
Funky Mathematical 
Physics Concepts 

The Anti-Textbook* 
A Work In Progress.  See physics.ucsd.edu/~emichels for the latest versions of the Funky Series. 

Please send me comments. 

 
Eric L. Michelsen 

 

Tijxvx

Tijyvy

Tijzvz

+ dR

 
 

 

real

imaginary

CI

CR

i

-i

R

CI

 

 “I study mathematics to learn how to think.   
I study physics to have something to think about.” 

 
“Perhaps the greatest irony of all is not that the square root of two is 
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2006 values from NIST.  For more physical constants, see http://physics.nist.gov/cuu/Constants/ . 

 

Speed of light in vacuum   c = 299 792 458 m s–1  (exact) 

Boltzmann constant   k = 1.380 6504(24) x 10–23 J K–1 

Stefan-Boltzmann constant   σ = 5.670 400(40) x 10–8 W m–2 K–4  
 Relative standard uncertainty ±7.0 x 10–6  

Avogadro constant    NA, L = 6.022 141 79(30) x 1023 mol–1  

 Relative standard uncertainty  ±5.0 x 10–8 

Molar gas constant   R = 8.314 472(15) J mol-1 K-1 

Electron mass    me = 9.109 382 15(45) x 10–31 kg 

Proton mass    mp = 1.672 621 637(83) x 10–27 kg 

Proton/electron mass ratio   mp/me = 1836.152 672 47(80) 

Elementary charge   e = 1.602 176 487(40) x 10–19 C 

Electron g-factor    ge = –2.002 319 304 3622(15) 

Proton g-factor    gp = 5.585 694 713(46) 

Neutron g-factor    gN = –3.826 085 45(90) 

Muon mass    mμ = 1.883 531 30(11) x 10–28 kg 

Inverse fine structure constant   –1 = 137.035 999 679(94) 

Planck constant    h = 6.626 068 96(33) x 10–34 J s 

Planck constant over 2π   ħ = 1.054 571 628(53) x 10–34 J s 

Bohr radius    a0 = 0.529 177 208 59(36) x 10–10 m 

Bohr magneton    μB = 927.400 915(23) x 10–26 J T–1 

 
 
Reviews 

“... most excellent tensor paper....  I feel I have come to a deep and abiding understanding of 
relativistic tensors....  The best explanation of tensors seen anywhere!”  -- physics graduate student 

 

http://physics.nist.gov/cuu/Constants/
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Copyright 2001 Inductive Logic.  All rights reserved.

cos a

From OAD: sin = opp / hyp
cos = adj / hyp
sin2 + cos2 = 1

From OAB: tan = opp / adj
tan2 + 1 = sec2

(and with OAD) tan = sin / cos
sec = hyp / adj = 1 / cos

From OAC: cot = adj / opp
cot2 + 1 = csc2

(and with OAD) cot = cos / sin
csc = hyp / opp = 1 / sin
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1 Introduction 

Why Funky? 
The purpose of the “Funky” series of documents is to help develop an accurate physical, conceptual, 

geometric, and pictorial understanding of important physics topics.  We focus on areas that don’t seem to 
be covered well in most texts.  The Funky series attempts to clarify those neglected concepts, and others 
that seem likely to be challenging and unexpected (funky?).  The Funky documents are intended for serious 
students of physics; they are not “popularizations” or oversimplifications.  

Physics includes math, and we’re not shy about it, but we also don’t hide behind it.   

Without a conceptual understanding, math is gibberish. 

This work is one of several aimed at graduate and advanced-undergraduate physics students.  Go to 
http://physics.ucsd.edu/~emichels for the latest versions of the Funky Series, and for contact information.  
We’re looking for feedback, so please let us know what you think. 

How to Use This Document 

 This work is not a text book. 

There are plenty of those, and they cover most of the topics quite well.  This work is meant to be used 
with a standard text, to help emphasize those things that are most confusing for new students.  When 
standard presentations don’t make sense, come here.   

You should read all of this introduction to familiarize yourself with the notation and contents.  After 
that, this work is meant to be read in the order that most suits you.  Each section stands largely alone, 
though the sections are ordered logically.  Simpler material generally appears before more advanced topics.  
You may read it from beginning to end, or skip around to whatever topic is most interesting.  The “Shorts” 
chapter is a diverse set of very short topics, meant for quick reading. 

If you don’t understand something, read it again once, then keep reading.   
Don’t get stuck on one thing.  Often, the following discussion will clarify things. 

The index is not yet developed, so go to the web page on the front cover, and text-search in this 
document. 

Why Physicists and Mathematicians Dislike Each Other 
Physics goals and mathematics goals are antithetical.  Physics seeks to ascribe meaning to mathematics 

that describe the world, to “understand” it, physically.  Mathematics seeks to strip the equations of all 
physical meaning, and view them in purely abstract terms.  These divergent goals set up a natural conflict 
between the two camps.  Each goal has its merits: the value of physics is (or should be) self-evident;  the 
value of mathematical abstraction, separate from any single application, is generality: the results can be 
used on a wide range of applications. 

Thank You 
I owe a big thank you to many professors at both SDSU and UCSD, for their generosity even when I 

wasn’t a real student:  Dr. Herbert Shore, Dr. Peter Salamon, Dr. Arlette Baljon , Dr. Andrew Cooksy, Dr. 
George Fuller, Dr. Tom O’Neil, Dr. Terry Hwa, and others. 

Scope 
What This Text Covers 

This text covers some of the unusual or challenging concepts in graduate mathematical physics.  It is 
also very suitable for upper-division undergraduate level, as well.  We expect that you are taking or have 

http://physics.ucsd.edu/~emichels
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taken such a course, and have a good text book.  Funky Mathematical Physics Concepts supplements those 
other sources. 

What This Text Doesn’t Cover 

This text is not a mathematical physics course in itself, nor a review of such a course.  We do not cover 
all basic mathematical concepts; only those that are very important, unusual, or especially challenging 
(funky?).   

What You Already Know 

This text assumes you understand basic integral and differential calculus, and partial differential 
equations.  Further, it assumes you have a mathematical physics text for the bulk of your studies, and are 
using Funky Mathematical Physics Concepts to supplement it. 

Notation 
Sometimes the variables are inadvertently not written in italics, but I hope the meanings are clear. 

?? refers to places that need more work. 

TBS To be supplied (one hopes) in the future. 

Interesting points that you may skip are “asides,” shown in smaller font and narrowed margins.  Notes to 
myself may also be included as asides. 

Common misconceptions are sometimes written in dark red dashed-line boxes. 

Formulas:  We write the integral over the entire domain as a subscript “∞”, for any number of 
dimensions: 

31-D: 3-D:dx d x
    

Evaluation between limits: we use the notation [function]a
b to denote the evaluation of the function 

between a and b, i.e.,  

[f(x)]a
b  ≡  f(b) –  f(a). For example,  ∫  01 3x2 dx = [x3]0

1 = 13 - 03 = 1. 

We write the probability of an event as “Pr(event).” 

Column vectors: Since it takes a lot of room to write column vectors, but it is often important to 
distinguish between column and row vectors, I sometimes save vertical space by using the fact that a 
column vector is the transpose of a row vector: 

 , , , T

a
b

a b c d
c
d

 
 
  
 
 
 

 

Random variables: We use a capital letter, e.g. X, to represent the population from which instances of 
a random variable, x (lower case), are observed.  In a sense, X is a representation of the PDF of the random 
variable, pdfX(x). 

We denote that a random variable X comes from a population PDF as: X  pdfX, e.g.: X  χ2
n.  To 

denote that X is a constant times a random variable from pdfY, we write: X  k pdfY, e.g. X  k χ2
n. 

For Greek letters, pronunciations, and use, see Funky Quantum Concepts.  Other math symbols:  
Symbol Definition 

 for all 
 there exists 
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 such that 
iff if and only if 
 proportional to.  E.g., a  b means “a is proportional to b” 
 perpendicular to 
 therefore 
 of the order of (sometimes used imprecisely as “approximately equals”) 
 is defined as; identically equal to (i.e., equal in all cases) 
 implies 
 leads to 
 tensor product, aka outer product 
 direct sum 

 

In mostly older texts, German type (font: Fraktur) is used to provide still more variable names: 

Latin 
German 
Capital 

German 
Lowercase Notes 

A A a Distinguish capital from U, V 

B B b  

C C c Distinguish capital from E, G 

D D d Distinguish capital from O, Q 

E E e Distinguish capital from C, G 

F F f  

G G g Distinguish capital from C, E 

H H h  

I I i Capital almost identical to J 

J J j Capital almost identical to I 

K K k  

L L l  

M M m Distinguish capital from W 

N N n  

O O o Distinguish capital from D, Q 

P P p  

Q Q q Distinguish capital from D, O 

R R r Distinguish lowercase from x 

S S s Distinguish capital from C, G, E 
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T T t Distinguish capital from I 

U U u Distinguish capital from A, V 

V V v Distinguish capital from A, U 

W W w Distinguish capital from M 

X X x Distinguish lowercase from r 

Y Y y  

Z Z z  
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2 Random Topics 

What’s Hyperbolic About Hyperbolic Sine? 

x

sinh a
area = a/2

y

y =
 x

x2 – y2 = 1

cos a

sin a

x2 + y2 = 1

x

y

area = a/2

1 u
nit

cosh a1 unit
a

 
From where do the hyperbolic trigonometric functions get their names?  By analogy with the circular 

functions.  We usually think of the argument of circular functions as an angle, a.  But in a unit circle, the 
area covered by the angle a is a / 2 (above left): 

2 ( 1)
2 2
a aarea r r


   . 

Instead of the unit circle, x2 + y2 = 1, we can consider the area bounded by the x-axis, the ray from the 
origin, and the unit hyperbola,  x2 –  y2 = 1 (above right).  Then the x and y coordinates on the curve are 
called the hyperbolic cosine and hyperbolic sine, respectively.  Notice that the hyperbola equation implies 
the well-known hyperbolic identity: 

2 2 2 2cosh , sinh , 1 cosh sinh 1x a y a x y       . 

Proving that the area bounded by the x-axis, ray, and hyperbola satisfies the standard definition of the 
hyperbolic functions requires evaluating an elementary, but tedious, integral:  (?? is the following right?) 

2
1

2 2
1

2

2
2 2 2

31 1 1 1

1 Use: 1
2 2

1 2 1

For the integral, let sec , tan sec sec 1 tan

sin1 sec 1 tan sec tan sec
cos

x

x

x x x x

aarea xy y dx y x

a x x x dx

x dx d y

x dx d d d

     

       


    

   

     

    





   

 

We try integrating by parts (but fail): 

2

2 3
11 1

tan sec tan sec , sec

tan sec sec tan sec
x xx

U dV d dU d V

d UV V dU d

      

      

    

     
 

This is too hard, so we try reverting to fundamental functions sin( ) and cos( ): 
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 

3 2

2
2

3 2 21 11 1

2
11 1

2

1sin cos sin cos , cos
2

sin sin sin2 2 2 cos cos Use: sec tan
cos cos cos

sec ln sec tan ln 1

ln 1 ln1

x xx x

xx x

U dV d dU d V

d UV V dU d xy

xy d xy xy x x

xy x x

      

       
  

   

 



    

     

          
 

    

  



2 2

2

ln 1 ln 1

1a

a xy xy x x x x

e x x

       

  
 

Solve for x in terms of a, by squaring both sides: 

 

 

2 2 2 2 2

2

2 1 1 2 1 1 2 1

1 2

2 cosh
2

a

a a

e

a a

a a
a a

e x x x x x x x xe

e xe

e e
e e x x a




          

 


    



 

The definition for sinh follows immediately from: 

 

2 2 2 2 2

22 2 2 2 2

cosh sinh 1 1

2 2sinh 1 1
2 4 4 4 2

a aa a a a a a a a

x y y x

e ee e e e e e e ea y
   

      

      
         

 

 

Basic Calculus You May Not Know 
Amazingly, many calculus courses never provide a precise definition of a “limit,” despite the fact that 

both of the fundamental concepts of calculus, derivatives and integrals, are defined as limits!  So here we 
go: 

Basic calculus relies on 4 major concepts: 

1. Functions 

2. Limits 

3. Derivatives 

4. Integrals 

1.  Functions:  Briefly, (in real analysis) a function takes one or more real values as inputs, and 
produces one or more real values as outputs.  The inputs to a function are called the arguments.  The 
simplest case is a real-valued function of a real-valued argument e.g.,  f(x) = sin x.  Mathematicians would 
write (f : R1 → R1), read “f is a map (or function) from the real numbers to the real numbers.”  A function 
which produces more than one output may be considered a vector-valued function. 

2.  Limits:  Definition of “limit” (for a real-valued function of a single argument, f : R1 → R1): 
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L is the limit of f(x) as x approaches a, iff for every ε > 0, there exists a δ (> 0) such that |f(x) – L| < ε 
whenever 0 < |x – a| < δ.  In symbols: 

lim ( ) iff 0, such that ( ) whenever  0
x a

L f x f x L x a   


         . 

This says that the value of the function at a doesn’t matter; in fact, most often the function is not defined at 
a.  However, the behavior of the function near a is important.  If you can make the function arbitrarily 
close to some number, L, by restricting the function’s argument to a small neighborhood around a, then L is 
the limit of f as x approaches a. 

Surprisingly, this definition also applies to complex functions of complex variables, where the absolute 
value is the usual complex magnitude. 

Example:  Show that 
2

1

2 2lim 4
1x

x
x





.   

Solution: We prove the existence of δ given any ε by computing the necessary δ from ε.  Note that for 
22 21, 2( 1)

1
xx x
x


  


.  The definition of a limit requires that  

22 2 4 whenever 0 1
1

x x
x

 
    


. 

We solve for x in terms of ε, which will then define δ in terms of ε.  Since we don’t care what the function 
is at x = 1, we can use the simplified form, 2(x + 1).  When x = 1, this is 4, so we suspect the limit = 4.  
Proof: 

2( 1) 4 2 ( 1) 2 1 1 1
2 2 2

x x x or x  
               . 

So by setting δ = ε/2, we construct the required δ for any given ε.  Hence, for every ε, there exists a δ 
satisfying the definition of a limit. 

3.  Derivatives:  Only now that we have defined a limit, can we define a derivative: 

0

( ) ( )'( ) lim
x

f x x f xf x
x 

  



. 

4.  Integrals:  A simplified definition of an integral is an infinite sum of areas under a function 
divided into equal subintervals (Figure 2.1, left): 


 

1

( ) lim (simplified definition)
Nb

a N i
x

b a if x dx f b a
N N




    
  . 

For practical physics, this definition would be fine.  For mathematical preciseness, the actual definition of 
an integral is the limit over any possible set of subintervals, so long as the maximum of the subinterval size 
goes to zero.  This is called “the norm of the subdivision,” written as ||Δxi||: 

 
0 1

( ) lim (precise definition)
i

Nb
i ia x i

f x dx f x x
 



  . 



physics.ucsd.edu/~emichels  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

5/7/2015  11:21  Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 15 of 263  

 

Figure 2.1  (Left)  Simplified definition of an integral as the limit of a sum of equally spaced 
samples.  (Right)  Precise definition requires convergence for arbitrary, but small, subdivisions. 

Why do mathematicians require this more precise definition?  It’s to avoid bizarre functions, such as: 
f(x) is 1 if x is rational, and zero if irrational.  This means  f(x) toggles wildly between 1 and 0 an infinite 
number of times over any interval.  However, with the simplified definition of an integral, the following is 
well defined: 

3.14

0 0
( ) 3.14, ( ) 0 (with simplified definition of integral)f x dx but f x dx


   . 

But properly, and with the precise definition of an integral, both integrals are undefined.  (There are other 
types of integrals defined, but they are beyond our scope.) 

The Product Rule 
Given functions U(x) and V(x), the product rule (aka the Leibniz rule) says that for differentials, 

 d UV U dV V dU  . 

This leads to integration by parts, which is mostly known as an integration tool, but it is also an important 
theoretical (analytic) tool, and the essence of Legendre transformations. 

Integration By Pictures 
We assume you are familiar with integration by parts (IBP) as a tool for performing indefinite 

integrals, usually written as: 

, which really means

( ) '( ) ( ) ( ) ( ) '( )
dV dU

U dV UV V dU

U x V x dx U x V x V x U x dx

 

 

 

  

 

This comes directly from the product rule above:  U dV d UV V dU  , and integrate both sides.  Note 
that x is the integration variable (not U or V), and x is also the parameter to the functions U(x) and V(x). 
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U(x)

V(x)

U(a) U(b)

V(a)

V(b)
U(b)V(b)

U(a)V(a) ∫V dU

∫U dV

U(x)

V(x)

U(a) U(b)

Vmax

V(a) = V(b) = 0

∫V dU

∫1U dV
1 2

V(x)

U(a) = 0 U(b),
V(b) = 0

V(a)

∫V dU= −∫U dV

integration    
path

 
Figure 2.2  Three cases of integration by parts: (Left) U(x) and V(x) increasing.  (Middle) V(x) 
decreasing to 0.  (Right) V(x) progressing from zero, to finite, and back to zero. 

The diagram above illustrates IBP in three cases.  The left is the simplest case where U(x) and V(x) are 
monotonically increasing functions of x (note that x is not an axis, U and V are the axes, but x is the 
integration parameter).  IBP says 

   ( ) ( ) ( ) ( ) ( ) ( )b
x a

boundary term

b b

x x

b

ax aa
U x V x U b V b U aV dU VdV UV daU

 
      

. 

The LHS (left hand side) of the equation is the red shaded area; the term in brackets on the right is the 
big rectangle minus the white rectangle; the last term is the blue shaded area.  The left diagram illustrates 
IBP visually as areas.  The term in brackets is called the boundary term (or “surface term”), because in 
some applications, it represents the part of the integral corresponding to the boundary (or surface) of the 
region of integration. 

The middle diagram illustrates another common case: that in which the surface term UV is zero.  In 
this case, UV = 0 at x = a and x = b, because U(a) = 0 and V(b) = 0.  The shaded area is the integral, but the 
path of integration means that dU > 0, but dV < 0.  Therefore ∫V dU  > 0, but ∫U dV  < 0. 

The right diagram shows the case where one of U(x) or V(x) starts and ends at 0.  For illustration, we 
chose V(a) = V(b) = 0.  Then the surface term is zero, and we have: 

 ( ) ( ) 0
bb

x a x

b

x aa
U x V x U d V dV U  

     . 

For V(x) to start and end at zero, V(x) must grow with x to some maximum, Vmax, and then decrease 
back to 0.  For simplicity, we assume U(x) is always increasing.  The V dU integral is the blue striped area 
below the curve; the U dV integral is the area to the left of the curves.  We break the dV integral into two 
parts: path 1, leading up to  Vmax, and path 2, going back down from Vmax to zero.  The integral from 0 to 
Vmax (path 1) is the red striped area;  the integral from Vmax back down to 0 (path 2) is the negative of the 
entire (blue + red) striped area.  Then the blue shaded region is the difference: (1) the (red) area to the left 
of path 1 (where dV is positive, because V(x) is increasing), minus (2) the (blue + red) area to the left of 
path 2, because dV is negative when V(x) is decreasing: 

max

max

max max

0 0
1 1

0

0
1 2 22

.
b

x a

V

V V V
path pa

V V

V V
pth ath pat pathpath h

U dV U dU dV U VdV U

V dU

dV



  


   

 

   



    
 

Theoretical Importance of IBP 
Besides being an integration tool, an important theoretical consequence of IBP is that the variable of 

integration is changed, from dV to dU.  Many times, one differential is unknown, but the other is known: 
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Under an integral, integration by parts allows one to exchange a derivative  
that cannot be directly evaluated, even in principle, in favor of one that can.   

The classic example of this is deriving the Euler-Lagrange equations of motion from the principle of 
stationary action.  The action of a dynamic system is defined by 

( ( ), ( ))S L q t q t dt   . 

where the lagrangian is a given function of the trajectory q(t).  Stationary action means that the action 
does not change (to first order) for small changes in the trajectory.  I.e., given a small variation in the 
trajectory, δq(t): 

0 ( , )

.

L L dS L q q q q dt S q q dt Use q q
q q dt

L L dq q dt
q q dt

      

 

  
          

  
    

 



   




 

The quantity in brackets involves both δq(t) and its time derivative, δq-dot.  We are free to vary δq(t) 
arbitrarily, but that fully determines δq-dot.  We cannot vary both δq and δq-dot separately.  We also know 
that δq(t) = 0 at its endpoints, but δq-dot is unconstrained at its endpoints.  Therefore, it would be simpler if 
the quantity in brackets was written entirely in terms of δq(t), and not in terms of δq-dot.  IBP allows us to 
eliminate the time derivative of δq(t) in favor of the time derivative of ∂L/∂q-dot.  Since L(q, q-dot) is 
given, we can easily determine ∂L/∂q-dot.  Therefore, this is a good trade.  Integrating the 2nd term in 
brackets by parts gives: 

0
'

, . ,

( )

U

t f

t
V

L d L dLet U dU dt dV q dt V q
q dt q dt

LdL d q
dt

t UV V dU
q

q t
q

 






  
      




 
        



 

'V U

d L
d

dq
t q

t
 
  

  
 

 

The boundary term is zero because δq(t) is zero at both endpoints.  The variation in action δS is now: 

0 ( )L d LS q dt q t
q dt q

  
  

       
. 

The only way δS = 0 can be satisfied for any δq(t) is if the quantity in brackets is identically 0.  Thus IBP 
has lead us to an important theoretical conclusion: the Euler-Lagrange equation of motion.   

This fundamental result has nothing to do with evaluating a specific difficult integral.  IBP: it’s not just 
for hard integrals any more. 

Delta Function Surprise 
Rarely, one needs to consider the 3D δ-function in coordinates other than rectangular.  The 3D δ-

function is written δ3(r – r’).  For example, in 3D Green’s functions, whose definition depends on a δ3-
function, it may be convenient to use cylindrical or spherical coordinates.  In these cases, there are some 
unexpected consequences [Wyl p280].  This section assumes you understand the basic principle of a 1D 
and 3D δ-function. (See the introduction to the delta function in Funky Quantum Concepts.)   

Recall the defining property of δ3(r - r’): 

3 3 3 3( ') 1 ' ( " ") ( ') ( ) ( ')d for all d f f 
 

        r r r r r r r r r . 
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The above definition is “coordinate free,” i.e. it makes no reference to any choice of coordinates, and is true 
in every coordinate system.  As with Green’s functions, it is often helpful to think of the δ-function as a 
function of r, which is zero everywhere except for an impulse located at r’.  As we will see, this means that 
it is properly a function of r and r’ separately, and should be written as δ3(r, r’) (like Green’s functions 
are). 

Rectangular coordinates:  In rectangular coordinates, however, we now show that we can simply 
break up δ3(x, y, z) into 3 components.  By writing (r – r’) in rectangular coordinates, and using the 
defining integral above, we get: 

3

3

' ( ', ', ') ( ', ', ') 1

( ', ', ') ( ') ( ') ( ') .

x x y y z z dx dy dz x x y y z z

x x y y z z x x y y z z



   

  

  
         

       

  r r
 

In rectangular coordinates, the above shows that we do have translation invariance, so we can simply write: 

3( , , ) ( ) ( ) ( )x y z x y z    . 

In other coordinates, we do not have translation invariance.  Recall the 3D infinitesimal volume 
element in 4 different systems: coordinate-free, rectangular, cylindrical, and spherical coordinates:  

3 2 sind dx dy dz r dr d dz r dr d d     r . 

The presence of r and θ imply that when writing the 3D δ-function in non-rectangular coordinates, we must 
include a pre-factor to maintain the defining integral = 1.  We now show this explicitly. 

Cylindrical coordinates:  In cylindrical coordinates, for r > 0, we have (using the imprecise notation 
of [Wyl p280]): 

2 3
0 0

3

' ( ', ', ')

( ', ', ') 1

1( ', ', ') ( ') ( ') ( '), ' 0
'

r r z z

dr d dz r r r z z

r r z z r r z z r
r



 

   

       

 



     

   

        

  

r r

 

Note the 1/r’ pre-factor on the RHS.  This may seem unexpected, because the pre-factor depends on 
the location of δ3( ) in space (hence, no radial translation invariance).  The rectangular coordinate version of 
δ3( ) has no such pre-factor.  Properly speaking, δ3( ) isn’t a function of r – r’; it is a function of r and r’ 
separately.   

In non-rectangular coordinates, δ3( ) does not have translation invariance,  
and includes a pre-factor which depends on the position of δ3( ) in space, i.e. depends on r’. 

At r ’ = 0, the pre-factor blows up, so we need a different pre-factor.  We’d like the defining integral to 
be 1, regardless of , since all values of  are equivalent at the origin.  This means we must drop the δ( –
 ’), and replace the pre-factor to cancel the constant we get when we integrate out : 

2 3
0 0

3

0

( ', ', ') 1, ' 0

1( ', ', ') ( ) ( '), ' 0,
2

assuming that ( ) 1.

dr d dz r r r z z r

r r z z r z z r
r

dr r


   

    




 





    

      



  



 

This last assumption is somewhat unusual, because the δ-function is usually thought of as symmetric about 
0, where the above radial integral would only be ½.  The assumption implies a “right-sided” δ-function, 
whose entire non-zero part is located at 0+.  Furthermore, notice the factor of 1/r in δ(r – 0, z – z’).  This 
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factor blows up at r = 0, and has no effect when r ≠ 0.  Nonetheless, it is needed because the volume 
element r dr d dz goes to zero as r  0, and the 1/r in δ(r – 0, z – z’) compensates for that. 

Spherical coordinates:  In spherical coordinates, we have similar considerations.  First, away from the 
origin, r’ > 0: 

2 2 3
0 0 0

3
2

sin ( ', ', ') 1

1( ', ', ') ( ') ( ') ( '), ' 0 . [Wyl 8.9.2 p280]
' sin '

dr d d r r r

r r r r r
r

 
       

           



    

       

  
 

Again, the pre-factor depends on the position in space, and properly speaking, δ3( ) is a function of r, r’, θ, 
and θ’ separately, not simply a function of r – r’ and θ – θ’.  At the origin, we’d like the defining integral to 
be 1, regardless of  or θ.  So we drop the δ( – ’) δ(θ – θ’), and replace the pre-factor to cancel the 
constant we get when we integrate out  and θ: 

2 2 3
0 0 0

3
2

0

sin ( 0, ', ') 1, ' 0

1( 0, ', ') ( ), ' 0,
4

assuming that ( ) 1.

dr d d r r r

r r r
r

dr r

 
       

     








    

     



  



 

Again, this definition uses the modified δ(r), whose entire non-zero part is located at 0+.  And similar to the 
cylindrical case, this includes the 1/r2 factor to preserve the integral at r = 0. 

2D angular coordinates:  For 2D angular coordinates θ and , we have: 
2 2

0 0

2

sin ( ', ') 1, ' 0

1( ', ') ( ') ( '), ' 0 .
sin '

d d
 

        

           


   

      

 
 

Once again, we have a special case when θ’ = 0: we must have the defining integral be 1 for any value of .  
Hence, we again compensate for the 2π from the  integral: 

2 2
0 0

2

sin ( ', ') 1, ' 0

1( 0, ') ( ), ' 0 .
2 sin

d d
 

        

      
 

   

    

 
 

Similar to the cylindrical and spherical cases, this includes a 1/(sin θ) factor to preserve the integral at 
θ = 0. 

Spherical Harmonics Are Not Harmonics 
See Funky Electromagnetic Concepts for a full discussion of harmonics, Laplace’s equation, and its 

solutions in 1, 2, and 3 dimensions.  Here is a brief overview. 

Spherical harmonics are the angular parts of solid harmonics, but we will show that they are not truly 
“harmonics.”  A harmonic is a function which satisfies Laplace’s equation: 

2 ( ) 0  r , with r typically in 2 or 3 dimensions. 

Solid harmonics are 3D harmonics: they solve Laplace’s equation in 3 dimensions.  For example, one 
form of solid harmonics separates into a product of 3 functions in spherical coordinates: 
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    

 

 

1

1

( , , ) ( ) ( ) ( ) (cos ) sin cos

( ) is the radial part,

( ) (cos ) is the polar angle part, the associated Legendre functions,

( ) sin cos is the azimuthal part .

ll
l l l l l

ll
l l

lm

l l

r R r P Q A r B r Pm C m D m

where R r A r B r

P P

Q C m D m

      

 

  

 

 

    

 



 

 

The spherical harmonics are just the angular (θ, ) parts of these solid harmonics.  But notice that the 
angular part alone does not satisfy the 2D Laplace equation (i.e., on a sphere of fixed radius): 

2
2 2

2 2 2 2 2

2

2 2 2

1 1 1sin , but for fixed :
sin sin

1 1 1sin .
sin sin

r r
r rr r r

r


   


    

                    

            

 

However, direct substitution of spherical harmonics into the above Laplace operator shows that the result is 
not 0 (we let r = 1).  We proceed in small steps: 

2
2

2( ) sin cos ( ) ( )Q C m D m Q m Q    



    


. 

For integer m, the associated Legendre functions, Plm(cos θ), satisfy, for given l and m: 

  2
2 2

11 sin (cos ) (cos )
sin lm lm

l l
P m P

r r
  

 

              
. 

Combining these 2 results (r = 1): 

   

  
 

2
2

2 2

2 2

1 1( ) ( ) sin ( ) ( )
sin sin

1 (cos ) ( ) (cos ) ( )

1 (cos ) ( )

lm lm

lm

P Q P Q

l l m P Q m P Q

l l P Q

    
    

   

 

             

    

  

 

Hence, the spherical harmonics are not solutions of Laplace’s equation,  
i.e. they are not “harmonics.” 

The Binomial Theorem for Negative and Fractional Exponents 
You may be familiar with the binomial theorem for positive integer exponents, but it is very useful to 

know that the binomial theorem also works for negative and fractional exponents.  We can use this fact to 

easily find series expansions for things like  1/ 21 and 1 1
1

x x
x

  


. 

First, let’s review the simple case of positive integer exponents: 

      0 1 1 2 2 3 3 01 1 2 !...
1 1 2 1 2 3 !

n n n n n nn n n n nn na b a b a b a b a b a b
n

    
     

  
. 

[For completeness, we note that we can write the general form of the mth term: 
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 
! , integer 0; integer, 0

! !
th n m mnm term a b n m m n

n m m
   


.] 

But we’re much more interested in the iterative procedure (recursion relation) for finding the (m + 1)th 
term from the mth term, because we use that to generate a power series expansion.  The process is this:  

1. The first term (m = 0) is always anb0 = an , with an implicit coefficient C0 = 1. 

2. To find Cm+1, multiply Cm by the power of a in the mth term, (n – m), 

3. divide it by (m + 1), [the number of the new term we’re finding]: 1
( )

1m m
n mC C
m





 

4. lower the power of a by 1 (to n – m), and  

5. raise the power of b by 1 to (m + 1). 

This procedure is valid for all n, even negative and fractional n.  A simple way to remember this is: 

For any real n, we generate the (m + 1)th term from the mth term  
by differentiating with respect to a, and integrating with respect to b. 

The general expansion, for any n, is then: 

   1 2 ...( 1)
, real; integer 0

!
th n m mn n n n m

m term a b n m
m

   
   

Notice that for integer n > 0, there are n+1 terms.  For fractional or negative n, we get an infinite series. 

Example 1:  Find the Taylor series expansion of 1
1 x

.  Since the Taylor series is unique, any method 

we use to find a power series expansion will give us the Taylor series.  So we can use the binomial 
theorem, and apply the rules above, with a = 1, b = (–x): 

                 1 1 2 31 2 3 4

2

1 1 2 1 2 31 1 1 1 1 1 ...
1 1 1 2 1 2 3

1 ... ...m

x x x x
x

x x x

         
          

   

     

 

Notice that all the fractions, all the powers of 1, and all the minus signs cancel. 

Example 2:  Find the Taylor series expansion of  1/ 21 1x x   .  The first term is a1/2 = 11/2: 

 

       

   

    

1/ 2 1/ 2 1/ 2 1 3/ 2 2 5/ 2 3

12 3

1 1 1 1 1 1 1 3 11 1 1 1 1 ...
2 1 2 2 1 2 2 2 2 1 2 3

2 3 !!1 1 31 ... 1
2 8 48 2 !

!! 2 4 ... 2 1

m m
m

x x x x

m
x x x x

m
where p p p p or

  



                      


      

  

 

When Does a Divergent Series Converge? 
Consider the infinite series 

21 ... ...nx x x     . 

When is it convergent?  Apparently, when |x| < 1.  What is the value of the series when x = 2 ?  
“Undefined!” you say.  But there is a very important sense in which the series converges for x = 2, and it’s 
value is –1!  How so? 

Recall the Taylor expansion (you can use the binomial theorem, see earlier section): 
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  1 21 1 1 ... ...
1

nx x x x
x

       


. 

It is exactly the original infinite series above.  So the series sums to 1/(1 – x).  This is defined for all x  1.  
And its value for x = 2 is –1. 

Why is this important?  There are cases in physics when we use perturbation theory to find an 
expansion of a number in an infinite series.  Sometimes, the series appears to diverge.  But by finding the 
analytic expression corresponding to the series, we can evaluate the analytic expression at values of x that 
make the series diverge.  In many cases, the analytic expression provides an important and meaningful 
answer to a perturbation problem.  This happens in quantum mechanics, and quantum field theory. 

This is an example of analytic continuation.  A Taylor series is a special case of a Laurent series, and 
any function with a Laurent expansion is analytic.  If we know the Laurent series (or if we know the values 
of an analytic function and all its derivatives at any one point), then we know the function everywhere, 
even for complex values of x.  The original series is analytic around x = 0, therefore it is analytic 
everywhere it converges (everywhere it is defined).  The process of extending a function which is defined 
in some small region to be defined in a much larger (even complex) region, is called analytic continuation 
(see Complex Analysis, discussed elsewhere in this document). 

TBS: show that the sum of the integers 1 + 2 + 3 + ... =  –1/12. ?? 

Algebra Family Tree 
 

Doodad Properties Examples 

group Finite or infinite set of elements and operator 
(·), with closure, associativity, identity element 
and inverses.  Possibly commutative:  
 a·b = c w/ a, b, c group elements 

rotations of a square by n  90o 
continuous rotations of an object 

ring Set of elements and 2 binary operators  
(+ and *), with:  
• commutative group under + 
• left and right distributivity:  
    a(b + c) = ab + ac,    (a + b)c = ac + bc 
• usually multiplicative associativity 

integers mod m 
polynomials p(x) mod m(x) 

integral 
domain, 
or 
domain 

A ring, with:  
• commutative multiplication  
• multiplicative identity (but no inverses) 
• no zero divisors ( cancellation is valid):   
 ab = 0 only if a = 0 or b = 0 

integers 
polynomials, even abstract polynomials, 
with abstract variable x, and coefficients 
from a “field” 

field “rings with multiplicative inverses (& 
identity)” 
• commutative group under addition 
• commutative group (excluding 0) under 
multiplication. 
• distributivity, multiplicative inverses 
Allows solving simultaneous linear equations. 
Field can be finite or infinite 

integers with arithmetic modulo 3 (or any 
prime) 
real numbers 
complex numbers 
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vector 
space 

• field of scalars 
• group of vectors under +.   
Allows solving simultaneous vector equations 
for unknown scalars or vectors.   
Finite or infinite dimensional. 

physical vectors 
real or complex functions of space: 
f(x, y, z) 
kets (and bras) 

Hilbert 
space 

vector space over field of complex numbers 
with:  
• a conjugate-bilinear inner product, 
 <av|bw> = (a*)b<v|w>,  
 <v|w> = <w|v>*  
 a, b scalars, and v, w vectors 
• Mathematicians require it to be infinite 
dimensional; physicists don’t. 

real or complex functions of space: 
f(x, y, z) 
quantum mechanical wave functions 

Convoluted Thinking 
Convolution arises in many physics, engineering, statistics, and other mathematical areas. 

f(t)

t t

g(t)

 
Two functions, f(t) and g(t).   

 

τ

increasing 
Δt

g(Δt1-τ)
f(τ)

Δt1

(f *g)(Δt1)
τ

g(Δt2-τ)
f(τ)

Δt2

(f *g)(Δt2)
τ

g(Δt0-τ)
f(τ)

Δt0 < 0

(f *g)(Δt0)  
(Left) (f *g)(Δt0), Δt0 < 0.   (Middle) (f *g)(Δt1), Δt1 > 0.   (Right) (f*g)(Δt2),  Δt2 > Δt1. 
The convolution is the magenta shaded area. 

Given two functions, f(t) and g(t), the convolution of f(t) and g(t) is a function of a time-displacement, 
Δt, defined by (see diagram above): 

 * ( ) ( ) ( ) the integral covers some domain of interestf g t d f g t where  



     

When Δt < 0, the two functions are “backing into each other” (above left).  When Δt > 0, the two functions 
are “backing away from each other” (above middle and right).   

Of course, we don’t require functions of time.  Convolution is useful with a variety of independent 
variables.  E.g., for functions of space, f(x) and g(x),  f *g(Δx) is a function of spatial displacement, Δx. 

Notice that convolution is  

(1)  commutative:    * *f g g f  

(2)  linear in each of the two functions:  
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   
 

* * * , and

* * * .

f kg k f g kf g

f g h f g f h

 

  
 

The verb “to convolve” means “to form the convolution of.”  We convolve f and g to form the convolution 
f *g. 
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3 Vectors 

Small Changes to Vectors 
Projection of a Small Change to a Vector Onto the Vector 

r
dr

dr
dr ≡ d|r|

r'r
ˆ' 'r   r r r r

r − r'

ˆ'r r

r ≡ |r|  
(Left) A small change to a vector, and its projection onto the vector. 
(Right) Approximate magnitude of the difference between a big and small vector. 

It is sometimes useful (in orbital mechanics, for example) to relate the change in a vector to the change 
in the vector’s magnitude.  The diagram above (left) leads to a somewhat unexpected result: 

ˆ ˆ(multiplying both sides by and using )d dr or r r

d r dr

  

 

r r r r

r r
 

And since this is true for any small change, it is also true for any rate of change (just divide by dt): 

r r r r   

Vector Difference Approximation 

It is sometimes useful to approximate the magnitude of a large vector minus a small one.  (In 
electromagnetics, for example, this is used to compute the far-field from a small charge or current 
distribution.)  The diagram above (right) shows that: 

ˆ' ' , '    r r r r r r r  

Why (r, θ, ) Are Not the Components of a Vector 
(r, θ, ) are parameters of a vector, but not components.  That is, the parameters (r, θ, ) uniquely 

define the vector, but they are not components, because you can’t add them.  This is important in much 
physics, e.g. involving magnetic dipoles (ref Jac problem on mag dipole field).  Components of a vector 
are defined as coefficients of basis vectors.  For example, the components v = (x, y, z) can multiply the 
basis vectors to construct v: 

ˆ ˆ ˆx y z  v x y z  

There is no similar equation we can write to construct v from it’s spherical components (r, θ, ).  Position 
vectors are displacements from the origin, and there are no ˆˆ ˆ, ,r θ φ  defined at the origin.   

Put another way, you can always add the components of two vectors to get the vector sum: 

     ˆ ˆ ˆ( , , ) rectangular components.Let a b c Then a x b y c z       w v w x y z  

We can’t do this in spherical coordinates: 

 ( , , ) spherical components. , ,w w w v w v w v wLet r Then r r          w v w  

However, at a point off the origin, the basis vectors ˆˆ ˆ, ,r θ φ  are well defined, and can be used as a basis 
for general vectors.  [In differential geometry, vectors referenced to a point in space are called tangent 
vectors, because they are “tangent” to the space, in a higher dimensional sense.  See Differential Geometry 
elsewhere in this document.] 
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Laplacian’s Place 
What is the physical meaning of the Laplacian operator?  And how can I remember the Laplacian 

operator in any coordinates?  These questions are related because understanding the physical meaning 
allows you to quickly derive in your head the Laplacian operator in any of the common coordinates. 

Let’s take a step-by-step look at the action of the Laplacian, first in 1D, then on a 3D differential 
volume element, with physical examples at each step.  After rectangular, we go to spherical coordinates, 
because they illustrate all the principles involved.  Finally, we apply the concepts to cylindrical coordinates, 
as well.  We follow this outline: 

1. Overview of the Laplacian operator 

2. 1D examples of heat flow 

3. 3D heat flow in rectangular coordinates 

4. Examples of physical scalar fields [temperature, pressure, electric potential (2 ways)] 

5. 3D differential volume elements in other coordinates 

6. Description of the physical meaning of Laplacian operator terms, such as 

2 2 2 2, , , ,T T T TT r r r r
r r r r r r

                    
.  

Overview of Laplacian operator:  Let the Laplacian act on a scalar field T(r), a physical function of 
space, e.g. temperature.  Usually, the Laplacian represents the net outflow per unit volume of some physical 
quantity: something/volume, e.g., something/m3.  The Laplacian operator itself involves spatial second-
derivatives, and so carries units of inverse area, say m–2.   

1D Example:  Heat Flow:  Consider a temperature gradient along a line.  It could be a perpendicular 
wire through the wall of a refrigerator (below left).  It is a 1D system, i.e. only the gradient along the wire 
matters.   

Refrigerator Room

te
m

pe
ra

tu
re

x

metal 
wire

Refrigerator Warmer 
Room

te
m

pe
ra

tu
re

x

current 
carrying wire

heat flow
heat flow

 
Let the left and right sides of the wire be in thermal equilibrium with the refrigerator and room, at 2 C 

and 27 C, respectively.  The wire is passive, and can neither generate nor dissipate heat; it can only conduct 
it. Let the 1D thermal conductivity be k = 100 mW-cm/C.  Consider the part of the wire inside the insulated 
wall, 4 cm thick.  How much heat (power, J/s or W) flows through the wire? 

  25100 mW-cm/C 625 mW
4

dT CP k
dx cm

   . 

There is no heat generated or dissipated in the wire, so the heat that flows into the right side of any 
segment of the wire (differential or finite) must later flow out the left side.  Thus, the heat flow must be 
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constant along the wire.  Since heat flow is proportional to dT/dx, dT/dx must be constant, and the 
temperature profile is linear.  In other words, (1) since no heat is created or lost in the wire, heat-in = heat-
out; (2) but heat flow ~ dT/dx; so (3) the change in the temperature gradient is zero: 

2

20d dT d T
dx dx dx

    
 

. 

(At the edges of the wall, the 1D approximation breaks down, and the inevitable nonlinearity of the 
temperature profile in the x direction is offset by heat flow out the sides of the wire.) 

Now consider a current carrying wire which generates heat all along its length from its resistance 
(diagram above, right).  The heat that flows into the wire from the room is added to the heat generated in 
the wire, and the sum of the two flows into the refrigerator.  The heat generated in a length dx of wire is 

2 2resistance per unit length, andgenP I dx where I const     . 

In steady state, the net outflow of heat from a segment of wire must equal the heat generated in that 
segment.  In an infinitesimal segment of length dx, we have heat-out = heat-in + heat-generated: 

2

2

2
2 2

2

out in gen
a a dx

a dx a

dT dTP P P I dx
dx dx

dT dT I dx
dx dx

d dT d Tdx I dx I
dx dx dx





 





    

  

       
 

 

The negative sign means that when the temperature gradient is positive (increasing to the right), the 
heat flow is negative (to the left), i.e. the heat flow is opposite the gradient.  Many physical systems have a 
similar negative sign.  Thus the 2nd derivative of the temperature is the negative of heat outflow (net inflow) 
from a segment, per unit length of the segment.  Longer segments have more net outflow (generate more 
heat). 

3D Rectangular Volume Element 

Now consider a 3D bulk resistive material, carrying some current.  The current generates heat in each 
volume element of material.  Consider the heat flow in the x direction, with this volume element: 

dxx

y

z
Outflow surface area 
is the same as inflow flow

 

The temperature gradient normal to the y-z face drives a heat flow per unit area, in W/m2.  For a net 
flow to the right, the temperature gradient must be increasing in magnitude (becoming more negative) as 
we move to the right.  The change in gradient is proportional to dx, and the heat outflow flow is 
proportional to the area, and the change in gradient: 

2

2
out in

out in
P Pd dT d TP P k dx dy dz k

dx dx dx dy dz dx
       

 
. 

Thus the net heat outflow per unit volume, due to the x contribution, goes like the 2nd derivative of T.  
Clearly, a similar argument applies to the y and z directions, each also contributing net heat outflow per unit 
volume.  Therefore, the total heat outflow per unit volume from all 3 directions is simply the sum of the 
heat flows in each direction: 
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2 2 2

2 2 2
out inP P T T Tk

dx dy dz x y z

    
        

. 

We see that in all cases, the  

net outflow of flux per unit volume = change in (flux per unit area), per unit distance 

We will use this fact to derive the Laplacian operator in spherical and cylindrical coordinates. 

General Laplacian 

We now generalize.  For the Laplacian to mean anything, it must act on a scalar field whose gradient 
drives a flow of some physical thing. 

Example 1:  My favorite is T(r) = temperature.  Then T(r) drives heat (energy) flow, heat per unit 
time, per unit area: 

/ ( )heat t k T where k thermal conductivity
area

heat flow vector

    



q r

q
 

Then ~ r
T q radial component of heat flow
r





 

Example 2:  T(r) = pressure of an incompressible viscous fluid (e.g. honey).  Then T(r) drives fluid 
mass (or volume) flow, mass per unit time, per unit area: 

/ ( )mass t k T where k some viscous friction coefficient
area

mass flow density vector
    



j r
j

 

Then ~ r
T j radial component of mass flow
r





 

Example 3:  T(r) = electric potential in a resistive material.  Then T(r) drives charge flow, charge 
per unit time, per unit area: 

charge / ( )t T where electrical conductivity
area

current density vector
     



j r
j

 

Then ~ r
T j radial component of current density
r





. 

Example 4:  Here we abstract a little more, to add meaning to the common equations of 
electromagnetics.  Let T(r) = electric potential in a vacuum.  Then T(r) measures the energy per unit 
distance, per unit area, required to push a fixed charge density ρ through a surface, by a distance of dn, 
normal to the surface: 

energy/distance ( ) electric charge volume densityT where
area

   r . 

Then ∂T/∂r ~ net energy per unit radius, per unit area, to push charges of density ρ out the same 
distance through both surfaces. 

In the first 3 examples, we use the word “flow” to mean the flow in time of some physical quantity, per 
unit area.  In the last example, the “flow” is energy expenditure per unit distance, per unit area.  The 
requirement of “per unit area” is essential, as we soon show. 



physics.ucsd.edu/~emichels  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

5/7/2015  11:21  Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 29 of 263  

Laplacian In Spherical Coordinates 

To understand the Laplacian operator terms in other coordinates, we need to take into account two 
effects: 

1. The outflow surface area may be different than the inflow surface area 

2. The derivatives with respect to angles (θ or ) need to be converted to rate-of-change per unit 
distance. 

We’ll see how these two effects come into play as we develop the spherical terms of the Laplacian 
operator.  The cylindrical terms are simplifications of the spherical terms. 

Spherical radial contribution:  We first consider the radial contribution to the spherical Laplacian 
operator, from this volume element: 

drx

y

z



θ
Outflow surface area 

is differentially 
larger than inflow 

flow

dΩ
sin θ d

dθ

dΩ = sin θ d dθ

 

The differential volume element has thickness dr, which can be made arbitrarily small compared to the 
lengths of the sides.  The inner surface of the element has area r2 d.  The outer surface has infinitesimally 
more area.  Thus the radial contribution includes both the “surface-area” effect, but not the “converting-
derivatives” effect. 

The increased area of the outflow surface means that for the same flux-density (flow) on inner and 
outer surfaces, there would be a net outflow of flux, since flux = (flux-density)(area).  Therefore, we must 
take the derivative of the flux itself, not the flux density, and then convert the result back to per-unit-
volume.  We do this in 3 steps: 

    
   

 
     

2

2

2 2
2 2

- ~

1 1

flux area flux density r d
r

d flux
r d

dr r r

d fluxoutflow r d r
volume area dr r r r rr d r

     

       

                  

 

The constant d factor from the area cancels when converting to flux, and back to flux-density.  In 
other words, we can think of the fluxes as per-steradian. 

We summarize the stages of the spherical radial Laplacian operator as follows: 
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2 2
2

2

2

2

1( ) ( )

radial flux per unit area

( )( )radial flux, per unit solid-angle

change in radial flux per unit length, per unit solid-angle; positive is increasing flux

1

r T r T
r rr

T
r

area flow per unit arear T
r d

r T
r r

r

 
 

 







 

 

 


 



r r

2

2
2

radial flow
per unit area

radial flux
per steradian

change in radial flux per
unit length per steradian

change in radial flux per unit length, per unit area

net outflow of flux per unit volume

1

r T
r r

r T
r rr




 



 
 



 

change in radial flux per
unit length, per unit area





 

Following the steps in the example of heat flow, let T(r) = temperature.  Then 

2

2

2

2
2

radial heat flow per unit area, W/m

Wattsradial heat flux, W/solid-angle =
steradian

change in radial heat flux per unit length, per unit solid-angle

1 net outflow of heat flux per unit volume

T
r

r T
r

r T
r r

r T
r rr











 


 

 


 

 

Spherical azimuthal contribution:  The spherical  contribution to the Laplacian has no area-change, 
but does require converting derivatives.  Consider the volume element: 

d

Outflow surface area 
is identical to inflow 

x

y

z



θ

flow

 

The inflow and outflow surface areas are the same, and therefore area-change contributes nothing to the 
derivatives.   

However, we must convert the derivatives with respect to  into rates-of-change with respect to 
distance, because physically, the flow is driven by a derivative with respect to distance.  In the spherical  
case, the effective radius for the arc-length along the flow is r sin θ, because we must project the position 
vector into the plane of rotation.  Thus, (∂/∂) is the rate-of-change per (r sin θ) meters.  Therefore,  
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1rate-of-change-per-meter
sinr  





 

Performing the two derivative conversions, we get 

2 1 1( ) ( )
sin sin

1 azimuthal flux per unit area
sin

1 change in (azimuthal flux per unit area) per radian
sin

1 1 change in (azimuthal flux per unit area) per unit distance
sin sin

net azimu

T T
r r

T
r

T
r

T
r r

    

 

  

   

 
 

 






 


 

 


 



r r

azimuthal flux
per unit area

change in (azimuthal flux
per unit area) per radian

change in (azimuthal flux per
unit area) per unit distance

thal outflow of flux per unit volume

1 1
sin sin

T
r r   

 
 



 

2

2 2 2
1

sin
T

r  







 

Notice that the r2 sin2 θ in the denominator is not a physical area; it comes from two derivative 
conversions. 

Spherical polar angle contribution:   

dθ

Outflow surface area 
is differentially 

larger than inflow 

x

y

z



θ

flow

 

The volume element is like a wedge of an orange: it gets wider (in the northern hemisphere) as θ 
increases.  Therefore the outflow area is differentially larger than the inflow area (in the northern 
hemisphere).  In particular,  sinarea r dr , but we only need to keep the θ dependence, because the 
factors of r cancel, just like d did in the spherical radial contribution.  So we have 

sinarea  . 

In addition, we must convert the ∂/∂θ to a rate-of-change with distance.  Thus the spherical polar angle 
contribution has both area-change and derivative-conversion. 

Following the steps of converting to flux, taking the derivative, then converting back to flux-density, 
we get 
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 

2 1 1 1( ) sin ( )
sin

1 ˆ-flux per unit area

( )( )1 ˆsin -flux, per unit radius

1 ˆsin change in -flux per unit radius , per radian

1 1 ˆsin change in -flux per

T T
r r

T
r

area flux per unit areaT
r dr

T
r

T
r r

 
  




 


 
 

 
 

 
 

 







 



 


 

 


 

r r

 

ˆ-flux per
unit area

ˆ-flux, per
unit radius

change

unit radius , per unit distance

1 1 1 ˆsin change in ( -flux per unit area), per unit distance
sin

net outflow of flux per unit volume

1 1 1sin
sin

T
r r

T
r r





 
  


  

 


 



 
 



2

ˆin ( -flux per
unit radius), per radian

ˆchange in ( -flux per unit
radius), per unit distance

ˆchange in ( -flux per unit
area), per unit distance

1 sin
sin

T
r








 
 


 






 

Notice that the r2 in the denominator is not a physical area; it comes from two derivative conversions. 

Cylindrical Coordinates 

The cylindrical terms are simplifications of the spherical terms. 

drx

y

z



Radial outflow 
surface area is 

differentially larger 
than inflow 

flow

r

d
flow

 and z outflow 
surface areas are 

identical to 
inflow dz

flow

 

Cylindrical radial contribution:  The picture of the cylindrical radial contribution is essentially the 
same as the spherical, but the “height” of the slab is exactly constant.  We still face the issues of varying 
inflow and outflow surface areas, and converting derivatives to rate of change per unit distance.  The 
change in area is due only to the arc length r d, with the z (height) fixed.  Thus we write the radial result 
directly: 
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2 1( ) ( ) (Cylindrical Coordinates)

radial flow per unit area

( )( )radial flux per unit angle

change in (radial flux per unit angle), per unit radius

1 change i

r T r T
r r r

T
r

flow per unit area arear T
r d dz

r T
r r

r T
r r r



 
 

 







 



 


 

 


 

r r

radial flow
per unit area

radial flux
per radian

change in radial flux per
unit length per radian

change in (radial flux pe

n (radial flux per unit area), per unit radius

net outflow of flux per unit volume

1 r T
r r r



 
 





r
unit area), per unit radius



 

Cylindrical azimuthal contribution:  Like the spherical case, the inflow and outflow surfaces have 
identical areas.  Therefore, the  contribution is similar to the spherical case, except there is no sin θ factor; 
r contributes directly to the arc-length and rate-of-change per unit distance: 

 

2 1 1( ) ( )

1 azimuthal flux per unit area

1 change in azimuthal flux per unit area per radian

1 1 change in (azimuthal flux per unit area) per unit distance

net azimuthal outflow of flux per unit vo

T T
r r

T
r

T
r

T
r r

  



 

 

 
 

 






 


 

 


 



r r

2

2 2

change in (azimuthal flux per
unit area) per unit distance

lume

1 1 1

azimuthal flow
per unit area

change in azimuthal
flow per radian

T T
r r r  
  


  





 

Cylindrical z contribution:  This is identical to the rectangular case:  the inflow and outflow areas are 
the same, and the derivative is already per unit distance, ergo:  (add cylindrical volume element picture??) 
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2

vertical flux
per unit area

change in (vertical flux per
unit area) pe

( ) ( )

vertical flux per unit area

change in (vertical flux per unit area) per unit distance

net outflow of flux per unit volume

zT T
z z

T
z

T
z z

T
z z

 
 

 






 


 



 
 

r r



2

2

r unit distance

T
z







 

Vector Dot Grad Vector 
In electromagnetic propagation, and elsewhere, one encounters the “dot product” of a vector field with 

the gradient operator, acting on a vector field.  What is this v · operator?  Here, v(r) is a given vector 
field.  The simple view is that v(r) · is just a notational shorthand for 

 

( ) ,

ˆ ˆ ˆ ˆ ˆ ˆ( )

x y z

x y z x y z

v v v
x y z

because v v v v v v
x y z x y z

   
       

        
                    

v r

v r x y z x y z
 

by the usual rules for a dot product in rectangular coordinates. 

There is a deeper meaning, though, which is an important bridge to the topics of tensors and 
differential geometry.   

We can view the v · operator as simply the dot product of the vector field v(r)  
with the gradient of a vector field.   

You may think of the gradient operator as acting on a scalar field, to produce a vector field. But the 
gradient operator can also act on a vector field, to produce a tensor field.  Here’s how it works:  You are 
probably familiar with derivatives of a vector field: 

ˆ ˆ ˆ( , , ) be a vector field. Then is a vector field.

Writing spatial vectors as column vectors, ,

Similarly, are

yx z

x

x
y

y

z z

AA ALet x y z
x x x x

A
xA

A
A A and

x x
A A

x

and
y z

  
       

 
    
            

   
  

 
 

AA x y z

A

A A also vector fields.

 

By the rule for total derivatives, for a small displacement (dx, dy, dz), 
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x x

y

x x

x
y y

z

x

y y

zz z
z

z

y

A
z

A

dxA A
x xdA

A A
dx dx

x x
A

A A
y y

A Ady
dA dy

y y
A AA
y xx

dz
y

dA A dz
z y

d
x y z

  
  
   
      

                
    

      

  
   

  
   

  
  
 


 
 
 





 
   








  

A A AA

x

y

z

A
z

A
dz

y
A
z

dy

 
  
 

  








 








. 

This says that the vector dA is a linear combination of 3 column vectors ∂A/∂x, ∂A/∂y, and ∂A/∂z, 
weighted respectively by the displacements dx, dy, and dz.  The 3 x 3 matrix above is the gradient of the 
vector field A(r).  It is the natural extension of the gradient (of a scalar field) to a vector field.  It is a rank-2 
tensor, which means that given a vector (dx, dy, dz), it produces a vector (dA) which is a linear combination 
of 3 (column) vectors (A), each weighted by the components of the given vector (dx, dy, dz). 

Note that A and ·A are very different: the former is a rank-2 tensor field, the latter is a scalar field. 

This concept extends further to derivatives of rank-2 tensors, which are rank-3 tensors: 3 x 3 x 3 cubes 
of numbers, producing a linear combination of 3 x 3 arrays, weighted by the components of a given vector 
(dx, dy, dz).  And so on. 

Note that in other coordinates (e.g., cylindrical or spherical), A is not given by the derivative of its 
components with respect to the 3 coordinates.  The components interact, because the basis vectors also 
change through space.  That leads to the subject of differential geometry, discussed elsewhere in this 
document. 
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4 Green’s Functions 
Green’s functions are a method of solving inhomogeneous linear differential equations (or other linear 

operator equations): 

   ( ) ( ),f x s x where is a linear operatorL L . 

We use them when other methods are hard, or to make a useful approximation (the Born approximation).  
Sometimes, the Green’s function itself can be given physical meaning, as in Quantum Field Theory.  
Green’s functions can generate particular (i.e. inhomogeneous) solutions, and solutions matching boundary 
conditions.  They don’t generate homogeneous solutions (i.e., where the right hand side is zero).  We 
explore Green’s functions  through the following steps: 

1. Extremely brief review of the δ-function. 

2. The tired, but inevitable, electromagnetic example. 

3. Linear differential equations of one variable (1-dimensional), with sources. 

4. Delta function expansions.   

5. Green’s functions of two variables (but 1 dimension).   

6. When you can collapse a Green’s function to one variable (“portable Green’s functions”: 
translational invariance) 

7. Dealing with boundary conditions: at least 5 (6??) kinds of BC 

8. Green-like methods: the Born approximation 

You will find no references to “Green’s Theorem” or “self-adjoint” until we get to non-homogeneous 
boundary conditions, because those topics are unnecessary and confusing before then.  We will see that: 

The biggest hurdle in understanding Green’s functions is the boundary conditions.  

Dirac Delta Function  

Recall that the Dirac δ-function is an “impulse,” an infinitely narrow, tall spike function, defined as 

( ) 0, 0, ( ) 1, 0 (the area under the d-function is 1)
a

a
x for x and x dx a 


     . 

The linearity of integration implies the delta function can be offset, and weighted, so that 

( ) 0
b a

b a
w x b dx w a




    . 

Since the δ-function is infinitely narrow, it can “pick out” a single value from a function: 

( ) ( ) ( ) 0
b a

b a
x b f x dx f b a




    . 

[It also implies (0)  , but we don’t focus on that here.] 

(See Funky Quantum Concepts for more on the delta function). 

The Tired, But Inevitable, Electromagnetic Example 

You probably have seen Poisson’s equation relating the electrostatic potential at a point to a charge 
distribution creating the potential (in gaussian units): 

(1) 2 ( ) 4 ( ) electrostatic potential, charge densitywhere      r r . 
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We solved this by noting three things: (1a) electrostatic potential, , obeys “superposition:” the 
potential due to multiple charges is the sum of the potentials of the individual charges; (1b) the potential is 
proportional to the source charge; and (2) the potential due to a point charge is: 

1( ) (point charge at origin)q
r

 r . 

The properties (1a) and (1b) above, taken together, define a linear relationship:  

1 1 2 2

1 2 1 2

( ) ( ), ( ) ( )

( ) ( ) ( ) ( ) ( )total

Given and

Then a a

   

    

 

   

r r r r

r r r r r
 

To solve Eq (1), we break up the source charge distribution into an infinite number of little point 
charges spread out over space, each of charge ρ d3r.  The solution for  is the sum of potential from all the 
point charges, and the infinite sum is an integral, so we find  as 

3 1( ) ( ') '
'

d r 
r r

r r
. 

Note that the charge “distribution” for a point charge is a δ-function: infinite charge density, but finite 
total charge.  [We have also implicitly used the fact that the potential is translationally invariant, and 
depends only on the distance from the source.  We will remove this restriction later.] 

But all of this followed from simple mathematical properties of Eq (1) that have nothing to do with 
electromagnetics.  All we used to solve for  was that the left-hand side is a linear operator on  (so 
superposition applies), and we have a known solution when the right-hand side is a delta function: 

  
2 2

" " int
" " '

1( ) ( ) ( ')
'linear linearunknown given source given pooperator operatorfunction function source atknown

solution

and       


r

r r r r
r r 


. 

The solution for a given ρ is a sum of delta-function solutions.  Now we generalize all this to arbitrary 
(for now, 1D) linear operator equations by letting r  x,   f, –2  L, ρ  s, and call the known δ-
function solution G(x): 

   Given ( ) ( ) ( ) ( ), then ( ) ( ') ' ( ')f x s x and G x x f x s x dx G x x   L L . 

assuming, as above, that our linear operator, and any boundary conditions, are translationally invariant. 

A Fresh, New Signal Processing Example 

If this example doesn’t make sense to you, just skip it.  Signal processing folk have long used a 
Green’s function concept, but with different words.  A time-invariant linear system (TILS) produces an 
output which is a linear operation on its input: 

   ( ) ( ) is a linear operation taking input to outputo t i t where   

In this case, we aren’t given {}, and we don’t solve for it.  However, we are given a measurement 
(or computation) of the system’s impulse response, called h(t) (not to be confused with a homogeneous 
solution to anything).  If you poke the system with a very short spike (i.e., if you feed an impulse into the 
system), it responds with h(t).   

 ( ) ( ) ( ) is the system's impulse responseh t t where h t . 

Note that the impulse response is spread out over time, and usually of (theoretically) infinite duration.  
h(t) fully characterizes the system, because we can approximate any input function as a series of impulses, 
and sum up all the responses.  Therefore, we find the output for any input, i(t), with: 
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( ) ( ') ( ') 'o t i t h t t dt



  . 

h(t) acts like a Green’s function, giving the system response at time t to a delta function at t = 0. 

Linear differential equations of one variable, with sources 

We wish to solve for f(x), given s(x): 

   

2 2
2 2

2 2

( ) ( ), is a linear operator

( ) is called the "source," or forcing function

. ., ( ) ( ) ( ) ( )

f x s x where

s x

d dE g f x f x f x s x
dx dx

 



 
     

 

L L

 

We ignore boundary conditions for now (to be dealt with later).  The differential equations often have 
3D space as their domain.  Note that we are not differentiating s(x), which will be important when we get to 
the delta-function expansion of s(x).  

Green’s functions solve the above equation by first solving a related equation: if we can find a function 
(i.e., a “Green’s function”) such that 

 
2

2
2

( ) ( ), ( ) is the Dirac delta function

. ., ( ) ( )

G x x where x

dE g G x x
dx

 

 



 
   

 

L

 

then we can use that Green’s function to solve our original equation.   

This might seem weird, because δ(0)  ∞, but it just means that Green’s functions often have 
discontinuities in them or their derivatives.  For example, suppose G(x) is a step function: 

( ) 0, 0
( ) ( )

1, 0
G x x d G x x

x dx
Then 

  
  

. 

Now suppose our source isn’t centered at the origin, i.e., ( ) ( )s x x a  .  If  L  is translation 
invariant [along with any boundary conditions], then G( ) can still solve the equation by translation: 

 ( ) ( ) ( ), ( ) ( ) is a solution.f x s x x a f x G x a     L  

If s(x) is a weighted sum of delta functions at different places, then because  L  is linear, the solution is 
immediate; we just add up the solutions from all the δ-functions: 

 ( ) ( ) ( ) ( ) ( )i i i i
i i

f x s x w x x f x w G x x      L . 

Usually the source s(x) is continuous.  Then we can use δ-functions as a basis to expand s(x) as an infinite 
sum of delta functions (described in a moment).  The summation goes over to an integral, and a solution is 

 

 

'
( ') '

1
( ) ( ) ( )

( ) ( ) ' ( ') ( ') ( ) ' ( ') ( ')

i
i

x x
w s x dx

i i
i

f x s x w x x

f x s x dx s x x x and f x dx s x G x x






 



   

    



 

L

L

 

We can show directly that f(x) is a solution of the original equation by plugging it in, and noting that 
 L  acts in the x domain, and “goes through” (i.e., commutes with) any operation in x’: 
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 

   

( ) ' ( ') ( ')

' ( ') ( ') moving inside the integral

' ( ') ( ') ( ) ( ) ( ). .

f x dx s x G x x

dx s x G x x

dx s x x x s x picks out the value of s x QED 

   
 

 

  







L L

L L  

We now digress for a moment to understand the δ-function expansion. 

Delta Function Expansion 

As in the EM example, it is frequently quite useful to expand a given function s(x) as a sum of δ-
functions: 

1

( ) ( ), are the weights of the basis delta functions
N

i i i
i

s x w x x where w


  . 

[This same expansion is used to characterize the “impulse-response” of linear systems.] 

x

Approximating a function 
with delta functions

s(x)

N = 8

x

s(x)

Δx
xi

wi = area 
≈ s(xi)Δx

N = 16

 
On the left, we approximate s(x) first with N = 8 δ-functions (green), then with N = 16 δ-functions 

(red).  As we double N, the weight of each δ-function is roughly cut in half, but there are twice as many of 
them.  Hence, the integral of the δ-function approximation remains about the same.  Of course, the 
approximation gets better as N increases.  As usual, we let the number of δ-functions go to infinity: N  ∞. 

On the right above, we show how to choose the weight of each δ-function: its weight is such that its 
integral approximates the integral of the given function, s(x), over the interval “covered” by the δ-function.  
In the limit of N  ∞, the approximation becomes arbitrarily good. 

In what sense is the δ-function series an approximation to s(x)?  Certainly, if we need the derivative 
s'(x), the delta-function expansion is terrible.  However, if we want the integral of s(x), or any integral 
operator, such as an inner product or a convolution, then the delta-function series is a good approximation: 

1

( ) * ( ) ( ) ( ' ) ( ) ,

( ) ( ) ( )
N

i i i i
i

For s x dx or f x s x dx or f x x s x dx

then s x w x x where w s x x




   

  


 

As N  ∞, we expand s(x) in an infinite sum (an integral) of δ-functions: 

'
'

( ') '
( ) ( ) ( ) ' ( ') ( ')

i

i

x x
x dx

w s x dx

i i
i

s x w x x s x dx s x x x 


 


      , 
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which if you think about it, follows directly from the definition of δ(x). 

[Aside: Delta-functions are a continuous set of orthonormal basis functions, much like sinusoids from 
quantum mechanics and Fourier transforms.  They satisfy all the usual orthonormal conditions for a continuous 
basis, i.e. they are orthogonal and normalized: 

( ) ( ) ( )dx x a x b a b  



     .] 

Note that in the final solution of the prior section, we integrate s(x) times other stuff: 

( ) ' ( ') ( ')f x dx s x G x x  . 

and integrating s(x) is what makes the δ-function expansion of s(x) valid. 

Introduction to Boundary Conditions 

We now incorporate a simple boundary condition.  Consider a 2D problem in the plane: 

 ( , ) ( , ) inside the boundary
( ) 0, where the boundary is given.

f x y s x y
f boundary





L
 

We define the vector r ≡ (x, y), and recall that 

( ) ( ) ( ), ( ') ( ') ( ')x y so that x x y y         r r r . 

[Some references use the notation δ(2)(r) for a 2D δ-function.] 

x

Domain 
of  f(x, y)

f(boundary) = 0 boundary
y

x

y

δ(r)
δ(r − r')

Boundary condition does 
NOT translate with r’

Boundary condition 
remains fixed

 

(Left)  The domain of interest, and its boundary.  (Right)  A solution meeting the BC for the 
source at (0, 0) does not translate to another point and still meet the BC. 

The boundary condition removes the translation invariance of the problem.  The delta-function 
response of L{G(r)} translates, but the boundary condition does not.  I.e., a solution of  

   ( ) ( ), and ( ) 0 ( ') ( ')
BUT does NOT ( ') 0 .

G G boundary G
G boundary

      

  

r r r r r r
r

L L
 

With boundary conditions, for each source point r', we need a different Green’s function!   

The Green’s function for a source point r', call it Gr’(r), must satisfy both: 

  ' '( ) ( ') ( ) 0G and G boundary  r rr r rL . 

We can think of this as a Green’s function of two arguments, r and r', but really, r is the argument, and r' is 
a parameter.  In other words, we have a family of Green’s functions, Gr’(r), labeled by the location of the 
delta-function, r'.   
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Example:  Returning to a 1D example in r:  Find the Green’s function for the equation 

2

2 ( ) ( ), on the interval [0,1], (0) (1) 0.d f r s r subject to f f
dr

    

Solution:  The Green’s function equation replaces the source s(r) with δ(r – r'): 

2

'2 ( ) ( ')r
d G r r r
dr

  . 

Note that Gr’(r) satisfies the homogeneous equation on either side of r’: 

2

'2 ( ') 0r
d G r r
dr

  . 

The full Green’s function simply matches two homogeneous solutions, one to the left of r’, and another to 
the right of r’, such that the discontinuity at r’ creates the required δ-function there.  First we find the 
homogeneous solutions: 

2

2 ( ) 0 Integrate both sides:

( ) C is an integration constant. Integrate again:

( ) , are arbitrary constants

d h r
dr
d h r C where
dr
h r Cr D where C D





 

 

There are now 2 cases:  (left)  r < r',  and (right)  r > r'.  Each solution requires its own set of 
integration constants. 

'

'

'

'

: ' ( )

Only the left boundary condition applies to ' : (0) 0 0

: ' ( )

Only the right boundary condition applies to ' : (1) 0 0,

r

r

r

r

Left case r r G r Cr D

r r G D

Right case r r G r Er F

r r G E F F E

   

   

   

      

 

So far, we have: 

: ( ') : ( ')Left case G r r Cr Right case G r r Er E     . 

The integration constants C and E are as-yet unknown.  Now we must match the two solutions at r = r', 
and introduce a delta function there.  The δ-function must come from the highest derivative in L{ }, in this 
case the 2nd derivative, because if G’(r) had a delta function, then the 2nd derivative G’’(r) would have the 
derivative of a δ-function, which cannot be canceled by any other term in L{ }.  Since the derivative of a 
step (discontinuity) is a δ-function, G’(r) must have a discontinuity, so that G’’(r) has a δ-function.  And 
finally, if G’(r) has a discontinuity, then G(r) has a cusp (aka “kink” or sharp point). 

We can find G(r) to satisfy all this by matching G(r) and G’(r) of the left and right Green’s functions, 
at the point where they meet, r = r’: 

' ': ( ') : ( ')

There must be a unit step in the derivative across ' :

1

r r
d dLeft G r r C Right G r r E
dr dr

r r

C E

   



 

 

So we eliminate E in favor of C.  Also, G(r) must be continuous (or else G’(r) would have a δ-
function), which means   

' '( ' ) ( ' ) ' ( 1) ' 1, ' 1r rG r r G r r Cr C r C C r           . 
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yielding the final Green’s function for the given differential equation: 

   ' '( ') ' 1 , ( ') ' ' ' 1r rG r r r r G r r r r r r r        . 

Here’s a plot of these Green’s functions for different values of r': 

r
r' = 0.3

Gr' (r)

0

0.5

-0.5

r0

0.5

-0.5

r0

0.5

-0.5
0 1

r' = 0.5 r' = 0.8

Gr' (r) Gr' (r)

0 1 0 1
 

To find the solution f(x), we need to integrate over r'; therefore, it is convenient to write the Green’s 
function as a true function of two variables: 

 '( ; ') ( ) ( ; ' ( '), ( ; ') 0rG r r G r G r r r r and G boundary r    L , 

where the “;” between r and r' emphasizes that G(r ; r') is a function of r, parameterized by r'.  I.e., we can 
still think of G(r; r') as a family of functions of r, where each family member is labeled by r’, and each 
family member satisfies the homogeneous boundary condition.   

It is important here that the boundary condition is zero, so that any sum of Green’s functions still 
satisfies the boundary condition.   

Our particular solution to the original equation, which now satisfies the homogeneous boundary 
condition, is  

   
1 1

0 0
( ; '), ' ( ; '), '

( ) ' ( ') ( ; ') ' ( ') ' 1 ' ( ') ' 1

which satisfies ( ) 0

r

r
G r r r r G r r r r

f r dr s r G r r dr s r r r dr s r r r

f boundary

 

    



     

Summary: To solve  ' ( ) ( ')xG x x x L , we break G(x) into left- and right- sides of x’.  Each side 

satisfies the homogeneous equation,  ' ( ) 0xG x L , with arbitrary constants.  We use the matching 
conditions to achieve the δ-function at x’, which generates a set of simultaneous equations for the unknown 
constants in the homogeneous solutions.  We solve for the constants, yielding the left-of-x’ and right-of-x’ 
pieces of the complete Green’s function, Gx’(x).  

Aside:  It is amusing to notice that we use solutions to the homogeneous equation to construct the Green’s 
function.  We then use the Green’s function to construct the particular solution to the given (inhomogeneous) 
equation.  So we are ultimately constructing a particular solution from a homogeneous solution.  That’s not like 
anything we learned in undergraduate differential equations. 

When Can You Collapse a Green’s Function to One Variable? 

“Portable” Green’s Functions:  When we first introduced the Green’s function, we ignored boundary 
conditions, and our Green’s function was a function of one variable, r.  If our source wasn’t at the origin, 
we just shifted our Green’s function, and it was a function of just (r – r’).  Then we saw that with (certain) 
boundary conditions, shifting doesn’t work, and the Green’s function is a function of two variables, r and 
r’.  In general, then, under what conditions can we write a Green’s function in the simpler form, as a 
function of just (r – r’)?   

When both the differential operator and the boundary conditions are translation-invariant,  
the Green’s function is also translation-invariant. 
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We can say it’s “portable.”  This is fairly common: differential operators are translation-invariant (i.e., 
they do not explicitly depend on position), and BCs at infinity are translation-invariant.  For example, in 
E&M it is common to have equations such as 

2 ( ) ( ), ( ) 0with boundary condition     r r . 

Because both the operator –2 and the boundary conditions are translation invariant, we don’t need to 
introduce r' explicitly as a parameter in G(r).  As we did when introducing Green’s functions, we can take 
the origin as the location of the delta-function to find G(r), and use translation invariance to “move around” 
the delta function: 

 '( ; ') ( ) ( ') ( ') ( ')
( ) 0

rG r r G r G r r and G r r r r
with BC G

     

 

L
 

Non-homogeneous Boundary Conditions 

So far, we’ve dealt with homogeneous boundary conditions by requiring '( ) ( ; ')rG r G r r  to be zero 
on the boundary.  There are different kinds of boundary conditions, and different ways of dealing with each 
kind.   

[Note that in general, constraint conditions don’t have to be specified at the boundary of anything.  They are 
really just “constraints” or “conditions.”  For example, one constraint is often that the solution be a “normalized” 
function, which is not a statement about any boundaries.  But in most physical problems, at least one condition 
does occur at a boundary, so we defer to this, and limit ourselves to boundary conditions.] 

Boundary Conditions Specifying Only Values of the Solution 

In one common case, we are given a general (inhomogeneous) boundary condition, m(r) along the 
boundary of the region of interest.  Our problem is now to find the complete solution c(r) such that 

 ( ) ( ), ( ) ( )c r s r and c boundary m boundary L . 

One approach to find c(r) is from elementary differential equations: we find a particular solution f(x) to 
the given equation, that doesn’t necessarily meet the boundary conditions.  Then we add a linear 
combination of homogeneous solutions to achieve the boundary conditions, while preserving the solution of 
the non-homogeneous equation.  Therefore, we (1) first solve for f(r), as above, such that 

 

 

( ) ( ), ( ) 0, using a Green's function satisfying

( ; ') ( ') ( ; ') 0

f r s r and f boundary

G r r r r and G boundary r

 

  

L

L
 

(2) We then find homogeneous solutions hi(r) which are non-zero on the boundary, using ordinary 
methods (see any differential equations text): 

 ( ) 0, ( ) 0i ih r and h boundary L . 

Recall that in finding the Green’s function, we already had to find homogeneous solutions, since every 
Green’s function is a homogeneous solution everywhere except at the δ-function position, r'. 

(3) Finally, we add a linear combination of homogeneous solutions to the particular solution to yield a 
complete solution which satisfies both the differential equation and the boundary conditions: 

 

   
 

1 1 2 2 1 1 2 2

1 1 2 2

1 1 2 2

( ) ( ) ... ( ), ( ) ( ) ... 0 by superposition

( ) ( ) ( ) ( ) ... ,

( ) ( ) ( ) ( ) ...

( ) ( ) ( ( )

A h r A h r m r A h r A h r

c r f r A h r A h r Therefore

c r f r A h r A h r

f r s r and c boundary m boundary

     

   

   

  



 



 

Continuing Example:  In our 1D example above, we have: 
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     
2

' '2

' '

( ') ' 1 , ( ') ' 1 ,

: (0) (1) 0 (0) (1) 0, ( )

r r

r r

and G r r r r G r r r r
r
satisfying BC G G f f s r


      


     


 

We now add boundary conditions to the original problem.  We must satisfy c(0) = 2, and c(1) = 3, in 
addition to the original problem.  Our linearly independent homogeneous solutions are: 

1 1 0 0( ) ( ) (a constant)h r A r h r A  . 

To satisfy the BC, we need 

1 0 0

1 0 1

(0) (0) 2 2

(1) (1) 3 1

h h A

h h A

   

   
 

and our complete solution is 

1

0
( ) ' ( ') ( ; ') 2c r dr s r G r r r      . 

Boundary Conditions Specifying a Value and a Derivative 

Another common kind of boundary conditions specifies a value and a derivative for our complete 
solution.  For example, in 1D: 

(0) 1 '(0) 5c and c  . 

But recall that our Green’s function does not have any particular derivative at zero.  When we find the 
particular solution, f(x), we have no idea what it’s derivative at zero, f '(0), will be.  And in particular, 
different source functions, s(r), will produce different f(r), with different values of f '(0).  This is bad.  In the 
previous case of BC, f(r) was zero at the boundaries for any s(r).  What we need with our new BC is f(0) = 
0 and f '(0) = 0 for any s(r).  We can easily achieve this by using a different Green’s function!  We 
subjected our first Green’s function to the boundary conditions G(0; r’) = 0 and G(1; r’) = 0 specifically to 
give the same BC to f(r), so we could add our homogeneous solutions independently of s(r).  Therefore, we 
now choose our Green’s function BC to be: 

 (0; ') 0 '(0; ') 0, ( ; ') ( ')G r and G r with G r r r r    . 

We can see by inspection that this leads to a new Green’s function: 

( ; ') 0 ', ( ; ') ' 'G r r r r and G r r r r r r     . 

r
r' = 0.3

G(r ; r')

0

0.5

r0

0.5

r0

0.5

0 1 0 10 1

r' = 0.5 r' = 0.8

G(r ; r') G(r ; r')

 
The 2nd derivative of G(r; r’) is everywhere 0, and the first derivative changes from 0 to 1 at r’.  

Therefore, our new particular solution f(r) also satisfies: 

1

0
( ) ' ( ') ( ; ') (0) 0, '(0) 0, ( )f r dr s r G r r and f f s r    . 

We now construct the complete solution using our homogeneous solutions to meet the BC: 
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1 1 0 0

1 0 0

1 0 1

1

0

( ) ( ) (a constant)

(0) (0) 1 1

'(0) '(0) 5 5.

( ) ' ( ') ( ; ') 5 1

h r A r h r A

h h A

h h A Then

c r dr s r G r r r

 

   

   

     

 

In general, the Green’s function depends not only on the particular operator, but also on the kind 
of boundary conditions specified. 

Boundary Conditions Specifying Ratios of Derivatives and Values 

Another kind of boundary conditions specifies a ratio of the solution to its derivative, or equivalently, 
specifies a linear combination of the solution and its derivative be zero.  This is equivalent to a 
homogeneous boundary condition: 

'(0) , (0) 0 '(0) (0) 0
(0)

c or equivalently if c c c
c

     . 

This BC arises, for example, in some quantum mechanics problems where the normalization of the 
wave-function is not yet known; the ratio cancels any normalization factor, so the solution can proceed 
without knowing the ultimate normalization.  Note that this is only a single BC.  If our differential operator 
is 2nd order, there is one more degree of freedom that can be used to achieve normalization, or some other 
condition.  (This BC is sometimes given as βc'(0) – αc(0) = 0, but this simply multiplies both sides by a 
constant, and fundamentally changes nothing.)   

Also, this condition is homogeneous: a linear combination of functions which satisfy the BC also 
satisfies the BC.  This is most easily seen from the form given above, right: 

   

'(0) (0) 0, '(0) (0) 0,

( ) ( ) ( ) '(0) (0) 0

'(0) (0) '(0) (0) '(0) (0)

If d d and e e

then c r Ad r Be r satisfies c c

because c c A d d B e e

 



  

   

   

    

 

Therefore, if we choose a Green’s function which satisfies the given BC, our particular solution f(r) 
will also satisfy the BC.  There is no need to add any homogeneous solutions. 

Continuing Example:  In our 1D example above, with L = d2/dr2, we now specify BC: 

'(0) 2 (0) 0c c  . 

Since our Green’s functions for this operator are always two connected line segments (because their 2nd 
derivatives are zero), we have  

' : ( ; ') , 0 (0) 0

' : ( ; ')

0 : 2 0

r r G r r Cr D D so that c

r r G r r Er F

BC at C D

    

  

 

 

With this BC, we have an unused degree of freedom, so we choose D = 1, implying C = 2.  We must 
find E and F so that G(r; r’) is continuous, and G’(r; r’) has a unit step at r’.  The latter condition requires 
that E = 3, and then continuity requires 

' ' 2 ' 1 3 ' , ' 1.

' : ( ; ') 2 1 ' : ( ; ') 3 ' 1

Cr D Er F r r F F r So

r r G r r r and r r G r r r r

         

      
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r
r' = 0.3

G(r ; r')

1

0
1

1.6

2.5

4.0

r
r' = 0.5

G(r ; r')

1

0
1

r
r' = 0.8

G(r ; r')

1

0
1

2.5

4.0

2.5

4.0

 
and our complete solution is just 

1

0
( ) ( ) ' ( ') ( ; ')c r f r dr s r G r r   . 

Boundary Conditions Specifying Only Derivatives (Neumann BC) 

Another common kind of BC specifies derivatives at points of the solution.  For example, we might 
have 

'(0) 0 '(1) 1c and c  . 

Then, analogous to the BC specifying two values for c( ), we choose a Green’s function which has zeros for 
its derivatives at 0 and 1: 

( 0 ; ') 0 ( 1; ') 0d dG r r and G r r
dr dr

    . 

Then the sum (or integral) of any number of such Green’s functions also satisfies the zero BC: 

1

0
( ) ' ( ') ( ; ') '(0) 0 '(1) 0f r dr s r G r r satisfies f and f   . 

We can now form the complete solution, by adding homogeneous solutions that satisfy the given BC: 

1 1 2 2 1 1 2 2

1 1 2 2

( ) ( ) '( ) '( ) '(0) '(0) 0

'(1) '(1) 1

c r f r A h r A h r where A h A h

and A h A h

    

 
 

Example:  We cannot use our previous example where L{ } = d2/dr2, because there is no solution to 

2

2 ( ; ') ( ') ( 0 ; ') ( 1 ; ') 0d d dG r r r r with G r r G r r
dr drdr

      . 

This is because the homogenous solutions are straight line segments; therefore, any solution with a zero 
derivative at any point must be a flat line.  So we choose another operator as our example: 

3D Boundary Conditions: Yet Another Method 

More TBS: why self-adjoint.  Ref Canadian web site. 

TBS: Using Green’s theorem.   

Green-Like Methods: The Born Approximation 

In the Born approximation, and similar problems, we have our unknown function, now called ψ(x), on 
both sides of the equation: 

(1)  ( ) ( )x x L . 

The theory of Green’s functions still works, so that 
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( ) ( ') ( ; ') 'x x G x x dx   , 

but this doesn’t solve the equation, because we still have ψ on both sides of the equation.  We could try 
rearranging Eq (1): 

 

     

( ) ( ) 0 which is the same as

( ) 0, with ( ) ( ) ( )

x x

x x x x

 

   

 

  

L

L' L' L
 

But recall that Green’s functions require a source function, s(x) on the right-hand side.  The method of 
Green’s functions can’t solve homogeneous equations, because it yields 

 ( ) ( ) 0 ( ) ( ') ( ; ') ' 0 ' 0x s x x s x G x x dx dx       L . 

which is a solution, but not very useful.  So Green’s functions don’t work when ψ(x) appears on both sides.  
However, under the right conditions, we can make a useful approximation.  If we have an approximate 
solution,  

 (0) (0)( ) ( )x x  , 

then we can expand 

(0) (1) (2)

(1) st (2) nd

( ) ( ) ( ) ( ) ...

is 1 order perturbation, is 2 order, ... .

x x x x

where

   

 

   
. 

Now we can use ψ(0)(x) as the source term, and use the method of Green’s functions, to get a better 
approximation to ψ(x): 

 

 

(1) (0)( ) ( ) ( ) ( ') ( ; ') '

( ; ') is the Green's function for , . . ( ; ') ( ') .

x x x x G x x dx

where G x x i e G x x x x

   



  

 



 
 

ψ(0)(x) + ψ(1)(x) is called the first Born approximation of ψ(x).  Of course, this process can be 
repeated to arbitrarily high accuracy: 

(2) (1) ( 1) ( )( ) ( ') ( ; ') ' . . . ( ) ( ') ( ; ') 'n nx x G x x dx x x G x x dx      . 

This process assumes that the Green’s function is “small” enough to produce a converging sequence.  
The first Born approximation is valid when ψ(1)(x) << ψ(0)(x) everywhere, and in many other, less stringent 
but harder to quantify, conditions.  The extension to higher order approximations is straightforward: the 
Born approximation is valid when ψ(n)(x) << ψ(0)(x). 

TBS: a real QM example. 
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5 Complex Analytic Functions 
For a review of complex numbers and arithmetic, see Funky Quantum Concepts. 

Notation:  In this chapter, z, w are always complex variables;  x, y, r, θ are always real variables.  
Other variables are defined as used. 

A complex function of a complex variable f(z) is analytic over some domain if it has an infinite 
number of continuous derivatives in that domain.  It turns out, if f(z) is once differentiable on a domain, 
then it is infinitely differentiable, and therefore analytic on that domain. 

A necessary condition for analyticity of f(z) = u(x, y) + iv(x, y) near z0 is that the Cauchy-Riemann 
equations hold, to wit: 

,f f u v u v u v u v v ui i i i i and
x y x x y y y y x y x y

            
                          

. 

A sufficient condition for analyticity of f(z) = u(x, y) + iv(x, y) near z0 is that the Cauchy-Riemann 
equations hold, and the first partial derivatives of f exist and are continuous in a neighborhood of z0.  Note 
that if the first derivative of a complex function is continuous, then all derivatives are continuous, and the 
function is analytic.  This condition implies 

2

1

2 2 0

0 " "

( ) is countour independent if ( ) is single-valued
z

z

u v

u v level lines are perpendicular

f z dz f z

   

   



 

Note that a function can be analytic in some regions, but not others.  Singular points, or singularities, 
are not in the domain of analyticity of the function, but border the domain [Det def 4.5.2 p156].  E.g., z is 
singular at 0, because it is not differentiable, but it is continuous at 0.  Poles are singularities near which the 
function is unbounded (infinite), but can be made finite by multiplication by (z – z0)k for some finite k [Det 
p165].  This implies f(z) can be written as: 

1 1 1
0 1 0 1 0 0 1 0( ) ( ) ( ) ... ( ) ( ) ...k k

k kf z a z z a z z a z z a a z z   
            . 

The value k is called the order of the pole.  All poles are singularities.  Some singularities are like 
“poles” of infinite order, because the function is unbounded near the singularity, but it is not a pole because 
it cannot be made finite by multiplication by any (z – z0)k , for example e1/z.  Such a singularity is called an 
essential singularity. 

A Laurent series expansion of a function is similar to a Taylor series expansion, but the sum runs from 
−∞ to +∞, instead of from 1 to ∞.  In both cases, an expansion is about some point, z0: 

 

 
 0

( )
0

0 0
1

0 1
0

( )
Taylor series: ( ) ( )

!

1 ( )Laurent series: ( ) ,
2

n
n

n n
n

n
n n karound z

n

f z
f z f z b z z where b

n

f zf z a z z where a dz
i z z










   

  




 
 

 [Det thm 4.6.1 p163]  Analytic functions have Taylor series expansions about every point in the 
domain.  Taylor series can be thought of as special cases of Laurent series.  But analytic functions also have 
Laurent expansions about isolated singular points, i.e. the expansion point is not even in the domain of 
analyticity!  The Laurent series is valid in some annulus around the singularity, but not across branch cuts.  
Note that in general, the ak and bk could be complex, but in practice, they are often real.   

Properties of analytic functions:  
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1. If it is differentiable once, it is infinitely differentiable. 

2. The Taylor and Laurent expansions are unique.  This means you may use any of several methods 
to find them for a given function. 

3. If you know a function and all its derivatives at any point, then you know the function everywhere 
in its domain of analyticity.  This follows from the fact that every analytic function has a Laurent 
power series expansion.  It implies that the value throughout a region is completely determined by 
its values at a boundary. 

4. An analytic function cannot have a local extremum of absolute value.  (Why not??) 

Residues 
Mostly, we use complex contour integrals to evaluate difficult real integrals, and to sum infinite series.  

To evaluate contour integrals, we need to evaluate residues.  Here, we introduce residues.  The residue of a 
complex function at a complex point z0 is the a–1 coefficient of the Laurent expansion about the point z0.  
Residues of singular points are the only ones that interest us.  (In fact, residues of branch points are not 
defined [Sea sec 13.1].) 

Common ways to evaluate residues 

1. The residue of a removable singularity is zero.  This is because the function is bounded near the 
singularity, and thus a–1 must be zero (or else the function would blow up at z0): 

1 0 1 1
0

1For 0, as , 0a z z a a
z z      


. 

2. The residue of a simple pole at z0 (i.e., a pole of order 1) is  
  

0
1 0lim ( )

z z
a z z f z


  . 

3. Extending the previous method: the residue of a pole at z0 of order k is 

 
   

0

1

1 01
1 lim ( )

1 !

k
k

kz z

da z z f z
k dz



 
 


 ,  

which follows by substitution of the Laurent series for f(z), and direct differentiation.  We show it 
here, noting that poles of order m imply that ak = 0 for k < –m, so we get:  

     

1 1 1
0 1 0 1 0 0 1 0

1 1 1
0 1 0 1 0 0 0 1 0

1
1 1

0 1 0 0 0 1 01

( ) ( ) ( ) ... ( ) ( ) ...

( ) ( ) ( ) ... ( ) ( ) ( ) ...

1 !!( ) 1 ! ( ) ( ) ( )
1! 2!

k k
k k

k k k k
k k

k
k k k k

k

f z a z z a z z a z z a a z z

z z f z a a z z a z z a z z a z z

kd kz z f z k a z z a z z a z z
dz

   
 

 
 


 



          

           


        

   

   

0

0

1

0 11

1

1 01

...

lim ( ) 1 !

1 lim ( )
1 !

k
k

kz z

k
k

kz z

d z z f z k a
dz

da z z f z
k dz







 

  

  


 

4. If f(z) can be written as ( )( )
( )

P zf z
Q z

 , where P is continuous at z0, and Q’(z0)  0 (and is 

continuous at z0), then f(z) has a simple pole at z0, and 
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 

     

0

0

0 00

0 0
0 0 0

0

0 0
0 0

0 0 0

( ) ( )
Res ( ) . Why? Near , ( ) '( ).

'( )( )

( ) ( )
Then: Res ( ) lim ( ) lim .

'( ) '( )

z z

z

z z z zz z

P z P z
f z z Q z z z Q z

d Q zQ z
dz

P z P z
f z z z f z z z

z z Q z Q z



 

   

    


 

5. Find the Laurent series, and hence its coefficient of (z – z0)–1.  This is sometimes easy if f(z) is 
given in terms of functions with well-known power series expansions.  See the sum of series 
example later. 

We will include real-life examples of most of these as we go. 

Contour Integrals 
Contour integration is an invaluable tool for evaluating both real and complex-valued integrals.  

Contour integrals are used all over advanced physics, and we could not do physics as we know it today 
without them.  Contour integrals are mostly useful for evaluating difficult ordinary (real-valued) integrals, 
and sums of series.  In many cases, a function is analytic except at a set of distinct points.  In this case, a 
contour integral may enclose, or pass near, some points of non-analyticity, i.e. singular points.  It is these 
singular points that allow us to evaluate the integral. 

You often let the radius of the contour integral go to ∞ for some part of the contour: 

real

imaginary
CR

R

 
Any arc where  

1
1lim ( ) ~ , 0

R
f z

z  
  . 

has an integral of 0 over the arc.   

Beware that this is often stated incorrectly as “any function which goes to zero faster than 1/|z| has 
a contour integral of 0.”  The problem is that it has to have an exponent < –1; it is not sufficient to 

be simply smaller than 1/|z|.  E.g.  1 1
1z z



, but the contour integral still diverges. 

Jordan’s lemma:  ??. 

Evaluating Integrals 
Surprisingly, we can use complex contour integrals to evaluate difficult real integrals.  The main point 

is to find a contour which (a) includes some known (possibly complex) multiple of the desired (real) 
integral, (b) includes other segments whose values are zero, and (c) includes a known set of poles whose 
residues can be found.  Then you simply plug into the residue theorem: 

( ) 2 Res ( ), are the finite set of isolated singularities
n

nC zn residues

f z dz i f z where z  . 
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We can see this by considering the contour integral around the unit circle for each term in the Laurent 
series expanded about 0.  First, consider the z0 term (the constant term).  We seek the value of 

O
dz .  dz is 

a small complex number, representable as a vector in the complex plane.  The diagram below (left) shows 
the geometric meaning of dz.  Below (right) shows the geometric approximation to the desired integral.   

real

Imaginary



d

unit 
circle

dz = ei(+π/4) d

dz1

dz2

dzi

dzN

 
(Left)  Geometric description of dz.    
(Right)  Approximation of 

O
dz  as a sum of 32 small complex terms (vectors). 

We see that all the tiny dz elements add up to zero: the vectors add head-to-tail, and circle back to the 
starting point.  The sum vector (displacement from start) is zero.  This is true for any large number of dz, so 
we have 

0
O

dz  . 

Next, consider the z1 term, 1
O

dz
z

 
 
  , and a change of integration variable to θ: 

2 2

0 0

1, : 2i i i i
O

Let z e dz ie d dz e ie d id i
z

             
    . 

The change of variable maps the complex contour and z into an ordinary integral of a real variable.  

Geometrically, as z goes positively (counter-clockwise) around the unit circle (below left), z–1 goes 
around the unit circle in the negative (clockwise) direction (below middle).  Its complex angle, arg(1/z) = –
θ, where z = eiθ.  As z goes around the unit circle, dz has infinitesimal magnitude  = dθ, and argument θ + 
/4.  Hence, the product of (1/z) dz always has argument of –θ + θ + /4 = /4; it is always purely 
imaginary.   

real

Imaginary

A

B

C

D

E

Path of z = eiθ

around unit 
circle

real

Imaginary

A

B

C

D

E

Path of z = 
e–iθ around 
unit circle

real

Imaginary

A
B

C
D

E

Path of dz = 
εieiθ around 
unit circle

 
Paths of z, 1/z, and dz in the complex plane 
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The magnitude of (1/z) dz = d; thus the integral around the circle is 2i.  Multiplying the integrand by 
some constant, a–1 (the residue), just multiplies the integral by that constant.  And any contour integral that 
encloses the pole 1/z and no other singularity has the same value.  Hence, for any contour around the origin 

 
1

11
1 1 12

2
O

O

a z dz
a z dz i a a

i







    



 . 

Now consider the other terms of the Laurent expansion of f(z).  We already showed that the a0 z0 term, 
which on integration gives the product a0 dz, rotates uniformly about all directions, in the positive (counter-
clockwise) sense, and sums to zero.  Hence the a0 term contributes nothing to the contour integral.   

The a1z1 dz product rotates uniformly twice around all directions in the positive sense, and of course, 
still sums to zero.  Higher powers of z simply rotate more times, but always an integer number of times 
around the circle, and hence always sum to zero. 

Similarly, a–2z–2, and all more negative powers, rotate uniformly about all directions, but in the 
negative (clockwise) sense.  Hence, all these terms contribute nothing to the contour integral. 

So in the end: 

The only term  of the Laurent expansion about 0 that contributes to the contour integral is the 
residue term, a–1 z–1. 

The simplest contour integral:  Evaluate 20

1
1

I dx
x




 . 

We know from elementary calculus (let x = tan u) that I = π/2.  We can find this easily from the residue 
theorem, using the following contour: 

real

imaginary

CI

CR

i

-i

R

CI

 
“C” denotes a contour, and “I” denotes the integral over that contour.  We let the radius of the arc go to 
infinity, and we see that the closed contour integral IC = I + I + IR.  But IR = 0, because f(R → ∞) < 1/R2.  
Then I = IC / 2.  f(z) has poles at ± i.  The contour encloses one pole at i.  Its residue is 

 2

1 1 1 1Res ( ) . 2 Res ( ) 2
2 2 21

2 2

C n
z i n

z i

C

f i I i f z i
d z i iz
dz

I
I

  







     


 


 

Note that when evaluating a real integral with complex functions and contour integrals, the i’s always 
cancel, and you get a real result, as you must.  It’s a good check to make sure this happens. 

Choosing the Right Path: Which Contour? 
The path of integration is fraught with perils.  How will I know which path to choose?  There is no 

universal answer.  Often, many paths lead to the same truth.  Still, many paths lead nowhere.  All we can do 
is use wisdom as our guide, and take one step in a new direction.  If we end up where we started, we are 
grateful for what we learned, and we start anew. 
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We here examine several useful and general, but oft neglected, methods of contour integration.  We 
use a some sample problems to illustrate these tools.  This section assumes a familiarity with contour 
integration, and its use in evaluating definite integrals, including the residue theorem. 

Example:  Evaluate  
2

2
sin xI dx

x




  . 

The integrand is everywhere nonnegative, and somewhere positive, and it is in the positive direction, 
so I must be positive.  We observe that the given integrand has no poles.  It has only a removable 
singularity at x = 0.  If we are to use contour integrals, we must somehow create a pole (or a few), to use the 
residue theorem.  Simple poles (i.e. 1st-order) are sometimes best, because then we can also use the 
indented contour theorem.   

real

Imaginary
IR = 0

Ir

real

Imaginary

IR = 0

Ir

 
Contours for the two exponential integrals: (left) positive (counter-clockwise) exp(2z); 
 (right) negative (clockwise) exp(–2z) 

To use a contour integral (which, a priori, may or may not be a good idea), we must do two things: (1) 
create a pole; and (2) close the contour.  The same method does both: expand the sin( ) in terms of 
exponentials: 

 
 

2
2 2 2

2 2 2 2 22
sin 1 2

42

iz iz i z i ze ex e eI dx dz dz dz dz
x z z zi z

     

    

  
      

  
     . 

All three integrals have poles at z = 0.  If we indent the contour underneath the origin, then since the 
function is bounded near there, the limit as r  0 leaves the original integral unchanged (above left).  The 
first integral must be closed in the upper half-plane, to keep the exponential small.  The second integral can 
be closed in either half-plane, since it ~ 1/z2.  The third integral must be closed in the lower half-plane, 
again to keep the exponential small (above right).  Note that all three contours must use an indentation that 
preserves the value of the original integral.  An easy way to insure this is to use the same indentation on all 
three. 

Now the third integral encloses no poles, so is zero.  The 2nd integral, by inspection of its Laurent 
series, has a residue of zero, so is also zero.  Only the first integral contributes.  By expanding the 
exponential in a Taylor series, and dividing by z2, we find its residue is 2i.  Using the residue theorem, we 
have: 

 
2

2
sin 1 2 2

4
xI dx i i

x
 




      . 

Example: Evaluate  20
cos( ) cos( )ax bxI dx

x
 

    [B&C p?? Q1]. 

This innocent looking problem has a number of funky aspects: 
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 The integrand is two terms.  Separately, each term diverges.  Together, they converge.   

 The integrand is even, so if we choose a contour that includes the whole real line, the contour 
integral includes twice the integral we seek (twice I). 

 The integrand has no poles.  How can we use any residue theorems if there are no poles?  
Amazingly, we can create a useful pole. 

 A typical contour includes an arc at infinity, but cos(z) is ill-behaved for z far off the real-axis.  
How can we tame it? 

 We will see that this integral leads to the indented contour theorem, which can only be applied to 
simple poles, i.e., first order poles (unlike the residue theorem, which applies to all poles). 

Each of these funky features is important, and each arises in practical real-world integrals.  Let us 
consider each funkiness in turn. 

1. The integrand is two terms.  Separately, each term diverges.  Together, they converge.   

Near zero, cos(x) ≈ 1.  Therefore, the zero endpoint of either term of the integral looks like 

2 20 0 0

cos 1 1~
anywhereanywhere anywhereax dx dx

xx x
     . 

Thus each term, separately, diverges.  However, the difference is finite.  We see this by power series 
expanding cos(x): 

 

   

2 4 2 2 2 2
4

2 2 2 2
2 2

2

2 2

20

cos( ) 1 ... cos( ) cos( )
2! 4! 2 2

cos( ) cos( )
2 2 2

cos( ) cos( ) ~ which is to say, is finite.
2

anywhere

x x a x b xx ax bx O x and

ax bx a b b aO x O x
x

ax bx b adx
x

         

 
      

 


 

2. The integrand is even, so if we choose a contour that includes the whole real line, the contour 
integral includes twice the integral we seek (twice I). 

Perhaps the most common integration contour (below left) covers the real line, and an infinitely distant 
arc from +∞ back to –∞.  When our real integral (I in this case) is only from 0 to ∞, the contour integral 
includes more than we want on the real axis.  If our integrand is even, the contour integral includes twice 
the integral we seek (twice I).  This may seem trivial, but the point to notice is that when integrating from  
–∞ to 0, dx is still positive (below middle). 

real

R

x

imaginary f(x) even

dx > 0
 

(Left) A common contour.    
(Right) An even function has integral over the real-line twice that of 0 to infinity. 

Note that if the integrand is odd (below left), choosing this contour cancels out the original (real) 
integral from our contour integral, and the contour is of no use.  Or if the integrand has no even/odd 
symmetry (below middle), then this contour tells us nothing about our desired integral.  In these cases, a 
different contour may work, for example, one which only includes the positive real axis (below right). 
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real

R

imaginary

x

f(x) asymmetric

x

f(x) odd

dx > 0

 
(Left) An odd function has zero integral over the real line.  (Middle) An asymmetric function has 
unknown integral over the real line.  (Right) A contour containing only the desired real integral. 

3. The integrand has no poles.  How can we use any residue theorems if there are no poles?  
Amazingly, we can create a useful pole. 

This is the funkiest aspect of this problem, but illustrates a standard tool.  We are given a real-valued 
integral with no poles.  Contour integration is usually useless without a pole, and a residue, to help us 
evaluate the contour integral.  Our integrand contains cos(x), and that is related to exp(ix).  We could try 
replacing cosines with exponentials, 

   exp exp
cos (does no good)

2
iz iz

z
 

 . 

but this only rearranges the algebra; fundamentally, it buys us nothing.  The trick here is to notice that we 
can often add a made-up imaginary term to our original integrand, perform a contour integration, and then 
simply take the real part of our result: 

   ( ) , ( ) ( ). Re ( )
b b

a a
Given I g x dx let f z g z ih z Then I f z dz     . 

For this trick to work, ih(z) must have no real-valued contribution over the contour we choose, so it 
doesn’t mess up the integral we seek.  Often, we satisfy this requirement by choosing ih(z) to be purely 
imaginary on the real axis, and having zero contribution elsewhere on the contour.  Given an integrand 
containing cos(x), as in our example, a natural choice for ih(z) is i sin(z), because then we can write the new 
integrand as a simple exponential: 

cos( ) ( ) cos( ) sin( ) exp( )x f z z i z iz    . 

In our example, the corresponding substitution yields 

2 20 0
cos cos exp( ) exp( )Reax bx iax ibxI dx I dx

x x
       

   . 

Examining this substitution more closely, we find a wonderful consequence: this substitution 
introduced a pole!  Recall that  

3

2
sin 1sin ... ...

3! 3!
z i z zz z i

zz
        
 

. 

We now have a simple pole at z = 0, with residue i.   

By choosing to add an imaginary term to the integrand, we now have a pole that we can work with 
to evaluate a contour integral! 

It’s like magic.  In our example integral, our residue is: 

 2
sin sin ... ,i az i bz a bi and residue i a b

zz
      

 
. 

Note that if our original integrand contained sin(x) instead of cos(x), we would have made a similar 
substitution, but taken the imaginary part of the result: 
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   sin( ) , cos( ) sin( ). Im ( )
b b

a a
Given I x dx let f z z i z Then I f z dz     . 

4. A typical contour includes an arc at infinity, but cos(z) is ill-behaved for z far off the real-
axis.  How can we tame it? 

This is related to the previous funkiness.  We’re used to thinking of cos(x) as a nice, bounded, well-
behaved function, but this is only true when x is real.   

When integrating cos(z) over a contour, we must remember that  
cos(z) blows up rapidly off the real axis. 

In fact, cos(z) ~ exp(Im{z}), so it blows up extremely quickly off the real axis.  If we’re going to 
evaluate a contour integral with cos(z) in it, we must cancel its divergence off the real axis.  There is only 
one function which can exactly cancel the divergence of cos(z), and that is ± i sin(z).  The plus sign cancels 
the divergence above the real axis; the minus sign cancels it below.  There is nothing that cancels it 
everywhere.  We show this cancellation simply: 

  cos sin exp( ) exp exp( ) exp( )

exp( ) exp( ) exp( ) exp( ) exp( )

Let z x iy
z i z iz i x iy ix y and

ix y ix y y

 

     

     

 

For z above the real axis, this shrinks rapidly.  Recall that in the previous step, we added i sin(x) to our 
integrand to give us a pole to work with.  We see now that we also need the same additional term to tame 
the divergence of cos(z) off the real axis.  For the contour we’ve chosen, no other term will work. 

5. We will see that this integral leads to the indented contour theorem, which can only be 
applied to simple poles, i.e., first order poles (unlike the residue theorem, which applies to all 
poles). 

We’re now at the final step.  We have a pole at z = 0, but it is right on our contour, not inside it.  If the 
pole were inside the contour, we would use the residue theorem to evaluate the contour integral, and from 
there, we’d find the integral on the real axis, cut it in half, and take the real part.  That is the integral we 
seek. 

But the pole is not inside the contour; it is on the contour.  The indented contour theorem allows us to 
work with poles on the contour.  We explain the theorem geometrically in the next section, but state it 
briefly here: 

Indented contour theorem:  For a simple pole, the integral of an arc of tiny radius around the pole, 
of angle θ, equals (iθ)(residue).  See diagram below. 

real
ρ

imaginary

real

ρ

imaginary

θ

As 0,

( ) ( )( )
arc

f z dz i residue







arc

 
(Left) A tiny arc around a simple pole.  (Right) A magnified view; we let ρ  0. 

Note that if we encircle the pole completely, θ = 2, and we have the special case of the residue theorem 
for a simple pole: 

 ( ) 2f z dz i residue . 

However, the residue theorem is true for all poles, not just simple ones (see The Residue Theorem earlier). 

Putting it all together:  We now solve the original integral using all of the above methods.  First, we 
add i sin(z) to the integrand, which is equivalent to replacing cos(z) with exp(iz): 
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 

2 20 0

20

cos cos exp( ) exp( )Re

exp( ) exp( ) , Re

ax bx iax ibxI dx I dx
x x

iax ibxDefine J dx so I J
x

 



      
 


 

 


 

We choose the contour shown below left, with R  ∞, and ρ  0. 

real

imaginary

R

real

imaginary

Rρ

C2
CR

Cρ

 
There are no poles enclosed, so the contour integral is zero.  The contour includes twice the desired 
integral, so define: 

2
exp( ) exp( )( ) . Then ( ) ( ) 2 ( ) 0

RC C
iaz ibzf z f z dz f z dz J f z dz

z 


       .  (5.1) 

For CR,  |f(z)| < 1/R2, so as R  ∞, the integral goes to 0.  For Cρ, the residue is i(a – b), and the arc is  
radians in the negative direction, so the indented contour theorem says: 

     
0

lim ( )
C

f z dz i i a b a b


 


     . 

Plugging into (5.1), we finally get 

     2 0 Re
2

J a b I J b a       . 

In this example, the contour integral J happened to be real, so taking I = Re{J} is trivial, but in general, 
there’s no reason why J must be real.  It could well be complex, and we would need to take the real part of 
it. 

To illustrate this and more, we evaluate the integral again, now with the alternate contour shown above 
right.  Again, there are no poles enclosed, so the contour integral is zero.  Again, the integral over CR = 0.  
We then have: 

( ) ( )
RC

f z dz f z dz 

     

2

0

( ) ( ) 0

lim ( ) / 2
2

C C

C

f z dz J f z dz

And f z dz i i a b a b








   

    

 


 

The integral over C2 is down the imaginary axis: 

       
2 2

0
2 2

0 ,
exp exp exp exp

( )
C C

Let z x iy iy iy then dz i dy
iaz ibz ay by

f z dz dz i dy
z y

     

   
 

  
 

We don’t know what this integral is, but we don’t care!  In fact, it is divergent, but we see that it is purely 
imaginary, so will contribute only to the imaginary part of J.  But we seek I = Re{J}, and therefore 

 
0

lim Re is well-defined.I J


  

Therefore we ignore the divergent imaginary contribution from C2.  We then have 
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       0 Re
2 2

i something J a b I J b a         . 

as before. 

Evaluating Infinite Sums 

Perhaps the simplest infinite sum in the world is 2
1

1

n

S
n





 .  The general method for using contour 

integrals is to find an countably infinite set of residues whose values are the terms of the sum, and whose 
contour integral can be evaluated by other means.  Then 

1

2 Res ( ) 2
2

C
C n

n

II i f z iS S
i

 






    . 

The hard part is finding the function f(z) that has the right residues.  Such a function must first have poles at 
all the integers, and then also have residues at those poles equal to the terms of the series. 

To find such a function, consider the complex function π cot(πz).  Clearly, this has poles at all real 
integer z, due to the sin(πz) function in the denominator of cot(z).  Hence, 

   
 

 
 

cos cos
For (integer), Res cot Res 1

sin cos
n n

n n
n n

z z
z n z

z z
 

  
  

 
         

, 

where in the last step we used 
0 0

( ) ( )if ( ) 0 then Re
( ) '( )z z

P z P zQ z s
Q z Q z

  , if this is defined. 

Thus  cot(z) can be used to generate lots of infinite sums, by simply multiplying it by a continuous 
function of z that equals the terms of the infinite series when z is integer.  For example, for the sum above, 

2
1

1

n

S
n





 , we simply define: 

 2 2
1 1( ) cot , and its residues are Res ( ) , 0nf z z f z n
z n
    . 

[In general, to find 
1

( )
n

s n



 , define  

 ( ) ( ) cot , and its residues are Res ( ) ( )
z n

f z s z z f z s n 


    . 

However, now you may have to deal with the residues for n  0.] 

Continuing our example, now we need the residue at n = 0.  Since cot(z) has a simple pole at zero, 
cot(z)/z2 has a 3rd order pole at zero.  We optimistically try tedious brute force for an mth order pole with m 
= 3, only to find that it fails: 

2 2
3

2 2 2 20 00

2
2 20 0 0

cot 1 cot 1Res lim lim cot
2! 2!

1 sin 2cos sin 2lim cot csc lim lim
2 2 2sin sin

z zz

z z z

z d z dz z z
z dz z dz

z zd d z z z dz z z
dz dz dzz z

   
 

        
 

 

  

   
    

   

               
   
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Use  2
U VdU UdVd
V V


 : 

 

 

2

2 400

30

1sin cos 2 sin 2 2 sin cos
cot 2Res lim

2 sin

1sin cos2 sin 2 2 cos
2lim

2 sin

zz

z

z z z z z z
z

z z

z z z z z

z

        
  



       








    
 

    
 

 

Use L’hopital’s rule: 

   

 

   

2 200

2

2 2

20

cot 1Res lim cos cos2 sin 2 sin 2 1
2 3 sin cos

1cos 2 2 cos sin 2 2 sin
2

1cos cos 2 1 sin 2 sin 2 1 2 sin 2 sin
2lim

2 3 sin cos

zz

z

z z z z z
z z z

z z z z z

z z z z z z z

z z

          
  

        

         


  






    



        

        
 

 

At this point, we give up on brute force, because we see from the denominator that we’ll have to use 
L’Hopital’s rule twice more to eliminate the zero there, and the derivatives will get untenably comp licated. 

But in 2 lines, we can find the a–1 term of the Laurent series from the series expansions of sin and cos.  
The z1 coefficient of cot(z) becomes the z-1 coefficient of f(z) = cot(z)/z2: 

     
2 2

2 2 2
3 2

2

20

cos 1 / 2 ... 1 1 / 2 1 1 1cot 1 / 2 1 / 6 1 / 3
sin 3/ 6 ... 1 / 6

1 cotcot Res
3 3z

z z z zz z z z
z z z z zz z z

z zz
z z

   
 

                            

    

 

Now we take a contour integral over a circle centered at the origin: (no good, because cot(πz) blows up 
every integer ! ??) 

real

imaginary
IC

 
As R → ∞, IC → 0.  Hence: 

2
0

0 02 2 2 2
1 1 1 1

1 1 1 10 2 2 0,
2 6C

n n n n

KI i K K
n n n n


   

   

  
          

 
    . 
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Multi-valued Functions 
Many functions are multi-valued (despite the apparent oxymoron), i.e. for a single point in the 

domain, the function can have multiple values.  An obvious example is a square-root function: given a 
complex number, there are two complex square roots of it.  Thus, the square root function is two-valued.  
Another example is arc-tangent: given any complex number, there are an infinite number of complex 
numbers whose tangent is the given complex number.   

[picture??] 

We refer now to “nice” functions, which are locally (i.e., within any small finite region) analytic, but 
multi-valued.  If you’re not careful, such “multi-valuedness” can violate the assumptions of analyticity, by 
introducing discontinuities in the function.  Without analyticity, all our developments break down: no 
contour integrals, no sums of series.  But, you can avoid such a breakdown, and preserve the tools we’ve 
developed, by treating multi-valued functions in a slightly special way to insure continuity, and therefore 
analyticity. 

A regular function, or region, is analytic and single valued.  (You can get a regular function from a 
multi-valued one by choosing a Riemann sheet.  More below.) 

A branch point is a point in the domain of a function f(z) with this property: when you traverse a 
closed path around the branch point, following continuous values of f(z), f(z) has a different value at the end 
point of the path than at the beginning point, even though the beginning and end point are the same point in 
the domain.  Example TBS: square root around the origin.  Sometimes branch points are also singularities. 

A branch cut is an arbitrary (possibly curved) path connecting branch points, or running from a 
branch point to infinity (“connecting” the branch point to infinity).  If you now evaluate integrals of 
contours that never cross the branch cuts, you insure that the function remains continuous (and thus 
analytic) over the domain of the integral.   

When the contour of integration is entirely in the domain of analyticity of the integrand, 
“ordinary” contour integration, and the residue theorem, are valid. 

This solves the problem of integrating across discontinuities.  Branch cuts are like fences in the domain 
of the function: your contour integral can’t cross them.  Note that you’re free to choose your branch cuts 
wherever you like, so long as the function remains continuous when you don’t cross the branch cuts.  
Connecting branch points is one way to insure this. 

A Riemann sheet is the complex plane plus a choice of branch cuts, and a choice of branch.  This 
defines a domain on which a function is regular. 

A Riemann surface is a continuous joining of Riemann sheets, gluing the edges together.  This “looks 
like” sheets layered on top of each other, and each sheet represents one of the multiple values a multi-
valued analytic function may have.  TBS: consider    z a z b  .   

real

imaginary

branch cut
real

imaginary

branch cuts
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6 Conceptual Linear Algebra 
Instead of lots of summation signs, we describe linear algebra concepts, visualizations, and ways to 

think about linear operations as algebraic operations.  This allows fast understanding of linear algebra 
methods that is extremely helpful in almost all areas of physics.  Tensors rely heavily on linear algebra 
methods, so this section is a good warm-up for tensors.  Matrices and linear algebra are also critical for 
quantum mechanics. 

Caution In this section, vector means a column or row of numbers.  In other sections, “vector” 
has a more general meaning. 

In this section, we use bold capitals for matrices (A), and bold lower-case for vectors (a). 

Matrix Multiplication 
It is often helpful to view a matrix as a horizontal concatenation of column-vectors.  You can think of 

it as a row-vector, where each element of the row-vector is itself a column vector.   

or
  
      
     

d
A a b c A e

f
. 

Equally valid, you can think of a matrix as a vertical concatenation of row-vectors, like a column-
vector where each element is itself a row-vector.   

Matrix multiplication is defined to be the operation of linear transformation, e.g., from one set of 
coordinates to another.  The following properties follow from the standard definition of matrix 
multiplication: 

Matrix times a vector:  A matrix B times a column vector v, is a weighted sum of the columns of B: 

11 11

21 21

13 13

23 23

3

12 12

22 22

32 323 1 3331 3

y y z

z

x

x

B v B
B v B
B B

B B
B v v B
B B

B B
B v B
B v B

    
 

 
 
 

         
          

 
 
 
  

Bv

 
We can visualize this by laying the vector on its side above the columns of the matrix, multiplying 

each matrix-column by the vector component, and summing the resulting vectors: 

13 13

23 2313

33 3323

3

12 12

22 2212

32 322

11 11

21 2111

31 3121

31

2

2 33

z

z

z

y

y y

x

x

x

v
B B
B v v BB
B BB

B

v
B B
B v BB
B v

v
B v B
B v BB
B BB BB

B B

 
                                           
 

 
 

 
 
 
 

 




  
Bv

 
The columns of B are the vectors which are weighted by each of the input vector components, v j.   

Another important way of conceptualizing a matrix times a vector: the resultant vector is a column of 
dot products.  The ith element of the result is the dot product of the given vector, v, with the ith row of B.  
Writing B as a column of row-vectors: 
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1 1 1

2 2 2

3 3 3

      
               
            

r r r v
B r Bv r v r v

r r r v





. 

This view derives from the one above, where we lay the vector on its side above the matrix, but now 
consider the effect on each row separately: it is exactly that of a dot product.   

In linear algebra, even if the matrices are complex, we do not conjugate the left vector in these dot 
products.  If they need conjugation, the application must conjugate them separately from the matrix 
multiplication, i.e. during the construction of the matrix. 

We use this dot product concept later when we consider a change of basis.   

Matrix times a matrix:  Multiplying a matrix B times another matrix C is defined as multiplying each 
column of C by the matrix B.  Therefore, by definition, matrix multiplication distributes to the right across 
the columns: 

,Let then
     
            
          

C x y z BC B x y z Bx By Bz . 

[Matrix multiplication also distributes to the left across the rows, but we don’t use that as much.] 

Determinants 
This section assumes you’ve seen matrices and determinants, but probably didn’t understand the 

reasons why they work. 

The determinant operation on a matrix produces a scalar.  It is the only operation (up to a constant 
factor) which is (1) linear in each row and each column of the matrix; and (2) antisymmetric under 

exchange of any two rows or any two columns. 

The above two rules, linearity and antisymmetry, allow determinants to help solve simultaneous linear 
equations, as we show later under “Cramer’s Rule.”  In more detail: 

1. The determinant is linear in each column-vector (and row-vector).  This means that multiplying 
any column (or row) by a scalar multiplies the determinant by that scalar.  E.g., 

det det ; det det detk k and   a b c a b c a d b c a b c d b c . 

2. The determinant is anti-symmetric with respect to any two column-vectors (or row-vectors).  This 
means swapping any two columns (or rows) of the matrix negates its determinant. 

The above properties of determinants imply some others: 

3. Expansion by minors/cofactors (see below), whose derivation proves the determinant operator is 
unique (up to a constant factor). 

4. The determinant of a matrix with any two columns equal (or proportional) is zero.  (From anti-
symmetry, swap the two equal columns, the determinant must negate, but its negative now equals 
itself.  Hence, the determinant must be zero.) 

det det det 0   b b c b b c b b c . 
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5. det det det A B AB .  This is crucially important.  It also fixes the overall constant factor of 
the determinant, so that the determinant (with this property) is a completely unique operator. 

6. Adding a multiple of any column (row) to any other column (row) does not change the 
determinant: 

det det det det detk k k    a b b c a b c b b c a b c b b c det a b c . 

7. det|A + B| ≠ det|A| + det|B|.  The determinant operator is not distributive over matrix addition. 

8. det|kA| = kn det|A|. 

The ij-th minor, Mij,  of an nn matrix (A ≡ Aab) is the product Aij times the determinant of the (n–
1)(n–1) matrix formed by crossing out the i-th row and j-th column: 

ith row

jth column

11 1
11 1, 1

1,1 1, 1
1

det

. . .
' . . '

. . . . .
. . . .

. . . .
. . . .

. . . . .
' . . '

. . .

n
n

ij ijij

n n n
nnn

A A
A A

M AA

A A
A A

 
                                      
  



  



 

A cofactor is just a minor with a plus or minus sign affixed: 

 ( 1) ( 1) det without row and columni j i j th th
ij ij ijC M A i j        A . 

Cramer’s Rule 
It’s amazing how many textbooks describe Cramer’s rule, and how few explain or derive it.  I spent 

years looking for this, and finally found it in [Arf ch 3].  Cramer’s rule is a turnkey method for solving 
simultaneous linear equations.  It is horribly inefficient, and virtually worthless above 3  3, however, it 
does have important theoretical implications.  Cramer’s rule solves for n equations in n unknowns: 

, is a coefficient matrix,
is a vector of unknowns,
is a vector of constants,

i

i

Given where
x

b

Ax b A
x
b

 

To solve for the ith unknown xi, we replace the ith column of A with the constant vector b, take the 
determinant, and divide by the determinant of A.  Mathematically: 

1 2

1 1 1

Let is the column of . We can solve for as

det ... ...

is the column of
det

th
n i i

i i n

th
i i

where i x

x where i

 

   



A a a a a A

a a b a a

a A
A


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This seems pretty bizarre, and one has to ask, why does this work?  It’s quite simple, if we recall  the 
properties of determinants.  Let’s solve for x1, noting that all other unknowns can be solved analogously.  
Start by simply multiplying x1 by det|A|: 

1 1 1 2det det ... nx xA a a a    from linearity of det[ ]

 1 1 2 2 2
adding a multiple of any column to 

det ...
another doesn't change the determinantnx x a a a a  

 1 1 2 2 2det ... ...n n nx x x  a a a a a  ditto (n – 2) more times 

 2 2det ... det ...n n Ax a a b a a  rewriting the first column 

2

1

det ...

det

n

x 

b a a

A
. 

Area and Volume as a Determinant 

(a,0)

(c,d)

c

d (a,b)

(c,d)

c

d

b
a

ac

b

d

 
Determining areas of regions defined by vectors is crucial to geometric physics in many areas.  It is the 

essence of the Jacobian matrix used in variable transformations of multiple integrals.  What is the area of 
the parallelogram defined by two vectors?  This is the archetypal area for generalized (oblique, non-
normal) coordinates.  We will proceed in a series of steps, gradually becoming more general. 

First, consider that the first vector is horizontal (above left).  The area is simply base  height:  A = ad.  
We can obviously write this as a determinant of the matrix of column vectors, though it is as-yet contrived: 
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det (0)
0
a c

A ad c ad
d

    . 

For a general parallelogram (above right), we can take the big rectangle and subtract the smaller 
rectangles and triangles, by brute force: 

1 1( )( ) 2 2 2
2 2

A a c b d bc cd ab ab            
   

ad cb cd   2bc cd  ab

det .
a c

ad bc
b d

  

 

This is simple enough in 2-D, but is incomprehensibly complicated in higher dimensions.  We can 
achieve the same result more generally, in a way that allows for extension to higher dimensions by 
induction.  Start again with the diagram above left, where the first vector is horizontal.  We can rotate that 
to arrive at any arbitrary pair of vectors, thus removing the horizontal restriction: 

 

the rotation matrix. Then the rotated vectors are
0

det det det
0 0

a c
Let and

d

a c a c
d d

   
    

   
      

       
      

R R R

R R R R det det
0 0
a c a c

d d


 

The final equality is because rotation matrices are orthogonal, with det = 1.  Thus the determinant of 
arbitrary vectors defining arbitrary parallelograms equals the determinant of the vectors spanning the 
parallelogram rotated to have one side horizontal, which equals the area of the parallelogram. 

What about the sign?  If we reverse the two vectors, the area comes out negative!  That’s ok, because 
in differential geometry, 2-D areas are signed: positive if we travel counter-clockwise from the first vector 
to the 2nd, and negative if we travel clockwise.  The above areas are positive. 

In 3-D, the signed volume of the parallelepiped defined by 3 vectors a, b, and c, is the determinant of 
the matrix formed by the vectors as columns (positive if abc form a right-handed set, negative if abc are a 
left-handed set).  We show this with rotation matrices, similar to the 2-D case: First, assume that the 
parallelogram defined by bc lies in the x-y plane (bz = cz = 0).  Then the volume is simply (area of the base) 
 height: 

     det det

0 0

x x x

z y y y

z

a b c
V area of base height a a b c

a

 
   

 

b c
. 

where the last equality is from expansion by cofactors along the bottom row.  But now, as before, we 
can rotate such a parallelepiped in 3 dimensions to get any arbitrary parallelepiped.  As before, the rotation 
matrix is orthogonal (det = 1), and does not change the determinant of the matrix of column vectors. 

This procedure generalizes to arbitrary dimensions: the signed hyper-volume of a parallelepiped 
defined by n vectors in n-D space is the determinant of the matrix of column vectors.  The sign is positive if 
the 3-D submanifold spanned by each contiguous subset of 3 vectors (v1v2v3, v2v3v4, v3v4v5, ...) is right-
handed, and negated for each subset of 3 vectors that is left-handed. 

The Jacobian Determinant and Change of Variables 
How do we change multiple variables in a multiple integral?  Given 
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 

( , , ) and the change of variables to , , :

( , , ), ( , , ), ( , , ). The simplistic

( , , ) ( , , ), ( , , ), ( , , ) ( !)

f a b c da db dc u v w

a a u v w b b u v w c c u v w

f a b c da db dc f a u v w b u v w c u v w du dv dw wrong

  





 

 

fails, because the “volume” du dv dw associated with each point of f(·) is different than the volume da 
db dc in the original integral.   

dadu

dv

dw
db

dc

dv
dw

da
db

dc

du
 

Example of new-coordinate volume element (du dv dw), and its corresponding old-coordinate 
volume element (da db dc).  The new volume element is a rectangular parallelepiped.  The old-
coordinate parallelepiped has sides straight to first order in the original integration variables. 

In the diagram above, we see that the “volume” (du dv dw) is smaller than the old-coordinate “volume” 
(da db dc).  Note that “volume” is a relative measure of volume in coordinate space; it has nothing to do 
with a “metric” on the space, and “distance” need not even be defined.   

There is a concept of relative “volume” in any space, even if there is no definition of “distance.”  
Relative volume is defined as products of coordinate differentials. 

The integrand is constant (to first order in the integration variables) over the whole volume element.   

Without some correction, the weighting of  f(·) throughout the new-coordinate domain is different than 
the original integral, and so the integrated sum (i.e., the integral) is different.  We correct this by putting in 
the original-coordinate differential volume (da db dc) as a function of the new differential coordinates, du, 
dv, dw.  Of course, this function varies throughout the domain, so we can write 

 

   

( , , ) ( , , ), ( , , ), ( , , ) ( , , )

( , , )

f a b c da db dc f a u v w b u v w c u v w V u v w du dv dw

where V u v w takes du dv dw da db dc





   

To find V(·), consider how the a-b-c space vector ˆdaa  is created from the new u-v-w space.  It has 
contributions from displacements in all 3 new dimensions, u, v, and w: 

ˆ ˆ. ,

ˆ ˆ

ˆ ˆ

a a ada du dv dw Similarly
u v w

b b bdb du dv dw
u v w

c c cdc du dv dw
u v w

         

         

         

a a

b b

c c

 

The volume defined by the 3 vectors ˆ ˆ ˆ, ,du dv and dwu v w  maps to the volume spanned by the 
corresponding 3 vectors in the original a-b-c space.  The a-b-c space volume is given by the determinant of 
the components of the vectors da, db, and dc (written as rows below, to match equations above): 



physics.ucsd.edu/~emichels  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

5/7/2015  11:21  Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 67 of 263  

 det det

a a a a a adu dv dw
u v w u v w
b b b b b bvolume du dv dw du dv dw
u v w u v w
c c c c c cdu dv dw
u v w u v w

     
     
     

 
     
     
     

. 

where the last equality follows from linearity of the determinant.  Note that all the partial derivatives 
are functions of u, v, and w.  Hence, 

( , , ) det ( , , ) the Jacobian ,

( , , ) ( , , ), ( , , ), ( , , ) ( , , )

a a a
u v w
b b bV u v w J u v w and
u v w
c c c
u v w

f a b c da db dc f a u v w b u v w c u v w J u v w du dv dw

  
  
  

      
  
  

    

 

QED. 

Expansion by Cofactors 
Let us construct the determinant operator from its two defining properties: linearity, and antisymmetry.  

First, we’ll define a linear operator, then we’ll make it antisymmetric.  [This section is optional, though 
instructive.] 

We first construct an operator which is linear in the first column.  For the determinant to be linear in 
the first column, it must be a sum of terms each containing exactly one factor from the first column: 

     
11

21
11 21 1

12 1

2

1

2 2

2

. det . . . . . . . . .n

n

n

n nnn

A
A

A A A

A

A A
A A

Let Then

A A

 
 
     
 
 
 

A A





  




. 

To be linear in the first column, the parentheses above must have no factors from the first column (else 
they would be quadratic in some components).  Now to also be linear in the 2nd column, all of the 
parentheses above must be linear in all the remaining columns.  Therefore, to fill in the parentheses we 
need a linear operator on columns 2...n.  But that is the same kind of operator we set out to make: a linear 
operator on columns 1..n.  Recursion is clearly called for, therefore the parentheses should be filled in with 
more determinants: 

     11 1 21 2 1det det det det (so far)n nA A A   A M M M . 

We now note that the determinant is linear both in the columns, and in the rows.  This means that det 
M1 must not have any factors from the first row or the first column of A.  Hence, M1 must be the submatrix 
of A with the first row and first column stricken out.   
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1st row

1st column

2nd row

1st column

11 1 11 12 1

21 22 2 21 2

31 32 3

1 21 2

. . . . .
. . . . .

. . . . , . . , .1 2
. . . . .. . . . .

. .. .

n n

n n

n

n n nnn n nn

A A A A A
A A A A A

A A A A etcij

A A AA A A

   
   
   
    
   
   
      

M M

 
Similarly, M2 must be the submatrix of A with the 2nd row and first column stricken out.  And so on, 

through Mn, which must be the submatrix of A with the nth row and first column stricken out.  We now 
have an operator that is linear in all the rows and columns of A. 

So far, this operator is not unique.  We could multiply each term in the operator by a constant, and still 
preserve linearity in all rows and columns: 

     1 11 1 2 21 2 1det det det detn n nk A k A k A   A M M M . 

We choose these constants to provide the 2nd property of determinants: antisymmetry.  The determinant 
is antisymmetric on interchange of any two rows.  We start by considering swapping the first two rows: 
Define A’ ≡ (A with A1* ↔ A2*).   

11 12 1

11 12

1

1

21 2

1 1 2

21 2

. .. .
. .

. . . . . . . . ,

. . . . . . . . . .
. .

' '

.

.
.

.

.

.

.

.

n

n

n

n

n nn n n nn

A A A
A A A

A A etcij ij

A A A

A

A

A
A

A

A
   
   
   
    
   
   
   
      

A M

swap swapped

 
Recall that M1 strikes out the first row, and M2 strikes out the 2nd row, so swapping row 1 with row 2 

replaces the first two terms of the determinant: 

       1 11 1 2 21 2 1 21 21 211det det det ... det det' ' det ..' .k A k A k A k A      A M A M MM  

But M’1 = M2, and M’2 = M1.  So we have: 

   1 21 2 2 11 1det det det' ...k A k A   A M M . 

This last form is the same as det A, but with k1 and k2 swapped.  To make our determinant antisymmetric, 
we must choose constants k1 and k2 such that terms 1 and 2 are antisymmetric on interchange of rows 1 and 
2.  This simply means that k1 = –k2.  So far, the determinant is unique only up to an arbitrary factor, so we 
choose the simplest such constants:  k1 = 1, k2 = –1. 

For M3 through Mn, swapping the first two rows of A swaps the first two rows of M’3 through M’n:   

31

41 42 4

21 22 2

1

11 12 1

2

3. . . . ,
. .
.

.

.

.

.

'
.

.
n

n n n

n

n

n

A A A

A etc
A A A

A A A

A A A

 
 
 
  
 
 
  

M

swapped

 
Since M3 through Mn appear inside determinant operators, and such operators are defined to be 

antisymmetric on interchange of rows, terms 3 through n also change sign on swapping the first two rows 
of A.  Thus, all the terms 1 through n change sign on swapping rows 1 and 2, and det A = –det A’. 



physics.ucsd.edu/~emichels  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

5/7/2015  11:21  Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 69 of 263  

We are almost done.  We have now a unique determinant operator, with k1 = 1, k2 = –1.  We must 
determine k3 through kn.  So consider swapping rows 1 and 3 of A, which must also negate our determinant:   

11 12 1

1

21 2 21 2

31 3

3 1 12

2 2

1

1 1 1

1 2

3

. . .
. . . . .

,
. . . . . . . . .

. .
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.

.

. . . .

.. " ". .
n n

n n

n

n
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n

n

n n nn

A A A
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A A A A A

etc

A A A A A

A A

A AA A

   
   
   
    
   
   
      

A M

swap swapped

 
Again, M”4 through M”n have rows 1 & 3 swapped, and thus terms 4 through n are negated by their 

determinant operators.  Also, M”2 (formed by striking out row 2 of A) has its rows 1 & 2 swapped, and is 
also thus negated.   

The terms remaining to be accounted for are    11 1 3 31 3det and detA k AM M .  The new M”1 is the 
same as the old M3, but with its first two rows swapped.  Similarly, the new M”3 is the same as the old M1, 
but with its first two rows swapped.  Hence, both terms 1 and 3 are negated by their determinant operators, 
so we must choose k3 = 1 to preserve that negation. 

Finally, proceeding in this way, we can consider swapping rows 1 & 4, etc.  We find that the odd 
numbered k’s are all 1, and the even numbered k’s are all –1.   

We could also have started from the beginning by linearizing with column 2, and then we find that the 
k are opposite to those for column 1: this time for odd numbered rows, kodd = –1, and for even numbered 
rows, keven = +1.  The k’s simply alternate sign.  This leads to the final form of cofactor expansion about any 
column c: 

     1 2
1 1 2 2det ( 1) det ( 1) det ( 1) detc c n c
c c nc nA A A        A M M M . 

Note that: 

We can perform a cofactor expansion down any column,  
or across any row, to compute the determinant of a matrix. 

We usually choose an expansion order which includes as many zeros as possible, to minimize the 
computations needed. 

Proof That the Determinant Is Unique 
If we compute the determinant of a matrix two ways, from two different cofactor expansions, do we 

get the same result?  Yes.  We here prove the determinant is unique by showing that in a cofactor 
expansion, every possible combination of elements from the rows and columns appears exactly once.  This 
is true no matter what row or column we expand on.  Thus all expansions include the same terms, but just 
written in a different order.   

Also, this complete expansion of all combinations of elements is a useful property of the cofactor 
expansion which has many applications beyond determinants.  For example, by performing a cofactor 
expansion without the alternating signs (in other word, an expansion in minors), we can fully symmetrize a 
set of functions (such as boson wave functions). 

The proof: let’s count the number of terms in a cofactor expansion of a determinant for an nn matrix.  
We do this by mathematical induction.  For the first level of expansion, we choose a row or column, and 
construct n terms, where each term includes a cofactor (a sub-determinant of an n–1  n–1 matrix).  Thus, 
the number of terms in an nn determinant is n times the number of terms in an n–1  n–1 determinant.  Or, 
turned around,  

  # ( 1 1) 1 #terms in n n n terms in n n      . 
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There is one term in a 11 determinant, 2 terms in a 22, 6 terms in a 33, and thus n! terms in an nn 
determinant.  Each term is unique within the expansion: by construction, no term appears twice as we work 
our way through the cofactor expansion. 

Let’s compare this to the number of terms possible which are linear in every row and column: we have 
n choices for the first factor, n–1 choices for the second factor, and so on down to 1 choice for the last 
factor.  That is, there are n! ways to construct terms linear in all the rows and columns.  That is exactly the 
number of terms in the cofactor expansion, which means every cofactor expansion is a sum of all possible 
terms which are linear in the rows and columns.  This proves that the determinant is unique up to a sign. 

To prove the sign of the cofactor expansion is also unique, we can consider one specific term in the 
sum.  Consider the term which is the product of the main diagonal elements.  This term is always positive, 
since TBS ?? 

Getting Determined 
You may have noticed that computing a determinant by cofactor expansion is computationally 

infeasible for n > ~15.  There are n! terms of n factors each, requiring O(n · n!) operations.  For n = 15, this 
is ~1013 operations, which would take about a day on a few GHz computer.  For n = 20, it would take years.   

Is there a better way?  Fortunately, yes.  It can be done in O(n3) operations, so one can easily compute 
the determinant for n = 1000 or more.  We do this by using the fact that adding a multiple of any row to 
another row does not change the determinant (which follows from anti-symmetry and linearity).  
Performing such row operations, we can convert the matrix to upper-right-triangular form, i.e., all the 
elements of A’ below the main diagonal are zero. 

11 12 1, 1 1
11 12 1

22 2, 1 2
21 22 2

1, 1 1,
1 2

' ' '
0 ' ' '

'
0 0 ' '
0 0 0 '

n n
n

n n
n

n n n n
n n nn

nn

A A A A
A A A

A A A
A A A

A A
A A A

A





  

 
   
   
     
   
   
    

A A







    
   






. 

By construction, det|A’| = det|A|.  Using the method of cofactors on A’, we expand down the first 
column of A’ and first column of every submatrix in the expansion.  E.g.,  

11

22

33

44

' x x x
0 ' x x

'
0 0 ' x
0 0 0 '

A
A

A
A

 
 
 
 
 
 

A

 
Only the first term in each expansion survives, because all the others are zero.  Hence, det|A’| is the 

product of its diagonal elements: 

1

det det ' ' ' are the diagonal elements of '
n

ii ii
i

A where A


 A A A . 

Let’s look at the row operations needed to achieve upper-right-triangular form.  We multiply the first 
row by (A21 / A11) and subtract it from the 2nd row.  This makes the first element of the 2nd row zero (below 
left): 
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11 12 13 1 11 12 13 1 11 12 13 1

22 23 24 22 23 24 22 23 24

31 32 33 34 32 33 34 33 34

41 42 43 44 42 43 44 43 44

0 0 0
0 0 0
0 0 0

n n nA A A A A A A A A A A A
B B B B B B B B B

A A A A B B B C C
A A A A B B B C C

     
     
       
     
     
     

A  

Perform this operation for rows 3 through n, and we have made the first column below row 1 all zero 
(above middle).  Similarly, we can zero the 2nd column below row 2 by multiplying the (new) 2nd row by 
(B32 / B22) and subtracting it from the 3rd row.  Perform this again on the 4th row, and we have the first two 
columns of the upper-right-triangular form (above right).  Iterating for the first (n – 1) columns, we 
complete the upper-right-triangular form.  The determinant is now the product of the diagonal elements. 

About how many operations did that take?  There are n(n – 1)/2 row-operations needed, or O(n2).  
Each row-operation takes from 1 to n multiplies (average n/2), and 1 to n additions (average n/2), summing 
to O(n) operations.  Total operations is then of order 

     2 3~O n O n O n . 

TBS: Proof that det|AB| = det|A| det|B| 

Advanced Matrices 
Getting to Home Basis 

We often wish to change the basis in which we express vectors and matrix operators, e.g. in quantum 
mechanics.  We use a transformation matrix to transform the components of the vectors from the old basis 
to the new basis.  Note that: 

We are not transforming the vectors; we are transforming the components of the vector  
from one basis to another.  The vector itself is unchanged. 

There are two ways to visualize the transformation.  In the first method, we write the decomposition of 
a vector into components in matrix form.  We use the visualization from above that a matrix times a vector 
is a weighted sum of the columns of the matrix: 

: :

: : :

:

y z
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x
x xz

y
y zy
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v vv
v

v
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  
       
     

ee ev e e e

 
This is a vector equation which is true in any basis.  In the x-y-z basis, it looks like this: 

1 0 0 1 0 0
0 1 0 0 , 1 , 0
0 0 1 0 0 1

x x

y y
x y z

z z

v v
v v where
v v

          
                        
                    

v e e e . 

If we wish to convert to the e1, e2, e3 basis, we simply write ex, ey, ez in the 1-2-3 basis: 

(in the 1-2-3 basis) : , ,

x x

y y
x y z

z z

a d g v v a d g
b e h v v where b e h
c f i v v c f i

          
                        
                    

v e e e . 

Thus: 
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The columns of the transformation matrix are the old basis vectors written in the new basis.   
This is true even for non-ortho-normal bases. 

Now let us look at the same transformation matrix, from the viewpoint of its rows.  For this, we must 
restrict ourselves to ortho-normal bases.  This is usually not much of a restriction.  Recall that the 
component of a vector v in the direction of a basis vector ei is given by: 

     i
i x x y y z zv         e v v e v e e v e e v e . 

But this is a vector equation, valid in any basis.  So i above could also be 1, 2, or 3 for the new basis: 

     1 2 3
1 2 3 1 1 2 2 3 3, ,v v v           e v e v e v v e v e e v e e v e . 

Recall from the section above on matrix multiplication that multiplying a matrix by a vector is 
equivalent to making a set of dot products, one from each row, with the vector: 

     

     

     

1 1
1 1 1 1 1 1
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3 3
3 3 3 3 3 3

x
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y
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z
x y z

v v v

v or v v

v v v

                                                                                                 
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. 

Thus: 

The rows of the transformation matrix are the new basis vectors written in the old basis.   
This is only true for ortho-normal bases. 

There is a beguiling symmetry, and nonsymmetry, in the above two boxed statements about the 
columns and rows of the transformation matrix. 

For complex vectors, we must use the dot product defined with the conjugate of the row basis vector, 
i.e. the rows of the transformation matrix are the hermitian adjoints of the new basis vectors written in the 
old basis: 

† 1
1 1

† 2
2 2

† 3
3 3
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v

v

                                           
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. 

Diagonalizing a Self-Adjoint Matrix 
A special case of basis changing comes up often in quantum mechanics: we wish to change to the basis 

of eigenvectors of a given operator.  In this basis, the basis vectors (which are also eigenvectors) always 
have the form of a single ‘1’ component, and the rest 0.  E.g.,  

1 2 3

1 0 0
0 1 0
0 0 1

     
            
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e e e . 

The matrix operator A, in this basis (its own eigenbasis), is diagonal, because: 

1 1 1 1

2 2 2 2

33 3 3
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 



   
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Ae e A
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. 
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Finding the unitary (i.e., unit magnitude) transformation from a given basis to the eigenbasis of an 
operator is called diagonalizing the matrix.  We saw above that the transformation matrix from one basis 
to another is just the hermitian adjoint of the new basis vectors written in the old basis.  We call this matrix 
U: 

† 1 †
1 1 1

† 2 †
2 2 2

† 3 †
3 3 3

v

v

v
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. 

U transforms vectors, but how do we transform the operator matrix A itself?  The simplest way to see 
this is to note that we can perform the operation A in any basis by transforming the vector back to the 
original basis, using A in the original basis, and then transforming the result to the new basis: 

       

1

1 1 1

new old old new

new new old old old new old new new old



  

  

    

v Uv v U v

A v U A v U A U v UA U v A UA U
 

where we used the fact that matrix multiplication is associative.  Thus:  

The unitary transformation that diagonalizes a (complex) self-adjoint matrix is the matrix of 
normalized eigen-row-vectors.   

We can see this another way by starting with: 

1
1 2 3 1 2 3 1 1 2 2 3 3

are the otho-normal eigenvectors

are the eigenvalues

i

i

where

  




     
            
          

AU A e e e Ae Ae Ae e e e

e
 

Recall the eigenvectors (of self-adjoint matrices) are orthogonal, so we can now pre-multiply by the 
hermitian conjugate of the eigenvector matrix: 

   

† †
1 1

1 † †
2 1 2 3 2 1 1 2 2 3 3
† †

3 3

1 1 1 2 1 2

  

 



                                  

 



e e

UAU e A e e e e e e e

e e

e e e e 

 1 2 1 e e  2 2 2 e e 

   

1

2

33 3 3

0 0
0 0
0 0






 
  
      
      

e e

 

where the final equality is because each element of the result is the inner product of two eigenvectors, 
weighted by an eigenvalue.  The only non-zero inner products are between the same eigenvectors 
(orthogonality), so only diagonal elements are non-zero.  Since the eigenvectors are normalized, their inner 
product is 1, leaving only the weight (i.e., the eigenvalue) as the result. 

Warning Some reference write the diagonalization as U–1AU, instead of the correct UAU–1.  This 
is confusing, and inconsistent with vector transformation.  Many of these very references 
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then change their notation when they have to transform a vector, because nearly all 
references agree that vectors transform with U, and not U–1. 

Contraction of Matrices 
You don’t see a dot product of matrices defined very often, but the concept comes up in physics, even 

if they don’t call it a “dot product.”  We see such products in QM density matrices, and in tensor operations 
on vectors.  We use it below in the “Trace” section for traces of products. 

For two matrices of the same size, we define the contraction of two matrices as the sum of the 
products of the corresponding elements (much like the dot product of two vectors).  The contraction is a 
scalar.  Picture the contraction as overlaying one matrix on top of the other, multiplying the stacked 
numbers (elements), and adding all the products: 

×××

Aij

Bij
×× ×× × × }sum ≡ A:B

 
We use a colon to convey that the summation is over 2 dimensions (rows and columns) of A and B 

(whereas the single-dot dot product of vectors sums over the 1 dimensional list of vector components): 

, 1

11 11 12 12 13 13

21 21 22 22 23 23 11 11 12 12 13 13 21 21 22 22 23 23 31 31 32 32 33 33

31 31 32 32 33 33

For example, for 3×3 matrices:
n

ij ij
i j

a b

a b a b a b
a b a b a b a b a b a b a b a b a b a b a b a b
a b a b a b





 
            
  

A : B

A : B
 

which is a single number. 

If the matrices are complex, we do not conjugate the left matrix (such conjugation is often done in 
defining the dot product of complex vectors). 

Trace of a Product of Matrices 
The trace of a matrix is defined as the sum of the diagonal elements: 

   
12 13

21 23

31

11 22 33
1

32

11

22

33

Tr . . : , Tr
n

jj
j

a a
a a
a a

a E g
a

a a a
a

a


 
      
 
 

A A A . 

The trace of a product of matrices comes up often, e.g. in quantum field theory.  We first show that Tr(AB) 
= Tr(BA): 
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 
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 
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     
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B B B

 

and so on. 

The diagonal elements of the product C are the sums of the overlays of the rows of A on the columns 
of B.  But this is the same as the overlays of the rows of A on the rows of BT.  Then we sum the overlays, 
i.e., we overlay A onto BT, and sum all the products of all the overlaid elements: 

Tr( ) TAB A : B . 

Now consider Tr(BA) = B : AT.  But visually, B : AT overlays the same pairs of elements as A : BT, but 
in the transposed order.  When we sum over all the products of the pairs, we get the same sum either way: 

   Tr Tr T Tbecause AB BA A : B B : A . 

This leads to the important cyclic property for the trace of the product of several matrices: 

         Tr ... Tr ... Tr ... Tr ...because AB C CAB AB C C AB . 

and matrix multiplication is associative.  By simple induction, any cyclic rotation of the matrices 
leaves the trace unchanged. 

Linear Algebra Briefs 
The determinant equals the product of the eigenvalues: 

1
det are the eigenvalues of

n

i i
i

where 


A A . 

This is because the eigenvalues are unchanged through a similarity transformation.  If we diagonalize 
the matrix, the main diagonal consists of the eigenvalues, and the determinant of a diagonal matrix is the 
product of the diagonal elements (by cofactor expansion). 
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7 Probability, Statistics, and Data Analysis 
I think probability and statistics are among the most conceptually difficult topics in mathematical 

physics.  We start with a brief overview of the basics, but overall, we assume you are familiar with simple 
probabilities, and gaussian distributions. 

Probability and Random Variables 
We assume you have a basic idea of probability, and since we seek here understanding over 

mathematical purity, we give here intuitive definitions.  A random variable, say X, is a quantity that you 
can observe (or measure), multiple times (at least in principle), and is not completely predictable.  Each 
observation (instance)of a random variable may give a different value.  Random variables may be discrete 
(the roll of a die), or continuous (the angle of a game spinner after you spin it).  A uniform random 
variable has all its values equally likely.  Thus the roll of a (fair) die is a uniform discrete random variable.  
The angle of a game spinner is a uniform continuous random variable.  But in general, the values of a 
random variable are not necessarily equally likely.  For example, a gaussian (aka “normal”) random 
variable is more likely to be near the mean.   

Given a large sample of observations of any physical quantity X, there will be some structure to the 
values X assumes.   For discrete random variables, each possible value will appear (close to) some fixed 
fraction of the time in any large sample.  The fraction of a large sample that a given value appears is that 
value’s probability.  For a 6-sided die, the probability of rolling 1 is 1/6, i.e. Pr(1) = 1/6.  Because 
probability is a fraction of a total, it is always between 0 and 1 inclusive: 

0 Pr( ) 1anything  . 

[Note that one can imagine systems of chance specifically constructed to not provide consistency between 
samples, at least not on realistic time scales.  By definition, then, observations of such a system do not constitute a 
random variable in the sense of our definition.] 

Strictly speaking, a statistic is a number that summarizes in some way a set of random values.  Many 
people use the word informally, though, to mean the raw data from which we compute true statistics. 

Conditional Probability 

Probability, in general, is a combination of physics and knowledge: the  
physics of the system in question, and what you know about its state.   

Conditional probability specifically addresses probability when the state of the system is partly 
known.  A priori probability generally implies less knowledge of state (“a priori” means “in the 
beginning” or “beforehand”).  But there is no true, fundamental distinction, because all probabilities are in 
some way dependent on both physics and knowledge. 

Suppose you have one bag with 2 white and 2 black balls.  You draw 2 balls without replacement.  
What is the chance the 2nd ball will be white?  A priori, it’s obviously ½.  However, suppose the first ball is 
known white.  Now Pr(2nd ball is white) = 1/3.  So we say the conditional probability that the 2nd ball will 
be white, given that the first ball is white, is 1/3.  In symbols: 

Pr(2 | ) 1/ 3nd ball white first ball white  . 

Another example of how conditional probability of an event can be different than the a priori 
probability of that event: I have a bag of white and a bag of black balls.  I give you a bag at random.  What 
is the chance the 2nd ball will be white?  A priori, it’s ½.  After seeing the 1st ball is white, now Pr(2nd ball is 
white) = 1.  In this case,  

Pr(2 | ) 1nd ball white first ball white  . 
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Precise Statement of the Question Is Critical 
Many arguments arise about probability because the questions are imprecise, each combatant has a 

different interpretation of the question, but neither realizes the other is arguing a different issue.  Consider 
this: 

You deal 4 cards from a shuffled standard deck of 52 cards.  I tell you 3 of them are aces.  What is the 
probability that the 4th card is also an ace? 

The question is ambiguous, and could reasonably be interpreted two ways, but the two interpretations 
have quite different answers.  It is very important to know exactly how I have discovered 3 of them are 
aces. 

Case 1:  I look at the 4 cards and say “At least 3 of these cards are aces.”  There are 193 ways that 4 
cards can hold at least 3 aces, and only 1 of those ways has 4 aces.  Therefore, the chance of the 4th card 
being an ace is 1/193. 

Case 2:  I look at only 3 of the 4 cards and say, “These 3 cards are aces.”  There are 49 unseen cards, 
all equally likely to be the 4th card.  Only one of them is an ace.  Therefore, the chance of the 4th card being 
an ace is 1/49. 

It may help to show that we can calculate the 1/49 chance from the 193 hands that have at least 3 aces:  
Of the 192 that have exactly 3 aces, we expect that 1/4 of them = 48 will show aces as their first 3 cards 
(because the non-ace has probability 1/4 of being last) .  Additionally, the one hand of 4 aces will always 
show aces as its first 3 cards.  Hence, of the 193 hands with at least 3 aces, 49 show aces as their first 3 
cards, of which exactly 1 will be the 4-ace hand.  Hence, its conditional probability, given that the first 3 
cards are aces, is 1/49. 

Let’s Make a Deal 

This is an example of a problem that confuses many people (including me), and how to properly 
analyze it.  We hope this example illustrates some general methods of analysis that you can use to navigate 
more general confusing questions.  In particular, the methods used here apply to renormalizing entangled 
quantum states when a measurement of one value is made. 

Your in the Big Deal on the game show Let’s Make a Deal.  There are 3 doors.  Hidden behind two of 
them are goats; behind the other is the Big Prize.  You choose door #1.  Monty Hall, the MC, knows what’s 
behind each door.  He opens door #2, and shows you a goat.  Now he asks, do you want to stick with your 
door choice, or switch to door #3?  Should you switch? 

Without loss of generality (WLOG), we assume you choose door #1 (and of course, it doesn’t matter 
which door you choose).  We make a chart of mutually exclusive events, and their probabilities: 

Bgg shows door #2  1/6 
shows door #3  1/6 

gBg shows door #3  1/3 

ggB shows door #2  1/3 

After you choose, Monty shows you that door #2 is a goat.  So from the population of possibilities, we 
strike out those that are no longer possible (i.e., where he shows door #3, and those where the big prize is 
#2), and renormalize the remaining probabilities: 

Bgg shows door #2  1/6 1/3 
shows door #3  1/6 

gBg shows door #3  1/3 

ggB shows door #2  1/3 2/3 

Another way to think of this:  Monty showing you door #2 is equivalent to saying, “The big prize is 
either the door you picked, or it’s door #3.”  Since your chance of having picked right (1/3) is unaffected by 
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Monty telling you this, Pr(big prize is #3) = 2/3.  Monty uses his knowledge to always pick a door with a 
goat.  That gives you information, which improves your ability to guess right on your second guess. 

You can also see it this way:  There’s a 1/3 chance you picked right the first time.  Then you’ll switch, 
and lose.  But there’s a 2/3 chance you picked wrong the first time.  Then you’ll switch, and win.  So you 
win twice as often as you lose, much better odds than 1/3 of winning. 

Let’s take a more extreme example: suppose there are 100 doors, and you pick #1.  Now Monty tells 
you, “The big prize is either the door you picked, or it’s door #57.”  Should you switch?  Of course.  The 
chance you guessed right is tiny, but Monty knows for sure.   

How to Lie With Statistics 
In 2007, on the front page of newspapers, was a story about a big study of sexual behavior in America.  

The headline point was that on average, heterosexual men have 7 partners in their lives, and women have 
only 4. 

Innumeracy, a book about math and statistics, uses this exact claim from a previous study of sexual 
behavior, and noted that one can easily prove that the average number of heterosexual partners of men and 
women must be exactly the same (if there are equal numbers of men and women in the population.  The US 
has equal numbers of men and women to better than 1%). 

The only explanation for the survey results is that many people are lying.  Typically, men lie on the 
high side, women lie on the low side.  The article goes on to quote all kinds of statistics and “facts,” 
oblivious to the fact that these claims are based on lies.  So how much can you believe anything the 
subjects said? 

Even more amazing to me is that the “scientists” doing the study seem equally oblivious to the 
mathematical impossibility of their results.  Perhaps some graduate student got a PhD out of this study, too. 

The proof: every heterosexual encounter involves a man and a woman.  If the partners are new to each 
other, then it counts as a new partner for both the man and the woman.  The average number of partners for 
men is the total number of new partners for all men divided by the number of men in the US.  But this is 
equal to the total number of new partners for all women divided by the number of women in the US.  QED. 

[An insightful friend noted, “Maybe to some women, some guys aren’t worth counting.”] 

Choosing Wisely: An Informative Puzzle 

Here’s a puzzle which illuminates the physical meaning of the 
n
k
 
 
 

 binomial forms.  Try it yourself 

before reading the answer.  Really.  First, recall that: 

 
!choose

! !
n nn k
k k n k
 

    
. 

is the number of combinations of k items taken from n distinct items; more precisely, 
n
k
 
 
 

 is the number of 

ways of choosing k items from n distinct items, without replacement, where the order of choosing doesn’t 
matter. 

The puzzle: Show in words, without algebra, that 
1

1
n n n

k k k
     

           
.   

Some purists may complain that the demonstration below lacks rigor (not true), or that the algebraic 
demonstration is “shorter.”  However, though the algebraic proof is straightforward, it is dull and 
uninformative.  Some may like the demonstration here because it uses the physical meaning of the 
mathematics to reach an iron-clad conclusion. 
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The solution: The LHS is the number of ways of choosing k items from n + 1 items.  Now there are 
two distinct subsets of those ways: those ways that include the (n + 1)th item, and those that don’t.  In the 
first subset, after choosing the (n + 1)th item, we must choose k – 1 more items from the remaining n, and 

there are 
1

n
k
 
  

 ways to do this.  In the second subset, we must choose all k items from the first n, and 

there are 
n
k
 
 
 

 ways to do this.  Since this covers all the possible ways to choose k items from n + 1 items, it 

must be that 
1

1
n n n

k k k
     

           
.  QED. 

Multiple Events 
First we summarize the rules for computing the probability of combinations of independent events 

from their individual probabilities, then we justify them: 

Pr(A and B) = Pr(A)·Pr(B), A and B independent 

Pr(A or B) = Pr(A) + Pr(B), A and B mutually exclusive  

Pr(not A) = 1 – Pr(A) 

Pr(A or B) = Pr(A) + Pr(B) – Pr(A)Pr(B), always . 

For independent events A and B, Pr(A and B) = Pr(A)·Pr(B).  This follows from the definition of 
probability as a fraction.  If A and B are independent (have nothing to do with each other), then Pr(A) is 
the fraction of trials with event A.  Then of the fraction of those with event A, the fraction that also has B is 
Pr(B).  Therefore, the fraction of the total trials with both A and B is: 

Pr(A and B) = Pr(A)·Pr(B). 

For mutually exclusive events, Pr(A or B) = Pr(A) + Pr(B).  This also follows from the definition of 
probability as a fraction.  The fraction of trials with event A ≡ Pr(A); fraction with event B ≡ Pr(B).  If no 
trial can contain both A and B, then the fraction with either is simply the sum (figure below). 

 
fraction with A fraction with B  

←   -   -   -   -  fraction with A or B   -    -   -    

 Total trials  

Pr(not A) = 1 – Pr(A).  Since Pr(A) is the fraction of trials with event A, and all trials must either have 
event A or not: 

Pr(A) + Pr(not A) = 1. 

Notice that A and (not A) are mutually exclusive events (a trial can’t both have A and not have A), so their 
probabilities add. 

By Pr(A or B) we mean Pr(A or B or both).  For independent events, you might think that Pr(A or B) = 
Pr(A) + Pr(B), but this is not so.  A simple example shows that it can’t be: suppose Pr(A) = Pr(B) = 0.7.  
Then Pr(A) + Pr(B) = 1.4, which can’t be the probability of anything.  The reason for the failure of simple 
addition of probabilities is that doing so counts the probability of (A and B) twice (figure below):   

 
fraction with A only fraction with A and B fraction with B only  

←   -    -    -    - fraction with A or B    - -    -    -   -      

 Total trials   
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Note that Pr(A or B) is equivalent to Pr(A and maybe B) or Pr(B and maybe A).  But Pr(A and maybe B) 
includes the probability of both A and B, as does Pr(B and maybe A), hence it is counted twice.  So 
subtracting the probability of (A and B) makes it counted only once: 

Pr(A or B) = Pr(A) + Pr(B) – Pr(A)Pr(B), A and B independent. 

A more complete statement, which breaks down (A or B) into mutually exclusive events is: 

Pr(A or B) = Pr(A and not B) + Pr(not A and B) + Pr(A and B) 

Since the right hand side is now mutually exclusive events, their probabilities add: 

Pr(A or B) = Pr(A)[1 – Pr(B)] + Pr(B)[1 – Pr(A)] + Pr(A)Pr(B) 

 = Pr(A) + Pr(B) – 2Pr(A)Pr(B) + Pr(A)Pr(B) 

 = Pr(A) + Pr(B) – Pr(A)Pr(B) . 

TBS: Example of rolling 2 dice. 

Combining Probabilities 
Here is a more in-depth view of multiple events, with several examples.  This section should be called 

“Probability Calculus,” but most people associate “calculus” with something hard, and I didn’t want to 
scare them off.  In fact, calculus simply means “a method of calculation.” 

Probabilities describe binary events: an event either happens, or it doesn’t.   
Therefore, we can use some of the methods of Boolean algebra in probability. 

Boolean algebra is the mathematics of expressions and variables that can have one of only two values: 
usually taken to be “true” and “false.”  We will use only a few simple, intuitive aspects of Boolean algebra 
here.   

An event is something that can either happen, or not (it’s binary!).  We define the probability of an 
event as the fraction of time, out of many (possibly hypothetical) trials, that the given event happens.  For 
example, the probability of getting a “heads” from a toss of a fair coin is 0.5, which we might write as 
Pr(heads) = 0.5 = 1/2.  Probability is a fraction of a whole, and so lies in [0, 1]. 

We now consider two random events.  Two events have one of 3 relationships: independent, mutually 
exclusive, or conditional (aka conditionally dependent).  We will soon see that the first two are special 
cases of the “conditional” relationship.  We now consider each relationship, in turn. 

Independent:  For now, we define independent events as events that have nothing to do with each 
other, and no effect on each other.  For example, consider two events: tossing a heads, and rolling a 1 on a 
6-sided die.  Then Pr(heads) = 1/2, and Pr(rolling 1) = 1/6.  The events are independent, since the coin 
cannot influence the die, and the die cannot influence the coin.  We define one “trial” as two actions: a toss 
and a roll.  Since probabilities are fractions, of all trials, ½ will have “heads”, and 1/6 of those will roll a 1.  
Therefore, 1/12 of all trials will contain both a “heads” and a 1.  We see that probabilities of independent 
events multiply.  We write: 

Pr(A and B) = Pr(A)Pr(B) . (independent events). 

In fact, this is the precise definition of independence: if the probability of two events both occurring is the 
product of the individual probabilities, then the events are independent.   

[Aside: This definition extends to PDFs: if the joint PDF of two random variables is the product of their 
individual PDFs, then the random variables are independent.] 

Geometric diagrams are very helpful in understanding the probability calculus.  We can picture the 
probabilities of A, B, and (A and B) as areas.  The sample space or population is the set of all possible 
outcomes of trials.  We draw that as a rectangle.  Each point in the rectangle represents one possible 
outcome.  Therefore, the probability of an outcome being within a region of the population is proportional 
to the area of the region. 

Figure 7.1 (a):  An event A either happens, or it doesn’t.  Therefore:  
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Pr(A) + Pr(~A) = 1 (always) . 

A

B

A
A 

and B
0 1

1

Pr(B)

Pr(A)0 1Pr(A)

B

A
A 

and B

sample space,
aka population

B

A

(b) independent (c) conditional (d) mutually exclusive(a)

not A

 
Figure 7.1 The (continuous) sample space is the square.  Areas are proportional to probabilities.  
(a) An event either happens, or it doesn’t.  (b)   Events A and B are independent.  (c) A and B are 
dependent.  (d) A and B are mutually exclusive. 

Figure 7.1 (b):  Pr(A) is the same whether B occurs or not, shown by the fraction of B covered by A is 
the same as the fraction of the sample space covered by A.  Therefore, by definition, A and B are 
independent. 

Figure 7.1 (c):  The probability of (A or B (or both)) is the red, blue, and magenta areas.  
Geometrically then, we see: 

Pr(A or B) = Pr(A) + Pr(B) – Pr(A and B) (always). 

This is always true, regardless of any dependence between A and B. 

Conditionally dependent:  From the diagram, when A and B are conditionally dependent, we see 
that the Pr(B) depends on whether A happens or not.  Pr(B given that A occurred) is written as Pr(B | A), 
and read as “probability of B given A.”  From the ratio of the magenta area to the red, we see 

Pr(B | A) = Pr(B and A)/Pr(A) . (always). 

Mutually exclusive:  Two events are mutually exclusive when they cannot both happen (diagram 
above, (d)).  Thus, 

Pr(A and B) = 0,  and Pr(A or B) = Pr(A) + Pr(B)  (mutually exclusive) . 

Note that Pr(A or B) follows the rule from above, which always applies. 

We see that independent events are an extreme case of conditional events: independent events satisfy: 

Pr(B | A) = Pr(B)  (independent) 

since the occurrence of A has no effect on B.  Also, mutually exclusive events satisfy: 

Pr(B | A) = 0  (mutually exclusive) 

 

Summary of Probability Calculus 

Always  

Pr(~A) = 1 – Pr(A) Pr(entire sample space) = 1 (diagram 
above, (a)) 

Pr(A or B) = Pr(A) + Pr(B) – Pr(A and B) Subtract off any double-count of “A and 
B” (diagram above, (c)) 

A & B independent All from diagram above, (b) 

Pr(A and B) = Pr(A)Pr(B) Precise def’n of “independent” 

Pr(A or B) = Pr(A) + Pr(B) – Pr(A)Pr(B) Using the “and” and “or” rules above 
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Pr(B | A) = Pr(B) special case of conditional probability 

A & B mutually exclusive All from diagram above, (d) 

Pr(A and B) = 0 Def’n of “mutually exclusive” 

Pr(A or B) = Pr(A) + Pr(B) Nothing to double-count; special case of 
Pr(A or B) from above 

Pr(B | A) = Pr(A | B) = 0 Can’t both happen 

Conditional probabilities All from diagram above, (c) 

Pr(B | A) = Pr(B and A) / Pr(A) fraction of A that is also B. 

Pr(B and A) = Pr(B | A)Pr(A) = Pr(A | B)Pr(B) Bayes’ Rule: Shows relationship between 
Pr(B | A) and Pr(A | B) 

Pr(A or B) = Pr(A) + Pr(B) – Pr(A and B) Same as “Always” rule above 

Note that the “and” rules are often simpler than the “or” rules.  

To B, or To Not B? 
Sometimes its easier to compute Pr(~A) than Pr(A).  Then we can find Pr(A) from Pr(A) = 1 – Pr(~A).   

Example:  What is the probability of rolling 4 or more with two dice? 

The population has 36 possibilities.  To compute this directly, we use: 

     
ways to ways to ways to ways to
roll 4 roll 5 roll 11 roll 12

333 4 5 6 5 4 3 2 1 33 Pr( 4)
36

           
 

. 

That’s a lot of addition.  It’s much easier to note that: 

 
ways to ways to
roll 2 roll 3

3 33Pr( 4) 1 2 3 Pr( 4) , and Pr(
36 36

4) 1 Pr( 4)            . 

In particular, the “and” rules are often simpler than the “or” rule.  Therefore, when asked for the 
probability of “this or that”, it is sometimes simpler to convert to its complementary “and” statement, 
compute the “and” probability, and subtract it from 1 to find the “or” probability. 

Example:    From a standard 52-card deck, draw a single card.  What is the chance it is a spade or a 
face-card (or both)?  Note that these events are independent. 

To compute directly, we use the “or” rule: 

Pr( ) 1/ 4, Pr( ) 3 /13,

1 3 1 3 13 12 3 22Pr( )
4 13 4 13 52 52

spade facecard

spade or facecard

 

 
     

 

It may be simpler to compute the probability of drawing neither a spade nor a face-card, and subtracting 
from 1: 

Pr(~ ) 3 / 4, Pr(~ ) 10 /13,

3 10 30 22Pr( ) 1 Pr(~ ~ ) 1 1
4 13 52 52

spade facecard

spade or facecard spade and facecard

 

       
 

The benefit of converting to the simpler “and” rule increases with more “or” terms, as shown in the next 
example. 
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Example:    Remove the 12 face cards from a standard 52-card deck, leaving 40 number cards (aces 
are 1).  Draw a single card.  What is the chance it is a spade (S), low (L) (4 or less), or odd (O)?  Note that 
these 3 events are independent. 

To compute directly, we can count up the number of ways the conditions can be met, and divide by the 
population of 40 cards.  There are 10 spades, 16 low cards, and 20 odd numbers.  But we can’t just sum 
those numbers, because we would double (and triple) count many of the cards.   

To compute directly, we must extend the “or” the rules to 3 conditions, shown below. 

S L

O

 
Venn diagram for Spade, Low, and Odd. 

Without proof, we state that the direct computation from a 3-term “or” rule is this: 

Pr( ) 1/ 4, Pr( ) 4 /10, Pr( ) 1/ 2

Pr( ) Pr( ) Pr( ) Pr( )

Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( ) Pr( )

1 4 1 1 4 1 1 4 1 1 4 1
4 10 2 4 10 4 2 10 2 4 10 2

10 16 20 4 5 8 2 31
40 40

S L O

S or L or O S L O

S L S O L O S L O

  

  

   

                         
       

     
 

 

It is far easier to compute the chance that it is neither spade, nor low, nor odd: 

Pr(~ ) 3/ 4, Pr(~ ) 6/10, Pr(~ ) 1/ 2

Pr( or or ) 1 Pr(~ and ~ and ~ ) 1 Pr(~ )Pr(~ )Pr(~ )

3 6 1 9 311 1 .
4 10 2 40 40

S L O

S L O S L O S L O

  

   

      

 

You may have noticed that converting “S or L or O” into “~(~S and ~L and ~O)” is an example of De 
Morgan’s theorem from Boolean algebra. 

Continuous Random Variables and Distributions 
Probability is a little more complicated for continuous random variables.  A continuous population is a 

set of random values than can take on values in a continuous interval of real numbers; for example, if I spin 
a board-game spinner, the little arrow can point in any direction: 0 ≤ θ < 2π.    
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 = 0

 = π



 
Board game spinner 

Furthermore, all angles are equally likely.  By inspection, we see that the probability of being in the first 
quadrant is ¼, i.e. Pr(0 ≤ θ < /2) = ¼.  Similarly, the probability of being in any interval dθ is: 

  1Pr in any interval
2

d d  


 . 

If I ask, “what is the chance that it will land at exactly θ = π?” the probability goes to zero, because the 
interval dθ goes to zero.  In this simple example, the probability of being in any interval dθ is the same as 
being in any other interval of the same size.  In general, however, some systems have a probability per unit 
interval that varies with the value of the random variable (call it X) (I wish I had a simple, everyday 
example of this??).  So: 

 Pr in an infinitesimal interval around pdf( )X dx x x dx , where 
   pdf(x) ≡ the probability distribution function . 

pdf(x) has units of 1/x.   

By summing mutually exclusive probabilities, the probability of X in any finite interval [a, b] is: 

Pr( ) pdf( )
b

a
a X b dx x    . 

Since any random variable X must have some real value, the total probability of X being between –∞ and  
+∞ must be 1: 

 Pr pdf( ) 1X dx x



      . 

The probability distribution function of a random variable tells you  
everything there is to know about that random variable. 

Population and Samples 
A population is a (often infinite) set of all possible values that a random variable may take on, along 

with their probabilities.  A sample is a finite set of values of a random variable, where those values come 
from the population of all possible values.  The same value may be repeated in a sample.  We often use 
samples to estimate the characteristics of a much larger population. 

A trial or instance is one value of a random variable.   

There is enormous confusion over the binomial (and similar) distributions, because each instance of a 
binomial random variable comes from many attempts at an event, where each attempt is labeled either 
“success” or “failure.”  Superficially, an “attempt” looks like a “trial,” and many sources confuse the terms.  
In the binomial distribution, n attempts go into making a single trial (or instance) of a binomial random 
variable. 

Population Variance 
The variance of a population is a measure of the “spread” of any distribution, i.e. it is some measure of 

how widely spread out values of a random variable are likely to be [there are other measures of spread, 
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too].  The variance of a population or sample is among the most important parameters in statistics.  
Variance is always ≥ 0, and is defined as the average squared-difference between the random values and 
their average value: 

   2var is an operator which takes the averageX X X where X X   . 

Note that: 

Whenever we write an operator such as var(X), we can think of it as  functional of the PDF of X 
(recall that a functional acts on a function to produce a number). 

       2 2var var pdf ( ) pdf ( )X XX x x X x dx X X



     . 

The units of variance are the square of the units of X.  From the definition, we see that if I multiply a set of 
random numbers by a constant k, then I multiply their variance by k2: 

   2var var is any set of random numberskX k X where X . 

Any function, including variance, with the above property is homogeneous-of-order-2 (2nd order 
homogeneous??).  We will return later to methods of estimating the variance of a population. 

Population Standard Deviation 
The standard deviation of a population is another measure of the “spread” of a distribution, defined 

simply as the square root of the variance.  Standard deviation is always ≥ 0, and equals the root-mean-
square (RMS) of the deviations from the average: 

     2dev var is an operator which takes the averageX X X X where   . 

As with variance, we can think of dev(X) as a functional acting on pdfX(x): dev[pdfX(x)].  The units of 
standard deviation are the units of X.  From the definition, we see that if I multiply a set of random numbers 
by a constant k, then I multiply their standard deviation by k: 

   dev dev is any set of random numberskX k X where X . 

Standard deviation and variance are useful measures, even for non-normal populations.   

They have many universal properties, some of which we discuss as we go.  There exist bounds on the 
percentage of any population contained with ± cσ, for any number c.  Even stronger bounds apply for all 
unimodal populations. 

Normal (aka Gaussian) Distribution 

From mathworld.wolfram.com/NormalDistribution.html : “While statisticians and mathematicians 
uniformly use the term ‘normal distribution’ for this distribution, physicists sometimes call it a gaussian 
distribution and, because of its curved flaring shape, social scientists refer to it as the ‘bell curve.’ ” 

A gaussian distribution is one of a 2-parameter family of distributions defined as a population with: 
21

2 population average1pdf( )
population standard deviation2

x

x e where


 
 

   
  




 [picture??]. 

μ and σ are parameters: μ can be any real value, and σ > 0 and real.  This illustrates a common feature of 
named distributions: they are usually a family of distributions, parameterized by one or more parameters.  
A gaussian distribution is a 2-parameter distribution: μ and σ.  As noted below: 

Any linear combination of gaussian random variables is another gaussian random variable. 

http://mathworld.wolfram.com/NormalDistribution.html
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Gaussian distributions are the only such distributions [ref??]. 

New Random Variables From Old Ones 
Given two random variables X and Y, we can construct new random variables as functions of x and y 

(trial values of X and Y).  One common such new random variable is simply the sum: 

Define which means trials , i i iZ X Y i z x y     . 

We then ask, given pdfX(x) and pdfY(y) (which is all we can know about X and Y), what is pdfZ(z)?  To 
answer this, consider a particular value x of X; we see that: 

  Given : Pr( within of ) Pr within ofx Z dz z Y dz z x  . 

But x is a value of a random variable, so the total Pr(Z within dz of z) is the sum (integral) over all x: 

  

    

 

 

Pr( within of ) pdf ( )Pr within of , but

Pr within of pdf , so

Pr( within of ) pdf ( )pdf

pdf ( ) pdf ( )pdf .

X

Y

X Y

Z X Y

Z dz z dx x Y dz z x

Y dz z x z x dz

Z dz z dz dx x z x

z dx x z x













 

  

 

  







 

This integral way of combining two functions, pdfX(x) and pdfY(y) with a parameter z is called the 
convolution of pdfX and pdfY, which is a function of a number, z.   

x y x

Convolution of pdfX
with pdfY at z = 8pdfY(y)pdfX(x)

z = 8  
The convolution evaluated at z is the area under the product pdfX(x)pdfY(z – x). 

From the above, we can easily deduce the pdfZ(z) if Z ≡ X – Y = X + (–Y).  First, we find pdf(–Y)(y), and 
then use the convolution rule.  Note that: 

( )

( )

pdf ( ) pdf ( )

pdf ( ) pdf ( ) pdf ( ) pdf ( ) pdf ( )

Y Y

Z X Y X Y

y y

z dx x z x dx x x z



 


 

 

     
 

Since we are integrating from –∞ to +∞, we can shift x with no effect: 

pdf ( ) pdf ( ) pdf ( )Z X Yx x z z dx x z x



     , 

which is the standard form for the correlation function of two functions, pdfX(x) and pdfY(y). 
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x

pdfX(x)

y

pdfY(y)

x

Correlation of pdfX
with pdfY at z = 2

z = 2  
The correlation function evaluated at z is the area under the product pdfX(x + z)pdfY(x). 

The PDF of the sum of two random variables is the convolution of their PDFs. 
The PDF of the difference of two random variables is the correlation function of their PDFs. 

Note that the convolution of a gaussian distribution with a different gaussian is another gaussian.  
Therefore, the sum of a gaussian random variable with any other gaussian random variable is gaussian. 

Some Distributions Have Infinite Variance, or Infinite Average 
In principle, the only requirement on a PDF is that it be normalized: 

pdf( ) 1x dx



 . 

Such a distribution has well-defined probabilities for all x.  However, even given that, it is possible that the 
variance is infinite (or properly, undefined).  For example, consider: 

3
2 2

1 1
pdf( ) 2 1 pdf( ) 2, but pdf( )

0 1
x x x x x x dx x x dx

x


         
  

  . 

The above distribution is normalized, and has finite average, but infinite deviation.  The following example 
is even worse: 

2
2 2

0 0
pdf( ) 1 pdf( ) , and pdf( )

0 1
x x x x x x dx x x dx

x


         
  

  . 

This distribution is normalized, but has both infinite average and infinite deviation.  

Are such distributions physically meaningful?  Sometimes.  The Lorentzian (aka Breit-Wigner) 
distribution is common in physics, or at least, a good approximation to physical phenomena.  It has infinite 
average and deviation.  It’s standard and parameterized forms are: 

    
0 22

0

0

1 1 1( ) ( ; , )
1 1 /

location of peak, γ half-width at half-maximum

L x L x x
x x x

where x


 

  
  

 

 

This is approximately the energy distribution of particles created in high-energy collisions.  It’s CDF is: 

01 1cdf ( ) arctan
2Lorentzian

x x
x

 
 

  
 

. 
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Samples and Parameter Estimation 
Why Do We Use Least Squares, and Least Chi-Squared (χ2)? 

We frequently use “least sum-squared-residuals” (aka least squares) as our definition of “best.”  Why 
sum-squared-residuals?  Certainly, one could use other definitions (see least-sum-magnitudes below).  
However, least squares residuals are most common because they have many useful properties: 

 Squared residuals are reasonable: they’re always positive. 

 Squared residuals are continuous and differentiable functions of things like fit parameters 
(magnitude residual is not differentiable).  Differentiable means we can analytically minimize 
it, and for linear fits, the equations are linear. 

 We can compute many analytic results from least squares, which is not generally true with 
other residual measures. 

 Variance is defined as average of squared deviation (aka “residual”), and variances of 
uncorrelated random values simply add. 

 The central limit theorem causes gaussian distributions to appear frequently in the natural 
world, and one of its two natural parameters is variance (an average squared-residual). 

 For gaussian residuals, least squares parameter estimates are also maximum likelihood. 

Most other measures of residuals have fewer nice properties. 

Why Not Least-Sum-Magnitudes? 

A common question is “Why not magnitude of residuals, instead of squared residuals?”  Least-sum-
magnitude residuals have at least two serious problems.  First, they often yield clearly bad results; and 
second, least-sum-magnitude-residuals can be highly degenerate: there are often an infinite number of 
solutions that are “equally” good, and that’s bad. 

To illustrate, Figure 7.2a shows the least sum magnitude “average” for 3 points.  Sliding the average 
line up or down increases the magnitude difference for points 1 and 2, and decreases the magnitude 
difference by the same amount for point 2.  Points 1 and 2 totally dominate the result, regardless of how 
large point 2 is.  This is intuitively undesirable for most purposes. 

Figure 7.2b and c shows the degeneracy: both lines have equal sum magnitudes, but intuitively fit (b) 
is vastly better for most purposes. 

y

x

(b)

y

x

(c)

y

x

(a)

least sum-
magnitude 
“average”

least sum-
squared 
average

 
Figure 7.2 (a) least-sum-magnitude “average”.  (b) Example fit to least-sum-magnitude-residuals.  
The sum-magnitude is unchanged by moving the “fit line” straight up or down.  (c) Alternative 
“fit” has same sum-magnitude-residuals, but is a much less-likely fit for most residual 
distributions. 

Other Residual Measures 

There are some cases where least squares residuals does not work well, in particular, if you have 
outliers in your data.  When you square the residual to an outlier, you get a really big number.  This 
squared-residual swamps out all your (real) residuals, thus wreaking havoc with your results.  The usual 
practice is to identify the outliers, remove them, and analyze the remaining data with least-squares.  
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However, on rare occasions, one might work with a residual measure other than least squared residuals 
[Myers ??]. 

When working with data where each measurement has its own uncertainty, we usually replace the least 
squared residuals criterion with least-chi-squared.  We discuss this later when considering data with 
individual uncertainties. 

Average, Variance, and Standard Deviation 
In statistics, an efficient estimator ≡ the most efficient estimator [ref??].  There is none better (i.e., 

none with smaller variance).  You can prove mathematically that the average and variance of a sample are 
the most efficient estimators (least variance) of the population average and variance.  It is impossible to do 
any better, so it’s not worth looking for better ways.  The most efficient estimators are least squares 
estimators, which means that over many samples, they minimize the sum-squared error from the true value.  
We discuss least-squares vs. maximum-likelihood estimators later. 

Note, however, that given a set of measurements, some of them may not actually measure the 
population of interest (i.e., they may be noise).  If you can identify those bad measurements from a sample, 
you should remove them before estimating any parameter.  Usually, in real experiments, there is always 
some unremovable corruption of the desired signal, and this contributes to the uncertainty in the 
measurement. 

The sample average is defined as: 

1

1 n

i
i

x x
n 

  , 

and is the least variance estimate of the average <X> of any population.  It is unbiased, which means the 
average of many sample estimates approaches the true population average: 

average, over the given parameter if not obviousmany samples over whatx X where   . 

Note that the definition of unbiased is not that the estimator approaches the true value for large 
samples; it is that the average of the estimator approaches the true value over many samples, even small 
samples. 

The sample variance and standard deviation are defined as: 

 
 22

1

2

1 is the sample average, as above :
1

n

i i
i

s x x where x x x
n

s s



  





 

The sample variance is an efficient and unbiased estimate of var(X), which means no other estimate of 
var(X) is better.  Note that s2 is unbiased, but s is biased, because the square root of the average is not equal 
to the average of the square root: 

  2 2dev becausemany sampless X s s  . 

This exemplifies the importance of properly defining “bias”:  

   dev even though lim devmany samples n
s X s X


  . 

Sometimes you see variance defined with 1/n, and sometimes with 1/(n – 1).  Why?  The population 
variance is defined as the mean-squared deviation from the population average.  For a finite population 
(such as test scores in a given class), we find the population variance using 1/N, where N is the number of 
values in the whole population: 
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 2
1

is the # of values in the entire population
1var( ) is the value of the population

exact population average .

N
th

i i
i

N

X X where X i
N






 



  

In contrast, the sample variance is the variance of a sample taken from a population.  The population 
average μ is usually unknown.  We can only estimate μ ≈ <x>.  Then to make s2 unbiased (as we show that 
later), we must use 1/(n – 1), where n is the sample size (not population size). 

The sample variance is actually a special case of curve fitting, where we fit a constant, <x>, to the 
population.  This is a single parameter, and so removes 1 degree of freedom from our fit errors.  Hence, the 
mean-squared fit error (i.e., s2) has 1 degree of freedom less than the sample size.  (Much more on curve 
fitting later). 

For a sample from a population when the average μ is exactly known, we use n as the weighting for an 
unbiased estimator s2: 

 22

1

1 n

i
i

s x
n




  , which is just the above equation with Xi  xi, N  n. 

Notice that infinite populations with unknown μ can only have samples, and thus always use n–1.  But 
as n  ∞, it doesn’t matter, so we can compute the population variance either way: 

1 1

1 1var( ) lim lim
1

n n

i in n
i i

X x x
n n 

 

 
  , because n – 1  n, when n  ∞. 

Central Limit Theorem For Continuous And Discrete Populations 

The central limit theorem is important because it allows us to estimate some properties of a population 
given only sample of the population, with no a priori information.  Given a population, we can take a 
sample of it, and compute its average.  If we take many samples, each will (likely) produce a different 
average.  Hence, the average of a sample is a new random variable, created from the original.   

The central limit theorem says that for any population, as the sample size grows,  
the sample average approaches a gaussian random variable, with average equal to the population 

average, and variance equal to the population variance divided by n. 

Mathematically, given a random variable X, with mean μ and variance σX
2: 

2
lim , sample averageX
n

x gaussian where x
n






 
   

 
. 

Note that the central limit theorem applies only to multiple samples from a single population (though 
there are some variations that can be applied to multiple populations).  [It is possible to construct large 
sums of multiple populations whose averages are not gaussian, e.g. in communication theory, inter-symbol 
interference (ISI).  But we will not go further into that.] 

How does the Central Limit Theorem apply to a discrete population?  If a population is discrete, 
then any sample average is also discrete.  But the gaussian distribution is continuous.  So how can the 
sample average approach a gaussian for large sample size N?  Though the sample average is discrete, the 
density of allowed values increases with N.  If you simply plot the discrete values as points, those points 
approach the gaussian curve.  For very large N, the points are so close, they “look” continuous. 

TBS: Why binomial (discreet), Poisson (discreet), and chi-squared (continuous) distributions approach 
gaussian for large n (or ). 
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Uncertainty of Average 

The sample average <x> gives us an estimate of the population average μ.  The sample average, when 
taken as a set of values of many samples, is itself a random variable.  The Central Limit Theorem (CLT) 
says that if we know the population standard deviation σ, the sample average <x> will have standard 
deviation: 

xu
n


    (proof below). 

In statistics, u<x> is called the standard error of the mean.  In experiments, u<x> is the 1-sigma 
uncertainty in our estimate of the population average μ.  However, most often, we know neither μ nor σ, 
and must estimate both from our sample, using <x> and s.  For “large” samples, we use simply σ ≈ s, and 
then: 

for "large" samples, i.e. is "large"x
su n
n   . 

For small samples, we must still use s as our estimate of the population deviation, since we have 
nothing else.  But instead of assuming that u<x> is gaussian, we use the exact distribution, which is a little 
wider, called a T-distribution [W&M ??], which is complicated to write explicitly.  It take an argument t, 
similar to the gaussian z ≡ (x – μ)/σ, which measures its dimensionless distance from the mean: 

sample average, sample standard deviation
x x

t where x s
s


   . 

We then use t, and t-tables, to establish confidence intervals [ref??]. 

Uncertainty of Uncertainty: How Big Is Infinity? 

Sometimes, we need to know the uncertainty in our estimate of the population variance (or standard 
deviation).  So let’s look more closely at the uncertainty in our estimate s2 of the population variance σ2.  

The random variable   2

2
1n s




 has chi-squared distribution with n – 1 degrees of freedom [W&M Thm 

6.16 p201].  So: 

   

   

22 2 4
2 2 2

1

2
2 2

2var 2 1 ,
1 1 1

2dev 2 1 .
1 1

ns s n
n n n

s n
n n

  

 


 

         

  
 

 

However, usually we’re more interested in the uncertainty of the standard deviation estimate, rather than its 
variance.  For that, we use the fact that s is function of s2:  s ≡ (s2)1/2.  For moderate or bigger sample sizes, 
and confidence ranges up to 95% or so, we can use the approximate formula for the deviation of a function 
of a random variable (see “Functions of Random Variables,” elsewhere): 

     

     
   

1/ 2 1/ 22 2 2 2

dev( ) ' dev for small dev( ) .

1 1 2 1 1dev( ) dev .
2 2 1 2 1 2 1

Y f X Y f X X X

s s s s s
n n n

  




  

     
  

 

This allows us to address the rule of thumb: “n > 30” is statistical infinity.   

This rule is most often used in estimating the standard error of the mean u<x> (see above), given by 

x
su

n n


    .  We don’t know the population deviation, σ, so we approximate it with s ≈ σ.  For small 

samples, this isn’t so good.  Then, as noted above, the uncertainty u<x> needs to include both the true 
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sampling uncertainty in <x> and the uncertainty in s.  To be confident that our <x> is within our claim, we 
need to expand our confidence limits, to allow for the chance that s happens to be low.  The Student T-
distribution exactly handles this correction to our confidence limits on <x> for all sample sizes.   

However, when can we ignore this correction?  In other words, how big should n be for the gaussian 
(as opposed to T) distribution be a good approximation.  The uncertainty in s is: 

 
1dev( )

2 1
su s

n
 


. 

This might seem circular, because we still have σ (which we don’t know) on the right hand side.  However, 
it’s effect is now reduced by the fraction multiplying it.  So the uncertainty in σ is also reduced by this 
factor, and we can neglect it.  Thus to first order, we have: 

   
1 1dev( )

2 1 2 1
su s s

n n
  

 
. 

So long as us << s, we can ignore it.  In other words: 

 
1 1

2 1
su s

n
  


, for u<x> to be approximately gaussian, and s ≈ σ. 

(You may notice that us is correlated with s: bigger s implies bigger (estimated) us, so the contribution to 
u<x> from us does not add in quadrature to s/√n.)  When n = 30: 

 
1 0.13 1

2 30 1
 


. 

13% is pretty reasonable for the uncertainty of the uncertainty u<x>, and n = 30 is the generally agreed upon 
bound for good confidence that s ≈ σ. 

Functions of Random Variables 
It follows from the definition of probability that the average value of any function of a random variable 

is: 

( ) ( ) pdf ( )Xf X dx f x x



  . 

We can apply this to our definitions of population average and population variance: 

 2pdf ( ), and var( ) pdf ( )X XX X dx x x X dx x X x
 

 
     . 

Statistically Speaking: What Is The Significance of This? 
Before we compute any uncertainties, we should understand what they mean.  Statistical significance 

interprets uncertainties.  It is one of the most misunderstood, and yet most important, concepts in science.  
It underlies virtually all experimental and simulation results.  Beliefs (correct and incorrect) about statistical 
significance drive experiment, research, funding, and policy.   

Understanding statistical significance is a prerequisite to understanding science. 

This cannot be overstated, and yet many (if not most) scientists and engineers receive no formal 
training in statistics.  The following few pages describe statistical significance, surprisingly using almost no 
math. 
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Overview of Statistical Significance 

The term “statistically significant” has a precise meaning which is, unfortunately,  
different than the common meaning of the word “significant.”   

Many experiments compare quantitative measures of two populations, e.g. the IQs of ferrets vs. 
gophers.  In any real experiment, the two measures will almost certainly differ.  How should we interpret 
this difference?   

We can use statistics to tell us the meaning of the difference.  A difference which is not “statistically 
significant” in some particular experiment may, in fact, be quite important.  But we can only determine its 
importance if we do another experiment with finer resolution, enough to satisfy our subjective judgment of 
“importance.”  For this section, I use the word importance to mean a subjective assessment of a measured 
result.   

The statement “We could not measure a difference” is very different from “There is no important 
difference.”  Statistical significance is a quantitative comparison of the magnitude of an effect and the 
resolution of the statistics used to measure it. 

This section requires an understanding of probability and uncertainty. 

Statistical significance can be tricky, so we start with several high level statements about what 
statistical significance is and is not.  We then give more specific statements and examples. 

Statistical significance is many things: 

Statistical significance is a measure of an experiment’s ability to resolve its own measured result.   
It is not a measure of the importance of a result. 

Statistical significance is closely related to uncertainty. 

Statistical significance is a quantitative statement of the probability that a result is real, instead of a 
measurement error or the random result of sampling that just happened to turn out that way (by chance). 

“Statistically significant” means “measurable by this experiment.”  “Not statistically significant” 
means that we cannot fully trust the result from this experiment alone; the experiment was too crude to 
have confidence in its own result. 

Statistical significance is a one-way street: if a result is statistically significant, it is (probably) real.  
However, it may or may not be important.  In contrast, if a result is not statistically significant, then we 
don’t know if it’s real or not.  However, we will see that even a not significant result can sometimes 
provide meaningful and useful information. 

If the difference between two results in an experiment is not statistically significant,  
that difference may still be very real and important. 

Details of Statistical Significance 

A meaningful measurement must contain two parts: the magnitude of the result, and the confidence 
limits on it, both of which are quantitative statements.  When we say, “the average IQ of ferrets in our 
experiment is 102 ± 5 points,” we mean that there is a 95% chance that the actual average IQ is between 97 
and 107.  We could also say that our 95% confidence limits are 97 to 107.  Or, we could say that our 95% 
uncertainty is 5 points.  The confidence limits are sometimes called error bars, because on a graph, 
confidence limits are conventionally drawn as little bars above and below the measured values. 

Suppose we test gophers and find that their average IQ is 107 ± 4 points.  Can we say “on average, 
gophers have higher IQs than ferrets?”  In other words, is the difference we measured significant, or did it 
happen just by chance?  To assess this, we compute the difference, and its uncertainty (recall that 
uncorrelated uncertainties add in quadrature): 

  2 2107 102 4 5 5 6 (gophers ferrets)IQ         
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This says that the difference lies within our uncertainty, so we are not 95% confident that gophers have 
higher IQs.  Therefore, we still don’t know if either population has higher IQs than the other.  Our 
experiment was not precise enough to measure a difference.  This does not mean that there is no difference.  
However, we can say that there is a 95% chance that the difference is between –1 and 11 (5 ± 6).  A given 
experiment measuring a difference can produce one of two results of statistical significance: (1) the 
difference is statistically significant; or (2) it is not.  In this case, the difference is not (statistically) 
significant at the 95% level. 

In addition, confidence limits yield one of three results of “importance:” (1) confirm that a difference 
is important; or (2) not important, or (3) be inconclusive.  But the judgment of how much is “important” is 
outside the scope of the experiment.  For example, we may know from prior research that a 10 point 
average IQ difference makes a population a better source for training pilots, enough better to be 
“important.”  Note that this is a subjective statement, and its precise meaning is outside our scope here.   

Five of the six combinations of significance and importance are possible, as shown by the following 
examples. 

Example 1, not significant, and inconclusive importance:  With the given numbers, ΔIQ = 5 ± 6, the 
“importance” of our result is inconclusive, because we don’t know if the average IQ difference is more or 
less than 10 points. 

Example 2, not significant, but definitely not important:  Suppose that prior research showed 
(somehow) that a difference needed to be 20 points to be “important.”  Then our experiment shows that the 
difference is not important, because the difference is very unlikely to be as large as 20 points.  In this case, 
even though the results are not statistically significant, they are very valuable; they tell us something 
meaningful and worthwhile, namely, the difference between the average IQs of ferrets and gophers is not 
important for using them as a source for pilots.  The experimental result is valuable, even though not 
significant, because it establishes an upper bound on the difference. 

Example 3, significant, but inconclusive importance:  Suppose again that a difference of 10 points is 
important, but our measurements are: ferrets average 100 ± 3 points, and gophers average 107 ± 2 points.  
Then the difference is: 

  2 2107 100 2 3 7 4 (gophers ferrets)IQ         

These results are statistically significant: there is better than a 95% chance that the average IQs of 
ferrets and gophers are different.  However, the importance of the result is still inconclusive, because we 
don’t know if the difference is more or less than 10 points. 

Example 4, significant and important:  Suppose again that a difference of 10 points is important, but 
we measure that ferrets average 102 ± 3 points, and gophers average 117 ± 2 points.  Then the difference is: 

  2 2117 102 2 3 15 4 (gophers ferrets)IQ         

Now the difference is both statistically significant, and important, because there is a 95% chance that 
the difference is > 10 points.  We are better off choosing gophers to go to pilot school. 

Example 5, significant, but not important:  Suppose our measurements resulted in 

5 4IQ    

Then the difference is significant, but not important, because we are confident that the difference < 10.  
This result established an upper bound on the difference.  In other words, our experiment was precise 
enough that if the difference were important (i.e., big enough to matter), then we’d have measured it. 

Finally, note that we cannot have a result that is not significant, but important.  Suppose our result was: 

11 12IQ    

The difference is unmeasurably small, and possibly zero, so we certainly cannot say the difference is 
important.  In particular, we can’t say the difference is greater than anything.   
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Thus we see that stating “there is a statistically significant difference” is (by itself) not saying much, 
because the difference could be tiny, and physically unimportant.   

We have used here the common confidence limit fraction of 95%, often taken to be ~2σ.  The next 
most common fraction is 68%, or ~1σ.  Another common fraction is 99%, taken to be ~3σ.  More precise 
gaussian fractions are 95.45% and 99.73%, but the digits after the decimal point are usually meaningless 
(i.e., not statistically significant!)  Note that we cannot round 99.73% to the nearest integer, because that 
would be 100%, which is meaningless in this context.  Because of the different confidence fractions in use, 
you should always state your fractions explicitly.  You can state your confidence fraction once, at the 
beginning, or along with your uncertainty, e.g. 10 ± 2 (1σ). 

Caveat:  We are assuming random errors, which are defined as those that average out with larger 
sample sizes.  Systematic errors do not average out, and result from biases in our measurements.  For 
example, suppose the IQ test was prepared mostly by gophers, using gopher cultural symbols and 
metaphors unfamiliar to most ferrets.  Then gophers of equal intelligence will score higher IQs because the 
test is not fair.  This bias changes the meaning of all our results, possibly drastically. 

Ideally, when stating a difference, one should put a lower bound on it that is physically important, and 
give the probability (confidence) that the difference is important.  E.g. “We are 95% confident the 
difference is at least 10 points” (assuming that 10 points on this scale matters). 

Examples 

Here are some examples of meaningful and not-so-meaningful statements: 
Meaningless Statements  
(appearing frequently in print) 

Meaningful Statements, possibly subjective 
(not appearing enough) 

The difference in IQ between groups A and 
B is not statistically significant.   
(Because your experiment was bad, or 
because the difference is small?) 

Our data show there is a 99% likelihood that 
the IQ difference between groups A and B is 
less than 1 point. 

We measured an average IQ difference of 5 
points.  (With what confidence?) 

Our experiment had insufficient resolution to 
tell if there was an important difference in IQ. 

Group A has a statistically significantly 
higher IQ than group B. 
(How much higher?  Is it important?) 

Our data show there is a 95% likelihood that 
the IQ difference between groups A and B is 
greater than 10 points. 

Statistical significance summary:  “Statistical significance” is a quantitative statement about an 
experiment’s ability to resolve its own result.  We use “importance” as a subjective assessment of a 
measurement that may be guided by other experiments, and/or gut feel.  Statistical significance says 
nothing about whether the measured result is important or not.   

Predictive Power: Another Way to Be Significant, but Not Important 
Suppose that we have measured IQs of millions of ferrets and gophers over decades.  Suppose their 

population IQs are gaussian, and given by (note the use of 1σ uncertainties): 

ferrets:101 20 gophers:103 20 (1 )  . 

The average difference is small, but because we have millions of measurements, the uncertainty in the 
average is even smaller, and we have a statistically significant difference between the two groups. 

Suppose we have only one slot open in pilot school, but two applicants: a ferret and a gopher.  Who 
should get the slot?  We haven’t measured these two individuals, but we might say, “Gophers have 
‘significantly’ higher IQs than ferrets, so we’ll accept the gopher.”  Is this valid? 

To quantitatively assess the validity of this reasoning, let us suppose (simplistically) that pilot students 
with an IQ of 95 or better are 20% more likely (1.2) to succeed than those with IQ < 95.  From the given 
statistics, 61.8% of ferrets have IQs > 95, vs. 65.5% of gophers.  That is, 61.8% of ferrets get the 1.2 boost 
in likelihood of success, and similarly for the gophers.  Then the relative probabilities of success are: 
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ferrets: 0.382 0.618(1.2) 1.12 gophers: 0.345 0.655(1.2) 1.13    . 

Thus a random gopher is 113/112 times (less than 0.7% more) likely to succeed than a random ferret.  This 
is pretty unimportant.  In other words, species (between ferrets and gophers) is not a good predictor of 
success.  Species is so bad that many, many other facts will be better predictors of success.  Height, 
eyesight, years of schooling, and sports ability are probably all better predictors.  The key point is this: 

Differences in average between two populations, that are much smaller than the deviations within 
the populations, are poor predictors of individual outcomes. 

Unbiased vs. Maximum-Likelihood Estimators 
In experiments, we frequently have to estimate parameters from data.  There is a very important 

difference between “unbiased” and “maximum likelihood” estimates, even though sometimes they are the 
same.  Sadly, two of the most popular experimental statistics books confuse these concepts, and their 
distinction.  

[A common error is to try to “derive” unbiased estimates using the principle of “maximum likelihood,” which 
is impossible since the two concepts are very different.  The incorrect argument goes through the exercise of 
“deriving” the formula for sample variance from the principle of maximum likelihood, and (of course) gets the 
wrong answer!  Hand waving is then applied to wiggle out of the mistake.] 

Everything in this section applies to arbitrary distributions, not just gaussian.  We follow these steps: 

1. Terse definitions, which won’t be entirely clear at first. 

2. Example of estimating the variance of a population (things still fuzzy). 

3. Silly example of the need for maximum-likelihood in repeated trials. 

4. Real-world physics examples of different situations leading to different choices between unbiased 
and maximum-likelihood. 

5. Closing comments. 

Terse definitions:  In short: 

An unbiased statistic is one whose average is exactly right: in the limit of an infinite number of 
estimates, the average of an unbiased statistic is exactly the population parameter.   

Therefore, the average of many samples of an unbiased statistic is likely closer to the right answer than one 
sample is. 

A maximum likelihood statistic is one which is most likely to have produced the given the data.  Note 
that if it is biased, then the average of many maximum likelihood estimates does not get you closer to right 
answer.  In other words, given a fixed set of data, maximum-likelihood estimates have some merit, but 
biased ones can’t be combined well with other sets of data (perhaps future data, not yet taken).  This 
concept should become more clear below. 

Which is better, an unbiased estimate or a maximum-likelihood estimate?  It depends on what you 
goals are. 

Example of population variance:  Given a sample of values from a population, an unbiased estimate 
of the population variance is 

 2
2 1 (unbiased estimate)

1

n

i
i

x x

n
 







. 

If we take several samples of the population, compute an unbiased estimate of the variance for each sample, 
and average those estimates, we’ll get a better estimate of the population variance.  Usually, unbiased 
estimators are those that minimize the sum-squared-error from the true value (principle of least-squares).   
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However, suppose we only get one shot at estimating the population variance?  Suppose Monty Hall 
says “I’ll give you a zillion dollars if you can estimate the variance (to within some tolerance)”?  What 
estimate should we give him?  Since we only get one chance, we don’t care about the average of many 
estimates being accurate.  We want to give Mr. Hall the variance estimate that is most likely to be right.  
One can show that the most likely estimate is given by using n in the denominator, instead of (n – 1): 

 2
2 1 (maximum-likelihood estimate)

n

i
i

x x

n
 






. 

This is the estimate most likely to win the prize.  Perhaps more realistically, if you need to choose how long 
to fire a retro-rocket to land a spacecraft on the moon, do you choose (a) the burn time that, averaged over 
many spacecraft, reaches the moon, or (b) the burn time that is most likely to land your one-and-only craft 
on the moon? 

In the case of variance, the maximum-likelihood estimate is smaller than the unbiased estimate by a 
factor of (n – 1)/n.  If we were to make many maximum-likelihood estimates, each one would be small by 
the same factor.  The average would then also be small by that factor.  No amount of averaging would ever 
fix this error.  Our average estimate of the population variance would not get better with more estimates. 

You might conclude that maximum-likelihood estimates are only good for situations where you get a 
single trial.  However, we now show that maximum-likelihood estimates can be useful even when there are 
many trials of a statistical process. 

Example: Maximum likelihood vs. unbiased:  You are a medieval peasant barely keeping your 
family fed.  Every morning, the benevolent king goes to the castle tower overlooking the public square, and 
tosses out a gold coin to the crowd.  Whoever catches it, keeps it. 

Being better educated than most medieval peasants, each day you record how far the coin goes, and 
generate a PDF (probability distribution function) for the distance from the tower.  It looks like Figure 7.3. 

distance

pdf

most likely average  
Figure 7.3  Gold coin toss distance PDF. 

The most-likely distance is notably different than the average distance.  Given this information, where do 
you stand each day?  Answer: At the most-likely distance, because that maximizes your payoff not only for 
one trial, but across many trials over a long time.  The “best” estimator is in the eye of the beholder: as a 
peasant, you don’t care much for least squares, but you do care about most money. 

Note that the previous example of landing a spacecraft is the same as the gold coin question: even if 
you launch many spacecraft, for each one you would give the burn most-likely to land the craft.  The 
average of many failed landings has no value. 

Real physics examples:  Example 1:  Suppose you need to generate a beam of ions, all moving at 
very close to the same speed.  You generate your ions in a plasma, with a Maxwellian thermal speed 
distribution (roughly the same shape as the gold coin toss PDF).  Then you send the ions through a velocity 
selector to pick out only those very close to a single speed.  You can tune your velocity selector to pick any 
speed.  Now ions are not cheap, so you want your velocity selector to get the most ions from the speed 
distribution that it can.  That speed is the most-likely speed, not the average speed.  So here again, we see 
that most-likely has a valid use even in repeated trials of random processes. 

Example 2:  Suppose you are tracing out the orbit of the moon around the earth by measuring the 
distance between the two.  Any given day’s measurement has limited ability to trace out an entire orbit, so 
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you must make many measurements over several years.  You have to fit a model of the moon’s orbit to this 
large set of measurements.  You’d like your fit to get better as you collect more data.  Therefore, each day 
you choose to make unbiased estimates of the distance, so that on-average, over time, your estimate of the 
orbit gets better and better.  If instead you chose each day’s maximum-likelihood estimator, you’d be off of 
the average (in the same direction) every day, and no amount of averaging would ever fix that. 

Wrap up:  When you have a symmetric, unimodal distribution for a parameter estimate (symmetric 
around a single maximum), then the unbiased and maximum-likelihood estimates are identical.  This is 
true, for example, for the average of a gaussian distribution.  For asymmetric or multi-modal distributions, 
the unbiased and maximum-likelihood estimates are different, and have different properties.  In general, 
unbiased estimates are the most efficient estimators, which means they have the smallest variance of all 
possible estimators.  Unbiased estimators are also least-squares estimators, which means they minimize the 
sum-squared error from the true value.  This property follows from being unbiased, since the average of a 
population is the least-squares estimate of all its values. 

Correlation and Dependence 
To take a sample of a random variable X, we get a value of Xi for each sample point i, i = 1 ... n.  

Sometimes when we take a sample, for each sample point we get not one, but two, random variables, Xi and 
Yi.  The two random variables Xi and Yi may or may not be related to each other.  We define the joint 
probability distribution function of X and Y such that: 

Pr( ) pdf ( , )XYx X x dx and y Y y dy x y       . 

This is just a 2-dimensional version of a typical pdf.  Since X and Y are random variables, we could look at 
either of them and find its individual pdf:  pdfX(x), and pdfY(y).  If X and Y have nothing to do with each 
other (i.e., X and Y are independent), then a fundamental axiom of probability says that the probability 
density of finding x < X < x + dx  and  y < Y < y + dy is the product of the two pdfs: 

and are independent pdf ( , ) pdf ( )pdf ( )XY X YX Y x y x y   

The above equation is the definition of statistical independence: 

Two random variables are independent if and only if  
their joint distribution function is the product of the individual distribution functions. 

A very different concept is “correlation.”  Correlation is a measure of how linearly related two random 
variables are.  We discuss correlation in more detail later, but it turns out that we can define correlation 
mathematically by the correlation coefficient: 

    cov ,X X Y Y X Y     . 

If ρ = 0, then X and Y are uncorrelated.  If ρ  0, then X and Y are correlated.  For a discrete random 
variable, 

  
1

population

i i
i

x x y y


   . 

  Note that : 

0 cov( , ) 0X Y    .  

Two random variables are uncorrelated if and only if  
their covariance, defined above, is zero. 

Being independent is a stronger statement than uncorrelated.  Random variables which are independent 
are necessarily uncorrelated (proof below).  But variables which are uncorrelated can be highly dependent.  
For example, suppose we have a random variable X, which is uniformly distributed over [–1, 1].  Now 
define a new random variable Y such that Y = X2.  Clearly, Y is dependent on X, but Y is uncorrelated with 
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X.  Y and X are dependent because given either, we know a lot about the other.  They are uncorrelated 
because for every Y value, there is one positive and one negative value of X.  So for every value of 
   X X Y Y  , there is its negative, as well.  The average is therefore 0;  hence, cov(X, Y) = 0. 

A crucial point is: 

Variances add for uncorrelated variables, even if they are dependent. 

This is easy to show.  Given that X and Y are uncorrelated,  

       

      

    

2 2

2 2

2

var

2

2

X Y X Y X Y X X Y Y

X X X X Y Y Y Y

X X X X Y Y

              

      

      2

var( ) var( ) .

Y Y

X Y

 

 

 

All we needed to prove that variances add is that cov(X, Y) = 0. 

Independent Random Variables are Uncorrelated 
It is extremely useful to know that independent random variables are necessarily uncorrelated.  We 

prove this now, in part to introduce some methods of statistical analysis, and to emphasize the distinction 
between “uncorrelated” and “independent.”  Understanding analysis methods enables you to analyze a new 
system reliably, so learning these methods is important for research. 

Two random variables are independent if they have no relationship at all.  Mathematically, the 
definition of statistical independence of two random variables is that the joint density is simply the 
product of the individual densities: 

 ,pdf , pdf ( )pdf ( ) statistical independencex y x yx y x y . 

The definition of uncorrelated is that the covariance, or equivalently the correlation coefficient, is zero: 

    cov , 0 uncorrelated random variablesx yx y x y     . (7.1) 

These definitions are all we need to prove that independent random variables are uncorrelated.  First, 
we prove a slightly simpler claim: independent zero-mean random variables are uncorrelated: 

Given: pdf ( ) 0, pdf ( ) 0x x y ydx x dy x 
 

     , 

then the integral factors into x and y integrals, because the joint density of independent random variables 
factors: 

  ,cov , pdf ( , ) pdf ( ) pdf ( ) 0x y x yx y xy dx dy x y xy dx x dy x
  

       
     . 

For non-zero-mean random variables, (x – μx) is a zero-mean random value, as is (y – μy).  But these 
are the quantities that appear in the definition of covariance (7.1).  Therefore,  the covariance of any two 
independent random variables is zero. 

Note well: 

Independent random variables are necessarily uncorrelated, but the converse is not true: 
uncorrelated random variables may still be dependent.   
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For example, if X  uniform(–1,1), and Y ≡ X2, then X and Y are uncorrelated, but highly dependent. 

Statistical Analysis Algebra 
Statistical analysis relies on a number of basic properties of combining random variables (RVs), which 

define an algebra of statistics.  This algebra of RV interaction relates to distributions, averages, variances, 
and other properties.  Within this algebra, there is much confusion about which results apply universally, 
and which apply only conditionally: e.g., gaussian distributions, independent RVs, uncorrelated RVs, etc.  
We explicitly address all conditions here.  We will use all of these methods later, especially when we 
derive the lesser-known results for uncertainty weighted data.   

The Average of a Sum: Easy? 
We all know that <x + y> = <x> + <y>.  But is this true even if x and y are dependent random variables 

(RVs)?  Let’s see.  We can find <x + y> for dependent variables by integrating over the joint density: 

 , , ,pdf ( , ) pdf ( , ) pdf ( , )

.

x y x y x yx y dx dy x y x y dx dy x y x dx dy x y y

x y
  

    

 

   . 

Therefore, the result is easy, and essential for all further analyses: 

The average of a sum equals the sum of averages, even for RVs of arbitrary dependence. 

The Average of a Product 
Life sure would be great if the average of a product were the product of the averages ... but it’s not, in 

general.  Although, sometimes it is.  As scientists, we need to know the difference.  Given x and y are 
random variables (RVs), what is <xy>?   

In statistical analysis, it is often surprisingly useful to break up a random variable into its “varying” 
part plus its average; therefore, we define: 

, 0x yx x y y x y            . 

Note that μx and μy are constants.  Then we can evaluate: 

  x y yxy x y x y x            x y 

    cov , .

x y

x y y y x yx y x y

 

     



     
 

The average of the product is the product of the averages plus the covariance.   

Only if x and y are uncorrelated, which is implied if they are independent (see earlier), then the average of 
the product is the product of the averages. 

This rule provides a simple corollary: the average of an RV squared: 

2 2 2 2cov( , )x x xx x x      . (7.2) 

Variance of a Sum 
We frequently need the variance of a sum of possible dependent RVs.  We derive it here for RVs x, y: 

     

      

22

2 2

var( )

2 var( ) var( ) 2cov( , ) .

x y x y

y y x y

x y x y x y

x y x y x y x y

   

   

          

         
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Covariance Revisited 
The covariance comes up so frequently in statistical analysis that it merits an understanding of its 

properties as part of the statistical algebra.  Covariance appears directly in the formulas for the variance of a 
sum, and the average of a product, of RVs.  (You might remember this by considering the units.  For a sum 
x + y: [x] = [y] and [var(x + y)] = [x2] = [y2] = [cov(x, y)].  For a product xy: [xy] = [cov(x, y)].)  
Conceptually, the covariance of two RVs, a and b, measures how much a and b vary together linearly from 
their respective averages.  If positive, it means a and b tend to go up together; if negative, it means a tends 
to go up when b goes down, and vice-versa.  Covariance is defined as a population average: 

    cov , a ba b a b    . 

From the definition, we see that cov( ) is a bilinear, commutative operator: 

Given: , , , are random variables; constant:

cov( , ) cov( , )

cov( , ) cov( , ) cov( , )

cov( , ) cov( , ) cov( , ), cov( , ) cov( , ) cov( , ) .

a b c d k

a b b a

ka b a kb k a b

a c b a b c b a b d a b a d





 

     

 

Occasionally, when expanding a covariance, there may be constants in the arguments.  We can 
consider a constant as a random variable which always equals its average, so: 

cov( , ) 0

cov( , ) cov( , ) cov( , ) .

a k

a k b a b k a b



   
 

From the definition, we find that the covariance of an RV with itself is the RV’s variance: 

cov( , ) var( )a a a . 

Capabilities and Limits of the Sample Variance 
The following developments yield important results, and illustrate some methods of statistical algebra 

that are worth understanding.  We wish to determine an unbiased estimator for the population variance, σ2, 
from a sample (set) of n independent values {yi}, in two cases: (1) we already know the population average 
μ; and (2) we don’t know the population average.  The first case is easier.  We proceed in detail, because 
we need this foundation of process to be rock solid, since so much is built upon it. 

σ2 from sample and known μ:  We must start with the definition of population variance as an average 
over the population: 

 22

1

1average over population of lim
N

i
N i

y where y y y
N

  




      . (7.3) 

A simple guess for the estimator of σ2, motivated by the definition, might be: 

 22

1

1 (a guess)
n

i
i

g y
n




  . 

We now analyze our guess over many samples of size n, to see how it performs.  By definition, to be 
unbiased, the average of g2 over an ensemble of samples of size n must equal σ2: 

 22 2unbiased:
ensemble population

g y    . 

Mathematically, we find an ensemble average by letting the number of ensembles go to infinity, and the 
definition of population average is given by letting the number of individual values go to infinity.  Let M be 
the number of ensembles.  Then: 
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 22 2

1 1 1

1 1 1lim lim
M M n

m iensemble M Mm m i

g g y
M M n


 

  

     . 

Since all the yi above are distinct, we can combine the summations.  Effectively, we have converted the 
ensemble average on the RHS to a population average, whose properties we know: 

   2 22 2

1

1lim
Mn

iensemble M populationi

g y y
Mn

  




     . 

We have proved that our guess is an unbiased estimator of the population variance, σ2.   

(In fact, since we already know that the sample average is an unbiased estimate of the population 
average, and the variance σ2 is defined as a population average, then we can conclude immediately that the 
sample average of <(yi – μ)2> in an unbiased estimate of the population average <(yi – μ)2> ≡ σ2.  Again, 
we took the long route above to illustrate important methods that we will use again.) 

Note that the denominator is n, and not n – 1,  
because we started with separate knowledge of the population average μ.   

For example, when figuring the standard deviation of grades in a class, one uses n in the denominator, since 
the class average is known exactly. 

σ2 from sample alone:  A harder case is estimating σ2 when μ is not known.  As before, we must start 
with a guess at an estimator, and then analyze our guess to see how it performs.  A simple guess, motivated 
by the definition, might be: 

 22

1 1

1(a guess)
n n

i i
i i

s y y where y y
n 

    . 

By definition, to be unbiased, the average of s2 over an ensemble of samples of size n must equal σ2.  We 
now consider the sum in s2.  We first show a failed attempt, and then how to avoid it.  If we try to analyze 
the sum directly, we get : 

 2 2 2 2 2

1 1 1 1

2 2
n n n n

i i i i i
i i i i

y y y yy y y yy n y
   

          . 

In the equation above, angle brackets mean ensemble average.  By tradition, we don’t explicitly label 
our angle brackets to say what we are averaging over, and we make you figure it out.  Even better, as we 
saw earlier, sometimes the angle brackets mean ensemble average, and sometimes they mean population 
average.  (This is a crucial difference in definition, and a common source of confusion in statistical 
analysis: just what are we averaging over, anyway?)  However, on the RHS, the first ensemble average is 
the same as the population average.  However, further analysis of the ensemble averages at this point is 
messy (more on this later). 

To avoid the mess, we note that definition (7.4) requires us to somehow introduce the population 
average into the analysis, even though it is unknown.  By trial and error, we find it is easier to start with the 
population average, and write it in terms of y : 

              22 2 2

1 1 1 1 1
0

2
n n n n n

i i i i
i i i i i

y y y y y y y y y y   
    

               


. 

 y   does not depend on i, so it comes out of the summation.  The second term is identically zero, 
because: 
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 
1 1

0
n n

i i
i i

y y y ny ny ny
 

       . 

Now we can take the ensemble average of the remains of the sum-of-squares equation: 

     

     

2

2

2 2 2

1 1 1

2 2 2

1 1

.

n n n

i i
i i i

nh

n n

i i
i i

nh

y y y y

y y y n y

 

 

  

 

    

    

  

 





 

All the ensemble averages in the sum on the LHS are the same, and equal the population average, which is 
the definition of σ2.   On the RHS, we use the known properties of y : 

 2 2, var( ) /y y y n      . 

Then we have: 

 

   

2

22 2

1

2 2

1

1 .

n

i
i

nh

n

i
i

n y y

y y n

 







  

  





  

Thus we see our guess for s2 is correct.  The last equation implies that the unbiased sample estimator is: 

 22

1

1
1

n

i
i

s y y
n 

 
  . 

We made no assumptions at all about the distribution of y, therefore: 

s2 is an unbiased estimator of population variance σ2 for any distribution. 

How to Do Statistical Analysis Wrong, and How to Fix It 
The following example development contains one error that illustrates a common mistake in statistical 

analysis: failure to account for dependence between random values.  We then show how to correct the error 
using our statistical algebra.  This example re-analyzes an earlier goal: to determine an unbiased estimator 
for the population variance, σ2, from a sample of n values {yi}.   

As before, we start with a guess that our unbiased estimator of σ2 is proportional to the sum squared 
deviation from the average (similar to the messy attempt we gave up on earlier).  Since we know we must 
introduce μ into the computation, we choose to expand the sum by adding and subtracting μ: 

            22 2 2

1 1 1

2
n n n

i i i i
i i i

y y y y y y y y     
  

                    . 

Now we take ensemble averages, and bring them inside the summations: 
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        2 2 2

1 1 1

2
n n n

i i i
i i i

y y y y y n y   
  

          . (7.5) 

All the ensemble averages on the RHS now equal their population averages.  We consider each of the three 
terms in turn: 

    2 2 2
i i

ensemble population
y y      , and the summation in the first term on the right is 

n times this.   

 In the 2nd term on the RHS, the averages of both factors, (yi – μ) and ( )y  , are zero, so we drop 
that term. 

    2 2 2var( ) /y y y n       . 

Then: 

     2 22 2 2 2

1 1

11 (wrong!)
1

n n

i i
i i

y y n n s y y
n

  
 

       
  . (7.6) 

Clearly, this is wrong: the denominator should be (n – 1).  What happened?  See if you can figure it out 
before reading further. 

Really, stop reading now, and figure out what went wrong.  Apply our statistical algebra. 

The error is in the second bullet above: just because two RVs both average to zero doesn’t mean their 
product averages to zero (see the average of a product, earlier).  In fact, the average of the product must 
include their covariance.  In this case, any given yi correlates (positively) with y  because y  includes each 
yi.  Since the y  is negated in the 2nd factor, the final correlation is negative.  Then for a given k, using the 
bilinearity of covariance (μ is constant): 

      
1

1cov , cov , cov ,
n

k k k j
j

y y y y y y
n

 


 
      
 
 

 . 

By assumption, the yi are independent samples of y, and therefore have zero covariance between them: 

2cov( , ) 0, , and cov( , )k j k ky y k j y y    . 

The only term in the summation over j that survives the covariance operation is when j = k: 

    
21cov , cov ,k k ky y y y

n n
         

 
. 

Therefore, equation (7.6) should include the summation term from (7.5) that we incorrectly dropped.  The 
ensemble average of each term in that summation is the same, which we just computed, so the result is n 
times (–σ2/n): 

     
2

2 22 2 2 2

1 1

12 1 (right!)
1

n n

i i
i i

y y n n n s y y
n n
  

 

        
  . 

Order is restored to the universe. 
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Introduction to Data Fitting (Curve Fitting) 
Suppose we have an ideal process, with an ideal curve mapping an independent variable x to a 

dependent variable y.  Now we take a set of measurements of this process, that is, we measure a set of data 
pairs (xi, yi), Figure 7.4 left. 

x

y(x)

Ideal curve, 
with non-ideal data

x

Data, 
with straight line guess

y(x)

 
Figure 7.4  (Left) Ideal curve with non-ideal data.  (Right) The same data with a straight line fit. 

Suppose further we don’t know the ideal curve, but we have to guess it.  Typically, we make a guess of the 
general form of the curve from theoretical or empirical information, but we leave the exact parameters of 
the curve “free.”  For example, we may guess that the form of the curve is a straight line (Figure 7.4 right): 

y mx b  , 

but we leave the slope and intercept (m and b) of the curve as-yet unknown.  (We might guess another 
form, with other, possibly more parameters.)  Then we fit our curve to the data, which means we compute 
the values of m and b which “best” fit the data.  “Best” means that the values of m and b minimize some 
measure of “error,” called the figure of merit, compared to all other values of m and b.  For data with 
constant uncertainty, the most common figure of merit is the sum-squared residual:  

    

2

1

22

1 1

sum-squared-residual

( ) is our fitting function .

n

i
i

n n

i i i i
i i

SSE residual

measurement curve measurement f x

where f x



 

 

   



    

The (measurement – curve) is often written as (O – C) for (observed – computed).  In our example of fitting 
to a straight line, for given values of m and b, we have: 

 22

1 1

( )
n n

i i i
i i

SSE residual y mx b
 

     . 

Curve fitting is the process of finding the values of all our unknown parameters  
such that (for constant uncertainty) they minimize the sum-squared residual from our data. 

The purpose of fitting, in general, is to estimate parameters, some of which may not have simple, closed-
form estimators. 

We discuss data with varying uncertainty later; in that more general case, we adjust parameters to 
minimize the χ2 parameter. 
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Goodness of Fit 
Chi-Squared Distribution 

You don’t really need to understand the χ2 distribution to understand the χ2 parameter, but we start 
there because it’s helpful background. 

Notation: ( )X D x  means X is a random variable with probability distribution function (PDF) = 

D(x).  ( )X kD x  means X is an RV which is k (a constant) times an RV which is  D.  

Chi-squared (χ2) distributions are a family of distributions characterized by one parameter, called ν 
(Greek nu).  (Contrast with the gaussian distribution, which has two real parameters, the mean, μ, and 
standard deviation, σ.)  So we say “chi-squared is a 1-parameter distribution.”  ν is almost always an 
integer.  The simplest case is ν = 1: if we define a new random variable X from a gaussian random variable 
χ, as: 

2 2, ( 0, 1), i.e. avg 0, variance 1X where gaussian         , 

then X has a χ2
1 distribution.  I.e., χ2

ν=1(x) is the probability distribution function of the square of a zero-
mean unit-variance gaussian. 

For general ν,  χ2
ν(x) is the PDF of the sum of the squares of ν independent gaussian random variables: 

2 2

1

, ( 0, 1), i.e. avg 0, std deviation 1i i
i

Y where gaussian


   


      . 

Thus, the random variable Y above has a χ2
ν distribution.  [picture??]  Chi-squared random variables are 

always ≥ 0, since they are the sums of squares of gaussian random variables.  Since the gaussian 
distribution is continuous, the chi-squared distributions are also continuous.   

             
Figure 7.5  PDF (left) and CDF (right) of some χ2 distributions.  χ2

1(0)  ∞.  χ2
2(0) = ½.  

[http://en.wikipedia.org/wiki/Chi-squared_distribution] 

From the definition, we can also see that the sum of two chi-squared random variables is another chi-
squared random variable: 

2 2 2Let , , thenn m n mA B A B       . 

By the central limit theorem, this means that for large ν, chi-squared itself approaches gaussian.  However, 
a χ2 random variable (RV) is always positive, whereas any gaussian PDF extends to negative infinity. 

We can show that: 

 
   

2 2
1 1

2 2 2

1, var 2

, var 2 dev 2  

 

     

 

    
 

We don’t usually need the analytic form, but for completeness: 
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/ 2 1 / 2
2

/ 2PDF : ( ) . For 3, there is a maximum at 2
( / 2)2

x

r
x ex

r



  
 

  


. 

For ν = 1 or 2, there is no maximum, and the PDF is monotonically decreasing. 

Chi-Squared Parameter 

As seen above, χ2 is a continuous probability distribution.  However, there is a goodness-of-fit test 
which computes a parameter also called “chi-squared.”  This parameter is from a distribution that is often 
close to a χ2 distribution, but be careful to distinguish between the parameter χ2 and the distribution χ2. 

The chi-squared parameter is not required to be from a chi-squared distribution, though it often is.  All 
the chi-squared parameter really requires is that the variances of our residuals add, which is to say that our 
residuals are uncorrelated (not necessarily independent, though independence implies uncorrelated).   

The χ2 parameter is valid for any distribution of uncorrelated residuals. 
The χ2 parameter has a χ2 distribution only if the residuals are gaussian.  

However, for large ν, the χ2 distribution approaches gaussian, as does the sum of many values of any 
distribution.  Therefore: 

The χ2 distribution is a reasonable approximation to the distribution of any χ2 parameter  
with ν >~ 20, even if the residuals are not gaussian [ref??]. 

To illustrate, consider a set of measurements, each with uncertainty u.  Then if the set of 
{(measurement – model)/u} has zero mean, it has standard-deviation = 1, even for non-gaussian residuals: 

 2 2

Define: dev( ) standard deviation of random variable , also written ,

var( ) dev( ) variance of random variable , also written .

dev 1 var 1.

X

X

X X

X X X

residual residual
u u







 

        
   

 

As a special case, but not required for a χ2 parameter, if our residuals are gaussian: 

2
2
1(0,1)residual residualgaussian

u u
    

 
. 

Often, the uncertainties vary from measurement to measurement.  In that case, we are fitting a curve to 
data triples: (xi, yi, ui).  Still, the error divided by uncertainty for any single measurement is unit deviation: 

 dev 1, and var 1, for alli i

i i

residual residual i
u u

   
    

   
. 

If we have n measurements, with uncorrelated residuals, then because variances add: 
2

2

1 1

var . For gaussian errors:
n n

i i
n

i ii i

residual residual
n

u u


 

   
        

  . 

Returning to our ideal process from Figure 7.4, with a curve mapping an independent variable x to a 
dependent variable y, we now take a set of measurements with known uncertainties ui. 
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x

y(x)

 
Then our dimensionless parameter χ2 is defined as: 

2 2
2 2 2

1 1

If gaussian residuals,
n n

i i i
n

i ii i

residual measurement curve
u u

  
 

               
  . 

If n is large, this sum will be close to the average, and (for zero-mean errors): 

2
2

1

n
i

ii

residual
n

u




 
  

 
 . 

Now suppose we have fit a curve to our data, i.e. we guessed a functional form, and found the 
parameters which minimize the χ2 parameter for that form with our data.  If our fit is good, then our curve 
is very close to the “real” dependence curve for y as a function of x, and our errors will be essentially 
random (no systematic error).  We now compute the χ2 parameter for our fit: 

2 2
2

1 1

n n
i i i

i ii i

residual measurement fit
u u


 

   
    

   
  . 

If our fit is good, the number χ2 will likely be close to n.  (We will soon modify the distribution of the χ2 
parameter, but for now, it illustrates our principle.) 

If our fit is bad, there will be significant systematic fit error in addition to our random error, and our χ2 
parameter will be much larger than n.  Summarizing: 

If χ2 is close to n, then our fit residuals are no worse than our measurement  
uncertainties, and the fit is “good.”  If χ2 is much larger than n, then our  

fit residuals are worse than our measurement uncertainties, so our fit must be “bad.” 

Degrees of freedom:  So far we have ignored the “degrees of freedom” of the fit, which we now 
motivate.  (We prove this in detail later.)  Consider again a hypothetical fit to a straight line.  We are free to 
choose our parameters m and b to define our “fit-line.”  But in a set of n data points, we could (if we 
wanted) choose our m and b to exactly go through two of the data points: 
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x

y(x)

 
This guarantees that two of our fit residuals are zero.  If n is large, it won’t significantly affect the other 
residuals, and instead of χ2 being the sum of n squared-residuals, it is approximately the sum of (n – 2) 
squared-residuals.  In this case, 2 2n   .  A rigorous analysis (given later) shows that for the best fit 

line (which probably doesn’t go through any of the data points), and gaussian residuals, then 2 2n   , 

exactly.  This concept generalizes quite far:  

 Even if we don’t fit 2 points exactly to the line; 

 Even if our fit-curve is not a line; 

 Even if we have more than 2 fit parameters; 

the effect is to reduce the χ2 parameter to be a sum of less than n squared-residuals.  The effective number 
of squared-residuals in the sum is called the degrees of freedom (dof), and is given by: 

 #dof n fit parameters  . 

Thus for gaussian residuals, and p linear fit parameters, the statistics of our χ2 parameter are really: 

     2 2, dev 2 2dof n p dof n p       . (7.7) 

For nonlinear fits, we use the same formula as an approximation. 

Reduced Chi-Squared Parameter 

Since it is awkward for everyone to know n, the number of points in our fit, it is convenient to define a 
“goodness-of-fit” parameter that is independent of n.  We simply divide our chi-squared parameter by dof, 
to get the reduced chi-squared parameter.  Then it has these statistics: 

     

22
2

1
2

2

2
2

1reduced

reduced 1,

dev 2 2dev reduced .

n
i i

ii

measurement fit
dof dof u

dof
dof dof

dof
dof dof dof











 
   

 

  

  



 

If reduced χ2 is close to 1, the fit is “good.”  If reduced χ2 is much larger than 1, the fit is “bad.”  By “much 
larger” we mean several deviations away from 1, and the deviation gets smaller with larger dof (larger n). 

Of course, our confidence in χ2 or reduced-χ2 depends on how many data points went into computing 
it, and our confidence in our measurement uncertainties, ui.  Remarkably, one reference on χ2 [which I 
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don’t remember] says that our estimates of measurement uncertainties, ui, should come from a sample of at 
least five!  That seems to me to be quite small to have much confidence in u. 

Linear Regression 
Review of Multiple Linear Regression 

Most intermediate statistics texts cover multiple linear regression, e,g, [W&M p353], but we remind 
you of some basic concepts here: 

A simple example of multiple linear regression is this: you measure some observable y vs. an 
independent variable x, i.e. you measure y(x) for some set of x = {xi}.  You have a model for y(x) which is a 
linear combination of basis functions: 

0 1 1 2 2
1

( ) ( ) ( ) ... ( ) ( )
k

k k m m
m

y x b b f x b f x b f x b f x


      . 

You use multiple linear regression to find the coefficients bi of the basis functions fi which compose the 
measured function, y(x).  The basis functions need not be orthonormal.  Note that: 

Linear regression is not limited to fitting data to a straight line. 

Fitting data to a line is often called “fitting data to a line” (seriously).  We now show that there is no 
mathematical difference between fitting to a line and linear fitting to an arbitrary function (so long as the 
uncertainties in the x’s are negligible). 

The quirky part is understanding what are the “predictors” (which may be random variables) to which 
we perform the regression.  As above, the predictors can be arbitrary functions of a single independent 
variable, but they may also be arbitrary functions of multiple independent variables.  For example, the 
speed of light in air varies with 3 independent variables: temperature, pressure, and humidity: 

( , , )c c T P H  

Suppose we take n measurements of c at various combinations of T, P, and H.  Then our data consists of 
quintuples: (Ti, Pi, Hi, ci, ui), where ui is the uncertainty in ci.  We might propose a linear model: 

0 1 2 3 4( , , )c T P H b b T b P b H b TP     . 

The model is linear because it is a linear combination of arbitrary functions of T, P, and H.  The last term 
above handles an interaction between temperature and pressure.  In terms of linear regression, we have 4 
predictors: T, P, H, and TP (the product of T and P). 
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We Fit to the Predictors, Not the Independent Variable 
Figure 7.6 shows an example fit to a model: 

mod 1 1 1 1 1 1( ) ( ) sin( ) sin( )i iy t b x b f t b t x t      . 

There is only 1 fit-function in this example; the predictors are the x1i.  The fit is to the predictors, not to the 
independent variables ti.  In some cases, there is no independent variable; there are only predictors 
(Analysis of Variance includes such cases). 

t, 
independent 
variable

predictor:
x1i = f1(ti)

predictor:
x1i = f1(ti)

b1

1
-1

-b1(a) (b)

yi

 
Figure 7.6  (a) Example predictor: an arbitrary function of independent variable t.  (b) Linear fit to 
the predictor is a straight line.  The fit is not to t itself.  Even if the ti are evenly spaced, the 
predictors are not.  Note that the predictor values of –0.5 and +0.5 each occur 3 times.  This shows 
a good fit: the measured values (green) are close to the model values. 

Summarizing: 

1. Multiple linear regression predicts the values of some random variable yi from k (possibly 
correlated) predictors, xmi, m = 1, 2, ... k.  The predictors may or may not be random variables.  In 
some cases, the predictors are arbitrary functions of a single independent variable, ti: xmi = fm(ti).  
We assume that all the ti, yi, and all the fm are given., which means all the xmi = fm(ti) are given.  In 
other cases, there are multiple independent variables, and multiple functions of those variables. 

2. It’s linear prediction, so our prediction model is that y is a linear combination of the predictors, 
{xm}: 

 0 1 1 2 2
1

...
k

k k m m
m

y b b x b x b x b x


      . 

Note that we have included b0 as a fitted constant, so there are k + 1 fit parameters: b0 ... bk.  
This is quite common, in practice, but not always necessary.  Note that the prediction model 
has no subscripts of i , because the model applies to all xm and y values. 

3. Our measurement model includes the prediction model, plus measurement noise, εi: 

 0 1 1 2 2
1

... , 1,2, ...
k

i i i k ki i m mi i
m

y b b x b x b x b x i n 


 
          

 
 . 

For a given set of measurements, the εi are fixed, but unknown.  Over an ensemble of many 
sets of measurements, the εi are random variables.  The measurement uncertainty is defined 
as the 1-sigma deviation of the noise: 

  devi iu  . 

Note that the measurement model assumes additive noise (as opposed to, say, multiplicative 
noise). 

4. Multiple linear regression determines the unknown regression coefficients b0, b1, ... bk from n 
samples of the y and each of the xm.  For least-squares fitting, we simultaneously solve the 
following k + 1 linear equations in k + 1 unknowns for the bm [W&M p355]: 
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 0 1 1 2 2
1 1 1 1

...
n n n n

i i k ki i
i i i i

b n b x b x b x y
   

        . 

And for each m = 1, 2, ... k: 

 0 1 1 2 2
1 1 1 1 1

...
n n n n n

mi mi i mi i k mi ki mi i
i i i i i

b x b x x b x x b x x x y
    

         . 

Again, all the yi and xmi are given.  Therefore, all the sums above are constants, on both the left and right 
sides.  In matrix form, we solve for b ≡ (b0, b1, ... bk)T from: 

 

 

1 0
2

11 1 1 1

2
1

...

...
or

:: : : :

...

i ki i

i i i ki i i

ki ikki ki i ki

n x x yb

bx x x x x y

x ybx x x x

        
    
     
    
             

  
   

  

Xb y


. 

Examples:  For fitting to a line, in our notation, our model is: 

0 1( )y x b b x  . 

k + 1 = 2: our 2 parameters are b0 and b1.  Written in terms of functions, we have f1(x) = x. 

For a sinusoidal periodogram analysis, we typically have a set of measurements yi at a set of times ti.  
Given a trial frequency ω, we wish to find the least-squares cosine and sine amplitudes that best fit our 
data.  Thus: 

1 2 1 22 : cos, sin, cos( ), sin( ), 1,2, ...i i i ik f f x t x t i n       , 

and our fit model is: 

0 1 2( ) cos( ) sin( )y t b b t b t    . 

(In practice, the (now deprecated) L-S algorithm employs a trick to simplify solving the equations, but we 
need not consider that here.) 

Fitting to a Polynomial is Multiple Linear Regression 

Fitting a polynomial to data is actually a simple example of multiple linear regression (see also the 
Numerical Analysis section for exact polynomial “fits”).  Polynomial fit-functions are just a special case of 
multiple linear regression [W&M p357], where we are predicting yi from powers of xi.  As such, we let 

 m
mi ix t , and proceed with standard multiple linear regression:  

2
0 1 2

1 1 1 1

( ) ...
n n n n

k
i i k i i

i i i i

b n b t b t b t y
   

        . 

And for each m = 1, 2, ... k: 

1 2
0 1 2

1 1 1 1 1

...
n n n n n

m m m m k m
i i i k i i i

i i i i i

b t b t b t b t t y  

    

         . 

The Sum-of-Squares Identity 
The sum of squares identity is a crucial tool of linear fitting (aka linear regression).  It underlies many 

of the basic statistics of multiple linear regression and Analysis of Variance (or AOV).  The sum of squares 
identity can be used to define the “coefficient of determination” (and the associated “correlation 



physics.ucsd.edu/~emichels  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

5/7/2015  11:21  Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 113 of 263  

coefficient”), and also provides the basis for the F-test and t-test of fit parameter significance.  Since 
ANOVA is actually a special case of multiple linear regression, we describe here the regression view.  The 
ANOVA results then follow directly.   

We first consider the case where all the measurements have the same uncertainty, σ (the 
homoskedastic case).  This is a common situation in practice, and also serves as a starting point for the 
more-involved case where each measurement has its own uncertainty (the heteroskedastic case).  
Furthermore, there is a transformation from heteroskedastic measurements into an equivalent set of 
homoskedastic measurements, which are then subject to all of the following homoskedastic results. 

We proceed along these steps: 

 The raw sum of squares identity. 

 The geometric view of a least-squares fit. 

 The ANOVA sum of squares identity. 

 The failure of the ANOVA sum of squares identity. 

 Later, we provide the equivalent formulas for data with individual uncertainties. 

Nowhere in this section do we make any assumptions at all about the residuals;  
we do not assume they are gaussian, nor independent, nor even random.   

This section assumes you understand the concepts of linear fitting.  We provide a brief overview here, and 
introduce our notation. 

A linear fit uses a set of p coefficients, b1, ... bp, as fit parameters in a model with arbitrary fit 
functions.  The “model” fit is defined as: 

mod 1 1 2 2
1

( ) ( ) ( ) ... ( ) ( )
p

p p m m
m

y x b f x b f x b f x b f x


     . 

Note that a linear fit does not require that y is a straight-line function of x.   

There is a common special case where we include a constant offset b0 in the model.  In this case, there 
are p–1 fit functions, since p is always the total number of fit parameters: 

1

mod 0 1 1 2 2 1 1 0
1

( ) ( ) ( ) ... ( ) ( )
p

p p m m
m

y x b b f x b f x b f x b b f x


 


       . 

Note that this is equivalent to including a fit function f0(x) = 1, so it is really no different than the first 
model given above.  Therefore, the first form is completely general, and includes the second.  Anything 
true of the first form is also true of the second, but the reverse is not true.  We use both forms, depending 
on whether our model includes b0 or not.   

For a set of n pairs (xi, yi), the “fit” means finding the values of bm that together minimize the sum-
squared residual: 

 

mod, mod mod,
1

2 2
mod,

1 1

define: ( ) ( ), .

minimize: .

p

i i m m i i i i
m

n n

i i i
i i

y y x b f x y y

SSE y y







 

   

  



 
. 

Note that the fit residuals εi may include both unmodeled behavior, as well as noise (which, by definition, 
cannot be modeled). 
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The Raw Sum-of-Squares Identity 
Most references do not consider the raw sum of squares (SSQ) identity.  We present it first because it 

provides a basis for the more-common ANOVA SSQ identity, and it is sometimes useful in its own right.  
Consider a set of data (xi, yi), i = 1, ... n.  Conceptually, the SSQ identity says the sum of the squares of the 
yi can be partitioned into a sum of squares of model values plus a sum of squares of “residuals” (often 
called “errors”): 

 22 2
mod, mod,

1 1 1

(raw) :
n n n

i i i i
i i i

SST SSA SSE y y y y
  

       . (7.8) 

(The term “errors” can be misleading, so in words we always use “residuals.”  However, we write the term 
as SSE, because that is so common in the literature.)  The SSQ identity is only true for a least-squares linear 
fit to a parametrized model, and has some important non-obvious properties.  We start with some examples 
of the identity, and provide simple proofs later.   

y

1

2

1
x

y
1

1
x

-1

-1

y = 0.1

y
1

1
x

-1

-1(a) (b) (c)  
Figure 7.7 (a) Two data points, n = 2, and best-fit 1-parameter model.  (b) Three data points, n = 
3, and best-fit 1-parameter model.  (c) Three data points, n = 3, and best-fit 2-parameter model. 

Example:  n = 2, p = 1:  Given a data set of two measurements (0, 1), and (1, 2) (Figure 7.7a).  We 
choose a 1-parameter model: 

1( )y x b x . 

The best fit line is b1 = 2, and therefore y(x) = 2x.  (We see this because the model is forced through the 
origin, so the residual at x = 0 is fixed.  Then the least squares residuals are those that minimize the error at 
x = 1, which we can make zero.)  Our raw sum-of-squares identity (7.8) is: 

   2 2 2 2 2 21 2 0 2 1 0 5 4 1
SST

SSA SSE

         
. 

Example:  n = 3, p = 1:  Given a data set of three measurements (–1, –1), (0, 0.3), and (1, 1) (Figure 
7.7b).  We choose a 1-parameter model: 

1( )y x b x . 

The best fit line is b1 = 1, and therefore y(x) = x.  (We see this because the model is forced through the 
origin, so the residual at x = 0 is fixed.  Then the least squares residuals are those that minimize the errors at 
x = –1 and x = 1, which we can make zero.)  Our raw sum-of-squares identity (7.8) is: 

    22 2 2 2 2 2 2 21 0.3 1 1 0 1 0 0.3 0 2.09 2 0.09
SST

SSESSA

            
. 

Example:  n = 3, p = 2:  We consider the same data: (–1, –1), (0, 0.3), and (1, 1), but we now include a 
b0 DC-offset parameter in the model: 

0 1( )y x b b x  . 
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The best fit line is b0 = 0.1, b1 = 1, and therefore y(x) = 0.1 + x, shown in Figure 7.7c.  (We see this because 
the fit functions are orthogonal over the given {xi}, and therefore the fit parameters {bm} can be found by 
correlating the data with the fit functions, normalized over the {xi}.  Trust me on this.) 

    22 2 2 2 2 2 2 21 0.3 1 1 0 1 0 0.3 0 2.09 2 0.09
SST

SSESSA

            
. 

The raw sum-of-squares identity holds for any linear least-squares fit,  
even with non-gaussian (or non-random) residuals. 

In general, the SSQ identity does not hold for nonlinear fits, as is evident from the following sections.  This 
means that none of the linear regression statistics are valid for a nonlinear fit. 

The Geometric View of a Least-Squares Fit 
The geometric view of least-squares fitting requires defining an new kind of vector space: 

measurement space (aka “observation space”).  This is an n-dimensional space, where n ≡ the number of 
measurements in the data set.  Our sets of measurements {yi}, residuals {εi}, etc. can be viewed as vectors: 

 1 2 1 2( , , ... ), , , ... , etc.n ny y y    y ε  

Thus, the entire set of measurements is a single point in measurement space (Figure 7.8).  We write that 
point as the displacement vector y.  If we have 1000 measurements, then measurement space is 1000-
dimensional.  Measurement space is the space of all possible data sets {yi}, with the {xi} fixed. 

y2

1
y1

(a)

ymod

2 ε
y

y1

y2

y3

(-1, 0, 1)(1,1,1)

best-fit
(-0.9, 0.1, 1.1) y = (-1, 0.3, 1)ε

(b)

y2

1
y1

(c)

fm

ε
y

 
Figure 7.8 (a) Measurement space, n = 2, and best-fit 1-parameter model.  (b) Measurement 
space, n = 3, and the 2-parameter model surface within it.  (c) The shortest ε is perpendicular to 
every fm. 

Given a set of parameters {bm} and the sample points {xi}, the model (with no residuals) defines a set 
of measurements, ymod,i, which can also be plotted as a single point in measurement space.  For example, 
Figure 7.8a shows our n = 2 model y = b1x, taken at the two abscissa value x1 = 0, and x2 = 1, which gives 
ymod,1 = 0, ymod,2 = b1.  The least squares fit is b1 = 2.  Then the coordinates (ymod,1, ymod,2) = (0, 2) give the 
model vector ymod in Figure 7.8a.   

Note that by varying the bm, the model points in measurement space define a p-dimensional subspace 
of it.  In Figure 7.8a, different values of b1 trace out a vertical line through the origin.  In this case, p = 1, so 
the subspace is 1D: a line. 

The n = 3 case is shown in Figure 7.8b.  Here, p = 2, so the model subspace is 2D: a plane in the 3D 
measurement space.  Different values of b0 and b1 define different model points in measurement space.  For 
a linear fit, the origin is always on the model surface: when all the bm = 0, all the model yi = 0.  Therefore, 
the plane goes through the origin.  Two more points define the plane: 

 
 

0 1

0 1

1, 0 1,1,1

0, 1 1,0,1

b b

b b

   

    

y

y
 

As shown, the model plane passes through these points.  Again using linearity, note that any model vector 
(point) lies on a ray from the origin, and the entire ray is within the model surface.  In other words, you can 
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scale any model vector by any value to get another model vector.  To further visualize the plane, note that 
whenever b1 = –b0, y3 = 0.  Then y1 = –b1 + b0 = 2b0, and y2 = b0; therefore, the line y2 = 0.5 y1 lies in the 
model surface, and is shown with a dashed line in Figure 7.8b. 

The green dot in Figure 7.8b is the measurement vector y (in front of the model plane).  The best-fit 
model point is (-0.9, 0.1, 1.1).  The residual vector ε goes from the model to y, and is perpendicular to the 
model plane. 

The model surface is entirely determined by the model (the fm(x)), and the sample points {xi}. 

The measured values {yi} will then determine the best-fit model, which is a point on the model surface. 

In Figure 7.8a and b, we see that the residual vector is perpendicular to the best-fit linear model vector.  
Is this always the case?  Yes.  If the model vector were shorter (Figure 7.8c), ε would have to reach farther 
to go from there to the measurement vector y.  Similarly, if the model vector were longer, ε would also be 
longer.  Therefore the shortest residual vector (least sum squared residual) must be perpendicular to the 
best-fit model vector.  This is true in any number of dimensions.  From this geometry, we can use the n-
dimensional Pythagorean Theorem to prove the sum of squares identity immediately (in vector notation): 

2 2 2 2
mod mod0 , etc.

SSESST SSA

where    ε y y y ε y y y  
 

Fit parameters as coordinates of the model surface:  We’ve seen that each point on the model 
surface corresponds to a unique set of {bm}.  Therefore, the bm compose a new coordinate system for the 
model surface, different from the yi coordinates.  For example, in Figure 7.8b, the b0 axis is defined by 
setting b1 = 0.  This is the line through the origin and the model point y = (1, 1, 1).  The b1 axis is defined 
by setting b0 = 0.  This is the line through the origin and y = (–1, 0, 1).  In general, the bm axes need not be 
perpendicular, though in the case, they are.   

In Figure 7.8b, ε is perpendicular to every vector in the model plane.  In general, ε is perpendicular to 
every fm vector (i.e. each of the m components of the best-fit model vector): 

 1 20 1, ... ( ), ( ), ... ( )m m m m m m nm p where b f x f x f x   ε f f . 

Again, this must be so to minimize the length of ε, because if ε had any component parallel to any fm, then 
we could make that fm longer or shorter, as needed, to shrink ε (Figure 7.8c).  We’ll use this 
perpendicularity in the section on the algebra of the sum of squares. 

Algebra and Geometry of the Sum-of-Squares Identity 
We now prove the sum of squares (SSQ) identity algebraically, and highlight its corresponding 

geometric features.  We start by simply subtracting and adding the model values ymod,i in the sum of 
squares: 

    2 22
mod, mod, mod,

1 1 1

2 2
mod, mod,

1 1 1

2 .

n n n

i i i i i i
i i i

n n n

i i i i
i i i

y y y y y

y y



 

  

  

    

  

  

  
 (7.9) 

The last term is ε·ymod, which we’ve seen geometrically is zero.  We now easily show it algebraically: since 
SSE is minimized w.r.t. all the model parameters bm, its derivative w.r.t. each of them is zero.  I.e., for each 
k: 

2

1 1 1 1

0 2 2 ( )
pn n n

i i i i i m m i
k k k ki i i m

SSE y b f x
b b b b

   
   

          
      

    . 

In this equation, all the yi are constant.  The only term that survives the partial derivative is where m = k.  
Dividing by –2, we get: 
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1 1

0 ( ) ( ) 0
n n

i k k i i k i m
ki i

b f x f x
b

 
 


   

  ε f . (7.10) 

Therefore, the last term in (7.9) drops out, leaving the SSQ identity. 

The ANOVA Sum-of-Squares Identity 
It is often the case that the DC offset in a set of measurements is either unmeasurable, or not relevant.  

This leads to ANalysis Of Variance (ANOVA), or analysis of how the data varies from its own average.  
In the ANOVA case, the sum-of-squares identity is modified: we subtract the data average y  from both the 
yi and the ymod: 

     2 22
mod, mod,

1 1 1

(ANOVA) :
n n n

i i i i
i i i

SST SSA SSE y y y y y y
  

         . (7.11) 

This has an important consequence which is often overlooked: the ANOVA sum-of-squares identity holds 
only if the model includes a DC offset (constant) fit parameter, which we call b0. 

Example:  n = 3, p = 2:  We again consider the data of Figure 7.7c: (–1, –1), (0, 0.3), and (1, 1).  We 
now use the ANOVA sum-of-squares, which is allowed because we have a b0 (DC offset) in the model: 

0 1( )y x b b x  . 

  Our ANOVA sum-of-squares identity (7.11) is, using 0.1y  : 

         2 2 2 22 2 2 2 21.1 0.2 0.9 1 0 1 0.1 0.2 0.1 2.06 2 0.06
SST SSA SSE

              
  

. 

The ANOVA sum-of-squares identity holds for any linear least-squares fit that includes a DC 
offset fit parameter (and also in the special case that the sum of residuals (not squared) = 0). 

With no DC offset parameter in the model, in general,  
the ANOVA sum-of-squares identity fails.   

We prove the ANOVA SSQ identity (often called just “the sum of squares identity”) similarly to our 
proof of the raw SSQ identity.  We start by subtracting and adding ymod,i to each term: 

         

   

 

2 22
mod, mod, mod,

1 1 1

22
mod, mod,

1 1 1

22
mod, mod,

1 1 1

2

2

n n n

i i i i i i
i i i

n n n

i i i i
i i i

n n n

i i i i
i i i

y y y y y y y y

y y y y

y y y



 

 

  

  

  

       

    

   

  

  

  
1

2 .
n

i
i

y 


 

 

Compared to the raw SSQ proof, there is an extra 4th term.  The 3rd term is zero, as before, because ε is 
shortest when it is perpendicular to the model.  The 4th term is zero when the sum of the residuals is zero.  
This might happen by chance (but don’t count on it).  However, it is guaranteed if we include a DC offset 
parameter b0 in the model.  Recall that the constant b0 is equivalent to a fit function f0(x) = 1.  We know 
from the raw SSQ proof that for every k: 

0
1 1 1

( ) 0 ( ) 0
n n n

k i k i i i i
i i i

f x f x   
  

      b . 

QED. 
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The necessary and sufficient condition for the ANOVA SSQ identity to hold is that the sum of the 
residuals is zero.  A sufficient condition (and the most common) is that the fit model contains a constant 
(DC offset) fit parameter b0. 

The Failure of the ANOVA Sum-of-Squares Identity 
The ANOVA sum-of-squares identity fails when the sum of the residuals is not zero: 

1

0 (ANOVA)
n

i
i

SST SSA SSE


    . 

(We proved this when we proved the ANOVA SSQ identity.)  This pretty much mandates including a b0 
parameter, which guarantees the sum of the residuals is zero.  You might think this is no problem, because 
everyone probably already has a b0 parameter; however, the traditional Lomb-Scargle algorithm [Sca 1982] 
fails to include a b0 parameter, and therefore all of its statistics are incorrect.  The error is worse for small 
sample sizes, and better for large ones. 

As an example of the failure of the sum-of-squares identity, consider again the data of Figure 7.7a: n = 
2 measurements, (0, 1), and (1, 2).  As before, we fit the raw data to y = b1x, and the best-fit is still b1 = 2.  
We now incorrectly try the ANOVA sum-of-squares identity, with 1.5y  , and find it fails: 

    
2 2 ? 2 2 2 21 1 11.5 0.5 1 0 2.5 1

2 2 2
SSESSASST

               
    

. 

For another example, consider again the n = 3 data from earlier: (–1, –1), (0, 0.3), and (1, 1).  If we fit 
with just y = b1x, we saw already that b1 = 1 (Figure 7.7b).  As expected, because there is no constant fit 
parameter b0, the sum of the residuals is not zero: 

 mod,
1 1

0 0.3 0 0
n n

i i i
i i

y y
 

       . 

Therefore, the ANOVA sum-of-squares identity fails: 

        
?2 2 22 2 2 2 2 21.1 0.2 0.9 1.1 0.1 0.9 0 0.3 0 2.06 2.03 0.09

SST SSESSA

             
 

. 

In the above two examples, the fit function had no DC component, so you might wonder if including 
such a fit function would restore the ANOVA SSQ identity.  It doesn’t, because the condition for the 
ANOVA SSQ identity to hold is that the sum of residuals is zero.  To illustrate, we add a fit function, 
(x2 + 1) with a nonzero DC (average) value, so our model is this: 

 2
mod 1 2( ) 1y x b x b x   . 

The best fit is b1 = 1 (as before), and b2 = 0.0333 (from correlation).  Then ymod,i = (–0.933, 0.0333, 1.0667), 
and: 

           ?2 2 2 2 22 2 2 21.1 0.2 0.9 1.033 0.0667 0.967 0.0667 0.267 0.0667

2.06 2.007 0.08 .

SST SSA SSE

           

  

    

Subtracting DC Before Analysis 
A common method of trying to avoid problems of DC offset is to simply subtract the average of the 

data before fitting to it.  This generally fails to solve the DC problem (though it is often advisable for 
improved numerical accuracy in calculations).  Subtracting DC makes y = 0, so the ANOVA SSQ identity 
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is the same as the raw SSQ identity, and the raw identity always holds.  However, subtracting DC does not 
give an optimal fit when the fit functions have a DC offset over the {xi}.  The traditional Lomb-Scargle 
analysis [Sca 1982] has this error.  The only solution is to use a 3-parameter fit: a constant, a cosine 
component, and a sine component [Zeich 2009]. 

t

(a)  
Figure 7.9 (a) The top curve (blue) shows a cosine fit to data points.  The bottom curve (red) 
shows the same frequency fit to DC-subtracted data, and is a much worse fit. 

Figure 7.9 shows an example of the failure of DC-subtraction to fix the problem, and how DC-
subtraction can lead to a much worse fit.  Therefore: 

We must include the constant b0 parameter both to enable the other parameters to be properly fit, 
and to enable Analysis of Variance with the SSQ identity.   

In general, any fit parameter that we must include in the model, but whose value we actually don’t need, is 
called a nuisance parameter.  b0 is probably the most common nuisance parameter in data analysis. 

Fitting to Orthonormal Functions 
For p orthonormal fit functions, each bm can be found by a simple inner product:   

  mod
1

( ),
p

m m j k jk m m
m

y x b f x b


    f f f y  . 

As examples, this is how Fourier Transform coefficients are found, and usually how we find components of 
a ket in quantum mechanics. 

Hypothesis Testing with the Sum of Squares Identity 
A big question for some data analysts is, “Is there a signal in my data?”  For example, “Is the star’s 

intensity varying periodically?”  One approach to answering this question is to fit for the signal you expect, 
and then test the probability that the fit is just noise.  This is a simple form of Analysis of Variance 
(ANOVA).  This type of hypothesis is widely used throughout science, e.g. astronomers use this 
significance test in Lomb-Scargle and Phase Dispersion Minimization periodograms. 

To make progress in determining if a signal is present, we will test the hypothesis: 

H0: there is no signal, i.e. our data is pure noise. 

This is called the null hypothesis, because we usually define it to be a hypothesis that nothing interesting is 
in our data, e.g. there is no signal, our drug doesn’t cure the disease, the two classes are performing equally 
well, etc. 

After our analysis, we make one of two conclusions: either we reject H0, or we fail to reject it.  It is 
crucial to be crystal clear in our logic here.  If our analysis shows that H0 is unlikely to be true, then we 
reject H0, and take it to be false.  We also quantify our confidence level in rejecting H0, typically 95% or 
better.  Rejecting H0 means there is a signal, i.e. our data is not pure noise.  Note that rejecting H0, by itself, 
tells us nothing about the nature of the signal that we conclude is present.  In particular, it may or may not 
match the model we fitted for (but it certainly must have some correlation with our model).   
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However, if our analysis says H0 has even a fair chance of being true (typically > 5%), then we do not 
reject it.    

Failing to reject H0 is not the same as accepting it.  Failing to reject means either (a) H0 is true;  
or (b) H0 is false, but our data are insufficient to show that confidently. 

This point cannot be over-emphasized. 

Notice that scientists are a conservative lot: if we claim a detection, we want to be highly confident 
that our claim is true.  It wouldn’t do to have scientists crying “wolf” all the time, and being wrong a lot.  
The rule of thumb in science is, “If you are not highly confident, then don’t make a claim.”  You can, 
however, say that your results are intriguing, and justify further investigation. 

Introduction to Analysis of Variance (ANOVA) 
ANOVA addresses the question: Why don’t all my measurements equal the average?  The “master 

equation” of ANOVA is the sum of squares identity (see The Sum-of-Squares Identity section): 

total sum of squared variation

modeled sum of squared variation

residual sum of squared variation

SST SSA SSE where SST

SSA

SSE

  





 

This equation says that in our data, the total of “differences” from the average is the measured differences 
from the model, plus the unmodeled residuals.  Specifically, the total sum of squared differences (SST) 
equals the modeled sum of squared differences (SSA) plus the residual (unmodeled + noise) sum of squared 
differences (SSE).   

As shown earlier, for a least-squares linear fit, the master equation (the SSQ identity)  
requires no statistics or assumptions of any kind (normality, independence, ...).   

[ANOVA is identical to least-squares linear regression (fitting) to the “categorical variables.”  More later.] 

To test a hypothesis, we must consider that our data is only one set of many possible sets that might 
have been taken, each with different noise contributions, εi.  Recall that when considered over an ensemble 
of hypothetical data sets, all the fit parameters bm, as well as SST, SSA, and SSE are random variables.  It is 
in this sense that we speak of their statistical properties. 

For concreteness, consider a time sequence of data, such as a light curve with pairs of times and 
intensities, (tj, sj).  Why do the measured intensities vary from the average?  There are conceptually three 
reasons: 

 We have an accurate model, which predicts deviations from the average. 

 The system under study is more complex than our model, so there are unmodeled, but 
systematic, deviations. 

 There is noise in the measurement (which by definition, cannot be modeled). 

However, mathematically we can distinguish only two reasons for variation in the measurements: either we 
predict the variation with a model, or we don’t, i.e. modeled effects, and unmodeled effects.  Therefore, in 
practice, the 2nd and 3rd bullets above are combined into residuals: unmodeled variations in the data, which 
includes both systematic physics and measurement noise. 

This section requires a conceptual understanding of vector decomposition into both orthonormal and 
non-orthonormal basis sets. 

The Temperature of Liberty 
As prerequisite to hypothesis testing, we must consider a number of properties of the fit coefficients bk 

that occur when we apply linear regression to measurements y.  We then apply these results to the case 
when the “null hypothesis” is true: there is no signal (only noise).  We proceed along these lines:  
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 A look ahead to our goal. 

 The distribution of orthonormal fit coefficients, bm. 

 The non-correlation of orthonormal fit coefficients in pure noise. 

 The model sum-of-squares (SSA). 

 The residual sum-of-squares (SSE) in pure noise. 

A Look Ahead to the Result Needed for Hypothesis Testing 

To better convey where we are headed, the following sections will prove the degrees-of-freedom 
decomposition of the sum-of-squares (SSQ) identity: 

2 2 2
mod,(raw) i

dof n dof n pdof p

SST SSA SSE
  

    y y ε 
. 

We already proved the SSQ identity holds for any least-squares linear fit (regardless of the distribution of 
SSE).  To perform hypothesis testing, we must further know that for pure noise, the n degrees of freedom 
(dof) of SST also separate into p dof in SSA, and n – p dof in SSE.   

For the ANOVA SSQ identity, the subtraction of the average reduces the dof by 1, so the dof partition 
as: 

   22 2
mod,

1 1

(ANOVA) i
dof n pdof n dof p

SST SSA SSE y y
    

      y y ε 
. 

Distribution of Orthogonal Fit Coefficients in the Presence of Pure Noise 

We have seen that if a fit function is orthogonal to all other fit functions, then its fit coefficient is given 
by a simple correlation.  I.e., for a given k: 

1
2

2

1

( )

0 for all

( )

n

k i i
k i

k j k n
k

k i
i

f x y
j k b

f x





    



f y

f f
f


 . (7.12) 

We now further restrict ourselves to a normalized (over the {xi}) fit-function, so that: 

 2

1 1

( ) 1 ( )
n n

k i k k i i
i i

f x b f x y
 

    . 

We now consider an ensemble of sample sets of noise, each with the same set of {xi}, and each producing a 
random bk.  In other words, the bk are RVs over the set of possible sample-sets.  Therefore, in the presence 
of pure noise, we can easily show that var(bk) = var(y) ≡ σ2.  Recall that the variance of a sum (of 
uncorrelated RVs) is the sum of the variances, and the variance of k times an RV = k2var(RV).  All the 
values of fk(xi) are constants, and var(yi) = var(y) ≡ σ2; therefore from (7.12): 

2 2

1
1

var( ) ( ) var( )
n

k k i i
i

b f x y 


 
  
 
 



. 

This is a remarkable and extremely useful result:  

In pure noise, for a normalized fit-function orthogonal to all others, the variance of its least-
squares linear fit coefficient is that of the noise, regardless of the noise PDF. 

At this point, the noise need not be zero-mean.  In fact: 
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1
( )

y

n

k k i i
i

b f x y


 
 
 
 
 

. 

Since the sum has no simple interpretation, this equation is most useful for showing that if the noise is zero-
mean, then bk is also zero-mean: <bk> = 0.  However, if the fit-function fk taken over the {xi} happens to be 
zero mean, then the summation is zero, and even for non-zero mean noise, we again have <bk> = 0. 

Similarly, any weighted sum of gaussian RVs is a gaussian; therefore, if the yi are gaussian (zero-mean 
or not), then bk is also gaussian. 

Non-correlation of Orthogonal Fit Coefficients in Pure Noise 

We now consider the correlation between two fit coefficients, bk and bm (again, over multiple samples 
(sample sets) of noise), when the fit-functions fk and fm are orthogonal to each other, and to all other fit-
functions.  We show that the covariance cov(bk, bm) = 0, and so the coefficients are uncorrelated.  For 
convenience, we take fk and fm to be normalized: fk

2 = fm
2 = 1.  We start with the formula for a fit-coefficient 

of a fit-function that is orthogonal to all others, (7.12), and use our algebra of statistics: 

 
1 1

cov( , ) cov , cov ( ) , ( )
n n

k m k m k i i m j j
i j

b b f x y f x y
 

 
  
 
 
 f y f y  . 

Again, all the fk and fm are constants, so they can be pulled out of the cov( ) operator: 

 
1 1

cov( , ) ( ) ( )cov ,
n n

k m k i m j i j
i j

b b f x f x y y
 

 . 

As always, the yi are independent, and therefore uncorrelated.  Hence, when i ≠ j, cov(yi, yj) = 0, so only the 
i = j terms survive, and the double sum collapses to a single sum.  Also, cov(yi, yi) = var(yi) = σ2, which is a 
constant: 

 2

1
0

cov( , ) ( ) ( ) 0 ( & are orthogonal)
n

k m k i m i k m
i

b b f x f x f f


 


. 

This is true for arbitrary distributions of yi, even if the yi are nonzero-mean. 

In pure noise of arbitrary distribution, for fit-functions orthogonal to all others, 
the {bk} are uncorrelated. 

The Total Sum-of-Squares (SST) in Pure Noise 

The total sum of squares is: 

   

2

1

22

1 1

raw:

1ANOVA: , .

n

i
i

n n

i i
i i

SST y

SST y y y where y y
n



 

 

    



 

y y

y



 

For zero-mean gaussian noise, the raw SST (taken over an ensemble of samples) satisfies the definition 
of a scaled χ2 RV with n degrees of freedom (dof), i.e. SST/σ2  χ2

n.  As is well-known, the ANOVA SST, 

by subtracting off the sample average, reduces the dof by 1, so ANOVA SST/σ2  χ2
n–1. 
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The Model Sum-of-Squares (SSA) in Pure Noise 

We’re now ready for the last big step: to show that in pure noise, the model sum-of-squares (SSA) has 
p degrees of freedom.  The model can be thought of as a vector, ymod = {ymod,i}, and the basis functions for 
that vector are the fit-functions evaluated at the sample points, fm ≡ {fm(xi)}.  Then: 

mod
1

p

m m
m

b


y f . 

The fm may be oblique (non-orthogonal), and of arbitrary normalization.  However, for any model vector 
space spanned by ymod, there exists an orthonormal basis in which it may be written: 

mod
1

orthonormal basis, coefficients in the basis
p

m m m m
m

c where c


  y g g g . (7.13) 

We’ve shown that since the gm are orthonormal, the cm are uncorrelated, with var(cm) = σ2.  Now consider 
ymod

2 written as a summation: 

2
2

mod
1 1

( )
pn

m m i
i m

c g x
 

 
 
 
 

 y . 

Since the gm are orthogonal, all the cross terms in the square are zero.  Then reversing the order of 
summation gives:  

   2 22 2 2
mod

1 1 1 1 1
1

( ) ( )
p p pn n

m m i m m i m
m i m i m

c g x c g x c
    

     y


. (7.14) 

Therefore, ymod
2 is the sum of p uncorrelated RVs (the cm

2).  Using the general formula for the average of 
the square of an RV (7.2): 

2 2 22 2 2 2
mod

1

var( )
p

m m m m m
m

c c c c c p 


 
       
 
 
y . 

This is true for any distribution of noise, even non-zero-mean.  In general, there is no simple formula for 
var(ymod

2).   

If the noise is zero-mean, then each <cm> = 0, and the above reduces to: 

2 2
mod (zero-mean noise)py . 

If the noise is zero-mean gaussian, then the cm are zero-mean uncorrelated joint-gaussian RVs.  This is 
a well-known condition for independence [ref ??], so the cm are independent, gaussian, with variance σ2.  
Then (7.14) tells us that, by definition, ymod

2 is a scaled chi-squared RV with p degrees of freedom: 

2
2mod

2 2(raw) (zero-mean gaussian noise)p
SSA 

 
 

y . 

We developed this result using the properties of the orthonormal basis, but our model ymod, and therefore 
ymod

2, are identical in any basis.  Therefore, the result holds for any p fit-functions that span the same model 
space, even if they are oblique (i.e. overlapping) and not normalized. 

For the ANOVA SSQ identity, a similar analysis shows that the constraint of y  removes one degree of 
freedom from SSA, and therefore, for zero-mean noise: 

   2 2
mod 1 (zero-mean noise)y p   y . 
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For zero-mean gaussian noise, then: 

 2mod 2
12 2 (ANOVA SSQ, zero-mean gaussian noise)p

y SSA 
 




 
y

. 

If instead of pure noise, we have a signal that correlates to some extent with the model, then 

 2mod yy  will be bigger, on average, than (p – 1)σ2.  That is, the model will explain some of the 
variation in the data, and therefore the model sum-of-squares will (on average) be bigger than just the noise 
(even non-gaussian noise).  : 

   2 2
mod 1 (signal + zero-mean noise)y SSA p    y . 

The Residual Sum-of-Squares (SSE) in Pure Noise 

We determine the distribution of SSE in pure noise from the following: 

 For least-squares linear fits: SST SSA SSE  . 

 From our analysis so far, in pure gaussian zero-mean noise:  
2 2 2 2

1 1/ , /n pSST SSA      . 

 From the definition of χ2
ν, the sum of independent χ2 RVs is another χ2 RV, and the dof add. 

These are sufficient to conclude that SSE/σ2 must be χ2
n–p, and must be independent of SSA.  [I’d like to 

show this separately from first principles??]: 

2 2/ (for pure gaussian zero-mean noise)n pSSE    . 

The F-test: The Decider for Zero Mean Gaussian Noise 
In the sections on linear fitting, our results are completely general, and we made no assumptions at all 

about the nature of the residuals.  In the more recent results under hypothesis testing, we have made the 
minimum assumptions possible, to have the broadest applicability possible.  However: 

To do quantitative hypothesis testing,  
we must know something about the residual distribution in our data. 

One common assumption is that our noise is zero-mean gaussian.  Then we can quantitatively test if 
our data are pure noise, and establish a level of confidence (e.g., 98%) in our conclusion.  Later, we show 
how to use simulations to remove the restriction to gaussian noise, and establish confidence bounds for any 
distribution of residuals. 

For zero-mean pure gaussian noise only: we have shown that the raw 2 2( / ) pSSA   .  We have also 
indicated that for ANOVA: 

 
 
 

2 2 2
1

2 2 2
1

22 2

/ / 1

/ / 1

//

n

p

n p

SST SST n

SSA SSA p

SSE n pSSE

  

  

 







  
   


  

 

Furthermore, SSA and SSE are statistically independent, and each provides an estimate of the noise variance 
σ2. 

[Note that the difference between two independent χ2 RVs has no simple distribution.  This means that SST is 
correlated with SSA in just the right way so that (SST – SSA) = SSE is σ2χ2 distributed with p – 1 dof; similarly 
SST is correlated with SSE such that (SST – SSE) = SSA  σ2χ2 with n – p dof.] 
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We can take the ratio of the two independent estimates of σ2, and in pure noise, we should get 
something close to 1: 

 
   / 1

1 in pure noise
/

SSA p
f

SSE n p


 


. 

Of course, this ratio is itself a random variable, and will vary from sample set to sample set.  The 
distribution of this RV is the Fisher–Snedecor F-distribution.  It is the distribution of the ratio of two 
reduced-χ2 parameters.  Its closed-form is not important, but its general properties are.  First, the 
distribution depends on both the numerator and denominator degrees of freedom, so F is a two-parameter 
family of distributions, denoted here as F(dof num, dof denom; f).  (Some references use F to denote the 
CDF, rather than PDF.) 

If our test value f is much larger than 1, we might suspect that H0 is false: we actually have a signal.  
We establish this quantitatively with a one-sided F-test, at the  level of significance (Figure 7.10): 

1, 0_ ; rejectp n pf critial value F H     . 

If f > critical value, then it is unlikely to be the result of pure noise.  We therefore reject H0 at the  level of 
significance, or equivalently, at the (1 – ) level of confidence. 

PDF for Fp-1, n-p

1
area = 

f

critical 
f value

PDF for Fp-1, n-p

1
area = psig

f

critical 
value

reject H0do not 
reject H0
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1
area = psig

f

critical 
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(a) (b) (c)

 
Figure 7.10  One-sided F-test for the null hypothesis, H0. (a) Critical f value;  (b) statistically 
significant result;  (c) not statistically significant result. 

Coefficient of Determination and Correlation Coefficient 
We hear a lot about the correlation coefficient, ρ, but it’s actually fairly useless.  However, its square 

(ρ2) is the coefficient of determination, and is much more meaningful: it tells us the fraction of measured 
variation “explained” by a straight-line fit to the predictor f1(x).  This is sometimes useful as a measure of 
the effectiveness of the model.  ρ2 is a particular use of the linear regression we have already studied. 

First consider a (possibly infinite) population of (x, y) pairs.  Typically, x is an independent variable, 
and y is a measured dependent variable.  (We mention a slightly different use for ρ2 at the end.) We often 
think of the fit function as f1(x) = x (which we use as our example), but as with all linear regression, the fit-
function is arbitrary.  Recall the sum-of-squares definitions of SST, SSA, and SSE (7.11)  We define the 
coefficient of determination in linear-fit terms, as the fraction of SST that is determined by the best-fit 
model.  This is also the ratio of population variances of a least-squares fit: 

2 mod
mod 0 1

var( )
( ) (population)

var( )
ySSA where y x b b x

SST y
     . 

Note that for the variance of the straight line ymod to be defined, the domain of x must be finite, i.e. x must 
have finite lower and upper bounds.  For experimental data, this requirement is necessarily satisfied. 

Now consider a sample of n (x, y) pairs.  It is a straightforward application of our linear regression 
principles to estimate ρ2.  We call the estimate the sample coefficient of determination, r2, and define it 
analogously to the population parameter: 



physics.ucsd.edu/~emichels  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

5/7/2015  11:21  Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 126 of 263  

   

2

2 2
mod,

1 1

(sample coefficient of determination) [Myers 1986 2.20 p28]

, .
n n

i i
i i

SSAr
SST

where SSA y y SST y y
 



    
. 

Note that the number of fit parameters is p = 2 (b0 and b1).  Therefore SSA has p – 1 = 1 degree of freedom 
(dof), and SST has n – 1 dof.   

[The sample correlation coefficient is just r (with a sign given below): 

2 / (sample correlation coefficient)r r SSA SST  . 

For multiple regression (i.e., with multiple “predictors”, where p ≥ 3 but one is the constant b0), we define r 
always ≥ 0.  In the case of single regression to one predictor (call it x, p = 2 but still one is the constant b0), r > 0 if  
y increases with the predictor x, and r < 0 if y decreases with increasing x.] 

For simplicity, we start with a sample where 0x y  .  At the end, we easily extend the result to the 
general case where either or both averages are nonzero.  If x = 0, then f1 is orthogonal to the constant b0, 
and we can find b1 by a simple correlation, including normalization of f1 (see linear regression, earlier): 

1
1 1

1 2 2
2 2

1
1 1

( )

( )

n n

i i i i
i i

n n
x x

i i
i i

f x y x y
n xy xy

b
n

f x x
 

 

 

   
 

 
. 

With b1 now known, we can compute SSA (recalling that 0y b  = 0 for now): 

   

2

2 2
2 2 2 2 2

mod, 1 1 2 2
1 1 1

x

n n n

i i i x
x xi i i

n

xy xy
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
   

 
       

 
  


. 

SST is, with y  = 0: 

2 2

1

n

i y
i

SST y n


  . 

Then: 

2 22
2 1

2 2 2
2 2

1 1

/

n

i i
x i

n nx yy x y
i i

i i

x y
n xy xy xySSAr r

SST n
x y


   



 

     
  
  
  
  



 
. 

Since y  was known exactly, and not estimated from the sample, SST has n dof. 

To generalize to nonzero andx y , we note that we can transform , andx x x y y y    .  These 
are simple shifts in (x, y) position, and have no effect on the fit line slope or the residuals.  These new 
random variables are zero-mean, so our simplified derivation applies, with one small change: y  is 
estimated from the sample, so that removes 1 dof from SST:  SST has n – 1 dof.  Then: 
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 
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Note that another common notation is: 

    
2

22 2

1

1, , similar
1

n
xy

xy xx x yy
xx yy i

SSSAr where S x x y y S x x S
SST S S n




       
  . 

Distribution of r2: Similarly to what we have seen with testing other fit parameters, to test the 
hypothesis that r2 > 0, we first consider the distribution of r2 in pure noise.  For pure zero-mean gaussian 
noise, r2 follows a beta distribution with 1 and n–1 degrees of freedom (dof) [ref ??].  We can use the usual 
one-sided test at the  significance threshold: if 

   21 cdf _ (1, 1); (gaussian)sig betap r critical value beta n     , (7.15) 

then we reject the null hypothesis H0, and accept that r2 is probably > 0, at the psig level of significance.   

However: 

The beta distribution is difficult to use, since it crams up near 1, and many computer 
implementations are unstable in the critical region where we need it most.  Instead, we can use an 

equivalent F test, which is easy to interpret, and numerically stable. 

Again applying our results from linear regression, we recall that: 

1, 11 n
SSASST SSA SSE f F
SSE


      


. 

Then for pure noise, f ≈ 1.  If f >> 1, then r2 is probably > 0, with significance given by the standard 1-sided 
F test ( is our threshold for rejecting H0): 

  1, 11 cdf _ ;sig F np f critical value F       . 

Note that the significance psig here is identical to the significance from the beta function (7.15), but using 
the F distribution is usually an easier way to compute it. 

Alternative interpretation of x and y:  There is another way that ρ2 can be used, depending on the 
nature of your data.  Instead of x being an independent variable and y being corresponding measured 
values, it may be that both x and y are RVs, with some interdependence.  Then, much like y  is a 
population parameter of a single random variable y,  ρ2 is a population parameter of two dependent random 
variables, x and y, and their joint density function.  Either way, we define the coefficient of determination in 
linear-fit terms, as a ratio of population variances of a least-squares fit of y to x.  (We ignore here the 
question of the dof in σx

2.)   

Uncertainty Weighted Data 
When taking data, our measurements often have varying uncertainty: some measurements are “better” 

than others.  We can still find an average, but what is the best average, and what is its uncertainty?  These 
questions extend to almost all of the statistics we’ve covered so far: sample average and variance, fitting, 
etc.  In general, if you have a set of estimates of a parameter, but each estimate has a different uncertainty, 
how do you combine the estimates for the most reliable estimate of the parameter?  Intuitively, estimates 
with smaller uncertainty should be given more weight than estimates with larger uncertainty.  But exactly 
how much?   
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Each topic in this section assumes you thoroughly understand the unweighted case before delving into 
the weighted case.  

Throughout this section, we consider data triples of the form (xi, yi, ui), where xi are the independent 
variables, yi are the measured variables, and ui are the 1σ uncertainties of each measurement.  We define the 
uncertainty as variations that cannot be modeled in detail, though their PDF or other statistics may be 
known. 

Formulas with uncertainties are not simply the unweighted formulas  
with weights thrown into the “obvious” places. 

Examples of the failure of the “obvious” adjustments to formulas for uncertainty-weighted data are the 
unbiased estimate of a population σ2 from a sample (detailed below), and the Lomb-Scargle detection 
parameter. 

Be Sure of Your Uncertainty 
We must carefully define what we mean by “uncertainty” ui.  Figure 7.11 depicts a typical 

measurement, with two separate sources of noise: external (uext), and instrumental (uinst).  The model 
experiment could be an astronomical one, spread over millions of light-years, or it could be a table top 
experiment.  The external noise might be background radiation, CMB, thermal noise, etc.  The instrument 
noise is the inevitable variation in any measurement system.  One can often calibrate the instrument, and 
determine uinst.  Sometimes, one can measure uext, as well.  However, for purposes of this chapter, we define 
our uncertainty ui as: 

ui ≡ all of the noise outside of the desired signal, s(t).   

Our results depend on this. 

signal, 
s(t)

external noise, 
uext(t)

s(t) + 
uext(t)

Instrument

s(t) + uext(t) 
+ uinst(t)

+

uinst(t)
source

 
Figure 7.11  A typical measurement includes two sources of noise. 

Average of Uncertainty Weighted Data 
We give the formula for the uncertainty-weighted average of a sample, and the uncertainty of that 

average.  Consider a sample of n uncertainty weighted measurements, say (ti, yi, ui), where ti is time, yi is 
the measurement, and ui is the 1σ uncertainty in yi.  How should we best estimate the population average 
from this sample?  If we assume the estimator is a weighted average (as opposed to RMS or something 
else), we now show that we should weight each yi by ui

–2.  The general formula for a weighted average is: 

1

1

n

i i
i

n

i
i

w y
y

w









.   (7.16) 

The variance (over an ensemble of samples) of this weighted average, where the weights are constants, is 
(recall that uncorrelated variances add): 

2 2

1
2

1

var( )

n

i i
i

n

i
i

w u
y

w






 
 
 
 




.  (7.17) 
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Note that because of the normalization factor in the denominator, both y  and its variance are independent 
of any multiplicative constant in the weights (scale invariance): e.g., doubling all the weights has no effect 
on either.  However, we want to choose a set of weights to give y  the minimum variance possible.  
Therefore the derivative of the above variance with respect to any weight, wk, is zero.  Using the quotient 
rule for derivatives: 

2

1

2
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n

i
i

k

w
y

w


 
 
   



 2 2 2
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2
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k k i i
i

w u w u


 
 
 
 


1
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i
i
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i
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w

w





 
 
 
 

 
 
 
 




2

2 2

1 1
2

2

1

0

.

n n

i i i
i i

k
n

i k
i

VdU UdVdUV
V

w u w

w

w u

 



   
 

  
  
  
  

 
 
 
 

 



 

Since the weights are scale invariant, the only dependence that matters is that wk  uk
–2.  Therefore, we take 

the simplest form, and define: 

2 (raw weights)i iw u  . 

For a least-squares estimate of the population average, we weight each measurement  
by the inverse of the uncertainty squared (inverse of the measurement variance).   

As expected, large uncertainty points are weighted less than small uncertainty points.  Our derivation 
applies to any measurement error distribution; in particular, errors need not be gaussian.  The least-squares 
weighted average is well-known [Myers 1986 p171t].  [Note that we have not proved that a weighted 
average is necessarily the optimum form for an average, but it is.  (I suspect this can be proved with 
calculus of variations, but I’ve never seen it done.)] 

Given these optimum weights, we can now write the uncertainty of y  more succinctly.  For 
convenience, we define: 

2 2
1 2

1 1 1

, (a normalization factor),
n n n

i i i
i i i

W u V w V w

  

     . 

Note that W is defined to be independent of weight scaling, V1 scales with the weights, and V2 scales with 
the square of the weights.  Then from eq. (7.17), the variance of y  is: 

   

2 2

2 11 1 1
2 2 2

11 1 1

1var Use: : var

n n

i i i
i i

i i

w u w
Vy u w y

VV V V
     

 
. (7.18) 

This variance must be scale invariant, but V1 scales.  We chose a scale when we used ui
2 = wi

–1, for which 
V1 = W.  W is scale invariant, therefore the scale invariant result is: 

 1 1var( ) , and ( ) dev( ) var )y U y y y
W W

    . 

The weights, wi, as we have defined them, have units of [measurement]–2. 
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Note that the weighted uncertainty of y  reduces to the well-known unweighted uncertainty when all the 
uncertainties are equal, say u: 

 
1 2

2

1

1var ( )
n

i

u uy u U y
W n n






 
     
 
 
 . 

Variance and Standard Deviation of Uncertainty Weighted Data 
Handy numerical identity:  When computing unweighted standard deviations, we simplify the 

calculation using the handy identity: 

 
 22 2 2 2

1 1 1

or
n n n i

i i i
i i i

y
y y y ny y

n  

   
   . 

What is the equivalent identity for weighted sums of squared deviations?  We derive it here: 

   

 

2 2 2
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1 1 1

2 2 2
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2 2 2
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w y V y V y

w y
w y V y w y
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  

  

  


 

 (7.19) 

We note a general pattern that in going from an unweighted formula to the equivalent weighted formula: 
the number n is often replaced by the number V1, and all the summations include the weights. 

Weighted sample variance:  We now find an unbiased weighted sample variance; unbiased means 
that over many samples (sets of individual values), the sample variance averages to the population variance.  
In other words, it is an unbiased estimate of the population variance.   We first state the result: 

 2
2 1

1 2 1/

n

i i
i

w y y
s

V V V








. 

We prove below that this is an unbiased estimator. 

Many references give incorrect formulas for the weighted sample variance;  
in particular, it is not just    211/ i iV w y y . 

Because the weights are arbitrary, s2 does not exactly follow a scaled χ2 distribution.  However, if the 
uncertainties are not too disparate, we can approximate s2 as being χ2 with  
(n–1) dof [ref??].   

For computer code, we often use the weighted sum-of-squared deviations identity (7.19) to simplify 
the calculation: 

 
2 2

2 2 2
1 1

1 12 1
2

1 2 1 1 2 1 1 2

/

or
/ /

n nn

i i i i i i i ii i
i i i ii

w y w y V V w y w yw y y
s

V V V V V V V V
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   
        
    

  

   
. 

We now prove that over many sample sets, the statistic s2 averages to the true population σ2.  (We use 
our statistical algebra.)  Without loss of generality, we take the population average to be zero, because we 
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can always shift a random variable by a constant amount to make its (weighted) average zero, without 
affecting its variance.  Then the population variance becomes: 

22 2 2 2Y Y Y     . 

We start by guessing (as we did for unweighted data) that the weighted average squared-deviation is an 
estimate for σ2.  For a single given sample, the simple weighted average of the squared-deviations from y  
is (again using (7.19)): 

 2 2 2 2
12 21

1 1

n

i i
i i i ii

i

w y y
w y V y w y

q y
V Vw






   
  


 (7.20) 

Is this unbiased?  To see, we average over the ensemble of all possible sample sets (using the same 
weights).  I.e., the weights, and therefore V1 and V2, are constant over the ensemble average.  The first term 
in (7.20) averages to: 

2

2 2 21 1

1 1

n n

i i i
i i
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w y w
y Y

V V
   

 
. 

The second term in (7.20) averages to: 

2
2 2 2

2
1 1 1

1 n
i i

i i i j i j
i i j

w y
y w y w w y y

V V  

  
    

   
   

   . 

Recall that the covariance, or equivalently the correlation coefficient, between any two independent random 
variables is zero.  Then the last term is proportional to <yiyj>, which is zero for the independent values yi 
and yj.  Thus: 

2 2 2 2 2 2 22 2 2
22 2 2 2

1 1 1 1

1 1V V Vy V Y q
V V V V

   
 

        
 

. 

Finally, the unbiased estimate of σ2 simply divides out the prefactor: 

 
 22

2 2 1
2 1 2 12 1 /1 /
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i i
i

w y y
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s s
V V VV V





  



, (7.21) 

as above.  Note that we have shown that s2 is unbiased, but we have not shown that s2 is the least-squares 
estimator, nor that it is the best (minimum variance) unbiased estimator.  But it is [ref??].   

Also, as always, the sample standard deviation 2s s  is biased, because the square root of an 
average is not the average of the square roots.  Since we are concerned most often with bias in the variance, 
and rarely with bias in the standard deviation, we don’t bother looking for an unbiased estimator for σ, the 
population standard deviation. 

Distributed of weighted s2:  Since s2 derives from a weighted sum of squares, it is not χ2 distributed, 
and therefore we cannot associate any degrees of freedom with it.  However, for large n, and not too 
disparate uncertainties ui, we can approximate the weighted s2 as having a χ2

n–1 distribution (like the 
unweighted s2 does). 
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Normalized weights 
Some references normalize the weights so that they sum to 1, in which case they are dimensionless: 

2
2

1

, and (normalized, dimensionless weights)
n

i
i i

i

uW u w
W






  . 

This makes V1 ≡ 1 (dimensionless), and therefore V1 does not appear in any formulas.  (V2 must still be 
computed from the normalized weights.)  Both normalizations are found in the literature, so it is helpful to 
be able to switch between the two. 

As an example of how formulas are changed, consider a chi-squared goodness-of-fit parameter.  Its 
form is, in both raw and normalized weights: 

   2 22 2
mod, mod,

1 1
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n n

i i i i i i
i i

w y y W w y y 
 

      . 

Other similar modifications appear in other formulas.  In general, we can say: 

2
1 2 2

2
1 2 2

1 1

, , , and

, , .

raw norm raw norm
i i

raw raw
norm normi
i

w Ww V W V W V

w Vw W V V
V V

  

  
 

We use the first set of transforms to take formulas from raw to normalized, and the second set of transforms 
to take formulas from normalized to raw.  As another example, we transform the raw formula for s2,  eq. 
(7.21), to normalized: 

     2 2 2

2 21 1 1
2

1 2 1 22
(raw) (normalized)

/ 1/

n n n

i i i i i i
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  

   
 

  
. 

To go back (from the normalized s2 to raw), we take W  V1 (if W were there), wi  wi/V1, and V2V2/V1
2.   

For now, the raw, dimensionful weights give us a handy check of units for our formulas, so we 
continue to use them in most places. 

Numerically Convenient Weights 
It is often convenient to perform preliminary calculations by ignoring the measurement uncertainties ui, 

and using unweighted formulas.  We might even do such estimates mentally.  Later, more accurate 
calculations may be done which include the uncertainties.  It is often convenient to compare the preliminary 
unweighted values with the weighted values, especially for intermediate steps in the analysis, e.g. during 
debugging of analysis code.  However, unnormalized weights, wi = ui

–2, have arbitrary magnitudes that lead 
to intermediate values with no simple interpretation, and that are not directly comparable to the unweighted 
estimates.  Therefore, it is often convenient to scale the weights so that intermediate results have the same 
scale as unweighted results.  The unweighted case is equivalent to all weights being 1, with a sum of n.  We 
can scale our uncertainty weights to the same sum, i.e. n, or equivalently, we scale our weights to an 
average of 1: 

2

1 1

1 (unweighted) (weighted) and therefore
n n

i i i
i i

nn w n w u
W



 

     . 

With this weight scaling, “quick and dirty” calculations are easily compared to more accurate fully-
weighted intermediate (debug) results. 
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Transformation to Equivalent Homoskedastic Measurements 
We expect that the homoskedastic case (all measurements have the same uncertainty, σ) is simpler, and 

possibly more powerful than the heteroskedastic case (each measurement has its own uncertainty, ui).  
Furthermore, many computer regression libraries cannot handle heteroskedastic data.  Fortunately, for the 
purpose of linear regression, there is a simple transformation from heteroskedastic measurements to an 
equivalent set of homoskedastic measurements.  This not only provides theoretical insight, but is very 
useful in practice: it allows us to use many (but not all) of the homoskedastic libraries by transforming to 
the equivalent homoskedastic measurements, and operating on the transformed data. 

To perform the transformation, we choose an arbitrary uncertainty to act as our new, equivalent 
homoskedastic uncertainty σ.  As a convenient choice, we might choose the smallest of all the measurement 
uncertainties umin to be our equivalent homoskedastic uncertainty σ, or perhaps the RMS(ui).  (Recall that ui 
is defined as all of the measurement error, both internal and external.)  Then we define a new set of 
equivalent “measurements” (xi, yi, ui)  (x’i, y’i, σ) according to: 

' , 'i i mi mi
i i

y y x x
u u
 

  . 

We can now use all of the homoskedastic procedures and calculations for linear regression on the new, 
equivalent “measurements.”  Note that we have scaled both the predictors xmi, and the measurements yi, by 
the ratio of our chosen σ to the original uncertainty ui.  Measurements with smaller uncertainties than σ get 
scaled “up” (bigger), and measurements with larger uncertainties than σ get scaled “down” (smaller). 

If the original noise added into each sample was independent (as we usually assume), then multiplying 
the yi by constants also yields independent noise samples, so the property of independent noise is preserved 
in the transformation. 

Figure 7.12 shows an example transformation graphically, and helps us understand why it works.  
Consider 3 heteroskedastic measurements: 

(1.0, 0.5, 0.1), (1.6, 0.8, 0.2), (2.0, 1.0, 0.3)  (original measurements). 

We choose our worst uncertainty, 0.3, as our equivalent homoskedastic σ.  Then our equivalent 
measurements become: 

(3.0, 1.5, 0.3), (2.4, 1.2, 0.3), (2.0, 1.0, 0.3)  (equivalent measurements). 

Figure 7.12 illustrates that an uncertainty of 0.3 at x’1 = 3.0 is equivalent to an uncertainty of 0.1 at x1 = 1.0, 
because the x’ point “tugs on” the slope of the line with the same contribution to χ2, the square of (ymod,i – 
yi)/ui.  In terms of sums of squares, the transformation equates every term of the sum: 

2 2
mod mod mod mod

1 1

( ) ( ' ) ' ( ) ( ' ) '
,

n n
i i i i i i i i

i ii i

y x y y x y y x y y x y
i

u u  

           
  

  . 

The transformation coefficients are dimensionless, so the units of the transformed quantities are the same as 
the originals.  Note that: 

The regression coefficients bk, and their covariances, are unchanged by the transformation to 
equivalent homoskedastic measurements, but the model values y’mod,i = ymod(x’i) change  

because the predictors x’i are transformed from the original xi. 

Equivalently, the predictions of the transformed model are different than the predictions of the original 
model.  The uncertainties in the bm are given by the standard homoskedastic formulas with σ as the 
measurement uncertainties, and the covariance matrix var(b) is also preserved by the transformation..  
These considerations show that SST, SSA, and SSE are not preserved in the transformation. 
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2

(yi, ui)
1

(y’i, σ)

21 3  
Figure 7.12  The model ymod vs. the original and the equivalent homoskedastic measurements. 

In matrix form, the transformation is: 

1

2 , ' , '
n n n p n p

n

u

u

u







  

 
 
 
 
    
 
 
 
  

T y Ty x T x  


. 

The transformed data are only equivalent for the purpose of linear regression, and its associated 
capabilities, such as prediction, correlation coefficients, etc.  

To illustrate this, the standard sample average is a linear fit to a constant function f0(t) = 1.  Therefore, 
the weighted sample average is given by the unweighted average of the transformed measurements.  Proof 
TBS??.  Note that the transformed function, f ’0(t) is not constant. 

In contrast, note that the heteroskedastic population variance estimate (eq. (7.21)),  

 2
2 1

1 2 1/

n

i i
i

w y y
s

V V V








 

is not a linear fit.  That’s why it requires this odd-looking formula, and is not given by the common 

homoskedastic variance estimate,    22 / 1is y y n   , applied to the transformed data. 

As another example, the standard Lomb-Scargle algorithm doesn’t work on transformed data.  
Although it is essentially a simultaneous fit to a cosine and a sine, it relies on a nonlinear computation of 
the orthogonalizing time offset, τ.  This fails for the transformed data. 

Orthogonality is preserved:  If two predictors are orthogonal w.r.t. the weights, then the transformed 
predictors are also orthogonal: 

2 2

1 1 1 1
0

' '
0 ' ' 0

n n n n
ki mi

i ki mi ki mi i ki mi
i ii i i i

x x
w x x x x w x x

u u
 

   

       


. 

Linear Regression with Individual Uncertainties 
We have seen that for data with constant uncertainties, we fit it to a model using the criterion of least-

squared residual.  If instead we have individual uncertainties (yi, ui), we commonly use least-chi-squared 
residuals.  That is, we fit the model coefficients (bk) to minimize: 
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2
2

mod,2
1

residual
n

i
i i i

ii

SSE where y y
u


 


     . 

For gaussian residuals, least-chi-squared fits yields maximum likelihood fit coefficients.  For non-gaussian 
residuals, least-chi-squared is as good a criterion as any. 

However, there are many statistical formulas that need updating for uncertainty-weighted data.  Often, 
we need an exact closed-form formula for a weighted-data statistical parameter.  For example, computing 
an iterative approximate fit to data can be prohibitively slow, but a closed-form formula may be acceptable 
(e.g., periodgrams).  Finding such exact formulas in the literature is surprisingly hard.   

 

Even though we’ve described the transformation to linear equivalent measurements, it is often 
more convenient to compute results directly from the original measurements and uncertainties. 

We discuss and analyze some direct weighted-regression computations here.  As in the earlier unweighted 
analysis, we clearly identify the scope of applicability for each formula.  And as always, understanding the 
methods of analyzing and deriving these statistics is essential to developing your own methods for 
processing new situations. 

This section assumes a thorough understanding of the similar unweighted sections.  Many of our 
derivations follow the unweighted ones, but may be briefer here. 

The first step of linear regression with individual uncertainties is summarized in [Bev p117-118], 
oddly in the chapter “Least-Squares Fit to a Polynomial,” even though it applies to all fit functions (not just 
polynomials).  We summarize here the results.  The linear model is the same as the unweighted case: given 
p functions we wish to fit to n data points, the simplified model is: 

mod 1 1 2 2
1

( ) ( ) ( ) ( ) ... ( ) [Bev 7.3 p117]
p

m m p p
m

y x b f x b f x b f x b f x


    . 

Each measurement is a triple of independent variable, dependent variable, and measurement uncertainty, 
(xi, yi, ui).  As before, the predictors do not have to be functions of an independent variable (and in 
ANOVA, they are not); we use such functions only to simplify the presentation.  We find the bk by 
minimizing the χ2 parameter: 

 

2

2
1mod2

2 2
1 1

( ) ( )
( ) ( )

[Bev 7.5 p117]

p

i m m in n
mi i

i ii i

y x b f x
y x y x

SSE
u u

 

 

 
 
     


  . 

For each k from 1 to p, we set the partial derivative, ∂χ2/∂bk = 0, to get a set of simultaneous linear 
equations in the bk: 

 
2

1
2

1

( ) ( )

0 2 , 1,2, ...

p

i m m i k in
m

k ii

y b f x f x

k p
b u
 



 
  
     




 . 

Dividing out the –2, and simplifying: 

1
2

1

( ) ( )

0 , 1,2, ...

p

i m m i k in
m

ii

y b f x f x

k p
u





 
 
 
  


 . 

Moving the constants to the LHS, we get a linear system of equations in the sought-after bk: 
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2 2 2
1 1 1 1 1

( ) ( ) ( )( ) ( ) 1,2, ...
p pn n n

k i m m i m i
i k i m k i

i i ii i m m i

f x b f x f xy f x b f x k p
u u u    

      . 

Linear Regression With Uncertainties and the Sum-of-Squares Identity 
As with unweighted data, the weighted sum-of-squares (SSQ) identity is the crucial underpinning of 

weighted linear regression (aka “generalized linear regression”).  For simplicity, we start with fitting to a 
single function, called fk(x) (for generality).  Before considering uncertainties, recall our unweighted sum-
of-squares identity in vector form: 

2 2 2 2
mod

mod

(raw) : residual vector, , etc.

.k k

SST SSA SSE where

b

     

 

y y ε ε y y y

y f ε


 (7.22) 

Recall that the dot products are real numbers.  Also, by construction, ε is orthogonal to fk, ε·fk = 0, and the 
SSQ identity hinges on this.   

We derive the weighted theory almost identically to the unweighted case.  All of our vectors remain 
the same as before, and we need only redefine our dot product.  The weighted dot-product weights each 
term in the sum by wi: 

2 2

1

, .
n

i i i i i
i

w a b w u 



  a b a a a  . 

Such generalized inner products are common in mathematics and science.  They retain all the familiar, 
useful properties; in particular, they are bilinear, and in this case, commutative.  Then the weighted SSQ 
identity has exactly the same form as the unweighted case: 

2 2 2
mod(raw) :SST SSA SSE   y y ε . (7.23) 

Note that SSE is the χ2 parameter we minimize when fitting.  Written explicitly as summations, the 
weighted SSQ identity is: 

   2 22

1 1 1
(raw) ( ) ( ) [Schwa 1998, eq 4 p832]

n n n

i i i k k i i i k k i
i i i

SST SSA SSE

w y w b f x w y b f x
  

    
  

. 

If this identity still holds in the weighted case, then most of our previous (unweighted) work remains valid.  
We now show that it does hold.  We start by noting that even in the weighted case, ε·fk = 0.  The proof 
comes from the fact that SSE is a minimum w.r.t. all the bk: 

 2

1 1 1

1

0 2 2 ( )

0 ( ) .

n n n

i i i i i i i i k k i
k k k ki i i

n

i i k i k
i

SSE w w w y b f x
b b b b

w f x

   



  



   
    

   

 

  

 ε f

 

Therefore, per (7.9), the weighted sum-of-squares identity holds. 

Generalizing to p fit functions requires simply including a summation from 1 to p.  This would make 
the sum-of-squares identity a little hard to read, so we separate out the “model” functions: 
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 

 

mod
1

22 2
mod mod

1 1 1

( )

(raw) ( ) ( ) .

p

m m
m

n n n

i i i i i i i
i i i

y x b f x

w y w y x w y y x



  

 

  



  
 

Also as before, if we include a constant b0 fit parameter, then the ANOVA SSQ identity holds: 

     2 2 2
mod mod

1 1 1

ANOVA: ( ) ( )
n n n

i i i i i i i
i i i

w y y w y x y w y y x
  

       . 

Recall that y  is the weighted average (7.16). 

Distribution of Weighted Orthogonal Fit Coefficients in Pure Noise 

As in the unweighted case, in hopes of hypothesis testing, we need the distribution of the bk in pure 
noise (no signal).  Here again, if a fit function is orthogonal (w.r.t the weights) to all other fit functions, 
then its (least-chi-squared) fit coefficient is given by a simple correlation.  I.e., for a given k: 

1
2

2

1

( )

0 for all

( )

n

i k i i
k i

k j k n
k

i k i
i

w f t y
j k b

w f t





    



f y

f f
f


 . 

For convenience, we now further restrict ourselves to a normalized (over the {ti}) fit-function, though this 
imposes no real restriction, since any function is easily normalized by a scale factor.  Then: 

 2

1 1

( ) 1 ( )
n n

i k i k i k i i
i i

w f t b w f t y
 

    . (7.24) 

Now consider an ensemble of samples (sets) of noise, each with the same set of {(ti, ui)}, and each 
producing a random bk.  In other words, the bk are RVs over the set of possible samples.  We now find 
var(bk) and <bk>.  Recall that the variance of a sum (of uncorrelated RVs) is the sum of the variances, and 
the variance of k times an RV = k2var(RV).  All the values of wi and fk(ti) are constants, and var(yi) ≡ ui

2 = 
wi

–1; therefore taking the variance of (7.12): 

1

2 2 2

1 1
var( ) ( ) var( ) ( ) 1

i

n n

k i k i i i k i
i iw

b w f t y w f t
 

    . (7.25) 

This is different than the unweighted case, because the noise variance σ2 has been incorporated into the 
weights, and therefore into the normalization of the fk. 

In pure noise, for a normalized fit-function orthogonal to all others, using raw weights, the 
variance of its least-chi-squared linear fit coefficient is 1, regardless of the noise PDF. 

We now find the average <bk>.  Taking the ensemble average of (7.12): 

1
( )

y

n

k i k i i
i

b w f x y


 
 
 
 
 

. 

Since the sum has no simple interpretation, this equation is most useful for showing that if the noise is zero-
mean, then bk is also zero-mean: <bk> = 0.  However, if the summation happens to be zero, then even for 
non-zero mean noise, we again have <bk> = 0. 
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Furthermore, any weighted sum of gaussian RVs is a gaussian; therefore, if the yi are gaussian (zero-
mean or not), then bk is also gaussian. 

Non-Correlation of Weighted Orthogonal Fit Coefficients in Pure Noise 

We now consider the correlation between two fit coefficients, bk and bm (again, over multiple samples 
(sets) of noise), when the fit-functions fk and fm are orthogonal to each other, and to all other fit-functions.  
(From the homoskedastic equivalent measurements, we already know that bk and bm are uncorrelated.  
However, for completeness, we now show this fact directly from the weighted data.)  For convenience, we 
take fk and fm to be normalized: fk

2 = fm
2 = 1 (recall that our dot-products are weighted).  

As in the unweighted case, we derive the covariance of bk and bm from the bilinearity of the cov( ) 
operator.  We start with the formula for a fit-coefficient of a normalized fit-function that is orthogonal to all 
others, (7.12), and use our algebra of statistics: 

 
1 1

cov( , ) cov , cov ( ) , ( )
n n

k m k m i k i i i m j j
i j

b b w f x y w f x y
 

 
  
 
 
 f y f y  . 

Again, all the wi, wj, fk, and fm are constants, so they can be pulled out of the cov( ) operator: 

 
1 1

cov( , ) ( ) ( )cov ,
n n

k m i k i j m j i j
i j

b b w f x w f x y y
 

 . 

As always, the yi are independent, and therefore uncorrelated.  Hence, when i ≠ j, cov(yi, yj) = 0, so only the 
i = j terms survive, and the double sum collapses to a single sum: 

 
1

2

1
cov( , ) ( ) ( )cov( , )

i

n

k m i k i m i i i
i w

b b w f x f x y y


  . (7.26) 

Now cov(yi, yi) = var(yi) = ui
2 = wi

–1, so: 

1

cov( , ) ( ) ( ) 0
n

k m i k i m i k m
i

b b w f x f x


   f f . 

This is true for arbitrary distributions of yi, even if the yi are nonzero-mean. 

In pure noise of arbitrary distribution, even for weighted fit-functions orthogonal to all others,  
the {bk} are uncorrelated. 

The Weighted Total Sum-of-Squares (SST) in Pure Noise 

The weighted total sum of squares is: 

   

2

1

22

11 1

raw:

1ANOVA: , .

n

i i
i

n n

i i i i
i i

SST w y

SST y w y y where y w y
V



 

 

    



 

y y

y



 

For gaussian noise, in contrast to the unweighted case, the weighted SST (taken over an ensemble of 
samples) is not a χ2 RV.  It is a weighted sum of scaled χ2

1, which has no general PDF.  However, we can 
often approximate its distribution as χ2 with n dof (raw), or n – 1 dof (ANOVA), especially when n is large. 

The Weighted Model Sum-of-Squares (SSA) in Pure Noise 

Recall that the model can be thought of as a vector, ymod = {ymod,i}, and the basis functions for that 
vector are the fit-functions evaluated at the sample points, fm ≡ {fm(ti)}.  Then: 
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mod
1

p

m m
m

b


y f . 

The fm may be oblique (non-orthogonal), and of arbitrary normalization.  However, as in the unweighted 
case, there exists an orthonormal basis in which ymod may be written (just like eq. (7.13)): 

mod
1

orthonormal basis, coefficients in the basis
p

m m m m
m

c where c


  y g g g . 

We’ve shown that since the gm are orthonormal, the cm are uncorrelated, with var(cm) = 1 (using raw 
weights).  Then (recall that the dot-products are weighted):  

2
2

mod
1 1 1

p p p

m m m m l l
m l m

SSA c c c
  

 
   
 
 
 y g g g . 

By orthogonality, only terms where l = m are non-zero, so the double sum collapses to a single sum where l 
= m.  The gm are normalized, so: 

 22 2 2 2
mod

1 1 11

p pn

m m m m m
i m m

c c c
  

    y g g


. (7.27) 

Therefore, ymod
2 is the sum of p uncorrelated RVs (the cm

2).  We find SSA ≡ ymod
2 using the general 

formula for the average of the square of an RV (7.2): 

2 2 22 2
mod

1

var( ) 1
p

m m m m m
m

c c c c SSA c p


 
        
 
 
y .  where var(cm) comes from 

This is true for any distribution of noise, even non-zero-mean.  In general, there is no simple formula for 
var(ymod

2).   

If the noise is zero-mean, then each <cm> = 0, and the above reduces to: 

2
mod (zero-mean noise)py . 

If the noise is zero-mean gaussian, then the cm are zero-mean uncorrelated joint-gaussian RVs.  This is 
a well-known condition for independence [ref ??], so the cm are independent, gaussian, with variance 1 (see 
(7.25)).  Then (7.27) tells us that, by definition, ymod

2 is a chi-squared RV with p degrees of freedom: 

2 2
mod(raw) (zero-mean gaussian noise)pSSA  y . 

We developed this result using the properties of the orthonormal basis gm, but our model ymod, and therefore 
ymod

2, are identical in any basis.  Therefore, the result holds for any p fit-functions that span the same model 
space, even if they are oblique (i.e. overlapping) and not normalized. 

The Residual Sum-of-Squares (SSE) in Pure Noise 

For zero-mean gaussian noise, in the weighted case, we’ve shown that SSA is χ2 distributed, but SST is 
not.  Therefore, SSE is not, either.  However, for large n, or for measurement uncertainties that are fairly 
consistent across the data set, SST and SSE are approximately χ2 distributed, with the usual (i.e. equal 
uncertainty case) degrees of freedom assigned: 

     2 2 2

1 1 1
1 1

( ) ( ) (zero-mean gaussian)
n n n

i i i k k i i i k k i
i i i

SST dof n SSA dof p SSE dof n p

w y y w b f x y w y b f x
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     

      
  

. 
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Hypothesis Testing a Model in Linear Regression with Uncertainties 
The approximation that SST and SSE are almost χ2 distributed allows the usual F-test as an 

approximate test for detection of a signal, i.e. testing whether the fit actually matches the presence of the 
model in the data.  However, the F critical values will be approximate, and therefore so will the p-value.  In 
many cases, numerical simulations (shuffle simulations) can provide more reliable critical values than the 
theoretical gaussian F critical values, for 2 reasons:  even the theoretical F-values are only approximate (as 
described), and because the noise itself is often significantly non-gaussian.   

We recommend numerical simulations (e.g., shuffling) to determine critical values,  
instead of the approximate (and often inapplicable) gaussian theory. 

Fitting To Histograms 
Data analysis often requires fitting a function to binned data, that is, fitting a predicted probability 

distribution to a histogram of measured values.  While such fitting is very commonly done, it is much less 
commonly understood.  There are important subtleties often overlooked.  This section assumes you are 
familiar with the binomial distribution, the χ2 “goodness of fit” parameter (described earlier), and some 
basic statistics. 

The general method for fitting a model to a histogram of data is this:  

 Start with n data points (measurements), and a parameterized model for the PDF of those data.   

 Bin the data into a histogram. 

 Find the model parameters which “best fit” the data histogram 

For example, a gaussian distribution is a 2-parameter model; the parameters are the average, μ, and 
standard deviation, σ.  If we believe our data should follow a gaussian distribution, and we want to know 
the μ and σ of that distribution, we might bin the data into a histogram, and fit the gaussian PDF to it 
(Figure 7.13): 

μ

σ

model PDF

measurement 
“x”Δxi

predicted bin count, modeli

fit error
measured bin count, ci

 
Figure 7.13  Sample histogram with a 2-parameter model PDF (μ and σ).  The fit model is 
gaussian in this example, but could be any pdf with any parameters. 

Of course, realistically, there are better ways to estimate μ and σ for a gaussian distribution, but the 
example illustrates the point of fitting to a histogram.   

We must define “best fit.”  Usually, we use the χ2 (chi-squared) “goodness of fit” parameter as the 
figure of merit (FOM).  The smaller χ2, the better the fit.  Fitting to a histogram is a special case of general 
χ2 fitting.  Therefore, we need to know two things for each bin: (1) the predicted (model) count, and (2) the 
uncertainty in the measured count.  We find these things in the next section. 

(This gaussian fit is a simplified example.  In reality, if we think the distribution is gaussian, we would 
compute the sample average and standard deviation directly, using the standard formulas.  More on this 
later.  In general, the model is more complicated, and there is no simple formula to compute the parameters.  
For now, we use this as an example because it is a familiar model to many.) 
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Chi-squared For Histograms 

We now develop the χ2 figure of merit for fitting to a histogram.  A sample is a set of n measurements 
(data points).  In principle, we could take many samples of data.  For each sample, there is one histogram, 
i.e., there is an infinite population of samples, each with its own histogram.  But we have only one sample.  
The question is, how well does our one histogram represent the population of samples, and therefore, the 
population of data measurements.   

To develop the χ2 figure of merit for the fit, we must understand the statistics of a single histogram bin, 
from the population of all histograms that we might have produced from different samples.  The key point 
is this: given a sample of n data points, and a particular histogram bin numbered i, each data point in the 
sample is either in the bin (with probability pi), or it’s not (with probability (1 - pi) ).  Therefore, the count 
in the ith histogram bin is binomially distributed, with some probability pi, and n “trials.”  (See standard 
references on the binomial distribution if this is not clear.)  Furthermore, this is true of every histogram bin: 

The number of counts in each histogram bin is a binomial random variable.   
Each bin has its own probability, pi, but all bins share the same number of trials, n. 

Recall that a binomial distribution is a discrete distribution, i.e. it gives the probability of finding 
values of a whole-number random variable; in this case, it gives the probability for finding a given number 
of counts in a given histogram bin.  The binomial distribution has two parameters: 

p is the probability of a given data point being in the bin 

n is the number of data points in the sample, and therefore the number of “trials” in the 
binomial distribution. 

Recall that the binomial distribution has average, c-bar, and variance, σ2 given by: 
2, (1 ) (binomial distribution)c np np p    

For a large number of histogram bins, Nbins, the probability of being in a given bin is of order p ~ 
1/Nbins, which is small.  Therefore, we approximate 

2 (1) ( 1 1)binsnp c N p       

We find c-bar for a bin from the pdf model: typically, we assume the bins are narrow, and the 
probability of being in a bin is just 

 Pr being in bin pdf ( )i X i ii p x x    

Then the model average (“expected”) count is Pr(being in bin) times the number of data points, n: 

2

pdf ( ) (narrow bins)

bin center, bin width

pdf ( ) model pdf at bin center

1 1For example, for a gaussian histogram: pdf ( , ; ) exp
22

i X i i

i i

X i

X

model n x x

where x x

x

xx 
 

 

 

  



        

 

However, one can use any more sophisticated method to properly integrate the PDF to find e for each 
bin. 

We now know the two things we need for evaluating a general χ2 goodness-of-fit parameter: for each 
histogram bin, we know (1) the model average count, modeli, and (2) the variance of the measured count, 
which is also approximately modeli.  We now compute χ2 for the model PDF (given a set of model 
parameters) in the usual way: 
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 2
2

1
the measured count in the bin

the model average count in the bin

binsN
i i th

i
i i

th
i

c model
where c i

model

model i





 




 

If your model predicts a count of zero (modeli = 0 for some i), then χ2 blows up.  This is addressed below. 

Reducing the Effect of Noise 

To find the best-fit parameters, we take our given sample histogram, and try different values of the 
pdf(x) parameters (in this example, μ and σ) to find the combination which produces the minimum χ2. 

Notice that the low count bins carry more weight than the higher count bins: χ2 weights the terms by 
1/modeli.  This reveals the first common misunderstanding: 

A fit to a histogram is driven by the tails, not by the central peak.  This is usually bad. 

Tails are often the worst part of the model (theory), and often the most contaminated (percentage-wise) 
by noise: background levels, crosstalk, etc.  Three methods help reduce these problems: 

 limiting the weight of low-count bins 

 truncating the histogram 

 rebinning 

Limiting the weight:  The tails of the model distribution are often less than 1, and approach zero.  
This gives them extremely high weights compared to other bins.  Since the model is probably inadequate at 
these low bin counts (due to noise, etc.), one can limit the denominator in the χ2 sum to at least 1; this also 
avoids division-by-zero: 

 2
2

1

1

1

binsN
i ii i

i
i i

model if modelc model
where d

d otherwise




   


  

This is an ad-hoc approach, and the minimum weight can be anything; it doesn’t have to be 1.  Notice, 
though, that this modified χ2 value is still a monotonic function of the model parameters, which is critical 
for stable parameter fits (it avoids local minima, see “Practical Considerations” below). 

Truncating the histogram:  Alternatively, we can truncate the histogram on the left and right sides to 
those bins with a reasonable number of counts, substantially above the noise (below left).  [Bev p110] 
recommends a minim bin count of 10, based on a desire for gaussian errors.  I don’t think that matters 
much.  In truth, the minimum count completely depends on the noise level.   

 

model PDF

x

model PDF

xs xf
Δx1 Δx7Δx2 Δx3 Δx4 Δx5 Δx6

1.2 3.9

10.8

3     83

 

Avoiding noisy tails by (left) truncating the histogram, or (right) rebinning. 

Truncation requires renormalizing: we normalize the model within the truncated limits to the data 
count within those same limits: 
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You might think that we should use the model, not the data histogram, to choose our truncation limits.  
After all, why should we let sampling noise affect our choice of bins?  This approach fails miserably, 
however, because our bin choices change as we vary our parameters in the hunt for the optimum χ2.  
Changing which bins are included in the FOM causes unphysical steps in χ2 as we vary our parameters, 
making many local minima.  This makes the fit unstable, and generally unusable.  For stability: truncate 
your histogram based on the data, and keep it fixed during the parameter search. 

Rebinning:  Alternatively, bins don’t have to be of uniform width [Bev p175], so combining adjacent 
bins into a single, wider bin with higher count can help improve signal-to-noise ratio (SNR) in that bin 
(above right).  Note that when rebinning, we evaluate the theoretical count as the sum of the original 
(narrow) bin theoretical counts.  In the example of the diagram above right, the theoretical and measured 
counts for the new (wider) bin 1 are 

1 11.2 3.9 10.8 15.9 3 3 8 14a cmo nddel          

Other Histogram Fit Considerations 

Slightly correlated bin counts: Bin counts are binomially distributed (a measurement is either in a 
bin, or it’s not).  However, there is a small negative correlation between any two bins, because the fact that 
a measurement lies in one bin means it doesn’t lie in any other bin.  Recall that the χ2 parameter relies on 
uncorrelated errors between bins, so a histogram slightly violates that assumption.  With a moderate 
number of bins (> ~15 ??), this is usually negligible. 

Overestimating the low count model:  If there are a lot of low-count bins in your histogram, you may 
find that the fit tends to overestimate the low-count bins, and underestimate the high-count bins (diagram 
below).  When properly normalized, the sum of overestimates and underestimates must be zero: the sum of 
bin counts equals the sum of the model predicted counts.   

model PDF

x

underestimated

overestimated

 

χ2 is artificially reduced by overestimating low-count bins, and underestimating high-count bins. 

But since low-count bins weigh more than high-count bins, and since an overestimated model reduces 
χ2 (the model value modeli appears in the denominator of each χ2 term), the overall χ2 is reduced if low-
count bins are overestimated, and high-count bins are underestimated. 

This effect can only happen if your model has the freedom to “bend” in the way necessary: i.e., it can 
be a little high in the low-count regions, and simultaneously a little low in the high-count regions.  Most 
realistic models have this freedom.  If the model is reasonably good, this effect can cause reduced-χ2 to be 
consistently less than 1 (which should be impossible). 
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I don’t know of a simple fix for this.  It helps to limit the weight of low-count bins to (say) 1, as 
described above.  However once again, the best approach is to minimize the number of low-count bins in 
your histogram. 

Noise not zero mean:  for counting experiments, such as those that fill in histograms with data, all bin 
counts are zero or positive.  Any noise will add positive counts, and therefore noise cannot be zero-mean.  
If you know the pdf of the noise, then you can put it in the model, and everything should work out fine.  
However, if you have a lot of un-modeled noise, you should see that your reduced-χ2 is significantly greater 
than 1, indicating a poor fit.  Some people have tried playing with the denominator in the χ2 sum to try to 
get more “accurate” fit parameters in the presence of noise, but there is little theoretical justification for 
this, and it usually amounts to ad-hoc tweaking to get the answers you want. 

Non-χ2 figure of merit:  One does not have to use χ2 as the fit figure of merit.  If the model is not very 
good, or if there are problems as mentioned above, other FOMs might work better.  The most common 
alternative is probably “least-squares,” which means minimizing the sum-squared-error: 

 2
1

(sum-squared-error)
binsN

i i
i

SSE c model


  . 

This is like  χ2 where the denominator in each term in the sum is always 1. 

Guidance Counselor: Practical Considerations for Computer Code to Fit 
Data 

Generic optimization algorithms are available off-the-shelf, e.g. [Numerical Recipes].  However, they 
are sometimes simplistic, and in the real world, often fail with arithmetic faults (overflow, underflow, 
domain-error, etc).  The fault (no pun intended) lies not in their algorithm, but in their failure to tell you 
what you need to do to avoid such failures: 

Your job is to write a bullet-proof figure-of-merit function. 

This is harder than it sounds, but quite do-able with proper care. 

As an example, I once wrote code to fit a sinusoid (frequency, amplitude, phase) to astronomical data: 
measures of a star’s brightness at irregular times.  That seems pretty simple, yet it was fraught with 
problems.  The measurements were very noisy, which leads to lots of local minima.  In some cases, the 
optimizer would choose an amplitude for the sinusoid that had a higher sum-of-squares than the sum-of-
squares of the data!  This amplitude is clearly “too big,” but it is hard to know ahead of time how big is 
“too big.”  Furthermore, the “too big” threshold varies with the frequency and phase parameters, so you 
cannot specify ahead of time an absolute “valid range” for amplitude.  Therefore, I had to provide “guiding 
errors” in my figure-of-merit function to “guide” the optimizer to a reasonable fit under all conditions. 

Computer code for finding the best-fit parameters is usually divided into two pieces, one piece you 
buy, and one piece you have to write yourself: 

 You buy a generic optimization algorithm, which varies parameters without knowledge of what 
they mean, looking for the minimum figure-of-merit (FOM).  For each trial set of parameters, it 
calls your FOM function to compute the FOM as a function of the current trial parameters.  

 You write the FOM function which computes the FOM as a function of the given parameters. 

Generic optimizers usually minimize the figure-of-merit, consistent with the FOM being a “cost” or “error” 
that we want reduced.  (If instead, you want to maximize a FOM, return its negative to the minimizer.) 

Generic optimizers know nothing about your figure-of-merit (FOM) function, or its behavior, 
and your FOM usually knows nothing about the optimizer, or its algorithms. 

 If your optimizer allows you to specify valid ranges for parameters, and if your fit parameters have 
valid ranges that are independent of each other, then you don’t need the methods here for your FOM 
function.  If your optimizer (like many) does not allow you to limit the range of parameters, or if your 
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parameters have valid ranges that depend on each other, then you need the following methods to make a 
bullet-proof FOM.  In either case, this section illustrates how many seemingly simple calculations can go 
wrong in unexpected ways. 

A bullet-proof FOM function requires only two things: 

 Proper validation of all parameters. 

 A properly “bad” FOM for invalid parameters (a “guiding error”). 

Guiding errors are similar to penalty functions, but they operate outside the valid parameter space, rather 
than inside it. 

A simple example: Suppose you wish to numerically find the minimum of the figure-of-merit function 
below left.  Suppose the physics is such that only p > 1 is sensible.   

p
1

2

3

1 2 3

1( )f p p
p

 

4
p

f(p)

1

2

3

1 2 3 4
p

f(p)

1

2

3

1 2 3 4

valid p

 
(Left and middle) Bad figure-of-merit (FOM) functions.  (Right) A bullet-proof FOM. 

Your optimization-search algorithm will try various values of p, evaluating f(p) at each step, looking 
for the minimum.  You might write your FOM function like this: 
fom(p) = 1./p + sqrt(p) 

But the search function knows nothing of p, or which values of p are valid.  It may well try p = –1.  
Then your function crashes with a domain-error in the sqrt( ) function.  You fix it with (above middle): 
float fom(p) 
 if(p < 0.)  return 4. 
 return 1./p + sqrt(p) 

Since you know 4 is much greater than the true minimum, you hope this will fix the problem.  You run the 
code again, and now it crashes with divide-by-zero error, because the optimizer tried p = 0.  Easy fix: 
float fom(p) 
 if(p <= 0.)  return 4. 
 return 1./p + sqrt(p) 

Now the optimizer crashes with an overflow error, p < –(max_float).  The big flat region to the left 
confuses the optimizer.  It searches negatively for a value of p that makes the FOM increase, but it never 
finds one, and gets an overflow trying.  Your flat value for p ≤ 0 is no good.  It needs to grow upward to the 
left to provide guidance to the optimizer: 
float fom(p) 
 if(p <= 0.)  return 4. + fabs(p - 1) // fabs() = absolute value 
 return 1./p + sqrt(p) 

Now the optimizer says the minimum is 4 at p = –10–6.  It found the local “minimum” just to the left of 
zero.  Your function is still ill-behaved.  Since only p > 1 is sensible, you make yet another fix (above 
right): 
float fom(p) 
 if(p <= 1.)  return 4. 
 return 1./p + sqrt(p) 

Finally, the optimizer returns the minimum FOM of 1.89 at p = 1.59.  After 5 tries, you have made your 
FOM function bullet-proof:  
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A bullet-proof FOM has only one minimum, which it monotonically approaches from both sides, 
even with invalid parameters, and it never crashes on any parameter set. 

In this example, the FOM is naturally bullet-proof from the right.  However, if it weren’t, the absolute 
value of (p – 1) on the error return value provides a V-shape which guides the optimizer into the valid 
range from either side.  Such “guiding errors” are analogous to so-called penalty functions, but better, 
because they take effect only for invalid parameter choices, thus leaving the valid parameter space 
completely free for full optimization. 

Multi-parameter FOMs:  Most fit models use several parameters, pi, and the optimizer searches over 
all of them iteratively to find a minimum.  Your FOM function must be bullet-proof over all parameters: it 
must check each parameter for validity, and must return a large (guaranteed unoptimal) result for invalid 
inputs.  It must also slope the function toward valid values, i.e. provide a “restoring force” to the invalid 
parameters toward the valid region.  Typically, with multiple parameters pi, one uses: 

 
1

guiding_bad_FOM # a valid value for
M

i i i i
i

big p valid where valid p


    .  

This guides the minimization search when any parameter is outside its valid range. 

p

g(p)

1 2 3 4

guiding 
error

guiding 
error

valid p

 
“Guiding errors” lead naturally to a valid solution, and are better than traditional penalty functions. 

A final note:  

The “big #” for invalid parameters may need to be much bigger than you think.   

In my dissertation research, I used reduced χ2 as my FOM, and the true minimum FOM is near 1.  I started 
with 1,000,000 as my “big #”, but it wasn’t big enough!  I was fitting to histograms with nearly a thousand 
counts in several bins.  When the trial model bin count was small, the error was about 1,000, and the sum-
squared-error over several bins was > 1,000,000.  This caused the optimizer to settle on an invalid set of 
parameter values as the minimum!  I had to raise “big #” to 109. 
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8 Numerical Analysis 

Round-Off Error, And How to Reduce It 
Floating point numbers are stored in a form of scientific notation, with a mantissa and exponent. E.g., 

1.23  1045 has mantissa  m = 1.23  and exponent e = 45. 

Computer floating point stores only a finite number of digits.  ‘float’ (aka single-precision) typically stores 
at least 6 digits; ‘double’ typically stores at least 15 digits.  We’ll work out some examples in  6-digit 
decimal scientific notation; actual floating point numbers are stored in a binary form, but the concepts 
remain the same.  (See “IEEE Floating Point” in this document.)   

Precision loss due to summation:  Adding floating point numbers with different exponents results in 
round-off error: 

 1.234 56  102 → 1.234 56  102  
          + 6.111 11  100           + 0.061 111 1  102  
             = 1.295 67  102  where 0.000 001 1 of the result is lost, 

because the computer can only stored 6 digits.  (Similar round-off error occurs if the exponent of the result 
is bigger than both of the addend exponents.)  When adding many numbers of similar magnitude (as is 
common in statistical calculations), the round-off error can be quite significant: 
 
float sum = 1.23456789;  // Demonstrate precision loss in sums 
printf("%.9f\n", sum);  // show # significant digits 
for(i = 2;  i < 10000;  i++) 
 sum += 1.23456789; 
printf("Sum of 10,000 = %.9f\n", sum); 
 
1.234567881   8 significant digits 
Sum of 10,000 = 12343.28 only 4 significant digits 

You lose about 1 digit of accuracy for each power of 10 in n, the number of terms summed.  I.e. 

10- logdigit loss n  

When summing numbers of different magnitudes, you get a better answer by adding the small numbers 
first, and the larger ones later.  This minimizes the round-off error on each addition.   

E.g., consider summing 1/n for 1,000,000 integers.  We do it in both single- and double-precision, so 
you can see the error: 
 
float sum = 0.; 
double dsum = 0.; 
// sum the inverses of the first 1 million integers, in order 
for(i = 1;  i <= 1000000;  i++) 
sum += 1./i, dsum += 1./i; 
printf("sum:  %f\ndsum: %f.  Relative error = %.2f %%\n", 
     sum, dsum, (dsum-sum)/dsum); 
 
sum:  14.357358 
dsum: 14.392727.  Relative error = 0.002457 

This was summed in the worst possible order: largest to smallest, and (in single-precision) we lose 
about 5 digits of accuracy, leaving only 3 digits.  Now sum in reverse (smallest to largest): 
     
float sumb = 0.; 
double dsumb = 0.; 
for(i = 1000000;  i >= 1;  i--) 
 sumb += 1./i, dsumb += 1./i; 
printf(" sumb:  %f\ndsumb:  %f.  Relative error = %.6f\n", 
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    sumb, dsumb, (dsumb-sumb)/dsumb); 
 sumb:  14.392652 
dsumb:  14.392727.  Relative error = 0.000005 

The single-precision sum is now good to 5 digits, losing only 1 or 2.   

[In my research, I needed to fit a polynomial to 6000 data points, which involves many sums of 6000 terms, 
and then solving linear equations.  I needed 13 digits of accuracy, which easily fits in double-precision (‘double’, 
15-17 decimal digits).  However, the precision loss due to summing was over 3 digits, and my results failed.  
Simply changing the sums to ‘long double’, then converting the sums back to ‘double’, and doing all other 
calculations in ‘double’ solved the problem.  The dominant loss was in the sums, not in solving the equations.] 

Summing from smallest to largest is very important for evaluating polynomials, which are widely used 
for transcendental functions.  Suppose we have a 5th order polynomial, f(t): 

2 3 4 5
0 1 2 3 4 5( )f t a a x a x a x a x a x       

which might suggest a computer implementation as : 
 
f = a0 + a1*t + a2*t*t + a3*t*t*t + a4*t*t*t*t + a5*t*t*t*t*t 

Typically, the terms get progressively smaller with higher order.  Then the above sequence is in the worst 
order: biggest to smallest.  (It also takes 15 multiplies.)  It is more accurate (and faster) to evaluate the 
polynomial as: 
 
f = ((((a5*t + a4)*t + a3)*t + a2)*t + a1)*t + a0 

This form adds small terms of comparable size first, progressing to larger ones, and requires only 5 
multiplies. 

How To Extend Precision In Sums Without Using Higher Precision Variables  
(Handy for statistical calculations):  You can avoid round-off error in sums without using higher 

precision variables with a simple trick.  For example, let’s sum an array of n numbers: 
 
sum = 0.; 
for(i = 0;  i < n;  i++)  sum += a[i]; 

This suffers from precision loss, as described above.  The trick is to actually measure the round-off error of 
each addition, and save that error for the next iteration: 
 
sum = 0.; 
error = 0.;   // the carry-in from the last add 
for(i = 0;  i < n;  i++) 
{   newsum = sum + (a[i] + error); // include the lost part of prev add 
    diff = newsum - sum;   // what was really added 
    error = (a[i] + error) - diff; // the round-off error 
    sum = newsum; 
} 

The ‘error’ variable is always small compared to the ‘sum’, because it is the round-off error.  Keeping track 
of it effectively doubles the number of accurate digits in the sum, until it is lost in the final addition.  Even 
then, ‘error’ still tells you how far off your sum is.  For all practical purposes, this eliminates any precision 
loss due to sums.  Let’s try summing the inverses of integers again, in the “bad” order, but with this trick: 
 
float  newsum, diff, sum = 0., error = 0.; 
for(i = 1;  i <= 1000000;  i++) 
{   newsum = sum + (1./i + error); 
    diff = newsum - sum;  // what was really added 
    error = (1./i + error) - diff; // the round-off error 
    sum = newsum; 
} 
printf(" sum:  %f\ndsumb:  %f.  Relative error = %.6f, error = %g\n", 
    sum, dsumb, (dsumb-sum)/dsumb, error); 
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  sum:  14.392727 
dsumb:  14.392727.  Relative error = -0.000000, error = -1.75335e-07 

As claimed, the sum is essentially perfect.  

Numerical Integration 
The above method of sums is extremely valuable in numerical integration.  Typically, for accurate 

numerical integration, one must carefully choose an integration step size: the increment by which you 
change the variable of integration.  E.g., in time-step integration, it is the time step-size.  If you make the 
step size too big, accuracy suffers because the “rectangles” (or other approximations) under the curve don’t 
follow the curve well.  If you make the step size too small, accuracy suffers because you’re adding tiny 
increments to large numbers, and the round-off error is large.  You must “thread the needle” of step-size, 
getting it “just right” for best accuracy.  This fact is independent of the integration interpolation method: 
trapezoidal, quadratic, (Runge-Kutta??). 

By virtually eliminating round-off error in the sums (using the method above), you eliminate the 
lower-bound on step size.  You can then choose a small step-size, and be confident your answer is right.  It 
might take more computer time, but integrating 5 times slower and getting the right answer is vastly better 
than integrating 5 times faster and getting the wrong answer. 

Sequences of Real Numbers 
Suppose we want to generate the sequence 2.01, 2.02, ... 2.99, 3.00.  A simple approach is this: 

 
real s; 
for(s = 2.01;  s <= 3.;  s += 0.01) ... 

The problem with this is round-off error: 0.01 is inexact in binary (has round-off error).  This error 
accumulates 100 times in the above loop, making the last value 100 times more wrong than the first.  In 
fact, the loop might run 101 times instead of 100.  The fix is to use integers where possible, because they 
are exact: 
 
real s; 
int i; 
for(i = 201;  i <= 300;  i++)  s = i/100.; 

When the increment is itself a variable, note that multiplying a real by an integer incurs only a single 
round-off error: 
 
real s, base, incr; 
int i; 
for(i = 1;  i <= max;  i++)  s = base + i*incr; 

Hence, every number in the sequence has only one round-off error. 

Root Finding 
In general, a root of a function f(x) is a value of x for which f(x) = 0.  It is often not possible to find the 

roots analytically, and it must be done numerically.  [TBS: binary search]   

Simple Iteration Equation 
Some forms of f( ) make root finding easy and fast; if you can rewrite the equation in this form: 

( ) 0 ( )f x x g x    

then you may be able to iterate, using each value of g( ) as the new estimate of the root, r.   

This is the simplest method of root finding, and generally the slowest to converge.   

It may be suitable if you have only a few thousand solutions to compute, but may be too slow for millions 
of calculations. 
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You start with a guess that is close to the root, call it r0.  Then 

1 0 2 1 1( ), ( ), ... ( )n nr g r r g r r g r    

If g( ) has the right property (specifically, |g’(x)| < 1 near the root) this sequence will converge to the 
solution.  We describe this necessary property through some examples.  Suppose we wish to solve 

/ 2 0x x   numerically.  First, we re-arrange it to isolate x on the left side: 
2
xx   (below left). 

 
x

√x/2

1

0.5

x

4x2

1

0.5

1 1
y=xy=x

 
Two iteration equations for the same problem.  The left converges; the right fails. 

From the graph, we might guess r0 ≈ 0.2.  Then we would find, 

1 2 1 3 4 5

6 7

0.2 / 2 0.2236, / 2 0.2364, 0.2431, 0.2465, 0.2483,

0.2491, 0.2496

r r r r r r

R r

      

 
 

We see that the iterations approach the exact answer of 0.25.  But we could have re-arranged the 
equation differently: 22 , 4x x x x    (above right).  Starting with the same guess x = 0.2, we get this 
sequence: 

1 2 1 3 40.2 / 2 0.16, / 2 0.1024, 0.0419, 0..0070r r r r r       

But they are not converging on the nearby root; the sequence diverges away from it.  So what’s the 
difference?  Look at a graph of what’s happening, magnified around the equality: 

 

x

√x/2

0.25

4x2

y=x

0.25

0.2

r0

r1
r2

x
0.25

y=x

0.25

0.2

r0r1
r2

 
The left converges; the right fails. 

When the curve is flatter than  y = x (above left), then trial roots that are too small get bigger, and trial 
roots that are too big get smaller.  So iteration approaches the root.  When the curve is steeper than y = x 
(above right), trial roots that are too small get even smaller, too big get even bigger; the opposite of what 
we want.  So for positive slope curves, the condition for convergence is  
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0 0 0

0

( ) ( ) 1, in the region ,

is the exact root; is the first guess .

i
y y s y r r r r s r r r r r r r
r s r

where r r

 
          

  . 

Consider another case, where the curve has negative slope.  Suppose we wish to solve 1cos 0x x   , 
(x in radians).  We re-write it as 1cosx x .  On the other hand, we could take the cosine of both sides and 
get an equivalent equation: cosx x .  Which will converge?  Again look at the graphs: 

 
x

cos x

0.739

y=x

cos-1x

0.739

r0

r1r2

x

y=x

r0

r1

r2

r3

0.739

0.739

r3

cos x

cos-1x

 
Figure 8.1  (Left) cos and cos–1 are superficially similar.  (Middle) cos converges everywhere.  
(Right) cos–1 fails everywhere. 

So long as the magnitude of the slope < 1 in the neighborhood of the solution, the iterations converge.  
When the magnitude of the slope > 1, they diverge.  We can now generalize to all curves of any slope: 

The general condition for convergence is  

0 0
( ) ( ) 1, in the regiony y s y r r r r s r r r

r s r
 

       
 

. 

The flatter the curve, the faster the convergence. 

Given this, we could have easily predicted that the converging form of our iteration equation is 
cosx x , because the slope of cos x is always < 1, and cos–1 x is always > 1.  Note, however, that if the 

derivative (slope) is > 1/2, then the binary search will be faster than iteration. 

Newton-Raphson Iteration 
The above method of variable iteration is kind of “blind,” in that it doesn’t use any property of the 

given functions to advantage.  Newton-Raphson iteration is a method of finding roots that uses the 
derivative of the given function to provide more reliable and faster convergence.  Newton-Raphson uses the 
original form of the equation: ( ) / 2 0f x x x   .  The idea is to use the derivative of the function to 
approximate its slope to the root (below left).  We start with the same guess, r0 = 0.2. 

 

x

√x/2 − x

0.25
0.0

x

4x2 − x

0

tangent

0.1 0.2

∆f

0.250.1 0.2

tangent∆f

∆x

∆x
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0 0

1/ 2 1/ 2 3 / 2
1/ 2

1 / 2 1/ 2 1/ 2

( )'( ) (Note '( ) 0)
'( )

/ 2 4 2 41'( ) 1
4 / 4 1 4 1 4

i

i

i i i i i

i i i

f rf f r r f r
x f r

r r r r rf x x r
r r r





     



 
        

 

 

Here’s a sample computer program fragment, and its output: 
 // Newton-Raphson iteration 
 r = 0.2; 
 for(i = 1;  i < 10;  i++) 
 { r -= (2.*r - 4.*r*sqrt(r)) / (1. - 4.*sqrt(r)); 

printf("r%d  %.16f\n", i, r); 
 } 

 

 r1 0.2535322165454392 

 r2 0.2500122171752588 

 r3 0.2500000001492484 

 r4 0.2500000000000000 

In 4 iterations, we get essentially the exact answer, to double precision accuracy of 16 digits.  This is 
much faster than the variable isolation method above.  In fact, it illustrates a property of some iterative 
numerical methods called quadratic convergence: 

Quadratic convergence is when the fractional error (aka relative error) gets squared on each 
iteration, which doubles the number of significant digits on each iteration. 

You can see this clearly above, where r1 has 2 accurate digits, r2 has 4, r3 has 9, and r4 has at least 16 
(maybe more).  Derivation of quadratic convergence?? 

Also, Newton-Raphson does not have the restriction on the slope of any function, as does variable 
isolation.  We can use it just as well on the reverse formula (previous diagram, right): 

2
2 ( ) 4( ) 4 , '( ) 8 1,

'( ) 8 1
i

i

f r x xf x x x f x x r
f r x


        


, with these computer results: 

r1 0.2666666666666667 
r2 0.2509803921568627 
r3 0.2500038147554742 
r4 0.2500000000582077 
r5 0.2500000000000000 

This converges essentially just as fast, and clearly shows quadratic convergence. 

If you are an old geek like me, you may remember the iterative method of finding square roots on an 
old 4-function calculator: to find √a: divide a by r, then average the result with r.  Repeat as needed: 

1
/

2
n n

n
a r rr 


  

You may now recognize that as Newton-Raphson iteration: 

2

2

1

( ) 0, '( ) 2 ,

( ) 1
'( ) 2 2 2 2

n n
n n n n n n

n n n

f r r a f r r

r a rf r a ar r r r r r r
f r r r r

   

 
            

 
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If you are truly a geek, you tried the averaging method for cube roots: 
2

1
/

2
n n

n
a r rr 


 .  While you 

found that it converged, it was very slow; cube-root(16) with r0 = 2 gives only 2 digits after 10 iterations.  
Now you know that the proper Newton-Raphson iteration for cube roots is: 

3
3 2

1 2 2 2
1( ) 0, '( ) 3 , 2

3 33 3
n n

n n n n
n n n

r a r a af r r a f r r r r r r
r r r

 
            

 
 

which gives a full 17 digits in 5 iterations for r0 = 2, and shows (of course) quadratic convergence: 
r1  2.6666666666666665 
r2  2.5277777777777777 
r3  2.5198669868999541 
r4  2.5198421000355395 
r5  2.5198420997897464 

It is possible for Newton-Raphson to cycle endlessly, if the initial estimate of the root is too far off, 
and the function has an inflection point between two successive iterations: 

x

f(x)

0

tangent

tangent

 

Failure of Newton-Raphson iteration. 

It is fairly easy to detect this failure in code, and pull in the root estimate before iterating again. 

Pseudo-Random Numbers 
We use the term “random number” to mean “pseudo-random number,” for brevity.  Uniformly 

distributed random numbers are equally likely to be anywhere in a range, typically (0, 1).   

Uniformly distributed random numbers are the starting point  
for many other statistical applications. 

Computers can easily generate uniformly distributed random numbers.  The best generators today are 
based on linear feedback shift registers (LFSR) [Numerical Recipes, 3rd ed.].  The old linear-congruential 
generator is: 
 
// Uniform random value, 0 < v < 1, i.e. on (0,1) exclusive. 
// Numerical Recipes in C, 2nd ed., p284 
static  uint32  seed=1;  // starting point 
vflt rand_uniform(void) 
{ 
    do seed = 1664525L*seed + 1013904223L; // period 2^32-1 
    while(seed == 0); 
    rand_calls++;   // count calls for repetition check 
    return seed / 4294967296.; 
} // rand_uniform() 

Many algorithms that use such random numbers fail on 0 or 1,  
so this generator never returns them.   
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After a long simulation with a large number of calls, it’s a good idea to check ‘rand_calls’ to be sure 
it’s < ~400,000,000 = 10% period.  This confirms that the generated numbers are essentially random, and 
not predictable. 

Arbitrary distribution random numbers:  To generate any distribution from a uniform random 
number:  

1

1

cdf ( ) is the random variable of the desired distribution

cdf inverse of the desired cumulative distribution function of
is a uniform random number on (0,1)

R

R

R U where R

R
U







  

Figure 8.2 illustrates the process graphically.  We can derive it mathematically as follows: recall that the 
cumulative distribution function gives the probability of a random variable being less than or equal to its 
argument: 

cdf ( ) Pr( ) pdf ( ) is a random variable
a

X Xa X a dx x where X


    . 

x

pdf(x)

1

2

-0.5 0.5
x

cdf(x)
1

-0.5 0.5

u
1

0.5

-0.5

cdf−1(x)

x

 
Figure 8.2  Steps to generating the probability distribution function (pdf) on the left. 

Also recall that the pdf of a function of a random variable, say F = f(u), is (see Probability and Statistics 
elsewhere in this document): 

pdf ( )pdf ( ) , '( ) derivative of ( )
'( )
X

F
xx where f x f x

f x
  . 

 
1

1
1

11

cdf ( ). Using pdf ( ) 1on [0,1]

pdf ( ) 1pdf ( ) using ( ) ( ) ,
cdf ( ) ( )

pdf ( ), as desired.

R U

U
Q

R R

R

Let Q U u

u d dr g u g u and u r
d du dudu cdf rdu dr

r








 

     
  

 
 



 

Generating Gaussian Random Numbers 
The inverse CDF method is a problem for gaussian random numbers (any many others), because there 

is no closed-form expression for the CDF of a gaussian (or for the CDF–1): 

2 / 21CDF( ) (gaussian)
2

a xa dx e





  . 

But [Knu] describes a clever way based on polar coordinates to use two uniform random numbers to 
generate a gaussian.  He gives the details, but the final result is this: 
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   

 

2 ln cos is uniform on 0, 2

is uniform on 0,1

gaussian u where

u

   
 

/* Gaussian random value, 0 mean, unit variance.  From Knuth, "The Art of 
Computer Programming, Vol. 2: Seminumerical Algorithms," 2nd Ed., p. 117. 
It is exactly normal if rand_uniform() is uniform. */ 
PUBLIC  double rand_gauss(void) 
{   double theta = (2.*M_PI) * rand_uniform(); 
    return sqrt( -2. * log(rand_uniform()) ) * cos(theta); 
} // rand_gauss() 

Generating Poisson Random Numbers 
Poisson random numbers are integers; we say the Poisson distribution is discrete: 

n

pdf(n)

0.25

0
u

0.50

0.75

1.00

1 2 3 4 5
n

cdf(n)

0.25

0

0.50

0.75

1.00

1 2 3 4 5 0

1

2

3

4
5

.25 .50 .75 1.00

cdf-1(u)

0
 

Example of generating the (discrete) Poisson distribution. 

We can still use the inverse-cdf method to generate them, but in an iterative way.  The code starts with a 
helper function, poisson( ), that compute the probability of exactly n events in a Poisson distribution with 
an average of avg events: 
// --------------------------------------------------------------------------- 
PUBLIC vflt poisson(  // Pr(exactly n events in interval) 
 vflt avg,  // average events in interval 
 int n)  // n to compute Pr() of 
{   vflt factorial; 
    int i; 
 
    if(n <= 20)  factorial = fact[n]; 
    else 
    {   factorial = fact[20]; 
        for(i = 21;  i <= n;  i++)  factorial *= i; 
    } 
    return exp(-avg) * pow(avg, n) / factorial; 
} // poisson() 
 
/*---------------------------------------------------------------------------- 
Generates a Poisson random value (an integer), which must be <= 200. 
Prefix 'irand_...' emphasizes the discreteness of the Poisson distribution. 
----------------------------------------------------------------------------*/ 
PUBLIC int irand_poisson( // Poisson random integer <= 200 
 double avg)   // avg # "events" 
{ 
    int  i; 
    double cpr;   // uniform probability 
 
    // Use inverse-cdf(uniform) for Poisson distribution, where 
    // inverse-cdf() consists of flat, discontinuous steps 
    cpr = rand_uniform(); 
    for(i = 0;  i <= 200;  i++) // safety limit of 200 
    {   cpr -= poisson(avg, i); 
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    if(cpr <= 0)  break; 
    } 
    return i;   // 201 indicates an error 
} // irand_poisson() 

Other example random number generators: TBS. 

Generating Weirder Random Numbers 
Sometimes you need to generate more complex distributions, such as a combination of a gaussian with 

a uniform background of noise.  This is a raised gaussian: 

pdf(x)

0 x
uniform pdf

gaussian pdf

 

Construction of a raised gaussian PDF random variable from a uniform and a gaussian. 

Since this distribution has a uniform “component,” it is only meaningful if it’s limited to some finite 
“width.”  To generate distributions like this, you can compose two different distributions, and use the 
principle: 

The PDF of a random choice of two random variables is the weighted sum of the individual PDFs.  

For example, the PDF for an RV (random variable) which is taken from X  20% of the time, and Y  the 
remaining 80% of the time is: 

pdf( ) 0.2 pdf ( ) 0.8pdf ( )X Yz z z  . 

In this example, the two component distributions are uniform and gaussian.  Suppose the uniform part of 
the pdf has amplitude 0.1 over the interval (0, 2).  Then it accounts for 0.2 of all the random values.  The 
remainder are gaussian, which we assume to be mean of 1.0, and σ = 1.  Then the random value can be 
generated from three more-fundamental random values: 
// Raised Gaussian random value: gaussian part: mean=1, sigma=1 
// Uniform part (20% chance): interval (0, 2) 
if(rand_uniform() <= 0.2) 
 random_variable = rand_uniform()*2.0; 
else 
 random_variable = rand_gauss() + 1.0; // mean = 1, sigma = 1 

Exact Polynomial Fits 
It’s sometimes handy to make an exact fit of a quadratic, cubic, or quartic polynomial to 3, 4, or 5 data 

points, respectively. 



physics.ucsd.edu/~emichels  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

5/7/2015  11:21  Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 157 of 263  

x
-1       0       1

3 points, 2nd order

x
-1       0       1       2

4 points, 3rd order

x
-2      -1       0       1       2

5 points, 4th order

 

The quadratic case illustrates the principle simply.  We seek a quadratic function  
2

2 1 0( )y x a x a x a    

which exactly fits 3 equally spaced points, at x = –1, x = 0, and x = 1, with value y–1, y0, and y1, 
respectively (shown above).  So long as your actual data are equally spaced, you can simply scale and 
offset to the x values –1, 0, and 1.  We can directly solve for the coefficients a2, a1, and a0: 

   

2
2 1 0 1 2 1 0 1

2
2 1 0 0 0 0

2
2 1 0 12 1 0 1

2 1 1 0 1 1 1 0 0

( 1) ( 1)

(0) (0)

(1) (1)

/ 2 , / 2,

a a a y a a a y

a a a y a y

a a a ya a a y

a y y y a y y a y

 

 

               
 

      

      

 

Similar formulas for the 3rd and 4th order fits yield this code: 
 
// --------------------------------------------------------------------------- 
// fit3rd() computes 3rd order fit coefficients.   4 mult/div, 8 adds 
PUBLIC void fit3rd( 
     double ym1, double y0, double y1, double y2) 
{ 
    a0 = y0; 
    a2 = (ym1 + y1)/2. - y0; 
    a3 = (2.*ym1 + y2 - 3.*y0)/6. - a2; 
    a1 = y1 - y0 - a2 - a3; 
} // fit3rd() 
 
// --------------------------------------------------------------------------- 
// fit4th() computes 4th order fit coefficients.  6 mult/div, 13 add 
PUBLIC void fit4th( 
     double ym2, double ym1, double y0, double y1, double y2) 
{ 
    b0 = y0; 
    b4 = (y2 + ym2 - 4*(ym1 + y1) + 6*y0)/24.; 
    b2 = (ym1 + y1)/2. - y0 - b4; 
    b3 = (y2 - ym2 - 2.*(y1 - ym1))/12.; 
    b1 = (y1 - ym1)/2. - b3; 
} // fit4th() 

TBS: Alternative 3rd order (4 point) symmetric fit, with x ε {-3, -1, 1, 3}. 
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Two’s Complement Arithmetic 
Two’s complement is a way of representing negative numbers in binary.  It is universally used for 

integers, and rarely used for floating point.  This section assumes the reader is familiar with positive binary 
numbers and simple binary arithmetic.   

0110Most Significant Bit
(MSB)

Least Significant Bit
(LSB)

23 22 21 20

 
Two’s complement uses the most significant bit (MSB) of an integer as a sign bit: zero means the 

number is   0; 1 means the number is negative.  Two’s complement represents non-negative numbers as 
ordinary binary, with the sign bit = 0.  Negative numbers have the sign bit = 1, but are stored in a special 
way: for a b-bit word, a negative number n (n < 0) is stored as if it were unsigned with a value of 2b + n.  
This is shown below, using a 4-bit “word” as a simple example:   

 
 bits unsigned signed 
 0000 0 0 
 0001 1 1 
 0010 2 2 
sign 0011 3 3 
bit (MSB) 0100 4 4 
 0101 5 5 
 0110 6 6 
 0111 7 7 
 1000 8 -8 
 1001 9 -7 
 1010 10 -6 
 1011 11 -5 
 1100 12 -4 
 1101 13 -3 
 1110 14 -2 
 1111 15 -1 
With two’s complement, a 4-bit word can store integers from –8 to +7.  E.g., –1 is stored as 16 – 1 = 

15.  This rule is usually defined as follows (which completely obscures the purpose):   

 

0, 0Let n a n a     Example:  n = –4, a = 4 

Start with the bit pattern for a 0100 

complement it (change all 0s to 1s and 1s to 0s). 1011 

add 1 1100 

Let’s see how two’s complement works in practice.  There are 4 possible addition cases: 

(1)  Adding two positive numbers: so long as the result doesn’t overflow, we simply add normally (in 
binary). 

(2)  Adding two negative numbers:  Recall that when adding unsigned integers, if we overflow our 4 
bits, the “carries” out of the MSB are simply discarded.  This means that the result of adding a + c is 
actually (a + c) mod 16.  Now, let n and m be negative numbers in twos complement, so their bit patterns 
are 16 + n, and 16 + m.  If we add their bit patterns as unsigned integers, we get 
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       16 16 32 mod 16 16 , 0n m n m n m n m              

which is the 2’s complement representation of (n + m) < 0.   

E.g.,      –2    1110    16 + (–2)  
 +   –3 + 1101   + 16 + (–3)  
      –5    1011       16 + (–5) 

So with two’s complement, adding negative numbers uses the same algorithm as adding unsigned 
integers!  That’s why we use two’s complement. 

(3)  Adding a negative and a positive number, with positive result:    

   16 16 mod 16 , 0n a n a n a n a            

E.g.,     –2 1110 16 + (–2)  
 +    5 0101    +   5  
       3 0011    3 

(4)  Adding a negative and a positive number, with negative result:    

   16 16 , 0n a n a n a        

E.g.,     –6 1010    16 + (–6)  
 +    3 0011 +   3             
     –3 1101    16 + (–3) 

In all cases,  

With two’s complement arithmetic, adding signed integers uses the same algorithm as adding unsigned 
integers!  That’s why we use two’s complement.   

The computer hardware need not know which numbers are signed, and which are unsigned: it adds the 
same way no matter what. 

It works the same with subtraction: subtracting two’s complement numbers is the same as subtracting 
unsigned numbers.  It even works multiplying to the same word size: 

   

     

: 16 16 mod 16 16 , 0, 0, 0

: 16 16 256 16 mod 16 , 0, 0, 0

n a a na na n a na

n m n m nm nm n m nm

           

             

 

In reality, word sizes are usually 32 (or maybe 16) bits.  Then in general, we store b-bit negative 
numbers (n < 0) as 2b + n.  E.g., for 16 bits, (n < 0)  →  65536 + n. 

How Many Digits Do I Get, 6 or 9? 
How many decimal digits of accuracy do I get with a binary floating point number?  You often see a 

range: 6 to 9 digits.  Huh?  We jump ahead, and assume here that you understand binary floating point (see 
below for explanation). 

Wobble, but don’t fall down:  The idea of “number of digits of accuracy” is somewhat flawed.  Six 
digits of accuracy near 100,000 is ~10 times worse than 6 digits of accuracy near 999,999.  The smallest 
increment is 1 in the least-significant digit.  One in 100,000 is accuracy of 10-5; 1 in 999,999 is almost 10-6, 
or 10 times more accurate.   

Aside: The wobble of a floating point number is the ratio of the lowest accuracy to the highest accuracy for a 
fixed number of digits.  It is always equal to the base in which the floating point number is expressed, which is 10 
in this example.  The wobble of binary floating point is 2.  The wobble of hexadecimal floating point (mostly 
obsolete now) is 16. 
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We assume IEEE-754 compliant numbers (see later section).  To insure, say, 6 decimal digits of 
accuracy, the worst-case binary accuracy must exceed the best-case decimal accuracy.  For IEEE single-
precision, there are 23 fraction bits (and one implied-1 bit), so the worst case accuracy is 2-23 = 1.2  10-7.  
The best 6-digit accuracy is 10-6;  the best 7 digit accuracy is 10-7.  Thus we see that single-precision 
guarantees 6 decimal digits, but almost gets 7, i.e. most of the time, it actually achieves 7 digits.  The table 
in the next section summarizes 4 common floating point formats. 

How many digits do I need? 
Often, we need to convert a binary number to decimal, write it to a file, and then read it back in, 

converting it back to binary.  An important question is, how many decimal digits do we need to write to 
insure that we get back exactly the same binary floating point number we started with?  In other words, 
how many binary digits do I get with a given number of decimal digits?  (This is essentially the reverse of 
the preceding section.)  We choose our number of decimal digits to insure full binary accuracy (assuming 
our conversion software is good, which is not always the case). 

Our worst-case decimal accuracy has to exceed our best-case binary accuracy.  For single precision, 
the best accuracy is 2–24 = 6.0  10–8.  The worst case accuracy of 9 decimal digits is 10–8, so we need 9 
decimal digits to fully represents IEEE single precision.  Here’s a table of precisions for 4 common 
formats: 
 
Format 

Fraction 
bits 

Minimum decimal digits 
accuracy 

Decimal digits for exact 
replication 

Decimal 
digits range 

IEEE single 23 2–23 = 1.2  10–7 => 6 2–24 = 6.0  10–8 => 9 6 – 9 

IEEE double 52 2–52 = 2.2  10–16 => 15 2–53 = 1.1  10–16 => 17 15 – 17 

x86 long double 63 2–63 = 1.1  10–19 => 18 2–64 = 5.4  10–20 => 21 18 – 21 

SPARC REAL*16 112 2–112 = 1.9  10–34 => 33 2–113 = 9.6  10–35 => 36 33 – 36 

 

These number of digits agree exactly with the quoted ranges in the “IEEE Floating Point” section , and 
the ULP table in the underflow section.  In C, then, to insure exact binary accuracy when writing, and then 
reading, in decimal, for double precision, use 
    sprintf(dec, "%.17g", x); 

How Far Can I Go? 
A natural question is: What is the range, in decimal, of numbers that can be represented by the IEEE 

formats?  The answer is dominated by the number of bits in the binary exponent.  This table shows it: 
Range and Precision of Storage Formats 

 
Format 

Significant 
Bits 

Smallest Normal 
Number Largest Number Decimal 

Digits 
IEEE single  24 1.175... × 10–38 3.402... × 10+38 6-9 
IEEE double  53 2.225... × 10–308 1.797... × 10+308 15-17 
x86 long double 64 3.362... × 10–4932 1.189... × 10+4932 18-21 
SPARC REAL*16 113 3.362... × 10–4932 1.189... × 10+4932 33-36 

 

Software Engineering 
Software Engineering is much more than computer programming: it is the art and science of designing 

and implementing programs efficiently, over the long term, across multiple developers.  Software 
engineering maximizes productivity and fun, and minimizes annoyance and roadblocks. 
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Engineers first design, then implement, systems that are useful, fun, and efficient.   

Hackers just write code.  Software engineering includes: 

 Documentation: lots of it in the code as comments. 

 Documentation: design documents that give an overview and conceptual view that is infeasible to 
achieve in source code comments. 

 Coding guidelines: for consistency among developers.  Efficiency can only be achieved by 
cooperation among the developers, including a consistent coding style that allows others to 
quickly understand the code.  E.g., physics.ucsd.edu/~emichels/Coding%20Guidelines.pdf. 

 Clean code: it is easy to read and follow. 

 Maintainable code: it functions in a straightforward and comprehensible way, so that it can be 
changed easily and still work. 

Notice that all of the above are subjective assessments.  That’s the nature of all engineering:  

Engineering is lots of tradeoffs, with subjective approximations of the costs and benefits.  

Don’t get me wrong: sometimes I hack out code.  The judgment comes in knowing when to hack and when 
to design. 

Fun quotes: 

“Whenever possible, ignore the coding standards currently in use by thousands of developers in your 
project’s target language and environment.”    
 - Roedy Green, How To Write Unmaintainable Code,  www.strauss.za.com/sla/code_std.html  

“Debugging is twice as hard as writing the code in the first place.  Therefore, if you write the code as 
cleverly as possible, you are, by definition, not smart enough to debug it.”  - Brian W. Kernighan 

Coding guidelines make everyone’s life easier, even yours.  - Eric L. Michelsen 
Object Oriented Programming 

This is a much used and abused term, with no definitive definition.  The goal of Object Oriented 
Programming (OOP) is to allow reusable code that is clean and maintainable.  The best definition I’ve seen 
of OOP is that it uses a language and approach with these properties: 

 User defined data types, called classes, which (1) allow a single object (data entity) to have 
multiple data items, and (2) provide user-defined methods (functions and operators) for 
manipulating objects of that class. 

 Information hiding: a class can define a public interface which hides the implementation details 
from the (client) code which uses the class. 

 Overloading: the same named function or operator can be invoked on multiple data types, 
including both built-in and user-defined types.  The language chooses which of the same-named 
functions to invoke based on the data types of its arguments. 

 Inheritance: new data types can be created by extending existing data types.  The derived class 
inherits all the data and methods of the base class, but can add data, and override (overload) any 
methods it chooses with its own, more specialized versions. 

 Polymorphism: this is more than overloading.  Polymorphism allows derived-class objects to be 
handled by (often older) code which only knows about the base class (i.e., which does not even 
know of the existence of the derived class.)  Even though the application code knows nothing of 
the derived class, the data object itself insures calling proper specialized methods for itself. 

In C++, polymorphism is implemented with virtual functions. 

http://physics.ucsd.edu/~emichels/Coding Guidelines.pdf
http://www.strauss.za.com/sla/code_std.html
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OOP does not have to be a new “paradigm.”  It is usually more effective to make it an 
improvement on the good software engineering practices you already use. 

The Best of Times, the Worst of Times 
We give here some ways to speed up common computations, using matrices as examples.  The 

principles are applicable to almost any computation performed over a large amount of data. 

For the vast majority of programs, execution time is so short that it doesn’t matter how efficient it 
is;  clarity and simplicity are more important than speed. 

In rare cases, time is a concern.  For some simple examples, we show how to easily cut your execution 
times to 1/3 of original.  We also show that things are not always so simple as they seem.  This section 
assumes knowledge of computer programming with simple classes (the beginning of object oriented 
programming).   

This topic is potentially huge, so we can only touch on some basics.  The main point here is:  

Computer memory management is the key to fast performance.   

We proceed along these lines: 

 We start with a simple C++ class for matrix addition.  We give run times for this implementation 
(the worst of times).   

 A simple improvement greatly improves execution times (the best of times).   

 We try another expected improvement, but things are not as expected.  

 We describe the general operation of “memory cache” (pronounced “cash”) in simple terms. 

 Moving on to matrix multiplication, we find that our previous tricks don’t work well.   

 However, due to the cache, adding more operations greatly improves the execution times. 

Matrix Addition 
The basic concept in improving matrix addition is to avoid C++’s hidden copy operations.  However:  

Computer memory access is tricky, so things aren’t always what you’d expect.  Nonetheless, we 
can be efficient, even without details of the computer hardware. 

The tricks are due to computer hardware called RAM “cache,” whose general principles we describe 
later, but whose details are beyond our scope.   

First, here is a simple C++ class for matrix creation, destruction, and addition.  (For simplicity, our 
sample code has no error checking; real code, of course, does.  In this case, we literally don’t want reality 
to interfere with science.)  The class data for a matrix are the number of rows, the number of columns, and 
a pointer to the matrix elements (data block). 
 
typedef double T;  // matrix elements are double precision 
 
class ILmatrix // 2D matrix 
{ public: 
    int nr, nc;   // # rows & columns 
    T *db;     // pointer to data 
 
    ILmatrix(int r, int c);  // create matrix of given size 
    ILmatrix(const ILmatrix &b);  // copy constructor 
    ~ILmatrix();    // destructor 
 
    T * operator [](int r) const {return db + r*nc;}; // subscripting 
 



physics.ucsd.edu/~emichels  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

5/7/2015  11:21  Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 163 of 263  

    ILmatrix & operator =(const ILmatrix& b);  // assignment 
    ILmatrix operator +(const ILmatrix& b) const; // matrix add 
}; 

The matrix elements are indexed starting from 0, i.e. the top-left corner of matrix ‘a’ is referenced as 
‘a[0][0]’.  Following the data are the minimum set of methods (procedures) for matrix addition.  Internally, 
the pointer ‘db’ points to the matrix elements (data block).  The subscripting operator finds a linear array 
element as (row)(#columns) + column.  Here is the code to create, copy, and destroy matrices: 
 
// create matrix of given size (constructor) 
ILmatrix::ILmatrix(int r, int c) : nr(r), nc(c) // set nr & nc here 
{ 
    db = new T[nr*nc];   // allocate data block 
} // ILmatrix(r, c) 
 
// copy a matrix (copy constructor) 
ILmatrix::ILmatrix(const ILmatrix & b) 
{   int r,c; 
 
    nr = b.nr, nc = b.nc;   // matrix dimensions 
    if(b.db) 
    {   db = new T[nr*nc];  // allocate data block 
   for(r = 0;  r < nr;  r++) // copy the data 
     for(c = 0;  c < nc;  c++) 
  (*this)[r][c] = b[r][c]; 
    } 
} // copy constructor 
 
// destructor 
ILmatrix::~ILmatrix() 
{   if(db)  {delete[] db;} // free existing data 
    nr = nc = 0, db = 0;  // mark it empty 
} 
 
// assignment operator 
ILmatrix & ILmatrix::operator =(const ILmatrix& b) 
{   int r, c; 
 
 for(r = 0;  r < nr;  r++) // copy the data 
     for(c = 0;  c < nc;  c++) 
  (*this)[r][c] = b[r][c]; 
    return *this; 
} // operator =() 

The good stuff:  With the tedious preliminaries done, we now implement the simplest matrix addition 
method.  It adds two matrices element by element, and returns the result as a new matrix: 
// matrix addition to temporary 
ILmatrix ILmatrix::operator +(const ILmatrix& b) const 
{ 
    int  r, c; 
    ILmatrix result(nr, nc); 
 
    for (r=0;  r < nr;  r++) 
      for (c=0;  c < nc;  c++) 
     result[r][c] = (*this)[r][c] + b[r][c]; 
    return result;  // invokes copy constructor! 
} // operator +() 

How long does this simple code take?  To test it, we standardize on 300  300 and 400 x 400 matrix 
sizes,  each on two different computers: computer 1 is a circa 2000 Compaq Workstation W6000 with a 1.7 
GHz Xeon.  Computer 2 is a circa 2000 Gateway Solo 200 ARC laptop with a 2.4 GHz CPU.  We time 100 
matrix additions, e.g.: 
    int  n = 300;  // matrix dimension 
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    ILmatrix a(n,n), b(n,n), d(n,n); 
 
// Addition test 
    d = a + b;   // prime memory caches 
    cpustamp("start matrix addition\n"); 
    for(i = 0;  i < 100;  i++) 
   d = a + b; 
    cpustamp("end matrix addition\n"); 

With modern operating systems, you may have to run your code several times before the execution 
times stabilize. 

[This may be due to internal operations of allocating memory, and flushing data to disk.]  We find that, 
on computer 1, it takes ~1.36 ± 0.10 s to execute 100 simple matrix additions (see table at end of this 
section).  Wow, that seems like a long time.  Each addition is 90,000 floating point adds; 100 additions is 9 
million operations.  Our 2.4 GHz machine should execute 2.4 additions per ns.  Where’s all the time going?  
C++ has a major flaw.  Though it was pretty easy to create our matrix class: 

C++ copies your data twice in a simple class operation on two values. 

So besides our actual matrix addition, C++ copies the result twice before it reaches the matrix ‘d’.  The first 
copy happens at the ‘return result’ statement in our matrix addition function.  Since the variable ‘result’ 
will be destroyed (go out of scope) when the function returns, C++ must copy it to a temporary variable in 
the main program.  Notice that the C++ language has no way to tell the addition function that the result is 
headed for the matrix ‘d’.  So the addition function has no choice but to copy it into a temporary matrix, 
created by the compiler and hidden from programmers.  The second copy is when the temporary matrix is 
assigned to the matrix ‘d’.  Each copy operation copies 90,000 8-byte double-precision numbers, ~720k 
bytes.  That’s a lot of copying. 

What can we do about this?  The simplest improvement is to make our copies more efficient.  Instead 
of writing our own loops to copy data, we can call the library function memcpy( ), which is specifically 
optimized for copying blocks of data.  Our copy constructor is now: 
ILmatrix::ILmatrix(const ILmatrix & b) 
{   int r,c; 
 
    nr = b.nr, nc = b.nc;    // matrix dimensions 
    if(b.db) 
    {   db = new T[nr*nc];   // allocate data block 
   memcpy(db, b.db, sizeof(T)*nr*nc);  // copy the data 
    } 
} // copy constructor 

Similarly for the assignment operator.  This code takes 0.98 ± 0.10 s, 28 % better than the old code.  
Not bad for such a simple change, but still bad: we still have two needless copies going on. 

For the next improvement, we note that C++ can pass two matrix operands to an operator function, but 
not three.  Therefore, if we do one copy ourselves, we can then perform the addition “in place,” and avoid 
the second copy.  For example: 
// Faster code to implement d = a + b: 
d = a;  // the one and only copy operation 
d += b;  // ‘+=’ adds ‘b’ to the current value of ‘d’ 

The expression in parentheses copies ‘a’ to ‘d’, and evaluates as the matrix ‘d’, which we can then act 
on with the ‘+=’ operator.  We can simplify this main code to a single line as: 
(d = a) += b; 

To implement this code, we need to add a “+=” operator function to our class: 
 
// matrix addition in-place 
ILmatrix &  ILmatrix::operator +=(const ILmatrix & b) 
{ 
    int  r, c; 
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    for (r = 0;  r < nr;  r++) 
 for (c = 0;  c < b.nc;  c++) 
     (*this)[r][c] += b[r][c]; 
 
    return *this;  // returns by reference, NO copy! 
} 

This code runs in 0.45 ± 0.02 s, or 1/3 the original time!  The price, though, is somewhat uglier code.   

Perhaps we can do even better.  Instead of using operator functions, which are limited to only two 
matrix arguments, we can write our own addition function, with any arguments we want.  The main code is 
now: 
mat_add(d, a, b);  // add a + b, putting result in ‘d’ 

Requiring the new function “mat_add( )”: 
 
// matrix addition to new matrix: d = a + b 
ILmatrix & mat_add(ILmatrix & d, const ILmatrix & a, const ILmatrix & b) 
{ 
    int  r, c; 
 
    for (r = 0;  r < d.nr;  r++) 
 for (c = 0;  c < d.nc;  c++) 
     d[r][c] = a[r][c] + b[r][c]; 
 
    return d;   // returned by reference, NO copy constructor 
} // mat_add() 

This runs in 0.49 ± 0.02 s, slightly worse than the one-copy version.  It’s also even uglier than the 
previous version.  How can this be?   

Memory access, including data copying, is dominated by the effects of a complex piece of 
hardware called “memory cache.” 

There are hundreds of different variations of cache designs, and even if you know the exact design, 
you can rarely predict its exact effect on real code.  We will describe cache shortly, but even then, there is 
no feasible way to know exactly why the zero-copy code is slower than one-copy.  This result also held true 
for the 400  400 matrix on computer 1, and the 300  300 matrix on computer 2, but not the 400  400 
matrix on computer 2.  All we can do is try a few likely cases, and go with the general trend.  More on this 
later. 

Beware Leaving out a single character from your code can produce code that works, but runs over 2 
times slower than it should.  For example, in the function definition of mat_add, if we leave out 
the “&” before argument ‘a’: 

ILmatrix & mat_add(ILmatrix & d, const ILmatrix  a, const ILmatrix & b) 
then the compiler passes ‘a’ to the function by copying it!  This completely defeats our goal of zero copy.  
[Guess how I found this out.] 

Also notice that the ‘memcpy( )’ optimization doesn’t apply to this last method, since it has no copies 
at all.   

Below is a summary of matrix addition.  The best code choice was a single copy, with in-place 
addition.  It is medium ugly.  While there was a small discrepancy with this on computer 2, 400  400, it’s 
not worth the required additional ugliness. 

 Computer 1 times (ms, ± ~ 100 ms) Computer 2 times (ms, ± ~ 100 ms) 

Algorithm 300  300 400  400 300  300 400  400 

d = a + b, loop copy 1360 ≡ 100 % 5900 ≡ 100 % 1130 ≡ 100 % 2180 ≡ 100 % 

d = a + b, memcpy( ) 985 = 72 % 4960 = 84 % 950 = 84 % 1793 = 82 % 
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(d = a) += b 445 = 33 % 3850 = 65 % 330 = 29 % 791 = 36 % 

mat_add(d, a, b) 490 = 36 % 4400 = 75 % 371 = 33 % 721 = 33 % 

Run times for matrix addition with various algorithms.  Uncertainties are very rough ± 1σ.  Best 
performing algorithms are highlighted 

Memory Consumption vs. Run Time 
In the old days, the claim was clear (but not the reality): the less memory you use, the slower your 

algorithm, and speeding your algorithm requires more memory. 

The fallacy there is that most code is not well written.  When you go in to clean up your code, you 
often create implementations that are generally more efficient in both memory and time.  I have personally 
done this many times, even when revising my own code. 

However, given reasonably efficient implementations, then with no memory cache, one can usually 
speed the function by using an algorithm with more memory.  Conversely, an algorithm that uses less 
memory is usually slower. 

Since all modern computers use cache, there is a new factor to consider.  If you “blow the cache”, i.e. 
your algorithm repeatedly works through more memory than the cache can hold, you will suffer many 
cache misses, and a dramatic slow-down in speed.  In such a case, an algorithm that uses less memory may 
be faster: the algorithmic performance loss may be offset by the cache performance increase, possibly 
many times over. 

Cache Value 

Before about 1990, computations were slower than memory accesses.  Therefore, we optimized by 
increasing memory use, and decreasing computations.  Today, things are exactly reversed: 

Modern CPUs (c. 2009) can compute about 50 times faster than they can access main memory.  
Therefore, the biggest factor in overall speed is efficient use of memory. 

To help reduce the speed degradation of slow memory, computers use a memory cache: a small 
memory that is very fast.  A typical main memory is 1 Gb, while a typical cache is 1 Mb, or 1000x smaller.  
The CPU can access cache memory as fast as it can compute, so cache is ~50x  faster than main memory.  
The cache is invisible to program function, but is critical to program speed.  The programmer usually does 
not have access to details about the cache, but she can use general cache knowledge to greatly reduce run 
time. 
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(Left) Computer memory (RAM) is a linear array of bytes.  (Middle) For convenience, we draw it 
as a 2D array, of arbitrary width.  We show sample matrix storage.  (Right) A very fast memory 
cache keeps a copy of recently used memory locations, so they can be quickly used again. 

The cache does two things (diagram above): 

1. Cache remembers recently used memory values, so that if the CPU requests any of them again, the 
cache provides the value instantly, and the slow main memory access does not happen. 
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2. Cache “looks ahead” to fetch memory values immediately following the one just used, before the 
CPU might request it.  If the CPU in fact later requests the next sequential memory location, the 
cache provides the value instantly, having already fetched it from slow main memory. 

The cache is small, and eventually fills up.  Then, when the CPU requests new data, the cache must 
discard old data, and replace it with the new.  Therefore, if the program jumps around memory a lot, the 
benefits  of the cache are reduced.  If a program works repeatedly over a small region of memory (say, a 
few hundred k bytes), the benefits of cache increase.  Typically, cache can follow four separate regions of 
memory concurrently.  This means you can interleave accesses to four different regions of memory, and 
still retain the benefits of cache.  Therefore, we have three simple rules for efficient memory use: 

For efficient memory use: (1) access memory sequentially, or at most in small steps, (2) reuse 
values as much as possible in the shortest time, and (3) access few memory regions concurrently, 

preferably no more than four. 

There is huge variety in computer memory designs, so these rules are general, and behavior varies 
from machine to machine, sometimes greatly.  Our data below demonstrate this.  

Your Cache at Work 

We can now understand some of our timing data given above.  We see that the one-copy algorithm 
unexpectedly takes less time than the zero-copy algorithm.  The one-copy algorithm accesses only two 
memory regions at a time: first matrix ‘a’ and ‘d’ for the copy, then matrix ‘b’ and ‘d’ for the add.  The 
zero-copy algorithm accesses three regions at a time: ‘a’, ‘b’, and ‘d’.  This is probably reducing cache 
efficiency.  Recall that the CPU is also fetching instructions (the program) concurrently with the data, 
which is at least a fourth region.  Exact program layout in memory is virtually impossible to know.  Also, 
the cache on this old computer may not support 4-region concurrent access.  The newer machine, computer 
2, probably has a better cache, and the one- and zero-copy algorithms perform very similarly. 

Here’s a new question for matrix addition: the code given earlier loops over rows in the outer loop, and 
columns in the inner loop.  What if we reversed them, and looped over columns on the outside, and rows on 
the inside?  The result is 65% longer run time, on both machines.  Here’s why: the matrices are stored by 
rows, i.e. each row is consecutive memory locations.  Looping over columns on the inside accesses 
memory sequentially, taking advantage of cache look-ahead.  When reversed, the program jumps from row 
to row on the inside, giving up any benefit from look-ahead.  The cost is quite substantial.  This concept 
works on almost every machine. 

Caution FORTRAN stores arrays in the opposite order from C and C++.  In FORTRAN, the first index 
is cycled most rapidly, so you should code with the outer loop on the second index, and the 
inner loop on the first index.  E.g., 

DO C = 1, N 
  DO R = 1, N 
    A(R, C) = blah blah ... 
  ENDDO 
ENDDO 

Scaling behavior:  Matrix addition is an O(N2) operation, so increasing from 300  300 to 400  400 
increase the computations by a factor of 1.8.  On the older computer 1, the runtime penalty is much larger, 
between 4.5x and 9x slower.  On the newer computer 2, the difference is much closer, between 1.8x and 
2.2x slower.  This is likely due to cache size.  A 300  300 double precision matrix takes 720 k bytes, or 
under a MB.  A 400  400 matrix takes 1280 k bytes, just over one MB.  It could be that on computer 1, 
with the smaller matrix, a whole matrix or two fits in cache, but with the large matrix, cache is overflowed, 
and more (slow) main memory accesses are needed.  The newer computer probably has bigger caches, and 
may fit both sized matrices fully in cache. 

Cache Withdrawal: Matrix Multiplication 
We now show that the above tricks don’t work well for large-matrix multiplication, but a different 

trick cuts multiplication run time dramatically.  To start, we use a simple matrix multiply in the main code: 
 d = a * b; 
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The straightforward matrix multiply operator is this: 
// matrix multiply to temporary 
ILmatrix ILmatrix::operator *(const ILmatrix & b) const 
{ 
    int  r, c, k; 
    ILmatrix result(nr, b.nc);  // temporary for result 
    T   sum; 
 
    for(r = 0;  r < nr;  r++) 
    {  for(c = 0;  c < b.nc;  c++) 
  {   sum = 0.; 
      for(k = 0;  k < nc;  k++)  sum += (*this)[r][k] * b[k][c]; 
      result[r][c] = sum; 
  } 
    }    return result;  // invokes copy constructor! 
} // operator *() 

While matrix addition is an O(N2) operation, matrix multiplication is an O(N3) operation.  Multiplying 
two 300 x 300 matrices is about 54,000,000 floating point operations, which is much slower than addition.  
Timing the simple multiply routine, similarly to timing matrix addition, but with only 5 multiplies, we find 
it takes 7.8 ± 0.1 s on computer 1. 

First we try the tricks we already know to improve and avoid data copies: we started already with 
memcpy( ).  We compare the two-copy, one-copy, and zero-copy algorithms as with addition, but this time, 
5 of the 6 trials show no measurable difference.  Matrix multiply is so slow that the copy times are 
insignificant.  The one exception is the one-copy algorithm on computer 2, which shows a significant 
reduction of ~35%.  This is almost certainly due to some quirk of memory layout and the cache, but we 
can’t identify it precisely.  However, if we have to choose from these 3 algorithms, we choose the one-copy 
(which coincidentally agrees with the matrix addition favorite).  And certainly, we drop the ugly 3-
argument mat_mult( ) function, which gives no benefit. 

Now we’ll improve our matrix multiply greatly, by adding more work to be done.  The extra work will 
result in more efficient memory use, that pays off handsomely in reduced runtime.  Notice that in matrix 
multiplication, for each element of the results, we access a row of the first matrix a, and a column of the 
second matrix b.  But we learned from matrix addition that accessing a column is much slower than 
accessing a row.  And in matrix multiplication, we have to access the same column N times.  Extra bad.  If 
only we could access both matrices by rows!   

Well, we can.  We first make a temporary copy of matrix b, and transpose it.  Now the columns of b 
become the rows of bT.  We perform the multiply as rows of a with rows of bT.  We’ve already seen that 
copy time is insignificant for multiplication, so the cost of one copy and one transpose (similar to a copy) is 
negligible.  But the benefit of cache look-ahead is large.  The transpose method reduces runtime by 30% to 
50%. 

Further thought reveals that we only need one column of b at a time.  We can use it N times, and 
discard it.  Then move on to the next column of b.  This reduces memory usage, because we only need 
extra storage for one column of b, not for the whole transpose of b.  It costs us nothing in operations, and 
reduces memory.  That can only help our cache performance.  In fact, it cuts runtime by about another 
factor of two, to about one third of the original runtime, on both machines.  (It does require us to loop over 
columns of b on the outer loop, and rows of a on the inner loop, but that’s no burden.) 

Note that optimizations that at first were insignificant, say reducing runtime by 10%, may become 
significant after the runtime is cut by a factor of 3.  That original 10% is now 30%, and may be worth 
doing. 

 Computer-1 times (ms, ± ~ 100 ms) Computer-2 times (ms, ± ~ 100 ms) 

Algorithm 300  300 400  400 300  300 400  400 

d = a * b 7760 ≡ 100 % 18,260 ≡ 100 % 5348 ≡ 100 % 16,300 ≡ 100 % 

(d = a) *= b 7890 = 102 % 18,210 = 100 % 3485 = 65 % 11,000 = 67 % 
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mat_mult(d, a, b) 7720 = 99 % 18,170 = 100 % 5227 = 98 % 16,200 = 99 % 

d = a * b,  
transpose ‘b’ 

4580 = 59 % 12,700 = 70 % 2900 = 54 % 7800 = 48% 

(d = a) *= b, 
transpose ‘b’ 

4930 = 64 % 12,630 = 69 % 4250 = 79 % 11,000 = 67 % 

d = a * b,  
copy ‘b’ column 

2710 = 35 % 7875 = 43 % 3100 = 58 % 8000 = 49 % 

(d = a) *= b, 
copy ‘b’ column 

2945 = 38 % 7835 = 43 % 2100 = 39 % 5400 = 33 % 

Run times for matrix multiplication with various algorithms.  Uncertainties are very rough ± 1σ.  
Best performing algorithms are highlighted 

Cache Summary 
In the end, exact performance is nearly impossible to predict.  However, general knowledge of cache, 

and following the three rules for efficient cache use (given above), will greatly improve your runtimes.   

Conflicts in memory between pieces of data and instruction cannot be precisely controlled.  
Sometimes even tiny changes in code will cross a threshold of cache, and cause huge changes in 

performance. 

IEEE Floating Point Formats And Concepts 
Much of this section is taken from http://docs.sun.com/source/806-3568/ncg_math.html , an excellent 

article introducing IEEE floating point.  However, many clarifications are made here. 

What Is IEEE Arithmetic?  

In brief, IEEE 754 specifies exactly how floating point operations are to occur, and to what precision.  
It does not specify how the floating point numbers are stored in memory.  Each computer makes its own 
choice for how to store floating point numbers.  We give some popular formats later. 

In particular, IEEE 754 specifies a binary floating point standard, with: 

 Two basic floating-point formats: single and double.  

 The IEEE single format has a significand (aka mantissa) precision of 24 bits, and is 32 bits 
overall.  The IEEE double format has a significand precision of 53 bits, and is 64 bits overall.  

 Two classes of extended floating-point formats: single extended and double extended.  The 
standard specifies only the minimum precision and size.  For example, an IEEE double extended 
format must have a significand precision of at least 64 bits and occupy at least 79 bits overall.  

 Accuracy requirements on floating-point operations: add, subtract, multiply, divide, square root, 
remainder, round numbers in floating-point format to integer values, convert between different 
floating-point formats, convert between floating-point and integer formats, and compare.  The 
remainder and compare operations must be exact.  Other operations must minimally modify the 
exact result according to prescribed rounding modes.  

 Accuracy requirements for conversions between decimal strings and binary floating-point 
numbers.  Within specified ranges, these conversions must be exact, if possible, or minimally 
modify such exact results according to prescribed rounding modes.  Outside the specified ranges, 
these conversions must meet a specified tolerance that depends on the rounding mode.  

 Five types of floating-point exceptions, and the conditions for the occurrence of these exceptions.  
The five exceptions are invalid operation, division by zero, overflow, underflow, and inexact.  

http://docs.sun.com/source/806-3568/ncg_math.html
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 Four rounding directions: toward the nearest representable value, with "even" values preferred 
whenever there are two nearest representable values; toward negative infinity (down); toward 
positive infinity (up); and toward 0 (chop). 

 Rounding precision; for example, if a system delivers results in double extended format, the user 
should be able to specify that such results be rounded to either single or double precision. 

The IEEE standard also recommends support for user handling of exceptions.  

IEEE 754 floating-point arithmetic offers users great control over computation.  It simplifies the task 
of writing numerically sophisticated, portable programs not only by imposing rigorous requirements, but 
also by allowing implementations to provide refinements and enhancements to the standard.  

Storage Formats  

The IEEE floating-point formats define the fields that compose a floating-point number, the bits in 
those fields, and their arithmetic interpretation, but not how those formats are stored in memory.  

A storage format specifies how a number is stored in memory.   

Each computer defines its own storage formats, though they are obviously all related.  

High level languages have different names for floating point data types, which usually correspond to 
the IEEE formats as shown:  

 
IEEE Formats and Language Types 

IEEE Precision C, C++ Fortran 
single  float  REAL or REAL*4  

double  double  DOUBLE PRECISION or REAL*8 
double extended  long double   

double extended   REAL*16  [e.g., SPARC].  Note that in many 
implementations, REAL*16 is different than ‘long double’ 

IEEE 754 specifies exactly the single and double floating-point formats, and it defines ways to extend 
each of these two basic formats.  The long double and REAL*16 types shown above are two double 
extended formats compliant with the IEEE standard.   
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f
127 126                   112  111                              0

1               15                                             112                             LSB
Double-Extended (SPARC) (33-36 decimal digits)  

f
63 62                  52 51                                    0

1            11                                                52                                         LSB
Double (15-17 decimal digits)   

e f
31 30            23 22                                          0

1          8                                           23      LSB
Single (6-9 decimal digits) 

s f
95              80 79 78                        64 63 62        0

16          1               15                1      63                           LSB
junused

Double-Extended (long double) (x86) (18-21 decimal digits) 

s

s

e

e

s e

 

The following sections describe each of the floating-point storage formats on SPARC and x86 
platforms.  

When a Bias Is a Good Thing 

IEEE floating point uses biased exponents, where the actual exponent is the unsigned value of the ‘e’ 
field minus a constant, called a bias: 

exponent = e – bias 

The bias makes the ‘e’ field an unsigned integer, and smallest numbers have the smallest ‘e’ field (as 
well as the smallest exponent).  This format allows (1) floating point numbers sort in the same order as if 
their bit patterns were integers; and (2) true floating point zero is naturally represented by an all-zero bit 
pattern.  These might seem insignificant, but they are quite useful, and so biased exponents are nearly 
universal. 

Single Format  

The IEEE single format consists of three fields: a 23-bit fraction, f; an 8-bit biased exponent, e; and a 
1-bit sign, s.  These fields are stored contiguously in one 32-bit word, as shown above.   

The table below shows the three constituent fields s, e, and f, and the value represented in single-
format: 

Single-Format Fields Value 

1 ≤ e ≤ 254 (–1)s × 2–127 × 1.f (normal numbers)  

e = 0; f ≠ 0 (at least one bit in f is nonzero)  (–1)s × 2–126 × 0.f (denormalized numbers)  

e = 0; f = 0 (all bits in f are zero)  (–1)s × 0.0 (signed zero)  

s = 0/1; e = 255; f = 0 (all bits in f are zero)  +/– ∞ (infinity)  
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s = either; e = 255; f ≠ 0 (at least one bit in f is nonzero)  NaN (Not-a-Number)  

Notice that when 1 ≤ e ≤ 254, the value is formed by inserting the binary radix point to the left of the 
fraction's most significant bit, and inserting an implicit 1-bit to the left of the binary point, thus representing 
a whole number plus fraction, called the significand, where 1 ≤ significand < 2.  The implicit bit’s value is 
not explicitly given in the single-format bit pattern, but is implied by the biased exponent field.  

A denormalized number (aka subnormal number) is one which is too small to be represented by an 
exponent in the range 1 ≤ e ≤ 254.  The difference between a normal number and a denormalized number 
is that the bit to left of the binary point of a normal number is 1, but that of a denormalized number is 0.   

The 23-bit fraction combined with the implicit leading significand bit provides 24 bits of precision in 
single-format normal numbers.  

Examples of important bit patterns in the single-storage format are shown below.  The maximum 
positive normal number is the largest finite number representable in IEEE single format.  The minimum 
positive denormalized number is the smallest positive number representable in IEEE single format.  The 
minimum positive normal number is often referred to as the underflow threshold.  (The decimal values are 
rounded to the number of figures shown.) 

Important Bit Patterns in IEEE Single Format 

Common Name Bit Pattern (Hex) Approximate Value 

+0  0000 0000  0.0  

– 0  8000 0000  –0.0  

1  3f80 0000  1.0  

2  4000 0000  2.0  

maximum normal number  7f7f ffff  3.40282347e+38  

minimum positive normal number  0080 0000  1.17549435e–38  

maximum subnormal number  007f ffff  1.17549421e–38  

minimum positive subnormal number  0000 0001  1.40129846e–45  

+ ∞  7f80 0000  + ∞ (positive infinity)  

– ∞ ff80 0000  – ∞ (negative infinity)  

Not-a-Number (NaN) 7fc0 0000 (e.g.) NaN  

A NaN (Not a Number) can be represented with many bit patterns that satisfy the definition of a NaN; 
the value of the NaN above is just one example.  

Double Format  

The IEEE double format is the obvious extension of the single format, and also consists of three fields: 
a 52-bit fraction, f; an 11-bit biased exponent, e; and a 1-bit sign, s.  These fields are stored in two 
consecutive 32-bit words.  In the SPARC architecture, the higher address 32-bit word contains the least 
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significant 32 bits of the fraction, while in the x86 architecture the lower address 32-bit word contains the 
least significant 32 bits of the fraction.  

The table below shows the three constituent fields s, e, and f, and the value represented in double-
format: 

Double-Format Fields Value 

1 ≤ e ≤ 2046 (–1)s × 2–1023 x 1.f (normal numbers)  

e = 0; f ≠ 0 (at least one bit in f is nonzero)  (–1)s × 2–1022 x 0.f (denormalized numbers)  

e = 0; f = 0 (all bits in f are zero)  (–1)s × 0.0 (signed zero)  

s = 0/1; e = 2047; f = 0 (all bits in f are zero)  +/– ∞ (infinity)  

s = either; e = 2047; f ≠ 0 (at least one bit in f is 1)  NaN (Not-a-Number)  

This is the obvious analog of the single format, and retains the implied 1-bit in the significand.  The 
52-bit fraction combined with the implicit leading significand bit provides 53 bits of precision in double-
format normal numbers.  

Below, the 2nd column has two hexadecimal numbers.  For the SPARC architecture, the left one is the 
lower addressed 32-bit word; for the x86 architecture, the left one is the higher addressed word.  The 
decimal values are rounded to the number of figures shown. 

Important Bit Patterns in IEEE Double Format   

Common Name  Bit Pattern (Hex) Approximate Value  

+ 0  00000000 00000000  0.0  

– 0  80000000 00000000  −0.0  

1  3ff00000 00000000  1.0  

2  40000000 00000000  2.0  

max normal number  7fefffff ffffffff  1.797 693 134 862 3157e+308  

min positive normal number  00100000 00000000  2.225 073 858 507 2014e−308  

max denormalized number  000fffff ffffffff  2.225 073 858 507 2009e−308  

min positive denormalized number  00000000 00000001  4.940 656 458 412 4654e−324  

+ ∞ 7ff00000 00000000  + ∞ (positive infinity)  

− ∞  fff00000 00000000  – ∞ (negative infinity)  

Not-a-Number  7ff80000 00000000 (e.g.) NaN  
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A NaN (Not a Number) can be represented with many bit patterns that satisfy the definition of a NaN; 
the value of the NaN above is just one example.  

Double-Extended Format (SPARC)  

The SPARC floating-point quadruple-precision format conforms to the IEEE definition of double-
extended format.  The quadruple-precision format occupies four 32-bit words and consists of three fields: a 
112-bit fraction, f; a 15-bit biased exponent, e; and a 1-bit sign, s.  These fields are stored contiguously.  
The lowest addressed word has the sign, exponent, and the 16 most significant bits of the fraction.  The 
highest addressed 32-bit word contains the least significant 32-bits of the fraction.  

Below shows the three constituent fields and the value represented in quadruple-precision format.  

Double-Extended Fields (SPARC) Value 

1 ≤ e ≤ 32766  (−1)s x 2–16383 × 1.f (normal numbers)  

e = 0, f ≠ 0 (at least one bit in f is nonzero)  (−1)s x 2–16382 × 0.f (denormalized numbers)  

e = 0, f = 0 (all bits in f are zero)  (−1)s x 0.0 (signed zero)  

s = 0/1, e = 32767, f = 0 (all bits in f are zero)  +/− ∞ (infinity)  

s = either, e = 32767, f ≠ 0 (at least one bit in f is 1)  NaN (Not-a-Number)  

In the hex digits below, the left-most number is the lowest addressed 32-bit word.  

Important Bit Patterns in IEEE Double-Extended Format (SPARC)   

Name Bit Pattern (SPARC, hex) Approximate Value  

+0  00000000 00000000 00000000 00000000  0.0  

−0  80000000 00000000 00000000 00000000  −0.0  

1  3fff0000 00000000 00000000 00000000  1.0  

2  40000000 00000000 00000000 00000000  2.0  

max normal  7ffeffff ffffffff ffffffff ffffffff  1.189 731 495 357 231 765 085 759 
326 628 0070 e+4932  

min normal  00010000 00000000 00000000 00000000  3.362 103 143 112 093 506 262 677 
817 321 7526 e−4932  

max 
subnormal  0000ffff ffffffff ffffffff ffffffff  3.362 103 143 112 093 506 262 677 

817 321 7520 e−4932  

min pos 
subnormal  00000000 00000000 00000000 00000001  6.475 175 119 438 025 110 924 438 

958 227 6466 e−4966  

+ ∞ 7fff0000 00000000 00000000 00000000  + ∞ 
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− ∞  ffff0000 00000000 00000000 00000000  − ∞  

Not-a- 
Number  

7fff8000 00000000 00000000 00000000 
(e.g.) NaN  

Double-Extended Format (x86)  
The important difference in the x86 long-double format is the lack of an implicit leading 1-bit in the 

significand.  Instead, the 1-bit is explicit, and always present in normalized numbers.  This clearly violates 
the spirit of the IEEE standard.  However, big companies carry a lot of clout with standards bodies, so Intel 
claims this double-extended format conforms to the IEEE definition of double-extended formats, because 
IEEE 754 does not specify how (or if) the leading 1-bit is stored.  X86 long-double consists of four fields: a 
63-bit fraction, f; a 1-bit explicit leading significand bit, j; a 15-bit biased exponent, e; and a 1-bit sign, s 
(note the additional j field as the explicit leading bit). 

In the x86 architectures, these fields are stored contiguously in ten successively addressed 8-bit bytes.  
However, the UNIX System V Application Binary Interface Intel 386 Processor Supplement (Intel ABI) 
requires that double-extended parameters and results occupy three consecutive 32-bit words in the stack, 
with the most significant 16 bits of the highest addressed word being unused, as shown below.  

Double-Extended (long double) Format (x86)   

s e f
95                        80 79 78                        64 63 62                                                              0

1                 15               1                           63                                          LSB
junused

 
The lowest addressed 32-bit word contains the least significant 32 bits of the fraction, f[31:0], with bit 

0 being the least significant bit of the entire fraction.  Though the upper 16 bits of the highest addressed 32-
bit word are unused by x86, they are essential for conformity to the Intel ABI, as indicated above.  

Below shows the four constituent fields and the value represented by the bit pattern.  x = don’t care. 

Double-Extended Fields (x86) Value 

j = 0, 1 <= e <= 32766 Unsupported  

j = 1, 1 <= e <= 32766 (−1)s x 2e–16383 x 1.f (normal numbers)  

j = 0, e = 0; f ≠ 0 (at least one bit in f is nonzero)  (−1)s x 2–16382 x 0.f (denormalized numbers)  

j = 1, e = 0  (−1)s x 2–16382 x 1.f (pseudo-denormal numbers)  

j = 0, e = 0, f = 0 (all bits in f are zero)  (−1)s x 0.0 (signed zero)  

j = 1; s = 0/1; e = 32767; f = 0 (all bits in f are zero)  +/− ∞ (infinity)  

j = 1; s = x; e = 32767; f = .1xxx...xx  QNaN (quiet NaNs)  

j = 1; s = x; e = 32767; f = .0xxx...xx ≠ 0 (at least 
one of the x in f is 1)  SNaN (signaling NaNs)  

Notice that bit patterns in x86 double-extended format do not have an implicit leading significand bit.  
The leading significand bit is given explicitly as a separate field, j.  However, when e ≠ 0, any bit pattern 
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with j = 0 is unsupported: such a bit pattern as an operand in floating-point operations provokes an invalid 
operation exception.  

The union of the fields j and f in the double extended format is called the significand.  The 
significand is formed by inserting the binary radix point between the leading bit, j, and the fraction's most 
significant bit.  

In the x86 double-extended format, a bit pattern whose leading significand bit j is 0 and whose biased 
exponent field e is also 0 represents a denormalized number, whereas a bit pattern whose leading 
significand bit j is 1 and whose biased exponent field e is nonzero represents a normal number.  Because 
the leading significand bit is represented explicitly rather than being inferred from the exponent, this format 
also admits bit patterns whose biased exponent is 0, like the subnormal numbers, but whose leading 
significand bit is 1.  Each such bit pattern actually represents the same value as the corresponding bit 
pattern whose biased exponent field is 1, i.e., a normal number, so these bit patterns are called pseudo-
denormals.  Pseudo-denormals are merely an artifact of the x86 double-extended storage format; they are 
implicitly converted to the corresponding normal numbers when they appear as operands, and they are 
never generated as results.  

Below are some important bit patterns in the double-extended storage format.  The 2nd column has 
three hex numbers.  The first number is the 16 least significant bits of the highest addressed 32-bit word 
(recall that the upper 16 bits of this 32-bit word are unused), and the right one is the lowest addressed 32-bit 
word. 
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Important Bit Patterns in Double-Extended (x86) Format and their Values   

Common Name Bit Pattern (x86) Approximate Value  

+0  0000 00000000 00000000  0.0  

−0  8000 00000000 00000000  −0.0  

1  3fff 80000000 00000000  1.0  

2  4000 80000000 00000000  2.0  

max normal  7ffe ffffffff ffffffff  1.189 731 495 357 231 765 05 
e+4932  

min positive normal  0001 80000000 00000000  3.362 103 143 112 093 506 26 
e−4932  

max subnormal  0000 7fffffff ffffffff  3.362 103 143 112 093 506 08 
e−4932  

min positive subnormal  0000 00000000 00000001  3.645 199 531 882 474 602 53 
e−4951  

+ ∞ 7fff 80000000 00000000  + ∞ 

− ∞  ffff 80000000 00000000  − ∞  

quiet NaN with greatest fraction  7fff ffffffff ffffffff  QNaN  

quiet NaN with least fraction  7fff c0000000 00000000  QNaN  

signaling NaN with greatest fraction  7fff bfffffff ffffffff  SNaN  

signaling NaN with least fraction  7fff 80000000 00000001  SNaN 

A NaN (Not a Number) can be represented by any of the bit patterns that satisfy the definition of NaN.  
The most significant bit of the fraction field determines whether a NaN is quiet (bit = 1) or signaling 
(bit = 0).  

Precision in Decimal Representation  
This section covers the precisions of the IEEE single and double formats, and the double-extended 

formats on SPARC and x86.  See the earlier section on How Many Digits Do I Get? for more information. 

The IEEE standard specifies the set of numerical values representable in a binary format.  Each format 
has some number of bits of precision (e.g., single has 24 bits).  But the decimal numbers of roughly the 
same precision do not match exactly the binary numbers, as you can see on the number line: 
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10n 10n+1

2m
2m+1 2m+2

decimal

binary

10n+2

 

Comparison of a Set of Numbers Defined by Decimal and Binary Representation  

Because the decimal numbers are different than the binary numbers, estimating the number of 
significant decimal digits corresponding to b significant binary bits requires some definition.  

Reformulate the problem in terms of converting floating-point numbers between binary and decimal.  
You might convert from decimal to binary and back to decimal, or from binary to decimal and back to 
binary.  It is important to notice that because the sets of numbers are different, conversions are in general 
inexact.  If done correctly, converting a number from one set to a number in the other set results in 
choosing one of the two neighboring numbers from the second set (which one depends on rounding).  

All binary numbers can be represented exactly in decimal, but usually this requires unreasonably many 
digits to do so.  What really matters is how many decimal digits are needed, to insure no loss in converting 
from binary to decimal and back to binary. 

Most decimal numbers cannot be represented exactly in binary (because decimal fractions include a 
factor of 5, which requires infinitely repeating binary digits).  For example, run the following Fortran 
program:  

 REAL Y, Z 
   Y = 838861.2 
   Z = 1.3 
  WRITE(*,40) Y 
40   FORMAT("y: ",1PE18.11) 
   WRITE(*,50) Z 
50   FORMAT("z: ",1PE18.11) 

The output should resemble:  

y:  8.38861187500E+05 

z:  1.29999995232E+00 

The difference between the value 8.388612 × 105 assigned to y and the value printed out is 0.0125, 
which is seven decimal orders of magnitude smaller than y.  So the accuracy of representing y in IEEE 
single format is about 6 to 7 significant digits, or y has about 6 significant digits.  

Similarly, the difference between the value 1.3 assigned to z and the value printed out is 
0.00000004768, which is eight decimal orders of magnitude smaller than z.  The accuracy of representing z 
in IEEE single format is about 7 to 8 significant digits, or z has about 7 significant digits.  

See Appendix F of http://docs.sun.com/source/806-3568/ncg_references.html for references on base 
conversion.  They say that particularly good references are Coonen's thesis and Sterbenz's book.  

Underflow  
Underflow occurs, roughly speaking, when the result of an arithmetic operation is so small that it 

cannot be stored in its intended destination format without suffering a rounding error that is larger than 
usual; in other words, when the result is smaller than the smallest normal number. 

Underflow Thresholds in Each Precision   

single  smallest normal number 
largest subnormal number  

1.175 494 35e–38 
1.175 494 21e–38  

http://docs.sun.com/source/806-3568/ncg_references.html#818
http://docs.sun.com/source/806-3568/ncg_references.html
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double  smallest normal number  
largest subnormal number  

2.225 073 858 507 201 4e–308 
2.225 073 858 507 200 9e–308  

double extended 
(x86)  

smallest normal number 
largest subnormal number  

3.362 103 143 112 093 506 26e–4932 
3.362 103 143 112 093 505 90e–4932  

double extended 
(SPARC)  

smallest normal number 
largest subnormal number  

3.362 103 143 112 093 506 262 677 817 321 752 6e–4932 
3.362 103 143 112 093 506 262 677 817 321 752 0e–4932  

The positive subnormal numbers are those numbers between the smallest normal number and zero. 
Subtracting two (positive) tiny numbers that are near the smallest normal number might produce a 
subnormal number.  Or, dividing the smallest positive normal number by two produces a subnormal result.  

The presence of subnormal numbers provides greater precision to floating-point calculations that 
involve small numbers, although the subnormal numbers themselves have fewer bits of precision than 
normal numbers.  Gradual underflow produces subnormal numbers (rather than returning the answer 
zero) when the mathematically correct result has magnitude less than the smallest positive normal number.  

There are several other ways to deal with such underflow.  One way, common in the past, was to flush 
those results to zero.  This method is known as Store 0 and was the default on most mainframes before the 
advent of the IEEE Standard.  

The mathematicians and computer designers who drafted IEEE Standard 754 considered several 
alternatives, while balancing the desire for a mathematically robust solution with the need to create a 
standard that could be implemented efficiently.  

How Does IEEE Arithmetic Treat Underflow?  

IEEE Standard 754 requires gradual underflow.  This method requires defining two representations for 
stored values, normal and subnormal.  

Recall that the IEEE value for a normal floating-point number is: (–1)s × 2e–bias × 1.f 

where s is the sign bit, e is the biased exponent, and f is the fraction. Only s, e, and f need to be stored 
to fully specify the number.  Because the leading bit of the significand is 1 for normal numbers, it need not 
be stored (but may be).  

The smallest positive normal number that can be stored, then, has the negative exponent of greatest 
magnitude and a fraction of all zeros.  Even smaller numbers can be accommodated by considering the 
leading bit to be zero rather than one.  In the double-precision format, this effectively extends the minimum 
exponent from 10–308 to 10–324, because the fraction part is 52 bits long (roughly 16 decimal digits.)  These 
are the subnormal numbers; returning a subnormal number (rather than flushing an underflowed result to 
zero) is gradual underflow.  

Clearly, the smaller a subnormal number, the fewer nonzero bits in its fraction; computations 
producing subnormal results do not enjoy the same bounds on relative roundoff error as computations on 
normal operands.  However, the key fact is:  

Gradual underflow implies that underflowed results never suffer a loss of accuracy any greater than 
that which results from ordinary roundoff error. 

Addition, subtraction, comparison, and remainder are always exact when the result is very small.  

Recall that the IEEE value for a subnormal floating-point number is: (–1)s × 2–bias + 1 × 0.f 

where s is the sign bit, the biased exponent e is zero, and f is the fraction.  Note that the implicit power-
of-two bias is one greater than the bias in the normal format, and the leading bit of the fraction is zero.  

Gradual underflow allows you to extend the lower range of representable numbers.  It is not smallness 
that renders a value questionable, but its associated error.  Algorithms exploiting subnormal numbers have 
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smaller error bounds than other systems.  The next section provides some mathematical justification for 
gradual underflow.  

Why Gradual Underflow?  

The purpose of subnormal numbers is not to avoid underflow/overflow entirely, as some other 
arithmetic models do.  Rather, subnormal numbers eliminate underflow as a cause for concern for a variety 
of computations (typically, multiply followed by add).  For a more detailed discussion, see Underflow and 
the Reliability of Numerical Software by James Demmel, and Combatting the Effects of Underflow and 
Overflow in Determining Real Roots of Polynomials by S. Linnainmaa.  

The presence of subnormal numbers in the arithmetic means that untrapped underflow (which implies 
loss of accuracy) cannot occur on addition or subtraction.  If x and y are within a factor of two, then x – y is 
error-free.  This is critical to a number of algorithms that effectively increase the working precision at 
critical places in algorithms.  

In addition, gradual underflow means that errors due to underflow are no worse than usual roundoff 
error.  This is a much stronger statement than can be made about any other method of handling underflow, 
and this fact is one of the best justifications for gradual underflow.  

Error Properties of Gradual Underflow  

Most of the time, floating-point results are rounded:  

computed result = true result + roundoff  

How large can the roundoff be?  One convenient measure of its size is called a unit in the last place, 
abbreviated ulp.  The least significant bit of the fraction of a floating-point number is its last place.  The 
value represented by this bit (e.g., the absolute difference between the two numbers whose representations 
are identical except for this bit) is a unit in the last place of that number.  If the true result is rounded to the 
nearest representable number, then clearly the roundoff error is no larger than half a unit in the last place of 
the computed result.  In other words, in IEEE arithmetic with rounding mode to nearest,  

0 ≤ |roundoff | ≤ 1/2 ulp  

of the computed result.  

Note that an ulp is a relative quantity.  An ulp of a very large number is itself very large, while an ulp 
of a tiny number is itself tiny.  This relationship can be made explicit by expressing an ulp as a function: 
ulp(x) denotes a unit in the last place of the floating-point number x.  

Moreover, an ulp of a floating-point number depends on the floating point precision.  For example, this 
shows the values of ulp(1) in each of the four floating-point formats described above: 

ulp(1) in Four Different Precisions 

single  ulp(1) = 2–23 ~ 1.192093e–07  

double  ulp(1) = 2–52 ~ 2.220446e–16  

double extended (x86)  ulp(1) = 2–63 ~ 1.084202e–19  

quadruple (SPARC)  ulp(1) = 2–112 ~ 1.925930e–34  

Recall that only a finite set of numbers can be exactly represented in any computer arithmetic.  As the 
magnitudes of numbers get smaller and approach zero, the gap between neighboring representable numbers 
narrows.  Conversely, as the magnitude of numbers gets larger, the gap between neighboring representable 
numbers widens.  

For example, imagine you are using a binary arithmetic that has only 3 bits of precision.  Then, 
between any two powers of 2, there are 23 = 8 representable numbers, as shown here:  
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The number line shows how the gap between numbers doubles from one exponent to the next.  

In the IEEE single format, the difference in magnitude between the two smallest positive subnormal 
numbers is approximately 10–45, whereas the difference in magnitude between the two largest finite 
numbers is approximately 1031!  

Below, nextafter(x, +∞) denotes the next representable number after x as you move towards +∞.  

Gaps Between Representable Single-Format Floating-Point Numbers  

x  nextafter(x, +∞)  Gap  

0.0  1.4012985e–45  1.4012985e–45  

1.1754944e-38  1.1754945e–38  1.4012985e–45  

1.0  1.0000001  1.1920929e–07  

2.0  2.0000002  2.3841858e–07  

16.000000  16.000002  1.9073486e–06  

128.00000  128.00002  1.5258789e–05  

1.0000000e+20  1.0000001e+20  8.7960930e+12  

9.9999997e+37  1.0000001e+38  1.0141205e+31  

Any conventional set of representable floating-point numbers has the property that the worst effect of 
one inexact result is to introduce an error no worse than the distance to one of the representable neighbors 
of the computed result.  When subnormal numbers are added to the representable set and gradual underflow 
is implemented, the worst effect of one inexact or underflowed result is to introduce an error no greater than 
the distance to one of the representable neighbors of the computed result.  

In particular, in the region between zero and the smallest normal number, the distance between any 
two neighboring numbers equals the distance between zero and the smallest subnormal number.  
Subnormal numbers eliminate the possibility of introducing a roundoff error that is greater than the distance 
to the nearest representable number.  

Because roundoff error is less than the distance to any of the representable neighbors of the true result, 
many important properties of a robust arithmetic environment hold, including these:  

 x ≠ y  <=>  x - y ≠ 0  

 (x – y) + y ≈ x, to within a rounding error in the larger of x and y  

 1/(1/x) ≈ x, when x is a normalized number, implying 1/x ≠ 0  
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An old-fashioned underflow scheme is Store 0, which flushes underflow results to zero.  Store 0 
violates the first and second properties whenever x – y underflows.  Also, Store 0 violates the third property 
whenever 1/x underflows.  

Let λ represent the smallest positive normalized number, which is also known as the underflow 
threshold. Then the error properties of gradual underflow and Store 0 can be compared in terms of λ.  

gradual underflow: |error| < ½ ulp in λ 

Store 0: |error| ≈ λ 

Even in single precision, the round-off error is millions of times worse with Store 0 than gradual 
underflow.  

Two Examples of Gradual Underflow Versus Store 0  

The following are two well-known mathematical examples.  The first example computes an inner 
product.  
sum = 0;  
for (i = 0;  i < n;  i++) 
{   sum = sum + a[i] * y[i];  
}  

With gradual underflow, the result is as accurate as roundoff allows.  In Store 0, a small but nonzero 
sum could be delivered that looks plausible but is wrong in nearly every digit.  To avoid these sorts of 
problems, clever programmers must scale their calculations, which is only possible if they can anticipate 
where minuteness might degrade accuracy.  

The second example, deriving a complex quotient, is not amenable to scaling:  

     
 

/ /
, / 1,

/
p r s q i q r s pp iqa ib assuming r s

r is s r r s
  

   
 

 

It can be shown that, despite roundoff, (1) the computed complex result differs from the exact result by 
no more than what would have been the exact result if p + iq and r + is each had been perturbed by no more 
than a few ulps, and (2) this error analysis holds in the face of underflows, except that when both a and b 
underflow, the error is bounded by a few ulps of |a + ib|.  Neither conclusion is true when underflows are 
flushed to zero.  

This algorithm for computing a complex quotient is robust, and amenable to error analysis, in the 
presence of gradual underflow.  A similarly robust, easily analyzed, and efficient algorithm for computing 
the complex quotient in the face of Store 0 does not exist.  In Store 0, the burden of worrying about low-
level, complicated details shifts from the implementer of the floating-point environment to its users.  

The class of problems that succeed in the presence of gradual underflow, but fail with Store 0, is larger 
than the fans of Store 0 may realize.  Many frequently used numerical techniques fall in this class:  

 Linear equation solving  

 Polynomial equation solving  

 Numerical integration  

 Convergence acceleration  

 Complex division  

Does Underflow Matter?  

In the absence of gradual underflow, user programs need to be sensitive to the implicit inaccuracy 
threshold.  For example, in single precision, if underflow occurs in some parts of a calculation, and Store 0 
is used to replace underflowed results with 0, then accuracy can be guaranteed only to around 10–31, not  
10–38, the usual lower range for single-precision exponents.  This means that programmers need to 
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implement their own method of detecting when they are approaching this inaccuracy threshold, or else 
abandon the quest for a robust, stable implementation of their algorithm.  

Some algorithms can be scaled so that computations don't take place in the constricted area near zero.  
However, scaling the algorithm and detecting the inaccuracy threshold can be difficult and time-consuming 
for each numerical program.  
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9 Fourier Transforms and Digital Signal Processing 
Signals, noise, and Fourier Transforms are an essential part of much data analysis.  It is a deep and 

broad subject, in which we can here establish only some foundational principles.  The subject is, however, 
rife with misunderstandings and folklore.  Therefore, we here also dispel some myths.  For more 
specialized information, one must consult more specialized texts. 

This section assumes you are familiar with complex arithmetic and exponentials, and with basic 
sampling and Fourier Transform principles.  In particular, you must be familiar with decomposing a 
function into an orthonormal basis of functions.  Understanding that a Fourier Transform is a phasor-valued 
function of frequency is very helpful, but not essential (see Funky Electromagnetic Concepts for a 
discussion of phasors). 

We start with the most general (and simplest) case, then proceed through more specialized cases.  We 
include some important (often overlooked) properties of Discrete Fourier Transforms.  Topics: 

 Complex sequences, and complex Fourier Transform (it’s actually easier to start with the complex 
case, and specialize to real numbers later) 

 Sampling and the Model of Digitization 

 Even number of points vs. odd number of points 

 Basis Functions and Orthogonality 

 Real sequences: even and odd # points 

 Normalization and Parseval’s Theorem 

 Continuous vs. discrete time and frequency;  finite vs. infinite time and frequency 

 Non-uniformly spaced samples 

Brief Definitions 

Fourier Series represents a periodic continuous function as an infinite sum of sinusoids at discrete 
frequencies: 

12

1 1 10

are complex (phasors),
( ) ,

1/ (in cycle/s or Hz), 2 (in rad/s)
ki kf t

k
k

where S t time
s t S e

f period f


 








   

f1 = 1/period, the lowest nonzero frequency, is called the fundamental frequency.  f0 = 0, always. 

Fourier Transform (FT)  
represents a continuous function as an integral of sinusoids over continuous frequencies: 
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We do not discuss this here.  The function s(t) is not periodic, so there is no fundamental frequency.  
S(ω) is a phasor-valued function of angular frequency. 

Discrete Fourier Transform (DFT)  
represents a finite sequence of numbers as a finite sum of sinusoids: 

 
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The sequence sj may be thought of as either periodic, or undefined outside the sampling interval.  As in 
the Fourier Series, the fundamental frequency is 1/period, or equivalently 1/(sampled interval), and f0 = 0, 
always. 
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[Since a DFT essentially treats the input as periodic, it might be better called a Discrete Fourier Series (rather 
than Transform), but Discrete Fourier Transform is completely standard.] 

Fast Fourier Transform (FFT)  
an algorithm for implementing special cases of DFT. 

Inverse Discrete Fourier Transform (IDFT)  
gives the sequence of numbers sj from the DFT components. 

The general digital Fourier Transform is a Discrete Fourier Transform (DFT).   
An FFT is an algorithm for special cases of DFT. 

Model of Digitization and Sampling 
All realistic systems which digitize analog signals must comprise at least the components in Figure 9.1. 

0 1 2 3 4 5 6 7 8 9 ...

analog 
signal

Anti-alias 
Low Pass 

Filter (LPF)

Analog to 
Digital 

Converter 
(ADC)

sample clock, 
fsamp

filtered analog 
signal

digital 
samples, sj

 
Figure 9.1  Minimum components of a Digital Signal Processing system, with uniformly spaced 
samples. 

In this example, the output of the digitizer is a sequence of real numbers, sj.  Other systems (such as 
coherent quadrature downconverters) produce complex numbers. 

Sampling Does Not Produce Impulses 

It is often said that sampling a signal is like setting it to zero everywhere except at the sample 
times, or like creating a series of impulses.  It is not. 

These notions are not true, and can be misleading [O&S p8b].  Note that a single impulse (in time) has 
infinite power.  Therefore, a sum (sequence) of such impulses also has infinite power.  In contrast, the 
original signal, and the sequence of samples, has finite power.  This suggests immediately that samples are 
not equivalent to a series of impulses. 

Nonetheless, there is an identity that involves impulse functions, which we discuss after introducing 
the DFT. 

Complex Sequences and Complex Fourier Transform 
It’s actually easier to start with the complex case, and specialize to real numbers later.  Given a 

sequence of n complex numbers sj, we can write the sequence as a sum of sinusoids, i.e. complex 
exponentials: 

Inverse Discrete Fourier Transform:  
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Note that there are n original complex numbers, and n complex frequency components, so no information is 
lost.  The transform is exact, unique, and reversible.  (In other words, this is not a “fit.”) 
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The above equation forces all normalization conventions.  We use the simple scheme wherein a 
function equals the sum of its components (with no factors of 2π or anything else). 

Often, the index j is a measure of time or distance, and the sequence comprises samples of a signal 
taken at equal intervals.  Without loss of generality, we will refer to j as a measure of “time,” but it could be 
anything.  Note that the equation above actually defines the Inverse Discrete Fourier Transform (IDFT), 
because it gives the original sequence from the Fourier components.  [Mathematicians often reverse the 
definitions of DFT and IDFT, by putting a minus sign in the exponent of the IDFT equation above.  
Engineers and physicists usually use the convention given here.] 

Each number in the sequence is called a sample, because such sequences are often generated by 
sampling a continuous signal s(t).  For n samples, there are n frequency components, Sk, each at normalized 
frequency k/n (defined soon); see Figure 9.2. 

k = 9

j

complex samples 
n = 10

sj

0  1   2  3   4  5   6  7  8   9 k

Complex Frequency 
ComponentsSk

0  1   2  3   4  5   6  7  8   9

k = 1k = 2

k = 0
basis 

frequencies

signal period, aka sample interval

fundamental 
frequency

 
Figure 9.2  Samples in time, and their frequencies.  For simplicity, the samples, sinusoids, and 
component amplitudes are shown as real, but in general, they are all complex valued. 

Note that there are a full n sample times in the sample interval (aka signal period), not (n – 1).   

The above representation is used by many DFT functions in computer libraries.  

Also, there is no need for any other frequencies, because k = 10 has exactly the same values at all the 
sample points as k = 0.  If the samples are from a continuous signal that had a frequency component at 
k = 10, then that component will be aliased down to k = 0, and added to the actual k = 0 component.  It is 
forever lost, and cannot be recovered from the samples, nor distinguished from the k = 0 (DC) component.  
The same aliasing occurs for any two frequencies k and k + n. 

The above definition is the only correct meaning for “aliasing.”   
Many (most?) people misuse this word to mean other things (e.g.,  “harmonics” or “sidebands”).  

To avoid a dependence on n, we usually label the frequencies as fractions.  For n samples, there are n 
frequencies, measured in units of cycles/sample, and running from f = 0 to f = (1 – 1/n) cycles/sample.  The 
n normalized frequencies are 

  1 2 3 1, 0,1, ... 1, that is 0, , , ,...k k
k nf k n f
n n n n n

      
 

. 

There is no f = 1, just as there is no k = n, because f = 1 is an alias of f = 0.  Continuous Fourier 
components are written as S(f), a function of f, so we re-label the above diagram with normalized 
frequencies: 
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Normalized frequencies are equivalent to measuring time in units of the sample time,  
and frequencies in cycles/sample. 

For theoretical analysis, it is often more convenient to have the frequency range be –0.5 < f ≤ 0.5, 
instead of 0 ≤ f < 1.  Since any frequency f is equivalent to (an alias of) f – 1, we can simply move the 
frequencies in the range 0.5 < f < 1 down to –0.5 < f < 0: 
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For an even number of samples (and frequencies, diagram above), the resulting frequency set is 

necessarily asymmetric, because there is no f = –0.5, but there is an f = +0.5.  For an odd number of points 
(below), the frequency set is symmetric, and there is neither f = –0.5 nor  f = +0.5: 
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Non-Equivalence of DFT and FT of Series of Time-Domain Impulses (Again) 

As noted earlier, it is often said that sampling is like setting the function to zero between samples, or 
creating a series of impulse functions.  This is a common misconception.  It is well refuted by [Openheim 
and Schafer p??, and dozens of other signal processing experts].  It is easy to show that that claim is not 
true, in several ways.  One simple way is this: For a band-limited signal, I can reconstruct the signal 
between the sample times from just the samples alone.  That makes no sense if sampling amounted to 
zeroing the signal between samples, because that would be a new function, which would destroy 
information about the original.  There would then be no way to recreate the original function from its DFT. 

Furthermore, it is often said that the FT of a series of time-domain impulses is identical to the DFT of 
samples at those times.  From the previous paragraph, this cannot be true, either.  However, the following is 
true only at the (integer) k defined DFT frequencies of kω1: 
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For frequencies in between the kω1, the DFT is formally undefined, but can be taken as zero for the purpose 
of reconstructing the original samples.  However, at those in-between frequencies the FT has some non-
zero values which are usually of little interest.  So we see that the FT of a series of weighted impulses 
(representing the sample values), evaluated at the DFT frequencies kω1, is proportional to the DFT, but the 
full-spectrum of the FT is different from the spectrum of the DFT.  Hence, the two transformations are not 
equivalent. 

Basis Functions and Orthogonality 
The basis functions of the DFT are the discrete-time exponentials, which are equivalent to sines and 

cosines: 

 2 /( )

sample index 0,1, ... 1,

even: / 2 1, ... 1, 0,1... / 2
frequency index 0,1, ... 1 or
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Note that: 

The DFT and FT are simply decompositions of functions into basis functions,  
just like in ordinary quantum mechanics.  The transform equations are just the inner products of 

the given functions with the basis functions. 

The basis functions are orthogonal, normalized (in our convention) such that k m kmb b n  .  Proof: 
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The orthogonality condition allows us to immediately write the DFT from the definition of the IDFT 
above: 
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Discrete Fourier Transform: 

 
1

2 / th

0

th

1 , the complex frequency component

the normalized frequency of the component .

n
i k n j

k j k
j

S s e where S k
n

k k
n








 




 

Note that there are 2n independent real numbers in the complex sequence sj, and there are also 2n 
independent real numbers in the complex spectrum Sk, as there must be (same number of degrees of 
freedom). 

Real Sequences 
An important case of sequence sj is a real-valued sequence, which is a special case of a complex-

valued sequence.  In this section, we use the positive and negative frequency DFT form, where k takes on 

both negative and positive integer values.  Then for  
/ 2

2 /

/ 2

n
i k n j

j k
k n

s S e 




   to be real, the Sk must occur in 

complex conjugate pairs, i.e., the spectrum Sk must be conjugate symmetric: 
* for real, and int( / 2) 1k k jS S s k n   . 

This implies that S0 is always real, which is also clear since S0 is just the average of the real sequence. 

We now discuss the lower limit for k.  (As discussed earlier, there is no k = –n/2).  There are n 
independent real numbers in the real sequence sj.  We now consider two subcases: n is even, and n is odd. 

For n even,  

 
/ 2

2 /

/ 2 1

even, real
n

i k n j
j k j

k n

s S e n s

 

  ,  

and we use the asymmetric frequency range –0.5 < f ≤ 0.5, which corresponds to −n/2 + 1 ≤ k ≤ n/2 (Figure 
9.3, left).  For an even number of sample points, since there are no conjugates to k = 0 or k = n/2, we must 
have that S0 and Sn/2 are real (actually, S0 being real still satisfies conjugate symmetry).  All other Sk may be 
complex, and are conjugate symmetric: S–k = Sk

*. 

-.44 -.33 -.22 -.11   0   .11  .22  .33  .44   -.4  -.3  -.2  -.1   0   .1   .2   .3   .4   .5  
f

S0 & S5 real

conjugate symmetric

f

n = 10, 
sj real

Complex Frequency 
Components

S0 real

conjugate symmetric

n = 9, 
sj real

S(f) S(f)
Complex Frequency 

Components

 
Figure 9.3  (Left) Sequence with even number of samples, n = 10.  (Right) Sequence with odd 
number, n = 9. 

Therefore, in the spectrum, there are (n/2 – 1) independent complex frequency components, plus two real 
components, totaling n independent real numbers in the spectrum, matching the n independent real numbers 
in the sequence sj.   
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In terms of sine and cosine components (rather than the complex components), there are (n/2 + 1) 
independent cosine components, and (n/2 – 1) independent sine components.  All frequencies are 
nonnegative: 

    
/ 2 1

0 / 2
0

cos 2 / sin 2 / cos

even, real .

n

j k k n
k

j

s A A k n j B k n j A j

n s

  




         
  (9.1) 

Note that in the last term, cos πj is just an alternating sequence of +1, –1, +1, ... . 

For an odd number of points (Figure 9.3, right),  

 

 

 1 / 2
2 /

1 / 2

, odd
n

i k n j
j k

k n
s S e n



 

  , 

there is no k = n/2 component, and again there is no conjugate to k = 0.  Therefore, we must have that S0 is 
real.  All other Sk are conjugate symmetric.  Therefore, in the spectrum, there are (n – 1)/2 independent 
complex frequency components, plus one real component (S0), totaling n independent real numbers in the 
spectrum, matching the n independent real numbers in the sequence sj.   

In terms of sine and cosine components (rather than the complex components), there are (n + 1)/2 
independent cosine components, and (n – 1)/2 independent sine components.  All frequencies are 
nonnegative: 

    
 1 / 2

0
0

cos 2 / sin 2 / , odd, real
n

j k k j
k

s A A k n j B k n j n s 




         . (9.2) 

Note that there is no final lone-cosine term, and no alternating sequence. 

These examples illustrate how the notation is slightly more involved for the cosine/sine form than for 
the complex exponential form. 

Normalization and Parseval’s Theorem 
When the original sequence represents something akin to samples of voltage over time, we sometimes 

speak of “energy” in the signal.  The energy of the signal is the sum of the energies of each sample: 

2 2

1 1
2

0 0

, "conductance", choosen to be1.
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When the “conductance” is chosen to be 1, or some other reference value, the “energy” in the signal does 
not correspond to any physical energy (say, in joules). 

The energies of the sinusoidal components in the DFT add as well, because the sinusoids are 
orthogonal (show why??): 

1
2

0

n

k
k

E S




 . 

Parseval’s Theorem equates the energy of the original sequence to the energy of the sinusoidal 
components, by providing the constant of proportionality.  First, we evaluate the energy of a single 
sinusoid: 

 
1 22 22 /
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frequency index 0,1,... 1
n
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k k k
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E S e n S where k n

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Then summing over all frequencies yields: 

1 1 1 1
2 2 2

0 0 0 0

n n n n

k k k j
k k k j

E E n S E n S s
   

   

        .  (9.3) 

Energy For Real Sequences:  We derive Parseval’s Theorem for real sequences in two ways.  Since 
the sj are real, the interesting form is the cosine/sine form of DFT, (9.1)and (9.2).  We again consider 
separately the cases of n even, and n odd.   

First, for n even, k runs from 0 to (n/2).  We can deduce the equation for Parseval’s Theorem by 
exploiting the conjugate symmetry of the Sk.  Recall that S0 has no conjugate term, nor does Sn/2+1.  
Therefore: 

 22
0 0 / 2 1 / 2, n nE nA E n A  . 

For k = 1, ... n/2, we have: 
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We can derive this another way directly from (9.1).  Since A0 is a constant added to each sj, the energy 
contributed from this term is E0 = nA0.  Since cos πj is just alternating +1, –1, ..., it’s energy at each sample 
is 1, and En/2+1 = n(An/2)2.  Finally, the average value of cos2 over a full period is ½, as is the average of sin2.  
Therefore, for k = 1, ... n/2, Ek = (n/2)(Ak

2 + Bk)2. 

Second, for n odd, k runs from 0 to (n – 1)/2.  The above arguments still apply, but there is no lone-
cosine term at the end.  Therefore the result is the same, without the lone-cosine term. 

Summarizing: 
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Other normalizations: Besides our normalization choice above, there are several other choices in 
common use.  In general, between the DFT, IDFT, and Parseval’s Theorem, you can choose a 
normalization for one, which then fixes the normalization for the other two.  For example, some people 
choose to make the DFT and IDFT more symmetric by defining: 
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Continuous and Discrete, Finite and Infinite 
TBS: Finite length implies discrete frequencies; infinite length implies continuous frequencies.  

Discrete time implies finite frequencies; continuous time implies infinite frequencies.  Finite length is 
equivalent to periodic. 



physics.ucsd.edu/~emichels  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

5/7/2015  11:21  Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 192 of 263  

White Noise and Correlation 
White noise has, on average, all frequency components equal (named by incorrect analogy with white 

light); samples of white noise are uncorrelated.  Non-white noise has unequal frequency components (on 
average); samples of non-white noise are necessarily correlated.  (Show this??). 

Why Oversampling Does Not Improve Signal-to-Noise Ratio 
Sometimes it might seem that if I oversample a signal (i.e., sample above the Nyquist rate), the noise 

power stays constant (= noise variance is constant), but I have more samples of the signal which I can 
average.  Therefore, by oversampling, I should be able to improve my SNR by averaging out more noise, 
but keeping all the signal.   

This reasoning is wrong, of course, because it implies that by sampling arbitrarily fast, I can filter out 
arbitrarily large amounts of noise, and ultimately recover anything from almost nothing.  So what’s wrong 
with this reasoning?  Let’s take an example. 

Suppose I sample a signal at 100 samples/sec, with white noise.  Then my Nyquist frequency is 50 Hz, 
and I must use a 50 Hz Low Pass Filter (LPF) for anti-aliasing before sampling.  This LPF leaves me with 
50 Hz worth of noise power (= variance). 

Now suppose I double the sampling frequency to 200 samples/sec.  To maintain white noise, I must 
open my anti-alias filter cutoff to the new Nyquist frequency, 100 Hz.  This doubles my noise power.  Now 
I have twice as many samples of the signal, with twice as much noise power.  I can run a LPF to reduce the 
noise (say, averaging adjacent samples).  At best, I cut the noise by half, reducing it back to its 100 
sample/sec value, and reducing my sample rate by 2.  Hence, I’m right back where I was when I just 
sampled at 100 samples/sec in the first place. 

fsamp = 100 samples/sec

50 Hz 
Nyquist frequency

A
m

pl
itu

de

Discrete white 
noise spectrum

fsamp = 200 samples/sec

50 Hz 

A
m
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Discrete white 
noise spectrum

100 Hz 
Nyquist frequency

fsamp = 200 samples/sec

50 Hz 

A
m
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itu

de
Discrete correlated 

noise spectrum

100 Hz 
Nyquist frequency

 
But wait!  Why open my anti-alias LPF?  Let’s try keeping the LPF at 50 Hz, and sampling at 200 

samples/sec.  But then, my noise occupies only ½ of the sampling bandwidth: it occupies only 50 Hz of the 
100 Hz Nyquist band.  Hence, the noise is not white, which means adjacent noise samples are correlated!  
Hence, when I average adjacent samples, the noise variance does not decrease by a factor of 2.  The factor 
of 2 gain only occurs with uncorrelated noise.  In the end, oversampling buys me nothing. 

Filters TBS?? 
FIR vs. IIR.  Because the data set can be any size, and arbitrarily large: 

The transfer function of an FIR or IIR is continuous. 

Consider some filter.  We must carefully distinguish between the filter in general, which can be applied 
to any data set (with any n), and the filter as applied to one particular data set.  Any given data set has only 
discrete frequencies; if we apply the filter to the data set, the data set’s frequencies will be multiplied by the 
filter’s transfer function at those frequencies.  But we can apply any size data set to the filter, with 
frequency components, f = k/n, anywhere in the Nyquist interval.  For every data set, the filter has a transfer 
function at all its frequencies.  Therefore, the filter in general has a continuous transfer function. 
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Data sets with different n sample the transfer function H(f) at different points.  H(f), in general, is a 
continuous curve, defined at all points in the Nyquist interval f  [0, 1) or (-0.5, +0.5]. 

What Happens to a Sine Wave Deferred? 
“... Maybe it just sags, like a heavy load.  Or does it explode?”  [Sincere apologies to Langston 

Hughes.]  You may ask, “The DFT has only a finite set of basis frequencies.  Can I use a DFT to estimate 
the frequency of an unknown signal?  What happens if I sample a sinusoid of a frequency in between the 
chosen DFT basis frequencies?  What is its spectrum?”  Good questions.  We now demonstrate.  The 
results here are important for generalizing the DFT, and spectral analysis in general, to non-uniformly 
sampled signals. 

We choose n = 40 samples, which means the basis frequencies are k(1/n), k = –19, ... 0, ... 20, 
measured in cycles per sample (or equivalently, in units of the sampling rate, fsamp).  The frequency spacing 
is 1/n = 0.025 cycle/sample.  No other frequencies exist in the DFT.   

First, we show the result of sampling an existing-frequency sinusoid of  f = 10/n = 0.25 cycle/sample (k 
= 10).  Since the signal is real, the spectrum is conjugate symmetric (S–k = Sk

*); therefore, I show only the 
positive frequencies, and double their magnitudes: 

2cos , cycle/samplej
k ks j f

n n
   

 
. 

 
(Left) A sampled sinusoid of  f = 0.25, n = 40.  (Right) As expected, its magnitude spectrum 
(DFT) has exactly one component at f = 0.25, with magnitude 1.0. 

[Notice that when the sample points are connected by straight segments, the sinusoid doesn’t “look” 
sinusoidal, but recall that connecting with straight segments is not the proper way to interpolate between samples.] 

The “energy” of the sample set is exactly (1/2)40 = 20, because there is an integral number of cycles in 
the sample set, and the average energy of a sinusoid is ½. 

Now we take our signal off-frequency by half the frequency spacing: f = 10.5/n = 0.2625 cycle/sample, 
halfway between two chosen basis frequencies: 
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(Left) A sampled sinusoid of  f = 0.2625, n = 40.  (Right) Its magnitude spectrum (DFT) has 
components everywhere, but is peaked around  f = 0.2625. 

Not too surprisingly, the components are peaked at the two basis frequencies closest to the sinusoid 
frequency, but there are also components at all other frequencies.  This is an artifact of sampling a pure 
sinusoid of a non-basis frequency for a finite time.  Note also that the total energy in the sampled signal is 
slightly larger than that of the f = 0.25 signal, even though they are both the same amplitude.  This is due to 
a few more of the samples being near a peak of the signal.  This shift in total energy is another artifact of 
sampling a non-basis frequency.  For other signal frequencies, or other time shifts, the energy could just as 
well be lower in the sampled signal.  This energy shift also explains why the two largest components of the 
spectrum are not exactly equal, even though they are equally distant from the true signal frequency of f = 
0.2625. 

Finally, instead of being half-way between allowed frequencies, suppose we’re only 0.2 of the way, f = 
10.2/n = 0.255 cycle/sample: 

 
(Left) A sampled sinusoid of  f = 0.255, n = 40.  (Right) Its magnitude spectrum (DFT) has 
components everywhere, is asymmetric, and peaked at  f = 0.25. 

The two largest components are still those surrounding the signal frequency, with the larger of the two 
being the one closer to the signal frequency. 

These examples show that a DFT, with its fixed basis frequencies, can give only a rough estimate of an 
unknown sinusoid’s frequency.  The estimate gets worse if the unknown signal is not exactly a sinusoid, 
because that means it has an even smaller spectral peak, with more components spread around the 
spectrum.  

Other methods exist for estimating the frequency of an unknown signal, even one that is non-uniformly 
sampled in time.  If the signal is fairly sinusoidal, one can correlate with a sinusoidal basis frequency, and 
numerically search for the frequency with maximum correlation.  This avoids the discrete-frequency 
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limitation of a DFT.  Other methods usually require many periods of data, e.g. epoch folding [Leahy, Ap J, 
1983, vol 266, p160??]. 

Nonuniform Sampling and Arbitrary Basis Functions 
So far, we have used a signal sampled uniformly in time.  We now show that one can find a Fourier 

transform of a signal with any set of n samples, uniform or not.  This has many applications: some 
experiments (such as lunar laser ranging) cannot sample the signal uniformly for practical, economic, or 
political reasons.  Magnetic Resonance Imaging (MRI) often uses non-uniform sampling to reduce imaging 
time, which can be an hour or more for a patient.   

We write the required transform as a set of simultaneous equations, with tj as the arbitrary sample 
times, and keeping (for now) the uniformly spaced frequencies: 
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How can we find the required coefficients, Sk?   

The exponential functions are no longer orthogonal over the sample times;  
they are only orthogonal over uniformly spaced samples.   

Nonetheless, we have n unknowns (S0, ... Sn–1), and n equations.  So long as the basis functions are 
linearly independent over the sample times, we can (in principle) solve for the needed coefficients, Sk.  We 
have now greatly expanded our ability to decompose arbitrary samples into basis functions:  

We can decompose a signal over any set of sample times into any set of linearly independent  
(not necessarily orthogonal) basis functions. 

Note that Parseval’s theorem does not apply to the coefficients, since the basis functions (evaluated at 
the non-uniform sample points) are no longer orthogonal.  Also, S0 is no longer the average of the signal 
values, since the sinusoids may have nonzero average over the sample points. 

There is one more subtlety: what is the fundamental frequency f0?  Equivalently, what is the signal 
period?  The two are related, because f0 = 1/period.  There is no unique answer to this.  However, since a 
finite signal transforms as if it is periodic, the period cannot be (tn–1 – t0), since the first and last samples 
would then have to be identical.  The period must be longer than that.  A convenient choice is to simply 
mimic what happens when the samples are uniform.  In that case, 

 1 0 0, 1/
1n

nperiod t t f period
n  


 

This choice for period reproduces the traditional DFT when the samples are uniform, and is usually 
adequate for non-uniform samples, as well. 
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Example: DFT of a real, non-uniformly sampled sequence:  We can set up the matrix equation to 
be solved by recalling the frequency layout for even and odd n, and applying the above.  We set t0 = 0, and 
define n/2 as floor(n/2).  For illustration of the last two columns, we take n odd: 
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This gives us the sine and cosine components separately.  For n even, the highest frequency component 
is k = n/2, or ω = 2πk/n = 2π(1/2) = π rad/sample, and the final column of sin(·) is not present. 

Note that this is not a fit; it is an exact, reversible transformation.  The matrix is the set of all the basis 
functions (across each row), evaluated at the sample points (down each column).  The matrix has no 
summations in it, and depends on the sample points, but not on the sample values. 

Example: basis functions as powers of x:  In the continuous world, a Taylor series is a 
decomposition of a function into powers of (x – a), which are a set of linearly independent (but not 
orthogonal) basis functions.  Despite this lack of orthogonality, Taylor devised a clever way to evaluate the 
basis-function coefficients without solving simultaneous equations. 

Example: sampled standard basis functions:  We could choose a standard (continuous) 
mathematical basis set, such as Bessel functions, Jn(t).  For n sample points, t1, ... tn, the Bessel functions 
are linearly independent, and we can solve for the coefficients, Ak.  We need a scale factor α for the time 
(equivalent to 2πk/n in the Fourier transform).  For example, we might use α = the (n –1)th zero of  Jn–1(t).  
Then: 
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We have n equations and n unknowns, A0, ... An–1, so we can solve for the Ak. 

Don’t Pad Your Data, Even for FFTs 
Old fashioned FFT implementations required you to have N = a power of 2 number of samples (64, 

1024, etc.).  Modern FFT implementations are general to any number of samples, and use the prime 
decomposition of N to provide the fastest and most accurate DFT known.  The worst case is when N is 
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prime, and no FFT optimization is possible: the DFT is evaluated directly from the defining summations.  
But with modern computers, this is usually so fast that we don’t care. 

In the old days, if people had a non-power-of-2 number of data points, they used to “pad” their data, 
typically (and horribly) by just adding zeros to the end until they reached a power of 2.  This introduced 
artifacts into the spectrum, which often obscured or destroyed the very information they sought [Ham p??]. 

Don’t pad your data.  It screws up the spectrum.   
With a modern FFT implementation, there is no need for it, anyway. 

If for some reason, you absolutely must constrain N to some preferred values, it is much better to throw 
away some data points than to add fake ones. 

Two Dimensional Fourier Transforms 
One dimensional Fourier transforms often have time or space as the independent variable.  Two 

dimensional transforms almost always have space, say (x, y), as the independent variables.  The most 
common 2D transform is of pictures.   

In the continuous world of light, lenses can physically project a Fourier transform of an image based on 
optics, with no computations.  This allows for filtering the image with opaque masks, and re-transforming back to 
the original-but-filtered image, all at the speed of light with no computer.  But digitized images store the image as 
pixels, each with some light intensity.  These are computationally processed by computer. 

Basis Functions 

TBS.  Not sines and cosines, or products of sines and cosines.  Products of complex exponentials.  
Wave fronts at various angles, discrete kx and ky. 

Note on Continuous Fourier Series and Uniform Convergence 
The continuous Fourier Series is defined for a periodic signal s(t) over a continuous range of times,  

t  [0, T): 

02
0

0
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is the complex frequency component
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Note that the time interval is continuous, but the frequency components are discrete.  In general, 
periodic signals lead to discrete frequency components. 

The continuous Fourier Series is not always uniformly convergent.   
Therefore, the order of integrations and summations cannot always be interchanged.   

Non-uniform convergence is illustrated by the famous Gibbs phenomenon: when we transform a 
square wave to the frequency domain (aka Fourier space), retain only a finite number of frequency 
components, and then transform back to the time domain, the square wave comes back with overshoot: 
wiggles that are large near the discontinuities: 
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wave  

Gibbs phenomenon: (Left) After losing high frequencies, the reconstructed square wave has 
overshoot and wiggles.  (Right) Retaining more frequencies reduces wiggle time, but not 
amplitude. 

As we include more and more frequency components, the wiggles get narrower (damp faster), but do 
not get lower in amplitude.  This means that there are always some time points for which the inverse 
transform does not converge to the original square wave.  Such wiggles are commonly observed in many 
electronic systems, which must necessarily drop high frequency components above some cut-off frequency. 

However: 

Continuous signals have Fourier Series that converge uniformly.  This applies to most physical 
phenomena, so interchanging integration and summation is valid [F&W p217+]. 

This is true even if the derivative of the signal is discontinuous. 

Fourier Transforms, Periodograms, and Lomb-Scargle 
In some circles, one hears the terms “Fourier Transform,” “periodogram,” and “Lomb-Scargle” a lot.  

Each of these is distinct, but they are related.  Understanding the differences can help you analyze your 
data.  We provide here an overview of some common signal processing algorithms.  Be warned:  

Because spectral analysis can be tricky, its practice is rife with misunderstanding and mythology. 

Throughout the text, I will occasionally note common misunderstandings, but there are too many for me to 
correct them all.  We address the Lomb-Scargle algorithm in particular, since it is widely misunderstood. 

Correspondingly, the terminology is also highly confused and abused.  We define here some common 
terms in ways that are consistent with the majority of our (limited) experience in the literature.  However, 
there appears to be little universal agreement on precise definitions, especially across different disciplines.  
(Words are the tools of communication; it is impossible to make fine points with dull tools.)  In this work, 
we adhere to the following definitions:   

 Spectral analysis is the examination of periodic components of a data sequence.   

 The energy of a single data point is its squared magnitude, and is always ≥ 0 (the term “energy” 
derives from early applications where the squared magnitude was proportional to physical energy).  
The “energy” of a sample-set is the sum of the squares of the samples.  The “energy” of a 
frequency component is the sum of the “energies” of that frequency taken over the sample times. 

 The power in a frequency component is its squared magnitude, and is often normalized in some 
specified way.  In some references, the term “energy” is used for “power.”  (As with “energy,” the 
“power” in a component might be unrelated to physical power.)  In this work, we occasionally 
write “energy” and “power” in quotes, as a reminder that they are not physical energy and power.   
For non-uniform sampling, the “energy” of a frequency component is not proportional to its 
“power.” 

 The statistical significance is the false alarm probability, often called alpha .  Experimenters 
usually choose  before analyzing the data.  It is the probability that a pure noise signal will, by 
chance, suggest the presence of a signal.  It is essentially the same as the p-value.  Note that a 
lower significance means a result is more significant, i.e. more likely real, and less likely random.  
Nonetheless, authors often speak loosely of “higher” significance meaning “more significant” or a 
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lower significance value.  It is more clear to say “more significant” instead of “higher 
significance.” 

 A detection parameter is a statistic calculated for a trial signal that (roughly) tells how likely the 
trial is to be a real phenomenon, rather than a result of random chance.  A higher significance 
means a result is less likely to be random.  In Lomb-Scargle, the significance of a frequency tells 
how likely that frequency is to be a significant component of the signal.  Note that “significance” 
is different than “power.” 

 A DFT (Discrete Fourier Transform) is a precisely defined decomposition of a sequence 
(uniformly spaced or not) into a set of sinusoidal components.  (An “FFT” is just an efficient way 
to perform a DFT in some limited cases.  We have limited use for “FFT” here.)  DFTs use 
uniformly spaced frequencies, but are easily extended to non-uniformly spaced frequencies. 

 A periodogram is some kind of graph of periodic components of a sample set.  There are many 
methods for producing a periodogram, which produce different results [2].  Therefore, a 
“periodogram” is less well-defined than a DFT.  Usually, the frequencies in a periodogram are 
uniformly spaced, but the periodogram frequency spacing may be tighter than the DFT. 

 Lomb-Scargle is a formula for finding the significance of a given sinusoidal frequency in data.   

 A Lomb-Scargle periodogram is a graph of detection parameter vs. frequency, where each 
parameter is computed with the Lomb-Scargle algorithm.  The “LS” in periodogram can stand for 
either “Lomb-Scargle” or “Least Squares”, since the Lomb-Scargle algorithm produces the 
detection parameter for a least squares sinusoidal fit.  Note that the LS algorithm produces a 
detection parameter, not power, despite common belief to the contrary. 

Be careful to distinguish between uniformly spaced samples of data,  
and uniformly spaced frequencies in the periodogram. 

Caution: For orthogonal basis functions (as in a uniformly sampled DFT), the energy and power of 
every frequency are proportional, and therefore the terms are often interchanged.  However, for non-
uniform sampling, the “energy” of a frequency component is not proportional to its “power.”  This is the 
crux of the confusion about the LS “periodogram.”  The LS result is essentially the “energy” of a given 
sinusoidal frequency in the data, used to help find significant sinusoids in the data. 

The Discrete Fourier Transform vs. the Periodogram 

The single biggest distinction between a DFT and a Lomb-Scargle periodogram is that  
the DFT simultaneously optimizes all the components to form an exact transformation.   

A Lomb-Scargle periodogram examines each frequency by itself, regardless of other frequencies. 

The DFT is exact, and invertible, with no loss of information.  At times, this can be a plus, but in many 
cases, this “exactness” results in anomalies.  In particular, any set of physical measurements is only a 
subset of the exact representation of the physical phenomenon.  In other words, a sample set is incomplete, 
and so the information contained in it is limited.  In addition, all measurements contain some noise.  If we 
put such a sample set into a DFT, it gives us frequency components which exactly match the given 
incomplete samples, noise and all.  To achieve this exactness, the DFT must sometimes contort the 
spectrum in unphysical ways.  In particular, highly non-uniformly sampled signals often result in large DFT 
artifacts.  By definition, a DFT produces a spectrum of precisely defined, uniformly spaced frequencies.  
[However, one can easily compute an exact decomposition onto an arbitrary set of frequencies, and 
furthermore, onto an arbitrary set of basis functions that need not be sinusoidal.] 

As scientists, we often would rather see something less mathematically exact, and more physically 
meaningful.  We combine all our knowledge of the system (and science in general) with our limited, noisy 
data, to reach new conclusions.  A periodogram provides a way to look at frequency content of a signal, 
without some of the unphysical anomalies of an exact DFT.  Also, a periodogram can plot results at an 
arbitrary set of frequencies, not just those defined in a DFT.  In fact, periodograms usually choose a larger, 
and more densely packed, set of frequencies than a DFT produces.  However, periodograms suffer from 
anomalies, as well. 
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In a DFT, the frequency components don’t “overlap,” in the sense that none of the “information” of 
one component appears in any other component.  This is true even though the basis sinusoids are not 
orthogonal over the given sample times.  There is no “extra” information in the DFT: e.g., a sample set of n 
= 40 points transforms into exactly 21 cosines and 19 sines, having exactly the same 40 degrees of freedom 
as the original data set. 

In contrast, in a periodogram, the component powers are themselves correlated, and the information 
from one component also shows up in some of the other components (especially adjacent components).  
Furthermore, especially in small data sets [ref??], the non-orthogonality of the periodogram’s sinusoids 
may cause a single component of the data to produce spikes at multiple widely-spaced frequencies in the 
periodogram.  This may mislead the user into believing there are multiple causes, one for each peak.  
Finally, for any sample size n, we can make a periodogram with any number of frequencies, even far more 
than n.  This again shows that the periodogram contains redundant information. 

Despite common belief, a Lomb-Scargle periodogram is not a periodogram of sinusoidal “power.”  It 
is a graph of detection parameter vs. frequency, where each parameter is computed by a minimum least-
squares residual fit of a single sinusoid at that frequency [3].  For large data sets, or well-randomized 
sample times, the parameter value approaches the power, so people often “get away with” confusing the 
two.  However, for small data sets, or those where the sample times are clustered around a periodic event 
(say, nighttime), the significance of a frequency can be very different than its “power” estimate.  Note that 
when the sample times are clustered around a frequency, say 1 cpd (cycle per day), it can affect many 
frequencies in the sample, especially near harmonics or sub-harmonics (e.g., 2 cpd, 3 cpd, 0.5 cpd, etc.). 

When fitting a sinusoid of given frequency to data, there are two fit parameters.  These may be taken as 
cosine and sine amplitudes, or equivalently as magnitude and phase of a single sinusoid.  The true “power” 
at that frequency (considered by itself) is the sum of the squares of the cosine and sine amplitudes, or 
equivalently, the square of the magnitude. 

Practical Considerations 
Here are a few possible issues with spectral analysis.  Again, it is a highly involved topic, and these 

issues are only a tiny introduction to it.  

Removing trends:  Before using spectral analysis, it is common to remove simple trends in the data, 
such as a constant offset, or straight line trends [ref??].  A straight-line introduces a complicated spectral 
structure which often obscures the phenomena of interest.  Thus, removing it before spectral analysis 
usually helps.  A constant offset introduces spurious frequency detections, especially for bunched samples, 
as are typical astronomical data.  Also, constant offsets may lead to worse round-off error.  Furthermore, 
even though you should never pad your data (see below), padding with zeros when your data has a non-
zero average only compounds your error.  

Stepwise regression:  Sometimes we have in our data a frequency component which is obscuring the 
phenomenon of interest.  We may model (fit) that frequency, and subtract it from the data, in hopes of 
revealing the interesting data.  Note that finding frequencies in our data, and subtracting them, one at a 
time, is simply the standard statistical method of stepwise multiple regression (not simultaneous multiple 
regression).  We are “regressing” one frequency component at a time.  Therefore, stepwise frequency 
subtraction has all the usual pitfalls of stepwise regression.  In particular, the single biggest component may 
be completely subsumed by two (or more) smaller components.  Therefore, when performing such stepwise 
frequency modeling, it may help to use the standard method of backward elimination to delete from the 
model any previously found component that is no longer useful in the presence of newer components. 

Computational burden:  Many decomposition algorithms rely on some form of orthogonality, e.g., 
this is the basis (wink) of Discrete Fourier Transforms.  Orthogonality allows a basis decomposition to be 
done by correlation (aka using inner-products).  Recall that such a correlation decomposition, including 
Lomb-Scargle periodograms, requires O(n2) operations.  In contrast, a non-orthogonal decomposition, such 
as a DFT over non-uniform sample times, solves simultaneous equations requiring O(n3) operations, so can 
be much slower.  For n = 1,000 samples, the non-orthogonal decomposition is about 1,000 times slower, 
and requires billions of operations.  This may be a noticeable burden, even on modern computers (perhaps 
requiring many minutes). 
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Smoothed DFT:  One surprisingly common approach to making a periodogram (not Lomb-Scargle) is 
to make a DFT, with its possible anomalies, and then try to disperse those anomalies by “smoothing” the 
resulting graph of power vs. frequency.  I believe smoothing a DFT is like trying to invest wisely after 
you’ve lost all your money gambling.  It’s too late: you can’t get back what’s already lost.  Likely much 
better is to make some other kind of periodogram in the first place, and don’t use a DFT, or use it only as 
guidance for more appropriate analyses.  In particular, with highly non-uniformly spaced samples, the DFT 
anomalies include large (but unphysical) amplitudes, which are not removed by smoothing.  Furthermore, 
smoothing a DFT of nonuniformly spaced samples requires O(n3) operations, so it not only likely produces 
poor results, it does so slowly. 

One possible advantage of the “smoothed DFT” approach is that for very large data sets (n > ~10,000), 
if n is amenable to a Fast Fourier Transform and your samples are uniformly spaced, then the DFT can be 
done in O(n log n) operations.  A typical Lomb-Scargle periodogram requires O(n2) operations.  However, 
Press and Rybicki [1] provide a way to use FFT-like methods to create a Lomb-Scargle periodogram, thus 
using O(n log n) operations.  While still slower than a true FFT, this makes Lomb-Scargle periodograms of 
millions of data points feasible. 

Bad information:  As mentioned earlier, many references (seemingly most references, especially on 
the web), are wrong in important (but sometimes subtle) ways.  E.g., some references actually recommend 
padding your data (almost always a terrible idea, discussed elsewhere in Funky Mathematical Physics 
Concepts).  Many references incorrectly describe the differences between uniform and non-uniform 
sampling, the meaning of FFT, aliasing, and countless other concepts.  In particular, 

Some references say that sampling a signal is like  
setting it to zero everywhere except the sample times.  It is not. 

This is a common misconception, which is discussed earlier in the section “Sampling.”  

The Lomb-Scargle Algorithm 
We here describe the Lomb-Scargle (L-S) algorithm; the next section explains how it works.  We start 

with n discrete measurements (samples), sj, taken at times tj, j = 0, ... n–1.  The algorithm first finds the 
time offset that makes the cosine and sine orthogonal over the given sample times: 
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Note that τ depends on ω; so each ω has its own τ.  Also, τ depends on the sample times, but not on the 
measurements, sj.   

Next, L-S subtracts out the average signal, giving samples 

average ofj j j j jh s s where s s   . 

Then the Lomb-Scargle normalized periodogram is, in inner product notation: 
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We deliberately use the non-standard notation D(ω), rather than P(ω), to emphasize that the L-S parameter 
is a detection statistic, not a power (despite widespread belief).  Expanded in more conventional notation, 
the L-S normalized periodogram is [1]: 



physics.ucsd.edu/~emichels  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

5/7/2015  11:21  Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 202 of 263  

 
 

 

 

 
 

2 2
1 1

0 0
2 1 1

2 2

0 0

cos sin
1 [1] eq. 3 p277

2
cos sin

n n

j j j j
j j

n n

j j
j j

h t h t

D
s

t t

   



   

 

 
 

 

             
      
  
 
  

 

 
. 

NB: This assumes equal uncertainties on the data.  This is exactly the equation for energy one gets from a 
standard statistical fit which minimizes the residual signal in a least-squares sense (i.e., minimum residual 
energy) [4].  Such a fit is a simultaneous 2-parameter linear fit (for A and B) to the model: 

      2 2( ) cos sin , ( )fit trueS t A t B t P A B          . 

Ptrue(ω) is the true estimate of the “power” at ω, because it is proportional to the squared amplitude of 
the fitted sinusoid at frequency ω.  For large data sets, or well-randomized sample times, D(ω) approaches 
being proportional to Ptrue(ω) at all frequencies.  Therefore, the parameter D(ω) is often used as a substitute 
for the spectral power estimate, Ptrue(ω).  As with most hypothesis testing, the presence of a spectral line 
(frequency) is deemed likely if the line’s parameter is substantially less likely than that expected from pure 
noise.  Since both terms in the L-S formula are gaussian random variables (RVs), the Lomb-Scargle 
expression in brackets for pure gaussian noise is proportional to a χ2

ν=2 distribution.  The factor of 1/2 
makes the probability distribution of D(ω) approach a unit-mean exponential [3], rather than a χ2

ν=2.  
However, the normalization by s2 means that D(ω) is exactly beta distributed (not F distributed, as thought 
for decades) [A. Schwarzenberg-Czerny, 1997]. 

Note that s2 is (close to) the average “energy” (squared value) of the samples (remember that the 
average value of all the samples has been subtracted off, so the hj have zero average).  The 1/s2 in this 
equation makes the result independent of the signal amplitude, i.e. multiplying all the data by a constant has 
no effect on the periodogram.  Also, for pure noise, D(ω) is roughly independent of the number of samples, 
n, since s2 is independent of n, and the numerators and denominators both scale roughly like n.  The 
numerator summations scale like n , because they are sums of random variables (noise).   

In contrast, if a signal is present at frequency ω, D(ω) grows like n, because then the numerator 
summation grows like n.  Thus, if a signal is present, it becomes easier to detect with a larger sample set, 
consistent with our intuition. 

The Meaning Behind the Math 
Understanding exactly what Lomb-Scargle does, and how it works, puts you in a powerful position to 

know when to use it, and its limitations.  Also, if you ever want to develop a novel algorithm, or have ever 
wondered how others develop them, Lomb-Scargle provides an interesting and informative example of the 
process.  (However, our derivation here is very different from Lomb’s original [Lom].)  The Lomb-Scargle 
formula may look daunting, but we can understand and derive it in just a few high-level steps: 

1. Given our basis of cosine and sine, find a way to make them orthogonal. 

2. Use standard orthogonal decomposition of our data into our two basis functions. 

3. Normalize our coefficients, being careful to distinguish power-estimate from detection parameter. 

4. Prove that the correlation amplitude of the previous steps is equivalent to the least-squares fit. 

We complete these steps below, in full detail.  

1.  Make Cosine and Sine Orthogonal 

When making a LS periodogram, we are not performing a basis decomposition.  We are separately 
finding correlations with each periodogram frequency, without regard to any other frequencies.  For real-
valued data (i.e., not complex), there are two basis functions at any frequency: cosine and sine.  We need 
both to find the detection level (and also the “power”) at that frequency. 
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At any given frequency, ω, we have two basis functions, cos(ωt) and sin(ωt), which we write as a sum: 
cos( ) sin( )A t B t  .  Recall how a uniformly sampled DFT works: ω is a multiple of the fundamental 

frequency, and our sample times are uniformly spaced.  Then cosine and sine are naturally orthogonal: 

   
1

0

a multiple of fundamental frequency

cos sin 0, sample number

sampling period 1/ .

n

j
samp

j t j t where j

t f



 




 
   

  

  

Using this orthogonality, we find our coefficients A and B separately, using inner products: 

   
1 1

0 0

2 2cos cos , sin sin
n n

j j
j j

A s s j t B s s j t
n n

 
 

 

       . 

The power at frequency ω is then A2 + B2.   

In contrast, for arbitrary sample times tj (as in much observational data), or for arbitrary ω, cos(·) and 
sin(·) are not orthogonal (i.e., they are “correlated”): 

   
1

0

arbitrary frequency

cos sin 0, sample number

arbitrary sample times .

n

j j
j

j

C t t where j

t



 




 
  




  

Being correlated, we cannot use simple inner-products to find A and B separately.  Furthermore, the 
presences of other components prevents us from simply simultaneously solving for the amplitudes A and B.   

Despite being correlated, cosines and sines are usually still a convenient basis, because they are the 
eigenfunctions of linear, time-invariant systems, and appear frequently in physical systems.  So we ask: Is 
there a way to “orthogonalize” the cosines and sines over the given set of arbitrary sample times?  Yes, 
there is, as we now show. 

Consider the basis-function parameters we have to play with: amplitude, frequency, and phase.  We are 
given the frequency, and are seeking the amplitudes.  The only parameter left to adjust is phase (or 
equivalently, a shift in time).  So we could write the correlation amplitude C above as a function of some 
phase shift : 

   
1

0

( ) cos sin
n

j j
j

C t t    




   . 

Can we find a phase shift 0 such that C(0) = 0, thus constructing a pair of orthogonal cosine and sine?  
The simplest shift I can think of is π: cos(ωtj + π) = –cos(ωtj), and similarly for sin(·).  Thus a phase shift of 
π negates both cosine and sine, and the correlation is not affected: C(π) = C(0).  The next simplest shift is 
π/2.  This converts cos(·)  sin(·), and sin(·)  –cos(·), so C(π/2) = –C(0).  This is great: C() is a 
continuous function of , and it changes sign between 0 and π/2.  This means that somewhere between 0 
and π/2, C() = 0, i.e. the cosine and sine are orthogonal. 

The existence of a phase-shift 0 which makes cosine and sine orthogonal is important, because we can 
always find the required 0 numerically.  Even better, it turns out that we can find a closed-form expression 
for 0.  We notice that the correlation C() can be rewritten, using a simple identity: 

   
1 1

0 0 0
0 0

sin 2 2cos sin ( ) 0 2sin 2 2 , sin 2 2 0
n n

j j
j j

C t or t       
 

 

        . 
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Given the sample times tj, how do we find 0?  We can use geometry: let’s set  = 0 for now, and plot the 
sum of the vectors corresponding to (x = cos(2ωtj),  y = sin(2ωtj) ), for some hypothetical sample times, tj.  
Each vector is unit length (see Figure 9.4). 

cos(2ωtj)
20

sin(2ωtj)

Σj sin 2ωtj

Σj cos 2ωtj

j = 0

j = 1 j = 2

j = 3

 
Figure 9.4  Sum (blue) of n = 4 vectors corresponding to (x = cos(2ωtj), y = sin(2ωtj) ) 

[This is equivalent to plotting the complex numbers exp(i2ωtj) in the complex plane.]  In the example 
shown above, if we rotate all the vectors clockwise by 20, then the sum of the sine components will be 
zero.  The components of the vector sum are the sums of the components, so: 

     

1

1
0

0 0 0 01
0

0

sin 2

tan 2 ( ) cos sin 0

cos 2

n

j n
j

j jn
j

j
j

t

C t t
t



     













     





. 

In other words, we rotate each component (in the 2ω set) by –20, which corresponds to rotating each 
component of our original (1ω) set by –0.  This gives the condition we need for orthogonality.   

Any phase shift, at a given frequency, can be written as a time shift.  By convention, Lomb-Scargle 
uses a subtracted time shift, so: 

     
1

0 0
0

2 2 ( ) cos sin 0
n

j j
j

C t t      




      . 

With this time shift, as with the 0 phase shift, the cosines and sines are orthogonal over the given sample 
times.  Be careful to distinguish 0, the orthogonalizing phase shift, from the fitted-sinusoid phase, usually 
called . 

2.  Use orthogonal decomposition of our data into our basis functions 

Now that we have orthogonal basis functions (though not yet normalized), we can find our cosine and 
sine coefficients with simple correlations (aka inner-products): 

   
1 1

0 0

' cos cos , ' sin sin (unnormalized)
n n

j j j j
j j

A h h t B h h t   
 

 

       , 

where the primes indicate unnormalized coefficients.  Note that, because the offset cosine and sine 
functions are orthogonal, A’ and B’ fit for both components simultaneously.  That is, orthogonality implies 
that the individual best fits for cosine and sine are also the simultaneous best fit. 

3.  Normalize Our Coefficients 
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With all orthonormal basis decompositions, we require normalized basis functions to get properly 
scaled components.  We normalize our coefficients by dividing them by the squared-norm of the 
(unnormalized) basis functions: 

 

 

 

 

1 1

0 0
1 1

2 2

0 0

cos sin
' ', (normalized)

cos cos sin sin
cos sin

n n

j j j j
j j
n n

j j
j j

h t h t
A BA B

t t

   

   

 

 
 

 

 

   

 

 

 
. 

These formulas are similar to the two terms in the Lomb-Scargle formula.  The normalized coefficients, A 
and B, yield a true power estimate for a best-fit sinusoid: 

   2 2( ) from ( ) cos sintrue fit j jP A B S A t B t           . 

To arrive at the Lomb-Scargle detection parameter, we must consider not the true power estimate, 
Ptrue(ω), but the contribution to the total sample set “energy” (sum of squares) from our fitted sinusoid, 
Sfit(ω), at the given sample times.  For example, for a frequency component with a given true power, if the 
sinusoid happens to be small at the sample times, then that component contributes a small amount to the 
sample-set “energy.”  On the other hand, if the sinusoid happens to be large at the sample times, then that 
component contributes a large amount to the sample-set “energy.”   

The significance of a frequency component at ω is a function of the ratio of the component’s energy to 
that expected from pure noise.  Given a component with cosine and sine amplitudes A and B, its energy in 
the sample set is the sums of the squares of its samples, at the given sample times: 
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   
    
   
    

 

 

 
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 

 

This is precisely the Lomb-Scargle detection parameter. 

For wideband noise, with no signal, the samples hj are independent identically distributed (IID), with 
variance equal to the noise power, σ2.  Across many sets of noise, then, the numerators above have 
variance: 

   
1 1

2 2 2 2 2

0 0

cos , sin
n n

A j B j
j j

t t       
 



 

      

This means each term in E(ω) has variance = σ2. 

 For gaussian noise, A and B are gaussian, and E(ω) is the sum of their squares, scaled to the estimated 
variance = σ2.  Therefore, E(ω)/σ2 (always ≤ 1) is distributed with CDF an incomplete beta function [A. 
Schwarzenberg-Czerny, 1997].  (For decades, it was thought that E(ω)/σ2 was χ2

ν=2 distributed, but it is 
easy to show that it is not: χ2 has no upper bound, but E(ω)/σ2 ≤ 1.)  Nonetheless, assuming the incorrect 
χ2

ν=2 distribution, Lomb-Scargle divides by 2 to get a more-convenient exponential distribution with μ = 1: 
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This is the standard (though flawed) formula for LS detection.  Note again that we don’t know the true σ2; 
we must estimate it from the samples. 

N. R. Lomb first derived this result with a completely different method, using the standard “normal 
equations” for least-squares fitting [5]. 

4.  Prove that the correlation amplitude of the previous steps is equivalent to the least-squares fit 

This is a general theorem: any correlation amplitude for a component of a sequence sj is equivalent to a 
least-squares fit.  We prove it by contradiction.  Given any single basis function, bk, we can construct a 
complete, orthonormal basis set which includes it.  In that case, the component of bk is found by 
correlation, as usual.  Call it Ak. 

The least-squares residue is simply the energy of the sequence after subtracting off the bk component.  
Since the basis set is orthonormal, Parseval’s theorem holds.  Thus, the residual energy after subtracting the 
bk component from sj is the sum of the squares of all the other component amplitudes.  If there existed 
some other value of Ak which had less residual energy, then that would imply a different decomposition 
into the other basis functions.  But the decomposition into an orthogonal basis is unique.  Therefore, no Ak 
other than the one given by correlation can have a smaller residual. 

  The basis coefficient given by correlation is a least-squares-residual fit. 

This proof holds equally well for discrete sequences sj, and for continuous functions s(t). 

Bandwidth Correction (aka Bandwidth Penalty) 
Determining the significance of a signal detection requires some care, since most algorithms search for 

any one of many possible signals.  For example, when searching for periodic signals in noisy data, one 
often searches many trial frequencies, and a “hit” on any frequency counts as a detection.  How do we 
determine the significance (p value) of such a detection?  p is also called the “false alarm” probability. 

All the common periodic-signal detection algorithms require bandwidth correction, because if one 
makes enough attempts, even an unlikely outcome will eventually happen.  If one tries many frequencies, 
the probability that one of them exceeds a threshold is much higher than the probability of a single given 
frequency exceeding that threshold.  From elementary statistics, if the parameters for all frequencies are 
independent, the probability that they are all not false alarm (FA) is the product of the probabilities that 
each one is not false alarm.  For M independent parameters at various frequencies, and a given p-value, 
then in our gaussian white noise case (i.e., the standard Null Hypothesis of no signal):   

   

   
1

1

Pr all not FA Pr(one not FA) 1

1 Pr all not FA 1 .

MM
f

M
f

p

confidence level p p

  

    
 

Therefore, to achieve an overall p-value for all frequencies of p, we must choose the p-value for each trial 
frequency such that [Schwarzenberg-Czerny (1997)]: 

   1/
1 11 1 , 1 1

M M
f fp p p p       . 

Since p is usually small (<~ .05), we can often use the binomial theorem to approximate: 
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 1/
11 1 / , /M

fp p M p p M    . 

For simulations, we may want to estimate M from p and p1f.  For example, we choose p1f, measure p, and 
from that estimate M.  Solving the above for M: 

     
 1

1

ln 1
ln 1 ln 1 ,

ln 1f
f

p
p M p M

p


   


. 

Larger M is more demanding on your data.   
Being conservative on a claim of detection means favoring larger M. 

In most period-searching methods (except for the DFT), we are free to search as many frequencies as 
we like, at as dense a trial frequency spacing as we like.  We call our significance parameter θ = θ(f), 
because it is a function of frequency.  Intuitively, we expect that two very close frequencies will produce 
similar θ values, and indeed, such θ-values are correlated (in the precise statistical sense).  So our problem 
reduces to determining M, the number of independent frequencies in our arbitrary set of frequencies. 

The bottom line is that, for dense trial frequencies, M is approximately the same as if we had equally 
spaced samples, and therefore a simple DFT [Press 1988].  Such a DFT has independent frequency 
components.  This simple-sounding result, however, requires understanding a few subtleties, especially 
when the trial frequencies are sparse. 

We consider 3 cases, starting with the simplest: 

 Uniformly space data points, uniformly spaced frequencies (i.e., a DFT). 

 Arbitrarily spaced data points, uniformly spaced frequencies. 

 Arbitrarily space data points, arbitrarily spaced frequencies. 

Notation: 

θ significance parameter, such as Lomb-Scargle, Phase Dispersion Minimization, etc. 

Δf  the independent frequency spacing. 

N number of data samples. 

M number of independent θ values over our chosen set of frequencies. 

BW the total range of frequencies tried: BW ≡ fmax – fmin. 

T the total duration of samples:  T ≡ tmax – tmin. 

Equally spaced samples:  If our samples our equally spaced, we have the common case of a Discrete 
Fourier Transform (DFT).  For white (i.e., uncorrelated) noise, each frequency component is independent 
of all the others.  Furthermore, in the relevant notation (where all frequencies are positive), the maximum 
number of frequencies, and their spacing, is: 

max # DFT frequencies / 2, 1/N f T   . 

Note that the maximum number of frequencies depends only on the number of data points, N, and not on T.  
However, we may be looking for frequencies only in some range (Figure 9.2). 
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Figure 9.5  Sample frequency spectrum for uniformly spaced discrete time data (here Δf = 0.1).  
BW defines a subset of frequencies (here BW = 0.325). 

Therefore, for dense trial frequencies (Δftrial < Δf), the number of independent frequencies is approximately: 

 / 0.325/ 0.1 3.25 4M BW f BW T      . 

We round M up to be conservative. 

Arbitrarily spaced samples:  In astronomy, the data times are rarely uniformly spaced.  In such cases, 
we usually choose our trial frequency spacing, Δftrial, to be dense, i.e., smaller than the independent 
frequency spacing: Δftrial < Δf ≈ 1/T.   Then, per [Press 1988], we use the same equations as above to 
approximate Δf and M: 

   1/ , / , trialf T M BW f BW T f f        . (9.4) 

Note that this is true even if BW > Nyquist frequency, which is perfectly valid for nonuniformly spaced 
time samples [Press 1988]. 

In the unusual case that our trial frequency spacing is large, Δftrial > Δf, then we approximate that each 
frequency is independent: 

 # trial frequencies, trialM f f    . (9.5) 

(In reality, even if θ values separated by Δf are truly independent, some θ values separated by more than Δf 
will be somewhat correlated.  However, the correlation coefficient “envelope” decreases with increasing 
frequency spacing.  Nonetheless, these correlations imply that there are parasitic cases where this 
approximation, eq. (9.5), fails.) 

Arbitrarily spaced trial frequencies:  One common situation leading to nonuniformly spaced trial 
frequencies is that of uniformly space trial periods.  If the ratio of highest to lowest period is large (say, 
> 2), then the frequency spacing is seriously nonuniform.   

We may think of Δf as approximately the difference in frequency required to make the θ values 
independent.  (In reality, even if θ values separated by Δf are truly independent, some θ values separated by 
more than Δf will be somewhat correlated.  However, the correlation coefficient “envelope” decreases with 
increasing frequency spacing.)  In such a case, we may break up the trial frequencies into (1) regions where 
Δftrial < Δf, and (2) regions where Δftrial > Δf (Figure 9.6). 

.1
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.2 .3 .4 .5 .6 .7 .8 .90

S(f) N = 10

Δftrial < Δf Δftrial > Δf
 

Figure 9.6  Nonuniformly spaced trial frequencies. 
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The region where Δftrial < Δf behaves as before, as does the region where Δftrial > Δf.  In the example of 
Figure 9.6, we have: 

 0.1, (0.5 0.1) / 0.1 2 6f M      . 

Summary 

Bandwidth correction requires estimating the number of independent frequencies.  For uniformly 
spaced, dense trial frequencies (and arbitrarily spaced time samples), we approximate the number of 
independent frequencies, M, with eq. (9.4).  We may think loosely of Δf as the difference in frequency 
required for θ to become independent of its predecessor.  Therefore, for nonuniformly spaced trial 
frequencies, we must consider two types of region: (1) where the trial frequency spacing Δftrial < Δf, we use 
eq. (9.4); (2) where the trial frequency spacing Δftrial > Δf, we approximate M as the number of trial 
frequencies, eq. (9.5). 
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Analytic Signals and Hilbert Transforms 
Given some real-valued signal, s(t), it is often convenient to write it in “phasor form.”  Such uses arise 

in diverse signal processing applications from communication systems to neuroscience.  We describe here 
the meaning of “analytic signals,” and some practical computation considerations.  This section relies 
heavily on phasor concepts, which you can learn from Funky Electromagnetic Concepts.  We proceed 
along these lines: 

 Mathematical definitions and review. 

 The meaning of the analytic signal, A(t). 

 Instantaneous values. 

 Finding A(t) from the signal s(t), theoretically. 

 The special case of zero reference frequency, ω0 = 0; Hilbert Transform. 

 A simple and reliable numerical computation of A(t) without Hilbert Transforms. 

Definitions, conventions, and review:  There are many different conventions in the literature for 
normalization and sign of the Fourier Transform (FT).  We define the Fourier Transform such that our basis 
functions are eiωt, and our original (possibly complex) signal z(t) is composed from them; this fully defines 
all the normalization and sign conventions: 

 

1For ( ) complex: ( ) ( ) ( ) ( )
2

( ) ( ) is the Fourier Transform of ( ) .

i t i tz t z t Z e d Z z t e dt

where Z z t z t

   




  

 
  



 


 

http://www.ltrr.arizona.edu/~dmeko/notes_6.pdf
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Note that we can think of the FT as a phasor-valued function of frequency, and that we use the positive 
time dependence e+iωt. 

For real-valued signals we use s(t) instead of z(t).  For real s(t), the FT is conjugate symmetric: 

*( ) ( ) for ( ) realS S s t   . 

This conjugate symmetry for real signals allows us to use a 1-sided FT, where we consider only positive 
frequencies, so that: 

0
( ) 2Re ( ) , which is equivalent to ( ) ( ) , ( ) reali t i ts t S e d s t S e d s t    

 



   
   . 

Note that a complex signal with no negative frequencies is very different from a real signal which we 
choose to write as a 1-sided FT.  We rely on this distinction in the following discussion. 

Analytic signals:  Given a real-valued signal, s(t), its phasor form is: 

   0
0

( )

0

( ) Re ( ) ( ) cos ( )

( ) ( ) is a (complex) phasor function of time

somewhat arbitrary reference frequency .

i t

i t

s t A t e A t t t

where A t A t e





 



  





 (9.6) 

Recall that as a phasor, A(t) is complex.  The phasor form of s(t) may be convenient when s(t) is band-
limited (exists only in a well-defined range of frequencies, Figure 9.7 left), or where we are only concerned 
with the components of s(t) in some well-defined range of frequencies.  Figure 9.7 shows two 1-sided 
Fourier Transform (FT) examples of S(ω), the FT of a hypothetical (real) signal s(t).   

|S(ω)|

ω ω

|S(ω)|

ω0 ω0  
Figure 9.7  Example 1-sided FTs of a real signal s(t): (Left) band-limited.  (Right) Wideband.  
The ω axis points only to the right, because we need consider only positive frequencies for a 1-
sided FT. 

In communication systems, ω0 is the carrier frequency.  Note that even in the band-limited case, ω0 
may be different than the band center frequency.  [For example, in vestigial sideband modulation (VSB), 
ω0 is close to one edge of the signal band.]  Keep in mind throughout this discussion that ω0 is often chosen 
to be zero, i.e. the spectrum of s(t) is kept “in place”. 

We start by considering the band-limited case, because it is somewhat simpler.  From Figure 9.7 (left), 
we see that our signal s(t) is not too different from a pure sinusoid at a reference frequency ω0, near the 
middle of the band.  s(t) and cos(ω0t) might look like Figure 9.8, left.  s(t) is a modulation of the pure 
sinusoid, varying somewhat (i.e. perturbing) the amplitude and phase at each instant in time.  We define 
these variations as the complex function A(t).  When a signal s(t) is real, and A(t) satisfies eq. (9.6), A(t) is 
called the analytic signal for s(t). 
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s(t)

t

|A(t)|
cos(ω0t)

t

(t)

t

0    1     2     3     4     5 0    1     2     3     4     5 0    1     2     3     4     5

1

0

1

s(t)

 
Figure 9.8  (Left) s(t) (dotted), and the reference sinusoid.  (Middle) Magnitude of the analytic 
signal |A(t)|.  (Right) Phase of the analytic signal. 

We can visualize A(t) by considering Figure 9.8, left.  At t = 0, s(t) is a little bigger than 1, but it is in-
phase with the reference cosine;  this is reflected in the amplitude |A(0)| being slightly greater than 1, and 
the phase (0) = 0.  At t = 1, the amplitude remains > 1, and  is still 0.  At t = 2, the amplitude has dropped 
to 1, and the phase (2) is now positive (early, or leading).  This continues through t = 3.  At t = 4, the 
amplitude drops further to |A(4)| < 1, and the phase is now negative (late, or lagging), i.e. (4) < 0 .  At t = 
5, the amplitude remains < 1, while the phase has returned to zero: (5) = 0.  Figure 9.8, middle and right, 
are plots of these amplitudes and phases. 

Instantaneous values:  When a signal has a clear oscillatory behavior, one can meaningfully define 
instantaneous values of phase, frequency, and amplitude.  Note that the frequency of a sinusoid (in rad/s) is 
the rate of change of the phase (in rad) with time.  A general signal s(t), has a varying phase (t), aka an 
instantaneous phase.  Therefore, we can define an instantaneous frequency, as well: 

 
0 0( ) ( )

d phase dphase t t t
dt dt

         . 

Such an instantaneous frequency is more meaningful when |A(t)| is fairly constant over one or more 
periods.  For example, in FM radio (frequency modulation), |A(t)| is constant for all time, and all of the 
information is encoded in the instantaneous frequency. 

Finally, we similarly define the instantaneous amplitude of a signal s(t) as |A(t)|.  This is more 
meaningful when |A(t)| is fairly constant over one or more cycles of oscillation.  The instantaneous 
amplitude is the “envelope” which bounds the oscillations of s(t) (Figure 9.8, middle).  By construction, 
|s(t)| < |A(t)| everywhere. 

Finding A(t) from s(t):  Given an arbitrary s(t), how do we find its (complex) analytic signal, A(t)?  
First, we see that the defining eq. (9.6),  0( ) Re ( ) i ts t A t e  , is underdetermined, since A(t) has two real 

components, but is constrained by only the one equation.  Therefore, if A(t) is to be unique, we must further 
constrain it. 

As a simple starting point, suppose s(t) is a pure cosine (we will generalize shortly).  Then: 

 0
0( ) cos Re 1 ( ) 1i ts t t e where A t   . 

If instead, s(t) has a phase offset θ, then: 

   0
0( ) cos Re ( ) cos sini ti is t t e e where A t e i          . 

(Note that θ = 0 reproduces the pure-cosine example above.)  Thus, in the case of a pure sinusoid, A ≡ A(t) 
is the (constant) phasor for the sinusoid s(t), and the imaginary part of A is the same sinusoid delayed by ¼ 
cycle (90°): 

     Re cos , Im cos / 4A A     . 

In Fourier space, the real and imaginary parts of A are simply related.  Recall that delaying a sinusoid by ¼ 
cycle multiplies its Fourier component by –i (for ω > 0).  Therefore: 
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     Im ( ) Re ( ) , 1-sided FT, 0A t i A t     . 

We now generalize our pure sinusoid example to an arbitrary signal, which can be thought of as a 
linear combination sinusoids.  The above relation is linear, so it holds for any linear combination of 
sinusoids, i.e. it holds for any real signal s(t).  This means that, by construction, the imaginary part of A(t) 
has exactly the same magnitude spectrum as the real part of A(t).  Also, the imaginary part has a phase 
spectrum which is everywhere ¼ cycle delayed from the phase spectrum of the real part.  This is the 
relationship that uniquely defines the analytic signal A(t) that corresponds to a given real signal s(t) and a 
given reference frequency ω0.  From this relation, we can solve for Im{A(t)} explicitly as a functional of 
Re{A(t)}: 

     1Im ( ) Re ( ) , 1-sided FT, 0A t i A t     . (9.7) 

This relation defines the Hilbert Transform (HT) from Re{A(t)} to Im{A(t)}.   

The Hilbert Transform of s(t) is a function H(t) that has all the Fourier components of s(t),  
but delayed in phase by ¼ cycle (90°). 

Note that the Hilbert transform takes a function of time into another function of time (in contrast to the 
Fourier Transform that takes a function of time into a function of frequency).  Since the FT is linear, eq. 
(9.7) shows that the HT is also linear.  The Hilbert Transform can be shown to be given by the time-domain 
form: 

  1 ( )( ) ( ) PV ' PV Principal Value
'

s ts t H t dt where
t t




  

 . 

(The integrand blows up at t’ = t, which is why we need the Principal Value to make the integral well-
defined.)  We now easily show that the inverse Hilbert transform is the negative of the forward transform: 

 1 1 ( )( ) ( ) PV ' PV Principal Value
'

H tH t s t dt where
t t




   

 . 

We see this because the Hilbert Transform shifts the phase of every sinusoid by 90°.  Therefore, two 
Hilbert transforms shifts the phase by 180°, equivalent to negating every sinusoid, which is equivalent to 
negating the original signal.  Putting in a minus sign then restores the original signal. 

Equivalently, the HT multiplies each Fourier component (ω > 0) by –i.  Then {( )} multiplies each 
component by (–i)2 = –1.  Thus, {[ s(t) ]} = –s(t), and therefore –1 = –. 

Analytic signal relative to ω0 = 0:  Some analysts prefer not to remove a reference frequency 0i te   
from the signal, and instead include all of the phase in A(t); this is equivalent to choosing ω0 = 0: 

   ( ) Re ( ) ( ) cos ( )s t A t A t t  . 

Since s(t) = Re{A(t)} is given, we can now find Im{A(t)} explicitly from (9.7): 

    1Im ( ) ( ) { ( )} 1-sided FT, 0A t i s t s t       . 

In other words: 

For ω0 = 0, A(t) is just the complex phasor factors for s(t), without taking any real part. 

If s(t) is dominated by a single frequency ω, then (t) contains a fairly steady phase ramp that is close 
to (t) ≈ ωt (Figure 9.9).  We can use the phase function (t) to estimate the frequency ω by simply taking 
the average phase rate over our sample interval: 

( ) (0)end
est

end

t
t

 



 . 
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s(t)
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(t)
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2π

4π

6π ω0 = π rad/s

 
Figure 9.9  Phase ramp of a perturbed sinusoid, and the estimate of ω0. 

Efficient numerical computation of A(t):  The traditional way to find A(t) is to use a discrete Hilbert 
Transform to evaluate the defining integral.  (This is a standard function in scientific software packages.)  
The discrete Hilbert Transform (DHT) is often implemented by taking a DFT, manipulating it, and then 
inverse FT back to the time domain.  This can be seen by recasting our above (1-sided DFT) description of 
the Hilbert Transform (HT) into a 2-sided DFT form. 

Recall that in the 1-sided DFT for a real signal s(t), the frequencies are always positive, ω > 0, and 
S(ω) is just a phasor-valued function of frequency.  To recover the real signal from phasors, we must take a 
real-part, Re{ }.  In the 2-sided DFT, we instead arrive at the real part by adding the complex conjugate of 
all the phasor factors: 

  *
0 0

( ) 2 Re ( ) ( ) ( ) ( )i t i t i ts t d S e s t d S e S e      
          . 

However, to achieve a 2-sided FT, we rewrite the second term as a negative frequency.  Then the integral 
spans both positive and negative frequencies: 

*( ) ( ) , ( ) ( )i ts t S e d where S S   



   . 

For a complex signal, z(t), only a 2-sided FT exists (a 1-sided FT is not generally possible).  Then there 
is no symmetry or relation between positive and negative frequencies. 

We now describe a simple, efficient, and stable, purely time-domain algorithm for finding A(t) from a 
band-limited s(t).  This algorithm is sometimes more efficient than the DFT-based approach.  It is 
especially useful when the data must be downsampled (converted to a lower sampling rate by keeping only 
every nth sample, called decimating).  Even though s(t) is real, the algorithm uses complex arithmetic 
throughout. 

|S(ω)|

ωωmid

passband

−ωmid

|S(ω)|

ωωmid0

|S(ω)|

ωωmid0  
Figure 9.10  (Left) 1-sided FT of s(t), and (middle) its 2-sided equivalent.  (Right) 2-sided FT of 
A(t). 

Figure 9.10 shows a 1-sided FT for a real s(t), along with its 2-sided FT equivalent, and the 2-sided FT 
of the desired complex A(t).  We define ωmid as the midpoint of the signal band (this is not ω0, which we 
take to be zero for illustration).  The question is: how do we efficiently go from the middle diagram to the 
right diagram?  In other words, how do we keep just the positive frequency half of the 2-sided spectrum?  
Figure 9.11 illustrates the simple steps to achieve this: 

 Rotate the spectrum down by ωmid (downconvert). 

 Low-pass filter around the downconverted signal band. 
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 (Optional) Decimate (downsample). 

 Rotate the spectrum back up by ωmid (upconvert). 

This results in a complex function of time whose 2-sided spectrum has only positive frequencies; in other 
words, it is exactly the analytic signal A(t). 

−2ωmid

|S(ω)|

ω0

|S(ω)|

ωωmid0

1. downconvert2. low-
pass filter

4. upconvert

 
Figure 9.11  (Left) To find A(t): 1. downconvert;  2. low-pass filter;  (Right) 4. upconvert. 

Step 1:  Downconvert: Numerically, we downconvert in the time domain by multiplying by  
exp(–iωmidt).  This simply subtracts ωmid from the frequency of each component in the spectrum: 

 For every : ( ) ( ) midmid i ti ti tS e e S e       . 

Note that both positive and negative frequencies are shifted to the left (more negative) in frequency.  In the 
time domain, we construct the complex downconverted signal for each sample time tj as: 

     ( ) ( )exp ( )cos sindown j j mid j j mid j mid jz t s t i t s t t i t       

Step 2:  Low-pass filter:  Low pass filters are easily implemented as Finite Impulse Response (FIR) 
filters, with symmetric filter coefficients [Ham chap. 6, 7].  In the time domain: 

( ) 2 ( ) 2 1 the number of filter coefficients

filter coefficients

m

down j k down j k
k m

k

A t c z t where m

c




  



  

The leading factor of 2 is to restore the full amplitude to A(t) after filtering out half the frequency 
components. 

Step 3: (Optional) Decimate: We now have a (complex) low-pass signal whose full (2-sided) 
bandwidth is just that of our desired signal band.  If desired, we can now downsample (decimate), by 
simply keeping every nth sample.  In other words, our low-pass filter acts as both a pass-band filter for the 
desired signal, and an anti-aliasing filter for downsampling.  Two for the price of one. 

Step 4: Upconvert: We now restore our complex analytic signal to a reference frequency of ω0 = 0 by 
putting the spectrum back where it came from.  The key distinction is that after upconverting, there will be 
no components of negative frequency because we filtered them out in Step 2.  This provides our desired 
complex analytic signal: 

 ( ) ( )expj down j mid jA t A t i t . 

Note that the multiplications above are full complex multiplies, because both Adown and the exponential 
factor are complex.  Also, if we want some nonzero ω0, we would simply upconvert by (ωmid – ω0) instead 
of upconverting by ωmid. 

Summary 
The analytic signal for a real function s(t) is A(t), and is the complex phasor-form of s(t) such that: 

  0 0( ) Re ( )exp reference frequencys t A t i t where   . 
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ω0 is often chosen to be zero, so that s(t) = Re{A(t)}.  This definition does not uniquely define A(t), since 
A(t) has real and imaginary components, but is constrained by only one equation.  The Hilbert Transform of 
a real function s(t) is H(t), and comprises all the Fourier components of s(t) phase-delayed by π/4 radians 
(90°).  We uniquely define A(t) by saying that its imaginary part is the Hilbert Transform of its real part.  
This gives the imaginary part the exact same magnitude spectrum as the real part, but a shifted phase 
spectrum. 

Analytic signals allow defining instantaneous values of frequency, phase, and amplitude for almost-
sinusoidal signals.  Instantaneous values are useful in many applications, including communication and 
neuron behavior. 

[Ham] Hamming, R. W., Digital Filters, Dover Publications (July 10, 1997), ISBN-13: 978-
0486650883. 
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10 Tensors, Without the Tension 
Approach 

We’ll present tensors as follows: 

1. Two physical examples: magnetic susceptibility, and deformable solids 

2. A non-example: when is a matrix not a tensor? 

3. Forward looking definitions (don’t get stuck on these) 

4. Review of vector spaces and notation (don’t get stuck on this, either) 

5. A short, but at first unhelpful, definition (really, really don’t get stuck on this) 

6. A discussion which clarifies the above definition 

7. Examples, including dot products and cross-products as tensors 

8. Higher rank tensors 

9. Change of basis 

10. Non-orthonormal systems: contravariance and covariance 

11. Indefinite metrics of Special and General Relativity 

12. Mixed basis linear functions (transformation matrices, the Pauli vector) 

Tensors are all about vectors.  They let you do things with vectors you never thought possible.  We 
define tensors in terms of what they do (their linearity properties), and then show that linearity implies the 
transformation properties.  This gets most directly to the true importance of tensors.  [Most references 
define tensors in terms of transformations, but then fail to point out the all-important linearity properties.] 

We also take a geometric approach, treating vectors and tensors as geometric objects that exist 
independently of their representation in any basis.  Inevitably, though, there is a fair amount of unavoidable 
algebra. 

Later, we introduce contravariance and covariance in terms of non-orthonormal coordinates, but first 
with a familiar positive-definite metric from classical mechanics.  This makes for a more intuitive 
understanding of contra- and co-variance, before applying the concept to the more bizarre indefinite metrics 
of special and general relativity. 

There is deliberate repetition of several points, because it usually takes me more than once to grok 
something.  So I repeat: 

If you don’t understand something, read it again once, then keep reading.  Don’t get stuck on one 
thing.  Often, the following discussion will clarify an ambiguity. 

Two Physical Examples 
We start with two physical examples: magnetic susceptibility, and deformation of a solid.  We start 

with matrix notation, because we assume it is familiar to you.  Later we will see that matrix notation is not 
ideal for tensor algebra. 

Magnetic Susceptibility 
We assume you are familiar with susceptibility of magnetic materials: when placed in an H-field, 

magnetizable (susceptible) materials acquire a magnetization, which adds to the resulting B-field.  In 
simple cases, the susceptibility χ is a scalar, and 
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is the magnetization,
is the susceptibility, and
is the applied magnetic field

where


M H M

H
 

The susceptibility in this simple case is the same in any direction; i.e., the material is isotropic.   

However, there exist materials which are more magnetizable in some directions than others.  E.g., 
imagine a cubic lattice of axially-symmetric molecules which are more magnetizable along the molecular 
axis than perpendicular to it: 

x

y

z

H

M

H M

HM

χxx = 2 χyy = 1 χzz = 1

x

y

z

x

y

z

more magnetizable

le
ss

 m
ag

ne
tiz

ab
le

 

Magnetization, M, as a function of external field, H, for a material with a tensor-valued 
susceptibility, χ. 

In each direction, the magnetization is proportional to the applied field, but χ is larger in the x-direction 
than y or z.  In this example, for an arbitrary H-field, we have 

   
2 0 0

, , 2 , , 0 1 0
0 0 1

x y z x y z

ij

M M M H H H or



 
      
 
 



M M χH H

χ


 

Note that in general, M is not parallel to H (below, dropping the z axis for now): 

H

M = (2Hx, Hy)
x

y

 

M need not be parallel to H for a material with a tensor-valued χ. 

But M is a linear function of H, which means:      1 2 1 2k k  M H H M H M H . 

This linearity is reflected in the fact that matrix multiplication is linear: 

       1 2 1 2 1 2 1 2

2 0 0 2 0 0 2 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

k k k k
     
                
     
     

M H H H H H H M H M H  
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The matrix notation might seem like overkill, since χ is diagonal, but it is only diagonal in this basis of 
x, y, and z.  We’ll see in a moment what happens when we change basis.  First, let us understand what the 
matrix χij really means.  Recall the visualization of pre-multiplying a vector by a matrix: a matrix χ times a 
column vector H, is a weighted sum of the columns of χ: 

xx x xx

yx x y

xz xz

yz z

xy xy

yy y y yy

zy zy

yz

zz z zz

x

zx zx

H
H H

H
H H

 
 
 

 
 


 


 




   
 
 
  

   
        

 
 
 
 

     
         

χH

 
We can think of the matrix χ as a set of 3 column vectors: the first is the magnetization vector for H = 

ex;  the 2nd column is M for H = ey;  the 3rd column is M for H = ez.  Since magnetization is linear in H, the 
magnetization for any H can be written as the weighted sum of the magnetizations for each of the basis 
vectors: 

        , , are the unit vectors in , ,x x y y z z x y zH H H where x y z  M H M e M e M e e e e  

This is just the matrix multiplication above: M χH .  (We’re writing all indexes as subscripts for 
now; later on we’ll see that M, χ, and H should be indexed as M i, χ ij, and H i.) 

Now let’s change bases from ex, ey, ez, to some e1, e2, e3, defined below.  We use a simple 
transformation, but the 1-2-3 basis is not orthonormal: 

ey

x

y

z
ez

ex

e2

1

2

3
e3

e1
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be2
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ey

ce1

de2
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z

 

Transformation to a non-orthogonal, non-normal basis.  e1 and e2 are in the x-y plane, but are 
neither orthogonal nor normal.  For simplicity, we choose e3 = ez. Here, b and c are negative. 

To find the transformation equations to the new basis, we first write the old basis vectors in the new 
basis.  We’ve chosen for simplicity a transformation in the x-y plane, with the z-axis unchanged: 

1 2 1 2 3x y za b c d    e e e e e e e e  

Now write a vector, v, in the old basis, and substitute out the old basis vectors for the new basis.  We 
see that the new components are a linear combination of the old components: 

   

   

1 2 1 2 3

1 2 3 1 1 2 2 3 3

1 2 3, ,

y

x x y y z z x y z

x

x y x y z

x y x y z

v v v v a b v c d v

av cv bv dv v v v v

v av cv v bv dv v v

       

       

     

v e e e e e e e e
ee

e e e e e e

 

 

Recall that matrix multiplication is defined to be the operation of linear transformation, so we can 
write this basis transformation in matrix form: 
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  

1

2

3 0 00

0
0

1 10

0
0

x

x

z

z

y y

y

z

x

a v a
b v

c c
d v v d

v
b

vv
vv

           
                       
                     

e ee

 

The columns of the transformation matrix are the old basis vectors written in the new basis.   

This is illustrated explicitly on the right hand side, which is just x x y y z zv v v e e e . 

Finally, we look at how the susceptibility matrix χij transforms to the new basis.  We saw above that 
the columns of χ are the M vectors for H = each of the basis vectors.  So right away, we must transform 
each column of χ with the transformation matrix above, to convert it to the new basis.  Since matrix 
multiplication A·B is distributive across the columns of B, we can write the transformation of all 3 columns 
in a single expression by pre-multiplying with the above transformation matrix: 

0 0 2 0 0 2 0
1 0 0 0 1 0 2 0

0 0 1 0 0 1 0 0 1 0 0 1

new

a c a c a c
Step of in new basis b d b d b d

       
                 
       
       

χ χ χ  

But we’re not done.  This first step expressed the column vectors in the new basis, but the columns of 
the RHS (right hand side) are still the M’s for basis vectors ex, ey, ez.  Instead, we need the columns of χnew 
to be the M vectors for e1, e2, e3.  Please don’t get bogged down yet in the details, but we do this 
transformation similarly to how we transformed the column vectors.  We transform the contributions to M 
due to ex, ey, ez to that due to e1 by writing e1 in terms of ex, ey, ez: 

     1 1x y x ye f e f       e e e M H e M H e M H e  

Similarly, 

     
   

2 2

3 3

x y x y

z z

g h g h       

    

e e e M H e M H e M H e

e e M H e M H e
 

Essentially, we need to transform among the columns, i.e. transform the rows of χ.  These two 
transformations (once of the columns, and once of the rows) is the essence of a rank-2 tensor: 

A tensor matrix (rank-2 tensor) has columns that are vectors, and simultaneously, its rows are also 
vectors.  Therefore, transforming to a new basis requires two transformations:  

once for the rows, and once for the columns (in either order). 

[Aside:  The details (which you can skip at first): We just showed that we transform using the inverse of our 
previous transformation. The reason for the inverse is related to the up/down indexes mentioned earlier; please be 
patient.  In matrix notation, we write the row transformation as post-multiplying by the transpose of the needed 
transformation: 

0 2 0 0 0 0 2 0 0 0
0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

T

new

a c e f a c e g
Final b d g h b d f h

         
                  
         
         

χ  

] 

[Another aside: A direction-dependent susceptibility requires χ to be promoted from a scalar to a rank-2 
tensor (skipping any rank-1 tensor).  This is necessary because a rank-0 tensor (a scalar) and a rank-2 tensor can 
both act on a vector (H) to produce a vector (M).  There is no sense to a rank-1 (vector) susceptibility, because 
there is no simple way a rank-1 tensor (a vector) can act on another vector H to produce an output vector M.  
More on this later.] 
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Mechanical Strain 
A second example of a tensor is the mechanical strain tensor.  When I push on a deformable material, 

it deforms.  A simple model is just a spring, with Hooke’s law: 

1
appliedx F

k
    

We write the formula with a plus sign, because (unlike freshman physics spring questions) we are 
interested in how a body deforms when we apply a force to it.  For an isotropic material, we can push in 
any direction, and the deformation is parallel to the force.  This makes the above equation a vector 
equation: 

1 the strain constants where s
k

   x F  

Strain is defined as the displacement of a given point under force.  [Stress is the force per unit area 
applied to a body.  Stress produces strain.]  In an isotropic material, the stress constant is a simple scalar.  
Note that if we transform to another basis for our vectors, the stress constant is unchanged.  That’s the 
definition of a scalar: 

A scalar is a number that is the same in any coordinate system.  A scalar is a rank-0 tensor. 

The scalar is unchanged even in a non-ortho-normal coordinate system. 

But what if our material is a bunch of microscopic blobs connected by stiff rods, like atoms in a 
crystal? 

Δx
F

Δx
F

 

(Left) A constrained deformation crystal structure.  (Middle) The deformation vector , Δx, is not 
parallel to the force.  (Right) More extreme geometries lead to a larger angle between the force 
and displacement. 

The diagram shows a 2D example: pushing in the x-direction results in both x and y displacements.  
The same principle could result in a 3D Δx, with some component into the page.  For small deformations, 
the deformation is linear with the force: pushing twice as hard results in twice the displacement.  Pushing 
with the sum of two (not necessarily parallel) forces results in the sum of the individual displacements.  But 
the displacement is not proportional to the force (because the displacement is not parallel to it).  In fact, 
each component of force results in a deformation vector.  Mathematically: 

xz xxy xyxx xx

y

x

x yx yx

z

z

z yz yz

zz

yy yy y

z zz zzxy yx z

ss s
F s s F

s s

s
F s s

s s

s s F

F
F s s

s s

        
                   
               

x sF

s


 

Much like the anisotropy of the magnetization in the previous example, the anisotropy of the strain 
requires us to use a rank-2 tensor to describe it.  The linearity of the strain with force allows us to write the 
strain tensor as a matrix.  Linearity also guarantees that we can change to another basis using a method 
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similar to that shown above for the susceptibility tensor.  Specifically, we must transform both the columns 
and the rows of the strain tensor s.  Furthermore, the linearity of deformation with force also insures that we 
can use non-orthonormal bases, just as well as orthonormal ones. 
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When Is a Matrix Not a Tensor? 
I would say that most matrices are not tensors.  A matrix is a tensor when its rows and columns are 

both vectors.  This implies that there is a vector space, basis vectors, and the possibility of changing basis.  
As a counter example, consider the following graduate physics problem: 

Two pencils, an eraser, and a ruler cost $2.20.  Four pencils, two erasers, and a ruler cost $3.45.  Four 
pencils, an eraser, and two rulers cost $3.85.  How much does each item cost? 

We can write this as simultaneous equations, and as shorthand in matrix notation: 

2 220 2 1 1 220
4 2 345 4 2 1 345

4 1 1 3854 2 385

p e r p
p e r or e

rp e r

        
             
             

 

It is possible to use a matrix for this problem because the problem takes linear combinations of the 
costs of 3 items.  Matrix multiplication is defined as the process of linear combinations, which is the same 
process as linear transformations.  However, the above matrix is not a tensor, because there are no vectors 
of school supplies, no bases, and no linear combinations of (say) part eraser and part pencil.  Therefore, the 
matrix has no well-defined transformation properties.  Hence, it is a lowly matrix, but no tensor. 

However, later (in “We Don’t Need No Stinking Metric”) we’ll see that under the right conditions, we 
can form a vector space out of seemingly unrelated quantities. 

Heading In the Right Direction 
An ordinary vector associates a number with each direction of space: 

ˆ ˆ ˆx y zv v v  v x y z  

The vector v associates the number vx with the x-direction; it associates the number vy with the y-
direction, and the number vz with the z-direction. 

The above tensor examples illustrate the basic nature of a rank-2 tensor: 

A rank-2 tensor associates a vector with each direction of space: 

ˆ ˆ ˆ
xx xy xz

yx yy yz

zx zy zz

T T T
T T T
T T T

    
          
        

T x y z  

Some Definitions and Review 
These definitions will make more sense as we go along.  Don’t get stuck on these: 

“ordinary” vector = contravariant vector = contravector = (1
0) tensor 

1-form = covariant vector = covector = (0
1) tensor.  (Yes, there are 4 different ways to say the same thing.) 

covariant the same.  E.g., General Relativity says that the mathematical form of the laws of physics 
are covariant (i.e., the same) with respect to arbitrary coordinate transformations.   
This is a completely different meaning of “covariant” than the one above. 

rank The number of indexes of a tensor; Tij is a rank-2 tensor; Ri
jkl is a rank-4 tensor.  Rank is 

unrelated to the dimension of the vector space in which the tensor operates. 

MVE mathematical vector element.  Think of it as a vector for now. 
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Caution: a rank (0
1) tensor is a 1-form, but a rank (0

2) tensor is not always a 2-form.  [Don’t worry 
about it, but just for completeness, a 2-form (or any n-form) has to be fully anti-symmetric in all pairs of 
vector arguments.] 

Notation:  

(a, b, c) is a row vector;  (a, b, c)T is a column vector (the transpose of a row vector). 

To satisfy our pathetic word processor, we write (m
n), even though the ‘m’ is supposed to be directly 

above the ‘n’. 

T is a tensor, without reference to any basis or representation. 

Tij is the matrix of components of T, contravariant in both indexes, with an understood basis. 

T(v, w) is the result of T acting on v and w. 

or vv 
 are two equivalent ways to denote a vector, without reference to any basis or 

representation.  Note that a vector is a rank-1 tensor. 

~or aa  are two equivalent ways to denote a covariant vector (aka 1-form), without reference to 
any basis or representation 

ai the components of the covecter (1-form) a, in an understood basis. 

Vector Space Summary 
Briefly, a vector space comprises a field of scalars, a group of vectors, and the operation of scalar 

multiplication of vectors (details below).  Quantum mechanical vector spaces have two additional 
characteristics: they define a dot product between two vectors, and they define linear operators which act 
on vectors to produce other vectors.   

Before understanding tensors, it is very helpful, if not downright necessary, to understand vector 
spaces.  Funky Quantum Concepts has a more complete description of vector spaces.  Here is a very brief 
summary:  a vector space comprises a field of scalars, a group of vectors, and the operation of scalar 
multiplication of vectors.  The scalars can be any mathematical “field,” but are usually the real numbers, or 
the complex numbers (e.g., quantum mechanics).  For a given vector space, the vectors are a class of 
things, which can be one of many possibilities (physical vectors, matrices, kets, bras, tensors, ...).  In 
particular, the vectors are not necessarily lists of scalars, nor need they have anything to do with physical 
space.  Vector spaces have the following properties, which allow solving simultaneous linear equations 
both for unknown scalars, and unknown vectors: 

Scalars Mathematical Vectors 

Scalars form a commutative group 
(closure, unique identity, inverses) under 
operation +. 

Vectors form a commutative group 
(closure, unique identity, inverses) 
under operation +. 

Scalars, excluding 0, form a 
commutative group under operation ( · ). 

 

Distributive property of ( · ) over +.  

Scalar multiplication of vector produces another vector. 

Distributive property of scalar multiplication over both scalar + and vector +. 

With just the scalars, you can solve ordinary scalar linear equations such as: 
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11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

...
...

: : :
...

n n

n n

n n nn n n

a x a x a x c
a x a x a x c

written in matrix form as

a x a x a x c

   
    

   

ax c   

All the usual methods of linear algebra work to solve the above equations: Cramer’s rule, Gaussian 
elimination, etc.  With the whole vector space, you can solve simultaneous linear vector equations for 
unknown vectors, such as  

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

...
...

: : :
...

n n

n n

n n nn n n

a a a
a a a

written in matrix form as

a a a

   
    

   

v v v w
v v v w

av w

v v v w

  

where a is again a matrix of scalars.  The same methods of linear algebra work just as well to solve 
vector equations as scalar equations. 

Vector spaces may also have these properties: 

Dot product produces a scalar from two vectors. 

Linear operators act on vectors to produce other 
vectors. 

The key points of mathematical vectors are (1) we can form linear combinations of them to make 
other vectors, and (2) any vector can be written as a linear combination of basis vectors: 

v = (v1 , v2 , v3) = v1e1 + v2e2 + v3e3  where e1 , e2 , e3 are basis vectors, and  
     v1, v2, v3 are the components of v in the e1, e2, e3 basis. 

Note that v1, v2, v3 are numbers, while e1 , e2 , e3 are vectors.  There is a (kind of bogus) reason why 
basis vectors are written with subscripts, and vector components with superscripts, but we’ll get to that 
later. 

The dimension of a vector space, N, is the number of basis vectors needed to construct every vector in 
the space.   

Do not confuse the dimension of physical space (typically 1D, 2D, 3D, or (in relativity) 4D), with 
the dimension of the mathematical objects used to work a problem.   

For example, a 33 matrix is an element of the vector space of 33 matrices.  This is a 9-D vector 
space, because there are 9 basis matrices needed to construct an arbitrary matrix. 

Given a basis, components are equivalent to the vector.  Components alone (without a basis) are 
insufficient to be a vector. 

[Aside: Note that for position vectors defined by r = (r, θ, ), r, θ, and  are not the components of 
a vector.  The tip off is that with two vectors, you can always add their components to get another 
vector.  Clearly,  1 2 1 2 1 2 1 2, ,r r        r r , so (r, θ, ) cannot be the components of a vector.  
This failure to add is due to r being a displacement vector from the origin, where there is no consistent 
basis: e.g., what is er at the origin?  At points off the origin, there is a consistent basis: er, eθ, and e are 
well-defined.] 

When Vectors Collide 
There now arises a collision of terminology: to a physicist, “vector” usually means a physical vector in 

3- or 4-space, but to a mathematician, “vector” means an element of a mathematical vector-space.  These 
are two different meanings, but they share a common aspect: linearity (i.e., we can form linear 
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combinations of vectors to make other vectors, and any vector can be written as a linear combination of 
basis vectors).  Because of that linearity, we can have general rank-n tensors whose components are 
arbitrary elements of a mathematical vector-space.  To make the terminology confusion worse, an (m

n) 
tensor whose components are simple numbers is itself a “vector-element” of the vector-space of (m

n) 
tensors. 

Mathematical vector-elements of a vector space are much more general than physical vectors (e.g. 
force, or velocity), though physical vectors and tensors are elements of mathematical vector spaces.  To be 
clear, we’ll use MVE to refer to a mathematical vector-element of a vector space, and “vector” to mean a 
normal physics vector (3-vector or 4-vector).  Recall that MVEs are usually written as a set of components 
in some basis, just like vectors are.  In the beginning, we choose all the input MVEs to be vectors. 

If you’re unclear about what an MVE is, just think of it as a physical vector for now, like “force.” 

“Tensors” vs. “Symbols” 
There are lots of tensors: metric tensors, electromagnetic tensors, Riemann tensors, etc.  There are also 

“symbols:” Levi-Civita symbols, Christoffel symbols, etc.  What’s the difference?  “Symbols” aren’t 
tensors.  Symbols look like tensors, in that they have components indexed by multiple indices, they are 
referred to basis vectors, and are summed with tensors.  But they are defined to have specific components, 
which may depend on the basis, and therefore symbols don’t change basis (transform) the way tensors do.  
Hence, symbols are not geometric entities, with a meaning in a manifold, independent of coordinates.  For 
example, the Levi-Civita symbol is defined to have specific constant components in all bases.  It doesn’t 
follow the usual change-of-basis rules.  Therefore, it cannot be a tensor. 

Notational Nightmare 
If you come from a differential geometry background, you may wonder about some insanely confusing 

notation.  It is a fact that “dx” and “dx” are two different things: 

( , , ) is a ,

( ) is a -

d dx dy dz but

x x



 

x vector

d r 1 form
 

We don’t use the second notation (or exterior derivatives) in this chapter, but we might in the 
Differential Geometry chapter. 

Tensors?  What Good Are They? 
A Short, Complicated Definition 

It is very difficult to give a short definition of a tensor that is useful to anyone who doesn’t already 
know what a tensor is.  Nonetheless, you’ve got to start somewhere, so we’ll give a short definition, to 
point in the right direction, but it may not make complete sense at first (don’t get hung up on this, skip if 
needed): 

A tensor is an operator on one or more mathematical vector elements (MVEs), linear in each 
operand, which produces another mathematical vector element.   

The key point is this (which we describe in more detail in a moment): 

Linearity in all the operands is the essence of a tensor.   

I should add that the basis vectors for all the MVEs must be the same (or tensor products of the same) 
for an operator to qualify as a tensor.  But that’s too much to put in a “short” definition.  We clarify this 
point later. 

Note that a scalar (i.e., a coordinate-system-invariant number, but for now, just a number) satisfies the 
definition of a “mathematical vector element.” 

Many definitions of tensors dwell on the transformation properties of tensors.  This is mathematically 
valid, but such definitions give no insight into the use of tensors, or why we like them.  Note that to satisfy 
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the transformation properties, all the input vectors and output tensors must be expressed in the same basis 
(or tensor products of that basis with itself). 

Some coordinate systems require distinguishing between contravariant and covariant components of 
tensors; superscripts denote contravariant components; subscripts denote covariant components.  However, 
orthonormal positive definite systems, such as the familiar Cartesian, spherical, and cylindrical systems, do 
not require such a distinction.  So for now, let’s ignore the distinction, even though the following notation 
properly represents both contravariant and covariant components.  Thus, in the following text, contravariant 
components are written with superscripts, and covariant components are written with subscripts, but we 
don’t care right now.  Just think of them all as components in an arbitrary coordinate system. 

Building a Tensor 
Oversimplified, a tensor operates on vectors to produce a scalar or a vector.  Let’s construct a tensor 

which accepts (operates on) two 3-vectors to produce a scalar.  (We’ll see later that this is a rank-2 tensor.)  
Let the tensor T act on vectors a and b to produce a scalar, s;  in other words, this tensor is a scalar function 
of two vectors: 

s = T(a, b) 

Call the first vector a = (a1, a2, a3) in some basis, and the second vector b = (b1, b2, b3) (in the same 
basis).  A tensor, by definition, must be linear in both a and b;  if we double a, we double the result, if we 
triple b, we triple the result, etc.  Also,  

T(a + c, b) = T(a, b) + T(c, b),  and  T(a, b + d) = 

So the result must involve at least the product of a component of a with a component of b.  Let’s say 
the tensor takes a2b1 as that product, and additionally multiplies it by a constant, T21.  Then we have built a 
tensor acting on a and b, and it is linear in both: 

2 1 2 1
21( , ) . : ( , ) 7T a b Example a b T a b T a b  

But, if we add to this some other weighted product of some other pair of components, the result is still 
a tensor: it is still linear in both a and b: 

1 3 2 1 1 3 2 1
13 21( , ) . : ( , ) 4 7T a b T a b Example a b a b   T a b T a b  

In fact, we can extend this to the weighted sum of all combinations of components, one each from a 
and b.  Such a sum is still linear in both a and b: 

3 3

1 1

2 6 4
( , ) : 7 5 1

6 0 8

i j
ij ij

i j
T a b Example T

 

 
    
  

 T a b  

Further, nothing else can be added to this that is linear in a and b.   

A tensor is the most general linear function of a and b that exists, i.e. any linear function of a and b 
can be written as a 33 matrix.   

(We’ll see that the rank of a tensor is equal to the number of its indices; T is a rank-2 tensor.)  The Tij 
are the components of the tensor (in the basis of the vectors a and b.)  At this point, we consider the 
components of T, a, and b all as just numbers.   

Why does a tensor have a separate weight for each combination of components, one from each input 
mathematical vector element (MVE)?  Couldn’t we just weight each input MVE as a whole?  No, because 
that would restrict tensors to only some linear functions of the inputs.   

Any linear function of the input vectors can be represented as a tensor.   

Note that tensors, just like vectors, can be written as components in some basis.  And just like vectors, 
we can transform the components from one basis to another.  Such a transformation does not change the 
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tensor itself (nor does it change a vector); it simply changes how we represent the tensor (or vector).  More 
on transformations later. 

Tensors don’t have to produce scalar results!   

Some tensors accept one or more vectors, and produce a vector for a result.  Or they produce some 
rank-r tensor for a result.  In general, a rank-n tensor accepts ‘m’ vectors as inputs, and produces a rank ‘n–
m’ tensor as a result.  Since any tensor is an element of a mathematical vector space, tensors can be written 
as linear combinations of other (same rank & type) tensors.  So even when a tensor produces another (lower 
rank) tensor as an output, the tensor is still a linear function of all its input vectors.  It’s just a tensor-valued 
function, instead of a scalar-valued function.  For example, the force on a charge: a B-field operates on a 
vector, qv, to produce a vector, f.  Thus, we can think of the B-field as a rank-2 tensor which acts on a 
vector to produce a vector; it’s a vector-valued function of one vector. 

Also, in general, tensors aren’t limited to taking just vectors as inputs.  Some tensors take rank-2 
tensors as inputs.  For example, the quadrupole moment tensor operates on the 2nd derivative matrix of the 
potential (the rank-2 “Hessian” tensor) to produce the (scalar) work stored in the quadrupole of charges.  
And a density matrix in quantum mechanics is a rank-2 tensor that acts on an operator matrix (rank-2 
tensor) to produce the ensemble average of that operator. 

Tensors in Action 
Let’s consider how rank-0, rank-1, and rank-2 tensors operate on a single vector.  Recall that in 

“tensor-talk,” a scalar is an invariant number, i.e. it is the same number in any coordinate system. 

Rank-0:  A rank-0 tensor is a scalar, i.e. a coordinate-system-independent number.  Multiplying a 
vector by a rank-0 tensor (a scalar), produces a new vector.  Each component of the vector contributes to 
the corresponding component of the result, and each component is weighted equally by the scalar, a: 

x y z x y zv v v v av av av av      i j k i j k   

Rank-1:  A rank-1 tensor a operates on (contracts with) a vector to produce a scalar.  Each component 
of the input vector contributes a number to the result, but each component is weighted separately by the 
corresponding component of the tensor a: 

3

1

( ) x y z i
x y z i

i

a v a v a v a v


   a v  

Note that a vector is itself a rank-1 tensor.  Above, instead of considering a acting on v, we can 
equivalently consider that v acts on a: a(v) = v(a).  Both a and v are of equal standing. 

Rank-2:  Filling one slot of a rank-2 tensor with a vector produces a new vector.  Each component of 
the input vector contributes a vector to the result, and each input vector component weights a different 
vector. 
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z

x
y

z

x
y

z

x
y

column 1

column 2

column 3

(a) (b) (c)  
(a) A hypothetical rank-2 tensor with an x-vector (red), a y-vector (green), and a z-vector (blue).  
(b) The tensor acting on the vector (1, 1, 1) producing a vector (heavy black).  Each component 
(column) vector of the tensor is weighted by 1, and summed.  (c) The tensor acting on the vector 
(0, 2, 0.5), producing a vector (heavy black).  The x-vector is weighted by 0, and so does not 
contribute; the y-vector is weighted by 2, so contributes double; the z-vector is weighted by 0.5, so 
contributes half. 

3 3 3

1 1 1

( _, )

x x
z z

y z y
z z

z z

x x
y y

y y y y
y y

x x x
x x

yi j
j

x y z x j y j z j
x y z j j j

j j j

x

z

y
x x

z z
x xz

z
y y z

z

B v

v v v B v

B B
B v v B
B B

B v B

B v BB B
B v B
B

B v B
B B

v

Bv

  

   
          
      



 
   

 
 

 
 
 
 

 
  

    
          

     

 

  

B v

B B B i j k

 
The columns of B are the vectors which are weighted by each of the input vector components, v j; or 

equivalently, the columns of B are the vector weights for each of the input vector components   

Example of a simple rank-2 tensor: the moment-of-inertia tensor, Iij.  Every blob of matter has 
one.  We know from mechanics that if you rotate an arbitrary blob around an arbitrary axis, the angular 
momentum vector of the blob does not in general line up with the axis of rotation.  So what is the angular 
momentum vector of the blob?  It is a vector-valued linear function of the angular velocity vector, i.e. given 
the angular velocity vector, you can operate on it with the moment-of-inertia tensor, to get the angular 
momentum vector.  Therefore, by the definition of a tensor as a linear operation on a vector, the 
relationship between angular momentum vector and angular velocity vector can be given as a tensor; it is 
the moment-of-inertia tensor.  It takes as an input the angular velocity vector, and produces as output the 
angular momentum vector, therefore it is a rank-2 tensor: 

( , _) , ( , ) 2KE   I ω L I ω ω L ω  

[Since I is constant in the blob frame, it rotates in the lab frame.  Thus, in the lab frame, the above 
equations are valid only at a single instant in time.  In effect, I is a function of time, I(t).]   

[?? This may be a bad example, since I is only a Cartesian tensor [L&L3, p ??], which is not a real tensor.  
Real tensors can’t have finite displacements on a curved manifold, but blobs of matter have finite size.  If you 
want to get the kinetic energy, you have to use the metric to compute L·ω.  Is there a simple example of a real 
rank-2 tensor??] 

Note that some rank-2 tensors operate on two vectors to produce a scalar, and some (like I) can either 
act on one vector to produce a vector, or act on two vectors to produce a scalar (twice the kinetic energy).  
More of that, and higher rank tensors, later. 
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Tensor Fields 
A vector is a single mathematical object, but it is quite common to define a field of vectors.  A field in 

this sense is a function of space.  A vector field defines a vector for each point in a space.  For example, 
the electric field is a vector-valued function of space: at each point in space, there is an electric field vector.  

Similarly, a tensor is a single mathematical object, but it is quite common to define a field of tensors.  
At each point in space, there is a tensor.  The metric tensor field is a tensor-valued function of space: at 
each point, there is a metric tensor.  Almost universally, the word “field” is omitted when calling out tensor 
fields: when you say “metric tensor,” everyone is expected to know it is a tensor field.  When you say 
“moment of inertia tensor,” everyone is expected to know it is a single tensor (not a field). 

Dot Products and Cross Products as Tensors 
Symmetric tensors are associated with elementary dot products, and anti-symmetric tensors are 

associated with elementary cross-products. 

A dot product is a linear operation on two vectors: A·B = B·A, which produces a scalar.  Because the 
dot product is a linear function of two vectors, it can be written as a tensor.  (Recall that any linear function 
of vectors can be written as a tensor.)  Since it takes two rank-1 tensors, and produces a rank-0 tensor, the 
dot product is a rank-2 tensor.  Therefore, we can achieve the same result as a dot product with a rank-2 
symmetric tensor that accepts two vectors and produces a scalar; call this tensor g: 

g(A, B) = g(B, A) 

‘g’ is called the metric tensor: it produces the dot product (aka scalar product) of two vectors.  Quite 
often, the metric tensor varies as a function of the generalized coordinates of the system; then it is a metric 
tensor field.  It happens that the dot product is symmetric: A·B = B·A.;  therefore, g is symmetric.  If we 
write the components of g as a matrix, the matrix will be symmetric, i.e. it will equal its own transpose.  
(Do I need to expand on this??) 

On the other hand, a cross product is an anti-symmetric linear operation on two vectors, which 
produces another vector: A  B = −B  A.  Therefore, we can associate one vector, say B, with a rank-2 
anti-symmetric tensor, that accepts one vector and produces another vector: 

B( _, A) = −B(A, _ ) 

For example, the Lorentz force law: F = v  B.  We can write B as a (1
1) tensor: 

0

( _, ) 0
0

y zx
z yz y

x y z i j y x z
j z x z x

z x y
x y z y x y x

B v B vvB B

v v v B v B B v B v B v
B B B B B v B v B v

                              

i j k

F = v × B B v  

We see again how a rank-2 tensor, B, contributes a vector for each component of v: 

Bi
x ei = −Bzj + Byk (the first column of B) is weighted by vx. 

Bi
y ei = Bzi − Bxk (the 2nd column of B) is weighted by vy. 

Bi
z ei = −Byi + Bxj (the 3rd column of B) is weighted by vz. 
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z

x

y
Bi

x=-Bzj+Byk

Bx, By, Bz > 0
z

x

y

Bi
y=Bzi-Bxk

z

x

y
Bi

z=-Byi+Bxj

 
A rank-2 tensor acting on a vector to produce their cross-product. 

TBS:  We can also think of the cross product as a fully anti-symmetric rank-3 tensor, which acts on 2 
vectors to produce a vector (their cross product).  This is the anti-symmetric symbol ijk (not a tensor). 

Note that both the dot product and cross-product are linear on both of their operands.  For example: 

( ) ( ) ( )

( ) ( ) ( )

   

   

     

     

A C B A B C B

A B D A B A D
 

Linearity in all the operands is the essence of a tensor.   

Note also that a “rank” of a tensor contracts  with (is summed over) a “rank” of one of its operands to 
eliminate both of them:  one rank of the B-field tensor contracts with one input vector, leaving one 
surviving rank of the B-field tensor, which is the vector result.  Similarly, one rank of the metric tensor, g, 
contracts with the first operand vector; another rank of g contracts with the second operand vector, leaving 
a rank-0 (scalar) result. 

The Danger of Matrices 
There are some dangers to thinking of tensors as matrices: (1) it doesn’t work for rank 3 or higher 

tensors, and (2) non-commutation of matrix multiplication is harder to follow than the more-explicit 
summation convention.  Nonetheless, the matrix conventions are these: 

 contravariant components and basis covectors (“up” indexes) → column vector.  E.g., 
1

1
2

2
3

3

, basis 1-forms:
v
v
v

  
     
     

e
v e

e
 

 covariant components and basis contravectors (“down” indexes) → row vector 

   1 2 3 1 2 3, , , basis vectors: , ,w w ww e e e  

Matrix rows and columns are indicated by spacing of the indexes, and are independent of their 
“upness” or “downness.”  The first matrix index is always the row; the second, the column: 

,r c rc
c r rcT T T T where r row index c column index   

Reading Tensor Component Equations 
Tensor equations can be written as equations with tensors as operators (written in bold): 

KE = ½ I(ω, ω) 

Or, they can be written in component form: 

(1) KE = ½ Iij ωi ωj 
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We’ll be using lots of tensor equations written in component form, so it is important to know how to 
read them.  Note that some standard notations almost require component form: In GR, the Ricci tensor is 
Rμ, and the Ricci scalar is R: 

1
2

G R Rg     

In component equations, tensor indexes are written explicitly.  There are two kinds of tensor indexes: 
dummy (aka summation) indexes, and free indexes.  Dummy indexes appear exactly twice in any term.  
Free indexes appear only once in each term, and the same free indexes must appear in each term (except for 
scalar terms).  In the above equation, both μ and ν are free indexes, and there are no dummy indexes.  In eq. 
(1) above, i and j are both dummy indexes and there are no free indexes. 

Dummy indexes appear exactly twice in any term are used for implied summation, e.g. 
3 3

1 1

1 1
2 2

i j i j
ij ij

i j
KE I KE I   

 

      

Free indexes are a shorthand for writing several equations at once.  Each free index takes on all 
possible values for it.  Thus, 

, , (3 equations)i i i x x x y y y z z zC A B C A B C A B C A B          

and 

00 00 00 01 01 01 02 02 02 03 03 03

10 10 10 11 11 11 12 12 12 13 13 13

20 20 20 21 21 21 22 22 22 23 23 23

30 30

1
2

1 1 1 1, , ,
2 2 2 2
1 1 1 1, , ,
2 2 2 2
1 1 1 1, , ,
2 2 2 2

G R Rg

G R Rg G R Rg G R Rg G R Rg

G R Rg G R Rg G R Rg G R Rg

G R Rg G R Rg G R Rg G R Rg

G R

    

       

       

       

  30 31 31 31 32 32 32 33 33 33
1 1 1 1, , ,
2 2 2 2

Rg G R Rg G R Rg G R Rg     

 

(16 equations). 

It is common to have both dummy and free indexes in the same equation.  Thus the GR statement of 
conservation of energy and momentum uses μ as a dummy index, and ν as a free index: 

3 3 3 3
0 1 2 3

0 0 0 0
0 0, 0, 0, 0T T T T T    

    
      

               

(4 equations).  Notice that scalars apply to all values of free indexes, and don’t need indexes of their 
own.  However, any free indexes must match on all tensor terms.  It is nonsense to write something like: 

ij i jA B C    (nonsense) 

However, it is reasonable to have 

E.g., angular momentum:ij i j ij i j j iA B C M r p r p    

Adding, Subtracting, Differentiating Tensors 
Since tensors are linear operations, you can add or subtract any two tensors that take the same type 

arguments and produce the same type result.  Just add the tensor components individually. 

. . , , 1,...ij ij ijE g S T U i j N    S T U  
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You can also scalar multiply a tensor.  Since these properties of tensors are the defining requirements 
for a vector space, all the tensors of given rank and index types compose a vector space, and every tensor is 
an MVE in its space. 

This implies that a tensor field can be differentiated (or integrated), and in particular, it has a gradient.  

Higher Rank Tensors 
When considering higher rank tensors, it may be helpful to recall that multi-dimensional matrices can 

be thought of as lower-dimensional matrices with each element itself a vector or matrix.  For example, a 3 x 
3 matrix can be thought of as a “column vector” of 3 row-vectors.  Matrix multiplication works out the 
same whether you consider the 3 x 3 matrix as a 2-D matrix of numbers, or a 1-D column vector of row 
vectors: 

   

   
( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , )

a b c
x y z d e f ax dy gz bx ey hz cx fy iz

g h i

a b c

x y z d e f x a b c y d e f z g h i ax dy gz bx ey hz cx fy iz
g h i

or

      

         

 
 
 
  

 
 
 
  

  

Using this same idea, we can compare the gradient of a scalar field, which is a (0
1) tensor field (a 1-

form), with the gradient of a rank-2 (say (0
2)) tensor field, which is a (0

3) tensor field.  First, the gradient of 
a scalar field is a (0

1) tensor field with 3 components, where each component is a number-valued function: 

1 2 3
1 2 3

1 2 3 1 2 3

, , ,  are basis (co)vectors

( , , ), , ,

f f ff
x y z

f f fcan be written as D D D where D D D
x y z

  
    

  

  
  
  

D ω ω ω ω ω ω

D
. 

The gradient operates on an infinitesimal displacement vector to produce the change in the function 

when you move through the given displacement:  ( ) f f fdf d dx dy dz
x y z
  

   
  

D r . 

Now let R be a (0
2) tensor field, and T be its gradient.  T is a (0

3) tensor field, but can be thought of as a  
(0

1) tensor field where each component is itself a (0
2) tensor.   

z

x
y

z

x
y

z

x
y

x-tensor y-tensor z-tensor  
A rank-3 tensor considered as a set of 3 rank-2 tensors: an x-tensor, a y-tensor, and a z-tensor. 

The gradient operates on an infinitesimal displacement vector to produce the change in the (0
2) tensor 

field when you move through the given displacement. 
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Tijxvx
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+ dR

 

, ,
( ) ( )k k

ijk ij ijk
k x y z

d T v dR T v


   R T v  

Note that if R had been a (2
0) (fully contravariant) tensor, then its gradient would be a (2

1) mixed 
tensor.  Taking the gradient of any field simply adds a covariant index, which can then be contracted with a 
displacement vector to find the change in the tensor field when moving through the given displacement. 

The contraction considerations of the previous section still apply: a rank of an tensor operator contracts 
with a rank of one of its inputs to eliminate both.  In other words, each rank of input tensors eliminates one 
rank of the tensor operator.  The rank of the result is the number of surviving ranks from the tensor 
operator: 

 
 

( ) ( ) ( )

( ) ( ) ( )

rank tensor rank inputs rank result

or rank result rank tensor rank inputs

 

 




 

Tensors of Mathematical Vector Elements:  The operation of a tensor on vectors involves 
multiplying components (one from the tensor, and one from each input vector), and then summing.  E.g., 

1 1
11( , ) ... ...i j

ijT a b T a b   T a b  

Similar to the above example, the Tij components could themselves be a vector of a mathematical 
vector space (i.e., could be MVEs), while the ai and bj components are scalars of that vector space.  In the 
example above, we could say that each of the Tij;x , Tij;y , and Tij;z is a rank-2 tensor (an MVE in the space of 
rank-2 tensors), and the components of v are scalars in that space (in this case, real numbers). 

Tensors In General 

In complete generality then, a tensor T is a linear operation on one or more MVEs:   
T(a, b, ...).   

Linearity implies that T can be written as a numeric weight for each combination of components, one 
component from each input MVE.  Thus, the “linear operation” performed by T is equivalent to a weighted 
sum of all combinations of components of the input MVEs.  (Since T and the a, b, ... are simple objects, 
not functions, there is no concept of derivative or integral operations.  Derivatives and integrals are linear 
operations on functions, but not linear functions of MVEs.) 

Given the components of the inputs a, b, ..., and the components of T, we can contract T with (operate 
with T on) the inputs to produce a MVE result.  Note that all input MVEs have to have the same basis.  
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Also, T may have units, so the output units are arbitrary.  Note that in generalized coordinates, different 
components of a tensor may have different units (much like the vector parameters r and θ have different 
units). 

Change of Basis: Transformations 
Since tensors are linear operations on MVEs, we can represent a tensor by components. If we know a 

tensor’s operations on all combinations of basis vectors, we have fully defined the tensor.  Consider a rank-
2 tensor T acting on two vectors, a and b.  We expand T, a, and b into components, using the linearity of 
the tensor: 

1 2 3 1 2 3

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

1 2 3

3 3

1 1

( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ), , ,

( , ) ( ,

ij i j

i j
i

i j

a a a b b b

a b a b a b

a b a b a b

a b a b a b

Define T where

then a b
 

    

  

  

  

   

 

T a b T i j k i j k

T i i T j i T k i

T i j T j j T k j

T i k T j k T k k

T e e e i e j e k

T a b T e
3 3

1 1

) i j
j ij

i j

T a b
 

 e

 

The tensor’s values on all combinations of input basis vectors are the components of the tensor (in the 
basis of the input vectors.)   

Now let’s transform T to another basis.  To change from one basis to another, we need to know how to 
find the new basis vectors from the old ones, or equivalently, how to transform components in the old basis 
to components in the new basis.  We write the new basis with primes, and the old basis without primes. 

Because vector spaces demand linearity, any change of basis can be written as a linear transformation 
of the basis vectors or components, so we can write (eq. #s from Talman): 

   
1

1 1

1

' [Tal 2.4.5]

' [Tal 2.4.8]

N
k k

i i k i k
k

N i ii k k

k k
k

v v v



 



   

   





e e e
, 

where the last form uses the summation convention.  There is a very important difference between 
equations 2.4.5 and 2.4.8.  The first is a set of 3 vector equations, expressing each of the new basis vectors 
in the old basis 

Aside:  Let’s look more closely at the difference between equations 2.4.5 and 2.4.8.  The first is a set of 3 
vector equations, expressing each of the new basis vectors in the old basis.  Basis vectors are vectors, and hence 
can themselves be expressed in any basis:   

1 2 3 1 2 3
1 1 1 1 2 1 3 1 1 2 3

1 2 3 1 2 3
2 2 1 2 2 2 3 2 1 2 3

1 2 3 1 2 3
3 3 1 3 2 3 3 3 1 2 3

' '

' '

' '

a a a
or more simply b b b

c c c

         
 

         
          

e e e e e e e e
e e e e e e e e
e e e e e e e e

 

where the a’s are the components of e’1 in the old basis, the b’s are the components of e’2 in the old basis, 
and the c’s are the components of e’3 in the old basis. 

In contrast, equation 2.4.8 is a set of 3 number equations, relating the components of a single vector, taking 
its old components into the new basis.  In other words, in the first equation, we are taking new basis vectors and 
expressing them in the old basis (new → old).  In the second equation, we are taking old components and 
converting them to the new basis (old → new).  The two equations go in opposite directions: the first takes new to 
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old, the second takes old to new.  So it is natural that the two equations use inverse matrices to achieve those 
conversions.  However, because of the inverse matrices in these equations, vector components are said to 
transform “contrary” (oppositely) to basis vectors, so they are called contravariant vectors. 

I think it is misleading to say that contravariant vectors transform “oppositely” to basis vectors.  In fact, that 
is impossible.  Basis vectors are contravectors, and transform like any other contravector.  A vector of (1, 0, 0) (in 
some basis) is a basis vector.  It may also happen to be the value of some physical vector.  In both cases, the 
expression of the vector (1, 0, 0) (old basis) in the new-basis is the same. 

Now we can use 2.4.5 to evaluate the components of T in the primed basis: 

1 1 1 1
' ( ' , ' ) ( , ) ( , )

N N N N
k l k l k l

ij i j i k j l i j k l i j kl
k l k l

T T T T T
   

          e e e e e e  

Notice that there is one use of the transformation matrix  for each index of T to be transformed. 

Matrix View of Basis Transformation 
The concept of tensors seems clumsy at first, but it’s a very fundamental concept.   Once you get used 

to it, tensors are essentially simple things (though it took me 3 years to understand how “simple” they 
are).  The rules for transformations are pretty direct.  Transforming a rank-n tensor requires using the 
transformation matrix n times.  A vector is rank-1, and transforms by a simple matrix multiply, or in tensor 
terms, by a summation over indices.  Here, since we must distinguish row basis from column basis, we put 
the primes on the indices, to indicate which index is in the new basis, and which is in the old basis. 

0 ' 0 '0 0 '1 0 ' 2 0 '3 0

1' 1'0 1'1 1' 2 1' 3 1
' '

2 ' 2 ' 0 2 '1 2 ' 2 2 '3 2

3 ' 3' 0 3'1 3 ' 2 3'3 3

a a

a a
a a

a a

a a

  


        
    
       

        
       
            

a' = Λa  

Notice that when you sum over (contract over) two indices, they disappear, and you’re left with the 
unsummed index.  So above when we sum over old-basis indices, we’re left with a new-basis vector. 

Rank-2 example:  The electromagnetic field tensor F is rank-2, and transforms using the 
transformation matrix twice, by two summations over indices, transforming both stress-energy indices.  
This is clumsy to write in matrix terms, because you have to use the transpose of the transformation matrix 
to transform the rows; this transposition has no physical significance.  In the rank-2 (or higher) case, the 
tensor notation is both simpler, and more physically meaningful: 

0 '0 ' 0 '1' 0 ' 2 ' 0 '3 ' 0 ' 0 0 '1 0 ' 2 0 '3 00 01 02 03

1'0 ' 1'1' 1' 2 ' 1'3 ' 1' 0 1'1 1' 2 1'3 10 11

2 '0 ' 2 '1' 2 ' 2 ' 2 '3 ' 2 '0 2 '1 2 '2 2 '3

3' 0 ' 3 '1' 3 ' 2 ' 3' 3' 3 '0 3 '1 3' 2 3' 3

T

F F F F F F F F

F F F F F F F

F F F F

F F F F



      
  
     

   
     
         

F' = ΛFΛ

0 '0 1'0 2 '0 3 ' 0

12 13 0 '1 1'1 2 '1 3 '1

20 21 22 23 0 '2 1' 2 2 ' 2 3 ' 2

30 31 32 33 0 '3 1' 3 2 ' 3 3 '3

' ' ' '

F

F F F F

F F F F

F F    
 

      
  
     
  
     
         

   

 

In general, you have to transform every index of a tensor, each index requiring one use of the 
transformation matrix. 

Non-Orthonormal Systems: Contravariance and Covariance 
Many systems cannot be represented with orthonormal coordinates, e.g. the (surface of a) sphere.  

Dealing with non-orthonormality requires a more sophisticated view of tensors, and introduces the 
concepts of contravariance and covariance. 

Consider the following problem from classical mechanics:  a pendulum is suspended from a pivot 
point which slides horizontally on a spring.  The generalized coordinates are (a, θ). 



physics.ucsd.edu/~emichels  Funky Mathematical Physics Concepts emichels at physics.ucsd.edu 

5/7/2015  11:21  Copyright 2002-2014 Eric L. Michelsen. All rights reserved. 236 of 263  



a

(a,)

(a+da,)

(a, +d)
(a+da,+d)

constant θ

constant a

dr = da a+d ˆ ˆ

dr

 
To compute kinetic energy, we need to compute |v|2, conveniently done in some orthogonal 

coordinates, say x and y.  We start by converting the generalized coordinates to the orthonormal x-y 
coordinates, to compute the length of a physical displacement from the changes in generalized coordinates: 

2 2 2 2 2 2 2 2 2 2

2 2 2

sin , cos

cos , sin

2 cos cos sin

2 cos

x a l dx da l d

y l dy l d

ds dx dy da l da d l d l d

da l da d l d

  

  

     

  

   

  

      

  

 

We have just computed the metric tensor field, which is a function of position in the (a, θ) 
configuration space.  We can write the metric tensor field components by inspection: 

1 2

2 2
2 2 2 2

2
1 1

,

1 cos
2 cos

cos
i j

ij ij
i j

Let x a x

l
ds g dx dx da l da d l d g

l l




  

 

 

 
        

 


 

Then |v|2 = ds2/dt2.  A key point here is that the same metric tensor computes a physical displacement 
from generalized coordinate displacements, or a physical velocity from generalized coordinate velocities, 
or a physical acceleration from generalized coordinate accelerations, etc., because time is the same for any 
generalized coordinate system (no Relativity here!).  Note that we symmetrize the cross-terms of the 
metric, gij = gji, which is necessary to insure that g(v, w) = g(w, v). 

Now consider the scalar product of two vectors.  The same metric tensor (field) helps compute the 
scalar product (dot product) of any two (infinitesimal) vectors, from their generalized coordinates: 

( , ) i j
ijd d d d g dv dw  v w g v w  

Since the metric tensor takes two input vectors, is linear in both, and produces a scalar result, it is a 
rank-2 tensor.  Also, since g(v, w) = g(w, v), g is a symmetric tensor. 

Now, let’s define a scalar field as a function of the generalized coordinates; say, the potential energy: 

2 cos
2
kU a mg    

It is quite useful to know the gradient of the potential energy: 

( )aU U U UU dU d da d
a a

 
 

   
       

   
D ω ω D r  

The gradient takes an infinitesimal displacement vector dr = (da, d), and produces a differential in the 
value of potential energy, dU (a scalar).  Further, dU is a linear function of the displacement vector.  Hence, 
by definition, the gradient at each point in a-θ space is a rank-1 tensor, i.e. the gradient is a tensor field.   
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Do we need to use the metric (computed earlier) to make the gradient operate on dr?  No!  The 
gradient operates directly on dr, without the need for any “assistance” by a metric.  So the gradient is a 
rank-1 tensor that can directly contract with a vector to produce a scalar.  This is markedly different from 
the dot product case above, where the first vector (a rank-1 tensor) could not contract directly with an input 
vector to produce a scalar.  So clearly, 

There are two kinds of rank-1 tensors: those (like the gradient) that can contract directly with an 
input vector, and those that need the metric to “help” them operate on an input vector.   

Those tensors that can operate directly on a vector are called covariant tensors, and those that need 
help are called contravariant, for reasons we will show soon.  To indicate that D is covariant, we write its 
components with subscripts, instead of superscripts.  Its basis vectors are covariant vectors, related to e1, e2, 
and e3: 

, are covariant basis vectorsi a r
i aD D D where 

  D ω ω ω ω ω  

In general, covariant tensors result from differentiation operators on other (scalar or) tensor fields: 
gradient, covariant derivative, exterior derivative, Lie derivative, etc. 

Note that just as we can say that D acts on dr, we can say that dr is a rank-1 tensor that acts on D to 
produce dU: 

( ) ( ) i
i

i

U U Ud d dx da d
ax




  
   

 D r r D  

The contractions are the same with either acting on the other, so the definitions are symmetric.  

Interestingly, when we compute small oscillations of a system of particles, we need both the potential matrix, 
which is the gradient of the gradient of the potential field, and the “mass” matrix, which really gives us kinetic 
energy.  The potential matrix is fully covariant, and we need no metric to compute it.  The kinetic energy matrix 
requires us to compute absolute magnitudes of |v|2, and so requires us to compute the metric.   

We know that a vector, which is a rank-1 tensor, can be visualized as an arrow.  How do we visualize 
this covariant tensor, in a way that reveals how it operates on a vector (an arrow)?  We use a set of equally 
spaced parallel planes.  Let D be a covariant tensor (aka 1-form): 

D(v1 + v2) = D(v1) + D(v2)

– + – + – + – + – + – +
– + – + – + – + – +

D(v1), D(v2) > 0

D(v3) < 0

v3

v1

v2

 
Visualization of a covariant vector (1-form) as oriented parallel planes.   
The 1-form is a linear operator on vectors (see text). 

The value of D on a vector, D(v), is the number of planes “pierced” by the vector when laid on the 
parallel planes.  Clearly, D(v) depends on the magnitude and direction of v.  It is also a linear function of v: 
the sum of planes pierced by two different vectors equals the number of planes pierced by their vector sum. 

There is an orientation to the planes.  One side is negative, and the other positive.  Vectors crossing in 
the negative to the positive direction “pierce” a positive number of planes.  Vectors crossing in the positive 
to negative direction “pierce” a negative number of planes. 
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Note also we could redraw the two axes arbitrarily oblique (non-orthogonal), and rescale the axes 
arbitrarily, but keeping the intercept values of the planes with the axes unchanged (thus stretching the 
arrows and planes).  The number of planes pierced would be the same, so the two diagrams above are 
equivalent.  Hence, this geometric construction of the operation of a covector on a contravector is 
completely general, and even applies to vector spaces which have no metric (aka “non-metric” spaces).  All 
you need for the construction is a set of arbitrary basis vectors (not necessarily orthonormal), and the values 
D(ei) on each, and you can draw the parallel planes that illustrate the covector. 

The “direction” of D, analogous to the direction of a vector, is normal to (perpendicular to) the planes 
used to graphically represent D. 

What Goes Up Can Go Down: Duality of Contravariant and Covariant Vectors 
Recall the dot product is given by 

( , ) i j
ijd d d d g dv dw  v w g v w  

If I fill only one slot of g with v, and leave the 2nd slot empty, then g(v, _ ) is a linear function of one 
vector, and can be directly contracted with that vector; hence g(v, _ ) is a rank-1 covariant vector.  For any 
given contravariant vector vi, I can define this “dual” covariant vector, g(v, _ ), which has N components 
I’ll call vi.   

( , _) k
i ikv g v g v  

So long as I have a metric, the contravariant and covariant forms of v contain equivalent 
information, and are thus two ways of expressing the same vector (geometric object).   

The covariant representation can contract directly with a contravariant vector, and the contravariant 
representation can contract directly with a covariant vector, to produce the dot product of the two vectors.  
Therefore, we can use the metric tensor to “lower” the components of a contravariant vector into their 
covariant equivalents. 

Note that the metric tensor itself has been written with two covariant (lower) indexes, because it 
contracts directly with two contravariant vectors to produce their scalar-product. 

Why do I need two forms of the same vector?  Consider the vector “force:” 
i im or F ma F a  (naturally contravariant) 

Since position xi is naturally contravariant, so is its derivative vi, and 2nd derivative, ai.  Therefore, 
force is “naturally” contravariant.  But force is also the gradient of potential energy: 

i iU or F U
x


   


F  (naturally covariant) 

Oops!  Now “force” is naturally covariant!  But it’s the same force as above.  So which is more natural 
for “force?”  Neither.  Use whichever one you need.  Nurture supersedes nature. 

The inverse of the metric tensor matrix is the contravariant metric tensor, gij.  It contracts directly with 
two covariant vectors to produce their scalar product.  Hence, we can use gij to “raise” the index of a 
covariant vector to get its contravariant components.   

( , _)i ik ik i
k kj jv g v g g g  g v  

Notice that raising and lowering works on the metric tensor itself.  Note that in general, even for 
symmetric tensors, Ti

 j ≠ Tj
 i, and Ti

 j ≠ T i
j. 

For rank-2 or higher tensors, each index is separately of the contravariant or covariant type.  Each 
index may be raised or lowered separately from the others.  Each lowering requires a contraction with the 
fully covariant metric tensor; each raising requires a contraction with the fully contravariant metric tensor. 
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In Euclidean space with orthonormal coordinates, the metric tensor is the identity matrix.  Hence, the 
covariant and contravariant components of any vector are identical.  This is why there is no distinction 
made in elementary treatments of vector mathematics; displacements, gradients, everything, are simply 
called “vectors.” 

The space of covectors is a vector space, i.e. it satisfies the properties of a vector space.  However, it is 
called “dual” to the vector space of contravectors, because covectors operate on contravectors to produce 
scalar invariants.  A thing is dual to another thing if the dual can act on the original thing to produce a 
scalar, and vice versa.  E.g., in QM, bras are dual to kets.  “Vectors in the dual space” are covectors.   

Just like basis contravectors, basis covectors always have components (in their own basis)  
1 2 3(1,0, 0...), (0,1,0...), (0, 0,1...), .etc  ω ω ω  

and we can write an arbitrary covector as 1 2 3
1 2 3 ...f f f   f ω ω ω . 

TBS: construction and units of a dual covector from its contravector. 

The Real Summation Convention 
The summation convention says repeated indexes in an arithmetic expression are implicitly summed 

(contracted).  We now understand that only a contravariant/covariant pair can be meaningfully summed.  
Two covariant or two contravariant indexes require contracting with the metric tensor to be meaningful.  
Hence, the real Einstein summation convention is that any two matching indexes, one “up” (contravariant) 
and one “down” (covariant), are implicitly summed (contracted).  Two matching contravariant or covariant 
indexes are meaningless, and not allowed. 

Now we can see why basis contravectors are written e1, e2, ... (with subscripts), and basis covectors are 
written 1, 2, ... (with superscripts).  It is purely a trick to comply with the real summation convention 
that requires summations be performed over one “up” index and one “down” index.  Then we can write a 
vector as a linear combination of the basis vectors, using the summation convention: 

1 2 3 1 2 3
1 2 3 1 2 3

i i
i iv v v v a a a a       v e e e e a ω ω ω ω  

Note well that there is nothing “covariant” about ei, even though it has a subscript;  there is nothing 
“contravariant” about i, even though it has a superscript.  It’s just a notational trick. 

Transformation of Covariant Indexes 
It turns out that the components of a covariant vector transform with the same matrix as used to 

express the new (primed) basis vectors in the old basis: 

f’k = fj Λ jk  [Tal 2.4.11] 

Again, somewhat bogusly, eq. 2.4.11 is said to “transform covariantly with” (the same as) the basis 
vectors, so ‘fi ’ is called a covariant vector. 

For a rank-2 tensor such as Tij , each index of Tij transforms “like” the basis vectors (i.e., covariantly 
with the basis vectors).  Hence, each index of Tij is said to be a “covariant” index.  Since both indexes are 
covariant, Tij is sometimes called “fully covariant.” 

Indefinite Metrics: Relativity 
In short, a covariant index of a tensor is one which can be contracted with (summed over) a 

contravariant index of an input MVE to produce a meaningful resultant MVE. 

In relativity, the metric tensor has some negative signs.  The scalar-product is a frame-invariant 
“interval.”  No problem.  All the math, raising, and lowering, works just the same.  In special relativity, the 
metric ends up simply putting minus signs where you need them to get SR intervals.  The covariant form of 
a vector has the minus signs “pre-loaded,” so it contracts directly with a contravariant vector to produce a 
scalar. 
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Let’s use the sign convention where ημν = diag(–1, 1, 1, 1).  When considering the dual 1-forms for 
Minkowski space, the only unusual aspect is that the 1-form for time increases in the opposite direction as 
the vector for time.  For the space components, the dual 1-forms increase in the same direction as the 
vectors.  This means that  

1, 1, 1, 1t x y z
t x y z    ω e ω e ω e ω e  

as it should for the Minkowski metric. 

Is a Transformation Matrix a Tensor? 
Sort of.  When applied to a vector, it converts components from the “old” basis to the “new” basis.  It 

is clearly a linear function of its argument.  However, a tensor usually has all its inputs and outputs in the 
same basis (or tensor products of that basis).  But a transformation matrix is specifically constructed to take 
inputs in one basis, and produce outputs in a different basis.  Essentially, the columns are indexed by the 
old basis, and the rows are indexed by the new basis.  It basically works like a tensor, but the 
transformation rule is that to transform the columns, you use a transformation matrix for the old basis;  to 
transform the rows, you use the transformation matrix for the new basis.   

Consider a vector  
1 2 3

1 2 3v v v  v e e e  

This is a vector equation, and despite its appearance, it is true in any basis, not just the (e1, e2, e3) basis.  
If we write e1, e2, e3 as vectors in some new (ex, ey, ez) basis, the vector equation above still holds: 

     

     

     

                 
1 2 3

1 1 1 1

2 2 2 2

3 3 3 3

1 2 3
1 2 3

1 2 3
1 1 1 2 2 2 3 3 3

x y z
x y z

x y z
x y z

x y z
x y z

x y zx y z x y z
x y z x y z x y z

v v v

v v v

  

  

  

  

                 
e e e

e e e e e e e

e e e e e e e

e e e e e e e

v e e e

e e e e e e e e e e e e e e e e e e
  

 

The vector v is just a weighted sum of basis vectors, and therefore the columns of the transformation 
matrix are the old basis vectors expressed in the new basis.  E.g., to transform the components of a vector 
from the (e1, e2, e3) to the (ex, ey, ez) basis, the transformation matrix is 

     
     
     

1 2 3 1 2 3

1 2 3 1 2 3

1 2 31 2 3

xx x

x x x
yy y

y y y
zz z

z z z

                       

e e e e e e e e e
e e e e e e e e e

e e e e e ee e e

 

You can see directly that the first column is e1 written in the x-y-z basis; the 2nd column is e2 in the x-y-
z basis; and the 3rd column is e3 in the x-y-z basis. 

How About the Pauli Vector? 
In quantum mechanics, the Pauli vector is a vector of three 2x2 matrices: the Pauli matrices.  Each 2x2 

complex-valued matrix corresponds to a spin-1/2 operator in some x, y, or z direction.  It is a 3rd rank object 
in the tensor product space of R3  C2  C2, i.e. xyz   spinor  spinor.  The xyz rank is clearly in a 
different basis than the complex spinor ranks, since xyz is a completely different vector space than spin-1/2 
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spinor space.  However, it is a linear operator on various objects, so each rank transforms according to the 
transformation matrix for its basis. 

0 1 0 1 0
, ,

1 0 0 0 1

x y z

i
i


      

              

  

It’s interesting to note that the term tensor product produces, in general, an object of mixed bases, and 
often, mixed vector spaces.  Nonetheless, the term “tensor” seems to be used most often for mathematical 
objects whose ranks are all in the same basis. 

Cartesian Tensors 
Cartesian tensors aren’t quite tensors, because they don’t transform into non-Cartesian coordinates 

properly.  (Note that despite their name, Cartesian tensors are not a special kind of tensor; they aren’t really 
tensors.  They’re tensor wanna-be’s.)  Cartesian tensors have two failings that prevent them from being true 
tensors: they don’t distinguish between contravariant and covariant components, and they treat finite 
displacements in space as vectors.  In non-orthogonal coordinates, you must distinguish contravariant and 
covariant components.  In non-Cartesian coordinates, only infinitesimal displacements are vectors.  Details: 

Recall that in Cartesian coordinates, there is no distinction between contravariant and covariant 
components of a tensor.  This allows a certain sloppiness that one can only get away with if one sticks to 
Cartesian coordinates.  This means that Cartesian “tensors” only transform reliably by rotations from one 
set of Cartesian coordinates to a new, rotated set of Cartesian coordinates.  Since both the new and old 
bases are Cartesian, there is no need to distinguish contravariant and covariant components in either basis, 
and the transformation (to a rotated coordinate system) “works.” 

For example, the moment of inertia “tensor” is a Cartesian tensor.  There is no problem in its first use, 
to compute the angular momentum of a blob of mass given its angular velocity: 

( , _)
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I

I I
L

L I

L I
I

II I
I
I

I
I











   

     
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    

 

     

 
 

 


 



 


 
 
   

I ω L

 

But notice that if I accepts a contravariant vector, then I’s components for that input vector must be 
covariant.  However, I produces a contravariant output, so its output components are contravariant.  So far, 
so good. 

But now we want to find the kinetic energy.  Well, 21 1 1 ( , _)
2 2 2

I      
 

L ω I ω ω .  But we have a 

dot product of two contravariant vectors.  To evaluate that dot product, in a general coordinate system, we 
have to use the metric: 

1 1 1
2 2 2

i j i j k i j i
j i j ik jKE I I g I         

However, in Cartesian coordinates, the metric matrix is the identity matrix, the contravariant 
components equal the covariant components, and the final “not-equals” above becomes an “equals.”  
Hence, we neglect the distinction between contravariant components and covariant components, and 
“incorrectly” sum the components of I on the components of , even though both are contravariant in the 
2nd sum.   
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In general coordinates, the direct sum for the dot product doesn’t work, and you must use the metric 
tensor for the final dot product. 

Example of failure of finite displacements: TBS: The electric quadrupole tensor acts on two copies of 
the finite displacement vector to produce the electric potential at that displacement.  Even in something as 
simple as polar coordinates, this method fails. 

The Real Reason Why the Kronecker Delta Is Symmetric 
TBS: Because it a mixed tensor, δα

β.  Symmetry can only be assessed by comparing interchange of two 
indices of the same “up-” or “down-ness” (contravariance or covariance).  We can lower, say α, in δα

β with 
the metric: 

g g
       

The result the metric, which is always symmetric.  Hence, δα
β is a symmetric tensor, but not because its 

matrix looks symmetric.  In general, a mixed rank-2 symmetric tensor does not have a symmetric matrix 
representation.  Only when both indices are up or both down is its matrix symmetric.   

The Kronecker delta is a special case that does not generalize.   

Things are not always what they seem.  

Tensor Appendices 
Pythagorean Relation for 1-forms 

Demonstration that 1-forms satisfy the Pythagorean relation for magnitude: 

0 dx + 1 dy
|a~| = 1

1 dx + 1 dy
|a~| = √2

2 dx + 1 dy
|a~| = √5

unit 
vector

a dx + b dy
|a~| = √(a2+b2)

1/b

1/a

unit 
vector

a~a~
a~

a~

 
Examples of 3 1-forms, and a generic 1-form.  Here, dx is the x basis 1-form, and dy is the y basis 
1-form. 

From the diagram above, a max-crossing vector (perpendicular to the planes of a~) has (x, y) 
components (1/b, 1/a).  Dividing by its magnitude, we get a unit vector: 

 
2 2

1 1ˆ ˆ
ˆ ˆmax crossing unit vector . ( ) 1, 1

1 1
b a Note that x and y

b a


  



x y
d x d yu  

The magnitude of a 1-form is the scalar resulting from the 1-form’s action on a max-crossing unit 
vector: 
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     2 2 2 2
2 2

2 2

2 2 2 2 2 2

1 1ˆ ˆ
( )

1 1 1 1 1 1

a ba x b y a b a bb a b a a b
a bab

b a b a b a

                   
  

d d x y
 a a u  

Here’s another demonstration that 1-forms satisfy the Pythagorean relation for magnitude.  The 
magnitude of a 1-form is the inverse of the plane spacing: 

O A

B

X

 

  

2 2

2 2
2 2

2 2

1 1

1 1

1 1
1 1 1

1 1

OX BOOXA ~ BOA
OA BA

BO OA b aOX
BA

b a

b a ab a b
OX b a

b a



 


  




     




Δ Δ

a

 

Geometric Construction Of The Sum Of Two 1-Forms: 

a~(x) = 2
b~(x) = 1
(a~ + b~)(x) = 3

a~(va) = 1
b~(va) = 0
(a~ + b~)(va) = 1

a~(vb) = 0
b~(vb) = 1
(a~ + b~)(vb) = 1

Example of a~ + b~ Construction of a~ + b~

a~
b~

x

vb
va

a~ + b~

O
step 4

step 5

 
To construct the sum of two 1-forms, a~ + b~: 

1. Choose an origin at the intersection of a plane of a~ and a plane of b~. 

2. Draw vector va from the origin along the planes of b~, so b~(va) = 0, and of length such that 
a~(va) = 1.  [This is the dual vector of a~.] 
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3. Similarly, draw vb from the origin along the planes of a~, so a~(vb) = 0, and b~(vb) = 1.  [This is 
the dual vector of b~.] 

4. Draw a plane through the heads of va and vb (black above).  This defines the orientation of 
(a~ + b~). 

5. Draw a parallel plane through the common point (the origin).  This defines the spacing of planes 
of (a~ + b~). 

6. Draw all other planes parallel, and with the same spacing.  This is the geometric representation of 
(a~ + b~). 

Now we can easily draw the test vector x, such that a~(x) = 2, and b~(x) = 1. 

“Fully Anti-symmetric” Symbols Expanded 
Everyone hears about them, but few ever see them.  They are quite sparse: the 3-D fully anti-

symmetric symbol has 6 nonzero values out of 27; the 4-D one has 24 nonzero values out of 256. 

3-D, from the 6 permutations, ijk: 123+, 132-, 312+, 321-, 231+, 213-  

1 2 3
0 0 0 0 0 1 0 1 0
0 0 1 , 0 0 0 , 1 0 0
0 1 0 1 0 0 0 0 0

ijk

k k k



  

     
           
          

 

4-D, from the 24 permutations, αβγδ:  

0123+  0132-  0312+  0321- 0231+  0213- 

1023-  1032+  1302-  1320+  1230-  1203+ 

2013+  2031-  2301+  2310-  2130+  2103- 

3012-  3021+  3201-  3210+  3120-  3102+ 

0 1 2 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

, , ,
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 ,
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0



   






   

       
               
        
       

       
   
   
   
   
   
   

0 0 0 1 0 0 1 0
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, ,
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0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

2 , , ,
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0 0 0 0
0 0 1 0

3
0 1 0 0
0 0 0





   
   
   
   
      

       
              
       
       
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

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       
       
       
       
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Metric?  We Don’t Need No Stinking Metric! 
Examples of Useful, Non-metric Spaces 

Non-metric spaces are everywhere.  A non-metric space has no concept of “distance” between arbitrary 
points, or even between arbitrary “nearby” points (points with infinitesimal coordinate differences).  
However: 

Non-metric spaces have no concept of “distance,”  
but many still have a well-defined concept of “area,” in the sense of an integral.   

For example, consider a plot of velocity (of a particle in 1D) vs. time (below, left). 

velocity

time

pressure

volume

displacement work

momentum

position

action
A

B

 
Some useful non-metric spaces: (left) velocity vs. time;  (middle) pressure vs. volume;   
(right) momentum vs. position.  In each case, there is no distance, but there is area. 

The area under the velocity curve is the total displacement covered.  The area under the P-V curve is the 
work done by an expanding fluid.  The area under the momentum-position curve (p-q) is the action of the 
motion in classical mechanics.  Though the points in each of these plots exist on 2D manifolds, the two 
coordinates are incomparable (they have different units).  It is meaningless to ask what is the distance 
between two arbitrary points on the plane.  For example, points A and B on the v-t curve differ in both 
velocity and time, so how could we define a distance between them (how can we add m/s and seconds)? 

In the above cases, we have one coordinate value as a function of the other, e.g. velocity as a function 
of time.  We now consider another case: rather than consider the function as one of the coordinates in a 
manifold, we consider the manifold as comprising only the independent variables.  Then, the function is 
defined on that manifold.  As usual, keeping track of the units of all the quantities will help in 
understanding both the physical and mathematical principles.   

For example, the speed of light in air is a function of 3 independent variables: temperature, pressure, 
and humidity.  At 633 nm, the effects amount to speed changes of about +1 ppm per kelvin, –0.4 ppm per 
mm-Hg pressure, and +0.01 ppm per 1% change in relative humidity (RH) (see http://patapsco.nist.gov/ 
mel/div821/Wavelength/Documentation.asp#CommentsRegardingInputstotheEquations): 

s(T, P, H) = s0 + aT – bP + cH . 

where a ≈ 300 (m/s)/k, b ≈ 120 (m/s)/mm-Hg, and c ≈ 3 (m/s)/% are positive constants, and the 
function s is the speed of light at the given conditions, in m/s.  Our manifold is the set of TPH triples, and s 
is a function on that manifold.  We can consider the TPH triple as a (contravariant, column) vector: (T, P, 
H)T.  These vectors constitute a 3D vector space over the field of reals.  s(·) is a real function on that vector 
space.   

Note that the 3 components of a vector each have different units: the temperature is measured in 
kelvins (K), the pressure in mm-Hg, and the relative humidity in %.  Note also that there is no metric on (T, 
P, H) space (which is bigger, 1 K or 1 mm-Hg?).  However, the gradient of s is still well defined: 

s s ss a b c
T P H
        
  

dT dP dH dT dP dH      . 

What are the units of the gradient?  As with the vectors, each component has different units: the first is in 
(m/s) per kelvin; the second in (m/s) per mm-Hg; the third in (m/s) per %.  The gradient has different units 
than the vectors, and is not a part of the original vector space.  The gradient, s, operates on a vector (T, P, 
H)T to give the change in speed from one set of conditions, say (T0, P0, H0) to conditions incremented by 
the vector (T0 + T, P0 + P, H0 + H).   

http://patapsco.nist.gov/ mel/div821/Wavelength/Documentation.asp#CommentsRegardingInputstotheEquations
http://patapsco.nist.gov/ mel/div821/Wavelength/Documentation.asp#CommentsRegardingInputstotheEquations
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One often thinks of the gradient as having a second property: it specifies the “direction” of steepest 
increase of the function, s.  But: 

Without a metric, “steepest” is not defined.   

Which is steeper, moving one unit in the temperature direction, or one unit in the humidity direction?  In 
desperation, we might ignore our units of measure, and choose the Euclidean metric (thus equating one unit 
of temperature with one unit of pressure and one unit of humidity); then the gradient produces a “direction” 
of steepest increase.  However, with no justification for such a choice of metric, the result is probably 
meaningless. 

What about basis vectors?  The obvious choice is, including units, (1 K, 0 mm-Hg, 0 %)T, (0 K, 1 mm-
Hg, 0 %)T, and (0 K, 0 mm-Hg, 1 %)T, or omitting units: (1, 0, 0), (0, 1, 0), and (0, 0, 1).  Note that these 
are not unit vectors, because there is no such thing as a “unit” vector, because there is no metric by which 
to measure one “unit.”  Also, if I ascribe units to the basis vectors, then the components of an arbitrary 
vector in that basis are dimensionless. 

Now let’s change the basis: suppose now I measure temperature in some unit equal to ½ K (almost the 
Rankine scale).  Now all my temperature measurements “double”, i.e. Tnew = 2 Told.  In other words, (½ K, 
0, 0)T is a different basis than (1 K, 0, 0)T.  As expected for a covariant component, the temperature 
component of the gradient (s)T is cut in half if the basis vector “halves.”  So when the half-size gradient 
component operates on the double-size temperature vector component, the product remains invariant, i.e., 
the speed of light is a function of temperature, not of the units in which you measure temperature. 

The above basis change was a simple change of scale of one component in isolation.  The other 
common basis change is a “rotation” of the axes, “mixing” the old basis vectors.   

Can we rotate axes when the units are different for each component?  Surprisingly, we can. 

H

T

P
H

T

P

e1

e2

e3

 
We simply define new basis vectors as linear combinations of old ones, which is all that a rotation 

does.  For example, suppose we measured the speed of light on 3 different days, and the environmental 
conditions were different on those 3 days.  We choose those measurements as our basis, say e1 = (300 K, 
750 mm-Hg, 20%), e2 = (290 K, 760 mm-Hg, 30 %), and e3 = (290 K, 770 mm-Hg, 10 %).  These basis 
vectors are not orthogonal, but are (of course) linearly independent.  Suppose I want to know the speed of 
light at (296 K, 752 mm-Hg, 18 %).  I decompose this into my new basis and get (0.6, 0.6, –0.2).  I 
compute the speed of light function in the new basis, and then compute its gradient, to get 

1 2 3
1 2 3d d d e e e   .  I then operate on the vector with the gradient to find the change in speed: Δs = s(0.6, 

0.6, –0.2) = 0.6 d1 + 0.6 d2 – 0.2 d3. 

We could extend this to a more complex function, and then the gradient is not constant.  For example, 
a more accurate equation for the speed of light is  

  2
0( , , ) 273 160Ps T P H c f gH T

T
      

where f ≈ 7.86 × 10–4 and g ≈ 1.5 × 10–11 are constants.  Now the gradient is a function of position (in 
TPH space), and there is still no metric. 

Comment on the metric: In desperation, you might define a metric, i.e. the length of a vector, to be Δs, 
the change in the speed of light due to the environmental changes defined by that vector.  However, such a 
metric is in general non-Euclidean (not a Pythagorean relationship), indefinite (non-zero vectors can have 
zero or negative “lengths”), and still doesn’t define a meaningful dot product.  Our more-accurate equation 
for the speed of light provides examples of these failures. 
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11 Differential Geometry 

Manifolds 
A manifold is a “space”: a set of points with coordinate labels.  We are free to choose coordinates 

many ways, but a manifold must be able to have coordinates that are real numbers.  We are familiar with 
“metric manifolds”, where there is a concept of distance.  However, there are many useful manifolds which 
have no metric, e.g. phase space (see “We Don’t Need No Stinking Metric” above).   

Even when a space is non-metric, it still has concepts of “locality” and “continuity.”   

Such locality and continuity are defined in terms of the coordinates, which are real numbers.  It may 
also have a “volume”, e.g. the oft-mentioned “phase-space volume.”  It may seem odd that there’s no 
definition of “distance,” but there is one of “volume.”  Volume in this case is simply defined in terms of 
the coordinates, dV = dx1 dx2 dx3 ..., and has no absolute meaning. 

Coordinate Bases 
Coordinate bases are basis vectors derived from coordinates on the manifold.  They are extremely 

useful, and built directly on basic multivariate calculus.  Coordinate bases can be defined a few different 
ways.  Perhaps the simplest comes from considering a small displacement vector on a manifold.  We use 
2D polar coordinates in (r, θ) as our example.  A coordinate basis can be defined as the basis in which the 
components of an infinitesimal displacement vector are just the differentials of the coordinates: 

e


er


er
 e



er


e


e


er


er
 e



p

p + dp
dp = (dr, dθ)

 
(Left) Coordinate bases: the components of the displacement vector are the differentials of the 
coordinates.  (Right)  Coordinate basis vectors around the manifold. 

Note that eθ (the θ basis vector) far from the origin must be bigger than near, because a small change in 
angle, dθ, causes a bigger displacement vector far from the origin than near.  The advantage of a coordinate 
basis is that it makes dot products, such as a gradient dotted into a displacement, appear in the simplest 
possible form: 

 ( , ), ( , ) ,f f f fGiven f r df f r d dr d dr d
r r

   
 

                
p  

The last equality is assured from elementary multivariate calculus. 

The basis vectors are defined by differentials, but are themselves finite vectors.  Any physical vector, 
finite or infinitesimal, can be expressed in the coordinate basis,  e.g., velocity, which is finite. 

“Vectors” as derivatives:  There is a huge confusion about writing basis “vectors” as derivatives.  
From our study of tensors (earlier), we know that a vector can be considered an operators on a 1-form, 
which produces a scalar.  We now describe how vector fields can be considered operators on scalar 
functions, which produce scalar fields.  I don’t like this view, since it is fairly arbitrary, confuses the much 
more consistent tensor view, and is easily replaced with tensor notation. 

We will see that in fact, the derivative “basis vectors” are operators which create 1-forms (dual-basis 
components), not traditional basis vectors.  The vector basis is then implicitly defined as the dual of the 
dual-basis, which is always the coordinate basis.  In detail: 
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We know from the “Tensors” chapter that the gradient of a scalar field is a 1-form with partial 
derivatives as its components.  For example: 

1 2 3 1 2 3( , , ) , , , , , are basis 1-formsf f f f f ff x y z where
x y z x y z

      
           

ω ω ω ω ω ω  

Many texts define vectors in terms of their action on scalar functions (aka scalar fields), e.g. [Wald 
p15].  Given a point (x, y, z),  and a function f(x, y, z), the definition of a vector v amounts to 

   , , , , (a scalar field)x y z x y zf f fv v v such that f x y z f v v v
x y z
  

          
v v v  

Roughly, the action of v on f produces a scaled directional derivative of f:  Given some small displacement 
dt, as a fraction of |v| and in the direction of v, v tells you how much f will change when moving from 
(x, y, z) to (x + vxdt, y + vydt, z + vzdt): 

   dfdf f dt or f
dt

 v v  

If t is time, and v is a velocity, then v[f] is the time rate of change of f.  While this notation is compact, I’d 
rather write it simply as the dot product of v and f, which is more explicit, and consistent with tensors: 

dfdf f dt or f
dt

   v v  

The definition of v above requires an auxiliary function f, which is messy.  We remove f by redefining 
v as an operator: 

(an operator)x y zv v v
x y x

   
      

v  

Given this form, it looks like ∂/∂x, ∂/∂y, and ∂/∂z are some kind of “basis vectors.”  Indeed, standard 
terminology is to refer to ∂/∂x, ∂/∂y, and ∂/∂z as the “coordinate basis” for vectors, but they are really 
operators for creating 1-forms!  Then 

   
, ,

(a scalar field)x y z i
i

i x y z

f f ff v v v v f
x y z 

  
    

   v  

The vector v contracts directly with the 1-form f (without need of any metric), hence v is a vector 
implicitly defined in the basis dual to the 1-form f.   

Note that if v = v(x, y, z) is a vector field, then  

 , , ( , , ) ( , , ) (a scalar field)f x y z x y z f x y z   v v  

These derivative operators can be drawn as basis vectors in the usual manner, as arrows on the manifold.  
They are just the coordinate basis vectors shown earlier.  For example, consider polar coordinates (r, θ): 
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e


er


er
 e



er


e


e


er


 
Examples of coordinate basis vectors around the manifold.  er happens to be unit magnitude 
everywhere, but eθ is not. 

The manifold in this case is simply the flat plane, 2.  The r-coordinate basis vectors are all the same size, 
but have different directions at different places.  The θ coordinate basis vectors get larger with r, and also 
vary in direction around the manifold. 

Covariant Derivatives 
Notation: Due to word-processor limitations, the following two notations are equivalent: 

( ) ( ),h r 
 h r . 

This description is similar to one in [Sch]. 

We start with the familiar concepts of derivatives, and see how that evolves into the covariant 
derivative.  Given a real-valued function of one variable, f(x), we want to know how f varies with x near a 
value, a.  The answer is the derivative of f(x), where 

df = f '(a) dx and therefore f(a + dx) ≈ f(a) + df = f(a) + f '(a) dx 

Extending to two variables, g(x, y), we’d like to know how g varies in the 2-D neighborhood around a 
point (a, b), given a displacement vector dr = (dx, dy).  We can compute its gradient: 

 and therefore , ( , ) ( )g gg g a dx b dy g a b g dr
x y

 
       

 
dx dy      

The gradient is also called a directional derivative, because the rate at which g changes depends on the 
direction in which you move away from the point (a, b). 

The gradient extends to a vector valued function (a vector field) h(x, y) = hx(x, y)i + hy(x, y)j: 

( )

x y x y

x x x x

y y y y

h hh
x y

h h h h h hand
x x x y y y

h h h h
dx

x y x yh hdh h dr dx dy dx dy
x y

h h h hdy
x y x y

 
  

 

     
   

     

      
         
                     

       
        
              

dx dy

i j i j

   

 

    




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We see that the columns of h are vectors which are weighted by dx and dy, and then summed to 
produce a vector result.  Therefore, h is linear in the displacement vector dr = (dx, dy).  This linearity 
insures that it transforms like a duck . . . I mean, like a tensor.  Thus h is a rank-2 (1

1) tensor: it takes a 
single vector input, and produces a vector result.   

So far, all this has been in rectangular coordinates.  Now we must consider what happens in curvilinear 
coordinates, such as polar.  Note that we’re still in a simple, flat space.  (We’ll get to curved spaces later).  
Our goal is still to find the change in the vector value of h( ), given an infinitesimal vector change of 
position, dx = (dx1, dx2).  We use the same approach as above, where a vector valued function comprises 
two (or n) real-valued component functions:  1 2 1 1 2 2 1 2

1 2( , ) ( , ) ( , )h x x h x x h x x e e
   .  However, in this 

general case, the basis vectors are themselves functions of position (previously the basis vectors were 
constant everywhere).  So h( ) is really 

1 2 1 1 2 1 2 2 1 2 1 2
1 2( , ) ( , ) ( , ) ( , ) ( , )h x x h x x x x h x x x x e e

    

Hence, partial derivatives of the component functions alone are no longer sufficient to define the 
change in the vector value of h( ); we must also account for the change in the basis vectors. 

h(x1, x2)


h(x1+dx1, x2+dx2)


e1(x1, x2)

e2(x1, x2)

e2(x1+dx1, x2+dx2)

e1(x1+dx1, x2+dx2)

Components constant, 
but vector changes

Vector constant, but 
components change

e1


e2


dx = (dx1, dx2) dx = (dx1, dx2)

 
Note that a component of the derivative is distinctly not the same as the derivative of the component 

(see diagram above).  Therefore, the ith component of the derivative depends on all the components of the 
vector field. 

We compute partial derivatives of the vector field h(x1, x2) using the product rule:  
1 2

1 2 1 1 2 1 2 2 1 21 2
1 21 1 1 1 1

1 2 1 2
1 1

1

( , ) ( , ) ( , ) ( , )

( , ) ( , )
n j

jj
j

j

h h hx x h x x x x h x x
x x x x x

h x x h x x
x x

   
   

    
 

     


e ee e

e
e

   




 

This is a vector equation: all terms are vectors, each with components in all n basis directions.  This is 
equivalent to n numerical component equations.  Note that (h/x1) has components in both (or all n) 
directions.  Of course, we can write similar equations for the components of the derivative in any basis 
direction, ek: 

1 2
1 2 1 1 2 1 2 2 1 21 2

1 2

1 2 1 2

1

( , ) ( , ) ( , ) ( , )

( , ) ( , )

k k k k k

n j
jj

jk k
j

h h hx x h x x x x h x x
x x x x x

h x x h x x
x x

   
   

    
 

     


e ee e

e
e

   




 

Because we must frequently work with components and component equations, rather than whole 
vector equations, let us now consider only the ith component of the above: 
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1 2

1

( , )
i ini

jj
k k k

j

h h h x x
x x x

    
    

    


e
 

 

The first term moves out of the summation because each of the first terms in the summation of eq. (1) 
are vectors, and each points exactly in the ej direction.  Only the j = i term contributes to the ith component; 
the purely ej directed vector contributes nothing to the ith component when j  i.  

Recall that these equations are true for any arbitrary coordinate system; we have made no assumptions 
about unit length or orthogonal basis vectors.  Note that  

   the th (covariant) component of 
kk

h h k h
x


   


  
 

Since h is a rank-2 tensor, the kth covariant component of h is the kth column of h: 

1 1

1 2

2 2

1 2

h h
x x

h

h h
x x

 
     
          
 
     
    
      

 



 
 

Since the change in h( ) is linear with small changes in position,  
1 2( ), ( , )dh h dx where dx dx dx  

     

Going back to Equations (1) and (2), we can now write the full covariant derivative of h( ) in 3 ways: 
vector, verbose component, and compact component: 

 

 

 

1 2 1 2

1 1 1

1 2

1

( , ) ( , )

( , )

,

n n n
jj j i

k jk ik k kk
j j i

inii jj
k k k

j

iii j jj i i i
k jk jk jk ik k k

h hh h h x x h x x
x x x

hh h x x
x x

hh h where
x x x

  



 
       

  

 
    

  

  
         

   

  



e
e

e

e e
e

   



  

 

Aside:  Some mathematicians complain that you can’t define the Christoffel symbols as derivatives of basis 
vectors, because you can’t compare vectors from two different points of a manifold without already having the 
Christoffel symbols (aka the “connection”).  Physicists, including Schutz [Sch], say that physics defines how to 
compare vectors at different points of a manifold, and thus you can calculate the Christoffel symbols.  In the end, 
it doesn’t really matter.  Either way, by physics or by fiat, the Christoffel symbols are, in fact, the derivatives of 
the basis vectors. 

Christoffel Symbols 
Christoffel symbols are the covariant derivatives of the basis vector fields.  TBS. 
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Derivatives of er

r er

r + dr er

der = 0

 
 

Visualization of n-Forms 
TBS: 1-forms as oriented planes 

2-forms (in 3 or more space) as oriented parallelograms 

3-forms (in 3 or more space) as oriented parallelepipeds 

4-forms (in 4-space): how are they oriented?? 

Review of Wedge Products and Exterior Derivative 
This is a quick insert that needs proper work. ?? 

1-D 
I don’t know of any meaning for a wedge-product in 1-D, or even a vector.  Also, the 1-D exterior 

derivative is a degenerate case, because the “exterior” of a line segment is just the 2 endpoints, and all 
functions are scalar functions.  In all higher dimensions, the “exterior”  or boundary of a region is a closed 
path/ surface/ volume/ hyper-volume.  In 1-D the boundary of a line segment cannot be closed.  So instead 
of integrating around a closed exterior (aka boundary), we simply take the difference in the function value 
at the endpoints, divided by a differential displacement.  This is simply the ordinary derivative of a 
function, f ’(x). 

2-D 
The exterior derivative of a scalar function f(x, y) follows the 1-D case, and is similarly degenerate, 

where the “exterior” is simply the two endpoints of a differential displacement.  Since the domain is a 2-D 
space, the displacements are vectors, and there are 2 derivatives, one for displacements in x, and one for 
displacements in y.  Hence the exterior derivative is just the one-form “gradient” of the function: 

( , ) " " f fx y gradient
x y
 

  
 

df dx dy    

In 2-D, the wedge product dx dy   is a two-form, which accepts two vectors to produce the signed 
area of the parallelogram defined by them.  A signed area can be + or -; a counter-clockwise direction is 
positive, and clockwise is negative. 

v

w
+

v

w
-
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( , ) signed area defined by ( , ) ( , )

( ) ( ) ( ) ( )

( ) ( )
det det

( ) ( )

x x

y y

v w v w w v
v w v w

v wv w
v w v w

    

 

 

dx dy dx dy
dx dy dy dx

dx dx
dy dy

        
      

  
  

 

The exterior derivative of a 1-form is the ratio of the closed path integral of the 1-form to the area of 
the parallelogram of two vectors, for infinitesimal vectors.  This is very similar to the definition of curl, 
only applied to a 1-form instead of a vector field. 

1

3

dx

dy

dx

dy 24

ωx(r+dy)

ωx(r)
ωy(r) ωy(r+dx)

Path integrals from 2 
adjacent areas add

 

Consider the horizontal and vertical contributions to the path integral separately: 

1 3

2 4

( , ) ( ) ( ) ( , ) ( , )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x

x
x x

y
y y

x y x, y x, y r x y dr dx dy

dr dr r dx r dy dx dy dx
y

dr dr r dx dy r dy dx dy
x

 


 


 

   


     




    



 

 

yω dx dy

ω ω

ω ω

  

  

  

 

The horizontal (segments 1 & 3) integrals are linear in dx, because that is the length of the path.  They 
are linear in dy, because dy is proportional to the difference in ωx.  Hence, the contribution is linear in both 
dx and dy, and therefore proportional to the area (dx)(dy). 

A similar argument holds for the vertical contribution, segments 2 & 4.  Therefore, the path integral 
varies proportionately to the area enclosed by two orthogonal vectors. 

It is easy to show this is true for any two vectors, and any shaped area bounded by an infinitesimal 
path.  For example, when you butt up two rectangles, the path integral around the combined boundary 
equals the sum of the individual path integrals, because the contributions from the common segment cancel 
from each rectangle, and hence omitting them does not change the path integral.  The area integrals clearly 
add. 

3-D 
In 3-D, the wedge product 

 

( , , ) signed volume defined by ( , , ) ( , , ), .

( ) ( ) ( )
det ( ) ( ) ( ) det

( ) ( ) ( )

x x x

y y y

z z z

u v w u v w u w v etc

u v wu v w
u v w u v w
u v w u v w

      

 

dx dy dz dx dy dz

dx dx dx
dy dy dy
dz dz dz

             
    
    
    

  

is a 3-form which can either: 

1. accept 2 vectors to produce an oriented area; it doesn’t have a sign, it has a direction.  Analogous 
to the cross-product.  Or, 
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2. accept 3 vectors to produce a signed volume. 

The exterior derivative of a scalar or 1-form field is essentially the same as in the 2-D case, except that 
now the areas defined by vectors are oriented instead of simply signed.  In this case, the “exterior” is a 
closed surface;  the “interior” is a volume. 
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12 Math Tricks 
Here are some math “tricks” that either come up a lot and are worth knowing about, or are just fun and 

interesting. 

Math Tricks That Come Up A Lot 
The Gaussian Integral 

2axe dx
 

  You can look this up anywhere, but here goes:  we’ll evaluate the basic integral, 

2xe dx
 

 , and throw in the ‘a’ at the end by a simple change of variable.  First, we square the integral, 

then rewrite the second factor calling the dummy integration variable y instead of x: 

 2 22 2 2
2

x yx x ydx e dx e dy e dx dy e
        

    

           
           

This is just a double integral over the entire x-y plane, so we can switch to polar coordinates.  Note that 
the exponential integrand is constant at constant r, so we can replace the differential area dx dy with 2r dr: 

x

d(area) = 2πr dr
y

r
dr
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Math Tricks That Are Fun and Interesting 

sin
dx

x  

Continuous Infinite Crossings 

The following function has an infinite number of zero crossings near the origin, but is everywhere 
continuous (even at x = 0).  That seems bizarre to me.  Recall the definition:  

f(x) is continuous at a iff lim ( ) ( )
x a

f x f a


  

Then let 
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0

1sin , 0
( )

0, 0

lim ( ) 0 (0) (0)
x

x x
xf x

x

f x f f is continuous


     
  




 

 

Picture 

Phasors 
Phasors are complex numbers that represent sinusoids.  The phasor defines the magnitude and phase of 

the sinusoid, but not its frequency.  See Funky Electromagnetic Concepts for a full description. 

Future Funky Mathematical Physics Topics 
1. Finish theoretical importance of IBP 

2. Finish Legendre transformations 

3. Sturm-Liouville 

4. Pseudo-tensors (ref. Jackson). 

5. Tensor densities 

6. f(z) = ∫-∞
∞ dx exp(–x^2)/x–z has no poles, but has a branch cut.  Where is the branch cut, and what 

is the change in f(z) across it? 
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13 Appendices 
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Glossary 
Definitions of common mathematical physics terms.  “Special” mathematical definitions are noted by 

“(math)”.  These are technical mathematical terms that you shouldn’t have to know, but will make reading 
math books a lot easier because they are very common.  These definitions try to be conceptual and 
accurate, but comprehensible to “normal” people (including physicists, but not mathematicians). 

1-1 A mapping from a set A to a set B is 1-1 if every value of B under the map has only one 
value of A that maps to it.  In other words, given the value of B under the map, we can 
uniquely find the value of A which maps to it.  However, see “1-1 correspondence.”  See 
also “injection.” 

1-1 correspondence A mapping, between two sets A and B, is a 1-1 correspondence if it uniquely 
associates each value of A with a value of B, and each value of B with a value of A.  
Synonym: bijection. 

accumulation point syn. for limit point. 

http://www.its.caltech.edu/~sean/book.html
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adjoint1 The adjoint of an operator produces a bra from a bra in the same way the original 
operator produces a ket from a ket: †ˆ ˆ ,         .  The adjoint 
of an operator is the operator which preserves the inner product of two vectors as 
<v|·(O|w>) = (O†|v>)†·|w>.  The adjoint of an operator matrix is the conjugate-transpose.  
This has nothing to do with matrix adjoints (below).   

adjoint2 In matrices, the transpose of the cofactor matrix is called the adjoint of a matrix.  This has 
nothing to do with linear operator adjoints (above). 

adjugate the transpose of the cofactor matrix:  adj(A)ij = Cji = (–1)i+jMji , where Mji is the transpose 
of the minor matrix: Mij = det(A deleting row i and column j). 

analytic A function is analytic in some domain iff it has continuous derivatives to all orders, i.e. is 
infinitely differentiable.  For complex functions of complex variables, if a function has a 
continuous first derivative in some region, then it has continuous derivatives to all orders, 
and is therefore analytic. 

analytic geometry  the use of coordinate systems along with algebra and calculus to study 
geometry.  Aka “coordinate geometry” 

bijection Both an “injection” and a “surjection,” i.e. 1-1 and “onto.”  A mapping between sets A 
and B is a bijection iff it uniquely associates a value of A with every value of B.  
Synonym: 1-1 correspondence. 

BLUE In statistics, Best Linear Unbiased Estimator. 

branch point A branch point is a point in the domain of a complex function f(z), z also complex, with 
this property: when z traverses a closed path around the branch point, following 
continuous values of f(z), f(z) has a different value at the end of the path than at the 
beginning, even though the beginning and end point are the same point in the domain.  
Example TBS: square root around the origin. 

boundary point (math)  see “limit point.” 

C or  the set of complex numbers. 

closed (math)  contains any limit points.  For finite regions, a closed region includes its 
boundary.  Note that in math talk, a set can be both open and closed!  The surface of a 
sphere is open (every point has a neighborhood in the surface), and closed (no excluded 
limit points; in fact, no limit points). 

cofactor The ij-th minor of an nn matrix is the determinant of the (n–1)(n–1) matrix formed by 
crossing out the i-th row and j-th column.  A cofactor is just a minor with a plus or minus 
sign affixed, according to whether (i, j) is an even or odd number of steps away from 
(1,1):  ( 1)i j

ij ijC M   

compact (math)  for our purposes, closed and bounded [Tay thm 2-6I p66].  A compact region may 
comprise multiple (infinite number??) disjoint closed and bounded regions. 

congruence a set of 1D non-intersecting curves that cover every point of a manifold.  Equivalently, a 
foliation of a manifold with 1D curves.  Compare to “foliation.” 

contrapositive The contrapositive of the statement “If A then B” is “If not B then not A.”  The 
contrapositive is equivalent to the statement: if the statement is true (or false), the 
contrapositive is true (or false).  If the contrapositive is true (or false), the statement is 
true (or false). 

convergent approaches a definite limit 

converse The converse of the statement “If A then B” is “If B then A”.  In general, if a statement is 
true, its converse may be either true or false.  The converse is the contrapositive of the 
inverse, and hence the converse and inverse are equivalent statements. 
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connected There exists a continuous path between any two points in the set (region).  See also: 
simply connected. [One p178]. 

coordinate geometry the use of coordinate systems along with algebra and calculus to study 
geometry.  Aka “analytic geometry” 

diffeomorphism a C∞ (1-1) map, with a C∞ inverse, from one manifold onto another.  “Onto” implies the 
mapping covers the whole range manifold.  Two diffeomorphic manifolds are 
topologically identical, but may have different geometries. 

divergent not convergent: a sequence is divergent iff it is not convergent. 

domain of a function: the set of numbers (usually real or complex) on which the function is 
defined. 

entire A complex function is entire iff it is analytic over the entire complex plane.  An entire 
function is also called an “integral function.” 

essential singularity a “pole” of infinite order, i.e. a singularity around which the function is 
unbounded, and cannot be made finite by multiplication by any power of (z – z0) [Det 
p165]. 

factor a number (or more general object) that is multiplied with others.  E.g., in “(a + b)(x +y)”, 
there are two factors: “(a + b)”, and “(x +y)”. 

finite a non-zero number.  In other words, not zero, and not infinity. 

foliation a set of non-intersecting submanifolds that cover every point of a manifold.  E.g., 3D real 
space can be foliated into 2D “sheets stacked on top of each other,” or 1D curves packed 
around each other.  Compare to “congruence.” 

holomorphic syn. for analytic.  Other synonyms are regular, and differentiable.  Also, a “holomorphic 
map” is just an analytic function. 

homomorphic something from abstract categories that should not be confused with homeomorphism. 

homeomorphism a continuous (1-1) map, with a continuous inverse, from one manifold onto another.  
“Onto” implies the mapping covers the whole range manifold.  A homeomorphism that 
preserves distance is an isometry. 

identify to establish a 1-1 and onto relationship.  If we identify two mathematical things, they are 
essentially the same thing. 

iff if, and only if, 

injection A mapping from a set A to a set B is an injection if it is 1-1, that is, if given a value of B 
in the mapping, we can uniquely find the value of A which maps to it.  Note that every 
value of A is included by the definition of “mapping” [CRC 30th].  The mapping does not 
have to cover all the elements of B. 

integral function Syn. for “entire function:” a function that is analytic over the entire complex plane. 

inverse The inverse of the statement “If A then B” is “If not A then not B.”  In general, if a 
statement is true, its inverse may be either true or false.  The inverse is the contrapositive 
of the converse, and hence the converse and inverse are equivalent statements. 

invertible A map (or function) from a set A to a set B is invertible iff for every value in B, there 
exists a unique value in A which maps to it.  In other words, a map is invertible iff it is a 
bijection. 

isolated singularity a singularity at a point, which has a surrounding neighborhood of analyticity  
[Det p165]. 

isometry a homeomorphism that preserves distance, i.e. a continuous, invertible (1-1) map from 
one manifold onto another that preserves distance (“onto” in the mathematical sense). 
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isomorphic “same structure.”  A widely used general term, with no single precise definition. 

limit point of a domain is a boundary of a region of the domain: for example, the open interval (0, 1) 
on the number line and the closed interval [0, 1] both have limit points of 0 and 1.  In this 
case, the open interval excludes its limit points; the closed interval includes them 
(definition of “closed”).  Some definitions define all points in the domain as also limit 
points.  Formally, a point p is a limit point of domain D iff every open subset containing 
p also contains a point in D other than p. 

mapping syn. “function.”  A mapping from a set A to a set B defines a value of B for every value 
of A [CRC 30th]. 

meromorphic A function is meromorphic on a domain iff it is analytic except at a set of isolated poles 
of finite order (i.e., non-essential poles).  Note that branch points are nonanalytic points, 
but some are not poles (such as z at zero), so a function including such a branch point is 
not meromorphic. 

minor The ij-th minor of an nn matrix is the determinant of the (n–1)(n–1) matrix formed by 
crossing out the i-th row and j-th column, i.e., the minor matrix: Mij = det(A deleting row 
i and column j).  See also “cofactor.” 

 the set of natural numbers (positive integers). 

noise unpredictable variations in a quantity. 

oblique non-orthogonal and not parallel. 

one-to-one see “1-1”. 

onto covering every possible value.  A mapping from a set A onto the set B covers every 
possible value of B, i.e. the mapping is a surjection. 

open (math)  An region is open iff every point in the region has a finite neighborhood of points 
around it that are also all in the region.  In other words, every point is an interior point.  
Note that open is not “not closed;” a region can be both open and closed. 

pole a singularity near which a function is unbounded, but which becomes finite by 
multiplication by (z – z0)k for some finite k [Det p165].  The value k is called the order of 
the pole. 

positive definite a matrix or operator which is > 0 for all non-zero operands.  It may be 0 when acting on a 
“zero” operand, such as the zero vector.  This implies that all eigenvalues > 0. 

positive semidefinite a matrix or operator which is ≥ 0 for all non-zero operands.  It may be 0 when 
acting on a non-zero operands.  This implies that all eigenvalues ≥ 0. 

predictor in regression: a variable put into a model to predict another value, e.g. ymod(x1, x2) is a 
model (function) of the predictors x1 and x2. 

PT perturbation theory. 

Q or  the set of rational numbers.  Q+ ≡ the set of positive rationals. 

R or  the set of real numbers. 

RMS root-mean-square. 

RV random variable. 

removable singularity an isolated singularity that can be made analytic by simply defining a value for 
the function at that point.  For example, f(x) = sin(x)/x has a singularity at x = 0.  You can 
remove it by defining f(0) = 1.  Then f is everywhere analytic.  [Det p165] 

residue The residue of a complex function at a complex point z0 is the a–1 coefficient of the 
Laurent expansion about the point z0. 
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simply connected There are no holes in the set (region), not even point holes.  I.e., you can shrink any 
closed curve in the region down to a point, the curve staying always within the region 
(including at the point). 

singularity of a function: a point on a boundary (i.e. a limit point) of the domain of analyticity, but 
where the function is not analytic.  [Det def 4.5.2 p156].  Note that the function may be 
defined at the singularity, but it is not analytic there.  E.g., z is continuous at 0, but not 
differentiable. 

smooth for most references, “smooth” means infinitely differentiable, i.e. C∞.  For some, though, 
“smooth” means at least one continuous derivative, i.e. C1, meaning first derivative 
continuous.  This latter definition looks “smooth” to our eye (no kinks, or sharp points). 

surjection A mapping from a set A “onto” the set B, i.e. that covers every possible value of B.  Note 
that every value of A is included by the definition of “mapping” [CRC 30th], however 
multiple values of A may map to the same value of B. 

term a number (or more general object) that is added to others.  E.g., in “ax + by + cz”, there 
are three terms: “ax”, “by”, and “cz”. 

trace the trace of a square matrix is the sum of its diagonal elements. 

uniform convergence a series of functions fn(z) is uniformly convergent in an open (or partly open) 
region iff its error ε after the Nth function can be made arbitrarily small with a single 
value of N (dependent only on ε) for every point in the region.  I.e. given ε, a single N 
works for all points z in the region [Chu p156]. 

voila French for “see there!” 

WLOG or WOLOG without loss of generality 

Z or  the set of integers.  Z+ or  ≡ the set of positive integers (natural numbers). 

Formulas 

completing the square: 
2 2
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Special Functions 
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The functions below use the Condon-Shortley phase: 
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Index 
The index is not yet developed, so go to the web page on the front cover, and text-search in this 

document. 
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