components of the vectors from the old basis
to the new basis. Notethat:

We are not transforming the vectors, we are transforming the components of the vector
from one basisto another. The vector itself isunchanged.

There are two ways to visualize the transformation. In the first method, we write the decomposition of
a vector into componentsin matrix form. We use the visudization from above that a matrix times a vector
isaweighted sum of the columns of the matrix:

Thisisavector equation which istruein any basis. Inthe x-y-z basis, it looks like this:

1 0 Ofv| |V 1 0 0
v=[0 1 Of|Vv|=|V where e =|0], e, =1}, e,=|0].
0 0 1|v| |V 0 0 1

If we wish to convert to the ey, &,, &; basis, we simply writeg, g, g, in the 1-2-3 basis:

a d gjv % a d g
v=lb e hj|v|=]V where (inthel-2-3basis): e,=|b|, e =|e|, e=|h|.
c f iV v? c f i
Thus:
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The columns of the transformation matrix are the old basis vectors written in the new basis.
Thisistrue even for non-ortho-normal bases.

Now let uslook at the same transformation matrix, from the viewpoint of its rows. For this, we must
restrict ourselves to ortho-normal bases. This is usually not much of a restriction. Recall that the
component of avector v in the direction of a basis vector g is given by:

Vi=e-v = v=(eX-v)ex+(ey-v)ey+(ez-v)ez.
But thisisavector equation, valid in any basis. Soi above could also be 1, 2, or 3 for the new basis:
Vi=e-v, V=gV, V=gV v=(g-v)e +(e,-v)e,+(e;-V)e,.

Recall from the section above on matrix multiplication that multiplying a matrix by a vector is
equivalent to making a set of dot products, one from each row, with the vector:

& ev] [V (&), (2), (&), ||V [av] |V
e, V=l v|=|Vv? or (€2), (&2), (&2),||V"|=|€2'V|=|V
e e v |V (&), (&), (&), | v*] Lesv] [V

Therows of the transformation matrix are the new basis vectors written in the old basis.
Thisisonly true for ortho-normal bases.

There is a beguiling symmetry, and nonsymmetry, in the above two boxed statements about the
columns and rows of the transformation matrix.

For complex vectors, we must use the dot product defined with the conjugate of the row basis vector,
i.e. the rows of the transformation matrix are the hermitian adjoints of the new basis vectors written in the
old basis:

e e-v| |V
e, Vi=|e,v|=|V
e e-v| [V

Diagonalizing a Self-Adjoint Matrix

A special case of basis changing comes up often in quantum mechanics: we wish to change to the basis
of eigenvectors of a given operator. In this basis, the basis vectors (which are also eigenvectors) always
have the form of a single ‘1’ component, and the rest 0. E.g.,

1 0 0
e=\0 e =1 e,=|0].
0 0 1

The matrix operator A, in thisbasis (its own eigenbasis), is diagonal, because:

Ae = Ae A
Ae, =16, = A= A,

Ae, = g, A
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Finding the unitary (i.e., unit magnitude) transformation from a given basis to the eigenbasis of an
operator is caled diagonalizing the matrix. We saw above that the transformation matrix from one basis

to another is just the hermitian adjoint of the new basis vectors written in the old basis. We call this matrix
uU:

e e-v] |V e
e, Vi=|e,v|=|V = U= e,
N v |V &'

U transforms vectors, but how do we transform the operator matrix A itself? The smplest way to see
this is to note that we can perform the operation A in any basis by transforming the vector back to the
original basis, using A in the original basis, and then transforming the result to the new basis.

VnaN = UVold = Vold = Uilvnew
AnszvVnSN = U (Aoldvold ) = U(Aolduilvnew) = (UAOIduil)vnaN = AnSN = (UAoIduil)

where we used the fact that matrix multiplication isassociative. Thus

The unitary transformation that diagonalizes a (complex) self-adjoint matrix isthe matrix of
normalized el gen-row-vectors.

We can see this another way by starting with:

| | | |

| | | | | |
AU =Ale e, i e;(=|Ae | A, | Aey|=| 4@ | A8, | Aty

| | | | | |

| | | | | |

g are the otho-normal eigenvectors
where

4; are the eigenvalues

Recall the elgenvectors (of self-adjoint matrices) are orthogonal, so we can now pre-multiply by the
hermitian conjugate of the eigenvector matrix:

e e
UAU™ =| & |Aleieies|=| & |lae |20 ! Ay
e Lo e i i

ZACRY Azw A 4 0 0

=|h(e,€) Aa(ee) A [=]0 2, 0O
# A ()| L0 O

where the find equality is because each dement of the result is the inner product of two eigenvectors,
weighted by an eigenvalue. The only non-zero inner products are between the same eigenvectors
(orthogonality), so only diagonal elements are non-zero. Since the eigenvectors are normalized, their inner
product is 1, leaving only the weight (i.e., the eigenvalue) astheresult.

Warning Some reference write the diagonalization as U AU, instead of the correct UAU ™. This
is confusing, and inconsstent with vector transformation. Many of these very references
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then change their notation when they have to transform a vector, because nearly all
references agree that vectors transform with U, and not U™,

Contraction of Matrices

You don’t see a dot product of matrices defined very often, but the concept comes up in physics, even
if they don’t call it a “dot product.” We see such productsin QM density matrices, and in tensor operations
on vectors. We useit below in the “Trace” section for traces of products.

For two matrices of the same size, we define the contraction of two matrices as the sum of the
products of the corresponding elements (much like the dot product of two vectors). The contraction is a
scalar. Picture the contraction as overlaying one matrix on top of the other, multiplying the stacked
numbers (elements), and adding all the products:

A

' 54 sum=A:B
X X Bij

/v

We use a colon to convey that the summation is over 2 dimensions (rows and columns) of A and B
(whereas the single-dot dot product of vectors sums over the 1 dimensional list of vector components):

A:B= Z a;h; For example, for 3x3 matrices:

ij=1

asb, +ah, +agh,
A:B= +a21b21 +azzb22 +azsb23 = anbu + a12b12 + a13b13 + a21b21 + azzbzz + az3b23 + a31b31 + aez@z + aaaQs
+taghy,  +agh,  +aghy

which isasingle number.

If the matrices are complex, we do not conjugate the left matrix (such conjugation is often done in
defining the dot product of complex vectors).

Trace of a Product of Matrices

The trace of amatrix is defined as the sum of the diagona elements:

a, a, a,

Tr(A)zZ;ajj Eg: A=|a, a, a,|, Tr(A)=a,+a,+ay.
" &y Ay, Ay

The trace of a product of matrices comes up often, e.g. in quantum field theory. We first show that Tr(AB)
=Tr(BA):
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Let C=AB. = Tr(AB)=cC,+Cy +...4C,,
Define  a. asther™ row of A, and b, asthec™ column of B
T T T
a, a, a;)(b, b, by a & a)[(BY), (B7), (B'),
Cy=2a b, 8, 8, as|b, b, by or Ay By ay
a31 a32 a33 b?:l b32 b33 a31 a32 a33
a, a, 8 b11 blz b13 a, a, a5 ' ' ’
Cp=2ay-h, 8 &, ay|lb, b, by or A By 8y (BT )21 (BT )22 (BT )23
a31 a32 a33 bﬁl b32 bﬂj a31 aSZ aSS
and so on.

The diagonal elements of the product C are the sums of the overlays of the rows of A on the columns
of B. But thisis the same as the overlays of the rows of A on the rows of B". Then we sum the overlays,
i.e., weoverlay A onto B', and sum all the products of all the overlaid elements:

Tr(AB)=A:B.

Now consider Tr(BA) =B : A", Butvisually, B : A" overlays the same pairs of elementsas A : BT, but
in the transposed order. When we sum over al the products of the pairs, we get the same sum either way:

Tr(AB)=Tr(BA) because A:B"=B:A".
Thisleadsto theimportant cyclic property for the trace of the product of several matrices:
Tr(AB..C)=Tr(CAB...) because Tr((AB...)C)=Tr(C(AB..)).

and matrix multiplication is associative. By simple induction, any cyclic rotation of the matrices
leaves the trace unchanged.

Linear Algebra Briefs
The determinant equalsthe product of the eigenvalues:

n
detA=]]4  where A aretheeigenvauesof A.

This is because the eigenvalues are unchanged through a similarity transformation. |f we diagonalize
the matrix, the main diagonal consists of the eigenvalues, and the determinant of a diagonal matrix is the
product of the diagonal elements (by cofactor expansion).
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7 Probability, Statistics, and Data Analysis

I think probability and statistics are among the most conceptually difficult topics in mathematical
physics. We gart with a brief overview of the basics, but overall, we assume you are familiar with ssimple
probabilities, and gaussian distributions.

Probability and Random Variables

We assume you have a basic idea of probability, and since we seek here understanding over
mathematical purity, we give here intuitive definitions. A random variable, say X, is a quantity that you
can observe (or measure), multiple times (at least in principle), and is not completely predictable. Each
observation (instance)of arandom variable may give a different value. Random variables may be discrete
(the roll of a di€), or continuous (the angle of a game spinner after you spin it). A uniform random
variable has all its values equally likely. Thustheroll of a (fair) dieis a uniform discrete random variable.
The angle of a game spinner is a uniform continuous random variable. But in general, the values of a
random variable are not necessarily equally likely. For example, a gaussian (aka “normal”) random
variableismorelikely to be near the mean.

Given a large sample of observations of any physical quantity X, there will be some structure to the
values X assumes.  For discrete random variables, each possible value will appear (close to) some fixed
fraction of thetime in any large sample. The fraction of a large sample that a given value appearsis that
value’s probability. For a 6-sided die, the probability of rolling 1 is 16, i.e. Pr(1) = 1/6. Because
probability isafraction of atotdl, it isaways between 0 and 1 inclusive:

0 < Pr(anything) <1.

[Note that one can imagine systems of chance specifically constructed to not provide consistency between
samples, at |least not on redistic time scales. By definition, then, observations of such a system do not constitute a
random variablein the sense of our definition.]

Strictly speaking, a statistic is a number that summarizes in some way a set of random values. Many
people use the word informally, though, to mean the raw data from which we compute true statistics.

Conditional Probability

Probability, in general, isa combination of physics and knowledge: the
physics of the system in question, and what you know about its state.

Conditional probability specifically addresses probability when the state of the system is partly
known. A priori probability generally implies less knowledge of state (“a priori” means “in the
beginning” or “beforehand”). But there is no true, fundamental distinction, because all probabilities arein
some way dependent on both physics and knowledge.

Suppose you have one bag with 2 white and 2 black bals. You draw 2 balls without replacement.
What is the chance the 2™ ball will be white? A priori, it’s obviously %. However, suppose the first ball is
known white. Now Pr(2™ ball is white) = 1/3. So we say the conditional probability that the 2™ ball will
be white, given that thefirg ball iswhite, is1/3. In symboals:

Pr(2nd ball white| first ball white) =1/3.

Another example of how conditional probability of an event can be different than the a priori
probability of that event: | have a bag of white and a bag of black balls. | give you a bag at random. What
is the chance the 2™ ball will be white? A priori, it’s . After seeing the 1% ball iswhite, now Pr(2™ ball is
white) = 1. Inthiscase,

Pr(2nd ball white| first ball white) =1.
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Precise Statement of the Question Is Critical

Many arguments arise about probability because the questions are imprecise, each combatant has a
different interpretation of the question, but neither redlizes the other isarguing a different issue. Consder
this:

You deal 4 cards from a shuffled standard deck of 52 cards. | tell you 3 of them are aces. What isthe
probability that the 4" card is al'so an ace?

The question is ambiguous, and could reasonably be interpreted two ways, but the two interpretations
have quite different answers. It is very important to know exactly how | have discovered 3 of them are
aces.

Case 1: 1look at the 4 cards and say “At least 3 of these cards are aces.” There are 193 ways that 4
cards can hold at least 3 aces, and only 1 of those ways has 4 aces. Therefore, the chance of the 4" card
being an aceis 1/193.

Case 2. | look at only 3 of the 4 cards and say, “These 3 cards are aces.” There are 49 unseen cards,
all equally likely to be the 4" card. Only one of themisan ace. Therefore, the chance of the 4" card being
an aceis 1/49.

It may help to show that we can calculate the 1/49 chance from the 193 hands that have at least 3 aces:
Of the 192 that have exactly 3 aces, we expect that 1/4 of them = 48 will show aces as their first 3 cards
(because the non-ace has probability 1/4 of being last) . Additionaly, the one hand of 4 aces will dways
show aces as its first 3 cards. Hence, of the 193 hands with at least 3 aces, 49 show aces as their first 3
cards, of which exactly 1 will be the 4-ace hand. Hence, its conditiona probability, given that the first 3
cards are aces, is 1/49.

Let’s Make a Deal

This is an example of a problem that confuses many people (including me), and how to properly
analyzeit. We hope this exampleillustrates some general methods of analysis that you can use to navigate
more general confusing questions. In particular, the methods used here apply to renormalizing entangled
guantum states when a measurement of one value is made.

Your in the Big Deal on the game show Let’s Make a Deal. There are 3 doors. Hidden behind two of
them are goats; behind the other is the Big Prize. You choose door #1. Monty Hall, the MC, knows what’s
behind each door. He opens door #2, and shows you a goat. Now he asks, do you want to stick with your
door choice, or switch to door #3? Should you switch?

Without loss of generality (WLOG), we assume you choose door #1 (and of course, it doesn’t matter
which door you choose). We make a chart of mutually exclusive events, and their probabilities:

Bgg shows door #2 1/6

shows door #3 1/6
9Bg shows door #3 1/3
goB shows door #2 1/3

After you choose, Monty shows you that door #2 is a goat. So from the population of possibilities, we
strike out those that are no longer possible (i.e., where he shows door #3, and those where the big prize is
#2), and renormalize the remaining probabilities:

Bgg shows door #2 146 1/3
shews-doer#3-1/6
shews-deer#3-43

gBg

goB shows door #2 43 2/3

Another way to think of this: Monty showing you door #2 is equivalent to saying, “The big prize is
either the door you picked, or it’s door #3.” Since your chance of having picked right (1/3) is unaffected by
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Monty telling you this, Pr(big prize is #3) = 2/3. Monty uses his knowledge to always pick a door with a
goat. That gives you information, which improves your ability to guess right on your second guess.

You can also see it this way: There’s a 1/3 chance you picked right the first time. Then you’ll switch,
and lose. But there’s a 2/3 chance you picked wrong the first time. Then you’ll switch, and win. So you
win twice as often as you lose, much better odds than 1/3 of winning.

Let’s take a more extreme example: suppose there are 100 doors, and you pick #1. Now Monty tells
you, “The big prize is either the door you picked, or it’s door #57.” Should you switch? Of course. The
chance you guessed right istiny, but Monty knows for sure.

How to Lie With Statistics

In 2007, on the front page of newspapers, was a story about a big study of sexual behavior in America.
The headline point was that on average, heterosexual men have 7 partners in their lives, and women have
only 4.

Innumeracy, a book about math and statistics, uses this exact claim from a previous study of sexual
behavior, and noted that one can easily prove that the average number of heterosexual partners of men and
women must be exactly the same (if there are equal numbers of men and women in the population. The US
has equal numbers of men and women to better than 1%).

The only explanation for the survey results is that many people are lying. Typically, men lie on the
high side, women lie on the low side. The article goes on to quote all kinds of statistics and “facts,”
oblivious to the fact that these claims are based on lies. So how much can you believe anything the
subjects said?

Even more amazing to me is that the “scientists” doing the study seem equally oblivious to the
mathematical impossibility of their results. Perhaps some graduate sudent got a PhD out of this study, too.

The proof: every heterosexual encounter involves a man and awoman. |f the partners are new to each
other, then it counts as a new partner for both the man and the woman. The average number of partners for
men is the total number of new partners for all men divided by the number of men in the US. But thisis
equal to the total number of new partnersfor al women divided by the number of women in the US. QED.

[An insightful friend noted, “Maybe to some women, some guys aren’t worth counting.”]

Choosing Wisely: An Informative Puzzle

n
Here’s a puzzle which illuminates the physical meaning of the [k] binomial forms. Try it yoursdf

before reading the answer. Really. Firgt, recall that:

n n!
=nchoosek = ———.
[kj k!(n—k)!

n
is the number of combinations of k itemstaken from n distinct items; more precisely, (kj is the number of

ways of choosing k items from n digtinct items, without replacement, where the order of choosing doesn’t

matter.
n
Kl

Some purists may complain that the demonstration below lacks rigor (not true), or that the algebraic
demonstration is “shorter.” However, though the algebraic proof is straightforward, it is dull and
uninformative. Some may like the demonstration here because it uses the physical meaning of the
mathematics to reach an iron-clad conclusion.

1
The puzzle: Show in words, without a gebra, that [n: j = [kn J +
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The solution: The LHS is the number of ways of choosing k items from n + 1 items. Now there are
two distinct subsets of those ways: those ways that include the (n + 1)™ item, and those that don’t. In the
first subset, after choosing the (n + 1)™ item, we must choose k — 1 more items from the remaining n, and

n
there are [k j ways to do this. In the second subset, we must choose all k items from the first n, and

n
thereare [k] waysto do this. Since this covers all the possible ways to choose k items from n + 1 items, it

must be that (nﬂj:[ : ]+[n) QED.
k ) lk-1)"lk

Multiple Events
Firs we summarize the rules for computing the probability of combinations of independent events
from their individual probabilities, then we justify them:

Pr(A and B) = Pr(A)-Pr(B), A and B independent

Pr(A or B) = Pr(A) + Pr(B), A and B mutually exclusive
Pr(not A) = 1-Pr(A)

Pr(A or B) = Pr(A) + Pr(B) — Pr(A)Pr(B), aways.

For independent events A and B, Pr(A and B) = Pr(A)-Pr(B). This follows from the definition of
probability as a fraction. If A and B are independent (have nothing to do with each other), then Pr(A) is
the fraction of trialswith event A. Then of the fraction of those with event A, the fraction that also hasB is
Pr(B). Therefore, the fraction of thetotal trialswith both A and B is:

Pr(A and B) = Pr(A)-Pr(B).

For mutually exclusive events, Pr(A or B) = Pr(A) + Pr(B). This aso follows from the definition of
probability as a fraction. The fraction of trials with event A = Pr(A); fraction with event B = Pr(B). If no
trial can contain both A and B, then the fraction with either is simply the sum (figure below).

fraction with A | fraction with B

&= ° = o < fractionwithAorB - - - —>
Total trias

Pr(not A) =1 - Pr(A). Since Pr(A) isthe fraction of trialswith event A, and all trials must either have
event A or not:

Pr(A) + Pr(not A) = 1.

Notice that A and (not A) are mutually exclusive events (a trial can’t both have A and not have A), so their

probabilities add.

By Pr(A or B) we mean Pr(A or B or both). For independent events, you might think that Pr(A or B) =
Pr(A) + Pr(B), but this is not so. A simple example shows that it can’t be: suppose Pr(A) = Pr(B) = 0.7.
Then Pr(A) + Pr(B) = 1.4, which can’t be the probability of anything. The reason for the failure of smple
addition of probabilitiesis that doing so counts the probability of (A and B) twice (figure below):

fraction with A only | fraction with A and B fraction with B only

— - - - - fractionwithAorB - - - - -

Total trias
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Note that Pr(A or B) is equivalent to Pr(A and maybe B) or Pr(B and maybe A). But Pr(A and maybe B)
includes the probahility of both A and B, as does Pr(B and maybe A), hence it is counted twice. So
subtracting the probability of (A and B) makes it counted only once:

Pr(A or B) = Pr(A) + Pr(B) — Pr(A)Pr(B), A and B independent.
A more complete satement, which breaks down (A or B) into mutually exclusive eventsis:
Pr(A or B) = Pr(A and not B) + Pr(not A and B) + Pr(A and B)
Since theright hand side is now mutually exclusive events, their probabilities add:
Pr(A or B) = Pr(A)[1 - Pr(B)] + Pr(B)[1 - Pr(A)] + Pr(A)Pr(B)
=Pr(A) + Pr(B) — 2Pr(A)Pr(B) + Pr(A)Pr(B)
=Pr(A) + Pr(B) — Pr(A)Pr(B) .
TBS: Example of rolling 2 dice.
Combining Probabilities

Here is amorein-depth view of multiple events, with several examples. This section should be called
“Probability Calculus,” but most people associate “calculus” with something hard, and I didn’t want to
scare them off. In fact, calculus simply means “a method of calculation.”

Probabilities describe binary events: an event either happens, or it doesn’t.
Therefore, we can use some of the methods of Boolean algebrain probability.

Boolean algebra is the mathematics of expressions and variables that can have one of only two values:
usually taken to be “true” and “false.” We will use only a few simple, intuitive aspects of Boolean algebra
here.

An event is something that can either happen, or not (it’s binary!). We define the probability of an
event as the fraction of time, out of many (possibly hypothetical) trials, that the given event happens. For
example, the probability of getting a “heads” from a toss of a fair coin is 0.5, which we might write as
Pr(heads) = 0.5 = 1/2. Probability isafraction of awhole, and so liesin [0, 1].

We now consider two random events. Two events have one of 3 relationships: independent, mutually
exclusive, or conditional (aka conditionally dependent). We will soon see that the first two are specia
cases of the “conditional” relationship. We now consider each relationship, in turn.

Independent: For now, we define independent events as events that have nothing to do with each
other, and no effect on each other. For example, consider two events: tossing a heads, and rolling a1l on a
6-sded die. Then Pr(heads) = 1/2, and Pr(rolling 1) = 1/6. The events are independent, snce the coin
cannot influence the die, and the die cannot influence the coin. We define one “trial” as two actions: a toss
and aroll. Since probabilities are fractions, of all trials, ¥ will have “heads”, and 1/6 of those will roll a 1.
Therefore, 1/12 of all trials will contain both a “heads” and a 1. We see that probabilities of independent
events multiply. Wewrite:

Pr(A and B) = Pr(A)Pr(B) . (independent events).

In fact, thisis the precise definition of independence: if the probability of two events both occurring is the
product of the individual probabilities, then the events areindependent.

[Aside: This definition extends to PDFs: if the joint PDF of two random variables is the product of their
individual PDFs, then the random variables are independent.]

Geometric diagrams are very helpful in understanding the probability calculus. We can picture the
probabilities of A, B, and (A and B) as areas. The sample space or population is the set of all possible
outcomes of trials. We draw that as a rectangle. Each point in the rectangle represents one possible
outcome. Therefore, the probability of an outcome being within aregion of the population is proportional
to the area of theregion.

Figure 7.1 (a): An event A either happens, or it doesn’t. Therefore:
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Pr(A) + Pr(~A) =1 (always) .
1
sample space, A
(aka population
A not A P ®) A
B ° B
O A ! O pp 1
@) (b) independent (c) conditional (d) mutually exclusive

Figure 7.1 The (continuous) sample space is the square. Areas are proportional to probabilities.
(8) An event either happens, or it doesn’t. (b) Events A and B areindependent. (c) A and B are
dependent. (d) A and B are mutually exclusive.

Figure 7.1 (b): Pr(A) isthe same whether B occurs or not, shown by the fraction of B covered by A is
the same as the fraction of the sample space covered by A. Therefore, by definition, A and B are
independent.

Figure 7.1 (c): The probability of (A or B (or both)) is the red, blue, and magenta aress.
Geometrically then, we see:

Pr(A or B) = Pr(A) + Pr(B) — Pr(A and B) (aways).
Thisisalways true, regardless of any dependence between A and B.

Conditionally dependent: From the diagram, when A and B are conditionally dependent, we see
that the Pr(B) depends on whether A happens or not. Pr(B given that A occurred) is written as Pr(B | A),
and read as “probability of B given A.” From the ratio of the magenta area to the red, we see

Pr(B | A) = Pr(B and A)/Pr(A) . (@ways).

Mutually exclusive: Two events are mutually exclusive when they cannot both happen (diagram
above, (d)). Thus,

Pr(A and B) =0, and Pr(A or B) = Pr(A) + Pr(B) (mutually exclusive) .
Note that Pr(A or B) follows the rule from above, which always applies.

We see that independent events are an extreme case of conditional events: independent events satisfy:

Pr(B|A) =Pr(B) (independent)
since the occurrence of A has no effect on B. Also, mutually exclusive events satisfy:
PrB|A)=0 (mutually exclusive)

Summary of Probability Calculus

Always

Pr(~A)=1-Pr(A) Pr(entire sample space) = 1 (diagram
above, (a))

Pr(A or B) = Pr(A) + Pr(B) — Pr(A and B) Subtract off any double-count of “A and
B” (diagram above, (c))

A & B independent All from diagram above, (b)

Pr(A and B) = Pr(A)Pr(B) Precise def’n of “independent”

Pr(A or B) = Pr(A) + Pr(B) — Pr(A)Pr(B) Using the “and” and “or” rules above

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 81 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

Pr(B | A) = Pr(B) special case of conditional probability

A & B mutualy exclusive All from diagram above, (d)

Pr(AandB) =0 Def’n of “mutually exclusive”

Pr(A or B) = Pr(A) + Pr(B) Nothing to double-count; special case of
Pr(A or B) from above

PrB|A)=P(A|B)=0 Can’t both happen

Conditional probabilities All from diagram above, (c)

Pr(B|A)=Pr(Band A) / Pr(A) fraction of A that isalso B.

Pr(B and A) =Pr(B | A)Pr(A) = Pr(A | B)Pr(B) Bayes’ Rule: Shows relationship between
Pr(B | A) and Pr(A | B)

Pr(A or B) = Pr(A) + Pr(B) — Pr(A and B) Same as “Always” rule above

Note that the “and” rules are often simpler than the “or” rules.

To B, or To Not B?
Sometimes its easier to compute Pr(~A) than Pr(A). Then we can find Pr(A) from Pr(A) = 1 - Pr(~A).

Example: What isthe probability of rolling 4 or more with two dice?

The population has 36 possibilities. To computethisdirectly, we use:

3 + 4 +5+6+5+4+ 3+ 2 + 1 =33 = Pr(>4)—§
Ways to Waysto -+ waysto Ways to
roll 4 roll 5 roll 11 roll 12
That’s a lot of addition. It’s much easier to note that:
3 33
Pr<4= 1 + 2 =3 = Pr(<4)=—, and Pr(>4)=1-Pr(<4)=—.
— — 36 36

waysto waysto
roll 2 rall 3

r.: ”

In particular, the “and” rules are often simpler than the rule. Therefore, when asked for the
probability of “this or that”, it is sometimes simpler to convert to its complementary “and” statement,
compute the “and” probability, and subtract it from 1 to find the “or” probability.

Example:  From a standard 52-card deck, draw a single card. What is the chance it is a spade or a
face-card (or both)? Note that these events are independent.

To compute directly, we use the “or” rule:
Pr(spade) =1/ 4, Pr( facecard) = 3/13,

Pr(spadeor facecard) = 45 L. 3 _18+12-3 22

4 13 413 52 52

It may be simpler to compute the probability of drawing neither a spade nor a face-card, and subtracting
from 1:

Pr(~ spade) = 3/4, Pr(~ facecard) =10/13,

Pr(spade or facecard) =1- Pr(~ spadeand ~ facecard) = 1—§ E_1—§ 22

4 13 52 52

The benefit of converting to the simpler “and” rule increases with more “or” terms, as shown in the next
example.

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 82 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

Example:  Remove the 12 face cards from a standard 52-card deck, leaving 40 number cards (aces
are1). Draw asingle card. What isthe chanceitisa spade (S), low (L) (4 or less), or odd (O)? Note that
these 3 events are independent.

To compute directly, we can count up the number of ways the conditions can be met, and divide by the
population of 40 cards. There are 10 spades, 16 low cards, and 20 odd numbers. But we can’t just sum
those numbers, because we would double (and tripl€) count many of the cards.

To compute directly, we must extend the “or” the rules to 3 conditions, shown below.

AN
e

Venn diagram for Spade, Low, and Odd.

Without proof, we state that the direct computation from a 3-term “or” rule is this:
Pr(S) =1/4, Pr(L)=4/10, Pr(0)=1/2
Pr(Sor L or O) = Pr(S) + Pr(L) + Pr(O)
—Pr(S) Pr(L) — Pr(S) Pr(O) — Pr(L) Pr(O) + Pr(S) Pr(L) Pr(O)

_1+i+l_(l.i)_[l.l)_(i.l}(l.iéj
27102 \a10) (a2) (102) (47102

10+16+20-4-5-8+2 3L
40 40

Itisfar easer to compute the chance that it is neither spade, nor low, nor odd:
Pr(~S)=3/4, Pr(~L)=6/10, Pr(~0)=1/2
Pr(Sor Lor O) =1-Pr(~ Sand ~ L and ~ O) =1—Pr(~ S) Pr(~ L) Pr(~ O)
361 . 9 31
410 2 40 40

You may have noticed that converting “S or L or O” into “~(~S and ~L and ~O)” is an example of De
Morgan’s theorem from Boolean algebra.

Continuous Random Variables and Distributions

Probability is alittle more complicated for continuous random variables. A continuous populationisa
set of random values than can take on values in a continuous interval of real numbers; for example, if | spin
a board-game spinner, the little arrow can point in any direction: 0 < 8 < 2r.
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0=0

Board game spinner

Furthermore, all angles are equally likely. By inspection, we see that the probability of being in the first
quadrant is¥4, i.e. Pr(0 <0 <n/2) =%, Similarly, the probability of being in any interval dé is.

Pr(60in any interval d9)=2id9.
T

If T ask, “what is the chance that it will land at exactly = z?” the probability goes to zero, because the
interval df goesto zero. In this simple example, the probability of being in any interval df is the same as
being in any other interval of the same size. In general, however, some systems have a probability per unit
interval that varies with the value of the random variable (call it X) (I wish | had a ssimple, everyday
example of this??). So:

Pr(X in aninfinitesimal interval dx around x) = pdf(x) dx, ~where
pdf(x) = the probability distribution function .

| pdf(x) has units of 1/x. |

By summing mutually exclusive probabilities, the probability of X in any finite interval [a, b] is
b
Pr(a< X <b) :j dx pdf(x) .
a

Since any random variable X must have some real value, the total probability of X being between —o and
+o0 must be 1:

Pr (o0 < X<oo)=joo dx pdf(x) = 1.

The probability distribution function of arandom variable tells you
everything thereisto know about that random variable.

Population and Samples

A population is a (often infinite) set of all possible values that a random variable may take on, along
with their probabilities. A sampleis afinite set of values of a random variable, where those values come
from the population of all possible values. The same value may be repeated in a sample. We often use
samplesto estimate the characteristics of amuch larger population.

A trial or instanceis one value of arandom variable.

There is enormous confusion over the binomial (and similar) distributions, because each instance of a
binomia random variable comes from many attempts at an event, where each attempt is labeled either
“success” or “failure.” Superficially, an “attempt” looks like a “trial,” and many sources confuse the terms.
In the binomial digtribution, n attempts go into making a single trial (or instance) of a binomial random
variable.

Population Variance

The variance of a population is a measure of the “spread” of any distribution, i.e. it is some measure of
how widely spread out values of a random variable are likely to be [there are other measures of spread,
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too]. The variance of a population or sample is among the most important parameters in statistics.
Variance is always > 0, and is defined as the average squared-difference between the random values and
their average value:

var(X)E<(X—>?)2> where ( )isan operator which takestheaverage X =(X).

Note that:

Whenever we write an operator such as var(X), we can think of it as functional of the PDF of X
(recall that a functional acts on afunction to produce a number).

var (X ) = var[pdfy (x)]z.[i(x— X)? pofy (X) de<(x —2)2>.

The units of variance are the square of the units of X. From the definition, we see that if | multiply a set of
random numbers by a constant k, then | multiply their variance by k*:

var (kX ) =k? var(X) where X isany set of random numbers.

Any function, including variance, with the above property is homogeneous-of-order-2 (2" order
homogeneous??). We will return later to methods of estimating the variance of a population.

Population Standard Deviation

The standard deviation of a population is another measure of the “spread” of a distribution, defined
simply as the sguare root of the variance. Standard deviation is aways > 0, and equals the root-mean-
sguare (RMS) of the deviations from the average:

dev(X)z\/W= /<(X—>?)2> where () isan operator which takestheaverage.

As with variance, we can think of dev(X) as a functional acting on pdfy(x): dev[pdfx(x)]. The units of
standard deviation are the units of X. From the definition, we seethat if | multiply a set of random numbers
by a constant k, then | multiply their standard deviation by k:

dev(kX ) =kdev(X) where X isany set of random numbers.

| Standard deviation and variance are useful measures, even for non-normal populations.

They have many universal properties, some of which we discuss as we go. There exist bounds on the
percentage of any population contained with = co, for any number ¢. Even stronger bounds apply for all
unimodal populations.

Normal (aka Gaussian) Distribution

From mathworld.wolfram.com/Normal Distribution.html : “While statisticians and mathematicians
uniformly use the term ‘normal distribution’ for this distribution, physicists sometimes call it a gaussian
distribution and, because of its curved flaring shape, social scientistsrefer to it as the “bell curve.” ”

A gaussian distribution is one of a 2-parameter family of distributions defined as a population with:

1( X—u .
Sl = lat
pdf(x) = ! e 2( ”] where # = POPU |-0n averege . [picture??].
\N2r o o = population standard deviation

1 and ¢ are parameters. u can be any real value, and ¢ > 0 and real. This illustrates a common feature of
named distributions: they are usually a family of distributions, parameterized by one or more parameters.
A gaussian distribution is a 2-parameter distribution: « and . Asnoted bel ow:

Any linear combination of gaussian random variables is another gaussian random variable.
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Gaussian digributions are the only such distributions [ref?7].
New Random Variables From OIld Ones

Given two random variables X and Y, we can construct new random variables as functions of x and y
(trial values of X and Y). One common such new random variable is Smply the sum:

Define Z=X+Y whichmeans  V tridsi, Z=X+Y,.

We then ask, given pdfy(x) and pdfy(y) (which is al we can know about X and Y), what is pdfz(2? To
answer this, consider a particular value x of X; we see that:

Given x: Pr(Z within dz of z)=Pr(Y within dzof (z-x)).
But x isa value of arandom variable, so thetotal Pr(Z within dz of 2) isthe sum (integral) over al x:
Pr(Z within dzof z) = J'w dx pdf x (X) Pr(Y within dzof (z-x)), but

Pr(Y within dz of (z—x)) = pdfy (z—x)dz, so

Pr(Z withindz of z) = dz.[oo dx pdfx(x)pdfy(z—x)

- pdfz(z)=J'idxpdfx(x)pdfy(z—x).

This integral way of combining two functions, pdfy(x) and pdfy(y) with a parameter z is called the
convolution of pdfy and pdfy, which isafunction of anumber, z

Convolution of pdfy
, pdfx(X) . pde(y) with pde az=8

I »

I Z:8 >

The convolution evaluated at zis the area under the product pdfy(X)pdfy(z— X).

From the above, we can easily deduce the pdf(2) if Z= X-Y = X+ (-Y). Firg, wefind pdf_y(y), and
then use the convolution rule. Note that:

pdf v, (y) = pdfy (-y)
= pdi(2)= [ dxpdiy ()P ) (2= [ dxpdty () pdfy (x-2)
Since we are integrating from —o to +oo, we can shift X with no effect:
X—>X+2Z = pdfz(z):Jidxpdfx(x+z)pdfy(x),

which isthe standard form for the correlation function of two functions, pdfy(x) and pdfy(y).
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Correlation of pdfy
, pdfx(X) . pde(y) with pde az=2

X y « > X
—i
z=2

The correlation function evaluated at z isthe area under the product pdfy(x + Z)pdfy(x).

The PDF of the sum of two random variables is the convolution of their PDFs.
The PDF of the difference of two random variables isthe correlation function of their PDFs.

Note that the convolution of a gaussian distribution with a different gaussian is another gaussian.
Therefore, the sum of a gaussian random variable with any other gaussian random variable is gaussian.

Some Distributions Have Infinite Variance, or Infinite Average
In principle, the only requirement on a PDF isthat it be normalized:

[ pdf(x) ax=1.

Such a distribution has well-defined probabilities for all x. However, even given that, it is possible that the
varianceisinfinite (or properly, undefined). For example, consider:

X = jl""xpdf(x)dx=2, but &%= jl""xzpdf(x)dx—mo.

pdf(x) =2x3  x21
=0 x<1

The above distribution is normalized, and has finite average, but infinite deviation. The following example
is even worse:
pdf(x) = X2 le}

x=["xpdf(x) dx—>w, and o2=[ x2pdf(x)dx—> .
o v [, xpdf() [ *® pdf(x)

Thisdistribution isnormalized, but has both infinite average and infinite deviation.

Are such didributions physically meaningful? Sometimes. The Lorentzian (aka Breit-Wigner)
distribution is common in physics, or at least, a good approximation to physical phenomena. It hasinfinite
average and deviation. It’s standard and parameterized forms are:

o LO6H ) =
7 (1) A 1 ((x=x0) 1)

where xy =location of peak, y = half-width at half-maximum

L(x) =

Thisis approximately the energy distribution of particles created in high-energy collisions. It’s CDF is:

1 X— 1
ot L orergan (X) =—arctan( XO}L—.
T Y4 2
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Samples and Parameter Estimation

Why Do We Use Least Squares, and Least Chi-Squared (x*)?

We frequently use “least sum-squared-residuals” (aka least squar es) as our definition of “best.” Why
sum-squared-residuals? Certainly, one could use other definitions (see least-sum-magnitudes below).
However, least squares residuals are most common because they have many useful properties:

e  Squared residuals are reasonable: they’re always positive.

e Sguared residuas are continuous and differentiable functions of things like fit parameters
(magnitude residual is not differentiable). Differentiable means we can andytically minimize
it, and for linear fits, the equationsarelinear.

e We can compute many analytic results from least squares, which is not generally true with
other residual measures.

e Variance is defined as average of squared deviation (aka “residual”), and variances of
uncorrelated random values ssmply add.

e The centra limit theorem causes gaussian digtributions to appear frequently in the natura
world, and one of its two natural parametersisvariance (an average squared-residual).

e For gaussian residuals, least squares parameter estimates are also maximum likelihood.
Most other measures of residuals have fewer nice properties.
Why Not Least-Sum-Magnitudes?

A common question is “Why not magnitude of residuals, instead of squared residuals?” Least-sum-
magnitude residuals have at least two serious problems. Firs, they often yield clearly bad results; and
second, least-sum-magnitude-residuals can be highly degenerate: there are often an infinite number of
solutions that are “equally” good, and that’s bad.

To illustrate, Figure 7.2a shows the least sum magnitude “average” for 3 points. Sliding the average
line up or down increases the magnitude difference for points 1 and 2, and decreases the magnitude
difference by the same amount for point 2. Points 1 and 2 totally dominate the result, regardiess of how
large point 2is. Thisisintuitively undesirable for most purposes.

Figure 7.2b and ¢ shows the degeneracy: both lines have equal sum magnitudes, but intuitively fit (b)
is vastly better for most purposes.

y yt y4
least sum- il 1
squared .
a\/erwe__ ________________ - o/ ../
_—0————T— ————— 0———:X I 'X I 'X
least sum- o o
magnitude o o
“average”
3 (b) (0

Figure 7.2 (a) least-sum-magnitude “average”. (b) Examplefit to |least-sum-magnitude-residuals.
The sum-magnitude is unchanged by moving the “fit line” straight up or down. (c) Alternative
“fit” has same sum-magnitude-residuas, but is a much less-likely fit for most residual
distributions.

Other Residual Measures

There are some cases where least squares residuds does not work well, in particular, if you have
outliers in your data. When you square the residual to an outlier, you get a realy big number. This
squared-residua swamps out all your (real) residuas, thus wreaking havoc with your results. The usua
practice is to identify the outliers, remove them, and analyze the remaining data with least-squares.
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However, on rare occasions, one might work with a residual measure other than least squared residuals
[Myers ?7].

When working with data where each measurement hasits own uncertainty, we usually replace the | east
squared residuas criterion with least-chi-squared. We discuss this later when consdering data with
individual uncertainties.

Average, Variance, and Standard Deviation

In datigtics, an efficient estimator = the most efficient estimator [ref??. There is none better (i.e.,
none with smaller variance). You can prove mathematically that the average and variance of a sample are
the most efficient estimators (least variance) of the population average and variance. It isimpossible to do
any better, so it’s not worth looking for better ways. The most efficient estimators are least squares
estimators, which meansthat over many samples, they minimize the sum-squared error from the true value.
We discuss least-squares vs. maximum-likelihood estimators later.

Note, however, that given a set of measurements, some of them may not actually measure the
population of interest (i.e., they may be noise). If you can identify those bad measurements from a sample,
you should remove them before estimating any parameter. Usually, in real experiments, there is dways
some unremovable corruption of the desired signa, and this contributes to the uncertainty in the
measurement.

The sample aver age is defined as:

X= %,

1 n
N
and is the least variance estimate of the average <X> of any population. It is unbiased, which means the
average of many sampl e estimates approaches the true population average:

X) where = average, over the given parameter if not obvious.

<Y>rmny samples = < <.>over what

Note that the definition of unbiased is not that the estimator approaches the true value for large
samples; it is that the average of the estimator approaches the true value over many samples, even small
samples.

The sample variance and standard deviation are defined as:

n
&2 ELZ(xi —7)2 where X isthe sample average, asabove:iz(xi)

SE\/872

The sample variance is an efficient and unbiased estimate of var(X), which means no other estimate of
var(X) isbetter. Notethat §° isunbiased, but sis biased, because the square root of the average is not equal
to the average of the square root:

#dev(X) because <\/372>¢ <32>.

Thisexemplifies the importance of properly defining “bias”:

< S> many samples

#dev(X) even though lim s=dev(X).

<S>rmny samples Nesoo

Sometimes you see variance defined with 1/n, and sometimes with /(n — 1). Why? The population
variance is defined as the mean-squared deviation from the population average. For a finite population
(such as test scores in a given class), we find the population variance usng 1/N, where N is the number of
values in the whole population:

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 89 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

N isthe# of valuesin the entire population
N
var(X) E%Z(xi —u)? where X, isthei™ valueof the population
i=1
I 4 = exact population average.

In contrast, the sample variance is the variance of a sample taken from a population. The population
average u is usually unknown. We can only estimate 1 ~ <x>. Then to make s unbiased (as we show that
later), we must use 1/(n— 1), where nis the sample size (not population sze).

The sample variance is actually a specia case of curve fitting, where we fit a constant, <x>, to the
population. Thisisasingle parameter, and so removes 1 degree of freedom from our fit errors. Hence, the
mean-squared fit error (i.e., 59 has 1 degree of freedom less than the sample size. (Much more on curve
fitting later).

For a sample from a population when the average i is exactly known, we use n as the weighting for an
unbiased estimator

n

& =%Z(>g —u)?,  whichisjust the above equation with X, — X, N — .

i=1
Notice that infinite popul ations with unknown x can only have samples, and thus always use n—1. But
asn — oo, it doesn’t matter, so we can compute the population variance either way:

n n
var(X) = Iimiz:xi = Iimiz:xi , becausen—1 — n, when n — .
i=1 i=1

n—o N n—onN—-1 |

Central Limit Theorem For Continuous And Discrete Populations

The central limit theorem isimportant because it allows us to estimate some properties of a population
given only sample of the population, with no a priori information. Given a population, we can take a
sample of it, and compute its average. If we take many samples, each will (likely) produce a different
average. Hence, the average of a sampleisa new random variable, created from the original.

The central limit theorem says that for any population, as the sample size grows,
the sample average approaches a gaussian random variable, with average equal to the population
average, and variance equal to the population variance divided by n.

Mathematically, given arandom variable X, with mean x and variance ox>:

2
lim(x) e gaussian(y,%} where  (x)=sampleaverage.

n—o

Note that the central limit theorem applies only to multiple samples from a single population (though
there are some variations that can be applied to multiple populations). [It is possible to construct large
sums of multiple populations whose averages are not gaussian, e.g. in communication theory, inter-symbol
interference (1S1). But we will not go further into that.]

How does the Central Limit Theorem apply to a discrete population? If a population is discrete,
then any sample average is also discrete. But the gaussian digribution is continuous. So how can the
sample average approach a gaussian for large sample size N? Though the sample average is discrete, the
density of allowed values increases with N. If you smply plot the discrete values as points, those points
approach the gaussian curve. For very large N, the points are so close, they “look™ continuous.

TBS: Why binomia (discreet), Poisson (discreet), and chi-squared (continuous) distributions approach
gaussian for largen (or v).
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Uncertainty of Average

The sample average <x> gives us an estimate of the population average 4. The sample average, when
taken as a set of values of many samples, isitself arandom variable. The Centra Limit Theorem (CLT)
says that if we know the population standard deviation o, the sample average <x> will have standard
deviation:

U, =— (proof below).

In statistics, U« is cdled the standard error of the mean. In experiments, u.. is the 1-sigma
uncertainty in our estimate of the population average . However, most often, we know neither x nor g,
and must estimate both from our sample, using <x> and s. For “large” samples, we use simply ¢ =~ S, and
then:

v for "large" samples,i.e. nis"large" .
Jn
For small samples, we must till use s as our estimate of the population deviation, since we have
nothing else. But instead of assuming that u. IS gaussian, we use the exact digribution, which is a little
wider, called a T-distribution [W&M ?7], which is complicated to write explicitly. It take an argument t,
similar to the gaussian z = (X — u)/a, which measures its dimensi onl ess distance from the mean:

l"l< x>

t== _s< X) where  (x) = sample average, s= sample standard deviation .

We then uset, and t-tables, to establish confidence intervals [ref?7).

Uncertainty of Uncertainty: How Big Is Infinity?

Sometimes, we need to know the uncertainty in our estimate of the population variance (or standard
deviation). So let’s look more closely at the uncertainty in our estimate §° of the population variance .

The random variable w has chi-squared distribution with n — 1 degrees of freedom [W&M Thm
o)

6.16 p201]. So:

2 62 2 2 62 g 264
S Gmlnil = Var(S )= E 2(”-1)=—,

1
dev(sz)=:—_21./2(n—1) =\/gaz.

However, usually we’re more interested in the uncertainty of the standard deviation estimate, rather than its
variance. For that, we use the fact that sis function of & s= ()2 For moderate or bigger sample sizes,
and confidence ranges up to 95% or so, we can use the approximate formula for the deviation of a function
of arandom variable (see “Functions of Random Variables,” elsewhere):

Y=1(X) = dev(Y)~ f'((X))dev(X) for small dev(X).

1/2 1 -1/2 1 2 1 1
SE(SZ) = de\/(S)zE(GZ) dev(sz)zz\/;azz\/Z(n_l)az\/z(n_l)s.

| This allows us to address the rule of thumb: “n > 30 is statistical infinity. |

This rule is most often used in estimating the standard error of the mean u.. (see above), given by

9 .S
<X> \/ﬁ \/ﬁ

samples, this isn’t so good. Then, as noted above, the uncertainty u.. needs to include both the true

u We don’t know the population deviation, o, SO we approximate it with s~ ¢. For small
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sampling uncertainty in <x> and the uncertainty in s. To be confident that our <x> iswithin our claim, we
need to expand our confidence limits, to allow for the chance that s happens to be low. The Student T-
distribution exactly handlesthis correction to our confidence limits on <x> for all sample sizes.

However, when can we ignore this correction? In other words, how big should n be for the gaussian
(as opposed to T) distribution be a good approximation. The uncertainty in sis:

1
NECE

This might seem circular, because we still have o (which we don’t know) on the right hand side. However,
it’s effect is now reduced by the fraction multiplying it. So the uncertainty in ¢ is also reduced by this
factor, and we can neglect it. Thusto first order, we have:

1 1
= S.
J2(n-1)  2(n-12)
Solong as us << s, we can ignore it. In other words:
1

Ug<<S = ﬁ <<1, for u« to be approximately gaussian, and s~ .
2(n-1

U = dev(s) =

U, =dev(s)=o

(You may notice that us is correlated with s bigger simplies bigger (estimated) us, S0 the contribution to
U« from us does not add in quadrature to s/\/n.) When n = 30:

1

———-013<«< L.
2(30-1)

13% is pretty reasonable for the uncertainty of the uncertainty u..., and n = 30 is the generally agreed upon
bound for good confidence that s~ .

Functions of Random Variables

It follows from the definition of probability that the average value of any function of arandom variable
is

(1(X)) :de £ (x) pdffy (X) .
We can apply thisto our definitions of population average and population variance:

X E(x)=jidx xpdfy (), and Var(x)=fjode(X—>?)2pdfx(x).

Statistically Speaking: What Is The Significance of This?

Before we compute any uncertainties, we should understand what they mean. Statistical significance
interprets uncertainties. It is one of the most misunderstood, and yet most important, concepts in science.
It underliesvirtually all experimental and ssimulation results. Beliefs (correct and incorrect) about statistica
significance drive experiment, research, funding, and policy.

| Understanding statistical significance isaprerequisite to understanding science. |

This cannot be overstated, and yet many (if not most) scientists and engineers receive no formal
training in statistics. The following few pages describe statistical significance, surprisingly using ailmost no
math.
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Overview of Statistical Significance

The term “statistically significant” has a precise meaning which is, unfortunately,
different than the common meaning of the word “significant.”

Many experiments compare quantitative measures of two populations, e.g. the 1Qs of ferrets vs.
gophers. In any rea experiment, the two measures will almost certainly differ. How should we interpret
this difference?

We can use statistics to tell us the meaning of the difference. A difference which is not “statistically
significant” in some particular experiment may, in fact, be quite important. But we can only determine its
importance if we do another experiment with finer resolution, enough to satisfy our subjective judgment of
“importance.” For this section, I use the word importance to mean a subjective assessment of a measured
result.

The statement “We could not measure a difference” is very different from “There is no important
difference.” Statistical significance is a quantitative comparison of the magnitude of an effect and the
resolution of the statistics used to measureit.

This section requires an understanding of probability and uncertainty.

Statistical significance can be tricky, so we start with severa high level statements about what
statistical significanceisandisnot. We then give more specific statements and examples.

Statistical significanceis many things:

Statistical significance is a measure of an experiment’s ability to resolve its own measured result.
It isnot a measure of the importance of aresult.

Statistical significanceis closely related to uncertainty.

Statistical significance is a quantitative statement of the probability that a result isreal, instead of a
measurement error or the random result of sampling that just happened to turn out that way (by chance).

“Statistically significant” means “measurable by this experiment.” “Not statistically significant”
means that we cannot fully trust the result from this experiment alone; the experiment was too crude to
have confidence in its own result.

Statistical significance is a one-way street: if aresult is statistically significant, it is (probably) real.
However, it may or may not be important. In contrast, if aresult is not statistically significant, then we
don’t know if it’s real or not. However, we will see that even a not significant result can sometimes
provide meaningful and useful information.

If the difference between two results in an experiment is not statistically significant,
that difference may still be very real and important.

Details of Statistical Significance

A meaningful measurement must contain two parts: the magnitude of the result, and the confidence
limits on it, both of which are quantitative statements. When we say, “the average IQ of ferrets in our
experiment is 102 + 5 points,” we mean that there is a 95% chance that the actual average |Q is between 97
and 107. We could dso say that our 95% confidence limits are 97 to 107. Or, we could say that our 95%
uncertainty is 5 points. The confidence limits are sometimes called error bars, because on a graph,
confidence limits are conventionally drawn as little bars above and bel ow the measured val ues.

Suppose we test gophers and find that their average IQ is 107 + 4 points. Can we say “on average,
gophers have higher 1Qs than ferrets?” In other words, is the difference we measured significant, or did it
happen just by chance? To assess this, we compute the difference, and its uncertainty (recall that
uncorrelated uncertainties add in quadrature):

AIQ=(107-102)+/4? +5° =5+ 6 (gophers—ferrets)
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This says that the difference lies within our uncertainty, so we are not 95% confident that gophers have
higher IQs. Therefore, we still don’t know if either population has higher 1Qs than the other. Our
experiment was not precise enough to measure a difference. This does not mean that there is no difference.
However, we can say that there is a 95% chance that the difference is between -1 and 11 (5+ 6). A given
experiment measuring a difference can produce one of two results of statistical significance: (1) the
difference is dtatistically significant; or (2) it is not. In this case, the difference is not (statistically)
significant at the 95% level.

In addition, confidence limits yield one of three results of “importance:” (1) confirm that a difference
isimportant; or (2) not important, or (3) be inconclusive. But the judgment of how much is “important” is
outside the scope of the experiment. For example, we may know from prior research that a 10 point
average 1Q difference makes a population a better source for training pilots, enough better to be
“important.” Note that this is a subjective statement, and its precise meaning is outside our scope here.

Five of the six combinations of significance and importance are possible, as shown by the following
examples.

Example 1, not significant, and inconclusive importance: With the given numbers, AIQ =5 £ 6, the
“importance” of our result is inconclusive, because we don’t know if the average IQ difference is more or
less than 10 points.

Example 2, not significant, but definitely not important: Suppose that prior research showed
(somehow) that a difference needed to be 20 points to be “important.” Then our experiment shows that the
difference is not important, because the difference is very unlikely to be as large as 20 points. In this case,
even though the results are not statistically sgnificant, they are very valuable; they tell us something
meaningful and worthwhile, namely, the difference between the average 1Qs of ferrets and gophersis not
important for using them as a source for pilots. The experimental result is valuable, even though not
significant, because it establishes an upper bound on the difference.

Example 3, significant, but inconclusive importance: Suppose again that a difference of 10 pointsis
important, but our measurements are: ferrets average 100 + 3 points, and gophers average 107 + 2 points.
Then the differenceis:

AIQ=(107-100)+v2* +3? =7+ 4 (gophers — ferrets)

These results are statistically significant: there is better than a 95% chance that the average 1Qs of
ferrets and gophers are different. However, the importance of the result is still inconclusive, because we
don’t know if the difference is more or less than 10 points.

Example 4, significant and important: Suppose again that a difference of 10 pointsisimportant, but
we measure that ferrets average 102 + 3 points, and gophers average 117 + 2 points. Then the differenceis.
AIQ=(117-102) +v2? +3? =15+ 4 (gophers — ferrets)
Now the difference is both statistically significant, and important, because there is a 95% chance that
the differenceis> 10 points. We are better off choosing gophersto go to pilot school.
Example 5, significant, but not important: Suppose our measurementsresulted in
AlQ=5+4

Then the difference is significant, but not important, because we are confident that the difference < 10.
This result established an upper bound on the difference. In other words, our experiment was precise
enough that if the difference were important (i.e., big enough to matter), then we’d have measured it.

Finally, note that we cannot have aresult that isnot significant, but important. Suppose our result was:
AlQ=11+12

The difference is unmeasurably small, and possibly zero, so we certainly cannot say the difference is
important. In particular, we can’t say the difference is greater than anything.
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Thus we see that stating “there is a statistically significant difference” is (by itself) not saying much,
because the difference could be tiny, and physically unimportant.

We have used here the common confidence limit fraction of 95%, often taken to be ~26. The next
most common fraction is 68%, or ~1c. Another common fraction is 99%, taken to be ~36. More precise
gaussian fractions are 95.45% and 99.73%, but the digits after the decimal point are usually meaningless
(i.e, not statistically significant!) Note that we cannot round 99.73% to the nearest integer, because that
would be 100%, which is meaningless in this context. Because of the different confidence fractionsin use,
you should always state your fractions explicitly. You can state your confidence fraction once, at the
beginning, or along with your uncertainty, e.g. 10 + 2 (10).

Caveat: We are assuming random errors, which are defined as those that average out with larger
sample sizes. Systematic errors do not average out, and result from biases in our measurements. For
example, suppose the IQ test was prepared mostly by gophers, using gopher cultura symbols and
metaphors unfamiliar to most ferrets. Then gophers of equal intelligence will score higher 1Qs because the
test isnot fair. This bias changes the meaning of all our results, possibly dragtically.

Ideally, when gtating a difference, one should put alower bound on it that is physically important, and
give the probability (confidence) that the difference is important. E.g. “We are 95% confident the
difference is at least 10 points” (assuming that 10 points on this scale matters).

Examples
Here are some examples of meaningful and not-so-meaningful statements:

M eaningless Statements M eaningful Statements, possibly subjective
(appearing frequently in print) (not appearing enough)

The differencein 1Q between groups A and | Our data show thereisa99% likelihood that
B isnot gatistically significant. the IQ difference between groups A and B is
(Because your experiment was bad, or less than 1 point.

because the differenceis small?)

We measured an average |Q differenceof 5 | Our experiment had insufficient resolution to

points. (With what confidence?) tell if there was an important differencein Q.
Group A has astatigtically significantly Our data show thereisa 95% likelihood that
higher 1Q than group B. the IQ difference between groups A and B is
(How much higher? Isit important?) greater than 10 points.

Statigtical significance summary: “Statistical significance” is a quantitative statement about an
experiment’s ability to resolve its own result. \We use “importance” as a subjective assessment of a
measurement that may be guided by other experiments, and/or gut feel. Statistical sgnificance says
nothing about whether the measured result isimportant or not.

Predictive Power: Another Way to Be Significant, but Not Important

Suppose that we have measured 1Qs of millions of ferrets and gophers over decades. Suppose their
population 1Qs are gaussian, and given by (note the use of 1o uncertainties):

ferrets: 101+ 20 gophers103+ 20 (o) .

The average difference is small, but because we have millions of measurements, the uncertainty in the
averageis even smaller, and we have a tatistically significant difference between the two groups.

Suppose we have only one slot open in pilot school, but two applicants: a ferret and a gopher. Who
should get the slot? We haven’t measured these two individuals, but we might say, “Gophers have
‘ggnificantly’ higher 1Qs than ferrets, so we’ll accept the gopher.” Is this valid?

To quantitatively assess the validity of this reasoning, et us suppose (smplistically) that pilot students
with an 1Q of 95 or better are 20% more likely (1.2x) to succeed than those with 1Q < 95. From the given
statistics, 61.8% of ferrets have 1Qs > 95, vs. 65.5% of gophers. That is, 61.8% of ferrets get the 1.2x boost
in likelihood of success, and smilarly for the gophers. Then the relative probabilities of success are:
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ferrets: 0.382+ 0.618(1.2) =1.12 gophers: 0.345+ 0.655(1.2) =1.13.

Thus arandom gopher is 113/112 times (less than 0.7% more) likely to succeed than a random ferret. This
is pretty unimportant. In other words, species (between ferrets and gophers) is not a good predictor of
success. Species is so bad that many, many other facts will be better predictors of success. Height,
eyesight, years of schooling, and sports ability are probably all better predictors. The key point isthis:

Differences in average between two populations, that are much smaller than the deviations within
the populations, are poor predictors of individual outcomes.

Unbiased vs. Maximum-Likelihood Estimators

In experiments, we frequently have to estimate parameters from data. There is a very important
difference between “unbiased” and “maximum likelihood” estimates, even though sometimes they are the
same. Sadly, two of the most popular experimental statistics books confuse these concepts, and their
distinction.

[A common error isto try to “derive” unbiased estimates using the principle of “maximum likelihood,” which
is impossible since the two concepts are very different. The incorrect argument goes through the exercise of
“deriving” the formula for sample variance from the principle of maximum likelihood, and (of course) gets the
wrong answer! Hand waving is then applied to wiggle out of the mistake.]

Everything in this section appliesto arbitrary distributions, not just gaussian. We follow these steps:
1. Terse definitions, which won’t be entirely clear at first.

2. Example of estimating the variance of a population (things still fuzzy).

3. Silly example of the need for maximum-likelihood in repeated trids.
4

Real-world physics examples of different situations leading to different choices between unbiased
and maximum-likelihood.

5. Closing comments.

Terse definitions: In short:

An unbiased statistic is one whose average is exactly right: in the [imit of an infinite number of
estimates, the average of an unbiased statistic is exactly the population parameter.

Therefore, the average of many samples of an unbiased satistic is likely closer to the right answer than one
sampleis.

A maximum likelihood statistic is one which is most likely to have produced the given the data. Note
that if it is biased, then the average of many maximum likelihood estimates does not get you closer to right
answer. |In other words, given a fixed set of data, maximum-likelihood estimates have some merit, but
biased ones can’t be combined well with other sets of data (perhaps future data, not yet taken). This
concept should become more clear below.

Which is better, an unbiased estimate or a maximum-likelihood estimate? It depends on what you
goalsare.

Example of population variance: Given a sample of values from a population, an unbiased estimate
of the population varianceis

o] = I— (unbiased estimate) .

If we take several samples of the population, compute an unbiased estimate of the variance for each sample,
and average those estimates, we’ll get a better estimate of the population variance. Usually, unbiased
estimators are those that minimize the sum-squared-error from the true value (principle of least-squar es).
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However, suppose we only get one shot at estimating the population variance? Suppose Monty Hall
says “I’ll give you a zillion dollars if you can estimate the variance (to within some tolerance)”? What
estimate should we give him? Since we only get one chance, we don’t care about the average of many
estimates being accurate. We want to give Mr. Hall the variance estimate that is most likely to be right.
One can show that the most likely estimate is given by using n in the denominator, instead of (n— 1):

: 2
2(5-%)
] = T— (maximum-likelihood estimate) .
n
Thisisthe estimate most likely to win the prize. Perhaps moreredlistically, if you need to choose how long
to fire aretro-rocket to land a spacecraft on the moon, do you choose (@) the burn time that, averaged over
many spacecraft, reaches the moon, or (b) the burn time that ismost likely to land your one-and-only craft

on the moon?

In the case of variance, the maximum-likelihood estimate is smaller than the unbiased estimate by a
factor of (n— 1)/n. If we were to make many maximum-likelihood estimates, each one would be small by
the same factor. The average would then also be small by that factor. No amount of averaging would ever
fix thiserror. Our average estimate of the population variance would not get better with more estimates.

You might conclude that maximum-likelihood estimates are only good for situations where you get a
singletrial. However, we now show that maximum-likelihood estimates can be useful even when there are
many trials of a Satistical process.

Example: Maximum likedihood vs. unbiased: You are a medieval peasant barely keeping your
family fed. Every morning, the benevolent king goes to the castle tower overlooking the public square, and
tosses out agold coin to the crowd. Whoever catchesit, keepsiit.

Being better educated than most medieval peasants, each day you record how far the coin goes, and
generate a PDF (probability distribution function) for the distance from thetower. It looks like Figure 7.3.

pdf

moct likly merage - daance

Figure 7.3 Gold coin toss distance PDF.

The most-likely distance is notably different than the average distance. Given this information, where do
you stand each day? Answer: At the most-likely distance, because that maximizes your payoff not only for
one trial, but across many trials over a long time. The “best” estimator is in the eye of the beholder: as a
peasant, you don’t care much for least squares, but you do care about most money.

Note that the previous example of landing a spacecraft is the same as the gold coin question: even if
you launch many spacecraft, for each one you would give the burn most-likely to land the craft. The
average of many failed landings has no value.

Real physics examples: Example 1. Suppose you need to generate a beam of ions, all moving at
very close to the same speed. You generate your ions in a plasma, with a Maxwellian thermal speed
distribution (roughly the same shape as the gold coin toss PDF). Then you send the ions through a vel ocity
selector to pick out only those very close to a single speed. Y ou can tune your velocity selector to pick any
speed. Now ions are not cheap, so you want your velocity selector to get the most ions from the speed
distribution that it can. That speed is the most-likely speed, not the average speed. So here again, we see
that most-likely has a valid use even in repeated trials of random processes.

Example 2: Suppose you are tracing out the orbit of the moon around the earth by measuring the
distance between the two. Any given day’s measurement has limited ability to trace out an entire orbit, so
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you must make many measurements over Several years. You have to fit a model of the moon’s orbit to this
large set of measurements. You’d like your fit to get better as you collect more data. Therefore, each day
you choose to make unbiased estimates of the distance, so that on-average, over time, your estimate of the
orbit gets better and better. If instead you chose each day’s maximum-likelihood estimator, you’d be off of
the average (in the same direction) every day, and no amount of averaging would ever fix that.

Wrap up: When you have a symmetric, unimodal digribution for a parameter estimate (symmetric
around a single maximum), then the unbiased and maximum-likelihood estimates are identical. This is
true, for example, for the average of a gaussian distribution. For asymmetric or multi-modal distributions,
the unbiased and maximume-likelihood estimates are different, and have different properties. In genera,
unbiased estimates are the most efficient estimators, which means they have the smallest variance of all
possible estimators. Unbiased estimators are also |east-squares estimators, which means they minimize the
sum-sguared error from the true value. This property follows from being unbiased, since the average of a
population isthe least-squares estimate of all its values.

Correlation and Dependence

To take a sample of a random variable X, we get a value of X; for each sample pointi, i =1 ... n.
Sometimes when we take a sample, for each sample point we get not one, but two, random variables, X and
Y. The two random variables X; and Y; may or may not be related to each other. We define the joint
probability distribution function of X and Y such that:

Pr(x< X <x+dx and y<Y <y+dy)=pdfy(XY).

Thisisjust a 2-dimensional version of atypical pdf. Since X and Y arerandom variables, we could look at
either of them and find itsindividual pdf: pdfx(x), and pdfy(y). If X and Y have nothing to do with each
other (i.e, X and Y are independent), then a fundamental axiom of probability says that the probability
density of finding x < X <x+dx and y <Y<y + dyisthe product of the two pdfs:

X andY areindependent — pdf v (X, y) = pdf « (X) pdfy (Y)

The above equation is the definition of statistical independence:

Two random variables are independent if and only if
their joint distribution function isthe product of theindividual distribution functions.

A very different concept is “correlation.” Correlation is a measure of how linearly related two random
variables are. We discuss correlation in more detail later, but it turns out that we can define correlation
mathematically by the correlation coefficient:

poc((X=X)(Y=Y))=cov(X,Y).
If p = 0, then X and Y are uncorrdlated. If p = 0, then X and Y are correlated. For a discrete random

variable,

population

pe D (%-X)(%-Y)

i=1
Note that :
p=0 < cov(X,Y)=0.

Two random variables are uncorrelated if and only if
their covariance, defined above, is zero.

Being independent is a stronger statement than uncorrelated. Random variables which are independent
are necessarily uncorrelated (proof below). But variables which are uncorrelated can be highly dependent.
For example, suppose we have a random variable X, which is uniformly distributed over [-1, 1]. Now
define anew random variable Y such that Y = X2 Clearly, Y is dependent on X, but Y is uncorrelated with
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X. Y and X are dependent because given either, we know a lot about the other. They are uncorrelated
because for every Y value, there is one positive and one negative value of X. So for every value of

(X = X)(Y-Y), thereisitsnegative, aswell. Theaverageistherefore0; hence, cov(X, Y) = 0.

A crucia point is:

| Variances add for uncorrelated variables, even if they are dependent.

Thisis easy to show. Giventhat X and Y are uncorrel ated,
var(X +Y) =<[x +Y—(X +\?)]2> =<[(x - X)+(Y—\?)]2>

=((x=X) 2 X =X)(Y=¥)+(Y-Y)’)

~((x= %))+ 2{(x=)pr=T]) + (v -7)")
=var(X)+var(Y).
All we needed to prove that variances add isthat cov(X, Y) = 0.

Independent Random Variables are Uncorrelated

It is extremely useful to know that independent random variables are necessarily uncorrelated. We
prove this now, in part to introduce some methods of statistical analysis, and to emphasize the distinction
between “uncorrelated” and “independent.” Understanding analysis methods enables you to analyze a new
system reliably, so learning these methods isimportant for research.

Two random variables are independent if they have no relationship at all. Mathematically, the
definition of statistical independence of two random variables is that the joint density is simply the
product of the individual densities:

pdf, y (x, y) = pdf, (X) pdf, (y) statistical independence .
The definition of uncorrelated isthat the covariance, or equivalently the correlation coefficient, is zero:
cov(X,y)= <(x— yx)(y— Hy )> =0 uncorrelated random variables. (7.1)

These definitions are al we need to prove that independent random variables are uncorrd ated. First,
we prove a sightly simpler claim: independent zero-mean random variables are uncorrel ated:

Given: yxz.[oodxpdfx(x):o, yyz.[oodypdfy(x):o,

then the integral factors into x and y integrals, because the joint densty of independent random variables
factors:

cov(x,y)= ()= [|_axdy pdf, ,(xy) xy=[jwdxpdfx(x)j[jwdypdfy(x>J=o.

For non-zero-mean random variables, (x — 1) is a zero-mean random value, asis (y — u,). But these
are the quantities that appear in the definition of covariance (7.1). Therefore, the covariance of any two
independent random variablesis zero.

Note well:

Independent random variables are necessarily uncorrelated, but the converseis not true:
uncorrelated random variables may still be dependent.
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For example, if X € uniform(-1,1), and Y = X, then X and Y are uncorrelated, but highly dependent.

Statistical Analysis Algebra

Statistical analysis relies on anumber of basic properties of combining random variables (RV's), which
define an algebra of statistics. This algebra of RV interaction relates to distributions, averages, variances,
and other properties. Within this algebra, there is much confusion about which results apply universaly,
and which apply only conditionally: e.g., gaussian distributions, independent RV's, uncorrdlated RV, etc.
We explicitly address all conditions here. We will use al of these methods later, especialy when we
derive the lesser-known results for uncertainty weighted data.

The Average of a Sum: Easy?

Weall know that <x + y> = <x> + <y>. Butisthistrue even if x and y are dependent random variables
(RVs)? Let’s see. We can find <x + y> for dependent variables by integrating over thejoint density:

(xry)= [ dxdy oy, (y) (x+y)= ][ axdypaty () x+ [ dxdypaf,y(xy) y

=(x)+(y)-

Therefore, theresult is easy, and essentia for all further analyses:

| The average of a sum equals the sum of averages, even for RVs of arbitrary dependence.

The Average of a Product

Life sure would be great if the average of a product were the product of the averages ... but it’s not, in
general. Although, sometimes it is. As scientists, we need to know the difference. Given x and y are
random variables (RVs), what is <xy>?

In statistical analysis, it is often surprisingly useful to break up a random variable into its “varying”
part plus its average; therefore, we define:

X=SX+ Uy, y=58y+u, = (6x)=(5y)=0.
Note that . and x4, are constants. Then we can evaluate:

() = ((8x+ 1) (8y + 1y )) = (6X8y) + pay (RF + by (57 + pay

= piypy +<(X—uy)(y—uy)> = [iy 1y + COV(X, V).

| The average of the product isthe product of the averages plus the covariance.

Only if x and y are uncorrelated, which isimplied if they are independent (see earlier), then the average of
the product isthe product of the averages.

Thisrule provides a simple cordllary: the average of an RV squared:
<x2> = 1,2 +COV(X,X) = 11, > + 0. (7.2)

Variance of a Sum
We frequently need the variance of a sum of possible dependent RVs. We deriveit herefor RVsx, y:

var(x+Y) =<(X+ Y= Hy —Hy)2>=<[(X—Hx)+(y_“y)}2>

=<(x_uy)2>+<(y_uy)2>+2<(x—yx)(y—yy)> = var(x) + var(y) + 2cov(x, y) .
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Covariance Revisited

The covariance comes up so frequently in statistical analysis that it merits an understanding of its
properties as part of the statistical algebra. Covariance appears directly in the formulas for the variance of a
sum, and the average of a product, of RVs. (You might remember this by considering the units. For a sum

x +y: [X] = [yl and [var(x + y)] = [¥] = [y] = [cov(x, y)]. For a product xy: [xy] = [cov(x, ¥)])
Conceptually, the covariance of two RVs, a and b, measures how much a and b vary together linearly from
their respective averages. If positive, it means a and b tend to go up together; if negative, it means a tends
to go up when b goes down, and vice-versa. Covarianceis defined as a population average:

cov(a,b)= <(a— Ha )(b- Hb)> .
From the definition, we see that cov( ) isabilinear, commutative operator:
Given: a,b,c,d arerandom variables; k = constant:
cov(a,b) = cov(b,a)
cov(ka, b) = cov(a, kb) = kcov(a,b)
cov(a+c,b) = cov(a,b) + cov(c,b), cov(a,b+d) =cov(a,b) + cov(a,d) .

Occasionally, when expanding a covariance, there may be constants in the arguments. We can
consider a constant as arandom variable which aways equals its average, so:

cov(a,k)=0
cov(a+k,b) = cov(a,b+k) =cov(a,b).
From the definition, we find that the covariance of an RV with itself is the RV’s variance:
cov(a,a) =var(a) .
Capabilities and Limits of the Sample Variance

The following developments yield important results, and illustrate some methods of statistical algebra
that are worth understanding. We wish to determine an unbiased estimator for the population variance, %,
from a sample (set) of n independent values{y;}, in two cases: (1) we aready know the population average
u; and (2) we don’t know the population average. The first case is easier. We proceed in detail, because
we need this foundation of process to be rock solid, since so much is built upon it.

¢’ from sample and known p: We must start with the definition of population variance as an average
over the population:

N
o? z<(y—y)2> where u =(y)=averageover populationof y= lim %Zy, . (7.3
i1

N—o0

A simple guess for the estimator of 6%, motivated by the definition, might be:
gzzlzn:(y- —p) (aguess).
n&’!

We now analyze our guess over many samples of size n, to see how it performs. By definition, to be
unbiased, the average of g° over an ensemble of samples of size n must equal ¢

N 2 —o2={(y-u)?
unbiased: <g >ensemble—0 _<(y ) >popu|aﬂ0n'

Mathematically, we find an ensemble average by letting the number of ensembles go to infinity, and the
definition of population averageis given by letting the number of individua values go to infinity. Let M be
the number of ensembles. Then:
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n

M
<gz>enserrble Moo M zgm zwilinool\/l mz:l %;(y, _“)2-

Since al the y; above are distinct, we can combine the summations. Effectively, we have converted the
ensembl e average on the RHS to a population average, whose properties we know:

Mn
2

2 = lim i . — 25< - 2> = .
<g >enserrble MI—>ooMn l(yl y) (y y) population °

We have proved that our guess is an unbiased estimator of the population variance, o°.

(In fact, since we dready know that the sample average is an unbiased estimate of the population
average, and the variance o is defined as a population average, then we can conclude immediately that the
sample average of <(y; — 1)*>> in an unbiased estimate of the population average <(y, — ©)> = ¢°. Again,
we took the long route above to illustrate important methods that we will use again.)

Note that the denominator isn, and not n — 1,
because we started with separate knowledge of the population average u.

For example, when figuring the standard deviation of gradesin a class, one uses n in the denominator, snce
the class averageis known exactly.

¢ from sample alone: A harder case is estimating o when x is not known. As before, we must start
with aguess a an estimator, and then analyze our guess to see how it performs. A simple guess, motivated
by the definition, might be:

- IR
szocZ(yi ~yy (aguess) where yzEZyi :

By definition, to be unbiased, the average of ° over an ensemble of samples of size n must equa ¢°>. We
now consider the sum in &. We first show a failed attempt, and then how to avoid it. If we try to analyze
the sum directly, we get :

<i(y“7)2> > (-2 +32)= 3 {97} -2 ) enl).

i=1 i=1 i=1 i=1

In the equation above, angle brackets mean ensemble average. By tradition, we don’t explicitly label
our angle brackets to say what we are averaging over, and we make you figure it out. Even better, as we
saw earlier, sometimes the angle brackets mean ensemble average, and sometimes they mean population
average. (This is a crucia difference in definition, and a common source of confusion in statigtical
analysis: just what are we averaging over, anyway?) However, on the RHS, the first ensemble average is
the same as the population average. However, further analysis of the ensemble averages at this point is
messy (more on this later).

To avoid the mess, we note that definition (7.4) requires us to somehow introduce the population
average into the analysis, even though it is unknown. By trial and error, wefind it is easier to start with the
population average, and writeitintermsof y:

(Y- u) does not depend on i, so it comes out of the summation. The second term is identically zero,
because:
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n

i(yi‘7>=2yi—nv=nv—ny=o.

i=1 i=1

Now we can take the ensembl e average of the remains of the sum-of-squares equation:

(S} | S5 (S0

n

.Zl<(yi_ﬂ)2>= E(yi_y)z +n<(7_‘u)2>.

nh?

All the ensemble averages in the sum on the LHS are the same, and equal the population average, which is
the definition of ¢°.  On the RHS, we use the known properties of y :

(V)=n var(V)=<(7—u)2>=02/n.

Then we have:

<i(yi —7)2>=(n—1)02.

Thus we see our guess for & is correct. Thelast equation implies that the unbiased sample estimator is:

n

2__1 Ny _y)?
s —n_lé(y. y)”

We made no assumptions at all about the distribution of y, therefore:

& isan unbiased estimator of population variance o* for any distribution.

How to Do Statistical Analysis Wrong, and How to Fix It

The following example development contains one error that illustrates a common mistake in statistical
analysis: failure to account for dependence between random values. We then show how to correct the error
using our statistical algebra. This example re-analyzes an earlier goal: to determine an unbiased estimator
for the population variance, o%, from asample of n values{y}.

As before, we start with a guess that our unbiased estimator of ¢° is proportional to the sum squared
deviation from the average (similar to the messy attempt we gave up on earlier). Since we know we must
introduce i into the computation, we choose to expand the sum by adding and subtracting u:

n n

> (%-y)° =i‘,[(yi )+ (=) =D (4 =) + 2= ) (= 9)+ (- 9) .

i=1 i i=1

Now we take ensembl e averages, and bring them insde the summations:
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n

<i<yi —v>2>=z<<yi —u>2>+zé<<yi ~)(u=9)en{(-9)7). 75

i=1 i=1

All the ensemble averages on the RHS now equal their population averages. We consider each of the three
termsin turn:

. <(y, —y)2> =<(yi —y)2> =2, and the summation in the first term on theright is
ensemble population

n timesthis.

e Inthe 2™ term on the RHS, the averages of both factors, (y; — x) and (1 —Y) , are zero, so we drop
that term.

o« ((u=97)=((y-w)*)=va(y)=o?/n.

n

<i(yI —7)2>= no?+0?=(n+1)c? = s? =i2(yi —V)z (wrong!).  (7.6)

i=1 n+1i=l

Clearly, thisis wrong: the denominator should be (n — 1). What happened? See if you can figure it out
before reading further.
Really, stop reading now, and figure out what went wrong. Apply our statistical dgebra

The error is in the second bullet above: just because two RVs both average to zero doesn’t mean their
product averages to zero (see the average of a product, earlier). In fact, the average of the product must
include their covariance. In this case, any given y; correlates (positively) with y because y includes each

yi. Sincethe y isnegated in the 2" factor, the final correlation is negative. Then for a given k, using the
bilinearity of covariance (u is constant):

j=1

oov((yk—u>.(u—v>)=—cov(yk,v>=—cov[yk,%iij.

By assumption, they; are independent samples of y, and therefore have zero covariance between them:
cov(yy,yj)=0, k=], and COV(yk,yk)=0'2.

The only term in the summation over j that survives the covariance operation iswhen j = k:

= 1 o?
cov((yi —u).(#-Y)) =_COV(Y|<:HY|<)= W
Therefore, equation (7.6) should include the summation term from (7.5) that we incorrectly dropped. The
ensemble average of each term in that summation is the same, which we just computed, so the result is n
times (—o%/n):

n n-1=

Yi-Y)" )=noc”-2n—+0°=(n-1)o = s = Z:(yI y)© (right!).

Order isrestored to the universe.
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Introduction to Data Fitting (Curve Fitting)

Suppose we have an ided process, with an ideal curve mapping an independent variable x to a
dependent variabley. Now we take a set of measurements of this process, that is, we measure a set of data
pairs(x, y:), Figure 7.4 [ft.

2 )

of e
(] . .
o A > X > X
Ideal curve, Data,
with non-ideal data with straight line guess

Figure 7.4 (Left) Ideal curvewith non-ideal data. (Right) The same data with a straight line fit.

Suppose further we don’t know theideal curve, but we have to guessit. Typically, we make a guess of the
genera form of the curve from theoretical or empirical information, but we leave the exact parameters of
the curve “free.” For example, we may guess that the form of the curve is a straight line (Figure 7.4 right):

y=mx+Db,

but we leave the dope and intercept (m and b) of the curve as-yet unknown. (We might guess another
form, with other, possibly more parameters.) Then we fit our curve to the data, which means we compute
the values of m and b which “best” fit the data. “Best” means that the values of m and b minimize some
measure of “error,” called the figure of merit, compared to all other values of m and b. For data with
constant uncertainty, the most common figure of merit is the sum-squared residud:

n
sum-squared-residual = SSE = ) residual;?
i=1
n n P
=" (measurement; - curve ) = Z:(measurementi - (%))
=1 i=1
where f(x)isour fitting function.

The (measurement — curve) is often written as (O — C) for (observed — computed). In our example of fitting
to adtraight ling, for given values of mand b, we have:

n

SE= Zn:residualiz =" (i —(mx +b))*.

i=1 i=1

Curvefitting is the process of finding the values of all our unknown parameters
such that (for constant uncertainty) they minimize the sum-squared residual from our data.

The purpose of fitting, in general, is to estimate parameters, some of which may not have ssimple, closed-
form estimators.

We discuss data with varying uncertainty later; in tha more general case, we adjust parameters to
minimize the 5° parameter.
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Goodness of Fit
Chi-Squared Distribution

You don’t really need to understand the y? distribution to understand the »* parameter, but we start
there because it’s helpful background.

Notation: X € D(x) means X is a random variable with probability distribution function (PDF) =
D(x). X ekD(x) meansXisan RV whichisk (aconstant) timesan RV whichis e D.

Chi-squared (%) distributions are a family of distributions characterized by one parameter, called v
(Greek nu). (Contrast with the gaussian distribution, which has two real parameters, the mean, x, and
standard deviation, ¢.) So we say “chi-squared is a 1-parameter distribution.” v is almost always an
integer. The simplest case is v = 1: if we define a new random variable X from a gaussian random variable
X, &S

X =42 where y e gaussian(u=0,0%=1), i.e. avg=0,variance=1,

then X has a %, distribution. 1.e.,, A-1(x) is the probability distribution function of the square of a zero-
mean unit-variance gaussian.

For general v, »%(x) isthe PDF of the sum of the squares of v independent gaussian random variables:
\4
Y= ZZiz- where y; € gaussian(u =0,62 =1), i.e. avg=0, std deviation =1.
i=1

Thus, the random variable Y above has a »°, distribution. [picture??] Chi-squared random variables are
always > 0, since they are the sums of squares of gaussian random variables. Since the gaussian
distribution is continuous, the chi-squared distributions are also continuous.

fulmd 2
) 2 k=1 Filx) v
L & . k=2 0 .
L k=3 ¢ -
0.4 o o , A/..——"/
= . "
-_ k=6 / -
9.3 — k=9 061 f S S~ ::;
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Figure 7.5 PDF (left) and CDF (right) of some »* distributions. 4%(0) — . »%(0) = %.
[http://en.wikipedia.org/wiki/Chi-squared_distribution]

From the definition, we can aso see that the sum of two chi-squared random variables is another chi-
sguared random variable:

Let Ae Zzn- Be sz, then A+ Bezzmm.

By the central limit theorem, this means that for large v, chi-squared itself approaches gaussian. However,
ay? random variable (RV) is always positive, whereas any gaussian PDF extends to negative infinity.

We can show that:
) (-
= <;52V>=v, Var(zzv)=2v = de\/(xzv)=\/5

We don’t usually need the analytic form, but for completeness:
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Xv/2—le—X/2

PDF: 42, ()=
r(r/2)2"'?

For v > 3, thereisamaximumat v -2 .

For v=1 or 2, there is no maximum, and the PDF is monotonically decreasing.
Chi-Squared Parameter

As seen above, 4% is a continuous probability distribution. However, there is a goodness-of-fit test
which computes a parameter also called “chi-squared.” This parameter is from a distribution that is often
close to a? distribution, but be careful to distinguish between the parameter y* and the distribution 4.

The chi-squared parameter isnot required to be from a chi-squared distribution, though it oftenis. All
the chi-squared parameter really requires is that the variances of our residuas add, which isto say that our
residuals are uncorrelated (not necessarily independent, though independence implies uncorrel ated).

The y? parameter is valid for any distribution of uncorrelated residuals.
The 4 parameter has a * distribution only if the residuals are gaussian.

However, for large v, the »* distribution approaches gaussian, as does the sum of many values of any
distribution. Therefore:

The ? distribution is areasonable approximation to the distribution of any y* parameter
with v >~ 20, even if the residuals are not gaussian [ref?7).

To illustrate, consider a set of measurements, each with uncertainty u. Then if the set of
{ (measurement — model)/u} has zero mean, it has standard-deviation = 1, even for non-gaussian residuds:

Define: dev(X) = standard deviation of random variable X, also written oy,

var(X) = (dev(X))2 = variance of random variable X, also written 63 .

dev(reydual)zl N Var(reydual)zll
u u
Asaspecial case, but not required for a y* parameter, if our residuals are gaussian:
. . 2
residual c gausdan(0.) — [reﬂdualj 4.
u u

Often, the uncertainties vary from measurement to measurement. In that case, we are fitting a curve to
datatriples: (x, yi, u). Still, the error divided by uncertainty for any single measurement is unit deviation:

de\/(%J -1, and VH(%J -1, for alli .
Ui Ui
If we have n measurements, with uncorrelated residual s, then because variances add:
" residual, _ D (residual, |,
var Z— =n.  Forgaussian errors: z — | €x%-
i U i=1 Ui

Returning to our ideal process from Figure 7.4, with a curve mapping an independent variable x to a
dependent variable y, we now take a set of measurements with known uncertainties u,.

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 107 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

y(X)

X

Then our dimensionless parameter 5 is defined as:

n . 2 q 2
P residual, j [measurementi —curve,] : . 2 2
1= —— = If gaussianresiduals, y“ < v, |-
>y | :

i=1 Y

If nislarge, thissum will be close to the average, and (for zero-mean errors):

{3

Now suppose we have fit a curve to our data, i.e. we guessed a functional form, and found the
parameters which minimize the * parameter for that form with our data. If our fit is good, then our curve
is very close to the “real” dependence curve for y as a function of x, and our errors will be essentially
random (no systematic error). We now compute the y* parameter for our fit:

Z”:(rwdual j z(meawrerfnti ~ i, ]2 |

i=1 | =1 1

If our fit is good, the number »* will likely be close to n. (We will soon modify the distribution of the »?
parameter, but for now, it illustrates our principle.)

If our fit is bad, there will be significant systematic fit error in addition to our random error, and our »°
parameter will be much larger than n. Summarizing:

If »* is close to n, then our fit residuals are no worse than our measurement
uncertainties, and the fit is “good.” If 5 is much larger than n, then our
fit residuas are worse than our measurement uncertainties, so our fit must be “bad.”

Degrees of freedom: So far we have ignored the “degrees of freedom” of the fit, which we now
motivate. (We provethisin detail later.) Consider again a hypothetical fit to astraight line. We arefreeto
choose our parameters m and b to define our “fit-line.” But in a set of n data points, we could (if we
wanted) choose our mand b to exactly go through two of the data points:
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y(X)
/
/‘
/
‘ [ ]
b
//.
(/
/
.
:’ | » X

This guarantees that two of our fit residuals are zero. If nis large, it won’t significantly affect the other
residuals, and instead of »* being the sum of n squared-residuals, it is approximately the sum of (n — 2)

sguared-residuals. In this case, <;52> ~n-2. A rigorous analysis (given later) shows that for the best fit
line (which probably doesn’t go through any of the data points), and gaussian residuas, then < )52> =n-2,
exactly. This concept generdizes quite far:

e Even if we don’t fit 2 points exactly to the line;

e Evenif our fit-curveisnot aline

e Even if we have more than 2 fit parameters;

the effect is to reduce the y* parameter to be a sum of less than n squared-residuals. The effective number
of squared-residuas in the sum is called the degr ees of freedom (dof), and is given by:

dof =n—(# fit parameters).
Thus for gaussian residuals, and p linear fit parameters, the statistics of our ? parameter arereally:
<12>:dof =n-p, dev(;gz):\/z(dof):\/z(n— p). (7.7)

For nonlinear fits, we use the same formula as an approximation.

Reduced Chi-Squared Parameter

Sinceit is awkward for everyone to know n, the number of pointsin our fit, it is convenient to define a
“goodness-of-fit” parameter that is independent of n. We simply divide our chi-squared parameter by dof,
to get thereduced chi-squar ed parameter. Then it hasthese statistics:

2 n L \2
reduced 72 o_xt_ 1 (measurementi—fltiJ -
dof  dof <= u;
(#°)  dot
(redueed %) = F =4 =
dev(reduced Zz) dE)f \ d:fOf

If reduced 4 is close to 1, the fit is “good.” If reduced y* is much larger than 1, the fit is “bad.” By “much
larger” we mean several deviations away from 1, and the deviation gets smaller with larger dof (larger n).

Of course, our confidence in »* or reduced-»* depends on how many data points went into computing
it, and our confidence in our measurement uncertainties, u. Remarkably, one reference on »* [which |
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don’t remember] says that our estimates of measurement uncertainties, u;, should come from a sample of at
least fivel That seemsto meto be quite small to have much confidencein u.

Linear Regression
Review of Multiple Linear Regression

Most intermediate statistics texts cover multiple linear regression, e,g, [W&M p353], but we remind
you of some basic concepts here:

A smple example of multiple linear regression is this: you measure some observable y vs. an
independent variable x, i.e. you measure y(x) for some set of x ={x}. You have amode for y(x) whichisa
linear combination of basis functions

k
V() =y + B F 00 +5, 200+ B fie (9 =Dy T (%)

m=1

You use multiple linear regression to find the coefficients by of the basis functions f; which compose the
measured function, y(xX). The basis functions need not be orthonormal. Note that:

Fitting data to a line is often called “fitting data to a line” (seriously). We now show that there is no
mathematical difference between fitting to a line and linear fitting to an arbitrary function (so long as the
uncertaintiesin the X’s are negligible).

The quirky part is understanding what are the “predictors” (which may be random variables) to which
we perform the regression. As above, the predictors can be arbitrary functions of a single independent
variable, but they may also be arbitrary functions of multiple independent variables. For example, the
speed of light in air varies with 3 independent variables: temperature, pressure, and humidity:

c=c(T,P,H)

Suppose we take n measurements of ¢ at various combinations of T, P, and H. Then our data consists of
quintuples: (T; P, H;, ¢, u), where u isthe uncertainty in ¢. We might propose a linear modd:

c(T,P,H)=by+ 0BT +b,P+byH + b, TP.

The modéd islinear because it is alinear combination of arbitrary functions of T, P, and H. The last term
above handles an interaction between temperature and pressure. In terms of linear regression, we have 4
predictors: T, P, H, and TP (the product of T and P).
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We Fit to the Predictors, Not the Independent Variable

Figure 7.6 shows an example fit to amodel:
Ymod (1) =bpq =Dy fy (t) = by sin(wt) = X =sin(ot) .

Thereis only 1 fit-function in this example; the predictors are the x;;. Thefit isto the predictors, not to the
independent variables t;. In some cases, there is no independent variable; there are only predictors
(Analysis of Variance incdludes such cases).

predictor: b, i
Xy = f1(t)

predictor:

il N Ho % =10)

\\U/ i'ndependent
variable

@ (by*™ by

Figure 7.6 (a) Example predictor: an arbitrary function of independent variablet. (b) Linear fit to
the predictor is a straight line. The fit is not to t itself. Even if the t; are evenly spaced, the
predictors are not. Note that the predictor values of —0.5 and +0.5 each occur 3 times. This shows
agood fit: the measured values (green) are close to the model values.

Summarizing:

1. Multiple linear regression predicts the values of some random variable y; from k (possibly
correlated) predictors, Xq, m=1, 2, ... k. The predictors may or may not be random variables. In
some cases, the predictors are arbitrary functions of a single independent variable, ti: Xy = fi(t).
We assume that all thet;, y;, and dl the f,, are given., which means all the x,; = fi(t)) are given. In
other cases, there are multiple independent variables, and multiple functions of those variables.

2. It’s linear prediction, so our prediction model isthat y is alinear combination of the predictors,
{Xm}:

k
Y=+ B +By% + o BXe = DXy
m=1

Note that we have included by as a fitted constant, so there are k + 1 fit parameters. by ... b
This is quite common, in practice, but not always necessary. Note that the prediction model
has no subscripts of i , because the model appliesto all x,, and y values.

3. Our measurement model includes the prediction model, plus measurement noise, ;:

Yy, =hy + by +b2x2i+...+bkxki+gi=[Zk:bmxm]+si, i=12..n.
m=1

For a given set of measurements, the g; are fixed, but unknown. Over an ensemble of many
sets of measurements, the ¢ are random variables. The measurement uncertainty is defined
asthe 1-sgmadeviation of the noise:

Ui = de\/(é'i ) .
Note that the measurement model assumes additive noise (as opposed to, say, multiplicative
Noise).

4. Multiple linear regression determines the unknown regression coefficients by, by, ... b from n
samples of the y and each of the x,. For least-squares fitting, we simultaneously solve the
following k + 1 linear equationsin k + 1 unknowns for the b, [W&M p355]:
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bon B X+ B X bt B X = DY
i=1 i=1 i i

Andforeachm=1, 2, ..k
n n n n n
By D X B XX+ XX+ B XX = D X Vi
i=1 i=1 i=1 i=1 i=1

Again, all they; and x; are given. Therefore, all the sums above are constants, on both the left and right
sides. In matrix form, we solvefor b = (by, by, ... bk)T from:

n ZXJj szi | by zyi
or o 20 2% | b | 2w

S Yoxi - 2 06)7 b (D
Examples: For fitting to aline, in our notation, our model is:
y(x) =by+byx.

k+ 1=2: our 2 parametersare by and by. Written in terms of functions, we have fi(x) = x.

Xb

I
<

For a snusoidal periodogram analysis, we typically have a set of measurementsy; at a set of times t;.
Given atrial frequency w, we wish to find the least-squares cosine and sine amplitudes that best fit our
data. Thus:

k=2: fi=cos, f,=sn, X =cos(@t), Xy =sin(wt)), i=12..n,
and our fit mode is:
y(t) = by + b cos(wt) + b, sin(wt) .

(In practice, the (now deprecated) L-S agorithm employs a trick to smplify solving the equations, but we
need not consider that here.)

Fitting to a Polynomial is Multiple Linear Regression

Fitting a polynomial to datais actually a smple example of multiple linear regression (see also the
Numerical Anaysis section for exact polynomia “fits”). Polynomial fit-functions are just a special case of
multiple linear regression [W&M p357], where we are predicting y; from powers of x. As such, we let

Xei = (ti )m , and proceed with standard multiple linear regression:

() + BY &+ by 2+ L+ Y =Dy
i=1 i=1 i=1 i=1

Andforeachm=1,2 ...k

bozn:tim +blzn:ti””l+ bzzn:ti””z Fot q(Zn:ti””k = Zn:timyi .
i1 =) i1 i1 i1

The Sum-of-Squares ldentity

The sum of squares identity isa crucia tool of linear fitting (akalinear regression). It underlies many
of the basic statigtics of multiple linear regression and Analysis of Variance (or AOV). The sum of squares
identity can be used to define the “coefficient of determination” (and the associated ‘“correlation

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 112 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

coefficient”), and also provides the basis for the F-test and t-test of fit parameter significance. Since
ANOVA is actually a special case of multiple linear regression, we describe here the regression view. The
ANOVA results then follow directly.

We first consider the case where all the measurements have the same uncertainty, o (the
homoskedastic case). Thisis a common stuation in practice, and also serves as a starting point for the
more-involved case where each measurement has its own uncertainty (the heteroskedastic case).
Furthermore, there is a transformation from heteroskedastic measurements into an equivaent set of
homoskedastic measurements, which are then subject to all of the following homoskedastic results.

We proceed along these steps:
e Theraw sum of squares identity.
e Thegeometric view of aleast-squaresfit.
e The ANOVA sum of squares identity.
o Thefailure of the ANOVA sum of squaresidentity.

e Later, we provide the equivalent formulas for data with individual uncertainties.

Nowhere in this section do we make any assumptions at all about the residuals;
we do not assume they are gaussian, nor independent, nor even random.

This section assumes you understand the concepts of linear fitting. We provide a brief overview here, and
introduce our notation.

A linear fit uses a set of p coefficients, by, ... by, as fit parameters in a model with arbitrary fit
functions. The “model” fit is defined as:

p
Yinod (9 =B F1( +B, T (1) + .+ by T () = by Frn ().

m=1
Note that alinear fit does not requirethat y is a sraight-line function of x.

Thereisacommon special case where we include a constant offset by in the model. In this case, there
are p-1fit functions, since p is always the total number of fit parameters:

p-1
Yinod (¥) = b+ 01 f1(X)+ B, (0 + ..+ By 1 T 1) =g + > b frn(X).

m=1

Note that this is equivalent to including a fit function fo(x) = 1, so it is really no different than the first
model given above. Therefore, the first form is completely general, and includes the second. Anything
true of the first form is also true of the second, but the reverse is not true. We use both forms, depending
on whether our modedl includes by or not.

For a set of n pairs (X, Vi), the “fit” means finding the values of by, that together minimize the sum-
sguared residual:

p
define: Ymod,i = Ymod (%) = zbmfm(xi)’ & =Yi ~ Ymod,i -
m=1
n 2 n
minimize: SSEEZ(yi —ymod,i) =) g2,
i=1 i=1

Note that the fit residuals & may include both unmodeled behavior, as well as noise (which, by definition,
cannot be model ed).
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The Raw Sum-of-Squares ldentity

Most references do not consider the raw sum of squares (SSQ) identity. We present it first because it
provides a basis for the more-common ANOVA SSQ identity, and it is sometimes useful in its own right.
Consider a set of data (%, ), 1 = 1, ... n. Conceptually, the SSQ identity says the sum of the squares of the
yi can be partitioned into a sum of squares of model values plus a sum of squares of “residuals” (often
called “errors™):

n n n
(raw)  SST = SSA+ SSE: 2= Vo2 + D (¥~ Yimoai )’ - (7.8)
i=1 i=1 i=1
(The term “errors” can be misleading, so in words we always use “residuals.” However, we write the term
as SSE, because that is so common in theliterature.) The SSQ identity is only true for aleast-squares linear
fit to a parametrized modd, and has some important non-obvious properties. We start with some examples
of theidentity, and provide smple proofs later.

v LY LY ;
2__
T y=0.1
: . X : > x e s
1 1 1 1 1
(€Y (b) 17 (O 17

Figure 7.7 (a) Two data points, n = 2, and best-fit 1-parameter model. (b) Three data points, n =
3, and best-fit 1-parameter model. (c) Three data points, n = 3, and best-fit 2-parameter model.

Examplee n=2, p=1 Given adaa set of two measurements (0, 1), and (1, 2) (Figure 7.7a). We
choose a 1-parameter modd :

y(X)=bx.

The best fit lineis by = 2, and therefore y(x) = 2x. (We see this because the modd is forced through the
origin, so theresidua at x = O isfixed. Then the least squares residuals are those that minimize the error at
x = 1, which we can make zero.) Our raw sum-of-squaresidentity (7.8) is.

%itgiz(oz+22)+@?+oz) N 5=4+1.
STI$°\IISSEI

Example: n=3, p=1: Given adata set of three measurements (-1, -1), (0, 0.3), and (1, 1) (Figure
7.7b). We choose a 1-parameter mode:

y(X)=bx.

The best fit line is by = 1, and therefore y(x) = x. (We see this because the modd is forced through the
origin, so theresidual at x = O isfixed. Then the least squares residuals are those that minimizethe errors at
x =-1and x = 1, which we can make zero.) Our raw sum-of-sgquares identity (7.8) is:

P40F 42 (-1 +0?+2)+(0 40+ 0) > 209-2+009.
SST I — |
SSA SSE

Example: n=3, p=2 Weconsder the samedata (-1, -1), (0, 0.3), and (1, 1), but we now include a
by DC-offset parameter in the model:

y(x) =y +byx.
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The best fit lineisby = 0.1, by = 1, and therefore y(x) = 0.1 + x, shown in Figure 7.7c. (We see this because
the fit functions are orthogonal over the given {x}, and therefore the fit parameters { by} can be found by
correlating the data with the fit functions, normalized over the {x}. Trust me on this.)

P40F 42 (-1 +0?+22)+(040F+0?) > 209-2+009.
SST [ R B

SSA SSE

The raw sum-of-squares identity holds for any linear |east-squaresfit,
even with non-gaussian (or non-random) residuals.

In general, the SSQ identity does not hold for nonlinear fits, asis evident from the following sections. This
means that none of thelinear regression statistics are valid for a nonlinear fit.

The Geometric View of a Least-Squares Fit

The geometric view of least-squares fitting requires defining an new kind of vector space
measurement space (aka “observation space”). This is an n-dimensional space, where n = the number of
measurementsin the data set. Our sets of measurements{y}, residuals{s}, etc. can be viewed as vectors:

yE(yl,yz,...yn), 85(81,82,...€n), etc.

Thus, the entire set of measurements is a single point in measurement space (Figure 7.8). We write that
point as the displacement vector y. If we have 1000 measurements, then measurement space is 1000-
dimensional. Measurement space isthe space of all possible data sets{y;}, with the{x} fixed.

yz 3 best-ﬁt Tys yZ } .
2 -0.9,0.1,11 — (. T
ymod y ( ) .?"y - ( 1, 0.3’ 1) fm y
- (3,1,1) . (-1,0, 1) +
Y — Yo Y
1 1
@ (0 |

Figure 7.8 (a) Measurement space, n = 2, and best-fit 1-parameter model. (b) Measurement
space, n = 3, and the 2-parameter model surface within it. (c) The shortest ¢ is perpendicular to
every fp.

Given a set of parameters { by} and the sample points {x}, the mode (with no residuals) defines a set
of measurements, Ymeq,;, Which can aso be plotted as a single point in measurement space. For example,
Figure 7.8a shows our n = 2 model y = b;x, taken at the two abscissa value x; = 0, and x; = 1, which gives
VYmod1 = 0, Ymod2 = b1. The least squares fit is b, = 2. Then the coordinates (Ymod 1, Ymoa2) = (0, 2) give the
model vector Y in Figure 7.8a

Note that by varying the by, the model points in measurement space define a p-dimensional subspace
of it. In Figure 7.8a, different values of b, trace out avertical line through the origin. Inthiscase, p=1, so
the subspaceis 1D: aline.

The n = 3 caseis shown in Figure 7.8b. Here, p = 2, so the model subspace is 2D: a plane in the 3D
measurement space. Different values of by and b; define different model pointsin measurement space. For
alinear fit, the origin is aways on the model surface: when all the by, = 0, al the model y; = 0. Therefore,
the plane goes through the origin. Two more paints define the plane:

bp=1b=0 = y=(111)
bh=0b=1 =  y=(-101)

As shown, the model plane passes through these points. Again using linearity, note that any model vector
(point) lies on aray from the origin, and the entireray is within the model surface. In other words, you can
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scale any model vector by any value to get another model vector. To further visualize the plane, note that
whenever by = by, y3 = 0. Theny; = -b; + by = 2by, and y, = by; therefore, the liney, = 0.5y, liesin the
model surface, and is shown with a dashed line in Figure 7.8b.

The green dot in Figure 7.8b is the measurement vector y (in front of the modd plane). The best-fit
moddl point is (-0.9, 0.1, 1.1). Theresidual vector £ goes from the model to y, and is perpendicular to the
model plane.

The mode surface is entirely determined by the model (the f,,(x)), and the sample points { x}. |

The measured values { i} will then determine the best-fit model, which isa point on the model surface.

In Figure 7.8aand b, we see that the residual vector is perpendicular to the best-fit linear model vector.
Isthisadwaysthe case? Yes. If the modd vector were shorter (Figure 7.8c), € would have to reach farther
to go from there to the measurement vector y. Similarly, if the model vector were longer, € would also be
longer. Therefore the shortest residual vector (least sum squared residual) must be perpendicular to the
best-fit modedl vector. Thisis truein any number of dimensions. From this geometry, we can use the n-
dimensional Pythagorean Theorem to prove the sum of squares identity immediately (in vector notation):

£V imod =0 = y = Yimod- + & where y? =yey, dc.

s = =
Fit parameters as coordinates of the model surface: We’ve seen that each point on the model
surface corresponds to a unique set of {b.}. Therefore, the b, compose a new coordinate system for the
moded surface, different from the y; coordinates. For example, in Figure 7.8b, the by axis is defined by
setting by = 0. Thisisthe line through the origin and the model pointy = (1, 1, 1). The b, axisis defined
by setting by = 0. Thisisthelinethrough the origin and y = (-1, 0, 1). In general, the by, axes need not be
perpendicular, though in the case, they are.

In Figure 7.8b, ¢ is perpendicular to every vector in the model plane. In general, ¢ is perpendicular to
every f,, vector (i.e. each of the m components of the best-fit model vector):

ef,=0 vm=1..p where fmzbm(fm(xl), fn (%), ... fm(xn)).

Again, this must be so to minimize the length of ¢, because if £ had any component paralld to any f., then
we could make that f,, longer or shorter, as needed, to shrink ¢ (Figure 7.8c). We’ll use this
perpendicularity in the section on the a gebra of the sum of squares.

Algebra and Geometry of the Sum-of-Squares Identity

We now prove the sum of sguares (SSQ) identity algebraicaly, and highlight its corresponding
geometric features. We start by ssimply subtracting and adding the model values ymog; in the sum of
squares:

n

((y Ymod,i +Ymod|) Z 5|+Ymod|

n

S

= =1
=Zg|2+zymod| +225| Ymod,i -

i=1

-

I
=

(7.9)

=}

The last term iS &Y mod, Which we’ve seen geometrically is zero. We now easily show it algebraically: since
SSE isminimized w.r.t. al themodel parameters by, its derivative w.r.t. each of themiszero. |.e, for each
k:

a n n n
o2 S-S - S|

i=1 m=1

In this equation, all they; are constant. The only term that survives the partial derivative is where m= k.
Dividing by —2, we get:
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O=Zsi%|q<fk(>q) D & fi(%) = ef,=0. (7.10)

i=1 i=1
Therefore, thelast term in (7.9) drops out, leaving the SSQ identity.
The ANOVA Sum-of-Squares Identity

It is often the case that the DC offset in a set of measurements is either unmeasurable, or not relevant.
This leads to ANalysis Of Variance (ANOVA), or analysis of how the data varies from its own average.
In the ANOVA case, the sum-of-squares identity is modified: we subtract the data average y from both the

yi and the Yimed:

n

(ANOVA) SST=SA+SE: > (%-9)=D (Yimoai =) + D (% ~Ymoas) - (1)
i=1

i=1 i=1

This has an important consegquence which is often overlooked: the ANOVA sum-of-squares identity holds
only if the model includes a DC offset (constant) fit parameter, which we call by.

Example: n=3, p=2: We again consider the data of Figure 7.7c: (-1, -1), (0, 0.3), and (1, 1). We
now use the ANOVA sum-of-sguares, which is allowed because we have a by (DC offset) in the model:

y(X) =bo +yx.
Our ANOVA sum-of-squares identity (7.11) is, using y =

(<107 +022+09% =((-1) + 02 +22) +((-00)? +02% +(-01)?) - 206-2+006.

L 1 L 1

SSA SSE

The ANOVA sum-of-sguares identity holds for any linear least-squares fit that includesa DC
offset fit parameter (and also in the specid case that the sum of residuals (not squared) = 0).

With no DC offset parameter in the model, in general,
the ANOVA sum-of-squares identity fails.

We prove the ANOVA SSQ identity (often called just “the sum of squares identity”’) similarly to our
proof of theraw SSQ identity. We start by subtracting and adding Yimeq, t0 €ach term:

Zn: = | (5i +(Ymod,i —7))2

i=1
, &
&i +z Ymodl__ +225| Ymodl__
i1

n n n
5|2+z Ymodl__ W"'Z z
i=1 j< i=1

Compared to the raw SSQ proof, there is an extra 4" term. The 3 term is zero, as before, because ¢ is
shortest when it is perpendicular to the model. The 4th term is zero when the sum of the residualsis zero.
This might happen by chance (but don’t count on it). However, it is guaranteed if we include a DC offset
parameter by in the model. Recall that the constant by is equivalent to a fit function fo(x) = 1. We know
from theraw SSQ proof that for every k:

-

I
=

(31 ot 3 =) -

- M ol

I
=

n

b =D 5 M (x)=0 = D g fo(x)=Y =0
= =

i=1

QED.
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The necessary and sufficient condition for the ANOVA SSQ identity to hold is that the sum of the
residuals is zero. A sufficient condition (and the most common) is that the fit model contains a constant
(DC offset) fit parameter by.

The Failure of the ANOVA Sum-of-Squares Identity

The ANOVA sum-of-squares identity fails when the sum of the residualsisnot zero:

n
zgi £0 = (ANOVA) SST = SSA+ SSE .
i=1

(We proved this when we proved the ANOVA SSQ identity.) This pretty much mandates including a by
parameter, which guarantees the sum of theresidualsis zero. Y ou might think this is no problem, because
everyone probably already has a b, parameter; however, thetraditional Lomb-Scargle algorithm [Sca 1982]
fails to include a by parameter, and therefore all of its statistics are incorrect. The error isworse for small
sample sizes, and better for large ones.

As an example of the failure of the sum-of-squares identity, consider again the data of Figure 7.7a: n=
2 measurements, (0, 1), and (1, 2). Asbefore, we fit the raw datatoy = b;x, and the best-fit is still b, = 2.
We now incorrectly try the ANOVA sum-of-sgquares identity, with y =1.5, and find it fails:

2 2 5
[—lj +(1j ~((-15)? +082)+(£2+0%) - 12541,

2) "2 2
= S SF

For another example, consider again the n = 3 data from earlier: (-1, -1), (0, 0.3), and (1, 1). If wefit
with just y = byx, we saw already that b; = 1 (Figure 7.7b). As expected, because there is no constant fit
parameter by, the sum of theresidualsisnot zero:

n n
Zgi EZ(Yi _Ymod,i)=0+0.3+0¢0.
i=1 i=1

Therefore, the ANOVA sum-of-squares identity fails:

?
(—1.1)2+o.22+o.92=((—1.1)2+(—o.1)2+o.92)+(02+0.32+02) —  206%2.03+0.09.

L ST ! L [ e —

SSA SSE

In the above two examples, the fit function had no DC component, so you might wonder if including
such a fit function would restore the ANOVA SSQ identity. It doesn’t, because the condition for the
ANOVA SSQ identity to hold is that the sum of residuals is zero. To illustrate, we add a fit function,
(x* + 1) with anonzero DC (average) value, so our modd isthis:

Ymod (X) = b1X+b2(X2 +1) .

The best fit isb; = 1 (as before), and b, = 0.0333 (from corrdation). Then ypeq; = (-0.933, 0.0333, 1.0667),
and:

?
(1.1 +0.22+09 =((—1.033)2 +(-0.0667)" + 0.9672) + ((—0.0667)2 +0.2672 + (0.0667)2)

ST L == 1L == |
- 2.06# 2.007+0.08.

Subtracting DC Before Analysis

A common method of trying to avoid problems of DC offset isto simply subtract the average of the
data before fitting to it. This generdly fails to solve the DC problem (though it is often advisable for
improved numerical accuracy in calculaions). Subtracting DC makes y = 0, so the ANOVA SSQ identity
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is the same as the raw SSQ identity, and the raw identity always holds. However, subtracting DC does not
give an optimal fit when the fit functions have a DC offset over the {x}. The traditional Lomb-Scargle
analysis [Sca 1982] has this error. The only solution is to use a 3-parameter fit: a constant, a cosine
component, and a sine component [Zeich 2009].

avra

@ |

Figure 7.9 (a) The top curve (blue) shows a cosine fit to data points. The bottom curve (red)
shows the same frequency fit to DC-subtracted data, and is a much worse fit.

Figure 7.9 shows an example of the failure of DC-subtraction to fix the problem, and how DC-
subtraction can lead to a much worse fit. Therefore:

We must include the constant b, parameter both to enable the other parameters to be properly fit,
and to enable Analysis of Variance with the SSQ identity.

In general, any fit parameter that we must include in the model, but whose value we actually don’t need, is
called a nuisance parameter. by is probably the most common nuisance parameter in data analysis.

Fitting to Orthonormal Functions
For p orthonormal fit functions, each by, can be found by a smpleinner product:

p
ymod(X)Ezbmfm(X)a fj'fk =é‘jk = mefm'y-

m=1

As examples, thisishow Fourier Transform coefficients are found, and usually how we find components of
aket in quantum mechanics.

Hypothesis Testing with the Sum of Squares Identity

A big question for some data analysts is, “Is there a signal in my data?” For example, “Is the star’s
intengity varying periodically?” One approach to answering this question is to fit for the signal you expect,
and then test the probability that the fit is just noise. This is a smple form of Analysis of Variance
(ANOVA). This type of hypothesis is widely used throughout science, e.g. astronomers use this
significance test in Lomb-Scargle and Phase Dispersion Minimization periodograms.

To make progressin determining if asignal is present, we will test the hypothesis:
Ho: thereisno signdl, i.e. our datais pure noise.

Thisis caled the null hypothesis, because we usually define it to be a hypothesis that nothing interesting is
in our data, e.g. there is no signal, our drug doesn’t cure the disease, the two classes are performing equally
well, etc.

After our analysis, we make one of two conclusions: either we reject Hy, or we fail to rgect it. Itis
crucia to be crystal clear in our logic here. If our andysis shows that Hg is unlikely to be true, then we
reject Hy, and take it to be false. We aso quantify our confidence level in rgjecting Ho, typically 95% or
better. Rejecting Ho meansthereisasignal, i.e. our datais not pure noise. Note that rejecting Ho, by itself,
tells us nothing about the nature of the sgnal that we conclude is present. In particular, it may or may not
match the model we fitted for (but it certainly must have some correlation with our model).
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However, if our analysis says Hy has even a fair chance of being true (typically > 5%), then we do not
reject it.

Failing to regject Hy is not the same as accepting it. Failing to reject means either (a) Hp istrue;
or (b) Hy isfalse, but our data are insufficient to show that confidently.

This point cannot be over-emphas zed.

Notice that scientists are a conservative lot: if we claim a detection, we want to be highly confident
that our claim is true. It wouldn’t do to have scientists crying “wolf” all the time, and being wrong a lot.
The rule of thumb in science is, “If you are not highly confident, then don’t make a claim.” You can,
however, say that your results are intriguing, and justify further investigation.

Introduction to Analysis of Variance (ANOVA)

ANOVA addresses the question: Why don’t all my measurements equal the average? The “master
equation” of ANOVA is the sum of squares identity (see The Sum-of-Squares | dentity section):

SST = SSA+ SSE where SST = total sum of sguared variation
SSA = modeled sum of squared variation

SSE = residual sum of squared variation

This equation says that in our data, the total of “differences” from the average is the measured differences
from the model, plus the unmodeled residuas. Specifically, the total sum of squared differences (SST)
equal's the modeled sum of squared differences (S3A) plusthe residua (unmodeled + noise) sum of squared
differences (SSE).

As shown earlier, for aleast-squares linear fit, the master equation (the SSQ identity)
requires no statistics or assumptions of any kind (normality, independence, ...).

[ANOVA isidentical toleast-squares linear regression (fitting) to the “categorical variables.” More later.]

To test a hypothesis, we must consider that our data is only one set of many possible sets that might
have been taken, each with different noise contributions, ¢;. Recall that when considered over an ensemble
of hypothetical data sets, all the fit parameters by, aswell as SST, SSA, and SSE arerandom variables. Itis
in this sense that we speak of their statistical properties.

For concreteness, consider a time sequence of data, such as a light curve with pairs of times and
intensities, (t;, 5). Why do the measured intensities vary from the average? There are conceptualy three
reasons:

e We have an accurate model, which predicts deviations from the average.

e The syssem under study is more complex than our model, so there are unmodeled, but
systematic, deviations.

e Thereisnoiseinthe measurement (which by definition, cannot be model ed).

However, mathematically we can distinguish only two reasons for variation in the measurements:. either we
predict the variation with a model, or we don’t, i.e. modeled effects, and unmodeled effects. Therefore, in
practice, the 2™ and 3™ bullets above are combined into residuals: unmodeled variationsin the data, which
includes both systematic physics and measurement noise.

This section requires a conceptua understanding of vector decomposition into both orthonormal and
non-orthonormal basis sets.

The Temperature of Liberty

As prerequisite to hypothesis testing, we must consider a number of properties of the fit coefficients by
that occur when we apply linear regression to measurements y. We then apply these results to the case
when the “null hypothesis™ is true: there is no signal (only noise). We proceed along these lines:
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e A look ahead to our goal.
e Thedidribution of orthonormal fit coefficients, by,
e Thenon-correation of orthonormal fit coefficientsin pure noise.
e Themodd sum-of-squares (SSA).
e Theresidual sum-of-squares (SSE) in pure noise.
A Look Ahead to the Result Needed for Hypothesis Testing

To better convey where we are headed, the following sections will prove the degrees-of-freedom
decomposition of the sum-of-sgquares (SSQ) identity:

(raw) SST = SSA+ SSE N Y2 =Vmoai+ €
| I | B
dof=n  gof=p dof=n-p

We aready proved the SSQ identity holds for any least-squares linear fit (regardless of the distribution of
SSE). To perform hypothesis testing, we must further know that for pure noise, the n degrees of freedom
(dof) of SST also separateinto p dof in SSA, and n— p dof in SSE.

For the ANOVA SSQ identity, the subtraction of the average reduces the dof by 1, so the dof partition

as.
2
(ANOVA) SST = SSA+ SSE N (y-v) = (Yioa,i = V) + i
dof=n1 —dof—p1  dof=n-p

Distribution of Orthogonal Fit Coefficients in the Presence of Pure Noise

We have seen that if afit function is orthogonal to all other fit functions, then itsfit coefficient is given
by asimplecorrelation. |.e, for agiven k:

n
o 200y,
fiof; =0forall j=k = b, = fk°2y i:nl _
“ sz(xi)z
i1

We now further restrict ourselves to anormalized (over the {x}) fit-function, so that:

(7.12)

D R)?=1 = b= fix)y.
i=1 i=1

We now consider an ensemble of sample sets of noise, each with the same set of { X}, and each producing a
random by. In other words, the by are RVs over the set of possible sample-sets. Therefore, in the presence
of pure noise, we can easily show that var(b) = var(y) = ¢° Recall that the variance of a sum (of
uncorrelated RVs) is the sum of the variances, and the variance of k times an RV = Kvar(RV). All the

values of f(x) are constants, and var(y;) = var(y) = % therefore from (7.12):

var(bk){Z fk(mz]var(yi) =o?.
i=1
1

Thisisaremarkable and extremely useful result:

In pure noise, for anormalized fit-function orthogonal to all others, the variance of its least-
squares linear fit coefficient isthat of the noise, regardless of the noise PDF.

At this point, the noise need not be zero-mean. In fact:
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<m>=(iz:, fkm]@.

Since the sum has no simple interpretation, this equation ismost useful for showing that if the noise is zero-
mean, then by is also zero-mean: <b>= 0. However, if the fit-function f, taken over the {x} happensto be
zero mean, then the summation is zero, and even for non-zero mean noise, we again have <b> = 0.

Similarly, any weighted sum of gaussian RVsisa gaussian; therefore, if the y; are gaussian (zero-mean
or not), then by is also gaussian.

Non-correlation of Orthogonal Fit Coefficients in Pure Noise

We now consider the correlation between two fit coefficients, by and by, (again, over multiple samples
(sample sets) of noise), when the fit-functions f, and f;,, are orthogonal to each other, and to all other fit-
functions. We show that the covariance cov(by, b)) = 0, and so the coefficients are uncorrelated. For
convenience, we take f, and f,,, to be normalized: f,2 = f,2 = 1. We start with the formula for a fit-coefficient
of afit-function that is orthogonal to all others, (7.12), and use our algebra of statistics:

COV(By,bn) = OV (Y, fimey) =cov| D" fi()%, Y Fn ()5 |-

i=1 j=1
Again, al the fy and f;,, are constants, so they can be pulled out of the cov( ) operator:
n n
Cov(B,bm) = D> (%) fen(X;) 00V (1, Y5 ) -
i=1j=1

Asaways, they; are independent, and therefore uncorrelated. Hence, wheni #j, cov(y;, y;) = 0, so only the
i = j terms survive, and the double sum collapses to asingle sum. Also, cov(y;, y)) = var(y;) = ¢°, whichisa
constant:

0u(B ) o 02 3 1y (%) (%) =0 (fi & ., areorthogondl) .
i=1

0

Thisistruefor arbitrary distributions of y;, even if they; are nonzero-mean.

In pure noise of arbitrary distribution, for fit-functions orthogonal to al others,
the{by} are uncorrelated.

The Total Sum-of-Squares (SST) in Pure Noise

Thetota sum of squaresis

n

raw: SST=y-y=Z:yi2
i1

n

_ _ 1l
ANOVA: SST=(y—y)2=2(yi—y)2. where yEEZYi-
i1 i1

For zero-mean gaussian noise, the raw SST (taken over an ensemble of samples) satisfies the definition
of a scaled y* RV with n degrees of freedom (dof), i.e. SST/o” € 4. Asiswell-known, the ANOVA SST,

by subtracting off the sample average, reduces the dof by 1, 0 ANOVA SST/o? € 5 1.
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The Model Sum-of-Squares (SSA) in Pure Noise

We’re now ready for the last big step: to show that in pure noise, the model sum-of-squares (SSA) has
p degrees of freedom. The model can be thought of as a vector, Ymed = {Ymod;i} , @d the basis functions for
that vector arethe fit-functions evaluated at the sample points, fy, = {f(%)}. Then:

p
Ymod = zbmfm :

m=1

The f,, may be oblique (non-orthogonal), and of arbitrary normalization. However, for any model vector
space spanned by Ymog, there exists an orthonormal basisin which it may be written:

p
Ymod = ZCmgm where g, = orthonormal basis, c,, = coefficientsin theg basis. (7.13)
m=1

We’ve shown that since the g, are orthonormal, the ¢, are uncorrelated, with var(c,) = ¢°>. Now consider

Yimod® Written as a summation:

n(p 2
Ymod2 = Z[zcmgm(xi )J .

i=1\m=1

Since the g, are orthogonal, al the cross terms in the square are zero. Then reversing the order of
summation gives:

p n P n P
Yinod® = 2 D (Cn@m(x))* =D cm2 > (Gm(%))° =D . (7.14)
=1 =1

m=1i m=1

m=1 i

1

Therefore, ymod is the sum of p uncorrdated RV's (the ¢,,9). Using the general formula for the average of
the squareof an RV (7.2):

p

<cm2>=(cm>2+var(cm) =(cy ) +0? = <Ymod2>=[2(cm>2]+ po?.

m=1

This is true for any distribution of noise, even non-zero-mean. In genera, there is no smple formula for
var (Yimod)-

If the noise is zero-mean, then each <c.,> = 0, and the above reduces to:
<ymod2> = po? (zero-mean noise) .

If the noise is zero-mean gaussian, then the ¢, are zero-mean uncorrelated joint-gaussian RVs. Thisis
a well-known condition for independence [ref 77|, so the ¢, are independent, gaussian, with variance o
Then (7.14) tells usthat, by definition, ymeq” isa scaed chi-squared RV with p degrees of freedom:

2
SSA . .
(raw) yf"_ozd =—¢ Z% (zero-mean gaussian noise) .
o o

We developed this result using the properties of the orthonormal basis, but our model yn.g, and therefore
Ymod®» e identical in any basis. Therefore, the result holds for any p fit-functions that span the same model
space, even if they are oblique (i.e. overlapping) and not normalized.

For the ANOVA SSQ identity, a smilar analysis shows that the constraint of y removes one degree of
freedom from SSA, and therefore, for zero-mean noise:

<(ymod - 7)2> =(p-1)c? (zero-mean noise) .
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For zero-mean gaussian noise, then:

—\2
—(ymOd > y) E%Ae Z%—l (ANOVA SSQ, zero-mean gaussian noise) .

c o
If instead of pure noise, we have a signal that correlates to some extent with the model, then

(Ymod —7)2 will be bigger, on average, than (p — 1)¢>. That is, the model will explain some of the

variation in the data, and therefore the model sum-of-squares will (on average) be bigger than just the noise
(even non-gaussian NoIse). :

<(ymod - 7)2> = (SA)> (p-1)c? (signal + zero-mean noise) .

The Residual Sum-of-Squares (SSE) in Pure Noise
We determine the distribution of SSE in pure noise from the following:
e For least-squareslinear fits: SST = SSA+ SSE .
e From our analysis so far, in pure gaussian zero-mean noise:
SST/o? e Zzn—l- SA/c? exzp_l.

e From the definition of 2, the sum of independent »* RVsis another > RV, and the dof add.
These are sufficient to conclude that SSE/6” must be *, p,, and must be independent of SSA. [I’d like to
show this separately from first principles??):

SE/cle ;(Zn_ D (for pure gaussian zero-mean NOise) .

The F-test: The Decider for Zero Mean Gaussian Noise

In the sections on linear fitting, our results are completely general, and we made no assumptions at all
about the nature of the residuas. In the more recent results under hypothesis testing, we have made the
minimum assumptions possible, to have the broadest applicability possible. However:

To do quantitative hypothesis testing,
we must know something about the residual distribution in our data.

One common assumption is that our noise is zero-mean gaussian. Then we can quantitatively test if
our data are pure noise, and establish alevel of confidence (e.g., 98%) in our conclusion. Later, we show
how to use simulations to remove the restriction to gaussian noise, and establish confidence bounds for any
distribution of residuals.

For zero-mean pure gaussian noise only: we have shown that the raw (SSA/o2) e Zzp_ We have also
indicated that for ANOVA:

SST/o? e x%h 4 o =(SST/(n-1))
SA/c? e Zzp—l = o2 =<$A/( p—1)>
$E/Gze;(2n_p 62=<SSE/(H_ p)>

Furthermore, SSA and SSE are statistically independent, and each provides an estimate of the noise variance
2
o .

[Note that the difference between two independent »* RV's has no simple distribution. This means that SST is
correlated with SSA in just the right way so that (SST — SSA) = SSE is 0% distributed with p — 1 dof; similarly
SST is correlated with SSE such that (SST — SSE) = SSA € %% with n— p dof ]
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We can take the ratio of the two independent estimates of %, and in pure noise, we should get

something closeto 1:

SSA/(p-1)

f $E/(n—p)~1 (in purenoise) .

Of course, this ratio is itself a random variable, and will vary from sample set to sample set. The
distribution of this RV is the Fisher—Snedecor F-distribution. It is the distribution of the ratio of two
reduced-y® parameters. Its closed-form is not important, but its general properties are.  First, the
distribution depends on both the numerator and denominator degrees of freedom, so F is a two-parameter
family of distributions, denoted here as F(dof num, dof denom; f). (Some references use F to denote the
CDF, rather than PDF.)

If our test value f is much larger than 1, we might suspect that Hy is false: we actually have a signal.
We establish this quantitativel y with a one-sided F-test, a the « level of significance (Figure 7.10):

f > critial _value[Fp_l’n_p; a] = reject Hy.

If f > critical value, then it is unlikely to be the result of pure noise. We therefore rgject Hy at the o level of
significance, or equivalently, at the (1 — ) level of confidence.

PDFfor Fy g np e PDFfor Fy i np PDFfor Fy g np
critic . .
critica critica
fv?lue ot H value value
E_’ I’q 0 = .
(a) area= (b) a’ea: . (C) aea pSg
1 \v\ - 1 Joo f 1S

Figure 7.10 One-sided F-test for the null hypothesis, Ho. (a) Critical f value; (b) datistically
significant result; (c) not satistically significant result.

Coefficient of Determination and Correlation Coefficient

We hear alot about the correlation coefficient, p, but it’s actually fairly useless. However, its square
(%) isthe coefficient of determination, and is much more meaningful: it tells us the fraction of measured
variation “explained” by a straight-line fit to the predictor f(x). This is sometimes useful as a measure of
the effectiveness of themode. p?isaparticular use of the linear regression we have already studied.

First consider a (possibly infinite) population of (x, y) pairs. Typically, x is an independent variable,
and y is a measured dependent variable. (We mention a dightly different use for p? a the end.) We often
think of the fit function as f1(x) = x (which we use as our example), but aswith all linear regression, the fit-
function is arbitrary. Recall the sum-of-squares definitions of SST, SSA, and SSE (7.11) We define the
coefficient of determination in linear-fit terms, as the fraction of SST that is determined by the best-fit
mode. Thisisalso theratio of population variances of aleast-squaresfit:

2 SSA Var(ymod) .
=——=—-"""2- where X) =h, + b X opulation) .
P ST vay) Ymod (X) =bp +1y (pop )
Note that for the variance of the straight line yoq to be defined, the domain of x must be finite, i.e. x must
have finite lower and upper bounds. For experimental data, this requirement is necessarily satisfied.

Now consider a sample of n (X, y) pairs. It is a straightforward application of our linear regression
principles to estimate p°. We call the estimate the sample coefficient of deter mination, r? and define it
analogously to the population parameter:
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r2==22 (sample coefficient of determination) [Myers1986 2.20 p28]

n n
where  SA="(Yiea -¥)" SST=D (v -¥)
i=1 i=1

Note that the number of fit parametersisp = 2 (bp and b;). Therefore SSA has p — 1 = 1 degree of freedom
(dof), and SST has n— 1 dof.

[The sample correlation coefficient is just r (with asign given bel ow):

|r|z\/r725\/$A/$T (sample correlation coefficient) .

For multiple regression (i.e., with multiple “predictors”, where p > 3 but one is the constant bg), we define r
aways> 0. In the case of single regression to one predictor (call itx, p = 2 but still oneisthe constant bo), r > 0if
y increases with the predictor x, and r < 0if y decreases with increasing x.]

For smplicity, we start with a sample where X=y=0. At the end, we easily extend the result to the

general case where either or both averages are nonzero. If X = 0, then f; is orthogonal to the constant by,
and we can find b, by a simple correlation, including normalization of f; (see linear regression, earlier):

2 00y D%y, a0s) ()

_i=1 _i=1
bl_ n
=1

n
2

n = 2
RIS

i i=1

With b, now known, we can compute SSA (recalling that Y =y, =0 for now):
Xy

$A=i:()’mod,i—7)2=i(blxi)2=blzzn:xi2=(_2>J naxz (XY>2 _

i i i=1 Oy

I
=]

2

noy

SSTis with y =0:

n
SST=)"y?=no,’.
i=1

Then:

() 2%

2_SA_ n(xy)zlaxz = <Xy>2 = r= = :

SST o> 0,207 e} \/[ n n
X2 {1y
i1

r

i=1
Since y was known exactly, and not estimated from the sample, SST has n dof.

To generalize to nonzero X and ¥, we note that we can transform x — x—X,andy —> y—y. These

are smple shifts in (x, y) position, and have no effect on the fit line dope or the residuals. These new
random variables are zero-mean, so our smplified derivation applies, with one small change y is

estimated from the sample, so that removes 1 dof from SST: SST hasn— 1 dof. Then:
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Note that another common notation is;
2 n
> SA Sy _ _ 2 1 2 o
= —= h = — e y = = — —_ y | .
r where S <(x X)(y y)) Sy =0y ”—1i:1(x X)", Sy similar

Distribution of r% Similarly to what we have seen with testing other fit parameters, to test the
hypothesis that r? > 0, we first consider the distribution of r? in pure noise. For pure zero-mean gaussian
noise, r? follows a beta distribution with 1 and n-1 degrees of freedom (dof) [ref ?7]. We can use the usual
one-sided test at the « significance threshold: if

Pag =1 Cllfpea (rz) > critical _value[beta(L,n—1);a] (gaussian) , (7.15)

then we reject the null hypothesis Ho, and accept that r? is probably > 0, at the psq level of significance.

However:

The beta distribution is difficult to use, Since it crams up near 1, and many computer
implementations are unstable in the critical region where we need it most. Instead, we can use an
equivalent F test, which is easy to interpret, and numerically stable.

Again applying our results from linear regression, we recall that:

SST = SSA+ SSE = fzﬁzLepln_l_
SSE 1-p
Then for purenoise, f~ 1. If f >> 1, then r? is probably > 0, with significance given by the standard 1-sided
F test (a is our threshold for rejecting Ho):

Psg =1-cdf (f)> critical _value[ Fl’n_l;aJ .

Note that the significance psq here is identical to the significance from the beta function (7.15), but using
the F digribution is usually an easier way to compute it.

Alternative interpretation of x and y: There is another way that p? can be used, depending on the
nature of your data. Instead of x being an independent variable and y being corresponding measured
values, it may be that both x and y are RVs, with some interdependence. Then, much like y is a

population parameter of a single random variabley, p?isapopulation parameter of two dependent random
variables, x and y, and their joint density function. Either way, we define the coefficient of determination in
linear-fit terms, as a ratio of population variances of a least-squares fit of y to x. (We ignore here the
question of the dof in ,2.)

Uncertainty Weighted Data

When taking data, our measurements often have varying uncertainty: some measurements are “better”
than others. We can till find an average, but what is the best average, and what is its uncertainty? These
questions extend to almost all of the statistics we’ve covered so far: sample average and variance, fitting,
etc. In generd, if you have a set of estimates of a parameter, but each estimate has a different uncertainty,
how do you combine the estimates for the most reliable estimate of the parameter? Intuitively, estimates
with smaller uncertainty should be given more weight than estimates with larger uncertainty. But exactly
how much?
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Each topic in this section assumes you thoroughly understand the unweighted case before delving into
the weighted case.

Throughout this section, we consider data triples of the form (x;, y;, u), where x are the independent
variables, y; arethe measured variables, and u; are the 1o uncertainties of each measurement. We define the
uncertainty as variations that cannot be modeled in detail, though their PDF or other statistics may be
known.

Formulas with uncertainties are not simply the unweighted formulas
with weights thrown into the “obvious” places.

Examples of the failure of the “obvious” adjustments to formulas for uncertainty-weighted data are the
unbiased estimate of a population ¢° from a sample (detailed below), and the Lomb-Scargle detection
parameter.

Be Sure of Your Uncertainty

We must carefully define what we mean by “uncertainty” u. Figure 7.11 depicts a typical
measurement, with two separate sources of noise externa (Ueq), and instrumental (Uin,g). The mode
experiment could be an astronomical one, spread over millions of light-years, or it could be a table top
experiment. The externa noise might be background radiation, CMB, thermal noise, etc. The insgrument
noise is the inevitable variation in any measurement system. One can often calibrate the instrument, and
determine U,¢. SOmMEtimes, one can measure U, as well. However, for purposes of this chapter, we define
our uncertainty y; as

U = all of the noise outside of the desired signal, S(t).

Our results depend on this.

signal, Instrument
s, -
—Z~ —, SO+ (1) + Ugy(t)
souree external noise, Uge(1) Uing(t) + um(xts
Uy (1)

Figure 7.11 A typical measurement includes two sources of noise.

Average of Uncertainty Weighted Data

We give the formula for the uncertainty-weighted average of a sample, and the uncertainty of that
average. Consider a sample of n uncertainty weighted measurements, say (t;, yi, W), where t; istime, y; is
the measurement, and u; is the 1o uncertainty in y;. How should we best estimate the population average
from this sample? If we assume the estimator is a weighted average (as opposed to RMS or something
else), we now show that we should weight each y; by u 2. The genera formulafor aweighted averageis:

n
> wy,
i=1

W

y= (7.16)

.MJ mn

I
=

The variance (over an ensemble of samples) of this weighted average, where the weights are constants, is
(recall that uncorrelated variances add):

n

ZVWZUiZ

va(y)=-=—.
2
i=1
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Note that because of the normalization factor in the denominator, both y and its variance are independent

of any multiplicative constant in the weights (scale invariance): e.g., doubling all the weights has no effect
on ether. However, we want to choose a set of weights to give y the minimum variance possible.

Therefore the derivative of the above variance with respect to any weight, w, is zero. Using the quotient
rule for derivatives:

S e

ﬁvar(V)z(iﬂ i i 0 [dUV:VdU —Udvj
2

OW¢ B v
Bon

Since the weights are scale invariant, the only dependence that mattersis that wi o uc 2. Therefore, we take
the smplest form, and define:

VVk=

W= ui‘z (raw weights) .

For aleast-squares estimate of the popul ation average, we weight each measurement
by the inverse of the uncertainty squared (inverse of the measurement variance).

As expected, large uncertainty points are weighted less than small uncertainty points. Our derivation
applies to any measurement error distribution; in particular, errors need not be gaussian. The least-squares
weighted average is well-known [Myers 1986 pl171t]. [Note that we have not proved that a weighted
average is necessarily the optimum form for an average, but it is. (I suspect this can be proved with
calculus of variations, but I’ve never seen it done.)]

Given these optimum weights, we can now write the uncertainty of y more succinctly. For
convenience, we define:

n n n
W=>u? V=) w (anormdization factor), Vo= w?,
= = =

Note that W is defined to be independent of weight scaling, V; scales with the weights, and V, scales with
the square of theweights. Then from eg. (7.17), thevariance of V¥ is

var(y):i— Use uizzwg‘l: var(y)=i=l M1

==, (7.18)

This variance must be scale invariant, but V; scales. We chose a scale when we used u?2 = w, for which
V. =W. Wisscdeinvariant, therefore the scale invariant result is:

Vaf(7)=%. and U(V)zdev(y)z,/var(y)):ﬁ_

| The weights, W, as we have defined them, have units of [measurement] 2.
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Note that the weighted uncertainty of y reduces to the well-known unweighted uncertainty when al the
uncertainties are equal, say u:

-1
1 . 2 u? _ u
= —= = — U =—.
a(y)=y (Z;,u ] S = Uo-
Variance and Standard Deviation of Uncertainty Weighted Data

Handy numerical identity: When computing unweighted standard deviations, we simplify the
calculation using the handy identity:

=1 |_1 i=1

What isthe equivalent identity for weighted sums of squared deviations? We deriveit here:

i

n n
w (% -Y)° =Y w (% -2%7+v?) Use D wy; =\iy
i=1 i=1

= > Wy - My +viy? (7.19)

=D WP -VYE o D wy - (Zwy.) :

We note a genera pattern that in going from an unweighted formula to the equivalent weighted formula:
the number n is often replaced by the number V;, and al the summationsinclude the weights.

Weighted sample variance: We now find an unbiased weighted sample variance; unbiased means
that over many samples (sets of individua values), the sample variance averages to the population variance.
In other words, it isan unbiased estimate of the population variance. Wefirst date the result:

ivw(yi—

SZ _i=1
v, -V, 1V,

We prove below that thisis an unbiased estimator.

Many references give incorrect formulas for the weighted sample variance;
in particular, itis not just (1/V1)ZW| (y; —7)2 :

Because the weights are arbitrary, s° does not exactly follow a scaled 4? distribution. However, if the
uncertainties are not too disparate, we can approximate S as beng 4 with
(n-1) dof [ref?7.

For computer code, we often use the weighted sum-of-squared deviations identity (7.19) to simplify
the cal culation:

2 n 2
va i - Zwy. [vayi] N VlZW.yiz—{ZW.yi}
i i=1 i
S = = or

V1 V2 IV Vi -V /vy V2—V2

We now prove that over many sample sets, the statistic ° averages to the true population 6°. (We use
our stetigtical algebra) Without loss of generdity, we take the population average to be zero, because we
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can always shift a random variable by a constant amount to make its (weighted) average zero, without
affecting itsvariance. Then the population variance becomes:

o? =(¥2)~(Y)* > o?=(v?).

We gart by guessing (as we did for unweighted data) that the weighted average squared-deviation is an
estimate for ¢°. For a single given sample, the smple weighted average of the squared-deviations from y

is(again usng (7.19)):

n
\2
ZV"l(Yi_y) 2 _\ o2 2
1

q°= X7 Vi

Is this unbiased? To see, we average over the ensemble of all possible sample sets (using the same
weights). |.e, theweights, and therefore V; and V,, are constant over the ensemble average. The first term
in (7.20) averagesto:

n

n
DowyE D w
i=1

b

The second term in (7.20) averages to:

BTl )

i#]

Recall that the covariance, or equivalently the correlation coefficient, between any two independent random
variablesiszero. Then thelast termis proportional to <y;y;>, which is zero for the independent values y;
andy;. Thus:

<72>=\%V2<Y2>=\\//—12202 = <q2>=62—%62={ —\\//TZZJGZ.

Finally, the unbiased estimate of +* smply divides out the prefactor:

) 2o
S N _=m
<S>_1—v2/(v12) RO VAR VA VR (720

as above. Note that we have shown that & is unbiased, but we have not shown that §* is the |east-squares
estimator, nor that it isthe best (minimum variance) unbiased estimator. But it is[ref?7).

Also, as dways, the sample standard deviation sE\/;z is biased, because the sguare root of an
average is not the average of the squareroots. Since we are concerned most often with biasin the variance,
and rarely with bias in the standard deviation, we don’t bother looking for an unbiased estimator for o, the
population standard deviation.

Distributed of weighted s> Since & derives from a weighted sum of squares, it is not 2 distributed,
and therefore we cannot associate any degrees of freedom with it. However, for large n, and not too
disparate uncertainties u, we can approximate the weighted s° as having a %1 distribution (like the
unweighted s° does).
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Normalized weights
Some references normalize the weights so that they sum to 1, in which case they are dimensionless:
n -2
_ 2 U . . . .
W= z U, and W= W (normalized, dimensionless weights) .

This makes V; = 1 (dimensionless), and therefore V; does not appear in any formulas. (V, mugt still be
computed from the normalized weights.) Both normalizations are found in the literature, so it is helpful to
be able to switch between the two.

As an example of how formulas are changed, consider a chi-squared goodness-of-fit parameter. Its
formis, in both raw and normalized weights:

n n
() 22=3W(Y~Yrosi) =  22=WI W (Y~ Ymoq;)  (normalized).
i=1 i=1

Other similar modifications appear in other formulas. In generd, we can say:

eraw - V\Nv,”orm, Vi W, Vzraw - WZVZ”O”", and
aw raw
V.
WInorm N \Mr . W _>Vl' Vznorm N 2 >
Vi \A

We use the first set of transforms to take formulas from raw to normalized, and the second set of transforms
to take formulas from normalized to raw. As another example, we transform the raw formula for &, eq.
(7.21), to normalized:

(v -y)° W (% -9)° D w(v-9)
(raw) =1L _, 2-_ I = (normalized) .

V; -V, 1V, W -WA/, /W 1-V,

To go back (from the normalized s to raw), we take W — V; (if Wwere there), w — Wi/V, and Vo—Vao/ V2.

For now, the raw, dimensonful weights give us a handy check of units for our formulas, so we
continue to use them in most places.

Numerically Convenient Weights

Itis often convenient to perform preliminary cal culations by ignoring the measurement uncertainties u,
and usng unweighted formulas. We might even do such estimates mentally. Later, more accurate
calcul ations may be done which include the uncertainties. It is often convenient to compare the preliminary
unweighted values with the weighted values, especially for intermediate steps in the analysis, e.g. during
debugging of analysis code. However, unnormalized weights, w. = u, %, have arbitrary magnitudes that lead
to intermediate values with no simple interpretation, and that are not directly comparable to the unweighted
estimates. Therefore, it is often convenient to scale the weights so that intermediate results have the same
scale as unweighted results. The unweighted case is equivalent to all weights being 1, with asum of n. We
can scale our uncertainty weights to the same sum, i.e. n, or equivaently, we scale our weights to an
average of 1:

n n
D 1=n (unweighted) = (weighted) > w =n and therefore w =Vﬂvui—2.
i=1 i=1

With this weight scaling, “quick and dirty” calculations are easily compared to more accurate fully-
weighted intermediate (debug) resullts.
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Transformation to Equivalent Homoskedastic Measurements

We expect that the homoskedastic case (all measurements have the same uncertainty, o) is simpler, and
possibly more powerful than the heteroskedastic case (each measurement has its own uncertainty, u).
Furthermore, many computer regression libraries cannot handle heteroskedastic data. Fortunately, for the
purpose of linear regression, there is a ample transformation from heteroskedastic measurements to an
equivalent set of homoskedastic measurements. This not only provides theoretical insight, but is very
useful in practice: it allows us to use many (but not all) of the homoskedastic libraries by transforming to
the equivalent homoskedastic measurements, and operating on the transformed data.

To perform the transformation, we choose an arbitrary uncertainty to act as our new, equivalent
homoskedastic uncertainty o. Asa convenient choice, we might choose the smallest of all the measurement
uncertainties Unin to be our equivalent homaoskedastic uncertainty o, or perhapsthe RMS(u;). (Recall that u;
is defined as all of the measurement error, both internal and externa.) Then we define a new set of
equivalent “measurements” (X, ¥i, U) — (X’j, ¥’i, o) according to:

. _ O K% O
yl ul yl' mi Xm ul :
We can now use al of the homoskedastic procedures and calculations for linear regression on the new,
equivalent “measurements.” Note that we have scaled both the predictors X, and the measurementsy;, by
the ratio of our chosen ¢ to the original uncertainty u;. Measurements with smaller uncertainties than o get
scaled “up” (bigger), and measurements with larger uncertainties than o get scaled “down” (smaller).

If the original noise added into each sample was independent (as we usually assume), then multiplying
they; by constants also yields independent noise samples, so the property of independent noise is preserved
in the transformation.

Figure 7.12 shows an example transformation graphically, and helps us understand why it works.
Consider 3 heteroskedastic measurements:

(1.0,05,0.1), (1.6,08,0.2), (2.0,1.0,03) (origind measurements).

We choose our worst uncertainty, 0.3, as our equivalent homoskedastic . Then our equivalent
measurements become:

(30,1503), (24,1203, (2.0,10,03) (equivaent measurements).

Figure 7.12 illustrates that an uncertainty of 0.3 at xX’; = 3.0 is equivalent to an uncertainty of 0.1 at x; = 1.0,
because the X’ point “tugs on” the slope of the line with the same contribution to ¥, the square of (Ymoq; —
yi)/u. Intermsof sums of squares, the transformation equates every term of the sum:

n 2 n 2
Yiod (6) =¥ _ Ymoa (X)) =Yi i [Ymod()(i)_yi] _ [Ymod(x'i)_ylij .
St 3

Ui O ul i1 (o)

The transformation coefficients are dimensionless, so the units of the transformed quantities are the same as
the originals. Notethat:

Theregression coefficients by, and their covariances, are unchanged by the transformation to
equivalent homoskedastic measurements, but the model values Y’ mog,i = Ymod(X’i) change
because the predictors x’; are transformed from the origina x;.

Equivalently, the predictions of the transformed modd are different than the predictions of the original
model. The uncertainties in the b, are given by the standard homoskedastic formulas with ¢ as the
measurement uncertainties, and the covariance matrix var(b) is also preserved by the transformation..
These considerations show that SST, SSA, and SSE are not preserved in the transformation.
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1 2 3
Figure 7.12 The mode yqq VS. the original and the equival ent homoskedastic measurements.

In matrix form, the transformation is:

o
U
T = U, , y'=Ty, X'=T x
| — | E— | I—
nxn nxp nxp
o
L Un |

The transformed data are only equivalent for the purpose of linear regression, and its associated
capabilities, such as prediction, correlation coefficients, etc.

To illugrate this, the standard sample average is a linear fit to a constant function fo(t) = 1. Therefore,
the weighted sample average is given by the unweighted average of the transformed measurements. Proof
TBS??. Note that the transformed function, f ’(t) is not constant.

In contrast, note that the heteroskedastic population variance estimate (eg. (7.21)),

n
> w(yi-y)
SZ = i=1
V, —V, 1V,

is not a linear fit. That’s why it requires this odd-looking formula, and is not given by the common
homoskedastic variance estimate, s> = Z:(yI —y)zl(n—l) , applied to the transformed data.
As another example, the standard Lomb-Scargle algorithm doesn’t work on transformed data.

Although it is essentially a simultaneous fit to a cosine and a sine, it relies on a nonlinear computation of
the orthogonalizing time offset, t. Thisfailsfor the transformed data

Orthogonality is preserved: If two predictors are orthogona w.r.t. the weights, then the transformed
predictors are aso orthogona:

n n n ] 1 n
v 2N XK X' mi 2
DX =0 = D XXy =07 " =% Y ik =0
i=1 i=1 i=1 i i i=1

0

Linear Regression with Individual Uncertainties

We have seen that for data with constant uncertainties, wefit it to a model using the criterion of least-
squared residual. I instead we have individua uncertainties (y;, u;), we commonly use least-chi-squared
residuals. That is, wefit themodel coefficients (by) to minimize:
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n
8i2

2
i—1 Y

SSE=y2%= where & =residua = Y — Yieq, -

For gaussian residuals, least-chi-squared fits yields maximum likelihood fit coefficients. For non-gaussian
residuals, least-chi-squared is as good a criterion as any.

However, there are many statistical formulas that need updating for uncertainty-weighted data. Often,
we need an exact closed-form formula for a weighted-data statistical parameter. For example, computing
an iterative approximate fit to data can be prohibitively slow, but a closed-form formula may be acceptable
(e.g., periodgrams). Finding such exact formulasin the literatureis surprisingly hard.

Even though we’ve described the transformation to linear equivalent measurements, it is often
more convenient to compute results directly from the origina measurements and uncertainties.

We discuss and analyze some direct welghted-regression computations here. As in the earlier unweighted
analysis, we clearly identify the scope of applicability for each formula. And as always, understanding the
methods of anayzing and deriving these datistics is essential to developing your own methods for
processing new situations.

This section assumes a thorough understanding of the smilar unweighted sections. Many of our
derivations follow the unweighted ones, but may be briefer here.

The first step of linear regression with individual uncertainties is summarized in [Bev pl117-118],
oddly in the chapter “Least-Squares Fit to a Polynomial,” even though it applies to all fit functions (not just
polynomials). We summarize here theresults. The linear model is the same as the unweighted case: given
p functions we wish to fit to n data points, the simplified moddl is:

p
Ymod (X) = z By Fn (%) =1y f1.(%) + b £ (X) +..b, T, (X) [Bev 7.3p117] .

m=1

Each measurement is a triple of independent variable, dependent variable, and measurement uncertainty,
(%, Vi, u). As before, the predictors do not have to be functions of an independent variable (and in
ANOVA, they are not); we use such functions only to simplify the presentation. We find the by by
minimizing the y? parameter:

2
p
i [y(m—zbmfm(mJ
s (y(%) - Ymod(xl)) Z m=1 [Bev 7.5p117] .

2
i=1 i i=1 U

For each k from 1 to p, we set the partial derivative, 9y/ob, = 0, to get a set of simultaneous linear
equationsin the by

p
. [yi—mefm(mJ(—fk(m)
=0=22 m-1 - , k=12, ..p.

i—1 Ui

Dividing out the -2, and smplifying:

p
) [yi—mefm(mek(m
m=1

0=>" L , k=12, ..p.

i=1 Ui

Moving the constants to the LHS, we get a linear system of equationsin the sought-after by:
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zyi fk(X|) zzbmfm()ﬂ)f (x) = Z%Z m(x‘)f (%) k=12, ..p.

i-1 u, i—im=1 Ui m=1 -1 i

Linear Regression With Uncertainties and the Sum-of-Squares Identity

As with unweighted data, the weighted sum-of-squares (SSQ) identity is the crucial underpinning of
weighted linear regression (aka “generalized linear regression”). For simplicity, we start with fitting to a
single function, called f(x) (for generality). Before considering uncertainties, recall our unweighted sum-
of-squares identity in vector form:

(raw) SST = SSA+SSE: y2 =ym0d2+32 where g=residua vector, y2 =yey, €t

Ymod = Bify +e.

Recall that the dot products are real numbers. Also, by construction, ¢ is orthogonal to fy, &-fx = 0, and the
SSQ identity hinges on this.

(7.22)

We derive the weighted theory ailmost identically to the unweighted case. All of our vectors remain
the same as before, and we need only redefine our dot product. The weighted dot-product weights each
term in the sum by w::

n
a.bEZ\NIaih’ \NI OCui_z. az aea .

Such generadized inner products are common in mathematics and science. They retain al the familiar,
useful properties; in particular, they are hilinear, and in this case, commutative. Then the weighted SSQ
identity has exactly the same form as the unwei ghted case:

(raw) SST=SSA+SSE: y2=y, 4 >+&2. (7.23)

Note that SSE is the »* parameter we minimize when fitting. Written explicitly as summations, the
weighted SSQ identity is:

(raw) > wyiZ =D w (b fie ()2 + D W (v —by fi (%)) [Schwa 1998, eq 4 p832] .
i= i=1 i=1

SST SA SSE

If thisidentity still holds in the weighted case, then most of our previous (unweighted) work remains valid.
We now show that it does hold. We start by noting that even in the weighted case, &-fx = 0. The proof
comes from the fact that SSE isaminimum w.r.t. al the by

=%Zn:w|gl ZZWé‘l ZZWS. (% —bc fi (%))
i-1

n
0= "ws; fir(x) =efy .

i=1
Therefore, per (7.9), the weighted sum-of-sgquares identity holds.

Generalizing to p fit functions requires ssmply including a summation from 1 to p. This would make
the sum-of-squares identity a little hard to read, so we separate out the “model” functions:
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p
Ymod(x)zzbmfm(x) =

m=1
(raw) D WY =D W Yimag ()2 D W (Vi — Yimoa (%))°
i=1 i=1 i=1

Also as before, if weinclude a constant by fit parameter, then the ANOVA SSQ identity holds:

n

ANOVA: ZW' (v -v) =ZW| (ymod(><i)—7)2+sz (% ~ Ymoa ().

n
i=1 i=1 i=1
Recall that y isthe weighted average (7.16).

Distribution of Weighted Orthogonal Fit Coefficients in Pure Noise

As in the unweighted case, in hopes of hypothesis testing, we need the distribution of the by in pure
noise (no signal). Here again, if afit function is orthogonal (w.r.t the weights) to all other fit functions,
then its (least-chi-squared) fit coefficient is given by asmple correlation. 1.e, for agiven k:

n
zW.fk(ti)Yi
_hey =

2

i n '
<) w()?
i=1

For convenience, we now further restrict ourselves to a normalized (over the {t;}) fit-function, though this
imposes no real restriction, snce any function is easily normalized by a scale factor. Then:

fof; =Oforadl jzk = B

n n
DwhE)’=1 = b= whE)y - (7.24)

i=1 i=1
Now consider an ensemble of samples (sets) of noise, each with the same set of {(t;, u)}, and each

producing a random by. In other words, the by are RVs over the set of possible samples. We now find
var(by) and <b,>. Recall that the variance of a sum (of uncorrelated RVs) is the sum of the variances, and

the variance of k times an RV = k?var(RV). All the values of w; and f,(t;) are constants, and var(y,) = u? =
w%; therefore taking the variance of (7.12):

var() = > w i) var(y) = > w fie () =1. (7.25)
i=1 -1 i=1

W

This is different than the unweighted case, because the noise variance ¢* has been incorporated into the
weights, and therefore into the normalization of the f,.

In pure noise, for anormalized fit-function orthogonal to all others, using raw weights, the
variance of its least-chi-squared linear fit coefficient is 1, regardless of the noise PDF.

We now find the average <b,>. Taking the ensemble average of (7.12):

<bk>=@vwfkm>]<zj

Since the sum has no smple interpretation, this equation ismost useful for showing that if the noiseiszero-
mean, then by is also zero-mean: <b> = 0. However, if the summation happens to be zero, then even for
non-zero mean noise, we again have <b> = 0.
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Furthermore, any weighted sum of gaussian RVs is a gaussan; therefore, if the y; are gaussian (zero-
mean or not), then by isalso gaussian.

Non-Correlation of Weighted Orthogonal Fit Coefficients in Pure Noise

We now consider the correlation between two fit coefficients, b, and by, (again, over multiple samples
(sets) of noise), when the fit-functions f, and f,, are orthogonal to each other, and to all other fit-functions.
(From the homoskedastic equivalent measurements, we already know that by and by, are uncorrelated.
However, for completeness, we now show this fact directly from the weighted data.) For convenience, we
take f, and f, to be normalized: f,& = f,> = 1 (recall that our dot-products are weighted).

As in the unweighted case, we derive the covariance of by and by, from the hilinearity of the cov( )
operator. We start with the formula for afit-coefficient of a normalized fit-function that is orthogonal to all
others, (7.12), and use our algebra of statistics:

cov(by, by = OV (fycey,fmey) = cov| D W fi(6) i D W fn(X))Yj |.

i=1 j=1
Again, all thew:, w, fi, and f, are constants, so they can be pulled out of the cov( ) operator:
n n
COV(By,bm) = D > Wt fy ()W iy O ) cov( 1, ¥ ) -
i=1j=1

Asaways, they; are independent, and therefore uncorrelated. Hence, wheni #j, cov(y;, y;) = 0, so only the
i = terms survive, and the double sum collapses to a single sum:

coV(by,bm) = D" W2 e (%) frn(%) COV(Y;, 1) - (7.26)
i=1 Wl—l

Now cov(y;, i) = var(y,) = u®=w*, so:

COV(D,Bm) = D W T (%) i () =fiofy = 0.

i=1

Thisistruefor arbitrary distributions of y;, even if they; are nonzero-mean.

In pure noise of arbitrary distribution, even for weighted fit-functions orthogona to all others,
the{by} are uncorrelated.

The Weighted Total Sum-of-Squares (SST) in Pure Noise
The weighted total sum of squaresis.

n
raw: SST=Y'Y=ZWEYi2
=
2 X 2 AN
ANOVA: SST=(y-y) =D w(%-y)",  where 75\72"“4'
i-1 Lia

For gaussian noise, in contrast to the unweighted case, the weighted SST (taken over an ensemble of
samples) isnot a y* RV. It isaweighted sum of scaled y%, which has no generd PDF. However, we can
often approximateits distribution as * with n dof (raw), or n— 1 dof (ANOVA), especially when nislarge.

The Weighted Model Sum-of-Squares (SSA) in Pure Noise

Recall that the model can be thought of as a vector, Ymea = {Ymeai}, and the basis functions for that
vector arethe fit-functions evaluated at the sample points, f, = {f(t)}. Then:
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p
Ymod = zbmfm :

m=1

The ., may be oblique (non-orthogonal), and of arbitrary normalization. However, as in the unweighted
case, there exists an orthonormal basisin which y,q may be written (just like eq. (7.13)):

p
Ymod = ZCmgm where g, = orthonormal basis, c,, = coefficientsin theg basis .
m=1

We’ve shown that since the gn are orthonormal, the ¢, are uncorrelated, with var(c,) = 1 (using raw
weights). Then (recall that the dot-products are wei ghted):

p 2 p P
$AEymodzz[zcmng =zzcmgm'qg' '

m=1 =1 m=1

By orthogonality, only termswhere | = mare non-zero, so the double sum collapsesto a single sum where |
=m. Thegnarenormalized, so:

n p p
ymod2 = Z(Cmgm)z = z sz gm2 = zcmz : (7.27)
~

L1
i m=1 1 m=1

Therefore, Ymod is the sum of p uncorrelated RVs (the ¢,). We find SSA =y using the general
formulafor the average of the square of an RV (7.2):

<cm2> = (cm>2 +var(c,) = <cm)2 +1=> SSA= <ymod2> = {i(cm)2]+ p.

m=1

This is true for any distribution of noise, even non-zero-mean. In general, there is no smple formula for
var (Yimod)-

If the noise is zero-mean, then each <c,> = 0, and the above reduces to:
<ymod2> =p  (zero-meannoise).

If the noise is zero-mean gaussian, then the ¢, are zero-mean uncorrelated joint-gaussian RVs. Thisis
awell-known condition for independence [ref 77|, so the ¢, are independent, gaussian, with variance 1 (see
(7.25)). Then (7.27) tels usthat, by definition, yme” isa chi-squared RV with p degrees of freedom:

(raw) Ymog” = SSAe 73 (zero-mean gaussian noise) .

We devel oped thisresult using the properties of the orthonormal basis gy, but our model ymeg, and therefore
Yimod>» € identical in any basis. Therefore, the result holds for any p fit-functions that span the same model
space, even if they are oblique (i.e. overlapping) and not normalized.

The Residual Sum-of-Squares (SSE) in Pure Noise

For zero-mean gaussian noise, in the weighted case, we’ve shown that SSA is 4 distributed, but SST is
not. Therefore, SSE is not, either. However, for large n, or for measurement uncertainties that are fairly
consistent across the data set, SST and SSE are approximately »? distributed, with the usual (i.e. equal
uncertainty case) degrees of freedom assigned:

DY) =2 (B ) -9) + 2w (% ~Bcf(x)” (zero-mean gaussian)
II:lSSI'dofzn—ll II:l SSAdof =p-1 I II:l SSE dof *n—p I
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Hypothesis Testing a Model in Linear Regression with Uncertainties

The approximation that SST and SSE are almost y° distributed allows the usual F-test as an
approximate test for detection of a signal, i.e. testing whether the fit actually matches the presence of the
model in the data. However, the F critical values will be approximate, and therefore so will the p-value. In
many cases, numerical Smulations (shuffle simulations) can provide more reliable critical values than the
theoretical gaussian F critical values, for 2 reasons. even the theoretical F-values are only approximate (as
described), and because the noise itsdlf is often significantly non-gaussian.

We recommend numerical simulations (e.g., shuffling) to determine critical values,
instead of the approximate (and often inapplicable) gaussian theory.

Fitting To Histograms

Data analysis often requires fitting a function to binned data, that is, fitting a predicted probability
distribution to a histogram of measured values. While such fitting is very commonly done, it is much less
commonly understood. There are important subtleties often overlooked. This section assumes you are
familiar with the binomial distribution, the y* “goodness of fit” parameter (described earlier), and some
basic statistics.

The general method for fitting amodd to ahistogram of dataisthis

e  Start with n data points (measurements), and a parameterized model for the PDF of those data.

¢ Binthedatainto a histogram.

¢ Find the model parameters which “best fit” the data histogram

For example, a gaussian distribution is a 2-parameter model; the parameters are the average, 1, and
standard deviation, o. |f we believe our data should follow a gaussian digtribution, and we want to know
the « and o of that distribution, we might bin the data into a histogram, and fit the gaussian PDF to it
(Figure 7.13):

model PDF

/
- 7 e\

1fiterror

measured bin count, ¢
\TK— predicted bin count, model;

l':h easurerment

Ciny 2

u A le— X

—F]

Figure 7.13 Sample histogram with a 2-parameter model PDF (1« and ¢). The fit modd is
gaussian in thisexample, but could be any pdf with any parameters.

Of course, redligically, there are better ways to estimate ¢ and ¢ for a gaussian distribution, but the
exampleillustrates the point of fitting to a histogram.

We must define “best fit.” Usually, we use the y* (chi-squared) “goodness of fit” parameter as the
figure of merit (FOM). The smaller /% the better the fit. Fitting to a histogram is a special case of general
2 fitting. Therefore, we need to know two things for each bin: (1) the predicted (model) count, and (2) the
uncertainty in the measured count. We find these thingsin the next section.

(Thisgaussian fitisa smplified example. In reality, if we think the digtribution is gaussian, we would
compute the sample average and standard deviation directly, using the sandard formulas. More on this
later. In genera, the modd is more complicated, and thereis no simple formulato compute the parameters.
For now, we use this as an example because it isa familiar model to many.)
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Chi-squared For Histograms

We now develop the ? figure of merit for fitting to ahistogram. A sampleisa set of n measurements
(data points). In principle, we could take many samples of data. For each sample, thereis one histogram,
i.e, thereis an infinite population of samples, each with its own histogram. But we have only one sample.
The question is, how well does our one histogram represent the population of samples, and therefore, the
population of data measurements.

To develop the » figure of merit for the fit, we must understand the statistics of a single histogram bin,
from the population of all histograms that we might have produced from different sasmples. The key point
is this: given a sample of n data points, and a particular histogram bin numbered i, each data point in the
sampleis either in the bin (with probability p), or it’s not (with probability (1 - p) ). Therefore, the count
in the i™ histogram hin is binomially distributed, with some probability p;, and n “trials.” (See standard
references on the binomial distribution if thisisnot clear.) Furthermore, thisistrue of every histogram bin:

The number of countsin each histogram bin is abinomial random variable.
Each bin hasits own probability, p;, but all bins share the same number of trials, n.

Recall that a binomia distribution is a discrete distribution, i.e. it gives the probability of finding
values of a whole-number random variable; in this casg, it gives the probability for finding a given number
of countsin agiven histogram bin. The binomial distribution has two parameters.

p isthe probability of a given data point being in the bin

n is the number of data points in the sample, and therefore the number of “trials” in the
binomial distribution.

Recall that the binomial distribution has average, c-bar, and variance, ¢° given by:
c=np, o’ =np(l- p) (binomial distribution)

For a large number of histogram bins, Ny, the probability of being in a given bin is of order p ~
1/Npins, Which issmall. Therefore, we approximate

c’~np())=C (N, >>1 = p<<])

bins

We find c-bar for a bin from the pdf modd: typically, we assume the bins are narrow, and the
probability of beingin abinisjust

Pr(beingin bini) = p ~ pdf, (x) Ax
Then the model average (“expected”) count is Pr(being in bin) times the number of data points, n:
model; = npdf, (x) Ax (narrow bins)
where x =bincenter, Ax = bin width
pdf, (x ) = model pdf at bin center

. 1 1 x—uY
For example, for a gaussian histogram: df, (u,0; X) = exp| ——
p 9 g pdf, (u )G@ p[z(an
However, one can use any more sophisticated method to properly integrate the PDF to find e for each
bin.

We now know the two things we need for evaluating a genera »* goodness-of-fit parameter: for each
histogram bin, we know (1) the model average count, model;, and (2) the variance of the measured count,
which is aso approximately model,. We now compute * for the mode PDF (given a set of model
parameters) in the usual way:
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Nbins (C — model. )2 . . .
z?=Y ~———1  where ¢ =themeasured countin thei" bin
Y model,

model, = the mode! average count in thei™ bin

If your model predicts a count of zero (model; = O for some i), then % blows up. Thisis addressed below.
Reducing the Effect of Noise

To find the best-fit parameters, we take our given sample histogram, and try different values of the
pdf(x) parameters (in this example, x and o) to find the combination which produces the minimum 4%

Notice that the low count bins carry more weight than the higher count bins: 5* weights the terms by
1/modd;. Thisrevedlsthe first common misunderstanding:

| A fit to ahistogram is driven by the tails, not by the central peak. Thisis usually bad. |

Tails are often the worst part of the model (theory), and often the most contaminated (percentage-wise)
by noise: background levels, crosstalk, etc. Three methods help reduce these problems:

e limiting the weight of low-count bins
e truncating the histogram
e rebinning

Limiting the weight: The tails of the mode distribution are often less than 1, and approach zero.
This gives them extremely high weights compared to other bins. Since the model is probably inadequate at
these low bin counts (due to noise, etc.), one can limit the denominator in the 5* sum to at least 1; this also
avoids division-by-zero:

Nhins _ ) 2
Zzzzl:w where diE{

model, if model, >1

1 otherwise

Thisisan ad-hoc approach, and the minimum weight can be anything; it doesn’t have to be 1. Notice,
though, that this modified »* value is till a monotonic function of the model parameters, which is critical
for stable parameter fits (it avoids local minima, see “Practical Considerations” below).

Truncating the histogram: Alternatively, we can truncate the histogram on the left and right sides to
those bins with a reasonable number of counts, substantidly above the noise (below left). [Bev pl10]
recommends a minim bin count of 10, based on a desire for gaussian errors. I don’t think that matters
much. In truth, the minimum count compl etely depends on the noise level.

model PDF model PDF

/ /
N N

AX| AXg| AXy| AXg

Avoiding noisy tails by (left) truncating the histogram, or (right) rebinning.

Truncation requires renormalizing: we normalize the model within the truncated limits to the data
count within those same limits:

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 142 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

f f f

> model; = > n.,.pdf, (%) Ax =D'c where s, f are the start and final bins toinclude

i
i=s i=s i=s

f
2.6
i=s

> pdf, (%) Ax

i=s

= n

norm

Y ou might think that we should use the model, not the data histogram, to choose our truncation limits.
After al, why should we let sampling noise affect our choice of bins? This approach falls miserably,
however, because our bin choices change as we vary our parameters in the hunt for the optimum 42
Changing which bins are included in the FOM causes unphysical steps in »* as we vary our parameters,
making many local minima.  This makes the fit unstable, and generally unusable. For stability: truncate
your histogram based on the data, and keep it fixed during the parameter search.

Rebinning: Alternatively, bins don’t have to be of uniform width [Bev p175], so combining adjacent
bins into a single, wider bin with higher count can help improve signal-to-noise ratio (SNR) in that bin
(above right). Note that when rebinning, we evaluate the theoretical count as the sum of the origina
(narrow) bin theoretical counts. In the example of the diagram above right, the theoretical and measured
counts for the new (wider) bin 1 are

model, =1.2+3.9+10.8=15.9 and c,=3+3+8=14

Other Histogram Fit Considerations

Slightly correlated bin counts: Bin counts are binomidly distributed (a measurement is either in a
bin, or it’s not). However, there is a small negative correlation between any two bins, because the fact that
a measurement lies in one bin means it doesn’t lie in any other bin. Recall that the y* parameter relies on
uncorrelated errors between bins, so a histogram dightly violates that assumption. With a moderate
number of bins (> ~15 ??), thisisusually negligible.

Overestimating the low count model: If there arealot of low-count binsin your histogram, you may
find that the fit tends to overestimate the low-count bins, and underestimate the high-count bins (diagram
below). When properly normalized, the sum of overestimates and underestimates must be zero: the sum of
bin counts equals the sum of the modd predicted counts.

under estimated

7

model PDF L,
overestimated

= —

¥’ isartificially reduced by overestimating low-count bins, and underestimating high-count bins.

But since low-count bins weigh more than high-count bins, and since an overestimated model reduces
2% (the model value model; appears in the denominator of each 4 term), the overall 4? is reduced if low-
count bins are overestimated, and high-count bins are underestimated.

This effect can only happen if your model has the freedom to “bend” in the way necessary: i.e., it can
be a little high in the low-count regions, and simultaneoudly a little low in the high-count regions. Most
realistic models have this freedom. If the model is reasonably good, this effect can cause reduced-y? to be
consistently less than 1 (which should be impossible).
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I don’t know of a simple fix for this. It helps to limit the weight of low-count bins to (say) 1, as
described above. However once again, the best approach is to minimize the number of low-count binsin
your histogram.

Noise not zero mean: for counting experiments, such as those that fill in histograms with data, all bin
counts are zero or positive. Any noise will add positive counts, and therefore noise cannot be zero-mean.
If you know the pdf of the noise, then you can put it in the model, and everythin% should work out fine.
However, if you have alot of un-modeled noise, you should see that your reduced-y“ is Sgnificantly greater
than 1, indicating a poor fit. Some people have tried playing with the denominator in the y* sum to try to
get more “accurate” fit parameters in the presence of noise, but there is little theoretical justification for
this, and it usually amounts to ad-hoc tweaking to get the answers you want.

Non-y figure of merit: One does not have to use y* as thefit figure of merit. If the mode isnot very
good, or if there are problems as mentioned above, other FOMs might work better. The maost common
alternative is probably “least-squares,” which means minimizing the sum-squared-error:

Nbins
SSE= z (G —mode; )2 (sum-squared-error) .
i1

Thisislike y* wherethe denominator in each termin the sumis aways 1.

Guidance Counselor: Practical Considerations for Computer Code to Fit
Data

Generic optimization algorithms are available off-the-shelf, e.g. [Numerical Recipes|. However, they
are sometimes simplistic, and in the rea world, often fail with arithmetic faults (overflow, underflow,
domain-error, etc). The fault (no pun intended) lies not in their algorithm, but in their failure to tell you
what you need to do to avoid such failures:

Your job isto write a bullet-proof figure-of-merit function. |

Thisisharder than it sounds, but quite do-able with proper care.

As an example, | once wrote code to fit a sinusoid (frequency, amplitude, phase) to astronomical data:
measures of a star’s brightness at irregular times. That seems pretty simple, yet it was fraught with
problems. The measurements were very noisy, which leads to lots of local minima. In some cases, the
optimizer would choose an amplitude for the sinusoid that had a higher sum-of-squares than the sum-of-
sguares of the datal  This amplitude is clearly “too big,” but it is hard to know ahead of time how big is
“too big.” Furthermore, the “too big” threshold varies with the frequency and phase parameters, so you
cannot specify ahead of time an absolute “valid range” for amplitude. Therefore, I had to provide “guiding
errors” in my figure-of-merit function to “guide” the optimizer to a reasonable fit under all conditions.

Computer code for finding the best-fit parameters is usually divided into two pieces, one piece you
buy, and one piece you have to write yourself:

e You buy a generic optimization algorithm, which varies parameters without knowledge of what
they mean, looking for the minimum figure-of-merit (FOM). For each trial set of parameters, it
calls your FOM function to compute the FOM as afunction of the current trial parameters.

e Youwritethe FOM function which computes the FOM as a function of the given parameters.

Generic optimizers usually minimize the figure-of-merit, consistent with the FOM being a “cost” or “error”
that we want reduced. (If instead, you want to maximize a FOM, return its negative to the minimizer.)

Generic optimizers know nothing about your figure-of-merit (FOM) function, or its behavior,
and your FOM usually knows nothing about the optimizer, or its algorithms.

If your optimizer alows you to specify valid ranges for parameters, and if your fit parameters have
valid ranges that are independent of each other, then you don’t need the methods here for your FOM
function. If your optimizer (like many) does not allow you to limit the range of parameters, or if your
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parameters have valid ranges that depend on each other, then you need the following methods to make a
bullet-proof FOM. In either case, this section illustrates how many seemingly simple calculations can go
wrong in unexpected ways.

A bullet-proof FOM function requires only two things:
e Proper validation of all parameters.
e A properly “bad” FOM for invalid parameters (a “guiding error”).

Guiding errors are smilar to penalty functions, but they operate outside the valid parameter space, rather
than inddeit.

A simple example: Suppose you wish to numerically find the minimum of the figure-of-merit function
below left. Suppose the physicsis such that only p > lissensible.

1
f(p)== f(p) f(p)
(p) p+ﬁ \

| RIS >
3\ i 3t 3t
2+ ) 2+ 2+ \/

T Nalidp T T
I 1 1 1 1 1 1 1 1 1 1 1

T2 3 4" 123 4" 1 2 3 4
(Left and middle) Bad figure-of-merit (FOM) functions. (Right) A bullet-proof FOM.

p

Your optimization-search agorithm will try various values of p, evaluating f(p) a each step, looking
for the minimum. Y ou might write your FOM function like this:
fom(p) = 1./p + sqrt(p)

But the search function knows nothing of p, or which values of p are valid. It may well try p = -1.
Then your function crashes with adomain-error in the sgrt( ) function. You fix it with (above middie):

float fon(p)
if(p<0.) return 4.

return 1./p + sqrt(p)

Since you know 4 is much greater than the true minimum, you hope thiswill fix the problem. You run the
code again, and now it crashes with divide-by-zero error, because the optimizer tried p = 0. Easy fix:

float fon(p)
if(p <=0.) return 4.
return 1./p + sqrt(p)

Now the optimizer crashes with an overflow error, p < —(max_float). The big flat region to the left
confuses the optimizer. |t searches negatively for a value of p that makes the FOM increase, but it never
finds one, and gets an overflow trying. Your flat valuefor p< 0 is no good. It needs to grow upward to the
|eft to provide guidance to the optimizer:

float fon(p)
if(p <=0.) return 4. + fabs(p - 1) /'l fabs() = absolute val ue

return 1./p + sqrt(p)

Now the optimizer saysthe minimum is4at p=—107°. It found the local “minimum” just to the left of
zero. Your function is dill ill-behaved. Since only p > 1 is sensble, you make yet another fix (above
right):

float fon(p)
if(p<=1.) return 4.
return 1./p + sqrt(p)

Finally, the optimizer returns the minimum FOM of 1.89 at p = 1.59. After 5 tries, you have made your
FOM function bullet-proof:
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A bullet-proof FOM has only one minimum, which it monotonically approaches from both sides,
even with invalid parameters, and it never crashes on any parameter set.

In this example, the FOM is naturally bullet-proof from the right. However, if it weren’t, the absolute
value of (p—1) on the error return value provides a V-shape which guides the optimizer into the valid
range from ether side. Such “guiding errors” are analogous to so-called penalty functions, but better,
because they take effect only for invalid parameter choices, thus leaving the valid parameter space
completely free for full optimization.

Multi-parameter FOMs. Most fit models use several parameters, p;, and the optimizer searches over
all of them iteratively to find a minimum. Your FOM function must be bullet-proof over all parameters: it
must check each parameter for validity, and must return a large (guaranteed unoptimal) result for invalid
inputs. It must also slope the function toward valid values, i.e. provide a “restoring force” to the invalid
parameterstoward the vaid region. Typically, with multiple parameters p;, one uses:

M
guiding_bad_FOM = big# + Z:|pI —valid, | where valid; = avalid vauefor p .
i-1

This guides the minimization search when any parameter is outsideits valid range.

a(p)
guiding guiding
error\\ / error
validp!
1 1
./ .

1 2 3 4

“Guiding errors” lead naturally to a valid solution, and are better than traditional penalty functions.

A final note:

The “big #” for invalid parameters may need to be much bigger than you think.

In my dissertation research, | used reduced y* as my FOM, and the true minimum FOM isnear 1. | started
with 1,000,000 as my “big #”, but it wasn’t big enough! I was fitting to histograms with nearly a thousand
counts in several bins. When the trial model bin count was small, the error was about 1,000, and the sum-
squared-error over several bins was > 1,000,000. This caused the optimizer to settle on an invalid set of
parameter values as the minimum! I had to raise “big #” to 10°.
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8 Numerical Analysis

Round-Off Error, And How to Reduce It
Floating point numbers are stored in aform of scientific notation, with a mantissa and exponent. E.g.,
1.23x 10® hasmantissa ~ m=1.23 and exponent e =45,

Computer floating point stores only a finite number of digits. ‘float’ (aka single-precision) typically stores
at least 6 digits; ‘double’ typically stores at least 15 digits. We’ll work out some examples in 6-digit
decimal scientific notation; actual floating point numbers are stored in a binary form, but the concepts
remain the same. (See “IEEE Floating Point™ in this document.)

Precision loss due to summation: Adding floating point numbers with different exponents results in
round-off error:

1.23456x 10° — 1.234 56 x 10°
+ 6.111 11 x 10° + 0.061111 1 x 10?
= 1.29567 x 10° where 0.000 001 1 of theresult islost,

because the computer can only stored 6 digits. (Similar round-off error occurs if the exponent of the result
is bigger than both of the addend exponents.) When adding many numbers of similar magnitude (as is
common in statistical cd culations), the round-off error can be quite significant:

fl oat sum = 1.23456789; /| Denonstrate precision |oss in suns
printf("%9f\n", sum; /'l show # significant digits
for(i =2; i < 10000; i++)

sum += 1. 23456789;
printf("Sumof 10,000 = % 9f\n", sum;

1. 234567881 8 significant digits
Sum of 10,000 = 12343.28 only 4 significant digits

You lose about 1 digit of accuracy for each power of 10 in n, the number of terms summed. |.e.
digit-loss~ log,, n

When summing numbers of different magnitudes, you get a better answer by adding the small numbers
first, and the larger ones later. This minimizesthe round-off error on each addition.

E.g., consider summing 1/n for 1,000,000 integers. We do it in both single- and double-precision, so
you can seethe error:

float sum= 0.;

doubl e dsum = 0. ;
/1 sumthe inverses of the first 1 mllion integers, in order
for(i =1; i <= 1000000; i++)

sum+= 1./i, dsum+= 1./i;
printf("sum 9%\ndsum 9% . Relative error = %2f %An",
sum dsum (dsum sum)/dsun);

sum 14. 357358
dsum 14.392727. Relative error = 0.002457

This was summed in the worst possible order: largest to smallest, and (in single-precision) we lose
about 5 digits of accuracy, leaving only 3 digits. Now sum in reverse (smallest to largest):

float sunb = 0. ;
doubl e dsunmb = 0. ;
for(i = 1000000; i >=1; i--)
sunb += 1./i, dsunb += 1./i;
printf(" sumb: 9% \ndsunb: % . Relative error = %6f\n",
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sunb, dsunb, (dsumb-sunb)/dsunb);
sunb:  14. 392652
dsunb: 14.392727. Relative error = 0.000005

The single-precision sum isnow good to 5 digits, losing only 1 or 2.

[In my research, | needed to fit a polynomial to 6000 data points, which involves many sums of 6000 terms,
and then solving linear equations. | needed 13 digits of accuracy, which easly fitsin double-precision (‘double’,
15-17 decima digits). However, the precision loss due to summing was over 3 digits, and my results failed.
Simply changing the sums to ‘long double’, then converting the sums back to ‘double’, and doing all other
calculations in ‘double’ solved the problem. The dominant loss was in the sums, not in solving the equations.]

Summing from smallest to largest is very important for evaluating polynomials, which are widely used
for transcendental functions. Suppose we have a 5™ order polynomial, f (t):

f(t) = ag+ ax+ a,x* +agx° + a,x* + ax°
which might suggest a computer implementation as :
f = a0 + al*t + a2*t*t + a3*t*t*t + ad*t*t*t*t + ab*t*t*t*t*t
Typically, the terms get progressively smaller with higher order. Then the above sequence is in the worst
order: biggest to smallest. (It also takes 15 multiplies.) It is more accurate (and faster) to evaluate the
polynomial as.
f = ((((adb*t + a4)*t + a3)*t + a2)*t + al)*t + a0

This form adds small terms of comparable size first, progressing to larger ones, and requires only 5
multiplies.

How To Extend Precision In Sums Without Using Higher Precision Variables

(Handy for datistical calculations): You can avoid round-off error in sums without using higher
precision variables with a simple trick. For example, let’s sum an array of n numbers:

sum = 0. ;
for(i =0; i <n; i++) sum+=a[il];

This suffers from precision loss, as described above. Thetrick isto actualy measure the round-off error of
each addition, and save that error for the next iteration:

sum = 0. ;

error = 0.; /'l the carry-in fromthe |ast add

for(i =0; 1 <n; i++)

{ newsum = sum + (a[i] + error); /'l include the lost part of prev add
diff = newsum - sum /'l what was really added
error = (a[i] + error) - diff; /'l the round-off error

sum = newsum

}

The ‘error’ variable is always small compared to the ‘sum’, because it is the round-off error. Keeping track
of it effectively doubles the number of accurate digitsin the sum, until it islost in the fina addition. Even
then, ‘error’ still tells you how far off your sum is. For all practical purposes, this eliminates any precision
loss due to sums. Let’s try summing the inverses of integers again, in the “bad” order, but with this trick:

float newsum diff, sum= 0., error = 0.;

for(i =1; i <= 1000000; i++)

{ newsum = sum+ (1./i + error);
diff = newsum - sum /'l what was really added
error = (1./i + error) - diff; /'l the round-off error

sum = newsum

printf(" sum 9% \ndsunb: 9% . Relative error = %6f, error = %g\n",
sum dsunb, (dsunb-sum)/dsunb, error);
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sum  14. 392727
dsunb: 14.392727. Relative error = -0.000000, error = -1.75335e-07

As claimed, the sum is essentially perfect.
Numerical Integration

The above method of sums is extremely valuable in numerical integration. Typically, for accurate
numerical integration, one must carefully choose an integration step size: the increment by which you
change the variable of integration. E.g., in time-step integration, it is the time step-size. If you make the
step size too big, accuracy suffers because the “rectangles” (or other approximations) under the curve don’t
follow the curve well. If you make the step size too small, accuracy suffers because you’re adding tiny
increments to large numbers, and the round-off error is large. You must “thread the needle” of step-Size,
getting it “just right” for best accuracy. This fact isindependent of the integration interpolation method:
trapezoidal, quadratic, (Runge-Kutta??).

By virtualy eliminating round-off error in the sums (using the method above), you eliminate the
lower-bound on step size. You can then choose a small step-size, and be confident your answer isright. It
might take more computer time, but integrating 5 times slower and getting the right answer isvastly better
than integrating 5 times faster and getting the wrong answer.

Sequences of Real Numbers
Suppose we want to generate the sequence 2.01, 2.02, ... 2.99, 3.00. A simple approach isthis:

real s;
for(s =2.01; s <=3.; s +=0.01)

The problem with this is round-off error: 0.01 is inexact in binary (has round-off error). This error
accumulates 100 times in the above loop, making the last value 100 times more wrong than the first. In
fact, the loop might run 101 times ingtead of 100. The fix is to use integers where possible, because they
are exact:

real s;
i nt i;
for(i = 201; i <=300; i++) s =1i/100.;

When the increment is itself a variable, note that multiplying areal by an integer incurs only a single
round-off error:

real s, base, incr;
i nt i
for(i =1; i <=nmax; i++) s = base + i*incr;

Hence, every number in the sequence has only one round-off error.

Root Finding

In generdl, aroot of afunction f(x) isavalue of x for which f(x) = 0. It isoften not possible to find the
roots anaytically, and it must be done numericaly. [TBS: binary search]

Simple Iteration Equation
Some forms of f( ) make root finding easy and fast; if you can rewrite the equation in thisform:
f(x)=0 - x=0(x)

then you may be able to iterate, using each value of g( ) as the new estimate of therocat, r.

| Thisisthe simplest method of root finding, and generally the slowest to converge.

It may be suitable if you have only a few thousand solutions to compute, but may be too ow for millions
of calculations.
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You start with a guessthat is close to theroat, cdl it ro. Then
= 9(r), r,=9(n), M1 =9(ry)

If g( ) has the right property (specifically, |g’(X)| < 1 near the root) this sequence will converge to the
solution. We describe this necessary property through some examples. Suppose we wish to solve

Jx/2-x=0 numerically. First, we re-arrange it to isolate x on the left side: ng (below left).

14 1+ 4
y=X y=X
05+ 05+
X2
X X
1 1

Two iteration equations for the same problem. The left converges; theright fails.

From the graph, we might guessro~ 0.2. Then we would find,
r, =+/0.2/2=0.2236, r, = \/E 12=0.2364, r; =0.2431, r, =0.2465, rs = 0.2483,
R =0.2491, r; = 0.2496

We see that the iterations approach the exact answer of 0.25. But we could have re-arranged the

equation differently: 2x=+/x, x=4x?> (above right). Starting with the same guess x = 0.2, we get this
sequence:

r,=+/0.2/2=0.16, r, =i /2=0.1024, ry = 0.0419, r, =0..0070

But they are not converging on the nearby root; the sequence diverges away from it. So what’s the
difference? Look at a graph of what’s happening, magnified around the equality:

¢x{2 43(2
Y=X
0.25+ 0.25+
Iy
1
| To
Re— : »X R
02 0.2

The l€eft converges; theright fails.

When the curve isflatter than y = x (above l€ft), then tria roots that are too small get bigger, and trid
roots that are too big get smaller. So iteration approaches the root. When the curve is steeper than y = x
(above right), trial roots that are too small get even smaller, too big get even bigger; the opposite of what
wewant. So for positive dope curves, the condition for convergenceis
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Ay _y(s)-y(r) <1

v - in the region r—|r0—r|<s<r+|ro—r||ri—r|<|ro—r|,.

where ristheexact root; r,isthefirst guess.

Consider another case, where the curve has negative slope. Suppose we wish to solve cos *x—x=0,

(xinradians). Were-writeitas x=cos*x. On the other hand, we could take the cosine of both sides and
get an equivalent equation: x=cosx. Which will converge? Again look at the graphs:

COS X cosix =%
cosix L y=X L
;
0.739r 0.7391
r \
oS X 2 \
R : X Rl X
0 0.739 °©0.739

Figure 8.1 (Left) cos and cos™ are superficialy similar. (Middle) cos converges everywhere.
(Right) cos™ fails everywhere.

So long as the magnitude of the slope < 1 in the neighborhood of the solution, the iterations converge.
When the magnitude of the slope > 1, they diverge. We can now generalizeto al curves of any slope:

The genera condition for convergenceis

_|Y(8) = ¥(r)
S—r

Theflatter the curve, the faster the convergence.

Ay

o <1, intheregion r—|ro—r|<s<r+[rp—r|.

Given this, we could have easily predicted that the converging form of our iteration equation is
X =cosx, because the slope of cos x isaways < 1, and cos* x is dways > 1. Note, however, that if the
derivative (dope) is> 1/2, then the binary search will be faster than iteration.

Newton-Raphson Iteration

The above method of variable iteration is kind of “blind,” in that it doesn’t use any property of the
given functions to advantage. Newton-Raphson iteration is a method of finding roots that uses the
derivative of the given function to provide morereliable and faster convergence. Newton-Raphson uses the

original form of the equation: f(x)=+/Xx/2—x=0. Theideais to use the derivative of the function to
approximate its slope to the root (below left). We start with the same guess, ro = 0.2,

VX2 — x 42— x
tangent
0 } |AX/ » X
Al tangent
Af
0.0 : PAXN % +
0.1 0.2 0.25 0.1 0.2 0.25
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Af f(r)
—= f(r = Ar =~ — L Note f '(ry) <0
) o | (Noef)<0)
4 r2/4-1 4rtf2 1-4r/2

Here’s a sample computer program fragment, and its output:

/1 Newt on- Raphson iteration

r = 0.2;

for(i =1; i < 10; i++)

{ r-=(2.*r - 4.*r*sqrt(r)) / (1. - 4.*sqrt(r));
printf("r%d % 16f\n", i, r);

r1 0.2535322165454392
r2 0.2500122171752588
r3 0.2500000001492484
r4 0.2500000000000000

In 4 iterations, we get essentially the exact answer, to double precision accuracy of 16 digits. Thisis
much faster than the variable isolation method above. In fact, it illustrates a property of some iterative
numerical methods called quadr atic conver gence:

Quadratic convergence is when the fractiond error (akareative error) gets squared on each
iteration, which doubles the number of significant digits on each iteration.

You can see this clearly above, where r; has 2 accurate digits, r, has 4, rz has 9, and r4 has at least 16
(maybe more). Derivation of quadratic convergence??

Also, Newton-Raphson does not have the restriction on the slope of any function, as does variable
isolation. We can useit just aswell on the reverse formula (previous diagram, right):

Cfn) 4% -x

f'(r) 8x-1

f(x)=4x*—x, f'(x)=8x-1 Ar= , with these computer results:

rl 0.2666666666666667
r2 0.2509803921568627
r3 0.2500038147554742
r4 0.2500000000582077
r5 0.2500000000000000

This converges essentially just as fast, and clearly shows quadrati c convergence.

If you are an old geek like me, you may remember the iterative method of finding square roots on an
old 4-function calculator: to find Va: divide a by r, then average the result with r. Repeat as needed:

alr,+r,
n+l = 2

r
Y ou may now recognize that as Newton-Raphson iteration:
f(r)=r?-a=0, f'(r)=2r,

2_
My =T +Ar=1,— F(r) =rn—rn a=rn—r—”+i=1 rn+3
f'(r) 2r, 2 2r, 2 M
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alr?+r,

If you are truly a geek, you tried the averaging method for cube roots: r,,; = . While you

found that it converged, it was very slow; cube-root(16) with ro = 2 gives only 2 digits after 10 iterations.
Now you know that the proper Newton-Raphson iteration for cube rootsis:

3r? 3 32 3 2

n n n

3_
f(r):re’—a:o, f‘(r)=3r2, rn+1=rn_rn azrn_r_n+ - =£(2rn+iJ

which givesafull 17 digitsin 5iterationsfor ro = 2, and shows (of course) quadratic convergence:
ri 2.6666666666666665
r2 2.59277777777777777
r3 2.5198669868999541
r4 2.5198421000355395
rs 2.5198420997897464

It is possible for Newton-Raphson to cycle endlesdly, if the initial estimate of the root is too far off,
and the function has an inflection point between two successive iterations:

()

%A
0 X

tangent

Failure of Newton-Raphson iteration.

Itisfairly easy to detect thisfailurein code, and pull in theroot estimate before iterating again.

Pseudo-Random Numbers

We use the term ‘“random number” to mean “pseudo-random number,” for brevity. Uniformly
distributed random numbers are equally likely to be anywherein arange, typically (0, 1).

Uniformly distributed random numbers are the starting point
for many other statistical applications.

Computers can easily generate uniformly distributed random numbers. The best generators today are
based on linear feedback shift registers (LFSR) [Numerical Recipes, 3 ed]. The old linear-congruential
generator is:

/1 Uniformrandomvalue, 0 <v <1, i.e. on (0,1) exclusive.
/1 Nurmerical Recipes in C, 2nd ed., p284

static uint32 seed=1; /| starting point

vilt rand_uniforn({void)

{

do seed = 1664525L*seed + 1013904223L; /'l period 2732-1
whi | e(seed == 0);
rand_cal | s++; /'l count calls for repetition check
return seed / 4294967296. ;
} /1 rand_uniforn()

Many algorithms that use such random numbersfail on O or 1,
so this generator never returns them.
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After a long simulation with a large number of calls, it’s a good idea to check ‘rand calls’ to be sure
it’s < ~400,000,000 = 10% period. This confirms that the generated numbers are essentially random, and
not predictable.

Arbitrary distribution random numbers: To generate any distribution from a uniform random
number:
R= cdefl(U) where Ristherandom variable of the desired distribution

cdf ;! =inverse of the desired cumulative distribution function of R
U isa uniform random number on (0,1)
Figure 8.2 illustrates the process graphically. We can derive it mathematicdly as follows: recall that the

cumulative distribution function gives the probability of a random variable being less than or equal to its
argument:

cdfy () =Pr(X <a) = .[a dx pdf « (X) where X isarandom variable.
cdf~1(x)
pdf(x) 05T
cdf(x)
1 X
1 .1 u
T — X ¥ =X
-0.5 05 -0.5 05
-0.5-

Figure 8.2 Stepsto generating the probability distribution function (pdf) on the left.

Also recall that the pdf of a function of a random variable, say F = f(u), is (see Probability and Statistics
elsewhere in this document):

pdfF(x)=%, where f'(X) =derivativeof f(x) .
Let Q=cdf; (V). Using pdf,, (u) =10n[0,1]
-1
pdf o (r) = dpde © _ L using digl(u)z[dig(u)) Land u—r
—cdfz t(u) (dcdf (r)j ! u
du ar R
=pdfg(r), asdesired.

Generating Gaussian Random Numbers
The inverse CDF method is a problem for gaussian random numbers (any many others), because there
is no closed-form expression for the CDF of a gaussian (or for the CDF™):

CDF(a) = [ * dx—ime /2 (gaussian) .

o 27

But [Knu] describes a clever way based on polar coordinates to use two uniform random numbers to
generate agaussian. He gives the details, but thefinal resultisthis:
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gaussian = (v—2Inu ) cos@ where @isuniformon (0,27
g

uisuniformon (0,1)

|/ * Gaussi an random val ue, 0 nmean, unit variance. From Knuth, "The Art of
Conput er Programm ng, Vol. 2: Sem nunerical Al gorithnms,” 2nd Ed., p. 117.
It is exactly normal if rand_uniform() is uniform */
PUBLI C doubl e rand_gauss(voi d)
{ double theta = (2.*MPl) * rand_uniforn();

return sqrt( -2. * log(rand_uniforn()) ) * cos(theta);
} // rand_gauss()

Generating Poisson Random Numbers

Poisson random numbers are integers; we say the Poisson distribution is discrete:

oot pdf(n) Loot cdf(n) Z [Cdf-l(u)
0.75 0.75 T 3+
0.50 0.50 T o1
0251 { 0251 14
« I ! ¢ +.n « n 0  +tu
0 1.2 3 4 5 0 1.2 3 45 0 .25 50 .751.0

Example of generating the (discrete) Poisson distribution.

We can ill use the inverse-cdf method to generate them, but in an iterative way. The code starts with a
helper function, poisson( ), that compute the probability of exactly n events in a Poisson distribution with
an average of avg events:

R e R
PUBLI C vilt poi sson( /'l Pr(exactly n events in interval)
vilt avg, /'l average events in interval
i nt n) /1 n to conpute Pr() of
{ vflt factorial;
i nt i

if(n <= 20) factorial = fact[n];
el se
{ factorial = fact[20];
for(i =21, i <=n; i++) factorial *=1i;

return exp(-avg) * pow(avg, n) / factorial;
} /1 poisson()

2
Generates a Poi sson random val ue (an integer), which nust be <= 200.
Prefix '"irand_...' enphasizes the discreteness of the Poisson distribution.
____________________________________________________________________________ */
PUBLI C i nt i rand_poi sson( /'l Poi sson random integer <= 200
doubl e avg) /'l avg # "events"

L .

i nt i

double cpr; /1 uni form probability

/1 Use inverse-cdf (uniforn) for Poisson distribution, where
/'l inverse-cdf() consists of flat, discontinuous steps

cpr = rand_uniform);

for(i =0; i <=200; i++) // safety limt of 200

{ cpr -= poisson(avg, i);
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if(cpr <= 0) break;

return i; // 201 indicates an error
} // irand_poi sson()

Other example random number generators: TBS.
Generating Weirder Random Numbers

Sometimes you need to generate more complex distributions, such as a combination of a gaussian with
a uniform background of noise. Thisisaraised gaussian:

pef()

gaussian pdf

uniform pdf

Construction of araised gaussian PDF random variable from a uniform and a gaussian.

Since this distribution has a uniform “component,” it is only meaningful if it’s limited to some finite
“width.” To generate distributions like this, you can compose two different distributions, and use the
principle:

| The PDF of arandom choice of two random variables isthe weighted sum of theindividual PDFs.

For example, the PDF for an RV (random variable) which is taken from X 20% of the time, and Y the
remaining 80% of thetimeis

pdf(z) = 0.2pdf, (z) + 0.8pdf, (2) .

In this example, the two component distributions are uniform and gaussian.  Suppose the uniform part of
the pdf has amplitude 0.1 over theinterval (0, 2). Then it accounts for 0.2 of all the random values. The
remainder are gaussian, which we assume to be mean of 1.0, and ¢ = 1. Then the random value can be
generated from three more-fundamental random val ues:
/' Rai sed Gaussi an random val ue: gaussian part: nmean=1, sigma=1
/1 Uniformpart (20% chance): interval (0, 2)
if(rand_unifornm() <= 0.2)
random variable = rand_uni forn{)*2.0;
el se
random variabl e = rand_gauss() + 1.0; /1 mean = 1, sigm =1

Exact Polynomial Fits

It’s sometimes handy to make an exact fit of a quadratic, cubic, or quartic polynomial to 3, 4, or 5 data
points, respectively.
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3 points, 29 order 4 points, 3 order 5 points, 4" order
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The quadratic caseillustrates the principle smply. We seek a quadratic function

y(X) = a,x* +a X+ 2,

which exactly fits 3 equally spaced points, a x = -1, x = 0, and x = 1, with value y 4, Yo, and i,
respectively (shown above). So long as your actual data are equally spaced, you can simply scale and
offset tothe x values—1, 0, and 1. We can directly solve for the coefficients ap, a;, and ay:

(-0 +a(-D+ay=y., Q- +ay=Yy,

a2(0)2 +3(0)+a5 = Yo = 3 =Yo
a2(1)2+a1(1)+30=y1 BFra+H =K

= a=(y1+%)/2-Yo, a=(n-Yi1)/2 9 =Yo

Similar formulas for the 3 and 4" order fitsyield this code:

e e
/1 fit3rd() conputes 3rd order fit coefficients. 4 nmult/div, 8 adds
PUBLI C void fit3rd(
doubl e yml, doubl e y0, double yl, double y2)
{
a0 = yo0;
a2 = (ynl + y1)/2. - yo0;
a3 = (2.*yml + y2 - 3.*y0)/6. - az;

al =yl - y0O - a2 - as3;
Yo/ fit3rd()

A e e
/1 fitdth() conputes 4th order fit coefficients. 6 nmult/div, 13 add
PUBLI C void fit4th(

doubl e yn2, doubl e ynl, double yO, double yl, double y2)

{
b0 = yO0;
b4 = (y2 + yn2 - 4*(ynl + yl1) + 6*y0)/24.;
b2 = (ynl + y1)/2. - y0 - b4;
b3 = (y2 - yn2 - 2.*(yl - yml))/12.;
bl = (yl - ynml)/2. - bS;

} /1 fitath()
TBS: Alternative 3" order (4 point) symmetric fit, with x & {-3, -1, 1, 3}.
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Two’s Complement Arithmetic

Two’s complement is a way of representing negative numbers in binary. It is universally used for
integers, and rarely used for floating point. This section assumes the reader is familiar with positive binary
numbers and simple binary arithmetic.

28222120

Most Significant Bit /0110\ Least Significant Bit
(MSB) (LSB)

Two’s complement uses the most significant bit (MSB) of an integer as a sign bit: zero means the
number is > 0; 1 means the number is negative. Two’s complement represents non-negative numbers as
ordinary binary, with the sign bit = 0. Negative numbers have the sign bit = 1, but are stored in a special
way: for a b-hit word, a negative number n (n < 0) is stored as if it were unsigned with a value of 2° + n.
Thisis shown below, using a4-bit “word” as a simple example:

bits unsigned signed

0000 0 0
/0001 1 1
0010 2 2
sign 0011 3 3
bit (NMSB) 0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1

With two’s complement, a 4-bit word can store integers from -8to +7. E.g.,, -lissoredas16 - 1=
15. Thisruleisusually defined as follows (which completely obscures the purpose):

Let n=-a n<0, a>0 Example n=-4,a=4
Start with the bit pattern for a 0100
complement it (change al Osto 1sand 1sto Os). 1011
add 1 1100

Let’s see how two’s complement works in practice. There are 4 possible addition cases:
(1) Adding two positive numbers: so long as the result doesn’t overflow, we simply add normally (in
binary).

(2) Adding two negative numbers. Recall that when adding unsgned integers, if we overflow our 4
bits, the “carries” out of the MSB are simply discarded. This means that the result of adding a + c is
actualy (a + ¢) mod 16. Now, let n and m be negative numbers in twos complement, so their bit patterns
are 16+ n, and 16 + m. If we add their hit patterns as unsigned integers, we get
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(16+n)+(16+m) =[32+(n+ m) [mod 16 =16+ (n+m), n+m<0

which is the 2°s complement representation of (n +m) <O0.

E.g., -2 1110 16+ (-2
+ 3 +1101 +16+(=3)
-5 1011 16+ (-5)

So with two’s complement, adding negative numbers uses the same algorithm as adding unsigned
integers! That’s why we use two’s complement.

(3) Adding a negative and a positive number, with positive r esult:

(16+n)+a=[16+(n+a)}mod16=n+a, n+a>0
E.g, -2 1110 16+ (-2
+ 5 0101 + 5
3 0011 3
(4) Adding a negative and a positive number, with negative result:
(16+n)+a=16+(n+a), n+a<o0
E.g, -6 1010 16 + (-6)

+ 3 0011 + 3
3 1101  16+(-3)

In all cases,

With two’s complement arithmetic, adding signed integers uses the same al gorithm as adding unsigned
integers! That’s why we use two’s complement.

The computer hardware need not know which numbers are signed, and which are unsigned: it adds the
same way no matter what.

It works the same with subtraction: subtracting two’s complement numbers is the same as subtracting
unsigned numbers. It even works multiplying to the same word size:

—+: (16+n)a=[16a+(na)Jmod16=16+na, n<0,a>0,na<0
- (16+n)(16+m)=[256+16(n+m)+ nm}mod16=nm, n<0,m<0,nm>0

In reality, word sizes are usualy 32 (or maybe 16) bits. Then in general, we store b-bit negative
numbers (n< 0) as2° + n. E.g., for 16 bits, (n<0) — 65536 + n.

How Many Digits Do | Get, 6 or 9?

How many decimal digits of accuracy do | get with a binary floating point number? You often see a
range: 6to 9 digits. Huh? We jump ahead, and assume here that you understand binary floating point (see
bel ow for explanation).

Wobble, but don’t fall down: The idea of “number of digits of accuracy” is somewhat flawed. Six
digits of accuracy near 100,000 is ~10 times worse than 6 digits of accuracy near 999,999. The smallest
increment is 1 in the least-significant digit. Onein 100,000 is accuracy of 10°; 1in 999,999 is almost 10°,
or 10 times more accurate.

Aside: The wobble of afloating point number is the ratio of the lowest accuracy to the highest accuracy for a
fixed number of digits. It isaways equal to the base in which the floating point number is expressed, which is 10
in this example. The wobble of binary floating point is 2. The wobble of hexadecima floating point (mostly
obsolete now) is 16.
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We assume |EEE-754 compliant numbers (see later section). To insure, say, 6 decimal digits of
accuracy, the worst-case binary accuracy must exceed the best-case decimal accuracy. For IEEE single-
precision, there are 23 fraction bits (and one implied-1 bit), so the worst case accuracy is 222 = 1.2 x 107,
The best 6-digit accuracy is 10° the best 7 digit accuracy is 107. Thus we see that single-precision
guarantees 6 decimal digits, but almost gets 7, i.e. most of the time, it actually achieves 7 digits. Thetable
in the next section summarizes 4 common floating point formats.

How many digits do | need?

Often, we need to convert a binary number to decimal, write it to a file, and then read it back in,
converting it back to binary. An important question is, how many decimal digits do we need to write to
insure that we get back exactly the same binary floating point number we started with? In other words,
how many binary digits do | get with a given number of decimal digits? (Thisis essentially the reverse of
the preceding section.) We choose our number of decimal digits to insure full binary accuracy (assuming
our conversion software is good, which isnot always the case).

Our worst-case decimal accuracy has to exceed our best-case binary accuracy. For single precision,
the best accuracy is 2* = 6.0 x 10°°. The worst case accuracy of 9 decimal digitsis 10, so we need 9
decimal digits to fully represents IEEE single precision. Here’s a table of precisions for 4 common

formats:

Fraction  Minimum decimal digits Decimal digitsfor exact Decimal
For mat bits accuracy replication digitsrange
|IEEE single 23 2-23=12x10-7=>6 2-24=6.0x10-8=>9 6-9
|EEE double 52 252=22x10-16=>15 |2-53=1.1x10-16=>17 |15-17
x86 long double | 63 263=11x10-19=>18 |2-64=54x10-20=>21 |18-21
SPARC REAL*16 | 112 2-112=19%x10-34=>33 | 2-113=9.6x 10-35=>36 |33-36

These number of digits agree exactly with the quoted ranges in the “IEEE Floating Point” section, and
the ULP table in the underflow section. In C, then, to insure exact binary accuracy when writing, and then
reading, in decimal, for double precision, use

sprintf(dec, "% 179", Xx);

How Far Can | Go?

A natural question is: What is the range, in decimal, of numbers that can be represented by the IEEE
formats? The answer isdominated by the number of bitsin the binary exponent. This table showsit:

Range and Precision of Storage Formats
For mat Sigr;iftlgant Small\llisrtnggrrmal Lt N s DS%T:]
|EEE single 24 1.175...x 10°%® 3.402... x 10" 6-9
|EEE double 53 2.225... x 10°% 1.797... x 10" 15-17
x86 long double 64 3.362... x 10492 1.189... x 10*%% 18-21
SPARC REAL*16 113 3.362... x 10492 1.189... x 10*%% 33-36

Software Engineering

Software Engineering is much more than computer programming: it isthe art and science of designing

and implementing programs efficiently, over the long term, across multiple developers. Software
engineering maximizes productivity and fun, and minimizes annoyance and roadbl ocks.
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Engineersfirst design, then implement, systems that are useful, fun, and efficient.

Hackers just write code. Software engineering includes:
e Documentation: lots of it in the code as comments.

e  Documentation: design documents that give an overview and conceptual view that is infeasible to
achieve in source code comments.

e Coding guidelines: for consistency among developers. Efficiency can only be achieved by
cooperation among the developers, including a consistent coding style that allows others to
quickly understand the code. E.g., physics.ucsd.edu/~emichel §/Coding%20Gui delines.pdf.

e Clean code: it iseasy to read and follow.

¢ Maintainable code: it functions in a straightforward and comprehensible way, so that it can be
changed easily and still work.

Notice that all of the above are subjective assessments. That’s the nature of all engineering:

| Engineering islots of tradeoffs, with subjective approximations of the costs and benefits.

Don’t get mewrong: sometimes | hack out code. The judgment comes in knowing when to hack and when
to design.

Fun quotes:

“Whenever possible, ignore the coding standards currently in use by thousands of developers in your
project’s target language and environment.”
- Roedy Green, How To Write Unmaintainable Code, www.strauss.za.com/da/code std.html

“Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as
cleverly as possible, you are, by definition, not smart enough to debug it.” - Brian W. Kernighan

Coding guidelines make everyone’s life easier, even yours. - Eric L. Michelsen
Object Oriented Programming

This is a much used and abused term, with no definitive definition. The goal of Object Oriented
Programming (OOP) is to allow reusable code that is clean and maintainable. The best definition I’ve seen
of OOP isthat it uses alanguage and approach with these properties:

e User defined data types, caled classes, which (1) alow a single object (data entity) to have
multiple data items, and (2) provide user-defined methods (functions and operators) for
manipulating objects of that class.

¢ Information hiding: aclass can define a public interface which hides the implementation details
from the (client) code which usesthe class.

e Overloading: the same named function or operator can be invoked on multiple data types,
including both built-in and user-defined types. The language chooses which of the same-named
functionsto invoke based on the data types of its arguments.

¢ Inheritance: new data types can be created by extending existing data types. The derived class
inherits al the data and methods of the base class, but can add data, and override (overload) any
methods it chooses with its own, more specialized versions.

e  Polymorphism: thisis more than overloading. Polymorphism allows derived-class objects to be
handled by (often older) code which only knows about the base class (i.e., which does not even
know of the existence of the derived class.) Even though the application code knows nothing of
the derived class, the data object itself insures calling proper specialized methods for itsalf.

In C++, polymorphism isimplemented with virtual functions.
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OOP does not have to be a new “paradigm.” It is usually more effective to make it an
improvement on the good software engineering practices you aready use.

The Best of Times, the Worst of Times

We give here some ways to speed up common computations, using matrices as examples. The
principles are applicable to amost any computation performed over alarge amount of data.

For the vast majority of programs, execution time is so short that it doesn’t matter how efficient it
is, clarity and smplicity are more important than speed.

In rare cases, timeisaconcern. For some simple examples, we show how to easily cut your execution
times to 1/3 of origina. We aso show that things are not always so simple as they seem. This section
assumes knowledge of computer programming with smple classes (the beginning of object oriented
programming).

Thistopic is potentialy huge, so we can only touch on somebasics. Themain point hereis:

| Computer memory management is the key to fast performance.

We proceed along these lines:

o We start with a smple C++ class for matrix addition. We give run times for this implementation
(the worst of times).

o A simpleimprovement greatly improves execution times (the best of times).

o  Wetry another expected improvement, but things are not as expected.

e We describe the general operation of “memory cache” (pronounced “cash”) in simple terms.

e  Moving on to matrix multiplication, we find that our previous tricks don’t work well.

¢ However, dueto the cache, adding more operations greatly improves the execution times.
Matrix Addition

The basic concept in improving matrix addition is to avoid C++’s hidden copy operations. However:

Computer memory access is tricky, so things aren’t always what you’d expect. Nonetheless, we
can be efficient, even without details of the computer hardware.

The tricks are due to computer hardware called RAM “cache,” whose general principles we describe
later, but whose details are beyond our scope.

Firgt, here is a smple C++ class for matrix creation, destruction, and addition. (For simplicity, our
sample code has no error checking; real code, of course, does. In this case, we literally don’t want reality
to interfere with science.) The class data for a matrix are the number of rows, the number of columns, and
a pointer to the matrix elements (data block).

t ypedef doubl e T; /1 matrix el ements are doubl e precision
class |Lmatrix /1 2D matrix
{ public:
i nt nr, nc; /] # rows & colums
T*db; /] pointer to data
ILmatrix(int r, int c); /1 create matrix of given size
ILmatrix(const |Lmatrix &b); /'l copy constructor
~l Lmatri x(); /| destructor
T * operator []J(int r) const {return db + r*nc;}; /'l subscripting
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ILmatrix & operator =(const ILmatrix& b); /'] assignment
ILmatrix operator +(const ILmatrix& b) const; /1 matrix add

b
The matrix elements are indexed starting from 0, i.e. the top-left corner of matrix ‘a’ is referenced as
‘a[0][0]’. Following the data are the minimum set of methods (procedures) for matrix addition. Internally,

the pointer ‘db’ points to the matrix elements (data block). The subscripting operator finds a linear array
element as (row)(#columns) + column. Hereisthe code to create, copy, and destroy matrices:

/'l create matrix of given size (constructor)
ILmatrix::ILmatrix(int r, int ¢) : nr(r), nc(c) /'l set nr & nc here

{
db = new T[nr*nc]; /1 allocate data bl ock
} // ITLmatrix(r, c)

/1 copy a matrix (copy constructor)
I Lmatrix::ILmatrix(const ILmatrix & b)

{ i nt r,c;
nr = b.nr, nc = b.nc; // matrix di nensions
i f(b.db)
{ db = new T[nr*nc]; /1 allocate data bl ock
for(r = 0; r < nr; r++) /] copy the data

for(c = 0; ¢ < nc; c++)
} (*this)[r][c] = b[r][c];

} /1 copy constructor

/1 destructor

ILmatrix::~lLmatrix()
{ if(db) {delete[] db;} /'l free existing data
nr =nc =0, db = 0O; /1 mark it enpty

}

/| assignnent operator
ILmatrix & ILmatrix::operator =(const |Lmatrix& b)
{ i nt r, c;

for(r =0; r <nr; r++) // copy the data
for(c = 0; ¢ < nc; c++)
(*this)[r][c] = b[r][c];
return *this;
} /1 operator =()

The good stuff: With the tedious preliminaries done, we now implement the smplest matrix addition
method. It adds two matrices e ement by element, and returns the result as anew matrix:
/1 matrix addition to tenporary
ILmatrix ILmatrix::operator +(const |Lmatrix& b) const

-
i nt r, c;
I Lmatrix result(nr, nc);

for (r=0; r < nr; r++)
for (c=0; c < nc; c++)
result[r][c] = (*this)[r][c] + b[r][c];
return result; /'l invokes copy constructor!
} /1 operator +()

How long does this smple code take? To test it, we standardize on 300 x 300 and 400 x 400 matrix
sizes, each on two different computers: computer 1is a circa 2000 Compag Workstation W6000 with a1.7
GHz Xeon. Computer 2 isa circa 2000 Gateway Solo 200 ARC laptop with a2.4 GHz CPU. Wetime 100
matrix additions, e.g.:

i nt n = 300; // matrix di nension
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I Lmatrix a(n,n), b(n,n), d(n,n);

// Addition test

d =a+ b; /'l prine menory caches
cpustanp("start natrix addition\n");
for(i = 0; i < 100; i++)

d =a + b;

cpustanp("end matrix addition\n");

With modern operating systems, you may have to run your code several times before the execution
times gtabilize.

[Thismay be due to internal operations of allocating memory, and flushing datato disk.] We find that,
on computer 1, it takes ~1.36 = 0.10 s to execute 100 simple matrix additions (see table at end of this
section). Wow, that seems like along time. Each addition is 90,000 floating point adds; 100 additionsis 9
million operations. Our 2.4 GHz machine should execute 2.4 additions per ns. Where’s all the time going?
C++hasamajor flaw. Though it was pretty easy to create our matrix class:

| C++ copies your datatwicein asimple class operation on two values.

So besides our actual matrix addition, C++ copies the result twice before it reaches the matrix ‘d’. The first
copy happens at the ‘return result’ statement in our matrix addition function. Since the variable ‘result’
will be destroyed (go out of scope) when the function returns, C++ must copy it to a temporary variable in
the main program. Notice that the C++ language has no way to tell the addition function that the result is
headed for the matrix ‘d’. So the addition function has no choice but to copy it into a temporary matrix,
created by the compiler and hidden from programmers. The second copy is when the temporary matrix is
assigned to the matrix ‘d’. Each copy operation copies 90,000 8-byte double-precision numbers, ~720k
bytes. That’s a lot of copying.

What can we do about this? The simplest improvement is to make our copies more efficient. Instead
of writing our own loops to copy data, we can call the library function memcpy( ), which is specifically

optimized for copying blocks of data. Our copy constructor is now:
ILmatrix::lLmatrix(const ILmatrix & b)

{ i nt r,c;
nr = b.nr, nc = b.nc; // matrix di mensions
i f(b.db)
{ db = new T[nr*nc]; /1 allocate data bl ock
nencpy(db, b.db, sizeof (T)*nr*nc); /'l copy the data

} /1 copy constructor

Similarly for the assignment operator. This code takes 0.98 + 0.10 s, 28 % better than the old code.
Not bad for such asimple change, but still bad: we till have two needless copies going on.

For the next improvement, we note that C++ can pass two matrix operands to an operator function, but
not three. Therefore, if we do one copy ourselves, we can then perform the addition “in place,” and avoid
the second copy. For example:

/'l Faster code to inplenent d = a + b:
d = g /1 the one and only copy operation
d += b; // Y+=’ adds ‘b’ to the current value of ‘d’

The expression in parentheses copies ‘a’ to ‘d’, and evaluates as the matrix ‘d’, which we can then act

on with the ‘“+=" operator. We can simplify this main code to a single line as:
(d = a) += b;

To implement this code, we need to add a “+=" operator function to our class:

/1 matrix addition in-place
ILmatrix & |ILnatrix::operator +=(const ILmatrix & b)

{

i nt r, c;

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 164 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

for (r =0; r <nr; r++4)
for (c = 0; ¢ < b.nc; c++)
(*this)[r][c] += b[r][c];

return *this; /'l returns by reference, NO copy!

Thiscoderunsin 0.45 £ 0.02 s, or 1/3the origina time! The price, though, is somewhat uglier code.

Perhaps we can do even better. Instead of using operator functions, which are limited to only two
matrix arguments, we can write our own addition function, with any arguments we want. The main code is
now:

mat _add(d, a, b); // add a + b, putting result in d’

Requiring the new function “mat_add( )”:

// matrix addition to new matrix: d = a + b
ILmatrix & mat _add(lLmatrix & d, const ILmatrix & a, const ILmatrix & b)

{

i nt r, c;

for (r =0; r <d.nr; r++)
for (c = 0; c¢ <d.nc; c++)
dir]fc] = a[r][c] + b[r][c];

return d; /'l returned by reference, NO copy constructor
} /1 mat _add()

This runsin 0.49 £ 0.02 s, dightly worse than the one-copy version. It’s also even uglier than the
previous version. How can this be?

Memory access, including data copying, is dominated by the effects of a complex piece of
hardware called “memory cache.”

There are hundreds of different variations of cache designs, and even if you know the exact design,
you can rarely predict its exact effect on real code. We will describe cache shortly, but even then, thereis
no feasible way to know exactly why the zero-copy code is slower than one-copy. Thisresult also held true
for the 400 x 400 matrix on computer 1, and the 300 x 300 matrix on computer 2, but not the 400 x 400
matrix on computer 2. All we can doistry afew likely cases, and go with the general trend. More on this
later.

Beware Leaving out a single character from your code can produce code that works, but runs over 2
times slower than it should. For example, in the function definition of mat_add, if we leave out
the “&” before argument ‘a’:
ILmatrix & mat_add(lLmatrix & d, const ILmatrix a, const ILmatrix & b)

then the compiler passes ‘a’ to the function by copying it! This completely defeats our goal of zero copy.
[Guess how | found this out.]

Also notice that the ‘memcpy( )’ optimization doesn’t apply to this last method, since it has no copies
at all.

Below is a summary of matrix addition. The best code choice was a single copy, with in-place

addition. It ismedium ugly. While there was a small discrepancy with this on computer 2, 400 x 400, it’s
not worth the required additiona ugliness.

Computer 1 times  (ms, £ ~100 ms) | Computer 2times  (ms, = ~ 100 ms)
Algorithm 300 x 300 400 x 400 300 x 300 400 x 400
d =a+ b, loop copy 1360=100 % 5900 = 100 % 1130=100 % 2180= 100 %
d=a+b, memcpy() 985 =72 % 4960 = 84 % 950 = 84 % 1793 =82 %
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(d=a+=b 445 =33% 3850 =65 % 330=29% 791 =36 %
mat_add(d, a, b) 490 =36 % 4400=75% 371=33% 721=33%

Run times for matrix addition with various algorithms. Uncertainties are very rough = 10. Best
performing algorithms are highlighted

Memory Consumption vs. Run Time

In the old days, the claim was clear (but not the reality): the less memory you use, the slower your
algorithm, and speeding your algorithm requires more memory.

The fallacy there is that most code is not well written. When you go in to clean up your code, you
often create implementations that are generally more efficient in both memory and time. | have personally
done this many times, even when revising my own code.

However, given reasonably efficient implementations, then with no memory cache, one can usually
speed the function by using an algorithm with more memory. Conversdly, an agorithm that uses less
memory is usudly sower.

Since all modern computers use cache, there is a new factor to consider. If you “blow the cache”, i.e.
your agorithm repeatedly works through more memory than the cache can hold, you will suffer many
cache misses, and a dramatic dow-down in speed. In such a case, an algorithm that uses less memory may
be faster: the algorithmic performance loss may be offset by the cache performance increase, possibly
many times over.

Cache Value

Before about 1990, computations were sower than memory accesses. Therefore, we optimized by
increasing memory use, and decreasing computations. Today, things are exactly reversed:

Modern CPUs (c. 2009) can compute about 50 times faster than they can access main memory.
Therefore, the biggest factor in overall speed is efficient use of memory.

To help reduce the speed degradation of sow memory, computers use a memory cache: a small
memory that isvery fast. A typical main memory is 1 Gb, while atypical cacheis1 Mb, or 1000x smaller.
The CPU can access cache memory as fast asit can compute, so cache is ~50x faster than main memory.
The cache isinvisible to program function, but is critical to program speed. The programmer usually does
not have access to details about the cache, but she can use general cache knowledge to greatly reduce run
time.

sequentid sequentid
0 0 small, fast
l 1 5 matrix RAM cache
A
2 10 big, Sow
. RAM CPU RAM
matrix
N-1 N-5 B

(Left) Computer memory (RAM) isalinear array of bytes. (Middle) For convenience, we draw it
as a 2D array, of arbitrary width. We show sample matrix storage. (Right) A very fast memory
cache keeps a copy of recently used memory locations, so they can be quickly used again.

The cache does two things (diagram above):

1. Cacheremembers recently used memory values, so that if the CPU requests any of them again, the
cache provides the value ingantly, and the slow main memory access does not happen.
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2. Cache “looks ahead” to fetch memory values immediately following the one just used, before the
CPU might request it. If the CPU in fact later requests the next sequential memory location, the
cache provides the value ingtantly, having already fetched it from dow main memory.

The cache is small, and eventudly fills up. Then, when the CPU requests new data, the cache must
discard old data, and replace it with the new. Therefore, if the program jumps around memory a laot, the
benefits of the cache are reduced. If a program works repeatedly over a small region of memory (say, a
few hundred k bytes), the benefits of cache increase. Typically, cache can follow four separate regions of
memory concurrently. This means you can interleave accesses to four different regions of memory, and
dtill retain the benefits of cache. Therefore, we have three smplerules for efficient memory use:

For efficient memory use: (1) access memory sequentialy, or at most in small steps, (2) reuse
values as much as possible in the shortest time, and (3) access few memory regions concurrently,
preferably no more than four.

There is huge variety in computer memory designs, so these rules are genera, and behavior varies
from machine to machine, sometimes greatly. Our data below demonstrate this.

Your Cache at Work

We can now understand some of our timing data given above. We see that the one-copy algorithm
unexpectedly takes less time than the zero-copy algorithm. The one-copy algorithm accesses only two
memory regions at a time: first matrix ‘a’ and ‘d’ for the copy, then matrix ‘b’ and ‘d’ for the add. The
zero-copy algorithm accesses three regions at a time: ‘a’, ‘b’, and ‘d’. This is probably reducing cache
efficiency. Recall that the CPU is adso fetching instructions (the program) concurrently with the data,
which is at least a fourth region. Exact program layout in memory is virtually impossible to know. Also,
the cache on this old computer may not support 4-region concurrent access. The newer machine, computer
2, probably has a better cache, and the one- and zero-copy algorithms perform very similarly.

Here’s a new question for matrix addition: the code given earlier loops over rows in the outer loop, and
columnsin theinner loop. What if we reversed them, and looped over columns on the outside, and rows on
the inside? The result is 65% longer run time, on both machines. Here’s why: the matrices are stored by
rows, i.e. each row is consecutive memory locations. Looping over columns on the inside accesses
memory sequentidly, taking advantage of cache look-ahead. When reversed, the program jumps from row
to row on the inside, giving up any benefit from look-ahead. The cost is quite substantial. This concept
works on amost every machine.

Caution FORTRAN stores arrays in the opposite order from C and C++. In FORTRAN, the first index
is cycled most rapidly, so you should code with the outer loop on the second index, and the

inner loop on thefirst index. E.g.,
DOC =1, N
DOR =1, N
AR O =
ENDDO
ENDDO

Scaling behavior: Matrix addition is an O(N?) operation, o increasing from 300 x 300 to 400 x 400
increase the computations by a factor of 1.8. On the older computer 1, the runtime penalty is much larger,
between 4.5x and 9x slower. On the newer computer 2, the difference is much closer, between 1.8x and
2.2x dower. Thisislikely due to cache sze. A 300 x 300 double precision matrix takes 720 k bytes, or
under a MB. A 400 x 400 matrix takes 1280 k bytes, just over one MB. It could be that on computer 1,
with the smaller matrix, a whole matrix or two fits in cache, but with the large matrix, cache is overflowed,
and more (slow) main memory accesses are needed. The newer computer probably has bigger caches, and
may fit both sized matrices fully in cache.

bl ah blah ...

Cache Withdrawal: Matrix Multiplication

We now show that the above tricks don’t work well for large-matrix multiplication, but a different

trick cuts multiplication run time dramatically. To start, we use a smple matrix multiply in the main code:
d =a* b;
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The straightforward matrix multiply operator isthis
/] matrix multiply to tenporary
I Lmatrix |ILmatrix::operator *(const ILmatrix & b) const

o
i nt r, c, k;
I Lmatrix result(nr, b.nc); /'l tenporary for result
T sum

for(r = 0; r < nr; r++)
{ for(c =0; ¢ < b.nc; c++4)
{ sum = 0. ;

for(k = 0; k <nc; k++) sum+= (*this)[r][k] * b[K][c];
result[r][c] = sum
}
} return result; /'l invokes copy constructor!

} /] operator *()

While matrix addition isan O(N?) operation, matrix multiplication is an O(N°) operation. Multiplying
two 300 x 300 matrices is about 54,000,000 floating point operations, which is much sower than addition.
Timing the smple multiply routine, similarly to timing matrix addition, but with only 5 multiplies, we find
it takes 7.8 £ 0.1 son computer 1.

Firs we try the tricks we aready know to improve and avoid data copies. we started aready with
memcpy( ). We compare the two-copy, one-copy, and zero-copy algorithms as with addition, but thistime,
5 of the 6 trials show no measurable difference. Matrix multiply is so dow that the copy times are
insignificant. The one exception is the one-copy algorithm on computer 2, which shows a significant
reduction of ~35%. Thisis dmost certainly due to some quirk of memory layout and the cache, but we
can’t identify it precisely. However, if we have to choose from these 3 algorithms, we choose the one-copy
(which coincidentally agrees with the matrix addition favorite). And certainly, we drop the ugly 3-
argument mat_mult( ) function, which gives no benefit.

Now we’ll improve our matrix multiply greatly, by adding more work to be done. The extra work will
result in more efficient memory use, that pays off handsomely in reduced runtime. Notice that in matrix
multiplication, for each element of the results, we access a row of the first matrix a, and a column of the
second matrix b. But we learned from matrix addition that accessing a column is much slower than
accessing arow. And in matrix multiplication, we have to access the same column N times. Extrabad. If
only we could access both matrices by rows!

Wdl, we can. We first make a temporary copy of matrix b, and transpose it. Now the columns of b
become the rows of b". We perform the multiply as rows of a with rows of b". We’ve already seen that
copy timeisinggnificant for multiplication, so the cost of one copy and one transpose (sSmilar to a copy) is
negligible. But the benefit of cache look-ahead islarge. The transpose method reduces runtime by 30% to
50%.

Further thought reveals that we only need one column of b at atime. We can use it N times, and
discard it. Then move on to the next column of b. This reduces memory usage, because we only need
extra storage for one column of b, not for the whole transpose of b. It costs us nothing in operations, and
reduces memory. That can only help our cache performance. In fact, it cuts runtime by about another
factor of two, to about one third of the origind runtime, on both machines. (It does require us to loop over
columns of b on the outer loop, and rows of a on the inner loop, but that’s no burden.)

Note that optimizations that at first were insgnificant, say reducing runtime by 10%, may become
significant after the runtime is cut by a factor of 3. That origina 10% is now 30%, and may be worth
doing.

Computer-1times (ms,£~100ms) | Computer-2times (ms, = ~ 100 ms)

Algorithm 300 x 300 400 x 400 300 x 300 400 x 400
d=a*b 7760=100% | 18,260= 100 % 5348=100% | 16,300= 100 %
(d=a*=b 7890=102% | 18,210= 100 % 3485 =65% 11,000 = 67 %
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mat_mult(d, a, b) 7720=99% | 18,170=100% 5227 =98 % 16,200 =99 %
d=a*b, 4580 =59 % 12,700=70% 2900=54% 7800 = 48%
transpose ‘b’

(d=4a) *=h, 4930 = 64 % 12,630=69 % 4250=79 % 11,000=67 %
transpose ‘b’

d=a* Db, 2710=35% 7875=43% 3100 =58 % 8000=49%
copy ‘b’ column

(d=2a) *=h, 2945=38% 7835=43% 2100=39% 5400 =33%
copy ‘b’ column

Run times for matrix multiplication with various algorithms. Uncertainties are very rough = 1o.

Best performing algorithms are highlighted

Cache Summary

In the end, exact performance is nearly impossible to predict. However, general knowledge of cache,
and following the threerules for efficient cache use (given above), will greatly improve your runtimes.

Sometimes even tiny changes in code will cross athreshold of cache, and cause huge changesin

Conflicts in memory between pieces of data and instruction cannot be precisely controlled.

performance.

IEEE Floating Point Formats And Concepts

Much of this section is taken from http://docs.sun.com/source/806-3568/ncg_math.html , an excellent
articleintroducing |IEEE floating point. However, many clarifications are made here.

What Is IEEE Arithmetic?

In brief, IEEE 754 specifies exactly how floating point operations are to occur, and to what precision.
It does not specify how the floating point numbers are stored in memory. Each computer makes its own
choice for how to store floating point numbers. We give some popular formats later.

In particular, |EEE 754 specifies a binary floating point standard, with:

5/7/2015 11:21

Two basic floating-point formats: sngle and double.

The IEEE single format has a significand (aka mantissa) precision of 24 bits, and is 32 bits
overal. The IEEE double format has a significand precision of 53 hits, and is 64 bits overall.

Two classes of extended floating-point formats: single extended and double extended. The
standard specifies only the minimum precision and size. For example, an |EEE double extended
format must have a significand precision of at least 64 bits and occupy at least 79 bits overall.

Accuracy requirements on floating-point operations: add, subtract, multiply, divide, square root,
remainder, round numbers in floating-point format to integer values, convert between different
floating-point formats, convert between floating-point and integer formats, and compare. The
remainder and compare operations must be exact. Other operations must minimally modify the
exact result according to prescribed rounding modes.

Accuracy requirements for conversions between decimal strings and binary floating-point
numbers. Within specified ranges, these conversions must be exact, if possible, or minimally
modify such exact results according to prescribed rounding modes. Outside the specified ranges,
these conversions must meet a specified tolerance that depends on the rounding mode.

Five types of floating-point exceptions, and the conditions for the occurrence of these exceptions.
The five exceptions are invalid operation, divison by zero, overflow, underflow, and inexact.
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e Four rounding directions: toward the nearest representable value, with "even" values preferred
whenever there are two nearest representable values, toward negative infinity (down); toward
positive infinity (up); and toward O (chop).

e Rounding precision; for example, if a system delivers results in double extended format, the user
should be able to specify that such results be rounded to either single or double precision.

The |EEE standard also recommends support for user handling of exceptions.

|EEE 754 floating-point arithmetic offers users great control over computation. It simplifies the task
of writing numerically sophisticated, portable programs not only by imposing rigorous requirements, but
also by allowing implementations to provide refinements and enhancements to the standard.

Storage Formats

The |EEE floating-point formats define the fields that compose a fl oating-point number, the bitsin
those fields, and their arithmetic interpretation, but not how those formats are stored in memory.
A storage format specifies how a number is stored in memory.

Each computer defines its own storage formats, though they are obvioudly all related.

High level languages have different names for floating point data types, which usually correspond to
the |EEE formats as shown:

IEEE Formats and Language Types

|EEE Precision C, C++ Fortran
single fl oat REAL or REAL* 4
double doubl e DOUBLE PRECI SI ONor REAL* 8
double extended | ong doubl e

REAL*16 [e.g., SPARC]. Notethatin many

double extended implementations, REAL* 16 is different than “long double’

|EEE 754 specifies exactly the single and double floating-point formats, and it defines ways to extend
each of these two basic formats. The | ong doubl e and REAL* 16 types shown above are two double
extended formats compliant with the | EEE standard.

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 170 of 263




physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

Single (6-9 decimal digits)

1 8 23 LSB
S e f
3130 2322 0

Double (15-17 decimal digits)

1 11 52 LSB
S e f
63 62 5251 0

Double-Extended (long double) (x86) (18-21 decimal digits)

16 1 15 1 63 LSB
unused |S e ] f
95 807978 64 63 62 0

Double-Extended (SPARC) (33-36 decimal digits)

1 15 112 LSB
S e f
127 126 112 111 0

The following sections describe each of the floating-point storage formats on SPARC and x86
platforms.

When a Bias Is a Good Thing

|EEE floating point uses biased exponents, where the actual exponent is the unsigned value of the ‘¢’
field minus a constant, called abias:

exponent = e—hias

The bias makes the ‘e’ field an unsigned integer, and smallest numbers have the smallest ‘e’ field (as
well as the smallest exponent). This format alows (1) floating point numbers sort in the same order as if
their bit patterns were integers; and (2) true floating point zero is naturally represented by an al-zero hit
pattern. These might seem inggnificant, but they are quite useful, and so biased exponents are nearly
universal.

Single Format

The |IEEE single format consists of three fields: a 23-hit fraction, f ; an 8-bit biased exponent, e; and a
1-bit sign, s. Thesefields are stored contiguoudly in one 32-bit word, as shown above.

The table below shows the three constituent fields s, e, and f, and the value represented in single-
format:

Single-Format Fields Value
1<e<254 (-1)°x 2% < 1.f (norma numbers)
e=0; f # 0 (atleast onebhitinf isnonzero) (-1)° =< 272° < 0.f (denormalized numbers)
e =0;f =0 (al bitsinf arezero) (=1)° > 0.0 (signed zero)
s =0/1; e =255;f =0 (al bitsinf arezero) +/— o (infinity)
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s =either; e =255; f # 0 (atleast onehitinf isnonzero) | NaN (Not-a-Number)

Notice that when 1 < e < 254, the value is formed by inserting the binary radix point to the left of the
fraction's most significant bit, and inserting an implicit 1-bit to the left of the binary point, thus representing
awhole number plus fraction, called the significand, where 1 < significand < 2. The implicit bit’s value is
not explicitly given in the sngle-format bit pattern, but isimplied by the biased exponent field.

A denormalized number (aka subnormal number) is one which is too small to be represented by an
exponent in therange 1 < e < 254. The difference between a normal number and a denormalized number
isthat the bit to left of the binary point of anormal number is 1, but that of a denormalized number isO.

The 23-bit fraction combined with the implicit leading significand bit provides 24 bits of precision in
single-format normal numbers.

Examples of important bit patterns in the single-storage format are shown below. The maximum
positive normal number is the largest finite number representable in IEEE single format. The minimum
positive denormalized number is the smallest positive number representable in IEEE single format. The
minimum positive normal number is often referred to as the underflow threshold. (The decimal values are
rounded to the number of figures shown.)

Important Bit Patterns in IEEE Single Format

Common Name Bit Pattern (Hex) Approximate Value
+0 0000 0000 0.0
-0 8000 0000 -0.0
1 3f 80 0000 10
2 4000 0000 2.0
maximum normal number 7t7f ffff 3.40282347e+38
minimum positive normal number 0080 0000 1.17549435e-38
maximum subnormal number 007f ffff 1.17549421e-38
minimum positive subnormal number | 0000 0001 1.40129846e-45
+ 7f 80 0000 + oo (positive infinity)
— ff80 0000 — oo (negative infinity)
Not-a-Number (NaN) 7fc0 0000 (e.g.) NaN

A NaN (Not a Number) can be represented with many bit patterns that satisfy the definition of a NaN;
the value of the NaN aboveis just one example.

Double Format

The |IEEE double format is the obvious extension of the single format, and also consists of three fields:
a 52-hit fraction, f; an 11-bit biased exponent, e; and a 1-bit sign, s. These fields are sored in two
consecutive 32-bit words. In the SPARC architecture, the higher address 32-bit word contains the least
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significant 32 bits of the fraction, while in the x86 architecture the lower address 32-bit word contains the
least significant 32 bits of the fraction.

The table below shows the three congtituent fields s, e, and f , and the value represented in double-
format:

Double-Format Fields Value
1<e <2046 (-1)°*x 298 x 1.f (normal numbers)
e=0;f #0 (atleast onebitinf isnonzero) (-1)° < 292 x 0.f (denormalized numbers)
e =0;f =0 (al bitsinf arezero) (-1)° %< 0.0 (signed zero)
s =0/1; e =2047;f =0 (al bitsinf arezero) +/— oo (infinity)
s —dther; e =2047; f £0 (atleastonebitin f is1) NaN (Not-a-Number)

This is the obvious analog of the single format, and retains the implied 1-bit in the significand. The
52-hit fraction combined with the implicit leading significand bit provides 53 bits of precision in double-
format norma numbers.

Below, the 2™ column has two hexadecimal numbers. For the SPARC architecture, the left oneis the
lower addressed 32-bit word; for the x86 architecture, the left one is the higher addressed word. The
decimal values are rounded to the number of figures shown.

Important Bit Patterns in IEEE Double Format

Common Name Bit Pattern (Hex) Approximate Value
+0 00000000 00000000 0.0
-0 80000000 00000000 -0.0
1 3f f 00000 00000000 10
2 40000000 00000000 2.0
max normal number Tfefffff fFffffff 1.797 693 134 862 3157e+308
min positive normal number 00100000 00000000 2.225 073 858 507 2014e-308
max denormalized number OOOf ffff ffffffff 2.225 073 858 507 2009e-308
min positive denormalized number | 00000000 00000001 4.940 656 458 412 4654e-324
+ oo 7f £ 00000 00000000 + o (positive infinity)
— f f f 00000 00000000 — o (negative infinity)
Not-a-Number 7f £ 80000 00000000 (e.g.) | NaN
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A NaN (Not a Number) can be represented with many bit patterns that satisfy the definition of a NaN;
the value of the NaN aboveisjust one example.

Double-Extended Format (SPARC)

The SPARC floating-point quadruple-precision format conforms to the IEEE definition of double-
extended format. The quadruple-precision format occupies four 32-bit words and consists of three fields: a
112-hit fraction, f ; a 15-bit biased exponent, e; and a 1-bit sign, s. These fields are stored contiguoudly.
The lowest addressed word has the sign, exponent, and the 16 most significant hits of the fraction. The
highest addressed 32-bit word contains the least significant 32-hits of the fraction.

Bel ow shows the three constituent fiel ds and the val ue represented in quadrupl e-precision format.

Double-Extended Fields (SPARC)

Value

1<e<32766

(-1)°x 2719 x 1.f (normal numbers)

e=0,f £0(atleast onehitinf isnonzero)

(—1)°x 27198 x 0.f (denormalized numbers)

e=0,f =0(dl bitsinf arezero)

(—1)°x 0.0 (signed zero)

s =0/1, e =32767,f =0 (dl bitsinf arezero)

+— oo (infinity)

s = dther, e = 32767, f # 0 (atleastonehitinf isl)

NaN (Not-a-Number)

In the hex digits below, the left-most number isthe lowest addressed 32-bit word.
Important Bit Patterns in IEEE Double-Extended Format (SPARC)

Name Bit Pattern (SPARC, hex) Approximate Value
+0 00000000 00000000 00000000 00000000 |o0.0
-0 80000000 00000000 00000000 00000000 |-0.0
1 3f f f 0000 00000000 00000000 00000000 |1.0
2 40000000 00000000 00000000 00000000 |20
1.189 731 495 357 231 765 085 759

maxnormal | 7ffeffff ffffffff fEffffff FEFefffff 396 628 0070 ©+4932

. 3.362 103 143 112 093 506 262 677
minnorma | 00010000 00000000 00000000 00000000 817 321 7506 64932
max 3.362 103 143 112 093 506 262 677
subnormal 000Offff ffffffff ffffffff fiffffff 817 321 7520 64932
min pos 6.475 175 119438 025 110 924 438
subnormal 00000000 00000000 00000000 00000001 958 297 6466 64966
+ o0 7ff£ 0000 00000000 00000000 00000000 |+
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- ffff 0000 00000000 00000000 00000000 |-
Not-a 7f f £ 8000 00000000 00000000 00000000 NaN
Number (e.q.)

Double-Extended Format (x86)

The important difference in the x86 long-double format is the lack of an implicit leading 1-bit in the
significand. Instead, the 1-hit is explicit, and always present in normalized numbers. This clearly violates
the spirit of the IEEE standard. However, big companies carry alot of clout with standards bodies, so Intel
claims this double-extended format conforms to the IEEE definition of double-extended formats, because
|EEE 754 does not specify how (or if) the leading 1-bit is stored. X86 long-double consists of four fields: a
63-hit fraction, f ; a1-bit explicit leading significand bit, j ; a 15-bit biased exponent, e; and a 1-bit Sgn, s
(notethe additional j field asthe explicit leading bit).

In the x86 architectures, these fields are stored contiguously in ten successively addressed 8-bit bytes.
However, the UNIX System V Application Binary Interface Intel 386 Processor Supplement (Intel ABI)

requires that double-extended parameters and results occupy three consecutive 32-bit words in the stack,
with the most significant 16 bits of the highest addressed word being unused, as shown bel ow.

Double-Extended (long double) Format (x86)

1 15 1 63 LSB
unused S e j f
95 807978 64 6362 0

The lowest addressed 32-bit word contains the least significant 32 bits of the fraction, f [31:0], with bit
0 being the least significant bit of the entire fraction. Though the upper 16 bits of the highest addressed 32-
bit word are unused by x86, they are essentia for conformity to the Intel ABI, asindicated above.

Below shows the four congtituent fields and the value represented by the bit pattern. x = don’t care.

Double-Extended Fields (x86) Value
j =0,1<=e<=32766 Unsupported
j =1, 1<=e<=32766 (—1)°x 228 x 1.f (normal numbers)

j =0,e=0;f #0 (atleast onebitinf isnonzero) (—1)°x 271982 x 0.f (denormalized numbers)

j=1,e=0 (-1)°x 2192 x 1.f (pseudo-denormal numbers)

j =0,e=0,f =0l bitsin f are zero) (—1)°x 0.0 (signed zero)

j =1,5s=0/1;,e=32767;f =0 (al bitsinf arezero) | +/— o (infinity)

j =1;5s=x;e=32767; f = .1xxX..XX QNaN (quiet NaNs)

j =1;s=x;e=32767;f
oneof thexinf isl)

.0xxx...xx # 0 (at least SNaN (signaling NaNs)

Notice that hit patternsin x86 double-extended format do not have an implicit leading significand hit.
The leading significand bit is given explicitly as a separate field, j . However, when e # 0, any bit pattern
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with j = 0isunsupported: such a bit pattern as an operand in floating-point operations provokes an invalid
operation exception.

The union of the fields j and f in the double extended format is called the sgnificand. The
significand is formed by inserting the binary radix point between the leading bit, j , and the fraction's most
significant bit.

In the x86 double-extended format, a bit pattern whose leading significand bit j is 0 and whose biased
exponent field e is aso O represents a denormalized number, whereas a hit pattern whose leading
significand bit j is 1 and whose biased exponent field e is nonzero represents a norma number. Because
the leading significand bit is represented explicitly rather than being inferred from the exponent, this format
also admits bit patterns whose biased exponent is O, like the subnormal numbers, but whose leading
significand bit is 1. Each such bit pattern actually represents the same value as the corresponding bit
pattern whose biased exponent fidd is 1, i.e, a norma number, so these bit patterns are called pseudo-
denormals. Pseudo-denormals are merdly an artifact of the x86 double-extended storage format; they are
implicitly converted to the corresponding normal numbers when they appear as operands, and they are
never generated asresults.

Below are some important bit patterns in the double-extended storage format. The 2™ column has
three hex numbers. The first number is the 16 least significant bits of the highest addressed 32-bit word
(recall that the upper 16 bits of this 32-bit word are unused), and the right one is the lowest addressed 32-bit
word.
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Important Bit Patternsin Double-Extended (x86) Format and their Values

Common Name Bit Pattern (x86) Approximate Value
+0 0000 00000000 00000000 0.0
-0 8000 00000000 00000000 -0.0
1 3fff 80000000 00000000 10
2 4000 80000000 00000000 2.0

max normal 7ffe FEEFFeef FREffref | 109 /31495357231 76505

e+4932

min positive normal 0001 80000000 00000000 | 3-362103143 112093 506 26
e-4932

max subnormal 0000 7fFFffff fEffffff | >0210314311209350608
e-4932

min positive subnormal 0000 00000000 00000001 | 3645199531882 474 60253
e-4951

+oo 7fff 80000000 00000000 |+

. ffff 80000000 00000000 |- oo

quiet NaN with greatest fraction TEff fEFFEFfFfqef FEFFFFAFHA QNaN

quiet NaN with least fraction 7fff c0000000 00000000 ONaN

signaling NaN with greatest fraction | 7f ff bfffffff ffffffff SNaN

signaling NaN with least fraction 7fff 80000000 00000001 SNaN

A NaN (Not a Number) can be represented by any of the bit patterns that satisfy the definition of NaN.
The most sgnificant bit of the fraction fild determines whether a NaN is quiet (bit = 1) or signaling
(bit =0).

Precision in Decimal Representation

This section covers the precisions of the IEEE single and double formats, and the double-extended
formats on SPARC and x86. Seethe earlier section on How Many Digits Do | Get? for more information.

The |EEE standard specifies the set of numerical values representable in a binary format. Each format
has some number of bits of precision (e.g., single has 24 hits). But the decimal numbers of roughly the
same precision do not match exactly the binary numbers, asyou can see on the number line:
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Comparison of a Set of Numbers Defined by Decimal and Binary Representation

Because the decima numbers are different than the binary numbers, estimating the number of
significant decimal digits corresponding to b significant binary bits requires some definition.

Reformulate the problem in terms of converting floating-point numbers between binary and decimal.
You might convert from decimal to binary and back to decimal, or from binary to decimal and back to
binary. It isimportant to notice that because the sets of numbers are different, conversions are in general
inexact. If done correctly, converting a number from one set to a number in the other set results in
choosing one of the two neighboring numbers from the second set (which one depends on rounding).

All binary numbers can be represented exactly in decimal, but usually this requires unreasonably many
digitsto do so. What really matters is how many decimal digits are needed, to insure no loss in converting
from binary to decimal and back to binary.

Most decimal numbers cannot be represented exactly in binary (because decimal fractions include a
factor of 5, which requires infinitely repeating binary digits). For example, run the following Fortran

program:
REAL Y, Z
Y = 838861. 2
Z =1.3

WR TE(*, 40) Y

40 FORMAT("y: ", 1PE18. 11)
WR TE(*,50) Z

50 FORMAT("z: ", 1PE18. 11)

The output should resemble:
y:  8.38861187500E+05
z.  1.29999995232E+00

The difference between the value 8.388612 x 10° assigned to y and the value printed out is 0.0125,
which is seven decima orders of magnitude smaller than y. So the accuracy of representing y in IEEE
single format isabout 6 to 7 significant digits, or y has about 6 significant digits.

Similarly, the difference between the value 1.3 assigned to z and the value printed out is
0.00000004768, which is eight decimal orders of magnitude smaller than z The accuracy of representing z
in IEEE single format is about 7 to 8 significant digits, or z has about 7 significant digits.

See Appendix F of http://docs.sun.com/source/806-3568/ncg references.html for references on base
conversion. They say that particularly good references are Coonen's thesis and Sterbenz's book.

Underflow

Underflow occurs, roughly speaking, when the result of an arithmetic operation is so small that it
cannot be stored in its intended destination format without suffering a rounding error that is larger than
usual; in other words, when theresult is smaller than the smallest normal number.

Underflow Thresholds in Each Precision

smallest normal number 1.175 494 35e-38

single largest subnormal number | 1,175 494 216 38
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smallest normal number 2.225 073 858 507 201 4e-308

double
largest subnormal number | 2,225 073 858 507 200 9e-308

double extended | smallest normal number | 3.362 103 143 112 093 506 26e-4932
(x86) largest subnormal number | 3.362 103 143 112 093 505 90e-4932

double extended | smallest normal number | 3.362 103 143 112 093 506 262 677 817 321 752 6e-4932
(SPARC) largest subnormal number | 3.362 103 143 112 093 506 262 677 817 321 752 0e-4932

The positive subnormal numbers are those numbers between the smallest normal number and zero.
Subtracting two (positive) tiny numbers that are near the smallest normal number might produce a
subnormal number. Or, dividing the smallest positive norma number by two produces a subnormal resuilt.

The presence of subnorma numbers provides greater precision to floating-point calculations that
involve small numbers, athough the subnormal numbers themselves have fewer bits of precision than
normal numbers. Gradual underflow produces subnormal numbers (rather than returning the answer
zero) when the mathematically correct result has magnitude less than the smallest positive normal number.

There are several other ways to deal with such underflow. One way, common in the past, wasto flush
those results to zero. This method is known as Stor e 0 and was the default on most mainframes before the
advent of the IEEE Standard.

The mathematicians and computer designers who drafted |IEEE Standard 754 considered several
aternatives, while balancing the desire for a mathematically robust solution with the need to create a
standard that could be implemented efficiently.

How Does IEEE Arithmetic Treat Underflow?

|EEE Standard 754 requires gradual underflow. This method requires defining two representations for
stored values, normal and subnormal.

Recall that the IEEE value for anormal floating-point number is; (—1)° x 259 x 1.f

where sisthe sign hit, e isthe biased exponent, and f isthe fraction. Only s, e, and f need to be stored
to fully specify the number. Because the leading bit of the significand is 1 for normal numbers, it need not
be stored (but may be).

The smallest positive normal number that can be stored, then, has the negative exponent of greatest
magnitude and a fraction of all zeros. Even smaler numbers can be accommodated by considering the
leading bit to be zero rather than one. In the double-precision format, this effectively extends the minimum
exponent from 10% to 10%*, because the fraction part is 52 bits long (roughly 16 decimal digits) These
are the subnor mal numbers; returning a subnorma number (rather than flushing an underflowed result to
zero) isgradual under flow.

Clearly, the smdler a subnorma number, the fewer nonzero hbits in its fraction; computations
producing subnormal results do not enjoy the same bounds on relative roundoff error as computations on
normal operands. However, the key fact is:

Gradual underflow implies that underflowed results never suffer aloss of accuracy any greater than
that which results from ordinary roundoff error.

Addition, subtraction, comparison, and remainder are dways exact when theresult is very small.
Recall that the IEEE value for asubnormal floating-point number is: (—1)° x 2 73*1 x 0.f

where sisthe sign hit, the biased exponent eis zero, and f isthe fraction. Note that the implicit power-
of-two bias is one greater than the biasin the normal format, and the leading bit of the fraction is zero.

Gradual underflow allows you to extend the lower range of representable numbers. It isnot smallness
that renders a value questionable, but its associated error. Algorithms exploiting subnorma numbers have
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smaller error bounds than other systems. The next section provides some mathematical justification for
gradual underflow.

Why Gradual Underflow?

The purpose of subnormal numbers is not to avoid underflow/overflow entirely, as some other
arithmetic models do. Rather, subnormal numbers eliminate underflow as a cause for concern for a variety
of computations (typically, multiply followed by add). For a more detailed discussion, see Underflow and
the Reliability of Numerical Software by James Demmel, and Combatting the Effects of Underflow and
Overflow in Determining Real Roots of Polynomials by S. Linnainmaa.

The presence of subnormal numbers in the arithmetic means that untrapped underflow (which implies
loss of accuracy) cannot occur on addition or subtraction. If x and y are within a factor of two, then x -y is
error-free. This is critical to a number of algorithms that effectively increase the working precision at
critical placesin agorithms.

In addition, gradual underflow means that errors due to underflow are no worse than usua roundoff
error. Thisisamuch stronger statement than can be made about any other method of handling underflow,
and thisfact isone of the best justifications for gradua underflow.

Error Properties of Gradual Underflow
Most of thetime, floating-point results are rounded:
computed result = true result + roundoff

How large can the roundoff be? One convenient measure of its Szeis called a unit in the last place,
abbreviated ulp. The least significant bit of the fraction of a floating-point number isits last place. The
value represented by this bit (e.g., the absolute difference between the two numbers whose representations
areidentical except for thishit) isa unit in the last place of that number. If the true result isrounded to the
nearest representable number, then clearly the roundoff error isno larger than haf aunit in the last place of
the computed result. In other words, in |EEE arithmetic with rounding mode to nearest,

0 < |roundoff | < /2 ulp
of the computed result.

Note that an ulp isardative quantity. An ulp of avery large number isitself very large, while an ulp
of atiny number isitself tiny. This relationship can be made explicit by expressing an ulp as a function:
ulp(x) denotes a unit in the last place of the floating-point number x.

Moreover, an ulp of afloating-point number depends on the floating point precision. For example, this
shows the values of ulp(1) in each of the four floating-point formats described above:

ulp(1) in Four Different Precisions
single ulp(1) = 2% ~ 1.192093e-07
double ulp(1) = 2% ~ 2.220446e-16
double extended (x86) ulp(1) = 2% ~ 1.084202e-19
quadruple (SPARC) ulp(1) = 2% ~ 1.925930e-34

Recall that only afinite set of numbers can be exactly represented in any computer arithmetic. Asthe
magnitudes of numbers get smaller and approach zero, the gap between neighboring representable numbers
narrows. Conversely, as the magnitude of numbers gets larger, the gap between neighboring representable
numbers widens.

For example, imagine you are using a binary arithmetic that has only 3 bits of precison. Then,
between any two powers of 2, there are 2° = 8 representable numbers, as shown here:
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of 172 1§ 2% 4§ a§ 168

The number line shows how the gap between numbers doubles from one exponent to the next.

In the IEEE single format, the difference in magnitude between the two smallest positive subnormal
numbers is approximately 10, whereas the difference in magnitude between the two largest finite
numbersis approximately 10°"!

Bel ow, nextafter(x, +o0) denotes the next representable number after x as you move towards +co.

Gaps Between Representable Single-Format Floating-Point Numbers
X nextafter(x, +o0) Gap
0.0 1.4012985e-45 1.4012985e-45
1.1754944e-38 1.1754945e-38 1.4012985e-45
1.0 1.0000001 1.1920929e-07
2.0 2.0000002 2.3841858e-07
16.000000 16.000002 1.9073486e-06
128.00000 128.00002 1.5258789e-05
1.0000000e+20 1.0000001e+20 8.7960930e+12
9.9999997e+37 1.0000001e+38 1.0141205e+31

Any conventional set of representable floating-point numbers has the property that the worst effect of
one inexact result isto introduce an error no worse than the distance to one of the representable neighbors
of the computed result. When subnormal numbers are added to the representable set and gradua underflow
isimplemented, the worst effect of one inexact or underflowed result is to introduce an error no greater than
the distance to one of the representable neighbors of the computed resuilt.

In particular, in the region between zero and the smallest normal number, the distance between any
two neighboring numbers equals the distance between zero and the smallest subnormal number.
Subnormal numbers eliminate the possibility of introducing a roundoff error that is greater than the distance
to the nearest representable number.

Because roundoff error isless than the distance to any of the representable neighbors of the true resuilt,
many important properties of arobust arithmetic environment hold, including these:

e X#y <=>x-y#0
o (X-y)+y=Xx towithinarounding error in the larger of x and y

o 1/(UX) = x, when x isanormalized number, implying 1/x #0
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An old-fashioned undeflow scheme is Store 0, which flushes underflow results to zero. Store O
violates the first and second properties whenever x —y underflows. Also, Store O violates the third property
whenever 1/x underflows.

Let A represent the smallest positive normalized number, which is aso known as the underflow
threshold. Then the error properties of gradual underflow and Store O can be compared in terms of A.

gradual underflow: |error| <%z ulpin
Store O: |error| = A

Even in sngle precision, the round-off error is millions of times worse with Store 0 than gradual
underflow.

Two Examples of Gradual Underflow Versus Store 0

The following are two well-known mathematical examples. The first example computes an inner

product.

sum = 0;

for (i =0; 1 <n; 1++)

{ sum = sum+ a[i] * y[i];
}

With gradual underflow, the result is as accurate as roundoff allows. In Store 0, a small but nonzero
sum could be delivered that looks plausible but is wrong in nearly every digit. To avoid these sorts of
problems, clever programmers must scale their calculations, which is only possible if they can anticipate
where minuteness might degrade accuracy.

The second exampl e, deriving a complex quatient, is not amenable to scaling:

(p(r/s)+q)+i(a(r/s)-p)
s+r(r/s)

a+ib=P9 assuming|r/§ <1, =
r+is

It can be shown that, despite roundoff, (1) the computed complex result differs from the exact result by
no more than what would have been the exact result if p +igand r +is each had been perturbed by no more
than a few ulps, and (2) this error analysis holds in the face of underflows, except that when both a and b
underflow, the error is bounded by a few ulps of |a + ib|. Neither conclusion istrue when underflows are
flushed to zero.

This agorithm for computing a complex quotient is robust, and amenable to error analysis, in the
presence of gradual underflow. A similarly robust, easily analyzed, and efficient algorithm for computing
the complex quotient in the face of Store 0 does not exist. In Store 0, the burden of worrying about low-
level, complicated details shifts from the implementer of the floating-point environment to its users.

The class of problems that succeed in the presence of gradual underflow, but fail with Store O, islarger
than the fans of Store 0 may realize. Many frequently used numerical techniquesfall in this class:

e Linear equation solving
e Polynomia equation solving
o Numerica integration
e Convergence acceleration
e Complex division
Does Underflow Matter?

In the absence of gradual underflow, user programs need to be sensitive to the implicit inaccuracy
threshold. For example, in single precision, if underflow occurs in some parts of a calculation, and Store 0
is used to replace underflowed results with 0, then accuracy can be guaranteed only to around 10>, not
10%, the usual lower range for single-precision exponents. This means that programmers need to
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implement their own method of detecting when they are approaching this inaccuracy threshold, or else
abandon the quest for arobust, stable implementation of their algorithm.

Some algorithms can be scaled so that computations don't take place in the constricted area near zero.
However, scaling the agorithm and detecting the inaccuracy threshold can be difficult and time-consuming
for each numerica program.
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9 Fourier Transforms and Digital Signal Processing

Signals, noise, and Fourier Transforms are an essential part of much data analysis. It is a deep and
broad subject, in which we can here establish only some foundational principles. The subject is, however,
rife with misunderstandings and folklore. Therefore, we here also dispel some myths. For more
specialized information, one must consult more specialized texts.

This section assumes you are familiar with complex arithmetic and exponentials, and with basic
sampling and Fourier Transform principles. In particular, you must be familiar with decomposing a
function into an orthonormal basis of functions. Understanding that a Fourier Transform is a phasor-valued
function of frequency is very helpful, but not essential (see Funky Electromagnetic Concepts for a
discussion of phasors).

We start with the most general (and ssimplest) case, then proceed through more speciaized cases. We
include some important (often overlooked) properties of Discrete Fourier Transforms. Topics:

o Complex sequences, and complex Fourier Transform (it’s actually easier to start with the complex
case, and speciaizeto real numbers later)

e Sampling and the Model of Digitization
e  Even number of pointsvs. odd number of points
e Basis Functions and Orthogonality
¢ Real sequences: even and odd # points
e Normalization and Parseval’s Theorem
e Continuous vs. discrete time and frequency; finite vs. infinite time and frequency
e Non-uniformly spaced samples
Brief Definitions

Fourier Series represents a periodic continuous function as an infinite sum of sinusoids at discrete

frequencies:
s(t) = i S<ei PLA where S arecomplex (phasors), t =time
k=0 f, =1/ period (in cycle/sor Hz), o, =27z f; (inrad/s)

f, = Uperiod, the lowest nonzero frequency, is called the fundamental frequency. fo= 0, aways.

Fourier Transform (FT)
represents a continuous function as an integral of sinusoids over continuous frequencies:

s(t) = j " s f)d2t of :% j " S()é do, where S()iscomplex
We do not discuss this here. The function s(t) is not periodic, so there is no fundamental frequency.
S(w) isaphasor-valued function of angular frequency.

Discrete Fourier Transform (DFT)
represents afinite sequence of numbers as a finite sum of sinusoids:

s =n21$<ei2”(k/”)j where § arecomplex (phasors), j =0, ... n—1= thesampleindex,
. k=0 ' f; =1/ period (in cyclels), @ =27 f; (inrad/s)

The sequence s may be thought of as either periodic, or undefined outside the sampling interval. Asin
the Fourier Series, the fundamental frequency is Uperiod, or equivaently 1/(sampled interval), and fo = O,
always.
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[Since a DFT essentialy treats the input as periodic, it might be better called a Discrete Fourier Series (rather
than Transform), but Discrete Fourier Transform is completely standard.]

Fast Fourier Transform (FFT)
an algorithm for implementing special cases of DFT.

Inver se Discrete Fourier Transform (IDFT)
gives the sequence of numbers s from the DFT components.

The general digital Fourier Transform isa Discrete Fourier Transform (DFT).
An FFT isan agorithm for special cases of DFT.

Model of Digitization and Sampling
All reaigtic systems which digitize analog signals must comprise at |east the componentsin Figure 9.1.

VA I R

—— . >
analog Filter (LPF) filtered analog Converter digita
signal /., signal (ADC) samples, §
sample clock,
fsamp

Figure 9.1 Minimum components of a Digital Signal Processing system, with uniformly spaced
samples.

In this example, the output of the digitizer is a sequence of real numbers, 5. Other systems (such as
coherent quadrature downconverters) produce complex numbers.

Sampling Does Not Produce Impulses

It is often said that sampling a signal islike setting it to zero everywhere except at the sample
times, or like creating a series of impulses. Itisnot.

These notions are not true, and can be mideading [O& S p8b]. Note that a single impulse (in time) has
infinite power. Therefore, a sum (sequence) of such impulses also has infinite power. In contrast, the
original signal, and the sequence of samples, has finite power. This suggests immediately that samples are
not equivalent to a series of impulses.

Nonetheless, there is an identity that involves impulse functions, which we discuss after introducing
the DFT.

Complex Sequences and Complex Fourier Transform

It’s actually easier to start with the complex case, and specialize to real numbers later. Given a
sequence of n complex numbers s, we can write the sequence as a sum of sinusoids, i.e. complex
exponentids:

Inver se Discrete Fourier Transform:

5; =23(e'2”(k/”)‘, where j=0,...n—1listhesampleindex
k=0
k = thefreguency of the K component, in cycle/sample
n
S = thecomplex frequency component (phasor)

Note that there are n original complex numbers, and n complex frequency components, so no information is
lost. Thetransform isexact, unique, and reversible. (In other words, thisis not a “fit.”)
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The above equation forces all normalization conventions. We use the smple scheme wherein a
function equals the sum of its components (with no factors of 2z or anything else).

Often, the index j is a measure of time or distance, and the sequence comprises samples of a signal
taken at equal intervals. Without loss of generality, we will refer to j asameasure of “time,” but it could be
anything. Note that the equation above actually defines the I nver se Discrete Fourier Transform (IDFT),
because it gives the origina sequence from the Fourier components. [Mathematicians often reverse the
definitions of DFT and IDFT, by putting a minus sign in the exponent of the IDFT equation above.
Engineers and physicists usually use the convention given here.]

Each number in the sequence is called a sample, because such sequences are often generated by
sampling a continuous signal s(t). For n samples, there are n frequency components, S, each at normalized
frequency k/n (defined soon); see Figure 9.2.

k=0

e 7 )y L

*4\} Complex Frequency

k=2 k=1 — fundamental ?‘ Components

51 frequency.
-
complex samples
n=10 ‘ ] T

j L1y

0123456789 0123456789

"signal period, aka sampleinterval

Figure 9.2 Samples in time, and their frequencies. For simplicity, the samples, sinusoids, and
component amplitudes are shown asreal, but in general, they are all complex valued.

Note that there are afull n sample timesin the sampleinterval (aka signal period), not (n — 1).

The above representation is used by many DFT functions in computer libraries.

Also, there isno need for any other frequencies, because k = 10 has exactly the same values at al the
sample points as k = 0. If the samples are from a continuous signal that had a frequency component at
k = 10, then that component will be aliased down to k = 0, and added to the actua k = 0 component. Itis
forever lost, and cannot be recovered from the samples, nor distinguished from the k = 0 (DC) component.
The same dliasing occurs for any two frequencies k and k + n.

The above definition isthe only correct meaning for “aliasing.”
Many (most?) people misuse this word to mean other things (e.g., “harmonics” or “sidebands”).

To avoid a dependence on n, we usually label the frequencies as fractions. For n samples, thereare n
frequencies, measured in units of cycles/sample, and running from f = 0to f = (1 — 1/n) cycles/sample. The
n nor malized frequencies are

fo=X k=0L..n-1 thatis {f,} ={o,1,3,§,...”—‘1}.
n nnn n
Thereisno f = 1, just asthereisno k = n, because f = 1 is an dlias of f = 0. Continuous Fourier
components are written as f), a function of f, so we re-label the above diagram with normalized
frequencies:
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basis = \ T\\ \ ( f=.9
frequenu&/,\}; Ui HRCTI Complex Fregquency
f=2 =1 ——fundamental i Components
51 frequency.
L o g
complex samples
n=10 [ I
| [11
0123456789 I 0123456.78.9

sampled interval

Normalized frequencies are equivalent to measuring timein units of the sample time,
and frequenciesin cycles/'sample.

For theoretical analysis, it is often more convenient to have the frequency range be -0.5 < f < 0.5,
instead of 0 < f < 1. Since any frequency f is equivalent to (an dias of) f — 1, we can simply move the
frequenciesin therange0.5<f< 1downto-0.5<f<0;

S(f) Complex Frequency S(f) Complex Frequency
Components Components
n=10
{ l
| hTrj.f ,MTrI P
123456 .7.8.9 -4-3-2-101.23405

For an even number of samples (and frequencies, diagram above), the resulting frequency set is
necessarily asymmetric, because thereisno f = -0.5, but thereisan f = +0.5. For an odd number of points
(below), the frequency set is symmetric, and thereisneither f =-0.5nor f=+0.5;

S(f) Complex Frequency S(f) Complex Frequency
Components n=>5 Components

-

—t— II:f :IT. if
4 -2 0 2 46 8 -4 -2 0 2 .4

Non-Equivalence of DFT and FT of Series of Time-Domain Impulses (Again)

As noted earlier, it is often said that sampling is like setting the function to zero between samples, or
creating a series of impulse functions. This isa common misconception. It iswell refuted by [Openheim
and Schafer p??, and dozens of other sgna processing experts]. It is easy to show that that claim is not
true, in several ways. One smple way is this: For a band-limited signal, | can reconstruct the signd
between the sample times from just the samples alone. That makes no sense if sampling amounted to
zeroing the signal between samples, because that would be a new function, which would destroy
information about the original. There would then be no way to recreate the original function from its DFT.

Furthermore, it is often said that the FT of a series of time-domain impulses isidentical to the DFT of
samples at those times. From the previous paragraph, this cannot be true, either. However, the fallowingis
true only at the (integer) k defined DFT frequencies of kw1:
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S(ax zse'k‘“lt j [Z 5(t-t; ]-'kwlt dt

o = fundamental frequency.

For frequenciesin between the kw,, the DFT isformally undefined, but can be taken as zero for the purpose
of reconstructing the original samples. However, at those in-between frequencies the FT has some non-
zero values which are usudly of little interest. So we see that the FT of a series of weighted impulses
(representing the sample values), evaluated at the DFT frequencies ko, 1S proportional to the DFT, but the
full-spectrum of the FT is different from the spectrum of the DFT. Hence, the two transformations are not
equivalent.

Basis Functions and Orthogonality
The basis functions of the DFT are the discrete-time exponentials, which are equivdent to sines and
cosines:
|Ok(j)zei(znk/n)j
where j=sampleindex=0,1,...n-1,
neven: —-n/2+1..-1,01...n/2
k =frequency index =0,1,...n-1 or
nodd: —int(n/2),..-101,...int(n/2).

Note that:

The DFT and FT are simply decompositions of functionsinto basis functions,
just likein ordinary quantum mechanics. The transform equations are just the inner products of
the given functions with the basi s functions.

The basis functions are orthogonal, normalized (in our convention) such that (b, |by,) = n &y, Proof:

CALW ZbK(nbm(n $ emmigeming _§ gy §* [gtasimimn ]
j=0 -

j=0 j=0 j=

For k = m, we have (bk|bm> [ ]j=n.

n-1 n .
Fork=muse » ) =11—_r where r=[é(2”’”)(Wk)}. Then:
j=0 B
1__ei(2n/n)(wk)_n {(2m)(mk)
1-e 1-1
= — _— = — —_ = — —_ = O =
ALY 1_[d@rimmk) ] T d(erm(m-k)] 4 _[d(2e/n)(mk) = | (belb) =1

The orthogonality condition allows us to immediately write the DFT from the definition of the IDFT
above:
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Discrete Fourier Transform:

n-1 )
S =£Zsj e 127 (K/Mi " \where S, =thek™ complex frequency component
N
j=0

k = the normalized frequency of the k" component .
n

Note that there are 2n independent real numbers in the complex sequence s, and there are also 2n
independent real numbers in the complex spectrum S, as there must be (same number of degrees of
freedom).

Real Sequences

An important case of sequence § is a real-valued sequence, which is a special case of a complex-
valued sequence. In this section, we use the positive and negative frequency DFT form, where k takes on

=n/2
both negative and positive integer values. Then for s; = z 3(3'2”('“ n

k~—n/2
complex conjugate pairs, i.e., the spectrum S must be conjugate symmetric:

)] to bereal, the S must occur in

S =S, fors; real, and k <int(n/2)+1.

Thisimpliesthat § isaways real, which isaso clear since § isjust the average of thereal sequence.

We now discuss the lower limit for k. (As discussed earlier, there is no k = —n/2). There are n
independent real numbersin thereal sequences. Wenow consider two subcases: n iseven, and nis odd.

For n even,
n/2 i2a(k/n)
o i2r(k/n)j )
Sj = z Se neven,s; real ,
k=-n/2+1

and we use the asymmetric frequency range —0.5 < f < 0.5, which corresponds to —n/2 + 1 <k < n/2 (Figure
9.3, l€eft). For an even number of sample points, since there are no conjugates to k = 0 or k = n/2, we must
have that § and Sy, arereal (actually, S being real gill satisfies conjugate symmetry). All other S, may be
complex, and are conjugate symmetric: S, = S

Complex Frequency Complex Frequency
n=10, Sf)  Components n=9, Sf) Components
yred - S&Sred | 1 Sre

il gl

-4 -3 -2 - . -44-33-22-11 0 .11 .22 .33 .4
| | [ |l |
w . K_/ .
conjugate symmetric conjugate symmetric

Figure 9.3 (Left) Sequence with even number of samples, n = 10. (Right) Sequence with odd
number, n=9.

Therefore, in the spectrum, there are (/2 — 1) independent complex frequency components, plus two real
components, totaling n independent real numbers in the spectrum, matching the n independent real numbers
in the sequence s.
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In terms of sine and cosine components (rather than the complex components), there are (/2 + 1)
independent cosine components, and (n/2 — 1) independent sine components  All frequencies are
nonnegative:

n/2-1

sj =R+ z {Akoos[Zn(k/n)j}+Bksin[27r(k/n)j}}+A1,zooszrj o
k=0 :

neven, s; red .

Notethat in thelast term, cos 7j isjust an dternating sequence of +1, -1, +1, ... .
For an odd number of points (Figure 9.3, right),
(/2 _ .
sj = Z sz (kimi nodd,
k=-(n-1)/2
thereis no k = n/2 component, and again there isno conjugateto k = 0. Therefore, we must have that & is
real. All other S are conjugate symmetric. Therefore, in the spectrum, there are (n — 1)/2 independent

complex frequency components, plus one real component (S), totaling n independent rea numbersin the
spectrum, matching the n independent real numbersin the sequence s

In terms of sine and cosine components (rather than the complex components), there are (n + 1)/2
independent cosine components, and (n — 1)/2 independent sine components. All frequencies are
nonnegative:

(n-1)/2

sj =R+ z {Akcos[Zn(k/n)j}+Bksin[2n(k/n)j}}, nodd, s; rea . (9.2)

k=0
Note that thereisno final lone-cosine term, and no alternating sequence.

These examples illustrate how the notation is dightly more involved for the cosine/sine form than for
the complex exponential form.

Normalization and Parseval’s Theorem

When the original sequence represents something akin to samples of voltage over time, we sometimes
speak of “energy” in thesignal. The energy of the signal isthe sum of the energies of each sample:

E, = stz =s;?, where G ="conductance", choosen to bel.

|
n-1 n-1

2
EzzEJ = SJ .
=0 =0

When the “conductance” is chosen to be 1, or some other reference value, the “energy” in the signal does
not correspond to any physical energy (say, in joules).

The energies of the sinusoida components in the DFT add as well, because the sinusoids are
orthogona (show why??):

n-1
2
E « Z|Sk| .
k=0
Parseval’s Theorem equates the energy of the origind seguence to the energy of the sinusoidal
components, by providing the congtant of proportionality. First, we evaluate the energy of a single
sinusoid:

n1, _
E, =|S<|22‘el(2”k’”)’ 2: n|S<|2 where k =frequencyindex =0,1,...n—1.
j=0
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Then summing over all frequenciesyidds:

n-1 n-1 5 n-1 5 n-1
E=Y B=n) |8 = E=nY IS/ =>s7 | (9.3)
k=0 k=0 k=0 j=0

Energy For Real Sequences. We derive Parseval’s Theorem for real sequences in two ways. Since
the 5 are real, the interesting form is the cosine/sine form of DFT, (9.1)and (9.2). We again consider
separately the cases of n even, and n odd.

Fird, for n even, k runs from 0 to (n/2). We can deduce the equation for Parseval’s Theorem by
exploiting the conjugate symmetry of the S. Recall that § has no conjugate term, nor does Syo+1.
Therefore:

2
Ep =AY, B2 =N(An2)"
For k=1, ... n/2, we have:

A =2Re(S}, B.=2Im{S}, | +|sif=2Re{S}?+2Im{S}® =
Ekzg(Ak2+Bk2), k=1..n/2.

We can derive this another way directly from (9.1). Since A, is a constant added to each s, the energy
contributed from thisterm isEo = nA,. Since cos zj isjust alternating +1, —1, ..., it’s energy at each sample
is1, and Enzs1 = N(An2)>. Finally, the average value of cos? over afull period is¥4, asis the average of sin’.
Therefore, for k=1, ... n/2, Ex = (W2)(AZ + B>

Second, for n odd, k runs from 0 to (n — 1)/2. The above arguments till apply, but thereis no lone-
cosineterm at theend. Therefore the result isthe same, without the lone-cosine term.

Summarizing:
nn/2—1
neven: E=nAf+n(A, ;) +2 (AZ+82)
k=1
n(n—l)/2
nodd: E=nA+2 Y (AZ+B7)
k=1

Other normalizations. Besides our normalization choice above, there are several other choices in
common use. In general, between the DFT, IDFT, and Parseval’s Theorem, you can choose a
normalization for one, which then fixes the normalization for the other two. For example, some people
choose to make the DFT and IDFT more symmetric by defining:

nl _
IDFT: s, = %z 5, 2]
Nico
= Ms[=>1s?  (atematenormalizations).
—i(27k/n)j k=0 j=0

1 n-1
DFT: =— > se
S ﬁ; ;
Continuous and Discrete, Finite and Infinite

TBS: Finite length implies discrete frequencies; infinite length implies continuous fregquencies.
Discrete time implies finite frequencies; continuous time implies infinite frequencies. Finite length is
equivalent to periodic.
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White Noise and Correlation

White noise has, on average, all frequency components equal (named by incorrect analogy with white
light); samples of white noise are uncorrelated. Non-white noise has unequal frequency components (on
average); samples of non-white noise are necessarily correlated. (Show this??).

Why Oversampling Does Not Improve Signal-to-Noise Ratio

Sometimes it might seem that if | oversample a signal (i.e.,, ssmple above the Nyquist rate), the noise
power stays constant (= noise variance is constant), but | have more samples of the signal which | can
average. Therefore, by oversampling, | should be able to improve my SNR by averaging out more noise,
but keeping all thesignal.

This reasoning is wrong, of course, because it implies that by sampling arbitrarily fast, | can filter out
arbitrarily large amounts of noise, and ultimately recover anything from almost nothing. So what’s wrong
with thisreasoning? Let’s take an example.

Suppose | sample asignal at 100 samples/sec, with white noise. Then my Nyquist frequency is 50 Hz,
and | must use a50 Hz Low Pass Filter (LPF) for anti-aliasing before sampling. This LPF leaves me with
50 Hz worth of noise power (= variance).

Now suppose | double the sampling frequency to 200 samples/sec. To maintain white noise, | must
open my anti-alias filter cutoff to the new Nyquist frequency, 100 Hz. This doubles my noise power. Now
| have twice as many samples of the signal, with twice as much noise power. | can run a LPF to reduce the
noise (say, averaging adjacent samples). At best, | cut the noise by half, reducing it back to its 100
sample/sec value, and reducing my sample rate by 2. Hence, I’'m right back where | was when | just
sampled at 100 samples/sec in thefirst place.

o Discrete white o Discrete white o Discrete correlated

E noise spectrum E noise spectrum E noise spectrum

= = =

e 2 01

< < T T < 1 T

50 Hz S0Hz  100Hz S0Hz  100Hz
Nyquist frequency Nyquist frequency Nyquist frequency
fsamp = 100 samples/sec fsamp = 200 samples/sec fsamp = 200 samples/sec

But wait! Why open my anti-alias LPF? Let’s try keeping the LPF at 50 Hz, and sampling at 200
samples/sec. But then, my noise occupies only Y2 of the sampling bandwidth: it occupies only 50 Hz of the
100 Hz Nyquist band. Hence, the noise is not white, which means adjacent noise samples are correlated!
Hence, when | average adjacent samples, the noise variance does not decrease by a factor of 2. The factor
of 2 gain only occurs with uncorrelated noise. In the end, oversampling buys me nothing.

Filters TBS??
FIR vs. lIR. Because the data set can be any size, and arbitrarily large:

| Thetransfer function of an FIR or |IR is continuous.

Consider somefilter. We must carefully distinguish between the filter in general, which can be applied
to any data set (with any n), and the filter as applied to one particular data set. Any given data set has only
discrete frequencies; if we apply thefilter to the data set, the data set’s frequencies will be multiplied by the
filter’s transfer function at those frequencies. But we can apply any size data set to the filter, with
frequency components, f = k/in, anywhere in the Nyquist interval. For every data set, the filter has atransfer
function at al itsfrequencies. Therefore, the filter in general has a continuous transfer function.
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H(f) H(f) H(f)

0.5 0.5 0.5

Data sets with different n sample the transfer function H(f) at different points. H(f), in generd, isa
continuous curve, defined at all pointsin the Nyquist interval f € [0, 1) or (-0.5, +0.5].

What Happens to a Sine Wave Deferred?

“.. Maybe it just sags, like a heavy load. Or does it explode?” [Sincere apologies to Langston
Hughes.] You may ask, “The DFT has only a finite set of basis frequencies. Can | use a DFT to estimate
the frequency of an unknown signal? What happens if | sample a sinusoid of a frequency in between the
chosen DFT basis frequencies? What is its spectrum?” Good questions. We now demonstrate. The
results here are important for generalizing the DFT, and spectra andysis in general, to non-uniformly
sampled signals.

We choose n = 40 samples, which means the basis frequencies are k(1/n), k = -19, ... O, ... 20,
measured in cycles per sample (or equivalently, in units of the sampling rate, fanp). The frequency spacing
is1/n=0.025 cycle/sample. No other frequencies exist in the DFT.

First, we show the result of sampling an existing-frequency sinusoid of f= 10/n= 0.25 cycle/sample (k
=10). Sincethe signal isreal, the spectrum is conjugate symmetric (S, = S¢); therefore, | show only the
positive frequencies, and double their magnitudes:

Sj =cos[2ﬂTij, f =%cycle/sample.

1.0

" I I o8l

H W e 02}

5 10 15 20 25 30 SR %835 0.1 0.2 0.3 0.4 05 06

(Left) A sampled sinusoid of f = 0.25, n = 40. (Right) As expected, its magnitude spectrum
(DFT) has exactly one component at f = 0.25, with magnitude 1.0.

[Notice that when the sample points are connected by straight segments, the sinusoid doesn’t “look”
sinusoidal, but recall that connecting with straight segmentsis not the proper way to interpol ate between samples.]

The “energy” of the sample set is exactly (1/2)40 = 20, because there is an integral number of cycles in
the sample set, and the average energy of asinusoid is%2.

Now we take our signa off-frequency by half the frequency spacing: f = 10.5/n = 0.2625 cycle/sample,
halfway between two chosen basis frequencies:
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(Left) A sampled sinusoid of f = 0.2625, n = 40. (Right) Its magnitude spectrum (DFT) has
components everywhere, but is peaked around f = 0.2625.

Not too surprisingly, the components are peaked at the two basis frequencies closest to the sinusoid
frequency, but there are also components at all other frequencies. This is an artifact of sampling a pure
sinusoid of a non-basis frequency for a finitetime. Note also that the total energy in the sampled signal is
dightly larger than that of thef = 0.25 sgnal, even though they are both the same amplitude. Thisis dueto
a few more of the samples being near a peak of the signal. This shift in total energy is ancther artifact of
sampling a non-basis frequency. For other signd frequencies, or other time shifts, the energy could just as
well be lower in the sampled signal. This energy shift also explains why the two largest components of the
spectrum are not exactly equal, even though they are equally distant from the true signa frequency of f =
0.2625.

Finally, instead of being half-way between allowed frequencies, suppose we’re only 0.2 of the way, f =
10.2/n = 0.255 cycle/sample;

1.0 1.0
| | |
| Il | i ,|| |
| | | A [ I
i | / i 1N I \ |
- il | ¥ o I I'-_ I\ o8|
osf | Y i I [ R | - Gl
| | [ | 3 | I
QR R 6 1 o (11 |
T A | ['] 1] I || | | | [ |1 | 06
| | )
00 1.4 | | | | | | | | | | | ) | l | |
T T 1
TETR (1] | IE [ 1 il i | |
|| | I { | 04
T | {1 | | | | | |
VE-3 W Lk e 1L L L
| o . 4y | L.f | |
0.5k (. | [ I e i) ']
1] | | I| \ | I'-._| 3§ | | | | 02f
|| \l | \ | \ ¥ |
| \ i |
|| ||| I| | |
=9 5 10 15 20 F3 30 ES 0 %80 0.1 0.2 0.3 0.4 05 06
f=0.255 f=0.255

(Left) A sampled snusoid of f = 0.255, n = 40. (Right) Its magnitude spectrum (DFT) has
components everywhere, is asymmetric, and peaked at f = 0.25.

The two largest components are till those surrounding the signal frequency, with the larger of the two
being the one closer to the signa frequency.

These examples show that a DFT, with its fixed basis frequencies, can give only arough estimate of an
unknown sinusoid’s frequency. The estimate gets worse if the unknown signal is not exactly a Snusoid,
because that means it has an even smaller spectral peak, with more components spread around the
spectrum.

Other methods exist for estimating the frequency of an unknown signal, even one that isnon-uniformly
sampled in time. If the Sgnal is fairly sinusoidal, one can correlate with a sinusoidal basis frequency, and
numerically search for the frequency with maximum correlation. This avoids the discrete-frequency
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limitation of a DFT. Other methods usually require many periods of data, e.g. epoch folding [Leahy, Ap J,
1983, val 266, p16077).

Nonuniform Sampling and Arbitrary Basis Functions

So far, we have used a signa sampled uniformly in time. We now show that one can find a Fourier
transform of a signal with any set of n samples, uniform or not. This has many applications. some
experiments (such as lunar laser ranging) cannot sample the signal uniformly for practical, economic, or
political reasons. Magnetic Resonance Imaging (MRI) often uses non-uniform sampling to reduce imaging
time, which can be an hour or more for a patient.

We write the required transform as a set of simultaneous equations, with t; as the arbitrary sample
times, and keeping (for now) the uniformly spaced frequencies:

n-1
S(to) = D Scexp(i (2rk /n)tg)
k=0

n-1
s(ty) = Y Scexp(i(27k/n)t) OR

k=0

n-1
Sty 4) = z$< exp(i(27k/n)t, )

k=0
S(to) exp(2zfoty)  exp(2zfity) ... exp(2zf,aty) || S
s(ty)

S(tn—l) eXp(ZTE fotn_l) eXp(ZTE fltn—l) eXp(ZTE fn—ltn—l) SW—l

How can we find therequired coefficients, S;?

The exponential functions are no longer orthogonal over the sample times,
they are only orthogonal over uniformly spaced samples.

Nonetheless, we have n unknowns (S, ... S.1), and n equations. So long as the basis functions are
linearly independent over the sample times, we can (in principle) solve for the needed coefficients, S. We
have now greatly expanded our ability to decompose arbitrary samples into basis functions:

We can decompose a signal over any set of sampletimes into any set of linearly independent
(not necessarily orthogonal) basis functions.

Note that Parseval’s theorem does not apply to the coefficients, since the basis functions (evaluated a
the non-uniform sample points) are no longer orthogonal. Also, § is no longer the average of the signa
values, since the sinusoids may have nonzero average over the sample points.

There is one more subtlety: what is the fundamental frequency f,? Equivalently, what is the sgnad
period? The two are related, because fo = 1/period. There is no unique answer to this. However, since a
finite signal transforms as if it is periodic, the period cannot be (t, 1 — to), since the first and last samples
would then have to be identical. The period must be longer than that. A convenient choice is to simply
mimic what happens when the samples are uniform. In that case,

period =(tn_l—t0)L1, fy =1/ period
n —_

This choice for period reproduces the traditional DFT when the samples are uniform, and is usually

adequate for non-uniform samples, as well.
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Example: DFT of a real, non-uniformly sampled sequence: We can set up the matrix equation to
be solved by recalling the frequency layout for even and odd n, and applying the above. We set to = 0, and
define n/2 asfloor(n/2). For illustration of the last two columns, we take n odd:

n/2
s(to)=Z$<[oos(ka)to)+sin(ka)to)} where w=2z7/n
k=0
n/2
sty) = Y S[ cos(kat; ) +sin(katy )] OR
k=0

n/2

S(tn1) = D Sc[ cos(Kt_y) +sin(Kety 1) |
k=0

st) ] [10 10 00 .. 1.0 0.0 s
sy) | |10 cos(at) sin(aty) .. cos((n/2)et;)  sin((n/2)aty) || s
s(tr.]_l) 1:0 cos( c;)tn_l) sin( a.)tn_l) cos((n/ 2) wt,4) sin((n/ 2) oty ) Sq._l

This gives us the sine and cosine components separately. For n even, the highest frequency component
isk=n/2, or w = 27kIn = 27(1/2) = = rad/sample, and the final column of sin(-) isnot present.

Note that thisis not afit; it is an exact, reversible transformation. The matrix is the set of all the basis
functions (across each row), evaluated a the sample points (down each column). The matrix has no
summationsin it, and depends on the sample points, but not on the sample values.

Example: basis functions as powers of x; In the continuous world, a Taylor series is a
decomposition of a function into powers of (x — a), which are a set of linearly independent (but not
orthogonal) basis functions. Despite thislack of orthogonality, Taylor devised a clever way to evaluate the
basi s-function coefficients without solving simultaneous equations.

Example: sampled standard basis functionss We could choose a standard (continuous)
mathematical basis set, such as Bessel functions, J,(t). For n sample points, ty, ... tn, the Bessel functions
are linearly independent, and we can solve for the coefficients, A.. We need a scale factor o for the time
(equivalent to 2zk/n in the Fourier transform). For example, we might use « = the (n —1)" zero of J,a(t).
Then:

St) =3 AJ, (to tiJ

n-1

) =3 A, (n%}

n-1 a
S(tn—l) = ; A(‘]k (tnl t_J

n-1

We have n equations and n unknowns, Ay, ... A, 1, SO we can solve for the A,.

Don’t Pad Your Data, Even for FFTs

Old fashioned FFT implementations required you to have N = a power of 2 number of samples (64,
1024, etc.). Modern FFT implementations are genera to any number of samples, and use the prime
decomposition of N to provide the fastest and most accurate DFT known. The worst case is when N is
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prime, and no FFT optimization is possible: the DFT is evaluated directly from the defining summations.
But with modern computers, thisis usually so fast that we don’t care.

In the old days, if people had a non-power-of-2 number of data points, they used to “pad” their data,
typically (and horribly) by just adding zeros to the end until they reached a power of 2. This introduced
artifacts into the spectrum, which often obscured or destroyed the very information they sought [Ham p?7).

Don’t pad your data. It screws up the spectrum.
With amodern FFT implementation, thereisno need for it, anyway.

If for some reason, you absolutely must constrain N to some preferred values, it is much better to throw
away some data points than to add fake ones.

Two Dimensional Fourier Transforms

One dimensional Fourier transforms often have time or space as the independent variable. Two
dimensional transforms amost always have space, say (X, y), as the independent variables. The most
common 2D transform is of pictures.

In the continuous world of light, lenses can physically project a Fourier transform of an image based on
optics, with no computations. This alows for filtering the image with opague masks, and re-transforming back to
the original-but-filtered image, all at the speed of light with no computer. But digitized images store theimage as
pixds, each with some light intensity. These are computationally processed by computer.

Basis Functions

TBS. Not sines and cosines, or products of sines and cosines. Products of complex exponentials.
Wave fronts at various angles, discrete k, and k.

Note on Continuous Fourier Series and Uniform Convergence

The continuous Fourier Series is defined for a periodic signal S(t) over a continuous range of times,

te [0, T):

s(t) = Z S<ei 2mken where  kay is the frequency of the k™ component
k=0
S is the complex frequency component

Note that the time interval is continuous, but the frequency components are discrete. In general,
periodic signals lead to discrete frequency components.

The continuous Fourier Seriesis not aways uniformly convergent.
Therefore, the order of integrations and summeations cannot always be interchanged.

Non-uniform convergence is illustrated by the famous Gibbs phenomenon: when we transform a
square wave to the frequency domain (aka Fourier space), retain only a finite number of frequency
components, and then transform back to the time domain, the square wave comes back with over shoot:
wigglesthat are large near the discontinuities:
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Gibbs phenomenon: (Left) After losing high frequencies, the reconstructed square wave has
overshoot and wiggles. (Right) Retaining more frequencies reduces wiggle time, but not
amplitude.

As we include more and more frequency components, the wiggles get narrower (damp faster), but do
not get lower in amplitude. This means that there are always some time points for which the inverse
transform does not converge to the original square wave. Such wiggles are commonly observed in many
electronic systems, which must necessarily drop high frequency components above some cut-off frequency.

However:

Continuous signals have Fourier Series that converge uniformly. This appliesto most physical
phenomena, so interchanging integration and summeation isvalid [F&W p217+].

Thisistrue even if the derivative of the signal is discontinuous.

Fourier Transforms, Periodograms, and Lomb-Scargle

In some circles, one hears the terms “Fourier Transform,” “periodogram,” and “Lomb-Scargle” a lot.
Each of these is digtinct, but they are related. Understanding the differences can help you anayze your
data. We provide here an overview of some common signal processing algorithms. Be warned:

Because spectral analysis can be tricky, its practice isrife with misunderstanding and mythol ogy. |

Throughout the text, | will occasionally note common misunderstandings, but there are too many for me to
correct them all. We address the Lomb-Scargle agorithm in particular, sinceit iswidely misunderstood.

Correspondingly, the terminology is aso highly confused and abused. We define here some common
terms in ways that are consistent with the majority of our (limited) experience in the literature. However,
there appears to be little universal agreement on precise definitions, especially across different disciplines.
(Words are the tools of communication; it isimpossible to make fine points with dull tools.) In thiswork,
we adhereto the following definitions:

e Spectral analysisisthe examination of periodic components of a data sequence.

e Theenergy of asngle data point is its squared magnitude, and is always > 0 (the term “energy”
derives from early applications where the squared magnitude was proportional to physical energy).
The “energy” of a sample-set is the sum of the squares of the samples. The “energy” of a
frequency component is the sum of the “energies” of that frequency taken over the sample times.

e The power in a frequency component isits squared magnitude, and is often normalized in some
specified way. In some references, the term “energy” is used for “power.” (As with “energy,” the
“power” in a component might be unrelated to physical power.) In this work, we occasionally
write “energy” and “power” in quotes, as a reminder that they are not physical energy and power.
For non-uniform sampling, the “energy” of a frequency component is not proportiona to its
“power.”

e The statistical significance is the false aarm probability, often called apha a. Experimenters
usually choose o before analyzing the data. It is the probability that a pure noise signal will, by
chance, suggest the presence of a signal. It is essentially the same as the p-value. Note that a
lower significance means aresult is more sgnificant, i.e. morelikely real, and less likely random.
Nonetheless, authors often speak loosely of “higher” significance meaning “more significant” or a
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lower significance value. It is more clear to say “more significant” instead of “higher
significance.”

o A detection parameter isa dtatistic calculated for atrial Sgnal that (roughly) tells how likely the
trial isto be area phenomenon, rather than a result of random chance. A higher significance
means a result isless likely to be random. In Lomb-Scargle, the significance of a frequency tells
how likely that frequency is to be a significant component of the signal. Note that “significance”
is different than “power.”

e A DFT (Discrete Fourier Transform) is a precisely defined decomposition of a sequence
(uniformly spaced or not) into a set of sinusoidal components. (An “FFT” is just an efficient way
to perform a DFT in some limited cases. We have limited use for “FFT” here.) DFTs use
uniformly spaced frequencies, but are easily extended to non-uniformly spaced frequencies.

e A periodogram is some kind of graph of periodic components of a sample set. There are many
methods for producing a periodogram, which produce different results [2]. Therefore, a
“periodogram” is less well-defined than a DFT. Usually, the frequencies in a periodogram are
uniformly spaced, but the periodogram frequency spacing may be tighter than the DFT.

e Lomb-Scargleisaformulafor finding the significance of a given snusoidal frequency in data.

e A Lomb-Scargle periodogram is a graph of detection parameter vs. frequency, where each
parameter is computed with the Lomb-Scargle algorithm. The “LS” in periodogram can stand for
either “Lomb-Scargle” or “Least Squares”, since the Lomb-Scargle algorithm produces the
detection parameter for a least squares sinusoidd fit. Note that the LS algorithm produces a
detection parameter, not power, despite common belief to the contrary.

Be careful to distinguish between uniformly spaced samples of data,
and uniformly spaced frequenciesin the periodogram.

Caution: For orthogonal basis functions (as in a uniformly sampled DFT), the energy and power of
every frequency are proportional, and therefore the terms are often interchanged. However, for non-
uniform sampling, the “energy” of a frequency component is not proportional to its “power.” This is the
crux of the confusion about the LS “periodogram.” The LS result is essentidly the “energy” of a given
sinusoidal frequency in the data, used to help find significant sinusoids in the data.

The Discrete Fourier Transform vs. the Periodogram

The single biggest distinction between a DFT and a Lomb-Scargle periodogram is that
the DFT simultaneously optimizes all the componentsto form an exact transformation.
A Lomb-Scargle periodogram examines each frequency by itself, regardless of other frequencies.

The DFT is exact, and invertible, with no loss of information. At times, this can be a plus, but in many
cases, this “exactness” results in anomalies. In particular, any set of physical measurements is only a
subset of the exact representation of the physical phenomenon. In other words, a sample set isincomplete,
and so the information contained in it is limited. In addition, all measurements contain some noise. If we
put such a sample set into a DFT, it gives us frequency components which exactly match the given
incomplete samples, noise and all. To achieve this exactness, the DFT must sometimes contort the
spectrum in unphysical ways. In particular, highly non-uniformly sampled signals often result in large DFT
artifacts. By definition, a DFT produces a spectrum of precisely defined, uniformly spaced frequencies.
[However, one can easily compute an exact decomposition onto an arbitrary set of frequencies, and
furthermore, onto an arbitrary set of basis functionsthat need not be sinusoidal.]

As stientists, we often would rather see something less mathematically exact, and more physically
meaningful. We combine dl our knowledge of the system (and science in general) with our limited, noisy
data, to reach new conclusions. A periodogram provides a way to look at frequency content of a signal,
without some of the unphysical anomalies of an exact DFT. Also, a periodogram can plot results at an
arbitrary set of frequencies, not just those defined in aDFT. In fact, periodograms usually choose a larger,
and more densely packed, set of frequencies than a DFT produces. However, periodograms suffer from
anomalies, aswell.
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In a DFT, the frequency components don’t “overlap,” in the sense that none of the “information” of
one component appears in any other component. This is true even though the basis sinusoids are not
orthogonal over the given sample times. There is no “extra” information in the DFT: e.g., a sample set of n
= 40 pointstransforms into exactly 21 cosines and 19 sines, having exactly the same 40 degrees of freedom
astheoriginal data set.

In contrast, in a periodogram, the component powers are themselves correlated, and the information
from one component also shows up in some of the other components (especially adjacent components).
Furthermore, especially in small data sets [ref??], the non-orthogonality of the periodogram’s sinusoids
may cause a single component of the data to produce spikes at multiple widely-spaced frequencies in the
periodogram. This may mislead the user into believing there are multiple causes, one for each peak.
Finally, for any sample size n, we can make a periodogram with any number of frequencies, even far more
than n. Thisagain shows that the periodogram contains redundant information.

Despite common belief, a Lomb-Scargle periodogram is not a periodogram of sinusoidal “power.” It
is a graph of detection parameter vs. frequency, where each parameter is computed by a minimum least-
squares residua fit of a single sinusoid a that frequency [3]. For large data sets, or well-randomized
sample times, the parameter value approaches the power, so people often “get away with” confusing the
two. However, for small data sets, or those where the sample times are clustered around a periodic event
(say, nighttime), the significance of a frequency can be very different than its “power” estimate. Note that
when the sample times are clustered around a frequency, say 1 cpd (cycle per day), it can affect many
frequenciesin the sample, especially near harmonics or sub-harmonics (e.g., 2 cpd, 3 cpd, 0.5 cpd, €tc.).

When fitting asinusoid of given frequency to data, there are two fit parameters. These may be taken as
cosine and sine amplitudes, or equivalently as magnitude and phase of a single sinusoid. The true “power”
at that frequency (considered by itself) is the sum of the squares of the cosine and sine amplitudes, or
equivalently, the square of the magnitude.

Practical Considerations

Here are a few possible issues with spectral analysis. Again, it is a highly involved topic, and these
issues are only atiny introduction to it.

Removing trends. Before using spectral analysis, it is common to remove simple trends in the data,
such as a constant offset, or straight line trends [ref?7]. A straight-line introduces a complicated spectra
structure which often obscures the phenomena of interest. Thus, removing it before spectra analysis
usually helps. A constant offset introduces spurious frequency detections, especially for bunched samples,
as are typical astronomica data. Also, constant offsets may lead to worse round-off error. Furthermore,
even though you should never pad your data (see below), padding with zeros when your data has a non-
zero average only compounds your error.

Stepwise regression:  Sometimes we have in our data a frequency component which is obscuring the
phenomenon of interest. We may model (fit) that frequency, and subtract it from the data, in hopes of
revealing the interesting data. Note that finding frequencies in our data, and subtracting them, one a a
time, is smply the standard statistical method of stepwise multiple regression (not simultaneous multiple
regression). We are “regressing” one frequency component at a time. Therefore, stepwise frequency
subtraction has all the usual pitfalls of stepwiseregression. In particular, the single biggest component may
be completely subsumed by two (or more) smaller components. Therefore, when performing such stepwise
frequency modeling, it may help to use the sandard method of backward eimination to delete from the
model any previoudy found component that is no longer useful in the presence of newer components.

Computational burden: Many decomposition algorithms rely on some form of orthogonality, e.g.,
thisisthe basis (wink) of Discrete Fourier Transforms. Orthogonality allows a basis decomposition to be
done by correlation (aka using inner-products). Recall that such a correlation decomposition, including
Lomb-Scargle periodograms, requires O(n®) operations. In contrast, anon-orthogonal decomposition, such
asa DFT over non-uniform sample times, solves simultaneous equations requiring O(n®) operations, so can
be much dower. For n = 1,000 samples, the non-orthogonal decomposition is about 1,000 times dower,
and requires hillions of operations. This may be a noticeable burden, even on modern computers (perhaps
requiring many minutes).
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Smoothed DFT: One surprisingly common approach to making a periodogram (not Lomb-Scargle) is
to make a DFT, with its possible anomalies, and then try to disperse those anomalies by “smoothing” the
resulting graph of power vs. frequency. | believe smoothing a DFT is like trying to invest wisdy after
you’ve lost all your money gambling. It’s too late: you can’t get back what’s already lost. Likely much
better isto make some other kind of periodogram in the first place, and don’t use a DFT, or use it only as
guidance for more appropriate analyses. In particular, with highly non-uniformly spaced samples, the DFT
anomalies include large (but unphysical) amplitudes, which are not removed by smoothing. Furthermore,
smoothing a DFT of nonuniformly spaced samples requires O(n®) operations, so it not only likely produces
poor results, it does so dowly.

One possible advantage of the “smoothed DFT” approach is that for very large data sets (n > ~10,000),
if nisamenable to a Fast Fourier Transform and your samples are uniformly spaced, then the DFT can be
donein O(n log n) operations. A typical Lomb-Scargle periodogram requires O(n?) operations. However,
Press and Rybicki [1] provide a way to use FFT-like methods to create a Lomb-Scargle periodogram, thus
using O(n log n) operations. While ill slower than a true FFT, this makes Lomb-Scargle periodograms of
millions of data pointsfeasible.

Bad information: As mentioned earlier, many references (seemingly most references, especially on
the web), are wrong in important (but sometimes subtle) ways. E.g., some references actually recommend
padding your data (ddmost always a terrible idea, discussed esewhere in Funky Mathematical Physics
Concepts). Many references incorrectly describe the differences between uniform and non-uniform
sampling, the meaning of FFT, aliasing, and countless other concepts. In particular,

Some references say that sampling asignal islike
setting it to zero everywhere except the sampletimes. It isnot.

This is a common misconception, which is discussed earlier in the section “Sampling.”
The Lomb-Scargle Algorithm

We here describe the Lomb-Scargle (L-S) algorithm; the next section explains how it works. We start
with n discrete measurements (samples), s, taken at timest, j = 0, ... n-1. The algorithm first finds the
time offset that makes the cosine and sine orthogonal over the given sanpletimes

n-1
ZSiHZa)t-
n-1 = J
Jrsuchthat ) cosetjsinet;=0.  rsatisfies tan(2or)=17——
j=0 .
ZCOSZth
j=0

Note that z depends on w; S0 each w has its own 7. Also, t depends on the sample times, but not on the
measurements, s.

Next, L-S subtracts out the average signal, giving samples
h; =s; —<sj> where <sj>za\/erageof Sj -

Then the Lomb-Scargle normalized periodogramis, in inner product notation:

D(w)= Z_iz[é;’j:z; N é::ﬂ;‘):)] [from[1] eq. 3p277]

2

where s° = unbiased weighted sample variance.

We deliberately use the non-standard notation D(w), rather than P(w), to emphasize that the L-S parameter
is a detection statistic, not a power (despite widespread belief). Expanded in more conventional notation,
the L-S normalized periodogram is[1]:
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[Ehj COSa)(tj —‘[)J [Ehjsina)(tj —‘[)J
D(w)=—1 | U 4 =0 [[1] eq.3p277] .

232 n-1 5 n-1 L,
Z)oos a)(tj —‘[) Z)sm a)(tj —1)
i= i=

NB: This assumes equal uncertainties on the data. Thisis exactly the equation for energy one gets from a
standard statigtical fit which minimizes the residua signal in a least-squares sense (i.e., minimum residua
energy) [4]. Such afit isasmultaneous 2-parameter linear fit (for A and B) to the modd:

St (t) = Acos(w(t 7))+ Bsin(e(t-7)), Prye(®) = A% + B2

Pirue(@) is the true estimate of the “power” at w, because it is proportional to the squared amplitude of
the fitted sinusoid at frequency w. For large data sets, or well-randomized sample times, D(w) approaches
being proportional to Py () a al frequencies. Therefore, the parameter D(w) is often used as a subgtitute
for the spectral power estimate, Pye(w). As with most hypothesis testing, the presence of a spectral line
(frequency) is deemed likely if the line’s parameter is substantially less likely than that expected from pure
noise. Since both terms in the L-S formula are gaussian random variables (RVs), the Lomb-Scargle
expression in brackets for pure gaussian noise is proportional to a y%-, distribution. The factor of 1/2
makes the probability distribution of D(w) approach a unit-mean exponential [3], rather than a 4% -.
However, the normalization by s means that D(w) is exactly beta distributed (not F distributed, as thought
for decades) [A. Schwarzenberg-Czerny, 1997].

Note that & is (close to) the average “energy” (squared value) of the samples (remember that the
average value of al the samples has been subtracted off, so the h, have zero average). The Vs in this
equation makes the result independent of the signal amplitude, i.e. multiplying all the data by a constant has
no effect on the periodogram. Also, for pure noise, D(w) is roughly independent of the number of samples,
n, since & is independent of n, and the numerators and denominators both scale roughly like n. The

numerator summations scale like /n , because they are sums of random variables (noise).

In contrast, if a signal is present at frequency w, D(w) grows like n, because then the numerator
summation grows like n. Thus, if asignd is present, it becomes easier to detect with alarger sample s,
consistent with our intuition.

The Meaning Behind the Math

Understanding exactly what Lomb-Scargle does, and how it works, puts you in a powerful position to
know when to use it, and itslimitations. Also, if you ever want to develop a novel agorithm, or have ever
wondered how others devel op them, Lomb-Scargle provides an interesting and informative example of the
process. (However, our derivation here is very different from Lomb’s original [Lom].) The Lomb-Scargle
formulamay look daunting, but we can understand and derive it in just afew high-level steps:

1. Given our basis of cosine and sine, find away to make them orthogonal .
2. Use standard orthogonal decomposition of our datainto our two basis functions.
3. Normalize our coefficients, being careful to distinguish power-estimate from detection parameter.
4. Provethat the correlation amplitude of the previous stepsis equivalent to the | east-sguares fit.
We complete these steps below, in full detail.
1. Make Cosine and Sine Orthogonal

When making a LS periodogram, we are not performing a basis decomposition. We are separately
finding correlations with each periodogram frequency, without regard to any other frequencies. For red-
valued data (i.e., not complex), there are two basis functions at any frequency: cosine and sine. We need
both to find the detection level (and also the “power”) at that frequency.
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At any given frequency, o, we have two basis functions, cos(wt) and sin(wt), which we write as a sum:
Acos(wt) + Bsin(wt) . Recall how a uniformly sampled DFT works: w is a multiple of the fundamental

frequency, and our sampletimes are uniformly spaced. Then cosine and sine are naturally orthogonal:

o =amultiple of fundamenta frequency

7
N

os(w jAt)sin(wjAt) =0, where < j = sample number

Il
o

At = sampling period =1/ fgp,

Using this orthogonality, we find our coefficients A and B separately, using inner products:
n-1
A=(s|cos) = ZS cos(wjAt), =(s|sin) = ZS sin(wjAt).
j =0

The power at frequency o isthen A + B2

In contrast, for arbitrary sample times t; (as in much observational data), or for arbitrary w, cos(-) and
sin(-) are not orthogonal (i.e., they are “correlated”):

. o = arbitrary frequency
C= z ( )sm(a)t ) =0, where < j = sample number

t; = arbitrary sample times.

Being correlated, we cannot use simple inner-products to find A and B separately. Furthermore, the
presences of other components prevents us from smply simultaneoudly solving for the amplitudes A and B.

Despite being corrdlated, cosines and sines are usually till a convenient basis, because they are the
eigenfunctions of linear, time-invariant systems, and appear frequently in physical systems. So we ask: Is
there a way to “orthogonalize” the cosines and sines over the given set of arbitrary sample times? Yes,
thereis, aswe now show.

Consider the basis-function parameters we have to play with: amplitude, frequency, and phase. We are
given the frequency, and are seeking the amplitudes. The only parameter left to adjust is phase (or
equivalently, a shift in time). So we could write the correlation amplitude C above as a function of some

phase shift ¢

n-1
C(g)= Zc:os(a)tj - q})sin(a)tj —¢) .

i=0

Can we find a phase shift ¢ such that C(¢) = 0O, thus constructing a pair of orthogonal cosine and sine?
The simplest shift | can think of is z: cos(w + 7) = —cos(w), and similarly for sin(-). Thus aphase shift of
7 hegates both cosine and sing, and the correlation is not affected: C(z) = C(0). The next smplest shift is
#/2. This converts cos(-) — s€in(:), and sin(-) — —cos(+), so C(z/2) = —C(0). This is great: C(¢) is a
continuous function of ¢, and it changes sign between 0 and n/2. This means that somewhere between 0
and /2, C(¢) = 0, i.e. the cosine and sine are orthogonal .

The existence of a phase-shift ¢y which makes cosine and sine orthogonal is important, because we can
always find the required ¢, numerically. Even better, it turns out that we can find a closed-form expression
for ¢o. We noticethat the correlation C(¢) can be rewritten, using a smple identity:

n-1 n-;
sin20 = 2cosfsin6 = Cldo) =0= D 2sin(20t; ~24y). or > sin(2et; —24y)=
j=0 j=
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Given the sample times t;, how do we find ¢? We can use geometry: let’s set ¢ = O for now, and plot the
sum of the vectors corresponding to (x = cos(2w), Y = sin(2wt) ), for some hypothetical sample times, t;.
Each vector isunit length (see Figure 9.4).

sin(2ot)
=1 \'7?
j=3_—=""
/ \////// 1
" 1
— !
j=0 _— :ZjS|n20)tj
. 2(15;\ . cos 2mt; E
e S e TLTLTIT cos(2wt;)

Figure 9.4 Sum (blue) of n = 4 vectors corresponding to (X = cos(2wt)), y = Sin(2wt)) )

[This is equivalent to plotting the complex numbers exp(i2wy) in the complex plane] In the example
shown above, if we rotate all the vectors clockwise by 2¢, then the sum of the sine components will be
zero. The components of the vector sum are the sums of the components, so:

n-1
ZSmZa)tJ 1
tan(24p)=10——— = Clgp) =D cos(et; —go)sin(at; —¢)=0.

z CoSs2wt i i=0

In other words, we rotate each component (in the 2w set) by —2¢,, which corresponds to rotating each
component of our original (1w) set by —¢v. This gives the condition we need for orthogonality.

Any phase shift, at a given frequency, can be written as a time shift. By convention, Lomb-Scargle
uses a subtracted time shift, so:

207 = 24, = C(¢O)=nz_lcos(a)(tj —r))sin(a)(tj —T))=o.

i=0

With this time shift, as with the ¢ phase shift, the cosines and sines are orthogona over the given sample
times. Be careful to distinguish ¢, the orthogonalizing phase shift, from the fitted-sinusoid phase, usually
called ¢.

2. Useorthogonal decompasition of our data into our basis functions

Now that we have orthogonal basis functions (though not yet normalized), we can find our cosine and
sine coefficients with simple corrdations (aka inner-products):

-1 -1
A'=(h|oos)=n2hj coso(t; -7), B'=(h|sjn>=n2hjsjnw(tj -7) (unnormalized) ,
i=0 j=0

where the primes indicate unnormalized coefficients. Note that, because the offset cosine and sine
functions are orthogonal, A’ and B’ fit for both components Simultaneoudy. That is, orthogonality implies
that the individual best fits for cosine and sine are al so the simultaneous best fit.

3. Normalize Our Coefficients
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With al orthonormal basis decompositions, we require normalized basis functions to get properly
scaled components. We normalize our coefficients by dividing them by the squared-norm of the
(unnormalized) basis functions:

n-1 n-1
h] COSCO(tJ —‘[) Zhjsma)(tj —‘[)
B' j= .
9 , B= (sin|sin> = Jn?l (normélized) .

ZOSinz a)(tj —T)
j=

These formulas are similar to the two terms in the Lomb-Scargle formula. The normalized coefficients, A
and B, yidd atrue power estimate for a best-fit sinusoid:

A=

T on4

59 8t )
j=0

A:

Rrue(®) = A%+ B? from Siit (w) = ACOSa)(tJ- —‘L')+ BSina)(t]- —‘L') .

To arrive at the Lomb-Scargle detection parameter, we must consider not the true power estimate,
Pirue(@), but the contribution to the total sample set “energy” (sum of squares) from our fitted sinusoid,
Sitl(w), at the given sample times. For example, for a frequency component with a given true power, if the
sinusoid happens to be small at the sample times, then that component contributes a small amount to the
sample-set “energy.” On the other hand, if the sinusoid happens to be large at the sample times, then that
component contributes alarge amount to the sample-set “energy.”

The significance of a frequency component at  isafunction of the ratio of the component’s energy to
that expected from pure noise. Given a component with cosine and sine amplitudes A and B, its energy in
the sample set isthe sums of the squares of its samples, at the given sample times:

E(w) = nz_l[ACOSa)(tj _T)T + E[Bgnw(tj _1)}2

j=0

1 1
RS R oft, o)+ 823 sn?a(t, )

j=0 j=0
n-1 2 n-1 2
= J=n(il + J=n(il '
ZCOSZa)(tJ- —‘[) ZSinza)(tj —T)
j=0 j=0

Thisis precisely the Lomb-Scargle detection parameter.

For wideband noise, with no signal, the samples h; are independent identically distributed (11D), with
variance equal to the noise power, o°>. Across many sets of noise, then, the numerators above have
variance:

n-1 n-1
oA =6220082(0(tj —‘[), og =6225in2w(tj —1)
j=0 j=0

This means each term in E(w) has variance = ¢°.

For gaussian noise, A and B are gaussian, and E(w) isthe sum of their squares, scaled to the estimated
variance = o>. Therefore, E(w)/o” (Aways < 1) is distributed with CDF an incomplete beta function [A.
Schwarzenberg-Czerny, 1997]. (For decades, it was thought that E(w)/o® was »°-, distributed, but it is
easy to show that it is not: ¥* has no upper bound, but E(w)/o” < 1.) Nonetheless, assuming the incorrect
7%= distribution, Lomb-Scargle divides by 2 to get a more-convenient exponential distribution with x = 1:
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n-1 2 n-1 2
J:no—l + J:no_l

ZCOSZa)(tj —‘[) ZSinza)(tj —‘[)
j=0 j=0

Elo) 1
o2 202

D(w) =%

Thisis the standard (though flawed) formula for LS detection. Note again that we don’t know the true o%;
we must estimateit from the samples.

N. R. Lomb first derived this result with a completely different method, using the standard “normal
equations” for least-squares fitting [5].

4. Provethat the correlation amplitude of the previous stepsis equivalent to the least-squar es fit

Thisis ageneral theorem: any correlation amplitude for a component of a sequence § is equivalent to a
least-squares fit. We prove it by contradiction. Given any single basis function, by, we can construct a
complete, orthonormal basis set which includes it. In that case, the component of by is found by
correlation, asusua. Call it A,

The least-squares residue is simply the energy of the sequence after subtracting off the b, component.
Since the basis set is orthonormal, Parseval’s theorem holds. Thus, the residual energy after subtracting the
b« component from 5 is the sum of the squares of all the other component amplitudes. If there existed
some other value of A, which had less residual energy, then that would imply a different decomposition
into the other basis functions. But the decomposition into an orthogona basisis unique. Therefore, no Ay
other than the one given by correlation can have a smaller residual.

| The basis coefficient given by correlation is aleast-squares-residual fit. |

This proof holds equally well for discrete sequences s, and for continuous functions s(t).

Bandwidth Correction (aka Bandwidth Penalty)

Determining the significance of asignal detection requires some care, snce most agorithms search for
any one of many possible signals. For example, when searching for periodic signas in noisy data, one
often searches many trial frequencies, and a “hit” on any frequency counts as a detection. How do we
determine the significance (p value) of such adetection? pis also called the “false alarm” probability.

All the common periodic-signal detection algorithms require bandwidth correction, because if one
makes enough attempts, even an unlikely outcome will eventually happen. If one tries many frequencies,
the probability that one of them exceeds a threshold is much higher than the probahility of a single given
frequency exceeding that threshold. From elementary statistics, if the parameters for al frequencies are
independent, the probability that they are all not false alarm (FA) is the product of the probabilities that
each one is not false dlarm. For M independent parameters at various frequencies, and a given p-value,
then in our gaussian white noise case (i.e., the standard Null Hypothesis of no signal):

Pr(all not FA ) = Pr(onenot FA)Y = (1- p )M
. M
confidencelevel =1- p=Pr(al not FA) =(1-py¢ ) .

Therefore, to achieve an overal p-value for all frequencies of p, we must choose the p-value for each trial
frequency such that [ Schwarzenberg-Czerny (1997)]:

1-p=(1-py )" = pr=1--pM.

Since p isusualy small (<~ .05), we can often use the binomial theorem to approximate:
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(1- p)ll M

For simulations, we may want to estimate M from p and py. For example, we choose py;, measure p, and
from that estimate M. Solving the above for M:

~1-p/M, pis = p/M .

In(1- p)

In(1- p)=MIn(1- py ), M=m.

Larger M is more demanding on your data.
Being conservative on a claim of detection means favoring larger M.

In most period-searching methods (except for the DFT), we are free to search as many frequencies as
we like, a as dense a tria frequency spacing as we like. We call our significance parameter 6 = 6(f),
because it is a function of frequency. Intuitively, we expect that two very close frequencies will produce
similar 6 values, and indeed, such 6-values are correlated (in the precise statistical sense). So our problem
reduces to determining M, the number of independent frequenciesin our arbitrary set of frequencies.

The bottom line is that, for dense trial frequencies, M is approximately the same as if we had equally
spaced samples, and therefore a smple DFT [Press 1988]. Such a DFT has independent frequency
components. This smple-sounding result, however, requires understanding a few subtleties, especially
when the trial frequencies are sparse.

We consider 3 cases, starting with the simplest:
e  Uniformly space data points, uniformly spaced frequencies (i.e., aDFT).
e Arhitrarily spaced data points, uniformly spaced frequencies.
e Arhitrarily space data points, arbitrarily spaced frequencies.

Notation:
0 significance parameter, such as Lomb-Scargle, Phase Dispersion Minimization, etc.
Af the independent frequency spacing.
N number of data samples.
M number of independent ¢ values over our chosen set of frequencies.
BW the total range of frequenciestried: BW = fiax — frin.
T thetotal duration of samples. T = tax— thin.

Equally spaced samples. |If our samples our equally spaced, we have the common case of a Discrete
Fourier Transform (DFT). For white (i.e., uncorrelated) noise, each frequency component is independent
of all the others. Furthermore, in the relevant notation (where al frequencies are positive), the maximum
number of frequencies, and their spacing, is

max # DFT frequencies= N/2, Af =1/T.

Note that the maximum number of frequencies depends only on the number of data points, N, and not on T.
However, we may be looking for frequencies only in somerange (Figure 9.2).
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Figure 9.5 Sample frequency spectrum for uniformly spaced discrete time data (here Af = 0.1).
BW defines a subset of frequencies (here BW = 0.325).

Therefore, for dense trial frequencies (Afyiy < Af), the number of independent frequenciesis approximately:
M ~ BW/Af =(BW)T =0.325/0.1=3.25—> 4.

Weround M up to be conservative.

Arbitrarily spaced samples. In astronomy, the datatimes arerarely uniformly spaced. In such cases,
we usually choose our trial frequency spacing, Afyiy, t0 be dense, i.e, smaler than the independent
frequency spacing: Afyia < Af = I/T. Then, per [Press 1988], we use the same equations as above to
approximate Af and M:

AF =T, M ~ BW/Af =(BW)T, (Afyia <AF). (9.4)

Note that this is true even if BW > Nyquist frequency, which is perfectly valid for nonuniformly spaced
time samples [Press 1988].

In the unusual case that our trial frequency spacing is large, Afyiy > Af, then we approximate that each
frequency is independent:

M =~ #trial frequencies, (Afyig > AF). (9.5)

(Inredlity, even if 0 values separated by Af are truly independent, some 6 values separated by more than Af
will be somewhat correlated. However, the correlation coefficient “envelope” decreases with increasing
frequency spacing. Nonethdess, these correlations imply that there are parasitic cases where this
approximation, eg. (9.5), fails.)

Arbitrarily spaced trial frequencies. One common stuation leading to nonuniformly spaced tria
frequencies is that of uniformly space trial periods. If the ratio of highest to lowest period is large (say,
> 2), then the frequency spacing is seriously nonuniform.

We may think of Af as approximately the difference in frequency required to make the 6 values
independent. (In reality, even if 0 values separated by Af are truly independent, some 6 val ues separated by
more than Af will be somewhat correlated. However, the correlation coefficient “envelope” decreases with
increasing frequency spacing.) In such a case, we may break up thetria frequenciesinto (1) regions where
Afyia < Af, and (2) regions where Afyig > Af (Figure 9.6).

=0

LU

0.123456.7.829
Aftrial < Af 4—5 i—> Aftrial > Af

Figure 9.6 Nonuniformly spaced trial frequencies.
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The region where Afyiy < Af behaves as before, as does the region where Afyiy > Af. In the example of
Figure 9.6, we have:

Af =04, M ~[(0.5-0.1)/0.1]+2=6.

Summary

Bandwidth correction requires estimating the number of independent frequencies. For uniformly
spaced, dense trial frequencies (and arbitrarily spaced time samples), we approximate the number of
independent frequencies, M, with eg. (9.4). We may think loosely of Af as the difference in frequency
required for 6 to become independent of its predecessor. Therefore, for nonuniformly spaced tria
frequencies, we must consider two types of region: (1) where the trial frequency spacing Afyia < Af, we use
eg. (9.4); (2) where the trial frequency spacing Afyiy > Af, we approximate M as the number of trial
frequencies, eg. (9.5).
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Analytic Signals and Hilbert Transforms

Given somereal-valued signal, s(t), it is often convenient to write it in “phasor form.” Such uses arise
in diverse signal processing applications from communication systems to neuroscience. We describe here
the meaning of “analytic signals,” and some practical computation considerations. This section relies
heavily on phasor concepts, which you can learn from Funky Electromagnetic Concepts. We proceed
along these lines:

e Mathematical definitions and review.

e Themeaning of theanalytic signal, A(t).

e Ingtantaneous values.

e Finding A(t) from the signd §(t), theoretically.

e The special case of zero reference frequency, wo = 0; Hilbert Transform.

e A simpleand reliable numerica computation of A(t) without Hilbert Transforms.

Definitions, conventions, and review: There are many different conventions in the literature for
normalization and sign of the Fourier Transform (FT). We define the Fourier Transform such that our basis
functions are €, and our original (possibly complex) signa z(t) is composed from them; this fully defines
all thenormalization and sign conventions:

For z(t) complex: 2= | " 2 do = Z(w)=2i " At e et
. -]

where  Z(w) = F{z(t)} istheFourier Transformof z(t).
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Note that we can think of the FT as a phasor-valued function of frequency, and that we use the positive
time dependence ™.

For real-valued signals we use S(t) instead of z(t). For real s(t), the FT is conjugate symmetric:
S(-w)=S (w) for s(t) real .
This conjugate symmetry for real signals allows us to use a 1-sided FT, where we consider only positive
frequencies, so that:
S(t) = 2Re{ J’: S(w)e da)}, whichisequivalentto  s(t) = J' " S()é” do, s(t) red .

Note that a complex signal with no negative frequencies is very different from areal signa which we
choosetowriteasal-sded FT. Werely on thisdistinction in the following discussion.

Analytic signals: Given areal-valued signa, S(t), its phasor formis:
S(t) = Re{ A(t)ei‘”ot} — | A(t)|cos( wpt + (1))
where  A(t) E|A(t)|ei¢(t) isa (complex) phasor function of time (9.6)
o = somewhat arbitrary referencefrequency .

Recall that as a phasor, A(t) is complex. The phasor form of s(t) may be convenient when s(t) is band-
limited (exists only in awell-defined range of frequencies, Figure 9.7 I€ft), or where we are only concerned
with the components of s(t) in some well-defined range of frequencies. Figure 9.7 shows two 1-sided
Fourier Transform (FT) examples of Sw), the FT of ahypothetical (real) signal S(t).

[S()] [S()

3o o
Figure 9.7 Example 1-sided FTs of a real signal s(t): (Left) band-limited. (Right) Wideband.
The w axis points only to the right, because we need consider only positive frequencies for a 1-

Sided FT.

In communication systems, wy is the carrier frequency. Note that even in the band-limited case, wg
may be different than the band center frequency. [For example, in vestigia sideband modulation (VSB),
wy is close to one edge of the signd band.] Keep in mind throughout this discussion that wo is often chosen
to be zero, i.e. the spectrum of S(t) is kept “in place”.

We gtart by considering the band-limited case, because it is somewhat simpler. From Figure 9.7 (l€ft),
we see that our signa S(t) is not too different from a pure sinusoid at a reference frequency wo, near the
middle of the band. s(t) and cos(woet) might look like Figure 9.8, left. S(t) is a modulation of the pure
sinusoid, varying somewhat (i.e. perturbing) the amplitude and phase at each instant in time. We define
these variations as the complex function A(t). When asigna s(t) isreal, and A(t) satisfies eq. (9.6), A(t) is
called the analytic signal for s(t).
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s(t) |A®)]
10

01 2 3 4 5 01 2 3 4 5

01 2 3 4 5

Figure 9.8 (Left) S(t) (dotted), and the reference sinusoid. (Middle) Magnitude of the analytic
signal |A(t)|. (Right) Phase of the analytic signal.

We can visualize A(t) by considering Figure 9.8, left. Att=0, §(t) isalittle bigger than 1, but it isin-
phase with the reference cosine; thisis reflected in the amplitude |A(O)| being dightly greater than 1, and
the phase ¢(0) = 0. Att =1, theamplituderemains> 1, and ¢istill 0. Att =2, theamplitude has dropped
to 1, and the phase ¢(2) is now positive (early, or leading). This continues throught = 3. At t = 4, the
amplitude drops further to JA(4)| < 1, and the phase is now negative (late, or lagging), i.e. #(4) <0. Att=
5, the amplitude remains < 1, while the phase has returned to zero: ¢(5) = 0. Figure 9.8, middle and right,
are plots of these amplitudes and phases.

Instantaneous values. When a signal has a clear oscillatory behavior, one can meaningfully define
instantaneous values of phase, frequency, and amplitude. Note that the frequency of a sinusoid (in rad/s) is
the rate of change of the phase (in rad) with time. A general sgna S(t), has a varying phase ¢(t), aka an
instantaneous phase. Therefore, we can define an instantaneous frequency, aswell:

d( phase) dg
= =@y +—.
dt dt
Such an instantaneous frequency is more meaningful when |A(t)| is fairly constant over one or more

periods. For example, in FM radio (frequency modulation), JA(t)| is constant for all time, and all of the
information is encoded in the instantaneous frequency.

phase = gt + ¢(t) = o(t)

Finally, we similarly define the instantaneous amplitude of a signal s(t) as JA(t)]. This is more
meaningful when |A(t)| is fairly constant over one or more cycles of oscillation. The instantaneous
amplitude is the “envelop€” which bounds the oscillations of S(t) (Figure 9.8, middle). By construction,

Is(B)] < JA(t)| everywhere.
Finding A(t) from s(t): Given an arbitrary s(t), how do we find its (complex) anaytic signal, A(t)?
First, we see that the defining eg. (9.6), s(t) = Re{A(t)ei‘”Ot} , is underdetermined, since A(t) has two real

components, but is constrained by only the one equation. Therefore, if A(t) isto be unique, we must further
congtrain it.

Asasmple starting point, suppose s(t) isa pure cosine (we will generalize shortly). Then:
s(t) = coswgt = Re{l ei‘”ot} where A(t)=1.
If ingtead, s(t) has a phase offset 9, then:
s(t) = cos(agt +6) = Re{eigei“’ot} where  At) =€? =cosf +ising.
(Note that 6 = 0 reproduces the pure-cosine example above.) Thus, in the case of a pure sinusoid, A = A(t)
is the (constant) phasor for the sinusoid s(t), and the imaginary part of A isthe same sinusoid delayed by %4
cycle (90°):
Re{ A} = cos#, Im{ A} =cos(6 -7 /4).

In Fourier space, thereal and imaginary parts of A are smply related. Recall that delaying a sinusoid by %
cycle multiplies its Fourier component by —i (for > 0). Therefore:
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F{Im(A®t))} =-i7 {Re(At))}, 1-sidedFT,w>0.

We now generalize our pure sinusoid example to an arbitrary signal, which can be thought of as a
linear combination sinusoids. The above relation is linear, so it holds for any linear combination of
sinusoids, i.e. it holds for any real signa s(t). This means that, by construction, the imaginary part of A(t)
has exactly the same magnitude spectrum as the real part of A(t). Also, the imaginary part has a phase
spectrum which is everywhere ¥ cycle delayed from the phase spectrum of the red part. This is the
relationship that uniquely defines the analytic signal A(t) that corresponds to a given red signal s(t) and a
given reference frequency wo. From this relation, we can solve for Im{ A(t)} explicitly as a functional of

Re{A(t)}:
Im{At)} = 7 {-i 7 {Re( AW))}}, 1-sided FT, » > 0. (9.7)

Thisrelation definesthe Hilbert Transform (HT) from Re{ A(t)} to Im{ A(t)}.

The Hilbert Transform of s(t) is afunction H(t) that has all the Fourier components of (t),
but delayed in phase by % cycle (90°).

Note that the Hilbert transform takes a function of time into another function of time (in contrast to the
Fourier Transform that takes a function of time into a function of frequency). Since the FT is linear, eqg.
(9.7) shows that the HT isalso linear. The Hilbert Transform can be shown to be given by the time-domain
form:

His® =HB=2Pv[” dt'% where PV =Principa Value.
b —o0 —
(The integrand blows up a t’ = t, which is why we need the Principal Vaue to make the integral well-
defined.) We now easily show that the inverse Hilbert transform is the negative of the forward transform:

H (1)

t-t'

H—l{H(t)}Es(t):_ipv.[oo dt’ where PV = Principa Vaue.
T —o0

We see this because the Hilbert Transform shifts the phase of every sinusoid by 90°. Therefore, two
Hilbert transforms shifts the phase by 180°, equivalent to negating every sinusoid, which is equivalent to
negating the original signal. Putting in aminus sign then restores the original signal.

Equivalently, the HT multiplies each Fourier component (w > 0) by —i. Then H{ ()} multiplies each
component by (-i)? = 1. Thus, H{H[ s(t) ]} = -S(t), and therefore ' = —H.

Analytic signal relative to ®o, = 0: Some analysts prefer not to remove a reference frequency gt
from the sgnal, and instead include d | of the phasein A(t); thisis equivalent to choosing wg = 0:

s(t) = Re{ A(t)} =|A(t)|cos(4(t)) -
Since s(t) = Re{ A(t)} isgiven, we can now find Im{ A(t)} explicitly from (9.7):
Im{AQt)} = FH~iF {s(t)}} = H{s(t)} 1-sided FT, » > 0.

In other words:

| For wo =0, A(t) isjust the complex phasor factors for s(t), without taking any real part.

If §(t) is dominated by a single frequency w, then ¢(t) contains a fairly steady phase ramp that is close
to ¢i(t) =~ wt (Figure 9.9). We can use the phase function ¢(t) to estimate the frequency w by smply taking
the average phase rate over our sampleinterval:

o = W) =90

tend
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Figure 9.9 Phaseramp of a perturbed sinusoid, and the estimate of wy.

Efficient numerical computation of A(t): Thetraditional way to find A(t) isto use a discrete Hilbert
Transform to evaluate the defining integral. (This is a standard function in scientific software packages.)
The discrete Hilbert Transform (DHT) is often implemented by taking a DFT, manipulating it, and then
inverse FT back to the time domain. This can be seen by recasting our above (1-sided DFT) description of
the Hilbert Transform (HT) into a 2-sded DFT form.

Recall that in the 1-sided DFT for areal signa (t), the frequencies are dways positive, w > 0, and
Sw) isjust a phasor-valued function of frequency. To recover thereal signa from phasors, we must take a
rea-part, Re{ }. Inthe 2-sided DFT, we instead arrive at the real part by adding the complex conjugate of
all the phasor factors:

s0=2] doRe(S@e ™| > =] do[ e +S @ ].

However, to achieve a 2-sided FT, we rewrite the second term as a negative frequency. Then the integral
spans both positive and negative frequencies:

S(t) = j:S(w)e‘wt do, where S(-w)=S ().

For acomplex signal, z(t), only a2-sided FT exigs (a1-sided FT isnot generaly possible). Then there
isno symmetry or relation between positive and negative frequencies.

We now describe a smple, efficient, and stable, purely time-domain agorithm for finding A(t) from a
band-limited s(t). This agorithm is sometimes more efficient than the DFT-based approach. It is
especially useful when the data must be downsampled (converted to alower sampling rate by keeping only
every n" sample, called decimating). Even though s(t) is red, the agorithm uses complex arithmetic
throughout.

IS(w)| passband 1S(w)| 1S(w)|
M\
[N
e
[ 1)
L L\ L AN
Omig * ¢ “Wmig 0 Omig © 0 Onig

Figure 9.10 (Left) 1-sided FT of s(t), and (middle) its 2-sided equivalent. (Right) 2-sided FT of
AQD).

Figure 9.10 shows a 1-sided FT for areal s(t), along with its2-sided FT equivaent, and the 2-sided FT
of the desired complex A(t). We define wnig as the midpoint of the signal band (this is not e, which we
take to be zero for illustration). The question is: how do we efficiently go from the middle diagram to the
right diagram? In other words, how do we keep just the positive frequency hdf of the 2-sided spectrum?
Figure 9.11 illustrates the smple stepsto achieve this:

¢ Rotate the spectrum down by wig (downconvert).

o Low-passfilter around the downconverted signal band.
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e (Optional) Decimate (downsample).

e Rotate the spectrum back up by wgiq (Upconvert).
This results in a complex function of time whose 2-sided spectrum has only positive frequencies; in other
words, it is exactly the analytic signal A(t).

(] IS()]

2-low- 1. downconvert 4. upconvert
pass filter, -7 '

20 g 0 | @ ) 0 Oprig

Figure9.11 (Left) Tofind A(t): 1. downconvert; 2. low-passfilter; (Right) 4. upconvert.

Step 1: Downconvert: Numericaly, we downconvert in the time domain by multiplying by
exp(—iwmdt). This smply subtracts wnig from the frequency of each component in the spectrum:
For every w: S(w)d“teiomat = g(p)e (- ma)t
Note that both positive and negative frequencies are shifted to the left (more negative) in frequency. Inthe
time domain, we construct the complex downconverted signal for each sampletimet; as
Zgown (tj ) = S(tj )exp(—ia)midtj ) = S(tj )COS(O)m'dtj )— i Sin(a)m‘dtj )

Step 2 Low-pass filter: Low pass filters are easily implemented as Finite Impulse Response (FIR)
filters, with symmetric filter coefficients[Ham chap. 6, 7]. In thetime domain:

m
Adonn (tj) =2 z Ck Zgown (tj+k)  where  2m+1=the number of filter coefficients

k=—m

¢, = filter coefficients

The leading factor of 2 is to restore the full amplitude to A(t) after filtering out half the frequency
components.

Step 3: (Optional) Decimate: We now have a (complex) low-pass signal whose full (2-sided)
bandwidth is just that of our desired signal band. If desired, we can now downsample (decimate), by
simply keeping every n" sample. In other words, our low-pass filter acts as both a pass-band filter for the
desired signd, and an anti-aliasing filter for downsampling. Two for the price of one.

Step 4: Upconvert: We now restore our complex analytic signal to a reference frequency of wg = 0 by
putting the spectrum back where it came from. The key distinction is that after upconverting, there will be
no components of negative frequency because we filtered them out in Step 2. This provides our desired
complex anaytic signal:

Altj) = Adoun (t; )eXp(iwmidtj ) :

Note that the multiplications above are full complex multiplies, because both Agun and the exponential
factor are complex. Also, if we want some nonzero wo, we would simply upconvert by (wnig — wo) instead
of upconverting by wng.

Summary
The analytic signal for areal function s(t) isA(t), and isthe complex phasor-form of s(t) such that:

s(t) = Re{ A(t) exp(imgt )} where @y = reference frequency .
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o 1S Often chosen to be zero, so that S(t) = Re{A(t)}. This definition does not uniquely define A(t), since
A(t) hasreal and imaginary components, but is constrained by only one equation. The Hilbert Transform of
ared function s(t) is H(t), and comprises al the Fourier components of S(t) phase-delayed by #/4 radians
(90°). We uniquely define A(t) by saying that its imaginary part is the Hilbert Transform of its red part.
This gives the imaginary part the exact same magnitude spectrum as the real part, but a shifted phase
spectrum.

Analytic signals allow defining instantaneous values of frequency, phase, and amplitude for almost-
sinusoidal signals. Ingtantaneous values are useful in many applications, including communication and
neuron behavior.

[Ham] Hamming, R. W., Digital Filters, Dover Publications (July 10, 1997), ISBN-13: 978-
0486650883.
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10 Tensors, Without the Tension

Approach
We’ll present tensors as follows:
Two physical examples: magnetic susceptibility, and deformable solids
A non-example: when isamatrix not atensor?
Forward |ooking definitions (don’t get stuck on these)
Review of vector spaces and notation (don’t get stuck on this, either)
A short, but at first unhelpful, definition (really, really don’t get stuck on this)
A discussion which clarifies the above definition
Examples, including dot products and cross-products as tensors
Higher rank tensors
Change of basis
10. Non-orthonormal systems. contravariance and covariance
11. Indefinite metrics of Special and General Relativity
12. Mixed basislinear functions (transformation matrices, the Pauli vector)

© 0o N o ok~ W NP

Tensors are al about vectors. They let you do things with vectors you never thought possible. We
define tensors in terms of what they do (ther linearity properties), and then show that linearity implies the
transformation properties. This gets most directly to the true importance of tensors. [Most references
define tensors in terms of transformations, but then fail to point out the al-important linearity properties.]

We aso take a geometric approach, treating vectors and tensors as geometric objects that exist
independently of their representation in any basis. Inevitably, though, thereis afair amount of unavoidable
algebra

Later, we introduce contravariance and covariance in terms of non-orthonorma coordinates, but first
with a familiar positive-definite metric from classica mechanics. This makes for a more intuitive
understanding of contra- and co-variance, before applying the concept to the more bizarre indefinite metrics
of special and generd relativity.

There is deliberate repetition of several points, because it usually takes me more than once to grok
something. So | repest:

If you don’t understand something, read it again once, then keep reading. Don’t get stuck on one
thing. Often, the following discussion will clarify an ambiguity.

Two Physical Examples

We gart with two physical examples: magnetic susceptibility, and deformation of a solid. We start
with matrix notation, because we assume it is familiar to you. Later we will see that matrix notation is not
ideal for tensor algebra.

Magnetic Susceptibility

We assume you are familiar with susceptibility of magnetic materials. when placed in an H-field,
magnetizable (susceptible) materials acquire a magnetization, which adds to the resulting B-field. In
simple cases, the susceptibility y is a scalar, and
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M = yH where M isthe magnetization,
x isthe susceptibility, and
H isthe applied magnetic field

The susceptibility in thissimple caseis the samein any direction; i.e., the materia isisotropic.

However, there exist materials which are more magnetizable in some directions than others E.g.,
imagine a cubic lattice of axially-symmetric molecules which are more magnetizable along the molecular

axisthan perpendicular toit:

&, %
8

& §<§><z> &
< I% =

oo ofs obe 2 2 2/ H W
o@e o@e o@e L - P

_>.
mor e magnetizable

Magnetization, M, as a function of external field, H, for a material with a tensor-valued

susceptibility, .

In each direction, the magnetization is proportional to the applied field, but y is larger in the x-direction
thany or z. Inthisexample, for an arbitrary H-field, we have

2 00

M=(M,,M,M,)=(2H,H,H,) or M=yH={0 1 OH
001
ﬁ—/
=2

Note that in general, M isnot parallel to H (below, dropping the z axis for now):

H

M = (2H,, H,)

X

M need not be paralle to H for amaterial with atensor-valued y.

But M isalinear function of H, whichmeans: M (kH, +H,)=kM (H,)+M(H,).

Thislinearity is reflected in the fact that matrix multiplication islinear:

200 200 200
M(kH,+H,)={0 1 0|(kH,+H,)=kl0 1 O|H,+/0 1 O|H,=kM(H,)+M (H,)
001 001 001
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The matrix notation might seem like overkill, since y is diagonal, but it is only diagonal in this basis of
X, ¥, and z We’ll see in a moment what happens when we change basis. First, let us understand what the
matrix y; really means. Recall the visuaization of pre-multiplying a vector by a matrix: a matrix y times a
column vector H, isaweighted sum of the columns of y;:

7N

I Xxy X |NHx X Xy Xz

M=\ 2y Xy Xy || Hy [EH 20 [T Hy 2y | H,| 2

X Xz Xz | H. In Xz Xz
=/

We can think of the matrix y as a set of 3 column vectors: the first is the magnetization vector for H =
e, the2™ columnisM for H = e, the 3 columnisM for H = e,. Since magnetization islinear in H, the

magnetization for any H can be written as the weighted sum of the magnetizations for each of the basis
VeCtors:

M(H)=HM (e )+HM (ey)+ H,M (e,) where e, e, e, aretheunit vectorsin x, y, z

This is just the matrix multiplication above: M =yH . (We’re writing all indexes as subscripts for
now; later on we’ll see that M, ¥, and H should be indexed as M i,)( ij, and H i.)

Now let’s change bases from e, €, €, t0 some e, &, € defined below. We use a simple
transformation, but the 1-2-3 basisis not orthonormal :

2 e
/ ae
& 1 be,
S _— _ 5 | /de,
X &
€
Z 3’/
old basis new basis

Transformation to a non-orthogonal, non-normal basis. e, and e, are in the x-y plane, but are
neither orthogonal nor normal. For simplicity, we choose e; = e,. Here, b and ¢ are negative.

To find the transformation equations to the new basis, we first write the old basis vectors in the new
basis. We’ve chosen for simplicity a transformation in the x-y plane, with the z-axis unchanged:

e, =ae +be, e, =ce +de, e, =6

Now write a vector, v, in the old basis, and substitute out the old basis vectors for the new basis. We
see that the new components are alinear combination of the old components:
v=ve +Ve, +Vve, =V, (ae +be,)+v, (ce +de,)+v,e,
e &

X

=(av, +ov, )e +(bv, +dv, ), +V,e; = Ve + V,€, + Vig;
= v, =av, +cov,, v, =bv, +adv,, V, =V,

Recall that matrix multiplication is defined to be the operation of linear transformation, so we can
write this basis transformation in matrix form:
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v, a c 0}y, a c 0
V,|=|b d Ofv, |=v|b|+v,|d]|+Vv,|0
Vv, 0 0 1)y, 0 0 1

—— —— ——

The columns of the transformation matrix are the old basi s vectors written in the new basis.

Thisisillustrated explicitly on theright hand side, whichisjust v.e, +v,e, +V.e,.

Finally, we look at how the susceptibility matrix y; transforms to the new basis. We saw above that
the columns of y are the M vectors for H = each of the basis vectors. So right away, we must transform
each column of y with the transformation matrix above, to convert it to the new basis. Since matrix
multiplication A-B is digtributive across the columns of B, we can write the transformation of all 3 columns
in asingle expression by pre-multiplying with the above transformation matrix:

a c o0 a c 02 00 2a ¢ O
Seplof y™ =yinnewbasis=|{b d O|xy=|b d 0|0 1 0|={2b d O
0 01 0 0 1)l0 0 1 0 01

But we’re not done. This first step expressed the column vectors in the new basis, but the columns of
the RHS (right hand side) are still the M s for basis vectors €, €, €. Instead, we need the columns of %™
to be the M vectors for e, &, €. Please don’t get bogged down yet in the details, but we do this
transformation similarly to how we transformed the column vectors. We transform the contributionsto M
dueto e, g, e, to that dueto e, by writing e, in terms of e,, g,, e/

e=ee+fe, = M(H=g)=eM(H=¢)+fM(H=¢)
Similarly,

e,=ge +he, = M(H=¢e,)=gM(H=¢)+hM(H=¢,)

e, =€, = M(H=e)=M(H=¢e,)

Essentialy, we need to transform among the columns, i.e. transform the rows of y. These two
transformations (once of the columns, and once of therows) is the essence of arank-2 tensor:

A tensor matrix (rank-2 tensor) has columnsthat are vectors, and simultaneoudly, itsrows are also
vectors. Therefore, transforming to a new basis requires two transformations:
once for therows, and once for the columns (in either order).

[Aside: The details (which you can skip at first): We just showed that we transform using the inverse of our
previous transformation. The reason for the inverse is related to the up/down indexes mentioned earlier; please be
patient. In matrix notation, we write the row transformation as post-multiplying by the transpose of the needed
transformation:

T

new

Final ™ =

o T 9o
o Qo0
= O O
= O O
o T -

0
0 =
1

oo N
oca o
oo o
oo o
o o
oo N
o r o
o o
o - o
o - @
r O o

]

[Another aside: A direction-dependent susceptibility requires  to be promoted from a scalar to a rank-2
tensor (skipping any rank-1 tensor). Thisis necessary because a rank-0 tensor (a scalar) and a rank-2 tensor can
both act on a vector (H) to produce a vector (M). There is no sense to a rank-1 (vector) susceptibility, because
there is no simple way a rank-1 tensor (a vector) can act on another vector H to produce an output vector M.
More on thislater.]
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Mechanical Strain

A second example of a tensor isthe mechanical srain tensor. When | push on a deformable material,
it deforms. A simple modd isjust a spring, with Hooke’s law:
1
AX — +E Fapplied
We write the formula with a plus sign, because (unlike freshman physics spring questions) we are
interested in how a body deforms when we apply a force to it. For an isotropic material, we can push in
any direction, and the deformation is parald to the force. This makes the above equation a vector
equation:

Ax =sF where s= % = the strain constant

Strain is defined as the displacement of a given point under force. [Stress is the force per unit area
applied to a body. Stress produces strain.] In an isotropic material, the stress constant is a smple scalar.
Note that if we transform to another basis for our vectors, the stress constant is unchanged. That’s the
definition of a scalar:

A scalar isanumber that isthe same in any coordinate system. A scalar isarank-0 tensor.

The scalar is unchanged even in anon-ortho-normal coordinate system.

But what if our material is a bunch of micrascopic blobs connected by stiff rods, like atoms in a
crystal?

—C

(Left) A constrained deformation crystal structure. (Middle) The deformation vector, AX, is not
parald to the force. (Right) More extreme geometries lead to a larger angle between the force
and displacement.

The diagram shows a 2D example: pushing in the x-direction results in both x and y displacements.
The same principle could result in a 3D Ax, with some component into the page. For small deformations,
the deformation is linear with the force: pushing twice as hard results in twice the displacement. Pushing
with the sum of two (not necessarily parallel) forces results in the sum of the individua displacements. But
the displacement is not proportional to the force (because the displacement is not paralld to it). In fact,
each component of force resultsin adeformation vector. Mathematicaly:

S Sy Se Se Sy Se |l R
Ax=F s, |+F,|S, [*F|S.|=|Sx Sy S. || F, |=SF
Sz>< Szy Szz Sz>< Szy Szz Fz
\—W——/
s
Much like the anisotropy of the magnetization in the previous example, the anisotropy of the strain
requires us to use arank-2 tensor to describe it. Thelinearity of the strain with force allows us to write the
strain tensor as a matrix. Linearity also guarantees that we can change to another basis using a method

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 220 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

similar to that shown above for the susceptibility tensor. Specifically, we must transform both the columns
and the rows of the strain tensor s. Furthermore, the linearity of deformation with force also insures that we
can use non-orthonormal bases, just as well as orthonormal ones.
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When Is a Matrix Not a Tensor?

| would say that most matrices are not tensors. A matrix is a tensor when its rows and columns are
both vectors. Thisimpliesthat there is a vector space, basis vectors, and the possibility of changing basis.
As a counter example, consider the following graduate physics problem:

Two pencils, an eraser, and aruler cost $2.20. Four pencils, two erasers, and aruler cost $3.45. Four
pencils, an eraser, and two rulers cost $3.85. How much does each item cost?

We can write this as smultaneous equations, and as shorthand in matrix notation:

2p+e+r =220 21 1\[p 220
4p+2e+r =345 or 4 2 1|le|=|345
4p+e+2r =385 4 1 1)r 385

It is possible to use a matrix for this problem because the problem takes linear combinations of the
costs of 3 items. Matrix multiplication is defined as the process of linear combinations, which is the same
process as linear transformations. However, the above matrix is not a tensor, because there are no vectors
of school supplies, no bases, and no linear combinations of (say) part eraser and part pencil. Therefore, the
matrix has no well-defined transformation properties. Hence, it isalowly matrix, but no tensor.

However, later (in “We Don’t Need No Stinking Metric””) we’ll see that under the right conditions, we
can form a vector space out of seemingly unrelated quantities.

Heading In the Right Direction
An ordinary vector associates a number with each direction of space:
V=VX+Vy+V,Z

The vector v associates the number v, with the x-direction; it associates the number vy, with the y-
direction, and the number v, with the z-direction.

The above tensor exampl esillugtrate the basic nature of arank-2 tensor:

A rank-2 tensor associates a vector with each direction of space:

T, T, T,
T= TyX X+ Tyy ¥+ TyZ yA
T, T, T,

Some Definitions and Review
These definitions will make more sense as we go along. Don’t get stuck on these:
“ordinary” vector = contravariant vector = contravector = (‘) tensor
1-form = covariant vector = covector = (%)) tensor. (Yes, thereare 4 different ways to say the same thing.)

covariant the same. E.g., General Relativity says that the mathematical form of the laws of physics
are covariant (i.e, the same) with respect to arbitrary coordinate transformations.
Thisisacompletely different meaning of “covariant” than the one above.

rank The number of indexes of atensor; T! isarank-2 tensor; Rjq is arank-4 tensor. Rank is
unrelated to the dimenson of the vector space in which the tensor operates.

MVE mathematical vector element. Think of it asavector for now.
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Caution: a rank (°;) tensor is a 1-form, but a rank (%) tensor is not always a 2-form. [Don’t worry
about it, but just for completeness, a 2-form (or any n-form) has to be fully anti-symmetric in all pairs of
vector arguments.]

Notation:
(a, b, c) isarow vector; (a, b, c)" isacolumn vector (the transpose of arow vector).

To satisfy our pathetic word processor, we write (™), even though the ‘m’ is supposed to be directly
above the ‘n’.

T is atensor, without reference to any basis or representation.

T isthe matrix of components of T, contravariant in both indexes, with an understood basis.
T(v, w) istheresult of T acting on v and w.

vV or Vv are two equivalent ways to denote a vector, without reference to any basis or

representation. Note that avector isarank-1 tensor.

aor a~ are two equivalent ways to denote a covariant vector (aka 1-form), without reference to
any basis or representation

a3 the components of the covecter (1-form) a, in an understood basis.

Vector Space Summary

Briefly, a vector space comprises a field of scalars, a group of vectors, and the operation of scalar
multiplication of vectors (details below). Quantum mechanical vector spaces have two additiona
characteristics: they define a dot product between two vectors, and they define linear operators which act
on vectorsto produce other vectors.

Before understanding tensors, it is very helpful, if not downright necessary, to understand vector
spaces. Funky Quantum Concepts has a more complete description of vector spaces. Here is a very brief
summary: a vector space comprises a field of scalars, a group of vectors, and the operation of scalar
multiplication of vectors. The scalars can be any mathematical “field,” but are usually the real numbers, or
the complex numbers (eg., quantum mechanics). For a given vector space, the vectors are a class of
things, which can be one of many possibilities (physical vectors, matrices, kets, bras, tensors, ...). In
particular, the vectors are not necessarily lists of scalars, nor need they have anything to do with physical
space. Vector spaces have the following properties, which alow solving smultaneous linear equations
both for unknown scalars, and unknown vectors:

Scalars Mathematical Vectors
Scalars form a commutative group Vectors form a commutative group
(closure, unique identity, inverses) under | (closure, unique identity, inverses)
operation +. under operation +.

Scalars, excluding 0, form a
commutative group under operation ( - ).

Distributive property of ( -) over +.

Scalar multiplication of vector produces another vector.

Distributive property of scalar multiplication over both scalar + and vector +.

With just the scalars, you can solve ordinary scalar linear equations such as:
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Q1%+ 8oXp +. 84Xy =G
A1 Xy + BypXo + .8y Xy =
R _Z”X” © writtenin matrix form as ax=c
Xy + 8npXp -8 Xy =Gy
All the usual methods of linear algebra work to solve the above equations: Cramer’s rule, Gaussian
elimination, etc. With the whole vector space, you can solve simultaneous linear vector equations for
unknown vectors, such as
allVl + a12V2 + ...a_LnVn = Wl
Ay Vy + 8yoVp + .8V, =W
At a2tz Temantn 2 writtenin matrix form as av=w
8nVy + 8V + 8V = Wy,
where a is again a matrix of scalars. The same methods of linear algebra work just as well to solve
vector equations as scalar equations.

Vector spaces may also have these properties:

Dot product produces a scalar from two vectors.

Linear operators act on vectors to produce other
Vectors.

The key points of mathematical vectors are (1) we can form linear combinations of them to make
other vectors, and (2) any vector can be written as alinear combination of basis vectors:

v=(', VL V) = Ve + Ve + Ve where ey, e, e;arebasis vectors, and
V!, V2, v arethe components of v in the ey, &, e; basis.

Note that V!, V2, V* are numbers, while e, , & , e; are vectors. Thereis a (kind of bogus) reason why
basis vectors are written with subscripts, and vector components with superscripts, but we’ll get to that
later.

The dimension of a vector space, N, isthe number of basis vectors needed to construct every vector in
the space.

Do not confuse the dimension of physical space (typically 1D, 2D, 3D, or (in relativity) 4D), with
the dimension of the mathematical objects used to work a problem.

For example, a 3x3 matrix is an element of the vector space of 3x3 matrices. Thisis a 9-D vector
space, because there are 9 basis matrices needed to construct an arbitrary matrix.

Given a basis, components are equivalent to the vector. Components done (without a basis) are
insufficient to be a vector.

[Aside: Note that for position vectors defined by r = (r, 6, ¢), r, 8, and ¢ are not the components of
a vector. The tip off is that with two vectors, you can always add their components to get another
vector. Clearly, ry+r, #(f,+1,,6,+ 65,4, +¢,), S0 (r, 6, ¢ cannot be the components of a vector.
Thisfailureto add is dueto r being a displacement vector from the origin, where there isno consistent

basis: e.g., what is e at the origin? At points off the origin, there is a consistent basis: e, e, and e; are
well-defined.]

When Vectors Collide

There now arises a collision of terminology: to a physicist, “vector” usually means a physical vector in
3- or 4-space, but to a mathematician, “vector” means an element of a mathematical vector-space. These
are two different meanings, but they share a common aspect: linearity (i.e, we can form linear
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combinations of vectors to make other vectors, and any vector can be written as a linear combination of
basis vectors). Because of that linearity, we can have general rank-n tensors whose components are
arbitrary elements of a mathematical vector-space. To make the terminology confusion worse, an (")
tensor whose components are simple numbers is itself a “vector-element” of the vector-space of (™)
tensors.

Mathematical vector-elements of a vector space are much more general than physical vectors (e.g.
force, or velocity), though physical vectors and tensors are elements of mathematical vector spaces. To be
clear, we’ll use MVE to refer to a mathematical vector-element of a vector space, and “vector” to mean a
normal physics vector (3-vector or 4-vector). Recall that MVES are usually written as a set of components
in some basis, just like vectors are. In the beginning, we choose al theinput MVESsto be vectors.

If you’re unclear about what an MVE is, just think of it as a physical vector for now, like “force.”
“Tensors” vs. “Symbols”

There arelots of tensors. metric tensors, € ectromagnetic tensors, Riemann tensors, etc. Thereareaso
“symbols:” Levi-Civita symbols, Christoffel symbols, etc. What’s the difference? “Symbols” aren’t
tensors.  Symbols look like tensors, in that they have components indexed by multiple indices, they are
referred to basis vectors, and are summed with tensors. But they are defined to have specific components,
which may depend on the basis, and therefore symbols don’t change basis (transform) the way tensors do.
Hence, symbals are not geometric entities, with a meaning in a manifold, independent of coordinates. For
example, the Levi-Civita symbol is defined to have specific constant components in all bases. It doesn’t
follow the usual change-of-basisrules. Therefore, it cannot be atensor.

Notational Nightmare

If you come from a differential geometry background, you may wonder about some insanely confusing
notation. Itisafact that “dx” and “dx” are two different things:

dx = (dx, dy,dz) isa vector, but
dx=Vx(r) isalform

We don’t use the second notation (or exterior derivatives) in this chapter, but we might in the
Differential Geometry chapter.

Tensors? What Good Are They?
A Short, Complicated Definition

It is very difficult to give a short definition of a tensor that is useful to anyone who doesn’t already
know what a tensor is. Nonetheless, you’ve got to start somewhere, so we’ll give a short definition, to
point in the right direction, but it may not make complete sense at first (don’t get hung up on this, skip if
needed):

A tensor is an operator on one or more mathematical vector dements (MVES), linear in each
operand, which produces another mathematical vector element.

The key point is this (which we describe in more detail in amoment):

Linearity in all the operands isthe essence of atensor. |

| should add that the basis vectors for all the MVESs must be the same (or tensor products of the same)
for an operator to qualify as a tensor. But that’s too much to put in a “short” definition. We clarify this
point later.

Note that a scalar (i.e., a coordinate-system-invariant number, but for now, just a number) satisfies the
definition of a “mathematical vector element.”

Many definitions of tensors dwell on the transformation properties of tensors. Thisis mathematically
valid, but such definitions give no insight into the use of tensors, or why we like them. Note that to satisfy
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the transformation properties, all the input vectors and output tensors must be expressed in the same basis
(or tensor products of that basis with itself).

Some coordinate systems require distinguishing between contravariant and covariant components of
tensors; superscripts denote contravariant components; subscripts denote covariant components. However,
orthonormal positive definite systems, such as the familiar Cartesian, spherical, and cylindrical systems, do
not require such a distinction. So for now, let’s ignore the distinction, even though the following notation
properly represents both contravariant and covariant components. Thus, in the following text, contravariant
components are written with superscripts, and covariant components are written with subscripts, but we
don’t care right now. Just think of them all as componentsin an arbitrary coordinate system.

Building a Tensor

Oversmplified, a tensor operates on vectors to produce a scalar or a vector. Let’s construct a tensor
which accepts (operates on) two 3-vectors to produce a scalar. (We’ll see later that this isarank-2 tensor.)
Let thetensor T act on vectors a and b to produce ascalar, s; in other words, this tensor isa scalar function
of two vectors:

s=T(a b)

Call the first vector a = (a', a2 a°) in some basis, and the second vector b = (b*, b? b°) (in the same
basis). A tensor, by definition, must be linear in both a and b; if we double a, we double the result, if we
triple b, we tripletheresult, etc. Also,

T(a+c,b)=T(a b)+T(c, b), and

So the result mugt involve at least the product of a component of a with a component of b. Let’s say
the tensor takes a’b” as that product, and additionally multipliesit by a constant, T».. Then we have built a
tensor actingon aand b, and it islinear in both:

T(a,b) =T,a’" Example: T(a,b) = 7’0"

But, if we add to this some other weighted product of some other pair of components, the result is till
atensor: itisstill linear in both a and b:

T(a,b) =T,a'h® +T,,a%" Example: T(a,b) = 4a'b® + 7’0"

In fact, we can extend this to the weighted sum of all combinations of components, one each from a
and b. Such asumistill linear in both a and b:

-2 6 4

3 3
T(@ab)=> > Tab Example: T,=|7 5 -1
o 6 0 8

Further, nothing else can be added to thisthat islinear in aand b.

A tensor isthe most general linear function of aand b that exists, i.e. any linear function of aand b
can be written as a 3x3 matrix.

(We’ll see that the rank of atensor isequal to the number of itsindices; T isarank-2 tensor.) The Tj;
are the components of the tensor (in the basis of the vectors a and b.) At this point, we consider the
components of T, a, and b all asjust numbers.

Why does a tensor have a separate weight for each combination of components, one from each input
mathematical vector element (MVE)? Couldn’t we just weight each input MVE as a whole? No, because
that would restrict tensors to only some linear functions of the inputs.

Any linear function of the input vectors can be represented as atensor.

Note that tensors, just like vectors, can be written as componentsin some basis. And just like vectors,
we can transform the components from one basis to another. Such a transformation does not change the
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tensor itself (nor does it change a vector); it Smply changes how we represent the tensor (or vector). More
on transformations later.

| Tensors don’t have to produce scalar results! |

Some tensors accept one or more vectors, and produce a vector for aresult. Or they produce some
rank-r tensor for aresult. In general, arank-n tensor accepts ‘M’ vectors as inputs, and produces a rank ‘n-
M’ tensor as a result. Since any tensor is an element of a mathematical vector space, tensors can be written
aslinear combinations of other (samerank & type) tensors. So even when atensor produces another (lower
rank) tensor as an output, the tensor is still a linear function of all its input vectors. It’s just a tensor-valued
function, instead of a scalar-valued function. For example, the force on a charge: a B-field operates on a
vector, gv, to produce a vector, f. Thus, we can think of the B-field as a rank-2 tensor which acts on a
vector to produce a vector; it’s a vector-valued function of one vector.

Also, in general, tensors aren’t limited to taking just vectors as inputs. Some tensors take rank-2
tensors as inputs. For example, the quadrupole moment tensor operates on the 2™ derivative matrix of the
potential (the rank-2 “Hessian” tensor) to produce the (scalar) work stored in the quadrupole of charges.
And a density matrix in quantum mechanics is a rank-2 tensor that acts on an operator matrix (rank-2
tensor) to produce the ensemble average of that operator.

Tensors in Action

Let’s consider how rank-0, rank-1, and rank-2 tensors operate on a single vector. Recall that in
“tensor-talk,” a scalar is an invariant number, i.€. it is the same number in any coordinate system.

Rank-0: A rank-0 tensor is a scalar, i.e. a coordinate-system-independent number. Multiplying a
vector by a rank-0 tensor (a scalar), produces a new vector. Each component of the vector contributes to
the corresponding component of the result, and each component is weighted equally by the scalar, a:

V=Vi+Vvj+vik = av = av'i + av’j + av’k

Rank-1: A rank-1 tensor a operates on (contracts with) a vector to produce a scaar. Each component
of the input vector contributes a number to the result, but each component is weighted separately by the
corresponding component of the tensor a:

3
a(v) =a v +aV +a,v’ = Z:aivi
i=1
Note that a vector is itsdf a rank-1 tensor. Above, instead of considering a acting on v, we can
equivalently consider that v actson a: a(v) = v(a). Both aand v are of equal standing.

Rank-2: Filling one dot of arank-2 tensor with a vector produces a new vector. Each component of
the input vector contributes a vector to the result, and each input vector component weights a different
Vector.
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column 3

column 2 v

@ (b) (©)

(a) A hypothetical rank-2 tensor with an x-vector (red), a y-vector (green), and a z-vector (blue).
(b) The tensor acting on the vector (1, 1, 1) producing a vector (heavy black). Each component
(column) vector of the tensor is weighted by 1, and summed. (c) The tensor acting on the vector
(O, 2, 0.5), producing a vector (heavy black). The x-vector is weighted by O, and so does not
contribute; the y-vector is weighted by 2, so contributes double; the z-vector isweighted by 0.5, so
contributes half.

column 1

B, B,
B(_v)=BVv =B, B, B BY, |+V| B,
B, B,

3 . 3 . 3 .
=BV +BV +BV = LZ ijv’ji +| Y. BV j +[Z szv‘Jk
-1 -1 -1

The columns of B are the vectors which are weighted by each of the input vector components, v '; or
equivalently, the columns of B are the vector weights for each of theinput vector components

Example of a simple rank-2 tensor: the moment-of-inertia tensor, |;. Every blob of matter has
one. We know from mechanics that if you rotate an arbitrary blob around an arbitrary axis, the angular
momentum vector of the blob does not in general line up with the axis of rotation. So what is the angular
momentum vector of the blob? It isa vector-valued linear function of the angular velocity vector, i.e. given
the angular velocity vector, you can operate on it with the moment-of-inertia tensor, to get the angular
momentum vector. Therefore, by the definition of a tensor as a linear operation on a vector, the
relationship between angular momentum vector and angular velocity vector can be given as a tensor; it is
the moment-of-inertia tensor. It takes as an input the angular velocity vector, and produces as output the
angular momentum vector, therefore it isarank-2 tensor:

(o, ) =L, I(0,0) =L -0 =2KE

[Since | is constant in the blob frame, it rotates in the lab frame. Thus, in the lab frame, the above
equations arevalid only at asingleinstant in time. In effect, | isafunction of time, 1(t).]

[?? This may be a bad example, since | isonly a Cartesian tensor [L&L3, p 77, which is not ared tensor.
Real tensors can’t have finite displacements on a curved manifold, but blobs of matter have finite size. If you
want to get the kinetic energy, you have to use the metric to compute L-®. Is there a smple example of a rea
rank-2 tensor?7]

Note that some rank-2 tensors operate on two vectors to produce a scalar, and some (like I) can either
act on one vector to produce a vector, or act on two vectors to produce a scalar (twice the kinetic energy).
More of that, and higher rank tensors, later.
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Tensor Fields

A vector isasingle mathematical object, but it is quite common to define afield of vectors. A field in
this senseis a function of space. A vector field defines a vector for each point in a space. For example,
the electric field is a vector-valued function of space: at each point in space, there isan dectric field vector.

Similarly, atensor is a single mathematical object, but it is quite common to define a field of tensors.
At each point in space, thereis atensor. The metric tensor field is a tensor-valued function of space: at
each point, there is a metric tensor. Almost universally, the word “field” is omitted when calling out tensor
fields: when you say “metric tensor,” everyone is expected to know it is a tensor field. When you say
“moment of inertia tensor,” everyone is expected to know it is a single tensor (not a field).

Dot Products and Cross Products as Tensors

Symmetric tensors are associated with elementary dot products, and anti-symmetric tensors are
associated with elementary cross-products.

A dot product is alinear operation on two vectors. A-B = B-A, which produces a scalar. Because the
dot product isalinear function of two vectors, it can be written as atensor. (Recall that any linear function
of vectors can be written asatensor.) Since it takes two rank-1 tensors, and produces a rank-0 tensor, the
dot product is arank-2 tensor. Therefore, we can achieve the same result as a dot product with a rank-2
symmetric tensor that accepts two vectors and produces a scdar; call this tensor g:

9(A,B)=9(B, A)

‘g’ is called the metric tensor: it produces the dot product (aka scalar product) of two vectors. Quite
often, the metric tensor varies as a function of the generalized coordinates of the system; then it isametric
tensor field. It happens that the dot product is symmetric: A-B = B-A.; therefore, g is symmetric. If we
write the components of g as a matrix, the matrix will be symmetric, i.e it will equa its own transpose.
(Do | need to expand on this??)

On the other hand, a cross product is an anti-symmetric linear operation on two vectors, which
produces ancther vector: A x B = —B x A. Therefore, we can associate one vector, say B, with a rank-2
anti-symmetric tensor, that accepts one vector and produces another vector:

B(LA)=-B(A,_)

For example, the Lorentz force law: F = v x B. We can write B asa (*;) tensor:

i ] K 0 B, -BJV* B,vY - BV’
F=vxB=|v* v V|=B(_v)=B v/ =[-B, 0 B ||V |=[-By +BV
Bx By Bz By _Bx 0 v’ ByVX - BXVy

We see again how arank-2 tensor, B, contributes a vector for each component of v:
B & =B, + B)k (thefirst column of B) isweighted by V.
B\, & = B,j — Bk (the 2™ column of B) isweighted by V.
B, & =—B,i + B{ (the 3" column of B) isweighted by V*.

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 229 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

AZ AZ

A rank-2 tensor acting on a vector to produce their cross-product.

TBS: We can aso think of the cross product as a fully anti-symmetric rank-3 tensor, which acts on 2
vectors to produce a vector (their cross product). Thisisthe anti-symmetric symbal & (not a tensor).

Note that both the dot product and cross-product are linear on both of their operands. For example:
(cA+yC)-B=a(A-B)+y(C-B)
A-(BB+nD) = B(A-B)+n(A-D)

| Linearity in all the operands isthe essence of a tensor.

Note also that a “rank” of a tensor contracts with (is summed over) a “rank” of one of its operands to
eliminate both of them: one rank of the B-field tensor contracts with one input vector, leaving one
surviving rank of the B-field tensor, which is the vector result. Similarly, one rank of the metric tensor, g,
contracts with the first operand vector; another rank of g contracts with the second operand vector, leaving
arank-0 (scalar) resuilt.

The Danger of Matrices

There are some dangers to thinking of tensors as matrices: (1) it doesn’t work for rank 3 or higher
tensors, and (2) non-commutation of matrix multiplication is harder to follow than the more-explicit
summation convention. Nonetheless, the matrix conventions are these:

e contravariant components and basis covectors (“up” indexes) — column vector. E.g.,

v, e
V=V, |, basisl-forms: | €
v, e

e covariant components and basis contravectors (“down” indexes) — row vector
W= (W, W, W), basis vectors: (e,e,,e,)

Matrix rows and columns are indicated by spacing of the indexes, and are independent of their
“upness” or “downness.” The first matrix index is always the row; the second, the column:

T T T T" where r =rowindex, ¢ = columnindex

Reading Tensor Component Equations
Tensor equations can be written as equations with tensors as operators (written in bol d):
KE=%1(®, ®)
Or, they can be written in component form:
(1) KE=%lj o' o
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We’ll be using lots of tensor equations written in component form, so it is important to know how to
read them. Note that some standard notations almost require component form: In GR, the Ricci tensor is
R*, and the Ricci scalar isR:

1
Guv = Ruv _E Rguv

In component equations, tensor indexes are written explicitly. There are two kinds of tensor indexes:
dummy (aka summation) indexes, and free indexes. Dummy indexes appear exactly twice in any term.
Free indexes appear only once in each term, and the same free indexes must appear in each term (except for
scalar terms). In the above equation, both i and v are free indexes, and there are no dummy indexes. In eq.
(1) above, i and j are both dummy indexes and there are no free indexes.

Dummy indexes appear exactly twice in any term are used for implied summation, e.g.

138, 3 o
KE=§Z > oo
i=1

=1

KE=%Iija)ia)j

Free indexes are a shorthand for writing several equations at once. Each free index takes on all
possible valuesfor it. Thus,

C'=A+B = C*=A+B*, C'=A+BY, C’=A"+B’ (3equations)
and
1
Guv = R/JV _E ngv =
1 1 1 1
Goozpoo—ERgoo: G01:|?01—§R901v Gozzpoz—ERgozv Go3:R)3—§R903
1 1 1 1
GlOZRm_ERglO' Gn:Ru—ERguv Glzlez—ERglzv Gl3ZR13—§R913
1 1 1 1
Gy = Rzo—ERgzo: Gy = R21—§R921v Gy =Ry —ERgzzy Gy =R —ERgzs
1 1 1 1
Gso:Rso—ERgsoy 6312931—§R931v G32=R32—§R932, Qszpsa—zRgss

(16 equations).

It is common to have both dummy and free indexes in the same equation. Thus the GR statement of
conservation of energy and momentum uses ¢ as adummy index, and v as afree index:

23: VHTMO = O, 23: VﬂTul — 0’ Zsl VHT“Z _ 0’ 23: VuTuS -0

u=0 u=0 u=0 u=0

v, T =0

(4 equations). Notice that scalars apply to all values of free indexes, and don’t need indexes of their
own. However, any free indexes must match on all tensor terms. It is nonsense to write something like:

Al =B +C! (nonsense)

However, it isreasonable to have

Al =B'C! E.g., angular momentum: M =r'p' —rip

Adding, Subtracting, Differentiating Tensors

Since tensors are linear operations, you can add or subtract any two tensors that take the same type
arguments and produce the same type result. Just add the tensor components individually.

S=T+U Eg S =T'+U" i j=1..N
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You can also scalar multiply a tensor. Since these properties of tensors are the defining requirements
for avector space, all the tensors of given rank and index types compose a vector space, and every tensor is
an MVE in its space.

Thisimpliesthat atensor field can be differentiated (or integrated), and in particular, it has a gradient.

Higher Rank Tensors

When considering higher rank tensors, it may be helpful to recall that multi-dimensional matrices can
be thought of aslower-dimensional matrices with each element itself a vector or matrix. For example, a3 x
3 matrix can be thought of as a “column vector” of 3 row-vectors. Matrix multiplication works out the
same whether you consider the 3 x 3 matrix as a 2-D matrix of numbers, or a 1-D column vector of row
Vectors:

a b c
(x y z)|d e f|=(ax+dy+gz bx+ey+hz cox+ fy+iz)
g h i
or N
(a,b,c)
(x y 2z)[(d,ef)|=x(abc)+ydef)+2zghi)=(ax+dy+gz bx+ey+hz cx+ fy+iz)
(9,h,)

Using this same idea, we can compare the gradient of a scalar field, which isa (%) tensor field (a 1-
form), with the gradient of arank-2 (say (%)) tensor field, which isa (%) tensor fidd. First, the gradient of
ascalar field isa(®,) tensor fidd with 3 components, where each component is a number-val ued function:

\%i =D=iml+ﬂm2+ﬂm3, ®;,m,,m5 are basis (co)vectors
oX oy 0z
D can be written as (D, D,, D3), where Dl=ﬂ, D2=i, D3=ﬂ
OX oy 0z
The gradient operates on an infinitesimd displacement vector to produce the change in the function

when you move through the given displacement: df = D(dr) = (;i dx+ % dy + (;i dz.
X z

Now let R bea (%) tensor fidld, and T beitsgradient. T isa (%) tensor field, but can be thought of asa
(°) tensor field where each component isitself a (%) tensor.

—

x-tensor z-tensor

A rank-3 tensor considered as a set of 3 rank-2 tensors: an x-tensor, ay-tensor, and a z-tensor.

The gradient operates on an infinitesimal displacement vector to produce the change in the (°,) tensor
field when you move through the given displacement.

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 232 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

R 1 R 2 oR 3
ax ay az

T=VR=—

Ty Tiox Tax | [Ty T2y Ty | |1z T2z T3z
=1 Toix Toax Toax| [Ty Tooy Tosy | |To1z Tooz Tozz

Taix Taox Ta3x| | T3y Ta2y Tasy | [T31z Taoz Tasz

Ty >"@_' dR

dR=T(v)= Y T,V & (dR); =T, v
k=x,y,z
Note that if R had been a (%) (fully contravariant) tensor, then its gradient would be a (%) mixed

tensor. Taking the gradient of any field smply adds a covariant index, which can then be contracted with a
displacement vector to find the change in the tensor field when moving through the given displacement.

The contraction considerations of the previous section till apply: arank of an tensor operator contracts
with arank of one of itsinputs to eiminate both. In other words, each rank of input tensors eliminates one
rank of the tensor operator. The rank of the result is the number of surviving ranks from the tensor
operator:

rank(tensor) = (z rank(inputs)) + rank(result)

or rank(result) = rank(tensor) — (z rank(inputs))

Tensors of Mathematical Vector Elements. The operation of a tensor on vectors involves
multi plying components (one from the tensor, and one from each input vector), and then summing. E.g.,

T(ab) =T,a'b' +..+T,ab +

Similar to the above example, the T;; components could themselves be a vector of a mathematical
vector space (i.e., could be MVES), while the @ and b' components are scalars of that vector space. In the
example above, we could say that each of the T, Tij.y , and Tjj, isarank-2 tensor (an MVE in the space of
rank-2 tensors), and the components of v are scalarsin that space (in this case, real numbers).

Tensors In General

In complete generality then, atensor T isalinear operation on one or more MVEs
T(a b, ...).

Linearity implies that T can be written as a numeric weight for each combination of components, one
component from each input MVE. Thus, the “linear operation” performed by T is eguivalent to a weighted
sum of all combinations of components of the input MVEs. (Since T and the a, b, ... are simple objects,
not functions, there is no concept of derivative or integra operations. Derivatives and integrals are linear
operations on functions, but not linear functions of MVES.)

Given the components of the inputs a, b, ..., and the components of T, we can contract T with (operate
with T on) the inputs to produce a MVE result. Note that al input MVES have to have the same basis.
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Also, T may have units, so the output units are arbitrary. Note that in generalized coordinates, different
components of a tensor may have different units (much like the vector parameters r and 6 have different
units).

Change of Basis: Transformations

Since tensors are linear operations on MV Es, we can represent a tensor by components. If we know a
tensor’s operations on all combinations of basis vectors, we have fully defined the tensor. Consider arank-
2 tensor T acting on two vectors, aand b. We expand T, a, and b into components, using the linearity of
the tensor:

T(a,b) = T(ali + a%j + a’k, bl + b?j + b%k)
=ab'T(i,i) +a%b'T(j,i) + a’b'T(k,i)
+ab?T(i,j) +a?0?T(j,j) + a%*T(k,])
+ab’T (i, k) +a?0°T(j,k) + a°b°T (k, k)
Define T; =T(g,€;), where e =i, e =], 5=k
then T(a,b)=23: i aibjT(q,e-)zi 23: T;a'b/
i=1 j=1 i=1 j=1

The tensor’s values on all combinations of input basis vectors are the components of the tensor (in the
basis of the input vectors.)

Now let’s transform T to another basis. To change from one basis to another, we need to know how to
find the new basis vectors from the old ones, or equivalently, how to transform componentsin the old basis
to componentsin the new basis. We write the new basis with primes, and the old basis without primes.

Because vector spaces demand linegrity, any change of basis can be written as a linear transformation
of the basis vectors or components, so we can write (eg. #sfrom Talman):

e = ZN:Akiek =Ake, [Tal 2.4.5]
k=1
V= zN:(Afl)ikvk (A7) v [Tal 2.4.8]

k=

[iN

where the last form uses the summation convention. There is a very important difference between
equations 2.4.5 and 2.4.8. Thefirst isa set of 3 vector equations, expressing each of the new basis vectors
in the old basis

Aside: Let’s look more closely at the difference between equations 2.4.5 and 2.4.8. The first is aset of 3
vector equations, expressing each of the new basis vectorsin the old basis. Basis vectors are vectors, and hence
can themsel ves be expressed in any basis:

e, =Ae +A%e, +A°e, e, = a'e +a’e, + a’e,
e, =ALe +A%e, +A%e, or moresimply 1e', =b'e, +b’e, +b’e,
e, =AY +A%e, +A’e, e, =C'e +C%, +C’e,

where the &’s are the components of €’; in the old basis, the b’s are the components of €, in the old bas's,
and the C’s are the components of €3 in the old basis.

In contrast, equation 2.4.8 is a set of 3 number equations, relating the components of a single vector, taking
its old components into the new basis. In other words, in the first equation, we are taking new basis vectors and
expressing them in the old basis (new — old). In the second equation, we are taking old components and
converting them to the new basis (old — new). The two equations go in opposite directions: the first takes new to
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old, the second takes old to new. So it is natura that the two equations use inverse matrices to achieve those
conversions. However, because of the inverse matrices in these equations, vector components are said to
transform “contrary” (oppositely) to basis vectors, so they are called contravariant vectors.

I think it is mideading to say that contravariant vectors transform “oppositely” to basis vectors. In fact, that
isimpossible. Basis vectors are contravectors, and transform like any other contravector. A vector of (1, 0, 0) (in
some basis) is a basis vector. It may also happen to be the value of some physical vector. In both cases, the
expression of the vector (1, 0, 0) (old basis) in the new-basis is the same.

Now we can use 2.4.5 to evaluate the components of T in the primed basis.
k | RN k | SN k |
Tlij =T(eli'elj) =T(A%e. A jel) =;|Z—1: ASA jT(ek'eI)zg;; ASA ka|
Notice that there is one use of the transformation matrix A for each index of T to be transformed.
Matrix View of Basis Transformation

The concept of tensors seems clumsy at first, but it’s a very fundamental concept. Once you get used
to it, tensors are essentially ssimple things (though it took me 3 years to understand how “simple” they
are). The rules for transformations are pretty direct. Transforming a rank-n tensor requires usng the
transformation matrix ntimes. A vector isrank-1, and transforms by a simple matrix multiply, or in tensor
terms, by a summation over indices. Here, since we must distinguish row basis from column basis, we put
the primes on the indices, to indicate which index isin the new basis, and which isin the old basis.

aO' AO‘O AO‘l AO‘Z A0‘3 0
al' Al‘O Al‘l A1‘2 A1'3 . .
a =Aa © = ‘ ‘ ‘ ‘ © a’ =A" a”
a2 A2 0 A2 1 A2 2 A2 3
3' A3‘0 A3‘l A3‘2 A3‘3

o, oY

w

Q
Q

Notice that when you sum over (contract over) two indices, they disappear, and you’re left with the
unsummed index. So above when we sum over old-basis indices, we’re left with a new-basis vector.

Rank-2 example: The electromagnetic fidld tensor F is rank-2, and transforms using the
transformation matrix twice, by two summations over indices, transforming both stress-energy indices.
Thisis clumsy to writein matrix terms, because you have to use the transpose of the transformation matrix
to transform the rows; this transposition has no physical significance. In the rank-2 (or higher) case, the
tensor notation is both simpler, and more physically meaningful:

F'= AFAT o

FO'O' FO'l' F0'2' FO'B' AO'O AO'l AO'2 AO'S FOO FOl F02 FOB AO'O Al‘O A2'0 A3'0

T Y W T

In general, you have to transform every index of a tensor, each index requiring one use of the
transformation matrix.

Non-Orthonormal Systems: Contravariance and Covariance

Many systems cannot be represented with orthonorma coordinates, e.g. the (surface of a) sphere.
Dealing with non-orthonormality requires a more sophisticated view of tensors, and introduces the
concepts of contravariance and covariance.

Consider the following problem from classical mechanics: a pendulum is suspended from a pivot
point which slides horizontally on a spring. The generaized coordinates are (a, 9).
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a
—> constant a
G66¢ (a.0+d0)
(at+da,6+do)
9.
@9 stant 6
constan
7 Tlarda)

o = daa+rdo 6

To compute kinetic energy, we need to compute |v°, conveniently done in some orthogonal
coordinates, say x and y. We start by converting the generadized coordinates to the orthonormal x-y
coordinates, to compute the length of a physical displacement from the changes in generalized coordinates:

Xx=a+lsno, dx=da+1cosf do
y=1Icosé, dy=-lsing do
= ds? = dx® + dy? = da® + 2 cos da d@ +12 cos? 0 do? +1%sin? 0 do?
= da?® + 2l cosf da d@ +1°do?

We have just computed the metric tensor field, which is a function of position in the (a, 6)
configuration space. We can write the metric tensor field components by inspection:

Let xX=a, x*=0

ds? zz:zz: dx'dx’ = da® + 2 cos@ da d@ +1%d6? 1 loosg
= qdxdx’ =da”+2l cosf dadé + = o=
i1 j=1 . 9 lcos® |12

Then v = ds?/dt®>. A key point hereis that the same metric tensor computes a physical displacement
from generalized coordinate displacements, or a physical velocity from generalized coordinate velocities,
or aphysical acceleration from generalized coordinate accelerations, etc., because time is the same for any
generalized coordinate system (no Relativity herel). Note that we symmetrize the cross-terms of the
metric, g; = g;;, which isnecessary to insure that g(v, w) = g(w, V).

Now consider the scalar product of two vectors. The same metric tensor (field) helps compute the
scalar product (dot product) of any two (infinitesimal) vectors, from their generalized coordinates:

dv - dw = g(dv, dw) = g”d\/dvvj
Since the metric tensor takes two input vectors, is linear in both, and produces a scdar result, it isa
rank-2 tensor. Also, since g(v, w) = g(w, V), gisasymmetric tensor.

Now, let’s define ascalar field as a function of the generalized coordinates; say, the potential energy:
U= gaz — mg cosf

Itis quite useful to know the gradient of the potentid energy:

p=vU =Yg M g = du=p(r)=da+ Mo
oa 00 oa 00
The gradient takes an infinitesimal displacement vector dr = (da, d6), and produces a differentia in the
value of potential energy, dU (ascalar). Further, dU isalinear function of the displacement vector. Hence,
by definition, the gradient at each point in a-6 spaceisarank-1 tensor, i.e. the gradient isatensor field.
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Do we need to use the metric (computed earlier) to make the gradient operate on dr? No! The
gradient operates directly on dr, without the need for any “assistance” by a metric. So the gradient is a
rank-1 tensor that can directly contract with a vector to produce a scalar. This is markedly different from
the dot product case above, where the firgt vector (arank-1 tensor) could not contract directly with an input
vector to produce a scalar. So clearly,

There are two kinds of rank-1 tensors: those (like the gradient) that can contract directly with an
input vector, and those that need the metric to “help” them operate on an input vector.

Those tensors that can operate directly on a vector are called covariant tensors, and those that need
help are called contravariant, for reasons we will show soon. To indicate that D is covariant, we write its
components with subscripts, instead of superscripts. Itsbasis vectors are covariant vectors, related to ey, e,
and e

D=Do' =D,0%+ Do’ where o', o’ are covariant basis vectors

In general, covariant tensors result from differentiation operators on other (scalar or) tensor fields:
gradient, covariant derivative, exterior derivative, Lie derivative, etc.

Note that just as we can say that D acts on dr, we can say that dr is arank-1 tensor that acts on D to
produce dU:

oU ou

oU
D(dr)=dr(D)= » —dx =—da+—d@
(dr)=dr(®) Zax' da a0

The contractions are the same with either acting on the other, so the definitions are symmetric.

Interestingly, when we compute small oscillations of asystem of particles, we need both the potential matrix,
which is the gradient of the gradient of the potentid field, and the “mass” matrix, which really gives us kinetic
energy. The potential matrix is fully covariant, and we need no metric to compute it. The kinetic energy matrix
requires us to compute absol ute magnitudes of |v]?, and so requires us to compute the metric.

We know that a vector, which is arank-1 tensor, can be visualized as an arrow. How do we visualize
this covariant tensor, in away that reveals how it operates on a vector (an arrow)? We use a set of equally
spaced paralld planes. Let D be a covariant tensor (aka 1-form):

D(v, + V,) = D(v,) + D(v,) ////

D(vy), D(vy) >0

\&
| \ [t /\' D(vy) <0

T
3 e e
7\+§+7+7+7\+7+

Visualization of a covariant vector (1-form) as oriented parald planes.
The 1-formisalinear operator on vectors (see text).

The value of D on a vector, D(v), is the number of planes “pierced” by the vector when laid on the
paralel planes. Clearly, D(v) depends on the magnitude and direction of v. It isaso alinear function of v:
the sum of planes pierced by two different vectors equals the number of planes pierced by their vector sum.

Thereisan orientation to the planes. One side is negative, and the other positive. Vectors crossing in
the negative to the positive direction “pierce” a positive number of planes. Vectors crossing in the positive
to negative direction “pierce” a negative number of planes.
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Note also we could redraw the two axes arbitrarily oblique (non-orthogonal), and rescale the axes
arbitrarily, but keeping the intercept values of the planes with the axes unchanged (thus stretching the
arrows and planes). The number of planes pierced would be the same, so the two diagrams above are
equivalent. Hence, this geometric construction of the operation of a covector on a contravector is
completely general, and even applies to vector spaces which have no metric (aka “non-metric” spaces). All
you need for the construction isa set of arbitrary basis vectors (not necessarily orthonormal), and the values
D(g) on each, and you can draw the parallel planes that illustrate the covector.

The “direction” of D, analogous to the direction of a vector, is normal to (perpendicular to) the planes
used to graphically represent D.

What Goes Up Can Go Down: Duality of Contravariant and Covariant Vectors
Recall the dot product is given by
dv - dw = g(dv, dw) = g, dv' dw’

If 1 fill only one slot of g with v, and leave the 2" slot empty, then g(v, _) isalinear function of one
vector, and can be directly contracted with that vector; hence g(v, _ ) isarank-1 covariant vector. For any
given contravariant vector V', I can define this “dual” covariant vector, g(v, _ ), which has N components
I’ call v,.

Vi =g(v, ) = gV

So long as | have a metric, the contravariant and covariant forms of v contain equivalent
information, and are thus two ways of expressing the same vector (geometric object).

The covariant representation can contract directly with a contravariant vector, and the contravariant
representation can contract directly with a covariant vector, to produce the dot product of the two vectors.
Therefore, we can use the metric tensor to “lower” the components of a contravariant vector into their
covariant equivalents.

Note that the metric tensor itself has been written with two covariant (lower) indexes, because it
contracts directly with two contravariant vectors to produce their scalar -product.

Why do I need two forms of the same vector? Consider the vector “force:”
F=ma or Fl =ma (naturally contravariant)

Since position X is naturally contravariant, so is its derivative V', and 2™ derivative, a. Therefore,
force is “naturally” contravariant. But force is also the gradient of potential energy:

F=-vU or F = —iu (naturally covariant)

ox'
Oops! Now “force” is naturally covariant! But it’s the same force as above. So which is more natural
for “force?” Neither. Use whichever one you need. Nurture supersedes nature.

The inverse of the metric tensor matrix is the contravariant metric tensor, g’. It contracts directly with
two covariant vectors to produce their scalar product. Hence, we can use ¢’ to “raise” the index of a
covariant vector to get its contravariant components.

v =g(v, ) =g"y, 9%gy =9,

Notice that raising and lowering works on the metric tensor itself. Note that in general, even for
symmetric tensors, Ti! #T;', and T # T',.

For rank-2 or higher tensors, each index is separately of the contravariant or covariant type. Each
index may be raised or lowered separately from the others. Each lowering requires a contraction with the
fully covariant metric tensor; each raising requires a contraction with the fully contravariant metric tensor.
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In Euclidean space with orthonormal coordinates, the metric tensor is the identity matrix. Hence, the
covariant and contravariant components of any vector are identical. This is why there is no distinction
made in elementary treatments of vector mathematics; displacements, gradients, everything, are smply
called “vectors.”

The space of covectorsisa vector space, i.e. it satisfies the properties of a vector space. However, it is
called “dual” to the vector space of contravectors, because covectors operate on contravectors to produce
scalar invariants. A thing is dual to another thing if the dual can act on the original thing to produce a
scalar, and vice versa. E.g., in QM, bras are dual to kets. “Vectors in the dual space” are covectors.

Just like basis contravectors, basis covectors always have components (in their own basis)

o'=(100.), ®>=(010.), °=(00.1.), etc,

and we can write an arbitrary covector as f = fo' + f,0” + f,0°+....

TBS: construction and units of adual covector from its contravector.
The Real Summation Convention

The summation convention says repeated indexes in an arithmetic expression are implicitly summed
(contracted). We now understand that only a contravariant/covariant pair can be meaningfully summed.
Two covariant or two contravariant indexes require contracting with the metric tensor to be meaningful.
Hence, the real Einstein summation convention is that any two matching indexes, one “up” (contravariant)
and one “down” (covariant), are implicitly summed (contracted). Two matching contravariant or covariant
indexes are meaningless, and not allowed.

Now we can see why basis contravectors are written e;, &, ... (with subscripts), and basis covectors are

written @', ?, ... (with superscripts). It is purely a trick to comply with the real summation convention
that requires summations be performed over one “up” index and one “down” index. Then we can write a
vector asalinear combination of the basis vectors, usng the summation convention:

v=Ve +Ve, +Ve =Ve a=a0" +a,0°+a,0’=a0
Note well that there is nothing “covariant” about €, even though it has a subscript; there is nothing
“contravariant” about @', even though it has a superscript. It’s just a notational trick.
Transformation of Covariant Indexes

It turns out that the components of a covariant vector transform with the same matrix as used to
express the new (primed) basis vectorsin the old basis:

fi=fiAk [Ta 2.4.11]

Again, somewhat bogusly, eq. 2.4.11 is said to “transform covariantly with” (the same as) the basis
vectors, so ‘f;  is called a covariant vector.

For arank-2 tensor such as Tj; , each index of Tj; transforms “like” the basis vectors (i.e., covariantly
with the basis vectors). Hence, each index of Tj; is said to be a “covariant” index. Since both indexes are
covariant, T; j is sometimes called “fully covariant.”

Indefinite Metrics: Relativity

In short, a covariant index of a tensor is one which can be contracted with (summed over) a
contravariant index of an input MVE to produce a meaningful resultant MVE.

In relativity, the metric tensor has some negative signs. The scalar-product is a frame-invariant
“interval.” No problem. All the math, raisng, and lowering, works just the same. In specia relativity, the
metric ends up simply putting minus signs where you need them to get SR intervals. The covariant form of

a vector has the minus signs “pre-loaded,” so it contracts directly with a contravariant vector to produce a
scalar.
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Let’s use the sign convention where 1,, = diag(-1, 1, 1, 1). When considering the dual 1-forms for
Minkowski space, the only unusua aspect is that the 1-form for time increases in the opposite direction as
the vector for time. For the space components, the dual 1-forms increase in the same direction as the
vectors. Thismeansthat

o'e, =1, o’e, =1, o’e, =1, o’%,=1

asit should for the Minkowski metric.

Is a Transformation Matrix a Tensor?

Sort of. When applied to a vector, it converts components from the “old” basis to the “new” basis. It
is clearly a linear function of its argument. However, atensor usualy has dl itsinputs and outputs in the
same basis (or tensor products of that basis). But atransformation matrix is specifically constructed to take
inputs in one basis, and produce outputs in a different basis. Essentially, the columns are indexed by the
old basis, and the rows are indexed by the new basis. It basically works like a tensor, but the
transformation rule is that to transform the columns, you use a transformation matrix for the old basis; to
transform the rows, you use the transformation matrix for the new basis.

Consider a vector
v=\Ve +V%e, + Ve,

Thisisa vector equation, and despite its appearance, it istruein any basis, not just the (e, &, €;) basis.
If wewrite ey, &, e; asvectorsin somenew (e, g, €,) basis, the vector equation above still holds:

e =(e)'ec+(e) e +(e)e,
& =(6) e +(e) e, +(e;) e,
ey =(e3)" e +(e5)" e, +(&s)e,
v=\Ve +V%e, + Ve,

=vl[(el)x e +(e) e +(e)’ eZJ +V2 [(ez)x e () e, +(&) eZJ +v3[(%)X e, +(e5) e, +(e)° ez}

e € €

The vector v isjust a weighted sum of basis vectors, and therefore the columns of the transformation
matrix are the old basis vectors expressed in the new basis. E.g., to transform the components of a vector
from the (e, &, &;) tothe (g, g, &,) basis, the transformation matrix is

(el)x (ez)x (%)X €6 €6 66
(&) () (&) |=|ecey erey eyey
(&) ()" ()| Loe, &€ ese

You can see directly that the first column is e; written in the x-y-z basis; the 2™ column is e, in the x-y-
zbasis; and the 3 column is e; in the x-y-z basis.

How About the Pauli Vector?

In quantum mechanics, the Pauli vector isa vector of three 2x2 matrices: the Pauli matrices. Each 2x2
complex-valued matrix corresponds to a spin-1/2 operator in some x, y, or zdirection. It isa 3™ rank object
in the tensor product space of R®* ® C* ® C?, i.e. xyz ® spinor ® spinor. The xyz rank is dlearly in a
different basis than the complex spinor ranks, since xyzis a completely different vector space than spin-1/2
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spinor space. However, it isalinear operator on various objects, so each rank transforms according to the
transformation matrix for its basis.

X y z

LA E

It’s interesting to note that the term tensor product produces, in general, an object of mixed bases, and
often, mixed vector spaces. Nonetheless, the term “tensor” seems to be used most often for mathematical
objects whose ranks are al in the same basis.

Cartesian Tensors

Cartesian tensors aren’t quite tensors, because they don’t transform into non-Cartesian coordinates
properly. (Note that despite their name, Cartesian tensors are not a special kind of tensor; they aren’t really
tensors. They’re tensor wanna-be’s.) Cartesian tensors have two failings that prevent them from being true
tensors: they don’t distinguish between contravariant and covariant components, and they treat finite
displacements in space as vectors. In non-orthogona coordinates, you must distinguish contravariant and
covariant components. In non-Cartesian coordinates, only infinitesimal displacements are vectors. Details:

Recall that in Cartesian coordinates, there is no distinction between contravariant and covariant
components of atensor. This allows a certain soppiness that one can only get away with if one sticks to
Cartesian coordinates. This means that Cartesian “tensors” only transform reliably by rotations from one
set of Cartesian coordinates to a new, rotated set of Cartesian coordinates. Since both the new and old
bases are Cartesian, there is no need to distinguish contravariant and covariant components in either basis,
and the transformation (to a rotated coordinate system) “works.”

For example, the moment of inertia “tensor” is a Cartesian tensor. There is no problem in itsfirst use,
to compute the angular momentum of a blob of mass given its angular velocity:

l(®, )=L = L'=1lo =
X X X X X X X X
L e 1 ||e 1", [ I,
yi=|1y v oy Y =Xl 1Y vy z| |y
=17 17, Y )l =™ 17, [+’ IV, |+0*| I,
z z z z z z z z
L 51 15 ||e 1% 1%, 17

But notice that if | accepts a contravariant vector, then |’s components for that input vector must be
covariant. However, | produces a contravariant output, so its output components are contravariant. So far,
so good.

But now we want to find the kinetic energy. Wadll, %Iao2 =%L ~m=el(m,_))-m. But we have a

dot product of two contravariant vectors. To evaluate that dot product, in a general coordinate system, we
have to use the metric:

1 1. 1
KE=§|;wJa},=§|;wlgikwk ¢§|'jwlw'

However, in Cartesian coordinates, the metric matrix is the identity matrix, the contravariant
components egual the covariant components, and the final “not-equals” above becomes an “equals.”
Hence, we neglect the distinction between contravariant components and covariant components, and
“irdlcorrectly” sum the components of | on the components of , even though both are contravariant in the
2" sum.
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In general coordinates, the direct sum for the dot product doesn’t work, and you must use the metric
tensor for the final dot product.

Example of failure of finite displacements: TBS: The eectric quadrupol e tensor acts on two copies of
the finite displacement vector to produce the electric potential at that displacement. Even in something as
simpleaspolar coordinates, this method fails.

The Real Reason Why the Kronecker Delta Is Symmetric

TBS: Because it amixed tensor, . Symmetry can only be assessed by comparing interchange of two
indices of the same “up-” or “down-ness” (contravariance or covariance). We can lower, say a, in 6% with
the metric:

501/3 = ga757ﬂ = gaﬂ

Theresult the metric, which isaways symmetric. Hence, 6 isasymmetric tensor, but not becauseits
matrix looks symmetric. In general, a mixed rank-2 symmetric tensor does not have a symmetric matrix
representation. Only when both indices are up or both down isits matrix symmetric.

| The Kronecker deltaisa special case that does not generalize.

Things are not always what they seem.

Tensor Appendices

Pythagorean Relation for 1-forms
Demonstration that 1-forms satisfy the Pythagorean relation for magnitude:

4+ X $

a- a~ \\ \a~
a~ 10
B X bt
. unit \
unit \
vector Y
vector \ \
| | ' a
OdX+1dy 1dX+ldy 2dx+1dy adX+bdy
la~| = 1 la~| = V2 la~|= V5 |a~| = \(a2+b?)

Examples of 3 1-forms, and a generic 1-form. Here, dx isthe x basis 1-form, and dy isthey basis
1-form.

From the diagram above, a max-crossing vector (perpendicular to the planes of a~) has (x, )
components (1/b, 1/a). Dividing by its magnitude, we get aunit vector:
1. 1.
=X+=y
max crossing unit vector u = bl—al' Note that dx(%) =1, and dy(y) =1
W a?
The magnitude of a 1-form is the scalar resulting from the 1-form’s action on a max-crossing unit
vector:
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1 a b
(adx+bdy)[§<+yj [+j 22 + b2 242
|€1|=€1(u)= a~)_\b a) _ ( + ) =( + )=/a2+b2
1 1 1.1 1 1 Ja24p?
\/+ S+ ab\/+
b> &’ b>  a? b> a2

Here’s another demonstration that 1-forms satisfy the Pythagorean relation for magnitude. The
magnitude of a 1-form isthe inverse of the plane spacing:

| noxa-ngoA =  X_BO
OA BA

B

[1 1
‘ w2tz
O A |é=i=u=ab ! 1=\/a2+b2¢

ox 11 A
b a
Geometric Construction Of The Sum Of Two 1-Forms:
Example of a~ + b~ Construction of a~ + b~
a(x)=2 a(vy) =1 a(vy) =0
b~(x) =1 b~(v,) =0 b~(v,) =1
(a=+b-)(x)=3 (a=+b-)(vy) =1 (a=+b-)(vy) =1

To congtruct the sum of two 1-forms, a~ + b~
1. Choose an origin at the intersection of aplane of a~ and aplane of b~.

2. Draw vector v, from the origin along the planes of b~, so b~(v,) = 0, and of length such that
a~(vy = 1. [Thisisthedual vector of a~.]
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3.  Similarly, draw v, from the origin along the planes of a~, 0 a~(v,) = 0, and b~(v,) = 1. [Thisis
the dual vector of b~.]

4. Draw a plane through the heads of v, and v, (black above). This defines the orientation of
(&~ + b~).

5. Draw aparalle plane through the common point (the origin). This defines the spacing of planes
of (a~+ b~).

6. Draw al other planes paralldl, and with the same spacing. Thisisthe geometric representation of
(&~ +b~).

Now we can easily draw the test vector x, such that a~(x) = 2, and b~(x) = 1.
“Fully Anti-symmetric” Symbols Expanded

Everyone hears about them, but few ever see them. They are quite sparse: the 3-D fully anti-
symmetric symbol has 6 nonzero values out of 27; the 4-D one has 24 nonzero values out of 256.

3-D, from the 6 permutations, ijk: 123+, 132-, 312+, 321-, 231+, 213-
k=1 k=2 k=3
0 0 0] |00 -1] |0 1 0
gx=/0 0 1|,/0 0 0, |-1 0O
0 -10/|1200 0 0O

4-D, from the 24 permutations, afyo:

0123+ 0132- 0312+ 0321- 0231+ 0213-
1023- 1032+ 1302- 1320+ 1230- 1203+
2013+ 2031- 2301+ 2310- 2130+ 2103-
3012- 3021+ 3201- 3210+ 3120- 3102+

=0 p=1 B=2 B=3

[0 000 00 0 O0]f[oo0oo0 0] [0 0 0 O]

Eups= 10 0 0 0 00 0O |0O0O0O-1//0 0 10

a=0 [0 00O |00 O 1|0 00 O|'|0 -1 00

0 00O 00-10/[010 0] |0 0 0 O]

0 00 0][00O0O0] [0 0O01] [0 O -1 O]

Yt 000 O oooo] 0 00O0/|0O0 OO

000 -1|00O0O0 |[OOOOI'|/20 00

001 0]|00O0O0 |-1000 |00 O O

[0 0 0 0] 00O -1[0000] [0 100

Yo 0 001|000 O oooo] -1 000

0 00O0O'|l0OO0O0TO|'fOOOO] |O OO0O

0 -1 00/ |100 0/|00O0O0 [0 0O O]

[0 0 0 0] [0 01 0][0-100][00O00T0

Y3 00 -10/|0 0O0O0O|12 000 oooo]

01 0 0/'|-1 0000 0 O0O0'|O0O0O

/00 0 0] |0 OOO/|0O0OO |O0OO0O0O
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Metric? We Don’t Need No Stinking Metric!
Examples of Useful, Non-metric Spaces

Non-metric spaces are everywhere. A non-metric space has no concept of “distance” between arbitrary
points, or even between arbitrary “nearby” points (points with infinitesma coordinate differences).
However:

Non-metric spaces have no concept of “distance,”
but many till have a well-defined concept of “area,” in the sense of an integral.

For example, consider a plot of velocity (of aparticlein 1D) vs. time (below, |€ft).

velocity pressure momentum
B
A
displacement
time volume position

Some useful non-metric spaces. (left) velocity vs. time; (middle) pressure vs. volume;
(right) momentum vs. position. In each case, thereisno distance, but thereisarea.

The area under the velocity curve is the total displacement covered. The area under the P-V curve is the
work done by an expanding fluid. The area under the momentum-position curve (p-q) is the action of the
motion in classica mechanics. Though the points in each of these plots exist on 2D manifolds, the two
coordinates are incomparable (they have different units). It is meaningless to ask what is the distance
between two arbitrary points on the plane. For example, points A and B on the v-t curve differ in both
vel ocity and time, so how could we define a distance between them (how can we add m/s and seconds)?

In the above cases, we have one coordinate value as a function of the other, e.g. velocity as a function
of time. We now consider another case: rather than congder the function as one of the coordinates in a
manifold, we consider the manifold as comprisng only the independent variables. Then, the function is
defined on that manifold. As usual, keeping track of the units of all the quantities will help in
understanding both the physical and mathematica principles.

For example, the speed of light in air is a function of 3 independent variables. temperature, pressure,
and humidity. At 633 nm, the effects amount to speed changes of about +1 ppm per kelvin, —0.4 ppm per
mm-Hg pressure, and +0.01 ppm per 1% change in relative humidity (RH) (see http://patapsco.nist.gov/
mel/div821/Wave ength/Documentati on.asp#CommentsRegardingl nputstotheEquations):

ST,P,H)=s+al—-bP+cH.

where a ~ 300 (m/s)’k, b = 120 (m/s)/mm-Hg, and ¢ = 3 (m/s)/% are positive constants, and the
function sisthe speed of light at the given conditions, in m/s. Our manifold isthe set of TPH triples, and s
is a function on that manifold. We can consider the TPH triple as a (contravariant, column) vector: (T, P,
H)". These vectors constitute a 3D vector space over the field of reals. s(:) isareal function on that vector
space.

Note that the 3 components of a vector each have different units: the temperature is measured in
kelvins (K), the pressure in mm-Hg, and the relative humidity in %. Note also that thereisno metric on (T,
P, H) space (which isbigger, 1 K or 1 mm-Hg?). However, the gradient of sis sill well defined:

Vs=§aT +§6P+E

oT oP oH

What are the units of the gradient? As with the vectors, each component has different units: the first isin

(m/s) per kelvin; the second in (m/s) per mm-Hg; the third in (m/s) per %. The gradient has different units

than the vectors, and isnot a part of the original vector space. The gradient, Vs, operates on a vector (T, P,

H)" to give the change in speed from one set of conditions, say (To, Po, Ho) to conditions incremented by
the vector (To + T, Py + P, Ho + H).

dH =adT -bdP+cdH .
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One often thinks of the gradient as having a second property: it specifies the “direction” of steepest
increase of the function, s. Buit:

Without a metric, “steepest” is not defined.

Which is stegper, moving one unit in the temperature direction, or one unit in the humidity direction? In
desperation, we might ignore our units of measure, and choose the Euclidean metric (thus equating one unit
of temperature with one unit of pressure and one unit of humidity); then the gradient produces a “direction”
of steepest increase. However, with no justification for such a choice of metric, the result is probably
meaningless.

What about basis vectors? The obvious choiceis, including units, (1 K, 0 mm-Hg, 0%)", (0 K, 1 mm-
Hg, 0 %)", and (0 K, 0 mm-Hg, 1 %)", or omitting units: (1, 0, 0), (0, 1, 0), and (0, O, 1). Note that these
are not unit vectors, because there is no such thing as a “unit” vector, because there is no metric by which
to measure one “unit.” Also, if I ascribe units to the basis vectors, then the components of an arbitrary
vector in that basis are dimensionless.

Now let’s change the basis: suppose now I measure temperature in some unit equal to %2 K (almost the
Rankine scale). Now all my temperature measurements “double”, i.e. Tpaw = 2 Toig. 1IN Other words, (2K,
0, 0)" is a different basis than (1 K, 0, 0)". As expected for a covariant component, the temperature
component of the gradient (V9)r is cut in half if the basis vector “halves.” So when the half-size gradient
component operates on the double-size temperature vector component, the product remains invariant, i.e,
the speed of light isafunction of temperature, not of the unitsin which you measure temperature.

The above basis change was a smple change of scale of one component in isolation. The other
common basis changeisa “rotation” of the axes, “mixing” the old basis vectors.

Can werotate axes when the units are different for each component? Surprisingly, we can.

H
€3

T €

We smply define new basis vectors as linear combinations of old ones, which is al that a rotation
does. For example, suppose we measured the speed of light on 3 different days, and the environmental
conditions were different on those 3 days. We choose those measurements as our basis, say e; = (300 K,
750 mm-Hg, 20%), & = (290 K, 760 mm-Hg, 30 %), and &; = (290 K, 770 mm-Hg, 10 %). These basis
vectors are not orthogonal, but are (of course) linearly independent. Suppose | want to know the speed of
light at (296 K, 752 mm-Hg, 18 %). | decompose this into my new basis and get (0.6, 0.6, -0.2). |
compute the speed of light function in the new basis, and then compute its gradient, to get

d g+ dzé2 + d3é3 . T then operate on the vector with the gradient to find the change in speed: As= V0.6,
0.6,-0.2)=0.6d; + 0.6 d, — 0.2 ds.

We could extend this to a more complex function, and then the gradient is not constant. For example,
amore accurate equation for the speed of light is

S(T,P,H) = ¢y — f?P+ gH ((T—273)2+160)

wheref~7.86 x 10* and g~ 1.5 x 10 are constants. Now the gradient is a function of position (in
TPH space), and thereis still no metric.

Comment on the metric: In desperation, you might define a metric, i.e. the length of a vector, to be AS,
the change in the speed of light due to the environmental changes defined by that vector. However, such a
metric is in genera non-Euclidean (not a Pythagorean relationship), indefinite (non-zero vectors can have
zero or negative “lengths”), and still doesn’t define a meaningful dot product. Our more-accurate equation
for the speed of light provides examples of these failures.
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11 Differential Geometry

Manifolds

A manifold is a “space”: a set of points with coordinate labels. We are free to choose coordinates
many ways, but a manifold must be able to have coordinates that are real numbers. We are familiar with
“metric manifolds”, where there is a concept of distance. However, there are many useful manifolds which
have no metric, e.g. phase space (see “We Don’t Need No Stinking Metric” above).

Even when a space isnon-metric, it still has concepts of “locality” and “continuity.”

Such locality and continuity are defined in terms of the coordinates, which are real numbers. It may
also have a “volume”, eg. the oft-mentioned “phase-space volume.” It may seem odd that there’s no
definition of “distance,” but there is one of “volume.” Volume in this case is smply defined in terms of
the coordinates, dV = dx; dx, dxs ..., and has no absol ute meaning.

Coordinate Bases

Coordinate bases are basis vectors derived from coordinates on the manifold. They are extremely
useful, and built directly on basic multivariate calculus. Coordinate bases can be defined a few different
ways. Perhaps the simplest comes from considering a smal displacement vector on a manifold. We use
2D polar coordinatesin (r, 6) as our example. A coor dinate basis can be defined as the basis in which the
components of an infinitesmal displacement vector are just the differentials of the coordinates:

(Left) Coordinate bases: the components of the displacement vector are the differentials of the
coordinates. (Right) Coordinate basis vectors around the manifold.

Note that g (the 6 basis vector) far from the origin must be bigger than near, because a small changein
angle, d6, causes a bigger displacement vector far from the origin than near. The advantage of a coordinate
basis is that it makes dot products, such as a gradient dotted into a displacement, appear in the simplest
possible form:

Given  f(r,0), df=Vf(r,e)-dp=[i+i}(dr,d9)=ﬂdr+id9
o 06 or 00

The last equality is assured from elementary multivariate calculus.

The basis vectors are defined by differentials, but are themselves finite vectors. Any physical vector,
finite or infinitesimal, can be expressed in the coordinate bas's, e.g., velocity, which isfinite.

“Vectors” as derivatives: There is a huge confusion about writing basis “vectors” as derivatives.
From our study of tensors (earlier), we know that a vector can be considered an operators on a 1-form,
which produces a scalar. We now describe how vector fields can be considered operators on scalar
functions, which produce scalar fields. T don’t like this view, since it is fairly arbitrary, confuses the much
more consistent tensor view, and is easily replaced with tensor notation.

We will see that in fact, the derivative “basis vectors” are operators which create 1-forms (dual-basis
components), not traditional basis vectors. The vector basis is then implicitly defined as the dual of the
dual-basis, which is dways the coordinate basis. In detail:
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We know from the “Tensors” chapter that the gradient of a scalar field is a 1-form with partial
derivatives as its components. For example:

V(X Y,2) = iﬂﬂ SIS +ﬂm3, where  o',0% 0° arebasisl-forms
oX oy 0z) OX oy 0z
Many texts define vectors in terms of their action on scdar functions (aka scdar fields), eg. [Wald
pl5]. Givenapoaint (x,Y, 2), and afunction f(x, y, ), the definition of a vector v amountsto

of of of
VE(VX,Vy,VZ) such that v[f(x,y,z)]zva:vX& Vy@ 2=

Roughly, the action of v on f produces a scaled directional derivative of f: Given some small displacement
dt, as a fraction of |v| and in the direction of v, v tells you how much f will change when moving from
(X, Y, 2 to (x + Vidt, y + VVdt, z+ Vdt):
df
df =v|f|dt or —=v|f
[] o= vIT]
If tistime, and v is a velacity, then v[f] is the time rate of change of f. While this notation is compact, I’d
rather writeit simply as the dot product of v and Vf, which is more explicit, and consistent with tensors:

df =v-Vf dt or i=V-Vf
dt

+ +V (ascalar field)

The definition of v above requires an auxiliary function f, which ismessy. We remove f by redefining
Vv as an operator:

V= v"i+vyi+vZi (an operator)
OX oy OX

Given this form, it looks like 6/0x, 0/0y, and 0/0z are some kind of “basis vectors.” Indeed, standard
terminology is to refer to 0/0x, 0/dy, and 0/0z as the “coordinate basis” for vectors, but they are really
operatorsfor creating 1-forms! Then

V[f]zvx%Wyﬁwzﬂ: 3 v (vh), (ascalar field)

ay 0z i=X,y,z

The vector v contracts directly with the 1-form Vf (without need of any metric), hence v is a vector
implicitly defined in the basis dual to the 1-form Vf.

Notethat if v =v(X, Y, 2) isavector fidd, then
v f(xy.2)]=Vv(xy,2)-V(xY,2) (ascalar field)

These derivative operators can be drawn as basis vectors in the usual manner, as arrows on the manifold.
They are just the coordinate basis vectors shown earlier. For example, consider polar coordinates (r, 9):
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Examples of coordinate basis vectors around the manifold. € happens to be unit magnitude
everywhere, but e isnot.

The manifold in this case is simply the flat plang, R?. The r-coordinate basis vectors are al the same size,

but have different directions at different places. The @ coordinate basis vectors get larger with r, and also
vary in direction around the manifold.

Covariant Derivatives

Notation: Due to word-processor limitations, the following two notations are equival ent:
h() =h(), r

Thisdescription issimilar to onein [Sch].

r.

We start with the familiar concepts of derivatives, and see how that evolves into the covariant
derivative. Given areal-valued function of one variable, f(x), we want to know how f varies with x near a
value, a. Theanswer isthe derivative of f(x), where

df =f'(a) dx andtherefore  f(a+ dx) = f(a) + df =f(a) + f '(a) dx
Extending to two variables, g(X, y), we’d like to know how g variesin the 2-D neighborhood around a
point (a, b), given adisplacement vector dr = (dx, dy). We can computeitsgradient:
Vg =g—gax+g—gay and therefore  g(a+dx,b+dy)~ g(a,b)+ Vg(dr)
X y

The gradient is also called a directional derivative, because the rate at which g changes depends on the
direction in which you move away from the point (a, b).

The gradient extendsto a vector valued function (avector field) h(x, y) = h*(x, y)i + (%, y)j:
oh ~  oh -

Vh = —dx+—dy
oX oy
oh _on*. ohY. oh _ah*. ohY.
—= i+—] and —= i+—]
ox  OX OX oy oy
oh*  on* dx oh* oh*
I h h OX OX
dh=Vh(dr‘)=Z—hdx+%dy= 2 =dx +dy 2
X
av oo |l | |
| OX oy | | OX | L oy |
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We see that the columns of Vh are vectors which are weighted by dx and dy, and then summed to
produce a vector result. Therefore, Vh is linear in the displacement vector dr = (dx, dy). This linearity
insures that it transforms like aduck . . . | mean, like atensor. Thus Vh is arank-2 (*,) tensor: it takes a
single vector input, and produces a vector result.

So far, al thishas been in rectangular coordinates. Now we must consider what happensin curvilinear
coordinates, such as polar. Note that we’re still in a simple, flat space. (We’ll get to curved spaces later).
Our goal is still to find the change in the vector value of h( ), given an infinitesima vector change of
position, dx = (dx}, dx’). We use the same approach as above, where a vector valued function comprises
two (or n) real-valued component functions h(x', x?) = h*(x}, x2)&, + h*(x*, x?)&, . However, in this

general case, the basis vectors are themselves functions of position (previously the basis vectors were
constant everywhere). So h() isredly

h(xd, x%) = ht(xt, x2)8 (<, x2) + h2 (¢, x2)8, (x, XP)

Hence, partial derivatives of the component functions alone are no longer sufficient to define the
change in the vector value of h(); we must also account for the change in the basi s vectors.

& (X2, x2+0h@)

ﬁ(x1+dxl, x2+dx?)

Y Xl’\ ‘){2’77%”" —
ez( ) e_;(X1+dX1, X2+dx?)

Components constant, Vector constant, but
but vector changes components change

Note that a component of the derivative is digtinctly not the same as the derivative of the component
(see diagram above). Therefore, the ith component of the derivative depends on all the components of the
vector field.

We compute partial derivatives of the vector fidd h(x, x%) using the product rule:

oh onht o8, on®
a0l ool

_N (9 o a y i ol 2y B
_,-=1 (axlej(xl,x)+h (Xl’x)ale

Thisis avector equation: al terms are vectors, each with componentsin al n basis directions. Thisis
equivalent to n numerical component equations. Note that (6h/dx,) has components in both (or al n)
directions. Of course, we can write similar equations for the components of the derivative in any basis
direction, e

N e 0, x%) + P20, x2) 222

O, x%) + ht(d, x2) —= P~

(j—i (xlx)+hl(x1x)ael o’ ez(xlx)+h2(x1x)aez

n

z (—e (xt, %2 )+h’(x1x) J

j=1

Because we must frequently work with components and component equations, rather than whole
vector equations, let us now consider only the ith component of the above:
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N . N
oh oh' ~~ 0§,
| ==+ hipd, x| —L
[aka oxk JZ:; ( )[GXKJ

The first term moves out of the summation because each of the first terms in the summation of eg. (1)
are vectors, and each points exactly in the g direction. Only the =i term contributes to the ith component;
the purely g directed vector contributes nothing to the ith component when j # i.

Recall that these equations are true for any arbitrary coordinate system; we have made no assumptions
about unit length or orthogond basis vectors. Note that
oh _ (Vﬁ) = thekth (covariant) component of Vh
0% k

Since Vh isarank-2 tensor, the kth covariant component of Vh isthe kth column of Vh:

) )
&) ().

Since the changein h() islinear with small changesin position,

dh=vh(dx), where dx=(dx',dx?)

Going back to Equations (1) and (2), we can now write the full covariant derivative of h( ) in 3 ways:
vector, verbose component, and compact component:

. - oh O 2008 _oh S 23 [ g
(Vh)kzvkh=(37+z h! (X', x )7=67+Z h! (x", x )z &

j=1 2 j=1 i=1

i i o (g -
(th) =—c+h' I, where Iy, = 67 = '8 =y

Aside: Some mathematicians complain that you can’t define the Christoffel symbols as derivatives of basis
vectors, because you can’t compare vectors from two different points of a manifold without already having the
Christoffel symbols (aka the “connection”). Physicists, including Schutz [Sch], say that physics defines how to
compare vectors at different points of a manifold, and thus you can calculate the Christoffel symboals. In the end,
it doesn’t really matter. Either way, by physics or by fiat, the Christoffel symbols are, in fact, the derivatives of
the basis vectors.

Christoffel Symbols
Christoffel symbols are the covariant derivatives of the basis vector fields. TBS.
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—

r+dr e
de=0

Derivetives of g,

Visualization of n-Forms
TBS: 1-forms as oriented planes
2-forms (in 3 or more space) as oriented parallelograms
3-forms (in 3 or more space) as oriented parall €l epipeds
4-forms (in 4-space): how are they oriented??

Review of Wedge Products and Exterior Derivative
Thisisaquick insert that needs proper work. ??
1-D

I don’t know of any meaning for a wedge-product in 1-D, or even a vector. Also, the 1-D exterior
derivative is a degenerate case, because the “exterior” of a line segment is just the 2 endpoints, and all
functions are scalar functions. In all higher dimensions, the “exterior” or boundary of aregion isaclosed
path/ surface/ volume/ hyper-volume. In 1-D the boundary of a line segment cannot be closed. So instead
of integrating around a closed exterior (aka boundary), we simply take the difference in the function value
at the endpoints, divided by a differentia displacement. This is Smply the ordinary derivative of a
function, f *(x).

2-D

The exterior derivative of a scalar function f(x, y) follows the 1-D case, and is smilarly degenerate,
where the “exterior” is simply the two endpoints of a differential displacement. Since the domainisa2-D
space, the displacements are vectors, and there are 2 derivatives, one for displacements in x, and one for
displacementsiny. Hencethe exterior derivative is just the one-form “gradient” of the function:

- ) of ~  of -
df (x,y) ="gradient" = —dx +—d
xy)="g9 pw o y

In 2-D, the wedge product dx A dy is a two-form, which accepts two vectors to produce the signed

area of the paralledlogram defined by them. A signed area can be + or -; a counter-clockwise direction is
positive, and clockwise is negative.
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dx A dy (v, W) = signed area defined by (V, W) = —dx A dy (W, V)
= dx(V)dy () — dy (V)dx(W)

dx(v) dx(wW) v<wt

dy(v) dy(w)| v w

The exterior derivative of a 1-form is the ratio of the closed path integral of the 1-form to the area of

the parallelogram of two vectors, for infinitesimal vectors. This is very similar to the definition of curl,
only applied to a 1-form instead of a vector field.

w(r+dy) 3

dy dy

T 1T 11
D

dx
Path integralsfrom 2
adjacent areas add

Consider the horizontal and vertical contributionsto the path integral separately:
B(X ¥) = 0 (X Y)dx + o, (X, y)dy r=(xy) dr = (dx, dy)

)+ [a(ar) = o (r)x— o, (r + dy)x = dy ax
1 3 oy

R . aa)y
J'm(dr)+J'm(dr) = oy (1 + d)dy o, (1)dy =— L dxdy
2 4

The horizontal (segments 1 & 3) integrals arelinear in dx, because that is the length of the path. They
arelinear in dy, because dy is proportional to the difference in ®y. Hence, the contribution islinear in both
dx and dy, and therefore proportional to the area (dx)(dy).

A similar argument holds for the vertical contribution, segments 2 & 4. Therefore, the path integral
varies proportionately to the area enclosed by two orthogonal vectors.

It is easy to show thisis true for any two vectors, and any shaped area bounded by an infinitesimal
path. For example, when you butt up two rectangles, the path integral around the combined boundary
equals the sum of the individua path integrals, because the contributions from the common segment cancel
from each rectangle, and hence omitting them does not change the path integral. The areaintegrals clearly
add.

3-D
In 3-D, the wedge product

dx A dy A dz(@, v, W) = signed volume defined by (1, V, W) = —dx A dy A dz(d, W, V), etc.

dx(d) dx(v) dx(w) ueovews
=det|dy(@) dy(v) dy(w)=det|u¥ v¥ wY
dz(t) dz(v) dz(w) TRV T

is a3-form which can ether:

1. accept 2 vectors to produce an oriented area; it doesn’t have asign, it hasa direction. Analogous
to the cross-product. Or,
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2. accept 3 vectorsto produce a signed volume.

The exterior derivative of ascalar or 1-form field is essentially the same as in the 2-D case, except that
now the areas defined by vectors are oriented instead of simply signed. In this case, the “exterior” is a
closed surface; the “interior” is a volume.

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 255 of 263



physics.ucsd.edu/~emichels Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

12 Math Tricks

Here are some math “tricks” that either come up a lot and are worth knowing about, or are just fun and
interesting.

Math Tricks That Come Up A Lot

The Gaussian Integral

.[ e dx You can look this up anywhere, but here goes: we’ll evaluate the basic integral,

j e dx, and throw in the ‘@’ at the end by a simple change of variable. First, we square the integral,

then rewrite the second factor calling the dummy integration variable y instead of x:

(I (R | RCEg N M

Thisisjust adouble integral over the entire x-y plane, so we can switch to polar coordinates. Note that
the exponential integrand is constant at constant r, so we can replace the differential area dx dy with 2z dr:

d(area) = 2zr dr

dr

0 0 (2 2 0
Let r’=x’+y? = J. dx.[ dye(x +y)=.[ dr 2zre"’
—o —o0 0

_ [ 42}“’_
=-r|e =7
0

(JZdXexZJZ - = J:dxe’xz = Jr, and I:dxe’axz _ %

Math Tricks That Are Fun and Interesting
dx
sin x
Continuous Infinite Crossings

The following function has an infinite number of zero crossings near the origin, but is everywhere
continuous (even a x = 0). That seems bizarreto me. Recall the definition:

f(x) iscontinuous at aiff lim f(x)= f(a)
X—a

Then let
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xsin[lj, x#0
f(x) = X
0, x=0
lim f(x)=0= f(0) f (0) is continuous
Xx—0
Picture
Phasors

Phasors are complex numbers that represent sinusoids. The phasor defines the magnitude and phase of
the sinusoid, but not its frequency. See Funky Electromagnetic Concepts for afull description.

Future Funky Mathematical Physics Topics
1. Finishtheoretica importance of IBP

Finish Legendre transformations

Sturm-Liouville

Pseudo-tensors (ref. Jackson).

Tensor densities

o o A~ WD

f(2) = |...” dx exp(-x*2)/x-z has no poles, but has a branch cut. Where is the branch cut, and what
isthe changein f(2) acrossit?
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Glossary

Definitions of common mathematical physics terms. “Special” mathematical definitions are noted by
“(math)”. These are technical mathematical terms that you shouldn’t have to know, but will make reading

math books a lot easier because they are very common.

These definitions try to be conceptual and

accurate, but comprehensible to “normal” people (including physicists, but not mathematicians).

1-1

1-1 correspondence

accumulation point

5/7/2015 11:21

A mapping from aset A toaset Bis1-1if every value of B under the map has only one
value of A that mapsto it. In other words, given the value of B under the map, we can
uniquely find the value of A which mapstoit. However, see “1-1 correspondence.” See
also “injection.”

A mapping, between two sets A and B, is a 1-1 correspondence if it uniquely
associates each value of A with a value of B, and each value of B with a value of A.
Synonym: bijection.

syn. for limit point.
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adjoint*

adjoint?
adjugate

anaytic

The adjoint of an operator produces a bra from a bra in the same way the original
operator produces a ket from a ket: (9|z//) =|¢) = (y/|(§T =(¢|, VY|v). Theadjoint
of an operator is the operator which preserves the inner product of two vectors as
<v[-(Ow>) = (O'v>)"-w>. The adjoint of an operator matrix is the conjugate-transpose.
This has nothing to do with matrix adjoints (below).

In matrices, the transpose of the cofactor matrix is called the adjoint of a matrix. Thishas
nothing to do with linear operator adjoints (above).

the transpose of the cofactor matrix: adj(A); = C;j = (-1)"M;; , where M; is the transpose
of the minor matrix: M;; = det(A deleting row i and column j).

A function is analytic in some domain iff it has continuous derivatives to dl orders, i.e. is
infinitely differentiable. For complex functions of complex variables, if a function has a
continuous first derivative in some region, then it has continuous derivativesto all orders,
and istherefore analytic.

analytic geometry the use of coordinate systems along with algebra and calculus to study

bijection

BLUE

branch point

boundary point
CorC
closed

cofactor

compact
congruence

contrapositive

convergent

converse
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geometry. Aka “coordinate geometry”

Both an “injection” and a “surjection,” i.e. 1-1 and “onto.” A mapping between sets A
and B is a hijection iff it uniquely associates a value of A with every value of B.
Synonym: 1-1 correspondence.

In statigtics, Best Linear Unbiased Estimator.

A branch point is a point in the domain of a complex function f(2), z also complex, with
this property: when z traverses a closed path around the branch point, following
continuous values of f(2), f(2) has a different value at the end of the path than at the
beginning, even though the beginning and end point are the same point in the domain.
Example TBS: square root around the origin.

(math) see “limit point.”
the set of complex numbers.

(math) contains any limit points. For finite regions, a closed region includes its
boundary. Note that in math talk, a set can be both open and closed! The surface of a
sphere is open (every point has a neighborhood in the surface), and closed (no excluded
limit points; in fact, no limit points).

Theij-th minor of an nxn matrix isthe determinant of the (n—-1)x(n-1) matrix formed by
crossing out the i-th row and j-th column. A cofactor isjust aminor with a plus or minus
sign affixed, according to whether (i, j) is an even or odd number of steps away from

(L1): Cj=(-D" M

(math) for our purposes, closed and bounded [Tay thm 2-61 p66]. A compact region may
comprise multiple (infinite number??) digoint closed and bounded regions.

a set of 1D non-intersecting curves that cover every point of a manifold. Equivalently, a
foliation of a manifold with 1D curves. Compare to “foliation.”

The contrapositive of the statement “If A then B” is “If not B then not A.” The
contrapositive is equivalent to the statement: if the daement is true (or false), the
contrapositive is true (or false). |If the contrapositive is true (or false), the statement is
true (or false).

approaches a definite limit

The converse of the statement “If A then B” is “If B then A”. In general, if a statement is
true, its converse may be either true or false. The converse is the contrapositive of the
inverse, and hence the converse and inverse are equivalent satements.
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connected There exists a continuous path between any two points in the set (region). See aso:
simply connected. [One p178].

coordinate geometry the use of coordinate systems along with algebra and calculus to study
geometry. Aka “analytic geometry”

diffeomorphism a C” (1-1) map, with a C” inverse, from one manifold onto another. “Onto” implies the
mapping covers the whole range manifold. Two diffeomorphic manifolds are
topologically identical, but may have different geometries.

divergent not convergent: a sequenceis divergent iff it isnot convergent.

domain of a function: the set of numbers (usualy rea or complex) on which the function is
defined.

entire A complex function is entire iff it is anaytic over the entire complex plane. An entire
function isalso called an “integral function.”

essential singularity a “pole” of infinite order, i.e. a singularity around which the function is
unbounded, and cannot be made finite by multiplication by any power of (z — z) [Det
pl65].

factor anumber (or more genera object) that is multiplied with others. E.g., in “(a + b)(x +y)”,
there are two factors: “(a +b)”, and “(x +y)”.

finite anon-zero number. In other words, not zero, and not infinity.

foliation a set of non-intersecting submanifolds that cover every point of a manifold. E.g., 3D red

space can be foliated into 2D “sheets stacked on top of each other,” or 1D curves packed
around each other. Compare to “congruence.”

holomorphic syn. for analytic. Other synonyms are regular, and differentiable. Also, a “holomorphic
map” is just an analytic function.

homomorphic  something from abstract categories that should not be confused with homeomorphism.

homeomorphism a continuous (1-1) map, with a continuous inverse, from one manifold onto another.
“Onto” implies the mapping covers the whole range manifold. A homeomorphism that
preserves distanceis an isometry.

identify to establish a 1-1 and onto relationship. If we identify two mathematicd things, they are
essentialy the same thing.

iff if, and only if,

injection A mapping from aset A toaset B isan injection if itis 1-1, that is, if given avalue of B
in the mapping, we can uniquely find the value of A which mapstoit. Note that every
value of A is included by the definition of “mapping” [CRC 30"™]. The mapping does not
have to cover all the elements of B.

integra function Syn. for “entire function:” a function that is analytic over the entire complex plane.

inverse The inverse of the statement “If A then B” is “If not A then not B.” In general, if a
statement istrue, itsinverse may be either true or false. The inverse is the contrapositive
of the converse, and hence the converse and inverse are equival ent statements.

invertible A map (or function) from a set A to a set B isinvertible iff for every value in B, there
exiss aunique valuein A which mapstoit. In other words, amap isinvertibleiff itisa
bijection.

isolated singularity a singularity at a point, which has a surrounding neighborhood of analyticity
[Det p165].

isometry a homeomorphism that preserves distance, i.e a continuous, invertible (1-1) map from

one manifold onto another that preserves distance (“onto” in the mathematical sense).

5/7/2015 11:21 Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 260 of 263



physi cs.ucsd.edu/~emichels

Funky Mathematical Physics Concepts emichelsat physics.ucsd.edu

isomorphic

limit point

mapping

meromorphic

minor

N

noise
oblique
one-to-one

onto

open

pole

“same structure.” A widely used general term, with no single precise definition.

of adomain isa boundary of aregion of the domain: for example, the open interval (0, 1)
on the number line and the closed interval [0, 1] both have limit points of 0 and 1. In this
case, the open interval excludes its limit points, the closed interval includes them
(definition of “closed”). Some definitions define all points in the domain as aso limit
points. Formally, a point p isalimit point of domain D iff every open subset containing
p also contains a point in D other than p.

syn. “function.” A mapping from a set A to a set B defines a value of B for every value
of A [CRC 30".

A function is meromorphic on adomain iff it is analytic except at a set of isolated poles
of finite order (i.e, non-essentia poles). Note that branch points are nonanaytic points,

but some are not poles (such as Vz at zero), so afunction induding such a branch point is
not meromorphic.

The ij-th minor of an nxn matrix is the determinant of the (n—1)x(n-1) matrix formed by
crossing out the i-th row and j-th column, i.e., the minor matrix: M;; = det(A deleting row
i and column j). See also “cofactor.”

the set of natural numbers (positive integers).
unpredictable variationsin a quantity.
non-orthogonal and not parallel.

see “1-1”.

covering every possible value. A mapping from a set A onto the set B covers every
possible value of B, i.e. the mapping isasurjection.

(math) Anregion isopen iff every point in the region has afinite neighborhood of points
around it that are also al in theregion. In other words, every point is an interior point.
Note that open is not “not closed;” a region can be both open and closed.

a singularity near which a function is unbounded, but which becomes finite by
multiplication by (z— z)* for some finite k [Det p165]. Thevaluek is called the order of
the pole.

positive definite amatrix or operator which is> 0O for all non-zero operands. It may be O when acting on a

positive semidefinite

predictor

PT
Qor@
Ror R
RMS
RV

removable singularity

residue
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“zero” operand, such as the zero vector. Thisimpliesthat all eigenvalues> 0.

amatrix or operator which is > 0 for all hon-zero operands. It may be O when
acting on anon-zero operands. Thisimpliesthat all eigenvalues> 0.

in regression: a variable put into a model to predict another value, €.9. Ymod(X1, X2) iS a
mode (function) of the predictors x; and x,.

perturbation theory.

the set of rational numbers. Q" = the set of positive rationals.
the set of real numbers.

root-mean-sguare.

random variable.

an isolated singularity that can be made analytic by smply defining a value for
the function at that point. For example, f(X) = sin(x)/x hasasingularity at x=0. You can
removeit by defining f(0) = 1. Then f iseverywhere analytic. [Det p165]

The residue of a complex function a a complex point z is the a; coefficient of the
Laurent expansion about the point z,.
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simply connected There are no holes in the set (region), not even point holes. 1.e, you can shrink any

singularity

smooth

surjection

term

trace

closed curve in the region down to a point, the curve staying always within the region
(including at the paoint).

of a function: a point on a boundary (i.e. alimit point) of the domain of analyticity, but
where the function is not anaytic. [Det def 4.5.2 p156]. Note that the function may be

defined at the singularity, but it is not analytic there. E.g., Vzis continuous at 0, but not
differentiable.

for most references, “smooth” means infinitely differentiable, i.e. C*. For some, though,
“smooth” means at least one continuous derivative, i.e. C', meaning first derivative
continuous. This latter definition looks “smooth” to our eye (no kinks, or sharp points).

A mapping from a set A “onto” the set B, i.e. that covers every possible value of B. Note
that every value of A is included by the definition of “mapping” [CRC 30", however
multiple values of A may map to the same value of B.

anumber (or more general object) that is added to others. E.g., in “ax + by + cz”, there
are three terms: “ax”, “by”, and “cz”.

the trace of a square matrix isthe sum of its diagonal elements.

uniform convergence a series of functions f,(2) is uniformly convergent in an open (or partly open)

voila

region iff its error ¢ after the N function can be made arbitrarily small with a single
value of N (dependent only on ¢) for every point in the region. |.e. given ¢, asingle N
works for al points zin the region [Chu p156].

French for “see there!”

WLOG or WOLOG without loss of generality

ZorZ the st of integers. Z* or N = the set of positive integers (natural numbers).
Formulas
bV b
completingthesquare~ ax® + bx = a(x+—j - (x-shift = —b/ 2a)
2a 4a
Integrals
" ax e =\/E e’ 2L | J.Oodr e’ L
-0 a —0 2 a3 0 Zaz
Statigtical distributions
sz : avg =v o?=2
exponential : avg =1 o? =12

error function [A&S): erf (x) =ijxe‘t2 dt
: =)

gaussian included probability between —zand +z

z z
Pgaussian (2) = sz PAf gaussian (U) du = %J‘; e*/2 dy Let u?/2=1t2, du=+2dt
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Special Functions
r(n)=(n-1)! T(a)= '[ dxx@te*  I@=(a-)f@-1) ra2)=+r

The functions below use the Condon-Shortley phase:

~ (2|+1)(| ) im¢
Y|m(9,¢)E ( |n1) m¢
- (0039) , m<0,
(e T %
Rm(X) is the associated Legendre function,
=012.., m=—l,-1+1..1-11. [Wyl 3.6.5 p96]
Index

The index is not yet developed, so go to the web page on the front cover, and text-search in this
document.
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