
Computational Hydrodynamics

for Astrophysics
Michael Zingale

part of the Open Astrophysics Bookshelf

June 29, 2015

© 2013, 2014 Michael Zingale
document git version: 6e0249aeeefc . . .

the source for these notes are available online (via git): https://github.com/

Open-Astrophysics-Bookshelf/numerical_exercises

cbna

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

ii

https://github.com/Open-Astrophysics-Bookshelf/numerical_exercises
https://github.com/Open-Astrophysics-Bookshelf/numerical_exercises

Chapter Listing

list of figures x

list of exercises xii

preface xiii

1 Simulation Overview 1

2 Finite-Volume Grids 15

3 Advection 23

4 Burgers’ Equation 47

5 Euler Equations 53

6 Elliptic Equations and Multigrid 87

7 Diffusion 105

8 Multiphysics Applications 113

9 Incompressible Flow and Projection Methods 119

10 Low Mach Number Methods 133

iii

11 Radiation Hydrodynamics 145

A Using hydro examples 149

B Using pyro 153

References 157

iv

Table of Contents

list of figures x

list of exercises xii

preface xiii

1 Simulation Overview 1
1.1 What Is Simulation? . 1
1.2 Numerical Basics . 2

1.2.1 Sources of Error . 2
1.2.2 Differentiation and Integration 3
1.2.3 Differentiation . 3
1.2.4 Integration . 5
1.2.5 Root Finding . 7
1.2.6 ODEs . 8
1.2.7 FFTs . 11

2 Finite-Volume Grids 15
2.1 Discretization . 15
2.2 Grid basics . 16
2.3 Finite-volume grids . 18

2.3.1 Differences and order of accuracy 20
2.3.2 Conservation . 20
2.3.3 Boundary conditions with finite-volume grids 21

2.4 Going further . 21

3 Advection 23
3.1 The Linear Advection Equation . 23
3.2 First-order advection in 1-d and finite-differences 23
3.3 Second-order advection in 1-d and the finite-volume method 27

3.3.1 Limiting . 32
3.3.2 Reconstruct-evolve-average 35

3.4 Errors and convergence rate . 36
3.5 Multi-dimensional advection . 38

3.5.1 Dimensionally split . 40
3.5.2 Unsplit multi-dimensional advection 42

v

3.6 Going further . 43
3.7 pyro experimentation . 45

4 Burgers’ Equation 47
4.1 Burgers’ equation . 47
4.2 Going further . 50

5 Euler Equations 53
5.1 Euler equation properties . 53
5.2 Reconstruction of interface states . 58

5.2.1 Piecewise constant . 59
5.2.2 Piecewise linear . 59
5.2.3 Piecewise parabolic . 63

5.3 The Riemann problem . 68
5.4 Conservative update . 70
5.5 Other Thermodynamic Equations . 71

5.5.1 Eigensystem with Temperature 71
5.6 Multidimensional problems . 74
5.7 Boundary conditions . 77
5.8 Higher Order . 78
5.9 Going further . 79

5.9.1 Flattening and Contact Steepening 79
5.9.2 Artificial viscosity . 80
5.9.3 Species . 80
5.9.4 Source terms . 81
5.9.5 General equation of state . 82
5.9.6 Axisymmetry . 84
5.9.7 Defining temperature . 85
5.9.8 Limiting on characteristic variables 85
5.9.9 3-d unsplit . 86

6 Elliptic Equations and Multigrid 87
6.1 Elliptic equations . 87
6.2 Fourier Method . 88
6.3 Relaxation . 90

6.3.1 Boundary conditions . 92
6.3.2 Residual and true error . 93
6.3.3 Performance . 93

6.4 Multigrid . 96
6.4.1 Prolongation and restriction on cell-centered grids 96
6.4.2 Bottom solver . 98
6.4.3 Boundary conditions throughout the hierarchy 98
6.4.4 Stopping criteria . 99

6.5 Going Further . 99
6.5.1 Red-black Ordering . 99

vi

6.5.2 Solvability . 100
6.5.3 Boundary charges . 101
6.5.4 Norms . 102
6.5.5 More General Elliptic Equations 103

7 Diffusion 105
7.1 Parabolic equations . 105
7.2 Explicit differencing . 105
7.3 Implicit with direct solve . 106
7.4 Implicit multi-dimensional diffusion via multigrid 109
7.5 Going further . 110

8 Multiphysics Applications 113
8.1 Integrating Multiphysics . 113
8.2 Ex: diffusion-reaction . 114
8.3 Ex: advection-diffusion . 115

9 Incompressible Flow and Projection Methods 119
9.1 Incompressible flow . 119
9.2 Projection methods . 120
9.3 Cell-centered approximate projection solver 121

9.3.1 Advective velocity . 121
9.3.2 MAC projection . 125
9.3.3 Reconstruct interface states 126
9.3.4 Provisional update . 127
9.3.5 Approximate projection . 127

9.4 Boundary conditions . 130
9.5 Bootstrapping . 130
9.6 Test problems . 130

9.6.1 Convergence test . 130
9.7 Extensions . 131

10 Low Mach Number Methods 133
10.1 Low Mach divergence constraints . 133
10.2 Multigrid for Variable-Density Flows 136

10.2.1 Test problem . 137
10.3 Atmospheric flows . 139

10.3.1 Equation Set . 139
10.3.2 Solution Procedure . 140
10.3.3 Timestep constraint . 142
10.3.4 Bootstrapping . 143

10.4 Combustion . 143
10.4.1 Species . 143
10.4.2 Constraint . 143
10.4.3 Solution Procedure . 143

vii

11 Radiation Hydrodynamics 145
11.1 Equations of Radiation Hydrodynamics 145

11.1.1 Reference Frames . 145
11.1.2 Angular Approximations / Moments 145
11.1.3 Closures . 145

11.2 Hyperbolic System . 145
11.3 Parabolic System . 145

11.3.1 General Elliptic Solver . 145

A Using hydro examples 149
A.1 Getting hydro examples . 149
A.2 hydro examples codes . 150

B Using pyro 153
B.1 Getting pyro . 153
B.2 The pyro Solvers . 153
B.3 pyro’s Structure . 154
B.4 Running pyro . 154

References 157

viii

List of Figures

1.1 Difference approximations to the derivative of sin(x) 4
1.2 Error in numerical derivatives . 5
1.3 Integration rules . 7
1.4 Convergence of Newton’s method for root finding 9
1.5 The 4th-order Runge-Kutta method 12
1.5 4th-order Runge-Kutta continued . 13

2.1 Taxonomy of different discretizations 16
2.2 Types of structured grids . 18
2.3 A simple 1-d finite-volume grid with ghost cells 21
2.4 Domain decomposition example . 22

3.1 A simple finite-difference grid . 24
3.2 First-order finite-difference solution to linear advection 26
3.3 First-order implicit finite-difference solution to linear advection . . 28
3.4 A finite-volume grid with valid cells labeled 28
3.5 The input state to the Riemann problem 29
3.6 Reconstruction at the domain boundary 31
3.7 Second-order finite-volume advection 31
3.8 The effect of no limiting on initially discontinuous data 33
3.9 The effect of limiters on initially discontinuous data 34
3.10 Piecewise linear slopes with an without limiting 35
3.11 The Reconstruct-Evolve-Average procedure 37
3.12 Convergence of second-order finite-volume advection 38
3.13 A 2-d grid with zone-centered indexes 39
3.14 The construction of an interface state with the transverse component 44

4.1 Rankine-Hugoniot conditions . 48
4.2 Solutions to the inviscid Burgers’ equation 51

5.1 The Sod problem . 57
5.2 The left and right states for the Riemann problem 58
5.3 Piecewise linear reconstruction of cell average data 59
5.4 The two interface states derived from a cell-center quantity 63
5.5 Piecewise parabolic reconstruction of the cell averages 64
5.6 Integration under the parabola profile for to an interface 65
5.7 The Riemann problem wave structure for the Euler equations . . . 69

ix

5.8 The Hugoniot curves corresponding to the Sod problem 70

6.1 FFT solution to the Poisson equation 90
6.2 The cell-centered grid showing the difference between ghost cells

and the physical boundary . 92
6.3 Convergence as a function of number of iterations using Gauss-

Seidel relaxation . 94
6.4 Smoothing of different wavenumbers 95
6.5 The geometry for 2-d prolongation 97
6.6 A multigrid hierarchy . 98
6.7 Error in solution as a function of multigrid V-cycle number 100
6.8 Convergence of the multigrid algorithm 101
6.9 Red-black ordering of zones . 102

7.1 Implicit diffusion of a Gaussian . 109

8.1 Solution to the diffusion-reaction equation 115
8.2 Viscous Burgers’ equation solution 117

9.1 MAC grid for velocity . 122
9.2 MAC grid data centerings . 126

10.1 Solution and error of a variable-coefficient Poisson problem 138
10.2 Convergence of the variable-coefficient Poisson solver 138

11.1 Convergence of the general elliptic multigrid solver 147
11.2 Solution of a general elliptic equation 148

x

List of Exercises

1.1 Machine epsilon . 2
1.2 Convergence and order-of-accuracy 3
1.3 Truncation error . 4
1.4 Simpson’s rule for integration . 6
1.5 ODE accuracy . 10

2.1 Finite-volume vs. finite-difference centering 19
2.2 Conservative interpolation . 19

3.1 Linear advection analytic solution . 23
3.2 Perfect advection with a Courant number of 1 25
3.3 A 1-d finite-difference solver for linear advection 25
3.4 FTCS and stability . 25
3.5 Stability analysis . 26
3.6 A second-order finite-volume solver for linear advection 30
3.7 Limiting and overshoots . 32
3.8 Limiting and reduction in order-of-accuracy 34
3.9 Convergence testing . 38

4.1 Simple Burgers’ solver . 50

5.1 Primitive variable form of the Euler equations 54
5.2 The eigenvalues of the Euler system 55
5.3 Eigenvectors of the Euler system . 55
5.4 Characteristic form of the Euler equations 56
5.5 Characteristic projection . 62
5.6 The average state reacting the interface 64
5.7 Conservative interpolation . 66
5.8 Eigenvectors for the 2-d Euler equations 75

6.1 Smoothing the 1-d Laplace equation 95

7.1 1-d implicit diffusion . 108

8.1 Diffusion-reaction system . 115

xi

preface

This text started as notes for new students at Stony Brook University working on
projects in computational astrophysics. They are intended to help new students
come up to speed on the common methods used in computational hydrodynamics
for astrophysical flows. They are written at a level appropriate for upper-level un-
dergraduates. The focus is on discussing the practical issues that arise when imple-
menting these methods, with less emphasis on the underlying theory—references
are provided to fill in details where necessary.

These are very much a work in progress, likely not spell-checked, and definitely
not complete. The page size is formatted for easy reading on a tablet or for 2-up
printing in a landscape orientation on letter-sized paper.

This text is part of the Open Astrophysics Bookshelf. Contributions to these notes
are welcomed. The LATEX source for these notes is available online on github at:
https://github.com/Open-Astrophysics-Bookshelf/numerical_exercises

Simply fork the notes, hack away, and submit a pull-request to add your contribu-
tions. All contributions will be acknowledged in the text.

A PDF version of the notes is always available at:
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf

These notes are updated at irregular intervals, usually when I have a new student
working with me, or if I am using them for a course.

The best way to understand the methods described here is to run them for your-
self. There are two sets of example codes that go along with these notes:

1. hydro examples is a set of simple 1-d, standalone python scripts that illustrate
some of the basic solvers. Many of the figures in these notes were created
using these codes—the relevant script will be noted in the figure caption.

You can get this set of scripts from github at:
https://github.com/zingale/hydro_examples/

References to the scripts in hydro examples are shown throughout the text as:

xiii

https://github.com/Open-Astrophysics-Bookshelf/numerical_exercises
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
https://github.com/zingale/hydro_examples/

Ï hydro examples: scriptname

Clicking on the name of the script will bring up the source code to the script
(on github) in your web browser.

More details on the codes available in hydro examples are described in Ap-
pendix A.

2. The pyro code [55] is a 2-d simulation code with solvers for advection, diffu-
sion, compressible and incompressible hydrodynamics, as well as multigrid.
A gray flux-limited diffusion radiation hydrodynamics solver is in develop-
ment. pyro is designed with clarity in mind and to make experimentation
easy.

You can download pyro at:
https://github.com/zingale/pyro2/

A brief overview of pyro is given in Appendix B, and more information can
be found at:
http://zingale.github.io/pyro2/

These notes benefited immensely from numerous conversations and an ongoing
collaboration with Ann Almgren, John Bell, & Andy Nonaka—pretty much every-
thing I know about projection methods comes from working with them. Discus-
sions with Alan Calder and Chris Malone have also been influential in the presen-
tation of these notes.

If you find errors, please e-mail me at Michael.Zingale@stonybrook.edu, or issue
a pull request to the git repo noted above.

Michael Zingale
Stony Brook University

xiv

https://github.com/zingale/pyro2/
http://zingale.github.io/pyro2/

Authorship

Primary Author

Michael Zingale (Stony Brook)

Contributions

Thank you to the following people for pointing out typos or confusing remarks in
the text: Chen-Hung and Chris Malone.

See the git log for full details on contributions. All contributions via pull-requests
will be acknowledged here.

xv

Chapter1
Simulation Overview

1.1 What Is Simulation?

Astronomy is an observational science. Unlike in terrestrial physics, we do not
have the luxury of being able to build a model system and do physical experimen-
tation on it to understand the core physics. We have to take what nature gives us.
Simulation enables us to build a model of a system and allows us to do virtual
experiments to understand how this system reacts to a range of conditions and
assumptions.

It’s tempting to think that one can download a simulation code, set a few param-
eters, maybe edit some initial conditions, run, and then have a virtual realization
of some astrophysical system that you are interested in. Just like that. In practice,
it is not this simple. All simulation codes make approximations—these start even
before one turns to the computer, simply by making a choice of what equations are
to be solved. Typically, we have a system of PDEs, and we need to convert the con-
tinuous functional form of our system into a discrete form that can be represented
in the finite memory of a computer. This introduces yet more approximation.

Blindly trusting the numbers that come out of the code is a recipe for disaster.
You don’t stop being a physicist the moment you execute the code—you job as
a computational scientist is to make sure that the code is producing reasonable
results, by testing it against known problems and your physical intuition.

Simulations should be used to gain insight and provide a physical understand-
ing. Because the systems we solve are so nonlinear, small changes in the code or
the programming environment (compilers, optimization, etc.) can produce large
differences in the numbers coming out of the code. That’s not a reason to panic.
As such its best not to obsess about precise numbers, but rather the trends. To
really understand the limits of your simulations, you should do parameter and
convergence studies.

git version: 6e0249aeeefc . . . 1

2 Chapter 1. Simulation Overview

There is no “über-code”. Every algorithm begins with approximations and has
limitations. Comparisons between different codes are important and common in
our field, and build confidence in the results that we are on the right track.

To really understand your simulations, you need to know what the code your are
using is doing under the hood. This means understanding the core methods used
in our field. These notes are designed to provide a basic tour of some of the more
popular methods, referring to the key papers for full derivations and details. A
companion python code, pyro is available to help.

1.2 Numerical Basics

We assume a familiarity with basic numerical methods, which we summarize be-
low. Any book on numerical methods can provide a deeper discussion of these
methods. Some good choices are the texts by Garcia [27] and Pang [41].

1.2.1 Sources of Error

With any algorithm, there are two sources of error we are concerned with: roundoff
error and truncation error.

Roundoff arises from the error inherent in representing a floating point number
with a finite number of bits in the computer memory. An excellent introduction to
the details of how computers represent numbers is provided in [28].

Exercise 1.1: To see roundoff error in action, write a program to find the
value of ε for which 1 + ε = 1. Start with ε = 1 and iterate, halving ε
each iteration unit 1 + ε = 1. This last value of ε for which this was not
true is the machine epsilon. You will get a different value for single- vs.
double-precision floating point arithmetic.

Some reorganization of algorithms can help minimize roundoff, e.g. avoiding the
subtraction of two very large numbers by factoring as:

x3 − y3 = (x− y)(x2 + xy + y2) , (1.1)

but roundoff error will always be present at some level.

Truncation error is a feature of an algorithm—we typically approximate an oper-
ator or function by expanding about some small quantity. When we throw away
higher-order terms, we are truncating our expression, and introducing an error in
the representation. If the quantity we expand about truly is small, then the error is

1.2—Numerical Basics 3

small. A simple example is to consider the Taylor series representation of sin(x):

sin(x) =
∞

∑
n=1

(−1)n−1 x2n−1

(2n− 1)!
(1.2)

For |x| � 1, we can approximate this as:

sin(x) ≈ x− x3

6
(1.3)

in this case, our truncation error has the leading term ∝ x5, and we say that our
approximation is O(x5), or 5th-order accurate.

Exercise 1.2: We will be concerned with the order-of-accuracy of our meth-
ods, and a good way to test whether our method is behaving properly is to
perform a convergence test. Consider our 5th-order accurate approximation
to sin(x) above. Pick a range of x’s (< 1), and compute the error in our ap-
proximation as ε ≡ sin(x)− [x− x3/6], and show that as you cut x in half,
|ε| reduces by 25—demonstrating 5th-order accuracy.

This demonstration of measuring the error as we vary the size of our small param-
eter is an example of a convergence test.

1.2.2 Differentiation and Integration

For both differentiation and integration, there are two cases we might encounter:

1. We have function values, f0, f1, . . ., at a discrete number of points, x0, x1, . . .,
and we want to compute the derivative at a point or integration over a range
of points.

2. We know a function analytically and we want to construct a derivative or
integral of this function numerically. In these notes, we’ll be concerned only
with the first case.

1.2.3 Differentiation

Consider a collection of equally spaced points, labeled with an index i, with the
physical spacing between them denoted ∆x. We can express the first derivative of
a quantity a at i as:

∂a
∂x

∣∣∣∣
i
≈ ai − ai−1

∆x
(1.4)

or
∂a
∂x

∣∣∣∣
i
≈ ai+1 − ai

∆x
(1.5)

4 Chapter 1. Simulation Overview

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

∆x

exact
left-sided
right-sided
centered

Figure 1.1: A comparison of one-sided and centered difference approximations to
the derivative of sin(x).

(Indeed, as ∆x → 0, this is the definition of a derivative from calculus.) Both of
these are one-sided differences. By Taylor expanding the data about xi, we see

ai+1 = ai + ∆x
∂a
∂x

∣∣∣∣
i
+

1
2

∆x2 ∂2a
∂x2

∣∣∣∣
i
+ . . . (1.6)

Solving for ∂a/∂x|i, we see

∂a
∂x

∣∣∣∣
i
=

ai − ai−1

∆x
+O(∆x) (1.7)

where O(∆x) indicates that the order of accuracy of this approximation is ∼ ∆x.
We say that this is first order accurate. This means that we are neglecting terms that
scale as ∆x. This is our truncation error (just as discussed above, arising because
our numerical approximation throws away higher order terms). The approxima-
tion ∂a/∂x|i = (ai+1 − ai)/∆x has the same order of accuracy.

Exercise 1.3: Show that a centered difference, ∂a/∂x|i = (ai+1 − ai−1)/(2∆x),
is second order accurate, i.e. its truncation error is O(∆x2).

Figure 1.1 shows the left- and right-sided first-order differences and the central
difference as approximations to sin(x). Generally speaking, higher-order methods
have lower numerical error associated with them, and also involve a wider range
of data points.

1.2—Numerical Basics 5

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2

δx

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

e
rr
o
r
in
 d
if
fe
re
n
ce

 a
p
p
ro
x
im

a
ti
o
n

Figure 1.2: Error in the numerical approximation of the derivative of f (x) = sin(x)
at x0 = 1 as a function of the spacing δx. For small δx, roundoff error dominates
the error in the approximation. For large δx, truncation error dominates.

An alternate scenario is when you know the analytic form of the function, f (x),
and are free to choose the points where you evaluate it. Here you can pick a δx
and evaluate the derivative as

d f
dx

∣∣∣∣
x=x0

=
f (x0 + δx)− f (x0)

δx
(1.8)

An optimal value for δx requires a balance of truncation error (which wants a
small δx) and roundoff error (which becomes large when δx is close to machine
ε). Figure 1.2 shows the error for the numerical derivative of f (x) = sin(x) at
the point x0 = 1, as a function of δx. A nice discussion of this is given in [54].
Comparing the result with different choices of δx allows for error estimation and
an improvement of the result by combining the estimates using δx and δx/2 (this
is the basis for a method called Richardson extrapolation).

Second- and higher-order derivatives can be constructed in the same fashion.

1.2.4 Integration

In numerical analysis, any integration method that is composed as a weighted
sum of the function evaluated at discrete points is called a quadrature rule.

If we have a function sampled at a number of equally-spaced points, x0 ≡ a, x1, . . . , xN ≡

6 Chapter 1. Simulation Overview

b1, we can construct a discrete approximation to an integral as:

I ≡
∫ b

a
f (x)dx ≈ ∆x

N−1

∑
i=0

f (xi) (1.9)

where ∆x ≡ (b− a)/N is the width of the intervals. This is a very crude method,
but in the limit that ∆x → 0 (or N → ∞), this will converge to the true integral.
This method is called the rectangle rule. Note that here we expressing the integral
over the N intervals using a simple quadrature rule in each interval. Summing
together the results of the integral over each interval to get the result in our domain
is called compound integration.

We can get a more accurate answer for I by interpolating between the points. The
simplest case is to connect the sampled function values, f (x0), f (x1), . . . , f (xN)
with a line, creating a trapezoid in each interval, and then simply add up the area
of all of the trapezoids:

I ≡
∫ b

a
f (x)dx ≈ ∆x

N−1

∑
i=0

f (xi) + f (xi+1)

2
(1.10)

This is called the trapezoid rule. Note here we assume that the points are equally
spaced.

One can keep going, but practically speaking, a quadratic interpolation is as high
as one usually encounters. Fitting a quadratic polynomial requires three points.

Exercise 1.4: Consider a function, f (x), sampled at three equally-spaced
points, α, β, γ, with corresponding function values fα, fβ, fγ. Derive the ex-
pression for Simpson’s rule by fitting a quadratic f̂ (x) = A(x − α)2 +
B(x − α) + C to the three points (this gives you A, B, and C), and then
analytically integrating f̂ (x) in the interval [α, γ]. You should find

I =
γ− α

6
(fα + 4 fβ + fγ) (1.11)

Note that (γ− α)/6 = ∆x/3

For a number of samples, N, in [a, b], we will consider every two intervals together.
The resulting expression is:

I ≡
∫ b

a
f (x)dx ≈ ∆x

3

(N−2)/2

∑
i=0

[f (x2i) + 4 f (x2i+1) + f (x2i+2)] (1.12)

= f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + . . . + 2 f (xN−2) + 4 f (xN−1) + f (xN)

1Note that this is N intervals and N + 1 points

1.2—Numerical Basics 7

a b x

y

a b x

y

a b x

y

Figure 1.3: The rectangle rule
(top left), trapezoid rule (top
right) and Simpson’s rule (left)
for integration.

This method is called Simpson’s rule. Note that for 2 intervals / 3 sample points
(N = 2), we only have 1 term in the sum, (N − 2)/2 = 0, and we get the result
derived in Exercise 1.4.

Figure 1.3 shows these different approximations for the case of two intervals (three
points).

Analogous expressions exist for the case of unequally-spaced points. The com-
pound trapezoid rule converges as second-order over the interval [a, b], while
Simpson’s rule converges as fourth-order.

As with differentiation, if you are free to pick the points where you evaluate f (x),
you can get a much higher-order accurate result. Gaussian quadrature is a very
powerful technique that uses the zeros of different polynomials as the evaluation
points for the function to give extremely accurate results. See the text by Gar-
cia [27] for a nice introduction to these methods.

1.2.5 Root Finding

Often we want to find the root of a function (or the vector that zeros a vector
of functions). The most popular method for root finding is the Newton-Raphson

8 Chapter 1. Simulation Overview

method. This arises from a Taylor expansion. If you wish to find x, such that f (x) =
0, and start with an initial guess x0 that you believe is close to the root, then you
can improve the guess to the root by an amount δx as:

f (x0 + δx) ∼ f (x0) + f ′(x0)δx + . . . = 0 (1.13)

Keeping only to O(δx),

δx = − f (x0)

f ′(x0)
(1.14)

This can be used to correct out guess as x0 ← x0 + δx, and we can iterate on this
procedure until δx falls below some tolerance.

The main ‘gotya’ with this technique is that you need a good initial guess. In the
Taylor expansion, we threw away the δx2 term, but if our guess was far from the
root, this (and higher-orders) term may not be small. Obviously, the derivative
must be non-zero in the region around the root that you search as well.

The secant method for root finding is essentially Newton-Raphson, but instead of
using an analytic derivative, f ′ is estimated as a numerical difference.

Newton’s method has pathologies—it is possible to get into a cycle where you
don’t converge but simply pass through the same set of root approximations.
Many other root finding methods exist, including bisection, which iteratively halves
an interval known to contain a root by looking for the change in sign of the func-
tion f (x). Brendt’s method combines several different methods to produce a ro-
bust procedure for root-finding.

1.2.6 ODEs

Consider a system
ẏk = fk(t, y(t)) (1.15)

We want to solve for the vector y as a function of time. Broadly speaking, meth-
ods for integrating ODEs can be broken down into explicit and implicit methods.
Explicit methods difference the system to form an update that uses only the cur-
rent (and perhaps previous) values of the dependent variables in evaluating f . For
example, a first-order explicit update (Euler’s method) appears as:

yn+1
k = yn

k + ∆t fk(tn, yn) (1.16)

where ∆t is the stepsize.

Perhaps the most popular explicit method for ODEs is the 4th-order Runge-Kutta
method (RK4). This is a multistep method where several extrapolations to the
midpoint and endpoint of the interval are made to estimate slopes and then a
weighted average of these slopes are used to advance the solution. The various
slopes are illustrated in Figure 1.5 and the overall procedure looks like:

yn+1
k = yn

k +
∆t
6
(k1 + 2k2 + 2k3 + k4) (1.17)

1.2—Numerical Basics 9

0 1 2 3 4 5

−10

−5

0

5

10

15

0

root approx = 5.0

0

0 1 2 3 4 5

−10

−5

0

5

10

15

1

root approx = 3.5

1

0 1 2 3 4 5

−10

−5

0

5

10

15

2

root approx = 3.05

2

0 1 2 3 4 5

−10

−5

0

5

10

15

3

root approx = 3.000609756097561

3

Figure 1.4: The convergence of Newton’s method for finding the root. In each pane,
the red point is the current guess for the root. The solid gray line is the extrapolation
of the slope at the guess to the x-axis, which defines the next approximation to the
root. The vertical dotted line to the function shows the new slope that will be used
for extrapolation in the next iteration.

where the slopes are:

k1 = f (tn, yn
k) (1.18)

k2 = f (tn + ∆t
2 , yn

k +
∆t
2 k1) (1.19)

k3 = f (tn + ∆t
2 , yn

k +
∆t
2 k2) (1.20)

k4 = f (tn + ∆t, yn
k + ∆tk3) (1.21)

Note the similarity to Simpson’s method for integration. This is fourth-order ac-
curate overall.

10 Chapter 1. Simulation Overview

Exercise 1.5: Consider the orbit of Earth around the Sun. If we work
in the units of astronomical units, years, and solar masses, then Newton’s
gravitational constant and the solar mass together are simply GM = 4π2.
We can write the ODE system describing the motion of Earth as:

ẋ = v (1.22)

v̇ = −GMr
r3 (1.23)

Integrate this system with the first-order Euler and the RK4 method and mea-
sure the convergence by integrating at a number of different ∆ts.

Implicit methods

Implicit methods difference the system in a way that includes the new value of the
dependent variables in the evaluation of fk(t, y(t))—the resulting implicit system
is usually solved using, for example, Newton-Raphson iteration.

A first-order implicit update (called backward Euler) is:

yn+1 = yn + ∆tf(tn+1, yn+1) (1.24)

This is more complicated to solve than the explicit methods above, and generally
will require some linear algebra. If we take ∆t to be small, then the change in the
solution, ∆y will be small as well, and we can Taylor-expand the system.

To solve this, we pick a guess, yn+1
0 , that we think is close, to the solution and we

will solve for a correction, ∆y0 such that

yn+1 = yn+1
0 + ∆y0 (1.25)

Using this approximation, we can expand the righthand side vector,

f(tn+1, yn+1) = f(tn, yn+1
0) +

∂f
∂y

∣∣∣∣
0

∆y0 + . . . (1.26)

Here we recognize the Jacobin matrix, J ≡ ∂f/∂y,

J =

∂ f1/∂y1 ∂ f1/∂y2 ∂ f1/∂y3 . . . ∂ f1/∂yn

∂ f2/∂y1 ∂ f2/∂y2 ∂ f2/∂y3 . . . ∂ f2/∂yn
...

...
...

. . .
...

∂ fn/∂y1 ∂ fn/∂y2 ∂ fn/∂y3 . . . ∂ fn/∂yn

 (1.27)

Putting this into Eq. 1.24, we have:

yn+1
0 + ∆y0 = yn + ∆t

[
f(tn+1, yn+1

0) + J|0 ∆y0

]
(1.28)

1.2—Numerical Basics 11

Writing this as a system for the unknown correction, ∆y0, we have

(I− ∆t J|0)∆y0 = yn − yn+1
0 + ∆tf(tn+1, yn+1

0) (1.29)

This is a linear system (a matrix × vector = vector) that can be solved using stan-
dard matrix techniques. After solving, we can correct our initial guess:

yn+1
1 = yn+1

0 + ∆y0 (1.30)

Written this way, we see that we can iterate. To kick things off, we need a suitable
guess—a good choice is yn+1

0 = yn. Then we correct this guess by iterating, with
the k-th iteration looking like:(

I− ∆t J|k−1
)

∆yk−1 = yn − yn+1
k−1 + ∆tf(tn+1, yn+1

k−1) (1.31)

yn+1
k = yn+1

k−1 + ∆yk−1 (1.32)

We will iterate until we find ‖∆yk‖ < ε‖yn‖. Here ε is a small tolerance, and we
use yn to produce a reference scale for meaningful comparison. Note that here we
use a vector norm to give a single number for comparison.

Note that the role of the Jacobian here is the same as the first derivative in the scalar
Newton’s method for root finding (Eq. 1.14)—it points from the current guess to
the solution. Sometimes an approximation to the Jacobian, which is cheaper to
evaluate, may work well enough for the method to converge.

Explicit methods are easier to program and run faster (for a given ∆t), but implicit
methods work better for stiff problems—those characterized by widely disparate
timescales over which the solution changes [16]2. A good example of this issue in
astrophysical problems is with nuclear reaction networks (see, e.g., [50]). As with
the explicit case, higher-order methods exist that can provide better accuracy at
reduced cost.

1.2.7 FFTs

2Defining whether a problem is stiff can be tricky. For a system of ODEs, a large range in the
eigenvalues of the Jacobian usually means it is stiff.

12 Chapter 1. Simulation Overview

yn

tn tn+1

k1

analytic solution
slope

yn

tn tn+1

k1

k2

analytic solution
slope
half-dt k1 step

yn

tn tn+1

k1

k2

k3

analytic solution
slope
half-dt k1 step
half-dt k2 step

Figure 1.5: A graphical illustration of the four steps in the 4th-order Runge-Kutta
method. Annotate this better

1.2—Numerical Basics 13

yn

tn tn+1

k1

k2

k3

k4

analytic solution
slope
half-dt k1 step
half-dt k2 step
full-dt k3 step

yn

tn tn+1

k1

k2

k3

k4

yn+1

analytic solution
slope
half-dt k1 step
half-dt k2 step
full-dt k3 step
full 4th-order RK step

Figure 1.5: (continued) A graphical illustration of the four steps in the 4th-order
Runge-Kutta method.

Chapter2
Finite-Volume Grids

2.1 Discretization

The physical systems we model are described by continuous mathematical func-
tions, f (x, t) and their derivatives in space and time. To represent this continuous
system on a computer we must discretize it—convert the continuous function into
a discrete number of points in space at one or more discrete instances in time.
There are many different discretization methods used throughout the physical sci-
ences, engineering, and applied mathematics fields, each with their own strengths
and weaknesses. Broadly speaking, we can divide these methods into grid-based
and gridless methods.

Gridless methods include those which represent the function as a superposition of
continuous basis functions (e.g. sines and cosines). This is the fundamental idea
behind spectral methods. A different class of methods are those that use discrete
particles to represent the mass distribution and produce continuous functions by
integrating over these particles with a suitable kernel—this is the basis of smoothed
particle hydrodynamics (SPH) [39]. SPH is a very popular method in astrophysics.

For grid-based methods, we talk about both the style of the grid (structured vs. un-
structured) and the discretization method, e.g. the finite-difference, finite-volume,
and finite-element methods.

Structured grids are logically Cartesian. This means that you can reference the
location of any cell in the computational domain via an integer index in each spa-
tial dimension. From a programming standpoint, the grid structure can be repre-
sented exactly by a multi-dimensional array. Unstructured grids don’t have this
simple pattern. A popular type of unstructured grid is created using triangular
cells (in 2-d) or tetrahedra (in 3-d). The main advantage of these grids is that you
can easily represent irregularly-shaped domains. The disadvantage is that the data
structures required to describe the grid are more complicated than a simple array

git version: 6e0249aeeefc . . . 15

16 Chapter 2. Finite-Volume Grids

Figure 2.1: Taxonomy of different discretizations.

(and tend to have more inefficient memory access).

Once a grid is established, the system of PDEs is converted into a system of dis-
crete equations on the grid. Finite element methods are widely used in engineer-
ing together with unstructured grids. A type of finite-element method called a
Galerkin method can be formed by integrating the continuous function against a
compact basis set represented by tetrahedra. These methods work well with the
irregular geometries that arise in engineering. Finite-difference and finite-volume
methods can both be applied to structured grids. The main difference between these
methods is that the finite-difference methods build from the differential form of
PDEs while the finite-volume methods build from the integral form of the PDEs.
Both of these methods find wide use in astrophysics.

In these notes, we will focus on finite-volume techniques on structured grids.

2.2 Grid basics

The grid is the fundamental object for representing continuous functions in a dis-
cretized fashion, making them amenable to computation. In astrophysics, we typi-

2.2—Grid basics 17

cally use structured grids—these are logically Cartesian, meaning that the position
of a quantity on the grid can be specified by a single integer index in each dimen-
sion.

We represent derivatives numerically by discretizing the domain into a finite num-
ber of zones (a numerical grid). This converts a continuous derivative into a differ-
ence of discrete data. Different approximations have different levels of accuracy.

There are two main types of structured grids used in astrophysics: finite-difference
and finite-volume. These differ in way the data is represented. On a finite-difference
grid, the discrete data is associated with a specific point in space. On a finite-
volume grid, the discrete data is represented by averages over a control volume.
Nevertheless, these methods can often lead to very similar looking discrete equa-
tions.

Consider the set of grids show in Figure 2.2. On the top is a classic finite-difference
grid. The discrete data, fi, are stored as points regularly spaced in x. With this
discretization, the spatial locations of the points are simply xi = i∆x, where i =
0, . . . , N − 1. Note that for a finite-sized domain, we would put a grid point pre-
cisely on the physical boundary at each end.

The middle grid is also finite-difference, but now we imagine first dividing the
domain into N cells or zones, and we store the discrete data, fi, at the center of
the zone. This is often called a cell-centered finite-difference grid. The physical co-
ordinate of the zone centers (where the data lives) are: xi = (i + 1/2)∆x, where
i = 0, . . . N − 1. Note that now for a finite-sized domain, the left edge of the first
cell will be on the boundary and the first data value will be associated at a point
∆x/2 inside the boundary. A similar situation arises at the right physical bound-
ary.

Finally, the bottom grid is a finite-volume grid. The layout looks identical to the
cell-centered finite difference grid, except now instead of the discrete data being
associated at a single point in space, we draw a line to show that it is taken as
the average in a zone. We label it as 〈 f 〉i to indicate the average. We label the
left and right edges of a zone with half-integer indices i − 1/2 and i + 1/2. The
physical coordinate of the center of the zone is the same as in the cell-centered
finite-difference case.

In all cases, for a regular structured grid, we take ∆x to be constant. For the finite-
difference grids, the discrete value at each point is obtains from the continuous
function f (x) as:

fi = f (xi) (2.1)

18 Chapter 2. Finite-Volume Grids

ii−1 i+1i−2 i+2

fi

∆x

ii−1 i+1i−2 i+2

fi

∆x

ii−1 i+1i−2 i+2i−1/2 i+1/2

〈
f
〉
i

∆x

Figure 2.2: Different types of structured grids. Top: a finite-difference grid—the
discrete data are associated with a specific point in space. Middle: a cell-centered
finite-difference grid—again the data is at a specific point, but now we imagine the
domain divided into zone with the data living at the center of each zone. Bottom: a
finite-volume grid—here the domain is divided into zones and we store the average
value of the function within each zone.

2.3 Finite-volume grids

In the finite-volume discretization, fi represents the average of f (x, t) over the
interval xi−1/2 to xi+1/2, where the half-integer indices denote the zone edges (i.e.
xi−1/2 = xi − ∆x/2):

〈 f 〉i =
1

∆x

∫ xi+1/2

xi−1/2

f (x)dx (2.2)

The lower panel of Figure 2.2 shows a finite-volume grid, with the half-integer
indices bounding zone i marked. Here we’ve drawn 〈a〉i as a horizontal line span-
ning the entire zone—this is to represent that it is an average within the volume

2.3—Finite-volume grids 19

defined by the zone edges. To second-order accuracy,

〈 f 〉i =
1

∆x

∫ xi+1/2

xi−1/2

f (x)dx ∼ f (xi) (2.3)

This means that we can treat the average of f over a zone as simply f (x) evaluated
at the zone center if we only want second-order accuracy.

Exercise 2.1: Show that Eq. 2.3 is true to O(∆x2) by expanding f (x) as a
Taylor series in the integral.

Exercise 2.2: A conservative interpolant is used to reconstruct a continuous
functional form, f (x), from a collection of cell-averages. A key requirement
is that when f (x) is averaged over a cell, it returns the cell-average.

Consider three cell averages: 〈 f 〉i−1, 〈 f 〉i, 〈 f 〉i+1. Fit a quadratic polynomial
through these points,

f (x) = A(x− xi)
2 + B(x− xi) + C (2.4)

where the coefficients, A, B, and C are found by applying the constraints:

〈 f 〉i−1 =
1

∆x

∫ xi−1/2

xi−3/2

a(x)dx (2.5)

〈 f 〉i =
1

∆x

∫ xi+1/2

xi−1/2

a(x)dx (2.6)

〈 f 〉i+1 =
1

∆x

∫ xi+3/2

xi+1/2

a(x)dx (2.7)

Show that the conservative interpolant is:

f (x) =
〈 f 〉i−1 − 2〈 f 〉i + 〈 f 〉i+1

2∆x2 (x− xi)
2+

〈 f 〉i+1 − 〈 f 〉i−1

2∆x
(x− xi)+

−〈 f 〉i−1 + 26〈 f 〉i − 〈 f 〉i+1

24
(2.8)

The IPython notebook Ï hydro examples: conservative-interpolation.ipynb

shows how to derive these interpolants using SymPy.

https://github.com/zingale/hydro_examples/blob/master/finite-volume/conservative-interpolation.ipynb

20 Chapter 2. Finite-Volume Grids

2.3.1 Differences and order of accuracy

In practice, when computing derivatives in a finite-volume discretization, we can
use the second-order centered difference from § 1.2.3 treating the finite-volume
data as living at the cell-centers and still be second-order accurate. For higher
accuracy, we can fit a conservative interpolant (as illustrated in exercise 2.2) to a
collection of points and then differentiate the interpolant itself.

Notice that the righthand side of all derivative approximations involve some lin-
ear combinations of ai’s. We call this the stencil. The width of the stencil is a mea-
sure of how many zones on either side of zone i we reach when computing our
approximation.

2.3.2 Conservation

The finite-volume grid is useful when dealing with conservation laws. Consider
the following system:

∂U
∂t

+∇ · F(U) = 0 (2.9)

where U is a vector of conserved quantities and F(U) is the flux of each quan-
tity. This type of system arises, for example, in fluid flow, where the system will
represent conservation of mass, momentum, and energy.

Consider one-dimension. Integrating this system over a zone, and normalizing by
∆x, we have:

∂〈U〉i
∂t

= − 1
∆x

∫ xi+1/2

xi−1/2

∂F
∂x

dx = − 1
∆x

{
F(U)|xi+1/2

− F(U)|xi−1/2

}
(2.10)

Independent of how we discretize in time, notice that we have the cell-average
on the left and that the righthand side is simply a difference of fluxes through the
interfaces of the zone. For the i + 1 zone, the update would be:

∂〈U〉i+1

∂t
= − 1

∆x

{
F(U)|xi+3/2

− F(U)|xi+1/2

}
(2.11)

Notice that this shares the flux at the xi+1/2 interface, but with the opposite sign.
When all of the updates are done, the flux through each boundary adds to one
zone and subtracts from its neighbor, exactly conserving (to round-off error) the
quantity U. This cancellation of the sums is an example of a telescoping prop-
erty, and is the main reason why finite-volume methods are attractive—conserved
quantities are conserved to machine (roundoff) precision.

Note that conservation is not the same as accuracy. We can construct the fluxes for
Eq. 2.11 by calling a random number generator and we’d still be conservative, but
not at all accurate.

2.4—Going further 21

ii−1 i+1lo−1 lo hi hi+1

∆x

Figure 2.3: A simple 1-d finite-volume grid with a single ghost cell at each end of
the domain. The domain boundaries are indicated by the heavy vertical lines. Here
there are hi− lo + 1 zones used in the discretization of the domain, with the first
zone in the domain labeled lo and the last in the domain labeled hi.

2.3.3 Boundary conditions with finite-volume grids

Imagine that we wish to compute the derivative in every zone using:

∂a
∂x

∣∣∣∣
i
=

ai − ai−1

∆x
. (2.12)

If we denote the index corresponding to the leftmost zone in our domain as ‘lo’,
then when we try to compute ∂a/∂x|lo, we will “fall-off” the grid, i.e., we need a
value of a for zone lo− 1, which is outside the domain. This is where boundary
conditions for our grid come into play.

We implement boundary conditions by extending the computational grid beyond
the physical domain (see Figure 2.3). These additional zones are called ghost cells.
They exist solely to handle the boundary conditions and allow us to use the same
update equation (e.g. Eq. 2.12) for all zones in the domain.

The number of ghostcells needed for the grid depends on how wide the stencils
used in the computation are. The wider the stencil, the more ghostcells are needed.

Periodic boundary conditions would be implemented as:

ahi+1 = alo (2.13)
alo−1 = ahi (2.14)

A simple outflow (zero-gradient) boundary condition would be implemented as:

ahi+1 = ahi (2.15)
alo−1 = alo (2.16)

2.4 Going further

• Domain decomposition: when running on a parallel computer, the work is di-
vided up across processor using domain decomposition. Here, we break

22 Chapter 2. Finite-Volume Grids

Figure 2.4: Domain decomposition of the computational domain into 6 separate
sub-domains. Each sub-domain here has 5× 5 zones. For one of the sub-domains,
the perimeter of ghost cells is illustrated as the red boundary.

the computational domain into smaller sub-domains, and put one (or more)
sub-domains on each processor. Each sub-domain has its own perimeter of
ghost cells. These are now filled by copying information from the neigh-
boring sub-domains or using the physical boundary conditions for the full
domain, depending on where the ghost cells lie. Figure 2.4 shows a simple
decomposition of a domain into 6 sub-domains.

• AMR for structured grids: adaptive mesh refinement uses a hierarchy of grids
to focus resolution in regions of complex flow. For finite-volume codes, the
standard reference for AMR is Berger & Colella [13]. Each level is an even
integer multiple finer in resolution, and the grid cells line up with one an-
other (i.e. in two-dimensions, four fine cells will be completely enclosed by
a single coarse cell, when using a jump in resolution of 2×.) This provides
a natural way to enforce conservation. At coarse-fine interfaces, corrections
are done to ensure consistency.

• Voronoi grids: a hybrid of particle and grid methods is provided by methods
that move particles in a Lagrangian fashion and use a Voronoi tessellation of
these particles to define the grid that finite-volume methods are applied to.
See, for example, the Arepo code paper [47].

Chapter3
Advection

3.1 The Linear Advection Equation

The linear advection equation is simply:

at + uax = 0 (3.1)

where a(x, t) is some scalar quantity and u is the velocity at which it is advected
(u > 0 advects to the right). The solution to Eq. 3.1 is to simply take the initial data,
a(x, t = 0), and displace it to the right at a speed u. The shape of the initial data is
preserved in the advection. Many hyperbolic systems of PDEs, e.g. the equations
of hydrodynamics, can be written in a form that looks like a system of (nonlinear)
advection equations, so the advection equation provides important insight into
the methods used for these systems.

Exercise 3.1: Show that a(x− ut) is a solution to Eq. 3.1 for any choice of
a. This means that the solution is constant along the lines x = ut (the curves
along which the solution is constant are called the characteristics).

3.2 First-order advection in 1-d and finite-differences

To get a flavor of the methods for advection, we will use a simple finite-difference
discretization—here, the domain is divided into a sequence of points where we
store the solution. We will solve Eq. 3.1 numerically by discretizing the solution at
these points. The index i denotes the point’s location, and ai denotes the discrete
value of a(x) in zone i. The data in each zone can be initialized as ai = a(xi).
Figure 3.1 shows the grid.

git version: 6e0249aeeefc . . . 23

24 Chapter 3. Advection

−1 0 1 i−1 i i+1 N−2 N−1 N

ai

∆x

Figure 3.1: A simple finite-difference grid. The solution is stored at each of the
labeled points. The dotted lines show the ghost points used to extend our grid past
the physical boundaries to accommodate boundary conditions. Note that if we are
periodic, then points 0 and N − 1 are at the same physical point in space, so we
would only need to update one of them.

We also need to discretize in time. We denote the time-level of the solution with a
superscript, so an

i = a(xi, tn). For a fixed ∆t, time level n corresponds to a time of
t = n∆t.

A simple first-order accurate discretization is:

an+1
i − an

i
∆t

= −u
an

i − an
i−1

∆x
(3.2)

This is an explicit method, since the new solution, an+1
i , depends only on informa-

tion at the old time level, n.

Finally, we also need to specify a boundary condition for this. Our choice of spatial
derivative is one-sided—it uses information from the zone to the left of the zone
we are updating. This is because information is flowing from left to right in this
problem (u > 0). This choice of the derivative is called upwinding—this choice of
derivative results in a stable method. Notice that if we use Eq. 3.2 to update the
data in the first zone inside the boundary, we need data to the left of this zone—
outside of the domain. This means that we need a single ghost point to implement
the boundary conditions for our method. The presence of the ghost points allow
us to use the same update equation (e.g. Eq. 3.2) for all zones in the domain.

The last piece of information needed to update the solution is the timestep, ∆t. It
can be shown that for the solution to be stable, the timestep must be less than the
time it takes information to propagate across a single zone. That is:

∆t ≤ ∆x
u

. (3.3)

This is called the Courant-Friedrichs-Lewy or CFL condition. A dimensionless quan-
tity called the CFL number is defined as

C =
∆tu
∆x

(3.4)

3.2—First-order advection in 1-d and finite-differences 25

Stability requires C ≤ 1. We traditionally write the timestep as

∆t = C
∆x
u

(3.5)

and specify C as part of the problem (a typical value may be C = 0.7).

Exercise 3.2: Show analytically that when you use C = 1 in the first-order
differenced advection equation (Eq. 3.2) that you advect the profile exactly,
without any numerical error.

Keep in mind that, in general, we will be solving a non-linear system of equations,
so it is not possible to run with C = 1, since u (and therefore C) will change from
zone to zone. Instead, one looks at the most restrictive timestep over all the zones
and uses that for the entire system.

Exercise 3.3: Write a code to solve the 1-d linear advection equation using
the discretization of Eq. 3.2 on the domain [0, 1] with u = 1 and periodic
boundary conditions. For initial conditions, try both a Gaussian profile and
a top-hat:

a =

0 if x < 1/3
1 if 1/3 ≤ x < 2/3
0 if 2/3 ≤ x

(3.6)

Note: For a general treatment of boundary conditions, you would initialize
the ghost points to their corresponding periodic data and apply the difference
equations to zones 0, . . . , N − 1. However, for periodic BCs on this grid,
points 0 and N − 1 are identical, so you could do the update in this special
case on points 1, . . . , N − 1 without the need for ghost points and then set
a0 = aN−1 after the update.

Run you program for one or more periods (one period is T = 1/u) with
several different CFL numbers and notice that there is substantial numerical
dissipation (see Figure 3.2).

Exercise 3.4: You may think that using a centered-difference for the spatial
derivative, ux ∼ (ui+1− ui−1)/(2∆x) would be more accurate. This method
is called FTCS (forward-time, centered-space). Try this. You will find that the
solution is unconditionally unstable.

The classic method for understanding stability is to consider the growth of a single
Fourier mode in our discretization. That is, substitute in an

i = Anejiθ , where j =

26 Chapter 3. Advection

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

a

C=0.1

C=0.5

C=0.9

exact

Figure 3.2: Finite-difference solution to the first-order finite-difference upwind
method for advection, using 65 points and a variety of CFL numbers.
Ï hydro examples: fdadvect.py

√
−1, and θ represents a phase. A method is stable if |An+1/An| ≤ 1. Performing

this with FTCS shows that no value of C can make the method stable. Doing
the same analysis for Eq. 3.2 would show that the upwind method is stable for
0 ≤ C ≤ 1. (Note that this stability analysis only works for linear equations,
where the difference Fourier modes are decoupled, nevertheless, we use its ideas
for nonlinear advection problems as well).

Exercise 3.5: To get an alternate feel for stability, we can ask what the terms
left out by truncation look like. That is, we can begin with the discretized
equation:

an+1
i − an

i = −u∆t
∆x

(an
i − an

i−1) (3.7)

and replace an+1
i with a Taylor expansion in time, and replace an

i−1 with a
Taylor expansion in space, keeping terms to O(∆t3) and O(∆x3). Replacing
∂a/∂t with −u∂a/∂x in the higher-order terms, show that our difference
equation more closely corresponds to

at + uax =
u∆x

2

(
1− ∆tu

∆x

)
∂2a
∂x2 (3.8)

=
u∆x

2
(1− C)

∂2a
∂x2 (3.9)

Notice that the righthand side looks like a diffusion term, however, if C >

https://github.com/zingale/hydro_examples/blob/master/advection/fdadvect.py

3.3—Second-order advection in 1-d and the finite-volume method 27

1, then the coefficient of the diffusion is negative—this is unphysical. This
means that the diffusion would act to take smooth features and make them
more strongly peaked—the opposite of physical diffusion.

An alternate approach to time-discretization is to do an implicit discretization.
Here our upwind method would appear as:

an+1
i − an

i
∆t

= −u
an+1

i − an+1
i−1

∆x
(3.10)

We can write this as a linear system with coupled equations:

− Can+1
i−1 + (1 + C)an+1

i = an
i (3.11)

In matrix form, solving for the points 1, . . . , N − 1, this is:

1 + C −C

−C 1 + C

−C 1 + C

−C 1 + C
.

−C 1 + C

−C 1 + C

un+1
1

un+1
2

un+1
3

un+1
4
...

un+1
N−2

un+1
N−1

=

un
1

un
2

un
3

un
4
...

un
N−2

un
N−1

(3.12)

This requires a matrix solve—this makes implicit methods generally more expen-
sive than explicit methods. However, stability analysis would show that this im-
plicit discretization is stable for any choice of C. (But one must not confuse sta-
bility with accuracy—the most accurate solutions with this method will still have
a small C). Also note that the form of the matrix will change depending on the
choice of boundary conditions. Figure 3.3 shows the result of solving this implicit
system.

3.3 Second-order advection in 1-d and the finite-volume
method

In these notes, we will typically use a finite-volume discretization. Here we explore
this method for the advection equation. First we rewrite the advection equation in
conservation form:

at + [f (a)]x = 0 (3.13)

where f (a) = ua is the flux of the quantity a. In conservation form, the time
derivative of a quantity is related to the divergence of its flux.

28 Chapter 3. Advection

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

a

C=0.5

C=1.0

C=10.0

exact

Figure 3.3: Finite-difference solution to the implicit first-order finite-difference up-
wind method for advection, using 65 points and a variety of CFL numbers.
Ï hydro examples: fdadvect implicit.py

ii−1 i+1lolo−1lo−2 hi hi+1 hi+2i−1/2 i+1/2

〈
a
〉
i

∆x

Figure 3.4: A finite-volume grid running from lo, . . . , hi, with two ghost cells at
each end.

Recall that in the finite-volume discretization, 〈a〉i represents the average of a(x, t)
over the interval xi−1/2 to xi+1/2, where the half-integer indexes denote the zone
edges (i.e. xi−1/2 = xi − ∆x/2). Figure 3.4 shows an example of such a grid with
2 ghost cells at each end. (For simplicity of notation, we drop the 〈〉 going for-
ward). To discretize Eq. 3.13, we integrate it over a zone, from xi−1/2 to xi+1/2,
normalizing by the zone width, ∆x:

1
∆x

∫ xi+1/2

xi−1/2

at dx = − 1
∆x

∫ xi+1/2

xi−1/2

∂

∂x
f (a) dx (3.14)

∂

∂t
ai = − 1

∆x
{
[f (a)]i+1/2 − [f (a)]i−1/2

}
(3.15)

This is an evolution equation for the zone-average of a, and shows that it updates
in time based on the fluxes through the boundary of the zone. We discretize in time

https://github.com/zingale/hydro_examples/blob/master/advection/fdadvect_implicit.py

3.3—Second-order advection in 1-d and the finite-volume method 29

i i+1i+1/2

a
n+1/2

i+1/2,L
ai a

n+1/2

i+1/2,R
ai+1

Figure 3.5: The left and right interface state at the i + 1/2 interface. Here, the
left state, an+1/2

i+1/2,L, was predicted to the interface from the zone to the left of the

interface, using ai, and the right state, an+1/2
i+1/2,R, was predicted to the interface from

the zone to the right, using ai+1.

by evaluating the righthand side at the midpoint in time—this gives a centered
difference in time, which is second-order accurate:

an+1
i − an

i
∆t

= −
[f (a)]n+1/2

i+1/2 − [f (a)]n+1/2
i−1/2

∆x
(3.16)

To evaluate the fluxes at the half-time, we need the state at the half-time, that is,
we do :

[f (a)]n+1/2
i+1/2 = f (an+1/2

i+1/2) . (3.17)

We construct a second-order accurate approximation to an+1/2
i+1/2 by Taylor expand-

ing the data in the cell to the interface. Note that for each interface, there are two
possible interface states we can construct—one using the data to the left of the in-
terface (which we will denote with a “L” subscript) and the other using the data
to the right of the interface (denoted with an “R” subscript)—see Figure 3.5. These
states are:

an+1/2
i+1/2,L = an

i +
∆x
2

∂a
∂x

∣∣∣∣
i
+

∆t
2

∂a
∂t

∣∣∣∣
i
+O(∆x2) +O(∆t2)

= an
i +

∆x
2

∂a
∂x

∣∣∣∣
i
+

∆t
2

(
−u

∂a
∂x

∣∣∣∣
i

)
+ . . .

= an
i +

∆x
2

(
1− ∆t

∆x
u
)

∂a
∂x

∣∣∣∣
i
+ . . . (3.18)

an+1/2
i+1/2,R = an

i+1 −
∆x
2

∂a
∂x

∣∣∣∣
i+1

+
∆t
2

∂a
∂t

∣∣∣∣
i+1

+O(∆x2) +O(∆t2)

= an
i+1 −

∆x
2

∂a
∂x

∣∣∣∣
i+1

+
∆t
2

(
−u

∂a
∂x

∣∣∣∣
i+1

)
+ . . .

= an
i+1 −

∆x
2

(
1 +

∆t
∆x

u
)

∂a
∂x

∣∣∣∣
i+1

+ . . . (3.19)

30 Chapter 3. Advection

A suitable estimate is needed for the slope of a that appears in these expressions
(as ∂a/∂x). We can approximate this simply as

∂a
∂x

∣∣∣∣
i
=

ai+1 − ai−1

2∆x
(3.20)

We can think of this method as reconstructing the function form of the data from
the cell-average data in each cell using a piecewise linear polynomial.

We now have two states, an+1/2
i+1/2,L and an+1/2

i+1/2,R separated by an interface—this is
called the Riemann problem. The solution to this will depend on the equation being
solved, and results in a single state at the interface:

an+1/2
i+1/2 = R(an+1/2

i+1/2,L, an+1/2
i+1/2,R) (3.21)

In our case, the advection equation simply propagates the state to the right (for
u > 0), so the solution to the Riemann problem is to take the left state (this is
another example of upwinding). That is we do:

R(an+1/2
i+1/2,L, an+1/2

i+1/2,R) =

{
an+1/2

i+1/2,L u > 0

an+1/2
i+1/2,R u < 0

(3.22)

To complete the update, we use this interface state to evaluate the flux and update
the advected quantity via Eq. 3.16.

Boundary conditions are implemented by filling the ghost cells outside each end
of the domain based on data in the interior. Note that at the very left edge of the
domain, the state an+1/2

lo−1/2 requires the construction of states on the left and right.
The left state at that interface, an+1/2

lo−1/2,L depends on the slope reconstructed in the
lo − 1 ghost cell, ∂a/∂x|lo−1. This in turn is constructed using a limited center-
difference that will consider the value in the cell to the left, lo− 2. Therefore,
we need two ghost cells at each end of the domain for this method—figure 3.6
illustrates this. Higher-order limiters may require even more ghost cells.

Exercise 3.6: Write a second-order solver for the linear advection equa-
tion. To mimic a real hydrodynamics code, your code should have routines
for finding initializing the state, filling boundary conditions, computing the
timestep, computing the interface states, solving the Riemann problem, and
doing the update. The problem flow should look like:

• set initial conditions

• main evolution loop—loop until final time reached

– fill boundary conditions

– get timestep (Eq. 3.5)

3.3—Second-order advection in 1-d and the finite-volume method 31

lo−2 lo−1 lo lo+1lo−1/2

a
n+1/2

lo+1/2,L

a
n+1/2

lo+1/2,R

Figure 3.6: Reconstruction near the boundary, showing the need for two ghostcells.
Here we see the left and right state at the left physical boundary of the domain
(marked as lo− 1/2). The gray dotted lines are the piecewise constant cell averages
and the red lines are the reconstructed slopes. Note that we need the slope in lo− 1
to get the left interface state at lo− 1/2, and that slope in turn needed the data in
zone lo− 2 to construct a centered-difference.

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

a

unlimited
minmod limiter
exact

Figure 3.7: Second-order finite volume advection showing the result of advecting
a tophat profile through five periods with both unlimited and limited slopes. This
calculation used 64 zones and C = 0.7.
Ï hydro examples: advection.py

– compute interface states (Eqs. 3.18 and 3.19)

– solve Riemann problem at all interfaces (Eq. 3.22)

– do conservative update (Eq. 3.16)

Use both the top-hat and Gaussian initial conditions and periodic boundary
conditions and compare to the first-order method. See Figure 3.7.

https://github.com/zingale/hydro_examples/blob/master/advection/advection.py

32 Chapter 3. Advection

3.3.1 Limiting

The second-order method likely showed some oscillations in the solution, espe-
cially for the top-hat initial conditions. Godunov’s theorem says that any monotonic
linear method for advection is first-order accurate (see, e.g, [31]). In this context,
monotonic means that no new minima or maxima are introduced. The converse is
true too, which suggests that in order to have a second-order accurate method for
this linear equation, the algorithm itself must be nonlinear.

Exercise 3.7: To remove the oscillations in practice, we limit the slopes to
ensure that no new minima or maxima are introduced during the advection
process. There are many choices for limited slopes. A popular one is the
minmod limiter. Here, we construct the slopes in the interface states as:

∂a
∂x

∣∣∣∣
i
= minmod

(
ai − ai−1

∆x
,

ai+1 − ai

∆x

)
(3.23)

instead of Eq. 3.20. with

minmod(a, b) =

a if |a| < |b| and a · b > 0
b if |b| < |a| and a · b > 0
0 otherwise

(3.24)

Use this slope in your second-order advection code and notice that the oscil-
lations go away—see Figure 3.7.

We can get a feel for what happens with and without limiting pictorially. Fig-
ures 3.8 and 3.9 show the evolution of an initial discontinuity with and without
limiting. See the text by LeVeque [32] for alternate choices of limiters. Note: most
limiters will have some sort of test on the product of a left-sided and right-sided
difference (a · b above)—this is < 0 at an extremum, which is precisely where we
want to limit.

A slightly more complex limiter is the MC limiter (monotonized central differ-
ence). First we define an extrema test,

ξ = (ai+1 − ai) · (ai − ai−1) (3.25)

Then the limited difference is

∂a
∂x

∣∣∣∣
i
=

{
min

[
|ai+1−ai−1|

2∆x , 2 |ai+1−ai |
∆x , 2 |ai−ai−1|

∆x

]
sign(ai+1 − ai−1) ξ > 0

0 otherwise
(3.26)

Note that a slightly different form of this limiter is presented in [32], where all
quantities are in a minmod, which appears to limit a bit less. This is second-order
accurate for smooth flows.

3.3—Second-order advection in 1-d and the finite-volume method 33

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

Figure 3.8: Initially discontinuous data evolved for several steps with no limiting.
Notice that there are overshoots and undershoots surrounding the discontinuity.

The main goal of a limiter is to reduce the slope near extrema. Figure 3.10 shows
a finite-volume grid with the original data, cell-centered slopes, and MC limited
slopes. Note that near the strong gradients is where the limiting kicks in. The
different limiters are all constructed by enforcing a condition requiring the method
to be total variation diminishing, or TVD. More details on TVD limiters can be found
in [51, 32].

A popular extension of the MC limiter is the 4th-order MC limiter, which is more
accurate in smooth flows (this is shown in [18], Eqs. 2.5 and 2.6; and [19], Eq. 191).

34 Chapter 3. Advection

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

Figure 3.9: Initially discontinuous data evolved for several steps with limiting.
Note that unlike the sequence without limiting (Figure 3.8), the discontinuity re-
mains sharper with limiting and there are no over- or undershoots.

Exercise 3.8: Show analytically that if you fully limit the slopes (i.e. set
∂a/∂x|i = 0, that the second-order method reduces to precisely our first-
order finite-difference discretization, Eq. 3.2.

3.3—Second-order advection in 1-d and the finite-volume method 35

ii−1 i+1i−2 i+2

Figure 3.10: A finite-volume grid showing the cell averages (gray horizontal lines),
unlimited center-difference slopes (blue) and MC limited slopes (red). Note that in
zones i and i+ 1, the slopes are limited slightly, so as not to overshoot or undershoot
the neighboring cell value. Cell i − 1 is not limited at all, whereas cells i − 2, and
i + 2 are fully limited—the slope is set to 0—these are extrema.

3.3.2 Reconstruct-evolve-average

Another way to think about these methods is as a reconstruction, evolve, and av-
erage (R-E-A) process (see Figure 3.11).

We can write the conservative update as:

an+1
i = an

i +
∆t
∆x

(uan+1/2
i−1/2 − uan+1/2

i+1/2) (3.27)

= an
i + C(an+1/2

i−1/2 − an+1/2
i+1/2) (3.28)

If we take u > 0, then the Riemann problem will always choose the left state, so
we can write this as:

an+1
i = an

i + C
[(

an
i−1 +

1
2
(1− C)∆ai−1

)
︸ ︷︷ ︸

ai−1/2,L

−
(

an
i +

1
2
(1− C)∆ai

)
︸ ︷︷ ︸

ai+1/2,L

]
(3.29)

If we instead look at this via the R-E-A procedure, we write the reconstructed a in
each zone in the form of a piecewise linear polynomial

ai(x) = ai +
∆ai

∆x
(x− xi) (3.30)

Consider zone i. If we are advecting with a CFL number C, then that means that
the fraction C of the zone immediately to the left of the i− 1/2 interface will advect
into zone i over the timestep. And only the fraction 1− C in zone i immediately
to the right of the interface will stay in that zone. This is indicated by the shaded
regions in Figure 3.11.

36 Chapter 3. Advection

The average of the quantity a from zone i− 1 that will advect into zone i is

I< =
1

C∆x

∫ xi−1/2

xi−1/2−C∆x
ai−1(x)dx (3.31)

=
1

C∆x

∫ xi−1/2

xi−1/2−C∆x

[
ai−1 +

∆ai−1

∆x
(x− xi−1)

]
dx (3.32)

= ai−1 +
1
2

∆ai−1(1− C) (3.33)

And the average of the quantity a in zone i that will remain in zone i is

I> =
1

(1− C)∆x

∫ xi−1/2+(1−C)∆x

xi−1/2

ai(x)dx (3.34)

=
1

(1− C)∆x

∫ xi−1/2+(1−C)∆x

xi−1/2

[
ai +

∆ai

∆x
(x− xi)

]
dx (3.35)

= ai −
1
2

∆aiC (3.36)

The final part of the R-E-A procedure is to average the over the advected profiles
in the new cell. The weighted average of the amount brought in from the left of
the interface and that that remains in the cell is

an+1
i = CI< + (1− C)I> (3.37)

This is identical to Eq. 3.29. This demonstrates that the R-E-A procedure is equiv-
alent to our reconstruction, prediction of the interface states, solving the Riemann
problem, and doing the conservative flux update.

3.4 Errors and convergence rate

For the advection problem (with u > 0), the analytic solution is to simply propa-
gate the initial profile to the right. This means that with periodic boundary con-
ditions, after advecting for one period, our numerical solution should be identical
to the initial conditions. Any differences are our numerical error. We can quantify
the error by taking the norm of error as:

εabs = ‖afinal − ainit‖2 ≡
[

1
N

N

∑
i=1

(afinal
i − ainit

i)2

]1/2

(3.38)

It is sometimes useful to compare to the norm of the original solution to get a
measure of the relative error:

εrel ≡ ‖a
final − ainit‖2

‖ainit‖2
(3.39)

Note that it is important in these definitions to normalize by the number of zones,
N, otherwise our error will be resolution-dependent.

3.4—Errors and convergence rate 37

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

ii−1 i+1i−2 i+2

Figure 3.11: Reconstruct-Evolve-Average. The top panel shows the original cell-
average data. The second panel shows the (limited) piecewise linear reconstruction
of the data. Assuming a CFL number of 0.6 and advection to the right, the shaded
regions in the third panel show the data that will wind up in cell i after advecting
for a single step. The fourth panel shows the piecewise-linear data advected to the
right by 0.6 of a cell-width (corresponding to a CFL of 0.6). The final panel shows
the new averages of the data, constructed by averaging the advected piecewise
linear data in each cell.

38 Chapter 3. Advection

102

number of zones

10-4

10-3

10-2

10-1

||a
fi
n
al
−a

in
it
|| 2

O(∆x2)

Figure 3.12: Convergence for the second-order finite-volume method with minmod
limiting advecting a Gaussian initial profile with C = 0.8.
Ï hydro examples: advection.py

Exercise 3.9: Run the first-order solver for several different ∆xs, each
a factor of 2 smaller than the previous. Compute ε for each resolution and
observe that it converges in a first-order fashion (i.e. ε decreases by 2 when
we decrease ∆x by a factor of 2).

Do the same with the second-order solver and observe that it converges as
second-order. However: you may find less than second-order is your initial
conditions have discontinuities and you are limiting. Figure 3.12 shows the
convergence of the method with minmod limiting, C = 0.8, and a Gaussian
initial condition.

3.5 Multi-dimensional advection

The two-dimensional linear advection equation is:

at + uax + vay = 0 (3.40)

where u is the velocity in the x-direction and v is the velocity in the y-direction.
We denote the average of a(x, y, t) in a zone i, j as ai,j. Here, i is the index in the
x-direction and j is the index in the y-direction. A 2-d grid is shown in Figure 3.13.
Just as in the one-dimensional case, we will extend the domain with a perimeter
of ghost cells to set the boundary conditions.

https://github.com/zingale/hydro_examples/blob/master/advection/advection.py

3.5—Multi-dimensional advection 39

ai,j ai+1,j

ai,j+1

a
n
+
1/2

i
+
1/2,j,L

a
n
+
1/2

i
+
1/2,j,R

a
n+1/2

i,j+1/2,L

a
n+1/2

i,j+1/2,R

i−1 i i+1

j−1

j

j+1

Figure 3.13: A simple 2-d grid with the zone-centered indexes. The ×s mark the
interface states at the upper edge of the i, j zone in each coordinate direction.

To derive the finite-volume form of the update, we start by writing this in conser-
vative form. Since u and v are constant, we can move them inside the divergences:

at + (ua)x + (va)y = 0 (3.41)

This is the form we will integrate over zones. As before, we will define the average
of a in a zone by integrating it over the volume:

ai,j =
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

a(x, y, t) dx dy (3.42)

Integrating Eq. 3.41 over x and y, we have:

1
∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

at dx dy =− 1
∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(ua)x dx dy

− 1
∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(va)y dx dy (3.43)

40 Chapter 3. Advection

or using the divergence theorem,

∂ai,j

∂t
=− 1

∆x∆y

∫ yj+1/2

yj−1/2

{
(ua)i+1/2,j − (ua)i−1/2,j

}
dy

− 1
∆x∆y

∫ xi+1/2

xi−1/2

{
(va)i,j+1/2 − (va)i,j−1/2

}
dx (3.44)

Now we integrate over time—the left side of our expression becomes just the dif-
ferent between the new and old state.

an+1
i,j − an

i,j =−
1

∆x∆y

∫ tn+1

tn

∫ yj+1/2

yj−1/2

{
(ua)i+1/2,j − (ua)i−1/2,j

}
dydt

− 1
∆x∆y

∫ tn+1

tn

∫ xi+1/2

xi−1/2

{
(va)i,j+1/2 − (va)i,j−1/2

}
dxdt (3.45)

We define the flux through the interface as the average over the face of that inter-
face and time:

(ua)i+1/2,j =
1

∆y∆t

∫ tn+1

tn

∫ yj+1/2

yj−1/2

(ua)i+1/2,jdydt (3.46)

(va)i,j+1/2 =
1

∆x∆t

∫ tn+1

tn

∫ xi+1/2

xi−1/2

(va)i,j+1/2dxdt (3.47)

For a second-order accurate method in time, we replace the integration in time
with the flux at the midpoint in time, and in space, we replace the integration with
the center of the interface. Then we have:

an+1
i,j = an

i,j −
(ua)n+1/2

i+1/2,j − (ua)n+1/2
i−1/2,j

∆x
−

(va)n+1/2
i,j+1/2 − (va)n+1/2

i,j−1/2

∆y
(3.48)

For the advection problem, since u and v are constant, we need to find the interface
states of a alone. There are two methods for computing these interface states,
an+1/2

i±1/2,j on x-interfaces and an+1/2
i,j±1/2 on y-interfaces: dimensionally split and unsplit.

Dimensionally split methods are easier to code, since each dimension is operated
on independent of the others, so you can simply call a one-dimensional method for
each direction. Unsplit methods, however, are more accurate and less susceptible
to grid effects.

3.5.1 Dimensionally split

In a split method, we update the state in each coordinate direction independently.
This is simple and a straightforward way to use one-dimensional methods in
multi-d. To be second-order accurate in time, we do Strang splitting [49], where we

3.5—Multi-dimensional advection 41

alternate the order of the dimensional updates each timestep. An update through
∆t consists of x and y sweeps and appears as:

a?i,j − an
i,j

∆t
= −

uan+1/2
i+1/2,j − uan+1/2

i−1/2,j

∆x
(3.49)

an+1
i,j − a?i,j

∆t
= −

va?,n+1/2
i,j+1/2 − va?,n+1/2

i,j−1/2

∆y
(3.50)

Here, Eq. 3.49 is the update in the x-direction. In constructing the interface states,
an+1/2

i+1/2,j and an+1/2
i−1/2,j, we do the exact same procedure as the one-dimensional case,

constructing the left and right states at each interface and then solving the same
Riemann problem to find the unique state on the interface. Each dimensional
sweep is done without knowledge of the other dimensions. For example, in the
x-update, we are solving:

at + uax = 0 (3.51)

and in the y-update, we are solving:

at + vay = 0 (3.52)

The construction of the interface states largely mimics the one-dimensional case
(Eq. 3.18 and 3.19). For example, the an+1/2

i+1/2,j,L state is:

an+1/2
i+1/2,j,L = an

i,j +
∆x
2

∂a
∂x

∣∣∣∣
i,j
+

∆t
2

∂a
∂t

∣∣∣∣
i,j
+O(∆x2) +O(∆t2)

= an
i,j +

∆x
2

∂a
∂x

∣∣∣∣
i,j
+

∆t
2

(
−u

∂a
∂x

∣∣∣∣
i,j

)
+ . . .

= an
i,j +

∆x
2

(
1− ∆t

∆x
u
)

∂a
∂x

∣∣∣∣
i,j
+ . . . (3.53)

Notice that when substituting for ∂a/∂t, we use the one-dimensional split version
of the advection equation (Eq. 3.51) instead of the full multi-dimensional equa-
tion. There are no y-direction terms that come into play in the split method when
considering the x-direction.

The x-update (Eq. 3.49) updates the state only accounting for the x-fluxes—we
denote this intermediate state with the ‘?’ superscript. For the y-update, we con-
struct our interface states in the analogous way as in the x-direction, but begin
with the ‘?’ state instead of the old-time state. In this fashion, the y-update ‘sees’
the result of the x-update and couples things together.

To achieve second-order accuracy in time, it is necessary to alternate the directions
of the sweeps each timestep, i.e. x-y then y-x. Furthermore, this pair of sweeps
should use the same timestep, ∆t.

42 Chapter 3. Advection

3.5.2 Unsplit multi-dimensional advection

The unsplit case differs from the dimensionally split case in two ways: (1) in pre-
dicting the interface states, we use knowledge of the flow in the transverse di-
rection, and (2), only a single conservative update is done per timestep, with all
directions updating simultaneously. See [19] for more details. This idea is some-
times called the “corner transport upwind” or CTU method.

The construction of the an+1/2
i+1/2,j,L interface state appears as

an+1/2
i+1/2,j,L = an

i,j +
∆x
2

∂a
∂x

∣∣∣∣
i,j
+

∆t
2

∂a
∂t

∣∣∣∣
i,j
+O(∆x2) +O(∆t2)

= an
i,j +

∆x
2

∂a
∂x

∣∣∣∣
i,j
+

∆t
2

(
−u

∂a
∂x

∣∣∣∣
i,j
− v

∂a
∂y

∣∣∣∣
i,j

)
+ . . .

= an
i,j +

∆x
2

(
1− ∆t

∆x
u
)

∂a
∂x

∣∣∣∣
i,j

−∆t
2

v
∂a
∂y

∣∣∣∣
i,j︸ ︷︷ ︸

“transverse flux difference′′

+ . . . (3.54)

The main difference between the split and unsplit interface states is the explicitly
appearance of the “transverse flux difference” in the unsplit interface state. We
rewrite this as:

an+1/2
i+1/2,j,L = ân+1/2

i+1/2,j,L −
∆t
2

v
∂a
∂y

∣∣∣∣
i,j

(3.55)

Here, the ân+1/2
i+1/2,j,L term is just the normal prediction without considering the trans-

verse direction. The basic update procedure is:

• Construct the normal predictor term, ân+1/2
i+1/2,j,L, in a fashion identical to the

one-dimensional and split method. We compute these one-dimensional â’s
at the left and right every interface in both coordinate directions. Note that
these states are still one-dimensional, since we have not used any informa-
tion from the transverse direction in their computation.

• Solve a Riemann problem at each of these interfaces:

aT
i+1/2,j = R(ân+1/2

i+1/2,j,L, ân+1/2
i+1/2,j,R) (3.56)

aT
i,j+1/2 = R(ân+1/2

i,j+1/2,L, ân+1/2
i,j+1/2,R) (3.57)

(3.58)

These states are given the ‘T’ superscript since they are the states that are
used in computing the transverse flux difference.

• Correct the previously computed normal interface states (the â’s) with the
transverse flux difference:

an+1/2
i+1/2,j,L = ân+1/2

i+1/2,j,L −
∆t
2

v
aT

i,j+1/2 − aT
i,j−1/2

∆y
(3.59)

3.6—Going further 43

A similar procedure happens at the y-interfaces. Notice that the fluxes that
are differenced for the left state are those that are transverse, but to the left
of the interface. Similarly, for the right state, it would be those that are trans-
verse, but to the right of the interface:

an+1/2
i+1/2,j,R = ân+1/2

i+1/2,j,R −
∆t
2

v
aT

i+1,j+1/2 − aT
i+1,j−1/2

∆y
(3.60)

Figure 3.14 illustrates the steps involved in the construction of the an+1/2
i+1/2,j,L state.

Once all of the full states (normal prediction + transverse flux difference) are com-
puted to the left and right of all the interfaces (x and y), we solve another Riemann
problem to find the final state on each interface.

an+1/2
i+1/2,j = R(an+1/2

i+1/2,j,L, an+1/2
i+1/2,j,R) (3.61)

The final conservative update is then done via Eq. 3.45.

See [19] for more details on this unsplit method.

3.6 Going further

• Stability analysis: many texts provide the details of von Neumann stability
analysis for the linear advection equation. There, you will see how a Fourier
analysis can be used to derive the CFL condition. Note: this stability analysis
is restricted to linear equations, but we nevertheless use the resulting limits
for nonlinear equations (like the Euler equations).

• Slope limiting: there are a wide variety of slope limiters. All of them are de-
signed to reduce oscillations in the presence of discontinuities or extrema,
but some are higher-order and can be less restrictive when dealing with
smooth flows. Most hydro texts (e.g. [32, 51]) provide an introduction to
the design of such limiters.

• Multi-dimensional limiting: the procedure described above still does the lim-
iting in each dimension independent of the other when doing the unsplit
reconstruction. This can lead to overshoots/ undershoots. An example of a
method that considers the limiting in multi-dimensions is [10, 35].

• Spatially-varying velocity field: if we consider a spatially varying velocity field,
u(x, y) and v(x, y) that is specified externally, then we can describe the ad-
vection of a quantity φ as:

φt + (φu)x + (φv)y = 0 (3.62)

44 Chapter 3. Advection

ai,j ai+1,j

ai,j+1

ai,j−1

â
n
+
1/
2

i
+
1
/2,j,L

â
n+1/2

i,j+1/2,L

â
n+1/2

i,j+1/2,R

â
n+1/2

i,j−1/2,L

â
n+1/2

i,j−1/2,R

i−1 i i+1

j−1

j

j+1

ai,j ai+1,j

ai,j+1

ai,j−1

â
n
+
1/2

i
+
1/2,j,L

aTi,j+1/2

aTi,j−1/2

i−1 i i+1

j−1

j

j+1

Figure 3.14: The construction of the an+1/2
i+1/2,j,L state. Top: first we compute the â’s—

here we show all of the â’s that will be used in computing the full left interface
state at (i + 1/2, j). Bottom: after the transverse Riemann solves, we have the two
transverse states (aT

i,j+1/2 and aT
i,j−1/2) that will be differenced and used to correct

ân+1/2
i+1/2,j,L (illustrated by the dotted lines) to make an+1/2

i+1/2,j,L.

3.7—pyro experimentation 45

The solution procedure is largely the same as described above. We write:

φn+1/2
i+1/2,j,L = φn

i,j +
∆x
2

∂φ

∂x
+

∆t
2

∂φ

∂t
+ . . .

= φn
i,j +

∆x
2

∂φ

∂x
+

∆t
2
[
−(φu)x − (φv)y

]
i,j

= φn
i,j +

∆x
2

(
1− ∆t

∆x
ui,j

)
∂φ

∂x︸ ︷︷ ︸
φ̂n+1/2

i+1/2,j,L

−∆t
2

[φux]i,j −
∆t
2
[
(φv)y

]
i,j (3.63)

and upwinding is used to resolve the Riemann problem for both the trans-
verse and normal interface states.

For compressible hydrodynamics, we often have density-weighted quanti-
ties that we advect. This extension is described in § 5.9. For low Mach num-
ber flows, the density can be advected according to the velocity field in much
the fashion shown here, as described in § 3.

3.7 pyro experimentation

To gain some experiences with these ideas, we can use the advection solver in pyro
(see Appendix B to get started). The pyro advection solver implements the second-
order unsplit advection algorithm described in the previous sections. To run this
solver on the Gaussian advection problem, do:

./pyro.py advection smooth inputs.smooth

By default, this will advect a Gaussian profile diagonally across the domain for a
single period.

To get a feel for the advection algorithm, here are some suggested exercises:

• Implement a tophat initial profile and run with and without limiters (this is
controlled by the advection.limiter runtime parameter.

• Look at the solution when you advect purely in the x- or y-direction and
compare to the diagonal case—notice how the direction affects the error in
the solution.

• Implement a dimensionally-split version of the advection algorithm and com-
pare the results to the unsplit version.

Chapter4
Burgers’ Equation

These notes extend our ideas of linear advection to a scalar nonlinear equation.

4.1 Burgers’ equation

The inviscid Burgers’ equation is the simplest nonlinear hyperbolic equation:

ut + uux = 0 (4.1)

Here u is both the quantity being advected and the speed at which it is moving. In
conservative form, this appears as:

ut +
[1

2 u2]
x = 0 (4.2)

The solution of this follows the same methodology as outlined above. The inter-
face states are predicted as:

un+1
i+1/2,L = un

i +
∆x
2

∂u
∂x

+
∆t
2

∂u
∂t

∣∣∣∣
i
+ . . . (4.3)

= un
i +

∆x
2

∂u
∂x

+
∆t
2

(
−ui

∂u
∂x

)∣∣∣∣
i
+ . . . (4.4)

= un
i +

∆x
2

(
1− ∆t

∆x
ui

)
∂u
∂x

∣∣∣∣
i
+ . . . (4.5)

The only difference with the linear advection equation is that now ui∆t/∆x varies
from zone to zone, whereas with linear advection, it is the constant C. The slopes
are computed using the same limiters as with linear advection. add characteristic

tracing

The Riemann problem differs from linear advection. It remains the case that the
solution is constant along the lines x = ut + x0 (the characteristics), but now those

git version: 6e0249aeeefc . . . 47

48 Chapter 4. Burgers’ Equation

x

t

xrxl

tn+1

tn

shock: S=∆x/∆t

ur

ul

Figure 4.1: A rightward moving shock in the x-t plane separating two states: ul
and ur.

lines are no longer parallel. If the characteristic lines intersect, then there it is not
possible to trace backward from time to learn where the flow originated. This is
the condition for a shock.

The shock speed is computed through the Rankine-Hugoniot jump conditions. For
a scalar equation, these are easy to construct. We’ll follow the method of [32].
Figure 4.1 shows two states separated by a rightward moving shock in the x-t
plane. At time tn, the state in our interval (x ∈ [xl , xr]) is entirely ur, and at the
later time, tn+1 it is entirely ul . The shock moves with a speed S = ∆x/∆t in this
figure. To determine the speed, we integrate our conservation law over both space
and time (and normalize by ∆x = xr − xl):

1
∆x

∫ xr

xl

dx
∫ tn+1

tn
dtut = −

1
∆x

∫ xr

xl

dx
∫ tn+1

tn
dt [f (u)]x (4.6)

Doing the t integral on the left and x integral on the right, we have

1
∆x

∫ xr

xl

{
u(tn+1)− u(tn)

}
dx = − 1

∆x

∫ tn+1

tn
{ f (u)|x=xr − f (u)|x=xl} dt (4.7)

Recognizing that at t = tn, u = ur and at t = tn+1, u = ul , {u(tn+1)− u(tn)} in the
left side becomes {ul − ur}. For the right side, we see that all along x = xl the flux

4.1—Burgers’ equation 49

is f = f (ul) for t ∈ [tn, tn+1]. Likewise, all along x = xr, the flux is f = f (ur) in
the same time interval (see the figure). Therefore, our expression becomes:

(ul − ur) = −
∆t
∆x

[f (ur)− f (ul)] (4.8)

and using S = ∆x/∆t, we see

S =
f (ur)− f (ul)

ur − ul
(4.9)

For Burgers’ equation, substituting in f (u) = u2/2, we get

S =
1
2
(ul + ur) (4.10)

With the shock speed known, the Riemann problem is straightforward. If there
is a shock (compression, so ul > ur) then we compute the shock speed and check
whether the shock is moving to the left or right, and then use the appropriate state.
If there is no shock, then we can simply use upwinding, as there is no ambiguity
as to how to trace backwards in time to the correct state. Putting this together, we
have:

if ul > ur
(shock)

: us =

ul if S > 0
ur if S < 0
0 if S = 0

(4.11)

otherwise : us =

ul if ul > 0
ur if ur < 0
0 otherwise

(4.12)

Once the interface states are constructed, the flux is calculated as:

Fn+1/2
i+1/2 =

1
2

(
un+1/2

i+1/2

)2
(4.13)

and the conservative update is

un+1
i = un

i +
∆t
∆x

(
Fn+1/2

i−1/2 − Fn+1/2
i+1/2

)
(4.14)

The timestep constraint now must consider the most restrictive Courant condition
over all the zones:

∆t = min
i
{∆x/ui} (4.15)

Figure 4.2 shows the solution for two cases: a rarefaction and a sine-wave steep-
ening into a shock, using a piecewise linear reconstruction and the MC limiter.

50 Chapter 4. Burgers’ Equation

Exercise 4.1: Extend your 1-d finite-volume solver for advection (from Ex-
ercise 3.6) to solver Burgers’ equation. You will need to change the Riemann
solver and use the local velocity in the construction of the interface states.
Run the examples shown in Figure 4.2.

4.2 Going further

• The equation we’ve been dealing with here is the inviscid Burgers’ equation.
The full Burgers’ equation includes viscosity (a velocity diffusion):

ut + uux = εuxx (4.16)

To solve this, we need to first learn about techniques for diffusion, and then
how to solve equations with multiple PDE types. This will be described later.

4.2—Going further 51

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

1.2

1.4

1.6

1.8

2.0

2.2

u

0.0 0.2 0.4 0.6 0.8 1.0
x

0.4

0.6

0.8

1.0

1.2

1.4

1.6

u

Figure 4.2: Solution to the inviscid Burgers’ equation with 256 zones and a Courant
number, C = 0.8. At the top, is a rarefaction—the left half of the domain was
initialized with u = 1 and the right half with u = 2, creating a divergent flow. On
the bottom is a sine-wave steepening into a shock. The curves are shown 0.02 s
apart.
Ï hydro examples: burgers.py

https://github.com/zingale/hydro_examples/blob/master/burgers/burgers.py

Chapter5
Euler Equations

These notes describe how to do a piecewise linear or piecewise parabolic method
for the Euler equations. These are the basis for some of the most popular
methods in astrophysics.

5.1 Euler equation properties

The Euler equations in one dimension appear as:

∂ρ

∂t
+

∂(ρu)
∂x

= 0 (5.1)

∂(ρu)
∂t

+
∂(ρuu + p)

∂x
= 0 (5.2)

∂(ρE)
∂t

+
∂(ρuE + up)

∂x
= 0 (5.3)

These represent conservation of mass, momentum, and energy. Here ρ is the den-
sity, u is the one-dimensional velocity, p is the pressure, and E is the total energy
/ mass, and can be expressed in terms of the specific internal energy and kinetic
energy as:

E = e +
1
2

u2 (5.4)

The equations are closed with the addition of an equation of state. A common
choice is the gamma-law EOS:

p = ρe(γ− 1) (5.5)

where γ is the ratio of specific heats for the gas/fluid (for an ideal, monatomic gas,
γ = 5/3), but any relation of the form p = p(ρ, e) will work.

git version: 6e0249aeeefc . . . 53

54 Chapter 5. Euler Equations

One thing that we can notice immediately is that there is no need for temperature
in this equation set, although often, when source terms are present, we will need
to obtain temperature from the equation of state.

In this form, the equations are said to be in conservative form, i.e. they can be written
as:

Ut + [F(U)]x = 0 (5.6)

with

U =

 ρ
ρu
ρE

 F(U) =

 ρu
ρuu + p

ρuE + up

 (5.7)

We can write this in quasi-linear form by first expressing the flux vector in terms of
the conserved variables directly. Taking u1 = ρ, u2 = ρu, u3 = ρE, we have

F(U) =

u2

u2
2

u1

(
1− γ̂

2

)
+ u3γ̂

u3u2
u1

(1 + γ̂)− 1
2

u3
2

u2
1
γ̂

 (5.8)

where γ̂ = γ− 1, and p = ρeγ̂ = (ρE− ρu2/2)γ̂. The Jacobian of this flux vector
is A = ∂F/∂U:

A(U) =

 0 1 0
− 1

2 u2(3− γ) u(3− γ) γ− 1
1
2 (γ− 2)u3 − uc2

γ−1
3−2γ

2 u2 + c2

γ−1 uγ

 (5.9)

where the speed of sound is c =
√

γp/ρ. With this, our system can be written as:

Ut + A(U)Ux = 0 (5.10)

This matrix is quite complex and difficult to work with. The eigenvectors of this
matrix can be found in a variety of sources (e.g. [51, 48]).

An alternate way to express these equations is using the primitive variables: ρ, u, p.

Exercise 5.1: Show that the Euler equations in primitive form can be writ-
ten as

qt + A(q)qx = 0 (5.11)

where

q =

 ρ
u
p

 A(q) =

 u ρ 0
0 u 1/ρ
0 γp u

 (5.12)

The eigenvalues of A can be found via |A − λI| = 0, where | . . . | indicates the
determinant and λ are the eigenvalues.

5.1—Euler equation properties 55

Exercise 5.2: Show that the eigenvalues of A are λ(−) = u− c, λ(◦) = u,
λ(+) = u + c.

Note that both the conserved Jacobian matrix, A(U), and the primitive variable
matrix, A(q), have the same eigenvalues—as expected, since they represent the
same physics. Also note that in Eq. 5.12, we used the algebraic gamma-law equa-
tion of state to replace e with p, however, for a general equation of state, we can
get the appropriate expression by writing p = p(ρ, s):

Dp
Dt

=
∂p
∂ρ

∣∣∣∣
s

Dρ

Dt
+

∂p
∂s

∣∣∣∣
ρ�
�
�7

0
Ds
Dt

(5.13)

where Ds/Dt is 0 when no entropy sources are present. Recognizing that Γ1 ≡
∂ log p/∂ log ρ|s, we have:

∂p
∂t

+ u
∂p
∂x

+ Γ1 p
∂u
∂x

= 0 (5.14)

as the generalization of the pressure equation.

We’ll use the symbols {−, ◦,+} to denote the eigenvalues and their corresponding
eigenvectors throughout these notes. These eigenvalues are the speeds at which
information propagates through the fluid. Since the eigenvalues are real, this sys-
tem (the Euler equations) is said to be hyperbolic. Additionally, since A = A(q),
the system is said to be quasi-linear. The right and left eigenvectors can be found
via:

A r(ν) = λ(ν)r(ν) ; l(ν) A = λ(ν)l(ν) (5.15)

where ν = {−, ◦,+} corresponding to the three waves, and there is one right and
one left eigenvector for each of the eigenvalues.

Exercise 5.3: Show that the right eigenvectors are:

r(−) =

 1
−c/ρ

c2

 r(◦) =

 1
0
0

 r(+) =

 1
c/ρ
c2

 (5.16)

and the left eigenvectors are:

l(−) =
(

0 − ρ
2c

1
2c2

)
(5.17)

l(◦) =
(

1 0 − 1
c2

)
(5.18)

l(+) =
(

0 ρ
2c

1
2c2

)
(5.19)

Note that in general, there can be an arbitrary constant in front of each eigen-
vector. Here they are normalized such that l(i) · r(j) = δij.

56 Chapter 5. Euler Equations

An IPython notebook using SymPy that derives these is available here: Ï hy-
dro examples: euler.ipynb 1

A final form of the equations is called the characteristic form. Here, we wish to diag-
onalize the matrix A. We take the matrix R to be the matrix of right eigenvectors,
R = (r(−)|r(◦)|r(+)), and L is the corresponding matrix of left eigenvectors:

L =

 l(−)

l(◦)

l(+)

 (5.20)

Note that L R = I = R L, and L = R−1.

Exercise 5.4: Show that Λ = LAR is a diagonal matrix with the diagonal
elements simply the 3 eigenvalues we found above:

Λ =

 λ(−)

λ(◦)

λ(+)

 (5.21)

Defining dw = Ldq, we can write our system as:

wt + Λwx = 0 (5.22)

Here, the w are the characteristic variables. Note that we cannot in general inte-
grate dw = Ldq to write down the characteristic quantities. Since Λ is diagonal,
this system is a set of decoupled advection-like equations. If the system were lin-
ear, then the solution to each would simply be to advect the quantity w(ν) at the
wave speed λ(ν).

Imagine initial conditions consisting of a jump in the primitive variables, ∆q. The
corresponding characteristic variables are ∆w ∼ L∆q (where the ∼ accounts for
the fact that in a nonlinear system, L = L(q)). The characteristic form of the
equations says that each of the waves will carry with it a jump in w. Since dq =
L−1dw = Rdw, the jump in the primitive variable across each wave is proportional
to the right-eigenvector associated with that wave. So, for example, since r(◦) is
only non-zero for the density element, this then means that only density jumps
across the λ(◦) = u wave—pressure and velocity are constant across this wave
(see for example, Toro [51], Ch. 2, 3 or LeVeque [32] for a thorough discussion).
Figure 5.1 shows the three waves emanating from an initial discontinuity.

1if you don’t have IPython, you can view this rendered online via nbviewer:
http://nbviewer.ipython.org/github/zingale/hydro_examples/blob/master/compressible/

euler.ipynb

https://github.com/zingale/hydro_examples/blob/master/compressible/euler.ipynb
http://nbviewer.ipython.org/github/zingale/hydro_examples/blob/master/compressible/euler.ipynb
http://nbviewer.ipython.org/github/zingale/hydro_examples/blob/master/compressible/euler.ipynb

5.1—Euler equation properties 57

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d
e
n
s
it

y

x

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

v
e
lo

c
it

y

x

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

s
s
u
re

x

Figure 5.1: Evolution following from an initial discontinuity at x = 0.5. These
particular conditions are called the Sod problem, and in general, a setup with two
states separated by a discontinuity is called a shock-tube problem. Here we see the
three waves propagating away from the initial discontinuity. The left (u− c) wave
is a rarefaction, the middle (u) is the contact discontinuity, and the right (u + c) is a
shock. Note that all 3 primitive variables jump across the left and right waves, but
only the density jumps across the middle wave. This reflects the right eigenvectors.
Also note that no waves have reached the far left and far right yet, the conditions
there are the same as the initial conditions.

58 Chapter 5. Euler Equations

i i+1i+1/2

U
n+1/2

i+1/2,L
Ui U

n+1/2

i+1/2,R
Ui+1

F(U
n+1/2

i+1/2
)

Figure 5.2: The left and right states at interface i + 1/2. The arrow indicates the
flux through the interface, as computed by the Riemann solver using these states as
input.

5.2 Reconstruction of interface states

We will solve the Euler equations using a high-order Godunov method—a finite vol-
ume method whereby the fluxes through the interfaces are computed by solving
the Riemann problem for our system. The finite-volume update for our system
appears as:

Un+1
i = Un

i +
∆t
∆x

(
Fn+1/2

i−1/2 − Fn+1/2
i+1/2

)
(5.23)

This says that each of the conserved quantities in U change only due to the flux of
that quantity through the boundary of the cell.

Instead of approximating the flux itself on the interface, we find an approximation
to the state on the interface, Un+1/2

i−1/2 and Un+1/2
i+1/2 and use this with the flux function

to define the flux through the interface:

Fn+1/2
i−1/2 = F(Un+1/2

i−1/2) (5.24)

Fn+1/2
i+1/2 = F(Un+1/2

i+1/2) (5.25)

To find this interface state, we predict left and right states at each interface (cen-
tered in time), which are the input to the Riemann solver. The Riemann solver will
then look at the characteristic wave structure and determine the fluid state on the
interface, which is then used to compute the flux. This is illustrated in Figure 5.2.

Finally, although we use the conserved variables for the final update, in construct-
ing the interface states it is often easier to work with the primitive variables. These
have a simpler characteristic structure. The interface states in terms of the primi-
tive variables can be converted into the interface states of the conserved variables
through a simple algebraic transformation,

Un+1/2
i+1/2,L = U(qn+1/2

i+1/2,L) (5.26)

5.2—Reconstruction of interface states 59

ii−1 i+1i−2 i+2

Figure 5.3: Piecewise linear reconstruction of the cell averages. The dotted line
shows the unlimited center-difference slopes and the solid line shows the limited
slopes.

Constructing these interface states requires reconstructing the cell-average data
with a piecewise constant, linear, or parabolic polynomial and doing characteris-
tic tracing to see how much of each characteristic quantity comes to the interface
over the timestep. The jump in the primitive variables is projected into the char-
acteristic variables, and only jumps moving toward the interface are included in
our reconstruction. We look at several methods below that build off of these ideas
below.

5.2.1 Piecewise constant

The simplest possible reconstruction of the data is piecewise constant. This is what
was done in the original Godunov method. For the interface marked by i + 1/2,
the left and right states on the interface are simply:

Ui+1/2,L = Ui (5.27)
Ui+1/2,R = Ui+1 (5.28)

This does not take into account in any way how the state U may be changing
through the cell. As a result, it is first-order accurate in space, and since no attempt
was made to center it in time, it is first-order accurate in time.

5.2.2 Piecewise linear

For higher-order reconstruction, we first convert from the conserved variables, U,
to the primitive variables, q. These have a simpler characteristic structure, making
them easier to work with. Here we consider piecewise linear reconstruction—the
cell average data is approximated by a line with non-zero slope within each cell.
Figure 5.3 shows the piecewise linear reconstruction of some data.

Consider constructing the left state at the interface i + 1/2 (see Figure 5.2). Just
like for the advection equation, we do a Taylor expansion through ∆x/2 to bring
us to the interface, and ∆t/2 to bring us to the midpoint in time. Starting with qi,

60 Chapter 5. Euler Equations

the cell-centered primitive variable, expanding to the right interface (to create the
left state there) gives:

qn+1/2
i+1/2,L = qn

i +
∆x
2

∂q
∂x

∣∣∣∣
i
+

∆t
2

∂q
∂t

∣∣∣∣
i︸︷︷︸

=−A∂q/∂x

+ . . . (5.29)

= qn
i +

∆x
2

∂q
∂x

∣∣∣∣
i
− ∆t

2

(
A

∂q
∂x

)
i

(5.30)

= qn
i +

1
2

[
1− ∆t

∆x
Ai

]
∆qi (5.31)

where ∆qi is the reconstructed slope of the primitive variable in that cell (similar
to how we compute it for the advection equation). We note that the terms trun-
cated in the first line are O(∆x2) and O(∆t2), so our method will be second-order
accurate in space and time.

As with the advection equation, we limit the slope such that no new minima or
maxima are introduced. Any of the slope limiters used for linear advection apply
here as well. We represent the limited slope as ∆qi.

We can decompose A∆q in terms of the left and right eigenvectors and sum over
all the waves that move toward the interface. First, we recognize that A = RΛL
and recognizing that the ‘1’ in Eq. 5.31 is the identity, I = LR, we rewrite this
expression as:

qn+1/2
i+1/2,L = qn

i +
1
2

[
RL− ∆t

∆x
RΛL

]
i
∆qi (5.32)

We see the common factor of L∆q. We now write this back in component form.
Consider:

RΛL∆q =

r(−)1 r(◦)1 r(+)

1

r(−)2 r(◦)2 r(+)
2

r(−)3 r(◦)3 r(+)
3

λ(−)

λ(◦)

λ(+)

l(−)1 l(−)2 l(−)3

l(◦)1 l(◦)2 l(◦)3

l(+)
1 l(+)

2 l(+)
3

∆ρ

∆u

∆p

(5.33)

Starting with L∆q, which is a vector with each component the dot-product of a left
eigenvalue with ∆q, we have

RΛL∆q =

r(−)1 r(◦)1 r(+)

1

r(−)2 r(◦)2 r(+)
2

r(−)3 r(◦)3 r(+)
3

λ(−)

λ(◦)

λ(+)

l(−) · ∆q

l(◦) · ∆q

l(+) · ∆q

 (5.34)

Next we see that multiplying this vector by Λ simply puts the eigenvalue with its

5.2—Reconstruction of interface states 61

respective eigenvector in the resulting column vector:

RΛL∆q =

r(−)1 r(◦)1 r(+)

1

r(−)2 r(◦)2 r(+)
2

r(−)3 r(◦)3 r(+)
3

λ(−) l(−) · ∆q

λ(◦) l(◦) · ∆q

λ(+) l(+) · ∆q

 (5.35)

Finally, the last multiply results in a column vector:

RΛL∆q =

r(−)1 λ(−) l(−) · ∆q + r(◦)1 λ(◦) l(◦) · ∆q + r(+)

1 λ(+) l(+) · ∆q

r(−)2 λ(−) l(−) · ∆q + r(◦)2 λ(◦) l(◦) · ∆q + r(+)
2 λ(+) l(+) · ∆q

r(−)3 λ(−) l(−) · ∆q + r(◦)3 λ(◦) l(◦) · ∆q + r(+)
3 λ(+) l(+) · ∆q

 (5.36)

We can rewrite this compactly as:

∑
ν

λ(ν)(l(ν) · ∆q)r(ν) (5.37)

where we use ν to indicate which wave we are summing over. A similar expansion
is used for RL∆q. In fact, any vector can be decomposed in this fashion:

χ = Iχ = RLχ = ∑
ν

(l(ν) · χ)r(ν) (5.38)

And then it is easy to see that the above manipulations for A∆q can be expressed
as:

A∆q = A ∑
ν

(l(ν) · ∆q)r(ν) = ∑
ν

(l(ν) · ∆q)Ar(ν) = ∑
ν

(l(ν) · ∆q)λ(ν)r(ν) (5.39)

where we used Ar(ν) = λ(ν)r(ν). The quantity (l(ν) · ∆q) that shows up here is
the projection of the vector ∆q into the characteristic variable carried by wave
ν. This sum shows, as discussed earlier, that each wave carries a jump in the
characteristic variable, with the jump in the primitive variables proportion to the
right eigenvector, r(ν).

The resulting vector for the left state is:

qn+1/2
i+1/2,L = qn

i +
1
2 ∑

ν;λ(ν)≥0

[
1− ∆t

∆x
λ
(ν)
i

]
(l(ν)i · ∆qi)r

(ν)
i (5.40)

Note that we make a slight change here, and only include a term in the sum if its
wave is moving toward the interface (λ(ν) ≥ 0). The quantity ∆tλ(ν)/∆x inside
the brackets is simply the CFL number for the wave ν.

Starting with the data in the i + 1 zone and expanding to the left, we can find the
right state on the i + 1/2 interface:

qn+1/2
i+1/2,R = qn

i+1 −
1
2 ∑

ν;λ(ν)≤0

[
1 +

∆t
∆x

λ
(ν)
i+1

]
(l(ν)i+1 · ∆qi+1)r

(ν)
i+1 (5.41)

62 Chapter 5. Euler Equations

A good discussion of this is in Miller & Colella [37] (Eq. 85). This expression is
saying that each wave carries a jump in r(ν) and only those jumps moving toward
the interface contribute to our interface state. This restriction of only summing up
the waves moving toward the interface is sometimes called characteristic tracing.
This decomposition in terms of the eigenvectors and eigenvalues is commonly
called a characteristic projection. In terms of an operator, P, it can be expressed as:

Pχ = ∑
ν

(l(ν).χ)r(ν) (5.42)

Exercise 5.5: Show that Pq = q, using the eigenvectors corresponding to
the primitive variable form of the Euler equations.

In the literature, sometimes a ‘>’ or ‘<’ subscript on P is used to indicate the
characteristic tracing.

We could stop here, but Colella & Glaz [20] (p. 278) argue that the act of decompos-
ing A in terms of the left and right eigenvectors is a linearization of the quasi-linear
system, and we should minimize the size of the quantities that are subjected to this
characteristic projection. To accomplish this, they suggest subtracting off a refer-
ence state. Saltzman (Eq. 8) further argues that since only jumps in the solution are
used in constructing the interface state, and that the characteristic decomposition
simply adds up all these jumps, we can subtract off the reference state and project
the result. In other words, we can write:

qn+1/2
i+1/2,L − qref = qn

i − qref +
1
2

[
1− ∆t

∆x
Ai

]
∆qi (5.43)

Then we subject the RHS to the characteristic projection—this tells us how much
of the quantity qn+1/2

i+1/2,L − qref reaches the interface. Colella & Glaz (p. 278) and
Colella (Eq. 2.11) suggest

qref = q̃i,L ≡ qi +
1
2

[
1− ∆t

∆x
max(λ(+)

i , 0)
]

∆qi (5.44)

where λ(+) is the fastest eigenvalue, and thus will see the largest portion of the
linear profiles. Physically, this reference state represents the jump carried by the
fastest wave moving toward the interface. Then,

qn+1/2
i+1/2,L − q̃i,L =

1
2

∆t
∆x

[
max(λ(+)

i , 0)− Ai

]
∆qi (5.45)

and projecting this RHS (see Colella & Glaz Eq. 43; Miller & Colella Eq. 87), and
isolating the interface state, we have

qn+1/2
i+1/2,L = q̃i,L +

1
2

∆t
∆x ∑

ν;λ(ν)≥0

l(ν)i ·
[
max(λ(+)

i , 0)− Ai

]
∆qi r(ν)i (5.46)

= q̃i,L +
1
2

∆t
∆x ∑

ν;λ(ν)≥0

[
max(λ(+)

i , 0)− λ
(ν)
i

]
(l(ν)i · ∆qi) r(ν)i (5.47)

5.2—Reconstruction of interface states 63

i

qiq
n+1/2

i−1/2,R q
n+1/2

i+1/2,L

Figure 5.4: The two interface states that are constructed using qi as the starting
point.

This is equivalent to the expression in Saltzman [45] (p. 161, first column, second-
to-last equation) and Colella [19] (p. 191, the group of expressions at the end). The
corresponding state to the right of this interface is:

qn+1/2
i+1/2,R = q̃i+1,R +

1
2

∆t
∆x ∑

ν;λ(ν)≤0

[
min(λ(−)

i+1 , 0)− λ
(ν)
i+1

]
(l(ν)i+1 · ∆qi+1) r(ν)i+1 (5.48)

where now the reference state captures the flow from the i + 1 zone moving to the
left to this interface (hence the appearance of λ(−), the leftmost eigenvalue):

q̃i+1,R = qi+1 −
1
2

[
1 +

∆t
∆x

min(λ(−)
i+1 , 0)

]
∆qi+1 (5.49)

Side note: the data in zone i will be used to construct the right state at i − 1/2
(the left interface) and the left state at i + 1/2 (the right interface) (see Figure 5.4).
For this reason, codes usually compute the eigenvectors/eigenvalues for that zone
and then compute qn+1/2

i−1/2,R together with qn+1/2
i+1/2,L in a loop over the zone centers.

5.2.3 Piecewise parabolic

The piecewise parabolic method uses a parabolic reconstruction in each cell. This
is more accurate than the linear reconstruction. Figure 5.5 shows the reconstructed
parabolic profiles within a few cells. Since the original PPM paper [23], there have
been many discussions of the method, with many variations. Here we focus on
the presentation by Miller & Colella [37], since that is the most straightforward.
Note: even though a parabolic profile could be third-order accurate, the temporal
discretization and prediction in this method is still only second-order.

64 Chapter 5. Euler Equations

ii−1 i+1i−2 i+2

Figure 5.5: Piecewise parabolic reconstruction of the cell averages. The dotted line
shows the unlimited parabolas—note how they touch at each interface, since the
interface values come from the same interpolant initially. The solid line shows the
limited parabolas.

Miller & Colella give an excellent description of how to take the results for piece-
wise linear reconstruction and generalize it to the case of PPM [23] (see Eqs. 88-90).
Starting with Eq. 5.43, we can write this (after the characteristic projection) as

qn+1/2
i+1/2,L = q̃+ − ∑

ν;λ(ν)≥0

l(ν)i ·
{

q̃+ −
[

qn
i +

1
2

(
1− ∆t

∆x
λ
(ν)
i

)
∆qi

]}
r(ν)i (5.50)

Miller & Colella rewrite the portion inside the [. . .] recognizing that (similar to
M&C Eq. 88, but for the i + 1/2, L interface):

qn
i +

1
2

(
1− ∆t

∆x
λ
(ν)
i

)
∆qi ≈

1
λ∆t

∫ xi+1/2

xi+1/2−λ∆t
q(x)dx (5.51)

where q(x) is the reconstructed functional form of q in the zone.

Exercise 5.6: Show that this is exactly true for a linear reconstruction of
q(x), i.e., q(x) = qi + (∂q/∂x)(x− xi).

The integral on the right represents the average of q that can reach the right inter-
face of the cell i over timestep ∆t, moving at the wavespeed λ. This suggests that
we can replace the linear reconstruction of q with a parabolic one, and keep our
expressions for the interface states.

In particular, we define

I (ν)+ (qi) =
1

σ(ν)∆x

∫ xi+1/2

xi+1/2−σ(ν)∆x
q(x)dx (5.52)

with σ(ν) = |λ(ν)|∆t/∆x (see Almgren et al. Eq. 31) (see Figure 5.6). Then

qn+1/2
i+1/2,L = q̃+ − ∑

ν;λ(ν)≥0

l(ν)i ·
(

q̃+ − I (ν)+ (qi)
)

r(ν)i (5.53)

5.2—Reconstruction of interface states 65

i i+1

σ
(ν)
i ∆x

I(ν)+

Figure 5.6: Integration under the parabolic profile. For each of the waves, σ(ν) is
the fraction of the cell that they cross in a timestep, and σ(ν)∆x = λ(ν)∆t is the
distance they can travel. Here we are integrating under the parabola to the right

interface of cell i to define I (ν)+ (this is indicated by the shaded region). The I (ν)+
carried by this wave will be added to those carried by the other waves to form the
left state at interface i + 1/2.

Miller & Colella choose the reference state as

q̃+ =

{
I (+)
+ (qi) if u + c > 0

qi otherwise
(5.54)

where the superscript (+) on I indicates that the fastest eigenvalue (λ(+) = u + c)
is used. This is similar in spirit to Eq. 5.44. Note: in the original PPM paper, if the
wave is not approaching the interface, instead of using the cell-average, qi, they
use the limit of the quadratic interpolant. In contrast to the above, the Castro pa-
per [2] just uses qi for the reference state regardless of whether the wave is moving
toward or away from the interface. Note that if the system were linear, then the
choice of reference state would not matter.

To finish the reconstruction, we need to know the parabolic form of q(x). Here,
we do the reconstruction from the original PPM paper:

q(x) = q− + ξ(x) (∆q + q6(1− ξ(x))) (5.55)

with ∆q = q+ − q−, and q−, q+ the values of the polynomial on the left and right
edges, respectively, of the current cell, and

q6 ≡ 6
[

qi −
1
2
(q− + q+)

]
(5.56)

and
ξ(x) =

x− xi−1/2

∆x
(5.57)

66 Chapter 5. Euler Equations

To complete the description, we need to determine the parameters of the parabola.
The values of q− and q+ are computed and limited as described in the original
PPM paper. With this definition, we can do the integral I+:

I (ν)+ (qi) = q+,i −
σ
(ν)
i
2

[
∆qi − q6,i

(
1− 2

3
σ
(ν)
i

)]
(5.58)

Figure 5.6 illustrates the process of integrating under the parabolic profile.

Exercise 5.7: Show that q(x) is a conservative interpolant. That is

1
∆x

∫ xi+1/2

xi−1/2

q(x)dx = qi (5.59)

You can also see that the average over the left half of the zone is qi − 1
4 ∆q and

the average over the right half of the zone is qi +
1
4 ∆q. This means that there

are equal areas between the integral and zone average on the left and right
sides of the zone. This can be seen by looking at Figure 5.5.

Aside: Note that this characteristic projection of q̃+ − I (ν)+ is discussed
in the original PPM paper in the paragraph following Eq. 3.5. They
do not keep things in this form however, and instead explicitly mul-
tiply out the l · [. . .]r terms to arrive at Eq. 3.6. For example, starting
with Eq. 5.53, we can write the left velocity state as (leaving off the i
subscripts on the vectors):

un+1/2
i+1/2,L = ũ+ −∑

ν

l(ν) · (q̃+ − I (ν)+ (q)) r(ν)︸︷︷︸
only the
u ‘slot′

(5.60)

(where, as above, the ∼ indicates the reference state). Here the r eigen-
vector on the end is representative—we only pick the row correspond-
ing to u in the q vector (in our case, the second row).

Putting in the eigenvectors and writing out the sum, we have:

un+1/2
i+1/2,L = ũ+ −

(
0 − ρ

2c
1

2c2

) ρ̃+ − I (−)+ (ρ)

ũ+ − I (−)+ (u)
p̃+ − I (−)+ (p)

 1
−c/ρ

c2

−
(

1 0 − 1
c2

) ρ̃+ − I (◦)+ (ρ)

ũ+ − I (◦)+ (u)
p̃+ − I (◦)+ (p)

 1

0
0

−
(

0 ρ
2c

1
2c2

) ρ̃+ − I (+)
+ (ρ)

ũ+ − I (+)
+ (u)

p̃+ − I (+)
+ (p)

 1

c/ρ
c2

 (5.61)

5.2—Reconstruction of interface states 67

Here again we show the entire right eigenvector for illustration, but
only the element that comes into play is drawn in black. This shows
that the second term is 0—the contact wave does not carry a jump in
velocity. Multiplying out l(ν) · (q̃+ − I (ν)+) we have:

un+1/2
i+1/2,L = ũ+ −

1
2

[
(ũ+ − I (−)+ (u))−

p̃+ − I (−)+ (p)
C

]

− 1
2

[
(ũ+ − I (+)

+ (u)) +
p̃+ − I (+)

+ (p)
C

]
(5.62)

where C is the Lagrangian sound speed (C =
√

γpρ). Defining

β+ = − 1
2C

[
(ũ+ − I (+)

+ (u)) +
p̃+ − I (+)

+ (p)
C

]
(5.63)

β− = +
1

2C

[
(ũ+ − I (−)+ (u))−

p̃+ − I (−)+ (p)
C

]
(5.64)

we can write our left state as:

un+1/2
i+1/2,L = ũ+ + C(β+ − β−) (5.65)

This is Eqs. 3.6 and 3.7 in the PPM paper. Note that in their construction
appears to use the reference state in defining the Lagrangian sound
speed (in their β expressions is written as C̃). This may follow from
the comment before Eq. 3.6, “modified slightly for the present applica-
tion”. Similarly, the expressions for ρL and pL can be written out.

Similar expressions can be derived for the right state at the left interface of the
zone (qn+1/2

i−1/2,R). Here, the integral under the parabolic reconstruction is done over
the region of each wave that can reach the left interface over our timestep:

I (ν)− (q) =
1

σ(ν)∆x

∫ xi−1/2+σ(ν)∆x

xi−1/2

q(x)dx (5.66)

The right state at i− 1/2 using zone i data is:

qn+1/2
i−1/2,R = q̃− − ∑

ν;λν≤0
l(ν)i ·

(
q̃− − I (ν)− (qi)

)
r(ν)i (5.67)

where the reference state is now:

q̃− =

{
I (−)− (qi) if u− c < 0

qi otherwise
(5.68)

68 Chapter 5. Euler Equations

where the (−) superscript on I indicates that the most negative eigenvalue (λ− =

u− c) is used. The integral I (ν)− (q) can be computed analytically by substituting
in the parabolic interpolant, giving:

I (ν)− (qi) = q−,i +
σ
(ν)
i
2

[
∆qi + q6,i

(
1− 2

3
σ
(ν)
i

)]
(5.69)

This is equivalent to Eq. 31b in the Castro paper.

New PPM limiters

Recent work [22] has formulated improved limiters for PPM that do not clip the
profiles at extrema. This only changes the limiting process in defining q+ and qi,
and does not affect the subsequent parts of the algorithm.

5.3 The Riemann problem

Once the interface states are created, the Riemann solver is called. This returns the
solution at the interface:

qn+1/2
i+1/2 = R(qn+1/2

i+1/2,L, qn+1/2
i+1/2,R) (5.70)

Solving the Riemann problem for the Euler equations can be a complex operation,
but the general ideas are straightforward. Here we review the basic outline of
operations, and refer to Toro [51] for full details on a variety of methods for solving
the Riemann problem.

The Riemann problem consists of a left and right state separated by an interface.
For the Euler equations, there are three eigenvalues, which are the speeds at which
information propagates. Each of these correspond to a wave that will move out
from the interface with time, and each wave will carry with it a jump in the char-
acteristic variables. The figure below shows the three waves moving out from the
interface, separating space into 4 regions, marked: L, L∗, R∗, and R. We typically
work in terms of primitive variables. The states in the L and R regions are simply
the left and right input states—the waves have not had time to reach here, so they
are unmodified.

The left and right states are connected to the state in the star region by a Hugoniot
curve—this is a curve in the u-p plane that shows all of the possible states one
can reach from the current state through either a shock or rarefaction. There are
two such curves, one corresponding to the left and one to the right state, and the
solution to the Riemann problem is the point in the u-p plane where these two
curves intersect. Figure 5.8 shows the Hugoniot curves for the Sod problem.

5.3—The Riemann problem 69

ii−1

λ(−) =u−c λ(◦) =u λ(+) =u+c

L

L ∗ R ∗

R

Figure 5.7: The wave structure and 4 distinct regions for the Riemann problem.
Time can be thought of as the vertical axis here, so we see the waves moving out-
ward from the interface.

We are interested in the state at the interface. To determine this, we need to de-
termine which region we are in. That requires an estimation of the wave speeds.
Since these are nonlinear waves, we cannot in general just use the eigenvalues
(although some approximate solvers do). Different Riemann solvers will have dif-
ferent approximations for finding the speeds of the left, center, and right wave.
Note the figure shows only one possible configuration for the waves—they can
all be on one side of the interface (for all supersonic waves), or the contact (the
middle wave) can be on either side.

Once the wave speeds are known, we look at the sign of the speeds to determine
which of the 4 regions is on the interface. In the ‘star’ region, only ρ jumps across
the middle (contact) wave, the pressure and velocity are constant across that wave
(see r(◦)). We determine the state in the star region (ρ∗l , ρ∗r , u∗, p∗) by using the
jump conditions for the Euler equations. In general, these differ depending on
whether the waves are shocks or rarefactions. In practice, approximate Riemann
solvers often assume one or the other (for example, the two-shock Riemann solver
used in [20]). With the wave speeds and the states known in each region, we can
evaluate the state on the interface, qn+1/2

i+1/2 .

Recall that a rarefaction involves diverging flow—it spreads out with time. Spe-
cial consideration needs to be taken if the rarefaction wave spans the interface (a
transonic rarefaction). In this case, most Riemann solvers interpolate between the
left or right state and the appropriate star state.

70 Chapter 5. Euler Equations

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
p

−6

−4

−2

0

2

4

6

8

u

leftright

shock
rarefaction

Figure 5.8: The Hugoniot curves corresponding to the Sod problem. The shock and
rarefaction curves are shown. The solution to the Riemann problem is the point
where the curves intersect.
Ï hydro examples: riemann-phase.py

Then the fluxes are computed from this state as:

Fn+1/2
i+1/2 =

ρn+1/2

i+1/2 un+1/2
i+1/2

ρn+1/2
i+1/2 (u

n+1/2
i+1/2)

2 + pn+1/2
i+1/2

un+1/2
i+1/2 pn+1/2

i+1/2 /(γ− 1) + 1
2 ρn+1/2

i+1/2 (u
n+1/2
i+1/2)

3 + un+1/2
i+1/2 pn+1/2

i+1/2

 (5.71)

Note that instead of returning an approximate state at the interface, some Riemann
solvers (e.g. the HLL(C) solvers) instead approximate the fluxes directly. These
use estimates of the wave speeds together with the Rankine-Hugoniot jump con-
ditions to give the fluxes.

5.4 Conservative update

Once we have the fluxes, the conservative update is done as

Un+1
i = Un

i +
∆t
∆x

(
Fn+1/2

i−1/2 − Fn+1/2
i+1/2

)
(5.72)

https://github.com/zingale/hydro_examples/blob/master/compressible/riemann-phase.py

5.5—Other Thermodynamic Equations 71

The timestep, ∆t is determined by the time it takes for the fastest wave to cross a
single zone:

∆t < max
i

∆x
|ui|+ c

(5.73)

5.5 Other Thermodynamic Equations

At times we will want to use alternate forms of the energy equation. The internal
energy is governed by the first law of thermodynamics. In the absence of any heat
sources, we have:

dq = 0 = de + pd(1/ρ) (5.74)

where e is the specific internal energy. Applying this to a Lagrangian fluid element,
we have:

De
Dt

+ p
D(1/ρ)

Dt
= 0 (5.75)

De
Dt
− 1

ρ2
Dρ

Dt
= 0 (5.76)

ρ
De
Dt

+ p∇ ·U = 0 (5.77)

where we used the continuity equation in the last step to eliminate Dρ/Dt. This
can be rewritten by adding e× the continuity equation to give:

∂(ρe)
∂t

+∇ · (ρUe) + p∇ ·U = 0 (5.78)

5.5.1 Eigensystem with Temperature

Here we illustrate how the eigensystem changes when we replace pressure with
temperature in our primitive variable system.

We write this set of variables as q̂ = (τ, u, T)ᵀ—note that we keep τ instead of
ρ here. The motivation for this comes from the fact that with temperature in the
mix, the temperature will jump across the contact wave. Since pressure should be
constant across the contact, and, even with the general EOS, a temperature jump
needs a density drop for pressure to remain constant, τ should counteract the
behavior of T across the contact.

The temperature evolution equation appears as:

∂T
∂t

= −u
∂T
∂x

+
1

ρcp

[
(1− ρhp)

Dp
Dt

]
(5.79)

(see, e.g. [5]) where cp is the specific heat at constant pressure, cp = ∂h/∂T|p and
hp ≡ ∂h/∂p|T, with h = e + p/ρ the specific enthalpy. We can use the standard

72 Chapter 5. Euler Equations

pressure evolution equation (Eq. ??) to eliminate the Lagrangian pressure term,
resulting in:

∂T
∂t

= −u
∂T
∂x
− η

∂u
∂x

(5.80)

where we defined

η ≡
1− ρhp

cp
c2 (5.81)

The density equation remains unchanged from the traditional primitive variable
formulation, but for the velocity, we need to write the ∂p/∂x term in terms of q̂.
We do this via the chain rule. We define pρ ≡ ∂p/∂ρ|T and pT ≡ ∂p/∂T|ρ, then
our velocity equation is:

∂u
∂t

+ u
∂u
∂x
−

pρ

τ

∂τ

∂x
+ τpT

∂T
∂x

= 0 (5.82)

Note that here we neglected any composition dependence in the EOS.

Our primitive variable system in matrix form is then:

q̂t + Âq̂x = 0 (5.83)

with

Â(q̂) =

u −τ 0

−
pρ

τ
u τpT

0 η u

 (5.84)

The eigenvalues can be found through the characteristic polynomial, |Â−λI| = 0:

(u− λ)3 − (u− λ)
(

pTητ + pρ

)
= 0 (5.85)

We can simplify the last term in parenthesis:

pTητ + pρ =
pT(1− ρhp)c2

ρcp
+ pρ =

c2

cp

(
ppT

ρ2 pρ
−

pTeρ

pρ

)
+ pρ (5.86)

where we substituted in

hp =
1
ρ

(
1− p

ρpρ

)
+

eρ

pρ
(5.87)

(see [5], appendix A) where eρ = ∂e/∂ρ|T. The term in parenthesis in Eq. 5.86 is
simply cp − cv ([24], Eq. 9.81) where cv is the specific heat at constant volume, and
Eq. 5.86 further reduces to:

pTητ + pρ =
c2

cp
(cp − cv) + pρ = c2 − c2 χp

Γ1
+ pρ = c2 (5.88)

5.5—Other Thermodynamic Equations 73

where we used cv/cp = χp/Γ1 and χp = ρpρ/p ([24], Eqs. 9.87, 9.82). Putting this
into our characteristic polynomial, we see that the eigenvalues are, as expected,
λ = u, u± c. It is also useful to note that

η =
c2 − pρ

τpT
(5.89)

We construct the left and right eigenvectors such that they are orthonormal, and
find:

R̂ =

1 1 1

c/τ 0 −c/τ

−(c2 − pρ)/τ2 pT pρ/τ2 pT −(c2 − pρ)/τ2 pT

 (5.90)

and

L̂ =

 pρ/2c2 τ/2c −τ2 pT/2c2

1− pρ/c2 0 τ2 pT/c2

pρ/2c2 −τ/2c −τ2 pT/2c2

 (5.91)

We note that all thermodynamic derivatives are expressed in terms of ρ or T with
the other quantity held constant. This is in the form we expect a (T, ρ)-based
EOS to return derivatives. Notice also that the temperature jumps across the (◦)
wave (the contact discontinuity; this is seen from the non-zero value in r̂(◦) for the
temperature).

We write:

β̂
(−)
s ≡ (l̂(−) · ∆q̂(−)) =

1
2C

(
ρ2 pρ

C
∆τ(−) + ∆u(−) − pT

C
∆T(−)

)
(5.92)

β̂
(◦)
s ≡ (l̂(◦) · ∆q̂(◦)) = ∆τ(◦) +

1
C2

(
−ρ2 pρ∆τ(◦) + pT∆T(◦)

)
(5.93)

β̂
(+)
s ≡ (l̂(+) · ∆q̂(+)) =

1
2C

(
ρ2 pρ

C
∆τ(+) − ∆u(+) − pT

C
∆T(+)

)
(5.94)

Note that since pτ = −ρ2 pρ, we can form a ∆p(ν) as

∆p(ν) = pτ∆τ(ν) + pT∆T(ν) (5.95)

and then we see that the β̂(ν)’s above have the same functional form as the β̊(ν)

from the q̊ = (τ, u, p, e)ᵀ eigensystem. This is no surprise, since the l · ∆q are the
characteristic variables of the Euler equations. The numerical values will differ
though, because the β̂(ν) and β̊(ν) use different reference states and reconstructed
variables.

Finally, we can write out the interface states:

τs = τ̃ − (β̂(−) + β̂(◦) + β̂(+)) (5.96)

us = ũ− (Cβ̂(−) − Cβ̂(+)) (5.97)

Ts = T̃ − 1
pT

{[
−C2 β̂(−) − C2 β̂(+)

]
+ ρ2 pρ

[
β̂(−) + β̂(◦) + β̂(+)

]}
(5.98)

74 Chapter 5. Euler Equations

For Ts, we recognize the first quantity in the square brackets as being the same as
−(ps − p̃) in the q̊ system, and the second term in the square brackets being the
same as −(τs − τ̃) in the q̊ system, then we see

pT(Ts − T̃) ≈ (ps − p̃)− pτ(τs − τ̃) (5.99)

which is what we would expect for jumps in p when applying the chain rule.
Note that this is not a strict equality, since the reference states and interpolation
between the two eigensystems are different. Nevertheless, this demonstrates the
connection between the two methods.

The above did not consider variations in the composition of the fluid. Multiple
species complicate things—now the replacement of the pressure gradient picks
up a composition gradient term. The eigensystem will change with this addition.
We don’t explore this here at this time.

5.6 Multidimensional problems

The multidimensional case is very similar to the multidimensional advection prob-
lem. Our system of equations is now:

Ut + [F(x)(U)]x + [F(y)(U)]y = 0 (5.100)

with

U =

ρ

ρu
ρv
ρE

 F(x)(U) =

ρu

ρuu + p
ρvu

ρuE + up

 F(y)(U) =

ρv

ρvu
ρvv + p

ρvE + vp

(5.101)

We note that there is no transformation that can convert the multidimensional sys-
tem into characteristic variables, since we cannot simultaneously diagonalize the
Jacobians corresponding to F(x) and F(y). Related to this is that when limiting, we
limit one-dimensional slopes instead of doing a full multidimensional reconstruc-
tion and limiting (see [10] for a multidimensional limiting procedure for linear
advection. For the Euler equations, since we cannot write the multidimensional
system in a characteristic form, we cannot use this type of method).

For a directionally-unsplit discretization, we predict the cell-centered quantities to
the edges by Taylor expanding the conservative state, U, in space and time. Now,
when replacing the time derivative (∂U/∂t) with the divergence of the fluxes, we
gain a transverse flux derivative term. For example, predicting to the upper x edge

5.6—Multidimensional problems 75

of zone i, j, we have:

Un+1/2
i+1/2,j,L = Un

i,j +
∆x
2

∂U
∂x

+
∆t
2

∂U
∂t

+ . . . (5.102)

= Un
i,j +

∆x
2

∂U
∂x
− ∆t

2
∂F(x)

∂x
− ∆t

2
∂F(y)

∂y
(5.103)

= Un
i,j +

1
2

[
1− ∆t

∆x
A(x)(U)

]
∆U − ∆t

2
∂F(y)

∂y
(5.104)

where A(x)(U) ≡ ∂F(x)/∂U. We decompose this into a normal state and a transverse
flux difference. Adopting the notation from Colella (1990), we use Û to denote the
normal state:

Ûn+1/2
i+1/2,j,L ≡ Un

i,j +
1
2

[
1− ∆t

∆x
A(x)(U)

]
∆U (5.105)

Un+1/2
i+1/2,j,L = Ûn+1/2

i+1/2,j,L −
∆t
2

∂F(y)

∂y
(5.106)

The primitive variable form for this system is

qt + A(x)(q)qx + A(y)(q)qy = 0 (5.107)

where

q =

ρ
u
v
p

 A(x)(q) =

u ρ 0 0
0 u 0 1/ρ
0 0 u 0
0 γp 0 u

 A(y)(q) =

v 0 ρ 0
0 v 0 0
0 0 v 1/ρ
0 0 γp v

(5.108)

There are now 4 eigenvalues. For A(x)(q), they are u− c, u, u, u + c. If we just look
at the system for the x evolution, we see that the transverse velocity (in this case,
v) just advects with velocity u, corresponding to the additional eigenvalue.

Exercise 5.8: Derive the form of A(x)(q) and A(y)(q) and find their left
and right eigenvectors.

We note here that Ûn+1/2
i+1/2,j,L is essentially one-dimensional, since only the x-fluxes

are involved (through A(x)(U)). This means that we can compute this term using
the one-dimensional techniques developed in § 5.2. In particular, Colella (1990)
suggest that we switch to primitive variables and compute this as:

Ûn+1/2
i+1/2,j,L = U(q̂n+1/2

i+1/2,j,L) (5.109)

Similarly, we consider the system projected along the y-direction to define the nor-
mal states on the y-edges, again using the one-dimensional reconstruction on the
primitive variables from § 5.2:

Ûn+1/2
i,j+1/2,L = U(q̂n+1/2

i,j+1/2,L) (5.110)

76 Chapter 5. Euler Equations

To compute the full interface state (Eq. 5.106), we need to include the transverse
term. Colella (1990) gives two different procedures for evaluating the transverse
fluxes. The first is to simply use the cell-centered Ui,j (Colella 1990, Eq. 2.13);
the second is to use the reconstructed normal states (the Û’s) (Eq. 2.15). In both
cases, we need to solve a transverse Riemann problem to find the true state on the
transverse interface. This latter approach is what we prefer. In particular, for
computing the full x-interface left state, Un+1/2

i+1/2,j,L, we need the transverse (y) states,
which we define as

UT
i,j+1/2 = R(Ûn+1/2

i,j+1/2,L, Ûn+1/2
i,j+1/2,R) (5.111)

UT
i,j−1/2 = R(Ûn+1/2

i,j−1/2,L, Ûn+1/2
i,j−1/2,R) (5.112)

Taken together, the full interface state is now:

Un+1/2
i+1/2,j,L = U(q̂n+1/2

i+1/2,j,L)−
∆t
2

F(y)(UT
i,j+1/2)− F(y)(UT

i,j−1/2)

∆y
(5.113)

The right state at the i + 1/2 interface can be similarly computed (starting with the
data in zone i + 1, j and expanding to the left) as:

Un+1/2
i+1/2,j,R = U(q̂n+1/2

i+1/2,j,R)−
∆t
2

F(y)(UT
i+1,j+1/2)− F(y)(UT

i+1,j−1/2)

∆y
(5.114)

Note the indices on the transverse states—they are now to the right of the interface
(since we are dealing with the right state).

We then find the x-interface state by solving the Riemann problem normal to our
interface:

Un+1/2
i+1/2,j = R(U

n+1/2
i+1/2,j,L, Un+1/2

i+1/2,j,R) (5.115)

Therefore, construction of the interface states now requires two Riemann solves: a
transverse and normal one. The fluxes are then evaluated as:

F(x),n+1/2
i+1/2,j = F(x)(Un+1/2

i+1/2,j) (5.116)

Note, for multi-dimensional problems, in the Riemann solver, the transverse ve-
locities are simply selected based on the speed of the contact, giving either the left
or right state.

The final conservative update is done as:

Un+1
i,j = Un

i,j +
∆t
∆x

(
F(x),n+1/2

i−1/2,j − F(x),n+1/2
i+1/2,j

)
+

∆t
∆y

(
F(y),n+1/2

i,j−1/2 − F(y),n+1/2
i,j+1/2

)
(5.117)

5.7—Boundary conditions 77

5.7 Boundary conditions

Boundary conditions are implemented through ghost cells. The following are the
most commonly used boundary conditions. For the expressions below, we use the
subscript lo to denote the spatial index of the first valid zone in the domain (just
inside the left boundary).

• Outflow: the idea here is that the flow should gracefully leave the domain.
The simplest form is to simply give all variables a zero-gradient:

ρlo−1,j
(ρu)lo−1,j
(ρv)lo−1,j
(ρE)lo−1,j

 =

ρlo,j

(ρu)lo,j
(ρv)lo,j
(ρE)lo,j

 (5.118)

Note that these boundaries are not perfect. At the boundary, one (or more)
of the waves from the Riemann problem can still enter the domain. Only for
supersonic flow, do all waves point outward.

• Reflect: this is appropriate at a solid wall or symmetry plane. All variables are
reflected across the boundary, with the normal velocity given the opposite
sign. At the x-boundary, the first ghost cell is:

ρlo−1,j
(ρu)lo−1,j
(ρv)lo−1,j
(ρE)lo−1,j

 =

ρlo,j

−(ρu)lo,j
(ρv)lo,j
(ρE)lo,j

 (5.119)

The next is:
ρlo−2,j

(ρu)lo−2,j
(ρv)lo−2,j
(ρE)lo−2,j

 =

ρlo+1,j

−(ρu)lo+1,j
(ρv)lo+1,j
(ρE)lo+1,j

 (5.120)

and so on . . .

• Inflow: inflow boundary conditions specify the state directly on the bound-
ary. Technically, this state is on the boundary itself, not the cell-center. This
can be accounted for by modifying the stencils used in the reconstruction
near inflow boundaries.

• Hydrostatic: a hydrostatic boundary can be used at the base of an atmosphere
to provide the pressure support necessary to hold up the atmosphere against
gravity while still letting acoustic waves pass through. An example of this is
described in [56].

78 Chapter 5. Euler Equations

5.8 Higher Order

In the methods above, we predicted a time-centered interface state and used this to
evaluate the fluxes through the interface. There are alternate techniques however.
For instance, we could do a method of lines approach where we discretize the
system in space, leading to a system of ODEs in time, and the we can use a Runge-
Kutta integrator to evolve the system in time.

Discretizing our system in space leads to the following system:

dUi,j

dt
= −

F(x)(Ui+1/2,j)− F(x)(Ui−1/2,j)

∆x
−

F(y)(Ui,j+1/2)− F(y)(Ui,j−1/2)

∆y
(5.121)

Note that there is no time superscript in the U used to evaluate the fluxes on the
righthand side—we have not done any time discretization yet. Now we can use
an ODE integrator to solve this system.

Consider second-order Runge-Kutta. We evaluate two slopes,

k1 = ∆t
[
−

F(x)(Un
i+1/2,j)− F(x)(Un

i−1/2,j)

∆x

−
F(y)(Un

i,j+1/2)− F(y)(Un
i,j−1/2)

∆y

]
(5.122)

k2 = ∆t
[
−

F(x)([Un + k1/2]i+1/2,j)− F(x)([Un + k1/2]i−1/2,j)

∆x

−
F(y)([Un + k1/2]i,j+1/2)− F(y)([Un + k1/2]i,j−1/2)

∆y

]
(5.123)

and then
Un+1

i,j = Un
i,j + k2 (5.124)

In the construction of the interface states, Un
i+1/2,j or [Un + k1/2]i+1/2,j, there is

no explicit transverse term, since that arose from Taylor expanding Un
i,j in time

through ∆t/2. Instead, we simply construct these interface states using a one-
dimensional reconstruction and solve a Riemann problem at each interface. The
evaluation of the second slope, k2, implicitly includes the transverse information
since we add k1/2 to Un

i,j before doing the prediction to the interfaces. Also note,
however, that in this construction of the interface states, there is no characteristic
projection, since that arises from predicting the interface states forward in time.
Again, these interface states are at a constant time, not predicted into the future.

Generally speaking we want the order of accuracy in time to match that in space.
The fourth-order Runge-Kutta method is a popular method for integrating ODEs,
so it makes sense to couple this with a fourth-order-in-space method. However,
going higher-order than second-order is more challenging. The key issue is that

5.9—Going further 79

we can no longer simply approximate the cell average as the cell-center value, i.e.,
〈φ〉i 6= φi. This comes into play, for instance, in translating between the conserved
and primitive variables. A fully fourth-order method is presented in [36]

An additional complexity arises when doing multiphysics. Often we split the dif-
ferent physical processes up and treat them in turn. There are standard methods
to do this with second-order accuracy in time, but higher-order is more tricky.

5.9 Going further

5.9.1 Flattening and Contact Steepening

Shocks are self-steepening (this is how we detect them in the Riemann solver—we
look for converging characteristics). This can cause trouble with the methods here,
because the shocks may become too steep.

Flattening is a procedure to add additional dissipation at shocks, to ensure that
they are smeared out over∼ 2 zones. The flattening procedure is a multi-dimensional
operation that looks at the pressure and velocity profiles and returns a coefficient,
χ ∈ [0, 1] that multiplies the limited slopes. The convention most sources use is
that χ = 1 means no flattening (the slopes are unaltered), while χ = 0 means com-
plete flattening—the slopes are zeroed, dropping us to a first-order method. See
for example in Saltzman [45]. Once the flattening coefficient is determined, the
interface state is blended with the cell-centered value via:

qn+1/2
i+1/2,{L,R} ← (1− χ)qi + χqn+1/2

i+1/2,{L,R} (5.125)

Note that the flattening algorithm increases the stencil size of piecewise-linear and
piecewise-parabolic reconstruction to 4 ghost cells on each side. This is because
the flattening procedure itself looks at the pressure 2 zones away, and we need to
construct the flattening coefficient in both the first ghost cell (since we need the
interface values there) and the second ghost cell (since the flattening procedure
looks at the coefficients in its immediate upwinded neighbor).

In contrast to shocks, contact waves do not steepen (they are associated with the
middle characteristic wave, and the velocity does not change across that, meaning
there cannot be any convergence). The original PPM paper advocates a contact
steepening method to artificially steepen contact waves. While it shows good re-
sults in 1-d, it can be problematic in multi-dimensions.

Overall, the community seems split over whether this term should be used. Many
people advocate that if you reach a situation where you think contact steepening
may be necessary, it is more likely that the issue is that you do not have enough
resolution.

80 Chapter 5. Euler Equations

5.9.2 Artificial viscosity

Colella and Woodward argue discuss that behind slow-moving shocks these meth-
ods can have oscillations. The fix they propose is to use some artificial viscosity—
this is additional dissipation that kicks in at shocks. (They argue that flattening
alone is not enough).

We use a multidimensional analog of their artificial viscosity ([23], Eq. 4.5) which
modifies the fluxes. By design, it only kicks in for converging flows, such that you
would find around a shock.

5.9.3 Species

For multifluid flows, the Euler equations are augments with continuity equations
for each of the (chemical or nuclear) species:

∂(ρXk)

∂t
+

∂(ρXku)
∂x

= 0 (5.126)

here, Xk are the mass fractions and obey ∑k Xk = 1. Using the continuity equation,
we can write this as an advection equation:

∂Xk

∂t
+ u

∂Xk

∂x
= 0 (5.127)

When we now consider our primitive variables: q = (ρ, u, p, Xk), we find

A(q) =

u ρ 0 0
0 u 1/ρ 0
0 γp u 0
0 0 0 u

 (5.128)

There are now 4 eigenvalues, with the new one also being simply u. This says that
the species simply advect with the flow. The right eigenvectors are now:

r(1) =

1
−c/ρ

c2

0

 r(2) =

1
0
0
0

 r(3) =

0
0
0
1

 r(4) =

1

c/ρ
c2

0

(5.129)

corresponding to λ(1) = u− c, λ(2) = u, λ(3) = u, and λ(4) = u + c. We see that for
the species, the only non-zero element is for one of the u eigenvectors. This means
that Xk only jumps over this middle wave. In the Riemann solver then, there is no
‘star’ state for the species, it just jumps across the contact wave.

To add species into the solver, you simply need to reconstruct Xk as described
above, find the interface values using this new A(q) and associated eigenvectors,
solve the Riemann problem, with Xk on the interface being simply the left or right

5.9—Going further 81

state depending on the sign of the contact wave speed, and do the conservative
update for ρXk using the species flux.

One issue that can arise with species is that even if ∑k Xk = 1 initially, after the
update, that may no longer be true. There are a variety of ways to handle this:

• You can update the species, (ρXk) to the new time and then define the den-
sity to be ρ = ∑k(ρXk)—this means that you are not relying on the value of
the density from the mass continuity equation itself.

• You can force the interface states of Xk to sum to 1. Because the limiting is
non-linear, this is where problems can arise. If the interface values of Xk are
forced to sum to 1 (by renormalizing), then the updated cell-centered value
of Xk will as well. This is the approach discussed in [43].

• You can design the limiting procedure to preserve the summation property.
This approach is sometimes taken in the combustion field. For piecewise
linear reconstruction, this can be obtained by computing the limited slopes
of all the species, and taking the most restrictive slope and applying this
same slope to all the species.

5.9.4 Source terms

Adding source terms is straightforward. For a system described by

Ut + [F(x)(U)]x + [F(y)(U)]y = H (5.130)

we predict to the edges in the same fashion as described above, but now when we
replace ∂U/∂t with the divergence of the fluxes, we also pick up the source term.
This appears as:

Un+1/2
i+1/2,j,L = Un

i,j +
∆x
2

∂U
∂x

+
∆t
2

∂U
∂t

+ . . . (5.131)

= Un
i,j +

∆x
2

∂U
∂x
− ∆t

2
∂F(x)

∂x
− ∆t

2
∂F(y)

∂y
+

∆t
2

Hi,j (5.132)

= Un
i,j +

1
2

[
1− ∆t

∆x
A(x)(U)

]
∆U − ∆t

2
∂F(y)

∂y
+

∆t
2

Hi,j (5.133)

We can compute things as above, but simply add the source term to the Û’s and
carry it through.

Note that the source here is cell-centered. This expansion is second-order accurate.
This is the approach outlined in Miller & Colella [37].

The original PPM paper does things differently. They construct a parabolic profile
of g in each zone and integrate under that profile to determine the average g car-
ried by each wave to the interface. Finally, they include the gravitational source

82 Chapter 5. Euler Equations

term in the characteristic projection itself. To see this, write our system in primitive
form as:

qt + A(q)qx = G (5.134)

where G = (0, g, 0)T—i.e. the gravitational source only affects u, not ρ or p. Note
that in the PPM paper, they put G on the lefthand side of the primitive variable
equation, so our signs are opposite. Our projections are now:

∑
ν;λ(ν)≥0

l(ν) · (q̃− I (ν)+ (q)− ∆t
2 G)r(ν) (5.135)

for the left state, and

∑
ν;λ(ν)≤0

l(ν) · (q̃− I (ν)− (q)− ∆t
2 G)r(ν) (5.136)

for the right state. Since G is only non-zero for velocity, only the velocity changes.
Writing out the sum (and performing the vector products), we get:

un+1/2
i+1/2,L = ũ+ −

1
2

[(
ũ+ − I (−)+ (u)− ∆t

2
I (−)+ (g)

)
−

p̃+ − I (−)+ (p)
C

]

− 1
2

[(
ũ+ − I (+)

+ (u)− ∆t
2
I (+)
+ (g)

)
+

p̃+ − I (+)
+ (p)

C

]
(5.137)

where the only change from Eq. 5.62 are the I (−)+ (g) and I (+)
+ (g) terms.

These differ from the expression in the PPM paper, where ∆tG, not ∆t/2G is used
in the projection, however this appears to be a typo. To see this, notice that if
both waves are moving toward the interface, then the source term that is added to
the interface state is (∆t/4)(I (−)+ (g) + I (+)

+ (g)) for the left state, which reduces to
(∆t/2)g for constant g—this matches the result from the Taylor expansion above
(Eq. 5.133).

5.9.5 General equation of state

The above methods were formulated with a constant gamma equation of state. A
general equation of state (such as degenerate electrons) requires a more complex
method. The classic prescription for extending this methodology is presented by
Colella and Glaz [20]. They construct a thermodynamic index,

γe =
p
ρe

+ 1 (5.138)

and derive an evolution equation for γe (C&G, Eq. 26). We can derive a similar
expression as

Dγe

Dt
=

D
Dt

(
p
ρe

+ 1
)
= − p

(ρe)2
D(ρe)

Dt
+

1
ρe

Dp
Dt

= (γe − 1)(γe − Γ1)∇ ·U (5.139)

5.9—Going further 83

where we used Eqs. 5.14 and 5.78, and the definition of the sound speed.

This evolution equation is used to predict γe to interfaces, and these interface val-
ues of γe are used in the Riemann solver presented there to find the fluxes through
the interface. A different adiabatic index (they call Γ, we call Γ1) appears in the
definition of the sound speed. They argue that this can be brought to interfaces in
a piecewise constant fashion while still making the overall method second order,
since Γ1 does not explicitly appear in the fluxes (see the discussion at the top of
page 277).

Alternately, the Castro paper [2] relies on an idea from an unpublished manuscript
by Colella, Glaz, and Ferguson that predicts ρe to edges in addition to ρ, u, and
p. Since ρe comes from a conservation-like equation (Eq. 5.78, predicting it to
the interface in the unsplit formulation is straightforward. This over-specifies the
thermodynamics, but eliminates the need for γe.

With the addition of ρe, our system becomes:

q =

ρ
u
p
ρe

 A =

u ρ 0 0
0 u 1/ρ 0
0 ρc2 u 0
0 ρh 0 u

 (5.140)

where h = e + p/ρ is the specific enthalpy. The eigenvalues of this system are:

λ(1) = u− c λ(2) = u λ(3) = u λ(4) = u + c (5.141)

and the eigenvectors are:

r(1) =

1
−c/ρ

c2

h

 r(2) =

1
0
0
0

 r(3) =

0
0
0
1

 r(4) =

1

c/ρ
c2

h

(5.142)

and

l(1) = (0 − ρ
2c

1
2c2 0)

l(2) = (1 0 − 1
c2 0)

l(3) = (0 0 − h
c2 1)

l(4) = (0 ρ
2c

1
2c2 0) (5.143)

Remember that the state variables in the q vector are mixed into the other states by
l · q. Since all l(ν)’s have 0 in the ρe ‘slot’ (the last position) except for l(3), and the
corresponding r(3) is only non-zero in the ρe slot, this means that ρe is not mixed
into the other state variables. This is as expected, since ρe is not needed in the
system.

84 Chapter 5. Euler Equations

Also recall that the jump carried by the wave ν is proportional to r(ν)—since r(1),
r(3), and r(4) have non-zero ρe elements, this means that ρe jumps across these
three waves.

Working through the sum for the (ρe) state, and using a ∼ to denote the reference
states, we arrive at:

(ρe)n+1/2
i+1/2,L = (̃ρe)− 1

2

[
−ρ

c

(
ũ− I (1)+ (u)

)
+

1
c2

(
p̃− I (1)+ (p)

)]
h

−
[
− h

c2

(
p̃− I (3)+ (p)

)
+
(
(̃ρe)− I (3)+ (ρe)

)]
− 1

2

[
ρ

c

(
ũ− I (4)+ (u)

)
+

1
c2

(
p̃− I (4)+ (p)

)]
h (5.144)

This is the expression that is found in the Castro code.

All of these methods are designed to avoid EOS calls where possible, since general
equations of state can be expensive.

Extending these to an unsplit formulation requires carrying an additional auxil-
iary variable from the primitive state back to the conserved state and adding the
transverse gradients to its interface state. Castro deals with a conserved state of
U = (ρ, ρU, ρE, p), and explicitly adds the transverse terms found in the multi-
dimensional form of Eq. 5.14 to the normal states of p.

5.9.6 Axisymmetry

It is common to so 2-d axisymmetric models—here the r and z coordinates from a
cylindrical geometry are modeled. This appears Cartesian, except there is a vol-
ume factor implicit in the divergence that must be accounted for. Our system in
cylindrical coordinates is:

∂U
∂t

+
1
r

∂rF(r)

∂r
+

∂F(z)

∂z
= 0 (5.145)

Expanding out the r derivative, we can write this as:

∂U
∂t

+
∂F(r)

∂r
+

∂F(z)

∂z
= −F(r)

r
(5.146)

This latter form is used when predicting the interface states, with the volume
source that appears on the right treated as a source term to the interface states
(as described above). Once the fluxes are computed, the final update uses the
conservative form of the system, with the volume factors appearing now in the
definition of the divergence.

5.9—Going further 85

5.9.7 Defining temperature

Although not needed for the pure Euler equations, it is sometimes desirable to
define the temperature for source terms (like reactions) or complex equations of
state. The temperature can typically be found from the equation of state given the
internal energy:

e = E− 1
2

u2 (5.147)

T = T(e, ρ) (5.148)

Trouble can arise when you are in a region of flow where the kinetic energy dom-
inates (high Mach number flow). In this case, the e defined via subtraction can
become negative due to truncation error in the evolution of u compared to E. In
this instance, one must either impose a floor value for e or find an alternate method
of deriving it.

In [15], an alternate formulation of the Euler equations is proposed. Both the total
energy equation and the internal energy equation are evolved in each zone. When
the flow is dominated by kinetic energy, then the internal energy from the internal
energy evolution equation is used. The cost of this is conservation—the internal
energy is not a conserved quantity, and switching to it introduces conservation of
energy errors.

5.9.8 Limiting on characteristic variables

Some authors (see for example, [48] Eqs. 37, 38) advocate limiting on the charac-
teristic variables rather than the primitive variables. The characteristic slopes for
the quantity carried by the wave ν can be found from the primitive variables as:

∆w(ν) = l(ν) · ∆q (5.149)

any limiting would then be done to ∆w(ν) and the limited primitive variables
would be recovered as:

∆q = ∑
ν

∆w(ν)r(ν) (5.150)

(here we use an overline to indicate limiting).

This is attractive because it is more in the spirit of the linear advection equation
and the formalism that was developed there. A potential downside is that when
you limit on the characteristic variables and convert back to the primitive, the
primitive variables may now fall outside of valid physical ranges (for example,
negative density).

86 Chapter 5. Euler Equations

5.9.9 3-d unsplit

The extension of the unsplit methodology to 3-d is described by Saltzman [45].
The basic idea is the same as in 2-d, except now additional transverse Riemann
solve are needed to fully couple in the corners.

Chapter6
Elliptic Equations and Multigrid

These summarize multigrid on cell-centered grids. The text “A Multigrid
Tutorial” [14] is an incredible reference. These notes discuss the basics and
point out some specific details for cell-centered grids.

6.1 Elliptic equations

The simplest elliptic PDE is Laplace’s equation:

∇2φ = 0 (6.1)

Only slightly more complex is Poisson’s equation (Laplace + a source term):

∇2φ = f (6.2)

These equations can arise in electrostatics (for the electric potential), solving for
the gravitational potential from a mass distribution, or enforcing a divergence con-
straint on a vector field (we’ll see this when we consider incompressible flow).

Another common elliptic equation is the Helmholtz equation:

(α−∇ · β∇)φ = f (6.3)

A Helmholtz equation can arise, for example, from a time-dependent equation
(like diffusion) by discretizing in time.

Notice that there is no time-dependence in any of these equations. The quantity φ
is specified instantaneously in the domain subject to boundary conditions.

git version: 6e0249aeeefc . . . 87

88 Chapter 6. Elliptic Equations and Multigrid

6.2 Fourier Method

A direct way of solving a constant-coefficient elliptic equation is using Fourier
transforms. Using a general Fourier transform (which we consider here) works
only for periodic boundary conditions, but other basis functions can be used for
other boundary conditions.

Consider the Poisson equation:

∇2φ = f (6.4)

We will difference this in a second-order accurate fashion. Thinking of the Lapla-
cian as ∇2φ = ∇ · ∇φ, we first compute the gradient of φ on edges:

[∇φ · x̂]i+1/2,j =
φi+1,j − φi,j

∆x
(6.5)

Since this is defined on edges, this represents a centered difference, and is there-
fore second-order accurate. We then difference the edge-centered gradients to the
center to get the Laplacian at cell-centers:

[∇2φ]i,j =
[∇φ · x̂]i+1/2,j − [∇φ · x̂]i−1/2,j

∆x
+

[∇φ · ŷ]i,j+1/2 − [∇φ · ŷ]i,j−1/2

∆y

=
φi+1,j − 2φi,j + φi−1,j

∆x2 +
φi,j+1 − 2φi,j + φi,j−1

∆y2 = fi,j (6.6)

Again, since we used a centered-difference of the edge values, this expression is
second-order accurate. This is the standard 5-point stencil for the 2-d Laplacian.

We now assume that we have an FFT subroutine that can take our discrete real-
space data, φi,j and return the discrete Fourier coefficients, Φkx ,ky , and likewise for
the source term:

Φkx ,ky = F (φi,j) Fkx ,ky = F (fi,j) (6.7)

The power of the Fourier method is that derivatives in real space are multiplica-
tions in Fourier space, which makes the solution process in Fourier space straight-
forward.

We now express φi,j and fi,j as sums over their Fourier components. Note, because
we are using i as the grid index, we will use i as the imaginary unit:

φi,j =
1

MN

M−1

∑
kx=0

N−1

∑
ky=0

Φkx ,ky e2πiikx/Me2πijky/N (6.8)

fi,j =
1

MN

M−1

∑
kx=0

N−1

∑
ky=0

Fkx ,ky e2πiikx/Me2πijky/N (6.9)

6.2—Fourier Method 89

Inserting these into the differenced equation (and dropping the sums and normal-
ization, to focus on a single mode), we have:

1
MN

M−1

∑
kx=0

N−1

∑
ky=0

{Φkx ,ky

∆x2 e2πijky/N
[
e2πi(i+1)kx/M − 2e2πiikx/M + e2πi(i−1)kx/M

]
+

Φkx ,ky

∆y2 e2πiikx/M
[
e2πi(j+1)ky/N − 2e2πijky/N + e2πi(j−1)ky/N

]}
=

1
MN

M−1

∑
kx=0

N−1

∑
ky=0

Fkx ,ky e2πiikx/Me2πijky/N (6.10)

We can bring the righthand side into the sums on the left, and we can then look at
just a single (kx, ky) term in the series:

e2πiikx/Me2πijky/N
{

Φkx ,kx

∆x2

[
e2πikx/M + e−2πikx/M − 2

]
+

Φkx ,kx

∆y2

[
e2πiky/N + e−2πiky/N − 2

]
− Fkx ,ky

}
= 0 (6.11)

Simplifying, we have:

Φkx ,ky =
1
2

Fkx ,ky

[cos(2πkx/M)− 1]∆x−2 +
[
cos(2πky/N)− 1

]
∆y−2

(6.12)

This is the algebraic solution to the Poisson equation in Fourier (frequency) space.
Once we evaluate this, we can get the real-space solution by doing the inverse
transform:

φi,j = F−1(Φkx ,ky) (6.13)

We test this technique with the source term:

f = 8π2 cos(4πy) [cos(4πx)− sin(4πx)]−
16π2 [sin(4πx) cos(2πy)2 + sin(2πx)2 cos(4πy)

]
(6.14)

which has the analytic solution1:

φ = sin(2πx)2 cos(4πy) + sin(4πx) cos(2πy)2 (6.15)

Figure 6.1 shows the solution.

The main downside of this approach is that, because we solve for a single compo-
nent independently (Eq. 6.12), this only works for linear problems with constant
coefficients. This makes it an excellent choice for cosmological problems solving

1Note: throughout this chapter, we devise test problems by picking a function that meets the
desired boundary conditions and then inserting it into the analytic equation we are solving to find
the righthand side

90 Chapter 6. Elliptic Equations and Multigrid

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

1.5

101 102 103

number of zones

10-4

10-3

10-2

10-1

L2
 n
o
rm

 o
f
a
b
s
e
rr
o
r

O(∆x2)

Figure 6.1: (left) Solution to the Poisson equation on a 642 grid with source from
Eq. 6.14. (right) Error vs. the true solution as a function of resolution for the Fourier
method, showing second-order convergence.Ï hydro examples: poisson fft.py

the gravitational Poisson equation with periodic boundaries on all sides of the
domain. However, for a problem like:

∇ · (β∇φ) = f (6.16)

there would be “cross-talk” between the Fourier modes of β and φ, and we would
not be able to solve for a single mode of Φkx ,ky independently. We discuss methods
for these forms next.

6.3 Relaxation

Relaxation is an iterative technique, and as we will see shortly, it provides the basis
for the multigrid technique.

Consider Poisson’s equation differenced as:

φi+1,j − 2φi,j + φi−1,j

∆x2 +
φi,j+1 − 2φi,j + φi,j−1

∆y2 = fi,j (6.17)

This is a 5-point stencil: for each zone (i, j), we couple in the zones±1 in x and±1
in y. This discretization uses the standard form for the second derivative, and is
second-order accurate in space.

For the moment, consider the case where ∆x = ∆y. If we solve this discretized
equation for φi,j, then we have:

φi,j =
1
4
(φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − ∆x2 fi,j) (6.18)

A similar expression exists for every zone in our domain, coupling all the zones to-
gether. We can’t separate the solution of φi,j for the neighboring zones, but instead

https://github.com/zingale/hydro_examples/blob/master/elliptic/poisson_fft.py

6.3—Relaxation 91

can apply an iterative technique called relaxation (also sometimes called smoothing
because generally speaking the solution to elliptic equations is a smooth function)
to find the solution for φ everywhere. Imagine an initial guess to φ: φ

(0)
i,j . We can

improve that guess by using our difference equation to define a new value of φ,
φ
(1)
i,j :

φ
(1)
i,j =

1
4
(φ

(0)
i+1,j + φ

(0)
i−1,j + φ

(0)
i,j+1 + φ

(0)
i,j−1 − ∆x2 fi,j) (6.19)

or generally, the k + 1 iteration will see:

φ
(k+1)
i,j =

1
4
(φ

(k)
i+1,j + φ

(k)
i−1,j + φ

(k)
i,j+1 + φ

(k)
i,j−1 − ∆x2 fi,j) (6.20)

This will (slowly) converge to the true solution, since each zone is coupled to each
other zone (and to the boundary values that we need to specify—more on that in a
moment). This form of relaxation is called Jacobi iteration. To implement this, you
need two copies of φ—the old iteration value and the new iteration value.

An alternate way to do the relaxation is to update φi,j in place, as soon as the new
value is known. Thus the neighboring cells will see a mix of the old and new
solutions. We can express this in-place updating as:

φi,j ←
1
4
(φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − ∆x2 fi,j) (6.21)

This only requires a single copy of φ to be stored. This technique is called Gauss-
Seidel iteration. A host of other relaxation methods exist, including linear com-
binations of these two. The text by Briggs is an excellent reference for this, and
discusses the strengths of these different approaches.

Next consider the Helmholz equation with constant coefficients:

(α− β∇2)φ = f (6.22)

We can discretize this as:

αφi,j − β

(
φi+1,j − 2φi,j + φi−1,j

∆x2 +
φi,j+1 − 2φi,j + φi,j−1

∆y2

)
= fi,j (6.23)

and the update of φi,j through relaxation is:

φi,j ←
(

fi,j +
β

∆x2 φi+1,j +
β

∆x2 φi−1,j +
β

∆y2 φi,j+1 +
β

∆y2 φi,j−1

)/(
α +

2β

∆x2 +
2β

∆y2

)
(6.24)

Notice that if α = 0, β = −1, and ∆x = ∆y, we recover the relaxation expression
for Poisson’s equation from above.

92 Chapter 6. Elliptic Equations and Multigrid

6.3.1 Boundary conditions

When using a cell-centered grid, no points fall exactly on the boundary, so we need
to use ghost cells to specify boundary conditions. A single ghost cell is sufficient.
The common types of boundary conditions are Dirichlet (specified value on the
boundary), Neumann (specified first derivative on the boundary), and periodic.
Some restrictions apply. For example, consider φxx = 0. The solution to this is a
line, φ = ax + b. We can specify different Neumann boundary conditions on each
end, φx|x=xl = p, φx|x=xr = q, because this specifies two incompatible slopes for
our line.

ii−1 i+1lo−1 lo hi hi+1
left
BC

right
BC

Figure 6.2: The cell-centered grid showing the cells (and ghost cells) surrounding
the boundaries and indicating that the boundary conditions are actually specified
right at the boundary itself.

Consider Dirichlet boundary conditions, specifying values φl on the left and φr on
the right boundaries.2 To second order, we can define these via:

φl =
1
2
(φlo + φlo−1) (6.25)

φr =
1
2
(φhi + φhi+1) (6.26)

This then tells us that the values we need to assign to the ghost cells are:

φlo−1 = 2φl − φlo (6.27)
φhi+1 = 2φr − φhi (6.28)

If we instead consider Neumann boundary conditions, we specify values of the
derivative on the boundaries: φx|l on the left and φx|r on the right. We note that
a single difference across the boundary is second-order accurate on the boundary
(it is a centered-difference there), so to second-order:

φx|l =
φlo − φlo−1

∆x
(6.29)

φx|r =
φhi+1 − φhi

∆x
(6.30)

2If the value, φl or φr is zero, we call this a homogeneous boundary condition. Otherwise we call it
an inhomogeneous boundary condition

6.3—Relaxation 93

This then tells us that the ghost cells are filled as:

φlo−1 = φlo − ∆x φx|l (6.31)
φhi+1 = φhi + ∆x φx|r (6.32)

6.3.2 Residual and true error

The residual error is a measure of how well our discrete solution satisfies the dis-
cretized equation. For the Poisson equation, we can the residual as:

ri,j = fi,j − (Lφ)i,j (6.33)

and the residual error as:
ε(r) = ‖r‖ (6.34)

where L represents our discretized Laplacian. Note that r is the error with respect
to the discrete form of the equation. The true error is the measure of how well our
discrete solution approximates the true solution. If φtrue satisfies∇2φtrue = f , then
the true error in each zone is

ei,j = φtrue(xi, yj)− φi,j (6.35)

and
εtrue = ‖ei,j‖ (6.36)

We can make ε(r) approach machine precision by performing more and more re-
laxation iterations, but after some point, this will no longer improve ε. The only
way to improve εtrue is to make ∆x and ∆y smaller. In practice we do not know
the true solution so we cannot compute εtrue and will instead have to rely on ε(r)

to monitor our error.

Note that since our operator is linear,

Le = Lφtrue − Lφ = f − Lφ = r (6.37)

so the error in our solution obeys a Poisson equation with the residual as the
source.

6.3.3 Performance

Consider the simple Poisson problem on x ∈ [0, 1]:

φxx = sin(x), φ(0) = φ(1) = 0 (6.38)

The analytic solution to this is simply

φa(x) = − sin(x) + x sin(1) (6.39)

94 Chapter 6. Elliptic Equations and Multigrid

100 101 102 103 104 105

of iterations

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
L2

 n
or
m
 o
f t
ru
e
er
ro
r (

so
lid

) a
nd

 re
si
du

al
 (d

ot
te
d)

16
32
64

Figure 6.3: Gauss-Seidel relaxation applied to φxx = sin(x) with φ(0) = φ(1) = 0.
Shown are the L2 norm of the error compared with the true solution (solid lines)
and the L2 norm of the residual (dotted lines) for 3 different resolutions (16, 32, and
64 zones).

We can perform smoothing and compute both the error against the analytic solu-
tion (the ‘true’ error), e ≡ ‖φa(xi)− φi‖2 and the residual error, ‖ri‖2. Figure 6.3
shows these errors as a function of the number of smoothing iterations for 3 dif-
ferent resolutions.

Notice that the true error stalls at a relatively high value—this is the truncation
error of the method. From one resolution to the next, the true error changes as ∆x2,
indicating that we are converging as our method should. No additional amount
of smoothing will change this—we are getting the best answer to the problem we
can with our choice of discretization.

In contrast, the residual error decreases to machine precision levels—this is indi-
cating that our solution is an exact solution to the discrete equation (to roundoff-
error). In practice, we can only monitor the residual error, not the true error, and
we hope that small residual error implies a small true error.

We can think of the error in the solution as a superposition of high (short) and low
(long) frequency (wavelength) modes. Smoothing works really well to eliminate
the short wavelength noise quickly (as the exercise shows), but many iterations are

6.3—Relaxation 95

0.0 0.2 0.4 0.6 0.8 1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
N = 1
N = 10
N = 100
N = 1000

Figure 6.4: Error in the solution to φ′′ = 0 given an initial guess with 3 different
wavenumbers of noise. The different curves are different numbers of smoothing
iterations.

needed to remove the long wavelength noise (see Figure 6.4). Here the wavelength
is in terms of the number of zones across the feature, and not a physical measure.

Exercise 6.1: Implement 1-d smoothing for the Laplace equation on cc-grid.
Use an initial guess for the solution:

φ0(x) =
1
3
(sin(2πx) + sin(2π 8x) + sin(2π 16x)) (6.40)

on a 128 zone grid with Dirichlet boundary conditions. This initial guess
has both high-frequency and low-frequency noise. Observe that the high-
frequency stuff goes after only a few smoothing iterations, but many itera-
tions are needed to remove the low-frequency noise. You should see something
like Figure 6.4.

This behavior suggests that if we could represent our problem on a coarser grid,
the error will now be of shorter wavelength, and smoothing will be more efficient.
This is the core idea behind multigrid.

96 Chapter 6. Elliptic Equations and Multigrid

6.4 Multigrid

The text A Multigrid Tutorial [14] provides an excellent introduction to the mechan-
ics of multigrid. The basic idea is to smooth a little on the current grid solving
Lφ = f , compute the residual, r, then restrict r to a coarser grid and smooth on
that grid solving Le = r, restrict again, Once you reach a sufficiently coarse
grid, the problem solved exactly. Then the data is moved up to the finer grids,
a process called prolongation. The error on the coarse grid, e, is prolonged to the
finer grid. This error is then used to correct the solution on the finer grid, some
smoothing is done, and then the data is prolonged up again.

Note: on the coarse grids, you are not solving the original system, but rather an
error equation. If the boundary conditions in the original system are inhomoge-
neous, the boundary conditions for the error equations are now homogeneous.
This must be understood by any ghost cell filling routines.

There are many different forms of the multigrid process. The simplest is called the
V-cycle. Here you start of the fine grid, restrict down to the coarsest, solve, and
then prolong back up to the finest. The flow looks like a ‘V’. You continue with
additional V-cycles until the residual error is smaller than your tolerance.

6.4.1 Prolongation and restriction on cell-centered grids

Multigrid relies on transferring the problem up and down a hierarchy of grids.
Consider the following grid. The finer grid is superposed over the center coarse
cell, and the fine grid cells are marked in red.

Restriction from the fine grid to the coarse grid is straightforward. Since the fine
cells are perfectly enclosed by a single coarse cell, we simply average:

φc
i,j =

1
4
(φ

f
−− + φ

f
+− + φ

f
−+ + φ

f
++) (6.41)

Prolongation requires us to reconstruct the coarse data and use this reconstruction
to determine what the fine cell values are. For instance, a linear reconstruction of
the coarse data in x and y is:

φ(x, y) =
mx

∆x
(x− xc

i) +
my

∆y
(y− yc

j) + φc
i,j (6.42)

with slopes:

mx =
1
2
(φc

i+1,j − φc
i−1,j) (6.43)

my =
1
2
(φc

i,j+1 − φc
i,j−1) (6.44)

6.4—Multigrid 97

φ c
i+1,j

φ c
i,j+1

φ c
i−1,j

φ c
i,j−1

i−1 i i+1

j−1

j

j+1

φ c
i,j

φ f
−−

φ f
−+

φ f
+−

φ f
+ +

Figure 6.5: Four fine cells and the underlying coarse grid. For prolongation, the
fine cells in red are initialized from a coarse parent. The gray coarse cells are used
in the reconstruction of the coarse data. For restriction, the fine cells are averaged
to the underlying coarse cell.

When averaged over the coarse cell, φ(x, y) recovers the average, φc
i,j in that cell

(this means that our interpolant is conservative). We can evaluate the value in the
fine cells by evaluating φ(x, y) at the center of the fine cells,

x f
± = xc

i ±
∆xc

4
(6.45)

y f
± = yc

j ±
∆yc

4
(6.46)

(6.47)

This gives

φ
f
±± = φc

i,j ±
1
4

mx ±
1
4

my (6.48)

(Note: you would get the same expression if you averaged φ(x, y) over the fine
cell.)

There are other options for prolongation and restriction, both of higher and lower
order accuracy. However, the methods above seem to work well.

98 Chapter 6. Elliptic Equations and Multigrid

Figure 6.6: Illustration of the hierarchy of grids leading to the coarsest 2-zone grid
(in one-dimension). Each grid has a single ghost cell to accommodate boundary
conditions.

6.4.2 Bottom solver

Once the grid is sufficiently coarse, the linear system is small enough to be solved
directly. This is the bottom solver operation. In the most ideal case, where the
finest grid is some power of 2, Nx = Ny = 2n, then the multigrid procedure can
continue down until a 2× 2 grid is created (Figure 6.6 illustrates this idea for a
one-dimensional grid). This is the coarsest grid upon which one can still impose
boundary conditions. With this small grid, just doing additional smoothing is
sufficient enough to ‘solve’ the problem. No fancy bottom solver is needed.

For a general rectangular grid or one that is not a power of 2, the coarsest grid will
likely be larger. For the general case, a linear system solver like conjugate gradient
(or a variant) is used on the coarsest grid.

6.4.3 Boundary conditions throughout the hierarchy

The general inhomogeneous boundary conditions from Eqs. 6.27 and 6.31 apply
to the finest level. But because we are solving the residual equation of the coars-
est levels in the multigrid hierarchy, the boundary conditions on Le = r are all

6.5—Going Further 99

homogeneous (but of the same type, Dirichlet, Neumann, or periodic, as the fine
level).

Implementing these boundary conditions in your multigrid solver means that you
will have separate actions for the fine level (where inhomogeneous boundaries
may apply) and the coarser levels (where you will always be homogeneous).

6.4.4 Stopping criteria

Repeated V-cycles are done until:

‖r‖ < ε‖ f ‖ (6.49)

on the finest grid, for some user-input tolerance, ε. Here, ‖ f ‖ is called the source
norm. If ‖ f ‖ = 0, then we stop when

‖r‖ < ε (6.50)

Picking the tolerance ε is sometimes problem-dependent, and generally speaking,
a problem with a large number of zones will require a looser tolerance.

The general rule-of-thumb is that each V-cycle should reduce your residual by
about 1 order of magnitude. It is important that your bottom solver solves the
coarse problem to a tolerance of 10−3 or 10−4 in order for the solver to converge.
Figure 6.7 shows the true and residual errors for φxx = sin(x) as a function of
V-cycle number, illustrating the expected performance.

The overall convergence of the multigrid algorithm is limited by the discretiza-
tion of the Laplacian operator used and the implementation of the boundary con-
ditions. Figure 6.8 shows the error in the solution as the number of zones is
increased—demonstrating second-order convergence for our implementation.

6.5 Going Further

6.5.1 Red-black Ordering

When using domain decomposition to spread the problem across parallel proces-
sors, the smoothing is often done as red-black Gauss-Seidel. In this ordering, you
imagine the grid to be a checkerboard (see Figure 6.9). In the first Gauss-Seidel
pass you update the red squares and in the second, the black squares. The advan-
tage is that when updating the red, you can be sure that none of the zones you
depend on (the neighboring black zones) will change. This makes the decompo-
sition parallel. Note: this works for the standard 5-point Laplacian. If you are
doing some other operator with a different stencil, then this decomposition may
no longer hold.

100 Chapter 6. Elliptic Equations and Multigrid

0 2 4 6 8 10 12
of V-cycles

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

L2
 n
or
m
 o
f e

rro
r

||e||
||r||

Figure 6.7: Error in the multigrid solution to our model problem (φxx = sin(x))
as a function of V-cycle. We see that the true error, ‖e‖ stalls at truncation error
while the residual error, ‖r‖ reaches roundoff error, the same behavior as seen with
smoothing alone (as expected).
Ï hydro examples: mg test.py

6.5.2 Solvability

For∇2φ = f with periodic or Neumann boundaries all around, the sum of f must
equal 0 otherwise the solution will not converge. Instead, we will simply find the
solution increase each V-cycle. This is seen as follows:∫

Ω
f dΩ =

∫
Ω
∇2φdΩ =

∫
∂Ω
∇φ · ndS = 0 (6.51)

For all homogeneous Neumann boundaries, we have∇φ · dS = 0 by construction,
so that integral is zero, requiring that the source integrate to zero. If the Neumann
boundaries are inhomogeneous, there is still a solvability condition on f based on
the sum on the boundary values.

For all periodic boundaries, we have ∇φ|left = −∇φ|right on the left and right
boundaries by definition of the periodicity (and similarly for the top and bottom).
Again this implies that f must integrate to zero.

Sometimes, with periodic boundary conditions all around, you need to enforce
that f integrate to zero numerically to test convergence. This is discussed in
§ 10.2.1.

https://github.com/zingale/hydro_examples/blob/master/multigrid/mg_test.py

6.5—Going Further 101

101 102 103

N

10-8

10-7

10-6

10-5

10-4

10-3

L2
 n
o
rm

 o
f
a
b
so
lu
te
 e
rr
o
r

Multigrid convergence

O(∆x2)

Figure 6.8: Convergence of the multigrid algorithm.
Ï hydro examples: mg converge.py

6.5.3 Boundary charges

For inhomogeneous boundary conditions, boundary charges can be used to convert
the BCs to homogeneous BCs. This has the advantage of allowing the ghost cell
filling routines only deal with the homogeneous case.

Consider the one-dimensional Poisson equation, near the left boundary our dis-
cretized equation appears as:

φlo−1 − 2φlo + φlo+1

∆x2 = flo (6.52)

Inhomogeneous BCs at the left boundary would give the condition:

φlo−1 = 2φl − φlo (6.53)

Substituting this into the discrete equation, we have:

2φl − φlo − 2φlo + φlo+1

∆x2 = flo (6.54)

Bringing the boundary condition value over to the RHS, we see

−3φlo + φlo+1

∆x2 = flo −
2φl

∆x2 (6.55)

Now the left side looks precisely like the differenced Poisson equation with ho-
mogeneous Dirichlet BCs. The RHS has an additional ‘charge’ that captures the

https://github.com/zingale/hydro_examples/blob/master/multigrid/mg_converge.py

102 Chapter 6. Elliptic Equations and Multigrid

Figure 6.9: The red-black ordering of zones.

boundary value. By modifying the source term, f , in the multigrid solver to in-
clude this charge, we can use the homogeneous ghost cell filling routines through-
out the multigrid algorithm. This technique is discussed a bit in [21].

Note that the form of the boundary charge will depend on the form of the elliptic
equation—the expressions derived above apply only for ∇2φ = f .

6.5.4 Norms

There are several different norms that are typically used in defining errors on the
grid. The L∞ norm (or ‘inf’-norm) is just the maximum error on the grid:

‖e‖∞ = max{|ei,j|} (6.56)

This will pick up on local errors.

The L1 norm and L2 norms are more global.

‖e‖1 =
1
N ∑

i,j
|ei,j| (6.57)

‖e‖2 =

(
1
N ∑

i,j
|ei,j|2

)1/2

(6.58)

Generally, the measure in L2 falls between L∞ and L1. Regardless of the norm
used, if the problem converges, it should converge in all norms.

For reference, the BoxLib library uses L∞ in its multigrid solvers.

6.5—Going Further 103

6.5.5 More General Elliptic Equations

The most general second-order elliptic equation takes the form:

αφ +∇ · (β∇φ) + γ · ∇φ +∇ · (ζφ) = f (6.59)

Here, γ and ζ are vectors. Solving a general elliptic equation of this form can be
accomplished with multigrid using the same basic ideas here. The main change is
that the smoothing algorithm and the construction of the residual will need to dis-
cretize the more general operator, and these coefficients will need to be restricted
to the coarser grids (some on edges). This is explored in § 10.2 for a variable-
coefficient Poisson equation:

∇ · (β∇φ) = f (6.60)

and in § 11.3.1 for an equation with ζ = 0.

Chapter7
Diffusion

These summarize methods for solving the diffusion equation.

7.1 Parabolic equations

The diffusion equation is
∂φ

∂t
=

∂

∂x

(
k

∂φ

∂x

)
(7.1)

This can describe thermal diffusion (for example, as part of the energy equation in
compressible flow), species/mass diffusion for multi-species flows, or the viscous
terms in incompressible flows. In this form, the diffusion coefficient (or conduc-
tivity), k, can be a function of x, or even φ. We will consider a constant diffusion
coefficient:

∂φ

∂t
= k

∂2φ

∂x2 (7.2)

The diffusion equation is the prototypical parabolic PDE. The basic behavior of
the diffusion equation is to take strongly peaked concentrations of φ and smooth
them out with time.

7.2 Explicit differencing

The simplest way to difference this equation is explicit in time (i.e. the righthand
side depends only on the old state):

φn+1
i − φn

i
∆t

= k
φn

i+1 − 2φn
i + φn

i−1

∆x2 (7.3)

git version: 6e0249aeeefc . . . 105

106 Chapter 7. Diffusion

This is second-order accurate in space, but only first order accurate in time (since
the righthand side is not centered in time).

As with the advection equation, when differenced explicitly, there is a constraint
on the timestep required for stability. Looking at the growth of a single Fourier
mode, φ = Aneijθ with j =

√
−1, we find:

An+1

An = 1 + 2
k∆t
∆x2 (cos θ − 1) (7.4)

Stability requires that |An+1/An| ≤ 1, which can only be true if 2k∆t/∆x2 ≤ 1.
Therefore, our timestep constraint in this case is

∆t <
1
2

∆x2

k
(7.5)

Note the ∆x2 dependence—this constraint can become really restrictive.

To complete the solution, we need boundary conditions at the left (xl) and right
(xr) boundaries. These are typically either Dirichlet:

φ|x=xl = φl (7.6)
φ|x=xr = φr (7.7)

or Neumann:

φx|x=xl = φx|l (7.8)
φx|x=xr = φx|r (7.9)

7.3 Implicit with direct solve

A backward-Euler implicit discretization would be:

φn+1
i − φn

i
∆t

= k
φn+1

i+1 − 2φn+1
i + φn+1

i−1

∆x2 (7.10)

This is still first-order in time, but is not restricted by the timestep constraint (al-
though the timestep will still determine the accuracy). Defining:

α ≡ k
∆t

∆x2 (7.11)

we can write this as:

− αφn+1
i+1 + (1 + 2α)φn+1

i − αφn+1
i−1 = φn

i (7.12)

This is a set of coupled algebraic equations. We can write this in matrix form.
Using a cell-centered grid, we will solve for the values [lo, hi].

7.3—Implicit with direct solve 107

We can define a diffusive CFL number, C, as the ratio of ∆t to the maximum ex-
plicit timestep (Eq. 7.5), and we see:

C ≡ ∆t
∆x2

2k

= 2α (7.13)

The implicit method can use any C > 0.

We specify boundary conditions by modifying the stencil (Eq. 7.12) for the updates
to lo and hi. For example, Neumann BCs on the left mean:

φlo−1 = φlo (7.14)

and substituting this into Eq 7.12, the update for the leftmost cell is:

(1 + α)φn+1
lo − αφn+1

lo+1 = φn
lo (7.15)

If we choose Dirichlet BCs on the right (φ|x=xl = A), then:

φhi+1 = 2A− φhi (7.16)

Substituting this into Eq 7.12 the update for the rightmost cell is:

− αφn+1
hi−1 + (1 + 3α)φn+1

hi = φn
hi + α2A (7.17)

For all other interior cells, the stencil is unchanged. The resulting system can be
written in matrix form and appears as a tridiagonal matrix.

1 + α −α

−α 1 + 2α −α

−α 1 + 2α −α

.
.

−α 1 + 2α −α

−α 1 + 3α

φn+1
lo

φn+1
lo+1

φn+1
lo+2
...
...

φn+1
hi−1

φn+1
hi

=

φn
lo

φn
lo+1

φn
lo+2
...
...

φn
hi−1

φn
hi + α2A

(7.18)

This can be solved by standard matrix operations, using a tridiagonal solvers (for
example).

A second-order in time discretization requires us to center the righthand side in
time. We do this as:

φn+1
i − φn

i
∆t

=
k
2

(
φn

i+1 − 2φn
i + φn

i−1

∆x2 +
φn+1

i+1 − 2φn+1
i + φn+1

i−1

∆x2

)
(7.19)

108 Chapter 7. Diffusion

This time-discretization is called Crank-Nicolson. Again, using α ≡ k∆t/∆x2, and
grouping all the n + 1 terms on the left we have:

φn+1
i − α

2

(
φn+1

i+1 − 2φn+1
i + φn+1

i−1

)
= φn

i +
α

2
(
φn

i+1 − 2φn
i + φn

i−1
)

(7.20)

and grouping together the the n + 1 terms by zone, we have:

− α

2
φn+1

i+1 + (1 + α)φn+1
i − α

2
φn+1

i−1 = φn
i +

α

2
(
φn

i+1 − 2φn
i + φn

i−1
)

(7.21)

Considering Neumann boundary conditions on the left, we again have φn+1
lo−1 =

φn+1
lo , and our stencil at the boundary becomes

− α

2
φn+1

lo+1 +
(

1 +
α

2

)
φn+1

lo = φn
lo +

α

2
(
φn

lo+1 − 2φn
lo + φn

lo−1
)

(7.22)

The matrix form of this system is:

1 + α
2 − α

2

− α
2 1 + α − α

2

− α
2 1 + α − α

2
.

.

− α
2 1 + α − α

2

− α
2 1 + α

2

φn+1
lo

φn+1
lo+1

φn+1
lo+2
...
...

φn+1
hi−1

φn+1
hi

=

φn
lo +

k∆t
2 [∇2φ]nlo

φn
lo+1 +

k∆t
2 [∇2φ]nlo+1

φn
lo+2 +

k∆t
2 [∇2φ]nlo+2
...
...

φn
hi−1 +

k∆t
2 [∇2φ]nhi−1

φn
hi +

k∆t
2 [∇2φ]nhi

(7.23)

Figure 7.1 shows the result of using α = 0.8 and α = 8.0. We see that they are both
stable, but that the smaller timestep is closer to the analytic solution (especially at
early times).

Exercise 7.1: Write a one-dimensional implicit diffusion solver for the
domain [0, 1] with Neumann boundary conditions at each end and k = 1.
Your solver should use a tridiagonal solver and initialize a matrix like that
above. Use a timestep close to the explicit step, a grid with N = 128 zones.

If we begin with a Gaussian, the resulting solution is also a Gaussian. Ini-
tialize using the following with t = 0:

φ(x, t) = (φ2 − φ1)

√
t0

t + t0
e−

1
4 (x−xc)2/k(t+t0) + φ1 (7.24)

with t0 = 0.001, φ1 = 1, and φ2 = 2, and xc is the coordinate of the center of
the domain. Run until t = 0.01 and compare to the analytic solution above.

(Note: the solution for two-dimensions differs slightly)

7.4—Implicit multi-dimensional diffusion via multigrid 109

0.35 0.40 0.45 0.50 0.55 0.60 0.65
x

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

φ

implicit diffusion, N = 128, C = 0.80

t=0.000190735 s

t=0.00038147 s

t=0.000762939 s

t=0.00152588 s

t=0.00305176 s

0.35 0.40 0.45 0.50 0.55 0.60 0.65
x

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

φ

implicit diffusion, N = 128, C = 8.00

t=0.000190735 s

t=0.00038147 s

t=0.000762939 s

t=0.00152588 s

t=0.00305176 s

Figure 7.1: Implicit diffusion of a Gaussian (with Crank-Nicolson discretization)
with C = 0.8 and C = 8.0. The exact solution at each time is shown as the dotted
line.
Ï hydro examples: diffusion-implicit.py

7.4 Implicit multi-dimensional diffusion via multigrid

Instead of doing a direct solve of the matrix form of the system, we can use multi-
grid techniques. Consider the Crank-Nicolson system we just looked at:

φn+1
i − φn

i
∆t

=
1
2

(
k∇2φn

i + k∇2φn+1
i

)
(7.25)

https://github.com/zingale/hydro_examples/blob/master/diffusion/diffusion-implicit.py

110 Chapter 7. Diffusion

Grouping all the n + 1 terms on the left, we find:

φn+1
i − ∆t

2
k∇2φn+1

i = φn
i +

∆t
2

k∇2φn
i (7.26)

This is in the form of a constant-coefficient Helmholtz equation,

(α− β∇2)φn+1 = f (7.27)

with

α = 1 (7.28)

β =
∆t
2

k (7.29)

f = φn +
∆t
2

k∇2φn (7.30)

This can be solved using multigrid techniques with a Helmholtz operator. The
same boundary conditions described above apply here.

Note: when using multigrid, you do not need to actually construct the matrix. This
is usually the most efficient way to implement diffusion in a multi-dimensional
simulation code, especially when distributing the grid across parallel processors.

7.5 Going further

• Non-constant conductivity: for the case where k = k(x), we discretize as:

φn+1
i − φn

i
∆t

=
{k∇φ}i+1/2 − {k∇φ}i−1/2

∆x
(7.31)

Here we need the values of k at the interfaces, ki−1/2 and ki+1/2. We can get
these from the cell-centered values in a variety of ways including straight-
averaging:

ki+1/2 =
1
2
(ki + ki+1) (7.32)

or averaging the inverses:

1
ki+1/2

=
1
2

(
1
ki

+
1

ki+1

)
(7.33)

• State-dependent transport coefficients: many times the transport coefficients
themselves depend on the quantity being diffused:

φn+1
i − φn

i
∆t

=
1
2

{
∇ · [k(φn)∇φn]i +∇ · [k(φn+1)∇φn+1]i

}
(7.34)

7.5—Going further 111

(for example, with thermal diffusion, the conductivity can be temperature
dependent). In this case, we can achieve second-order accuracy by doing a
predictor-corrector. First we diffuse with the transport coefficients evaluated
at the old time, giving a provisional state, φ?:

φ?
i − φn

i
∆t

=
1
2
{∇ · [k(φn)∇φn] +∇ · [k(φn)∇φ?]} (7.35)

Then we redo the diffusion, evaluating k with φ? to center the righthand side
in time, giving the new state, φn+1:

φn+1
i − φn

i
∆t

=
1
2

{
∇ · [k(φn)∇φn] +∇ · [k(φ?)∇φn+1]

}
(7.36)

This is the approach used, for example, in [11].

• Temperature diffusion in energy equation: Often we find diffusion represented
as one of many physical processes in a single equation. For example, con-
sider the internal energy equation with both reactions and diffusion:

ρ
∂e
∂t

+ ρU · ∇e + p∇ ·U = ∇ · k∇T + ρS (7.37)

This can be solved via an explicit-implicit discretization. First the advection
terms are computed as:

A = ρU · ∇e + p∇ ·U (7.38)

Then the advective-diffusive part is solved implicitly. Expressing e = e(ρ, T),
and rewriting

∇T = (∇e− eρ∇ρ)/eT (7.39)

and then
ρ

∂e
∂t

= ∇ · (k/eT)∇e−∇ · (keρ/eT)∇ρ− A + ρS (7.40)

This is now a diffusion equation for e, which can be solved by the techniques
described above. This is discussed, for example, in [11, 33].

Chapter8
Multiphysics Applications

Generally, we are interested in multiphysics simulations—these combine a
little bit of everything we discussed so far

8.1 Integrating Multiphysics

Consider an equation whose evolution depends on several different physical pro-
cesses, represented by the operators A, D, R (these may represent, e.g., advection,
diffusion, reactions, etc.).

φt = −A(φ) + D(φ) + R(φ) (8.1)

One way to solve this system is to discretize each of the operators in space. For
instance the discrete advection operator, [A(φ)]i might use the ideas on piecewise
linear reconstruction techniques discussed in chapter 3, [D(φ)]i can use the dis-
crete form of the Laplacian from chapter 7, and [R(φ)]i may be an algebraic rela-
tion. This leaves us with an ordinary differential equation for the time-evolution
of φ,

dφi

dt
= −[A(φ)]i + [D(φ)]i + [R(φ)]i (8.2)

which can be solve using standard ODE techniques. This technique is called the
method of lines, and can be a powerful technique to solve PDEs or systems of PDEs
with multiple physics operators.

A difficulty arises if these processes each have different timescales associated with
them. For instance, reactions may be vigorous and require a small timestep to ac-
curately capture the changes, but the advection is slow. Therefore, we don’t want
to use the same timestep for all the processes, since that will needlessly make
things computationally expensive. Operator splitting solves for the effects of each

git version: 6e0249aeeefc . . . 113

114 Chapter 8. Multiphysics Applications

operator separately, using whichever timestep (and time-discretization, e.g., ex-
plicit or implicit) is most suited to the operation. The result of one operation is
used as the input to the next. The downside of this approach is that the operations
may not be well coupled.

A final technique, spectral deferred corrections combines the best features of the
method of lines approach and operator splitting.

8.2 Ex: diffusion-reaction

Consider a diffusion-reaction equation:

φt = κφxx +
1
τ

R(φ) (8.3)

This can be thought of as a simple model for a combustion flame, and can prop-
agate a front. It is often the case that the reactions are stiff, and require a smaller
timestep then the diffusion part. In fact, we may want to use an implicit inte-
gration method designed for stiff ODEs for the reaction part, but use a standard
explicit method for the diffusion part. This requires operator splitting.

We can use Strang splitting [49] to make the integration second-order accurate
overall:

φn+1 = R∆t/2D∆tR∆t/2φn (8.4)

where R∆t/2 represents reacting for a step of ∆t/2 and D∆t represents diffusing for
a step of ∆t. In each case, these operators act as if the other were not present, but
they see the effect of the previous operation on the input φ.

No explicit source terms describing one process appear in the other process’s up-
date. The procedure for updating appears as:

1. Evolve reaction ODE system for ∆t/2

dφ?

dt
=

1
τ

R(φ?), φ?(0) = φn (8.5)

2. Solve the diffusion equation for ∆t with an implicit Crank-Nicolson discretization

φ?? − φ?

∆t
=

1
2
(D(φ?) + D(φ??)) (8.6)

3. Evolve reaction ODE system for ∆t/2

dφn+1

dt
=

1
τ

R(φn+1), φn+1(0) = φ?? (8.7)

Figure 8.1 shows the solution to our diffusion-reaction equation with 256 zones,
κ = 0.1, τ = 1.0 at several times.

8.3—Ex: advection-diffusion 115

0 20 40 60 80 100
x

0.0

0.2

0.4

0.6

0.8

1.0

φ

Figure 8.1: Solution to the diffusion-reaction equation with 256 zones, and κ =
0.1, τ = 1.0. The lines shown are spaced 8.0 time-units apart. We see the initial
smoothed tophat profile giving rise to a traveling front.
Ï hydro examples: diffusion-reaction.py

Exercise 8.1: Consider a simple reaction source

R(φ) =
1
4

φ(1− φ) (8.8)

This is called a KPP reaction source. Here φ can be thought of as a progress
variable that varies between pure ash (φ = 0) and pure fuel (φ = 1).

Solve the system with this source. Note that you should begin with some
smooth initial conditions—if they are too sharp than the C-N discretization
will cause jagged features to appear. The solution in this case is a wave with
speed S =

√
κ/τ and thickness δ =

√
κτ (see [53] for some details of this

system).

8.3 Ex: advection-diffusion

The viscous Burgers’ equation appears as:

ut + uux = εuxx (8.9)

https://github.com/zingale/hydro_examples/blob/master/multiphysics/diffusion-reaction.py

116 Chapter 8. Multiphysics Applications

This admits shocks and rarefactions just like the inviscid form, but now the viscos-
ity can act to smooth out the shock—instead of being infinitely thin, it will have a
physical width.

As we saw earlier, there are efficient, accurate methods for handling the explicit
parts explicitly, but for diffusion, we often want to solve it implicitly. We can split
the solution up, but couple the two processes together to make a method that is
overall second-order accurate in time. We write our equation as:

ut + A(u) = D(u) (8.10)

with A(u) = [1
2 u2]x and D(u) = euxx. Then our update appears in two steps.

1. Find the advective update over the timestep: We use an approximation of the
diffusion term at time-level n, D(un) as a source in the construction of the
interface states for the advective part. Once the interface states, un+1/2

i+1/2 are
known, we construct the advective update term as:

An+1/2
i =

[
1
2

(
un+1/2

i+1/2

)2
]
−
[

1
2

(
un+1/2

i−1/2

)2
]

∆x
(8.11)

2. Solve the diffusion equation with the advective source: We use a Crank-Nicolson
discretization of the diffusion part of our equation, with the advective up-
date term appearing as a source.

un+1 − un

∆t
=

1
2

D(un) +
1
2

D(un+1)− An+1/2 (8.12)

This is a linear system that can be solved as a tridiagonal matrix or with
multigrid. The result of this step is that un+1 is updated with both the advec-
tion and diffusion terms.

Because the diffusion is done implicitly, the timestep constraint (for stability) for
this solve is due to the advective portion only.

For step 1, the addition of the explicit diffusion source requires a small change to
the method we used to predict the interface states.

un+1
i+1/2,L = un

i +
∆x
2

∂u
∂x

+
∆t
2

∂u
∂t

+ . . . (8.13)

= un
i +

∆x
2

∂u
∂x

+
∆t
2

(
−ui

∂u
∂x

+ D(un
i)

)
+ . . . (8.14)

= un
i +

∆x
2

(
1− ∆t

∆x
ui

)
∂u
∂x

+
∆t
2

D(un) + . . . (8.15)

here the source term (shown in red) incorporates the effects of the diffusion on
the prediction of the states for advection. This entered into our states when we

8.3—Ex: advection-diffusion 117

0.0 0.2 0.4 0.6 0.8 1.00.4

0.6

0.8

1.0

1.2

1.4

1.6
ν=0.005000

ν=0.000500

ν=0.000050

Figure 8.2: Solution to the viscous Burgers’ equation with a variety of different
viscosities. The initial conditions was a single wavelength of a sine wave for x ∈
[1/3, 2/3], and u = 1 otherwise.
Ï hydro examples: burgersvisc.py

replaced ∂u/∂t with our PDE equation. The spatial derivative, ∂u/∂x is replaced
by a monotonized difference, and the method then proceeds as with the regular
Burgers’ equation. The Riemann problem is unchanged from the inviscid case.

Figure 8.2 shows the solution of the viscous Burgers’ equation for shock initial
conditions with different amounts of viscosity. Notice that the effect of the viscos-
ity is to smooth the shock profile, but the shock position itself agrees between the
cases.

https://github.com/zingale/hydro_examples/blob/master/multiphysics/burgersvisc.py

Chapter9
Incompressible Flow and
Projection Methods

These summarize methods for solving the incompressible hydrodynamics equa-
tions using an cell-centered approximate projection method.

9.1 Incompressible flow

As a fluid parcel advects through a domain, it compresses and expands due to
a variety of effects (stratification, local heat release, acoustic/shock waves). The
Lagrangian derivative of the density captures the changes in the fluid, and is a
measure of its compressibility. From the continuity equation, we see:

− 1
ρ

Dρ

Dt
= ∇ ·U (9.1)

Note that for ∇ ·U > 0, we have −(1/ρ)(Dρ/Dt) > 0, which means that ρ gets
smaller—this is expansion of the Lagrangian fluid element.

A fluid in which the density (and therefore volume) of a fluid element is not al-
lowed to change is called incompressible. An incompressible fluid obeys the veloc-
ity constraint:

∇ ·U = 0 (9.2)

(since Dρ/Dt = 0). The incompressible fluid approximation is a reasonable ap-
proximation when the Mach number of the fluid is small (� 1). To complete the
system, we add the momentum equation. If we take the density to be constant
everywhere in the domain (not just in our fluid element), then we have:

∂U
∂t

+ U · ∇U +∇p = 0 (9.3)

git version: 6e0249aeeefc . . . 119

120 Chapter 9. Incompressible Flow and Projection Methods

Note that p here looks like a pressure, but it is not subject to any equation of state.
This system is closed as written. The value of p is determined such that the velocity
constraint is satisfied.

9.2 Projection methods

The basic idea behind a projection method is that any vector field can be decom-
posed into a divergence free part and the gradient of a scalar (this is sometimes
called a Hodge decomposition). Given a velocity field U?, we can express it in terms
of the divergence free part Ud and a scalar, φ as:

U? = Ud +∇φ (9.4)

Taking the divergence of each side, and noting that ∇ ·Ud = 0, we have

∇ ·U? = ∇2φ (9.5)

This is an elliptic equation. Given suitable boundary conditions, we can solve for
φ (for instance, using multigrid) and recover the divergence free part of U? as:

Ud = U? −∇φ (9.6)

We call this operation of extracting the divergence free part of a velocity field a
projection. This can be expressed by defining an operator P, such that PU? = Ud,
and (I − P)U? = ∇φ. From the momentum equation, we see that ∂U/∂t +∇φ is
in the form of a divergence free term + the gradient of a scalar. This means that
advancing the velocity field subject to the constraint involves solving:

Ut = P(Ut +∇p) = P(−U · ∇U) (9.7)

See Bell, Colella, and Howell [9] for a nice discussion of this.

The original projection method for incompressible flows goes back to Chorin [17].
Instead of evolving Eq. 9.7 directly, we break the update into pieces. The basic
idea is to evolve the velocity advection equation without regard to the constraint,
yielding a provisional velocity field which is then subjected to a projection to en-
force the divergence-free constraint. Bell, Colella, and Glaz (BCG) [8] introduced a
projection method that uses standard Godunov methods for the advection terms
(much like is done with compressible flow) and then solves an elliptic equation
to enforce the constraint. This division of the operations in the algorithm (advect
then project) is a type of fractional step method.

There are different ways to discretize the operators that make up the projection.
We denote the discretized divergence as D and the discretized gradient operation
as G. For an exact projection, the discretized Laplacian, L, would be the same as
applying G and D in succession (i.e. L = DG). Depending on our data centerings,
we may prefer to discretize the Laplacian independently to D and G, such that

9.3—Cell-centered approximate projection solver 121

L 6= DG. This is called an approximate projection. Note that for an approximate
projection, P is not idempotent: P2U 6= PU.

Many variations on this basic idea exist, using alternate forms of the projection,
different grid centerings of the φ variable, and additional physics.

9.3 Cell-centered approximate projection solver

Here we describe an incompressible algorithm that uses cell-centered data throughout—
U and p are both cell-centered. The projection at the end is an approximate pro-
jection. The basic algorithm flow is

• Create the time-centered advective velocities through the faces of the zones.

• Project the advective velocities such that they obey the velocity constraint

• Construct the time-centered interface states of all quantities on the faces of
the zones using the advective velocity.

• Update the velocity to the new time. This is defines the provisional velocity
field—it does not yet satisfy the constraint.

• Enforce the velocity constraint by projecting the velocity.

The description below is pieced together from a variety of sources. BCH describes
a cell-centered method, but with an exact projection (with a larger, decoupled sten-
cil). Almgren, Bell, and Szymczak (ABS) [7] describes an approximate projection
method, but with a node-centered final projection. We follow this paper closely
up until the projection. Martin and Colella [34] (and Martin’s PhD thesis) method
uses a cell-centered projection, as is described here. They go into additional effort
to describe this for a refined grid. All of these method are largely alike, aside from
how the discretization of the final projection is handled.

9.3.1 Advective velocity

In predicting the interface states, we first seek to construct the velocities through
the interfaces. A key concept throughout the advection step is that once we have
the normal velocities on the interfaces, we can use these to upwind left and right
states of any quantity to get their interface value. The advective velocities we con-
struct here, uadv and vadv, will later be used to upwind the various states we pre-
dict to the interfaces. We only need the velocity through the interfaces, as shown
in the figure 9.1. This staggered grid arrangement is sometimes called a MAC grid.

We follow ABS. Our velocity evolution system (writing out the individual compo-

122 Chapter 9. Incompressible Flow and Projection Methods

ui,j
vi,j

ui+1,j
vi+1,j

ui−1,j
vi−1,j

ui,j+1
vi,j+1

ui,j−1
vi,j−1

u
a
d
v

i
+
1
/
2
,j

u
a
d
v

i−
1
/
2
,j

vadvi,j+1/2

vadvi,j−1/2

i−1 i i+1

j−1

j

j+1

Figure 9.1: The staggered ‘MAC’ grid for the advective velocities.

nents of U: u and v) is

∂u
∂t

= −u
∂u
∂x
− v

∂u
∂y
− ∂p

∂x
= 0 (9.8)

∂v
∂t

= −u
∂v
∂x
− v

∂v
∂y
− ∂p

∂y
= 0 (9.9)

Our goal in this step is to predict time-centered interface values of the normal
velocity (u on x-edges and v on y-edges). The prediction follows from Taylor ex-
panding the state to the interface (through ∆x/2 or ∆y/2) and to the half-time
(through ∆t/2). As with the regular advection, we can have left and right states
which we will resolve by solving a Riemann problem. The left interface state of u

9.3—Cell-centered approximate projection solver 123

at i + 1/2, j is found as:

un+1/2
i+1/2,j,L = ui,j +

∆x
2

∂u
∂x

∣∣∣∣
i,j
+

∆t
2

∂u
∂t

∣∣∣∣
i,j

(9.10)

= ui,j +
∆x
2

∂u
∂x

∣∣∣∣
i,j
+

∆t
2

(
−u

∂u
∂x
− v

∂u
∂y
− ∂p

∂x

)∣∣∣∣
i,j

(9.11)

= ui,j +
∆x
2

(
1− ∆t

∆x
ui,j

)
∂u
∂x

∣∣∣∣
i,j
− ∆t

2

(
v

∂u
∂y

)
i,j
− ∆t

2
∂p
∂x

∣∣∣∣
i,j

(9.12)

(9.13)

We express ∂u/∂x|i,j as ∆u(x)
i,j /∆x, where ∆u(x)

i,j is the limited slope of u in the x-
direction in zone i, j. Our interface state is then:

un+1/2
i+1/2,j,L = ui,j +

1
2

(
1− ∆t

∆x
u
)

∆u(x)
i,j︸ ︷︷ ︸

≡ûn+1/2
i+1/2,j,L

− ∆t
2

(
v

∂u
∂y

)
i,j︸ ︷︷ ︸

transverse term

−∆t
2

∂p
∂x

∣∣∣∣
i,j

(9.14)

Similarly, for v through the y faces, we find:

vn+1/2
i,j+1/2,L = vi,j +

1
2

(
1− ∆t

∆x
v
)

∆v(y)i,j︸ ︷︷ ︸
≡v̂n+1/2

i,j+1/2,L

− ∆t
2

(
u

∂v
∂x

)
i,j︸ ︷︷ ︸

transverse term

−∆t
2

∂p
∂y

∣∣∣∣
i,j

(9.15)

As indicated above (and following ABS and the similar notation used by Colella [19]),
we denote the quantities that will be used to evaluate the transverse states (con-
sisting only of the normal predictor) with a ‘̂ ’. These will be used to evaluate the
transverse terms labeled above.

We predict u and v to both the x and y interfaces, using only the normal part of the
predictor. This gives us the left and right ‘hat’ states on each interface.

u on x-interfaces:

ûn+1/2
i+1/2,j,L = ui,j +

1
2

(
1− ∆t

∆x
ui,j

)
∆u(x)

i,j (9.16)

ûn+1/2
i+1/2,j,R = ui+1,j −

1
2

(
1 +

∆t
∆x

ui+1,j

)
∆u(x)

i+1,j (9.17)

v on x-interfaces:

v̂n+1/2
i+1/2,j,L = vi,j +

1
2

(
1− ∆t

∆x
ui,j

)
∆v(x)

i,j (9.18)

v̂n+1/2
i,j+1/2,R = vi+1,j −

1
2

(
1 +

∆t
∆x

ui+1,j

)
∆v(x)

i+1,j (9.19)

124 Chapter 9. Incompressible Flow and Projection Methods

u on y-interfaces:

ûn+1/2
i,j+1/2,L = ui,j +

1
2

(
1− ∆t

∆y
vi,j

)
∆u(y)

i,j (9.20)

ûn+1/2
i,j+1/2,R = ui,j+1 −

1
2

(
1 +

∆t
∆y

vi,j+1

)
∆u(y)

i,j+1 (9.21)

v on y-interfaces:

v̂n+1/2
i,j+1/2,L = vi,j +

1
2

(
1− ∆t

∆y
vi,j

)
∆v(y)i,j (9.22)

v̂n+1/2
i,j+1/2,R = vi,j+1 −

1
2

(
1 +

∆t
∆y

vi,j+1

)
∆v(y)i,j+1 (9.23)

Note that the ‘right’ state is constructed using the data to the right of the interface.
Also note that in constructing these transverse velocities, we do not include the p
term.

Next we find the advective velocity through each interface. The incompressible ve-
locity equation looks like the inviscid Burger’s equation, and the Riemann solver
follows that construction. BCG provide the implementation used here (and through-
out the incompressible literature). Also see Toro [51]. We denote the resulting ve-
locities with the ‘adv’ superscript, as these are the normal velocities used to advect
the hat states. The Riemann problem solution is:

R(qL, qR) =

qL if qL > 0, qL + qR > 0
0 if qL ≤ 0, qR ≥ 0

qR otherwise
(9.24)

We solve this for each of the normal velocities, giving:

ûadv
i+1/2,j = R(ûn+1/2

i+1/2,j,L, ûn+1/2
i+1/2,j,R) (9.25)

v̂adv
i,j+1/2 = R(v̂n+1/2

i,j+1/2,L, v̂n+1/2
i,j+1/2,R) (9.26)

These advective velocities (sometimes called the transverse velocities) are used to
resolve the left and right states of all the hat quantities by simple upwinding. For
a u or v state on the x-interface, we upwind based on ûadv; and for a u or v state
on the y-interface, we upwind based on v̂adv. If we write the upwinding as:

U [sadv](qL, qR) =

qL if sadv > 0

1
2 (qL + qR) if sadv = 0

qR if sadv < 0
(9.27)

Then the interface states are:

ûi+1/2,j = U [ûadv
i+1/2,j](û

n+1/2
i+1/2,j,L, ûn+1/2

i+1/2,j,R) (9.28)

v̂i+1/2,j = U [ûadv
i+1/2,j](v̂

n+1/2
i+1/2,j,L, v̂n+1/2

i+1/2,j,R) (9.29)

ûi,j+1/2 = U [v̂adv
i,j+1/2](û

n+1/2
i,j+1/2,L, ûn+1/2

i,j+1/2,R) (9.30)

v̂i,j+1/2 = U [v̂adv
i,j+1/2](v̂

n+1/2
i,j+1/2,L, v̂n+1/2

i,j+1/2,R) (9.31)

9.3—Cell-centered approximate projection solver 125

Now we can construct the full left and right predictions for the normal velocities
on each interface (Eqs. 9.14 and 9.15). This involves simply adding the transverse
term to the hat quantities and adding the pressure gradient.

un+1/2
i+1/2,j,L = ûn+1/2

i+1/2,j,L−
∆t
2

[
1
2

(
v̂adv

i,j−1/2 + v̂adv
i,j+1/2

)](ûn+1/2
i,j+1/2 − ûn+1/2

i,j−1/2

∆y

)
− ∆t

2
(Gp)(x),n−1/2

i,j

(9.32)
and

vn+1/2
i,j+1/2,L = v̂n+1/2

i,j+1/2,L−
∆t
2

[
1
2

(
ûadv

i−1/2,j + ûadv
i+1/2,j

)](v̂n+1/2
i+1/2,j − v̂n+1/2

i−1/2,j

∆x

)
− ∆t

2
(Gp)(y),n−1/2

i,j

(9.33)
Here (Gp)(x),n−1/2

i,j and (Gp)(y),n−1/2
i,j are difference-approximations to ∇p in the

x and y directions respectively. Note that they are lagged—these come from the
projection at the end of the previous timestep. See BCG for a discussion. A similar
construction is done for the right states at the interface.

Finally, we do a Riemann solve (again, using the Burger’s form of the Riemann
problem) followed by upwinding to get the normal advective velocities. This is
basically theR operation followed by U . Together, it is:

uadv
i+1/2,j =

un+1/2

i+1/2,j,L if un+1/2
i+1/2,j,L > 0, un+1/2

i+1/2,j,L + un+1/2
i+1/2,j,R > 0

1
2

(
un+1/2

i+1/2,j,L + un+1/2
i+1/2,j,R

)
if un+1/2

i+1/2,j,L ≤ 0, un+1/2
i+1/2,j,R ≥ 0

un+1/2
i+1/2,j,R otherwise

(9.34)
and similar for vadv

i,j+1/2. These velocities are sometimes referred to as the MAC
velocities.

9.3.2 MAC projection

We could simply use these time-centered advective velocities to construct the fluxes
through the interfaces and update to the new time level. However BCH showed
that such a method is unstable for CFL > 0.5. The fix is to enforce the velocity
constraint on these advective velocities. This involves projecting the velocity field
onto the space that is divergence free. This projection is usually called the MAC
projection. Once the MAC-projected advective velocities are computed, we can
reconstruct the interface states using this divergence-free velocity field. Figure 9.2
shows the location of the various quantities that participate it the MAC projection.

The divergence of the MAC velocities is cell-centered and constructed as:

(DU)i,j =
uadv

i+1/2,j − uadv
i−1/2,j

∆x
+

vadv
i,j+1/2 − vadv

i,j−1/2

∆y
(9.35)

126 Chapter 9. Incompressible Flow and Projection Methods

ii−1 i+1

j

j−1

j+1

φi,j
φi+1,jφi−1,j

φi,j+1

φi,j−1

u
a
d
v

i
+
1
/
2,j

u
a
d
v

i−
1
/
2
,j

vadvi,j+1/2

vadvi,j−1/2

ii−1 i+1

j

j−1

j+1

(DGφ)i,j
(DUadv)i,j

(G
φ
)
i
+
1
/
2,j

(G
φ
)
i−

1/
2
,j

(Gφ)i,j+1/2

(Gφ)i,j−1/2

Figure 9.2: The centerings of the various components that make up the MAC pro-
jection.

We define a cell-centered φ. Gφ will then be edge-centered on a MAC grid, and
Lφ = DGφ is again cell-centered. Since L = DG, this makes the MAC projection
an exact projection.

We solve
Lφ = DU (9.36)

using multigrid V-cycles and then update the MAC velocities as:

uadv
i+1/2,j = uadv

i+1/2,j −
φi+1,j − φi,j

∆x
(9.37)

vadv
i,j+1/2 = vadv

i,j+1/2 −
φi,j+1 − φi,j

∆y
(9.38)

9.3.3 Reconstruct interface states

Next we redo the construction of the interface states. This procedure is identical to
that above—construct the interface states ûL,R, v̂L,R on all edges, upwind based on
ûadv, v̂adv, and use these to construct the full states (including transverse terms).
Now however, we construct the interface states of u and v on both the x and y-
interfaces (not just the normal component at each interface). Finally, instead of
solving a Riemann problem to resolve the left and right states, we simply upwind
using the MAC-projected uadv and vadv. This results in the interface state un+1/2

i+1/2,j,

vn+1/2
i+1/2,j, un+1/2

i,j+1/2, vn+1/2
i,j+1/2.

The only reason we need to do this step over, instead of using the interface states
that we predicted previously is we want to ensure that they are consistent with the
MAC-projected advective velocities (and therefore, consistent with the constraint).

9.3—Cell-centered approximate projection solver 127

9.3.4 Provisional update

Once we have the time-centered interface states that are consistent with the MAC-
projected advective velocities, we can update the velocities to the new time by
discretizing the advective terms (U · ∇U). We express the advective terms for u as
A(u),n+1/2

i,j and those for v as A(v),n+1/2
i,j . These have the form:

A(u),n+1/2
i,j =

1
2

(
uadv

i−1/2,j + uadv
i+1/2,j

) un+1/2
i+1/2,j − un+1/2

i−1/2,j

∆x
+

1
2

(
vadv

i,j−1/2 + vadv
i,j+1/2

) un+1/2
i,j+1/2 − un+1/2

i,j−1/2

∆y
(9.39)

A(v),n+1/2
i,j =

1
2

(
uadv

i−1/2,j + uadv
i+1/2,j

) vn+1/2
i+1/2,j − vn+1/2

i−1/2,j

∆x
+

1
2

(
vadv

i,j−1/2 + vadv
i,j+1/2

) vn+1/2
i,j+1/2 − vn+1/2

i,j−1/2

∆y
(9.40)

The normal update for u, v would include the Gp term and appear as:

u?
i,j = un

i,j − ∆tA(u),n+1/2
i,j − ∆t(Gp)(x),n−1/2

i,j (9.41)

v?i,j = vn
i,j − ∆tA(v),n+1/2

i,j − ∆t(Gp)(y),n−1/2
i,j (9.42)

Note that at this point, we don’t have an updated p, so we use a lagged value from
the previous step’s projection.

Alternately, we can note that for an exact projection, Gp, is the gradient of a scalar
and would be removed by the projection, so we can omit it in this update, giving
an alternate provisional update:

u??
i,j = un

i,j − ∆tA(u),n+1/2
i,j (9.43)

v??i,j = vn
i,j − ∆tA(v),n+1/2

i,j (9.44)

Following the notation in Martin, we distinguish between these with an ‘?’ vs. ‘??’
1.

9.3.5 Approximate projection

This provisional velocity field does not yet obey the constraint. To enforce the
constraint, we need to do a projection. Here is where we have the flexibility on

1Note that these are identical to ABC [3] approximation projections (1) and (2) (a quick look at
ABC might suggest the opposite, but note that their definition of U? already includes a −Gpn−1/2

term, so by explicitly adding it back in, you are dealing with the case where U? was updated without
any Gpn−1/2 term, like the ‘??’ case above.)

128 Chapter 9. Incompressible Flow and Projection Methods

whether to include the Gpn−1/2 term. If we were doing an exact projection, then
adding the gradient of a scalar would not change the divergence-free velocity field,
so there would be no need to add it.

BCH did an exact projection on a cell-centered grid. There, the divergence opera-
tor is:

(DU)i,j =
ui+1,j − ui−1,j

2∆x
+

vi,j+1 − vi,j−1

2∆y
(9.45)

This gives a cell-centered DU. If we want φ cell-centered, then the gradient, Gφ
must also be cell centered so Lφ = DGφ is cell-centered. This means that we must
have

(Gφ)
(x)
i,j =

φi+1,j − φi−1,j

2∆x
(9.46)

(Gφ)
(y)
i,j =

φi,j+1 − φi,j+1

2∆y
(9.47)

The resulting Laplacian would then be a 5-point stencil that skips over the imme-
diate neighbors:

(Lφ)i,j =
φi+2,j − 2φi,j + φi−2,j

4∆x2 +
φi,j+2 − 2φi,j + φi,j−2

4∆y2 (9.48)

This decomposes the domain into 4 distinct grids that are only linked together at
the boundaries. While an exact projection, this decoupling can be undesirable.

Approximate projections relax the idea that L = DG. In an exact projection, when
you apply the projection operator, P, in succession, the result is unchanged (P2 =
P). This is not the case for an approximate projection. As a result, exactly what
form you project matters. For an approximate projection, we can use the standard
5-point stencil for the Laplacian,

(Lφ)i,j =
φi+1,j − 2φi,j + φi−1,j

∆x2 +
φi,j+1 − 2φi,j + φi,j−1

∆y2 (9.49)

together with the cell-centered divergence above (Eq. 9.45).

Rider [44] and Almgren, Bell, and Crutchfield (ABC) [3] explore various forms
of what to project when doing the approximate projection. For instance, do we
include the Gpn−1/2 term in the provisional velocity or not? Chorin noted that if
viscosity is being modeled, then it is necessary to include it here to get second-
order accuracy. Also, one can project the update to the velocity, (U? − Un)/∆t
instead of just the new velocity, since Un should already be divergence free. Rider
argues that projecting the update is not desirable with approximate projections,
since any error in Un being divergence-free is carried forward to the new Un+1.
One issue is that a cell-centered approximate projection cannot remove all sources
of divergence (see Rider and Martin’s PhD thesis).

When projecting the new velocity, we scale by ∆t to get a quantity that has dimen-
sions of pressure. The procedure for the projection differs slightly depending on
whether we project U? or U??:

9.3—Cell-centered approximate projection solver 129

• case I: projecting U?/∆t.

From the expression above, this looks like:

U?

∆t
=

Un

∆t
− A(u),n+1/2 − (Gp)(x),n−1/2 (9.50)

Ideally, Un is already divergence free, and Gpn−1/2 is the gradient of a scalar,
which will be removed, so the projection should pick out the divergence free
portion of A(u). We solve:

Lφ = D(U?/∆t) (9.51)

using multigrid V-cycles. We then find the new, divergence free velocity field
as:

Un+1 = U? − ∆tGφ (9.52)

Since we already included Gpn−1/2 in what we projected, Gφ will be the
correction,

Gφ = Gpn+1/2 − Gpn−1/2 (9.53)

or
Gpn+1/2 = Gpn−1/2 + Gφ (9.54)

(see Martin 2.5 or ABC). We store this for the next timestep.

• case II: projecting U??/∆t.

From the expression above, this looks like:

U??

∆t
=

Un

∆t
− A(u),n+1/2 (9.55)

There is no explicit Gpn−1/2 term. We solve:

Lφ = D(U??/∆t) (9.56)

using multigrid V-cycles. We then find the new, divergence free velocity field
as:

Un+1 = U?? − ∆tGφ (9.57)

Since there was no Gpn−1/2 in what we projected, pn+1/2 = φ, and

Gpn+1/2 = Gφ (9.58)

We store this for the next timestep.

One pathology of this form of the projection is that (DU)i,j does not actually make
use of the velocity field in zone (i, j). This decoupling from the local zone can
result in a checkerboarding pattern in the projected velocity field.

130 Chapter 9. Incompressible Flow and Projection Methods

9.4 Boundary conditions

For the advection portion of the algorithm, the boundary conditions on u and v
are implemented in the usual way, using ghost cells. For the projection,

For a periodic domain, the boundary conditions on φ are likewise periodic. At a
solid wall or inflow boundary, we already predicted the velocity that we want at
the wall (in the advection step), and we do not want this value to change in the
projection step. Since the correction is:

Un+1 = U? −∇φ (9.59)

we want ∇φ · n = 0.

At outflow boundaries, we do not want to introduce any shear as we go through
the boundary. This means that we do not want any tangential acceleration. Setting
φ = 0 on the boundary enforces∇φ · t = 0, where t is the unit vector tangential to
the boundary.

See ABS for a discussion of the boundary conditions.

9.5 Bootstrapping

At step 0, we do not have a value of Gp−1/2. To get an initial value for Gp, we run
through the entire evolution algorithm starting with the initial data. At the end of
a step, we reset u and v to the initial values and store the Gp at the end of this step
as Gp−1/2.

It is also common to precede this initialization by first projecting the velocity field
to ensure it is divergence free. This way, we do not have to rely on the initial
conditions to always set a divergence free velocity field.

9.6 Test problems

9.6.1 Convergence test

Minion [38] introduced a simple test problem with an analytic solution. The ve-
locity field is initialized as:

u(x, y) = 1− 2 cos(2πx) sin(2πy) (9.60)
v(x, y) = 1 + 2 sin(2πx) cos(2πy) (9.61)

The exact solution at some time t is:

u(x, y, t) = 1− 2 cos(2π(x− t)) sin(2π(y− t)) (9.62)
v(x, y, t) = 1 + 2 sin(2π(x− t)) cos(2π(y− t)) (9.63)

9.7—Extensions 131

Minion also gives the pressure, but this is not needed for the solution. This is run
on a doubly-periodic unit square domain. The main utility of this set of initial
conditions is that we can use the analytic solution to measure the convergence
behavior of the algorithm.

9.7 Extensions

• Variable density incompressible: Bell & Marcus [12] describe how to extend
these methods to variable density flows. This means that the density in the
domain may not be constant, but within a fluid element, the density does
not change. This can arise, for instance, in modeling the Rayleigh-Taylor
instability.

The basic idea follows the method described above. Now the mass continu-
ity equation is also evolved:

∂ρ

∂t
+∇ · (ρU) = 0 (9.64)

The density is predicted to the interfaces follow the same procedure above
and upwinded using the MAC velocities. For the projection, the decomposi-
tion is written as:

U = Ud +
1
ρ
∇φ (9.65)

and the elliptic equation is now a variable-coefficient equation:

∇ · 1
ρ
∇φ = ∇ ·U (9.66)

• Viscosity: When viscosity is included in the system, our momentum equation
becomes:

Ut + U · ∇U +∇p = ε∇2U (9.67)

The solution process for this equation is largely the same. Following BCH,
first the advective term is computed by predicting the velocities to the inter-
faces, doing the MAC projection, and then forming An+1/2. Now there is an
explicit viscosity term (at time-level n) present in the prediction, as a source
term. The provision velocity update is no longer a simple flux update, but
instead requires solving two decoupled diffusion-like equations (one for u
and one for v). These are differenced using Crank-Nicolson centering:

u? − un

∆t
= −A(u),n+1/2 −∇p(x),n−1/2 +

ε

2
∇2(un + u?) (9.68)

v? − vn

∆t
= −A(v),n+1/2 −∇p(y),n−1/2 +

ε

2
∇2(vn + v?) (9.69)

This involves two separate multigrid solves. Once U? is found, the final
projection is done as usual.

132 Chapter 9. Incompressible Flow and Projection Methods

• Low Mach number combustion: In low-Mach number combustion flows, the
fluid is allowed to respond to local heat release by expanding. The velocity
constraint is derived by differentiating the equation of state along particle
paths, leading to the appearance of a source term:

∇ ·U = S (9.70)

Here, S, incorporates the compressibility effects due to the heat release and
diffusion. This system is used when modeling burning fronts (flames). This
type of flow can be thought of as linking two incompressible states (the fuel
and the ash) by the expansion across the interface.

The solution technique largely follows that of the incompressible flow. One
caveat, because the constraint now has a local heat source, S, doing the cell-
centered divergence described above leads to a decoupling of DU from the
local source, since the stencil of DU does not include the zone upon which it
is centered.

This system is described in detail in [42, 25, 11].

• Stratified flows: When the background is stratified, a different velocity con-
straint can arise, capturing the expansion of the fluid element due to the
pressure change with altitude. For example, with an ideal gas, the equation
of state can be recast as:

∇ · (p1/γ
0) = 0 (9.71)

where p0(z) is the pressure as a function of height, representing the hydro-
static background, and γ is the ratio of specific heats. For a general equation
of state, p(01/γ) is replaced with something more complicated (see [5, 6, 4]
for the development of a low Mach hydrodynamics method for stratified
astrophysical flows).

• Nodal projection: instead of discretizing the final projection using a cell-centered
φ, ABS use a node-centered φ. While this is still an approximate projection,
this discretization couples in the zone we are centered on, and is said to be
able to do a better job removing pathological divergent velocity fields that
cell-centered projections stumble on.

Chapter10
Low Mach Number Methods

Incompressible flow represents the zero-Mach number limit of fluid flow—no
compressibility effects are modeled. We can extend the ideas of incompressibe
flow to allow us to model some compressibility effects, giving rise to low Mach
number methods.

10.1 Low Mach divergence constraints

The key idea in solvers for low Mach number flows is that, as a fluid element ad-
vects, its pressure remains the same as the background state. For an atmosphere,
this background state is a hydrostatic profile. For a smallscale combustion flow,
this background state is a spatially constant pressure (and constaint-in-time if the
domain is open). We’ll denote this background pressure as p0(r, t), where r is a
radial coordinate.

From the first law of thermodynamics, Tds = de + pd(1/ρ), we see

T
Ds
Dt

=
De
Dt

+ p0
D(1/ρ)

Dt
(10.1)

which is our internal energy evolution equation. The internal energy in a fluid
parcel can change due to local heat release and diffusion, so we can write:

T
Ds
Dt

=
De
Dt

+ p0
D(1/ρ)

Dt
= H +∇ · (k∇T) ≡ q̇ (10.2)

where H is the specific energy generation rate (energy / mass /time) and k is the
thermal conductivity.

We can derive the constraint on the velocity field by considering the Lagrangian
derivative of the pressure—this captures the change in pressure of a fluid element

git version: 6e0249aeeefc . . . 133

134 Chapter 10. Low Mach Number Methods

as it moves through the domain.

Dp0

Dt
=

∂p0

∂ρ

∣∣∣∣
s

Dρ

Dt
+

∂p0

∂s

∣∣∣∣
ρ

Ds
Dt

(10.3)

we recognize that Γ1 ≡ ∂ log p0/∂ log ρ|s. The Maxwell relations tell us that

∂p0/∂s|ρ = ρ2∂T/∂ρ|s (10.4)

This gives us the form:

Dp0

Dt
=

p0

ρ
Γ1

Dρ

Dt
+ ρ2 ∂T

∂ρ

∣∣∣∣
s

q̇
T

(10.5)

We need an expression for ∂T/∂ρ|s and terms of derivatives of ρ and T (since that
is what our equations of state typically provide). Consider Γ1, with p = p(ρ, T):

Γ1 =
ρ

p
dp
dρ

∣∣∣∣
s
=

ρ

p

[
pρ + pT

dT
dρ

∣∣∣∣
s

]
(10.6)

where we use the shorthand pρ ≡ ∂p/∂ρ|T and pT ≡ ∂p/∂T|ρ. This tells us that

∂T
∂ρ

∣∣∣∣
s
=

p
ρpT

(Γ1 − χρ) (10.7)

where χρ ≡ ∂ log p/∂ log ρ|T. Using the following relations

Γ1

χρ
=

cp

cv
(10.8)

and

cp − cv =
p

ρT
χ2

T
χρ

(10.9)

with χT ≡ ∂ log p/∂ log T|ρ (see, e.g. [29] for both of these relations), we can write

∂T
∂ρ

∣∣∣∣
s
=

pχT

ρ2cv
(10.10)

Putting this all together, we have:

Dp0

Dt
=

p0

ρ
Γ1

Dρ

Dt
+

pχT

cvT
q̇ (10.11)

The continuity equation gives us:

Dρ

Dt
= −ρ∇ ·U (10.12)

10.1—Low Mach divergence constraints 135

Solving for the velocity divergence, we finally have:

∇ ·U +
1

Γ1 p0

Dp0

Dt
=

χT

cvTΓ1
q̇ =

χT

cpχρT
q̇

=
pT

ρcp pρ
q̇ ≡ σq̇ (10.13)

with

σ =
∂p0/∂T|ρ

ρcp∂p0/∂ρ|T
(10.14)

The σ notation follows from [6], where we abbreviate the righthand side as S.

This is the general constraint equation for low Mach flow. Note that the only
approximation we made is p → p0. This form of the constraint, for a general
equation of state, was originally derived in [5].

Combustion limit

A useful limit is smallscale combustion. In an open domain, we can take p0 as
constant, so Dp0/Dt = 0, and we are left with

∇ ·U = S (10.15)

This looks like the constraint for incompressible flow, but with a source to the di-
vergence. This source captures the compressible effects due to local heat release—
as a fluid parcel moves, the only changes to its density will come through local
heat release. Methods for this type of constraint are discussed in [42, 25, 11].

Atmospheric case

Another interesting case is that of an atmosphere. If we consider an ideal gas,
then Γ1 = γ = constant. A second appromation we take is that p0 = p0(r)—i.e.,
no time dependence to the atmosphere. Finally, we’ll consider the case with no
local heat sources (S = 0). Then we have

∇ ·U +
1

γp0
U · ∇p0 = 0 (10.16)

which is equivalent to
∇ ·

(
p1/γ

0 U
)
= 0 (10.17)

This constraint captures the changes in compressibilty due to the background
stratification of an atmosphere. This form was originally derived for atmospheric
flows by [26] and generalized to stellar flows in [5]. If the structure of the atmo-
sphere is isentropic, then we know that d log p0 = γd log ρ0, where we use ρ0 to
represent the density corresponding to p0, and we can write this constraint as:

∇ · (ρ0U) = 0 (10.18)

136 Chapter 10. Low Mach Number Methods

This is the traditional anelastic constraint.

Extensions involving external heating sources or reactions are discussed in [6, 4],
and dealing with the non-constant Γ1 is discussed in [5, 30]. The time-dependence
of the background atmosphere is explored in [6] for plane-parallel atmospheres,
following the ideas from [1], and in [40] for spherical, self-gravitating bodies.

10.2 Multigrid for Variable-Density Flows

The solution methodology for these low Mach number systems follows that of
the incompressible flow, but with two additions. First, we need to incorporate
a density (mass continuity) evolution equation—this will follow the same tech-
niques we already saw for advection, as we’ll see later. Next, we need to be able
to enforce more general forms of the divergence constraint, which as we’ll see in a
moment, require us to solve a variable-coefficient elliptic equation. Our multigrid
technique will need to be suitably modified.

We now need to solve an elliptic equation of the form:

∇ · (η∇φ) = f (10.19)

If we denote the discrete divergence and gradient operators as D and G, then our
operator will be Lη ≡ DηG. If we wish to use a cell-centered discretization for φ,
then using a standard centered-difference for D and G will result in a stencil that
reaches two zones on either side of the current zone. This can lead to an odd-even
decoupling.cite the appropriate

Bell paper
there is a Pao and
Colella (or Pao’s
thesis?) that also
discusses issues with
cell-centered

Instead, we again use an approximate projection. We discretize the variable-coefficient
Laplacian as:

(Lηφ)i,j =
ηi+1/2,j(φi+1,j − φi,j)− ηi−1/2,j(φi,j − φi−1,j)

∆x2 +

ηi,j+1/2(φi,j+1 − φi,j)− ηi,j−1/2(φi,j − φi,j−1)

∆y2 (10.20)

We can define the interface values of η as the averages of the cell-centered values,
e.g.,

ηi,j+1/2 =
1
2
(ηi,j + ηi,j+1) (10.21)

Our elliptic equation is then
(Lηφ)i,j = fi,j (10.22)

The relaxation method for this operator again relies on isolating φi,j, yielding:

φi,j =
η̃i+1/2,jφi+1,j + η̃i−1/2,jφi−1,j + η̃i,j+1/2φi,j+1 + η̃i,j−1/2φi,j−1 − fi,j

η̃i+1/2,j + η̃i−1/2,j + η̃i,j+1/2 + η̃i,j−1/2
(10.23)

10.2—Multigrid for Variable-Density Flows 137

with the shorthand that η̃i±1/2,j = ηi±1/2,j/∆x2 and η̃i,j±1/2 = ηi,j±1/2/∆y2.

To put this into our multigrid framework, there are three changes we need to
make:

• The smoothing function needs to implement the more general smoothing
described by Eq. 10.23.

• The residual function needs to compute (Lηφ)i,j according to Eq. 10.20, and
then ri,j = fi,j − (Lηφ)i,j.

• The coefficients, η should be averaged to the edges on the fine grid and then
restricted down the multigrid hierarchy as edge-based quantities.

10.2.1 Test problem

Periodic

To test the solver, we need to devise a problem with a known analytic solution.
The easiest way to do this is to pick an η(x) and φ and then do the divergence and
gradients to find the required righthand side, f . We’ll use periodic BCs, and for
our equation ∇ · (η∇φ) = f , the following provide a well-posed test problem:

η = 2 + cos(2πx) cos(2πy) (10.24)

f = −16.0π2 [cos(2πx) cos(2πy) + 1] sin(2πx) sin(2πy)

with the solution:
φtrue = sin(2πx) sin(2πy)

There is an important caveat when dealing with a purely-periodic problem. Since
there is no boundary values to “anchor” the solution, it is free to float. Solving the
elliptic problem will give use the correct∇φ, but the average of φ over the domain
is unconstrained. For our algorithms, it is∇φ that matters (that is the forcing term
that enters into the momentum equation).

When for checking convergence, we want to compare to the exact solution. We
therefore normalize φ by subtracting off its average value before computing the
norm of the error with respect to the exact solution:

ε = ‖φi,j − φ̄− φtrue
i,j ‖ , (10.25)

where
φ̄ =

1
Nx Ny

∑
i,j

φi,j (10.26)

As discussed in § 6.5, this can arise if the discrete form the righthand side, fi,j does
not sum exactly to zero. Figure 10.1 shows the solution to this problem with a 5122

grid. and the convergence of the solver described here is shown in Figure 10.2.

138 Chapter 10. Low Mach Number Methods

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y
nx = 512

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

error

−0.0000225

−0.0000200

−0.0000175

−0.0000150

−0.0000125

−0.0000100

−0.0000075

−0.0000050

−0.0000025

Figure 10.1: Solution and error to the variable-coefficient Poisson problem defined
in Eq. 10.24. This test can be run with pyro multigrid/test mg vc periodic.py.

101 102 103

N

10-6

10-5

10-4

10-3

10-2

e
rr
o
r

Figure 10.2: Convergence of the variable-coefficient multigrid solver for
the test problem defined in Eq. 10.24. This test can be run with pyro
multigrid/test mg vc periodic.py.

Dirichlet

We can run the same problem with Dirichlet boundary conditions on φ, and we
are free to pick different boundary conditions for η, since it represents a different
physical quantity. Since we only have homogeneous Dirichlet or Neumann BCs
implemented, we’ll run with Neumann BCs on η.

10.3—Atmospheric flows 139

10.3 Atmospheric flows

10.3.1 Equation Set

For atmospheric flows, we define a one-dimensional base state that is in hydro-
static equilibrium. In general, this base state can be time-dependent, expanding in
response to heating in the atmosphere (see e.g. [1, 6]. Here we’ll consider only a
time-independent state.

We’ll follow the procedure defined in [40]: we define ρ0 as the lateral average of ρ:

ρ0 j =
1

Nx
∑

i
ρi,j (10.27)

and then we define the base state pressure, p0, by integrating the equation of hy-
drostatic equilibrium, dp0/dy = ρg, as:

p0 j+1 = p0 j +
∆y
2
(ρ0 j + ρ0 j+1)g (10.28)

with an initial condition of

p0jlo =
1

Nx
∑

i
pinitial

i,jlo (10.29)

The compressible momentum equation (written in terms of velocity is):

ρ
∂U
∂t

+ ρU · ∇U +∇p = ρg (10.30)

Subtracting off the base state, and defining the perturbational pressure (sometimes
called the dynamic pressure) as p′ = p − p0, and perturbational density as ρ′ =
ρ− ρ0, we have:

ρ
∂U
∂t

+ ρU · ∇U +∇p′ = ρ′g (10.31)

or
∂U
∂t

+ U · ∇U +
1
ρ
∇p′ =

ρ′

ρ
g (10.32)

Several authors [30, 52] explored the idea of energy conservation in a low Mach
number system and found that an additional term (which can look like a buoy-
ancy) is needed in the low Mach number formulation, yielding:

∂U
∂t

+ U · ∇U +
β0

ρ
∇
(

p′

β0

)
=

ρ′

ρ
g (10.33)

Completing the system are the continuity equation,

∂ρ

∂t
+∇ · (ρU) = 0 (10.34)

140 Chapter 10. Low Mach Number Methods

and the constraint,
∇ · (β0U) = 0 (10.35)

with β0 = p1/γ
0 .

10.3.2 Solution Procedure

The general solution procedure is for a single step is:

I. Predict U to the interfaces

II. Enforce the divergence constraint on the interface U’s (the MAC projection) to get
Uadv.

Decomposing the velocity field as

U? = Ud +
β0

ρ
∇φ (10.36)

as suggested from the form of the momentum equation, our Poisson equa-
tion can be defined by multiplying by β0 and taking the divergence, and
using ∇ · (β0Ud) = 0, giving

∇ · β2
0

ρ
∇φ = ∇ · (β0U?) (10.37)

Note that when written like this, φ has units of p′/β0.there is a ∆t here
too

For the MAC projection, we have edge-centered velocities (in their respective
coordinate direction). We define an edge-centered β0 as

β0 j+1/2 =
1
2
(β0 j + β0 j+1) (10.38)

(note that, since β0 is one-dimensional, we only average in the vertical direc-
tion). The divergence term is then:

[∇ · (β0U)]adv
i,j = β0 j

uadv
i+1/2,j − uadv

i−1/2,j

∆x
+

β0 j+1/2vadv
i,j+1/2 − β0 j−1/2vadv

i,j−1/2

∆y
(10.39)

We define the coefficient, η, in the Poisson equation as:

ηi,j =
β0

2
j

ρi,j
(10.40)

and bring it to edges simply through averaging. Multigrid is used to solve
for φi,j.

We then solve
(Lηφ)i,j = [∇ · (β0U)]adv

i,j (10.41)

10.3—Atmospheric flows 141

Once we solve for φ, we correct the velocity as:

Unew = U? − β0

ρ
∇φ (10.42)

Since the MAC velocities are edge-centered, our correction appears as:

uadv
i+1/2,j = uadv

i+1/2,j −
(

β0

ρ

)
i+1/2,j

φi+1,j − φi,j

∆x
(10.43)

vadv
i,j+1/2 = vadv

i,j+1/2 −
(

β0

ρ

)
i,j+1/2

φi,j+1 − φi,j

∆y
(10.44)

III. Predict ρ to the interfaces

We need to solve the continuity equation. We use the same techniques that
were used for advection. Our equation is:

ρt + (ρu)x + (ρv)y = 0 (10.45)

The x-interface left state would be:

ρn+1/2
i+1/2,j,L = ρn

i,j +
∆x
2

∂ρ

∂x
+

∆t
2

∂ρ

∂t
+ . . .

= ρn
i,j +

∆x
2

∂ρ

∂x
+

∆t
2
[
−(ρu)x − (ρv)y

]
i,j

= ρn
i,j +

∆x
2

(
1− ∆t

∆x
ui,j

)
∂ρ

∂x︸ ︷︷ ︸
ρ̂n+1/2

i+1/2,j,L

−∆t
2

[ρux]i,j −
∆t
2
[
(ρv)y

]
i,j (10.46)

A similar construction would yield the right state at that interface, and the
y-interface states.

Since we already have the MAC-projected advected velocities at this point,
we can use them in the construction of the interface states and the upwind-
ing. As before, we split this into a normal part (the ρ̂ term) and “transverse”
part (which here includes the non-advective part of the divergence). We first
construct the normal parts as

ρ̂n+1/2
i+1/2,j,L = ρn

i,j +
1
2

(
1− ∆t

∆x
uadv

i+1/2,j

)
∆ρ

(x)
i,j (10.47)

and then solve the Riemann problem (upwinding) for these:

ρ̂n+1/2
i+1/2,j = U [u

adv
i+1/2,j](ρ̂

n+1/2
i+1/2,j,L, ρ̂n+1/2

i+1/2,j,R) =

{
ρ̂n+1/2

i+1/2,j,L uadv
i+1/2,j > 0

ρ̂n+1/2
i+1/2,j,R uadv

i+1/2,j < 0
(10.48)

The same procedure is done for the y-interfaces.

142 Chapter 10. Low Mach Number Methods

The full states are then constructed using these “hat” states. For example,

ρn+1/2
i+1/2,j,L = ρ̂n+1/2

i+1/2,j,L −
∆t
2

ρi,j
uadv

i+1/2,j − uadv
i−1/2,j

∆x

− ∆t
2

ρ̂n+1/2
i,j+1/2vadv

i,j+1/2 − ρ̂n+1/2
i,j−1/2vadv

i,j−1/2

∆y
(10.49)

Once the new states on both the x- and y-interfaces are constructed, we again
upwind to find the final ρ state on each interface:

ρn+1/2
i+1/2,j = U [u

adv
i+1/2,j](ρ

n+1/2
i+1/2,j,L, ρn+1/2

i+1/2,j,R) =

{
ρn+1/2

i+1/2,j,L uadv
i+1/2,j > 0

ρn+1/2
i+1/2,j,R uadv

i+1/2,j < 0
(10.50)

IV. Do the conservative update of ρ

Once the interface states are found, we can conservatively-difference the
continuity equation:

ρn+1
i,j = ρn

i,j −
∆t
∆x

(
ρn+1/2

i+1/2,ju
adv
i+1/2,j − ρn+1/2

i−1/2,ju
adv
i−1/2,j

)
− ∆t

∆y

(
ρn+1/2

i,j+1/2vadv
i,j+1/2 − ρn+1/2

i,j−1/2vadv
i,j−1/2

)
(10.51)

V. Update Un to Un+1,?

VI. Enforce the divergence constraint on Un+1

For the final projection, we have cell-centered velocties. We define the diver-
gence term as:

[∇ · (β0U)]?i,j = β0 j

u?
i+1,j − u?

i−1,j

2∆x
+

β0 j+1v?i,j+1 − β0 j−1v?i,j−1

2∆y
(10.52)

10.3.3 Timestep constraint

In addition to the advective timestep constraint, an additional constraint is needed
if the velocity field is initialially zero. In [4], a constraint based on the buoyancy
forcing is used. First, we compute the maxiumum buoyancy acceleration,

amax = max
{∣∣∣∣ρ′gρ

∣∣∣∣} (10.53)

and then

∆tforce =

(
2∆x
amax

)1/2

(10.54)

This is based simply on ∆x = (1/2)at2—the time it takes for the buoyant force to
accelerate a fluid element across a zone width.

10.4—Combustion 143

10.3.4 Bootstrapping

First we need to make sure that the initial velocity field satisfies our constraint

Next we need to find ∇πn−1/2 for the first step.

10.4 Combustion

Taking p = p0 + π, with p0 = constant, the system becomes:

∂ρ

∂t
+∇ · (ρU) = 0 (10.55)

∂ρU
∂t

+∇ · (ρUU) +∇π = 0 (10.56)

∇ ·U = S (10.57)

10.4.1 Species

10.4.2 Constraint

Our constraint equation is ∇ ·U = S. Decomposing the velocity field as

U? = Ud +
1
ρ
∇φ (10.58)

our Poisson equation can be defined by taking the divergence, and using∇ ·Ud =
S, giving

∇ · 1
ρ
∇φ = ∇ ·U? − S (10.59)

10.4.3 Solution Procedure

The general solution procedure is for a single step is:

• React for ∆t/2

• Do the hydrodynamcis for ∆t

– Predict U to the interfaces

– Enforce the divergence constraint on the interface U’s (the MAC projec-
tion) to get Uadv.

– Predict ρ to the interfaces

– Do the conservative update of ρ

144 Chapter 10. Low Mach Number Methods

– Update Un to Un+1

– Enforce the divergence constraint on Un+1

• React for ∆t/2

Chapter11
Radiation Hydrodynamics

11.1 Equations of Radiation Hydrodynamics

11.1.1 Reference Frames

11.1.2 Angular Approximations / Moments

11.1.3 Closures

11.2 Hyperbolic System

11.3 Parabolic System

11.3.1 General Elliptic Solver

For the gray radiation hydrodynamics system, we need to solve a linear system
that takes the form:

αφ +∇ · β∇φ + γ · ∇φ = f (11.1)

(see Zhang et al., Eq. 45). We can discretize this for a cell-centered φ to second-
order as:

αi,jφi,j +
(β∇φ)i+1/2,j − (β∇φ)i−1/2,j

∆x
+

(β∇φ)i,j+1/2 − (β∇φ)i,j−1/2

∆y

+ γ
(x)
i,j

φi+1,j − φi−1,j

2∆x
+ γ

(y)
i,j

φi,j+1 − φi,j−1

2∆y
= fi,j (11.2)

git version: 6e0249aeeefc . . . 145

146 Chapter 11. Radiation Hydrodynamics

where we decompose the vector, γ as γ = γ(x) x̂ + γ(y)ŷ. Expanding the gradients:

αi,jφi,j +
βi+1/2,j(φi+1,j − φi,j)− βi−1/2,j(φi,j − φi−1,j)

∆x2

+
βi,j+1/2(φi,j+1 − φi,j)− βi,j−1/2(φi,j − φi,j−1)

∆y2

+ γ
(x)
i,j

φi+1,j − φi−1,j

2∆x
+ γ

(y)
i,j

φi,j+1 − φi,j−1

2∆y
= fi,j (11.3)

There are several different linear system algorithms people use to solve these types
of systems. Since we have already developed a multigrid solver, we will add equa-
tions of this type to the multigrid framework.

Defining β̃i±1/2,j ≡ βi±1/2,j/∆x2, β̃i,j±1/2 ≡ βi,j±1/2/∆y2, γ̃
(x)
i,j = γ

(x)
i,j /(2∆x), and

γ̃
(y)
i,j = γ

(y)
i,j /(2∆y), we have as an update to φi,j,

φi,j =
1

Di,j

[
fi,j − (β̃i+1/2,j + γ̃

(x)
i,j)φi+1,j − (β̃i−1/2,j − γ̃

(x)
i,j)φi−1,j

− (β̃i,j+1/2 + γ̃
(y)
i,j)φi,j+1 − (β̃i,j−1/2 − γ̃

(y)
i,j)φi,j−1

]
(11.4)

with

Di,j = αi,j − β̃i+1/2,j − β̃i−1/2,j − β̃i,j+1/2 − β̃i,j−1/2 (11.5)

The remaining details of the multigrid solver are unchanged. The boundary con-
ditions are implemented in the same way as done for Poisson’s equation. For ra-
diation, we will need to implement inhomogeneous boundary conditions, which
we can do via the ghost cell filling using Eqs. 6.27 and 6.31. Note that because of
this general form of the equation, it is no longer simple to do the boundary charge
method described in § 6.5, so we must modify the ghost cell fill routines explicitly.

The only changes to the core solver are in the smoothing function, which imple-
ments Eq. 11.4 and in the residual, which constructs our operator as discretized in
Eq. 11.3.

To test this solver out, we can define a test problem by picking functional forms
of α, β, and γ, and a solution, φ, with desired boundary conditions and find the
resulting f matching:

αφ +∇ · (β∇φ) + γ · ∇φ = f (11.6)

Let’s find a set of coefficients and righthand side for which

φ = cos(πx/2) cos(πy/2) (11.7)

11.3—Parabolic System 147

101 102 103

N

10-7

10-6

10-5

10-4

10-3

10-2

e
rr
o
r

Figure 11.1: Convergence of the multigrid solver on our test problem αφ + ∇ ·
(β∇φ) + γ · ∇φ = f with inhomogeneous Dirichlet boundary conditions.

is a solution on [0, 1]× [0, 1]. This would satisfy the Dirichlet boundary conditions:

φ|x=0 = cos(πy/2) (11.8)
φ|x=1 = 0 (11.9)
φ|y=0 = cos(πx/2) (11.10)
φ|y=1 = 0 (11.11)

For the coefficients, we choose: on with homogeneous Dirichlet boundary condi-
tions. We use

α = 10 (11.12)
β = xy + 1 (11.13)
γ = x̂ + ŷ (11.14)

This gives

f =− π

2
(x + 1) sin

(πy
2

)
cos

(πx
2

)
− π

2
(y + 1) sin

(πx
2

)
cos

(πy
2

)
+

(
10− xy + 1

2
π2
)

cos
(πx

2

)
cos

(πy
2

)
(11.15)

Figure 11.1 shows the convergence of multigrid for this problem, and figure 11.2
shows the solution. We see second order convergence, as expected with this dis-
cretization.

148 Chapter 11. Radiation Hydrodynamics

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

nx = 512

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

error

0.0000002

0.0000004

0.0000006

0.0000008

0.0000010

0.0000012

0.0000014

0.0000016

Figure 11.2: The solution to our general elliptic text problem, Eqs. 11.6 to 11.15 with
inhomogeneous boundary conditions on a 5122 grid. This test can be run in pyro
multigrid/test mg general inhomogeneous.py.

AppendixA
Using hydro examples

Here we describe the basic structure and use of the hydro examples codes that
implement standalone, simple 1-d versions of the algorithms described in these
notes.

The hydro examples codes are simple 1-d solvers written in python that illustrate
many of the ideas in these nodes. They are used for making many of the figures
found throughout (wherever the “Ï hydro examples: ” note is found).

A.1 Getting hydro examples

The hydro examples codes are hosted on github:
https://github.com/zingale/hydro_examples

There are a few ways to get them. The simplest way is to just clone from github
on the commandline:

git clone https://github.com/zingale/hydro_examples

This will create a local git repo on your machine with all of the code. You can then
run the scripts, “as is” without needing to go to github anymore. Periodically,
there may be updates to the scripts, which you can obtain by issuing “git pull”
in the hydro examples/ directory. Note that if you have made any local changes to
the scripts, git may complain. The process of merging changes is descibed online
in various places, e.g. “Resolving a merge conflict from the command line” from
github.

Alternately, you can use github’s web interface to fork it. Logon to github (or
create an account) and click on the “Fork” icon on the hydro examples page. You
can then interact with your version of the repo as needed. This method will allow

git version: 6e0249aeeefc . . . 149

https://github.com/zingale/hydro_examples
https://help.github.com/articles/resolving-a-merge-conflict-from-the-command-line

150 Chapter A. Using hydro examples

you to push changes back to github, and, if you think they should be included in
the main hydro examples repo, issue a pull-request.

A.2 hydro examples codes

The codes in hydro examples are organized into directories named after the chap-
ters in these notes. Each directory is self-contained. The following scripts are
available:

• advection/

– advection.py: a 1-d second-order linear advection solver with a wide
range of limiters.

– fdadvect implicit.py: a 1-d first-order implicit finite-difference ad-
vection solver using periodic boundary conditions.

– fdadvect.py: a 1-d first-order explicit finite-difference linear advection
solver using upwinded differencing.

• burgers/

– burgers.py: a 1-d second-order solver for the inviscid Burgers’ equa-
tion, with initial conditions corresponding to a shock and a rarefaction.

• compressible/

– euler.ipynb: an IPython notebook using SymPy that derives the eigen-
system for the primitive-variable form of the Euler equations.

– riemann-phase.py: draw the Hugoniot curves in the u-p plane for a
pair of states that comprise a Riemann problem.

• finite-volume/

– conservative-interpolation.ipynb: an IPython notebook using SymPy
that derives conservative interpolants.

• multigrid/

– mg converge.py: a convergence test of the multigrid solver. A Pois-
son problem is solved at various resolutions and compared to the exact
solution. This demonstrates second-order accuracy.

– mg test.py: a simple driver for the multigrid solver. This sets up and
solves a Poisson problem and plots the behavior of the solution as a
function of V-cycle number.

– multigrid.py: a multigrid class for cell-centered data. This imple-
ments pure V-cycles. A square domain with 2N zones (N a positive
integer) is required.

A.2—hydro examples codes 151

– patch1d.py: a class for 1-d cell-centered data that lives on a grid. This
manages the data, handles boundary conditions, and provides routines
for prolongation and restriction to other grids.

• diffusion/

– diffusion-explicit.py: solve the constant-diffusivity diffusion equa-
tion explicitly. The method is first-order accurate in time, but second-
order in space. A Gaussian profile is diffused—the analytic solution is
also a Gaussian.

– diffusion-implicit.py: solve the constant-diffusivity diffusion equa-
tion implicitly. Crank-Nicolson time-discretization is used, resulting in
a second-order method. A Gaussian profile is diffused.

• multiphysics/

– burgersvisc.py: solve the viscous Burgers equation. The advective
terms are treated explicitly with a second-order accurate method. The
diffusive term is solved using an implicit Crank-Nicolson discretiza-
tion. The overall coupling is second-order accurate.

– diffusion-reaction.py: solve a diffusion-reaction equation that prop-
agates a diffusive reacting front (flame). A simple reaction term is mod-
eled. The diffusion is solved using a second-order Crank-Nicolson dis-
cretization. The reactions are evolved using the VODE ODE solver (via
SciPy). The two processes are coupled together using Strang-splitting
to be second-order accurate in time.

AppendixB
Using pyro

Here we describe the basic structure and use of the pyro code that implements
many of the algorithms described in these notes.

B.1 Getting pyro

pyro can be downloaded from its github repository, https://github.com/zingale/
pyro2 as:

git clone https://github.com/zingale/pyro2

The structure of the code and descriptions of the various runtime parameters is
found on the pyro webpage, http://zingale.github.io/pyro2/, and described
in [55].

pyro uses the matplotlib and numpy libraries. Several routines are written in Fortran
and need to be compiled. The script mk.sh will build the packages. This requires
that f2py is installed.

B.2 The pyro Solvers

pyro offers the following 2-d solvers:

• advection: an unsplit, second-order method for linear advection, following
the ideas from Chapter 3.

• compressible: an unsplit, second-order compressible hydrodynamics solver
using the piecewise linear reconstruction discussed in Chapter 5.

• diffusion: a second-order implicit diffusion solver, based on the ideas from
Chapter 7.

git version: 6e0249aeeefc . . . 153

https://github.com/zingale/pyro2
https://github.com/zingale/pyro2
http://zingale.github.io/pyro2/

154 Chapter B. Using pyro

• incompressible: a second-order incompressible hydrodynamics solver using a
cell-centered approximate projection, as discussed in Chapter 9.

• lm atm: a low-Mach number hydrodynamics solver for atmospheric flows,
as discussed in S 10.3

• multigrid: a multigrid solver for constant-coefficient Helmholtz elliptic equa-
tions. This follows the ideas from Chapter 6, and is used by the diffusion and
incompressible solvers.

B.3 pyro’s Structure

The grid structure is managed by the patch.Grid2d class. Data is that lives on the
grid is contained in a patch.CellCenterData2d object. Methods are available to
provide access to the data and fill the ghost cells.

Each pyro solver is its own python module. All but the multigrid solver represent
time-dependent problems. Each of these provide a Simulation class that provides
the routines necessary to initialize the solver, determine the timestep, and evolve
the solution in time. Each solver has one or more sets of initial conditions defined
in the solver’s problems/ directory.

All time-dependent problems are run through the pyro.py script. The general
form is:

./pyro.py solver problem inputs

where solver is one of advection, compressible, diffusion, incompressible,
problem is one of the problems defined in the solver’s problems/ directory, and
inputs is the name of an input file that defines the values of runtime parameter.

The possible runtime parameters and their defaults are defined in the defaults

files in the main directory and each solver and problem directory. Note that the
inputs file need not be in the pyro2/ directory. The solver’s problems/ directory
will also be checked.

B.4 Running pyro

A simple Gaussian advection simulation is provided by the advection smooth prob-
lem. This is run as:

./pyro.py advection smooth inputs.smooth

As this is run, the solution will be visualized at each step, showing the progression
of the simulation.

B.4—Running pyro 155

solver problem problem description

advection
smooth advect a smooth Gaussian profile
tophat advect a discontinuous tophat profile

compressible

bubble a buoyant bubble in a stratified atmo-
sphere

kh setup a shear layer to drive Kelvin-
Helmholtz instabilities

quad 2-d Riemann problem based on [46]
rt a simple Rayleigh-Taylor instability
sedov the classic Sedov-Taylor blast wave
sod the Sod shock tube problem

diffusion gaussian diffuse an initial Gaussian profile

incompressible
converge A simple incompressible problem

with known analytic solution.
shear a doubly-periodic shear layer

lm atm
bubble a buoyant bubble in a stratified atmo-

sphere

Table B.1: Solvers and their distributed problems

A list of the problems available for each solver is given in Table B.1. For the multi-
grid solver, there are scripts available in the multigrid/ directory that illustrate
its use.

Bibliography

[1] A. Almgren. A new look at the pseudo-incompressible solution to Lamb’s
problem of hydrostatic adjustment. 57:995–998, April 2000. (Cited on pages
136 and 139)

[2] A. S. Almgren, V. E. Beckner, J. B. Bell, M. S. Day, L. H. Howell, C. C. Joggerst,
M. J. Lijewski, A. Nonaka, M. Singer, and M. Zingale. CASTRO: A New Com-
pressible Astrophysical Solver. I. Hydrodynamics and Self-gravity. Astrophys
J, 715:1221–1238, June 2010. (Cited on pages 65 and 83)

[3] A. S. Almgren, J. B. Bell, and W. Y. Crutchfield. Approximate projection meth-
ods: Part I. Inviscid analysis. SIAM J. Sci. Comput., 22(4):1139–59, 2000. (Cited
on pages 127 and 128)

[4] A. S. Almgren, J. B. Bell, A. Nonaka, and M. Zingale. Low Mach Num-
ber Modeling of Type Ia Supernovae. III. Reactions. APJ, 684:449–470, 2008.
(Cited on pages 132, 136, and 142)

[5] A. S. Almgren, J. B. Bell, C. A. Rendleman, and M. Zingale. Low Mach Num-
ber Modeling of Type Ia Supernovae. I. Hydrodynamics. APJ, 637:922–936,
February 2006. (Cited on pages 71, 72, 132, 135, and 136)

[6] A. S. Almgren, J. B. Bell, C. A. Rendleman, and M. Zingale. Low Mach Num-
ber Modeling of Type Ia Supernovae. II. Energy Evolution. APJ, 649:927–938,
October 2006. (Cited on pages 132, 135, 136, and 139)

[7] A. S. Almgren, J. B. Bell, and W. G. Szymczak. A numerical method for the
incompressible Navier-Stokes equations based on an approximate projection.
SIAM J. Sci. Comput., 17(2):358–369, March 1996. (Cited on page 121)

[8] J. B. Bell, P. Colella, and H. M. Glaz. A Second Order Projection Method for
the Incompressible Navier-Stokes Equations. Journal of Computational Physics,
85:257, December 1989. (Cited on page 120)

[9] J. B. Bell, P. Colella, and L. H. Howell. An efficient second-order projection
method for viscous incompressible flow. In Proceedings of the Tenth AIAA Com-

git version: 6e0249aeeefc . . . 157

158 BIBLIOGRAPHY

putational Fluid Dynamics Conference, pages 360–367. AIAA, June 1991. see
also: https://seesar.lbl.gov/anag/publications/colella/A 2 10.pdf. (Cited
on page 120)

[10] J. B. Bell, C. N. Dawson, and G. R. Shubin. An unsplit, higher order Godunov
method for scalar conservation l aws in multiple dimensions. 74:1–24, 1988.
(Cited on pages 43 and 74)

[11] J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. A. Zingale. Adap-
tive low Mach number simulations of nuclear flame microphysics. Journal of
Computational Physics, 195(2):677–694, 2004. (Cited on pages 111, 132, and 135)

[12] J. B. Bell and D. L. Marcus. A second-order projection method for variable-
density flows. Journal of Computational Physics, 101(2):334 – 348, 1992. (Cited
on page 131)

[13] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydro-
dynamics. 82(1):64–84, May 1989. (Cited on page 22)

[14] W. L. Briggs, V-E. Henson, and S. F. McCormick. A Mutigrid Tutorial, 2nd Ed.
SIAM, 2000. (Cited on pages 87 and 96)

[15] G. L. Bryan, M. L. Norman, J. M. Stone, R. Cen, and J. P. Ostriker. A piece-
wise parabolic method for cosmological hydrodynamics. Computer Physics
Communications, 89:149–168, August 1995. (Cited on page 85)

[16] G. D. Byrne and A. C. Hindmarsh. Stiff ODE Solvers: A Review of Current
and Coming Attractions. UCRL-94297 Preprint, 1986. (Cited on page 11)

[17] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp.,
22:745–762, 1968. (Cited on page 120)

[18] P. Colella. A direct Eulerian MUSCL scheme for gas dynamics. SIAM J Sci
Stat Comput, 6(1):104–117, 1985. (Cited on page 33)

[19] P. Colella. Multidimensional upwind methods for hyperbolic conservation
laws. Journal of Computational Physics, 87:171–200, March 1990. (Cited on
pages 33, 42, 43, 63, and 123)

[20] P. Colella and H. M. Glaz. Efficient solution algorithms for the Riemann prob-
lem for real gases. Journal of Computational Physics, 59:264–289, June 1985.
(Cited on pages 62, 69, and 82)

[21] P. Colella and E. G. Puckett. Modern Numerical Methods
for Fluid Flow. unpublished manuscript. obtained from
http://www.amath.unc.edu/Faculty/minion/class/puckett/. (Cited
on page 102)

[22] P. Colella and M. D. Sekora. A limiter for PPM that preserves accuracy at
smooth extrema. Journal of Computational Physics, 227:7069–7076, July 2008.
(Cited on page 68)

BIBLIOGRAPHY 159

[23] P. Colella and P. R. Woodward. The Piecewise Parabolic Method (PPM)
for Gas-Dynamical Simulations. Journal of Computational Physics, 54:174–201,
September 1984. (Cited on pages 63, 64, and 80)

[24] J. P. Cox and R. T. Giuli. Principles of Stellar Structure, volume 1. Cambridge
University Press, 1968. (Cited on pages 72 and 73)

[25] M. S. Day and J. B. Bell. Numerical simulation of laminar reacting flows with
complex chemistry. Combust. Theory Modelling, 4(4):535–556, 2000. (Cited on
pages 132 and 135)

[26] D. R. Durran. Improving the anelastic approximation. 46(11):1453–1461, 1989.
(Cited on page 135)

[27] A. Garcia. Numerical Methods for Physics, 2nd Edition. Addison-Wesley, 1999.
(Cited on pages 2 and 7)

[28] David Goldberg. What every computer scientist should know about floating
point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991. (Cited on page 2)

[29] C. J. Hansen, S. D. Kawaler, and V. Trimble. Stellar interiors : physical principles,
structure, and evolution. 2004. (Cited on page 134)

[30] Rupert Klein and Olivier Pauluis. Thermodynamic consistency of a pseu-
doincompressible approximation for general equations of state. March 2012.
(Cited on pages 136 and 139)

[31] C. B. Laney. Computational Gasdynamics. Cambridge, 1998. (Cited on page 32)

[32] Randall J. LeVeque. Finite-Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2002. (Cited on pages 32, 33, 43, 48, and 56)

[33] C. M. Malone, A. Nonaka, A. S. Almgren, J. B. Bell, and M. Zingale. Multidi-
mensional Modeling of Type I X-ray Bursts. I. Two-dimensional Convection
Prior to the Outburst of a Pure 4He Accretor. ApJ, 728:118, February 2011.
(Cited on page 111)

[34] D. F. Martin and P. Colella. A Cell-Centered Adaptive Projection Method for
the Incompressible Euler Equations. Journal of Computational Physics, 163:271–
312, September 2000. (Cited on page 121)

[35] S. May, A. J. Nonaka, A. S. Almgren, and J. B. Bell. An unsplit, higher order
Godunov method using quadratic reconstruction for advection in multiple
dimensions. Communications in Applied Mathematics and Computational Science,
6(1), 2011. (Cited on page 43)

[36] P. McCorquodale and P. Colella. A high-order finite-volume method for con-
servation laws on locally refined grids. Communication in Applied Mathematics
and Computational Science, 6(1):1–25, 2011. (Cited on page 79)

160 BIBLIOGRAPHY

[37] G. H. Miller and P. Colella. A Conservative Three-Dimensional Eulerian
Method for Coupled Solid-Fluid Shock Capturing. Journal of Computational
Physics, 183:26–82, November 2002. (Cited on pages 62, 63, and 81)

[38] M. L. Minion. A Projection Method for Locally Refined Grids. Journal of
Computational Physics, 127:158–177, 1996. (Cited on page 130)

[39] J. J. Monaghan. An introduction to SPH. Computer Physics Communications,
48:89–96, January 1988. (Cited on page 15)

[40] A. Nonaka, A. S. Almgren, J. B. Bell, M. J. Lijewski, C. M. Malone, and M. Zin-
gale. MAESTRO:an adaptive low mach number hydrodynamics algorithm for
stellar flows. APJS, 188:358–383, 2010. (Cited on pages 136 and 139)

[41] T. Pang. An Introduction to Computational Physics, 2nd Edition. Cambridge,
2006. (Cited on page 2)

[42] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A.
Fiveland, and J. P. Jessee. An adaptive projection method for unsteady low-
Mach number combustion. Comb. Sci. Tech., 140:123–168, 1998. (Cited on
pages 132 and 135)

[43] T. Plewa and E. Müller. The consistent multi-fluid advection method. Astron
Astrophys, 342:179–191, February 1999. (Cited on page 81)

[44] W. J. Rider. Approximate projection methods for incompressible flow: Imple-
mentation, variants and robustness. Technical report, LANL UNCLASSIFIED
REPORT LA-UR-94-2000, LOS ALAMOS NATIONAL LABORATORY, 1995.
(Cited on page 128)

[45] J. Saltzman. An Unsplit 3D Upwind Method for Hyperbolic Conservation
Laws. Journal of Computational Physics, 115:153–168, November 1994. (Cited
on pages 63, 79, and 86)

[46] C. W. Schulz-Rinne, J. P. Collins, and H. M. Glaz. Numerical Solution of the
Riemann Problem for Two-Dimensional Gas Dynamics. SIAM J Sci Comput,
14(6):1394–1414, 1993. (Cited on page 155)

[47] V. Springel. E pur si muove: Galilean-invariant cosmological hydrodynami-
cal simulations on a moving mesh. 401:791–851, January 2010. (Cited on page
22)

[48] J. M. Stone, T. A. Gardiner, P. Teuben, J. F. Hawley, and J. B. Simon. Athena: A
New Code for Astrophysical MHD. Astrophys J Suppl S, 178:137–177, Septem-
ber 2008. (Cited on pages 54 and 85)

[49] G. Strang. On the construction and comparison of difference schemes. SIAM
Journal on Numerical Analysis, 5(3):pp. 506–517, 1968. (Cited on pages 40
and 114)

BIBLIOGRAPHY 161

[50] F. X. Timmes. Integration of Nuclear Reaction Networks for Stellar Hydrody-
namics. APJS, 124:241–263, September 1999. (Cited on page 11)

[51] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer,
1997. (Cited on pages 33, 43, 54, 56, 68, and 124)

[52] Geoffrey M. Vasil, Daniel Lecoanet, Benjamin P. Brown, Toby S. Wood, and
Ellen G. Zweibel. Energy conservation and gravity waves in sound-proof
treatments of stellar interiors. ii. lagrangian constrained analysis. 773:169–,
2013. (Cited on page 139)

[53] Natalia Vladimirova, V. Gregory Weirs, and Lenya Ryzhik. Flame capturing
with an advection-reaction-diffusion model. Combustion Theory and Modelling,
10(5):727–747, 2006. (Cited on page 115)

[54] S. Yakowitz and F. Szidarovszky. An Introduction to Numerical Computations,
2nd edition. Prentice Hall, 1989. (Cited on page 5)

[55] M. Zingale. pyro: A teaching code for computational astrophysical hydrody-
namics. Astronomy and Computing, 2014. accepted for publication. (Cited on
pages xiv and 153)

[56] M. Zingale, L. J. Dursi, J. ZuHone, A. C. Calder, B. Fryxell, T. Plewa, J. W.
Truran, A. Caceres, K. Olson, P. M. Ricker, K. Riley, R. Rosner, A. Siegel,
F. X. Timmes, and N. Vladimirova. Mapping Initial Hydrostatic Models in
Godunov Codes. Astrophys J Suppl S, 143:539–565, December 2002. (Cited on
page 77)

	list of figures
	list of exercises
	preface
	Simulation Overview
	What Is Simulation?
	Numerical Basics
	Sources of Error
	Differentiation and Integration
	Differentiation
	Integration
	Root Finding
	ODEs
	FFTs

	Finite-Volume Grids
	Discretization
	Grid basics
	Finite-volume grids
	Differences and order of accuracy
	Conservation
	Boundary conditions with finite-volume grids

	Going further

	Advection
	The Linear Advection Equation
	First-order advection in 1-d and finite-differences
	Second-order advection in 1-d and the finite-volume method
	Limiting
	Reconstruct-evolve-average

	Errors and convergence rate
	Multi-dimensional advection
	Dimensionally split
	Unsplit multi-dimensional advection

	Going further
	pyro experimentation

	Burgers' Equation
	Burgers' equation
	Going further

	Euler Equations
	Euler equation properties
	Reconstruction of interface states
	Piecewise constant
	Piecewise linear
	Piecewise parabolic

	The Riemann problem
	Conservative update
	Other Thermodynamic Equations
	Eigensystem with Temperature

	Multidimensional problems
	Boundary conditions
	Higher Order
	Going further
	Flattening and Contact Steepening
	Artificial viscosity
	Species
	Source terms
	General equation of state
	Axisymmetry
	Defining temperature
	Limiting on characteristic variables
	3-d unsplit

	Elliptic Equations and Multigrid
	Elliptic equations
	Fourier Method
	Relaxation
	Boundary conditions
	Residual and true error
	Performance

	Multigrid
	Prolongation and restriction on cell-centered grids
	Bottom solver
	Boundary conditions throughout the hierarchy
	Stopping criteria

	Going Further
	Red-black Ordering
	Solvability
	Boundary charges
	Norms
	More General Elliptic Equations

	Diffusion
	Parabolic equations
	Explicit differencing
	Implicit with direct solve
	Implicit multi-dimensional diffusion via multigrid
	Going further

	Multiphysics Applications
	Integrating Multiphysics
	Ex: diffusion-reaction
	Ex: advection-diffusion

	Incompressible Flow and Projection Methods
	Incompressible flow
	Projection methods
	Cell-centered approximate projection solver
	Advective velocity
	MAC projection
	Reconstruct interface states
	Provisional update
	Approximate projection

	Boundary conditions
	Bootstrapping
	Test problems
	Convergence test

	Extensions

	Low Mach Number Methods
	Low Mach divergence constraints
	Multigrid for Variable-Density Flows
	Test problem

	Atmospheric flows
	Equation Set
	Solution Procedure
	Timestep constraint
	Bootstrapping

	Combustion
	Species
	Constraint
	Solution Procedure

	Radiation Hydrodynamics
	Equations of Radiation Hydrodynamics
	Reference Frames
	Angular Approximations / Moments
	Closures

	Hyperbolic System
	Parabolic System
	General Elliptic Solver

	Using hydro_examples
	Getting hydro_examples
	hydro_examples codes

	Using pyro
	Getting pyro
	The pyro Solvers
	pyro's Structure
	Running pyro

	References

