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Preface

This book is based on a two-semester sequence of courses taught to incoming
graduate students at the University of Illinois at Urbana-Champaign, pri-
marily physics students but also some from other branches of the physical
sciences. The courses aim to introduce students to some of the mathematical
methods and concepts that they will find useful in their research. We have
sought to enliven the material by integrating the mathematics with its appli-
cations. We therefore provide illustrative examples and problems drawn from
physics. Some of these illustrations are classical but many are small parts of
contemporary research papers. In the text and at the end of each chapter we
provide a collection of exercises and problems suitable for homework assign-
ments. The former are straightforward applications of material presented
in the text; the latter are intended to be interesting, and take rather more
thought and time.

We devote the first, and longest, part (Chapters 1 to 9, and the first
semester in the classroom) to traditional mathematical methods. We explore
the analogy between linear operators acting on function spaces and matrices
acting on finite dimensional spaces, and use the operator language to pro-
vide a unified framework for working with ordinary differential equations,
partial differential equations, and integral equations. The mathematical pre-
requisites are a sound grasp of undergraduate calculus (including the vector
calculus needed for electricity and magnetism courses), elementary linear al-
gebra, and competence at complex arithmetic. Fourier sums and integrals, as
well as basic ordinary differential equation theory, receive a quick review, but
it would help if the reader had some prior experience to build on. Contour
integration is not required for this part of the book.

The second part (Chapters 10 to 14) focuses on modern differential ge-
ometry and topology, with an eye to its application to physics. The tools of
calculus on manifolds, especially the exterior calculus, are introduced, and
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used to investigate classical mechanics, electromagnetism, and non-abelian
gauge fields. The language of homology and cohomology is introduced and
is used to investigate the influence of the global topology of a manifold on
the fields that live in it and on the solutions of differential equations that
constrain these fields.

Chapters 15 and 16 introduce the theory of group representations and
their applications to quantum mechanics. Both finite groups and Lie groups
are explored.

The last part (Chapters 17 to 19) explores the theory of complex variables
and its applications. Although much of the material is standard, we make use
of the exterior calculus, and discuss rather more of the topological aspects of
analytic functions than is customary.

A cursory reading of the Contents of the book will show that there is
more material here than can be comfortably covered in two semesters. When
using the book as the basis for lectures in the classroom, we have found it
useful to tailor the presented material to the interests of our students.
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Chapter 1

Calculus of Variations

We begin our tour of useful mathematics with what is called the calculus of
variations. Many physics problems can be formulated in the language of this
calculus, and once they are there are useful tools to hand. In the text and
associated exercises we will meet some of the equations whose solution will
occupy us for much of our journey.

1.1 What is it good for?

The classical problems that motivated the creators of the calculus of varia-
tions include:

i) Dido’s problem: In Virgil’s Aeneid we read how Queen Dido of Carthage
must find largest area that can be enclosed by a curve (a strip of bull’s
hide) of fixed length.

ii) Plateau’s problem: Find the surface of minimum area for a given set of
bounding curves. A soap film on a wire frame will adopt this minimal-
area configuration.

iii) Johann Bernoulli’s Brachistochrone: A bead slides down a curve with
fixed ends. Assuming that the total energy 1

2
mv2 + V (x) is constant,

find the curve that gives the most rapid descent.
iv) Catenary : Find the form of a hanging heavy chain of fixed length by

minimizing its potential energy.

These problems all involve finding maxima or minima, and hence equating
some sort of derivative to zero. In the next section we define this derivative,
and show how to compute it.

1



2 CHAPTER 1. CALCULUS OF VARIATIONS

1.2 Functionals

In variational problems we are provided with an expression J [y] that “eats”
whole functions y(x) and returns a single number. Such objects are called
functionals to distinguish them from ordinary functions. An ordinary func-
tion is a map f : R→ R. A functional J is a map J : C∞(R)→ R where
C∞(R) is the space of smooth (having derivatives of all orders) functions.
To find the function y(x) that maximizes or minimizes a given functional
J [y] we need to define, and evaluate, its functional derivative.

1.2.1 The functional derivative

We restrict ourselves to expressions of the form

J [y] =

∫ x2

x1

f(x, y, y′, y′′, · · · y(n)) dx, (1.1)

where f depends on the value of y(x) and only finitely many of its derivatives.
Such functionals are said to be local in x.

Consider first a functional J =
∫
fdx in which f depends only x, y and

y′. Make a change y(x)→ y(x) + εη(x), where ε is a (small) x-independent
constant. The resultant change in J is

J [y + εη]− J [y] =

∫ x2

x1

{f(x, y + εη, y′ + εη′)− f(x, y, y′)} dx

=

∫ x2

x1

{
εη
∂f

∂y
+ ε

dη

dx

∂f

∂y′
+O(ε2)

}
dx

=

[
εη
∂f

∂y′

]x2

x1

+

∫ x2

x1

(εη(x))

{
∂f

∂y
− d

dx

(
∂f

∂y′

)}
dx+O(ε2).

If η(x1) = η(x2) = 0, the variation δy(x) ≡ εη(x) in y(x) is said to have
“fixed endpoints.” For such variations the integrated-out part [. . .]x2

x1
van-

ishes. Defining δJ to be the O(ε) part of J [y + εη]− J [y], we have

δJ =

∫ x2

x1

(εη(x))

{
∂f

∂y
− d

dx

(
∂f

∂y′

)}
dx

=

∫ x2

x1

δy(x)

(
δJ

δy(x)

)
dx. (1.2)
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The function
δJ

δy(x)
≡ ∂f

∂y
− d

dx

(
∂f

∂y′

)
(1.3)

is called the functional (or Fréchet) derivative of J with respect to y(x). We
can think of it as a generalization of the partial derivative ∂J/∂yi, where the
discrete subscript “i” on y is replaced by a continuous label “x,” and sums
over i are replaced by integrals over x:

δJ =
∑

i

∂J

∂yi
δyi →

∫ x2

x1

dx

(
δJ

δy(x)

)
δy(x). (1.4)

1.2.2 The Euler-Lagrange equation

Suppose that we have a differentiable function J(y1, y2, . . . , yn) of n variables
and seek its stationary points — these being the locations at which J has its
maxima, minima and saddlepoints. At a stationary point (y1, y2, . . . , yn) the
variation

δJ =

n∑

i=1

∂J

∂yi
δyi (1.5)

must be zero for all possible δyi. The necessary and sufficient condition for
this is that all partial derivatives ∂J/∂yi, i = 1, . . . , n be zero. By analogy,
we expect that a functional J [y] will be stationary under fixed-endpoint vari-
ations y(x)→ y(x)+δy(x), when the functional derivative δJ/δy(x) vanishes
for all x. In other words, when

∂f

∂y(x)
− d

dx

(
∂f

∂y′(x)

)
= 0, x1 < x < x2. (1.6)

The condition (1.6) for y(x) to be a stationary point is usually called the
Euler-Lagrange equation.

That δJ/δy(x) ≡ 0 is a sufficient condition for δJ to be zero is clear
from its definition in (1.2). To see that it is a necessary condition we must
appeal to the assumed smoothness of y(x). Consider a function y(x) at which
J [y] is stationary but where δJ/δy(x) is non-zero at some x0 ∈ [x1, x2].
Because f(y, y′, x) is smooth, the functional derivative δJ/δy(x) is also a
smooth function of x. Therefore, by continuity, it will have the same sign
throughout some open interval containing x0. By taking δy(x) = εη(x) to be
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x
y(x)

1 xx2

Figure 1.1: Soap film between two rings.

zero outside this interval, and of one sign within it, we obtain a non-zero δJ
— in contradiction to stationarity. In making this argument, we see why it
was essential to integrate by parts so as to take the derivative off δy: when
y is fixed at the endpoints, we have

∫
δy′ dx = 0, and so we cannot find a δy′

that is zero everywhere outside an interval and of one sign within it.
When the functional depends on more than one function y, then station-

arity under all possible variations requires one equation

δJ

δyi(x)
=
∂f

∂yi
− d

dx

(
∂f

∂y′i

)
= 0 (1.7)

for each function yi(x).
If the function f depends on higher derivatives, y′′, y(3), etc., then we

have to integrate by parts more times, and we end up with

0 =
δJ

δy(x)
=
∂f

∂y
− d

dx

(
∂f

∂y′

)
+

d2

dx2

(
∂f

∂y′′

)
− d3

dx3

(
∂f

∂y(3)

)
+ · · · . (1.8)

1.2.3 Some applications

Now we use our new functional derivative to address some of the classic
problems mentioned in the introduction.
Example: Soap film supported by a pair of coaxial rings (figure 1.1) This
a simple case of Plateau’s problem. The free energy of the soap film is
equal to twice (once for each liquid-air interface) the surface tension σ of the
soap solution times the area of the film. The film can therefore minimize its
free energy by minimizing its area, and the axial symmetry suggests that the
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minimal surface will be a surface of revolution about the x axis. We therefore
seek the profile y(x) that makes the area

J [y] = 2π

∫ x2

x1

y

√
1 + y′2 dx (1.9)

of the surface of revolution the least among all such surfaces bounded by
the circles of radii y(x1) = y1 and y(x2) = y2. Because a minimum is a
stationary point, we seek candidates for the minimizing profile y(x) by setting
the functional derivative δJ/δy(x) to zero.

We begin by forming the partial derivatives

∂f

∂y
= 4πσ

√
1 + y′2,

∂f

∂y′
=

4πσyy′√
1 + y′2

(1.10)

and use them to write down the Euler-Lagrange equation

√
1 + y′2 − d

dx

(
yy′√
1 + y′2

)
= 0. (1.11)

Performing the indicated derivative with respect to x gives

√
1 + y′2 − (y′)2

√
1 + y′2

− yy′′√
1 + y′2

+
y(y′)2y′′

(1 + y′2)3/2
= 0. (1.12)

After collecting terms, this simplifies to

1√
1 + y′2

− yy′′

(1 + y′2)3/2
= 0. (1.13)

The differential equation (1.13) still looks a trifle intimidating. To simplify
further, we multiply by y′ to get

0 =
y′√

1 + y′2
− yy′y′′

(1 + y′2)3/2

=
d

dx

(
y√

1 + y′2

)
. (1.14)

The solution to the minimization problem therefore reduces to solving

y√
1 + y′2

= κ, (1.15)
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where κ is an as yet undetermined integration constant. Fortunately this
non-linear, first order, differential equation is elementary. We recast it as

dy

dx
=

√
y2

κ2
− 1 (1.16)

and separate variables ∫
dx =

∫
dy√
y2

κ2 − 1
. (1.17)

We now make the natural substitution y = κ cosh t, whence
∫
dx = κ

∫
dt. (1.18)

Thus we find that x + a = κt, leading to

y = κ cosh
x + a

κ
. (1.19)

We select the constants κ and a to fit the endpoints y(x1) = y1 and y(x2) =
y2.

x

y

h

−L +L

Figure 1.2: Hanging chain

Example: Heavy Chain over Pulleys. We cannot yet consider the form of
the catenary, a hanging chain of fixed length, but we can solve a simpler
problem of a heavy flexible cable draped over a pair of pulleys located at
x = ±L, y = h, and with the excess cable resting on a horizontal surface as
illustrated in figure 1.2.
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y

y= ht/L

y=cosh t

t=L/κ

Figure 1.3: Intersection of y = ht/L with y = cosh t.

The potential energy of the system is

P.E. =
∑

mgy = ρg

∫ L

−L
y
√

1 + (y′)2dx+ const. (1.20)

Here the constant refers to the unchanging potential energy

2×
∫ h

0

mgy dy = mgh2 (1.21)

of the vertically hanging cable. The potential energy of the cable lying on the
horizontal surface is zero because y is zero there. Notice that the tension in
the suspended cable is being tacitly determined by the weight of the vertical
segments.

The Euler-Lagrange equations coincide with those of the soap film, so

y = κ cosh
(x + a)

κ
(1.22)

where we have to find κ and a. We have

h = κ cosh(−L + a)/κ,

= κ cosh(L+ a)/κ, (1.23)
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x

y

g

(a,b)

Figure 1.4: Bead on a wire.

so a = 0 and h = κ coshL/κ. Setting t = L/κ this reduces to

(
h

L

)
t = cosh t. (1.24)

By considering the intersection of the line y = ht/L with y = cosh t (figure
1.3) we see that if h/L is too small there is no solution (the weight of the
suspended cable is too big for the tension supplied by the dangling ends)
and once h/L is large enough there will be two possible solutions. Further
investigation will show that the solution with the larger value of κ is a point
of stable equilibrium, while the solution with the smaller κ is unstable.

Example: The Brachistochrone. This problem was posed as a challenge by
Johann Bernoulli in 1696. He asked what shape should a wire with endpoints
(0, 0) and (a, b) take in order that a frictionless bead will slide from rest down
the wire in the shortest possible time (figure 1.4). The problem’s name comes
from Greek: βραχιστoς means shortest and χρoνoς means time.

When presented with an ostensibly anonymous solution, Johann made his
famous remark: “Tanquam ex unguem leonem” (I recognize the lion by his
clawmark) meaning that he recognized that the author was Isaac Newton.

Johann gave a solution himself, but that of his brother Jacob Bernoulli
was superior and Johann tried to pass it off as his. This was not atypical.
Johann later misrepresented the publication date of his book on hydraulics
to make it seem that he had priority in this field over his own son, Daniel
Bernoulli.
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x

y

(0,0)

(a,b)

θ
θ

(x,y)

Figure 1.5: A wheel rolls on the x axis. The dot, which is fixed to the rim of
the wheel, traces out a cycloid.

We begin our solution of the problem by observing that the total energy

E =
1

2
m(ẋ2 + ẏ2)−mgy =

1

2
mẋ2(1 + y′2)−mgy, (1.25)

of the bead is constant. From the initial condition we see that this constant
is zero. We therefore wish to minimize

T =

∫ T

0

dt =

∫ a

0

1

ẋ
dx =

∫ a

0

√
1 + y′2

2gy
dx (1.26)

so as find y(x), given that y(0) = 0 and y(a) = b. The Euler-Lagrange
equation is

yy′′ +
1

2
(1 + y′2) = 0. (1.27)

Again this looks intimidating, but we can use the same trick of multiplying
through by y′ to get

y′
(
yy′′ +

1

2
(1 + y′2)

)
=

1

2

d

dx

{
y(1 + y′2)

}
= 0. (1.28)

Thus
2c = y(1 + y′2). (1.29)

This differential equation has a parametric solution

x = c(θ − sin θ),

y = c(1− cos θ), (1.30)
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(as you should verify) and the solution is the cycloid shown in figure 1.5.
The parameter c is determined by requiring that the curve does in fact pass
through the point (a, b).

1.2.4 First integral

How did we know that we could simplify both the soap-film problem and
the brachistochrone by multiplying the Euler equation by y ′? The answer
is that there is a general principle, closely related to energy conservation in
mechanics, that tells us when and how we can make such a simplification.
The y′ trick works when the f in

∫
f dx is of the form f(y, y′), i.e. has no

explicit dependence on x. In this case the last term in

df

dx
= y′

∂f

∂y
+ y′′

∂f

∂y′
+
∂f

∂x
(1.31)

is absent. We then have

d

dx

(
f − y′ ∂f

∂y′

)
= y′

∂f

∂y
+ y′′

∂f

∂y′
− y′′ ∂f

∂y′
− y′ d

dx

(
∂f

∂y′

)

= y′
(
∂f

∂y
− d

dx

(
∂f

∂y′

))
, (1.32)

and this is zero if the Euler-Lagrange equation is satisfied.
The quantity

I = f − y′ ∂f
∂y′

(1.33)

is called a first integral of the Euler-Lagrange equation. In the soap-film case

f − y′ ∂f
∂y′

= y
√

1 + (y′)2 − y(y′)2

√
1 + (y′)2

=
y√

1 + (y′)2
. (1.34)

When there are a number of dependent variables yi, so that we have

J [y1, y2, . . . yn] =

∫
f(y1, y2, . . . yn; y

′
1, y

′
2, . . . y

′
n) dx (1.35)

then the first integral becomes

I = f −
∑

i

y′i
∂f

∂y′i
. (1.36)
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Again

dI

dx
=

d

dx

(
f −

∑

i

y′i
∂f

∂y′i

)

=
∑

i

(
y′i
∂f

∂yi
+ y′′i

∂f

∂y′i
− y′′i

∂f

∂y′i
− y′i

d

dx

(
∂f

∂y′i

))

=
∑

i

y′i

(
∂f

∂yi
− d

dx

(
∂f

∂y′i

))
, (1.37)

and this zero if the Euler-Lagrange equation is satisfied for each yi.
Note that there is only one first integral, no matter how many yi’s there

are.

1.3 Lagrangian mechanics

In his Mécanique Analytique (1788) Joseph-Louis de La Grange, following
Jean d’Alembert (1742) and Pierre de Maupertuis (1744), showed that most
of classical mechanics can be recast as a variational condition: the principle
of least action. The idea is to introduce the Lagrangian function L = T − V
where T is the kinetic energy of the system and V the potential energy, both
expressed in terms of generalized co-ordinates qi and their time derivatives
q̇i. Then, Lagrange showed, the multitude of Newton’s F = ma equations,
one for each particle in the system, can be reduced to

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (1.38)

one equation for each generalized coordinate q. Quite remarkably — given
that Lagrange’s derivation contains no mention of maxima or minima — we
recognise that this is precisely the condition that the action functional

S[q] =

∫ tfinal

tinitial

L(t, qi; q′
i
) dt (1.39)

be stationary with respect to variations of the trajectory qi(t) that leave the
initial and final points fixed. This fact so impressed its discoverers that they
believed they had uncovered the unifying principle of the universe. Mauper-
tuis, for one, tried to base a proof of the existence of God on it. Today the
action integral, through its starring role in the Feynman path-integral for-
mulation of quantum mechanics, remains at the heart of theoretical physics.
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m2

1m

T
1x

T x
2

g

Figure 1.6: Atwood’s machine.

1.3.1 One degree of freedom

We shall not attempt to derive Lagrange’s equations from d’Alembert’s ex-
tension of the principle of virtual work – leaving this task to a mechanics
course — but instead satisfy ourselves with some examples which illustrate
the computational advantages of Lagrange’s approach, as well as a subtle
pitfall.

Consider, for example, Atwood’s Machine (figure 1.6). This device, in-
vented in 1784 but still a familiar sight in teaching laboratories, is used to
demonstrate Newton’s laws of motion and to measure g. It consists of two
weights connected by a light string of length l which passes over a light and
frictionless pulley

The elementary approach is to write an equation of motion for each of
the two weights

m1ẍ1 = m1g − T,
m2ẍ2 = m2g − T. (1.40)

We then take into account the constraint ẋ1 = −ẋ2 and eliminate ẍ2 in favour
of ẍ1:

m1ẍ1 = m1g − T,
−m2ẍ1 = m2g − T. (1.41)
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Finally we eliminate the constraint force, the tension T , and obtain the
acceleration

(m1 +m2)ẍ1 = (m1 −m2)g. (1.42)

Lagrange’s solution takes the constraint into account from the very be-
ginning by introducing a single generalized coordinate q = x1 = l − x2, and
writing

L = T − V =
1

2
(m1 +m2)q̇

2 − (m2 −m1)gq. (1.43)

From this we obtain a single equation of motion

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 ⇒ (m1 +m2)q̈ = (m1 −m2)g. (1.44)

The advantage of the the Lagrangian method is that constraint forces, which
do no net work, never appear. The disadvantage is exactly the same: if we
need to find the constraint forces – in this case the tension in the string —
we cannot use Lagrange alone.

Lagrange provides a convenient way to derive the equations of motion in
non-cartesian co-ordinate systems, such as plane polar co-ordinates.

ϑ

r

y

x

ar

aϑ

Figure 1.7: Polar components of acceleration.

Consider the central force problem with Fr = −∂rV (r). Newton’s method
begins by computing the acceleration in polar coordinates. This is most
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easily done by setting z = reiθ and differentiating twice:

ż = (ṙ + irθ̇)eiθ,

z̈ = (r̈ − rθ̇2)eiθ + i(2ṙθ̇ + rθ̈)eiθ. (1.45)

Reading off the components parallel and perpendicular to eiθ gives the radial
and angular acceleration

ar = r̈ − rθ̇2,

aθ = rθ̈ + 2ṙθ̇. (1.46)

Newton’s equations therefore become

m(r̈ − rθ̇2) = −∂V
∂r

m(rθ̈ + 2ṙθ̇) = 0, ⇒ d

dt
(mr2θ̇) = 0. (1.47)

Setting l = mr2θ̇, the conserved angular momentum, and eliminating θ̇ gives

mr̈ − l2

mr3
= −∂V

∂r
. (1.48)

(If this were Kepler’s problem, where V = GmM/r, we would now proceed
to simplify this equation by substituting r = 1/u, but that is another story.)

Following Lagrange we first compute the kinetic energy in polar coordi-
nates (this requires less thought than computing the acceleration) and set

L = T − V =
1

2
m(ṙ2 + r2θ̇2)− V (r). (1.49)

The Euler-Lagrange equations are now

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0, ⇒ mr̈ −mrθ̇2 +

∂V

∂r
= 0,

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0, ⇒ d

dt
(mr2θ̇) = 0, (1.50)

and coincide with Newton’s.
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The first integral is

E = ṙ
∂L

∂ṙ
+ θ̇

∂L

∂θ̇
− L

=
1

2
m(ṙ2 + r2θ̇2) + V (r). (1.51)

which is the total energy. Thus the constancy of the first integral states that

dE

dt
= 0, (1.52)

or that energy is conserved.
Warning: We might realize, without having gone to the trouble of deriving
it from the Lagrange equations, that rotational invariance guarantees that
the angular momentum l = mr2θ̇ is constant. Having done so, it is almost
irresistible to try to short-circuit some of the labour by plugging this prior
knowledge into

L =
1

2
m(ṙ2 + r2θ̇2)− V (r) (1.53)

so as to eliminate the variable θ̇ in favour of the constant l. If we try this we
get

L
?→ 1

2
mṙ2 +

l2

2mr2
− V (r). (1.54)

We can now directly write down the Lagrange equation r, which is

mr̈ +
l2

mr3

?
= −∂V

∂r
. (1.55)

Unfortunately this has the wrong sign before the l2/mr3 term! The lesson is
that we must be very careful in using consequences of a variational principle
to modify the principle. It can be done, and in mechanics it leads to the
Routhian or, in more modern language to Hamiltonian reduction, but it
requires using a Legendre transform. The reader should consult a book on
mechanics for details.

1.3.2 Noether’s theorem

The time-independence of the first integral

d

dt

{
q̇
∂L

∂q̇
− L

}
= 0, (1.56)
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and of angular momentum

d

dt
{mr2θ̇} = 0, (1.57)

are examples of conservation laws. We obtained them both by manipulating
the Euler-Lagrange equations of motion, but also indicated that they were
in some way connected with symmetries. One of the chief advantages of a
variational formulation of a physical problem is that this connection

Symmetry ⇔ Conservation Law

can be made explicit by exploiting a strategy due to Emmy Noether. She
showed how to proceed directly from the action integral to the conserved
quantity without having to fiddle about with the individual equations of
motion. We begin by illustrating her technique in the case of angular mo-
mentum, whose conservation is a consequence the rotational symmetry of
the central force problem. The action integral for the central force problem
is

S =

∫ T

0

{
1

2
m(ṙ2 + r2θ̇2)− V (r)

}
dt. (1.58)

Noether observes that the integrand is left unchanged if we make the variation

θ(t)→ θ(t) + εα (1.59)

where α is a fixed angle and ε is a small, time-independent, parameter. This
invariance is the symmetry we shall exploit. It is a mathematical identity:
it does not require that r and θ obey the equations of motion. She next
observes that since the equations of motion are equivalent to the statement
that S is left stationary under any infinitesimal variations in r and θ, they
necessarily imply that S is stationary under the specific variation

θ(t)→ θ(t) + ε(t)α (1.60)

where now ε is allowed to be time-dependent. This stationarity of the action
is no longer a mathematical identity, but, because it requires r, θ, to obey
the equations of motion, has physical content. Inserting δθ = ε(t)α into our
expression for S gives

δS = α

∫ T

0

{
mr2θ̇

}
ε̇ dt. (1.61)
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Note that this variation depends only on the time derivative of ε, and not ε
itself. This is because of the invariance of S under time-independent rota-
tions. We now assume that ε(t) = 0 at t = 0 and t = T , and integrate by
parts to take the time derivative off ε and put it on the rest of the integrand:

δS = −α
∫ {

d

dt
(mr2θ̇)

}
ε(t) dt. (1.62)

Since the equations of motion say that δS = 0 under all infinitesimal varia-
tions, and in particular those due to any time dependent rotation ε(t)α, we
deduce that the equations of motion imply that the coefficient of ε(t) must
be zero, and so, provided r(t), θ(t), obey the equations of motion, we have

0 =
d

dt
(mr2θ̇). (1.63)

As a second illustration we derive energy (first integral) conservation for
the case that the system is invariant under time translations — meaning
that L does not depend explicitly on time. In this case the action integral
is invariant under constant time shifts t → t + ε in the argument of the
dynamical variable:

q(t)→ q(t + ε) ≈ q(t) + εq̇. (1.64)

The equations of motion tell us that that the action will be stationary under
the variation

δq(t) = ε(t)q̇, (1.65)

where again we now permit the parameter ε to depend on t. We insert this
variation into

S =

∫ T

0

Ldt (1.66)

and find

δS =

∫ T

0

{
∂L

∂q
q̇ε+

∂L

∂q̇
(q̈ε+ q̇ε̇)

}
dt. (1.67)

This expression contains undotted ε’s. Because of this the change in S is not
obviously zero when ε is time independent — but the absence of any explicit
t dependence in L tells us that

dL

dt
=
∂L

∂q
q̇ +

∂L

∂q̇
q̈. (1.68)
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As a consequence, for time independent ε, we have

δS =

∫ T

0

{
ε
dL

dt

}
dt = ε[L]T0 , (1.69)

showing that the change in S comes entirely from the endpoints of the time
interval. These fixed endpoints explicitly break time-translation invariance,
but in a trivial manner. For general ε(t) we have

δS =

∫ T

0

{
ε(t)

dL

dt
+
∂L

∂q̇
q̇ε̇

}
dt. (1.70)

This equation is an identity. It does not rely on q obeying the equation of
motion. After an integration by parts, taking ε(t) to be zero at t = 0, T , it
is equivalent to

δS =

∫ T

0

ε(t)
d

dt

{
L− ∂L

∂q̇
q̇

}
dt. (1.71)

Now we assume that q(t) does obey the equations of motion. The variation
principle then says that δS = 0 for any ε(t), and we deduce that for q(t)
satisfying the equations of motion we have

d

dt

{
L− ∂L

∂q̇
q̇

}
= 0. (1.72)

The general strategy that constitutes “Noether’s theorem” must now be
obvious: we look for an invariance of the action under a symmetry trans-
formation with a time-independent parameter. We then observe that if the
dynamical variables obey the equations of motion, then the action principle
tells us that the action will remain stationary under such a variation of the
dynamical variables even after the parameter is promoted to being time de-
pendent. The resultant variation of S can only depend on time derivatives of
the parameter. We integrate by parts so as to take all the time derivatives off
it, and on to the rest of the integrand. Because the parameter is arbitrary,
we deduce that the equations of motion tell us that that its coefficient in the
integral must be zero. This coefficient is the time derivative of something, so
this something is conserved.

1.3.3 Many degrees of freedom

The extension of the action principle to many degrees of freedom is straight-
forward. As an example consider the small oscillations about equilibrium of
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a system with N degrees of freedom. We parametrize the system in terms of
deviations from the equilibrium position and expand out to quadratic order.
We obtain a Lagrangian

L =

N∑

i,j=1

{
1

2
Mij q̇

iq̇j − 1

2
Vijq

iqj
}
, (1.73)

where Mij and Vij are N ×N symmetric matrices encoding the inertial and
potential energy properties of the system. Now we have one equation

0 =
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

N∑

j=1

(
Mij q̈

j + Vijq
j
)

(1.74)

for each i.

1.3.4 Continuous systems

The action principle can be extended to field theories and to continuum me-
chanics. Here one has a continuous infinity of dynamical degrees of freedom,
either one for each point in space and time or one for each point in the mate-
rial, but the extension of the variational derivative to functions of more than
one variable should possess no conceptual difficulties.

Suppose we are given an action functional S[ϕ] depending on a field ϕ(xµ)
and its first derivatives

ϕµ ≡
∂ϕ

∂xµ
. (1.75)

Here xµ, µ = 0, 1, . . . , d, are the coordinates of d+1 dimensional space-time.
It is traditional to take x0 ≡ t and the other coordinates spacelike. Suppose
further that

S[ϕ] =

∫
Ldt =

∫
L(xµ, ϕ, ϕµ) d

d+1x, (1.76)

where L is the Lagrangian density , in terms of which

L =

∫
L ddx, (1.77)

and the integral is over the space coordinates. Now

δS =

∫ {
δϕ(x)

∂L
∂ϕ(x)

+ δ(ϕµ(x))
∂L

∂ϕµ(x)

}
dd+1x

=

∫
δϕ(x)

{
∂L

∂ϕ(x)
− ∂

∂xµ

(
∂L

∂ϕµ(x)

)}
dd+1x. (1.78)
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In going from the first line to the second, we have observed that

δ(ϕµ(x)) =
∂

∂xµ
δϕ(x) (1.79)

and used the divergence theorem,
∫

Ω

(
∂Aµ

∂xµ

)
dn+1x =

∫

∂Ω

AµnµdS, (1.80)

where Ω is some space-time region and ∂Ω its boundary, to integrate by
parts. Here dS is the element of area on the boundary, and nµ the outward
normal. As before, we take δϕ to vanish on the boundary, and hence there
is no boundary contribution to variation of S. The result is that

δS

δϕ(x)
=

∂L
∂ϕ(x)

− ∂

∂xµ

(
∂L

∂ϕµ(x)

)
, (1.81)

and the equation of motion comes from setting this to zero. Note that a sum
over the repeated coordinate index µ is implied. In practice it is easier not to
use this formula. Instead, make the variation by hand—as in the following
examples.
Example: The Vibrating string . The simplest continuous dynamical system
is the transversely vibrating string. We describe the string displacement by
y(x, t).

0 L
y(x,t)

Figure 1.8: Transversely vibrating string

Let us suppose that the string has fixed ends, a mass per unit length
of ρ, and is under tension T . If we assume only small displacements from
equilibrium, the Lagrangian is

L =

∫ L

0

dx

{
1

2
ρẏ2 − 1

2
Ty′

2

}
. (1.82)
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The dot denotes a partial derivative with respect to t, and the prime a partial
derivative with respect to x. The variation of the action is

δS =

∫∫ L

0

dtdx {ρẏ δẏ − Ty′δy′}

=

∫∫ L

0

dtdx {δy(x, t) (−ρÿ + Ty′′)} . (1.83)

To reach the second line we have integrated by parts, and, because the ends
are fixed, and therefore δy = 0 at x = 0 and L, there is no boundary term.
Requiring that δS = 0 for all allowed variations δy then gives the equation
of motion

ρÿ − Ty′′ = 0 (1.84)

This is the wave equation describing transverse waves propagating with speed
c =

√
T/ρ. Observe that from (1.83) we can read off the functional derivative

of S with respect to the variable y(x, t) as being

δS

δy(x, t)
= −ρÿ(x, t) + Ty′′(x, t). (1.85)

In writing down the first integral for this continuous system, we must
replace the sum over discrete indices by an integral:

E =
∑

i

q̇i
∂L

∂q̇i
− L→

∫
dx

{
ẏ(x)

δL

δẏ(x)

}
− L. (1.86)

When computing δL/δẏ(x) from

L =

∫ L

0

dx

{
1

2
ρẏ2 − 1

2
Ty′

2

}
,

we must remember that it is the continuous analogue of ∂L/∂q̇i, and so, in
contrast to what we do when computing δS/δy(x), we must treat ẏ(x) as a
variable independent of y(x). We then have

δL

δẏ(x)
= ρẏ(x), (1.87)

leading to

E =

∫ L

0

dx

{
1

2
ρẏ2 +

1

2
Ty′

2

}
. (1.88)

This, as expected, is the total energy, kinetic plus potential, of the string.
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The energy-momentum tensor

If we consider an action of the form

S =

∫
L(ϕ, ϕµ) d

d+1x, (1.89)

in which L does not depend explicitly on any of the co-ordinates xµ, we may
refine Noether’s derivation of the law of conservation total energy and obtain
accounting information about the position-dependent energy density . To do
this we make a variation of the form

ϕ(x)→ ϕ(xµ + εµ(x)) = ϕ(xµ) + εµ(x)∂µϕ+O(|ε|2), (1.90)

where ε depends on x ≡ (x0, . . . , xd). The resulting variation in S is

δS =

∫ {
∂L
∂ϕ

εµ∂µϕ+
∂L
∂ϕν

∂ν(ε
µ∂µϕ)

}
dd+1x

=

∫
εµ(x)

∂

∂xν

{
Lδνµ −

∂L
∂ϕν

∂µϕ

}
dd+1x. (1.91)

When ϕ satisfies the the equations of motion this δS will be zero for arbitrary
εµ(x). We conclude that

∂

∂xν

{
Lδνµ −

∂L
∂ϕν

∂µϕ

}
= 0. (1.92)

The (d+ 1)-by-(d+ 1) array of functions

T νµ ≡
∂L
∂ϕν

∂µϕ− δνµL (1.93)

is known as the canonical energy-momentum tensor because the statement

∂νT
ν
µ = 0 (1.94)

often provides book-keeping for the flow of energy and momentum.
In the case of the vibrating string, the µ = 0, 1 components of ∂νT

ν
µ = 0

become the two following local conservation equations:

∂

∂t

{
ρ

2
ẏ2 +

T

2
y′2
}

+
∂

∂x
{−T ẏy′} = 0, (1.95)
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and
∂

∂t
{−ρẏy′}+

∂

∂x

{
ρ

2
ẏ2 +

T

2
y′2
}

= 0. (1.96)

It is easy to verify that these are indeed consequences of the wave equation.
They are “local” conservation laws because they are of the form

∂q

∂t
+ div J = 0, (1.97)

where q is the local density, and J the flux, of the globally conserved quantity
Q =

∫
q ddx. In the first case, the local density q is

T 0
0 =

ρ

2
ẏ2 +

T

2
y′2, (1.98)

which is the energy density. The energy flux is given by T 1
0 ≡ −T ẏy′, which

is the rate that a segment of string is doing work on its neighbour to the right.
Integrating over x, and observing that the fixed-end boundary conditions are
such that ∫ L

0

∂

∂x
{−T ẏy′} dx = [−T ẏy′]L0 = 0, (1.99)

gives us
d

dt

∫ L

0

{
ρ

2
ẏ2 +

T

2
y′2
}
dx = 0, (1.100)

which is the global energy conservation law we obtained earlier.
The physical interpretation of T 0

1 = −ρẏy′, the locally conserved quan-
tity appearing in (1.96) is less obvious. If this were a relativistic system,
we would immediately identify

∫
T 0

1 dx as the x-component of the energy-
momentum 4-vector, and therefore T 0

1 as the density of x-momentum. Now
any real string will have some motion in the x direction, but the magni-
tude of this motion will depend on the string’s elastic constants and other
quantities unknown to our Lagrangian. Because of this, the T 0

1 derived
from L cannot be the string’s x-momentum density. Instead, it is the den-
sity of something called pseudo-momentum. The distinction between true
and pseudo-momentum is best appreaciated by considering the correspond-
ing Noether symmetry. The symmetry associated with Newtonian momen-
tum is the invariance of the action integral under an x translation of the
entire apparatus: the string, and any wave on it. The symmetry associ-
ated with pseudo-momentum is the invariance of the action under a shift
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y(x) → y(x − a) of the location of the wave on the string — the string it-
self not being translated. Newtonian momentum is conserved if the ambient
space is translationally invariant. Pseudo-momentum is conserved only if the
string is translationally invariant — i.e. if ρ and T are position independent.
A failure to realize that the presence of a medium (here the string) requires us
to distinguish between these two symmetries is the origin of much confusion
involving “wave momentum.”

Maxwell’s equations

Michael Faraday and and James Clerk Maxwell’s description of electromag-
netism in terms of dynamical vector fields gave us the first modern field
theory. D’Alembert and Maupertuis would have been delighted to discover
that the famous equations of Maxwell’s A Treatise on Electricity and Mag-
netism (1873) follow from an action principle. There is a slight complication
stemming from gauge invariance but, as long as we are not interested in ex-
hibiting the covariance of Maxwell under Lorentz transformations, we can
sweep this under the rug by working in the axial gauge, where the scalar
electric potential does not appear.

We will start from Maxwell’s equations

div B = 0,

curl E = −∂B
∂t
,

curlH = J +
∂D

∂t
,

div D = ρ, (1.101)

and show that they can be obtained from an action principle. For convenience
we shall use natural units in which µ0 = ε0 = 1, and so c = 1 and D ≡ E
and B ≡ H.

The first equation div B = 0 contains no time derivatives. It is a con-
straint which we satisfy by introducing a vector potential A such that B =curl A.
If we set

E = −∂A
∂t

, (1.102)

then this automatically implies Faraday’s law of induction

curlE = −∂B
∂t
. (1.103)



1.3. LAGRANGIAN MECHANICS 25

We now guess that the Lagrangian is

L =

∫
d3x

[
1

2

{
E2 −B2

}
+ J ·A

]
. (1.104)

The motivation is that L looks very like T − V if we regard 1
2
E2 ≡ 1

2
Ȧ2 as

being the kinetic energy and 1
2
B2 = 1

2
(curlA)2 as being the potential energy.

The term in J represents the interaction of the fields with an external current
source. In the axial gauge the electric charge density ρ does not appear in
the Lagrangian. The corresponding action is therefore

S =

∫
Ldt =

∫∫
d3x

[
1

2
Ȧ2 − 1

2
(curlA)2 + J ·A

]
dt. (1.105)

Now vary A to A + δA, whence

δS =

∫∫
d3x

[
−Ä · δA− (curlA) · (curl δA) + J · δA

]
dt. (1.106)

Here, we have already removed the time derivative from δA by integrating
by parts in the time direction. Now we do the integration by parts in the
space directions by using the identity

div (δA× (curl A)) = (curlA) · (curl δA)− δA · (curl (curlA)) (1.107)

and taking δA to vanish at spatial infinity, so the surface term, which would
come from the integral of the total divergence, is zero. We end up with

δS =

∫∫
d3x

{
δA ·

[
−Ä− curl (curlA) + J

]}
dt. (1.108)

Demanding that the variation of S be zero thus requires

∂2A

∂t2
= −curl (curlA) + J, (1.109)

or, in terms of the physical fields,

curlB = J +
∂E

∂t
. (1.110)

This is Ampère’s law, as modified by Maxwell so as to include the displace-
ment current.
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How do we deal with the last Maxwell equation, Gauss’ law, which asserts
that div E = ρ? If ρ were equal to zero, this equation would hold if div A = 0,
i.e. if A were solenoidal. In this case we might be tempted to impose the
constraint div A = 0 on the vector potential, but doing so would undo all
our good work, as we have been assuming that we can vary A freely.

We notice, however, that the three Maxwell equations we already possess
tell us that

∂

∂t
(div E− ρ) = div (curlB)−

(
div J +

∂ρ

∂t

)
. (1.111)

Now div (curlB) = 0, so the left-hand side is zero provided charge is con-
served, i.e. provided

ρ̇+ div J = 0. (1.112)

We assume that this is so. Thus, if Gauss’ law holds initially, it holds eter-
nally. We arrange for it to hold at t = 0 by imposing initial conditions on
A. We first choose A|t=0 by requiring it to satisfy

B|t=0 = curl (A|t=0) . (1.113)

The solution is not unique, because may we add any ∇φ to A|t=0, but this
does not affect the physical E and B fields. The initial “velocities” Ȧ|t=0

are then fixed uniquely by Ȧ|t=0 = −E|t=0, where the initial E satisfies
Gauss’ law. The subsequent evolution of A is then uniquely determined by
integrating the second-order equation (1.109).

The first integral for Maxwell is

E =
3∑

i=1

∫
d3x

{
Ȧi

δL

δȦi

}
− L

=

∫
d3x

[
1

2

{
E2 + B2

}
− J ·A

]
. (1.114)

This will be conserved if J is time independent. If J = 0, it is the total field
energy.

Suppose J is neither zero nor time independent. Then, looking back at
the derivation of the time-independence of the first integral, we see that if L
does depend on time, we instead have

dE

dt
= −∂L

∂t
. (1.115)
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In the present case we have

−∂L
∂t

= −
∫

J̇ ·A d3x, (1.116)

so that

−
∫

J̇ ·A d3x =
dE

dt
=

d

dt
(Field Energy)−

∫ {
J · Ȧ + J̇ ·A

}
d3x. (1.117)

Thus, cancelling the duplicated term and using E = −Ȧ, we find

d

dt
(Field Energy) = −

∫
J ·E d3x. (1.118)

Now
∫

J · (−E) d3x is the rate at which the power source driving the current
is doing work against the field. The result is therefore physically sensible.

Continuum mechanics

Because the mechanics of discrete objects can be derived from an action
principle, it seems obvious that so must the mechanics of continua. This is
certainly true if we use the Lagrangian description where we follow the his-
tory of each particle composing the continuous material as it moves through
space. In fluid mechanics it is more natural to describe the motion by using
the Eulerian description in which we focus on what is going on at a partic-
ular point in space by introducing a velocity field v(r, t). Eulerian action
principles can still be found, but they seem to be logically distinct from the
Lagrangian mechanics action principle, and mostly were not discovered until
the 20th century.

We begin by showing that Euler’s equation for the irrotational motion
of an inviscid compressible fluid can be obtained by applying the action
principle to a functional

S[φ, ρ] =

∫
dt d3x

{
ρ
∂φ

∂t
+

1

2
ρ(∇φ)2 + u(ρ)

}
, (1.119)

where ρ is the mass density and the flow velocity is determined from the
velocity potential φ by v = ∇φ. The function u(ρ) is the internal energy
density.
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Varying S[φ, ρ] with respect to ρ is straightforward, and gives a time
dependent generalization of (Daniel) Bernoulli’s equation

∂φ

∂t
+

1

2
v2 + h(ρ) = 0. (1.120)

Here h(ρ) ≡ du/dρ, is the specific enthalpy.1 Varying with respect to φ
requires an integration by parts, based on

div (ρ δφ∇φ) = ρ(∇δφ) · (∇φ) + δφ div (ρ∇φ), (1.121)

and gives the equation of mass conservation

∂ρ

∂t
+ div (ρv) = 0. (1.122)

Taking the gradient of Bernoulli’s equation, and using the fact that for po-
tential flow the vorticity ω ≡ curlv is zero and so ∂ivj = ∂jvi, we find that

∂v

∂t
+ (v · ∇)v = −∇h. (1.123)

We now introduce the pressure P , which is related to h by

h(P ) =

∫ P

0

dP

ρ(P )
. (1.124)

We see that ρ∇h = ∇P , and so obtain Euler’s equation

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇P. (1.125)

For future reference, we observe that combining the mass-conservation equa-
tion

∂tρ+ ∂j {ρvj} = 0 (1.126)

with Euler’s equation
ρ(∂tvi + vj∂jvi) = −∂iP (1.127)

1The enthalpy H = U + PV per unit mass. In general u and h will be functions of
both the density and the specific entropy. By taking u to depend only on ρ we are tacitly
assuming that specific entropy is constant. This makes the resultant flow barotropic,
meaning that the pressure is a function of the density only.
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yields

∂t {ρvi}+ ∂j {ρvivj + δijP} = 0, (1.128)

which expresses the local conservation of momentum. The quantity

Πij = ρvivj + δijP (1.129)

is the momentum-flux tensor , and is the j-th component of the flux of the
i-th component pi = ρvi of momentum density.

The relations h = du/dρ and ρ = dP/dh show that P and u are related
by a Legendre transformation: P = ρh− u(ρ). From this, and the Bernoulli
equation, we see that the integrand in the action (1.119) is equal to minus
the pressure:

−P = ρ
∂φ

∂t
+

1

2
ρ(∇φ)2 + u(ρ). (1.130)

This Eulerian formulation cannot be a “follow the particle” action prin-
ciple in a clever disguise. The mass conservation law is only a consequence
of the equation of motion, and is not built in from the beginning as a con-
straint. Our variations in φ are therefore conjuring up new matter rather
than merely moving it around.

1.4 Variable endpoints

We now relax our previous assumption that all boundary or surface terms
arising from integrations by parts may be ignored. We will find that variation
principles can be very useful for working out what boundary conditions we
should impose on our differential equations.

Consider the problem of building a railway across a parallel sided isthmus.
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)y(x1
y(x2)

x

y

Figure 1.9: Railway across isthmus.

Suppose that the cost of construction is proportional to the length of the
track, but the cost of sea transport being negligeable, we may locate the
terminal seaports wherever we like. We therefore wish to minimize the length

L[y] =

∫ x2

x1

√
1 + (y′)2dx, (1.131)

by allowing both the path y(x) and the endpoints y(x1) and y(x2) to vary.
Then

L[y + δy]− L[y] =

∫ x2

x1

(δy′)
y′√

1 + (y′)2
dx

=

∫ x2

x1

{
d

dx

(
δy

y′√
1 + (y′)2

)
− δy d

dx

(
y′√

1 + (y′)2

)}
dx

= δy(x2)
y′(x2)√
1 + (y′)2

− δy(x1)
y′(x1)√
1 + (y′)2

−
∫ x2

x1

δy
d

dx

(
y′√

1 + (y′)2

)
dx. (1.132)

We have stationarity when both
i) the coefficient of δy(x) in the integral,

− d

dx

(
y′√

1 + (y′)2

)
, (1.133)

is zero. This requires that y′ =const., i.e. the track should be straight.
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ii) The coefficients of δy(x1) and δy(x2) vanish. For this we need

0 =
y′(x1)√
1 + (y′)2

=
y′(x2)√
1 + (y′)2

. (1.134)

This in turn requires that y′(x1) = y′(x2) = 0.
The integrated-out bits have determined the boundary conditions that are to
be imposed on the solution of the differential equation. In the present case
they require us to build perpendicular to the coastline, and so we go straight
across the isthmus. When boundary conditions are obtained from endpoint
variations in this way, they are called natural boundary conditions.
Example: Sliding String . A massive string of linear density ρ is stretched
between two smooth posts separated by distance 2L. The string is under
tension T , and is free to slide up and down the posts. We consider only a
small deviations of the string from the horizontal.

x

y

+L−L

Figure 1.10: Sliding string.

As we saw earlier, the Lagrangian for a stretched string is

L =

∫ L

−L

{
1

2
ρẏ2 − 1

2
T (y′)2

}
dx. (1.135)

Now, Lagrange’s principle says that the equation of motion is found by re-
quiring the action

S =

∫ tf

ti

Ldt (1.136)

to be stationary under variations of y(x, t) that vanish at the initial and final
times, ti and tf . It does not demand that δy vanish at ends of the string,
x = ±L. So, when we make the variation, we must not assume this. Taking



32 CHAPTER 1. CALCULUS OF VARIATIONS

care not to discard the results of the integration by parts in the x direction,
we find

δS =

∫ tf

ti

∫ L

−L
δy(x, t) {−ρÿ + Ty′′} dxdt−

∫ tf

ti

δy(L, t)Ty′(L) dt

+

∫ tf

ti

δy(−L, t)Ty′(−L) dt. (1.137)

The equation of motion, which arises from the variation within the interval,
is therefore the wave equation

ρÿ − Ty′′ = 0. (1.138)

The boundary conditions, which come from the variations at the endpoints,
are

y′(L, t) = y′(−L, t) = 0, (1.139)

at all times t. These are the physically correct boundary conditions, because
any up-or-down component of the tension would provide a finite force on an
infinitesimal mass. The string must therefore be horizontal at its endpoints.

Example: Bead and String . Suppose now that a bead of mass M is free to
slide up and down the y axis,

x

y

y(0)

0 L

Figure 1.11: A bead connected to a string.

and is is attached to the x = 0 end of our string. The Lagrangian for the
string-bead contraption is

L =
1

2
M [ẏ(0)]2 +

∫ L

0

{
1

2
ρẏ2 − 1

2
Ty′2

}
dx. (1.140)
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Here, as before, ρ is the mass per unit length of the string and T is its tension.
The end of the string at x = L is fixed. By varying the action S =

∫
Ldt,

and taking care not to throw away the boundary part at x = 0 we find that

δS =

∫ tf

ti

[Ty′ −Mÿ]x=0 δy(0, t) dt+

∫ tf

ti

∫ L

0

{Ty′′ − ρÿ} δy(x, t) dxdt.
(1.141)

The Euler-Lagrange equations are therefore

ρÿ(x)− Ty′′(x) = 0, 0 < x < L,

Mÿ(0)− Ty′(0) = 0, y(L) = 0. (1.142)

The boundary condition at x = 0 is the equation of motion for the bead. It
is clearly correct, because Ty′(0) is the vertical component of the force that
the string tension exerts on the bead.

These examples led to boundary conditions that we could easily have
figured out for ourselves without the variational principle. The next exam-
ple shows that a variational formulation can be exploited to obtain a set of
boundary conditions that might be difficult to write down by purely “physi-
cal” reasoning.

y

x
0

0
P

h(x,t)

ρ

g

Figure 1.12: Gravity waves on water.

Harder example: Gravity waves on the surface of water. An action suitable
for describing water waves is given by2 S[φ, h] =

∫
Ldt, where

L =

∫
dx

∫ h(x,t)

0

ρ0

{
∂φ

∂t
+

1

2
(∇φ)2 + gy

}
dy. (1.143)

2J. C. Luke, J. Fluid Dynamics, 27 (1967) 395.
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Here φ is the velocity potential and ρ0 is the density of the water. The density
will not be varied because the water is being treated as incompressible. As
before, the flow velocity is given by v = ∇φ. By varying φ(x, y, t) and the
depth h(x, t), and taking care not to throw away any integrated-out parts of
the variation at the physical boundaries, we obtain:

∇2φ = 0, within the fluid.
∂φ

∂t
+

1

2
(∇φ)2 + gy = 0, on the free surface.

∂φ

∂y
= 0, on y = 0.

∂h

∂t
− ∂φ

∂y
+
∂h

∂x

∂φ

∂x
= 0, on the free surface. (1.144)

The first equation comes from varying φ within the fluid, and it simply
confirms that the flow is incompressible, i.e. obeys div v = 0. The second
comes from varying h, and is the Bernoulli equation stating that we have
P = P0 (atmospheric pressure) everywhere on the free surface. The third,
from the variation of φ at y = 0, states that no fluid escapes through the
lower boundary.

Obtaining and interpreting the last equation, involving ∂h/∂t, is some-
what trickier. It comes from the variation of φ on the upper boundary. The
variation of S due to δφ is

δS =

∫
ρ0

{
∂

∂t
δφ+

∂

∂x

(
δφ
∂φ

∂x

)
+

∂

∂y

(
δφ
∂φ

∂y

)
− δφ∇2φ

}
dtdxdy.

(1.145)
The first three terms in the integrand constitute the three-dimensional di-
vergence div (δφΦ), where, listing components in the order t, x, y,

Φ =

[
1,
∂φ

∂x
,
∂φ

∂y

]
. (1.146)

The integrated-out part on the upper surface is therefore
∫

(Φ · n)δφ d|S|.
Here, the outward normal is

n =

(
1 +

(
∂h

∂t

)2

+

(
∂h

∂x

)2
)−1/2 [

−∂h
∂t
,−∂h

∂x
, 1

]
, (1.147)
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and the element of area

d|S| =
(

1 +

(
∂h

∂t

)2

+

(
∂h

∂x

)2
)1/2

dtdx. (1.148)

The boundary variation is thus

δS|y=h = −
∫ {

∂h

∂t
− ∂φ

∂y
+
∂h

∂x

∂φ

∂x

}
δφ
(
x, h(x, t), t

)
dxdt. (1.149)

Requiring this variation to be zero for arbitrary δφ
(
x, h(x, t), t

)
leads to

∂h

∂t
− ∂φ

∂y
+
∂h

∂x

∂φ

∂x
= 0. (1.150)

This last boundary condition expresses the geometrical constraint that the
surface moves with the fluid it bounds, or, in other words, that a fluid particle
initially on the surface stays on the surface. To see that this is so, define
f(x, y, t) = h(x, t) − y. The free surface is then determined by f(x, y, t) =
0. Because the surface particles are carried with the flow, the convective
derivative of f ,

df

dt
≡ ∂f

∂t
+ (v · ∇)f, (1.151)

must vanish on the free surface. Using v = ∇φ and the definition of f , this
reduces to

∂h

∂t
+
∂φ

∂x

∂h

∂x
− ∂φ

∂y
= 0, (1.152)

which is indeed the last boundary condition.
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1.5 Lagrange multipliers

y

x

Figure 1.13: Road on hill.

Figure 1.13 shows the contour map of a hill of height h = f(x, y). The
hill traversed by a road whose points satisfy the equation g(x, y) = 0. Our
challenge is to use the data h(x, y) and g(x, y) to find the highest point on
the road.

When r changes by dr = (dx, dy), the height f changes by

df = ∇f · dr, (1.153)

where ∇f = (∂xf, ∂yf). The highest point, being a stationary point, will
have df = 0 for all displacements dr that stay on the road — that is for
all dr such that dg = 0. Thus ∇f · dr must be zero for those dr such that
0 = ∇g · dr. In other words, at the highest point ∇f will be orthogonal to
all vectors that are orthogonal to ∇g. This is possible only if the vectors ∇f
and ∇g are parallel, and so ∇f = λ∇g for some λ.

To find the stationary point, therefore, we solve the equations

∇f − λ∇g = 0,

g(x, y) = 0, (1.154)

simultaneously.
Example: Let f = x2 + y2 and g = x + y − 1. Then ∇f = 2(x, y) and
∇g = (1, 1). So

2(x, y)− λ(1, 1) = 0, ⇒ (x, y) =
λ

2
(1, 1)
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x + y = 1, ⇒ λ = 1, =⇒ (x, y) = (
1

2
,
1

2
).

When there are n constraints, g1 = g2 = · · · = gn = 0, we want ∇f to lie
in

(< ∇gi >⊥)⊥ =< ∇gi >, (1.155)

where < ei > denotes the space spanned by the vectors ei and < ei >
⊥ is

the its orthogonal complement. Thus ∇f lies in the space spanned by the
vectors ∇gi, so there must exist n numbers λi such that

∇f =
n∑

i=1

λi∇gi. (1.156)

The numbers λi are called Lagrange multipliers. We can therefore regard our
problem as one of finding the stationary points of an auxilliary function

F = f −
∑

i

λigi, (1.157)

with the n undetermined multipliers λi, i = 1, . . . , n, subsequently being fixed
by imposing the n requirements that gi = 0, i = 1, . . . , n.
Example: Find the stationary points of

F (x) =
1

2
x ·Ax =

1

2
xiAijxj (1.158)

on the surface x · x = 1. Here Aij is a symmetric matrix.
Solution: We look for stationary points of

G(x) = F (x)− 1

2
λ|x|2. (1.159)

The derivatives we need are

∂F

∂xk
=

1

2
δkiAijxj +

1

2
xiAijδjk

= Akjxj, (1.160)

and
∂

∂xk

(
λ

2
xjxj

)
= λxk. (1.161)
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Thus, the stationary points must satisfy

Akjxj = λxk,

xixi = 1, (1.162)

and so are the normalized eigenvectors of the matrix A. The Lagrange
multiplier at each stationary point is the corresponding eigenvalue.
Example: Statistical Mechanics. Let Γ denote the classical phase space of
a mechanical system of n particles governed by Hamiltonian H(p, q). Let
dΓ be the Liouville measure d3np d3nq. In statistical mechanics we work
with a probability density ρ(p, q) such that ρ(p, q)dΓ is the probability of
the system being in a state in the small region dΓ. The entropy associated
with the probability distribution is the functional

S[ρ] = −
∫

Γ

ρ ln ρ dΓ. (1.163)

We wish to find the ρ(p, q) that maximizes the entropy for a given energy

〈E〉 =

∫

Γ

ρH dΓ. (1.164)

We cannot vary ρ freely as we should preserve both the energy and the
normalization condition ∫

Γ

ρ dΓ = 1 (1.165)

that is required of any probability distribution. We therefore introduce two
Lagrange multipliers, 1 + α and β, to enforce the normalization and energy
conditions, and look for stationary points of

F [ρ] =

∫

Γ

{−ρ ln ρ + (α + 1)ρ− βρH} dΓ. (1.166)

Now we can vary ρ freely, and hence find that

δF =

∫

Γ

{− ln ρ+ α− βH} δρ dΓ. (1.167)

Requiring this to be zero gives us

ρ(p, q) = eα−βH(p,q), (1.168)
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where α, β are determined by imposing the normalization and energy con-
straints. This probability density is known as the canonical distribution, and
the parameter β is the inverse temperature β = 1/T .
Example: The Catenary. At last we have the tools to solve the problem of
the hanging chain of fixed length. We wish to minimize the potential energy

E[y] =

∫ L

−L
y
√

1 + (y′)2dx, (1.169)

subject to the constraint

l[y] =

∫ L

−L

√
1 + (y′)2dx = const., (1.170)

where the constant is the length of the chain. We introduce a Lagrange
multiplier λ and find the stationary points of

F [y] =

∫ L

−L
(y − λ)

√
1 + (y′)2dx, (1.171)

so, following our earlier methods, we find

y = λ+ κ cosh
(x+ a)

κ
. (1.172)

We choose κ, λ, a to fix the two endpoints (two conditions) and the length
(one condition).
Example: Sturm-Liouville Problem. We wish to find the stationary points
of the quadratic functional

J [y] =

∫ x2

x1

1

2

{
p(x)(y′)2 + q(x)y2

}
dx, (1.173)

subject to the boundary conditions y(x) = 0 at the endpoints x1, x2 and the
normalization

K[y] =

∫ x2

x1

y2 dx = 1. (1.174)

Taking the variation of J − (λ/2)K, we find

δJ =

∫ x2

x1

{−(py′)′ + qy − λy} δy dx. (1.175)
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Stationarity therefore requires

−(py′)′ + qy = λy, y(x1) = y(x2) = 0. (1.176)

This is the Sturm-Liouville eigenvalue problem. It is an infinite dimensional
analogue of the F (x) = 1

2
x ·Ax problem.

Example: Irrotational Flow Again. Consider the action functional

S[v, φ, ρ] =

∫ {
1

2
ρv2 − u(ρ) + φ

(
∂ρ

∂t
+ div ρv

)}
dtd3x (1.177)

This is similar to our previous action for the irrotational barotropic flow of an
inviscid fluid, but here v is an independent variable and we have introduced
infinitely many Lagrange multipliers φ(x, t), one for each point of space-time,
so as to enforce the equation of mass conservation ρ̇+div ρv = 0 everywhere,
and at all times. Equating δS/δv to zero gives v = ∇φ, and so these Lagrange
multipliers become the velocity potential as a consequence of the equations
of motion. The Bernoulli and Euler equations now follow almost as before.
Because the equation v = ∇φ does not involve time derivatives, this is
one of the cases where it is legitimate to substitute a consequence of the
action principle back into the action. If we do this, we recover our previous
formulation.

1.6 Maximum or minimum?

We have provided many examples of stationary points in function space. We
have said almost nothing about whether these stationary points are maxima
or minima. There is a reason for this: investigating the character of the
stationary point requires the computation of the second functional derivative.

δ2J

δy(x1)δy(x2)

and the use of the functional version of Taylor’s theorem to expand about
the stationary point y(x):

J [y + εη] = J [y] + ε

∫
η(x)

δJ

δy(x)

∣∣∣∣
y

dx

+
ε2

2

∫
η(x1)η(x2)

δ2J

δy(x1)δy(x2)

∣∣∣∣
y

dx1dx2 + · · · .

(1.178)
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Since y(x) is a stationary point, the term with δJ/δy(x)|y vanishes. Whether
y(x) is a maximum, a minimum, or a saddle therefore depends on the number
of positive and negative eigenvalues of δ2J/δ(y(x1))δ(y(x2)), a matrix with
a continuous infinity of rows and columns—these being labeled by x1 and
x2 repectively. It is not easy to diagonalize a continuously infinite matrix!
Consider, for example, the functional

J [y] =

∫ b

a

1

2

{
p(x)(y′)2 + q(x)y2

}
dx, (1.179)

with y(a) = y(b) = 0. Here, as we already know,

δJ

δy(x)
= Ly ≡ − d

dx

(
p(x)

d

dx
y(x)

)
+ q(x)y(x), (1.180)

and, except in special cases, this will be zero only if y(x) ≡ 0. We might
reasonably expect the second derivative to be

δ

δy
(Ly)

?
= L, (1.181)

where L is the Sturm-Liouville differential operator

L = − d

dx

(
p(x)

d

dx

)
+ q(x). (1.182)

How can a differential operator be a matrix like δ2J/δ(y(x1))δ(y(x2))?
We can formally compute the second derivative by exploiting the Dirac

delta “function” δ(x) which has the property that

y(x2) =

∫
δ(x2 − x1)y(x1) dx1. (1.183)

Thus

δy(x2) =

∫
δ(x2 − x1)δy(x1) dx1, (1.184)

from which we read off that

δy(x2)

δy(x1)
= δ(x2 − x1). (1.185)



42 CHAPTER 1. CALCULUS OF VARIATIONS

Using (1.185), we find that

δ

δy(x1)

(
δJ

δy(x2)

)
= − d

dx2

(
p(x2)

d

dx2
δ(x2 − x1)

)
+q(x2)δ(x2−x1). (1.186)

How are we to make sense of this expression? We begin in the next chapter
where we explain what it means to differentiate δ(x), and show that (1.186)
does indeed correspond to the differential operator L. In subsequent chap-
ters we explore the manner in which differential operators and matrices are
related. We will learn that just as some matrices can be diagonalized so can
some differential operators, and that the class of diagonalizable operators
includes (1.182).

If all the eigenvalues of L are positive, our stationary point was a min-
imum. For each negative eigenvalue, there is direction in function space in
which J [y] decreases as we move away from the stationary point.

1.7 Further exercises and problems

Here is a collection of problems relating to the calculus of variations. Some
date back to the 16th century, others are quite recent in origin.

Exercise 1.1: A smooth path in the x-y plane is given by r(t) = (x(t), y(t))
with r(0) = a, and r(1) = b. The length of the path from a to b is therefore.

S[r] =

∫ 1

0

√
ẋ2 + ẏ2 dt,

where ẋ ≡ dx/dt, ẏ ≡ dy/dt. Write down the Euler-Lagrange conditions for
S[r] to be stationary under small variations of the path that keep the endpoints
fixed, and hence show that the shortest path between two points is a straight
line.

Exercise 1.2: Fermat’s principle. A medium is characterised optically by
its refractive index n, such that the speed of light in the medium is c/n.
According to Fermat (1657), the path taken by a ray of light between any
two points makes stationary the travel time between those points. Assume
that the ray propagates in the x, y plane in a layered medium with refractive
index n(x). Use Fermat’s principle to establish Snell’s law in its general form
n(x) sinψ = constant by finding the equation giving the stationary paths y(x)
for

F1[y] =

∫
n(x)

√
1 + y′2dx.
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(Here the prime denotes differentiation with respect to x.) Repeat this exercise
for the case that n depends only on y and find a similar equation for the
stationary paths of

F2[y] =

∫
n(y)

√
1 + y′2dx.

By using suitable definitions of the angle of incidence ψ in each case, show
that the two formulations of the problem give physically equivalent answers.
In the second formulation you will find it easiest to use the first integral of
Euler’s equation.

Problem 1.3: Hyperbolic Geometry. This problem introduces a version of the
Poincaré model for the non-Euclidean geometry of Lobachevski.

a) Show that the stationary paths for the functional

F3[y] =

∫
1

y

√
1 + y′2dx,

with y(x) restricted to lying in the upper half plane are semi-circles of
arbitrary radius and with centres on the x axis. These paths are the
geodesics, or minimum length paths, in a space with Riemann metric

ds2 =
1

y2
(dx2 + dy2), y > 0.

b) Show that if we call these geodesics “lines”, then one and only one line
can be drawn though two given points.

c) Two lines are said to be parallel if, and only if, they meet at “infinity”,
i.e. on the x axis. (Verify that the x axis is indeed infinitely far from any
point with y > 0.) Show that given a line q and a point A not lying on
that line, that there are two lines passing through A that are parallel to
q, and that between these two lines lies a pencil of lines passing through
A that never meet q.

Problem 1.4: Elastic Rods. The elastic energy per unit length of a bent steel
rod is given by 1

2Y I/R
2. Here R is the radius of curvature due to the bending,

Y is the Young’s modulus of the steel and I =
∫∫
y2dxdy is the moment

of inertia of the rod’s cross section about an axis through its centroid and
perpendicular to the plane in which the rod is bent. If the rod is only slightly
bent into the yz plane and lies close to the z axis, show that this elastic energy
can be approximated as

U [y] =

∫ L

0

1

2
Y I
(
y′′
)2
dz,
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where the prime denotes differentiation with respect to z and L is the length
of the rod. We will use this approximate energy functional to discuss two
practical problems.

L

Mg

�����������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������

Mg
a) b)

Figure 1.14: A rod used as: a) a column, b) a cantilever.

a) Euler’s problem: the buckling of a slender column. The rod is used as
a column which supports a compressive load Mg directed along the z
axis (which is vertical). Show that when the rod buckles slighly (i.e.
deforms with both ends remaining on the z axis) the total energy, in-
cluding the gravitational potential energy of the loading mass M , can be
approximated by

U [y] =

∫ L

0

{
Y I

2

(
y′′
)2 − Mg

2

(
y′
)2
}
dz.

By considering small deformations of the form

y(z) =

∞∑

n=1

an sin
nπz

L

show that the column is unstable to buckling and collapse if Mg ≥
π2Y I/L2.

b) Leonardo da Vinci’s problem: the light cantilever. Here we take the z
axis as horizontal and the y axis as being vertical. The rod is used as
a beam or cantilever and is fixed into a wall so that y(0) = 0 = y ′(0).
A weight Mg is hung from the end z = L and the beam sags in the −y
direction. We wish to find y(z) for 0 < z < L. We will ignore the weight
of the beam itself.
• Write down the complete expression for the energy, including the

gravitational potential energy of the weight.
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• Find the differential equation and boundary conditions at z = 0, L
that arise from minimizing the total energy. In doing this take care
not to throw away any term arising from the integration by parts.
You may find the following identity to be of use:

d

dz
(f ′g′′ − fg′′′) = f ′′g′′ − fg′′′′.

• Solve the equation. You should find that the displacement of the
end of the beam is y(L) = − 1

3MgL3/Y I.

Exercise 1.5: Suppose that an elastic body Ω of density ρ is slightly deformed
so that the point that was at cartesian co-ordinate xi is moved to xi + ηi(x).
We define the resulting strain tensor eij by

eij =
1

2

(
∂ηj
∂xi

+
∂ηi
∂xj

)
.

It is automatically symmetric in its indices. The Lagrangian for small-amplitude
elastic motion of the body is

L[η] =

∫

Ω

{
1

2
ρη̇2

i −
1

2
eijcijklekl

}
d3x.

Here, cijkl is the tensor of elastic constants, which has the symmetries

cijkl = cklij = cjikl = cijlk.

By varying the ηi, show that the equation of motion for the body is

ρ
∂2ηi
∂t2
− ∂

∂xj
σji = 0,

where

σij = cijklekl

is the stress tensor . Show that variations of ηi on the boundary ∂Ω give as
boundary conditions

σijnj = 0,

where ni are the components of the outward normal on ∂Ω.
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Figure 1.15: Weighted line.

Problem 1.6:The catenary revisited. We can describe a catenary curve in
parametric form as x(s), y(s), where s is the arc-length. The potential en-

ergy is then simply
∫ L
0 ρgy(s)ds where ρ is the mass per unit length of the

hanging chain. The x, y are not independent functions of s, however, because
ẋ2 + ẏ2 = 1 at every point on the curve. Here a dot denotes a derivative with
respect to s.

a) Introduce infinitely many Lagrange multipliers λ(s) to enforce the ẋ2 + ẏ2

constraint, one for each point s on the curve. From the resulting func-
tional derive two coupled equations describing the catenary, one for x(s)
and one for y(s). By thinking about the forces acting on a small section
of the cable, and perhaps by introducing the angle ψ where ẋ = cosψ and
ẏ = sinψ, so that s and ψ are intrinsic coordinates for the curve, inter-
pret these equations and show that λ(s) is proportional to the position-
dependent tension T (s) in the chain.

b) You are provided with a light-weight line of length πa/2 and some lead
shot of total mass M . By using equations from the previous part (suit-
ably modified to take into account the position dependent ρ(s)) or oth-
erwise, determine how the lead should be distributed along the line if the
loaded line is to hang in an arc of a circle of radius a (see figure 1.15)
when its ends are attached to two points at the same height.

Problem 1.7: Another model for Lobachevski geometry (see exercise 1.3)
is the Poincaré disc. This space consists of the interior of the unit disc
D2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1} equipped with Riemann metric

ds2 =
dx2 + dy2

(1− x2 − y2)2
.
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The geodesic paths are found by minimizing the arc-length functional

s[r] ≡
∫
ds =

∫ {
1

1− x2 − y2

√
ẋ2 + ẏ2

}
dt,

where r(t) = (x(t), y(t)) and a dot indicates a derivative with respect to the
parameter t.

y

xO

D2

P

R

Q X

r

Figure 1.16: The Poincaré disc of exercise 1.7. The radius OP of the Poincare
disc is unity, while the radius of the geodesic arc PQR is PX = QX = RX =
R. The distance between the centres of the disc and arc is OX = x0. Your
task in part c) is to show that ∠OPX = ∠ORX = 90◦.

a) Either by manipulating the two Euler-Lagrange equations that give the
conditions for s[r] to be stationary under variations in r(t), or, more effi-
ciently, by observing that s[r] is invariant under the infinitesimal rotation

δx = εy

δy = −εx

and applying Noether’s theorem, show that the parameterised geodesics
obey

d

dt

(
1

1− x2 − y2

xẏ − yẋ√
ẋ2 + ẏ2

)
= 0.

b) Given a point (a, b) within D2, and a direction through it, show that
the equation you derived in part a) determines a unique geodesic curve
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passing through (a, b) in the given direction, but does not determine the
parametrization of the curve.

c) Show that there exists a solution to the equation in part a) in the form

x(t) = R cos t+ x0

y(t) = R sin t.

Find a relation between x0 and R, and from it deduce that the geodesics
are circular arcs that cut the bounding unit circle (which plays the role
of the line at infinity in the Lobachevski plane) at right angles.

Exercise 1.8: The Lagrangian for a particle of charge q is

L[x, ẋ] =
1

2
mẋ2 − qφ(x) + qẋ ·A(x).

Show that Lagrange’s equation leads to

mẍ = q(E + ẋ×B),

where

E = −∇φ− ∂A

∂t
, B = curlA.

Exercise 1.9: Consider the action functional

S[ω,p, r] =

∫ (
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3 + p · (ṙ + ω × r)

}
dt,

where r and p are time-dependent three-vectors, as is ω = (ω1, ω2, ω3), Apply
the action principle to obtain the equations of motion for r,p,ω and show
that they lead to Euler’s equations

I1ω̇1 − (I2 − I3)ω2ω3 = 0,

I2ω̇2 − (I3 − I1)ω3ω1 = 0,

I3ω̇3 − (I1 − I2)ω1ω2 = 0.

governing the angular velocity of a freely-rotating rigid body.

Problem 1.10: Piano String . A elastic piano string can vibrate both trans-
versely and longitudinally, and the two vibrations influence one another. A
Lagrangian that takes into account the lowest-order effect of stretching on the
local string tension, and can therefore model this coupled motion, is

L[ξ, η] =

∫
dx





1

2
ρ0

[(
∂ξ

∂t

)2

+

(
∂η

∂t

)2
]
− λ

2

[
τ0
λ

+
∂ξ

∂x
+

1

2

(
∂η

∂x

)2
]2


 .
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η

ξ

x

y

Figure 1.17: Vibrating piano string.

Here ξ(x, t) is the longitudinal displacement and η(x, t) the transverse dis-
placement of the string. Thus, the point that in the undisturbed string had
co-ordinates [x, 0] is moved to the point with co-ordinates [x+ ξ(x, t), η(x, t)].
The parameter τ0 represents the tension in the undisturbed string, λ is the
product of Young’s modulus and the cross-sectional area of the string, and ρ0

is the mass per unit length.

a) Use the action principle to derive the two coupled equations of motion,

one involving
∂2ξ

∂t2
and one involving

∂2η

∂t2
.

b) Show that when we linearize these two equations of motion, the longi-
tudinal and transverse motions decouple. Find expressions for the lon-
gitudinal (cL) and transverse (cT ) wave velocities in terms of τ0, ρ0 and
λ.

c) Assume that a given transverse pulse η(x, t) = η0(x − cT t) propagates
along the string. Show that this induces a concurrent longitudinal pulse
of the form ξ(x − cT t). Show further that the longitudinal Newtonian
momentum density in this concurrent pulse is given by

ρo
∂ξ

∂t
=

1

2

c2L
c2L − c2T

T 0
1

where

T 0
1 ≡ −ρ0

∂η

∂x

∂η

∂t

is the associated pseudo-momentum density.

The forces that created the transverse pulse will also have created other lon-
gitudinal waves that travel at cL. Consequently the Newtonian x-momentum
moving at cT is not the only x-momentum on the string, and the total “true”
longitudinal momentum density is not simply proportional to the pseudo-
momentum density.
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Exercise 1.11: Obtain the canonical energy-momentum tensor T νµ for the
barotropic fluid described by (1.119). Show that its conservation leads to both
the momentum conservation equation (1.128), and to the energy conservation
equation

∂tE + ∂i{vi(E + P )},
where the energy density is

E =
1

2
ρ(∇φ)2 + u(ρ).

Interpret the energy flux as being the sum of the convective transport of energy
together with the rate of working by an element of fluid on its neighbours.

Problem 1.12: Consider the action functional3

S[v, ρ, φ, β, γ] =

∫
d4x

{
−1

2
ρv2 − φ

(
∂ρ

∂t
+ div (ρv)

)
+ ρβ

(
∂γ

∂t
+ (v · ∇)γ

)
+ u(ρ)

}
,

which is a generalization of (1.177) to include two new scalar fields β and γ.
Show that varying v leads to

v = ∇φ+ β∇γ.

This is the Clebsch representation of the velocity field. It allows for flows with
non-zero vorticity

ω ≡ curlv = ∇β ×∇γ.
Show that the equations that arise from varying the remaining fields ρ, φ, β,
γ, together imply the mass conservation equation

∂ρ

∂t
+ div (ρv) = 0,

and Bernoulli’s equation in the form

∂v

∂t
+ ω × v = −∇

(
1

2
v2 + h

)
.

(Recall that h = du/dρ.) Show that this form of Bernoulli’s equation is
equivalent to Euler’s equation

∂v

∂t
+ (v · ∇)v = −∇h.

Consequently S provides an action principle for a general inviscid barotropic
flow.

3H. Bateman, Proc. Roy. Soc. Lond. A 125 (1929) 598-618; C. C. Lin, Liquid Helium
in Proc. Int. Sch. Phys. “Enrico Fermi”, Course XXI (Academic Press 1965).
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Exercise 1.13: Drums and Membranes. The shape of a distorted drumskin is
described by the function h(x, y), which gives the height to which the point
(x, y) of the flat undistorted drumskin is displaced.

a) Show that the area of the distorted drumskin is equal to

Area[h] =

∫
dx dy

√

1 +

(
∂h

∂x

)2

+

(
∂h

∂y

)2

,

where the integral is taken over the area of the flat drumskin.
b) Show that for small distortions, the area reduces to

A[h] = const.+
1

2

∫
dx dy |∇h|2.

c) Show that if h satisfies the two-dimensional Laplace equation then A is
stationary with respect to variations that vanish at the boundary.

d) Suppose the drumskin has mass ρ0 per unit area, and surface tension T .
Write down the Lagrangian controlling the motion of the drumskin, and
derive the equation of motion that follows from it.

Problem 1.14: The Wulff construction. The surface-area functional of the
previous exercise can be generalized so as to find the equilibrium shape of a
crystal. We describe the crystal surface by giving its height z(x, y) above the
x-y plane, and introduce the direction-dependent surface tension (the surface
free-energy per unit area) α(p, q), where

p =
∂z

∂x
, q =

∂z

∂y
. (?)

We seek to minimize the total surface free energy

F [z] =

∫
dxdy

{
α(p, q)

√
1 + p2 + q2

}
,

subject to the constraint that the volume of the crystal

V [z] =

∫
z dxdy

remains constant.

a) Enforce the volume constraint by introducing a Lagrange multiplier 2λ−1,
and so obtain the Euler-Lagrange equation

∂

∂x

(
∂f

∂p

)
+

∂

∂y

(
∂f

∂q

)
= 2λ−1.
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Here

f(p, q) = α(p.q)
√

1 + p2 + q2.

b) Show in the isotropic case, where α is constant, that

z(x, y) =
√

(αλ)2 − (x− a)2 − (y − b)2 + const.

is a solution of the Euler-Lagrange equation. In this case, therefore, the
equilibrium shape is a sphere.

An obvious way to satisfy the Euler-Lagrange equation in the general anisotropic
case would be to arrange things so that

x = λ
∂f

∂p
, y = λ

∂f

∂q
. (??)

c) Show that (??) is exactly the relationship we would have if z(x, y) and
λf(p, q) were Legendre transforms of each other—i.e. if

λf(p, q) = px+ qy − z(x, y),

where the x and y on the right-hand side are functions of p q obtained
by solving (?). Do this by showing that the inverse relation is

z(x, y) = px+ qy − λf(p, q)

where now the p, q on the right-hand side become functions of x and y,
and are obtained by solving (??).

For real crystals, α(p, q) can have the property of a being a continuous-but-
nowhere-differentiable function, and so the differential calculus used in deriv-
ing the Euler-Lagrange equation is inapplicable. The Legendre transformation,
however, has a geometric interpretation that is more robust than its calculus-
based derivation.

Recall that if we have a two-parameter family of surfaces in R3 given by
F (x, y, z; p, q) = 0, then the equation of the envelope of the surfaces is found
by solving the equations

0 = F =
∂F

∂p
=
∂F

∂q

so as to eliminate the parameters p, q.
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d) Show that the equation

F (x, y, z; p, q) ≡ px+ qy − z − λα(p, q)
√

1 + p2 + q2 = 0

describes a family of planes perpendicular to the unit vectors

n =
(p, q,−1)√
1 + p2 + q2

and at a distance λα(p, q) away from the origin.
e) Show that the equations to be solved for the envelope of this family of

planes are exactly those that determine z(x, y). Deduce that, for smooth
α(p, q), the profile z(x, y) is this envelope.

αn b)a)

Figure 1.18: Two-dimensional Wulff crystal. a) Polar plot of surface tension
α as a function of the normal n to a crystal face, together with a line per-
pendicular to n at distance α from the origin. b) Wulff’s construction of the
corresponding crystal surface as the envelope of the family of perpendicular
lines. In this case, the minimum-energy crystal has curved faces, but sharp
corners. The envelope continues beyond the corners, but these parts are
unphysical.

Wulff conjectured4 that, even for non-smooth α(p, q), the minimum-energy
shape is given by an equivalent geometric construction: erect the planes from
part d) and, for each plane, discard the half-space of R3 that lies on the far side
of the plane from the origin. The convex region consisting of the intersection
of the retained half-spaces is the crystal. When α(p, q) is smooth this “Wulff

4G. Wulff, “Zur frage der geschwindigkeit des wachsturms under auflosung der
kristallflachen,” Zeitschrift für Kristallografie, 34 (1901) 449-530.
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body” is bounded by part of the envelope of the planes. (The parts of the
envelope not bounding the convex body—the “swallowtails” visible in figure
1.18—are unphysical.) When α(p.q) has cusps, these singularities can give
rise to flat facets which are often joined by rounded edges. A proof of Wulff’s
claim had to wait until 43 years until 1944, when it was established by use of
the Brunn-Minkowski inequality.5

5A. Dinghas, “Uber einen geometrischen Satz von Wulff für die Gleichgewichtsform
von Kristallen, Zeitshrift für Kristallografie, 105 (1944) 304-314. For a readable modern
account see: R. Gardner, “The Brunn-Minkowski inequality,” Bulletin Amer. Math. Soc.
39 (2002) 355-405.



Chapter 2

Function Spaces

Many differential equations of physics are relations involving linear differ-
ential operators. These operators, like matrices, are linear maps acting on
vector spaces. The new feature is that the elements of the vector spaces are
functions, and the spaces are infinite dimensional. We can try to survive
in these vast regions by relying on our experience in finite dimensions, but
sometimes this fails, and more sophistication is required.

2.1 Motivation

In the previous chapter we considered two variational problems:
1) Find the stationary points of

F (x) =
1

2
x ·Ax =

1

2
xiAijxj (2.1)

on the surface x · x = 1. This led to the matrix eigenvalue equation

Ax = λx. (2.2)

2) Find the stationary points of

J [y] =

∫ b

a

1

2

{
p(x)(y′)2 + q(x)y2

}
dx, (2.3)

subject to the conditions y(a) = y(b) = 0 and

K[y] =

∫ b

a

y2 dx = 1. (2.4)

55
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This led to the differential equation

−(py′)′ + qy = λy, y(a) = y(b) = 0. (2.5)

There will be a solution that satisfies the boundary conditions only for
a discrete set of values of λ.

The stationary points of both function and functional are therefore deter-
mined by linear eigenvalue problems. The only difference is that the finite
matrix in the first is replaced in the second by a linear differential operator.
The theme of the next few chapters is an exploration of the similarities and
differences between finite matrices and linear differential operators. In this
chapter we will focus on how the functions on which the derivatives act can
be thought of as vectors.

2.1.1 Functions as vectors

Consider F [a, b], the set of all real (or complex) valued functions f(x) on the
interval [a, b]. This is a vector space over the field of the real (or complex)
numbers: Given two functions f1(x) and f2(x), and two numbers λ1 and λ2,
we can form the sum λ1f1(x)+λ2f2(x) and the result is still a function on the
same interval. Examination of the axioms listed in appendix A will show that
F [a, b] possesses all the other attributes of a vector space as well. We may
think of the array of numbers (f(x)) for x ∈ [a, b] as being the components
of the vector. Since there is an infinity of independent components — one
for each point x — the space of functions is infinite dimensional.

The set of all functions is usually too large for us. We will restrict our-
selves to subspaces of functions with nice properties, such as being continuous
or differentiable. There is some fairly standard notation for these spaces: The
space of Cn functions (those which have n continuous derivatives) is called
Cn[a, b]. For smooth functions (those with derivatives of all orders) we write
C∞[a, b]. For the space of analytic functions (those whose Taylor expansion
actually converges to the function) we write Cω[a, b]. For C∞ functions de-
fined on the whole real line we write C∞(R). For the subset of functions
with compact support (those that vanish outside some finite interval) we
write C∞

0 (R). There are no non-zero analytic functions with compact sup-
port: Cω

0 (R) = {0}.
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2.2 Norms and inner products

We are often interested in “how large” a function is. This leads to the idea of
normed function spaces. There are many measures of function size. Suppose
R(t) is the number of inches per hour of rainfall. If your are a farmer you
are probably most concerned with the total amount of rain that falls. A big
rain has big

∫
|R(t)| dt. If you are the Urbana city engineer worrying about

the capacity of the sewer system to cope with a downpour, you are primarily
concerned with the maximum value of R(t). For you a big rain has a big
“sup |R(t)|.”1

2.2.1 Norms and convergence

We can seldom write down an exact solution function to a real-world problem.
We are usually forced to use numerical methods, or to expand as a power
series in some small parameter. The result is a sequence of approximate
solutions fn(x), which we hope will converge to the desired exact solution
f(x) as we make the numerical grid smaller, or take more terms in the power
series.

Because there is more than one way to measure of the “size” of a function,
the convergence of a sequence of functions fn to a limit function f is not as
simple a concept as the convergence of a sequence of numbers xn to a limit x.
Convergence means that the distance between the fn and the limit function
f gets smaller and smaller as n increases, so each different measure of this
distance provides a new notion of what it means to converge. We are not go-
ing to make much use of formal “ε, δ” analysis, but you must realize that this
distinction between different forms of convergence is not merely academic:
real-world engineers must be precise about the kind of errors they are pre-
pared to tolerate, or else a bridge they design might collapse. Graduate-level
engineering courses in mathematical methods therefore devote much time to
these issues. While physicists do not normally face the same legal liabilities
as engineers, we should at least have it clear in our own minds what we mean
when we write that fn → f .

1Here “sup,” short for supremum, is synonymous with the “least upper bound” of a
set of numbers, i.e. the smallest number that is exceeded by no number in the set. This
concept is more useful than “maximum” because the supremum need not be an element
of the set. It is an axiom of the real number system that any bounded set of real numbers
has a least upper bound. The “greatest lower bound” is denoted “inf”, for infimum.
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Here are some common forms of convergence:
i) If, for each x in its domain of definition D, the set of numbers fn(x)

converges to f(x), then we say the sequence converges pointwise.
ii) If the maximum separation

sup
x∈D
|fn(x)− f(x)| (2.6)

goes to zero as n → ∞, then we say that fn converges to f uniformly
on D.

iii) If ∫

D
|fn(x)− f(x)| dx (2.7)

goes to zero as n → ∞, then we say that fn converges in the mean to
f on D.

Uniform convergence implies pointwise convergence, but not vice versa. If
D is a finite interval, then uniform convergence implies convergence in the
mean, but convergence in the mean implies neither uniform nor pointwise
convergence.
Example: Consider the sequence fn = xn (n = 1, 2, . . .) and D = [0, 1).
Here, the round and square bracket notation means that the point x = 0 is
included in the interval, but the point 1 is excluded.

x

x x

x

1

3

2

1

1

Figure 2.1: xn → 0 on [0, 1), but not uniformly.

As n becomes large we have xn → 0 pointwise in D, but the convergence is
not uniform because

sup
x∈D
|xn − 0| = 1 (2.8)

for all n.
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Example: Let fn = xn with D = [0, 1]. Now the the two square brackets
mean that both x = 0 and x = 1 are to be included in the interval. In this
case we have neither uniform nor pointwise convergence of the xn to zero,
but xn → 0 in the mean.

We can describe uniform convergence by means of a norm — a general-
ization of the usual measure of the length of a vector. A norm, denoted by
‖f‖, of a vector f (a function, in our case) is a real number that obeys

i) positivity: ‖f‖ ≥ 0, and ‖f‖ = 0⇔ f = 0,
ii) the triangle inequality : ‖f + g‖ ≤ ‖f‖+ ‖g‖,
iii) linear homogeneity: ‖λf‖ = |λ|‖f‖.

One example is the “sup” norm, which is defined by

‖f‖∞ = sup
x∈D
|f(x)|. (2.9)

This number is guaranteed to be finite if f is continuous and D is compact.
In terms of the sup norm, uniform convergence is the statement that

lim
n→∞

‖fn − f‖∞ = 0. (2.10)

2.2.2 Norms from integrals

The space Lp[a, b], for any 1 ≤ p <∞, is defined to be our F [a, b] equipped
with

‖f‖p =

(∫ b

a

|f(x)|p dx
)1/p

, (2.11)

as the measure of length, and with a restriction to functions for which ‖f‖p
is finite.

We say that fn → f in Lp if the Lp distance ‖f − fn‖p tends to zero. We
have already seen the L1 measure of distance in the definition of convergence
in the mean. As in that case, convergence in Lp says nothing about pointwise
convergence.

We would like to regard ‖f‖p as a norm. It is possible, however, for a
function to have ‖f‖p = 0 without f being identically zero — a function
that vanishes at all but a finite set of points, for example. This pathology
violates number i) in our list of requirements for something to be called a
norm, but we circumvent the problem by simply declaring such functions to
be zero. This means that elements of the Lp spaces are not really functions,
but only equivalence classes of functions — two functions being regarded as
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the same is they differ by a function of zero length. Clearly these spaces are
not for use when anything significant depends on the value of the function
at any precise point. They are useful in physics, however, because we can
never measure a quantity at an exact position in space or time. We usually
measure some sort of local average.

The Lp norms satisfy the triangle inequality for all 1 ≤ p ≤ ∞, although
this is not exactly trivial to prove.

An important property for any space to have is that of being complete.
Roughly speaking, a space is complete if when some sequence of elements of
the space look as if they are converging, then they are indeed converging and
their limit is an element of the space. To make this concept precise, we need
to say what we mean by the phrase “look as if they are converging.” This
we do by introducing the idea of a Cauchy sequence.
Definition: A sequence fn in a normed vector space is Cauchy if for any ε > 0
we can find an N such that n,m > N implies that ‖fm − fn‖ < ε.
This definition can be loosely paraphrased to say that the elements of a
Cauchy sequence get arbitrarily close to each other as n→∞.

A normed vector space is complete with respect to its norm if every
Cauchy sequence actually converges to some element in the space. Consider.
for example, the normed vector space Q of rational numbers with distance
measured in the usual way as ‖q1 − q2‖ ≡ |q1 − q2|. The sequence

q0 = 1.0,

q1 = 1.4,

q2 = 1.41,

q3 = 1.414,
...

consisting of successive decimal approximations to
√

2, obeys

|qn − qm| <
1

10min(n,m)
(2.12)

and so is Cauchy. Pythagoras famously showed that
√

2 is irrational, however,
and so this sequence of rational numbers has no limit in Q. Thus Q is not
complete. The space R of real numbers is constructed by filling in the gaps
between the rationals, and so completing Q. A real number such as

√
2

is defined as a Cauchy sequence of rational numbers (by giving a rule, for
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example, that determines its infinite decimal expansion), with two rational
sequences qn and q′n defining the same real number if qn − q′n converges to
zero.

A complete normed vector space is called a Banach space. If we interpret
the norms as Lebesgue integrals2 then the Lp[a, b] are complete, and therefore
Banach spaces. The theory of Lebesgue integration is rather complicated,
however, and is not really necessary. One way of avoiding it is explained in
exercise 2.2.

Exercise 2.1: Show that any convergent sequence is Cauchy.

2.2.3 Hilbert space

The Banach space L2[a, b] is special in that it is also a Hilbert space. This
means that its norm is derived from an inner product. If we define the inner
product

〈f, g〉 =

∫ b

a

f ∗g dx (2.13)

then the L2[a, b] norm can be written

‖f‖2 =
√
〈f, f〉. (2.14)

When we omit the subscript on a norm, we mean it to be this one. You
are probably familiar with this Hilbert space from your quantum mechanics
classes.

Being positive definite, the inner product satisfies the Cauchy-Schwarz-
Bunyakovsky inequality

|〈f, g〉| ≤ ‖f‖‖g‖. (2.15)

That this is so can be seen by observing that

〈λf + µg, λf + µg〉 = (λ∗, µ∗ )

(
‖f‖2 〈f, g〉
〈f, g〉∗ ‖g‖2

)(
λ
µ

)
, (2.16)

must be non-negative for any choice of λ and µ. We therefore select λ = ‖g‖,
µ = −〈f, g〉∗‖g‖−1, in which case the non-negativity of (2.16) becomes the
statement that

‖f‖2‖g‖2 − |〈f, g〉|2 ≥ 0. (2.17)

2The “L” in Lp honours Henri Lebesgue. Banach spaces are named after Stefan Banach,
who was one of the founders of functional analysis, a subject largely developed by him
and other habitués of the Scottish Café in Lvóv, Poland.
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From Cauchy-Schwarz-Bunyakovsky we can establish the triangle inequal-
ity:

‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2Re〈f, g〉
≤ ‖f‖2 + ‖g‖2 + 2|〈f, g〉|,
≤ ‖f‖2 + ‖g‖2 + 2‖f‖‖g‖,
= (‖f‖+ ‖g‖)2, (2.18)

so
‖f + g‖ ≤ ‖f‖+ ‖g‖. (2.19)

A second important consequence of Cauchy-Schwarz-Bunyakovsky is that
if fn → f in the sense that ‖fn − f‖ → 0, then

|〈fn, g〉 − 〈f, g〉| = |〈(fn − f), g〉|
≤ ‖fn − f‖ ‖g‖ (2.20)

tends to zero, and so
〈fn, g〉 → 〈f, g〉. (2.21)

This means that the inner product 〈f, g〉 is a continuous functional of f and
g. Take care to note that this continuity hinges on ‖g‖ being finite. It is for
this reason that we do not permit ‖g‖ = ∞ functions to be elements of our
Hilbert space.

Orthonormal sets

Once we are in possession of an inner product, we can introduce the notion
of an orthonormal set . A set of functions {un} is orthonormal if

〈un, um〉 = δnm. (2.22)

For example,

2

∫ 1

0

sin(nπx) sin(mπx) dx = δnm, n,m = 1, 2, . . . (2.23)

so the set of functions un =
√

2 sinnπx is orthonormal on [0, 1]. This set of
functions is also complete — in a different sense, however, from our earlier
use of this word. A orthonormal set of functions is said to be complete if any
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function f for which ‖f‖2 is finite, and hence f an element of the Hilbert
space, has a convergent expansion

f(x) =
∞∑

n=0

anun(x).

If we assume that such an expansion exists, and that we can freely interchange
the order of the sum and integral, we can multiply both sides of this expansion
by u∗m(x), integrate over x, and use the orthonormality of the un’s to read
off the expansion coefficients as an = 〈un, f〉. When

‖f‖2 =

∫ 1

0

|f(x)|2 dx (2.24)

and un =
√

2 sin(nπx), the result is the half-range sine Fourier series.

Example: Expanding unity. Suppose f(x) = 1. Since
∫ 1

0
|f |2dx = 1 is

finite, the function f(x) = 1 can be represented as a convergent sum of the
un =

√
2 sin(nπx).

The inner product of f with the un’s is

〈un, f〉 =

∫ 1

0

√
2 sin(nπx) dx =

{
0, n even,

2
√

2
nπ
, n odd.

Thus,

1 =
∞∑

n=0

4

(2n+ 1)π
sin
(
(2n+ 1)πx

)
, in L2[0, 1]. (2.25)

It is important to understand that the sum converges to the left-hand side
in the closed interval [0, 1] only in the L2 sense. The series does not converge
pointwise to unity at x = 0 or x = 1 — every term is zero at these points.
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Figure 2.2: The sum of the first 31 terms in the sine expansion of f(x) = 1.

Figure 2.2 shows the sum of the series up to and including the term with
n = 30. The L2[0, 1] measure of the distance between f(x) = 1 and this sum
is ∫ 1

0

∣∣∣∣∣1−
30∑

n=0

4

(2n+ 1)π
sin
(
(2n+ 1)πx

)∣∣∣∣∣

2

dx = 0.00654. (2.26)

We can make this number as small as we desire by taking sufficiently many
terms.

It is perhaps surprising that a set of functions that vanish at the end-
points of the interval can be used to expand a function that does not vanish
at the ends. This exposes an important technical point: Any finite sum of
continuous functions vanishing at the endpoints is also a continuous function
vanishing at the endpoints. It is therefore tempting to talk about the “sub-
space” of such functions. This set is indeed a vector space, and a subset of
the Hilbert space, but it is not itself a Hilbert space. As the example shows,
a Cauchy sequence of continuous functions vanishing at the endpoints of an
interval can converge to a continuous function that does not vanish there.
The “subspace” is therefore not complete in our original meaning of the term.
The set of continuous functions vanishing at the endpoints fits into the whole
Hilbert space much as the rational numbers fit into the real numbers: A fi-
nite sum of rationals is a rational number, but an infinite sum of rationals
is not in general a rational number and we can obtain any real number as
the limit of a sequence of rational numbers. The rationals Q are therefore
a dense subset of the reals, and, as explained earlier, the reals are obtained
by completing the set of rationals by adding to this set its limit points. In
the same sense, the set of continuous functions vanishing at the endpoints is
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a dense subset of the whole Hilbert space and the whole Hilbert space is its
completion.

Exercise 2.2: In this technical exercise we will explain in more detail how
we “complete” a Hilbert space. The idea is to mirror the construction to
the real numbers and define the elements of the Hilbert space to be Cauchy
sequences of continuous functions. To specify a general element of L2[a, b]
we must therefore exhibit a Cauchy sequence fn ∈ C[a, b]. The choice is not

unique: two Cauchy sequences f
(1)
n (x) and f

(2)
n (x) will specify the the same

element if

lim
n→∞

‖f (1)
n − f (2)

n ‖ = 0.

Such sequences are said to be equivalent . For convenience, we will write
“limn→∞ fn = f” but bear in mind that, in this exercise, this means that
the sequence fn defines the symbol f , and not that f is the limit of the se-
quence, as this limit need have no prior existence. We have deliberately written
“f”, and not “f(x)”, for the “limit function” to warn us that f is assigned no
unique numerical value at any x. A continuous function f(x) can still be con-
sidered to be an element of L2[a, b]—take a sequence in which every fn(x) is
equal to f(x)—but an equivalent sequence of fn(x) can alter the limiting f(x)
on a set of measure zero without changing the resulting element f ∈ L2[a, b].

i) If fn and gn are Cauchy sequences defining f , g, respectively, it is natural
to try to define the inner product 〈f, g〉 by setting

〈f, g〉 ≡ lim
n→∞

〈fn, gn〉.

Use the Cauchy-Schwarz-Bunyakovsky inequality to show that the num-
bers Fn = 〈fn, gn〉 form a Cauchy sequence in C. Since C is complete,
deduce that this limit exists. Next show that the limit is unaltered if
either fn or gn is replaced by an equivalent sequence. Conclude that our
tentative inner product is well defined.

ii) The next, and harder, task is to show that the “completed” space is
indeed complete. The problem is to show that given a Cauchy sequence
fk ∈ L2[a, b], where the fk are not necessarily in C[a, b], has a limit
in L2[a, b]. Begin by taking Cauchy sequences fki ∈ C[a, b] such that
limi→∞ fki = fk. Use the triangle inequality to show that we can select
a subsequence fk,i(k) that is Cauchy and so defines the desired limit.

Later we will show that the elements of L2[a, b] can be given a concrete meaning
as distributions.
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Best approximation

Let un(x) be an orthonormal set of functions. The sum of the first N terms of
the Fourier expansion of f(x) in the un, is the closest— measuring distance
with the L2 norm — that one can get to f whilst remaining in the space
spanned by u1, u2, . . . , uN .

To see this, consider the square of the error-distance:

∆
def
= ‖f −

N∑

1

anun‖2 = 〈f −
N∑

m=1

amum, f −
N∑

n=1

anun〉

= ‖f‖2 −
N∑

n=1

an〈f, un〉 −
N∑

m=1

a∗m〈um, f〉+
N∑

n,m=1

a∗man〈um, un〉

= ‖f‖2 −
N∑

n=1

an〈f, un〉 −
N∑

m=1

a∗m〈um, f〉+
N∑

n=1

|an|2, (2.27)

In the last line we have used the orthonormality of the un. We can complete
the squares, and rewrite ∆ as

∆ = ‖f‖2 −
N∑

n=1

|〈un, f〉|2 +
N∑

n=1

|an − 〈un, f〉|2. (2.28)

We seek to minimize ∆ by a suitable choice of coefficients an. The smallest
we can make it is

∆min = ‖f‖2 −
N∑

n=1

|〈un, f〉|2, (2.29)

and we attain this bound by setting each of the |an − 〈un, f〉| equal to zero.
That is, by taking

an = 〈un, f〉. (2.30)

Thus the Fourier coefficients 〈un, f〉 are the optimal choice for the an.
Suppose we have some non-orthogonal collection of functions gn, n =

1, . . .N , and we have found the best approximation
∑N

n=1 angn(x) to f(x).
Now suppose we are given a gN+1 to add to our collection. We may then seek
an improved approximation

∑N+1
n=1 a

′
ngn(x) by including this new function —

but finding this better fit will generally involve tweaking all the an, not just
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trying different values of aN+1. The great advantage of approximating by
orthogonal functions is that, given another member of an orthonormal family,
we can improve the precision of the fit by adjusting only the coefficient of the
new term. We do not have to perturb the previously obtained coefficients.

Parseval’s theorem

The “best approximation” result from the previous section allows us to give
an alternative definition of a “complete orthonormal set,” and to obtain the
formula an = 〈un, f〉 for the expansion coefficients without having to assume
that we can integrate the infinite series

∑
anun term-by-term. Recall that

we said that a set of points S is a dense subset of a space T if any given
point x ∈ T is the limit of a sequence of points in S, i.e. there are elements
of S lying arbitrarily close to x. For example, the set of rational numbers Q
is a dense subset of R. Using this language, we say that a set of orthonormal
functions {un(x)} is complete if the set of all finite linear combinations of
the un is a dense subset of the entire Hilbert space. This guarantees that, by
taking N sufficently large, our best approximation will approach arbitrarily
close to our target function f(x). Since the best approximation containing
all the un up to uN is the N -th partial sum of the Fourier series, this shows
that the Fourier series actually converges to f .

We have therefore proved that if we are given un(x), n = 1, 2, . . . , a
complete orthonormal set of functions on [a, b], then any function for which
‖f‖2 is finite can be expanded as a convergent Fourier series

f(x) =
∞∑

n=1

anun(x), (2.31)

where

an = 〈un, f〉 =

∫ b

a

u∗n(x)f(x) dx. (2.32)

The convergence is guaranteed only in the L2 sense that

lim
N→∞

∫ b

a

∣∣∣∣∣f(x)−
N∑

n=1

anun(x)

∣∣∣∣∣

2

dx = 0. (2.33)

Equivalently

∆N = ‖f −
N∑

n=1

anun‖2 → 0 (2.34)
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as N →∞. Now, we showed in the previous section that

∆N = ‖f‖2 −
N∑

n=1

|〈un, f〉|2

= ‖f‖2 −
N∑

n=1

|an|2, (2.35)

and so the L2 convergence is equivalent to the statement that

‖f‖2 =

∞∑

n=1

|an|2. (2.36)

This last result is called Parseval’s theorem.
Example: In the expansion (2.25), we have ‖f 2‖ = 1 and

|an|2 =

{
8/(n2π2), n odd,
0, n even.

(2.37)

Parseval therefore tells us tells us that

∞∑

n=0

1

(2n+ 1)2
= 1 +

1

32
+

1

52
+ · · · = π2

8
. (2.38)

Example: The functions un(x) = 1√
2π
einx, n ∈ Z form a complete orthonor-

mal set on the interval [−π, π]. Let f(x) = 1√
2π
eiζx. Then its Fourier expan-

sion is
1√
2π
eiζx =

∞∑

n=−∞
cn

1√
2π
einx, −π < x < π, (2.39)

where

cn =
1

2π

∫ π

−π
eiζxe−inx dx =

sin(π(ζ − n))

π(ζ − n)
. (2.40)

We also have that

‖f‖2 =

∫ π

−π

1

2π
dx = 1. (2.41)

Now Parseval tells us that

‖f‖2 =

∞∑

n=−∞

sin2(π(ζ − n))

π2(ζ − n)2
, (2.42)
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the left hand side being unity.
Finally, as sin2(π(ζ − n)) = sin2(πζ), we have

cosec2(πζ) ≡ 1

sin2(πζ)
=

∞∑

n=−∞

1

π2(ζ − n)2
. (2.43)

The end result is a quite non-trivial expansion for the square of the cosecant.

2.2.4 Orthogonal polynomials

A useful class of orthonormal functions are the sets of orthogonal polynomials
associated with an interval [a, b] and a positive weight function w(x) such

that
∫ b
a
w(x) dx is finite. We introduce the Hilbert space L2

w[a, b] with the
real inner product

〈u, v〉w =

∫ b

a

w(x)u(x)v(x) dx, (2.44)

and apply the Gram-Schmidt procedure to the monomial powers 1, x, x2, x3, . . .
so as to produce an orthonomal set. We begin with

P0(x) ≡ 1/‖1‖w, (2.45)

where ‖1‖w =
√∫ b

a
w(x) dx, and define recursively

Pn+1(x) =
xPn(x)−

∑n
0 Pi(x)〈Pi, xPn〉w

‖xPn −
∑n

0 Pi〈Pi, xPn〉‖w
. (2.46)

Clearly Pn(x) is an n-th order polynomial, and by construction

〈Pn, Pm〉w = δnm. (2.47)

All such sets of polynomials obey a three-term recurrence relation

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x). (2.48)

That there are only three terms, and that the coefficients of Pn+1 and Pn−1

are related, is due to the identity

〈Pn, xPm〉w = 〈xPn, Pm〉w. (2.49)
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This means that the matrix (in the Pn basis) representing the operation of
multiplication by x is symmetric. Since multiplication by x takes us from
Pn only to Pn+1, the matrix has just one non-zero entry above the main
diagonal, and hence, by symmetry, only one below.

The completeness of a family of polynomials orthogonal on a finite interval
is guaranteed by the Weierstrass approximation theorem which asserts that
for any continuous real function f(x) on [a, b], and for any ε > 0, there exists
a polynomial p(x) such that |f(x)− p(x)| < ε for all x ∈ [a, b]. This means
that polynomials are dense in the space of continuous functions equipped
with the ‖ . . . ‖∞ norm. Because |f(x)− p(x)| < ε implies that

∫ b

a

|f(x)− p(x)|2w(x) dx ≤ ε2

∫ b

a

w(x) dx, (2.50)

they are also a dense subset of the continuous functions in the sense of L2
w[a, b]

convergence. Because the Hilbert space L2
w[a, b] is defined to be the comple-

tion of the space of continuous functions, the continuous functions are auto-
matically dense in L2

w[a, b]. Now the triangle inequality tells us that a dense
subset of a dense set is dense in the larger set, so the polynomials are dense in
L2
w[a, b] itself. The normalized orthogonal polynomials therefore constitute a

complete orthonormal set.
For later use, we here summarize the properties of the families of polyno-

mials named after Legendre, Hermite and Tchebychef.

Legendre polynomials

Legendre polynomials have a = −1, b = 1 and w = 1. The standard Legendre
polynomials are not normalized by the scalar product, but instead by setting
Pn(1) = 1. They are given by Rodriguez’ formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (2.51)

The first few are

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1),
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P3(x) =
1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3).

Their inner product is

∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δnm. (2.52)

The three-term recurrence relation is

(2n+ 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x). (2.53)

The Pn form a complete set for expanding functions on [−1, 1].

Hermite polynomials

The Hermite polynomials have a = −∞, b = +∞ and w(x) = e−x
2

, and are
defined by the generating function

e2tx−t
2

=

∞∑

n=0

1

n!
Hn(x)t

n. (2.54)

If we write
e2tx−t

2

= ex
2−(x−t)2 , (2.55)

we may use Taylor’s theorem to find

Hn(x) =
dn

dtn
ex

2−(x−t)2
∣∣∣∣
t=0

= (−1)nex
2 dn

dxn
e−x

2

, (2.56)

which is a a useful alternative definition. The first few Hermite polynomials
are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12,
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The normalization is such that
∫ ∞

−∞
Hn(x)Hm(x)e−x

2

dx = 2nn!
√
πδnm, (2.57)

as may be proved by using the generating function. The three-term recur-
rence relation is

2xHn(x) = Hn+1(x) + 2nHn−1(x). (2.58)

Exercise 2.3: Evaluate the integral

F (s, t) =

∫ ∞

−∞
e−x

2

e2sx−s
2

e2tx−t
2

dx

and expand the result as a double power series in s and t. By examining the
coefficient of sntm, show that

∫ ∞

−∞
Hn(x)Hm(x)e−x

2

dx = 2nn!
√
πδnm.

Problem 2.4: Let

ϕn(x) =
1√

2nn!
√
π
Hn(x)e

−x2/2

be the normalized Hermite functions. They form a complete orthonormal set
in L2(R). Show that

∞∑

n=0

tnϕn(x)ϕn(y) =
1√

π(1− t2)
exp

{
4xyt− (x2 + y2)(1 + t2)

2(1− t2)

}
, 0 ≤ t < 1.

This is Mehler’s formula. (Hint: Expand of the right hand side as
∑∞

n=0 an(x, t)ϕn(y).

To find an(x, t), multiply by e2sy−s
2−y2/2 and integrate over y.)

Exercise 2.5: Let ϕn(x) be the same functions as in the preceding problem.
Define a Fourier-transform operator F : L2(R)→ L2(R) by

F (f) =
1√
2π

∫ ∞

−∞
eixsf(s) ds.

With this normalization of the Fourier transform, F 4 is the identity map. The
possible eigenvalues of F are therefore ±1, ±i. Starting from (2.56), show that
the ϕn(x) are eigenfunctions of F , and that

F (ϕn) = inϕn(x).
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Tchebychef polynomials

Tchebychef polynomials are defined by taking a = −1, b = +1 and w(x) =
(1− x2)±1/2. The Tchebychef polynomials of the first kind are

Tn(x) = cos(n cos−1 x). (2.59)

The first few are

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x.

The Tchebychef polynomials of the second kind are

Un−1(x) =
sin(n cos−1 x)

sin(cos−1 x)
=

1

n
T ′
n(x). (2.60)

and the first few are

U−1(x) = 0,

U0(x) = 1,

U1(x) = 2x,

U2(x) = 4x2 − 1,

U3(x) = 8x3 − 4x.

Tn and Un obey the same recurrence relation

2xTn = Tn+1 + Tn−1,

2xUn = Un+1 + Un−1,

which are disguised forms of elementary trigonometric identities. The orthog-
onality is also a disguised form of the orthogonality of the functions cos nθ
and sinnθ. After setting x = cos θ we have

∫ π

0

cosnθ cosmθ dθ =

∫ 1

−1

1√
1− x2

Tn(x)Tm(x) dx = hnδnm, n,m,≥ 0,

(2.61)
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where h0 = π, hn = π/2, n > 0, and

∫ π

0

sinnθ sinmθ dθ =

∫ 1

−1

√
1− x2Un−1(x)Um−1(x) dx =

π

2
δnm, n,m > 0.

(2.62)
The set {Tn(x)} is therefore orthogonal and complete in L2

(1−x2)−1/2 [−1, 1],

and the set {Un(x)} is orthogonal and complete in L2
(1−x2)1/2 [−1, 1]. Any

function continuous on the closed interval [−1, 1] lies in both of these spaces,
and can therefore be expanded in terms of either set.

2.3 Linear operators and distributions

Our theme is the analogy between linear differential operators and matrices.
It is therefore useful to understand how we can think of a differential operator
as a continuously indexed “matrix.”

2.3.1 Linear operators

The action of a matrix on a vector y = Ax is given in components by

yi = Aijxj. (2.63)

The function-space analogue of this, g = Af , is naturally to be thought of as

g(x) =

∫ b

a

A(x, y)f(y) dy, (2.64)

where the summation over adjacent indices has been replaced by an inte-
gration over the dummy variable y. If A(x, y) is an ordinary function then
A(x, y) is called an integral kernel . We will study such linear operators in
the chapter on integral equations.

The identity operation is

f(x) =

∫ b

a

δ(x− y)f(y) dy, (2.65)

and so the Dirac delta function, which is not an ordinary function, plays the
role of the identity matrix. Once we admit distributions such as δ(x), we can
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a a
x x

(x−a)δ (x−a)δ

Figure 2.3: Smooth approximations to δ(x− a) and δ ′(x− a).

think of differential operators as continuously indexed matrices by using the
distribution

δ′(x) = “
d

dx
δ(x)”. (2.66)

The quotes are to warn us that we are not really taking the derivative of the
highly singular delta function. The symbol δ′(x) is properly defined by its
behaviour in an integral

∫ b

a

δ′(x− y)f(y) dy =

∫ b

a

d

dx
δ(x− y)f(y) dy

= −
∫ b

a

f(y)
d

dy
δ(x− y) dy

=

∫ b

a

f ′(y)δ(x− y) dy, (Integration by parts)

= f ′(x).

The manipulations here are purely formal, and serve only to motivate the
defining property

∫ b

a

δ′(x− y)f(y) dy = f ′(x). (2.67)

It is, however, sometimes useful to think of a smooth approximation to
δ′(x− a) being the genuine derivative of a smooth approximation to δ(x−a),
as illustrated in figure 2.3.
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We can now define higher “derivatives” of δ(x) by
∫ b

a

δ(n)(x)f(x)dx = (−1)nf (n)(0), (2.68)

and use them to represent any linear differential operator as a formal integral
kernel.
Example: In chapter one we formally evaluated a functional second derivative
and ended up with the distributional kernel (1.186), which we here write as

k(x, y) = − d

dy

(
p(y)

d

dy
δ(y − x)

)
+ q(y)δ(y − x)

= −p(y)δ′′(y − x)− p′(y)δ′(y − x) + q(y)δ(y − x). (2.69)

When k acts on a function u, it gives
∫
k(x, y)u(y) dy =

∫
{−p(y)δ′′(y − x)− p′(y)δ′(y − x) + q(y)δ(y − x)} u(y) dy

=

∫
δ(y − x) {−[p(y)u(y)]′′ + [p′(y)u(y)]′ + q(y)u(y)} dy

=

∫
δ(y − x) {−p(y)u′′(y)− p′(y)u′(y) + q(y)u(y)} dy

= − d

dx

(
p(x)

du

dx

)
+ q(x)u(x). (2.70)

The continuous matrix (1.186) therefore does, as indicated in chapter one,
represent the Sturm-Liouville operator L defined in (1.182).

Exercise 2.6: Consider the distributional kernel

k(x, y) = a2(y)δ
′′(x− y) + a1(y)δ

′(x− y) + a0(y)δ(x − y).

Show that
∫
k(x, y)u(y) dy = (a2(x)u(x))

′′ + (a1(x)u(x))
′ + a0(x)u(x).

Similarly show that

k(x, y) = a2(x)δ
′′(x− y) + a1(x)δ

′(x− y) + a0(x)δ(x − y),

leads to
∫
k(x, y)u(y) dy = a2(x)u

′′(x) + a1(x)u
′(x) + a0(x)u(x).
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Exercise 2.7: The distributional kernel (2.69) was originally obtained as a
functional second derivative

k(x1, x2) =
δ

δy(x1)

(
δJ [y]

δy(x2)

)

= − d

dx2

(
p(x2)

d

dx2
δ(x2 − x1)

)
+ q(x2)δ(x2 − x1).

By analogy with conventional partial derivatives, we would expect that

δ

δy(x1)

(
δJ [y]

δy(x2)

)
=

δ

δy(x2)

(
δJ [y]

δy(x1)

)
,

but x1 and x2 appear asymmetrically in k(x1, x2). Define

kT (x1, x2) = k(x2, x1),

and show that
∫
kT (x1, x2)u(x2) dx2 =

∫
k(x1, x2)u(x2) dx2.

Conclude that, superficial appearance notwithstanding, we do have k(x1, x2) =
k(x2, x1).

The example and exercises show that linear differential operators correspond
to continuously-infinite matrices having entries only infinitesimally close to
their main diagonal.

2.3.2 Distributions and test-functions

It is possible to work most the problems in this book with no deeper under-
standing of what a delta-function is than that presented in section 2.3.1. At
some point however, the more careful reader will wonder about the logical
structure of what we are doing, and will soon discover that too free a use
of δ(x) and its derivatives can lead to paradoxes. How do such creatures fit
into the function-space picture, and what sort of manipulations with them
are valid?

We often think of δ(x) as being a “limit” of a sequence of functions whose
graphs are getting narrower and narrower while their height grows to keep
the area under the curve fixed. An example would be the spike function
δε(x− a) appearing in figure 2.4.
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ε

ε1/

a
x

Figure 2.4: Approximation δε(x− a) to δ(x− a).

The L2 norm of δε,

‖δε‖2 =

∫
|δε(x)|2 dx =

1

ε
, (2.71)

tends to infinity as ε → 0, so δε cannot be tending to any function in L2.
This delta function has infinite “length,” and so is not an element of our
Hilbert space.

The simple spike is not the only way to construct a delta function. In
Fourier theory we meet

δΛ(x) =

∫ Λ

−Λ

eikx
dk

2π
=

1

π

sin Λx

x
, (2.72)

which becomes a delta-function when Λ becomes large. In this case

‖δΛ‖2 =

∫ ∞

−∞

sin2Λx

π2x2
dx = Λ/π. (2.73)

Again the “limit” has infinite length and cannot be accommodated in Hilbert
space. This δΛ(x) is even more pathological than δε. It provides a salutary
counter-example to the often asserted “fact” that δ(x) = 0 for x 6= 0. As
Λ becomes large δΛ(0) diverges to infinity. At any fixed non-zero x, how-
ever, δΛ(x) oscillates between ±1/x as Λ grows. Consequently the limit
limΛ→∞ δΛ(x) exists nowhere. It therefore makes no sense to assign a numer-
ical value to δ(x) at any x.

Given its wild behaviour, is not surprising that mathematicians looked
askance at Dirac’s δ(x). It was only in 1944, long after its effectiveness in



2.3. LINEAR OPERATORS AND DISTRIBUTIONS 79

solving physics and engineering problems had become an embarrassment,
that Laurent Schwartz was able to tame δ(x) by creating his theory of dis-
tributions. Using the language of distributions we can state precisely the
conditions under which a manoeuvre involving singular objects such as δ ′(x)
is legitimate.

Schwartz’ theory is built on a concept from linear algebra. Recall that
the dual space V ∗ of a vector space V is the vector space of linear functions
from the original vector space V to the field over which it is defined. We
consider δ(x) to be an element of the dual space of a vector space T of test
functions. When a test function ϕ(x) is plugged in, the δ-machine returns
the number ϕ(0). This operation is a linear map because the action of δ on
λϕ(x)+µχ(x) is to return λϕ(0)+µχ(0). Test functions are smooth (infinitely
differentiable) functions that tend rapidly to zero at infinity. Exactly what
class of function we chose for T depends on the problem at hand. If we are
going to make extensive use of Fourier transforms, for example, we mght
select the Schwartz space, S(R). This is the space of infinitely differentiable
functions ϕ(x) such that the seminorms3

|ϕ|m,n = sup
x∈R

{
|x|n

∣∣∣∣
dmϕ

dxm

∣∣∣∣
}

(2.74)

are finite for all positive integers m and n. The Schwartz space has the
advantage that if ϕ is in S(R), then so is its Fourier transform. Another
popular space of test functions is D consisting of C∞ functions of compact
support—meaning that each function is identically zero outside some finite
interval. Only if we want to prove theorems is a precise specification of T
essential. For most physics calculations infinite differentiability and a rapid
enough decrease at infinity for us to be able to ignore boundary terms is all
that we need.

The “nice” behaviour of the test functions compensates for the “nasty”
behaviour of δ(x) and its relatives. The objects, such as δ(x), composing the
dual space of T are called generalized functions, or distributions. Actually,
not every linear map T → R is to be included in the dual space because,
for technical reasons, we must require the maps to be continuous. In other
words, if ϕn → ϕ, we want our distributions u to obey u(ϕn)→ u(ϕ). Making
precise what we mean by ϕn → ϕ is part of the task of specifying T . In the

3A seminorm | · · · | has all the properties of a norm except that |ϕ| = 0 does not imply
that ϕ = 0.
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Schwartz space, for example, we declare that ϕn → ϕ if |ϕn−ϕ|n,m → 0, for
all positive m,n. When we restrict a dual space to continuous functionals,
we usually denote it by V ′ rather than V ∗. The space of distributions is
therefore T ′.

When they wish to stress the dual-space aspect of distribution theory,
mathematically-minded authors use the notation

δ(ϕ) = ϕ(0), (2.75)

or
(δ, ϕ) = ϕ(0), (2.76)

in place of the common, but purely formal,

∫
δ(x)ϕ(x) dx = ϕ(0). (2.77)

The expression (δ, ϕ) here represents the pairing of the element ϕ of the
vector space T with the element δ of its dual space T ′. It should not be
thought of as an inner product as the distribution and the test function lie in
different spaces. The “integral” in the common notation is purely symbolic,
of course, but the common notation should not be despised even by those in
quest of rigour. It suggests correct results, such as

∫
δ(ax− b)ϕ(x) dx =

1

|a|ϕ(b/a), (2.78)

which would look quite unmotivated in the dual-space notation.
The distribution δ′(x) is now defined by the pairing

(δ′, ϕ) = −ϕ′(0), (2.79)

where the minus sign comes from imagining an integration by parts that
takes the “derivative” off δ(x) and puts it on to the smooth function ϕ(x):

“

∫
δ′(x)ϕ(x) dx” = −

∫
δ(x)ϕ′(x) dx. (2.80)

Similarly δ(n)(x) is now defined by the pairing

(δ(n), ϕ) = (−1)nϕ(n)(0). (2.81)
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The “nicer” the class of test function we take, the “nastier” the class
of distributions we can handle. For example, the Hilbert space L2 is its
own dual: the Riesz-Fréchet theorem (see exercise 2.10) asserts that any
continuous linear map F : L2 → R can be written as F [f ] = 〈l, f〉 for some
l ∈ L2. The delta-function map is not continuous when considered as a
map from L2 → R however. An arbitrarily small change, f → f + δf , in a
function (small in the L2 sense of ‖δf‖ being small) can produce an arbitrarily
large change in f(0). Thus L2 functions are not “nice” enough for their
dual space to be able accommodate the delta function. Another way of
understanding this is to remember that we regard two L2 functions as being
the same whenever ‖f1 − f2‖ = 0. This distance will be zero even if f1

and f2 differ from one another on a countable set of points. As we have
remarked earlier, this means that elements of L2 are not really functions
at all — they do not have an assigned valued at each point. They are,
instead, only equivalence classes of functions. Since f(0) is undefined, any
attempt to interpret the statement

∫
δ(x)f(x) dx = f(0) for f an arbitrary

element L2 is necessarily doomed to failure. Continuous functions, however,
do have well-defined values at every point. If we take the space of test
of functions T to consist of all continuous functions, but not demand that
they be differentiable, then T ′ will include the delta function, but not its
“derivative” δ′(x), as this requires us to evaluate f ′(0). If we require the test
functions to be once-differentiable, then T ′ will include δ′(x) but not δ′′(x),
and so on.

When we add suitable spaces T and T ′ to our toolkit, we are constructing
what is called a rigged 4 Hilbert space. In such a rigged space we have the
inclusion

T ⊂ L2 ≡ [L2]′ ⊂ T ′. (2.82)

The idea is to take the space T ′ big enough to contain objects such as the
limit of our sequence of “approximate” delta functions δε, which does not
converge to anything in L2.

Ordinary functions can also be regarded as distributions, and this helps
illuminate the different senses in which a sequence un can converge. For
example, we can consider the functions

un = sinnπx, 0 < x < 1, (2.83)

4“Rigged” as in a sailing ship ready for sea, not “rigged” as in a corrupt election.
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as being either elements of L2[0, 1] or as distributions. As distributions we
evaluate them on a smooth function ϕ as

(un, ϕ) =

∫ 1

0

ϕ(x)un(x) dx. (2.84)

Now
lim
n→∞

(un, ϕ) = 0, (2.85)

since the high-frequency Fourier coefficients of any smooth function tend
to zero. We deduce that as a distribution we have limn→∞ un = 0, the
convergence being pointwise on the space of test functions. Considered as
elements of L2[0, 1], however, the un do not tend to zero. Their norm is
‖un‖ = 1/2 and so all the un remain at the same fixed distance from 0.

Exercise 2.8: Here we show that the elements of L2[a, b], which we defined
in exercise 2.2 to be the formal limits of of Cauchy sequences of continuous
functions, may be thought of as distributions.

i) Let ϕ(x) be a test function and fn(x) a Cauchy sequence of continuous
functions defining f ∈ L2. Use the Cauchy-Schwarz-Bunyakovsky in-
equality to show that the sequence of numbers 〈ϕ, fn〉 is Cauchy and so
deduce that limn→∞ 〈ϕ, fn〉 exists.

ii) Let ϕ(x) be a test function and f
(1)
n (x) and f

(2)
n (x) be a pair of equiva-

lent sequences defining the same element f ∈ L2. Use Cauchy-Schwarz-
Bunyakovsky to show that

lim
n→∞

〈ϕ, f (1)
n − f (2)

n 〉 = 0.

Combine this result with that of the preceding exercise to deduce that
we can set

(ϕ, f) ≡ lim
n→∞

〈ϕ∗, fn〉,

and so define f ≡ limn→∞ fn as a distribution.

The interpretation of elements of L2 as distributions is simultaneously simpler
and more physical than the classical interpretation via the Lebesgue integral.

Weak derivatives

By exploiting the infinite differentiability of our test functions, we were able
to make mathematical sense of the “derivative” of the highly singular delta
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function. The same idea of a formal integration by parts can be used to
define the “derivative” for any distribution, and also for ordinary functions
that would not usually be regarded as being differentiable.

We therefore define the weak or distributional derivative v(x) of a distri-
bution u(x) by requiring its evaluation on a test function ϕ ∈ T to be

∫
v(x)ϕ(x) dx

def
= −

∫
u(x)ϕ′(x) dx. (2.86)

In the more formal pairing notation we write

(v, ϕ)
def
= −(u, ϕ′). (2.87)

The right hand side of (2.87) is a continuous linear function of ϕ, and so,
therefore, is the left hand side. Thus the weak derivative u′ ≡ v is a well-
defined distribution for any u.

When u(x) is an ordinary function that is differentiable in the conven-
tional sense, its weak derivative coincides with the usual derivative. When
the function is not conventionally differentiable the weak derivative still ex-
ists, but does not assign a numerical value to the derivative at each point. It
is therefore a distribution and not a function.

The elements of L2 are not quite functions — having no well-defined
value at a point — but are particularly mild-mannered distributions, and
their weak derivatives may themselves be elements of L2. It is in this weak
sense that we will, in later chapters, allow differential operators to act on L2

“functions.”
Example: In the weak sense

d

dx
|x| = sgn(x), (2.88)

d

dx
sgn(x) = 2δ(x). (2.89)

The object |x| is an ordinary function, but sgn(x) has no definite value at
x = 0, whilst δ(x) has no definite value at any x.
Example: As a more subtle illustration, consider the weak derivative of the
function ln |x|. With ϕ(x) a test function, the improper integral

I = −
∫ ∞

−∞
ϕ′(x) ln |x| dx ≡ − lim

ε,ε′→0

(∫ −ε

−∞
+

∫ ∞

ε′

)
ϕ′(x) ln |x| dx (2.90)
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is convergent and defines the pairing (− ln |x|, ϕ′). We wish to integrate by
parts and interpret the result as ([ln |x|]′, ϕ). The logarithm is differentiable
in the conventional sense away from x = 0, and

[ln |x|ϕ(x)]′ =
1

x
ϕ(x) + ln |x|ϕ′(x), x 6= 0. (2.91)

From this we find that

−(ln |x|, ϕ′) = lim
ε,ε′→0

{(∫ −ε

−∞
+

∫ ∞

ε′

)
1

x
ϕ(x) dx+

(
ϕ(ε′) ln |ε′| − ϕ(−ε) ln |ε|

)}
.

(2.92)
So far ε and ε′ are unrelated except in that they are both being sent to zero.
If, however, we choose to make them equal, ε = ε′, then the integrated-out
part becomes (

ϕ(ε)− ϕ(−ε)
)

ln |ε| ∼ 2ϕ′(0)ε ln |ε|, (2.93)

and this tends to zero as ε becomes small. In this case

−([ln |x|], ϕ′) = lim
ε→0

{(∫ −ε

−∞
+

∫ ∞

ε

)
1

x
ϕ(x) dx

}
. (2.94)

By the definition of the weak derivative, the left hand side of (2.94) is the
pairing ([ln |x|]′, ϕ). We conclude that

d

dx
ln |x| = P

(
1

x

)
, (2.95)

where P (1/x), the principal-part distribution, is defined by the right-hand-
side of (2.94). It is evaluated on the test function ϕ(x) by forming

∫
ϕ(x)/x dx,

but with an infinitesimal interval from −ε to +ε, omitted from the range
of integration. It is essential that this omitted interval lie symmetrically
about the dangerous point x = 0. Otherwise the integrated-out part will
not vanish in the ε → 0 limit. The resulting principal-part integral , written
P
∫
ϕ(x)/x dx, is then convergent and P (1/x) is a well-defined distribution

despite the singularity in the integrand. Principal-part integrals are common
in physics. We will next meet them when we study Green functions.

For further reading on distributions and their applications we recommend
M. J. Lighthill Fourier Analysis and Generalised Functions, or F. G. Fried-
lander Introduction to the Theory of Distributions. Both books are published
by Cambridge University Press.
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2.4 Further exercises and problems

The first two exercises lead the reader through a proof of the Riesz-Fréchet
theorem. Although not an essential part of our story, they demonstrate how
“completeness” is used in Hilbert space theory, and provide some practice
with “ε, δ” arguments for those who desire it.

Exercise 2.9: Show that if a norm ‖ ‖ is derived from an inner product, then
it obeys the parallelogram law

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

Let N be a complete linear subspace of a Hilbert space H. Let g /∈ N , and let

inf
f∈N
‖g − f‖ = d.

Show that there exists a sequence fn ∈ N such that limn→∞ ‖fn − g‖ = d.
Use the parallelogram law to show that the sequence fn is Cauchy, and hence
deduce that there is a unique f ∈ N such that ‖g − f‖ = d. From this,
conclude that d > 0. Now show that 〈(g − f), h〉 = 0 for all h ∈ N .

Exercise 2.10: Riesz-Fréchet theorem. Let L[h] be a continuous linear func-
tional on a Hilbert space H. Here continuous means that

‖hn − h‖ → 0⇒ L[hn]→ L[h].

Show that the set N = {f ∈ H : L[f ] = 0} is a complete linear subspace of H.

Suppose now that there is a g ∈ H such that L(g) 6= 0, and let l ∈ H be the
vector “g − f” from the previous problem. Show that

L[h] = 〈αl, h〉, where α = L[g]/〈l, g〉 = L[g]/‖l‖2.

A continuous linear functional can therefore be expressed as an inner product.

Next we have some problems on orthogonal polynomials and three-term re-
currence relations. They provide an excuse for reviewing linear algebra, and
also serve to introduce the theory behind some practical numerical methods.

Exercise 2.11: Let {Pn(x)} be a family of polynomials orthonormal on [a, b]
with respect to a a positive weight function w(x), and with deg [Pn(x)] = n.

Let us also scale w(x) so that
∫ b
a w(x) dx = 1, and P0(x) = 1.
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a) Suppose that the Pn(x) obey the three-term recurrence relation

xPn(x) = bnPn+1(x)+anPn(x)+bn−1Pn−1(x); P−1(x) = 0, P0(x) = 1.

Define
pn(x) = Pn(x)(bn−1bn−2 · · · b0),

and show that

xpn(x) = pn+1(x) + anpn(x) + b2n−1pn−1(x); p−1(x) = 0, p0(x) = 1.

Conclude that the pn(x) are monic — i.e. the coefficient of their leading
power of x is unity.

b) Show also that the functions

qn(x) =

∫ b

a

pn(x)− pn(ξ)
x− ξ w(ξ) dξ

are degree n−1 monic polynomials that obey the same recurrence relation
as the pn(x), but with initial conditions q0(x) = 0, q1(x) ≡

∫ b
a w dx = 1.

Warning: while the qn(x) polynomials defined in part b) turn out to be very
useful, they are not mutually orthogonal with respect to 〈 , 〉w.

Exercise 2.12: Gaussian quadrature. Orthogonal polynomials have application
to numerical integration. Let the polynomials {Pn(x)} be orthonormal on [a, b]
with respect to the positive weight function w(x), and let xν , ν = 1, . . . , N be
the zeros of PN (x). You will show that if we define the weights

wν =

∫ b

a

PN (x)

P ′
N (xν)(x− xν)

w(x) dx

then the approximate integration scheme
∫ b

a
f(x)w(x) dx ≈ w1f(x1) + w2f(x2) + · · ·wNf(xN ),

known as Gauss’ quadrature rule, is exact for f(x) any polynomial of degree
less than or equal to 2N − 1.

a) Let π(x) = (x − ξ1)(x − ξ2) · · · (x − ξN ) be a polynomial of degree N .
Given a function F (x), show that

FL(x)
def
=

N∑

ν=1

F (ξν)
π(x)

π′(ξν)(x− ξν)

is a polynomial of degree N − 1 that coincides with F (x) at x = ξν ,
ν = 1, . . . , N . (This is Lagrange’s interpolation formula.)
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b) Show that if F (x) is polynomial of degree N − 1 or less then FL(x) =
F (x).

c) Let f(x) be a polynomial of degree 2N − 1 or less. Cite the polynomial
division algorithm to show that there exist polynomials Q(x) and R(x),
each of degree N − 1 or less, such that

f(x) = PN (x)Q(x) +R(x).

d) Show that f(xν) = R(xν), and that

∫ b

a
f(x)w(x) dx =

∫ b

a
R(x)w(x) dx.

e) Combine parts a), b) and d) to establish Gauss’ result.
f) Show that if we normalize w(x) so that

∫
w dx = 1 then the weights wν

can be expressed as wν = qN (xν)/p
′
N (xν), where pn(x), qn(x) are the

monic polynomials defined in the preceding problem.

The ultimate large-N exactness of Gaussian quadrature can be expressed as

w(x) = lim
N→∞

{
∑

ν

δ(x− xν)wν
}
.

Of course, a sum of Dirac delta-functions can never become a continuous
function in any ordinary sense. The equality holds only after both sides are
integrated against a smooth test function, i.e., when it is considered as a
statement about distributions.

Exercise 2.13: The completeness of a set of polynomials {Pn(x)}, orthonor-
mal with respect to the positive weight function w(x), is equivalent to the
statement that ∞∑

n=0

Pn(x)Pn(y) =
1

w(x)
δ(x − y).

It is useful to have a formula for the partial sums of this infinite series.

Suppose that the polynomials Pn(x) obey the three-term recurrence relation

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x); P−1(x) = 0, P0(x) = 1.

Use this recurrence relation, together with its initial conditions, to obtain the
Christoffel-Darboux formula

N−1∑

n=0

Pn(x)Pn(y) =
bN−1[PN (x)PN−1(y)− PN−1(x)PN (y)]

x− y .
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Exercise 2.14: Again suppose that the polynomials Pn(x) obey the three-term
recurrence relation

xPn(x) = bnPn+1(x) + anPn(x) + bn−1Pn−1(x); P−1(x) = 0, P0(x) = 1.

Consider the N -by-N tridiagonal matrix eigenvalue problem



aN−1 bN−2 0 0 . . . 0
bN−2 aN−2 bN−3 0 . . . 0

0 bN−3 aN−3 bN−4 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . b2 a2 b1 0
0 . . . 0 b1 a1 b0
0 . . . 0 0 b0 a0







uN−1

uN−2

uN−3
...
u2

u1

u0




= x




uN−1

uN−2

uN−3
...
u2

u1

u0




a) Show that the eigenvalues x are given by the zeros xν , ν = 1, . . . , N
of PN (x), and that the corresponding eigenvectors have components
un = Pn(xν), n = 0, . . . , N − 1.

b) Take the x→ y limit of the Christoffel-Darboux formula from the preced-
ing problem, and use it to show that the orthogonality and completeness
relations for the eigenvectors can be written as

N−1∑

n=0

Pn(xν)Pn(xµ) = w−1
ν δνµ,

N∑

ν=1

wνPn(xν)Pm(xν) = δnm, n.m ≤ N − 1,

where w−1
ν = bN−1P

′
N (xν)PN−1(xν).

c) Use the original Christoffel-Darboux formula to show that, when the
Pn(x) are orthonormal with respect to the positive weight function w(x),
the normalization constants wν of this present problem coincide with the
weights wν occurring in the Gauss quadrature rule. Conclude from this
equality that the Gauss-quadrature weights are positive.

Exercise 2.15: Write the N -by-N tridiagonal matrix eigenvalue problem from
the preceding exercise as Hu = xu, and set dN (x) = det (xI−H). Similarly
define dn(x) to be the determinant of the n-by-n tridiagonal submatrix with x−
an−1, . . . , x−a0 along its principal diagonal. Laplace-develop the determinant
dn(x) about its first row, and hence obtain the recurrence

dn+1(x) = (x− an)dn(x)− b2n−1dn−1(x).
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Conclude that

det (xI−H) = pN (x),

where pn(x) is the monic orthogonal polynomial obeying

xpn(x) = pn+1(x) + anpn(x) + b2n−1pn−1(x); p−1(x) = 0, p0(x) = 1.

Exercise 2.16: Again write the N -by-N tridiagonal matrix eigenvalue problem
from the preceding exercises as Hu = xu.

a) Show that the lowest and rightmost matrix element

〈0|(xI−H)−1|0〉 ≡ (xI−H)−1
00

of the resolvent matrix (xI − H)−1 is given by a continued fraction
GN−1,0(x) where, for example,

G3,z(x) =
1

x− a0 −
b20

x− a1 −
b21

x− a2 −
b22

x− a3 + z

.

b) Use induction on n to show that

Gn,z(x) =
qn(x)z + qn+1(x)

pn(x)z + pn+1(x)
,

where pn(x), qn(x) are the monic polynomial functions of x defined by
the recurrence relations

xpn(x) = pn+1(x) + anpn(x) + b2n−1pn−1(x), p−1(x) = 0, p0(x) = 1,

xqn(x) = qn+1(x) + anqn(x) + b2n−1qn−1(x), q0(x) = 0, q1(x) = 1.

b) Conclude that

〈0|(xI−H)−1|0〉 =
qN (x)

pN (x)
,

has a pole singularity when x approaches an eigenvalue xν . Show that
the residue of the pole (the coefficient of 1/(x − xn)) is equal to the
Gauss-quadrature weight wν for w(x), the weight function (normalized
so that

∫
w dx = 1) from which the coefficients an, bn were derived.
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Continued fractions were introduced by John Wallis in his Arithmetica
Infinitorum (1656), as was the recursion formula for their evaluation. Today,
when combined with the output of the next exercise, they provide the math-
ematical underpinning of the Haydock recursion method in the band theory
of solids. Haydock’s method computes w(x) = limN→∞ {

∑
ν δ(x− xν)wν},

and interprets it as the local density of states that is measured in scanning
tunnelling microscopy.

Exercise 2.17: The Lanczos tridiagonalization algorithm. Let V be an N -
dimensional complex vector space equipped with an inner product 〈 , 〉 and
let H : V → V be a hermitian linear operator. Starting from a unit vector u0,
and taking u−1 = 0, recursively generate the unit vectors un and the numbers
an, bn and cn by

Hun = bnun+1 + anun + cn−1un−1,

where the coefficients

an ≡ 〈un,Hun〉,
cn−1 ≡ 〈un−1,Hun〉,

ensure that un+1 is perpendicular to both un and un−1, and

bn = ‖Hun − anun − cn−1un−1‖,
a positive real number, makes ‖un+1‖ = 1.

a) Use induction on n to show that un+1, although only constructed to be
perpendicular to the previous two vectors, is in fact (and in the absence
of numerical rounding errors) perpendicular to all um with m ≤ n.

b) Show that an, cn are real , and that cn−1 = bn−1.
c) Conclude that bN−1 = 0, and (provided that no earlier bn happens to

vanish) that the un, n = 0, . . . , N − 1, constitute an orthonormal basis
for V , in terms of which H is represented by the N -by-N real-symmetric
tridiagonal matrix H of the preceding exercises.

Because the eigenvalues of a tridiagonal matrix are given by the numerically
easy-to-find zeros of the associated monic polynomial pN (x), the Lanczos al-
gorithm provides a computationally efficient way of extracting the eigenvalues
from a large sparse matrix. In theory, the entries in the tridiagonal H can be
computed while retaining only un, un−1 and Hun in memory at any one time.
In practice, with finite precision computer arithmetic, orthogonality with the
earlier um is eventually lost, and spurious or duplicated eigenvalues appear.
There exist, however, stratagems for identifying and eliminating these fake
eigenvalues.



2.4. FURTHER EXERCISES AND PROBLEMS 91

The following two problems are “toy” versions of the Lax pair and tau func-
tion constructions that arise in the general theory of soliton equations. They
provide useful practice in manipulating matrices and determinants.

Problem 2.18: The monic orthogonal polynomials pi(x) have inner products

〈pi, pj〉w ≡
∫
pi(x)pj(x)w(x) dx = hiδij ,

and obey the recursion relation

xpi(x) = pi+1(x) + aipi(x) + b2i−1pi−1(x); p−1(x) = 0, p0(x) = 1.

Write the recursion relation as

Lp = xp,

where

L ≡




. . .
. . .

. . .
. . .

...
. . . 1 a2 b21 0
. . . 0 1 a1 b20
. . . 0 0 1 a0


 , p ≡




...
p2

p1

p0


 .

Suppose that

w(x) = exp

{
−

∞∑

n=1

tnx
n

}
,

and consider how the pi(x) and the coefficients ai and b2i vary with the pa-
rameters tn.

a) Show that
∂p

∂tn
= M(n)p,

where M(n) is some strictly upper triangular matrix - i.e. all entries on
and below its principal diagonal are zero.

b) By differentiating Lp = xp with respect to tn show that

∂L

∂tn
= [M(n),L].

c) Compute the matrix elements

〈i|M(n)|j〉 ≡M (n)
ij =

〈
pj,

∂pi
∂tn

〉

w
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(note the interchange of the order of i and j in the 〈 , 〉w product!) by
differentiating the orthogonality condition 〈pi, pj〉w = hiδij . Hence show
that

M(n) = (Ln)+

where (Ln)+ denotes the strictly upper triangular projection of the n’th
power of L — i.e. the matrix Ln, but with its diagonal and lower trian-
gular entries replaced by zero.

Thus
∂L

∂tn
=
[
(Ln)+ ,L

]

describes a family of deformations of the semi-infinite matrix L that, in some
formal sense, preserve its eigenvalues x.

Problem 2.19: Let the monic polynomials pn(x) be orthogonal with respect
to the weight function

w(x) = exp

{
−

∞∑

n=1

tnx
n

}
.

Define the “tau-function” τn(t1, t2, t3 . . .) of the parameters ti to be the n-fold
integral

τn(t1, t2, . . .) =

∫∫
· · ·
∫
dxxdx2 . . . dxn∆

2(x) exp

{
−

n∑

ν=1

∞∑

m=1

tmx
m
ν

}

where

∆(x) =

∣∣∣∣∣∣∣∣

xn−1
1 xn−2

1 . . . x1 1
xn−1

2 xn−2
2 . . . x2 1

...
...

. . .
...

...
xn−1
n xn−2

n . . . xn 1

∣∣∣∣∣∣∣∣
=
∏

ν<µ

(xν − xµ)

is the n-by-n Vandermonde determinant.

a) Show that

∣∣∣∣∣∣∣∣

xn−1
1 xn−2

1 . . . x1 1
xn−1

2 xn−2
2 . . . x2 1

...
...

. . .
...

...
xn−1
n xn−2

n . . . xn 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

pn−1(x1) pn−2(x1) . . . p1(x1) p0(x1)
pn−1(x2) pn−2(x2) . . . p1(x2) p0(x2)

...
...

. . .
...

...
Pn−1(xn) pn−2(xn) . . . p1(xn) p0(xn)

∣∣∣∣∣∣∣∣
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b) Combine the identity from part a) with the orthogonality property of the
pn(x) to show that

pn(x) =
1

τn

∫
dx1dx2 . . . dxn∆

2(x)
n∏

µ=1

(x− xµ) exp

{
−

n∑

ν=1

∞∑

m=1

tmx
m
ν

}

= xn
τn(t

′
1, t

′
2, t

′
3, . . .)

τn(t1, t2, t3, . . .)

where

t′m = tm +
1

mxm
.

Here are some exercises on distributions:

Exercise 2.20: Let f(x) be a continuous function. Observe that f(x)δ(x) =
f(0)δ(x). Deduce that

d

dx
[f(x)δ(x)] = f(0)δ′(x).

If f(x) were differentiable we might also have used the product rule to conclude
that

d

dx
[f(x)δ(x)] = f ′(x)δ(x) + f(x)δ′(x).

Show, by evaluating f(0)δ′(x) and f ′(x)δ(x) + f(x)δ′(x) on a test function
ϕ(x), that these two expressions for the derivative of f(x)δ(x) are equivalent.

Exercise 2.21: Let ϕ(x) be a test function. Show that

d

dt

{
P

∫ ∞

−∞

ϕ(x)

(x− t) dx
}

= P

∫ ∞

−∞

ϕ(x) − ϕ(t)

(x− t)2 dx.

Show further that the right-hand-side of this equation is equal to

−
(
d

dx
P

(
1

x− t

)
, ϕ

)
≡ P

∫ ∞

−∞

ϕ′(x)
(x− t) dx.

Exercise 2.22: Let θ(x) be the step function or Heaviside distribution

θ(x) =

{ 1, x > 0,
undefined, x = 0,
0, x < 0.
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By forming the weak derivative of both sides of the equation

lim
ε→0+

ln(x+ iε) = ln |x|+ iπθ(−x),

conclude that

lim
ε→0+

(
1

x+ iε

)
= P

(
1

x

)
− iπδ(x).

Exercise 2.23: Use induction on n to generalize exercise 2.21 and show that

dn

dtn

{
P

∫ ∞

−∞

ϕ(x)

(x− t) dx
}

= P

∫ ∞

−∞

n!

(x− t)n+1

[
ϕ(x)−

n−1∑

m=0

1

m!
(x− t)mϕ(m)(t)

]
dx,

= P

∫ ∞

−∞

ϕ(n)

x− t dx.

Exercise 2.24: Let the non-local functional S[f ] be defined by

S[f ] =
1

4π

∫ ∞

−∞

∫ ∞

−∞

{
f(x)− f(x′)

x− x′
}2

dxdx′

Compute the functional derivative of S[f ] and verify that it is given by

δS

δf(x)
=

1

π

d

dx

{
P

∫ ∞

−∞

f(x′)
x− x′ dx

′
}
.

See exercise 6.10 for an occurence of this functional.



Chapter 3

Linear Ordinary Differential
Equations

In this chapter we will discuss linear ordinary differential equations. We will
not describe tricks for solving any particular equation, but instead focus on
those aspects the general theory that we will need later.

We will consider either homogeneous equations, Ly = 0 with

Ly ≡ p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y, (3.1)

or inhomogeneous equations Ly = f . In full,

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = f(x). (3.2)

We will begin with homogeneous equations.

3.1 Existence and uniqueness of solutions

The fundamental result in the theory of differential equations is the existence
and uniqueness theorem for systems of first order equations.

3.1.1 Flows for first-order equations

Let x1, . . . , xn, be a system of coordinates in Rn, and let X i(x1, x2, . . . , xn, t),
i = 1, . . . , n, be the components of a t-dependent vector field. Consider the
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system of first-order differential equations

dx1

dt
= X1(x1, x2, . . . , xn, t),

dx2

dt
= X2(x1, x2, . . . , xn, t),

...
dxn

dt
= Xn(x1, x2, . . . , xn, t). (3.3)

For a sufficiently smooth vector field (X1, X2, . . . , Xn) there is a unique solu-
tion xi(t) for any initial condition xi(0) = xi0. Rigorous proofs of this claim,
including a statement of exactly what “sufficiently smooth” means, can be
found in any standard book on differential equations. Here, we will simply
assume the result. It is of course “physically” plausible. Regard the X i as
being the components of the velocity field in a fluid flow, and the solution
xi(t) as the trajectory of a particle carried by the flow. An particle initially at
xi(0) = xi0 certainly goes somewhere, and unless something seriously patho-
logical is happening, that “somewhere” will be unique.

Now introduce a single function y(t), and set

x1 = y,

x2 = ẏ,

x3 = ÿ,
...

xn = y(n−1), (3.4)

and, given smooth functions p0(t), . . . , pn(t) with p0(t) nowhere vanishing,
look at the particular system of equations

dx1

dt
= x2,

dx2

dt
= x3,

...
dxn−1

dt
= xn,

dxn

dt
= − 1

p0

(
p1x

n + p2x
n−1 + · · ·+ pnx

1
)
. (3.5)
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This system is equivalent to the single equation

p0(t)
dny

dtn
+ p1(t)

dn−1y

dtn−1
+ · · ·+ pn−1(t)

dy

dt
+ pn(t)y(t) = 0. (3.6)

Thus an n-th order ordinary differential equation (ODE) can be written as a
first-order equation in n dimensions, and we can exploit the uniqueness result
cited above. We conclude, provided p0 never vanishes, that the differential
equation Ly = 0 has a unique solution, y(t), for each set of initial data
(y(0), ẏ(0), ÿ(0), . . . , y(n−1)(0)). Thus,

i) If Ly = 0 and y(0) = 0, ẏ(0) = 0, ÿ(0) = 0, . . ., y(n−1)(0) = 0, we
deduce that y ≡ 0.

ii) If y1(t) and y2(t) obey the same equation Ly = 0, and have the same
initial data, then y1(t) = y2(t).

3.1.2 Linear independence

In this section we will assume that p0 does not vanish in the region of x we are
interested in, and that all the pi remain finite and differentiable sufficiently
many times for our formulæ to make sense.

Consider an n-th order linear differential equation

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = 0. (3.7)

The set of solutions of this equation constitutes a vector space because if y1(x)
and y2(x) are solutions, then so is any linear combination λy1(x) + µy2(x).
We will show that the dimension of this vector space is n. To see that this
is so, let y1(x) be a solution with initial data

y1(0) = 1,

y′1(0) = 0,
...

y
(n−1)
1 = 0, (3.8)

let y2(x) be a solution with

y2(0) = 0,

y′2(0) = 1,
...

y
(n−1)
2 = 0, (3.9)
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and so on, up to yn(x), which has

yn(0) = 0,

y′n(0) = 0,
...

y(n−1)
n = 1. (3.10)

We claim that the functions yi(x) are linearly independent . Suppose, to the
contrary, that there are constants λ1, . . . , λn such that

0 = λ1y1(x) + λ2y2(x) + · · ·+ λnyn(x). (3.11)

Then
0 = λ1y1(0) + λ2y2(0) + · · ·+ λnyn(0) ⇒ λ1 = 0. (3.12)

Differentiating once and setting x = 0 gives

0 = λ1y
′
1(0) + λ2y

′
2(0) + · · ·+ λny

′
n(0) ⇒ λ2 = 0. (3.13)

We continue in this manner all the way to

0 = λ1y
(n−1)
1 (0) + λ2y

(n−1)
2 (0) + · · ·+ λny

(n−1)
n (0) ⇒ λn = 0. (3.14)

All the λi are zero! There is therefore no non-trivial linear relation between
the yi(x), and they are indeed linearly independent.

The solutions yi(x) also span the solution space, because the unique solu-
tion with intial data y(0) = a1, y

′(0) = a2, . . ., y
(n−1)(0) = an can be written

in terms of them as

y(x) = a1y1(x) + a2y2(x) + · · ·anyn(x). (3.15)

Our chosen set of n solutions is therefore a basis for the solution space of the
differential equation. The dimension of the solution space is therefore n, as
claimed.

3.1.3 The Wronskian

If we manage to find a different set of n solutions, how will we know whether
they are also linearly independent? The essential tool is the Wronskian:

W (y1, . . . , yn; x)
def
=

∣∣∣∣∣∣∣∣

y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
. . .

...
y

(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣
. (3.16)
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Recall that the derivative of a determinant

D =

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
(3.17)

may be evaluated by differentiating row-by-row:

dD

dx
=

∣∣∣∣∣∣∣∣

a′11 a′12 . . . a′1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a′21 a′22 . . . a′2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
+· · ·+

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
a′n1 a′n2 . . . a′nn

∣∣∣∣∣∣∣∣
.

Applying this to the derivative of the Wronskian, we find

dW

dx
=

∣∣∣∣∣∣∣∣

y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
. . .

...
y

(n)
1 y

(n)
2 . . . y

(n)
n

∣∣∣∣∣∣∣∣
. (3.18)

Only the term where the very last row is being differentiated survives. All
the other row derivatives gives zero because they lead to a determinant with
two identical rows. Now, if the yi are all solutions of

p0y
(n) + p1y

(n−1) + · · ·+ pny = 0, (3.19)

we can substitute

y
(n)
i = − 1

p0

(
p1y

(n−1)
i + p2y

(n−2)
i + · · ·+ pnyi

)
, (3.20)

use the row-by-row linearity of determinants,
∣∣∣∣∣∣∣∣

λa11 + µb11 λa12 + µb12 . . . λa1n + µb1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣∣∣∣∣∣∣∣

= λ

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣∣∣∣∣∣∣∣
+ µ

∣∣∣∣∣∣∣∣

b11 b12 . . . b1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣∣∣∣∣∣∣∣
, (3.21)
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and find, again because most terms have two identical rows, that only the
terms with p1 survive. The end result is

dW

dx
= −

(
p1

p0

)
W. (3.22)

Solving this first order equation gives

W (yi; x) = W (yi; x0) exp

{
−
∫ x

x0

(
p1(ξ)

p0(ξ)

)
dξ

}
. (3.23)

Since the exponential function itself never vanishes, W (x) either vanishes at
all x, or never. This is Liouville’s theorem, and (3.23) is called Liouville’s
formula.

Now suppose that y1, . . . , yn are a set of Cn functions of x, not necessarily
solutions of an ODE. Suppose further that there are constants λi, not all zero,
such that

λ1y1(x) + λ2y2(x) + · · ·+ λnyn(x) ≡ 0, (3.24)

(i.e. the functions are linearly dependent) then the set of equations

λ1y1(x) + λ2y2(x) + · · ·+ λnyn(x) = 0,

λ1y
′
1(x) + λ2y

′
2(x) + · · ·+ λny

′
n(x) = 0,

...

λ1y
(n−1)
1 (x) + λ2y

(n−1)
2 (x) + · · ·+ λny

(n−1)
n (x) = 0, (3.25)

has a non-trivial solution λ1, λ2, . . . , λn, and so the determinant of the coef-
ficients,

W =

∣∣∣∣∣∣∣∣

y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
. . .

...
y

(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣
, (3.26)

must vanish. Thus

linear dependence ⇒ W ≡ 0.

There is a partial converse of this result: Suppose that y1, . . . , yn are solutions
to an n-th order ODE and W (yi; x) = 0 at x = x0. Then there must exist a
set of λi, not all zero, such that

Y (x) = λ1y1(x) + λ2y2(x) + · · ·+ λnyn(x) (3.27)
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has 0 = Y (x0) = Y ′(x0) = · · · = Y (n−1)(x0). This is because the system of
linear equations determining the λi has the Wronskian as its determinant.
Now the function Y (x) is a solution of the ODE and has vanishing initial
data. It is therefore identically zero. We conclude that

ODE and W = 0 ⇒ linear dependence.

If there is no ODE, the Wronskian may vanish without the functions
being linearly dependent. As an example, consider

y1(x) =

{
0, x ≤ 0,
exp{−1/x2}, x > 0.

y2(x) =

{
exp{−1/x2}, x ≤ 0,
0, x > 0.

(3.28)

We have W (y1, y2; x) ≡ 0, but y1, y2 are not proportional to one another, and
so not linearly dependent. (Notethat y1,2 are smooth functions. In particular
they have derivatives of all orders at x = 0.)

Given n linearly independent smooth functions yi, can we always find an
n-th order differential equation that has them as its solutions? The answer
had better be “no”, or there would be a contradiction between the preceeding
theorem and the counterexample to its extension. If the functions do satisfy
a common equation, however, we can use a Wronskian to construct it: Let

Ly = p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y (3.29)

be the differential polynomial in y(x) that results from expanding

D(y) =

∣∣∣∣∣∣∣∣

y(n) y(n−1) . . . y
y

(n)
1 y

(n−1)
1 . . . y1

...
...

. . .
...

y
(n)
n y

(n−1)
n . . . yn

∣∣∣∣∣∣∣∣
. (3.30)

Whenever y coincides with any of the yi, the determinant will have two
identical rows, and so Ly = 0. The yi are indeed n solutions of Ly = 0. As
we have noted, this construction cannot always work. To see what can go
wrong, observe that it gives

p0(x) =

∣∣∣∣∣∣∣∣∣

y
(n−1)
1 y

(n−2)
1 . . . y1

y
(n−1)
2 y

(n−2)
2 . . . y2

...
...

. . .
...

y
(n−1)
n y

(n−2)
n . . . yn

∣∣∣∣∣∣∣∣∣
= W (y; x). (3.31)
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If this Wronskian is zero, then our construction fails to deliver an n-th order
equation. Indeed, taking y1 and y2 to be the functions in the example above
yields an equation in which all three coeffecients p0, p1, p2 are identically
zero.

3.2 Normal form

In elementary algebra a polynomial equation

a0x
n + a1x

n−1 + · · ·an = 0, (3.32)

with a0 6= 0, is said to be in normal form if a1 = 0. We can always put such an
equation in normal form by defining a new variable x̃ with x = x̃−a1(na0)

−1.
By analogy, an n-th order linear ODE with no y(n−1) term is also said to

be in normal form. We can put an ODE in normal form by the substitution
y = wỹ, for a suitable function w(x). Let

p0y
(n) + p1y

(n−1) + · · ·+ pny = 0. (3.33)

Set y = wỹ. Using Leibniz’ rule, we expand out

(wỹ)(n) = wỹ(n) + nw′ỹ(n−1) +
n(n− 1)

2!
w′′ỹ(n−2) + · · ·+ w(n)ỹ. (3.34)

The differential equation becomes, therefore,

(wp0)ỹ
(n) + (p1w + p0nw

′)ỹ(n−1) + · · · = 0. (3.35)

We see that if we chose w to be a solution of

p1w + p0nw
′ = 0, (3.36)

for example

w(x) = exp

{
− 1

n

∫ x

0

(
p1(ξ)

p0(ξ)

)
dξ

}
, (3.37)

then ỹ obeys the equation

(wp0)ỹ
(n) + p̃2ỹ

(n−2) + · · · = 0, (3.38)

with no second-highest derivative.
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Example: For a second order equation,

y′′ + p1y
′ + p2y = 0, (3.39)

we set y(x) = v(x) exp{− 1
2

∫ x
0
p1(ξ)dξ} and find that v obeys

v′′ + Ωv = 0, (3.40)

where

Ω = p2 −
1

2
p′1 −

1

4
p2

1. (3.41)

Reducing an equation to normal form gives us the best chance of solving
it by inspection. For physicists, another advantage is that a second-order
equation in normal form can be thought of as a Schrödinger equation,

−d
2ψ

dx2
+ (V (x)− E)ψ = 0, (3.42)

and we can gain insight into the properties of the solution by bringing our
physics intuition and experience to bear.

3.3 Inhomogeneous equations

A linear inhomogeneous equation is one with a source term:

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = f(x). (3.43)

It is called “inhomogeneous” because the source term f(x) does not contain
y, and so is different from the rest. We will devote an entire chapter to
the solution of such equations by the method of Green functions. Here, we
simply review some elementary material.

3.3.1 Particular integral and complementary function

One method of dealing with inhomogeneous problems, one that is especially
effective when the equation has constant coefficients, is simply to try and
guess a solution to (3.43). If you are successful, the guessed solution yPI

is then called a particular integral . We may add any solution yCF of the
homogeneous equation

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = 0 (3.44)
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to yPI and it will still be a solution of the inhomogeneous problem. We
use this freedom to satisfy the boundary or initial conditions. The added
solution, yCF, is called the complementary function.
Example: Charging capacitor. The capacitor in the circuit in figure 3.1 is
initially uncharged. The switch is closed at t = 0

R

C
QV

Figure 3.1: Capacitor circuit

The charge on the capacitor, Q, obeys

R
dQ

dt
+
Q

C
= V, (3.45)

where R, C, V are constants. A particular integral is given by Q(t) = CV .
The complementary-function solution of the homogeneous problem is

Q(t) = Q0e
−t/RC , (3.46)

where Q0 is constant. The solution satisfying the initial conditions is

Q(t) = CV
(
1− e−t/RC

)
. (3.47)

3.3.2 Variation of parameters

We now follow Lagrange, and solve

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = f(x) (3.48)

by writing
y = v1y1 + v2y2 + · · ·+ vnyn (3.49)

where the yi are the n linearly independent solutions of the homogeneous
equation and the vi are functions of x that we have to determine. This
method is called variation of parameters.
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Now, differentiating gives

y′ = v1y
′
1 + v2y

′
2 + · · ·+ vny

′
n + {v′1y1 + v′2y2 + · · ·+ v′nyn} . (3.50)

We will chose the v’s so as to make the terms in the braces vanish. Differen-
tiate again:

y′′ = v1y
′′
1 + v2y

′′
2 + · · ·+ vny

′′
n + {v′1y′1 + v′2y

′
2 + · · ·+ v′ny

′
n} . (3.51)

Again, we will chose the v’s to make the terms in the braces vanish. We
proceed in this way until the very last step, at which we demand

{
v′1y

(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

n−1
n

}
= f(x)/p0(x). (3.52)

If you substitute the resulting y into the differential equation, you will see
that the equation is satisfied.

We have imposed the following conditions on v′i:

v′1y1 + v′2y2 + · · ·+ v′nyn = 0,

v′1y
′
1 + v′2y

′
2 + · · ·+ v′ny

′
n = 0,

...

v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

n−1
n = f(x)/p0(x). (3.53)

This system of linear equations will have a solution for v ′1, . . . , v
′
n, provided

the Wronskian of the yi is non-zero. This, however, is guaranteed by the
assumed linear independence of the yi. Having found the v′1, . . . , v

′
n, we obtain

the v1, . . . , vn themselves by a single integration.
Example: First-order linear equation. A simple and useful application of this
method solves

dy

dx
+ P (x)y = f(x). (3.54)

The solution to the homogeneous equation is

y1 = e−
R x

a
P (s) ds. (3.55)

We therefore set
y = v(x)e−

R x
a P (s) ds, (3.56)

and find that
v′(x)e−

R x
a
P (s) ds = f(x). (3.57)
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We integrate once to find

v(x) =

∫ x

b

f(ξ)e
R ξ
a
P (s) dsdξ, (3.58)

and so

y(x) =

∫ x

b

f(ξ)
{
e−

R x
ξ P (s) ds

}
dξ. (3.59)

We select b to satisfy the initial condition.

3.4 Singular points

So far in this chapter, we have been assuming, either explicitly or tacitly, that
our coefficients pi(x) are smooth, and that p0(x) never vanishes. If p0(x) does
become zero (or, more precisely, if one or more of the pi/p0 becomes singular)
then dramatic things happen, and the location of the zero of p0 is called a
singular point of the differential equation. All other points are called ordinary
points.

In physics application we often find singular points at the ends of the
interval in which we wish to solve our differential equation. For example, the
origin r = 0 is often a singular point when r is the radial coordinate in plane
or spherical polars. The existence and uniqueness theorems that we have
relied out throughout this chapter may fail at singular endpoints. Consider,
for example, the equation

xy′′ + y′ = 0, (3.60)

which is singular at x = 0. The two linearly independent solutions for x > 0
are y1(x) = 1 and y2(x) = ln x. The general solution is therefore A +B ln x,
but no choice of A and B can satisfy the initial conditions y(0) = a, y ′(0) = b
when b is non-zero. Because of these complications, we will delay a systematic
study of singular endpoints until chapter 8.

3.4.1 Regular singular points

If, in the differential equation

p0y
′′ + p1y

′ + p2y = 0, (3.61)
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we have a point x = a such that

p0(x) = (x− a)2P (x), p1(x) = (x− a)Q(x), p2(x) = R(x), (3.62)

where P andQ and R are analytic1 and P andQ non-zero in a neighbourhood
of a then the point x = a is called a regular singular point of the equation.
All other singular points are said to be irregular . Close to a regular singular
point a the equation looks like

P (a)(x− a)2y′′ +Q(a)(x− a)y′ +R(a)y = 0. (3.63)

The solutions of this reduced equation are

y1 = (x− a)λ1 , y2 = (x− a)λ2 , (3.64)

where λ1,2 are the roots of the indicial equation

λ(λ− 1)P (a) + λQ(a) +R(a) = 0. (3.65)

The solutions of the full equation are then

y1 = (x− a)λ1f1(x), y2 = (x− a)λ2f2(x), (3.66)

where f1,2 have power series solutions convergent in a neighbourhood of a.
An exception occurs when λ1 and λ2 coincide or differ by an integer, in which
case the second solution is of the form

y2 = (x− a)λ1

(
ln(x− a)f1(x) + f2(x)

)
, (3.67)

where f1 is the same power series that occurs in the first solution, and f2 is
a new power series. You will probably have seen these statements proved by
the tedious procedure of setting

f1(x) = (x− a)λ(b0 + b1(x− a) + b2(x− a)2 + · · · , (3.68)

and obtaining a recurrence relation determining the bi. Far more insight is
obtained, however, by extending the equation and its solution to the com-
plex plane, where the structure of the solution is related to its monodromy
properties. If you are familiar with complex analytic methods, you might like
to look ahead to the discussion of monodromy in section 19.2.

1A function is analytic at a point if it has a power-series expansion that converges to
the function in a neighbourhood of the point.
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3.5 Further exercises and problems

Exercise 3.1: Reduction of Order. Sometimes additional information about
the solutions of a differential equation enables us to reduce the order of the
equation, and so solve it.

a) Suppose that we know that y1 = u(x) is one solution to the equation

y′′ + V (x)y = 0.

By trying y = u(x)v(x) show that

y2 = u(x)

∫ x dξ

u2(ξ)

is also a solution of the differential equation. Is this new solution ever
merely a constant mutiple of the old solution, or must it be linearly
independent? (Hint: evaluate the Wronskian W (y2, y1).)

b) Suppose that we are told that the product, y1y2, of the two solutions to
the equation y′′ + p1y

′ + p2y = 0 is a constant. Show that this requires
2p1p2 + p′2 = 0.

c) By using ideas from part b) or otherwise, find the general solution of the
equation

(x+ 1)x2y′′ + xy′ − (x+ 1)3y = 0.

Exercise 3.2: Show that the general solution of the differential equation

d2y

dx2
− 2

dy

dx
+ y =

ex

1 + x2

is
y(x) = Aex +Bxex − 1

2e
x ln(1 + x2) + xex tan−1x.

Exercise 3.3: Use the method of variation of parameters to show that if y1(x)
and y2(x) are linearly independent solutions to the equation

p0(x)
d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y = 0,

then general solution of the equation

p0(x)
d2y

dx2
+ p1(x)

dy

dx
+ p2(x)y = f(x)

is

y(x) = Ay1(x) +By2(x)− y1(x)

∫ x y2(ξ)f(ξ)

p0W (y1, y2)
dξ+ y2(x)

∫ x y1(ξ)f(ξ)

p0W (y1, y2)
dξ.
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Problem 3.4: One-dimensional scattering theory. Consider the one-dimensional
Schrödinger equation

−d
2ψ

dx2
+ V (x)ψ = Eψ,

where V (x) is zero except in a finite interval [−a, a] near the origin.

x

V(x)

a

L R

−a

Figure 3.2: A typical potential V for exercise 3.4

Let L denote the left asymptotic region, −∞ < x < −a, and similarly let R
denote a < x <∞. For E = k2 there will be scattering solutions of the form

ψk(x) =

{
eikx + rL(k)e−ikx, x ∈ L,
tL(k)eikx, x ∈ R,

which for k > 0 describe waves incident on the potential V (x) from the left.
There will be solutions with

ψk(x) =

{
tR(k)eikx, x ∈ L,
eikx + rR(k)e−ikx, x ∈ R,

which for k < 0 describe waves incident from the right. The wavefunctions
in [−a, a] will naturally be more complicated. Observe that [ψk(x)]

∗ is also a
solution of the Schrödinger equation.

By using properties of the Wronskian, show that:

a) |rL,R|2 + |tL,R|2 = 1,
b) tL(k)=tR(−k).
c) Deduce from parts a) and b) that |rL(k)| = |rR(−k)|.
d) Take the specific example of V (x) = λδ(x−b) with |b| < a. Compute the

transmission and reflection coefficients and hence show that rL(k) and
rR(−k) may differ in phase.
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Exercise 3.5: Suppose ψ(x) obeys a Schrödinger equation

(
−1

2

d2

dx2
+ [V (x)−E]

)
ψ = 0.

a) Make a smooth and invertable change of independent variable by setting
x = x(z) and find the second order differential equation in z obeyed by
ψ(z) ≡ ψ(x(z)). Reduce this equation to normal form, and show that
the resulting equation is

(
−1

2

d2

dz2
+ (x′)2[V (x(z))−E]− 1

4
{x, z}

)
ψ̃(z) = 0,

where the primes denote differentiation with respect to z, and

{x, z} def
=

x′′′

x′
− 3

2

(
x′′

x′

)2

is called the Schwarzian derivative of x with respect to z. Schwarzian
derivatives play an important role in conformal field theory and string
theory.

b) Make a sequence of changes of variable x → z → w, and so establish
Cayley’s identity

(
dz

dw

)2

{x, z} + {z, w} = {x,w}.

(Hint: If your proof takes more than one line, you are missing the point.)



Chapter 4

Linear Differential Operators

In this chapter we will begin to take a more sophisticated approach to dif-
ferential equations. We will define, with some care, the notion of a linear
differential operator, and explore the analogy between such operators and
matrices. In particular, we will investigate what is required for a linear dif-
ferential operator to have a complete set of eigenfunctions.

4.1 Formal vs. concrete operators

We will call the object

L = p0(x)
dn

dxn
+ p1(x)

dn−1

dxn−1
+ · · ·+ pn(x), (4.1)

which we also write as

p0(x)∂
n
x + p1(x)∂

n−1
x + · · ·+ pn(x), (4.2)

a formal linear differential operator . The word “formal” refers to the fact
that we are not yet worrying about what sort of functions the operator is
applied to.

4.1.1 The algebra of formal operators

Even though they are not acting on anything in particular, we can still form
products of operators. For example if v and w are smooth functions of x we
can define the operators ∂x + v(x) and ∂x + w(x) and find

(∂x + v)(∂x + w) = ∂2
x + w′ + (w + v)∂x + vw, (4.3)

111
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or
(∂x + w)(∂x + v) = ∂2

x + v′ + (w + v)∂x + vw, (4.4)

We see from this example that the operator algebra is not usually commuta-
tive.

The algebra of formal operators has some deep applications. Consider,
for example, the operators

L = −∂2
x + q(x) (4.5)

and
P = ∂3

x + a(x)∂x + ∂xa(x). (4.6)

In the last expression, the combination ∂xa(x) means “first multiply by a(x),
and then differentiate the result,” so we could also write

∂xa = a∂x + a′. (4.7)

We can now form the commutator [P, L] ≡ PL − LP . After a little effort,
we find

[P, L] = (3q′ + 4a′)∂2
x + (3q′′ + 4a′′)∂x + q′′′ + 2aq′ + a′′′. (4.8)

If we choose a = − 3
4
q, the commutator becomes a pure multiplication oper-

ator, with no differential part:

[P, L] =
1

4
q′′′ − 3

2
qq′. (4.9)

The equation
dL

dt
= [P, L], (4.10)

or, equivalently,

q̇ =
1

4
q′′′ − 3

2
qq′, (4.11)

has a formal solution
L(t) = etPL(0)e−tP , (4.12)

showing that the time evolution of L is given by a similarity transformation,
which (again formally) does not change its eigenvalues. The partial differen-
tial equation (4.11) is the famous Korteweg de Vries (KdV) equation, which
has “soliton” solutions whose existence is intimately connected with the fact
that it can be written as (4.10). The operators P and L are called a Lax
pair , after Peter Lax who uncovered much of the structure.
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4.1.2 Concrete operators

We want to explore the analogies between linear differential operators and
matrices acting on a finite-dimensional vector space. Because the theory of
matrix operators makes much use of inner products and orthogonality, the
analogy is closest if we work with a function space equipped with these same
notions. We therefore let our differential operators act on L2[a, b], the Hilbert
space of square-integrable functions on [a, b]. Now a differential operator
cannot act on every function in the Hilbert space because not all of them
are differentiable. Even though we will relax our notion of differentiability
and permit weak derivatives, we must at least demand that the domain D,
the subset of functions on which we allow the operator to act, contain only
functions that are sufficiently differentiable that the function resulting from
applying the operator remains an element of L2[a, b]. We will usually restrict
the set of functions even further, by imposing boundary conditions at the
endpoints of the interval. A linear differential operator is now defined as a
formal linear differential operator, together with a specification of its domain
D.

The boundary conditions that we will impose will always be linear and
homogeneous. This is so that the domain of definition is a vector space.
In other words, if y1 and y2 obey the boundary conditions then so should
λy1 + µy2. Thus, for a second-order operator

L = p0∂
2
x + p1∂x + p2 (4.13)

on the interval [a, b], we might impose

B1[y] = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = 0,

B2[y] = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = 0, (4.14)

but we will not, in defining the differential operator , impose inhomogeneous
conditions, such as

B1[y] = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = A,

B2[y] = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = B, (4.15)

with non-zero A,B — even though we will solve differential equations with
such boundary conditions.
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Also, for an n-th order operator, we will not constrain derivatives of order
higher than n−1. This is reasonable1: If we seek solutions of Ly = f with L
a second-order operator, for example, then the values of y ′′ at the endpoints
are already determined in terms of y′ and y by the differential equation. We
cannot choose to impose some other value. By differentiating the equation
enough times, we can similarly determine all higher endpoint derivatives in
terms of y and y′. These two derivatives, therefore, are all we can fix by fiat.

The boundary and differentiability conditions that we impose make D a
subset of the entire Hilbert space. This subset will always be dense: any
element of the Hilbert space can be obtained as an L2 limit of functions in
D. In particular, there will never be a function in L2[a, b] that is orthogonal
to all functions in D.

4.2 The adjoint operator

One of the important properties of matrices, established in the appendix,
is that a matrix that is self-adjoint, or Hermitian, may be diagonalized . In
other words, the matrix has sufficiently many eigenvectors for them to form
a basis for the space on which it acts. A similar property holds for self-
adjoint differential operators, but we must be careful in our definition of
self-adjointness.

Before reading this section, We suggest you review the material on adjoint
operators on finite-dimensional spaces that appears in the appendix.

4.2.1 The formal adjoint

Given a formal differential operator

L = p0(x)
dn

dxn
+ p1(x)

dn−1

dxn−1
+ · · ·+ pn(x), (4.16)

and a weight function w(x), real and positive on the interval (a, b), we can
find another such operator L†, such that, for any sufficiently differentiable
u(x) and v(x), we have

w
(
u∗Lv − v(L†u)∗

)
=

d

dx
Q[u, v], (4.17)

1There is a deeper reason which we will explain in section 9.7.2.
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for some function Q, which depends bilinearly on u and v and their first n−1
derivatives. We call L† the formal adjoint of L with respect to the weight w.
The equation (4.17) is called Lagrange’s identity. The reason for the name
“adjoint” is that if we define an inner product

〈u, v〉w =

∫ b

a

wu∗v dx, (4.18)

and if the functions u and v have boundary conditions that make Q[u, v]|ba =
0, then

〈u, Lv〉w = 〈L†u, v〉w, (4.19)

which is the defining property of the adjoint operator on a vector space. The
word “formal” means, as before, that we are not yet specifying the domain
of the operator.

The method for finding the formal adjoint is straightforward: integrate
by parts enough times to get all the derivatives off v and on to u.
Example: If

L = −i d
dx

(4.20)

then let us find the adjoint L† with respect to the weight w ≡ 1. We start
from

u∗(Lv) = u∗
(
−i d
dx
v

)
,

and use the integration-by-parts technique once to get the derivative off v
and onto u∗:

u∗
(
−i d
dx
v

)
=

(
i
d

dx
u∗
)
v − i d

dx
(u∗v)

=

(
−i d
dx
u

)∗
v − i d

dx
(u∗v)

≡ v(L†u)∗ +
d

dx
Q[u, v]. (4.21)

We have ended up with the Lagrange identity

u∗
(
−i d
dx
v

)
− v

(
−i d
dx
u

)∗
=

d

dx
(−iu∗v), (4.22)
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and found that

L† = −i d
dx
, Q[u, v] = −iu∗v. (4.23)

The operator −id/dx (which you should recognize as the “momentum” op-
erator from quantum mechanics) obeys L = L†, and is therefore, formally
self-adjoint , or Hermitian.
Example: Let

L = p0
d2

dx2
+ p1

d

dx
+ p2, (4.24)

with the pi all real. Again let us find the adjoint L† with respect to the inner
product with w ≡ 1. Now, proceeding as above, but integrating by parts
twice, we find

u∗ [p0v
′′ + p1v

′ + p2v]− v [(p0u)
′′ − (p1u)

′ + p2u]
∗

=
d

dx

[
p0(u

∗v′ − vu∗′) + (p1 − p′0)u∗v
]
. (4.25)

From this we read off that

L† =
d2

dx2
p0 −

d

dx
p1 + p2

= p0
d2

dx2
+ (2p′0 − p1)

d

dx
+ (p′′0 − p′1 + p2). (4.26)

What conditions do we need to impose on p0,1,2 for this L to be formally
self-adjoint with respect to the inner product with w ≡ 1? For L = L† we
need

p0 = p0

2p′0 − p1 = p1 ⇒ p′0 = p1

p′′0 − p′1 + p2 = p2 ⇒ p′′0 = p′1. (4.27)

We therefore require that p1 = p′0, and so

L =
d

dx

(
p0

d

dx

)
+ p2, (4.28)

which we recognize as a Sturm-Liouville operator.
Example: Reduction to Sturm-Liouville form. Another way to make the
operator

L = p0
d2

dx2
+ p1

d

dx
+ p2, (4.29)
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self-adjoint is by a suitable choice of weight function w. Suppose that p0 is
positive on the interval (a, b), and that p0, p1, p2 are all real. Then we may
define

w =
1

p0
exp

{∫ x

a

(
p1

p0

)
dx′
}

(4.30)

and observe that it is positive on (a, b), and that

Ly =
1

w
(wp0y

′)′ + p2y. (4.31)

Now

〈u, Lv〉w − 〈Lu, v〉w = [wp0(u
∗v′ − u∗′v)]ba, (4.32)

where

〈u, v〉w =

∫ b

a

wu∗v dx. (4.33)

Thus, provided p0 does not vanish, there is always some inner product with
respect to which a real second-order differential operator is formally self-
adjoint.

Note that with

Ly =
1

w
(wp0y

′)′ + p2y, (4.34)

the eigenvalue equation

Ly = λy (4.35)

can be written

(wp0y
′)′ + p2wy = λwy. (4.36)

When you come across a differential equation where, in the term containing
the eigenvalue λ, the eigenfunction is being multiplied by some other function,
you should immediately suspect that the operator will turn out to be self-
adjoint with respect to the inner product having this other function as its
weight.
Illustration (Bargmann-Fock space): This is a more exotic example of a
formal adjoint. You may have met with it in quantum mechanics. Consider
the space of polynomials P (z) in the complex variable z = x+ iy. Define an
inner product by

〈P,Q〉 =
1

π

∫
d2z e−z

∗z [P (z)]∗Q(z),
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where d2z ≡ dx dy and the integration is over the entire x, y plane. With
this inner product, we have

〈zn, zm〉 = n!δnm.

If we define

â =
d

dz
,

then

〈P, âQ〉 =
1

π

∫
d2z e−z

∗z [P (z)]∗
d

dz
Q(z)

= − 1

π

∫
d2z

(
d

dz
e−z

∗z [P (z)]∗
)
Q(z)

=
1

π

∫
d2z e−z

∗zz∗ [P (z)]∗Q(z)

=
1

π

∫
d2z e−z

∗z [zP (z)]∗Q(z)

= 〈â†P, Q̂〉

where â† = z, i.e. the operation of multiplication by z. In this case, the
adjoint is not even a differential operator.2

Exercise 4.1: Consider the differential operator L̂ = id/dx. Find the formal
adjoint of L with respect to the inner product 〈u, v〉 =

∫
wu∗v dx, and find

the corresponding surface term Q[u, v].

2In deriving this result we have used the Wirtinger calculus where z and z∗ are treated
as independent variables so that

d

dz
e−z∗z = −z∗e−z∗z,

and observed that, because [P (z)]
∗
is a function of z∗ only,

d

dz
[P (z)]

∗
= 0.

If you are uneasy at regarding z, z∗, as independent, you should confirm these formulae
by expressing z and z∗ in terms of x and y, and using

d

dz
≡ 1

2

(
∂

∂x
− i ∂

∂y

)
,

d

dz∗
≡ 1

2

(
∂

∂x
+ i

∂

∂y

)
.



4.2. THE ADJOINT OPERATOR 119

Exercise 4.2:Sturm-Liouville forms. By constructing appropriate weight func-
tions w(x) convert the following common operators into Sturm-Liouville form:

a) L̂ = (1− x2) d2/dx2 + [(µ− ν)− (µ+ ν + 2)x] d/dx.
b) L̂ = (1− x2) d2/dx2 − 3x d/dx.
c) L̂ = d2/dx2 − 2x(1− x2)−1 d/dx −m2 (1− x2)−1.

4.2.2 A simple eigenvalue problem

A finite Hermitian matrix has a complete set of orthonormal eigenvectors.
Does the same property hold for a Hermitian differential operator?

Consider the differential operator

T = −∂2
x, D(T ) = {y, Ty ∈ L2[0, 1] : y(0) = y(1) = 0}. (4.37)

With the inner product

〈y1, y2〉 =

∫ 1

0

y∗1y2 dx (4.38)

we have
〈y1, T y2〉 − 〈Ty1, y2〉 = [y′1

∗
y2 − y∗1y′2]10 = 0. (4.39)

The integrated-out part is zero because both y1 and y2 satisfy the boundary
conditions. We see that

〈y1, T y2〉 = 〈Ty1, y2〉 (4.40)

and so T is Hermitian or symmetric.
The eigenfunctions and eigenvalues of T are

yn(x) = sin nπx
λn = n2π2

}
n = 1, 2, . . . . (4.41)

We see that:
i) the eigenvalues are real ;
ii) the eigenfunctions for different λn are orthogonal ,

2

∫ 1

0

sin nπx sinmπxdx = δnm, n = 1, 2, . . . (4.42)
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iii) the normalized eigenfunctions ϕn(x) =
√

2 sin nπx are complete: any
function in L2[0, 1] has an (L2) convergent expansion as

y(x) =

∞∑

n=1

an
√

2 sinnπx (4.43)

where

an =

∫ 1

0

y(x)
√

2 sin nπx dx. (4.44)

This all looks very good — exactly the properties we expect for finite Her-
mitian matrices. Can we carry over all the results of finite matrix theory to
these Hermitian operators? The answer sadly is no! Here is a counterexam-
ple:

Let

T = −i∂x, D(T ) = {y, Ty ∈ L2[0, 1] : y(0) = y(1) = 0}. (4.45)

Again

〈y1, T y2〉 − 〈Ty1, y2〉 =

∫ 1

0

dx {y∗1(−i∂xy2)− (−i∂xy1)
∗y2}

= −i[y∗1y2]
1
0 = 0. (4.46)

Once more, the integrated out part vanishes due to the boundary conditions
satisfied by y1 and y2, so T is nicely Hermitian. Unfortunately, T with these
boundary conditions has no eigenfunctions at all — never mind a complete
set! Any function satisfying Ty = λy will be proportional to eiλx, but an ex-
ponential function is never zero, and cannot satisfy the boundary conditions.

It seems clear that the boundary conditions are the problem. We need
a better definition of “adjoint” than the formal one — one that pays more
attention to boundary conditions. We will then be forced to distinguish
between mere Hermiticity, or symmetry , and true self-adjointness.

Exercise 4.3: Another disconcerting example. Let p = −i∂x. Show that the
following operator on the infinite real line is formally self-adjoint:

H = x3p+ px3. (4.47)

Now let

ψλ(x) = |x|−3/2 exp

{
− λ

4x2

}
, (4.48)
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where λ is real and positive. Show that

Hψλ = −iλψλ, (4.49)

so ψλ is an eigenfunction with a purely imaginary eigenvalue. Examine the
proof that Hermitian operators have real eigenvalues, and identify at which
point it fails. (Hint: H is formally self adjoint because it is of the form T +T †.
Now ψλ is square-integrable, and so an element of L2(R). Is Tψλ an element
of L2(R)?)

4.2.3 Adjoint boundary conditions

The usual definition of the adjoint operator in linear algebra is as follows:
Given the operator T : V → V and an inner product 〈 , 〉, we look at
〈u, Tv〉, and ask if there is a w such that 〈w, v〉 = 〈u, Tv〉 for all v. If there
is, then u is in the domain of T †, and we set T †u = w.

For finite-dimensional vector spaces V there always is such a w, and so
the domain of T † is the entire space. In an infinite dimensional Hilbert space,
however, not all 〈u, Tv〉 can be written as 〈w, v〉with w a finite-length element
of L2. In particular δ-functions are not allowed — but these are exactly what
we would need if we were to express the boundary values appearing in the
integrated out part, Q(u, v), as an inner-product integral. We must therefore
ensure that u is such that Q(u, v) vanishes, but then accept any u with this
property into the domain of T †. What this means in practice is that we look
at the integrated out term Q(u, v) and see what is required of u to make
Q(u, v) zero for any v satisfying the boundary conditions appearing in D(T ).
These conditions on u are the adjoint boundary conditions, and define the
domain of T †.
Example: Consider

T = −i∂x, D(T ) = {y, Ty ∈ L2[0, 1] : y(1) = 0}. (4.50)

Now,

∫ 1

0

dx u∗(−i∂xv) = −i[u∗(1)v(1)− u∗(0)v(0)] +

∫ 1

0

dx(−i∂xu)∗v

= −i[u∗(1)v(1)− u∗(0)v(0)] + 〈w, v〉, (4.51)

where w = −i∂xu. Since v(x) is in the domain of T , we have v(1) = 0, and
so the first term in the integrated out bit vanishes whatever value we take
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for u(1). On the other hand, v(0) could be anything, so to be sure that the
second term vanishes we must demand that u(0) = 0. This, then, is the
adjoint boundary condition. It defines the domain of T †:

T † = −i∂x, D(T †) = {y, Ty ∈ L2[0, 1] : y(0) = 0}. (4.52)

For our problematic operator

T = −i∂x, D(T ) = {y, Ty ∈ L2[0, 1] : y(0) = y(1) = 0}, (4.53)

we have
∫ 1

0

dx u∗(−i∂xv) = −i[u∗v]10 +

∫ 1

0

dx(−i∂xu)∗v

= 0 + 〈w, v〉, (4.54)

where again w = −i∂xu. This time no boundary conditions need be imposed
on u to make the integrated out part vanish. Thus

T † = −i∂x, D(T †) = {y, Ty ∈ L2[0, 1]}. (4.55)

Although any of these operators “T = −i∂x” is formally self-adjoint we
have,

D(T ) 6= D(T †), (4.56)

so T and T † are not the same operator and none of them is truly self-adjoint.

Exercise 4.4: Consider the differential operator M = d4/dx4, Find the formal
adjoint of M with respect to the inner product 〈u, v〉 =

∫
u∗v dx, and find

the corresponding surface term Q[u, v]. Find the adjoint boundary conditions
defining the domain of M † for the case

D(M) = {y, y(4) ∈ L2[0, 1] : y(0) = y′′′(0) = y(1) = y′′′(1) = 0}.

4.2.4 Self-adjoint boundary conditions

A formally self-adjoint operator T is truly self adjoint only if the domains of
T † and T coincide. From now on, the unqualified phrase “self-adjoint” will
always mean “truly self-adjoint.”

Self-adjointness is usually desirable in physics problems. It is therefore
useful to investigate what boundary conditions lead to self-adjoint operators.
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For example, what are the most general boundary conditions we can impose
on T = −i∂x if we require the resultant operator to be self-adjoint? Now,

∫ 1

0

dx u∗(−i∂xv)−
∫ 1

0

dx(−i∂xu)∗v = −i
(
u∗(1)v(1)− u∗(0)v(0)

)
. (4.57)

Demanding that the right-hand side be zero gives us, after division by u∗(0)v(1),

u∗(1)

u∗(0)
=
v(0)

v(1)
. (4.58)

We require this to be true for any u and v obeying the same boundary
conditions. Since u and v are unrelated, both sides must equal a constant κ,
and furthermore this constant must obey κ∗ = κ−1 in order that u(1)/u(0)
be equal to v(1)/v(0). Thus, the boundary condition is

u(1)

u(0)
=
v(1)

v(0)
= eiθ (4.59)

for some real angle θ. The domain is therefore

D(T ) = {y, Ty ∈ L2[0, 1] : y(1) = eiθy(0)}. (4.60)

These are twisted periodic boundary conditions.
With these generalized periodic boundary conditions, everything we ex-

pect of a self-adjoint operator actually works:
i) The functions un = ei(2πn+θ)x, with n = . . . ,−2,−1, 0, 1, 2 . . . are eigen-

functions of T with eigenvalues kn ≡ 2πn+ θ.
ii) The eigenvalues are real.
iii) The eigenfunctions form a complete orthonormal set.

Because self-adjoint operators possess a complete set of mutually orthogo-
nal eigenfunctions, they are compatible with the interpretational postulates
of quantum mechanics, where the square of the inner product of a state
vector with an eigenstate gives the probability of measuring the associated
eigenvalue. In quantum mechanics, self-adjoint operators are therefore called
observables.
Example: The Sturm-Liouville equation. With

L =
d

dx
p(x)

d

dx
+ q(x), x ∈ [a, b], (4.61)
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we have

〈u, Lv〉 − 〈Lu, v〉 = [p(u∗v′ − u′∗v)]ba. (4.62)

Let us seek to impose boundary conditions separately at the two ends. Thus,
at x = a we want

(u∗v′ − u′∗v)|a = 0, (4.63)

or
u′∗(a)

u∗(a)
=
v′(a)

v(a)
, (4.64)

and similarly at b. If we want the boundary conditions imposed on v (which
define the domain of L) to coincide with those for u (which define the domain
of L†) then we must have

v′(a)

v(a)
=
u′(a)

u(a)
= tan θa (4.65)

for some real angle θa, and similar boundary conditions with a θb at b. We
can also write these boundary conditions as

αay(a) + βay
′(a) = 0,

αby(b) + βby
′(b) = 0. (4.66)

Deficiency indices and self-adjoint extensions

There is a general theory of self-adjoint boundary conditions, due to Her-
mann Weyl and John von Neumann. We will not describe this theory in any
detail, but simply give their recipe for counting the number of parameters
in the most general self-adjoint boundary condition: To find this number we
define an initial domain D0(L) for the operator L by imposing the strictest
possible boundary conditions. This we do by setting to zero the bound-
ary values of all the y(n) with n less than the order of the equation. Next
count the number of square-integrable eigenfunctions of the resulting adjoint
operator T † corresponding to eigenvalue ±i. The numbers, n+ and n−, of
these eigenfunctions are called the deficiency indices. If they are not equal
then there is no possible way to make the operator self-adjoint. If they are
equal, n+ = n− = n, then there is an n2 real-parameter family of self-adjoint
extensions D(L) ⊃ D0(L) of the initial tightly-restricted domain.
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Example: The sad case of the “radial momentum operator.” We wish to
define the operator Pr = −i∂r on the half-line 0 < r <∞. We start with the
restrictive domain

Pr = −i∂r, D0(T ) = {y, Pry ∈ L2[0,∞] : y(0) = 0}. (4.67)

We then have

P †
r = −i∂r, D(P †

r ) = {y, P †
r y ∈ L2[0,∞]} (4.68)

with no boundary conditions. The equation P †
r y = iy has a normalizable

solution y = e−r. The equation P †
r y = −iy has no normalizable solution.

The deficiency indices are therefore n+ = 1, n− = 0, and this operator
cannot be rescued and made self adjoint.
Example: The Schrödinger operator. We now consider −∂2

x on the half-line.
Set

T = −∂2
x, D0(T ) = {y, Ty ∈ L2[0,∞] : y(0) = y′(0) = 0}. (4.69)

We then have

T † = −∂2
x, D(T †) = {y, T †y ∈ L2[0,∞]}. (4.70)

Again T † comes with no boundary conditions. The eigenvalue equation
T †y = iy has one normalizable solution y(x) = e(i−1)x/

√
2, and the equation

T †y = −iy also has one normalizable solution y(x) = e−(i+1)x/
√

2. The defi-
ciency indices are therefore n+ = n− = 1. The Weyl-von Neumann theory
now says that, by relaxing the restrictive conditions y(0) = y ′(0) = 0, we
can extend the domain of definition of the operator to find a one-parameter
family of self-adjoint boundary conditions. These will be the conditions
y′(0)/y(0) = tan θ that we found above.

If we consider the operator −∂2
x on the finite interval [a, b], then both

solutions of (T † ± i)y = 0 are normalizable, and the deficiency indices will
be n+ = n− = 2. There should therefore be 22 = 4 real parameters in the
self-adjoint boundary conditions. This is a larger class than those we found
in (4.66), because it includes generalized boundary conditions of the form

B1[y] = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = 0,

B2[y] = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = 0
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Figure 4.1: Heterojunction and wavefunctions.

Physics application: semiconductor heterojunction

We now demonstrate why we have spent so much time on identifying self-
adjoint boundary conditions: the technique is important in practical physics
problems.

A heterojunction is an atomically smooth interface between two related
semiconductors, such as GaAs and AlxGa1−xAs, which typically possess dif-
ferent band-masses. We wish to describe the conduction electrons by an
effective Schrödinger equation containing these band masses. What match-
ing condition should we impose on the wavefunction ψ(x) at the interface
between the two materials? A first guess is that the wavefunction must be
continuous, but this is not correct because the “wavefunction” in an effective-
mass band-theory Hamiltonian is not the actual wavefunction (which is con-
tinuous) but instead a slowly varying envelope function multiplying a Bloch
wavefunction. The Bloch function is rapidly varying, fluctuating strongly
on the scale of a single atom. Because the Bloch form of the solution is no
longer valid at a discontinuity, the envelope function is not even defined in
the neighbourhood of the interface, and certainly has no reason to be con-
tinuous. There must still be some linear relation beween the ψ’s in the two
materials, but finding it will involve a detailed calculation on the atomic
scale. In the absence of these calculations, we must use general principles to
constrain the form of the relation. What are these principles?

We know that, were we to do the atomic-scale calculation, the resulting
connection between the right and left wavefunctions would:

• be linear,
• involve no more than ψ(x) and its first derivative ψ ′(x),
• make the Hamiltonian into a self-adjoint operator.

We want to find the most general connection formula compatible with these
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principles. The first two are easy to satisfy. We therefore investigate what
matching conditions are compatible with self-adjointness.

Suppose that the band masses are mL and mR, so that

H = − 1

2mL

d2

dx2
+ VL(x), x < 0,

= − 1

2mR

d2

dx2
+ VR(x), x > 0. (4.71)

Integrating by parts, and keeping the terms at the interface gives us

〈ψ1, Hψ2〉−〈Hψ1, ψ2〉 =
1

2mL

{
ψ∗

1Lψ
′
2L − ψ′∗

1Lψ2L

}
− 1

2mR

{
ψ∗

1Rψ
′
2R − ψ′∗

1Rψ2R

}
.

(4.72)
Here, ψL,R refers to the boundary values of ψ immediately to the left or right
of the junction, respectively. Now we impose general linear homogeneous
boundary conditions on ψ2:

(
ψ2L

ψ′
2L

)
=

(
a b
c d

)(
ψ2R

ψ′
2R

)
. (4.73)

This relation involves four complex, and therefore eight real, parameters.
Demanding that

〈ψ1, Hψ2〉 = 〈Hψ1, ψ2〉, (4.74)

we find

1

2mL

{
ψ∗

1L(cψ2R + dψ′
2R)− ψ′∗

1L(aψ2R + bψ′
2R)
}

=
1

2mR

{
ψ∗

1Rψ
′
2R − ψ′∗

1Rψ2R

}
,

(4.75)
and this must hold for arbitrary ψ2R, ψ′

2R, so, picking off the coefficients of
these expressions and complex conjugating, we find

(
ψ1R

ψ′
1R

)
=

(
mR

mL

)(
d∗ −b∗
−c∗ a∗

)(
ψ1L

ψ′
1L

)
. (4.76)

Because we wish the domain of H† to coincide with that of H, these must
be same conditions that we imposed on ψ2. Thus we must have

(
a b
c d

)−1

=

(
mR

mL

)(
d∗ −b∗
−c∗ a∗

)
. (4.77)
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Since (
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
, (4.78)

we see that this requires
(
a b
c d

)
= eiφ

√
mL

mR

(
A B
C D

)
, (4.79)

where φ, A, B, C, D are real, and AD−BC = 1. Demanding self-adjointness
has therefore cut the original eight real parameters down to four. These
can be determined either by experiment or by performing the microscopic
calculation.3 Note that 4 = 22, a perfect square, as required by the Weyl-
Von Neumann theory.

Exercise 4.5: Consider the Schrödinger operator Ĥ = −∂2
x on the interval

[0, 1]. Show that the most general self-adjoint boundary condition applicable
to Ĥ can be written as

[
ϕ(0)
ϕ′(0)

]
= eiφ

[
a b
c d

] [
ϕ(1)
ϕ′(1)

]
,

where φ, a, b, c, d are real and ac − bd = 1. Consider Ĥ as the quantum
Hamiltonian of a particle on a ring constructed by attaching x = 0 to x = 1.
Show that the self-adjoint boundary condition found above leads to unitary
scattering at the point of join. Does the most general unitary point-scattering
matrix correspond to the most general self-adjoint boundary condition?

4.3 Completeness of eigenfunctions

Now that we have a clear understanding of what it means to be self-adjoint,
we can reiterate the basic claim: an operator T that is self-adjoint with
respect to an L2[a, b] inner product possesses a complete set of mutually or-
thogonal eigenfunctions. The proof that the eigenfunctions are orthogonal
is identical to that for finite matrices. We will sketch a proof of the com-
pleteness of the eigenfunctions of the Sturm-Liouville operator in the next
section.

The set of eigenvalues is, with some mathematical cavils, called the spec-
trum of T . It is usually denoted by σ(T ). An eigenvalue is said to belong to

3For example, see: T. Ando, S. Mori, Surface Science 113 (1982) 124.
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the point spectrum when its associated eigenfunction is normalizable i.e is
a bona-fide member of L2[a, b] having a finite length. Usually (but not al-
ways) the eigenvalues of the point spectrum form a discrete set, and so the
point spectrum is also known as the discrete spectrum. When the opera-
tor acts on functions on an infinite interval, the eigenfunctions may fail to
be normalizable. The associated eigenvalues are then said to belong to the
continuous spectrum. Sometimes, e.g. the hydrogen atom, the spectrum is
partly discrete and partly continuous. There is also something called the
residual spectrum, but this does not occur for self-adjoint operators.

4.3.1 Discrete spectrum

The simplest problems have a purely discrete spectrum. We have eigenfunc-
tions φn(x) such that

Tφn(x) = λnφn(x), (4.80)

where n is an integer. After multiplication by suitable constants, the φn are
orthonormal, ∫

φ∗
n(x)φm(x) dx = δnm, (4.81)

and complete. We can express the completeness condition as the statement
that ∑

n

φn(x)φ
∗
n(x

′) = δ(x− x′). (4.82)

If we take this representation of the delta function and multiply it by f(x′)
and integrate over x′, we find

f(x) =
∑

n

φn(x)

∫
φ∗
n(x

′)f(x′) dx′. (4.83)

So,

f(x) =
∑

n

anφn(x) (4.84)

with

an =

∫
φ∗
n(x

′)f(x′) dx′. (4.85)

This means that if we can expand a delta function in terms of the φn(x), we
can expand any (square integrable) function.
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Figure 4.2: The sum
∑70

n=1 2 sin(nπx) sin(nπx′) for x′ = 0.4. Take note of
the very disparate scales on the horizontal and vertical axes.

Warning: The convergence of the series
∑

n φn(x)φ
∗
n(x

′) to δ(x − x′) is
neither pointwise nor in the L2 sense. The sum tends to a limit only in the
sense of a distribution — meaning that we must multiply the partial sums by
a smooth test function and integrate over x before we have something that
actually converges in any meaningful manner. As an illustration consider our
favourite orthonormal set: φn(x) =

√
2 sin(nπx) on the interval [0, 1]. A plot

of the first 70 terms in the sum

∞∑

n=1

√
2 sin(nπx)

√
2 sin(nπx′) = δ(x− x′)

is shown in figure 4.2. The “wiggles” on both sides of the spike at x =
x′ do not decrease in amplitude as the number of terms grows. They do,
however, become of higher and higher frequency. When multiplied by a
smooth function and integrated, the contributions from adjacent positive and
negative wiggle regions tend to cancel, and it is only after this integration
that the sum tends to zero away from the spike at x = x′.

Rayleigh-Ritz and completeness

For the Schrödinger eigenvalue problem

Ly = −y′′ + q(x)y = λy, x ∈ [a, b], (4.86)
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the large eigenvalues are λn ≈ n2π2/(a − b)2. This is because the term qy
eventually becomes negligeable compared to λy, and we can then solve the
equation with sines and cosines. We see that there is no upper limit to
the magnitude of the eigenvalues. The eigenvalues of the Sturm-Liouville
problem

Ly = −(py′)′ + qy = λy, x ∈ [a, b], (4.87)

are similarly unbounded. We will use this unboundedness of the spectrum to
make an estimate of the rate of convergence of the eigenfunction expansion
for functions in the domain of L, and extend this result to prove that the
eigenfunctions form a complete set.

We know from chapter one that the Sturm-Liouville eigenvalues are the
stationary values of 〈y, Ly〉 when the function y is constrained to have unit
length, 〈y, y〉 = 1. The lowest eigenvalue, λ0, is therefore given by

λ0 = inf
y∈D(L)

〈y, Ly〉
〈y, y〉 . (4.88)

As the variational principle, this formula provides a well-known method of
obtaining approximate ground state energies in quantum mechanics. Part of
its effectiveness comes from the stationary nature of 〈y, Ly〉 at the minimum:
a crude approximation to y often gives a tolerably good approximation to λ0.
In the wider world of eigenvalue problems, the variational principle is named
after Rayleigh and Ritz.4

Suppose we have already found the first n normalized eigenfunctions
y0, y1, . . . , yn−1. Let the space spanned by these functions be Vn. Then an
obvious extension of the variational principle gives

λn = inf
y∈V ⊥

n

〈y, Ly〉
〈y, y〉 . (4.89)

We now exploit this variational estimate to show that if we expand an arbi-
trary y in the domain of L in terms of the full set of eigenfunctions ym,

y =
∞∑

m=0

amym, (4.90)

4J. W. Strutt (later Lord Rayleigh), “In Finding the Correction for the Open End of
an Organ-Pipe.” Phil. Trans. 161 (1870) 77; W. Ritz, ”Uber eine neue Methode zur
Lösung gewisser Variationsprobleme der mathematischen Physik.” J. reine angew. Math.
135 (1908).
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where
am = 〈ym, y〉, (4.91)

then the sum does indeed converge to y.
Let

hn = y −
n−1∑

m=0

amym (4.92)

be the residual error after the first n terms. By definition, hn ∈ V ⊥
n . Let

us assume that we have adjusted, by adding a constant to q if necessary, L
so that all the λm are positive. This adjustment will not affect the ym. We
expand out

〈hn, Lhn〉 = 〈y, Ly〉 −
n−1∑

m=0

λm|am|2, (4.93)

where we have made use of the orthonormality of the ym. The subtracted
sum is guaranteed positive, so

〈hn, Lhn〉 ≤ 〈y, Ly〉. (4.94)

Combining this inequality with Rayleigh-Ritz tells us that

〈y, Ly〉
〈hn, hn〉

≥ 〈hn, Lhn〉〈hn, hn〉
≥ λn. (4.95)

In other words
〈y, Ly〉
λn

≥ ‖y −
n−1∑

m=0

amym‖2. (4.96)

Since 〈y, Ly〉 is independent of n, and λn →∞, we have ‖y −∑n−1
0 amym‖2 → 0.

Thus the eigenfunction expansion indeed converges to y, and does so faster
than λ−1

n goes to zero.
Our estimate of the rate of convergence applies only to the expansion of

functions y for which 〈y, Ly〉 is defined — i.e. to functions y ∈ D (L). The
domain D (L) is always a dense subset of the entire Hilbert space L2[a, b],
however, and, since a dense subset of a dense subset is also dense in the larger
space, we have shown that the linear span of the eigenfunctions is a dense
subset of L2[a, b]. Combining this observation with the alternative definition
of completeness in 2.2.3, we see that the eigenfunctions do indeed form a
complete orthonormal set. Any square integrable function therefore has a
convergent expansion in terms of the ym, but the rate of convergence may
well be slower than that for functions y ∈ D (L).
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Operator methods

Sometimes there are tricks for solving the eigenvalue problem.
Example: Quantum Harmonic Oscillator. Consider the operator

H = (−∂x + x)(∂x + x) + 1 = −∂2
x + x2. (4.97)

This is in the form Q†Q + 1, where Q = (∂x + x), and Q† = (−∂x + x) is its
formal adjoint. If we write these operators in the opposite order we have

QQ† = (∂x + x)(−∂x + x) = −∂2
x + x2 + 1 = H + 1. (4.98)

Now, if ψ is an eigenfunction of Q†Q with non-zero eigenvalue λ then Qψ is
eigenfunction of QQ† with the same eigenvalue. This is because

Q†Qψ = λψ (4.99)

implies that
Q(Q†Qψ) = λQψ, (4.100)

or
QQ†(Qψ) = λ(Qψ). (4.101)

The only way that Qψ can fail to be an eigenfunction of QQ† is if it happens
that Qψ = 0, but this implies that Q†Qψ = 0 and so the eigenvalue was zero.
Conversely, if the eigenvalue is zero then

0 = 〈ψ,Q†Qψ〉 = 〈Qψ,Qψ〉, (4.102)

and so Qψ = 0. In this way, we see that Q†Q and QQ† have exactly the
same spectrum, with the possible exception of any zero eigenvalue.

Now notice that Q†Q does have a zero eigenvalue because

ψ0 = e−
1
2
x2

(4.103)

obeys Qψ0 = 0 and is normalizable. The operator QQ†, considered as an
operator on L2[−∞,∞], does not have a zero eigenvalue because this would
require Q†ψ = 0, and so

ψ = e+
1
2
x2

, (4.104)

which is not normalizable, and so not an element of L2[−∞,∞].
Since

H = Q†Q+ 1 = QQ† − 1, (4.105)
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we see that ψ0 is an eigenfunction of H with eigenvalue 1, and so an eigen-
function of QQ† with eigenvalue 2. Hence Q†ψ0 is an eigenfunction of Q†Q
with eigenvalue 2 and so an eigenfunction H with eigenvalue 3. Proceeding
in the way we find that

ψn = (Q†)nψ0 (4.106)

is an eigenfunction of H with eigenvalue 2n+ 1.
Since Q† = −e 1

2
x2

∂xe
− 1

2
x2

, we can write

ψn(x) = Hn(x)e
− 1

2
x2

, (4.107)

where

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

(4.108)

are the Hermite Polynomials.
This is a useful technique for any second-order operator that can be fac-

torized — and a surprising number of the equations for “special functions”
can be. You will see it later, both in the exercises and in connection with
Bessel functions.

Exercise 4.6: Show that we have found all the eigenfunctions and eigenvalues
of H = −∂2

x + x2. Hint: Show that Q lowers the eigenvalue by 2 and use the
fact that Q†Q cannot have negative eigenvalues.

Problem 4.7: Schrödinger equations of the form

−d
2ψ

dx2
− l(l + 1)sech2xψ = Eψ

are known as Pöschel-Teller equations. By setting u = ltanhx and following
the strategy of this problem one may relate solutions for l to those for l−1 and
so find all bound states and scattering eigenfunctions for any integer l.

a) Suppose that we know that ψ = exp
{
−
∫ x

u(x′)dx′
}

is a solution of

Lψ ≡
(
− d2

dx2
+W (x)

)
ψ = 0.

Show that L can be written as L = M †M where

M =

(
d

dx
+ u(x)

)
, M † =

(
− d

dx
+ u(x)

)
,

the adjoint being taken with respect to the product 〈u, v〉 =
∫
u∗v dx.
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b) Now assume L is acting on functions on [−∞,∞] and that we not have
to worry about boundary conditions. Show that given an eigenfunction
ψ− obeying M †Mψ− = λψ− we can multiply this equation on the left
by M and so find a eigenfunction ψ+ with the same eigenvalue for the
differential operator

L′ = MM † =

(
d

dx
+ u(x)

)(
− d

dx
+ u(x)

)

and vice-versa. Show that this correspondence ψ− ↔ ψ+ will fail if, and
only if , λ = 0.

c) Apply the strategy from part b) in the case u(x) = tanhx and one of the
two differential operators M †M , MM † is (up to an additive constant)

H = − d

dx

2

− 2 sech2x.

Show that H has eigenfunctions of the form ψk = eikxP (tanh x) and
eigenvalue E = k2 for any k in the range −∞ < k < ∞. The function
P (tanhx) is a polynomial in tanhx which you should be able to find
explicitly. By thinking about the exceptional case λ = 0, show that H
has an eigenfunction ψ0(x), with eigenvalue E = −1, that tends rapidly
to zero as x→ ±∞. Observe that there is no corresponding eigenfunction
for the other operator of the pair.

4.3.2 Continuous spectrum

Rather than a give formal discussion, we will illustrate this subject with some
examples drawn from quantum mechanics.

The simplest example is the free particle on the real line. We have

H = −∂2
x. (4.109)

We eventually want to apply this to functions on the entire real line, but we
will begin with the interval [−L/2, L/2], and then take the limit L→∞

The operator H has formal eigenfunctions

ϕk(x) = eikx, (4.110)

corresponding to eigenvalues λ = k2. Suppose we impose periodic boundary
conditions at x = ±L/2:

ϕk(−L/2) = ϕk(+L/2). (4.111)
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This selects kn = 2πn/L, where n is any positive, negative or zero integer,
and allows us to find the normalized eigenfunctions

χn(x) =
1√
L
eiknx. (4.112)

The completeness condition is

∞∑

n=−∞

1

L
eiknxe−iknx′ = δ(x− x′), x, x′ ∈ [−L/2, L/2]. (4.113)

As L becomes large, the eigenvalues become so close that they can hardly be
distinguished; hence the name continuous spectrum,5 and the spectrum σ(H)
becomes the entire positive real line. In this limit, the sum on n becomes an
integral

∞∑

n=−∞

{
. . .

}
→
∫
dn

{
. . .

}
=

∫
dk

(
dn

dk

){
. . .

}
, (4.114)

where
dn

dk
=

L

2π
(4.115)

is called the (momentum) density of states. If we divide this by L to get a
density of states per unit length, we get an L independent “finite” quantity,
the local density of states. We will often write

dn

dk
= ρ(k). (4.116)

If we express the density of states in terms of the eigenvalue λ then, by
an abuse of notation, we have

ρ(λ) ≡ dn

dλ
=

L

2π
√
λ
. (4.117)

5When L is strictly infinite, ϕk(x) is no longer normalizable. Mathematicians do not
allow such un-normalizable functions to be considered as true eigenfunctions, and so a
point in the continuous spectrum is not, to them, actually an eigenvalue. Instead, they
say that a point λ lies in the continuous spectrum if for any ε > 0 there exists an ap-
proximate eigenfunction ϕε such that ‖ϕε‖ = 1, but ‖Lϕε − λϕε‖ < ε. This is not a
profitable definition for us. We prefer to regard non-normalizable wavefunctions as being
distributions in our rigged Hilbert space.
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Note that
dn

dλ
= 2

dn

dk

dk

dλ
, (4.118)

which looks a bit weird, but remember that two states, ±kn, correspond to
the same λ and that the symbols

dn

dk
,

dn

dλ
(4.119)

are ratios of measures, i.e. Radon-Nikodym derivatives, not ordinary deriva-
tives.

In the L→∞ limit, the completeness condition becomes

∫ ∞

−∞

dk

2π
eik(x−x

′) = δ(x− x′), (4.120)

and the length L has disappeared.

Suppose that we now apply boundary conditions y = 0 on x = ±L/2.
The normalized eigenfunctions are then

χn =

√
2

L
sin kn(x+ L/2), (4.121)

where kn = nπ/L. We see that the allowed k’s are twice as close together as
they were with periodic boundary conditions, but now n is restricted to being
a positive non-zero integer. The momentum density of states is therefore

ρ(k) =
dn

dk
=
L

π
, (4.122)

which is twice as large as in the periodic case, but the eigenvalue density of
states is

ρ(λ) =
L

2π
√
λ
, (4.123)

which is exactly the same as before.

That the number of states per unit energy per unit volume does not
depend on the boundary conditions at infinity makes physical sense: no
local property of the sublunary realm should depend on what happens in
the sphere of fixed stars. This point was not fully grasped by physicists,
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however, until Rudolph Peierls6 explained that the quantum particle had to
actually travel to the distant boundary and back before the precise nature
of the boundary could be felt. This journey takes time T (depending on
the particle’s energy) and from the energy-time uncertainty principle, we
can distinguish one boundary condition from another only by examining the
spectrum with an energy resolution finer than ~/T . Neither the distance nor
the nature of the boundary can affect the coarse details, such as the local
density of states.

The dependence of the spectrum of a general differential operator on
boundary conditions was investigated by Hermann Weyl. Weyl distinguished
two classes of singular boundary points: limit-circle, where the spectrum
depends on the choice of boundary conditions, and limit-point , where it does
not. For the Schrödinger operator, the point at infinity, which is “singular”
simply because it is at infinity, is in the limit-point class. We will discuss
Weyl’s theory of singular endpoints in chapter 8.

Phase-shifts

Consider the eigenvalue problem
(
− d2

dr2
+ V (r)

)
ψ = Eψ (4.124)

on the interval [0, R], and with boundary conditions ψ(0) = 0 = ψ(R). This
problem arises when we solve the Schrödinger equation for a central potential
in spherical polar coordinates, and assume that the wavefunction is a function
of r only (i.e. S-wave, or l = 0). Again, we want the boundary at R to be
infinitely far away, but we will start with R at a large but finite distance,
and then take the R →∞ limit. Let us first deal with the simple case that
V (r) ≡ 0; then the solutions are

ψk(r) ∝ sin kr, (4.125)

with eigenvalue E = k2, and with the allowed values of being given by
knR = nπ. Since ∫ R

0

sin2(knr) dr =
R

2
, (4.126)

6Peierls proved that the phonon contribution to the specific heat of a crystal could be
correctly calculated by using periodic boundary conditions. Some sceptics had thought
that such “unphysical” boundary conditions would give a result wrong by factors of two.
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the normalized wavefunctions are

ψk =

√
2

R
sin kr, (4.127)

and completeness reads
∞∑

n=1

(
2

R

)
sin(knr) sin(knr

′) = δ(r − r′). (4.128)

As R becomes large, this sum goes over to an integral:
∞∑

n=1

(
2

R

)
sin(knr) sin(knr

′) →
∫ ∞

0

dn

(
2

R

)
sin(kr) sin(kr′),

=

∫ ∞

0

Rdk

π

(
2

R

)
sin(kr) sin(kr′).(4.129)

Thus, (
2

π

)∫ ∞

0

dk sin(kr) sin(kr′) = δ(r − r′). (4.130)

As before, the large distance, here R, no longer appears.
Now consider the more interesting problem which has the potential V (r)

included. We will assume, for simplicity, that there is an R0 such that V (r)
is zero for r > R0. In this case, we know that the solution for r > R0 is of
the form

ψk(r) = sin (kr + η(k)) , (4.131)

where the phase shift η(k) is a functional of the potential V . The eigenvalue
is still E = k2.
Example: A delta-function shell. We take V (r) = λδ(r − a). See figure 4.3.

a
r

λδ (r−a)
ψ

Figure 4.3: Delta function shell potential.
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A solution with eigenvalue E = k2 and satisfying the boundary condition at
r = 0 is

ψ(r) =

{
A sin(kr), r < a,
sin(kr + η), r > a.

(4.132)

The conditions to be satisfied at r = a are:
i) continuity, ψ(a− ε) = ψ(a+ ε) ≡ ψ(a), and
ii) jump in slope, −ψ′(a + ε) + ψ′(a− ε) + λψ(a) = 0.

Therefore,
ψ′(a+ ε)

ψ(a)
− ψ′(a− ε)

ψ(a)
= λ, (4.133)

or
k cos(ka+ η)

sin(ka + η)
− k cos(ka)

sin(ka)
= λ. (4.134)

Thus,

cot(ka+ η)− cot(ka) =
λ

k
, (4.135)

and

η(k) = −ka + cot−1

(
λ

k
+ cot ka

)
. (4.136)

ka

(k)

−π

π 2π 3π 4π

η

Figure 4.4: The phase shift η(k) of equation (4.136) plotted against ka.

A sketch of η(k) is shown in figure 4.4. The allowed values of k are required
by the boundary condition

sin(kR + η(k)) = 0 (4.137)
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to satisfy
kR + η(k) = nπ. (4.138)

This is a transcendental equation for k, and so finding the individual solutions
kn is not simple. We can, however, write

n =
1

π

(
kR + η(k)

)
(4.139)

and observe that, when R becomes large, only an infinitesimal change in k
is required to make n increment by unity. We may therefore regard n as a
“continuous” variable which we can differentiate with respect to k to find

dn

dk
=

1

π

{
R +

∂η

∂k

}
. (4.140)

The density of allowed k values is therefore

ρ(k) =
1

π

{
R +

∂η

∂k

}
. (4.141)

For our delta-shell example, a plot of ρ(k) appears in figure 4.5.
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a

(R−a) π

Figure 4.5: The density of states for the delta-shell potential. The extended
states are so close in energy that we need an optical aid to resolve individual
levels. The almost-bound resonance levels have to squeeze in between them.

This figure shows a sequence of resonant bound states at ka = nπ superposed
on the background continuum density of states appropriate to a large box of
length (R−a). Each “spike” contains one extra state, so the average density
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of states is that of a box of length R. We see that changing the potential
does not create or destroy eigenstates, it just moves them around.

The spike is not exactly a delta function because of level repulsion between
nearly degenerate eigenstates. The interloper elbows the nearby levels out of
the way, and all the neighbours have to make do with a bit less room. The
stronger the coupling between the states on either side of the delta-shell, the
stronger is the inter-level repulsion, and the broader the resonance spike.

Normalization factor

We now evaluate ∫ R

0

dr|ψk|2 = N−2
k , (4.142)

so as to find the the normalized wavefunctions

χk = Nkψk. (4.143)

Let ψk(r) be a solution of

Hψ =

(
− d2

dr2
+ V (r)

)
ψ = k2ψ (4.144)

satisfying the boundary condition ψk(0) = 0, but not necessarily the bound-
ary condition at r = R. Such a solution exists for any k. We scale ψk by
requiring that ψk(r) = sin(kr + η) for r > R0. We now use Lagrange’s
identity to write

(k2 − k′2)
∫ R

0

dr ψk ψk′ =

∫ R

0

dr {(Hψk)ψk′ − ψk(Hψk′)}

= [ψkψ
′
k′ − ψ′

kψk′]
R
0

= sin(kR + η)k′ cos(k′R + η)

−k cos(kR + η) sin(k′R + η). (4.145)

Here, we have used ψk,k′(0) = 0, so the integrated out part vanishes at the
lower limit, and have used the explicit form of ψk,k′ at the upper limit.

Now differentiate with respect to k, and then set k = k′. We find

2k

∫ R

0

dr(ψk)
2 = −1

2
sin
(
2(kR + η)

)
+ k

{
R +

∂η

∂k

}
. (4.146)
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In other words,

∫ R

0

dr(ψk)
2 =

1

2

{
R +

∂η

∂k

}
− 1

4k
sin
(
2(kR + η)

)
. (4.147)

At this point, we impose the boundary condition at r = R. We therefore
have kR + η = nπ and the last term on the right hand side vanishes. The
final result for the normalization integral is therefore

∫ R

0

dr|ψk|2 =
1

2

{
R +

∂η

∂k

}
. (4.148)

Observe that the same expression occurs in both the density of states
and the normalization integral. When we use these quantities to write down
the contribution of the normalized states in the continuous spectrum to the
completeness relation we find that

∫ ∞

0

dk

(
dn

dk

)
N2
kψk(r)ψk(r

′) =

(
2

π

)∫ ∞

0

dk ψk(r)ψk(r
′), (4.149)

the density of states and normalization factor having cancelled and disap-
peared from the end result. This is a general feature of scattering problems:
The completeness relation must give a delta function when evaluated far from
the scatterer where the wavefunctions look like those of a free particle. So,
provided we normalize ψk so that it reduces to a free particle wavefunction
at large distance, the measure in the integral over k must also be the same
as for the free particle.

Including any bound states in the discrete spectrum, the full statement
of completeness is therefore

∑

bound states

ψn(r)ψn(r
′) +

(
2

π

)∫ ∞

0

dk ψk(r)ψk(r
′) = δ(r − r′). (4.150)

Example: We will exhibit a completeness relation for a problem on the entire
real line. We have already met the Pöschel-Teller equation,

Hψ =

(
− d2

dx2
− l(l + 1) sech2x

)
ψ = Eψ (4.151)

in exercise 4.7. When l is an integer, the potential in this Schrödinger equa-
tion has the special property that it is reflectionless.
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The simplest non-trivial example is l = 1. In this case, H has a single
discrete bound state at E0 = −1. The normalized eigenfunction is

ψ0(x) =
1√
2
sech x. (4.152)

The rest of the spectrum consists of a continuum of unbound states with
eigenvalues E(k) = k2 and eigenfunctions

ψk(x) =
1√

1 + k2
eikx(−ik + tanh x). (4.153)

Here, k is any real number. The normalization of ψk(x) has been chosen so
that, at large |x|, where tanh x→ ±1, we have

ψ∗
k(x)ψk(x

′)→ e−ik(x−x
′). (4.154)

The measure in the completeness integral must therefore be dk/2π, the same
as that for a free particle.

Let us compute the difference

I = δ(x− x′)−
∫ ∞

−∞

dk

2π
ψ∗
k(x)ψk(x

′)

=

∫ ∞

−∞

dk

2π

(
e−ik(x−x) − ψ∗

k(x)ψk(x
′)
)

=

∫ ∞

−∞

dk

2π
e−ik(x−x

′) 1 + ik(tanh x− tanhx′)− tanh x tanhx′

1 + k2
.

(4.155)

We use the standard integral,
∫ ∞

−∞

dk

2π
e−ik(x−x

′) 1

1 + k2
=

1

2
e−|x−x′|, (4.156)

together with its x′ derivative,
∫ ∞

−∞

dk

2π
e−ik(x−x

′) ik

1 + k2
= sgn (x− x′)1

2
e−|x−x′|, (4.157)

to find

I =
1

2

{
1 + sgn (x− x′)(tanh x− tanh x′)− tanh x tanh x′

}
e−|x−x′|. (4.158)
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Assume, without loss of generality, that x > x′; then this reduces to

1

2
(1 + tanh x)(1− tanhx′)e−(x−x′) =

1

2
sech x sech x′

= ψ0(x)ψ0(x
′). (4.159)

Thus, the expected completeness condition

ψ0(x)ψ0(x
′) +

∫ ∞

−∞

dk

2π
ψ∗
k(x)ψk(x

′) = δ(x− x′), (4.160)

is confirmed.

4.4 Further exercises and problems

We begin with a practical engineering eigenvalue problem.

Exercise 4.8: Whirling drive shaft. A thin flexible drive shaft is supported by
two bearings that impose the conditions x′ = y′ = x = y = 0 at at z = ±L.
Here x(z), y(z) denote the transverse displacements of the shaft, and the
primes denote derivatives with respect to z.
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Figure 4.6: The n = 1 even-parity mode of a whirling shaft.

The shaft is driven at angular velocity ω. Experience shows that at certain
critical frequencies ωn the motion becomes unstable to whirling — a sponta-
neous vibration and deformation of the normally straight shaft. If the rotation
frequency is raised above ωn, the shaft becomes quiescent and straight again
until we reach a frequency ωn+1, at which the pattern is repeated. Our task
is to understand why this happens.
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The kinetic energy of the whirling shaft is

T =
1

2

∫ L

−L
ρ{ẋ2 + ẏ2}dz,

and the strain energy due to bending is

V [x, y] =
1

2

∫ L

−L
γ{(x′′)2 + (y′′)2} dz.

a) Write down the Lagrangian, and from it obtain the equations of motion
for the shaft.

b) Seek whirling-mode solutions of the equations of motion in the form

x(z, t) = ψ(z) cos ωt,

y(z, t) = ψ(z) sinωt.

Show that this quest requires the solution of the eigenvalue problem

γ

ρ

d4ψ

dz4
= ω2

nψ, ψ′(−L) = ψ(−L) = ψ′(L) = ψ(L) = 0.

c) Show that the critical frequencies are given in terms of the solutions ξn
to the transcendental equation

tanh ξn = ± tan ξn, (?)

as

ωn =

√
γ

ρ

(
ξn
L

)2

,

Show that the plus sign in ? applies to odd parity modes, where ψ(z) =
−ψ(−z), and the minus sign to even parity modes where ψ(z) = ψ(−z).

Whirling, we conclude, occurs at the frequencies of the natural transverse
vibration modes of the elastic shaft. These modes are excited by slight imbal-
ances that have negligeable effect except when the shaft is being rotated at
the resonant frequency.

Insight into adjoint boundary conditions for an ODE can be obtained by
thinking about how we would impose these boundary conditions in a numer-
ical solution. The next exercise problem this.
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Problem 4.9: Discrete approximations and self-adjointness. Consider the sec-
ond order inhomogeneous equation Lu ≡ u′′ = g(x) on the interval 0 ≤x ≤1.
Here g(x) is known and u(x) is to be found. We wish to solve the problem on a
computer, and so set up a discrete approximation to the ODE in the following
way:

• replace the continuum of independent variables 0 ≤x ≤1 by the discrete
lattice of points 0 ≤ xn ≡ (n − 1

2)/N ≤ 1. Here N is a positive integer
and n = 1, 2, . . . , N ;

• replace the functions u(x) and g(x) by the arrays of real variables un ≡
u(xn) and gn ≡ g(xn);

• replace the continuum differential operator d2/dx2 by the difference op-
erator D2, defined by D2un ≡ un+1 − 2un + un−1.

Now do the following problems:

a) Impose continuum Dirichlet boundary conditions u(0) = u(1) = 0. De-
cide what these correspond to in the discrete approximation, and write
the resulting set of algebraic equations in matrix form. Show that the
corresponding matrix is real and symmetric.

b) Impose the periodic boundary conditions u(0) = u(1) and u′(0) = u′(1),
and show that these require us to set u0 ≡ uN and uN+1 ≡ u1. Again
write the system of algebraic equations in matrix form and show that
the resulting matrix is real and symmetric.

c) Consider the non-symmetric N -by-N matrix operator

D2u =




0 0 0 0 0 . . . 0
1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0
...

...
...

. . .
...

...
...

0 . . . 0 1 −2 1 0
0 . . . 0 0 1 −2 1
0 . . . 0 0 0 0 0







uN
uN−1

uN−2
...
u3

u2

u1




.

i) What vectors span the null space of D2?
ii) To what continuum boundary conditions for d2/dx2 does this matrix

correspond?
iii) Consider the matrix (D2)†, To what continuum boundary condi-

tions does this matrix correspond? Are they the adjoint boundary
conditions for the differential operator in part ii)?

Exercise 4.10: Let

Ĥ =

(
−i∂x m1 − im2

m1 + im2 i∂x

)
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= −iσ̂3∂x +m1σ̂1 +m2σ̂2

be a one-dimensional Dirac Hamiltonian. Here m1(x) and m2(x) are real
functions and the σ̂i are the Pauli matrices. The matrix differential operator
Ĥ acts on the two-component “spinor”

Ψ(x) =

(
ψ1(x)
ψ2(x)

)
.

a) Consider the eigenvalue problem ĤΨ = EΨ on the interval [a, b]. Show
that the boundary conditions

ψ1(a)

ψ2(a)
= exp{iθa},

ψ1(b)

ψ2(b)
= exp{iθb}

where θa, θb are real angles, make Ĥ into an operator that is self-adjoint
with respect to the inner product

〈Ψ1,Ψ2〉 =
∫ b

a
Ψ†

1(x)Ψ2(x) dx.

b) Find the eigenfunctions Ψn and eigenvalues En in the case that m1 =
m2 = 0 and the θa,b are arbitrary real angles.

Here are three further problems involving the completeness of operators with
a continuous spectrum:

Problem 4.11: Missing State. In problem 4.7 you will have found that the
Schrödinger equation

(
− d2

dx2
− 2 sech2x

)
ψ = E ψ

has eigensolutions

ψk(x) = eikx(−ik + tanhx)

with eigenvalue E = k2.

• For x large and positive ψk(x) ≈ Aeikxeiη(k), while for x large and neg-
ative ψk(x) ≈ Aeikxe−iη(k), the (complex) constant A being the same
in both cases. Express the phase shift η(k) as the inverse tangent of an
algebraic expression in k.
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• Impose periodic boundary conditions ψ(−L/2) = ψ(+L/2) where L� 1.
Find the allowed values of k and hence an explicit expression for the k-
space density, ρ(k) = dn

dk , of the eigenstates.
• Compare your formula for ρ(k) with the corresponding expression, ρ0(k) =
L/2π, for the eigenstate density of the zero-potential equation and com-
pute the integral

∆N =

∫ ∞

−∞
{ρ(k) − ρ0(k)}dk.

• Deduce that one eigenfunction has gone missing from the continuum and
become the localized bound state ψ0(x) = 1√

2
sech x.

Problem 4.12: Continuum Completeness. Consider the differential operator

L̂ = − d2

dx2
, 0 ≤ x <∞

with self-adjoint boundary conditions ψ(0)/ψ ′(0) = tan θ for some fixed angle
θ.

• Show that when tan θ < 0 there is a single normalizable negative-eigenvalue
eigenfunction localized near the origin, but none when tan θ > 0.

• Show that there is a continuum of positive-eigenvalue eigenfunctions of
the form ψk(x) = sin(kx+ η(k)) where the phase shift η is found from

eiη(k) =
1 + ik tan θ√
1 + k2 tan2 θ

.

• Write down (no justification required) the appropriate completeness re-
lation

δ(x− x′) =

∫
dn

dk
N2
kψk(x)ψk(x

′) dk +
∑

bound

ψn(x)ψn(x
′)

with an explicit expression for the product (not the separate factors) of
the density of states and the normalization constant N 2

k , and with the
correct limits on the integral over k.

• Confirm that the ψk continuum on its own, or together with the bound
state when it exists, form a complete set. You will do this by evaluating
the integral

I(x, x′) =
2

π

∫ ∞

0
sin(kx+ η(k)) sin(kx′ + η(k)) dk
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and interpreting the result. You will need the following standard integral
∫ ∞

−∞

dk

2π
eikx

1

1 + k2t2
=

1

2|t|e
−|x|/|t|.

Take care! You should monitor how the bound state contribution switches
on and off as θ is varied. Keeping track of the modulus signs | . . . | in the
standard integral is essential for this.

Problem 4.13: One-dimensional scattering redux. Consider again the one-
dimensional Schrödinger equation from chapter 3 problem 3.4:

−d
2ψ

dx2
+ V (x)ψ = Eψ,

where V (x) is zero except in a finite interval [−a, a] near the origin.

xa−a
RL

a

a in 

a

a in 

out out 
L R

RL 

V(x)

Figure 4.7: Incoming and outgoing waves in problem 4.13. The asymptotic
regions L and R are defined by L = {x < −a} and R = {x > a}.

For k > 0, consider solutions of the form

ψ(x) =

{
ain
L e

ikx + aout
L e−ikx, x ∈ L,

ain
Re

−ikx + aout
R eikx, x ∈ R.

a) Show that, in the notation of problem 3.4, we have
[
aout
L

aout
R

]
=

[
rL(k) tR(−k)
tL(k) rR(−k)

] [
ain
L

ain
R

]
,

and show that the S-matrix

S(k) ≡
[
rL(k) tR(−k)
tL(k) rR(−k)

]

is unitary.
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b) By observing that complex conjugation interchanges the “in” and “out”
waves, show that it is natural to extend the definition of the transmission
and reflection coefficients to all real k by setting rL,R(k) = r∗L,R(−k),
tL,R(k) = t∗L,R(−k).

c) In problem 3.4 we introduced the particular solutions

ψk(x) =

{
eikx + rL(k)e−ikx, x ∈ L,
tL(k)eikx, x ∈ R,

k > 0,

=

{
tR(k)eikx, x ∈ L,
eikx + rR(k)e−ikx, x ∈ R. k < 0.

Show that, together with any bound states ψn(x), these ψk(x) satisfy
the completeness relation

∑

bound

ψ∗
n(x)ψn(x

′) +

∫ ∞

−∞

dk

2π
ψ∗
k(x)ψk(x

′) = δ(x − x′)

provided that

−
∑

bound

ψ∗
n(x)ψn(x

′) =

∫ ∞

−∞

dk

2π
rL(k)e−ik(x+x

′), x, x′ ∈ L,

=

∫ ∞

−∞

dk

2π
tL(k)e−ik(x−x

′), x ∈ L, x′ ∈ R,

=

∫ ∞

−∞

dk

2π
tR(k)e−ik(x−x

′), x ∈ R, x′ ∈ L,

=

∫ ∞

−∞

dk

2π
rR(k)e−ik(x+x

′), x, x′ ∈ R.

d) Compute rL,R(k) and tL,R(k) for the potential V (x) = −λδ(x),and verify
that the conditions in part c) are satisfied.

If you are familiar with complex variable methods, look ahead to chapter
18 where problem 18.22 shows you how to use complex variable methods to
evaluate the Fourier transforms in part c), and so confirm that the bound state
ψn(x) and the ψk(x) together constitute a complete set of eigenfunctions.

Problem 4.14: Levinson’s Theorem and the Friedel sum rule. The interaction
between an attractive impurity and (S-wave, and ignoring spin) electrons in
a metal can be modelled by a one-dimensional Schrödinger equation

−d
2χ

dr2
+ V (r)χ = k2χ.
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Here r is the distance away from the impurity and V (r) is the (spherically
symmetric) impurity potential and χ(r) =

√
4πrψ(r) where ψ(r) is the three-

dimensional wavefunction. The impurity attracts electrons to its vicinity. Let
χ0
k(r) = sin(kr) denote the unperturbed wavefunction, and χk(r) denote the

perturbed wavefunction that beyond the range of impurity potential becomes
sin(kr + η(k)). We fix the 2nπ ambiguity in the definition of η(k) by taking
η(∞) to be zero, and requiring η(k) to be a continuous function of k.

• Show that the continuous-spectrum contribution to the change in the
number of electrons within a sphere of radius R surrounding the impurity
is given by

2

π

∫ kf

0

(∫ R

0

{
|χk(x)|2 − |χ0

k(x)|2
}
dr

)
dk =

1

π
[η(kf )− η(0)]+oscillations.

Here kf is the Fermi momentum, and “oscillations” refers to Friedel oscil-
lations ≈ cos(2(kfR+ η)). You should write down an explicit expression
for the Friedel oscillation term, and recognize it as the Fourier transform
of a function ∝ k−1 sin η(k).

• Appeal to the Riemann-Lebesgue lemma to argue that the Friedel density
oscillations make no contribution to the accumulated electron number in
the limit R→∞.
(Hint: You may want to look ahead to the next part of the problem in
order to show that k−1 sin η(k) remains finite as k → 0.)

The impurity-induced change in the number of unbound electrons in the in-
terval [0, R] is generically some fraction of an electron, and, in the case of
an attractive potential, can be negative — the phase-shift being positive and
decreasing steadily to zero as k increases to infinity. This should not be sur-
prising. Each electron in the Fermi sea speeds up as it enters an attractive
potential well, spends less time there, and so makes a smaller contribution
to the average local density than it would in the absence of the potential.
We would, however, surely expect an attractive potential to accumulate a net
positive number of electrons.

• Show that a negative continuous-spectrum contribution to the accumu-
lated electron number is more than compensated for by a positive number

Nbound =

∫ ∞

0
(ρ0(k)− ρ(k))dk = −

∫ ∞

0

1

π

∂η

∂k
dk =

1

π
η(0).

of electrons bound to the potential. After accounting for these bound
electrons, show that the total number of electrons accumulated near the
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impurity is

Qtot =
1

π
η(kf ).

This formula (together its higher angular momentum versions) is known
as the Friedel sum rule. The relation between η(0) and the number of
bound states is called Levinson’s theorem. A more rigorous derivation
of this theorem would show that η(0) may take the value (n + 1/2)π
when there is a non-normalizable zero-energy “half-bound” state. In
this exceptional case the accumulated charge will depend on R.
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Chapter 5

Green Functions

In this chapter we will study strategies for solving the inhomogeneous linear
differential equation Ly = f . The tool we use is the Green function, which
is an integral kernel representing the inverse operator L−1. Apart from their
use in solving inhomogeneous equations, Green functions play an important
role in many areas of physics.

5.1 Inhomogeneous linear equations

We wish to solve Ly = f for y. Before we set about doing this, we should
ask ourselves whether a solution exists, and, if it does, whether it is unique.
The answers to these questions are summarized by the Fredholm alternative.

5.1.1 Fredholm alternative

The Fredholm alternative for operators on a finite-dimensional vector space
is discussed in detail in the appendix on linear algebra. You will want to
make sure that you have read and understood this material. Here, we merely
restate the results.

Let V be finite-dimensional vector space equipped with an inner product,
and let A be a linear operator A : V → V on this space. Then

I. Either
i) Ax = b has a unique solution,

or
ii) Ax = 0 has a non-trivial solution.

155
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II. If Ax = 0 has n linearly independent solutions, then so does A†x = 0.
III. If alternative ii) holds, then Ax = b has no solution unless b is perpen-

dicular to all solutions of A†x = 0.
What is important for us in the present chapter is that this result continues
to hold for linear differential operators L on a finite interval — provided that
we define L† as in the previous chapter, and provided the number of boundary
conditions is equal to the order of the equation.

If the number of boundary conditions is not equal to the order of the
equation then the number of solutions to Ly = 0 and L†y = 0 will differ in
general. It is still true, however, that Ly = f has no solution unless f is
perpendicular to all solutions of L†y = 0.
Example: As an illustration of what happens when an equation with too
many boundary conditions, consider

Ly =
dy

dx
, y(0) = y(1) = 0. (5.1)

Clearly Ly = 0 has only the trivial solution y ≡ 0. If a solution to Ly = f
exists, therefore, it will be unique.

We know that L† = −d/dx, with no boundary conditions on the functions
in its domain. The equation L†y = 0 therefore has the non-trivial solution
y = 1. This means that there should be no solution to Ly = f unless

〈1, f〉 =
∫ 1

0

f dx = 0. (5.2)

If this condition is satisfied then

y(x) =

∫ x

0

f(x) dx (5.3)

satisfies both the differential equation and the boundary conditions at x =
0, 1. If the condition is not satisfied, y(x) is not a solution, because y(1) 6= 0.

Initially we only solve Ly = f for homogeneous boundary conditions.
After we have understood how to do this, we will extend our methods to deal
with differential equations with inhomogeneous boundary conditions.

5.2 Constructing Green functions

We will solve Ly = f , a differential equation with homogeneous boundary
conditions, by finding an inverse operator L−1, so that y = L−1f . This
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inverse operator L−1 will be represented by an integral kernel

(L−1)x,ξ = G(x, ξ), (5.4)

with the property

LxG(x, ξ) = δ(x− ξ). (5.5)

Here, the subscript x on L indicates that L acts on the first argument, x, of
G. Then

y(x) =

∫
G(x, ξ)f(ξ) dξ (5.6)

will obey

Lxy =

∫
LxG(x, ξ)f(ξ) dξ =

∫
δ(x− ξ)f(ξ) dξ = f(x). (5.7)

The problem is how to construct G(x, ξ). There are three necessary ingredi-
ents:
• the function χ(x) ≡ G(x, ξ) must have some discontinuous behaviour

at x = ξ in order to generate the delta function;
• away from x = ξ, the function χ(x) must obey Lχ = 0;
• the function χ(x) must obey the homogeneous boundary conditions

required of y at the ends of the interval.
The last ingredient ensures that the resulting solution, y(x), obeys the bound-
ary conditions. It also ensures that the range of the integral operator G lies
within the domain of L, a prerequisite if the product LG = I is to make
sense. The manner in which these ingredients are assembled to construct
G(x, ξ) is best explained through examples.

5.2.1 Sturm-Liouville equation

We begin by constructing the solution to the equation

(p(x)y′)′ + q(x)y(x) = f(x) (5.8)

on the finite interval [a, b] with homogeneous self-adjoint boundary conditions

y′(a)

y(a)
= tan θL,

y′(b)

y(b)
= tan θR. (5.9)
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We therefore seek a function G(x, ξ) such that χ(x) = G(x, ξ) obeys

Lχ = (pχ′)′ + qχ = δ(x− ξ), (5.10)

The function χ(x) must also obey the homogeneous boundary conditions we
require of y(x).

Now (5.10) tells us that χ(x) must be continuous at x = ξ. For if not, the
two differentiations applied to a jump function would give us the derivative
of a delta function, and we want only a plain δ(x− ξ). If we write

G(x, ξ) = χ(x) =

{
AyL(x)yR(ξ), x < ξ,
AyL(ξ)yR(x), x > ξ,

(5.11)

then χ(x) is automatically continuous at x = ξ. We take yL(x) to be a
solution of Ly = 0, chosen to satisfy the boundary condition at the left hand
end of the interval. Similarly yR(x) should solve Ly = 0 and satisfy the
boundary condition at the right hand end. With these choices we satisfy
(5.10) at all points away from x = ξ.

To work out how to satisfy the equation exactly at the location of the
delta-function, we integrate (5.10) from ξ − ε to ξ + ε and find that

p(ξ)[χ′(ξ + ε)− χ′(ξ − ε)] = 1 (5.12)

With our product form for χ(x), this jump condition becomes

Ap(ξ)
(
yL(ξ)y

′
R(ξ)− y′L(ξ)yR(ξ)

)
= 1 (5.13)

and determines the constant A. We recognize the Wronskian W (yL, yR; ξ)
on the left hand side of this equation. We therefore have A = 1/(pW ) and

G(x, ξ) =

{
1
pW
yL(x)yR(ξ), x < ξ,

1
pW
yL(ξ)yR(x), x > ξ.

(5.14)

For the Sturm-Liouville equation the product pW is constant. This fact
follows from Liouville’s formula,

W (x) = W (0) exp

{
−
∫ x

0

(
p1

p0

)
dξ

}
, (5.15)

and from p1 = p′0 = p′ in the Sturm-Liouville equation. Thus

W (x) = W (0) exp
(
− ln[p(x)/p(0)]

)
= W (0)

p(0)

p(x)
. (5.16)
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The constancy of pW means that G(x, ξ) is symmetric:

G(x, ξ) = G(ξ, x). (5.17)

This is as it should be. The inverse of a symmetric matrix (and the real,
self-adjoint, Sturm-Liouville operator is the function-space analogue of a real
symmetric matrix) is itself symmetric.

The solution to
Ly = (p0y

′)′ + qy = f(x) (5.18)

is therefore

y(x) =
1

Wp

{
yL(x)

∫ b

x

yR(ξ)f(ξ) dξ + yR(x)

∫ x

a

yL(ξ)f(ξ) dξ

}
. (5.19)

Take care to understand the ranges of integration in this formula. In the
first integral ξ > x and we use G(x, ξ) ∝ yL(x)yR(ξ). In the second integral
ξ < x and we use G(x, ξ) ∝ yL(ξ)yR(x). It is easy to get these the wrong
way round.

Because we must divide by it in constructing G(x, ξ), it is necessary that
the Wronskian W (yL, yR) not be zero. This is reasonable. If W were zero
then yL ∝ yR, and the single function yR satisfies both LyR = 0 and the
boundary conditions. This means that the differential operator L has yR as
a zero-mode, so there can be no unique solution to Ly = f .
Example: Solve

−∂2
xy = f(x), y(0) = y(1) = 0. (5.20)

We have
yL = x

yR = 1− x

}
⇒ y′LyR − yLy′R ≡ 1. (5.21)

We find that

G(x, ξ) =

{
x(1− ξ), x < ξ,
ξ(1− x), x > ξ,

(5.22)

0 1ξ

Figure 5.1: The function χ(x) = G(x, ξ) .
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and

y(x) = (1− x)
∫ x

0

ξf(ξ) dξ + x

∫ 1

x

(1− ξ)f(ξ) dξ. (5.23)

5.2.2 Initial-value problems

Initial value problems are those boundary-value problems where all boundary
conditions are imposed at one end of the interval, instead of some conditions
at one end and some at the other. The same ingredients go into to construct-
ing the Green function, though.

Consider the problem

dy

dt
−Q(t)y = F (t), y(0) = 0. (5.24)

We seek a Green function such that

LtG(t, t′) ≡
(
d

dt
−Q(t)

)
G(t, t′) = δ(t− t′) (5.25)

and G(0, t′) = 0.

We need χ(t) = G(t, t′) to satisfy Ltχ = 0, except at t = t′, and need
χ(0) = 0. The unique solution of Ltχ = 0 with χ(0) = 0 is χ(t) ≡ 0. This
means that G(t, 0) = 0 for all t < t′. Near t = t′ we have the jump condition

G(t′ + ε, t′)−G(t′ − ε, t′) = 1. (5.26)

The unique solution is

G(t, t′) = θ(t− t′) exp

{∫ t

t′
Q(s)ds

}
, (5.27)

where θ(t− t′) is the Heaviside step distribution

θ(t) =

{
0, t < 0,
1, t > 0.

(5.28)
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1

t
t’

G(t,t’)

Figure 5.2: The Green functionG(t, t′) for the first-order initial value problem
.

Therefore

y(t) =

∫ ∞

0

G(t, t′)F (t′)dt′,

=

∫ t

0

exp

{∫ t

t′
Q(s) ds

}
F (t′) dt′

= exp

{∫ t

0

Q(s) ds

}∫ t

0

exp

{
−
∫ t′

0

Q(s) ds

}
F (t′) dt′. (5.29)

We earlier obtained this solution via variation of parameters.
Example: Forced, Damped, Harmonic Oscillator. An oscillator obeys the
equation

ẍ+ 2γẋ + (Ω2 + γ2)x = F (t). (5.30)

Here γ > 0 is the friction coeffecient. Assuming that the oscillator is at rest
at the origin at t = 0, we will show that

x(t) =

(
1

Ω

)∫ t

0

e−γ(t−τ) sin Ω(t− τ)F (τ)dτ. (5.31)

We seek a Green function G(t, τ) such that χ(t) = G(t, τ) obeys χ(0) =
χ′(0) = 0. Again, the unique solution of the differential equation with this
initial data is χ(t) ≡ 0. The Green function must be continuous at t = τ ,
but its derivative must be discontinuous there, jumping from zero to unity
to provide the delta function. Thereafter, it must satisfy the homogeneous
equation. The unique function satisfying all these requirements is

G(t, τ) = θ(t− τ) 1

Ω
e−γ(t−τ) sin Ω(t− τ). (5.32)
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τ
t

G(t, τ )

Figure 5.3: The Green function G(t, τ) for the damped oscillator problem .

Both these initial-value Green functions G(t, t′) are identically zero when
t < t′. This is because the Green function is the response of the system to a
kick at time t = t′, and in physical problems no effect comes before its cause.
Such Green functions are said to be causal .

Physics application: friction without friction—the Caldeira-Leggett
model in real time.

We now describe an application of the initial-value problem Green function
we found in the preceding example.

When studying the quantum mechanics of systems with friction, such as
the viscously damped oscillator, we need a tractable model of the dissipative
process. Such a model was introduced by Caldeira and Leggett.1 They
consider the Lagrangian

L =
1

2

(
Q̇2 − (Ω2 −∆Ω2)Q2

)
−Q

∑

i

fiqi +
∑

i

1

2

(
q̇2
i − ω2

i q
2
i

)
, (5.33)

which describes a macroscopic variable Q(t), linearly coupled to an oscillator
bath of very many simple systems qi representing the environment. The
quantity

∆Ω2 def
= −

∑

i

(
f 2
i

ω2
i

)
, (5.34)

1A. Caldiera, A. J. Leggett, Phys. Rev. Lett. 46 (1981) 211.
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is a counter-term that is inserted cancel the frequency shift

Ω2 → Ω2 −
∑

i

(
f 2
i

ω2
i

)
, (5.35)

caused by the coupling to the bath.2

The equations of motion are

Q̈+ (Ω2 −∆Ω2)Q +
∑

i

fiqi = 0,

q̈i + ω2
i qi + fiQ = 0. (5.36)

Using our initial-value Green function, we solve for the qi in terms of Q(t):

fiqi = −
∫ t

−∞

(
f 2
i

ωi

)
sinωi(t− τ)Q(τ)dτ. (5.37)

The resulting motion of the qi feeds back into the equation for Q to give

Q̈+ (Ω2 −∆Ω2)Q+

∫ t

−∞
F (t− τ)Q(τ) dτ = 0, (5.38)

where

F (t)
def
= −

∑

i

(
f 2
i

ωi

)
sin(ωit) (5.39)

is a memory function.
It is now convenient to introduce a spectral function

J(ω)
def
=
π

2

∑

i

(
f 2
i

ωi

)
δ(ω − ωi), (5.40)

which characterizes the spectrum of couplings and frequencies associated
with the oscillator bath. In terms of J(ω) we can write

F (t) = − 2

π

∫ ∞

0

J(ω) sin(ωt) dω. (5.41)

2The shift arises because a static Q displaces the bath oscillators so that fiqi =
−(f2

i /ω
2
i )Q. Substituting these values for the fiqi into the potential terms shows that, in

the absence of ∆Ω2Q2, the effective potential seen by Q would be

1

2
Ω2Q2 +Q

∑

i

fiqi +
∑

i

1

2
ω2

i q
2
i =

1

2

(
Ω2 −

∑

i

(
f2

i

ω2
i

))
Q2.
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Although J(ω) is defined as a sum of delta function “spikes,” the oscillator
bath contains a very large number of systems and this makes J(ω) effectively
a smooth function. This is just as the density of a gas (a sum of delta
functions at the location of the atoms) is macroscopically smooth. By taking
different forms for J(ω) we can represent a wide range of environments.
Caldeira and Leggett show that to obtain a friction force proportional to
Q̇ we should make J(ω) proportional to the frequency ω. To see how this
works, consider the choice

J(ω) = ηω

[
Λ2

Λ2 + ω2

]
, (5.42)

which is equal to ηω for small ω, but tends to zero when ω >> Λ. The
high-frequency cutoff Λ is introduced to make the integrals over ω converge.
With this cutoff

2

π

∫ ∞

0

J(ω) sin(ωt) dω =
2

2πi

∫ ∞

−∞

η ωΛ2eiωt

Λ2 + ω2
dω = sgn (t)ηΛ2e−Λ|t|. (5.43)

Therefore,
∫ t

−∞
F (t− τ)Q(τ) dτ = −

∫ t

−∞
ηΛ2e−Λ|t−τ |Q(τ) dτ

= −ηΛQ(t) + ηQ̇(t)− η

2Λ
Q̈(t) + · · · , (5.44)

where the second line results from expanding Q(τ) as a Taylor series

Q(τ) = Q(t) + (τ − t)Q̇(t) + · · · , (5.45)

and integrating term-by-term. Now,

−∆Ω2 ≡
∑

i

(
f 2
i

ω2
i

)
=

2

π

∫ ∞

0

J(ω)

ω
dω =

2

π

∫ ∞

0

ηΛ2

Λ2 + ω2
dω = ηΛ. (5.46)

The −∆Ω2Q counter-term thus cancels the leading term −ηΛQ(t) in (5.44),
which would otherwise represent a Λ-dependent frequency shift. After this
cancellation we can safely let Λ → ∞, and so ignore terms with negative
powers of the cutoff. The only surviving term in (5.44) is then ηQ̇. This
we substitute into (5.38), which becomes the equation for viscously damped
motion:

Q̈ + ηQ̇+ Ω2Q = 0. (5.47)
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The oscillators in the bath absorb energy but, unlike a pair of coupled oscil-
lators which trade energy rhythmically back-and-forth, the incommensurate
motion of the many qi prevents them from cooperating for long enough to
return any energy to Q(t).

5.2.3 Modified Green function

When the equation Ly = 0 has a non trivial-solution, there can be no unique
solution to Ly = f , but there still will be solutions provided f is orthogonal
to all solutions of L†y = 0.
Example: Consider

Ly ≡ −∂2
xy = f(x), y′(0) = y′(1) = 0. (5.48)

The equation Ly = 0 has one non-trivial solution, y(x) = 1. The operator
L is self-adjoint, L† = L, and so there will be solutions to Ly = f provided
〈1, f〉 =

∫ 1

0
f dx = 0.

We cannot define the the green function as a solution to

−∂2
xG(x, ξ) = δ(x− ξ), (5.49)

because
∫ 1

0
δ(x− ξ) dx = 1 6= 0, but we can seek a solution to

−∂2
xG(x, ξ) = δ(x− ξ)− 1 (5.50)

as the right-hand integrates to zero.
A general solution to −∂2

xy = −1 is

y = A+Bx +
1

2
x2, (5.51)

and the functions

yL = A+
1

2
x2,

yR = C − x+
1

2
x2, (5.52)

obey the boundary conditions at the left and right ends of the interval, re-
spectively. Continuity at x = ξ demands that A = C − ξ, and we are left
with

G(x, ξ) =

{
C − ξ + 1

2
x2, 0 < x < ξ

C − x + 1
2
x2, ξ < x < 1,

(5.53)
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There is no freedom left to impose the condition

G′(ξ − ε, ξ)−G′(ξ + ε, ξ) = 1, (5.54)

but it is automatically satisfied ! Indeed,

G′(ξ − ε, ξ) = ξ

G′(ξ + ε, ξ) = −1 + ξ. (5.55)

We may select a different value of C for each ξ, and a convenient choice
is

C =
1

2
ξ2 +

1

3
(5.56)

which makes G symmetric:

G(x, ξ) =

{
1
3
− ξ + x2+ξ2

2
, 0 < x < ξ

1
3
− x + x2+ξ2

2
, ξ < x < 1,

. (5.57)

It also makes
∫ 1

0
G(x, ξ) dx = 0.

ξ

Figure 5.4: The modified Green function.

The solution to Ly = f is

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ + A, (5.58)

where A is arbitrary.



5.3. APPLICATIONS OF LAGRANGE’S IDENTITY 167

5.3 Applications of Lagrange’s identity

5.3.1 Hermiticity of Green functions

Earlier we noted the symmetry of the Green function for the Sturm-Liouville
equation. We will now establish the corresponding result for general differ-
ential operators.

Let G(x, ξ) obey LxG(x, ξ) = δ(x− ξ) with homogeneous boundary con-
ditions B, and let G†(x, ξ) obey L†

xG
†(x, ξ) = δ(x−ξ) with adjoint boundary

conditions B†. Then, from Lagrange’s identity, we have

[Q(G,G†)]ba =

∫ b

a

dx
{(
L†
xG

†(x, ξ)
)∗
G(x, ξ′)− (G†(x, ξ))∗LG(x, ξ′)

}

=

∫ b

a

dx
{
δ(x− ξ)G(x, ξ′)−

(
G†(x, ξ)

)∗
δ(x− ξ′)

}

= G(ξ, ξ′)−
(
G†(ξ′, ξ)

)∗
. (5.59)

Thus, provided [Q(G,G†)]ba = 0, which is indeed the case because the bound-
ary conditions for L, L† are mutually adjoint, we have

G†(ξ, x) =
(
G(x, ξ)

)∗
, (5.60)

and the Green functions, regarded as matrices with continuous rows and
columns, are Hermitian conjugates of one another.

Example: Let

L =
d

dx
, D(L) = {y, Ly ∈ L2[0, 1] : y(0) = 0}. (5.61)

In this case G(x, ξ) = θ(x− ξ).
Now, we have

L† = − d

dx
, D(L) = {y, Ly ∈ L2[0, 1] : y(1) = 0} (5.62)

and G†(x, ξ) = θ(ξ − x).
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0 1 0 1

1 1

ξ ξ

Figure 5.5: G(x, ξ) = θ(x− ξ), and G†(x, ξ) = θ(ξ − x).

5.3.2 Inhomogeneous boundary conditions

Our differential operators have been defined with linear homogeneous bound-
ary conditions. We can, however, use them, and their Green-function in-
verses, to solve differential equations with inhomogeneous boundary condi-
tions.

Suppose, for example, we wish to solve

−∂2
xy = f(x), y(0) = a, y(1) = b. (5.63)

We already know the Green function for the homogeneous boundary-condition
problem with operator

L = −∂2
x, D(L) = {y, Ly ∈ L2[0, 1] : y(0) = 0, y(1) = 0}. (5.64)

It is

G(x, ξ) =

{
x(1− ξ), x < ξ,
ξ(1− x), x > ξ.

(5.65)

Now we apply Lagrange’s identity to χ(x) = G(x, ξ) and y(x) to get

∫ 1

0

dx
{
G(x, ξ)

(
−∂2

xy(x)
)
− y(x)

(
−∂2

xG(x, ξ)
)}

= [G′(x, ξ)y(x)−G(x, ξ)y′(x)]10.

(5.66)
Here, as usual, G′(x, ξ) = ∂xG(x, ξ). The integral is equal to

∫
dx {G(x, ξ)f(x)− y(x)δ(x− ξ)} =

∫
G(x, ξ)f(x) dx− y(ξ), (5.67)

whilst the integrated-out bit is

−(1− ξ)y(0)− 0 y′(0)− ξy(1) + 0 y′(1). (5.68)
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Therefore, we have

y(ξ) =

∫
G(x, ξ)f(x) dx+ (1− ξ)y(0) + ξy(1). (5.69)

Here the term with f(x) is the particular integral, whilst the remaining terms
constitute the complementary function (obeying the differential equation
without the source term) which serves to satisfy the boundary conditions.
Observe that the arguments in G(x, ξ) are not in the usual order, but, in the
present example, this does not matter because G is symmetric.

When the operator L is not self-adjoint, we need to distinguish between
L and L†, and G and G†. We then apply Lagrange’s identity to the unknown
function u(x) and χ(x) = G†(x, ξ).
Example: We will use the Green-function method to solve the differential
equation

du

dx
= f(x), x ∈ [0, 1], u(0) = a. (5.70)

We can, of course, write down the answer to this problem directly, but it
is interesting to see how the general strategy produces the solution. We
first find the Green function G(x, ξ) for the operator with the corresponding
homogeneous boundary conditions. In the present case, this operator is

L = ∂x, D(L) = {u, Lu ∈ L2[0, 1] : u(0) = 0}, (5.71)

and the appropriate Green function is G(x, ξ) = θ(x − ξ). From G we then

read off the adjoint Green function as G†(x, ξ) =
(
G(ξ, x)

)∗
. In the present

example, we have G†(x,′ x) = θ(ξ − x). We now use Lagrange’s identity in
the form
∫ 1

0

dx
{(
L†
xG

†(x, ξ)
)∗
u(x)−

(
G†(x, ξ)

)∗
Lxu(x)

}
=
[
Q
(
G†, u

)]1
0
. (5.72)

In all cases, the left hand side is equal to
∫ 1

0

dx
{
δ(x− ξ)u(x)−GT (x, ξ)f(x)

}
, (5.73)

where T denotes transpose, GT (x, ξ) = G(ξ, x). The left hand side is there-
fore equal to

u(ξ)−
∫ 1

0

dxG(ξ, x)f(x). (5.74)
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The right hand side depends on the details of the problem. In the present
case, the integrated out part is

[
Q(G†, u)

]1
0

= −
[
GT (x, ξ)u(x)

]1
0

= u(0). (5.75)

At the last step we have used the specific form GT (x, ξ) = θ(ξ − x) to find
that only the lower limit contributes. The end result is therefore the expected
one:

u(y) = u(0) +

∫ y

0

f(x) dx. (5.76)

Variations of this strategy enable us to solve any inhomogeneous boundary-
value problem in terms of the Green function for the corresponding homoge-
neous boundary-value problem.

5.4 Eigenfunction expansions

Self-adjoint operators possess a complete set of eigenfunctions, and we can
expand the Green function in terms of these. Let

Lϕn = λnϕn. (5.77)

Let us further suppose that none of the λn are zero. Then the Green function
has the eigenfunction expansion

G(x, ξ) =
∑

n

ϕn(x)ϕ
∗
n(ξ)

λn
. (5.78)

That this is so follows from

Lx

(
∑

n

ϕn(x)ϕ
∗
n(ξ)

λn

)
=

∑

n

(
Lxϕn(x)

)
ϕ∗
n(ξ)

λn

=
∑

n

λnϕn(x)ϕ
∗
n(ξ)

λn

=
∑

n

ϕn(x)ϕ
∗
n(ξ)

= δ(x− ξ). (5.79)
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Example: : Consider our familiar exemplar

L = −∂2
x, D(L) = {y, Ly ∈ L2[0, 1] : y(0) = y(1) = 0}, (5.80)

for which

G(x, ξ) =

{
x(1− ξ), x < ξ,
ξ(1− x), x > ξ.

(5.81)

Computing the Fourier series shows that

G(x, ξ) =

∞∑

n=1

(
2

n2π2

)
sin(nπx) sin(nπξ). (5.82)

Modified Green function

When one or more of the eigenvalues is zero, a modified Green function is
obtained by simply omitting the corresponding terms from the series.

Gmod(x, ξ) =
∑

λn 6=0

ϕn(x)ϕ
∗
n(ξ)

λn
. (5.83)

Then

LxGmod(x, ξ) = δ(x− ξ)−
∑

λn=0

ϕn(x)ϕ
∗
n(ξ). (5.84)

We see that this Gmod is still hermitian, and, as a function of x, is orthogonal
to the zero modes. These are the properties we elected when constructing
the modified Green function in equation (5.57).

5.5 Analytic properties of Green functions

In this section we study the properties of Green functions considered as
functions of a complex variable. Some of the formulæ are slightly easier to
derive using contour integral methods, but these are not necessary and we will
not use them here. The only complex-variable prerequisite is a familiarity
with complex arithmetic and, in particular, knowledge of how to take the
logarithm and the square root of a complex number.
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5.5.1 Causality implies analyticity

Consider a Green function of the form G(t − τ) and possessing the causal
property that G(t − τ) = 0, for t < τ . If the improper integral defining its
Fourier transform,

G̃(ω) =

∫ ∞

0

eiωtG(t) dt
def
= lim

T→∞

{∫ T

0

eiωtG(t) dt

}
, (5.85)

converges for real ω, it will converge even better when ω has a positive
imaginary part. Consequently G̃(ω) will be a well-behaved function of the
complex variable ω everywhere in the upper half of the complex ω plane.
Indeed, it will be analytic there, meaning that its Taylor series expansion
about any point actually converges to the function. For example, the Green
function for the damped harmonic oscillator

G(t) =

{
1
Ω
e−γt sin(Ωt), t > 0,

0, t < 0,
(5.86)

has Fourier transform

G̃(ω) =
1

Ω2 − (ω + iγ)2
, (5.87)

which is always finite in the upper half-plane, although it has pole singulari-
ties at ω = −iγ ± Ω in the lower half-plane.

The only way that the Fourier transform G̃ of a causal Green function can
have a pole singularity in the upper half-plane is if G contains a exponential
factor growing in time, in which case the system is unstable to perturbations
(and the real-frequency Fourier transform does not exist). This observation
is at the heart of the Nyquist criterion for the stability of linear electronic
devices.

Inverting the Fourier transform, we have

G(t) =

∫ ∞

−∞

1

Ω2 − (ω + iγ)2
e−iωt

dω

2π
= θ(t)

1

Ω
e−γt sin(Ωt). (5.88)

It is perhaps surprising that this integral is identically zero if t < 0, and
non-zero if t > 0. This is one of the places where contour integral methods
might cast some light, but because we have confidence in the Fourier inversion
formula, we know that it must be correct.
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Remember that in deriving (5.88) we have explicitly assumed that the
damping coefficient γ is positive. It is important to realize that reversing the
sign of γ on the left-hand side of (5.88) does more than just change e−γt → eγt

on the right-hand side. Näıvely setting γ → −γ on both sides of (5.88) gives
an equation that cannot possibly be true. The left-hand side would be the
Fourier transform of a smooth function, and the Riemann-Lebesgue lemma
tells us that such a Fourier transform must become zero when |t| → ∞. The
right-hand side, to the contrary, would be a function whose oscillations grow
without bound as t becomes large and positive.

To find the correct equation, observe that we can legitimately effect the
sign-change γ → −γ by first complex-conjugating the integral and then
changing t to −t. Performing these two operations on both sides of (5.88)
leads to ∫ ∞

−∞

1

Ω2 − (ω − iγ)2
e−iωt

dω

2π
= −θ(−t) 1

Ω
eγt sin(Ωt) (5.89)

The new right-hand side represents an exponentially growing oscillation that
is suddenly silenced by the kick at t = 0.

ιγ= +ιε ιγ=−ιε

t t
t=0 t=0

Figure 5.6: The effect on G(t), the Green function of an undamped oscillator,
of changing iγ from +iε to −iε.

The effect of taking the damping parameter γ from an infitesimally small
postive value ε to an infinitesimally small negative value −ε is therefore to
turn the causal Green function (no motion before it is started by the delta-
function kick) of the undamped oscillator into an anti-causal Green function
(no motion after it is stopped by the kick). Ultimately, this is because the the
differential operator corresponding to a harmonic oscillator with initial -value
data is not self-adjoint, and its adjoint operator corresponds to a harmonic
oscillator with final -value data.
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This discontinuous dependence on an infinitesimal damping parameter is
the subject of the next few sections.

Physics application: Caldeira-Leggett in frequency space

If we write the Caldeira-Leggett equations of motion (5.36) in Fourier fre-
quency space by setting

Q(t) =

∫ ∞

−∞

dω

2π
Q(ω)e−iωt, (5.90)

and

qi(t) =

∫ ∞

−∞

dω

2π
qi(ω)e−iωt, (5.91)

we have (after including an external force Fext to drive the system)
(
−ω2 + (Ω2 −∆Ω2)

)
Q(ω)−

∑

i

fiqi(ω) = Fext(ω),

(−ω2 + ω2
i )qi(ω) + fiQ(ω) = 0. (5.92)

Eliminating the qi, we obtain

(
−ω2 + (Ω2 −∆Ω2)

)
Q(ω)−

∑

i

f 2
i

ω2
i − ω2

Q(ω) = Fext(ω). (5.93)

As before, sums over the index i are replaced by integrals over the spectral
function ∑

i

f 2
i

ω2
i − ω2

→ 2

π

∫ ∞

0

ω′J(ω′)

ω′2 − ω2
dω′, (5.94)

and

−∆Ω2 ≡
∑

i

(
f 2
i

ω2
i

)
→ 2

π

∫ ∞

0

J(ω′)

ω′ dω′. (5.95)

Then

Q(ω) =

(
1

Ω2 − ω2 + Π(ω)

)
Fext(ω), (5.96)

where the self-energy Π(ω) is given by

Π(ω) =
2

π

∫ ∞

0

{
J(ω′)

ω′ −
ω′J(ω′)

ω′2 − ω2

}
dω′ = −ω2 2

π

∫ ∞

0

J(ω′)

ω′(ω′2 − ω2)
dω′.

(5.97)
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The expression

G(ω) ≡ 1

Ω2 − ω2 + Π(ω)
(5.98)

a typical response function. Analogous objects occur in all branches of
physics.

For viscous damping we know that J(ω) = ηω. Let us evaluate the
integral occuring in Π(ω) for this case:

I(ω) =

∫ ∞

0

dω′

ω′2 − ω2
. (5.99)

We will initially assume that ω is positive. Now,

1

ω′2 − ω2
=

1

2ω

(
1

ω′ − ω −
1

ω′ + ω

)
, (5.100)

so

I(ω) =

[
1

2ω

(
ln(ω′ − ω)− ln(ω′ + ω)

)]∞

ω′=0

. (5.101)

At the upper limit we have ln
(
(∞− ω)/(∞ + ω)

)
= ln 1 = 0. The lower

limit contributes

− 1

2ω

(
ln(−ω)− ln(ω)

)
. (5.102)

To evaluate the logarithm of a negative quantity we must use

lnω = ln |ω|+ i argω, (5.103)

where we will take argω to lie in the range −π < argω < π.

Im

Re

arg

ω

(−ω)

ω
−ω

ω

Figure 5.7: When ω has a small positive imaginary part, arg (−ω) ≈ −π.
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To get an unambiguous answer, we need to give ω an infinitesimal imaginary
part ±iε. Depending on the sign of this imaginary part, we find that

I(ω ± iε) = ± iπ
2ω
. (5.104)

This formula remains true when the real part of ω is negative, and so

Π(ω ± iε) = ∓iηω. (5.105)

Now the frequency-space version of

Q̈(t) + ηQ̇+ Ω2Q = Fext(t) (5.106)

is
(−ω2 − iηω + Ω2)Q(ω) = Fext(ω), (5.107)

so we must opt for the small shift in ω that leads to Π(ω) = −iηω. This
means that we must regard ω as having a positive infinitesimal imaginary
part, ω → ω+ iε. This imaginary part is a good and needful thing: it effects
the replacement of the ill-defined singular integrals

G(t)
?
=

∫ ∞

0

1

ω2
i − ω2

e−iωt dω, (5.108)

which arise as we transform back to real time, with the unambiguous expres-
sions

Gε(t) =

∫ ∞

0

1

ω2
i − (ω + iε)2

e−iωt dω. (5.109)

The latter, we know, give rise to properly causal real-time Green functions.

5.5.2 Plemelj formulæ

The functions we are meeting can all be cast in the form

f(ω) =
1

π

∫ b

a

ρ(ω′)

ω′ − ω dω
′. (5.110)

If ω lies in the integration range [a, b], then we divide by zero as we integrate
over ω′ = ω. We ought to avoid doing this, but this interval is often exactly
where we desire to evaluate f . As before, we evade the division by zero by
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giving ω an infintesimally small imaginary part: ω → ω ± iε. We can then
apply the Plemelj formulæ, named for the Slovenian mathematician Josip
Plemelj, which say that

1

2

(
f(ω + iε)− f(ω − iε)

)
= iρ(ω),

1

2

(
f(ω + iε) + f(ω − iε)

)
=

1

π
P

∫

Γ

ρ(ω′)

ω′ − ω dω
′. (5.111)

As explained in section 2.3.2, the “P” in front of the integral stands for
principal part . Recall that it means that we are to delete an infinitesimal
segment of the ω′ integral lying symmetrically about the singular point ω ′ =
ω.

a b
Im ω

Re ω ω

Figure 5.8: The analytic function f(ω) is discontinuous across the real axis
between a and b.

The Plemelj formula mean that the otherwise smooth and analytic func-
tion f(ω) is discontinuous across the real axis between a and b. If the dis-
continuity ρ(ω) is itself an analytic function then the line joining the points
a and b is a branch cut , and the endpoints of the integral are branch-point
singularities of f(ω).

The reason for the discontinuity may be understood by considering figure
5.9. The singular integrand is a product of ρ(ω′) with

1

ω′ − (ω ± iε) =
ω′ − ω

(ω′ − ω)2 + ε2
± iε

(ω′ − ω)2 + ε2
. (5.112)

The first term on the right is a symmetrically cut-off version 1/(ω ′− ω) and
provides the principal part integral. The the second term sharpens and tends
to the delta function ±iπδ(ω′− ω) as ε→ 0, and so gives ±iπρ(ω). Because
of this explanation, the Plemelj equations are commonly encoded in physics
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papers via the “iε” cabbala

1

ω′ − (ω ± iε) = P

(
1

ω′ − ω

)
± iπδ(ω′ − ω). (5.113)

.

ω
ω

Im gRe g

ω ω

Figure 5.9: Sketch of the real and imaginary parts of g(ω ′) = 1/(ω′−(ω+iε)).

If ρ is real, as it often is, then f(ω+iη) =
(
f(ω−iη)

)∗
. The discontinuity

across the real axis is then purely imaginary, and

1

2

(
f(ω + iε) + f(ω − iε)

)
(5.114)

is the real real part of f . In this case we can write (5.110) as

Re f(ω) =
1

π
P

∫ b

a

Im f(ω′)

ω′ − ω dω′. (5.115)

This formula is typical of the relations linking the real and imaginary parts
of causal response functions.

A practical example of such a relation is provided by the complex, frequency-
dependent, refractive index , n(ω), of a medium. This is defined so that a
travelling electromagnetic wave takes the form

E(x, t) = E0 e
in(ω)kx−iωt. (5.116)

Here, k = ω/c is the in vacuuo wavenumber. We can decompose n into its
real and imaginary parts:

n(ω) = nR + inI

= nR(ω) +
i

2|k|γ(ω), (5.117)
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where γ is the extinction coefficient, defined so that the intensity falls off
as I = I0 exp(−γx). A non-zero γ can arise from either energy absorbtion
or scattering out of the forward direction. For the refractive index, the
function f(ω) = n(ω) − 1 can be written in the form of (5.110), and, using
n(−ω) = n∗(ω), this leads to the Kramers-Kronig relation

nR(ω) = 1 +
c

π
P

∫ ∞

0

γ(ω′)

ω′2 − ω2
dω′. (5.118)

Formulæ like this will be rigorously derived in chapter 18 by the use of
contour-integral methods.

5.5.3 Resolvent operator

Given a differential operator L, we define the resolvent operator to be Rλ ≡
(L− λI)−1. The resolvent is an analytic function of λ, except when λ lies in
the spectrum of L.

We expand Rλ in terms of the eigenfunctions as

Rλ(x, ξ) =
∑

n

ϕn(x)ϕ
∗
n(ξ)

λn − λ
. (5.119)

When the spectrum is discrete, the resolvent has poles at the eigenvalues
L. When the operator L has a continuous spectrum, the sum becomes an
integral:

Rλ(x, ξ) =

∫

µ∈σ(L)

ρ(µ)
ϕµ(x)ϕ

∗
µ(ξ)

µ− λ dµ, (5.120)

where ρ(µ) is the eigenvalue density of states. This is of the form that
we saw in connection with the Plemelj formulæ. Consequently, when the
spectrum comprises segements of the real axis, the resulting analytic function
Rλ will be discontinuous across the real axis within them. The endpoints
of the segements will branch point singularities of Rλ, and the segements
themselves, considered as subsets of the complex plane, are the branch cuts.

The trace of the resolvent TrRλ is defined by

TrRλ =

∫
dx {Rλ(x, x)}

=

∫
dx

{
∑

n

ϕn(x)ϕ
∗
n(x)

λn − λ

}
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=
∑

n

1

λn − λ

→
∫

ρ(µ)

µ− λ dµ. (5.121)

Applying Plemelj to Rλ, we have

Im
[
lim
ε→0

{
TrRλ+iε

}]
= πρ(λ). (5.122)

Here, we have used that fact that ρ is real, so

TrRλ−iε =
(
TrRλ+iε

)∗
. (5.123)

The non-zero imaginary part therefore shows that Rλ is discontinuous across
the real axis at points lying in the continuous spectrum.
Example: Consider

L = −∂2
x +m2, D(L) = {y, Ly ∈ L2[−∞,∞]}. (5.124)

As we know, this operator has a continuous spectrum, with eigenfunctions

ϕk =
1√
L
eikx. (5.125)

Here, L is the (very large) length of the interval. The eigenvalues are E =
k2 + m2, so the spectrum is all positive numbers greater than m2. The
momentum density of states is

ρ(k) =
L

2π
. (5.126)

The completeness relation is
∫ ∞

−∞

dk

2π
eik(x−ξ) = δ(x− ξ), (5.127)

which is just the Fourier integral formula for the delta function.
The Green function for L is

G(x− y) =

∫ ∞

−∞
dk

(
dn

dk

)
ϕk(x)ϕ

∗
k(y)

k2 +m2
=

∫ ∞

−∞

dk

2π

eik(x−y)

k2 +m2
=

1

2m
e−m|x−y|.

(5.128)
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−λ

Im

Re

λ

λ
arg(−λ)/2

λ

−λ

Figure 5.10: If Imλ > 0, and with the branch cut for
√
z in its usual place

along the negative real axis, then
√
−λ has negative imaginary part and

positive real part.

We can use the same calculation to look at the resolvent Rλ = (−∂2
x − λ)−1.

Replacing m2 by −λ, we have

Rλ(x, y) =
1

2
√
−λ

e−
√
−λ|x−y|. (5.129)

To appreciate this expression, we need to know how to evaluate
√
z where

z is complex. We write z = |z|eiφ where we require −π < φ < π. We now
define √

z =
√
|z|eiφ/2. (5.130)

When we evaluate
√
z for z just below the negative real axis then this defini-

tion gives −i
√
|z|, and just above the axis we find +i

√
|z|. The discontinuity

means that the negative real axis is a branch cut for the the square-root func-
tion. The

√
−λ’s appearing in Rλ therefore mean that the positive real axis

will be a branch cut for Rλ. This branch cut therefore coincides with the
spectrum of L, as promised earlier.
If λ is positive and we shift λ→ λ+ iε then

1

2
√
−λ

e−
√
−λ|x−y| → i

2
√
λ
e+i

√
λ|x−y|−ε|x−y|/2

√
λ. (5.131)

Notice that this decays away as |x − y| → ∞. The square root retains a
positive real part when λ is shifted to λ− iε, and so the decay is still present:

1

2
√
−λe

−
√
−λ|x−y| → − i

2
√
λ
e−i

√
λ|x−y|−ε|x−y|/2

√
λ. (5.132)
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In each case, with λ either immediately above or immediately below the
cut, the small imaginary part tempers the oscillatory behaviour of the Green
function so that χ(x) = G(x, y) is square integrable and remains an element
of L2[R].

We now take the trace of R by setting x = y and integrating:

TrRλ+iε = iπ
L

2π
√
|λ|
. (5.133)

Thus,

ρ(λ) = θ(λ)
L

2π
√
|λ|
, (5.134)

which coincides with our direct calculation.

Example: Let

L = −i∂x, D(L) = {y, Ly ∈ L2[R]}. (5.135)

This has eigenfunctions eikx with eigenvalues k. The spectrum is therefore
the entire real line. The local eigenvalue density of states is 1/2π. The
resolvent is therefore

(−i∂x − λ)−1
x,ξ =

1

2π

∫ ∞

−∞
eik(x−ξ)

1

k − λdk. (5.136)

To evaluate this, first consider the Fourier transforms of

F1(x) = θ(x)e−κx,

F2(x) = −θ(−x)eκx, (5.137)

where κ is a positive real number.

xx

1

−1

Figure 5.11: The functions F1(x) = θ(x)e−κx and F2(x) = −θ(−x)eκx .
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We have ∫ ∞

−∞

{
θ(x)e−κx

}
e−ikx dx =

1

i

1

k − iκ , (5.138)

∫ ∞

−∞

{
−θ(−x)eκx

}
e−ikx dx =

1

i

1

k + iκ
. (5.139)

Inverting the transforms gives

θ(x)e−κx =
1

2πi

∫ ∞

−∞

1

k − iκe
ikx dk,

−θ(−x)eκx =
1

2πi

∫ ∞

−∞

1

k + iκ
eikx dk. (5.140)

These are important formulæ in their own right, and you should take care
to understand them. Now we apply them to evaluating the integral defining
Rλ.

If we write λ = µ+ iν, we find

1

2π

∫ ∞

−∞
eik(x−ξ)

1

k − λ dk =

{
iθ(x− ξ)eiµ(x−ξ)e−ν(x−ξ), ν > 0,
−iθ(ξ − x)eiµ(x−ξ)e−ν(x−ξ), ν < 0,

(5.141)

In each case, the resolvent is ∝ eiλx away from ξ, and has jump of +i at
x = ξ so as produce the delta function. It decays either to the right or to
the left, depending on the sign of ν. The Heaviside factor ensures that it is
multiplied by zero on the exponentially growing side of e−νx, so as to satisfy
the requirement of square integrability.

Taking the trace of this resolvent is a little problematic. We are to set x =
ξ and integrate — but what value do we associate with θ(0)? Remembering
that Fourier transforms always give to the mean of the two values at a jump
discontinuity, it seems reasonable to set θ(0) = 1

2
. With this definition, we

have

TrRλ =

{
i
2
L, Imλ > 0,

− i
2
L, Imλ < 0.

(5.142)

Our choice is therefore compatible with TrRλ+iε = πρ = L/2π. We have
been lucky. The ambiguous expression θ(0) is not always safely evaluated as
1/2.
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5.6 Locality and the Gelfand-Dikii equation

The answers to many quantum physics problems can be expressed either as
sums over wavefunctions or as expressions involving Green functions. One
of the advantages of writing the answer in terms of Green functions is that
these typically depend only on the local properties of the differential operator
whose inverse they are. This locality is in contrast to the individual wave-
functions and their eigenvalues, both of which are sensitive to the distant
boundaries. Since physics is usually local, it follows that the Green function
provides a more efficient route to the answer.

By the Green function being local we mean that its value for x, ξ near
some point can be computed in terms of the coefficients in the differential
operator evaluated near this point. To illustrate this claim, consider the
Green function G(x, ξ) for the Schrödinger operator −∂2

x + q(x) + λ on the
entire real line. We will show that there is a not exactly obvious (but easy
to obtain once you know the trick) local gradient expansion for the diagonal
elements D(x) ≡ G(x, x). These elements are often all that is needed in
physics. We begin by recalling that we can write

G(x, ξ) ∝ u(x)v(ξ)

where u(x), v(x) are solutions of (−∂2
x + q(x) + λ)y = 0 satisfying suitable

boundary conditions to the right and left respectively. We set D(x) = G(x, x)
and differentiate three times with respect to x. We find

∂3
xD(x) = u(3)v + 3u′′v′ + 3u′v′′ + uv(3)

= (∂x(q + λ)u) v + 3(q + λ)∂x(uv) + (∂x(q + λ)v)u.

Here, in passing from the first to second line, we have used the differential
equation obeyed by u and v. We can re-express the second line as

(q∂x + ∂xq −
1

2
∂3
x)D(x) = −2λ∂xD(x). (5.143)

This relation is known as the Gelfand-Dikii equation. Using it we can find
an expansion for the diagonal element D(x) in terms of q and its derivatives.
We begin by observing that for q(x) ≡ 0 we know that D(x) = 1/(2

√
λ). We

therefore conjecture that we can expand

D(x) =
1

2
√
λ

(
1− b1(x)

2λ
+
b2(x)

(2λ)2
+ · · ·+ (−1)n

bn(x)

(2λ)n
+ · · ·

)
.
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If we insert this expansion into (5.143) we see that we get the recurrence
relation

(q∂x + ∂xq −
1

2
∂3
x)bn = ∂xbn+1. (5.144)

We can therefore find bn+1 from bn by differentiation followed by a single
integration. Remarkably, ∂xbn+1 is always the exact derivative of a polynomal
in q and its derivatives. Further, the integration constants must be be zero
so that we recover the q ≡ 0 result. If we carry out this process, we find

b1(x) = q(x),

b2(x) =
3 q(x)2

2
− q′′(x)

2
,

b3(x) =
5 q(x)3

2
− 5 q′(x)2

4
− 5 q(x) q′′(x)

2
+
q(4)(x)

4
,

b4(x) =
35 q(x)4

8
− 35 q(x) q′(x)2

4
− 35 q(x)2 q′′(x)

4
+

21 q′′(x)2

8

+
7 q′(x) q(3)(x)

2
+

7 q(x) q(4)(x)

4
− q(6)(x)

8
, (5.145)

and so on. (Note how the terms in the expansion are graded: Each bn
is homogeneous in powers of q and its derivatives, provided we count two
x derivatives as being worth one q(x).) Keeping a few terms in this series
expansion can provide an effective approximation for G(x, x), but, in general,
the series is not convergent, being only an asymptotic expansion for D(x).

A similar strategy produces expansions for the diagonal element of the
Green function of other one-dimensional differential operators. Such gradient
expansions also exist in in higher dimensions but the higher-dimensional
Seeley-coefficient functions are not as easy to compute. Gradient expansions
for the off-diagonal elements also exist, but, again, they are harder to obtain.

5.7 Further exercises and problems

Here are some further exercises that are intended to illustrate the material
of this chapter:

Exercise 5.1: Fredholm Alternative. A heavy elastic bar with uniform mass
m per unit length lies almost horizontally. It is supported by a distribution of
upward forces F (x).
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F(x)

y

x

g

Figure 5.12: Elastic bar

The shape of the bar, y(x), can be found by minimizing the energy

U [y] =

∫ L

0

{
1

2
κ(y′′)2 − (F (x) −mg)y

}
dx.

• Show that this minimization leads to the equation

L̂y ≡ κd
4y

dx4
= F (x)−mg, y′′ = y′′′ = 0 at x = 0, L.

• Show that the boundary conditions are such that the operator L̂ is self-
adjoint with respect to an inner product with weight function 1.

• Find the zero modes which span the null space of L̂.
• If there are n linearly independent zero modes, then the codimension of

the range of L̂ is also n. Using your explicit solutions from the previous
part, find the conditions that must be obeyed by F (x) for a solution of
L̂y = F −mg to exist. What is the physical meaning of these conditions?

• The solution to the equation and boundary conditions is not unique. Is
this non-uniqueness physically reasonable? Explain.

Exercise 5.2: Flexible rod again. A flexible rod is supported near its ends by
means of knife edges that constrain its position, but not its slope or curvature.
It is acted on by by a force F (x).

The deflection of the rod is found by solving the the boundary value problem

d4y

dx4
= F (x), y(0) = y(1) = 0, y′′(0) = y′′(1) = 0.

We wish to find the Green function G(x, ξ) that facilitates the solution of this
problem.

a) If the differential operator and domain (boundary conditions) above is
denoted by L, what is the operator and domain for L†? Is the problem
self-adjoint?
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F(x)x=0 x=1

y

x

Figure 5.13: Simply supported rod.

b) Are there any zero-modes? Does F have to satisfy any conditions for the
solution to exist?

c) Write down the conditions, if any, obeyed by G(x, ξ) and its derivatives
∂xG(x, ξ), ∂2

xxG(x, ξ), ∂3
xxxG(x, ξ) at x = 0, x = ξ, and x = 1.

d) Using the conditions above, find G(x, ξ). (This requires some boring
algebra — but if you start from the “jump condition” and work down,
it can be completed in under a page)

e) Is your Green function symmetric (G(x, x) = G(ξ, x))? Is this in ac-
cord with the self-adjointness or not of the problem? (You can use this
property as a check of your algebra.)

f) Write down the integral giving the general solution of the boundary value
problem. Assume, if necessary, that F (x) is in the range of the differential
operator. Differentiate your answer and see if it does indeed satisfy the
differential equation and boundary conditions.

Exercise 5.3: Hot ring . The equation governing the steady state heat flow on
thin ring of unit circumference is

−y′′ = f, 0 < x < 1, y(0) = y(1), y′(0) = y′(1).

a) This problem has a zero mode. Find the zero mode and the consequent
condition on f(x) for a solution to exist.

b) Verify that a suitable modified Green function for the problem is

g(x, ξ) =
1

2
(x− ξ)2 − 1

2
|x− ξ|.

You will need to verify that g(x, ξ) satisfies both the differential equation
and the boundary conditions.
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Exercise 5.4: By using the observation that the left hand side is 2π times the
eigenfunction expansion of a modified Green function G(x, 0) for L = −∂2

x on
a circle of unit radius, show that

∞∑

n=−∞

einx

n2
=

1

2
(x− π)2 − π2

6
, x ∈ [0, 2π).

The term with n = 0 is to be omitted from the sum.

Exercise 5.5: Seek a solution to the equation

−d
2y

dx2
= f(x), x ∈ [0, 1]

with inhomogeneous boundary conditions y ′(0) = F0, y
′(1) = F1. Observe

that the corresponding homogeneous boundary condition problem has a zero
mode. Therefore the solution, if one exists, cannot be unique.

a) Show that there can be no solution to the differential equation and in-
homogeneous boundary condition unless f(x) satisfies the condition

∫ 1

0
f(x) dx = F0 − F1. (?)

b) Let G(x, ξ) denote the modified Green function (5.57)

G(x, ξ) =

{
1
3 − ξ + x2+ξ2

2 , 0 < x < ξ
1
3 − x+ x2+ξ2

2 , ξ < x < 1,
.

Use the Lagrange-identity method for inhomogeneous boundary condi-
tions to deduce that if a solution exists then it necessarily obeys

y(x) =

∫ 1

0
y(ξ) dξ +

∫ 1

0
G(ξ, x)f(ξ) dξ +G(1, x)F1 −G(0, x)F0.

c) By differentiating with respect to x, show that

ytentative(x) =

∫ 1

0
G(ξ, x)f(ξ) dξ +G(1, x)F1 −G(0, x)F0 + C,

where C is an arbitrary constant, obeys the boundary conditions.
d) By differentiating a second time with respect to x, show that ytentative(x)

is a solution of the differential equation if, and only if, the condition ? is
satisfied.
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Exercise 5.6: Lattice Green Functions . The k × k matrices

T1 =




2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
...

...
. . .

. . .
. . .

...
...

0 . . . 0 −1 2 −1 0
0 . . . 0 0 −1 2 −1
0 . . . 0 0 0 −1 2




, T2 =




2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
...

...
. . .

. . .
. . .

...
...

0 . . . 0 −1 2 −1 0
0 . . . 0 0 −1 2 −1
0 . . . 0 0 0 −1 1




represent two discrete lattice approximations to −∂2
x on a finite interval.

a) What are the boundary conditions defining the domains of the corre-
sponding continuum differential operators? [They are either Dirichlet
(y = 0) or Neumann (y′ = 0) boundary conditions.] Make sure you
explain your reasoning.

b) Verify that

[T−1
1 ]ij = min(i, j) − ij

k + 1
,

[T−1
2 ]ij = min(i, j).

c) Find the continuum Green functions for the boundary value problems
approximated by the matrix operators. Compare each of the matrix
inverses with its corresponding continuum Green function. Are they
similar?

Exercise 5.7: Eigenfunction expansion The resolvent (Green function) Rλ(x, ξ) =
(L− λ)−1

xξ can be expanded as

(L− λ)−1
xξ =

∑

λn

ϕn(x)ϕn(ξ)

λn − λ
,

where ϕn(x) is the normalized eigenfunction corresponding to the eigenvalue
λn. The resolvent therefore has a pole whenever λ approaches λn. Consider
the case

Rω2(x, ξ) =

(
− d2

dx2
− ω2

)−1

xξ

,

with boundary conditions y(0) = y(L) = 0.

a) Show that

Rω2(x, ξ) =
1

ω sinωL
sinωx sinω(L− ξ), x < ξ,

=
1

ω sinωL
sinω(L− x) sinωξ, ξ < x
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b) Confirm that Rω2 becomes singular at exactly those values of ω2 corre-

sponding to eigenvalues ω2
n of − d2

dx2 .
c) Find the associated eigenfunctions ϕn(x) and, by taking the limit of

Rω2 as ω2 → ω2
n, confirm that the residue of the pole (the coefficient of

1/(ω2
n − ω2)) is precisely the product of the normalized eigenfunctions

ϕn(x)ϕn(ξ).

Exercise 5.8: In this exercise we will investigate the self adjointness of the
operator T = −i∂/∂x on the interval [a, b] by using the resolvent operator
Rλ = (T − λI)−1.

a) The integral kernel Rλ(x, ξ) is a Green function obeying
(
−i ∂
∂x
− λ

)
Rλ(x, ξ) = δ(x− ξ).

Use standard methods to show that

Rλ(x, ξ) =
1

2

(
Kλ + i sgn (x− ξ)

)
eiλ(x−ξ),

where Kλ is a number that depends on the boundary conditions imposed
at the endpoints a, b, of the interval.

b) If T is to be self-adjoint then the Green function must be Hermitian, i.e.
Rλ(x.ξ) = [Rλ(ξ, x)]

∗. Find the condition on Kλ for this to be true, and
show that it implies that

Rλ(b, ξ)

Rλ(a, ξ)
= eiθλ ,

where θλ is some real angle. Deduce that the range of Rλ is the set of
functions

Dλ = {y(x) : y(b) = eiθλy(a)}.
Now the range of Rλ is the domain of (T − λI), which should be same
as the domain of T and therefore not depend on λ. We therefore require
that θλ not depend on λ. Deduce that T will be self-adjoint only for
boundary conditions y(b) = eiθy(a) — i.e. for twisted periodic boundary
conditions.

c) Show that with the twisted periodic boundary conditions of part b), we
have

Kλ = − cot

(
λ(b− a)− θ

2

)
.

From this, show that Rλ(x, ξ) has simple poles at λ = λn, where λn are
the eigenvalues of T .
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d) Compute the residue of the pole of Rλ(x, ξ) at the eigenvalue λn, and
confirm that it is a product of the corresponding normalized eigenfunc-
tions.

Problem 5.9: Consider the one-dimensional Dirac Hamiltonian

Ĥ =

(
−i∂x m1 − im2

m1 + im2 +i∂x

)
,

= −iσ̂3∂x +m1(x)σ̂1 +m2(x)σ̂2.

Here m1(x), m2(x) are real functions, and the σ̂i are the Pauli matrices. H
acts on a two-component “spinor”

Ψ(x) =

(
ψ1(x)
ψ2(x)

)
.

Impose self-adjoint boundary conditions

ψ1(a)

ψ2(a)
= exp{iθa},

ψ1(b)

ψ2(b)
= exp{iθb}

at the ends of the interval [a, b]. Let ΨL(x) be a solution of ĤΨ = λΨ obey-
ing the boundary condition at x = a, and ΨR(x) be a solution obeying the
boundary condition at x = b. Define the “Wronskian” of these solutions to be

W (ΨL,ΨR) = Ψ†
Lσ̂3ΨR.

a) Show that, for real λ and the given boundary conditions, the Wronskian
W (ΨL,ΨR) is independent of position. Show also that W (ΨL,ΨL) =
W (ΨR,ΨR) = 0.

b) Show that the matrix-valued Green function Ĝ(x, ξ) obeying

(Ĥ − λI)Ĝ(x, ξ) = Iδ(x− ξ),

and the given boundary conditions has entries

Gαβ(x, ξ) =





− i

W ∗ψL,α(x)ψ
∗
R,β(ξ), x < ξ,

+
i

W
ψR,α(x)ψ

∗
L,β(ξ), x > ξ.

Observe that Gαβ(x, ξ) = G∗
βα(ξ, x), as befits the inverse of a self-adjoint

operator.
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c) The Green function is discontinuous at x = ξ, but we can define a
“position-diagonal” part by the taking the average

Gαβ(x)
def
=

1

2

(
i

W
ψR,α(x)ψ∗

L,β(x)−
i

W ∗ψL,α(x)ψ
∗
R,β(x)

)
.

Show that if we define the matrix ĝ(x) by setting ĝ(x) = Ĝ(x)σ̂3, then
tr ĝ(x) = 0 and ĝ2(x) = −1

4I. Show further that

i∂xĝ = [ĝ, K̂], (?)

where K̂(x) = σ̂3 (λI −m1(x)σ̂1 −m2(x)σ̂2).

The equation (?) obtained in part (c) is the analogue of the Gelfand-Dikii
equation for the Dirac Hamiltonian. It has applications in the theory of su-
perconductivity, where (?) is known as the Eilenberger equation.



Chapter 6

Partial Differential Equations

Most differential equations of physics involve quantities depending on both
space and time. Inevitably they involve partial derivatives, and so are par-
tial differential equations (PDE’s). Although PDE’s are inherently more
complicated that ODE’s, many of the ideas from the previous chapters — in
particular the notion of self adjointness and the resulting completeness of the
eigenfunctions — carry over to the partial differential operators that occur
in these equations.

6.1 Classification of PDE’s

We focus on second-order equations in two variables, such as the wave equa-
tion

∂2ϕ

∂x2
− 1

c2
∂2ϕ

∂t2
= f(x, t), (Hyperbolic) (6.1)

Laplace or Poisson’s equation

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= f(x, y), (Elliptic) (6.2)

or Fourier’s heat equation

∂2ϕ

∂x2
− κ∂ϕ

∂t
= f(x, t). (Parabolic) (6.3)

What do the names hyperbolic, elliptic and parabolic mean? In high-
school co-ordinate geometry we learned that a real quadratic curve

ax2 + 2bxy + cy2 + fx+ gy + h = 0 (6.4)

193
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represents a hyperbola, an ellipse or a parabola depending on whether the
discriminant , ac − b2, is less than zero, greater than zero, or equal to zero,
these being the conditions for the matrix

[
a b
b c

]
(6.5)

to have signature (+,−), (+,+) or (+, 0).
By analogy, the equation

a(x, y)
∂2ϕ

∂x2
+ 2b(x, y)

∂2ϕ

∂x∂y
+ c(x, y)

∂2ϕ

∂y2
+ (lower orders) = 0, (6.6)

is said to be hyperbolic, elliptic, or parabolic at a point (x, y) if
∣∣∣∣
a(x, y) b(x, y)
b(x, y) c(x, y)

∣∣∣∣ = (ac− b2)|(x,y), (6.7)

is less than, greater than, or equal to zero, respectively. This classification
helps us understand what sort of initial or boundary data we need to specify
the problem.

There are three broad classes of boundary conditions:
a) Dirichlet boundary conditions: The value of the dependent vari-

able is specified on the boundary.
b) Neumann boundary conditions: The normal derivative of the de-

pendent variable is specified on the boundary.
c) Cauchy boundary conditions: Both the value and the normal deriva-

tive of the dependent variable are specified on the boundary.
Less commonly met are Robin boundary conditions, where the value of a
linear combination of the dependent variable and the normal derivative of
the dependent variable is specified on the boundary.

Cauchy boundary conditions are analogous to the initial conditions for a
second-order ordinary differential equation. These are given at one end of
the interval only. The other two classes of boundary condition are higher-
dimensional analogues of the conditions we impose on an ODE at both ends
of the interval.

Each class of PDE’s requires a different class of boundary conditions in
order to have a unique, stable solution.

1) Elliptic equations require either Dirichlet or Neumann boundary con-
ditions on a closed boundary surrounding the region of interest. Other
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boundary conditions are either insufficient to determine a unique solu-
tion, overly restrictive, or lead to instabilities.

2) Hyperbolic equations require Cauchy boundary conditions on a open
surface. Other boundary conditions are either too restrictive for a
solution to exist, or insufficient to determine a unique solution.

3) Parabolic equations require Dirichlet or Neumann boundary condi-
tions on a open surface. Other boundary conditions are too restrictive.

6.2 Cauchy data

Given a second-order ordinary differential equation

p0y
′′ + p1y

′ + p2y = f (6.8)

with initial data y(a), y′(a) we can construct the solution incrementally. We
take a step δx = ε and use the initial slope to find y(a+ ε) = y(a) + εy ′(a).
Next we find y′′(a) from the differential equation

y′′(a) = − 1

p0
(p1y

′(a) + p2y(a)− f(a)), (6.9)

and use it to obtain y′(a + ε) = y′(a) + εy′′(a). We now have initial data,
y(a+ε), y′(a+ε), at the point a+ε, and can play the same game to proceed
to a + 2ε, and onwards.

t

t

1

2

n

p

Figure 6.1: The surface Γ on which we are given Cauchy Data.

Suppose now that we have the analogous situation of a second order
partial differential equation

aµν(x)
∂2ϕ

∂xµ∂xν
+ (lower orders) = 0. (6.10)
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in Rn. We are also given initial data on a surface, Γ, of co-dimension one in
Rn.

At each point p on Γ we erect a basis n, t1, t2, . . . , tn−1, consisting of the
normal to Γ and n− 1 tangent vectors. The information we have been given
consists of the value of ϕ at every point p together with

∂ϕ

∂n
def
= nµ

∂ϕ

∂xµ
, (6.11)

the normal derivative of ϕ at p. We want to know if this Cauchy data
is sufficient to find the second derivative in the normal direction, and so
construct similar Cauchy data on the adjacent surface Γ + εn. If so, we can
repeat the process and systematically propagate the solution forward through
Rn.

From the given data, we can construct

∂2ϕ

∂n∂ti

def
= nµtνi

∂2ϕ

∂xµ∂xν
,

∂2ϕ

∂ti∂tj

def
= tνi t

ν
j

∂2ϕ

∂xµ∂xν
, (6.12)

but we do not yet have enough information to determine

∂2ϕ

∂n∂n
def
= nµnν

∂2ϕ

∂xµ∂xν
. (6.13)

Can we fill the data gap by using the differential equation (6.10)? Suppose
that

∂2ϕ

∂xµ∂xν
= φµν0 + nµnνΦ (6.14)

where φµν0 is a guess that is consistent with (6.12), and Φ is as yet unknown,
and, because of the factor of nµnν , does not affect the derivatives (6.12). We
plug into

aµν(xi)
∂2ϕ

∂xµ∂xν
+ (known lower orders) = 0. (6.15)

and get
aµνn

µnνΦ + (known) = 0. (6.16)

We can therefore find Φ provided that

aµνn
µnν 6= 0. (6.17)
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If this expression is zero, we are stuck. It is like having p0(x) = 0 in an
ordinary differential equation. On the other hand, knowing Φ tells us the
second normal derivative, and we can proceed to the adjacent surface where
we play the same game once more.

Definition: A characteristic surface is a surface Σ such that aµνn
µnν = 0

at all points on Σ. We can therefore propagate our data forward, provided
that the initial-data surface Γ is nowhere tangent to a characteristic surface.
In two dimensions the characteristic surfaces become one-dimensional curves.
An equation in two dimensions is hyperbolic, parabolic, or elliptic at at a
point (x, y) if it has two, one or zero characteristic curves through that point,
respectively.

Characteristics are both a curse and blessing . They are a barrier to
Cauchy data, but, as we see in the next two subsections, they are also the
curves along which information is transmitted.

6.2.1 Characteristics and first-order equations

Suppose we have a linear first-order partial differential equation

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
+ c(x, y)u = f(x, y). (6.18)

We can write this in vector notation as (v · ∇)u + cu = f , where v is the
vector field v = (a, b). If we define the flow of the vector field to be the
family of parametrized curves x(t), y(t) satisfying

dx

dt
= a(x, y),

dy

dt
= b(x, y), (6.19)

then the partial differential equation (6.18) reduces to an ordinary linear
differential equation

du

dt
+ c(t)u(t) = f(t) (6.20)

along each flow line. Here,

u(t) ≡ u(x(t), y(t)),

c(t) ≡ c(x(t), y(t)),

f(t) ≡ f(x(t), y(t)). (6.21)
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Γ

x

y

bad!

Figure 6.2: Initial data curve Γ, and flow-line characteristics.

Provided that a(x, y) and b(x, y) are never simultaneously zero, there will be
one flow-line curve passing through each point in R2. If we have been given
the initial value of u on a curve Γ that is nowhere tangent to any of these flow
lines then we can propagate this data forward along the flow by solving (6.20).
On the other hand, if the curve Γ does become tangent to one of the flow
lines at some point then the data will generally be inconsistent with (6.18)
at that point, and no solution can exist. The flow lines therefore play a role
analagous to the characteristics of a second-order partial differential equation,
and are therefore also called characteristics. The trick of reducing the partial
differential equation to a collection of ordinary differential equations along
each of its flow lines is called the method of characteristics.

Exercise 6.1: Show that the general solution to the equation

∂ϕ

∂x
− ∂ϕ

∂y
− (x− y)ϕ = 0

is
ϕ(x, y) = e−xyf(x+ y),

where f is an arbitrary function.

6.2.2 Second-order hyperbolic equations

Consider a second-order equation containing the operator

D = a(x, y)
∂2

∂x2
+ 2b(x, y)

∂2

∂x∂y
+ c(x, y)

∂2

∂y2
(6.22)
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We can always factorize

aX2 + 2bXY + cY 2 = (αX + βY )(γX + δY ), (6.23)

and from this obtain

a
∂2

∂x2
+ 2b

∂2

∂x∂y
+ c

∂2

∂y2
=

(
α
∂

∂x
+ β

∂

∂y

)(
γ
∂

∂x
+ δ

∂

∂y

)
+ lower,

=

(
γ
∂

∂x
+ δ

∂

∂y

)(
α
∂

∂x
+ β

∂

∂y

)
+ lower.

(6.24)

Here “lower” refers to terms containing only first order derivatives such as

α

(
∂γ

∂x

)
∂

∂x
, β

(
∂δ

∂y

)
∂

∂y
, etc.

A necessary condition, however, for the coefficients α, β, γ, δ to be real is that

ac− b2 = αβγδ − 1

4
(αδ + βγ)2

= −1

4
(αδ − βγ)2 ≤ 0. (6.25)

A factorization of the leading terms in the second-order operator D as the
product of two real first-order differential operators therefore requires that
D be hyperbolic or parabolic. It is easy to see that this is also a sufficient
condition for such a real factorization. For the rest of this section we assume
that the equation is hyperbolic, and so

ac− b2 = −1

4
(αδ − βγ)2 < 0. (6.26)

With this condition, the two families of flow curves defined by

C1 :
dx

dt
= α(x, y),

dy

dt
= β(x, y), (6.27)

and

C2 :
dx

dt
= γ(x, y),

dy

dt
= δ(x, y), (6.28)

are distinct, and are the characteristics of D.
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A hyperbolic second-order differential equation Du = 0 can therefore be
written in either of two ways:

(
α
∂

∂x
+ β

∂

∂y

)
U1 + F1 = 0, (6.29)

or (
γ
∂

∂x
+ δ

∂

∂y

)
U2 + F2 = 0, (6.30)

where

U1 = γ
∂u

∂x
+ δ

∂u

∂y
,

U2 = α
∂u

∂x
+ β

∂u

∂y
, (6.31)

and F1,2 contain only ∂u/∂x and ∂u/∂y. Given suitable Cauchy data, we
can solve the two first-order partial differential equations by the method
of characteristics described in the previous subsection, and so find U1(x, y)
and U2(x, y). Because the hyperbolicity condition (6.26) guarantees that the
determinant ∣∣∣∣

γ δ
α β

∣∣∣∣ = γβ − αδ

is not zero, we can solve (6.31) and so extract from U1,2 the individual deriva-
tives ∂u/∂x and ∂u/∂y. From these derivatives and the initial values of u,
we can determine u(x, y).

6.3 Wave equation

The wave equation provides the paradigm for hyperbolic equations that can
be solved by the method of characteristics.

6.3.1 d’Alembert’s solution

Let ϕ(x, t) obey the wave equation

∂2ϕ

∂x2
− 1

c2
∂2ϕ

∂t2
= 0, −∞ < x <∞. (6.32)
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We use the method of characteristics to propagate Cauchy data ϕ(x, 0) =
ϕ0(x) and ϕ̇(x, 0) = v0(x), given on the curve Γ = {x ∈ R, t = 0}, forward
in time.

We begin by factoring the wave equation as

0 =

(
∂2ϕ

∂x2
− 1

c2
∂2ϕ

∂t2

)
=

(
∂

∂x
+

1

c

∂

∂t

)(
∂ϕ

∂x
− 1

c

∂ϕ

∂t

)
. (6.33)

Thus, (
∂

∂x
+

1

c

∂

∂t

)
(U − V ) = 0, (6.34)

where

U = ϕ′ =
∂ϕ

∂x
, V =

1

c
ϕ̇ =

1

c

∂ϕ

∂t
. (6.35)

The quantity U − V is therefore constant along the characteristic curves

x− ct = const. (6.36)

Writing the linear factors in the reverse order yields the equation

(
∂

∂x
− 1

c

∂

∂t

)
(U + V ) = 0. (6.37)

This implies that U + V is constant along the characteristics

x + ct = const. (6.38)

Putting these two facts together tells us that

V (x, t′) =
1

2
[V (x, t′) + U(x, t′)] +

1

2
[V (x, t′)− U(x, t′)]

=
1

2
[V (x + ct′, 0) + U(x + ct′, 0)] +

1

2
[V (x− ct′, 0)− U(x− ct′, 0)].

(6.39)

The value of the variable V at the point (x, t′) has therefore been computed
in terms of the values of U and V on the initial curve Γ. After changing
variables from t′ to ξ = x ± ct′ as appropriate, we can integrate up to find
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that

ϕ(x, t) = ϕ(x, 0) + c

∫ t

0

V (x, t′)dt′

= ϕ(x, 0) +
1

2

∫ x+ct

x

ϕ′(ξ, 0) dξ +
1

2

∫ x−ct

x

ϕ′(ξ, 0) dξ +
1

2c

∫ x+ct

x−ct
ϕ̇(ξ, 0) dξ

=
1

2
{ϕ(x+ ct, 0) + ϕ(x− ct, 0)}+

1

2c

∫ x+ct

x−ct
ϕ̇(ξ, 0) dξ. (6.40)

This result

ϕ(x, t) =
1

2
{ϕ0(x + ct) + ϕ0(x− ct)}+

1

2c

∫ x+ct

x−ct
v0(ξ) dξ (6.41)

is usually known as d’Alembert’s solution of the wave equation. It was actu-
ally obtained first by Euler in 1748.

x

t

x−ct x+ct

(x,t)

x−ct=const. x+ct=const.

Figure 6.3: Range of Cauchy data influencing ϕ(x, t).

The value of ϕ at x, t, is determined by only a finite interval of the initial
Cauchy data. In more generality, ϕ(x, t) depends only on what happens in
the past light-cone of the point, which is bounded by pair of characteristic
curves. This is illustrated in figure 6.3

D’Alembert and Euler squabbled over whether ϕ0 and v0 had to be twice
differentiable for the solution (6.41) to make sense. Euler wished to apply
(6.41) to a plucked string, which has a discontinuous slope at the plucked
point, but d’Alembert argued that the wave equation, with its second deriva-
tive, could not be applied in this case. This was a dispute that could not be



6.3. WAVE EQUATION 203

resolved (in Euler’s favour) until the advent of the theory of distributions. It
highlights an important difference between ordinary and partial differential
equations: an ODE with smooth coefficients has smooth solutions; a PDE
with with smooth coefficients can admit discontinuous or even distributional
solutions.

An alternative route to d’Alembert’s solution uses a method that applies
most effectively to PDE’s with constant coefficients. We first seek a general
solution to the PDE involving two arbitrary functions. Begin with a change
of variables. Let

ξ = x+ ct,

η = x− ct. (6.42)

be light-cone co-ordinates. In terms of them, we have

x =
1

2
(ξ + η),

t =
1

2c
(ξ − η). (6.43)

Now,
∂

∂ξ
=
∂x

∂ξ

∂

∂x
+
∂t

∂ξ

∂

∂t
=

1

2

(
∂

∂x
+

1

c

∂

∂t

)
. (6.44)

Similarly
∂

∂η
=

1

2

(
∂

∂x
− 1

c

∂

∂t

)
. (6.45)

Thus
(
∂2

∂x2
− 1

c2
∂2

∂t2

)
=

(
∂

∂x
+

1

c

∂

∂t

)(
∂

∂x
− 1

c

∂

∂t

)
= 4

∂2

∂ξ∂η
. (6.46)

The characteristics of the equation

4
∂2ϕ

∂ξ∂η
= 0 (6.47)

are ξ = const. or η = const. There are two characteristics curves through
each point, so the equation is still hyperbolic.

With light-cone coordinates it is easy to see that a solution to
(
∂2

∂x2
− 1

c2
∂2

∂t2

)
ϕ = 4

∂2ϕ

∂ξ∂η
= 0 (6.48)
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is
ϕ(x, t) = f(ξ) + g(η) = f(x + ct) + g(x− ct). (6.49)

It is this this expression that was obtained by d’Alembert (1746).
Following Euler, we use d’Alembert’s general solution to propagate the

Cauchy data ϕ(x, 0) ≡ ϕ0(x) and ϕ̇(x, 0) ≡ v0(x) by using this information
to determine the functions f and g. We have

f(x) + g(x) = ϕ0(x),

c(f ′(x)− g′(x)) = v0(x). (6.50)

Integration of the second line with respect to x gives

f(x)− g(x) =
1

c

∫ x

0

v0(ξ) dξ + A, (6.51)

where A is an unknown (but irrelevant) constant. We can now solve for f
and g, and find

f(x) =
1

2
ϕ0(x) +

1

2c

∫ x

0

v0(ξ) dξ +
1

2
A,

g(x) =
1

2
ϕ0(x)−

1

2c

∫ x

0

v0(ξ) dξ −
1

2
A, (6.52)

and so

ϕ(x, t) =
1

2
{ϕ0(x+ ct) + ϕ0(x− ct)}+

1

2c

∫ x+ct

x−ct
v0(ξ) dξ. (6.53)

The unknown constant A has disappeared in the end result, and again we
find “d’Alembert’s” solution.

Exercise 6.2: Show that when the operator D in a constant-coefficient second-
order PDE Dϕ = 0 is reducible, meaning that it can be factored into two
distinct first-order factors D = P1P2, where

Pi = αi
∂

∂x
+ βi

∂

∂y
+ γi,

then the general solution to Dϕ = 0 can be written as ϕ = φ1 + φ2, where
P1φ1 = 0, P2φ2 = 0. Hence, or otherwise, show that the general solution to
the equation

∂2ϕ

∂x∂y
+ 2

∂2ϕ

∂y2
− ∂ϕ

∂x
− 2

∂ϕ

∂y
= 0
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is

ϕ(x, y) = f(2x− y) + eyg(x),

where f , g, are arbitrary functions.

Exercise 6.3: Show that when the constant-coefficient operator D is of the
form

D = P 2 =

(
α
∂

∂x
+ β

∂

∂y
+ γ

)2

,

with α 6= 0, then the general solution to Dϕ = 0 is given by ϕ = φ1 + xφ2,
where Pφ1,2 = 0. (If α = 0 and β 6= 0, then ϕ = φ1 + yφ2.)

6.3.2 Fourier’s solution

In 1755 Daniel Bernoulli proposed solving for the motion of a finite length L
of transversely vibrating string by setting

y(x, t) =

∞∑

n=1

An sin
(nπx
L

)
cos

(
nπct

L

)
, (6.54)

but he did not know how to find the coefficients An (and perhaps did not
care that his cosine time dependence restricted his solution to the intial
condition ẏ(x, 0) = 0). Bernoulli’s idea was dismissed out of hand by Euler
and d’Alembert as being too restrictive. They simply refused to believe that
(almost) any chosen function could be represented by a trigonometric series
expansion. It was only fifty years later, in a series of papers starting in
1807, that Joseph Fourier showed how to compute the An and insisted that
indeed “any” function could be expanded in this way. Mathematicians have
expended much effort in investigating the extent to which Fourier’s claim is
true.

We now try our hand at Bernoulli’s game. Because we are solving the
wave equation on the infinite line, we seek a solution as a Fourier integral .
A sufficiently general form is

ϕ(x, t) =

∫ ∞

−∞

dk

2π

{
a(k)eikx−iωkt + a∗(k)e−ikx+iωkt

}
, (6.55)

where ωk ≡ c|k| is the positive root of ω2 = c2k2. The terms being summed
by the integral are each individually of the form f(x−ct) or f(x+ct), and so
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ϕ(x, t) is indeed a solution of the wave equation. The positive-root convention
means that positive k corresponds to right-going waves, and negative k to
left-going waves.

We find the amplitudes a(k) by fitting to the Fourier transforms

Φ(k)
def
=

∫ ∞

−∞
ϕ(x, t = 0)e−ikxdx,

χ(k)
def
=

∫ ∞

−∞
ϕ̇(x, t = 0)e−ikxdx, (6.56)

of the Cauchy data. Comparing

ϕ(x, t = 0) =

∫ ∞

−∞

dk

2π
Φ(k)eikx,

ϕ̇(x, t = 0) =

∫ ∞

−∞

dk

2π
χ(k)eikx, (6.57)

with (6.55) shows that

Φ(k) = a(k) + a∗(−k),
χ(k) = iωk

(
a∗(−k)− a(k)

)
. (6.58)

Solving, we find

a(k) =
1

2

(
Φ(k) +

i

ωk
χ(k)

)
,

a∗(k) =
1

2

(
Φ(−k)− i

ωk
χ(−k)

)
. (6.59)

The accumulated wisdom of two hundred years of research on Fourier
series and Fourier integrals shows that, when appropriately interpreted, this
solution is equivalent to d’Alembert’s.

6.3.3 Causal Green function

We now add a source term:

1

c2
∂2ϕ

∂t2
− ∂2ϕ

∂x2
= q(x, t). (6.60)
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We solve this equation by finding a Green function such that

(
1

c2
∂2

∂t2
− ∂2

∂x2

)
G(x, t; ξ, τ) = δ(x− ξ)δ(t− τ). (6.61)

If the only waves in the system are those produced by the source, we should
demand that the Green function be causal , in that G(x, t; ξ, τ) = 0 if t < τ .

x

t

(ξ,τ)

Figure 6.4: Support of G(x, t; ξ, τ) for fixed ξ, τ , or the “domain of influence.”

To construct the causal Green function, we integrate the equation over
an infinitesimal time interval from τ − ε to τ + ε and so find Cauchy data

G(x, τ + ε; ξ, τ) = 0,

d

dt
G(x, τ + ε; ξ, τ) = c2δ(x− ξ). (6.62)

We insert this data into d’Alembert’s solution to get

G(x, t; ξ, τ) = θ(t− τ) c
2

∫ x+c(t−τ)

x−c(t−τ)
δ(ζ − ξ)dζ

=
c

2
θ(t− τ)

{
θ
(
x− ξ + c(t− τ)

)
− θ
(
x− ξ − c(t− τ)

)}
.

(6.63)

We can now use the Green function to write the solution to the inhomo-
geneous problem as

ϕ(x, t) =

∫∫
G(x, t; ξ, τ)q(ξ, τ) dτdξ. (6.64)
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The step-function form of G(x, t; ξ, τ) allows us to obtain

ϕ(x, t) =

∫∫
G(x, t; ξ, τ)q(ξ, τ) dτdξ,

=
c

2

∫ t

−∞
dτ

∫ x+c(t−τ)

x−c(t−τ)
q(ξ, τ) dξ

=
c

2

∫∫

Ω

q(ξ, τ) dτdξ, (6.65)

where the domain of integration Ω is shown in figure 6.5.

(ξ,τ)
τx-c(t-  ) τx+c(t-  ) 

τ

ξ

(x,t)

Figure 6.5: The region Ω, or the “domain of dependence.”

We can write the causal Green function in the form of Fourier’s solution
of the wave equation. We claim that

G(x, t; ξ, τ) = c2
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk

2π

{
eik(x−ξ)e−iω(t−τ)

c2k2 − (ω + iε)2

}
, (6.66)

where the iε plays the same role in enforcing causality as it does for the
harmonic oscillator in one dimension. This is only to be expected. If we
decompose a vibrating string into normal modes, then each mode is an in-
dependent oscillator with ω2

k = c2k2, and the Green function for the PDE is
simply the sum of the ODE Green functions for each k mode. To confirm our
claim, we exploit our previous results for the single-oscillator Green function
to evaluate the integral over ω, and we find

G(x, t; 0, 0) = θ(t)c2
∫ ∞

−∞

dk

2π
eikx

1

c|k| sin(|k|ct). (6.67)
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Despite the factor of 1/|k|, there is no singularity at k = 0, so no iε is
needed to make the integral over k well defined. We can do the k integral
by recognizing that the integrand is nothing but the Fourier representation,
2
k

sin ak, of a square-wave pulse. We end up with

G(x, t; 0, 0) = θ(t)
c

2
{θ(x+ ct)− θ(x− ct)} , (6.68)

the same expression as from our direct construction. We can also write

G(x, t; 0, 0) =
c

2

∫ ∞

−∞

dk

2π

(
i

|k|

){
eikx−ic|k|t − e−ikx+ic|k|t

}
, t > 0, (6.69)

which is in explicit Fourier-solution form with a(k) = ic/2|k|.
Illustration: Radiation Damping. Figure 6.6 shows bead of mass M that
slides without friction on the y axis. The bead is attached to an infinite
string which is initially undisturbed and lying along the x axis. The string has
tension T , and a density ρ, so the speed of waves on the string is c =

√
T/ρ.

We show that either d’Alembert or Fourier can be used to compute the effect
of the string on the motion of the bead.

We first use d’Alembert’s general solution to show that wave energy emit-
ted by the moving bead gives rise to an effective viscous damping force on
it.

v

x

y

T

Figure 6.6: A bead connected to a string.

The string tension acting on the on the bead leads to the equation of
motion Mv̇ = Ty′(0, t), and from the condition of no incoming waves we
know that

y(x, t) = y(x− ct). (6.70)

Thus y′(0, t) = −ẏ(0, t)/c. But the bead is attached to the string, so v(t) =
ẏ(0, t), and therefore

Mv̇ = −
(
T

c

)
v. (6.71)
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The emitted radiation therefore generates a velocity-dependent drag force
with friction coefficient η = T/c.

We need an infinitely long string for (6.71) to be true for all time. If
the string had a finite length L, then, after a period of 2L/c, energy will be
reflected back to the bead and this will complicate matters.

x

’(x)
0

(x)
0

φ

− φ1

Figure 6.7: The function φ0(x) and its derivative.

We now show that Fourier’s mode-decomposition of the string motion,
combined with the Caldeira-Leggett analysis of chapter 5, yields the same
expression for the radiation damping as the d’Alembert solution. Our bead-
string contraption has Lagrangian

L =
M

2
[ẏ(0, t)]2 − V [y(0, t)] +

∫ L

0

{
ρ

2
ẏ2 − T

2
y′

2

}
dx. (6.72)

Here, V [y] is some potential energy for the bead.

To deal with the motion of the bead, we introduce a function φ0(x) such
that φ0(0) = 1 and φ0(x) decreases rapidly to zero as x increases (see figure
6.7. We therefore have −φ′

0(x) ≈ δ(x). We expand y(x, t) in terms of φ0(x)
and the normal modes of a string with fixed ends as

y(x, t) = y(0, t)φ0(x) +
∞∑

n=1

qn(t)

√
2

Lρ
sin knx. (6.73)

Here knL = nπ. Because y(0, t)φ0(x) describes the motion of only an in-
finitesimal length of string, y(0, t) makes a negligeable contribution to the
string kinetic energy, but it provides a linear coupling of the bead to the
string normal modes, qn(t), through the Ty′2/2 term. Inserting the mode
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expansion into the Lagrangian, and after about half a page of arithmetic, we
end up with

L =
M

2
[ẏ(0)]2−V [y(0)]+y(0)

∞∑

n=1

fnqn+
∞∑

n=1

(
1

2
q̇2
n − ω2

nq
2
n

)
−1

2

∞∑

n=1

(
f 2
n

ω2
n

)
y(0)2,

(6.74)
where ωn = ckn, and

fn = T

√
2

Lρ
kn. (6.75)

This is exactly the Caldeira-Leggett Lagrangian — including their frequency-
shift counter-term that reflects that fact that a static displacement of an
infinite string results in no additional force on the bead.1 When L becomes
large, the eigenvalue density of states

ρ(ω) =
∑

n

δ(ω − ωn) (6.76)

becomes

ρ(ω) =
L

πc
. (6.77)

The Caldeira-Leggett spectral function

J(ω) =
π

2

∑

n

(
f 2
n

ωn

)
δ(ω − ωn), (6.78)

is therefore

J(ω) =
π

2
· 2T

2k2

Lρ
· 1

kc
· L
πc

=

(
T

c

)
ω, (6.79)

where we have used c =
√
T/ρ. Comparing with Caldeira-Leggett’s J(ω) =

ηω, we see that the effective viscosity is given by η = T/c, as before. The
necessity of having an infinitely long string here translates into the require-
ment that we must have a continuum of oscillator modes. It is only after the
sum over discrete modes ωi is replaced by an integral over the continuum of
ω’s that no energy is ever returned to the system being damped.

1For a finite length of string that is fixed at the far end, the string tension does add
1
2Ty(0)2/L to the static potential. In the mode expansion, this additional restoring force
arises from the first term of−φ′

0(x) ≈ 1/L+(2/L)
∑∞

n=1 cos knx in 1
2Ty(0)2

∫
(φ′0)

2 dx. The
subsequent terms provide the Caldeira-Leggett counter-term. The first-term contribution
has been omitted in (6.74) as being unimportant for large L.
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For our bead and string, the mode-expansion approach is more com-
plicated than d’Alembert’s. In the important problem of the drag forces
induced by the emission of radiation from an accelerated charged particle,
however, the mode-expansion method leads to an informative resolution2 of
the pathologies of the Abraham-Lorentz equation,

M(v̇ − τ v̈) = Fext, τ =
2

3

e2

Mc3
1

4πε0
(6.80)

which is plagued by runaway, or apparently acausal, solutions.

6.3.4 Odd vs. even dimensions

Consider the wave equation for sound in the three dimensions. We have a
velocity potential φ which obeys the wave equation

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
− 1

c2
∂2φ

∂t2
= 0, (6.81)

and from which the velocity, density, and pressure fluctuations can be ex-
tracted as

v1 = ∇φ,
ρ1 = −ρ0

c2
φ̇,

P1 = c2ρ1. (6.82)

In three dimensions, and considering only spherically symmetric waves,
the wave equation becomes

∂2(rφ)

∂r2
− 1

c2
∂2(rφ)

∂t2
= 0, (6.83)

with solution

φ(r, t) =
1

r
f
(
t− r

c

)
+

1

r
g
(
t+

r

c

)
. (6.84)

Consider what happens if we put a point volume source at the origin (the
sudden conversion of a negligeable volume of solid explosive to a large volume

2G. W. Ford, R. F. O’Connell, Phys. Lett. A 157 (1991) 217.
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of hot gas, for example). Let the rate at which volume is being intruded be
q̇. The gas velocity very close to the origin will be

v(r, t) =
q̇(t)

4πr2
. (6.85)

Matching this to an outgoing wave gives

q̇(t)

4πr2
= v1(r, t) =

∂φ

∂r
= − 1

r2
f
(
t− r

c

)
− 1

rc
f ′
(
t− r

c

)
. (6.86)

Close to the origin, in the near field , the term ∝ f/r2 will dominate, and so

− 1

4π
q̇(t) = f(t). (6.87)

Further away, in the far field or radiation field , only the second term will
survive, and so

v1 =
∂φ

∂r
≈ − 1

rc
f ′
(
t− r

c

)
. (6.88)

The far-field velocity-pulse profile v1 is therefore the derivative of the near-
field v1 pulse profile.

v

x

Near field Far field

x

v or P

Figure 6.8: Three-dimensional blast wave.

The pressure pulse

P1 = −ρ0φ̇ =
ρ0

4πr
q̈
(
t− r

c

)
(6.89)

is also of this form. Thus, a sudden localized expansion of gas produces an
outgoing pressure pulse which is first positive and then negative.
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This phenomenon can be seen in (old, we hope) news footage of bomb
blasts in tropical regions. A spherical vapour condensation wave can been
seen spreading out from the explosion. The condensation cloud is caused by
the air cooling below the dew-point in the low-pressure region which tails the
over-pressure blast.

Now consider what happens if we have a sheet of explosive, the simultane-
ous detonation of every part of which gives us a one-dimensional plane-wave
pulse. We can obtain the plane wave by adding up the individual spherical
waves from each point on the sheet.

r

xs
P

Figure 6.9: Sheet-source geometry.

Using the notation defined in figure 6.9, we have

φ(x, t) = 2π

∫ ∞

0

1√
x2 + s2

f

(
t−
√
x2 + s2

c

)
sds (6.90)

with f(t) = −q̇(t)/4π, where now q̇ is the rate at which volume is being
intruded per unit area of the sheet. We can write this as

2π

∫ ∞

0

f

(
t−
√
x2 + s2

c

)
d
√
x2 + s2,

= 2πc

∫ t−x/c

−∞
f(τ) dτ,
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= − c
2

∫ t−x/c

−∞
q̇(τ) dτ. (6.91)

In the second line we have defined τ = t −
√
x2 + s2/c, which, inter alia,

interchanged the role of the upper and lower limits on the integral.
Thus, v1 = φ′(x, t) = 1

2
q̇(t − x/c). Since the near field motion produced

by the intruding gas is v1(r) = 1
2
q̇(t), the far-field displacement exactly re-

produces the initial motion, suitably delayed of course. (The factor 1/2 is
because half the intruded volume goes towards producing a pulse in the neg-
ative direction.)

In three dimensions, the far-field motion is the first derivative of the near-
field motion. In one dimension, the far-field motion is exactly the same as
the near-field motion. In two dimensions the far-field motion should there-
fore be the half-derivative of the near-field motion — but how do you half-
differentiate a function? An answer is suggested by the theory of Laplace
transformations as

(
d

dt

) 1
2

F (t)
def
=

1√
π

∫ t

−∞

Ḟ (τ)√
t− τ dτ. (6.92)

Let us now repeat the explosive sheet calculation for an exploding wire.

s
r

Px

Figure 6.10: Line-source geometry.

Using the geometry shown in figure 6.10, we have

ds = d
(√

r2 − x2
)

=
r dr√
r2 − x2

, (6.93)
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and combining the contributions of the two parts of the wire that are the
same distance from p, we can write

φ(x, t) =

∫ ∞

x

1

r
f
(
t− r

c

) 2r dr√
r2 − x2

= 2

∫ ∞

x

f
(
t− r

c

) dr√
r2 − x2

, (6.94)

with f(t) = −q̇(t)/4π, where now q̇ is the volume intruded per unit length.
We may approximate r2−x2 ≈ 2x(r−x) for the near parts of the wire where
r ≈ x, since these make the dominant contribution to the integral. We also
set τ = t− r/c, and then have

φ(x, t) =
2c√
2x

∫ (t−x/c)

−∞
f (τ)

dr√
(ct− x)− cτ

,

= − 1

2π

√
2c

x

∫ (t−x/c)

−∞
q̇ (τ)

dτ√
(t− x/c)− τ

. (6.95)

The far-field velocity is the x gradient of this,

v1(r, t) =
1

2πc

√
2c

x

∫ (t−x/c)

−∞
q̈ (τ)

dτ√
(t− x/c)− τ

, (6.96)

and is therefore proportional to the 1/2-derivative of q̇(t− r/c).

Near field Far field

v v

r r

Figure 6.11: In two dimensions the far-field pulse has a long tail.

A plot of near field and far field motions in figure 6.11 shows how the
far-field pulse never completely dies away to zero. This long tail means that
one cannot use digital signalling in two dimensions.



6.4. HEAT EQUATION 217

Moral Tale: One of our colleagues was performing numerical work on earth-
quake propagation. The source of his waves was a long deep linear fault,
so he used the two-dimensional wave equation. Not wanting to be troubled
by the actual creation of the wave pulse, he took as initial data an outgoing
finite-width pulse. After a short propagation time his numerical solution ap-
peared to misbehave. New pulses were being emitted from the fault long after
the initial one. He wasted several months in vain attempt to improve the
stability of his code before he realized that what he was seeing was real. The
lack of a long tail on his pulse meant that it could not have been created by
a briefly-active line source. The new “unphysical” waves were a consequence
of the source striving to suppress the long tail of the initial pulse. Moral :
Always check that a solution of the form you seek actually exists before you
waste your time trying to compute it.

Exercise 6.4: Use the calculus of improper integrals to show that, provided
F (−∞) = 0, we have

d

dt

(
1√
π

∫ t

−∞

Ḟ (τ)√
t− τ dτ

)
=

1√
π

∫ t

−∞

F̈ (τ)√
t− τ dτ. (6.97)

This means that
d

dt

(
d

dt

) 1
2

F (t) =

(
d

dt

) 1
2 d

dt
F (t). (6.98)

6.4 Heat equation

Fourier’s heat equation
∂φ

∂t
= κ

∂2φ

∂x2
(6.99)

is the archetypal parabolic equation. It often comes with initial data φ(x, t = 0),
but this is not Cauchy data, as the curve t = const. is a characteristic.

The heat equation is also known as the diffusion equation.

6.4.1 Heat kernel

If we Fourier transform the initial data

φ(x, t = 0) =

∫ ∞

−∞

dk

2π
φ̃(k)eikx, (6.100)
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and write

φ(x, t) =

∫ ∞

−∞

dk

2π
φ̃(k, t)eikx, (6.101)

we can plug this into the heat equation and find that

∂φ̃

∂t
= −κk2φ̃. (6.102)

Hence,

φ(x, t) =

∫ ∞

−∞

dk

2π
φ̃(k, t)eikx

=

∫ ∞

−∞

dk

2π
φ̃(k, 0)eikx−κk

2t. (6.103)

We may now express φ̃(k, 0) in terms of φ(x, 0) and rearrange the order of
integration to get

φ(x, t) =

∫ ∞

−∞

dk

2π

(∫ ∞

−∞
φ(ξ, 0)eikξ dξ

)
eikx−κk

2t

=

∫ ∞

−∞

(∫ ∞

−∞

dk

2π
eik(x−ξ)−κk

2t

)
φ(ξ, 0)dξ

=

∫ ∞

−∞
G(x, ξ, t)φ(ξ, 0) dξ, (6.104)

where

G(x, ξ, t) =

∫ ∞

−∞

dk

2π
eik(x−ξ)−κk

2t =
1√

4πκt
exp

{
− 1

4κt
(x− ξ)2

}
. (6.105)

Here, G(x, ξ, t) is the heat kernel . It represents the spreading of a unit blob
of heat.
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G(x, ξ ,t)

ξ
x

Figure 6.12: The heat kernel at three successive times.

As the heat spreads, the total amount of heat, represented by the area
under the curve in figure 6.12, remains constant:

∫ ∞

−∞

1√
4πκt

exp

{
− 1

4κt
(x− ξ)2

}
dx = 1. (6.106)

The heat kernel possesses a semigroup property

G(x, ξ, t1 + t2) =

∫ ∞

−∞
G(x, η, t2)G(η, ξ, t1)dη. (6.107)

Exercise: Prove this.

6.4.2 Causal Green function

Now we consider the inhomogeneous heat equation

∂u

∂t
− ∂2u

∂x2
= q(x, t), (6.108)

with initial data u(x, 0) = u0(x). We define a Causal Green function by

(
∂

∂t
− ∂2

∂x2

)
G(x, t; ξ, τ) = δ(x− ξ)δ(t− τ) (6.109)



220 CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS

and the requirement that G(x, t; ξ, τ) = 0 if t < τ . Integrating the equation
from t = τ − ε to t = τ + ε tells us that

G(x, τ + ε; ξ, τ) = δ(x− ξ). (6.110)

Taking this delta function as initial data φ(x, t = τ) and inserting into (6.104)
we read off

G(x, t; ξ, τ) = θ(t− τ) 1√
4π(t− τ)

exp

{
− 1

4(t− τ)(x− ξ)2

}
. (6.111)

We apply this Green function to the solution of a problem involving both
a heat source and initial data given at t = 0 on the entire real line. We
exploit a variant of the Lagrange-identity method we used for solving one-
dimensional ODE’s with inhomogeneous boundary conditions. Let

Dx,t ≡
∂

∂t
− ∂2

∂x2
, (6.112)

and observe that its formal adjoint,

D†
x,t ≡ −

∂

∂t
− ∂2

∂x2
. (6.113)

is a “backward” heat-equation operator. The corresponding “backward”
Green function

G†(x, t; ξ, τ) = θ(τ − t) 1√
4π(τ − t)

exp

{
− 1

4(τ − t)(x− ξ)
2

}
(6.114)

obeys
D†
x,tG

†(x, t; ξ, τ) = δ(x− ξ)δ(t− τ), (6.115)

with adjoint boundary conditions. These makeG† anti-causal , in thatG†(t− τ)
vanishes when t > τ . Now we make use of the two-dimensional Lagrange
identity

∫ ∞

−∞
dx

∫ T

0

dt
{
u(x, t)D†

x,tG
†(x, t; ξ, τ)−

(
Dx,tu(x, t)

)
G†(x, t; ξ, τ)

}

=

∫ ∞

−∞
dx
{
u(x, 0)G†(x, 0; ξ, τ)

}
−
∫ ∞

−∞
dx
{
u(x, T )G†(x, T ; ξ, τ)

}
. (6.116)
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Assume that (ξ, τ) lies within the region of integration. Then the left hand
side is equal to

u(ξ, τ)−
∫ ∞

−∞
dx

∫ T

0

dt
{
q(x, t)G†(x, t; ξ, τ)

}
. (6.117)

On the right hand side, the second integral vanishes because G† is zero on
t = T . Thus,

u(ξ, τ) =

∫ ∞

−∞
dx

∫ T

0

dt
{
q(x, t)G†(x, t; ξ, τ)

}
+

∫ ∞

−∞

{
u(x, 0)G†(x, 0; ξ, τ)

}
dx

(6.118)
Rewriting this by using

G†(x, t; ξ, τ) = G(ξ, τ ; x, t), (6.119)

and relabeling x↔ ξ and t↔ τ , we have

u(x, t) =

∫ ∞

−∞
G(x, t; ξ, 0)u0(ξ) dξ +

∫ ∞

−∞

∫ t

0

G(x, t; ξ, τ)q(ξ, τ)dξdτ. (6.120)

Note how the effects of any heat source q(x, t) active prior to the initial-data
epoch at t = 0 have been subsumed into the evolution of the initial data.

6.4.3 Duhamel’s principle

Often, the temperature of the spatial boundary of a region is specified in
addition to the initial data. Dealing with this type of problem leads us to a
new strategy.

Suppose we are required to solve

∂u

∂t
= κ

∂2u

∂x2
(6.121)

for the semi-infinite rod shown in figure 6.13. We are given a specified tem-
perature, u(0, t) = h(t), at the end x = 0, and for all other points x > 0 we
are given an initial condition u(x, 0) = 0.
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x

h(t)
u(x,t)

u

Figure 6.13: Semi-infinite rod heated at one end.

We begin by finding a solution w(x, t) that satisfies the heat equation with
w(0, t) = 1 and initial data w(x, 0) = 0, x > 0. This solution is constructed
in problem 6.14, and is

w = θ(t)

{
1− erf

(
x

2
√
t

)}
. (6.122)

Here erf(x) is the error function

erf(x) =
2√
π

∫ x

0

e−z
2

dz. (6.123)

which has the properties that erf(0) = 0 and erf(x) → 1 as x → ∞. See
figure 6.14.

1

x

erf(x)

Figure 6.14: Error function.

If we were given
h(t) = h0θ(t− t0), (6.124)

then the desired solution would be

u(x, t) = h0w(x, t− t0). (6.125)
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For a sum

h(t) =
∑

n

hnθ(t− tn), (6.126)

the principle of superposition (i.e. the linearity of the problem) tell us that
the solution is the corresponding sum

u(x, t) =
∑

n

hnw(x, t− tn). (6.127)

We therefore decompose h(t) into a sum of step functions

h(t) = h(0) +

∫ t

0

ḣ(τ) dτ

= h(0) +

∫ ∞

0

θ(t− τ)ḣ(τ) dτ. (6.128)

It is should now be clear that

u(x, t) =

∫ t

0

w(x, t− τ)ḣ(τ) dτ + h(0)w(x, t)

= −
∫ t

0

(
∂

∂τ
w(x, t− τ)

)
h(τ) dτ

=

∫ t

0

(
∂

∂t
w(x, t− τ)

)
h(τ) dτ. (6.129)

This is called Duhamel’s solution, and the trick of expressing the data as a
sum of Heaviside step functions is called Duhamel’s principle.

We do not need to be as clever as Duhamel. We could have obtained
this result by using the method of images to find a suitable causal Green
function for the half line, and then using the same Lagrange-identity method
as before.

6.5 Potential theory

The study of boundary-value problems involving the Laplacian is usually
known as “‘Potential Theory.” We seek solutions to these problems in some
region Ω, whose boundary we denote by the symbol ∂Ω.
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Poisson’s equation, −∇2χ(r) = f(r), r ∈ Ω, and the Laplace equation to
which it reduces when f(r) ≡ 0, come along with various boundary condi-
tions, of which the commonest are

χ = g(r) on ∂Ω, (Dirichlet)

(n · ∇)χ = g(r) on ∂Ω. (Neumann) (6.130)

A function for which ∇2χ = 0 in some region Ω is said to be harmonic there.

6.5.1 Uniqueness and existence of solutions

We begin by observing that we need to be a little more precise about what
it means for a solution to “take” a given value on a boundary. If we ask for
a solution to the problem ∇2ϕ = 0 within Ω = {(x, y) ∈ R2 : x2 + y2 < 1}
and ϕ = 1 on ∂Ω, someone might claim that the function defined by setting
ϕ(x, y) = 0 for x2 + y2 < 1 and ϕ(x, y) = 1 for x2 + y2 = 1 does the job—
but such a discontinuous “solution” is hardly what we had in mind when we
stated the problem. We must interpret the phrase “takes a given value on the
boundary” as meaning that the boundary data is the limit, as we approach
the boundary, of the solution within Ω.

With this understanding, we assert that a function harmonic in a bounded
subset Ω of Rn is uniquely determined by the values it takes on the boundary
of Ω. To see that this is so, suppose that ϕ1 and ϕ2 both satisfy ∇2ϕ = 0 in
Ω, and coincide on the boundary. Then χ = ϕ1 − ϕ2 obeys ∇2χ = 0 in Ω,
and is zero on the boundary. Integrating by parts we find that

∫

Ω

|∇χ|2dnr =

∫

∂Ω

χ(n · ∇)χ dS = 0. (6.131)

Here dS is the element of area on the boundary and n the outward-directed
normal. Now, because the second derivatives exist, the partial derivatives
entering into ∇χ must be continuous, and so the vanishing of integral of
|∇χ|2 tells us that ∇χ is zero everywhere within Ω. This means that χ is
constant — and because it is zero on the boundary it is zero everywhere.

An almost identical argument shows that if Ω is a bounded connected
region, and if ϕ1 and ϕ2 both satisfy ∇2ϕ = 0 within Ω and take the same
values of (n ·∇)ϕ on the boundary, then ϕ1 = ϕ2 + const. We have therefore
shown that, if it exists, the solutions of the Dirichlet boundary value problem
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is unique, and the solution of the Neumann problem is unique up to the
addition of an arbitrary constant.

In the Neumann case, with boundary condition (n · ∇)ϕ = g(r), and
integration by parts gives

∫

Ω

∇2ϕdnr =

∫

∂Ω

(n · ∇)ϕdS =

∫

∂Ω

g dS, (6.132)

and so the boundary data g(r) must satisfy
∫
∂Ω
g dS = 0 if a solution to

∇2ϕ = 0 is to exist. This is an example of the Fredhom alternative that
relates the existence of a non-trivial null space to constraints on the source
terms. For the inhomogeneous equation −∇2ϕ = f , the Fredholm constraint
becomes ∫

∂Ω

g dS +

∫

Ω

f dnr = 0. (6.133)

Given that we have satisfied any Fredholm constraint, do solutions to the
Dirichlet and Neumann problem always exist? That solutions should exist is
suggested by physics: the Dirichlet problem corresponds to an electrostatic
problem with specified boundary potentials and the Neumann problem cor-
responds to finding the electric potential within a resistive material with
prescribed current sources on the boundary. The Fredholm constraint says
that if we drive current into the material, we must must let it out somewhere.
Surely solutions always exist to these physics problems? In the Dirichlet case
we can even make a mathematically plausible argument for existence: We
observe that the boundary-value problem

∇2ϕ = 0, r ∈ Ω

ϕ = f, r ∈ ∂Ω (6.134)

is solved by taking ϕ to be the χ that minimizes the functional

J [χ] =

∫

Ω

|∇χ|2dnr (6.135)

over the set of continuously differentiable functions taking the given boundary
values. Since J [χ] is positive, and hence bounded below, it seems intuitively
obvious that there must be some function χ for which J [χ] is a minimum.
The appeal of this Dirichlet principle argument led even Riemann astray.
The fallacy was exposed by Weierstrass who provided counterexamples.
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Consider, for example, the problem of finding a function ϕ(x, y) obeying
∇2ϕ = 0 within the punctured disc D′ = {(x, y) ∈ R2 : 0 < x2 + y2 < 1}
with boundary data ϕ(x, y) = 1 on the outer boundary at x2 + y2 = 1 and
ϕ(0, 0) = 0 on the inner boundary at the origin. We substitute the trial
functions

χα(x, y) = (x2 + y2)α, α > 0, (6.136)

all of which satisfy the boundary data, into the positive functional

J [χ] =

∫

D′

|∇χ|2 dxdy (6.137)

to find J [χα] = 2πα. This number can be made as small as we like, and so
the infimum of the functional J [χ] is zero. But if there is a minimizing ϕ,
then J [ϕ] = 0 implies that ϕ is a constant, and a constant cannot satisfy the
boundary conditions.

An analogous problem reveals itself in three dimensions when the bound-
ary of Ω has a sharp re-entrant spike that is held at a different potential from
the rest of the boundary. In this case we can again find a sequence of trial
functions χ(r) for which J [χ] becomes arbitrarily small, but the sequence of
χ’s has no limit satisfying the boundary conditions. The physics argument
also fails: if we tried to create a physical realization of this situation, the
electric field would become infinite near the spike, and the charge would leak
off and and thwart our attempts to establish the potential difference. For
reasonably smooth boundaries, however, a minimizing function does exist.

The Dirichlet-Poisson problem

−∇2ϕ(r) = f(r), r ∈ Ω,

ϕ(r) = g(r), r ∈ ∂Ω, (6.138)

and the Neumann-Poisson problem

−∇2ϕ(r) = f(r), x ∈ Ω,

(n · ∇)ϕ(r) = g(r), x ∈ ∂Ω

supplemented with the Fredholm constraint

∫

Ω

f dnr +

∫

∂Ω

g dS = 0 (6.139)
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also have solutions when ∂Ω is reasonably smooth. For the Neumann-Poisson
problem, with the Fredholm constraint as stated, the region Ω must be con-
nected, but its boundary need not be. For example, Ω can be the region
between two nested spherical shells.

Exercise 6.5: Why did we insist that the region Ω be connected in our dis-
cussion of the Neumann problem? (Hint: how must we modify the Fredholm
constraint when Ω consists of two or more disconnected regions?)

Exercise 6.6: Neumann variational principles. Let Ω be a bounded and con-
nected three-dimensional region with a smooth boundary. Given a function f
defined on Ω and such that

∫
Ω f d

3r = 0, define the functional

J [χ] =

∫

Ω

{
1

2
|∇χ|2 − χf

}
d3r.

Suppose that ϕ is a solution of the Neumann problem

−∇2ϕ(r) = f(r), r ∈ Ω,

(n · ∇)ϕ(r) = 0, r ∈ ∂Ω.

Show that

J [χ] = J [ϕ] +

∫

Ω

1

2
|∇(χ−ϕ)|2 d3r ≥ J [ϕ] = −

∫

Ω

1

2
|∇ϕ|2 d3r = −1

2

∫

Ω
ϕf d3r.

Deduce that ϕ is determined, up to the addition of a constant, as the function
that minimizes J [χ] over the space of all continuously differentiable χ (and
not just over functions satisfying the Neumann boundary condition.)

Similarly, for g a function defined on the boundary ∂Ω and such that
∫
∂Ω g dS =

0, set

K[χ] =

∫

Ω

1

2
|∇χ|2 d3r −

∫

∂Ω
χg dS.

Now suppose that φ is a solution of the Neumann problem

−∇2φ(r) = 0, r ∈ Ω,

(n · ∇)φ(r) = g(r), r ∈ ∂Ω.

Show that

K[χ] = K[φ]+

∫

Ω

1

2
|∇(χ−φ)|2 d3r ≥ K[φ] = −

∫

Ω

1

2
|∇φ|2 d3r = −1

2

∫

∂Ω
φg dS.
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Deduce that φ is determined up to a constant as the function that minimizes
K[χ] over the space of all continuously differentiable χ (and, again, not just
over functions satisfying the Neumann boundary condition.)

Show that when f and g fail to satisfy the integral conditions required for
the existence of the Neumann solution, the corresponding functionals are not
bounded below, and so no minimizing function can exist.

Exercise 6.7: Helmholtz decomposition Let Ω be a bounded connected three-
dimensional region with smooth boundary ∂Ω.

a) Cite the conditions for the existence of a solution to a suitable Neumann
problem to show that if u is a smooth vector field defined in Ω, then
there exist a unique solenoidal (i.e having zero divergence) vector field
v with v · n = 0 on the boundary ∂Ω, and a unique (up to the addition
of a constant) scalar field φ such that

u = v +∇φ.
Here n is the outward normal to the (assumed smooth) bounding surface
of Ω.

b) In many cases (but not always) we can write a solenoidal vector field v

as v = curlw. Again by appealing to the conditions for existence and
uniqueness of a Neumann problem solution, show that if we can write
v = curlw, then w is not unique, but we can always make it unique by
demanding that it obey the conditions div w = 0 and w · n = 0.

c) Appeal to the Helmholtz decomposition of part a) with u→ (v · ∇)v to
show that in the Euler equation

∂v

∂t
+ (v · ∇)v = −∇P, v · n = 0 on ∂Ω

governing the motion of an incompressible (divv = 0) fluid the instan-
taneous flow field v(x, y, z, t) uniquely determines ∂v/∂t, and hence the
time evolution of the flow. (This observation provides the basis of prac-
tical algorithms for computing incompressible flows.)

We can always write the solenoidal field as v = curlw + h, where h obeys
∇2h = 0 with suitable boundary conditions. See exercise 6.16.

6.5.2 Separation of variables

Cartesian coordinates

When the region of interest is a square or a rectangle, we can solve Laplace
boundary problems by separating the Laplace operator in cartesian co-ordinates.
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Let

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0, (6.140)

and write

ϕ = X(x)Y (y), (6.141)

so that

1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
= 0. (6.142)

Since the first term is a function of x only, and the second of y only, both
must be constants and the sum of these constants must be zero. Therefore

1

X

∂2X

∂x2
= −k2,

1

Y

∂2Y

∂y2
= k2, (6.143)

or, equivalently

∂2X

∂x2
+ k2X = 0,

∂2Y

∂y2
− k2Y = 0. (6.144)

The number that we have, for later convenience, written as k2 is called a
separation constant . The solutions are X = e±ikx and Y = e±ky. Thus

ϕ = e±ikxe±ky, (6.145)

or a sum of such terms where the allowed k’s are determined by the boundary
conditions.

How do we know that the separated form X(x)Y (y) captures all possible
solutions? We can be confident that we have them all if we can use the sep-
arated solutions to solve boundary-value problems with arbitrary boundary
data.
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L

x

y

L

Figure 6.15: Square region.

We can use our separated solutions to construct the unique harmonic
function taking given values on the sides a square of side L shown in figure
6.15. To see how to do this, consider the four families of functions

ϕ1,n =

√
2

L

1

sinh nπ
sin

nπx

L
sinh

nπy

L
,

ϕ2,n =

√
2

L

1

sinh nπ
sinh

nπx

L
sin

nπy

L
,

ϕ3,n =

√
2

L

1

sinh nπ
sin

nπx

L
sinh

nπ(L− y)
L

,

ϕ4,n =

√
2

L

1

sinh nπ
sinh

nπ(L− x)
L

sin
nπy

L
. (6.146)

Each of these comprises solutions to ∇2ϕ = 0. The family ϕ1,n(x, y) has been
constructed so that every member is zero on three sides of the square, but
on the side y = L it becomes ϕ1,n(x, L) =

√
2/L sin(nπx/L). The ϕ1,n(x, L)

therefore constitute an complete orthonormal set in terms of which we can
expand the boundary data on the side y = L. Similarly, the other other
families are non-zero on only one side, and are complete there. Thus, any
boundary data can be expanded in terms of these four function sets, and the
solution to the boundary value problem is given by a sum

ϕ(x, y) =

4∑

m=1

∞∑

n=1

am,nϕm,n(x, y). (6.147)
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The solution to ∇2ϕ = 0 in the unit square with ϕ = 1 on the side y = 1
and zero on the other sides is, for example,

ϕ(x, y) =
∞∑

n=0

4

(2n+ 1)π

1

sinh(2n + 1)π
sin
(
(2n+ 1)πx

)
sinh

(
(2n+ 1)πy

)

(6.148)
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Figure 6.16: Plot of first thiry terms in equation (6.148).

For cubes, and higher dimensional hypercubes, we can use similar bound-
ary expansions. For the unit cube in three dimensions we would use

ϕ1,nm(x, y, x) =
1

sinh
(
π
√
n2 +m2

) sin(nπx) sin(mπy) sinh
(
πz
√
n2 +m2

)
,

to expand the data on the face z = 1, together with five other solution
families, one for each of the other five faces of the cube.

If some of the boundaries are at infinity, we may need only need some of
these functions.

Example: Figure 6.17 shows three conducting sheets, each infinite in the z
direction. The central one has width a, and is held at voltage V0. The outer
two extend to infinity also in the y direction, and are grounded. The resulting
potential should tend to zero as |x|, |y| → ∞.
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V0

x

y

z

a

O

Figure 6.17: Conducting sheets.

The voltage in the x = 0 plane is

ϕ(0, y, z) =

∫ ∞

−∞

dk

2π
a(k)e−iky, (6.149)

where

a(k) = V0

∫ a/2

−a/2
eiky dy =

2V0

k
sin(ka/2). (6.150)

Then, taking into account the boundary condition at large x, the solution to
∇2ϕ = 0 is

ϕ(x, y, z) =

∫ ∞

−∞

dk

2π
a(k)e−ikye−|k||x|. (6.151)

The evaluation of this integral, and finding the charge distribution on the
sheets, is left as an exercise.

The Cauchy problem is ill-posed

Although the Laplace equation has no characteristics, the Cauchy data prob-
lem is ill-posed , meaning that the solution is not a continuous function of the
data. To see this, suppose we are given ∇2ϕ = 0 with Cauchy data on y = 0:

ϕ(x, 0) = 0,

∂ϕ

∂y

∣∣∣∣
y=0

= ε sin kx. (6.152)
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Then
ϕ(x, y) =

ε

k
sin(kx) sinh(ky). (6.153)

Provided k is large enough — even if ε is tiny — the exponential growth of the
hyperbolic sine will make this arbitrarily large. Any infinitesimal uncertainty
in the high frequency part of the initial data will be vastly amplified, and
the solution, although formally correct, is useless in practice.

Polar coordinates

We can use the separation of variables method in polar coordinates. Here,

∇2χ =
∂2χ

∂r2
+

1

r

∂χ

∂r
+

1

r2

∂2χ

∂θ2
. (6.154)

Set
χ(r, θ) = R(r)Θ(θ). (6.155)

Then ∇2χ = 0 implies

0 =
r2

R

(
∂2R

∂r2
+

1

r

∂R

∂r

)
+

1

Θ

∂2Θ

∂θ2

= m2 − m2, (6.156)

where in the second line we have written the separation constant as m2.
Therefore,

d2Θ

dθ2
+m2Θ = 0, (6.157)

implying that Θ = eimθ, where m must be an integer if Θ is to be single-
valued, and

r2d
2R

dr2
+ r

dR

dr
−m2R = 0, (6.158)

whose solutions are R = r±m when m 6= 0, and 1 or ln r when m = 0. The
general solution is therefore a sum of these

χ = A0 +B0 ln r +
∑

m6=0

(Amr
|m| +Bmr

−|m|)eimθ. (6.159)

The singular terms, ln r and r−|m|, are not solutions at the origin, and should
be omitted when that point is part of the region where ∇2χ = 0.



234 CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS

Example: Dirichlet problem in the interior of the unit circle. Solve ∇2χ = 0
in Ω = {r ∈ R2 : |r| < 1} with χ = f(θ) on ∂Ω ≡ {|r| = 1}.

r,θ

θ’

Figure 6.18: Dirichlet problem in the unit circle.

We expand

χ(r.θ) =
∞∑

m=−∞
Amr

|m|eimθ, (6.160)

and read off the coefficients from the boundary data as

Am =
1

2π

∫ 2π

0

e−imθ
′

f(θ′) dθ′. (6.161)

Thus,

χ =
1

2π

∫ 2π

0

[ ∞∑

m=−∞
r|m|eim(θ−θ′)

]
f(θ′) dθ′. (6.162)

We can sum the geometric series

∞∑

m=−∞
r|m|eim(θ−θ′) =

(
1

1− rei(θ−θ′) +
re−i(θ−θ

′)

1− re−i(θ−θ′)
)

=
1− r2

1− 2r cos(θ − θ′) + r2
. (6.163)

Therefore,

χ(r, θ) =
1

2π

∫ 2π

0

(
1− r2

1− 2r cos(θ − θ′) + r2

)
f(θ′) dθ′. (6.164)
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This expression is known as the Poisson kernel formula. Observe how the
integrand sharpens towards a delta function as r approaches unity, and so
ensures that the limiting value of χ(r, θ) is consistent with the boundary
data.

If we set r = 0 in the Poisson formula, we find

χ(0, θ) =
1

2π

∫ 2π

0

f(θ′) dθ′. (6.165)

We deduce that if ∇2χ = 0 in some domain then the value of χ at a point
in the domain is the average of its values on any circle centred on the chosen
point and lying wholly in the domain.

This average-value property means that χ can have no local maxima or
minima within Ω. The same result holds in Rn, and a formal theorem to this
effect can be proved:
Theorem (The mean-value theorem for harmonic functions): If χ is harmonic
(∇2χ = 0) within the bounded (open, connected) domain Ω ∈ Rn, and is
continuous on its closure Ω, and if m ≤ χ ≤ M on ∂Ω, then m < χ < M
within Ω — unless, that is, m = M , when χ = m is constant.

Pie-shaped regions

α R

Figure 6.19: A pie-shaped region of opening angle α.

Electrostatics problems involving regions with corners can often be under-
stood by solving Laplace’s equation within a pie-shaped region.
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Figure 6.19 shows a pie-shaped region of opening angle α and radius R.
If the boundary value of the potential is zero on the wedge and non-zero on
the boundary arc, we can seek solutions as a sum of r, θ separated terms

ϕ(r, θ) =

∞∑

n=1

anr
nπ/α sin

(
nπθ

α

)
. (6.166)

Here the trigonometric function is not 2π periodic, but instead has been
constructed so as to make ϕ vanish at θ = 0 and θ = α. These solutions
show that close to the edge of a conducting wedge of external opening angle
α, the surface charge density σ usually varies as σ(r) ∝ rα/π−1.

If we have non-zero boundary data on the edge of the wedge at θ = α,
but have ϕ = 0 on the edge at θ = 0 and on the curved arc r = R, then the
solutions can be expressed as a continuous sum of r, θ separated terms

ϕ(r, θ) =
1

2i

∫ ∞

0

a(ν)

(( r
R

)iν
−
( r
R

)−iν) sinh(νθ)

sinh(να)
dν,

=

∫ ∞

0

a(ν) sin[ν ln(r/R)]
sinh(νθ)

sinh(να)
dν. (6.167)

The Mellin sine transformation can be used to computing the coefficient
function a(ν). This transformation lets us write

f(r) =
2

π

∫ ∞

0

F (ν) sin(ν ln r) dν, 0 < r < 1, (6.168)

where

F (ν) =

∫ 1

0

sin(ν ln r)f(r)
dr

r
. (6.169)

The Mellin sine transformation is a disguised version of the Fourier sine
transform of functions on [0,∞). We simply map the positive x axis onto
the interval (0, 1] by the change of variables x = − ln r.

Despite its complexity when expressed in terms of these formulae, the
simple solution ϕ(r, θ) = aθ is often the physically relevant one when the two
sides of the wedge are held at different potentials and the potential is allowed
to vary on the curved arc.
Example: Consider a pie-shaped region of opening angle π and radius R =
∞. This region can be considered to be the upper half-plane. Suppose that
we are told that the positive x axis is held at potential +1/2 and the negative
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x axis is at potential −1/2, and are required to find the potential for positive
y. If we separate Laplace’s equation in cartesian co-ordinates and match to
the boundary data on the x-axes, we end up with

ϕxy(x, y) =
1

π

∫ ∞

0

1

k
e−ky sin(kx) dk.

On the other hand, the function

ϕrθ(r, θ) =
1

π
(π/2− θ)

satisfies both Laplace’s equation and the boundary data. At this point we
ought to worry that we do not have enough data to determine the solution
uniquely — nothing was said in the statement of the problem about the
behavior of ϕ on the boundary arc at infinity — but a little effort shows that

1

π

∫ ∞

0

1

k
e−ky sin(kx) dk =

1

π
tan−1

(
x

y

)
, y > 0,

=
1

π
(π/2− θ),

(6.170)

and so the two expressions for ϕ(x, y) are equal.

6.5.3 Eigenfunction expansions

Elliptic operators are the natural analogues of the one-dimensional linear
differential operators we studied in earlier chapters.

The operator L = −∇2 is formally self-adjoint with respect to the inner
product

〈φ, χ〉 =

∫∫
φ∗χ dxdy. (6.171)

This property follows from Green’s identity

∫∫

Ω

{
φ∗(−∇2χ)− (−∇2φ)∗χ

}
dxdy =

∫

∂Ω

{φ∗(−∇χ)− (−∇φ)∗χ} · nds
(6.172)

where ∂Ω is the boundary of the region Ω and n is the outward normal on
the boundary.
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The method of separation of variables also allows us to solve eigenvalue
problems involving the Laplace operator. For example, the Dirichlet eigen-
value problem requires us to find the eigenfunctions and eigenvalues of the
operator

L = −∇2, D(L) = {φ ∈ L2[Ω] : φ = 0, on ∂Ω}. (6.173)

Suppose Ω is the rectangle 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly. The normalized
eigenfunctions are

φn,m(x, y) =

√
4

LxLy
sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
, (6.174)

with eigenvalues

λn,m =

(
n2π2

L2
x

)
+

(
m2π2

L2
y

)
. (6.175)

The eigenfunctions are orthonormal,

∫
φn,mφn′,m′ dxdy = δnn′δmm′ , (6.176)

and complete. Thus, any function in L2[Ω] can be expanded as

f(x, y) =

∞∑

m,n=1

Anmφn,m(x, y), (6.177)

where

Anm =

∫∫
φn,m(x, y)f(x, y) dxdy. (6.178)

We can find a complete set of eigenfunctions in product form whenever we
can separate the Laplace operator in a system of co-ordinates ξi such that the
boundary becomes ξi = const. Completeness in the multidimensional space
is then guaranteed by the completeness of the eigenfunctions of each one-
dimensional differential operator. For other than rectangular co-ordinates,
however, the separated eigenfunctions are not elementary functions.

The Laplacian has a complete set of Dirichlet eigenfunctions in any region,
but in general these eigenfunctions cannot be written as separated products
of one-dimensional functions.
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6.5.4 Green functions

Once we know the eigenfunctions ϕn and eigenvalues λn for −∇2 in a region
Ω, we can write down the Green function as

g(r, r′) =
∑

n

1

λn
ϕn(r)ϕ

∗
n(r

′).

For example, the Green function for the Laplacian in the entire Rn is given
by the sum over eigenfunctions

g(r, r′) =

∫
dnk

(2π)n
eik·(r−r′)

k2
. (6.179)

Thus

−∇2
rg(r, r

′) =

∫
dnk

(2π)n
eik·(r−r′) = δn(r− r′). (6.180)

We can evaluate the integral for any n by using Schwinger’s trick to turn the
integrand into a Gaussian:

g(r, r′) =

∫ ∞

0

ds

∫
dnk

(2π)n
eik·(r−r′)e−sk

2

=

∫ ∞

0

ds

(√
π

s

)n
1

(2π)n
e−

1
4s

|r−r′|2

=
1

2nπn/2

∫ ∞

0

dt t
n
2
−2e−t|r−r′|2/4

=
1

2nπn/2
Γ
(n

2
− 1
)( |r− r′|2

4

)1−n/2

=
1

(n− 2)Sn−1

(
1

|r− r′|

)n−2

. (6.181)

Here, Γ(x) is Euler’s gamma function:

Γ(x) =

∫ ∞

0

dt tx−1e−t, (6.182)

and

Sn−1 =
2πn/2

Γ(n/2)
(6.183)
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is the surface area of the n-dimensional unit ball.
For three dimensions we find

g(r, r′) =
1

4π

1

|r− r′| , n = 3. (6.184)

In two dimensions the Fourier integral is divergent for small k. We may
control this divergence by using dimensional regularization. We pretend that
n is a continuous variable and use

Γ(x) =
1

x
Γ(x + 1) (6.185)

together with
ax = ea ln x = 1 + a lnx + · · · (6.186)

to to examine the behaviour of g(r, r′) near n = 2:

g(r, r′) =
1

4π

Γ(n/2)

(n/2− 1)

(
1− (n/2− 1) ln(π|r− r′|2) +O

[
(n− 2)2

])

=
1

4π

(
1

n/2− 1
− 2 ln |r− r′| − ln π − γ + · · ·

)
. (6.187)

Here γ = −Γ′(1) = .57721 . . . is the Euler-Mascheroni constant. Although
the pole 1/(n−2) blows up at n = 2, it is independent of position. We simply
absorb it, and the − ln π− γ, into an undetermined additive constant. Once
we have done this, the limit n→ 2 can be taken and we find

g(r, r′) = − 1

2π
ln |r− r′|+ const., n = 2. (6.188)

The constant does not affect the Green-function property, so we can chose
any convenient value for it.

Although we have managed to sweep the small-k divergence of the Fourier
integral under a rug, the hidden infinity still has the capacity to cause prob-
lems. The Green function in R3 allows us to to solve for ϕ(r) in the equation

−∇2ϕ = q(r),

with the boundary condition ϕ(r)→ 0 as |r| → ∞, as

ϕ(r) =

∫
g(r, r′)q(r′) d3r.
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In two dimensions, however we try to adjust the arbitrary constant in (6.188),
the divergence of the logarithm at infinity means that there can be no solution
to the corresponding boundary-value problem unless

∫
q(r) d3r = 0. This is

not a Fredholm-alternative constraint because once the constraint is satisfied
the solution is unique. The two-dimensional problem is therefore patholog-
ical from the viewpoint of Fredholm theory. This pathology is of the same
character as the non-existence of solutions to the three-dimensional Dirichlet
boundary-value problem with boundary spikes. The Fredholm alternative
applies, in general, only to operators a discrete spectrum.

Exercise 6.8: Evaluate our formula for the Rn Laplace Green function,

g(r, r′) =
1

(n− 2)Sn−1|r− r′|n−2

with Sn−1 = 2πn/2/Γ(n/2), for the case n = 1. Show that the resulting
expression for g(x, x′) is not divergent, and obeys

− d2

dx2
g(x, x′) = δ(x− x′).

Our formula therefore makes sense as a Green function — even though the
original integral (6.179) is linearly divergent at k = 0! We must defer an
explanation of this miracle until we discuss analytic continuation in the context
of complex analysis.
(Hint: recall that Γ(1/2) =

√
π)

6.5.5 Boundary-value problems

We now look at how the Green function can be used to solve the interior
Dirichlet boundary-value problem in regions where the method of separation
of variables is not available. Figure 6.20 shows a bounded region Ω possessing
a smooth boundary ∂Ω.
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Ω

r’
r

n

Figure 6.20: Interior Dirichlet problem.

We wish to solve −∇2ϕ = q(r) for r ∈ Ω and with ϕ(r) = f(r) for r ∈ ∂Ω.
Suppose we have found a Green function that obeys

−∇2
rg(r, r

′) = δn(r− r′), r, r′ ∈ Ω, g(r, r′) = 0, r ∈ ∂Ω. (6.189)

We first show that g(r, r′) = g(r′, r) by the same methods we used for one-
dimensional self-adjoint operators. Next we follow the strategy that we used
for one-dimensional inhomogeneous differential equations: we use Lagrange’s
identity (in this context called Green’s theorem) to write

∫

Ω

dnr
{
g(r, r′)∇2

rϕ(r)− ϕ(r)∇2
rg(r, r

′)
}

=

∫

∂Ω

dSr · {g(r, r′)∇rϕ(r)− ϕ(r)∇rg(r, r
′)}, (6.190)

where dSr = n dSr, with n the outward normal to ∂Ω at the point r. The
left hand side is

L.H.S. =

∫

Ω

dnr{−g(r, r′)q(r) + ϕ(r)δn(r− r′)},

= −
∫

Ω

dnr g(r, r′) q(r) + ϕ(r′),

= −
∫

Ω

dnr g(r′, r) q(r) + ϕ(r′). (6.191)

On the right hand side, the boundary condition on g(r, r′) makes the first
term zero, so

R.H.S = −
∫

∂Ω

dSrf(r)(n · ∇r)g(r, r
′). (6.192)
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Therefore,

ϕ(r′) =

∫

Ω

g(r′, r) q(r) dnr −
∫

∂Ω

f(r)(n · ∇r)g(r, r
′) dSr. (6.193)

In the language of chapter 3, the first term is a particular integral and the
second (the boundary integral term) is the complementary function.

Exercise 6.9: Assume that the boundary is a smooth surface, Show that the
limit of ϕ(r′) as r′ approaches the boundary is indeed consistent with the
boundary data f(r′). (Hint: When r, r′ are very close to it, the boundary can
be approximated by a straight line segment, and so g(r, r′) can be found by
the method of images.)

Ω

r

Figure 6.21: Exterior Dirichlet problem.

A similar method works for the exterior Dirichlet problem shown in figure
6.21. In this case we seek a Green function obeying

−∇2
rg(r, r

′) = δn(r− r′), r, r′ ∈ Rn \Ω g(r, r′) = 0, r ∈ ∂Ω. (6.194)

(The notation Rn \Ω means the region outside Ω.) We also impose a further
boundary condition by requiring g(r, r′), and hence ϕ(r), to tend to zero as
|r| → ∞. The final formula for ϕ(r) is the same except for the region of
integration and the sign of the boundary term.

The hard part of both the interior and exterior problems is to find the
Green function for the given domain.
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Exercise 6.10: Suppose that ϕ(x, y) is harmonic in the half-plane y > 0, tends
to zero as y → ∞, and takes the values f(x) on the boundary y = 0. Show
that

ϕ(x, y) =
1

π

∫ ∞

−∞

y

(x− x′)2 + y2
f(x′) dx′, y > 0.

Deduce that the “energy” functional

S[f ]
def
=

1

2

∫

y>0
|∇ϕ|2 dxdy ≡ −1

2

∫ ∞

−∞
f(x)

∂ϕ

∂y

∣∣∣∣
y=0

dx

can be expressed as

S[f ] =
1

4π

∫ ∞

−∞

∫ ∞

−∞

{
f(x)− f(x′)

x− x′
}2

dx′dx.

The non-local functional S[f ] appears in the quantum version of the Caldeira-
Leggett model. See also exercise 2.24.

Method of Images

When ∂Ω is a sphere or a circle we can find the Dirichlet Green functions for
the region Ω by using the method of images.

A BO

X

Figure 6.22: Points inverse with respect to a circle.

Figure 6.22 shows a circle of radius R. Given a point B outside the circle,
and a point X on the circle, we construct A inside and on the line OB, so
that ∠OBX = ∠OXA. We now observe that 4XOA is similar to 4BOX,
and so

OA

OX
=

OX

OB
. (6.195)
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Thus, OA × OB = (OX)2 ≡ R2. The points A and B are therefore mutually
inverse with respect to the circle. In particular, the point A does not depend
on which point X was chosen.

Now let AX= ri, BX= r0 and OB= B. Then, using similar triangles
again, we have

AX

OX
=

BX

OB
, (6.196)

or
R

ri
=
B

r0
, (6.197)

and so
1

ri

(
R

B

)
− 1

r0
= 0. (6.198)

Interpreting the figure as a slice through the centre of a sphere of radius R,
we see that if we put a unit charge at B, then the insertion of an image charge
of magnitude q = −R/B at A serves to the keep the entire surface of the
sphere at zero potential.

Thus, in three dimensions, and with Ω the region exterior to the sphere,
the Dirichlet Green function is

gΩ(r, rB) =
1

4π

(
1

|r− rB|
−
(
R

|rB|

)
1

|r− rA|

)
. (6.199)

In two dimensions, we find similarly that

gΩ(r, rB) = − 1

2π

(
ln |r− rB| − ln |r− rA| − ln (|rB|/R)

)
, (6.200)

has gΩ(r, rB) = 0 for r on the circle. Thus, this is the Dirichlet Green function
for Ω, the region exterior to the circle.

We can use the same method to construct the interior Green functions
for the sphere and circle.

6.5.6 Kirchhoff vs. Huygens

Even if we do not have a Green function tailored for the specific region in
which were are interested, we can still use the whole-space Green function
to convert the differential equation into an integral equation, and so make
progress. An example of this technique is provided by Kirchhoff’s partial
justification of Huygens’ construction.
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The Green function G(r, r′) for the elliptic Helmholtz equation

(−∇2 + κ2)G(r, r′) = δ3(r− r′) (6.201)

in R3 is given by

∫
d3k

(2π)3

eik·(r−r′)

k2 + κ2
=

1

4π|r− r′|e
−κ|r−r′|. (6.202)

Exercise 6.11: Perform the k integration and confirm this.

For solutions of the wave equation with e−iωt time dependence, we want
a Green function such that

[
−∇2 −

(
ω2

c2

)]
G(r, r′) = δ3(r− r′), (6.203)

and so we have to take κ2 negative. We therefore have two possible Green
functions

G±(r, r′) =
1

4π|r− r′|e
±ik|r−r′|, (6.204)

where k = |ω|/c. These correspond to taking the real part of κ2 negative, but
giving it an infinitesimal imaginary part, as we did when discussing resolvent
operators in chapter 5. If we want outgoing waves, we must take G ≡ G+.

Now suppose we want to solve

(∇2 + k2)ψ = 0 (6.205)

in an arbitrary region Ω. As before, we use Green’s theorem to write

∫

Ω

{
G(r, r′)(∇2

r + k2)ψ(r)− ψ(r)(∇2
r + k2)G(r, r′)

}
dnx

=

∫

∂Ω

{G(r, r′)∇rψ(r)− ψ(r)∇rG(r, r′)} · dSr (6.206)

where dSr = n dSr, with n the outward normal to ∂Ω at the point r. The
left hand side is

∫

Ω

ψ(r)δn(r− r′) dnx =

{
ψ(r′), r′ ∈ Ω
0, r′ /∈ Ω

(6.207)
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and so

ψ(r′) =

∫

∂Ω

{G(r, r′)(n · ∇x)ψ(r)− ψ(r)(n · ∇r)G(r, r′)} dSr, r′ ∈ Ω.

(6.208)
This must not be thought of as solution to the wave equation in terms of an
integral over the boundary, analogous to the solution (6.193) of the Dirichlet
problem that we found in the last section. Here, unlike that earlier case,
G(r, r′) knows nothing of the boundary ∂Ω, and so both terms in the surface
integral contribute to ψ. We therefore have a formula for ψ(r) in the interior
in terms of both Dirichlet and Neumann data on the boundary ∂Ω, and
giving both over-prescribes the problem. If we take arbitrary values for ψ
and (n · ∇)ψ on the boundary, and plug them into (6.208) so as to compute
ψ(r) within Ω then there is no reason for the resulting ψ(r) to reproduce, as r
approaches the boundary, the values ψ and (n·∇)ψ appearing in the integral.
If we demand that the output ψ(r) does reproduce the input boundary data,
then this is equivalent to demanding that the boundary data come from a
solution of the differential equation in a region encompassing Ω.

B

A

θ
R

n r

r’

Ω

Figure 6.23: Huygens’ construction.

The mathematical inconsistency of assuming arbitrary boundary data
notwithstanding, this is exactly what we do when we follow Kirchhoff and
use (6.208) to provide a justification of Huygens’ construction as used in
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optics. Consider the problem of a plane wave, ψ = eikx, incident on a screen
from the left and passing though the aperture labelled AB in figure 6.23.

We take as the region Ω everything to the right of the obstacle. The Kirch-
hoff approximation consists of assuming that the values of ψ and (n · ∇)ψ
on the surface AB are eikx and −ikeikx, the same as they would be if the
obstacle were not there, and that they are identically zero on all other parts
of the boundary. In other words, we completely ignore any scattering by
the material in which the aperture resides. We can then use our formula to
estimate ψ in the region to the right of the aperture. If we further set

∇rG(r, r′) ≈ ik
(r− r′)

|r− r′|2 e
ik|r−r′|, (6.209)

which is a good approximation provided we are more than a few wavelengths
away from the aperture, we find

ψ(r′) ≈ k

4πi

∫

aperture

eik|r−r′|

|r− r′|(1 + cos θ)dSr. (6.210)

Thus, each part of the wavefront on the surface AB acts as a source for the
diffracted wave in Ω.

This result, although still an approximation, provides two substantial
improvements to the näıve form of Huygens’ construction as presented in
elementary courses:

i) There is factor of (1 + cos θ) which suppresses backward propagating
waves. The traditional exposition of Huygens construction takes no
notice of which way the wave is going, and so provides no explanation
as to why a wavefront does not act a source for a backward wave.

ii) There is a factor of i−1 = e−iπ/2 which corrects a 90◦ error in the phase
made by the näıve Huygens construction. For two-dimensional slit
geometry we must use the more complicated two-dimensional Green
function (it is a Bessel function), and this provides an e−iπ/4 factor
which corrects for the 45◦ phase error that is manifest in the Cornu
spiral of Fresnel diffraction.

For this reason the Kirchhoff approximation is widely used.

Problem 6.12: Use the method of images to construct i) the Dirichlet, and
ii) the Neumann, Green function for the region Ω, consisting of everything to
the right of the screen. Use your Green functions to write the solution to the
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diffraction problem in this region a) in terms of the values of ψ on the aperture
surface AB, b) in terms of the values of (n · ∇)ψ on the aperture surface. In
each case, assume that the boundary data are identically zero on the dark side
of the screen. Your expressions should coincide with the Rayleigh-Sommerfeld
diffraction integrals of the first and second kind, respectively.3 Explore the
differences between the predictions of these two formulæ and that of Kirchhoff
for case of the diffraction of a plane wave incident on the aperture from the
left.

6.6 Further exercises and problems

Problem 6.13: Critical Mass. An infinite slab of fissile material has thickness
L. The neutron density n(x) in the material obeys the equation

∂n

∂t
= D

∂2n

∂x2
+ λn+ µ,

where n(x, t) is zero at the surface of the slab at x = 0, L. Here, D is the
neutron diffusion constant, the term λn describes the creation of new neutrons
by induced fission, and the constant µ is the rate of production per unit volume
of neutrons by spontaneous fission.

a) Expand n(x, t) as a series,

n(x, t) =
∑

m

am(t)ϕm(x),

where the ϕm(x) are a complete set of functions you think suitable for
solving the problem.

b) Find an explicit expression for the coefficients am(t) in terms of their
intial values am(0).

c) Determine the critical thickness Lcrit above which the slab will explode.
d) Assuming that L < Lcrit, find the equilibrium distribution neq(x) of

neutrons in the slab. (You may either sum your series expansion to get an
explicit closed-form answer, or use another (Green function?) method.)

Problem 6.14: Semi-infinite Rod. Consider the heat equation

∂θ

∂t
= D∇2θ, 0 < x <∞,

with the temperature θ(x, t) obeying the initial condition θ(x, 0) = θ0 for
0 < x <∞, and the boundary condition θ(0, t) = 0.

3M. Born and E. Wolf Principles of Optics 7th (expanded) edition, section 8.11.
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a) Show that the boundary condition at x = 0 may be satisfied at all times
by introducing a suitable mirror image of the initial data in the region
−∞ < x < 0, and then applying the heat kernel for the entire real
line to this extended initial data. Show that the resulting solution of the
semi-infinite rod problem can be expressed in terms of the error function

erf (x)
def
=

2√
π

∫ x

0
e−ξ

2

dξ,

as

θ(x, t) = θ0 erf

(
x√
4t

)
.

b) Solve the same problem by using a Fourier integral expansion in terms
of sin kx on the half-line 0 < x < ∞ and obtaining the time evolution
of the Fourier coefficients. Invert the transform and show that your
answer reduces to that of part a). (Hint: replace the initial condition by
θ(x, 0) = θ0e

−εx, so that the Fourier transform converges, and then take
the limit ε→ 0 at the end of your calculation.)

Exercise 6.15: Seasonal Heat Waves. Suppose that the measured temperature
of the air above the arctic permafrost at time t is expressed as a Fourier series

θ(t) = θ0 +

∞∑

n=1

θn cosnωt,

where the period T = 2π/ω is one year. Solve the heat equation for the soil
temperature,

∂θ

∂t
= κ

∂2θ

∂z2
, 0 < z <∞

with this boundary condition, and find the temperature θ(z, t) at a depth z
below the surface as a function of time. Observe that the sub-surface temper-
ature fluctuates with the same period as that of the air, but with a phase lag
that depends on the depth. Also observe that the longest-period temperature
fluctuations penetrate the deepest into the ground. (Hint: for each Fourier
component, write θ as Re[An(z) exp inωt], where An is a complex function of
z.)

The next problem is an illustration of a Dirichlet principle.

Exercise 6.16: Helmholtz-Hodge decomposition. Given a three-dimensional
region Ω with smooth boundary ∂Ω, introduce the real Hilbert space L2

vec(Ω)
of finite-norm vector fields, with inner product

〈u,v〉 =

∫

Ω
u · v d3x.
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Consider the spaces L = {v : v = ∇φ} and T = {v : v = curlw} consisting
of vector fields in L2

vec(Ω) that can can be written as gradients and curls,
respectively. (Strictly speaking, we should consider the completions of these
spaces.)

a) Show that if we demand that either (or both) of φ and the tangential
component of w vanish on ∂Ω, then the two spaces L and T are mutually
orthogonal with respect to the the L2

vec(Ω) inner product.

Let u ∈ L2
vec(Ω). We will try to express u as the sum of a gradient and a curl

by seeking to make the distance functional

Fu[φ,w] = ‖u−∇φ− curlw‖2
def
=

∫

Ω
|u−∇φ− curlw|2 d3x

equal to zero.

b) Show that if we find a w and φ that minimize Fu[φ,w], then the residual
vector field

h
def
= u−∇φ− curlw

obeys curlh = 0 and divh = 0, together with boundary conditions
determined by the constraints imposed on φ and w:

i) If φ is unconstrained on ∂Ω, but the tangential boundary component
of w is required to vanish, then the component of h normal to the
boundary must be zero.

ii) If φ = 0 on ∂Ω, but the tangential boundary component of w is
unconstrained, then the tangential boundary component of h must
be zero.

iii) If φ = 0 on ∂Ω and also the tangential boundary component of w is
required to vanish, then h need satisfy no boundary condition.

c) Assuming that we can find suitable minimizing φ and w, deduce that
under each of the three boundary conditions of the previous part, we
have a Helmholtz-Hodge decomposition

u = ∇φ+ curlw + h

into unique parts that are mutually L2
vec(Ω) orthogonal. Observe that

the residual vector field h is harmonic — i.e. it satisfies the equation
∇2h = 0, where

∇2h
def
= ∇(divh)− curl (curlh)

is the vector Laplacian acting on h.
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If u is sufficiently smooth, there will exist φ and w that minimize the distance
‖u−∇φ− curlw‖ and satisfy the boundary conditions. Whether or not h is
needed in the decomposition is another matter. It depends both on how we
constrain φ and w, and on the topology of Ω. At issue is whether or not the
boundary conditions imposed on h are sufficient to force it to be zero. If Ω
is the interior of a torus, for example, then h can be non-zero whenever its
tangential component is unconstrained.

The Helmholtz-Hodge decomposition is closely related to the vector-field
eigenvalue problems commonly met with in electromagnetism or elasticity.
The next few exercises lead up to this connection.

Exercise 6.17: Self-adjointness and the vector Laplacian. Consider the vector
Laplacian (defined in the previous problem) as a linear operator on the Hilbert
space L2

vec(Ω) .

a) Show that
∫

Ω
d3x

{
u · (∇2v) − v · (∇2u)

}
=

∫

∂Ω
{(n · u) div v− (n · v) div u

−u · (n× curlv) + v · (n× curlu)} dS

b) Deduce from the identity in part a) that the domain of ∇2 coincides
with the domain of (∇2)†, and hence the vector Laplacian defines a truly
self-adjoint operator with a complete set of mutually orthogonal eigen-
functions, when we take as boundary conditions one of the following:
o) Dirichlet-Dirichlet: n · u = 0 and n× u = 0 on ∂Ω,
i) Dirichlet-Neumann: n · u = 0 and n× curlu = 0 on ∂Ω,
ii) Neumann-Dirichlet: divu = 0 and n× u = 0 on ∂Ω,
iii) Neumann-Neumann: div u = 0 and n× curlu = 0 on ∂Ω.

c) Show that the more general Robin boundary conditions

α(n · u) + β divu = 0,

λ(n× u) + µ(n× curlu) = 0,

where α β, µ ν can be position dependent, also give rise to a truly self-
adjoint operator.

Problem 6.18: Cavity electrodynamics and the Hodge-Weyl decomposition.
Each of the self-adjoint boundary conditions in the previous problem gives
rise to a complete set of mutually orthogonal vector eigenfunctions obeying

−∇2un = k2
nun.



6.6. FURTHER EXERCISES AND PROBLEMS 253

For these eigenfunctions to describe the normal modes of the electric field E

and the magnetic field B (which we identify with H as we will use units in
which µ0 = ε0 = 1) within a cavity bounded by a perfect conductor, we need
to additionally impose the Maxwell equations divB = divE = 0 everywhere
within Ω, and to satisfy the perfect-conductor boundary conditions n × E =
n ·B = 0.

a) For each eigenfunction un corresponding to a non-zero eigenvalue k2
n,

define

vn =
1

k2
n

curl (curlun), wn = − 1

k2
n

∇(div un),

so that un = vn + wn. Show that vn and wm are, if non-zero, each
eigenfunctions of −∇2 with eigenvalue k2

n. The vector eigenfunctions
that are not in the null-space of ∇2 can therefore be decomposed into
their transverse (the vn, which obey divvn = 0) and longitudinal (the
wn, which obey curlwn = 0) parts. However, it is not immediately clear
what boundary conditions the vn and wn separately obey.

b) The boundary-value problems of relevance to electromagnetism are:

i)

{
−∇2hn = k2

nhn, within Ω,
n · hn = 0, n× curlhn = 0, on ∂Ω;

ii)

{
−∇2en = k2

nen, within Ω,
div en = 0, n× en = 0, on ∂Ω;

iii)

{
−∇2bn = k2

nbn, within Ω,
divbn = 0, n× curlbn = 0, on ∂Ω,

These problems involve, respectively, the Dirichlet-Neumann, Neumann-
Dirichlet, and Neumann-Neumann boundary conditions from the previ-
ous problem.
Show that the divergence-free transverse eigenfunctions

Hn
def
=

1

k2
n

curl (curlhn), En
def
=

1

k2
n

curl (curl en), Bn
def
=

1

k2
n

curl (curlbn),

obey n ·Hn = n×En = n× curlBn = 0 on the boundary, and that from
these and the eigenvalue equations we can deduce that n × curlHn =
n·Bn = n·curlEn = 0 on the boundary. The perfect-conductor boundary
conditions are therefore satisfied.
Also show that the corresponding longitudinal eigenfunctions

ηn
def
=

1

k2
n

∇(divhn), εn
def
=

1

k2
n

∇(div en), βn
def
=

1

k2
n

∇(divbn)

obey the boundary conditions n · ηn = n× εn = n× βn = 0.
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c) By considering the counter-example provided by a rectangular box, show
that the Dirichlet-Dirichlet boundary condition is not compatible with a
longitudinal+transverse decomposition. (A purely transverse wave inci-
dent on such a boundary will, on reflection, acquire a longitudinal com-
ponent.)

d) Show that

0 =

∫

Ω
ηn ·Hm d

3x =

∫

Ω
εn · Em d

3x =

∫

Ω
βn ·Bm d

3x,

but that the vn and wn obtained from the Dirichlet-Dirichlet boundary
condition un’s are not in general orthogonal to each other. Use the
continuity of the L2

vec(Ω) inner product

xn → x ⇒ 〈xn,y〉 → 〈x,y〉

to show that this individual-eigenfunction orthogonality is retained by
limits of sums of the eigenfunctions. Deduce that, for each of the bound-
ary conditions i)-iii) (but not for the Dirichlet-Dirichlet case), we have
the Hodge-Weyl decomposition of L2

vec(Ω) as the orthogonal direct sum

L2
vec(Ω) = L⊕ T ⊕N ,

where L, T are respectively the spaces of functions representable as in-
finite sums of the longitudinal and transverse eigenfunctions, and N is
the finite-dimensional space of harmonic (nullspace) eigenfunctions.

Complete sets of vector eigenfunctions for the interior of a rectangular box,
and for each of the four sets of boundary conditions we have considered, can
be found in Morse and Feshbach §13.1.

Problem 6.19: Hodge-Weyl and Helmholtz-Hodge. In this exercise we consider
the problem of what classes of vector-valued functions can be expanded in
terms of the various families of eigenfunctions of the previous problem. It is
tempting (but wrong) to think that we are restricted to expanding functions
that obey the same boundary conditions as the eigenfunctions themselves.
Thus, we might erroniously expect that the En are good only for expanding
functions whose divergence vanishes and have vanishing tangential boundary
components, or that the ηn can expand out only curl-free vector fields with
vanishing normal boundary component. That this supposition can be false
was exposed in section 2.2.3, where we showed that functions that are zero at
the endpoints of an interval can be used to expand out functions that are not
zero there. The key point is that each of our four families of un constitute
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a complete orthonormal set in L2
vec(Ω), and can therefore be used expand

any vector field. As a consequence, the infinite sum
∑
anBn ∈ T can, for

example, represent any vector-valued function u ∈ L2
vec(Ω) provided only that

u possesses no component lying either in the subspace L of the longitudinal
eigenfunctions βn, or in the nullspace N .

a) Let T =< En > be space of functions representable as infinite sums of
the En. Show that

< En >
⊥ = {u : curlu = 0 within Ω, n× u = 0 on ∂Ω}.

Find the corresponding perpendicular spaces for each of the other eight
orthogonal decomposition spaces.

b) Exploit your knowledge of < En >
⊥ acquired in part (a) to show that

< En > itself is the Hilbert space

< En >= {u : div u = 0 within Ω, no condition on ∂Ω}.

Similarly show that

< εn > = {u : curlu = 0 within Ω, n× u = 0 on ∂Ω},
< ηn > = {u : curlu = 0 within Ω, no condition on ∂Ω},
< Hn > = {u : div u = 0 within Ω, n · u = 0 on ∂Ω},
< βn > = {u : curlu = 0 within Ω, n× u = 0 on ∂Ω},
< Bn > = {u : div u = 0 within Ω, n · u = 0 on ∂Ω}.

c) Conclude from the previous part that any vector vector field u ∈ L2
vec(Ω)

can be uniquely decomposed as the L2
vec(Ω) orthogonal sum

u = ∇φ+ curlw + h,

where ∇φ ∈ L, curlw ∈ T , and h ∈ N , under each of the following sets
of conditions:

i) The scalar φ is unrestricted, but w obeys n × w = 0 on ∂Ω, and
the harmonic h obeys n · h = 0 on ∂Ω. (The condition on w makes
curlw have vanishing normal boundary component.)

ii) The scalar φ is zero on ∂Ω, while w is unrestricted on ∂Ω. The
harmonic h obeys n× h = 0 on ∂Ω. (The condition on φ makes ∇φ
have zero tangential boundary component.)

iii) The scalar φ is zero on ∂Ω, the vector w obeys n × w = 0 on
∂Ω, while the harmonic h requires no boundary condition. (The
conditions on φ and w make ∇φ have zero tangential boundary
component and curlw have vanishing normal boundary component.)
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d) As an illustration of the practical distinctions between the decomposi-
tions in part (c), take Ω to be the unit cube in R3, and u = (1, 0, 0) a
constant vector field. Show that with conditions (i) we have u ∈ L, but
for (ii) we have u ∈ T , and for (iii) we have u ∈ N .

We see that the Hodge-Weyl decompositions of the eigenspaces correspond
one-to-one with the Helmholtz-Hodge decompositions of problem 6.16.



Chapter 7

The Mathematics of Real
Waves

Waves are found everywhere in the physical world, but we often need more
than the simple wave equation to understand them. The principal compli-
cations are non-linearity and dispersion. In this chapter we will describe the
mathematics lying behind some commonly observed, but still fascinating,
phenomena.

7.1 Dispersive waves

In this section we will investigate the effects of dispersion, the dependence
of the speed of propagation on the frequency of the wave. We will see that
dispersion has a profound effect on the behaviour of a wave-packet.

7.1.1 Ocean waves

The most commonly seen dispersive waves are those on the surface of water.
Although often used to illustrate wave motion in class demonstrations, these
waves are not as simple as they seem.

In chapter one we derived the equations governing the motion of water
with a free surface. Now we will solve these equations. Recall that we
described the flow by introducing a velocity potential φ such that, v = ∇φ,
and a variable h(x, t) which is the depth of the water at abscissa x.

257
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Figure 7.1: Water with a free surface.

Again looking back to chapter one, we see that the fluid motion is determined
by imposing

∇2φ = 0 (7.1)

everywhere in the bulk of the fluid, together with boundary conditions

∂φ

∂y
= 0, on y = 0, (7.2)

∂φ

∂t
+

1

2
(∇φ)2 + gy = 0, on the free surface y = h, (7.3)

∂h

∂t
− ∂φ

∂y
+
∂h

∂x

∂φ

∂x
= 0, on the free surface y = h. (7.4)

Recall the physical interpretation of these equations: The vanishing of the
Laplacian of the velocity potential simply means that the bulk flow is incom-
pressible

div v = ∇2φ = 0. (7.5)

The first two of the boundary conditions are also easy to interpret: The first
says that no water escapes through the lower boundary at y = 0. The second,
a form of Bernoulli’s equation, asserts that the free surface is everywhere at
constant (atmospheric) pressure. The remaining boundary condition is more
obscure. It states that a fluid particle initially on the surface stays on the
surface. Remember that we set f(x, y, t) = h(x, t) − y, so the water surface
is given by f(x, y, t) = 0. If the surface particles are carried with the flow
then the convective derivative of f ,

df

dt
def
=
∂f

∂t
+ (v · ∇)f, (7.6)
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should vanish on the free surface. Using v = ∇φ and the definition of f , this
reduces to

∂h

∂t
+
∂φ

∂x

∂h

∂x
− ∂φ

∂y
= 0, (7.7)

which is indeed the last boundary condition.
Using our knowledge of solutions of Laplace’s equation, we can immedi-

ately write down a wave-like solution satisfying the boundary condition at
y = 0

φ(x, y, t) = a cosh(ky) cos(kx− ωt). (7.8)

The tricky part is satisfying the remaining two boundary conditions. The
difficulty is that they are non-linear, and so couple modes with different
wave-numbers. We will circumvent the difficulty by restricting ourselves to
small amplitude waves, for which the boundary conditions can be linearized.
Suppressing all terms that contain a product of two or more small quantities,
we are left with

∂φ

∂t
+ gh = 0, (7.9)

∂h

∂t
− ∂φ

∂y
= 0. (7.10)

Because φ is a already a small quantity, and the wave amplitude is a small
quantity, linearization requires that these equations should be imposed at
the equilibrium surface of the fluid y = h0. It is convenient to eliminate h to
get

∂2φ

∂t2
+ g

∂φ

∂y
= 0, on y = h0. (7.11)

Inserting (7.8) into this boundary condition leads to the dispersion equation

ω2 = gk tanh kh0, (7.12)

relating the frequency to the wave-number.
Two limiting cases are of particular interest:

i) Long waves on shallow water: Here kh0 � 1, and, in this limit,

ω = k
√
gh0.

ii) Waves on deep water: Here, kh0 � 1, leading to ω =
√
gk.
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For deep water, the velocity potential becomes

φ(x, y, t) = aek(y−h0) cos(kx− ωt). (7.13)

We see that the disturbance due to the surface wave dies away exponentially,
and becomes very small only a few wavelengths below the surface.

Remember that the velocity of the fluid is v = ∇φ. To follow the motion
of individual particles of fluid we must solve the equations

dx

dt
= vx = −akek(y−h0) sin(kx− ωt),

dy

dt
= vy = akek(y−h0) cos(kx− ωt). (7.14)

This is a system of coupled non-linear differential equations, but to find
the small amplitude motion of particles at the surface we may, to a first
approximation, set x = x0, y = h0 on the right-hand side. The orbits of the
surface particles are therefore approximately

x(t) = x0 −
ak

ω
cos(kx0 − ωt),

y(t) = y0 −
ak

ω
sin(kx0 − ωt). (7.15)

x

y

Figure 7.2: Circular orbits in deep water surface waves.

For right-moving waves, the particle orbits are clockwise circles. At the
wave-crest the particles move in the direction of the wave propagation; in
the troughs they move in the opposite direction. Figure 7.2 shows that this
motion results in an up-down-asymmetric cycloidal wave profile.

When the effect of the bottom becomes significant, the circular orbits
deform into ellipses. For shallow water waves, the motion is principally back-
and-forth with motion in the y direction almost negligeable.
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7.1.2 Group velocity

The most important effect of dispersion is that the group velocity of the waves
— the speed at which a wave-packet travels — differs from the phase velocity
— the speed at which individual wave-crests move. The group velocity is
also the speed at which the energy associated with the waves travels.

Suppose that we have waves with dispersion equation ω = ω(k). A right-
going wave-packet of finite extent, and with initial profile ϕ(x), can be Fourier
analyzed to give

ϕ(x) =

∫ ∞

−∞

dk

2π
A(k)eikx. (7.16)

x

Figure 7.3: A right-going wavepacket.

At later times this will evolve to

ϕ(x, t) =

∫ ∞

−∞

dk

2π
A(k)eikx−iω(k)t. (7.17)

Let us suppose for the moment that A(k) is non-zero only for a narrow band
of wavenumbers around k0, and that, restricted to this narrow band, we can
approximate the full ω(k) dispersion equation by

ω(k) ≈ ω0 + U(k − k0). (7.18)

Thus

ϕ(x, t) =

∫ ∞

−∞

dk

2π
A(k)eik(x−Ut)−i(ω0−Uk0)t. (7.19)

Comparing this with the Fourier expression for the initial profile, we find
that

ϕ(x, t) = e−i(ω0−Uk0)tϕ(x− Ut). (7.20)
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The pulse envelope therefore travels at speed U . This velocity

U ≡ ∂ω

∂k
(7.21)

is the group velocity . The individual wave crests, on the other hand, move
at the phase velocity ω(k)/k.

When the initial pulse contains a broad range of frequencies we can still
explore its evolution. We make use of a powerful tool for estimating the be-
havior of integrals that contain a large parameter. In this case the parameter
is the time t. We begin by writing the Fourier representation of the wave as

ϕ(x, t) =

∫ ∞

−∞

dk

2π
A(k)eitψ(k) (7.22)

where
ψ(k) = k

(x
t

)
− ω(k). (7.23)

Now look at the behaviour of this integral as t becomes large, but while we
keep the ratio x/t fixed. Since t is very large, any variation of ψ with k
will make the integrand a very rapidly oscillating function of k. Cancellation
between adjacent intervals with opposite phase will cause the net contribution
from such a region of the k integration to be very small. The principal
contribution will come from the neighbourhood of stationary phase points,
i.e. points where

0 =
dψ

dk
=
x

t
− ∂ω

∂k
. (7.24)

This means that, at points in space where x/t = U , we will only get contri-
butions from the Fourier components with wave-number satisfying

U =
∂ω

∂k
. (7.25)

The initial packet will therefore spread out, with those components of the
wave having wave-number k travelling at speed

vgroup =
∂ω

∂k
. (7.26)

This is the same expression for the group velocity that we obtained in the
narrow-band case. Again this speed of propagation should be contrasted
with that of the wave-crests, which travel at

vphase =
ω

k
. (7.27)
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The “stationary phase” argument may seem a little hand-waving, but it can
be developed into a systematic approximation scheme. We will do this in
chapter 19.

Example: Water Waves. The dispersion equation for waves on deep water is
ω =
√
gk. The phase velocity is therefore

vphase =

√
g

k
, (7.28)

whilst the group velocity is

vgroup =
1

2

√
g

k
=

1

2
vphase. (7.29)

This difference is easily demonstrated by tossing a stone into a pool and
observing how individual wave-crests overtake the circular wave packet and
die out at the leading edge, while new crests and troughs come into being at
the rear and make their way to the front.

This result can be extended to three dimensions with

vigroup =
∂ω

∂ki
(7.30)

Example: de Broglie Waves. The plane-wave solutions of the time-dependent
Schrödinger equation

i
∂ψ

∂t
= − 1

2m
∇2ψ, (7.31)

are

ψ = eik·r−iωt, (7.32)

with

ω(k) =
1

2m
k2. (7.33)

The group velocity is therefore

vgroup =
1

m
k, (7.34)

which is the classical velocity of the particle.
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7.1.3 Wakes

There are many circumstances when waves are excited by object moving at
a constant velocity through a background medium, or by a stationary object
immersed in a steady flow. The resulting wakes carry off energy, and therefore
create wave drag . Wakes are involved, for example, in sonic booms, Čerenkov
radiation, the Landau criterion for superfluidity, and Landau damping of
plasma oscillations. Here, we will consider some simple water-wave analogues
of these effects. The common principle for all wakes is that the resulting wave
pattern is time independent when observed from the object exciting it.
Example: Obstacle in a Stream. Consider a log lying submerged in a rapidly
flowing stream.

v v

Figure 7.4: Log in a stream.

The obstacle disturbs the water and generates a train of waves. If the log lies
athwart the stream, the problem is essentially one-dimensional and easy to
analyse. The essential point is that the distance of the wavecrests from the log
does not change with time, and therefore the wavelength of the disturbance
the log creates is selected by the condition that the phase velocity of the wave,
coincide with the velocity of the mean flow.1 The group velocity does come
into play, however. If the group velocity of the waves is less that the phase
velocity, the energy being deposited in the wave-train by the disturbance will
be swept downstream, and the wake will lie behind the obstacle. If the group
velocity is higher than the phase velocity, and this is the case with very short
wavelength ripples on water where surface tension is more important than
gravity, the energy will propagate against the flow, and so the ripples appear
upstream of the obstacle.

1In his book Waves in Fluids , M. J. Lighthill quotes Robert Frost on this phenomenon:

The black stream, catching on a sunken rock,
Flung backward on itself in one white wave,
And the white water rode the black forever,
Not gaining but not losing.
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A B

C
D

θ
O

Figure 7.5: Kelvin’s ship-wave construction.

Example: Kelvin Ship Waves. A more subtle problem is the pattern of waves
left behind by a ship on deep water. The shape of the pattern is determined
by the group velocity for deep-water waves being one-half that of the phase
velocity.

How the wave pattern is formed can be understood from figure 7.5. In
order that the pattern of wavecrests be time independent, the waves emitted
in the direction AC must have phase velocity such that their crests travel
from A to C while the ship goes from A to B. The crest of the wave emitted
from the bow of the ship in the direction AC will therefore lie along the line
BC — or at least there would be a wave crest on this line if the emitted
wave energy travelled at the phase velocity. The angle at C must be a right
angle because the direction of propagation is perpendicular to the wave-
crests. Euclid, by virtue of his angle-in-a-semicircle theorem, now tells us
that the locus of all possible points C (for all directions of wave emission)
is the larger circle. Because, however, the wave energy only travels at one-
half the phase velocity, the waves going in the direction AC actually have
significant amplitude only on the smaller circle, which has half the radius of
the larger. The wake therefore lies on, and within, the Kelvin wedge, whose
boundary lies at an angle θ to the ship’s path. This angle is determined by
the ratio OD/OB=1/3 to be

θ = sin−1(1/3) = 19.5◦. (7.35)

Remarkably, this angle, and hence the width of the wake, is independent of
the speed of the ship.

The waves actually on the edge of the wedge are usually the most promi-
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Figure 7.6: Large-scale Kelvin wakes. (Image source: US Navy)

nent, and they will have crests perpendicular to the line AD. This orientation
is indicated on the left hand figure, and reproduced as the predicted pattern
of wavecrests on the right. The prediction should be compared with the wave
systems in figures 7.6 and 7.7.

7.1.4 Hamilton’s theory of rays

We have seen that wave packets travel at a frequency-dependent group ve-
locity. We can extend this result to study the motion of waves in weakly
inhomogeneous media, and so derive an analogy between the “geometric op-
tics” limit of wave motion and classical dynamics.

Consider a packet composed of a roughly uniform train of waves spread
out over a region that is substantially longer and wider than their mean wave-
length. The essential feature of such a wave train is that at any particular
point of space and time, x and t, it has a definite phase Θ(x, t). Once we
know this phase, we can define the local frequency ω and wave-vector k by

ω = −
(
∂Θ

∂t

)

x

, ki =

(
∂Θ

∂xi

)

t

. (7.36)
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Figure 7.7: Small-scale Kelvin wake. (Phograph by Fabrice Neyret)

These definitions are motivated by the idea that

Θ(x, t) ∼ k · x− ωt, (7.37)

at least locally.

We wish to understand how k changes as the wave propagates through a
slowly varying medium. We introduce the inhomogeneity by assuming that
the dispersion equation ω = ω(k), which is initially derived for a uniform
medium, can be extended to ω = ω(k,x), where the x dependence arises,
for example, as a result of a position-dependent refractive index. This as-
sumption is only an approximation, but it is a good approximation when the
distance over which the medium changes is much larger than the distance
between wavecrests.

Applying the equality of mixed partials to the definitions of k and ω gives
us (

∂ω

∂xi

)

t

= −
(
∂ki
∂t

)

x

,

(
∂ki
∂xj

)

xi

=

(
∂kj
∂xi

)

xj

. (7.38)

The subscripts indicate what is being left fixed when we differentiate. We
must be careful about this, because we want to use the dispersion equation
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to express ω as a function of k and x, and the wave-vector k will itself be a
function of x and t.

Taking this dependence into account, we write
(
∂ω

∂xi

)

t

=

(
∂ω

∂xi

)

k

+

(
∂ω

∂kj

)

x

(
∂kj
∂xi

)

t

. (7.39)

We now use (7.38) to rewrite this as
(
∂ki
∂t

)

x

+

(
∂ω

∂kj

)

x

(
∂ki
∂xj

)

t

= −
(
∂ω

∂xi

)

k

. (7.40)

Interpreting the left hand side as a convective derivative

dki
dt

=

(
∂ki
∂t

)

x

+ (vg · ∇)ki,

we read off that
dki
dt

= −
(
∂ω

∂xi

)

k

(7.41)

provided we are moving at velocity

dxi
dt

= (vg)i =

(
∂ω

∂ki

)

x

. (7.42)

Since this is the group velocity, the packet of waves is actually travelling at
this speed. The last two equations therefore tell us how the orientation and
wavelength of the wave train evolve if we ride along with the packet as it is
refracted by the inhomogeneity.

The formulæ

k̇ = −∂ω
∂x

,

ẋ =
∂ω

∂k
, (7.43)

are Hamilton’s ray equations. These Hamilton equations are identical in form
to Hamilton’s equations for classical mechanics

ṗ = −∂H
∂x

,

ẋ =
∂H

∂p
, (7.44)
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except that k is playing the role of the canonical momentum, p, and ω(k,x)
replaces the Hamiltonian, H(p,x). This formal equivalence of geometric
optics and classical mechanics was mystery in Hamilton’s time. Today we
understand that classical mechanics is nothing but the geometric optics limit
of wave mechanics.

7.2 Making waves

Many waves occurring in nature are generated by the energy of some steady
flow being stolen away to drive an oscillatory motion. Familiar examples
include the music of a flute and the waves raised on the surface of water by
the wind. The latter process is quite subtle and was not understood until the
work of J. W. Miles in 1957. Miles showed that in order to excite waves the
wind speed has to vary with the height above the water, and that waves of
a given wavelength take energy only from the wind at that height where the
windspeed matches the phase velocity of the wave. The resulting resonant
energy transfer turns out to have analogues in many branches of science. In
this section we will exhibit this phenomenon in the simpler situation where
the varying flow is that of the water itself.

7.2.1 Rayleigh’s equation

Consider water flowing in a shallow channel where friction forces keep the
water in contact the stream-bed from moving. We will show that the resulting
shear flow is unstable to the formation of waves on the water surface. The
consequences of this instability are most often seen in a thin sheet of water
running down the face of a dam. The sheet starts off flowing smoothly, but,
as the water descends, waves form and break, and the water reaches the
bottom in irregular pulses called roll waves.

It is easiest to describe what is happening from the vantage of a reference
frame that rides along with the surface water. In this frame the velocity
profile of the flow will be as shown in figure 7.8.
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h U(y)

0

x

Figure 7.8: The velocity profile U(y) in a frame at which the surface is at
rest.

Since the flow is incompressible but not irrotational, we will describe the
motion by using a stream function Ψ, in terms of which the fluid velocity is
given by

vx = −∂yΨ,
vy = ∂xΨ. (7.45)

This parameterization automatically satisfies ∇ · v = 0, while the (z compo-
nent of) the vorticity becomes

Ω ≡ ∂xvy − ∂yvx = ∇2Ψ. (7.46)

We will consider a stream function of the form2

Ψ(x, y, t) = ψ0(y) + ψ(y)eikx−iωt, (7.47)

where ψ0 obeys −∂yψ0 = vx = U(y), and describes the horizontal mean flow.
The term containing ψ(y) represents a small-amplitude wave disturbance
superposed on the mean flow. We will investigate whether this disturbance
grows or decreases with time.

Euler’s equation can be written as,

v̇ + v × Ω = −∇
(
P +

v2

2
+ gy

)
= 0. (7.48)

Taking the curl of this, and taking into account the two dimensional character
of the problem, we find that

∂tΩ + (v · ∇)Ω = 0. (7.49)

2The physical stream function is, of course, the real part of this expression.
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This, a general property of two-dimensional incompressible motion, says that
vorticity is convected with the flow. We now express (7.49) in terms of Ψ,
when it becomes

∇2Ψ̇ + (v · ∇)∇2Ψ = 0. (7.50)

Substituting the expression (7.47) into (7.50), and keeping only terms of first
order in ψ, gives

−iω
(
d2

dy2
− k2

)
ψ + iUk

(
d2

dy2
− k2

)
ψ + ikψ∂y(−∂yU) = 0,

or (
d2

dy2
− k2

)
ψ −

(
∂2U

∂y2

)
1

(U − ω/k)ψ = 0. (7.51)

This is Rayleigh’s equation.3 If only the first term were present, it would
have solutions ψ ∝ e±ky, and we would have recovered the results of section
7.1.1. The second term is significant, however. It will diverge if there is a
point yc such that U(yc) = ω/k. In other words, if there is a depth at which
the flow speed coincides with the phase velocity of the wave disturbance, thus
allowing a resonant interaction between the wave and flow. An actual infinity
in (7.51) will be evaded, though, because ω will gain a small imaginary part
ω → ωR + iγ. A positive imaginary part means that the wave amplitude is
growing exponentially with time. A negative imaginary part means that the
wave is being damped. With γ included, we then have

1

(U − ω/k) ≈
U − ωR/k

(U − ωR/k)2 + γ2
+ iπ sgn

(γ
k

)
δ
(
U(y)− ωR/k

)

=
U − ωR/k

(U − ωR/k)2 + γ2
+ iπ sgn

(γ
k

) ∣∣∣∣
∂U

∂y

∣∣∣∣
−1

yc

δ(y − yc).

(7.52)

To specify the problem fully we need to impose boundary conditions on
ψ(y). On the lower surface we can set ψ(0) = 0, as this will keep the fluid
at rest there. On the upper surface y = h we apply Euler’s equation

v̇ + v × Ω = −∇
(
P +

v2

2
+ gh

)
= 0. (7.53)

3Lord Rayleigh, “On the stability or instability of certain fluid motions.” Proc. Lond.
Math. Soc. 11 (1880).
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We observe that P is constant, being atmospheric pressure, and the v2/2 can
be neglected as it is of second order in the disturbance. Then, considering
the x component, we have

−∇xgh = −g∂x
∫ t

vydt = −g
(
k2

iω

)
ψ (7.54)

on the free surface. To lowest order we can apply the boundary condition on
the equilibrium free surface y = y0. The boundary condition is therefore

1

ψ

dψ

dy
+
k

ω

∂U

∂y
= g

k2

ω2
, y = y0. (7.55)

We usually have ∂U/∂y = 0 near the surface, so this simplifies to

1

ψ

dψ

dy
= g

k2

ω2
. (7.56)

That this is sensible can be confirmed by considering the case of waves on
still, deep water, where ψ(y) = e|k|y. The boundary condition then reduces
to |k| = gk2/ω2, or ω2 = g|k|, which is the correct dispersion equation for
such waves.

We find the corresponding dispersion equation for waves on shallow flow-
ing water by computing

1

ψ

dψ

dy

∣∣∣∣
y0

, (7.57)

from Rayleigh’s equation (7.51). Multiplying by ψ∗ and integrating gives

0 =

∫ y0

0

dy

{
ψ∗
(
d2

dy2
− k2

)
ψ + k

(
∂2U

∂y2

)
1

(ω − Uk) |ψ|
2

}
. (7.58)

An integration by parts then gives
[
ψ∗dψ

dy

]y0

0

=

∫ y0

0

dy

{∣∣∣∣
dψ

dy

∣∣∣∣+ k2|ψ|2 +

(
∂2U

∂y2

)
1

(U − ω/k) |ψ|
2

}
. (7.59)

The lower limit makes no contribution, since ψ∗ is zero there. On using (7.52)
and taking the imaginary part, we find

Im

(
ψ∗dψ

dy

)

y0

= sgn
(γ
k

)
π

(
∂2U

∂y2

)

yc

∣∣∣∣
∂U

∂y

∣∣∣∣
−1

yc

|ψ(yc)|, (7.60)
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or

Im

(
1

ψ

dψ

dy

)

y0

= sgn
(γ
k

)
π

(
∂2U

∂y2

)

yc

∣∣∣∣
∂U

∂y

∣∣∣∣
−1

yc

|ψ(yc)|2
|ψ(y0)|2

. (7.61)

This equation is most useful if the interaction with the flow does not sub-
stantially perturb ψ(y) away from the still-water result ψ(y) = sinh(|k|y),
and assuming this is so provides a reasonable first approximation.

If we insert (7.61) into (7.56), where we approximate,

g

(
k2

ω2

)
≈ g

(
k2

ω2
R

)
− 2ig

(
k2

ω3
R

)
γ,

we find

γ =
ω3
R

2gk2
Im

(
1

ψ

dψ

dy

)

y0

= sgn
(γ
k

)
π
ω3
R

2gk2

(
∂2U

∂y2

)

yc

∣∣∣∣
∂U

∂y

∣∣∣∣
−1

yc

|ψ(yc)|2
|ψ(y0)|2

. (7.62)

We see that either sign of γ is allowed by our analysis. Thus the resonant
interaction between the shear flow and wave appears to lead to either ex-
ponential growth or damping of the wave. This is inevitable because our
inviscid fluid contains no mechanism for dissipation, and its motion is neces-
sarily time-reversal invariant. Nonetheless, as in our discussion of “friction
without friction” in section 5.2.2, only one sign of γ is actually observed.
This sign is determined by the initial conditions, but a rigorous explanation
of how this works mathematically is not easy, and is the subject of many
papers. These show that the correct sign is given by

γ = −π ω3
R

2gk2

(
∂2U

∂y2

)

yc

∣∣∣∣
∂U

∂y

∣∣∣∣
−1

yc

|ψ(yc)|2
|ψ(y0)|2

. (7.63)

Since our velocity profile has ∂2U/∂y2 < 0, this means that the waves grow
in amplitude.

We can also establish the correct sign for γ by a computing the change of
momentum in the background flow due to the wave.4 The crucial element is
whether, in the neighbourhood of the critical depth, more fluid is overtaking
the wave than lagging behind it. This is exactly what the the quantity
∂2U/∂y2 measures.

4G. E. Vekstein, “Landau resonance mechanism for plasma and wind-generated water
waves,” American Journal of Physics , 66 (1998) 886-92.
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7.3 Non-linear waves

Non-linear effects become important when some dimensionless measure of
the amplitude of the disturbance, say ∆P/P for a sound wave, or ∆h/λ for
a water wave, is no longer � 1.

7.3.1 Sound in air

The simplest non-linear wave system is one-dimensional sound propagation
in a gas. This problem was studied by Riemann.

The one dimensional motion of a fluid is determined by the mass conser-
vation equation

∂tρ + ∂x(ρv) = 0, (7.64)

and Euler’s equation of motion

ρ(∂tv + v∂xv) = −∂xP. (7.65)

In a fluid with equation of state P = P (ρ), the speed of sound, c, is given by

c2 =
dP

dρ
. (7.66)

It will in general depend on P , the speed of propagation being usually higher
when the pressure is higher.

Riemann was able to simplify these equations by defining a new thermo-
dynamic variable π(P ) as

π =

∫ P

P0

1

ρc
dP, (7.67)

were P0 is the equilibrium pressure of the undisturbed air. The quantity π
obeys

dπ

dP
=

1

ρc
. (7.68)

In terms of π, Euler’s equation divided by ρ becomes

∂tv + v∂xv + c∂xπ = 0, (7.69)

whilst the equation of mass conservation divided by ρ/c becomes

∂tπ + v∂xπ + c∂xv = 0. (7.70)
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Figure 7.9: Non-linear characteristic curves.

Adding and subtracting, we get Riemann’s equations

∂t(v + π) + (v + c)∂x(v + π) = 0,

∂t(v − π) + (v − c)∂x(v − π) = 0. (7.71)

These assert that the Riemann invariants v±π are constant along the char-
acteristic curves

dx

dt
= v ± c. (7.72)

This tell us that signals travel at the speed v±c. In other words, they travel,
with respect to the fluid, at the local speed of sound c. Using the Riemann
equations, we can propagate initial data v(x, t = 0), π(x, t = 0) into the
future by using the method of characteristics.
In figure 7.9 the value of v+π is constant along the characteristic curve CA

+ ,
which is the solution of

dx

dt
= v + c (7.73)

passing through A. The value of v − π is constant along CB
− , which is the

solution of
dx

dt
= v − c (7.74)

passing through B. Thus the values of π and v at the point P can be found if
we know the initial values of v + π at the point A and v − π at the point B.
Having found v and π at P we can invert π(P ) to find the pressure P , and
hence c, and so continue the characteristics into the future, as indicated by
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Figure 7.10: Simple wave characteristics.

the dotted lines. We need, of course, to know v and c at every point along
the characteristics CA

+ and CB
− in order to construct them, and this requires

us to to treat every point as a “P”. The values of the dynamical quantities
at P therefore depend on the initial data at all points lying between A and
B. This is the domain of dependence of P

A sound wave caused by a localized excess of pressure will eventually
break up into two distinct pulses, one going forwards and one going back-
wards. Once these pulses are sufficiently separated that they no longer inter-
act with one another they are simple waves. Consider a forward-going pulse
propagating into undisturbed air. The backward characteristics are coming
from the undisturbed region where both π and v are zero. Clearly π − v is
zero everywhere on these characteristics, and so π = v. Now π+v = 2v = 2π
is constant the forward characteristics, and so π and v are individually con-
stant along them. Since π is constant, so is c. With v also being constant,
this means that c + v is constant. In other words, for a simple wave, the
characteristics are straight lines.

This simple-wave simplification contains within it the seeds of its own
destruction. Suppose we have a positive pressure pulse in a fluid whose
speed of sound increases with the pressure. Figure 7.10 shows how, with
this assumption, the straight-line characteristics travel faster in the high
pressure region, and eventually catch up with and intersect the slower-moving
characteristics. When this happens the dynamical variables will become
multivalued. How do we deal with this?
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7.3.2 Shocks

Let us untangle the multivaluedness by drawing another set of pictures. Sup-
pose u obeys the non-linear “half” wave equation

(∂t + u∂x)u = 0. (7.75)

The velocity of propagation of the wave is therefore u itself, so the parts of
the wave with large u will overtake those with smaller u, and the wave will
“break,” as shown in figure 7.11

u u

u u

a) b)

d)c)
?

Figure 7.11: A breaking non-linear wave.

Physics does not permit such multivalued solutions, and what usually hap-
pens is that the assumptions underlying the model which gave rise to the
nonlinear equation will no longer be valid. New terms should be included in
the equation which prevent the solution becoming multivalued, and instead
a steep “shock” will form.

u
d’)

Figure 7.12: Formation of a shock.



278 CHAPTER 7. THE MATHEMATICS OF REAL WAVES

Examples of an equation with such additional terms are Burgers’ equation

(∂t + u∂x)u = ν∂2
xxu, (7.76)

and the Korteweg de-Vries (KdV) equation (4.11), which, by a suitable rescal-
ing of x and t, we can write as

(∂t + u∂x)u = δ ∂3
xxxu. (7.77)

Burgers’ equation, for example, can be thought of as including the effects of
thermal conductivity, which was not included in the derivation of Riemann’s
equations. In both these modified equations, the right hand side is negligeable
when u is varying slowly, but it completely changes the character of the
solution when the waves steepen and try to break.

Although these extra terms are essential for the stabilization of the shock,
once we know that such a discontinuous solution has formed, we can find
many of its properties — for example the propagation velocity — from general
principles, without needing their detailed form. All we need is to know what
conservation laws are applicable.

Multiplying (∂t + u∂x)u = 0 by un−1, we deduce that

∂t

{
1

n
un
}

+ ∂x

{
1

n + 1
un+1

}
= 0, (7.78)

and this implies that

Qn =

∫ ∞

−∞
un dx (7.79)

is time independent. There are infinitely many of these conservation laws,
one for each n. Suppose that the n-th conservation law continues to hold even
in the presence of the shock, and that the discontinuity is at X(t). Then

d

dt

{∫ X(t)

−∞
un dx +

∫ ∞

X(t)

un dx

}
= 0. (7.80)

This is equal to

un−(X)Ẋ − un+(X)Ẋ +

∫ X(t)

−∞
∂tu

n dx +

∫ ∞

X(t)

∂tu
n dx = 0, (7.81)
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where un−(X) ≡ un(X−ε) and un+(X) ≡ un(X+ε). Now, using (∂t+u∂x)u = 0
in the regions away from the shock, where it is reliable, we can write this as

(un+ − un−)Ẋ = − n

n + 1

∫ X(t)

−∞
∂xu

n dx− n

n+ 1

∫ ∞

X(t)

∂xu
n dx

=

(
n

n + 1

)
(un+1

+ − un+1
− ). (7.82)

The velocity at which the shock moves is therefore

Ẋ =

(
n

n + 1

)
(un+1

+ − un+1
− )

(un+ − un−)
. (7.83)

Since the shock can only move at one velocity, only one of the infinitely many
conservation laws can continue to hold in the modified theory!
Example: Burgers’ equation. From

(∂t + u∂x)u = ν∂2
xxu, (7.84)

we deduce that

∂tu+ ∂x

{
1

2
u2 − ν∂xu

}
= 0, (7.85)

so that Q1 =
∫
u dx is conserved, but further investigation shows that no

other conservation law survives. The shock speed is therefore

Ẋ =
1

2

(u2
+ − u2

−)

(u+ − u−)
=

1

2
(u+ + u−). (7.86)

Example: KdV equation. From

(∂t + u∂x)u = δ ∂3
xxxu, (7.87)

we deduce that

∂tu+ ∂x

{
1

2
u2 − δ ∂2

xxu

}
= 0,

∂t

{
1

2
u2

}
+ ∂x

{
1

3
u3 − δu∂2

xxu+
1

2
δ(∂xu)

2

}
= 0

...
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where the dots refer to an infinite sequence of (not exactly obvious) conserva-
tion laws. Since more than one conservation law survives, the KdV equation
cannot have shock-like solutions. Instead, the steepening wave breaks up
into a sequence of solitons.
Example: Hydraulic Jump, or Bore

v 1

v
2h1

h
2

Figure 7.13: A Hydraulic Jump.

A stationary hydraulic jump is a place in a stream where the fluid abruptly
increases in depth from h1 to h2, and simultaneously slows down from super-
critical (faster than wave-speed) flow to subcritical (slower than wave-speed)
flow. Such jumps are commonly seen near weirs, and white-water rapids.5 A
circular hydraulic jump is easily created in your kitchen sink. The moving
equivalent is the the tidal bore

The equations governing uniform (meaning that v is independent of the
depth) flow in channels are mass conservation

∂th + ∂x {hv} = 0, (7.88)

and Euler’s equation
∂tv + v∂xv = −∂x{gh}. (7.89)

We could manipulate these into the Riemann form, and work from there, but
it is more direct to combine them to derive the momentum conservation law

∂t{hv}+ ∂x

{
hv2 +

1

2
gh2

}
= 0. (7.90)

From Euler’s equation, assuming steady flow, v̇ = 0, we can also deduce
Bernoulli’s equation

1

2
v2 + gh = const., (7.91)

5The breaking crest of Frost’s “white wave” is probably as much as an example of a
hydraulic jump as of a smooth downstream wake.
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which is an energy conservation law. At the jump, mass and momentum
must be conserved:

h1v1 = h2v2,

h1v
2
1 +

1

2
gh2

1 = h2v
2
2 +

1

2
gh2

2, (7.92)

and v2 may be eliminated to find

v2
1 =

1

2
g

(
h2

h1

)
(h1 + h2). (7.93)

A change of frame reveals that v1 is the speed at which a wall of water of
height h = (h2 − h1) would propagate into stationary water of depth h1.

Bernoulli’s equation is inconsistent with the two equations we have used,
and so

1

2
v2
1 + gh1 6=

1

2
v2
2 + gh2. (7.94)

This means that energy is being dissipated: for strong jumps, the fluid down-
stream is turbulent. For weaker jumps, the energy is radiated away in a train
of waves – the so-called “undular bore”.
Example: Shock Wave in Air: At a shock wave in air we have conservation
of mass

ρ1v1 = ρ2v2, (7.95)

and momentum
ρ1v

2
1 + P1 = ρ2v

2
2 + P2. (7.96)

In this case, however, Bernoulli’s equation does hold,6, so we also have

1

2
v2
1 + h1 =

1

2
v2
2 + h2. (7.97)

Here, h is the specific enthalpy (U +PV per unit mass). Entropy, though, is
not conserved, so we cannot use PV γ = const. across the shock. From mass

6Recall that enthalpy is conserved in a throttling process even in the presence of dissi-
pation. Bernoulli’s equation for a gas is the generalization of this thermodynamic result to
include the kinetic energy of the gas. The difference between the shock wave in air, where
Bernoulli holds, and the hydraulic jump, where it does not, is that the enthalpy of the gas
keeps track of the lost mechanical energy, which has been absorbed by the internal degrees
of freedom. The Bernoulli equation for channel flow keeps track only of the mechanical
energy of the mean flow.
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and momentum conservation alone we find

v2
1 =

(
ρ2

ρ1

)
P2 − P1

ρ2 − ρ1
. (7.98)

For an ideal gas with cp/cv = γ, we can use energy conservation to to elimi-
nate the densities, and find

v1 = c0

√
1 +

γ + 1

2γ

P2 − P1

P1
. (7.99)

Here, c0 is the speed of sound in the undisturbed gas.

7.3.3 Weak solutions

We want to make mathematically precise the sense in which a function u
with a discontinuity can be a solution to the differential equation

∂t

{
1

n
un
}

+ ∂x

{
1

n + 1
un+1

}
= 0, (7.100)

even though the equation is surely meaningless if the functions to which the
derivatives are being applied are not in fact differentiable.

We could play around with distributions like the Heaviside step function
or the Dirac delta, but this is unsafe for non-linear equations, because the
product of two distributions is generally not meaningful. What we do is
introduce a new concept. We say that u is a weak solution to (7.100) if

∫

R2

dx dt

{
un∂tϕ+

n

n + 1
un+1∂xϕ

}
= 0, (7.101)

for all test functions ϕ in some suitable space T . This equation has formally
been obtained from (7.100) by multiplying it by ϕ(x, t), integrating over
all space-time, and then integrating by parts to move the derivatives off u,
and onto the smooth function ϕ. If u is assumed smooth then all these
manipulations are legitimate and the new equation (7.101) contains no new
information. A conventional solution to (7.100) is therefore also a weak
solution. The new formulation (7.101), however, admits solutions in which u
has shocks.
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D− D+

n

Figure 7.14: The geometry of the domains to the right and left of a jump.

Let us see what is required of a weak solution if we assume that u is
everywhere smooth except for a single jump from u−(t) to u+(t) at the point
X(t). Let D± be the regions to the left and right of the jump, as shown in
figure 7.14. Then the weak-solution condition (7.101) becomes

0 =

∫

D−

dx dt

{
un∂tϕ+

n

n+ 1
un+1∂xϕ

}
+

∫

D+

dx dt

{
un∂tϕ+

n

n+ 1
un+1∂xϕ

}
.

(7.102)
Let

n =


 1√

1 + |Ẋ|2
,
−Ẋ√

1 + |Ẋ|2


 (7.103)

be the unit outward normal to D−, then, using the divergence theorem, we
have
∫

D−

dx dt

{
un∂tϕ+

n

n+ 1
un+1∂xϕ

}
=

∫

D−

dx dt

{
−ϕ

(
∂tu

n +
n

n+ 1
∂xu

n+1

)}

+

∫

∂D−

dt

{
ϕ

(
−Ẋ(t)un− +

n

n + 1
un+1
−

)}

(7.104)

Here we have written the integration measure over the boundary as

ds =

√
1 + |Ẋ|2 dt. (7.105)

Performing the same manoeuvre for D+, and observing that ϕ can be any
smooth function, we deduce that
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i) ∂tu
n + n

n+1
∂xu

n+1 = 0 within D±.

ii) Ẋ(un+ − un−) = n
n+1

(un+1
+ − un+1

− ) on X(t).
The reasoning here is identical to that in chapter one, where we considered
variations at endpoints to obtain natural boundary conditions. We therefore
end up with the same equations for the motion of the shock as before.

The notion of weak solutions is widely used in applied mathematics, and it
is the principal ingredient of the finite element method of numerical analysis
in continuum dynamics.

7.4 Solitons

A localized disturbance in a dispersive medium soon falls apart, since its
various frequency components travel at differing speeds. At the same time,
non-linear effects will distort the wave profile. In some systems, however,
these effects of dispersion and non-linearity can compensate each other and
give rise to solitons—stable solitary waves which propagate for long distances
without changing their form. Not all equations possessing wave-like solutions
also possess solitary wave solutions. The best known example of equations
that do, are:

1) The Korteweg-de-Vries (KdV) equation, which in the form

∂u

∂t
+ u

∂u

∂x
= −∂

3u

∂x3
, (7.106)

has a solitary wave solution

u = 2α2sech2(αx− α3t) (7.107)

which travels at speed α2. The larger the amplitude, therefore, the
faster the solitary wave travels. This equation applies to steep waves
in shallow water.

2) The non-linear Shrödinger (NLS) equation with attractive interactions

i
∂ψ

∂t
= − 1

2m

∂2ψ

∂x2
− λ|ψ|2ψ, (7.108)

where λ > 0. It has solitary-wave solution

ψ = eikx−iωt
√

α

mλ
sech
√
α(x− Ut), (7.109)
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where

k = mU, ω =
1

2
mU2 − α

2m
. (7.110)

In this case, the speed is independent of the amplitude, and the moving
solution can be obtained from a stationary one by means of a Galilean
boost. The nonlinear equation for the stationary wavepacket may be
solved by observing that

(−∂2
x − 2sech2x)ψ0 = −ψ0 (7.111)

where ψ0(x) = sech x. This is the bound-state of the Pöschel-Teller
equation that we have met several times before. The non-linear Schrödinger
equation describes many systems, including the dynamics of tornadoes,
where the solitons manifest as the knot-like kinks sometimes seen wind-
ing their way up thin funnel clouds.7

3) The sine-Gordon (SG) equation is

∂2ϕ

∂t2
− ∂2ϕ

∂x2
+
m2

β
sin βϕ = 0. (7.112)

This has solitary-wave solutions

ϕ(x, t) =
4

β
tan−1

{
e±mγ(x−Ut)

}
, (7.113)

where γ = (1− U 2)−
1
2 and |U | < 1. The velocity is not related to the

amplitude, and the moving soliton can again be obtained by boosting
a stationary soliton. The boost is now a Lorentz transformation, and
so we only get subluminal solitons, whose width is Lorentz contracted
by the usual relativistic factor of γ. The sine-Gordon equation de-
scribes, for example, the evolution of light pulses whose frequency is in
resonance with an atomic transition in the propagation medium.8

In the case of the sine-Gordon soliton, the origin of the solitary wave is
particularly easy to understand, as it can be realized as a “twist” in a chain
of coupled pendulums. The handedness of the twist determines whether we
take the + or − sign in the solution (7.113).

7H.Hasimoto, J. Fluid Mech. 51 (1972) 477-485.
8See G. L. Lamb, Rev. Mod. Phys. 43(1971) 99, for a nice review.
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Figure 7.15: A sine-Gordon solitary wave as a twist in a ribbon of coupled
pendulums.

The existence of solitary-wave solutions is interesting in its own right.
It was the fortuitous observation of such a wave by John Scott Russell on
the Union Canal, near Hermiston in England, that founded the subject.9

Even more remarkable was Scott Russell’s subsequent discovery (made in a
specially constructed trough in his garden) of what is now called the soliton
property : two colliding solitary waves interact in a complicated manner yet
emerge from the encounter with their form unchanged, having suffered no
more than a slight time delay. Each of the three equations given above has
exact multi-soliton solutions which show this phenomenon.

After languishing for more than a century, soliton theory has grown to
be a huge subject. It is, for example, studied by electrical engineers who
use soliton pulses in fibre-optic communications. No other type of signal
can propagate though thousands of kilometers of undersea cable without
degradation. Solitons, or “quantum lumps” are also important in particle
physics. The nucleon can be thought of as a knotted soliton (in this case
called a “skyrmion”) in the pion field, and gauge-field monopole solitons

9“I was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped - not so the mass of water in the
channel which it had put in motion; it accumulated round the prow of the vessel in a state
of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap
of water, which continued its course along the channel apparently without change of form
or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate
of some eight or nine miles an hour, preserving its original figure some thirty feet long and
a foot to a foot and a half in height. Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel. Such, in the month of August
1834, was my first chance interview with that singular and beautiful phenomenon which I
have called the Wave of Translation.” —John Scott Russell, 1844.
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appear in many string and field theories. The soliton equations themselves
are aristocrats among partial differential equations, with ties into almost
every other branch of mathematics.
Practical Illustration: Solitons in Optical Fibres. We wish to transmit pi-
cosecond pulses of light with a carrier frequency ω0. Suppose that the dis-
persive properties of the fibre are such that the associated wavenumber for
frequencies near ω0 can be expanded as

k = ∆k + k0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 + · · · . (7.114)

Here, β1 is the reciprocal of the group velocity, and β2 is a parameter called
the group velocity dispersion (GVD). The term ∆k parameterizes the change
in refractive index due to non-linear effects. It is proportional to the mean-
square of the electric field. Let us write the electric field as

E(x, t) = A(x, t)eik0z−ω0t, (7.115)

where A(x, t) is a slowly varying envelope function. When we transform from
Fourier variables to space and time we have

(ω − ω0)→ i
∂

∂t
, (k − k0)→ −i

∂

∂z
, (7.116)

and so the equation determining A becomes

−i∂A
∂z

= iβ1
∂A

∂t
− β2

2

∂2A

∂t2
+ ∆kA. (7.117)

If we set ∆k = γ|A2|, where γ is normally positive, we have

i

(
∂A

∂z
+ β1

∂A

∂t

)
=
β2

2

∂2A

∂t2
− γ|A|2A. (7.118)

We may get rid of the first-order time derivative by transforming to a frame
moving at the group velocity. We do this by setting

τ = t− β1z,

ζ = z (7.119)

and using the chain rule, as we did for the Galilean transformation in home-
work set 0. The equation for A ends up being

i
∂A

∂ζ
=
β2

2

∂2A

∂τ 2
− γ|A|2A. (7.120)
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This looks like our non-linear Schrödinger equation, but with the role of
space and time interchanged! Also, the coefficient of the second derivative
has the wrong sign so, to make it coincide with the Schrödinger equation we
studied earlier, we must have β2 < 0. When this condition holds, we are
said to be in the “anomalous dispersion” regime — although this is rather
a misnomer since it is the group refractive index , Ng = c/vgroup, that is
decreasing with frequency, not the ordinary refractive index. For pure SiO2

glass, β2 is negative for wavelengths greater than 1.27µm. We therefore have
anomalous dispersion in the technologically important region near 1.55µm,
where the glass is most transparent. In the anomalous dispersion regime we
have solitons with

A(ζ, τ) = eiα|β2|ζ/2

√
β2α

γ
sech
√
α(τ), (7.121)

leading to

E(z, t) =

√
β2α

γ
sech
√
α(t− β1z)e

iα|β2|z/2eik0z−iω0t. (7.122)

This equation describes a pulse propagating at β−1
1 , which is the group ve-

locity.

Exercise 7.1: Find the expression for the sine-Gordon soliton, by first showing
that the static sine-Gordon equation

−∂
2ϕ

∂x2
+
m2

β
sinβϕ = 0

implies that
1

2
ϕ′2 +

m2

β2
cos βϕ = const.,

and solving this equation (for a suitable choice of the constant) by separation
of variables. Next, show that if f(x) is solution of the static equation, then
f(γ(x − Ut)), γ = (1 − U 2)−1/2, |U | < 1 is a solution of the time-dependent
equation.

Exercise 7.2: Lax pair for the non-linear Schrödinger equation. Let L be the
matrix differential operator

L =

[
i∂x χ∗

χ i∂x

]
,
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and let P be the matrix

P =

[
i|χ|2 χ′∗

−χ′ −i|χ|2
]
.

Show that the equation

L̇ = [L,P ]

is equivalent to the non-linear Shrödinger equation

iχ̇ = −χ′′ − 2|χ|2χ.

7.5 Further exercises and problems

Here are some further problems on non-linear and dispersive waves:

Problem 7.3: The Equation of Telegraphy . Oliver Heaviside’s equations re-
lating the voltage v(x, t) and current i(x, t) in a transmission line are

L
∂i

∂t
+Ri = −∂v

∂x
,

C
∂v

∂t
+Gv = − ∂i

∂x
.

Here R, C, L and G are respectively the resitance, capacitance, inductance,
and leakance of each unit length of the line.

a) Show that Heaviside’s equations lead to v(x, t) obeying

LC
∂2v

∂t2
+ (LG+RC)

∂v

∂t
+RGv =

∂2v

∂x2
,

and also to a similar equation for i(x, t).
b) Seek a travelling-wave solution of the form

v(x, t) = v0 e
i(kx−ωt),

i(x, t) = i0 e
i(kx−ωt),

and find the dispersion equation relating ω and k. From this relation,
show that signals propagate undistorted (i.e. with frequency-independent
attenuation) at speed 1/

√
LC provided that the Heaviside condition

RC = LG is satisfied.
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c) Show that the characteristic impedance Z ≡ v0/i0 of the transmission
line is given by

Z(ω) =

√
R+ iωL

G+ iωC
.

Deduce that the characteristic impedance is frequency independent if the
Heaviside condition is satisfied.

In practical applications, the Heaviside condition can be satisfied by periodi-
cally inserting extra inductors—known as loading coils—into the line.

Problem 7.4: Pantograph Drag. A high-speed train picks up its electrical
power via a pantograph from an overhead line. The locomotive travels at
speed U and the pantograph exerts a constant vertical force F on the power
line.

F

U
Rheil Cymru

Figure 7.16: A high-speed train.

We make the usual small amplitude approximations and assume (not unrealis-
tically) that the line is supported in such a way that its vertical displacement
obeys an inhomogeneous Klein-Gordon equation

ρÿ − Ty′′ + ρΩ2y = Fδ(x − Ut),

with c =
√
T/ρ, the velocity of propagation of short-wavelength transverse

waves on the overhead cable.

a) Assume that U < c and solve for the steady state displacement of the
cable about the pickup point. (Hint: the disturbance is time-independent
when viewed from the train.)

b) Now assume that U > c. Again find an expression for the displacement
of the cable. (The same hint applies, but the physically appropriate
boundary conditions are very different!)

c) By equating the rate at which wave-energy

E =

∫ {
1

2
ρẏ2 +

1

2
Ty′2 +

1

2
ρΩ2y2

}
dx
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is being created to rate at the which the locomotive is doing work, cal-
culate the wave-drag on the train. In particular, show that there is no
drag at all until U exceeds c. (Hint: While the front end of the wake is
moving at speed U , the trailing end of the wake is moving forward at the
group velocity of the wave-train.)

d) By carefully considering the force the pantograph exerts on the overhead
cable, again calculate the induced drag. You should get the same answer
as in part c) (Hint: To the order needed for the calculation, the tension
in the cable is the same before and after the train has passed, but the
direction in which the tension acts is different. The force F is therefore
not exactly vertical, but has a small forward component. Don’t forget
that the resultant of the forces is accelerating the cable.)

This problem of wake formation and drag is related both to Čerenkov radiation
and to the Landau criterion for superfluidity.

Exercise 7.5: Inertial waves. A rotating tank of incompressible (ρ ≡ 1) fluid
can host waves whose restoring force is provided by angular momentum con-
servation. Suppose the fluid velocity at the point r is given by

v(r, t) = u(r, t) + Ω× r,

where u is a perturbation imposed on the rigid rotation of the fluid at angular
velocity Ω.

a) Show that when viewed from a co-ordinate frame rotating with the fluid
we have

∂u

∂t
=

(
∂u

∂t
−Ω× u + ((Ω× r) · ∇)u

)

lab

.

Deduce that the lab-frame Euler equation

∂v

∂t
+ (v · ∇)v = −∇P,

becomes, in the rotating frame,

∂u

∂t
+ 2(Ω× u) + (u · ∇)u = −∇

(
P − 1

2
|Ω× r|2

)
.

We see that in the non-inertial rotating frame the fluid experiences a
−2(Ω × u) Coriolis and a ∇|Ω × r|2/2 centrifugal force. By linearizing
the rotating-frame Euler equation, show that for small u we have

∂ω

∂t
− 2(Ω · ∇)u = 0, (?)

where ω = curlu.
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b) Take Ω to be directed along the z axis. Seek plane-wave solutions to ?
in the form

u(r, t) = uoe
i(k·r−ωt)

where u0 is a constant, and show that the dispersion equation for these
small amplitude inertial waves is

ω = 2Ω

√
k2
z

k2
x + k2

y + k2
z

.

Deduce that the group velocity is directed perpendicular to k— i.e. at
right-angles to the phase velocity. Conclude also that any slow flow
that is steady (time independent) when viewed from the rotating frame
is necessarily independent of the co-ordinate z. (This is the origin of
the phenomenon of Taylor columns, which are columns of stagnant fluid
lying above and below any obstacle immersed in such a flow.)

Exercise 7.6: Non-linear Waves. In this problem we will explore the Riemann
invariants for a fluid with P = λ2ρ3/3. This is the equation of state of one-
dimensional non-interacting Fermi gas.

a) From the continuity equation

∂tρ+ ∂xρv = 0,

and Euler’s equation of motion

ρ(∂tv + v∂xv) = −∂xP,

deduce that
(
∂

∂t
+ (λρ+ v)

∂

∂x

)
(λρ+ v) = 0,

(
∂

∂t
+ (−λρ+ v)

∂

∂x

)
(−λρ+ v) = 0.

In what limit do these equations become equivalent to the wave equation
for one-dimensional sound? What is the sound speed in this case?

b) Show that the Riemann invariants v±λρ are constant on suitably defined
characteristic curves. What is the local speed of propagation of the waves
moving to the right or left?

c) The fluid starts from rest, v = 0, but with a region where the density
is higher than elsewhere. Show that that the Riemann equations will
inevitably break down at some later time due to the formation of shock
waves.
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Exercise 7.7: Burgers Shocks. As simple mathematical model for the forma-
tion and decay of a shock wave consider Burgers’ Equation:

∂tu+ u∂xu = ν ∂2
xu.

Note its similarity to the Riemann equations of the previous exercise. The
additional term on the right-hand side introduces dissipation and prevents the
solution becoming multi-valued.

a) Show that if ν = 0 any solution of Burgers’ equation having a region
where u decreases to the right will always eventually become multivalued.

b) Show that the Hopf-Cole transformation, u = −2ν ∂x lnψ, leads to ψ
obeying a heat diffusion equation

∂tψ = ν ∂2
xψ.

c) Show that

ψ(x, t) = Aeνa
2t−ax +Beνb

2t−bx

is a solution of this heat equation, and so deduce that Burgers’ equation
has a shock-wave-like solution which travels to the right at speed C =
ν(a+ b) = 1

2(uL+uR), the mean of the wave speeds to the left and right
of the shock. Show that the width of the shock is ≈ 4ν/|uL − uR|.
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Chapter 8

Special Functions

In solving Laplace’s equation by the method of separation of variables we
come across the most important of the special functions of mathematical
physics. These functions have been studied for many years, and books such as
the Bateman manuscript project1 summarize the results. Any serious student
theoretical physics needs to be familiar with this material, and should at least
read the standard text: A Course of Modern Analysis by E. T. Whittaker
and G. N. Watson (Cambridge University Press). Although it was originally
published in 1902, nothing has superseded this book in its accessibility and
usefulness.

In this chapter we will focus only on the properties that all physics stu-
dents should know by heart.

8.1 Curvilinear co-ordinates

Laplace’s equation can be separated in a number of coordinate systems.
These are all orthogonal systems in that the local coordinate axes cross at
right angles.

1The Bateman manuscript project contains the formulæ collected by Harry Bateman,
who was professor of Mathematics, Theoretical Physics, and Aeronautics at the California
Institute of Technology. After his death in 1946, several dozen shoe boxes full of file cards
were found in his garage. These proved to be the index to a mountain of paper contain-
ing his detailed notes. A subset of the material was eventually published as the three
volume series Higher Transcendental Functions , and the two volume Tables of Integral
Transformations , A. Erdélyi et al. eds.
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To any system of orthogonal curvilinear coordinates is associated a metric
of the form

ds2 = h2
1(dx

1)2 + h2
2(dx

2)2 + h2
3(dx

3)2. (8.1)

This expression tells us the distance
√
ds2 between the adjacent points

(x1 + dx1, x2 + dx2, x3 + dx3) and (x1, x2, x3). In general, the hi will depend
on the co-ordinates xi.

The most commonly used orthogonal curvilinear co-ordinate systems are
plane polars, spherical polars, and cylindrical polars. The Laplacian also
separates in plane elliptic, or three-dimensional ellipsoidal coordinates and
their degenerate limits, such as parabolic cylindrical co-ordinates — but these
are not so often encountered, and for their properties we refer the reader to
comprehensive treatises such as Morse and Feshbach’s Methods of Theoretical
Physics.

Plane polar co-ordinates

θ

P

y

x

r

Figure 8.1: Plane polar co-ordinates.

Plane polar co-ordinates have metric

ds2 = dr2 + r2dθ2, (8.2)

so hr = 1, hθ = r.
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Spherical polar co-ordinates

x

y

z

P

θ

r

φ

Figure 8.2: Spherical co-ordinates.

This system has metric

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2, (8.3)

so hr = 1, hθ = r, hφ = r sin θ,

Cylindrical polar co-ordinates

x

y

z

Pr

z

θ

Figure 8.3: Cylindrical co-ordinates.

These have metric
ds2 = dr2 + r2dθ2 + dz2, (8.4)

so hr = 1, hθ = r, hz = 1.
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8.1.1 Div, grad and curl in curvilinear co-ordinates

It is very useful to know how to write the curvilinear co-ordinate expressions
for the common operations of the vector calculus. Knowing these, we can
then write down the expression for the Laplace operator.

The gradient operator

We begin with the gradient operator. This is a vector quantity, and to
express it we need to understand how to associate a set of basis vectors with
our co-ordinate system. The simplest thing to do is to take unit vectors ei
tangential to the local co-ordinate axes. Because the coordinate system is
orthogonal, these unit vectors will then constitute an orthonormal system.

e
e

r
θ

Figure 8.4: Unit basis vectors in plane polar co-ordinates.

The vector corresponding to an infinitesimal co-ordinate displacement dxi is
then given by

dr = h1dx
1e1 + h2dx

2e2 + h3dx
3e3. (8.5)

Using the orthonormality of the basis vectors, we find that

ds2 ≡ |dr|2 = h2
1(dx

1)2 + h2
2(dx

2)2 + h2
3(dx

3)2, (8.6)

as before.
In the unit-vector basis, the gradient vector is

gradφ ≡ ∇φ =
1

h1

(
∂φ

∂x1

)
e1 +

1

h 2

(
∂φ

∂x2

)
e2 +

1

h3

(
∂φ

∂x3

)
e3, (8.7)

so that

(gradφ) · dr =
∂φ

∂x1
dx1 +

∂φ

∂x2
dx2 +

∂φ

∂x3
dx3, (8.8)

which is the change in the value φ due the displacement.
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The numbers (h1dx
1, h2dx

2, h3dx
3) are often called the physical compo-

nents of the displacement dr, to distinguish them from the numbers (dx1, dx2, dx3)
which are the co-ordinate components of dr. The physical components of a
displacement vector all have the dimensions of length. The co-ordinate com-
ponents may have different dimensions and units for each component. In
plane polar co-ordinates, for example, the units will be meters and radians.
This distinction extends to the gradient itself: the co-ordinate components
of an electric field expressed in polar co-ordinates will have units of volts
per meter and volts per radian for the radial and angular components, re-
spectively. The factor 1/hθ = r−1 serves to convert the latter to volts per
meter.

The divergence

The divergence of a vector field A is defined to be the flux of A out of an
infinitesimal region, divided by volume of the region.

dx

dx

3

1

3

1h

h2
2

dxh

Figure 8.5: Flux out of an infinitesimal volume with sides of length h1dx
1,

h2dx
2, h3dx

3 .

In the figure, the flux out of the two end faces is

dx2dx3
[
A1h2h3|(x1+dx1,x2,x3) − A1h2h3|(x1,x2,x3)

]
≈ dx1dx2dx3∂(A1h2h3)

∂x1
.

(8.9)
Adding the contributions from the other two pairs of faces, and dividing by
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the volume, h2h2h3dx
1dx2dx3, gives

div A =
1

h1h2h3

{
∂

∂x1
(h2h3A1) +

∂

∂x2
(h1h3A2) +

∂

∂x3
(h1h2A3)

}
. (8.10)

Note that in curvilinear coordinates div A is no longer simply ∇·A, although
one often writes it as such.

The curl

The curl of a vector field A is a vector whose component in the direction of
the normal to an infinitesimal area element, is line integral of A round the
infinitesimal area, divided by the area.

h dx 

h dx 

e

1

2

3

1

2

Figure 8.6: Line integral round infinitesimal area with sides of length h1dx
1,

h2dx
2, and normal e3 .

The third component is, for example,

(curlA)3 =
1

h1h2

(
∂h2A2

∂x1
− ∂h1A1

∂x2

)
. (8.11)

The other two components are found by cyclically permuting 1→ 2→ 3→ 1
in this formula. The curl is thus is no longer equal to ∇×A, although it is
common to write it as if it were.

Note that the factors of hi are disposed so that the vector identities

curl gradϕ = 0, (8.12)

and
div curlA = 0, (8.13)

continue to hold for any scalar field ϕ, and any vector field A.
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8.1.2 The Laplacian in curvilinear co-ordinates

The Laplacian acting on scalars, is “div grad”, and is therefore

∇2ϕ =
1

h1h2h3

{
∂

∂x1

(
h2h3

h1

∂ϕ

∂x1

)
+

∂

∂x2

(
h1h3

h2

∂ϕ

∂x2

)
+

∂

∂x3

(
h1h2

h3

∂ϕ

∂x3

)}
.

(8.14)
This formula is worth committing to memory.

When the Laplacian is to act on a vector field , we must use the vector
Laplacian

∇2A = grad div A− curl curlA. (8.15)

In curvilinear co-ordinates this is no longer equivalent to the Laplacian acting
on each component of A, treating it as if it were a scalar. The expression
(8.15) is the appropriate generalization of the vector Laplacian to curvilinear
co-ordinates because it is defined in terms of the co-ordinate independent
operators div, grad, and curl, and reduces to the Laplacian on the individual
components when the co-ordinate system is Cartesan.

In spherical polars the Laplace operator acting on the scalar field ϕ is

∇2ϕ =
1

r2

∂

∂r

(
r2∂ϕ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+

1

r2 sin2 θ

∂2ϕ

∂φ2

=
1

r

∂2(rϕ)

∂r2
+

1

r2

{
1

sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+

1

sin2 θ

∂2ϕ

∂φ2

}

=
1

r

∂2(rϕ)

∂r2
− L̂2

r2
ϕ, (8.16)

where

L̂2 = − 1

sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2
, (8.17)

is (after multiplication by ~2) the operator representing the square of the
angular momentum in quantum mechanics.

In cylindrical polars the Laplacian is

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (8.18)
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8.2 Spherical harmonics

We saw that Laplace’s equation in spherical polars is

0 =
1

r

∂2(rϕ)

∂r2
− L̂2

r2
ϕ. (8.19)

To solve this by the method of separation of variables, we factorize

ϕ = R(r)Y (θ, φ), (8.20)

so that
1

Rr

d2(rR)

dr2
− 1

r2

(
1

Y
L̂2Y

)
= 0. (8.21)

Taking the separation constant to be l(l + 1), we have

r
d2(rR)

dr2
− l(l + 1)(rR) = 0, (8.22)

and
L̂2Y = l(l + 1)Y. (8.23)

The solution for R is rl or r−l−1. The equation for Y can be further decom-
posed by setting Y = Θ(θ)Φ(φ). Looking back at the definition of L̂2, we see
that we can take

Φ(φ) = eimφ (8.24)

with m an integer to ensure single valuedness. The equation for Θ is then

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
Θ = −l(l + 1)Θ. (8.25)

It is convenient to set x = cos θ; then
(
d

dx
(1− x2)

d

dx
+ l(l + 1)− m2

1− x2

)
Θ = 0. (8.26)

8.2.1 Legendre polynomials

We first look at the axially symmetric case where m = 0. We are left with
(
d

dx
(1− x2)

d

dx
+ l(l + 1)

)
Θ = 0. (8.27)
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This is Legendre’s equation. We can think of it as an eigenvalue problem

−
(
d

dx
(1− x2)

d

dx

)
Θ(x) = l(l + 1)Θ(x), (8.28)

on the interval −1 ≤ x ≤ 1, this being the range of cos θ for real θ. Legendre’s
equation is of Sturm-Liouville form, but with regular singular points at x =
±1. Because the endpoints of the interval are singular, we cannot impose
as boundary conditions that Θ, Θ′, or some linear combination of these, be
zero there. We do need some boundary conditions, however, so as to have a
self-adjoint operator and a complete set of eigenfunctions.

Given one or more singular endpoints, a possible route to a well-defined
eigenvalue problem is to require solutions to be square-integrable, and so
normalizable. This condition suffices for the harmonic-oscillator Schrödinger
equation, for example, because at most one of the two solutions is square-
integrable. For Legendre’s equation with l = 0, the two independent solutions
are Θ(x) = 1 and Θ(x) = ln(1 + x)− ln(1− x). Both of these solutions have
finite L2[−1, 1] norms, and this square integrability persists for all values of
l. Thus, demanding normalizability is not enough to select a unique bound-
ary condition. Instead, each endpoint possesses a one-parameter family of
boundary conditions that lead to self-adjoint operators. We therefore make
the more restrictive demand that the allowed eigenfunctions be finite at the
endpoints. Because the the north and south pole of the sphere are not special
points, this is a physically reasonable condition. When l is an integer, then
one of the solutions, Pl(x), becomes a polynomial, and so is finite at x = ±1.
The second solution Ql(x) is divergent at both ends, and so is not an allowed
solution. When l is not an integer, neither solution is finite. The eigenvalues
are therefore l(l + 1) with l zero or a positive integer. Despite its unfa-
miliar form, the “finite” boundary condition makes the Legendre operator
self-adjoint, and the Legendre polynomials Pl(x) form a complete orthogonal
set for L2[−1, 1].

Proving orthogonality is easy: we follow the usual strategy for Sturm-
Liouville equations with non-singular boundary conditions to deduce that

[l(l + 1)−m(m + 1)]

∫ 1

−1

Pl(x)Pm(x) dx =
[
(PlP

′
m − P ′

lPm)(1− x2)
]1
−1
.

(8.29)
Since the Pl’s remain finite at ±1, the right hand side is zero because of the
(1 − x2) factor, and so

∫ 1

−1
Pl(x)Pm(x) dx is zero if l 6= m. (Observe that
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this last step differs from the usual argument where it is the vanishing of the
eigenfunction or its derivative that makes the integrated-out term zero.)

Because they are orthogonal polynomials, the Pl(x) can be obtained by
applying the Gram-Schmidt procedure to the sequence 1, x, x2, . . . to obtain
polynomials orthogonal with respect to the w ≡ 1 inner product, and then
fixing the normalization constant. The result of this process can be expressed
in closed form as

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l. (8.30)

This is called Rodriguez’ formula. It should be clear that this formula outputs
a polynomial of degree l. The coefficient 1/2ll! comes from the traditional
normalization for the Legendre polynomials that makes Pl(1) = 1. This
convention does not lead to an orthonormal set. Instead, we have

∫ 1

−1

Pl(x)Pm(x) dx =
2

2l + 1
δlm. (8.31)

It is easy to show that this integral is zero if l > m—simply integrate by
parts l times so as to take the l derivatives off (x2 − 1)l and onto (x2 − 1)m,
which they kill. We will evaluate the l = m integral in the next section.

We now show that the Pl(x) given by Rodriguez formula are indeed so-
lutions of Legendre’s equation: Let v = (x2 − 1)l, then

(1− x2)v′ + 2lxv = 0. (8.32)

We differentiate this l + 1 times using Leibniz’ theorem

[uv](n) =

n∑

m=0

(
n

m

)
u(m)v(n−m)

= uv(n) + nu′v(n−1) +
1

2
n(n− 1)u′′v(n−2) + . . . . (8.33)

We find that

[(1− x2)v′](l+1) = (1− x2)v(l+2) − (l + 1)2xv(l+1) − l(l + 1)v(l),

[2xnv](l+1) = 2xlv(l+1) + 2l(l + 1)v(l). (8.34)

Putting these two terms together we obtain
(

(1− x2)
d2

dx2
− 2x

d

dx
+ l(l + 1)

)
dl

dxl
(x2 − 1)l = 0, (8.35)
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which is Legendre’s equation.
The Pl(x) have alternating parity

Pl(−x) = (−1)lPl(x), (8.36)

and the first few are

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3).

8.2.2 Axisymmetric potential problems

The essential property of the Pl(x) is that the general axisymmetric solution
of ∇2ϕ = 0 can be expanded in terms of them as

ϕ(r, θ) =

∞∑

l=0

(
Alr

l +Blr
−l−1

)
Pl(cos θ). (8.37)

You should memorize this formula. You should also know by heart the ex-
plicit expressions for the first four Pl(x), and the factor of 2/(2l + 1) in the
orthogonality formula.
Example: Point charge. Put a unit charge at the point R, and find an ex-
pansion for the potential as a Legendre polynomial series in a neighbourhood
of the origin.

R

|

θ

r

R−r |

O

Figure 8.7: Geometry for generating function.
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Let start by assuming that |r| < |R|. We know that in this region the point
charge potential 1/|r−R| is a solution of Laplace’s equation , and so we can
expand

1

|r−R| ≡
1√

r2 +R2 − 2rR cos θ
=

∞∑

l=0

Alr
lPl(cos θ). (8.38)

We knew that the coefficients Bl were zero because ϕ is finite when r = 0.
We can find the coefficients Al by setting θ = 0 and Taylor expanding

1

|r−R| =
1

R− r =
1

R

(
1 +

( r
R

)
+
( r
R

)2

+ · · ·
)
, r < R. (8.39)

By comparing the two series and noting that Pl(1) = 1, we find that Al =
R−l−1. Thus

1√
r2 +R2 − 2rR cos θ

=
1

R

∞∑

l=0

( r
R

)l
Pl(cos θ), r < R. (8.40)

This last expression is the generating function formula for Legendre polyno-
mials. It is also a useful formula to have in your long-term memory.

If |r| > |R|, then we must take

1

|r−R| ≡
1√

r2 +R2 − 2rR cos θ
=

∞∑

l=0

Blr
−l−1Pl(cos θ), (8.41)

because we know that ϕ tends to zero when r = ∞. We now set θ = 0 and
compare with

1

|r−R| =
1

r − R =
1

r

(
1 +

(
R

r

)
+

(
R

r

)2

+ · · ·
)
, R < r, (8.42)

to get

1√
r2 +R2 − 2rR cos θ

=
1

r

∞∑

l=0

(
R

r

)l
Pl(cos θ), R < r. (8.43)

Observe that we made no use of the normalization integral

∫ 1

−1

{Pl(x)}2 dx = 2/(2l + 1) (8.44)
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in deriving the the generating function expansion for the Legendre polyno-
mials. The following exercise shows that this expansion, taken together with
their previously established orthogonality property, can be used to establish
8.44.

Exercise 8.1: Use the generating function for Legendre polynomials Pl(x) to
show that

∞∑

l=0

z2l

(∫ 1

−1
{Pl(x)}2 dx

)
=

∫ 1

−1

1

1− 2xz + z2
dx = −1

z
ln

(
1− z
1 + z

)
, |z| < 1.

By Taylor expanding the logarithm, and comparing the coefficients of z2l,
evaluate

∫ 1
−1{Pl(x)}2 dx.

Example: A planet is spinning on its axis and so its shape deviates slightly
from a perfect sphere. The position of its surface is given by

R(θ, φ) = R0 + ηP2(cos θ). (8.45)

Observe that, to first order in η, this deformation does not alter the volume
of the body. Assuming that the planet has a uniform density ρ0, compute
the external gravitational potential of the planet.

θ R
0R

Figure 8.8: Deformed planet.

The gravitational potential obeys Poisson’s equation

∇2φ = 4πGρ(x), (8.46)
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where G is Newton’s gravitational constant. We expand φ as a power series
in η

φ(r, θ) = φ0(r, θ) + ηφ1(r, θ) + . . . . (8.47)

We also decompose the gravitating mass into a uniform undeformed sphere,
which gives the external potential

φ0,ext(r, θ) = −
(

4

3
πR3

0ρ0

)
G

r
, r > R0, (8.48)

and a thin spherical shell of areal mass-density

σ(θ) = ρ0ηP2(cos θ). (8.49)

The thin shell gives rise to the potential

φ1,int(r, θ) = Ar2P2(cos θ), r < R0, (8.50)

and

φ1,ext(r, θ) = B
1

r3
P2(cos θ), r > R0. (8.51)

At the shell we must have φ1,int = φ1,ext and

∂φ1,ext

∂r
− ∂φ1,int

∂r
= 4πGσ(θ). (8.52)

Thus A = BR−5
0 , and

B = −4

5
πGηρ0R

4
0. (8.53)

Putting this together, we have

φ(r, θ) = −
(

4

3
πGρ0R

3
0

)
1

r
− 4

5

(
πGηρ0R

4
0

) P2(cos θ)

r3
+O(η2), r > R0.

(8.54)

8.2.3 General spherical harmonics

When we do not have axisymmetry, we need the full set of spherical harmon-
ics. These involve solutions of

(
d

dx
(1− x2)

d

dx
+ l(l + 1)− m2

1− x2

)
Φ = 0, (8.55)
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which is the associated Legendre equation. This looks like another com-
plicated equation with singular endpoints, but its bounded solutions can
be obtained by differentiating Legendre polynomials. On substituting y =
(1 − x2)m/2z(x) into (8.55), and comparing the resulting equation for z(x)
with the m-th derivative of Legendre’s equation, we find that

Pm
l (x)

def
= (−1)m(1− x2)m/2

dm

dxm
Pl(x) (8.56)

is a solution of (8.55) that remains finite (m = 0) or goes to zero (m > 0)
at the endpoints x = ±1. Since Pl(x) is a polynomial of degree l, we must
have Pm

l (x) = 0 if m > l. For each l, the allowed values of m in this
formula are therefore 0, 1, . . . , l. Our definition (8.56) of the Pm

l (x) can be
extended to negative integer m by interpreting d−|m|/dx−|m| as an instruction
to integrate the Legendre polynomial m times, instead of differentiating it,
but the resulting P

−|m|
l (x) are proportional to Pm

l (x), so nothing new is
gained by this conceit.

The spherical harmonics are the normalized product of these associated
Legendre functions with the corresponding eimφ:

Y m
l (θ, φ) ∝ P

|m|
l (cos θ)eimφ, −l ≤ m ≤ l. (8.57)

The first few are
l = 0 Y 0

0 = 1√
4π

(8.58)

l = 1





Y 1
1 = −

√
3
8π

sin θ eiφ,

Y 0
1 =

√
3
4π

cos θ,

Y −1
1 =

√
3
8π

sin θ e−iφ.

(8.59)

l = 2





Y 2
2 = 1

4

√
15
2π

sin2 θ e2iφ,

Y 1
2 = −

√
15
8π

sin θ cos θ eiφ,

Y 0
2 =

√
5
4π

(
3
2
cos2 θ − 1

2

)
,

Y −1
2 =

√
15
8π

sin θ cos θ e−iφ,

Y −2
2 = 1

4

√
15
2π

sin2 θ e−2iφ.

(8.60)

The spherical harmonics compose an orthonormal
∫ 2π

0

dφ

∫ π

0

sin θdθ [Y m
l (θ, φ)]∗ Y m′

l′ (θ, φ) = δll′δmm′ , (8.61)
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and complete

∞∑

l=0

l∑

m=−l
[Y m
l (θ′, φ′)]∗Y m

l (θ, φ) = δ(φ− φ′)δ(cos θ′ − cos θ) (8.62)

set of functions on the unit sphere. In terms of them, the general solution to
∇2ϕ = 0 is

ϕ(r, θ, φ) =

∞∑

l=0

l∑

m=−l

(
Almr

l +Blmr
−l−1

)
Y m
l (θ, φ). (8.63)

This is definitely a formula to remember.

The m = 0, the spherical harmonics are independent of the azimuthal
angle φ, and so must be proportional to the Legendre polynomials. The
exact relation is

Y 0
l (θ, φ) =

√
2l + 1

4π
Pl(cos θ). (8.64)

If we use a unit vector n to denote a point on the unit sphere, we have the
symmetry properties

[Y m
l (n)]∗ = (−1)mY −m

l (n), Y m
l (−n) = (−1)lY m

l (n). (8.65)

These identities are useful when we wish to know how quantum mechanical
wavefunctions transform under time reversal or parity.

There is an addition theorem

Pl(cos γ) =
4π

2l + 1

l∑

m=−l
[Y m
l (θ′, φ′)]∗Y m

l (θ, φ), (8.66)

where γ is the angle between the directions (θ, φ) and (θ′, φ′), and is found
from

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (8.67)

The addition theorem is established by first showing that the right-hand side
is rotationally invariant, and then setting the direction (θ′, φ′) to point along
the z axis. Addition theorems of this sort are useful because they allow one
to replace a simple function of an entangled variable by a sum of functions
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of unentangled variables. For example, the point-charge potential can be
disentangled as

1

|r− r′| =

∞∑

l=0

l∑

m=−l

4π

2l + 1

(
rl<
rl+1
>

)
[Y m
l (θ′, φ′]∗Y m

l (θ, φ) (8.68)

where r< is the smaller of |r| or |r′|, and r> is the greater and (θ, φ), (θ′, φ′)
specify the direction of r, r′ respectively. This expansion is derived by com-
bining the generating function for the Legendre polynomials with the addition
formula. It is useful for defining and evaluating multipole expansions.

Exercise 8.2: Show that

Y 1
1

Y 0
1

Y −1
1



 ∝





x+ iy,
z,

x− iy
Y 2

2

Y 1
2

Y 0
2

Y −1
2

Y −2
2




∝





(x+ iy)2,
(x+ iy)z,

x2 + y2 − 2z2,
(x− iy)z,
(x− iy)2,

where x2 + y2 + z2 = 1 are the usual Cartesian co-ordinates, restricted to the
unit sphere.

8.3 Bessel functions

In cylindrical polar co-ordinates, Laplace’s equation is

0 = ∇2ϕ =
1

r

∂

∂r
r
∂ϕ

∂r
+

1

r2

∂2ϕ

∂θ2
+
∂2ϕ

∂z2
. (8.69)

If we set ϕ = R(r)eimφe±kx we find that R(r) obeys

d2R

dr2
+

1

r

dR

dr
+

(
k2 − m2

r2

)
R = 0. (8.70)

Now
d2y

dx2
+

1

x

dy

dx
+

(
1− ν2

x2

)
y = 0 (8.71)

is Bessel’s equation and its solutions are Bessel functions of order ν. The
solutions for R will therefore be Bessel functions of order m, but with x
replaced by kr.
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8.3.1 Cylindrical Bessel functions

We now set about solving Bessel’s equation,

d2y

dx2
+

1

x

dy

dx
+

(
1− ν2

x2

)
y(x) = 0. (8.72)

This has a regular singular point at the origin, and an irregular singular point
at infinity. We seek a series solution of the form

y = xλ(1 + a1x+ a2x
2 + · · ·), (8.73)

and find from the indicial equation that λ = ±ν. Setting λ = ν and in-
serting the series into the equation, we find, with a conventional choice for
normalization, that

y = Jν(x)
def
=
(x

2

)ν ∞∑

n=0

(−1)n

n!(n+ ν)!

(x
2

)2n

. (8.74)

Here (n+ν)! ≡ Γ(n+ν+1). The functions Jν(x) are called cylindrical Bessel
functions.

If ν is an integer we find that J−n(x) = (−1)nJn(x), so we have only found
one of the two independent solutions. It is therefore traditional to define the
Neumann function

Nν(x) =
Jν(x) cos νπ − J−ν(x)

sin νπ
, (8.75)

as this remains an independent second solution even as ν becomes integral.
At short distance, and for ν not an integer

Jν(x) =
(x

2

)ν 1

Γ(ν + 1)
+ · · · ,

Nν(x) =
1

π

(x
2

)−ν
Γ(ν) + · · · . (8.76)

When ν tends to zero, we have

J0(x) = 1− 1

4
x2 + · · ·

N0(x) =

(
2

π

)
(lnx/2 + γ) + · · · , (8.77)
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where γ = .57721 . . . denotes the Euler-Mascheroni constant. For fixed ν,
and x� ν we have the asymptotic expansions

Jν(x) ∼
√

2

πx
cos(x− 1

2
νπ − 1

4
π)

(
1 +O

(
1

x

))
, (8.78)

Nν(x) ∼
√

2

πx
sin(x− 1

2
νπ − 1

4
π)

(
1 +O

(
1

x

))
. (8.79)

It is therefore natural to define the Hankel functions

H(1)
ν (x) = Jν(x) + iNν(x) ∼

√
2

πx
ei(x−νπ/2−π/4), (8.80)

H(2)
ν (x) = Jν(x)− iNν(x) ∼

√
2

πx
e−i(x−νπ/2−π/4). (8.81)

We will derive these asymptotic forms in chapter 19.

Generating function

The two-dimensional wave equation

(
∇2 − 1

c2
∂2

∂t2

)
Φ(r, θ, t) = 0 (8.82)

has solutions

Φ = eiωteinθJn(kr), (8.83)

where k = |ω|/c. Equivalently, the two dimensional Helmholtz equation

(∇2 + k2)Φ = 0, (8.84)

has solutions einθJn(kr). It also has solutions with Jn(kr) replaced byNn(kr),
but these are not finite at the origin. Since the einθJn(kr) are the only
solutions that are finite at the origin, any other finite solution should be
expandable in terms of them. In particular, we should be able to expand a
plane wave solution:

eiky = eikr sin θ =
∑

n

ane
inθJn(kr). (8.85)
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As we will see in a moment, the an’s are all unity, so in fact

eikr sin θ =
∞∑

n=−∞
einθJn(kr). (8.86)

This generating function is the historical origin of the Bessel functions. They
were introduced by the astronomer Wilhelm Bessel as a method of expressing
the eccentric anomaly of a planetary position as a Fourier sine series in the
mean anomaly — a modern version of Hipparchus’ epicycles.

From the generating function we see that

Jn(x) =
1

2π

∫ 2π

0

e−inθ+ix sin θ dθ. (8.87)

Whenever you come across a formula like this, involving the Fourier integral
of the exponential of a trigonometric function, you are probably dealing with
a Bessel function.

The generating function can also be written as

e
x
2 (t−

1
t ) =

∞∑

n=−∞
tnJn(x). (8.88)

Expanding the left-hand side and using the binomial theorem, we find

LHS =

∞∑

m=0

(x
2

)m 1

m!

[
∑

r+s=m

(r + s)!

r!s!
(−1)strt−s

]
,

=
∞∑

r=0

∞∑

s=0

(−1)s
(x

2

)r+s tr−s
r!s!

,

=

∞∑

n=−∞
tn

{ ∞∑

s=0

(−1)s

s!(s+ n)!

(x
2

)2s+n
}
. (8.89)

We recognize that the sum in the braces is the series expansion defining
Jn(x). This therefore proves the generating function formula.

Bessel identities

There are many identities and integrals involving Bessel functions. The stan-
dard reference is the monumental Treatise on the Theory of Bessel Functions
by G. N. Watson. Here are just a few formulæ for your delectation:
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i) Starting from the generating function

exp

{
1
2
x

(
t− 1

t

)}
=

∞∑

n=−∞
Jn(x)t

n, (8.90)

we can, with a few lines of work, establish the recurrence relations

2J ′
n(x) = Jn−1(x)− Jn+1(x), (8.91)

2n

x
Jn(x) = Jn−1(x) + Jn+1(x), (8.92)

together with

J ′
0(x) = −J1(x), (8.93)

Jn(x + y) =

∞∑

r=−∞
Jr(x)Jn−r(y). (8.94)

ii) From the series expansion for Jn(x) we find

d

dx
{xnJn(x)} = xnJn−1(x). (8.95)

iii) By similar methods, we find

(
1

x

d

dx

)m {
x−nJn(x)

}
= (−1)mx−n−mJn+m(x). (8.96)

iv) Again from the series expansion, we find
∫ ∞

0

J0(ax)e
−pxdx =

1√
a2 + p2

. (8.97)

Semi-classical picture

The Schrödinger equation

− ~2

2m
∇2ψ = Eψ (8.98)

can be separated in cylindrical polar co-ordinates, and has eigenfunctions

ψk,l(r, θ) = Jl(kr)e
ilθ. (8.99)
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Figure 8.9: J100(x).

The eigenvalues are E = ~2k2/2m. The quantity L = ~l is the angular
momentum of the Schrödinger particle about the origin. If we impose rigid-
wall boundary conditions that ψk,l(r, θ) vanish on the circle r = R, then the
allowed k form a discrete set kl,n, where Jl(kl,nR) = 0. To find the energy
eigenvalues we therefore need to know the location of the zeros of Jl(x).
There is no closed form equation for these numbers, but they are tabulated.
The zeros for kR � l are also approximated by the zeros of the asymptotic
expression

Jl(kR) ∼
√

2

πkR
cos(kR− 1

2
lπ − 1

4
π), (8.100)

which are located at

kl,nR =
1

2
lπ +

1

4
π + (2n+ 1)

π

2
. (8.101)

If we let R → ∞, then the spectrum becomes continuous and we are
describing unconfined scattering states. Since the particles are free, their
classical motion is in a straight line at constant velocity. A classical par-
ticle making a closest approach at a distance rmin, has angular momentum
L = prmin. Since p = ~k is the particle’s linear momentum, we have l = krmin.
Because the classical particle is never closer than rmin, the quantum me-
chanical wavefunction representing such a particle will become evanescent
(i.e. tend rapidly to zero) as soon as r is smaller than rmin. We therefore
expect that Jl(kr) ≈ 0 if kr < l. This effect is dramatically illustrated by
the MathematicaTM plot in figure 8.9.
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minkr    =l

O

Figure 8.10: The geometric origin of x(r) and θ(r) in 8.102.

Improved asymptotic expressions, which give a better estimate of the
Jl(kr) zeros, are the approximations

Jl(kr) ≈
√

2

πkx
cos(kx− lθ − π/4), r � rmin,

Nl(kr) ≈
√

2

πkx
sin(kx− lθ − π/4), r � rmin. (8.102)

Here θ = cos−1(rmin/r) and x = r sin θ are functions of r. They have a
geometric origin in the right-angled triangle in figure 8.10. The parameter
x has the physical interpretation of being the distance, measured from from
the point of closest approach to the origin, along the straight-line classical
trajectory. The approximation is quite accurate once r exceeds rmin by more
than a few percent.

The asymptotic r−1/2 fall-off of the Bessel function is also understandable
in the semiclassical picture.
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Figure 8.11: A collection of trajectories, each missing the origin by rmin,
leaves a “hole”.
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Figure 8.12: The hole is visible in the real part of ψk,20(rθ) = ei20θJ20(kr)
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By the uncertainly principle, a particle with definite angular momentum must
have completely uncertain angular position. The wavefunction Jl(kr)e

ilθ

therefore represents a coherent superposition of beams of particles approach-
ing from all directions, but all missing the origin by the same distance. The
density of classical particle trajectories is infinite at r = rmin, forming a caus-
tic. By “conservation of lines”, the particle density falls off as 1/r as we move
outwards. The particle density is proportional to |ψ|2, so ψ itself decreases
as r−1/2. In contrast to the classical particle density, the quantum mechan-
ical wavefunction amplitude remains finite at the caustic — the “geometric
optics” infinity being tempered by diffraction effects.

Exercise 8.3: The WKB (Wentzel-Kramers-Brillouin) approximation to a so-
lution of the Schrödinger equation

−d
2ψ

dx2
+ V (x)ψ(x) = Eψ(x)

sets

ψ(x) ≈ 1√
κ(x)

exp

{
±i
∫ x

a
κ(ξ) dξ

}
,

where κ(x) =
√
E − V (x), and a is some conveniently chosen constant. This

form of the approximation is valid in classically allowed regions, where κ is
real, and away from “turning points” where κ goes to zero. In a classically
forbidden region, where κ is imaginary, the solutions should decay exponen-
tially. The connection rule that matches the standing wave in the classically
allowed region onto the decaying solution is

1

2
√
|κ(x)|

exp

{
−
∣∣∣∣
∫ x

a
κ(ξ) dξ

∣∣∣∣
}
→ 1√

κ(x)
cos

{∣∣∣∣
∫ x

a
κ(ξ) dξ

∣∣∣∣ −
π

4

}
,

where a is the classical turning point. (The connection is safely made only
in the direction of the arrow. This because a small error in the phase of the
cosine will introduce a small admixture of the growing solution, which will
eventually swamp the decaying solution.)

Show that setting y(r) = r−1/2ψ(r) in Bessel’s equation

−d
2y

dr2
− 1

r

dy

dr
+
l2y

r2
= k2y

reduces it to Schrödinger form

−d
2ψ

dr2
+

(l2 − 1/4)

r2
ψ = k2ψ.



320 CHAPTER 8. SPECIAL FUNCTIONS

From this show that a WKB approximation to y(r) is

y(r) ≈ 1

(r2 − b2)1/4 exp

{
±ik

∫ r

b

√
ρ2 − b2
ρ

dρ

}
, r� b

=
1√
x(r)

exp{±i[kx(r)− lθ(r)]},

where kb =
√
l2 − 1/4 ≈ l, and x(r) and θ(r) were defined in connection with

(8.102). Deduce that the expressions (8.102) are WKB approximations and
are therefore accurate once we are away from the classical turning point at
r = b ≡ rmin

8.3.2 Orthogonality and completeness

We can write the equation obeyed by Jn(kr) in Sturm-Liouville form. We
have

1

r

d

dr

(
r
dy

dr

)
+

(
k2 − m2

r2

)
y = 0. (8.103)

Comparison with the standard Sturm-Liouville equation shows that the weight
function, w(r), is r, and the eigenvalues are k2.

From Lagrange’s identity we obtain

(k2
1−k2

2)

∫ R

0

Jm(k1r)Jm(k2r)r dr = R [k2Jm(k1R)J ′
m(k2R)− k1Jm(k2R)J ′

m(k1R)] .

(8.104)
We have no contribution from the origin on the right-hand side because all
Jm Bessel functions except J0 vanish there, whilst J ′

0(0) = 0. For each m we
get get a set of orthogonal functions, Jm(knx), provided the knR are chosen
to be roots of Jm(knR) = 0 or J ′

m(knR) = 0.
We can find the normalization constants by differentiating (8.104) with

respect to k1 and then setting k1 = k2 in the result. We find

∫ R

0

[
Jm(kr)

]2
r dr =

1

2
R2

[[
J ′
m(kR)

]2
+

(
1− m2

k2R2

)[
Jm(kR)

]2]
,

=
1

2
R2
[
[Jn(kR)]2 − Jn−1(kR)Jn+1(kR)

]
. (8.105)

(The second equality follows on applying the recurrence relations for the
Jn(kr), and provides an expression that is perhaps easier to remember.) For
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Dirichlet boundary conditions we will require knR to be zero of Jm, and so
we have ∫ R

0

[
Jm(kr)

]2
r dr =

1

2
R2
[
J ′
m(kR)

]2
. (8.106)

For Neumann boundary conditions we require knR to be a zero of J ′
m. In

this case
∫ R

0

[
Jm(kr)

]2
r dr =

1

2
R2

(
1− m2

k2R2

)[
Jm(kR)

]2
. (8.107)

z

r

L

a

Figure 8.13: Cylinder geometry.

Example: Harmonic function in cylinder. We wish to solve ∇2V = 0 within
a cylinder of height L and radius a. The voltage is prescribed on the upper
surface of the cylinder: V (r, θ, L) = U(r, θ). We are told that V = 0 on all
other parts of boundary.

The general solution of Laplace’s equation in will be sum of terms such
as {

sinh(kz)

cosh(kz)

}
×
{
Jm(kr)

Nm(kr)

}
×
{

sin(mθ)

cos(mθ)

}
, (8.108)

where the braces indicate a choice of upper or lower functions. We must take
only the sinh(kz) terms because we know that V = 0 at z = 0, and only the
Jm(kr) terms because V is finite at r = 0. The k’s are also restricted by the
boundary condition on the sides of the cylinder to be such that Jm(ka) = 0.
We therefore expand the prescribed voltage as

U(r, θ) =
∑

m,n

sinh(knmL)Jm(kmnr) [Anm sin(mθ) +Bnm cos(mθ)] , (8.109)
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and use the orthonormality of the trigonometric and Bessel function to find
the coefficients to be

Anm =
2cosech(knmL)

πa2[J ′
m(knma)]2

∫ 2π

0

dθ

∫ a

0

U(r, θ)Jm(knmr) sin(mθ) rdr, (8.110)

Bnm =
2cosech(knmL)

πa2[J ′
m(knma)]2

∫ 2π

0

dθ

∫ a

0

U(r, θ)Jm(knmr) cos(mθ) rdr, m 6= 0,

(8.111)
and

Bn0 =
1

2

2cosech(kn0L)

πa2[J ′
0(kn0a)]2

∫ 2π

0

dθ

∫ a

0

U(r, θ)J0(kn0r) rdr. (8.112)

Then we fit the boundary data expansion to the general solution, and so find

V (r, θ, z) =
∑

m,n

sinh(knmz)Jm(kmnr) [Anm sin(mθ) +Bnm cos(mθ)] . (8.113)

Hankel transforms

When the radius, R, of the region in which we performing our eigenfunction
expansion becomes infinite, the eigenvalue spectrum will become continuous,
and the sum over the discrete kn Bessel-function zeros must be replaced by
an integral over k. By using the asymptotic approximation

Jn(kR) ∼
√

2

πkR
cos(kR− 1

2
nπ − 1

4
π), (8.114)

we may estimate the normalization integral as
∫ R

0

[
Jm(kr)

]2
r dr ∼ R

πk
+O(1). (8.115)

We also find that the asymptotic density of Bessel zeros is

dn

dk
=
R

π
. (8.116)

Putting these two results together shows that the continuous-spectrum or-
thogonality and completeness relations are

∫ ∞

0

Jn(kr)Jn(k
′r) rdr =

1

k
δ(k − k′), (8.117)

∫ ∞

0

Jn(kr)Jn(kr
′) kdk =

1

r
δ(r − r′), (8.118)
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respectively. These two equations establish that the Hankel transform (also
called the Fourier-Bessel transform) of a function f(r), which is defined by

F (k) =

∫ ∞

0

Jn(kr)f(r)r dr, (8.119)

has as its inverse

f(r) =

∫ ∞

0

Jn(kr)F (k)k dk. (8.120)

(See exercise 8.14 for an alternative derivation of the Hankel-transform pair.)
Some Hankel transform pairs:

∫ ∞

0

e−arJ0(kr) dr =
1√

k2 + a2
,

∫ ∞

0

J0(kr)√
k2 + a2

kdk =
e−ar

r
. (8.121)

∫ ∞

0

cos(ar)J0(kr) dr =

{
0, k < a,
1/
√
k2 − a2, k > a.

∫ ∞

a

J0(kr)√
k2 − a2

kdk =
1

r
cos(ar). (8.122)

∫ ∞

0

sin(ar)J0(kr) dr =

{
1/
√
a2 − k2, k < a,

0, k > a.∫ a

0

J0(kr)√
a2 − k2

kdk =
1

r
sin(ar). (8.123)

Example: Weber’s disc problem. Consider a thin isolated conducting disc of
radius a lying on the x-y plane in R3. The disc is held at potential V0. We
seek the potential V in the entirety of R3, such that V → 0 at infinity.

It is easiest to first find V in the half-space z ≥ 0, and then extend the
solution to z < 0 by symmetry. Because the problem is axisymmetric, we
will make use of cylindrical polar co-ordinates with their origin at the centre
of the disc. In the region z ≥ 0 the potential V (r, z) obeys

∇2V (r, z) = 0, z > 0,

V (r, z) → 0 |z| → ∞
V (r, 0) = V0, r < a,

∂V

∂z

∣∣∣∣
z=0

= 0, r > a. (8.124)
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This is a mixed boundary value problem. We have imposed Dirichlet boundary
conditions on r < a and Neumann boundary conditions for r > a.

We expand the axisymmetric solution of Laplace’s equation terms of
Bessel functions as

V (r, z) =

∫ ∞

0

A(k)e−k|z|J0(kr) dk, (8.125)

and so require the unknown coeffcient function A(k) to obey
∫ ∞

0

A(k)J0(kr) dk = V0, r < a

∫ ∞

0

kA(k)J0(kr) dk = 0, r > a. (8.126)

No elementary algorithm for solving such a pair of dual integral equations
exists. In this case, however, some inspired guesswork helps. By integrating
the first equation of the transform pair (8.122) with respect to a, we discover
that ∫ ∞

0

sin(ar)

r
J0(kr) dr =

{
π/2, k < a,
sin−1(a/k), k > a.

(8.127)

With this result in hand, we then observe that (8.123) tells us that the
function

A(k) =
2V0 sin(ka)

πk
(8.128)

satisfies both equations. Thus

V (r, z) =
2V0

π

∫ ∞

0

e−k|z| sin(ka)J0(kr)
dk

k
(8.129)

The potential on the plane z = 0 can be evaluated explicitly to be

V (r, 0) =

{
V0, r < a,
(2V0/π) sin−1(a/r). r > a.

(8.130)

The charge distribution on the disc can also be found as

σ(r) =
∂V

∂z

∣∣∣∣
z=0−

− ∂V

∂z

∣∣∣∣
z=0+

=
4V0

π

∫ ∞

0

sin(ak)J0 dk

=
4V0

π
√
a2 − r2

, r < a. (8.131)
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8.3.3 Modified Bessel functions

When k is real the Bessel function Jn(kr) and the Neumann Nn(kr) function
oscillate at large distance. When k is purely imaginary, it is convenient
to combine them so as to have functions that grow or decay exponentially.
These combinations are the modified Bessel functions In(kr) and Kn(kr).

These functions are initially defined for non-integer ν by

Iν(x) = i−νJν(ix), (8.132)

Kν(x) =
π

2 sin νπ
[I−ν(x)− Iν(x)]. (8.133)

The factor of i−ν in the definition of Iν(x) is inserted to make Iν real. Our
definition of Kν(x) is that in Abramowitz and Stegun’s Handbook of Mathe-
matical Functions. It differs from that of Whittaker and Watson, who divide
by tan νπ instead of sin νπ.

At short distance, and for ν > 0,

Iν(x) =
(x

2

)ν 1

Γ(ν + 1)
+ · · · , (8.134)

Kν(x) =
1

2
Γ(ν)

(x
2

)−ν
+ · · · . (8.135)

When ν becomes and integer we must take limits, and in particular

I0(x) = 1 +
1

4
x2 + · · · , (8.136)

K0(x) = −(ln x/2 + γ) + · · · . (8.137)

The large x asymptotic behaviour is

Iν(x) ∼
1√
2πx

ex, x→∞, (8.138)

Kν(x) ∼
π√
2x
e−x, x→∞. (8.139)

From the expression for Jn(x) as an integral, we have

In(x) =
1

2π

∫ 2π

0

einθex cos θdθ =
1

π

∫ π

0

cos(nθ)ex cos θdθ (8.140)
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for integer n. When n is not an integer we still have an expression for Iν(x)
as an integral, but now it is

Iν(x) =
1

π

∫ π

0

cos(νθ)ex cos θdθ − sin νπ

π

∫ ∞

0

e−x cosh t−νtdt. (8.141)

Here we need |arg x| < π/2 for the second integral to converge. The origin
of the “extra” infinite integral must remain a mystery until we learn how
to use complex integral methods for solving differential equations. From the
definition of Kν(x) in terms of Iν we find

Kν(x) =

∫ ∞

0

e−x cosh t cosh(νt) dt, |arg x| < π/2. (8.142)

Physics Illustration: Light propagation in optical fibres. Consider the propa-
gation of light of frequency ω0 down a straight section of optical fibre. Typical
fibres are made of two materials. An outer layer, or cladding, with refractive
index n2, and an inner core with refractive index n1 > n2. The core of a fibre
used for communication is usually less than 10µm in diameter.

We will treat the light field E as a scalar. (This is not a particularly good
approximation for real fibres, but the complications due the vector character
of the electromagnetic field are considerable.) We suppose that E obeys

∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2
− n2(x, y)

c2
∂2E

∂t2
= 0. (8.143)

Here n(x, y) is the refractive index of of the fibre, which is assumed to lie
along the z axis. We set

E(x, y, z, t) = ψ(x, y, z)eik0z−iω0t (8.144)

where k0 = ω0/c. The amplitude ψ is a (relatively) slowly varying envelope
function. Plugging into the wave equation we find that

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+ 2ik0

∂ψ

∂z
+

(
n2(x, y)

c2
ω2

0 − k2
0

)
ψ = 0. (8.145)

Because ψ is slowly varying, we neglect the second derivative of ψ with
respect to z, and this becomes

2ik0
∂ψ

∂z
= −

(
∂2

∂x2
+

∂2

∂y2

)
ψ + k2

0

(
1− n2(x, y)

)
ψ, (8.146)
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which is the two-dimensional time-dependent Schrödinger equation, but with
t replaced by z/2k0, where z is the distance down the fibre. The wave-modes
that will be trapped and guided by the fibre will be those corresponding to
bound states of the axisymmetric potential

V (x, y) = k2
0(1− n2(r)). (8.147)

If these bound states have (negative) “energy” En, then ψ ∝ e−iEnz/2k0, and
so the actual wavenumber for frequency ω0 is

k = k0 − En/2k0. (8.148)

In order to have a unique propagation velocity for signals on the fibre, it
is therefore necessary that the potential support one, and only one, bound
state.

If

n(r) = n1, r < a,

= n2, r > a, (8.149)

then the bound state solutions will be of the form

ψ(r, θ) =

{
einθeiβzJn(κr), r < a,
AeinθeiβzKn(γr), r > a,

(8.150)

where

κ2 = (n2
1k

2
0 − β2), (8.151)

γ2 = (β2 − n2
2k

2
0). (8.152)

To ensure that we have a solution decaying away from the core, we need β
to be such that both κ and γ are real. We therefore require

n2
1 >

β2

k2
0

> n2
2. (8.153)

At the interface both ψ and its radial derivative must be continuous, and so
we will have a solution only if β is such that

κ
J ′
n(κa)

Jn(κa)
= γ

K ′
n(γa)

Kn(γa)
.

This Shrödinger approximation to the wave equation has other applica-
tions. It is called the paraxial approximation.
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8.3.4 Spherical Bessel functions

Consider the wave equation

(
∇2 − 1

c2
∂2

∂t2

)
ϕ(r, θ, φ, t) = 0 (8.154)

in spherical polar coordinates. To apply separation of variables, we set

ϕ = eiωtY m
l (θ, φ)χ(r), (8.155)

and find that
d2χ

dr2
+

2

r

dχ

dr
− l(l + 1)

r2
χ +

ω2

c2
χ = 0. (8.156)

Substitute χ = r−1/2R(r) and we have

d2R

dr2
+

1

r

dR

dr
+

(
ω2

c2
− (l + 1

2
)2

r2

)
R = 0. (8.157)

This is Bessel’s equation with ν2 → (l + 1
2
)2. Therefore the general solution

is
R = AJl+ 1

2
(kr) +BJ−l− 1

2
(kr) , (8.158)

where k = |ω|/c. Now inspection of the series definition of the Jν reveals
that

J 1
2
(x) =

√
2

πx
sin x, (8.159)

J− 1
2
(x) =

√
2

πx
cos x, (8.160)

so these Bessel functions are actually elementary functions. This is true of
all Bessel functions of half-integer order, ν = ±1/2, ±3/2, . . .. We define the
spherical Bessel functions by2

jl(x) =

√
π

2x
Jl+ 1

2
(x), (8.161)

nl(x) = (−1)l+1

√
π

2x
J−(l+ 1

2
)(x). (8.162)

2We are using the definitions from Schiff’s Quantum Mechanics .
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The first few are

j0(x) =
1

x
sin x,

j1(x) =
1

x2
sin x− 1

x
cos x,

j2(x) =

(
3

x3
− 1

x

)
sin x− 3

x2
cos x,

n0(x) = −1

x
cos x,

n1(x) = − 1

x2
cos x− 1

x
sin x,

n2(x) = −
(

3

x3
− 1

x

)
cos x− 3

x2
sin x.

Despite the appearance of negative powers of x, the jl(x) are all finite at
x = 0. The nl(x) all diverge to −∞ as x→ 0. In general

jl(x) = fl(x) sin x+ gl(x) cos(x), (8.163)

nl(x) = −fl(x) cos(x) + gl(x) sin x, (8.164)

where fl(x) and gl(x) are polynomials in 1/x.
We also define the spherical Hankel functions by

h
(1)
l (x) = jl(x) + inl(x), (8.165)

h
(2)
l (x) = jl(x)− inl(x). (8.166)

These behave like

h
(1)
l (x) ∼ 1

x
ei(x−[l+1]π/2), (8.167)

h
(2)
l (x) ∼ 1

x
e−i(x−[l+1]π/2), (8.168)

at large x.
The solution to the wave equation regular at the origin is therefore a sum

of terms such as

ϕk,l,m(r, θ, φ, t) = jl(kr)Y
m
l (θ, φ)e−iωt, (8.169)
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where ω = ±ck, with k > 0. For example, the plane wave eikz has expansion

eikz = eikr cos θ =
∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ), (8.170)

or equivalently, using (8.66),

eik·r = 4π

∞∑

l=0

l∑

m=−l
iljl(kr)

[
Y m
l (k̂)

]∗
Y m
l (r̂) (8.171)

where k̂, r̂, unit vectors in the direction of k and r respectively, are used as
a shorthand notation to indicate the angles that should be inserted into the
spherical harmonics. This angular-momentum-adapted expansion of a plane
wave provides a useful tool in scattering theory.

Exercise 8.4: Peierl’s Problem. Critical Mass. The core of a nuclear device
consists of a sphere of fissile 235U of radius R. It is surrounded by a thick shell
of non-fissile material which acts as a neutron reflector, or tamper .

R

DF

DT

Figure 8.14: Fission core.

In the core, the fast neutron density n(r, t) obeys

∂n

∂t
= ν n+DF∇2n. (8.172)

Here the term with ν accounts for the production of additional neutrons due to
induced fission. The term with DF describes the diffusion of the fast neutrons.
In the tamper the neutron flux obeys

∂n

∂t
= DT∇2n. (8.173)



8.3. BESSEL FUNCTIONS 331

Both the neutron density n and flux j ≡ DF,T∇n, are continuous across the
interface between the two materials. Find an equation determining the critical
radius Rc above which the neutron density grows exponentially. Show that the
critical radius for an assembly with a tamper consisting of 238U (DT = DF ) is
one-half of that for a core surrounded only by air (DT = ∞), and so the use
of a thick 238U tamper reduces the critical mass by a factor of eight.

Factorization and recurrence

The equation obeyed by the spherical Bessel function is

−d
2χl
dx2
− 2

x

dχl
dx

+
l(l + 1)

x2
χl = k2χl, (8.174)

or, in Sturm-Liouville form,

− 1

x2

d

dx

(
x2dχl
dx

)
+
l(l + 1)

x2
χl = k2χl. (8.175)

The corresponding differential operator is formally self-adjoint with respect
to the inner product

〈f, g〉 =
∫ ∞

0

(f ∗g)x2dx. (8.176)

Now, the operator

Dl = − d2

dx2
− 2

x

d

dx
+
l(l + 1)

x2
(8.177)

factorizes as

Dl =

(
− d

dx
+
l − 1

x

)(
d

dx
+
l + 1

x

)
, (8.178)

or as

Dl =

(
d

dx
+
l + 2

x

)(
− d

dx
+
l

x

)
. (8.179)

Since, with respect to the w = x2 inner product, we have

(
d

dx

)†
= − 1

x2

d

dx
x2 = − d

dx
− 2

x
, (8.180)

we can write
Dl = A†

lAl = Al+1A
†
l+1, (8.181)
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where

Al =

(
d

dx
+
l + 1

x

)
. (8.182)

From this we can deduce

Aljl ∝ jl−1, (8.183)

A†
l+1jl ∝ jl+1. (8.184)

The constants of proportionality are in each case unity. The same recurrence
formulæ hold for the spherical Neumann functions nl.

8.4 Singular endpoints

In this section we will exploit our knowledge of the Laplace eigenfunctions
in spherical and plane polar coordinates to illustrate Weyl’s theory of self-
adjoint boundary conditions at singular endpoints. We also connect Weyl’s
theory with concepts from scattering theory.

8.4.1 Weyl’s theorem

Consider the Sturm-Liouville eigenvalue problem

Ly ≡ − 1

w
[p(r)y′]′ + q(r)y = λy (8.185)

on the interval [0, R]. Here p(r) q(r) and w(r) are all supposed real, so the
equation is formally self-adjoint with respect to the inner product

〈u, v〉w =

∫ R

0

wu∗v dr. (8.186)

If r = 0 is a singular point of (8.185), then we will be unable to impose
boundary conditions of our accustomed form

ay(0) + by′(0) = 0 (8.187)

because one or both of the linearly independent solutions y1(r) and y2(r) will
diverge as r → 0. The range of possibilities was ennumerated by Weyl:
Theorem (Hermann Weyl, 1910): Suppose that r = 0 is a singular point and
r = R a regular point of the differential equation (8.185). Then
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I. Either:
a) Limit-circle case: There exists a λ0 such that both of the linearly

independent solutions to (8.185) have a w norm that is convergent
in the vicinity of r = 0. In this case both solutions have convergent
w norm for all values of λ.

Or
b) limit-point case : No more than one solution has convergent w

norm for any λ.
II. In either case, whenever Imλ 6= 0, there is at least one finite-norm

solution. When λ lies on the real axis there may or may not exist a
finite norm solution.

We will not attempt to prove Weyl’s theorem. The proof is not difficult and
may be found in many standard texts.3 It is just a little more technical than
the level of this book. We will instead illustrate it with enough examples to
make the result plausible, and its practical consequences clear.

When we come to construct the resolvent Rλ(r, r
′) obeying

(L− λI)Rλ(r, r
′) = δ(r − r′) (8.188)

by writing it is a product of y< and y> we are obliged to choose a normalizable
function for y<, the solution obeying the boundary condition at r = 0. We
must do this so that the range of Rλ will be in L2[0, R]. In the limit-point
case, and when Imλ 6= 0, there is only one choice for y<. There is therefore
a unique resolvent, a unique self-adjoint operator L− λI of which Rλ is the
inverse, and hence L is a uniquely specified differential operator.4

In the limit-circle case there is more than one choice for y< and hence more
than one way of making L into a self-adjoint operator. To what boundary
conditions do these choices correspond?

Suppose that the two normalizable solutions for λ = λ0 are y1(r) and
y2(r). The essence of Weyl’s theorem is that once we are sufficiently close
to r = 0 the exact value of λ is unimportant and all solutions behave as
a linear combination of these two. We can therefore impose as a boundary
condition that the allowed solutions be proportional to a specified real linear

3For example: Ivar Stackgold Boundary Value Problems of Mathematical Physics , Vol-
ume I (SIAM 2000).

4When λ is on the real axis then there may be no normalizable solution, and Rλ cannot
exist. This will occur only when λ is in the continuous spectrum of the operator L, and is
not a problem as the same operator L is obtained for any λ.
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combination
y(r) ∝ ay1(r) + by2(r), r → 0. (8.189)

This is a natural generalization of the regular case where we have a solution
y1(r) with boundary conditions y1(0) = 1, y′1(0) = 0, so y1(r) ∼ 1, and a
solution y2(r) with y2(0) = 0, y′2(0) = 1, so y2(r) ∼ r. The regular self-adjoint
boundary condition

ay(0) + by′(0) = 0 (8.190)

with real a, b then forces y(r) to be

y(r) ∝ by1(r)− ay2(r) ∼ b 1− a r, r → 0. (8.191)

Example: Consider the radial part of the Laplace eigenvalue problem in two
dimensions.

Lψ ≡ −1

r

dr

dr

(
r
dψ

dr

)
+
m2

r2
ψ = k2ψ. (8.192)

The differential operator L is formally self-adjoint with respect to the inner
product

〈ψ, χ〉 =
∫ R

0

ψ∗χ rdr. (8.193)

When k2 = 0, the m2 6= 0 equation has solutions ψ = r±m, and, of the
normalization integrals

∫ R

0

|rm|2 rdr,
∫ R

0

|r−m|2 rdr, (8.194)

only the first, containing the positive power of r, is convergent. For m 6= 0
we are therefore in Weyl’s limit-point case. For m2 = 0, however, the k2 = 0
solutions are ψ1(r) = 1 and ψ2(r) = ln r. Both normalization integrals

∫ R

0

12 rdr,

∫ R

0

| ln r|2 rdr (8.195)

converge and we are in the limit-circle case at r = 0. When k2 > 0 these
solutions become

J0(kr) = 1− 1

4
(kr)2 + · · · .

N0(kr) =

(
2

π

)
[ln(kr/2) + γ] + · · · . (8.196)



8.4. SINGULAR ENDPOINTS 335

Both remain normalizable, in conformity with Weyl’s theorem. The self-
adjoint boundary conditions at r → 0 are therefore that near r = 0 the
allowed functions become proportional to

1 + α ln r (8.197)

with α some specified real constant.
Example: Consider the radial equation that arises when we separate the
Laplace eigenvalue problem in spherical polar coordinates.

− 1

r2

(
d

dr
r2dψ

dr

)
+
l(l + 1)

r2
ψ = k2ψ. (8.198)

When k = 0 this has solutions ψ = rl, r−l−1. For non-zero l only the first of
the normalization integrals

∫ R

0

r2l r2dr,

∫ R

0

r−2l−2 r2dr, (8.199)

is finite. Thus, for for l 6= 0, we are again in the limit-point case, and the
boundary condition at the origin is uniquely determined by the requirement
that the solution be normalizable.

When l = 0, however, the two k2 = 0 solutions are ψ1(r) = 1 and
ψ2(r) = 1/r. Both integrals

∫ R

0

r2 dr,

∫ R

0

r−2r2 dr (8.200)

converge, so we are again in the limit-circle case. For positive k2, these
solutions evolve into

ψ1,k(r) = j0(kr) =
sin kr

kr
, ψ2,k(r) = −kn0(kr) =

cos kr

r
(8.201)

Near r = 0, we have ψ1,k ∼ 1 and ψ2,k ∼ 1/r, exactly the same behaviour as
the k2 = 0 solutions.

We obtain a self-adjoint operator if we choose a constant as and demand
that all functions in the domain be proportional to

ψ(r) ∼ 1− as
r

(8.202)
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as we approach r = 0. If we write the solution with this boundary condition
as

ψk(r) =
sin(kr + η)

r
= cos η

(
sin(kr)

r
+ tan η

cos(kr)

r

)

∼ k cos η

(
1 +

tan η

kr

)
, (8.203)

we can read off the phase shift η as

tan η(k) = −kas. (8.204)

These boundary conditions arise in quantum mechanics when we study
the scattering of particles whose de Broglie wavelength is much larger than
the range of the scattering potential. The incident wave is unable to resolve
any of the internal structure of the potential and perceives its effect only as a
singular boundary condition at the origin. In this context the constant as is
called the scattering length. This physical model explains why only the l = 0
partial waves have a choice of boundary condition: classical particles with
angular momentum l 6= 0 would miss the origin by a distance rmin = l/k and
never see the potential.

The quantum picture also helps explain the physical origin of the dis-
tinction between the limit-point and limit-circle cases. A point potential can
have a bound state that extends far beyond the short range of the potential.
If the corresponding eigenfunction is normalizable, the bound particle has
a significant amplitude to be found at non-zero r, and this amplitude must
be included in the completeness relation and in the eigenfunction expansion
of the Green function. When the state is not normalizable, however, the
particle spends all its time very close to the potential, and its eigenfunc-
tion makes zero contribution to the Green function and completness sum at
any non-zero r. Any admixture of this non-normalizable state allowed by
the boundary conditions can therefore be ignored, and, as far as the exter-
nal world is concerned, all boundary conditions look alike. The next few
exercises will illustrate this.

Exercise 8.5: The two-dimensional “delta-function” potential. Consider the
quantum mechanical problem in R2

(
−∇2 + V (|r|)

)
ψ = Eψ
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with V an attractive circular square well.

V (r) =

{
−λ/πa2, r < a
0, r > a.

The factor of πa2 has been inserted to make this a regulated version of V (r) =
−λδ2(r). Let µ =

√
λ/πa2.

i) By matching the functions

ψ(r) ∝
{
J0 (µr) , r < a
K0(κr), r > a,

at r = a, show that as a becomes small, we can scale λ towards zero
in such a way that the well becomes infinitely deep yet there remains a
single bound state with finite binding energy

E0 ≡ κ2 =
4

a2
e−2γe−4π/λ.

It is only after scaling λ in this way that we have a well-defined quantum
mechanical problem with a “point” potential.

ii) Show that in the scaling limit, the associated wavefunction obeys the
singular-endpoint boundary condition

ψ(r)→ 1 + α ln r, r→ 0

where

α =
1

γ + lnκ/2
.

Observe that by varying κ2 between 0 and ∞ we can make α be any
real number. So the entire range of possible self-adjoint boundary condi-
tions may be obtained by specifying the binding energy of an attractive
potential.

iii) Assume that we have fixed the boundary conditions by specifying κ, and
consider the scattering of unbound particles off the short-range potential.
It is natural to define the phase shift η(k) so that

ψk(r) = cos ηJ0(kr)− sin ηN0(kr)

∼
√

2

πkr
cos(kr − π/4 + η), r→∞.

Show that

cot η =

(
2

π

)
ln k/κ.
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Exercise 8.6: The three-dimensional “delta-function” potential. Repeat the
calculation of the previous exercise for the case of a three-dimensional delta-
function potential

V (r) =

{
−λ/(4πa3/3), r < a
0, r > a.

i) Show that as we take a → 0, the delta-function strength λ can be ad-
justed so that the scattering length becomes

as =

(
λ

4πa2
− 1

a

)−1

and remains finite.
ii) Show that when this as is positive, the attractive potential supports a

single bound state with external wavefunction

ψ(r) ∝ 1

r
e−κr

where κ = a−1
s .

Exercise 8.7: The pseudo-potential. Consider a particle of mass µ confined in
a large sphere of radius R. At the center of the sphere is a singular potential
whose effects can be parameterized by its scattering length as and the resultant
phase shift

η(k) ≈ tan η(k) = −ask.
In the absence of the potential, the normalized l = 0 wavefunctions would be

ψn(r) =

√
1

2πR

sin knr

r

where kn = nπ/R.

i) Show that the presence of the singular potential perturbs the ψn eigen-
state so that its energy En changes by an amount

∆En =
~2

2µ

2ask
2
n

R
.

ii) Show this energy shift can be written as if it were the result of applying
first-order perturbation theory

∆En ≈ 〈n|Vps|n〉 ≡
∫
d3r|ψn|2Vps(r)
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to an artificial pseudo-potential

Vps(r) =
2πas~2

µ
δ3(r).

Although the energy shift is small when R is large, it is not a first-order per-
turbation effect and the pseudo-potential is a convenient fiction which serves
to parameterize the effect of the true potential. Even the sign of the pseudo-
potential may differ from that of the actual short distance potential. For our
attractive “delta function”, for example, the pseudopotential changes from be-
ing attractive to being repulsive as the bound state is peeled off the bottom of
the unbound continuum. The change of sign occurs not by as passing through
zero, but by it passing through infinity. It is difficult to manipulate a single po-
tential so as to see this dramatic effect, but when the particles have spin, and
a spin-dependent interaction potential, it is possible to use a magnetic field to
arrange for a bound state of one spin configuration to pass through the zero
of energy of the other. The resulting Feshbach resonance has the same effect
on the scattering length as the conceptually simpler shape resonance obtained
by tuning the single potential.

The pseudo-potential formula is commonly used to describe the pairwise
interaction of a dilute gas of particles of mass m, where it reads

Vps(r) =
4πas~2

m
δ3(r). (8.205)

The internal energy-density of the gas due to the two-body interaction then
becomes

u(ρ) =
1

2

4πas~2

m
ρ2,

where ρ is the particle-number density.
The factor of two difference between the formula in the exercise and

(8.205) arises because the µ in the exercise must be understood as the reduced
mass µ = m2/(m+m) = m/2 of the pair of interacting particles.
Example: In n dimensions, the “l = 0” part of the Laplace operator is

d2

dr2
+

(n− 1)

r

d

dr
.

This formally self adjoint with respect to the natural inner product

〈ψ, χ〉n =

∫ ∞

0

rn−1ψ∗χ dr. (8.206)
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The zero eigenvalue solutions are ψ1(r) = 1 and ψ2(r) = r2−n. The second
of these ceases to be normalizable once n ≥ 4. In four space dimensions and
above, therefore, we are always in the limit-point case. No point interaction
— no matter how strong — can affect the physics. This non-interaction result
extends, with slight modification, to the quantum field theory of relativistic
particles. Here we find that contact interactions become irrelevent or non-
renormalizable in more than four space-time dimensions.

8.5 Further exercises and problems

Here some further problems involving Legendre polynomials, associated Leg-
endre functions and Bessel functions:

Exercise 8.8: A sphere of radius a is made by joining two conducting hemi-
spheres along their equators. The hemispheres are electrically insulated from
one another and maintained at two different potentials V1 and V2.

a) Starting from the general expression

V (r, θ) =

∞∑

l=0

(
alr

l +
bl
rl+1

)
Pl(cos θ)

find an integral expression for the coefficients al, bl that are relevent to
the electric field outside the sphere. Evaluate the integrals giving b1, b2
and b3.

b) Use your results from part a) to compute the electric dipole moment of
the sphere as function of the potential difference V1 − V2.

c) Now the two hemispheres are electrically connected and the entire surface
is at one potential. The sphere is immersed in a uniform electric field E.
What is its dipole moment now?

Problem 8.9: Tides and Gravity . The Earth is not exactly spherical. Two
major causes of the deviation from sphericity are the Earth’s rotation and the
tidal forces it feels from the Sun and the Moon. In this problem we will study
the effects of rotation and tides on a self-gravitating sphere of fluid of uniform
density ρ0.

a) Consider the equilibrium of a nearly spherical body of fluid rotating
homogeneously with angular velocity ω0. Show that the effect of rotation
can be accounted for by introducing an “effective gravitational potential”

ϕeff = ϕgrav +
1

3
ω2

0R
2(P2(cos θ)− 1),
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where R, θ are spherical coordinates defined with their origin in the
centre of the body and ẑ along the axis of rotation.

b) A small planet is in a circular orbit about a distant massive star. It
rotates about an axis perpendicular to the plane of the orbit so that it
always keeps the same face directed towards the star. Show that the
planet experiences an effective external potential

ϕtidal = −Ω2R2P2(cos θ),

together with a potential, of the same sort as in part a), that arises from
the once-per-orbit rotation. Here Ω is the orbital angular velocity, and
R, θ are spherical coordinates defined with their origin at the centre of
the planet and ẑ pointing at the star.

c) Each of the external potentials slightly deforms the initially spherical
planet so that the surface is given by

R(θ, φ) = R0 + ηP2(cos θ).

(With θ being measured with respect to different axes for the rotation
and tidal effects.) Show that, to first order in η, this deformation does
not alter the volume of the body. Observe that positive η corresponds
to a prolate spheroid and negative η to an oblate one.

d) The gravitational field of the deformed spheroid can be found by ap-
proximating it as an undeformed homogeneous sphere of radius R0, to-
gether with a thin spherical shell of radius R0 and surface mass density
σ = ρ0ηP2(cos θ). Use the general axisymmetric solution

ϕ(R, θ, φ) =

∞∑

l=0

(
AlR

l +
Bl
Rl+1

)
Pl(cos θ)

of Laplace’s equation, together with Poisson’s equation

∇2ϕ = 4πGρ(r)

for the gravitational potential, to obtain expressions for ϕshell in the
regions R > R0 and R ≤ R0.

e) The surface of the fluid will be an equipotential of the combined poten-
tials of the homogeneous sphere, the thin shell, and the effective external
potential of the tidal or centrifugal forces. Use this fact to find η (to
lowest order in the angular velocities) for the two cases. Do not include
the centrifugal potential from part b) when computing the tidal distor-
tion. We never include the variation of the centrifugal potential across a
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planet when calculating tidal effects. This is because this variation is due
to the once-per-year rotation, and contributes to the oblate equatorial

bulge and not to the prolate tidal bulge.5 (Answer: ηrot = −5
2
ω2

0R0

4πGρ0
, and

ηtide = 15
2

Ω2R0

4πGρ0
.)

Exercise 8.10: Dielectric Sphere. Consider a solid dielectric sphere of radius
a and permittivity ε. The sphere is placed in a electric field which is takes
the constant value E = E0ẑ a long distance from the sphere. Recall that
Maxwell’s equations require that D⊥ and E‖ be continuous across the surface
of the sphere.

a) Use the expansions

Φin =
∑

l

Alr
lPl(cos θ)

Φout =
∑

l

(Blr
l + Clr

−l−1)Pl(cos θ)

and find all non-zero coefficents Al, Bl, Cl.
b) Show that the E field inside the sphere is uniform and of magnitude

3ε0
ε+2ε0

E0.
c) Show that the electric field is unchanged if the dielectric is replaced by

the polarization-induced surface charge density

σinduced = 3ε0

(
ε− ε0
ε+ 2ε0

)
E0 cos θ.

(Some systems of units may require extra 4π’s in this last expression. In
SI units D ≡ εE = ε0E+P, and the polarization-induced charge density
is ρinduced = −∇ ·P)

Exercise 8.11: Hollow Sphere. The potential on a spherical surface of radius
a is Φ(θ, φ). We want to express the potential inside the sphere as an in-
tegral over the surface in a manner analagous to the Poisson kernel in two
dimensions.

a) By using the generating function for Legendre polynomials, show that

1− r2

(1 + r2 − 2r cos θ)3/2
=

∞∑

l=0

(2l + 1)rlPl(cos θ), r < 1

5Our earth rotates about its axis 365 1
4 + 1 times in a year, not 365 1

4 times. The ” +1”
is this effect.
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b) Starting from the expansion

Φin(r, θ, φ) =

∞∑

l=0

l∑

m=−l
Almr

lY m
l (θ, φ)

Alm =
1

al

∫

S2

[Y m
l (θ, φ)]∗ Φ(θ, φ) d cos θ dφ

and using the addition formula for spherical harmonics, show that

Φin(r, θ, φ) =
a(a2 − r2)

4π

∫

S2

Φ(θ′, φ′)

(r2 + a2 − 2ar cos γ)3/2
d cos θ′dφ′

where cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′).
c) By setting r = 0, deduce that a three dimensional harmonic function

cannot have a local maximum or minimum.

Problem 8.12: We have several times met with the Pöschel-Teller eigenvalue
problem (

− d2

dx2
− n(n+ 1)sech 2x

)
ψ = Eψ, ?

in the particular case that n = 1. We now consider this problem for any
positive integer n.

a) Set ξ = tanhx in ? and show that it becomes
(
d

dξ
(1− ξ2)

d

dξ
+ n(n+ 1) +

E

1− ξ2

)
ψ = 0.

b) Compare the equation in part a) with the associated Legendre equation
and deduce that the bound-state eigenfunctions and eigenvalues of the
original Pöschel-Teller equation are

ψm(x) = Pmn (tanh x), Em = −m2, m = 1, . . . , n,

where Pmn (ξ) is the associated Legendre function. Observe that the list
of bound states does not include ψ0 = P 0

n(tanhx) ≡ Pn(tanhx). This is
because ψ0 is not normalizable, being the lowest of the unbound E ≥ 0
continuous-spectrum states.

c) Now seek continuous spectrum solutions to (?) in the form

ψk(x) = eikxf(tanhx),

and show if we take E = k2, where k is any real number, then f(ξ) obeys

(1− ξ2)
d2f

dξ2
+ 2(ik − ξ)df

dξ
+ n(n+ 1)f = 0. ? ?
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d) Let us denote by P
(k)
n (ξ) the solutions of (??) that reduce to the Legendre

polynomial Pn(ξ) when k = 0. Show that the first few P
(k)
n (ξ) are

P
(k)
0 (ξ) = 1,

P
(k)
1 (ξ) = ξ − ik,

P
(k)
2 (ξ) =

1

2
(3ξ2 − 1− 3ikξ − k2).

Explore the properties of the P
(k)
n (ξ), and show that they include

i) P
(k)
n (−ξ) = (−1)nP

(−k)
n (ξ).

ii) (n+ 1)P
(k)
n+1(ξ) = (2n+ 1)xP

(k)
n (ξ)− (n+ k2/n)P

(k)
n−1(ξ).

iii) P
(k)
n (1) = (1− ik)(2− ik) . . . (n− ik)/n!.

(The P
(k)
n (ξ) are the ν = −µ = ik special case of the Jacobi polynomials

P
(ν,µ)
n (ξ))

Problem 8.13: Bessel functions and impact parameters. In two dimensions we
can expand a plane wave as

eiky =

∞∑

n=−∞
Jn(kr)e

inθ.

a) What do you think the resultant wave will look like if we take only a
finite segment of this sum? For example

φ(x) =

17∑

l=10

Jn(kr)e
inθ.

Think about:
i) The quantum interpretation of ~l as angular momentum = ~kd,

where d is the impact parameter , the amount by which the incoming
particle misses the origin.

ii) Diffraction: one cannot have a plane wave of finite width.
b) After writing down your best guess for the previous part, confirm your

understanding by using Mathematica or other package to plot the real
part of φ as defined above. The following Mathematica code may work.
Clear[bit,tot]

bit[l ,x ,y ]:=Cos[l ArcTan[x,y]]BesselJ[l,Sqrt[x^2+y^2]]

tot[x ,y ] :=Sum[bit[l,x,y],{l,10,17}]
ContourPlot[tot[x,y],{x,-40,40},{y,-40,40},PlotPoints ->200]
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Display["wave",%,"EPS"]

Run it, or some similar code, as a batchfile. Try different ranges for the
sum.

Exercise 8.14: Consider the the two-dimensional Fourier transform

f̃(k) =

∫
eik·xf(x) d2x

of a function that in polar co-ordinates is of the form f(r, θ) = exp{−ilθ}f(r).

a) Show that

f̃(k) = 2πile−ilθk

∫ ∞

0
Jl(kr)f(r) rdr,

where k, θk are the polar co-ordinates of k.
b) Use the inversion formula for the two-dimensional Fourier transform to

establish the inversion formula (8.120) for the Hankel transform

F (k) =

∫ ∞

0
Jl(kr)f(r) rdr.
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Chapter 9

Integral Equations

A problem involving a differential equation can often be recast as one involv-
ing an integral equation. Sometimes this new formulation suggests a method
of attack or approximation scheme that would not have been apparent in the
original language. It is also usually easier to extract general properties of the
solution when the problem is expressed as an integral equation.

9.1 Illustrations

Here are some examples:

A boundary-value problem: Consider the differential equation for the un-
known u(x)

−u′′ + λV (x)u = 0 (9.1)

with the boundary conditions u(0) = u(L) = 0. To turn this into an integral
equation we introduce the Green function

G(x, y) =

{ 1
L
x(y − L), 0 ≤ x ≤ y ≤ L,

1
L
y(x− L), 0 ≤ y ≤ x ≤ L,

(9.2)

so that

− d2

dx2
G(x, y) = δ(x− y). (9.3)

Then we can pretend that λV (x)u(x) in the differential equation is a known
source term, and substitute it for “f(x)” in the usual Green function solution.

347
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We end up with

u(x) + λ

∫ L

0

G(x, y)V (y)u(y) dx = 0. (9.4)

This integral equation for u has not not solved the problem, but is equivalent
to the original problem. Note, in particular, that the boundary conditions
are implicit in this formulation: if we set x = 0 or L in the second term, it
becomes zero because the Green function is zero at those points. The integral
equation then says that u(0) and u(L) are both zero.
An initial value problem: Consider essentially the same differential equation
as before, but now with initial data:

−u′′ + V (x)u = 0, u(0) = 0, u′(0) = 1. (9.5)

In this case, we claim that the inhomogeneous integral equation

u(x)−
∫ x

0

(x− t)V (t)u(t) dt = x, (9.6)

is equivalent to the given problem. Let us check the claim. First, the initial
conditions. Rewrite the integral equation as

u(x) = x +

∫ x

0

(x− t)V (t)u(t) dt, (9.7)

so it is manifest that u(0) = 0. Now differentiate to get

u′(x) = 1 +

∫ x

0

V (t)u(t) dt. (9.8)

This shows that u′(0) = 1, as required. Differentiating once more confirms
that u′′ = V (x)u.

These examples reveal that one advantage of the integral equation for-
mulation is that the boundary or initial value conditions are automatically
encoded in the integral equation itself, and do not have to be added as riders.

9.2 Classification of integral equations

The classification of linear integral equations is best described by a list:
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A) i) Limits on integrals fixed ⇒ Fredholm equation.
ii) One integration limit is x ⇒ Volterra equation.

B) i) Unknown under integral only ⇒ Type I.
ii) Unknown also outside integral ⇒ Type II.

C) i) Homogeneous.
ii) Inhomogeneous.

For example,

u(x) =

∫ L

0

G(x, y)u(y) dy (9.9)

is a Type II homogeneous Fredholm equation, whilst

u(x) = x +

∫ x

0

(x− t)V (t)u(t) dt (9.10)

is a Type II inhomogeneous Volterra equation.
The equation

f(x) =

∫ b

a

K(x, y)u(y) dy, (9.11)

an inhomogeneous Type I Fredholm equation, is analogous to the matrix
equation

Kx = b. (9.12)

On the other hand, the equation

u(x) =
1

λ

∫ b

a

K(x, y)u(y) dy, (9.13)

a homogeneous Type II Fredholm equation, is analogous to the matrix eigen-
value problem

Kx = λx. (9.14)

Finally,

f(x) =

∫ x

a

K(x, y)u(y) dy, (9.15)

an inhomogeneous Type I Volterra equation, is the analogue of a system of
linear equations involving an upper triangular matrix.

The function K(x, y) appearing in these in these expressions is called the
kernel . The phrase “kernel of the integral operator” can therefore refer either
to the function K or the nullspace of the operator. The context should make
clear which meaning is intended.
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9.3 Integral transforms

When the kernel of Fredholm equation is of the form K(x − y), with x and
y taking values on the entire real line, then it is translation invariant and we
can solve the integral equation by using the Fourier transformation

ũ(k) = F(u) =

∫ ∞

−∞
u(x)eikx dx (9.16)

u(x) = F−1(ũ) =

∫ ∞

−∞
ũ(k)e−ikx

dk

2π
(9.17)

Integral equations involving translation-invariant Volterra kernels usually
succumb to a Laplace transform

ũ(p) = L(u) =

∫ ∞

0

u(x)e−px dx (9.18)

u(x) = L−1(ũ) =
1

2πi

∫ γ+i∞

γ−i∞
ũ(p)epx dp. (9.19)

The Laplace inversion formula is the Bromwich contour integral , where γ is
chosen so that all the singularities of ũ(p) lie to the left of the contour. In
practice one finds the inverse Laplace transform by using a table of Laplace
transforms, such as the Bateman tables of integral transforms mentioned in
the introduction to chapter 8.

For kernels of the form K(x/y) the Mellin transform,

ũ(σ) = M(u) =

∫ ∞

0

u(x)xσ−1 dx (9.20)

u(x) = M−1(ũ) =
1

2πi

∫ γ+i∞

γ−i∞
ũ(σ)x−σ dσ, (9.21)

is the tool of choice. Again the inversion formula requires a Bromwich contour
integral, and so usually recourse to tables of Mellin transforms.

9.3.1 Fourier methods

The class of problems that succumb to a Fourier transform can be thought
of a continuous version of a matrix problem where the entries in the matrix
depend only on their distance from the main diagonal (figure 9.1).
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Figure 9.1: The matrix form of the equation
∫∞
−∞K(x− y)u(y) dy = f(x)

Example: Consider the type II Fredholm equation

u(x)− λ
∫ ∞

−∞
e−|x−y|u(x) dx = f(x), (9.22)

where we will assume that λ < 1/2. Here the x-space kernel operator

K(x− y) = δ(x− y)− λe−|x−y|. (9.23)

has Fourier transform

K̃(k) = 1− 2λ

k2 + 1
=
k2 + (1− 2λ)

k2 + 1
=
k2 + a2

k2 + 1
(9.24)

where a2 = 1− 2λ. From (
k2 + a2

k2 + 1

)
ũ(k) = f̃(k) (9.25)

we find

ũ(k) =

(
k2 + 1

k2 + a2

)
f̃(k)

=

(
1 +

1− a2

k2 + a2

)
f̃(k). (9.26)

Inverting the Fourier transform gives

u(x) = f(x) +
1− a2

2a

∫ ∞

−∞
e−a|x−y|f(y) dy

= f(x) +
λ√

1− 2λ

∫ ∞

−∞
e−

√
1−2λ|x−y|f(y) dy. (9.27)

This solution is no longer valid when the parameter λ exceeds 1/2. This is
because zero then lies in the spectrum of the operator we are attempting to
invert. The spectrum is continuous and the Fredholm alternative does not
apply.
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9.3.2 Laplace transform methods

The Volterra problem
∫ x

0

K(x− y)u(y) dy = f(x), 0 < x <∞. (9.28)

can also be solved by the application of an integral transform. In this case
we observe that value of K(x) is only needed for positive x, and this suggests
that we take a Laplace transform over the positive real axis.
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Figure 9.2: We only require the value of K(x) for x positive, and u and f
can be set to zero for x < 0.

Abel’s equation

As an example of Laplace methods, consider Abel’s equation

f(x) =

∫ x

0

1√
x− yu(y) dy, (9.29)

where we are given f(x) and wish to find u(x). Here it is clear that we need
f(0) = 0 for the equation to make sense. We have met this integral transfor-
mation before in the definition of the “half-derivative”. It is an example of
the more general equation of the form

f(x) =

∫ x

0

K(x− y)u(y) dy. (9.30)

Let us take the Laplace transform of both sides of (9.30):

Lf(p) =

∫ ∞

0

e−px
(∫ x

0

K(x− y)u(y) dy
)
dx

=

∫ ∞

0

dx

∫ x

0

dy e−pxK(x− y)u(y). (9.31)
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Now we make the change of variables

x = ξ + η,

y = η. (9.32)

x

y

x

y x=y

 a) b)
ξ=0

dx dξ

Figure 9.3: Regions of integration for the convolution theorem: a) Integrating
over y at fixed x, then over x; b) Integrating over η at fixed ξ, then over ξ.

This has Jacobian
∂(x, y)

∂(ξ, η)
= 1, (9.33)

and the integral becomes

Lf(p) =

∫ ∞

0

∫ ∞

0

e−p(ξ+η)K(ξ)u(η) dξ dη

=

∫ ∞

0

e−pξK(ξ) dξ

∫ ∞

0

e−pηu(η) dη

= LK(p) Lu(p). (9.34)

Thus the Laplace transform of a Volterra convolution is the product of the
Laplace transforms. We can now invert

u = L−1(Lf/LK). (9.35)

For Abel’s equation, we have

K(x) =
1√
x
, (9.36)
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the Laplace transform of which is

LK(p) =

∫ ∞

0

x
1
2
−1e−px dx = p−1/2Γ

(
1

2

)
= p−1/2

√
π. (9.37)

Therefore, the Laplace transform of the solution u(x) is

Lu(p) =
1√
π
p1/2(Lf) =

1

π
(
√
πp−1/2pLf). (9.38)

Now f(0) = 0, and so

pLf = L
(
d

dx
f

)
, (9.39)

as may be seen by an integration by parts in the definition. Using this
observation, and depending on whether we put the p next to f or outside the
parenthesis, we conclude that the solution of Abel’s equation can be written
in two equivalent ways:

u(x) =
1

π

d

dx

∫ x

0

1√
x− yf(y) dy =

1

π

∫ x

0

1√
x− yf

′(y) dy. (9.40)

Proving the equality of these two expressions was a problem we set ourselves
in chapter 6.

Here is another way of establishing the equality: Assume for the moment
that K(0) is finite, and that, as we have already noted, f(0) = 0. Then,

d

dx

∫ x

0

K(x− y)f(y) dy (9.41)

is equal to

K(0)f(x) +

∫ x

0

∂xK(x− y)f(y) dy,

= K(0)f(x)−
∫ x

0

∂yK(x− y)f(y) dy

= K(0)f(x)−
∫ x

0

∂y

(
K(x− y)f(y)

)
dy +

∫ x

0

K(x− y)f ′(y) dy

= K(0)f(x)−K(0)f(x)−K(x)f(0) +

∫ x

0

K(x− y)f ′(y) dy

=

∫ x

0

K(x− y)f ′(y) dy. (9.42)
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Since K(0) cancelled out, we need not worry that it is divergent! More
rigorously, we should regularize the improper integral by raising the lower
limit on the integral to a small positive quantity, and then taking the limit
to zero at the end of the calculation.

Radon transforms

detector

patient

X−ray beam 

O x

y

θ

t

p

P

Figure 9.4: The geometry of the CAT scan Radon transformation, showing
the location of the point P with co-ordinates x = p cos θ−t sin θ, y = p sin θ+
t cos θ.

An Abel integral equation lies at the heart of the method for reconstructing
the image in a computer aided tomography (CAT) scan. By rotating an
X-ray source about a patient and recording the direction-dependent shadow,
we measure the integral of his tissue density f(x, y) along all lines in a slice
(which we will take to be the x, y plane) through his body. The resulting
information is the Radon transform F of the function f . If we parametrize
the family of lines by p and θ, as shown in figure 9.4, we have

F (p, θ) =

∫ ∞

−∞
f(p cos θ − t sin θ, p sin θ + t cos θ) dt,

=

∫

R2

δ(x cos θ + y sin θ − p)f(x, y) dxdy. (9.43)
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We will assume that f is zero outside some finite region (the patient), and
so these integrals converge.

We wish to invert the transformation and recover f from the data F (p, θ).
This problem was solved by Johann Radon in 1917. Radon made clever use
of the Euclidean group to simplify the problem. He observed that we may
take the point O at which we wish to find f to be the origin, and defined1

FO(p) =
1

2π

∫ 2π

0

{∫

R2

δ(x cos θ + y sin θ − p) f(x, y) dxdy

}
dθ. (9.44)

Thus FO(p) is the angular average over all lines tangent to a circle of ra-
dius p about the desired inversion point. Radon then observed that if he
additionally defines

f̄(r) =
1

2π

∫ 2π

0

f(r cosφ, r sinφ) dφ (9.45)

then he can substitute f̄(r) for f(x, y) in (9.44) without changing the value
of the integral. Furthermore f̄(0) = f(0, 0). Hence, taking polar co-ordinates
in the x, y plane, he has

FO(p) =
1

2π

∫ 2π

0

{∫

R2

δ(r cosφ cos θ + r sinφ sin θ − p)f̄(r) rdφdr

}
dθ.

(9.46)
We can now use

δ(g(φ)) =
∑

n

1

|g′(φn)|
δ(φ− φn), (9.47)

where the sum is over the zeros φn of g(φ) = r cos(θ−φ)− p, to perform the
φ integral. Any given point x = r cosφ, y = r sinφ lies on two distinct lines
if and only if p < r. Thus g(φ) has two zeros if p < r, but none if r < p.
Consequently

FO(p) =
1

2π

∫ 2π

0

{∫ ∞

p

2√
r2 − p2

f̄(r) rdr

}
dθ. (9.48)

Nothing in the inner integral depends on θ. The outer integral is therefore
trivial, and so

FO(p) =

∫ ∞

p

2√
r2 − p2

f̄(r) rdr. (9.49)

1We trust that the reader will forgive the anachronism of our expressing Radon’s for-
mulæ in terms of Dirac’s delta function.
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We can extract FO(p) from the data. We could therefore solve the Abel
equation (9.49) and recover the complete function f̄(r). We are only inter-
ested in f̄(0), however, and it easier verify a claimed solution. Radon asserts
that

f(0, 0) = f̄(0) = − 1

π

∫ ∞

0

1

p

(
∂

∂p
FO(p)

)
dp. (9.50)

To prove that his claim is true we must first take the derivative of FO(p) and
show that (

∂

∂p
FO(p)

)
=

∫ ∞

p

2p√
r2 − p2

(
∂

∂r
f̄(r)

)
dr. (9.51)

The details of this computation are left as an exercise. It is little different
from the differentiation of the integral transform at the end of the last section.
We then substitute (9.51) into (9.50) and evaluate the resulting integral

I = − 1

π

∫ ∞

0

1

p

{∫ ∞

p

2p√
r2 − p2

(
∂

∂r
f̄(r)

)
dr

}
dp (9.52)

by exchanging the order of the integrations, as shown in figure 9.5.

r

p p=r

r

p p=r
a) b)

Figure 9.5: a) In (9.52) we integrate first over r and then over p. The inner r
integral is therefore from r = p to r =∞. b) In (9.53) we integrate first over
p and then over r. The inner p integral therefore runs from p = 0 to p = r.

After the interchange we have

I = − 2

π

∫ ∞

0

{∫ r

0

1√
r2 − p2

dp

}(
∂

∂r
f̄(r)

)
dr. (9.53)

Since ∫ r

0

1√
r2 − p2

dp =
π

2
, (9.54)
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the inner integral is independent of r. We thus obtain

I = −
∫ ∞

0

(
∂

∂r
f̄(r)

)
dr = f̄(0) = f(0, 0). (9.55)

Radon’s inversion formula is therefore correct.
Although Radon found a closed-form inversion formula, the numerical

problem of reconstructing the image from the partial and noisy data obtained
from a practical CAT scanner is quite delicate, and remains an active area
of research.

9.4 Separable kernels

Let

K(x, y) =

N∑

i=1

pi(x)qi(y), (9.56)

where {pi} and {qi} are two linearly independent sets of functions. The
range of K is therefore the span 〈pi〉 of the set {pi}. Such kernels are said
to be separable. The theory of integral equations containing such kernels is
especially transparent.

9.4.1 Eigenvalue problem

Consider the eigenvalue problem

λu(x) =

∫

D

K(x, y)u(y) dy (9.57)

for a separable kernel. Here, D is some range of integration, and x ∈ D. If
λ 6= 0, we know that u has to be in the range of K, so we can write

u(x) =
∑

i

ξipi(x). (9.58)

Inserting this into the integral, we find that our problem reduces to the finite
matrix eigenvalue equation

λξi = Aijξj, (9.59)
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where

Aij =

∫

D

qi(y)pj(y) dy. (9.60)

Matters are especially simple when qi = p∗i . In this case Aij = A∗
ji, so the

matrix A is Hermitian and has N linearly independent eigenvectors. Further,
none of the N associated eigenvalues can be zero. To see that this is so
suppose that v(x) =

∑
i ζipi(x) is an eigenvector with zero eigenvalue. In

other words, suppose that

0 =
∑

i

pi(x)

∫

D

p∗i (y)pj(y)ζj dy. (9.61)

Since the pi(x) are linearly independent, we must have

0 =

∫

D

p∗i (y)pj(y)ζj dy = 0, (9.62)

for each i separately. Multiplying by ζ∗i and summing we find

0 =

∫

D

∣∣∣∣∣
∑

j

pj(y)ζj

∣∣∣∣∣

2

dy =

∫

D

|v(y)|2 dy, (9.63)

and so v(x) itself must have been zero. The remaining (infinite in number)
eigenfunctions span 〈qi〉⊥ and have λ = 0.

9.4.2 Inhomogeneous problem

It is easiest to discuss inhomogeneous separable-kernel problems by example.
Consider the equation

u(x) = f(x) + µ

∫ 1

0

K(x, y)u(y) dy, (9.64)

where K(x, y) = xy. Here, f(x) and µ are given, and u(x) is to be found.
We know that u(x) must be of the form

u(x) = f(x) + ax, (9.65)

and the only task is to find the constant a. We plug u into the integral
equation and, after cancelling a common factor of x, we find

a = µ

∫ 1

0

yu(y) dy = µ

∫ 1

0

yf(y) dy+ aµ

∫ 1

0

y2 dy. (9.66)
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The last integral is equal to µa/3, so

a

(
1− 1

3
µ

)
= µ

∫ 1

0

yf(y) dy, (9.67)

and finally

u(x) = f(x) + x
µ

(1− µ/3)

∫ 1

0

yf(y) dy. (9.68)

Notice that this solution is meaningless if µ = 3. We can relate this to the
eigenvalues of the kernel K(x, y) = xy. The eigenvalue problem for this
kernel is

λu(x) =

∫ 1

0

xyu(y) dy. (9.69)

On substituting u(x) = ax, this reduces to λax = ax/3, and so λ = 1/3. All
other eigenvalues are zero. Our inhomogeneous equation was of the form

(1− µK)u = f (9.70)

and the operator (1−µK) has an infinite set of eigenfunctions with eigenvalue
1, and a single eigenfunction, u0(x) = x, with eigenvalue (1 − µ/3). The
eigenvalue becomes zero, and hence the inverse ceases to exist, when µ = 3.

A solution to the problem (1−µK)u = f may still exist even when µ = 3.
But now, applying the Fredholm alternative, we see that f must satisfy the
condition that it be orthogonal to all solutions of (1− µK)†v = 0. Since our
kernel is Hermitian, this means that f must be orthogonal to the zero mode
u0(x) = x. For the case of µ = 3, the equation is

u(x) = f(x) + 3

∫ 1

0

xyu(y) dy, (9.71)

and to have a solution f must obey
∫ 1

0
yf(y) dy = 0. We again set u =

f(x) + ax, and find

a = 3

∫ 1

0

yf(y) dy + a3

∫ 1

0

y2 dy, (9.72)

but now this reduces to a = a. The general solution is therefore

u = f(x) + ax (9.73)

with a arbitrary.
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9.5 Singular integral equations

Equations involving principal-part integrals, such as the airfoil equation

P

π

∫ 1

−1

ϕ(x)
1

x− y dx = f(y), (9.74)

in which f is given and we are to find ϕ, are called singular integral equations.
Their solution depends on what conditions are imposed on the unknown
function ϕ(x) at the endpoints of the integration region. We will consider
only this simplest example here.2

9.5.1 Solution via Tchebychef polynomials

Recall the definition of the Tchebychef polynomials from chapter 2. We set

Tn(x) = cos(n cos−1 x), (9.75)

Un−1(x) =
sin(n cos−1 x)

sin(cos−1 x)
=

1

n
T ′
n(x). (9.76)

These are the Tchebychef Polynomials of the first and second kind, respec-
tively. The orthogonality of the functions cosnθ and sinnθ over the interval
[0, π] translates into

∫ 1

−1

1√
1− x2

Tn(x)Tm(x) dx = hn δnm, n,m ≥ 0, (9.77)

where h0 = π, hn = π/2, n > 0, and
∫ 1

−1

√
1− x2 Un−1(x)Um−1(x) dx =

π

2
δnm, n,m > 0. (9.78)

The sets {Tn(x)} and {Un(x)} are complete in L2
w[0, 1] with the weight func-

tions w = (1− x2)−1/2 and w = (1− x2)1/2, respectively .
Rather less obvious are the principal-part integral identities (valid for

−1 < y < 1)

P

∫ 1

−1

1√
1− x2

1

x− y dx = 0, (9.79)

P

∫ 1

−1

1√
1− x2

Tn(x)
1

x− y dx = π Un−1(y), n > 0, (9.80)

2The classic text is N. I. Muskhelishvili Singular Integral Equations .
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and

P

∫ 1

−1

√
1− x2 Un−1(x)

1

x− y dx = −π Tn(y), n > 0. (9.81)

These correspond, after we set x = cos θ and y = cos φ, to the trigonometric
integrals

P

∫ π

0

cosnθ

cos θ − cos φ
dθ = π

sinnφ

sinφ
, (9.82)

and

P

∫ π

0

sin θ sinnθ

cos θ − cosφ
dθ = −π cosnφ, (9.83)

respectively. We will motivate and derive these formulæ at the end of this
section.

Granted the validity of these principal-part integrals we can solve the
integral equation

P

π

∫ 1

−1

ϕ(x)
1

x− y dx = f(y), y ∈ [−1, 1], (9.84)

for ϕ in terms of f , subject to the condition that ϕ be bounded at x = ±1.
We show that no solution exists unless f satisfies the condition

∫ 1

−1

1√
1− x2

f(x) dx = 0, (9.85)

but if f does satisfy this condition then there is a unique solution

ϕ(y) = −
√

1− y2

π
P

∫ 1

−1

1√
1− x2

f(x)
1

x− y dx. (9.86)

To understand why this is the solution, and why there is a condition on f ,
expand

f(x) =
∞∑

n=1

bnTn(x). (9.87)

Here, the condition on f translates into the absence of a term involving
T0 ≡ 1 in the expansion. Then,

ϕ(x) = −
√

1− x2

∞∑

n=1

bnUn−1(x), (9.88)
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with bn the coefficients that appear in the expansion of f , solves the problem.
That this is so may be seen on substituting this expansion for ϕ into the
integral equation and using second of the principal-part identities. This
identity provides no way to generate a term with T0; hence the constraint.
Next we observe that the expansion for ϕ is generated term-by-term from
the expansion for f by substituting this into the integral form of the solution
and using the first principal-part identity.

Similarly, we solve the for ϕ(y) in

P

π

∫ 1

−1

ϕ(x)
1

x− y dx = f(y), y ∈ [−1, 1], (9.89)

where now ϕ is permitted to be singular at x = ±1. In this case there is
always a solution, but it is not unique. The solutions are

ϕ(y) =
1

π
√

1− y2
P

∫ 1

−1

√
1− x2f(x)

1

x− y dx+
C√

1− y2
, (9.90)

where C is an arbitrary constant. To see this, expand

f(x) =

∞∑

n=1

anUn−1(x), (9.91)

and then

ϕ(x) =
1√

1− x2

( ∞∑

n=1

anTn(x) + CT0

)
, (9.92)

satisfies the equation for any value of the constant C. Again the expansion
for ϕ is generated from that of f by use of the second principal-part identity.

Explanation of the principal-part identities

The principal-part identities can be extracted from the analytic properties of
the resolvent operator Rλ(n − n′) ≡ (Ĥ − λI)−1

n,n′ for a tight-binding model
of the conduction band in a one-dimensional crystal with nearest neighbour
hopping. The eigenfunctions uE(n) for this problem obey

uE(n+ 1) + uE(n− 1) = E uE(n) (9.93)

and are
uE(n) = einθ, −π < θ < π, (9.94)
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with energy eigenvalues E = 2 cos θ.
The resolvent Rλ(n) obeys

Rλ(n+ 1) +Rλ(n− 1)− λRλ(n) = δn0, n ∈ Z, (9.95)

and can be expanded in terms of the energy eigenfunctions as

Rλ(n− n′) =
∑

E

uE(n)u∗E(n′)

E − λ =

∫ π

−π

ei(n−n
′)θ

2 cos θ − λ
dθ

2π
(9.96)

If we set λ = 2 cosφ, we observe that

∫ π

−π

einθ

2 cos θ − 2 cosφ

dθ

2π
=

1

2i sinφ
ei|n|φ, Im φ > 0. (9.97)

That this integral is correct can be confirmed by observing that it is evalu-
ating the Fourier coefficient of the double geometric series

∞∑

n=−∞
e−inθei|n|φ =

2i sinφ

2 cos θ − 2 cosφ
, Imφ > 0. (9.98)

By writing einθ = cosnθ+i sin nθ and observing that the sine term integrates
to zero, we find that

∫ π

0

cosnθ

cos θ − cosφ
dθ =

π

i sinφ
(cosnφ+ i sin nφ), (9.99)

where n > 0, and again we have taken Imφ > 0. Now let φ approach the
real axis from above, and apply the Plemelj formula. We find

P

∫ π

0

cosnθ

cos θ − cos φ
dθ = π

sinnφ

sinφ
. (9.100)

This is the first principal-part integral identity. The second identity,

P

∫ π

0

sin θ sin nθ

cos θ − cosφ
dθ = −πcosnφ, (9.101)

is obtained from the the first by using the addition theorems for the sine and
cosine.
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9.6 Wiener-Hopf equations I

We have seen that Volterra equations of the form
∫ x

0

K(x− y) u(y) dy = f(x), 0 < x <∞, (9.102)

having translation invariant kernels, may be solved for u by using a Laplace
transform. The apparently innocent modification

∫ ∞

0

K(x− y) u(y) dy = f(x), 0 < x <∞ (9.103)

leads to an equation that is much harder to deal with. In these Wiener-
Hopf equations, we are still only interested in the upper left quadrant of the
continuous matrix K(x− y)

#�#�#�#�#�##�#�#�#�#�##�#�#�#�#�##�#�#�#�#�##�#�#�#�#�#

$�$�$�$�$�$$�$�$�$�$�$$�$�$�$�$�$$�$�$�$�$�$$�$�$�$�$�$

%�%�%&�&�& '�'(�()�)�))�)�))�)�))�)�))�)�)

*�**�*
*�**�*
*�*

+�++�+
+�++�+
+�+

,�,,�,
,�,,�,
,�,

0

0 0 0 0

u fK
=

x

y

Figure 9.6: The matrix form of (9.103).

and K(x − y) still has entries depending only on their distance from the
main diagonal. Now, however, we make use of the values of K(x) for all of
−∞ < x <∞. This suggests the use of a Fourier transform. The problem is
that, in order to Fourier transform, we must integrate over the entire real line
on both sides of the equation and this requires us to to know the values of
f(x) for negative values of x — but we have not been given this information
(and do not really need it). We therefore make the replacement

f(x)→ f(x) + g(x), (9.104)

where f(x) is non-zero only for positive x, and g(x) non-zero only for negative
x. We then solve

∫ ∞

0

K(x− y)u(y) dy =

{
f(x), 0 < x <∞,
g(x), −∞ < x < 0,

(9.105)
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so as to find u and g simultaneously. In other words, we extend the problem
to one on the whole real line, but with the negative-x source term g(x) chosen
so that the solution u(x) is non-zero only for positive x. We represent this
pictorially in figure 9.7.

-�-�-.�.�. /�//�/
/�//�/
/�/

0�00�0
0�00�0
0�0

1�11�1
1�11�1
1�11�1

2�22�2
2�22�2
2�22�23�3�33�3�33�3�33�3�33�3�3

4�4�44�4�44�4�44�4�44�4�4

5�5�5�5�5�5�5�5�5�5�55�5�5�5�5�5�5�5�5�5�55�5�5�5�5�5�5�5�5�5�55�5�5�5�5�5�5�5�5�5�55�5�5�5�5�5�5�5�5�5�55�5�5�5�5�5�5�5�5�5�55�5�5�5�5�5�5�5�5�5�55�5�5�5�5�5�5�5�5�5�55�5�5�5�5�5�5�5�5�5�5

6�6�6�6�6�6�6�6�6�66�6�6�6�6�6�6�6�6�66�6�6�6�6�6�6�6�6�66�6�6�6�6�6�6�6�6�66�6�6�6�6�6�6�6�6�66�6�6�6�6�6�6�6�6�66�6�6�6�6�6�6�6�6�66�6�6�6�6�6�6�6�6�66�6�6�6�6�6�6�6�6�6

0

u f

g
=K

x

y 7�78�8

Figure 9.7: The matrix form of (9.105) with both f and g

To find u and g we try to make an “LU” decomposition of the matrix K into
the product K = L−1U of an upper triangular matrix U(x− y) and a lower
triangular matrix L−1(x− y). Written out in full, the product L−1U is

K(x− y) =

∫ ∞

−∞
L−1(x− t)U(t − y) dt. (9.106)

Now the inverse of a lower triangular matrix is also lower triangular, and so
L(x− y) itself is lower triangular. This means that the function U(x) is zero
for negative x, whilst L(x) is zero when x is positive.
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Figure 9.8: The matrix decomposition K = L−1U .

If we can find such a decomposition, then on multiplying both sides by L,
equation (9.103) becomes

∫ x

0

U(x− y)u(y) dy = h(x), 0 < x <∞, (9.107)
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where

h(x)
def
=

∫ ∞

x

L(x− y)f(y) dy, 0 < x <∞. (9.108)

These two equations come from the upper half of the full matrix equation
represented in figure 9.9.
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Figure 9.9: The equation (9.107) and the definition (9.108) correspond to
the upper half of these two matrix equations.

The lower parts of the matrix equation have no influence on (9.107) and
(9.108): The function h(x) depends only on f , and while g(x) should be
chosen to give the column of zeros below h, we do not, in principle, need to
know it. This is because we could solve the Volterra equation Uu = h (9.107)
via a Laplace transform. In practice (as we will see) it is easier to find g(x),
and then, knowing the (f, g) column vector, obtain u(x) by solving (9.105).
This we can do by Fourier transform.

The difficulty lies in finding the LU decomposition. For finite matrices
this decomposition is a standard technique in numerical linear algebra. It
equivalent to the method of Gaussian elimination, which, although we were
probably never told its name, is the strategy taught in high school for solving
simultaneous equations. For continuously infinite matrices, however, making
such a decomposition demands techniques far beyond those learned in school.
It is a particular case of the scalar Riemann-Hilbert problem, and its solution
requires the use of complex variable methods.

On taking the Fourier transform of (9.106) we see that we are being asked
to factorize

K̃(k) = [L̃(k)]−1Ũ(k) (9.109)

where

Ũ(k) =

∫ ∞

0

eikxU(x) dx (9.110)
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is analytic (i.e. has no poles or other singularities) in the region Im k ≥ 0,
and similarly

L̃(k) =

∫ 0

−∞
eikxL(x) dx (9.111)

has no poles for Im k ≤ 0, these analyticity conditions being consequences
of the vanishing conditions U(x − y) = 0, x < y and L(x − y) = 0, x > y.

There will be more than one way of factoring K̃ into functions with these
no-pole properties, but, because the inverse of an upper or lower triangu-
lar matrix is also upper or lower triangular, the matrices U−1(x − y) and
L−1(x − y) have the same vanishing properties, and, because these inverse
matrices correspond the to the reciprocals of the Fourier transform, we must
also demand that Ũ(k) and L̃(k) have no zeros in the upper and lower half
plane respectively. The combined no-poles, no-zeros conditions will usually
determine the factors up to constants. If we are able to factorize K̃(k) in

this manner, we have effected the LU decomposition. When K̃(k) is a ratio-
nal function of k we can factorize by inspection. In the general case, more
sophistication is required.

Example: Let us solve the equation

u(x)− λ
∫ ∞

0

e−|x−y|u(x) dx = f(x), (9.112)

where we will assume that λ < 1/2. Here the kernel function is

K(x, y) = δ(x− y)− λe−|x−y|. (9.113)

This has Fourier transform

K̃(k) = 1− 2λ

k2 + 1
=
k2 + (1− 2λ)

k2 + 1
=

(
k + ia

k + i

)(
k − i
k − ia

)−1

. (9.114)

where a2 = 1− 2λ. We were able to factorize this by inspection with

Ũ(k) =
k + ia

k + i
, L̃(k) =

k − i
k − ia . (9.115)

having poles and zeros only in the lower (respectively upper) half-plane. We
could now transform back into x space to find U(x− y), L(x− y) and solve
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the Volterra equation Uu = h. It is, however, less effort to work directly
with the Fourier transformed equation in the form

(
k + ia

k + i

)
ũ+(k) =

(
k − i
k − ia

)
(f̃+(k) + g̃−(k)). (9.116)

Here we have placed subscripts on f̃(k), g̃(k) and ũ(k) to remind us that these
Fourier transforms are analytic in the upper (+) or lower (-) half-plane. Since
the left-hand-side of this equation is analytic in the upper half-plane, so must
be the right-hand-side. We therefore choose g̃−(k) to eliminate the potential
pole at k = ia that might arise from the first term on the right. This we can
do by setting (

k − i
k − ia

)
g−(k) =

α

k − ia (9.117)

for some as yet undetermined constant α. (Observe that the resultant g−(k)
is indeed analytic in the lower half-plane. This analyticity ensures that g(x)
is zero for positive x.) We can now solve for ũ(k) as

ũ(k) =

(
k + i

k + ia

)(
k − i
k − ia

)
f̃+(k) +

(
k + i

k + ia

)
α

k − ia

=
k2 + 1

k2 + a2
f̃+(k) + α

k + i

k2 + a2

= f̃+(k) +
1− a2

k2 + a2
f̃+(k) + α

k + i

k2 + a2
(9.118)

The inverse Fourier transform of

k + i

k2 + a2
(9.119)

is
i

2|a|(1− |a| sgn(x))e−|a||x|, (9.120)

and that of
1− a2

k2 + a2
=

2λ

k2 + (1− 2λ)
(9.121)

is
λ√

1− 2λ
e−

√
1−2λ|x|. (9.122)
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Consequently

u(x) = f(x) +
λ√

1− 2λ

∫ ∞

0

e−
√

1−2λ|x−y|f(y) dy

+β(1−
√

1− 2λ sgn x)e−
√

1−2λ|x|. (9.123)

Here β is some multiple of α, and we have used the fact that f(y) is zero
for negative y to make the lower limit on the integral 0 instead of −∞. We
determine the as yet unknown β from the requirement that u(x) = 0 for
x < 0. We find that this will be the case if we take

β = − λ

a(a + 1)

∫ ∞

0

e−ayf(y) dy. (9.124)

The solution is therefore, for x > 0,

u(x) = f(x) +
λ√

1− 2λ

∫ ∞

0

e−
√

1−2λ|x−y|f(y) dy

+
λ(
√

1− 2λ− 1)

1− 2λ+
√

1− 2λ
e−

√
1−2λx

∫ ∞

0

e−
√

1−2λyf(y) dy. (9.125)

Not every invertible n-by-n matrix has a plain LU decomposition. For a
related reason not every Wiener-Hopf equation can be solved so simply. In-
stead there is a topological index theorem that determines whether solutions
can exist, and, if solutions do exist, whether they are unique. We shall there-
fore return to this problem once we have aquired a deeper understanding of
the interaction between topology and complex analysis.

9.7 Some functional analysis

We have hitherto avoided, as far as it is possible, the full rigours of mathe-
matics. For most of us, and for most of the time, we can solve our physics
problems by using calculus rather than analysis. It is worth, nonetheless, be-
ing familiar with the proper mathematical language so that when something
tricky comes up we know where to look for help. The modern setting for
the mathematical study of integral and differential equations is the discipline
of functional analysis, and the classic text for the mathematically inclined
physicist is the four-volume set Methods of Modern Mathematical Physics by
Michael Reed and Barry Simon. We cannot summarize these volumes in few
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paragraphs, but we can try to provide enough background for us to be able
to explain a few issues that may have puzzled the alert reader.

This section requires the reader to have sufficient background in real
analysis to know what it means for a set to be compact.

9.7.1 Bounded and compact operators

i) A linear operator K : L2 → L2 is bounded if there is a positive number
M such that

‖Kx‖ ≤M‖x‖, ∀x ∈ L2. (9.126)

If K is bounded then smallest such M is the norm of K, which we
denote by ‖K‖ . Thus

‖Kx‖ ≤ ‖K‖ ‖x‖. (9.127)

For a finite-dimensional matrix, ‖K‖ is the largest eigenvalue of K.
The function Kx is a continuous function of x if, and only if, it is
bounded. “Bounded” and “continuous” are therefore synonyms. Linear
differential operators are never bounded, and this is the source of most
of the complications in their theory.

ii) If the operators A and B are bounded, then so is AB and

‖AB‖ ≤ ‖A‖‖B‖. (9.128)

iii) A linear operator K : L2 → L2 is compact (or completely continuous)
if it maps bounded sets in L2 to relatively compact sets (sets whose
closure is compact). Equivalently, K is compact if the image sequence
Kxn of every bounded sequence of functions xn contains a convergent
subsequence. Compact ⇒ continuous, but not vice versa. One can
show that, given any positive number M , a compact self-adjoint oper-
ator has only a finite number of eigenvalues with λ outside the interval
[−M,M ]. The eigenvectors un with non-zero eigenvalues span the range
of the operator. Any vector can therefore be written

u = u0 +
∑

i

aiui, (9.129)

where u0 lies in the null space of K. The Green function of a linear
differential operator defined on a finite interval is usually the integral
kernel of a compact operator.
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iv) If K is compact then
H = I +K (9.130)

is Fredholm. This means that H has a finite dimensional kernel and
co-kernel, and that the Fredholm alternative applies.

v) An integral kernel is Hilbert-Schmidt if
∫
|K(ξ, η)|2 dξdη <∞. (9.131)

This means thatK can be expanded in terms of a complete orthonormal
set {φm} as

K(x, y) =
∞∑

n,m=1

Anmφn(x)φ
∗
m(y) (9.132)

in the sense that

lim
N,M→∞

∥∥∥∥∥

N,M∑

n,m=1

Anmφnφ
∗
m −K

∥∥∥∥∥ = 0. (9.133)

Now the finite sum
N,M∑

n,m=1

Anmφn(x)φ
∗
m(y) (9.134)

is automatically compact since it is bounded and has finite-dimensional
range. (The unit ball in a Hilbert space is relatively compact ⇔ the
space is finite dimensional). Thus, Hilbert-Schmidt implies that K is
approximated in norm by compact operators. But it is not hard to
show that a norm-convergent limit of compact operators is compact,
so K itself is compact. Thus

Hilbert-Schmidt ⇒ compact.

It is easy to test a given kernel to see if it is Hilbert-Schmidt (simply
use the definition) and therein lies the utility of the concept.

If we have a Hilbert-Schmidt Green function g, we can reacast our differen-
tial equation as an integral equation with g as kernel, and this is why the
Fredholm alternative works for a large class of linear differential equations.
Example: Consider the Legendre-equation operator

L = − d

dx
(1− x2)

d

dx
(9.135)
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acting on functions u ∈ L2[−1, 1] with boundary conditions that u be finite
at the endpoints. This operator has a normalized zero mode u0 = 1/

√
2, so

it cannot have an inverse. There exists, however, a modified Green function
g(x, x′) that satisfies

Lu = δ(x− x′)− 1

2
. (9.136)

It is

g(x, x′) = ln 2− 1

2
− 1

2
ln(1 + x>)(1− x<), (9.137)

where x> is the greater of x and x′, and x< the lesser. We may verify that

∫ 1

−1

∫ 1

−1

|g(x, x′)|2 dxdx′ <∞, (9.138)

so g is Hilbert-Schmidt and therefore the kernel of a compact operator. The
eigenvalue problem

Lun = λnun (9.139)

can be recast as as the integral equation

µnun =

∫ 1

−1

g(x, x′)un(x
′) dx′ (9.140)

with µn = λ−1
n . The compactness of g guarantees that there is a complete

set of eigenfunctions (these being the Legendre polynomials Pn(x) for n > 0)
having eigenvalues µn = 1/n(n+1). The operator g also has the eigenfunction
P0 with eigenvalue µ0 = 0. This example provides the justification for the
claim that the “finite” boundary conditions we adopted for the Legendre
equation in chapter 8 give us a self adjoint operator.

Note that K(x, y) does not have to be bounded for K to be Hilbert-
Schmidt.
Example: The kernel

K(x, y) =
1

(x− y)α , |x|, |y| < 1 (9.141)

is Hilbert-Schmidt provided α < 1
2
.

Example: The kernel

K(x, y) =
1

2m
e−m|x−y|, x, y ∈ R (9.142)
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is not Hilbert-Schmidt because |K(x − y)| is constant along the the lines
x − y = constant, which lie parallel to the diagonal. K has a continuous
spectrum consisting of all positive real numbers less than 1/m2. It cannot
be compact, therefore, but it is bounded with ‖K‖ = 1/m2. The integral
equation (9.22) contains this kernel, and the Fredholm alternative does not
apply to it.

9.7.2 Closed operators

One motivation for our including a brief account of functional analysis is
that an attentive reader will have realized that some of the statements we
have made in earlier chapters appear to be inconsistent. We have asserted in
chapter 2 that no significance can be attached to the value of an L2 function
at any particular point — only integrated averages matter. In later chapters,
though, we have happily imposed boundary conditions that require these
very functions to take specified values at the endpoints of our interval. In this
section we will resolve this paradox. The apparent contradiction is intimately
connected with our imposing boundary conditions only on derivatives of lower
order than than that of the differential equation, but understanding why this
is so requires some function-analytic language.

Differential operators L are never continuous; we cannot deduce from
un → u that Lun → Lu. Differential operators can be closed , however. A
closed operator is one for which whenever a sequence un converges to a limit
u and at the same time the image sequence Lun also converges to a limit f ,
then u is in the domain of L and Lu = f . The name is not meant to imply
that the domain of definition is closed, but indicates instead that the graph
of L — this being the set {u, Lu} considered as a subset of L2[a, b]×L2[a, b]
— contains its limit points and so is a closed set.

Any self-adjoint operator is automatically closed. To see why this is so,
recall that in the defining the adjoint of an operator A, we say that y is in the
domain of A† if there is a z such that 〈y, Ax〉 = 〈z, x〉 for all x in the domain
of A. We then set A†y = z. Now suppose that yn → y and A†yn = zn → z.
The Cauchy-Schwartz-Bunyakovski inequality shows that the inner product
is a continuous function of its arguments. Consequently, if x is in the domain
of A, we can take the limit of 〈yn, Ax〉 = 〈A†yn, x〉 = 〈zn, x〉 to deduce that
〈y, Ax〉 = 〈z, x〉. But this means that y is in the domain of A†, and z = A†y.
The adjoint of any operator is therefore a closed operator. A self-adjoint
operator, being its own adjoint, is therefore necessarily closed.
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A deep result states that a closed operator defined on a closed domain is
bounded. Since they are always unbounded, the domain of a closed differen-
tial operator can never be a closed set.

An operator may not be closed but may be closable, in that we can
make it closed by including additional functions in its domain. The essential
requirement for closability is that we never have two sequences un and vn
which converge to the same limit, w, while Lun and Lvn both converge, but
to different limits. Closability is equivalent to requiring that if un → 0 and
Lun converges, then Lun converges to zero.

Example: Let L = d/dx. Suppose that un → 0 and Lun → f . If ϕ is a
smooth L2 function that vanishes at 0, 1, then

∫ 1

0

ϕf dx = lim
n→∞

∫ 1

0

ϕ
dun
dx

dx = − lim
n→∞

∫ 1

0

φ′un dx = 0. (9.143)

Here we have used the continuity of the inner product to justify the inter-
change the order of limit and integral. By the same arguments we used when
dealing with the calculus of variations, we deduce that f = 0. Thus d/dx is
closable.

If an operator is closable, we may as well add the extra functions to its
domain and make it closed. Let us consider what closure means for the
operator

L =
d

dx
, D(L) = {y ∈ C1[0, 1] : y′(0) = 0}. (9.144)

Here, in fixing the derivative at the endpoint, we are imposing a boundary
condition of higher order than we ought.

Consider the sequence of differentiable functions ya shown in figure 9.10.
These functions have vanishing derivative at x = 0, but tend in L2 to a
function y whose derivative is non-zero at x = 0.
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a

ya
y

Figure 9.10: lima→0 ya = y in L2[0, 1] .

Figure 9.11 shows that derivative of these functions also converges in L2.

a

ay’ y’

Figure 9.11: y′a → y′ in L2[0, 1] .

If we want L to be closed, we should therefore extend the domain of definition
of L to include functions with non-vanishing endpoint derivative. We can also
use this method to add to the domain of L functions that are only piecewise
differentiable — i.e. functions with a discontinuous derivative.

Now consider what happens if we try to extend the domain of

L =
d

dx
, D(L) = {y, y′ ∈ L2 : y(0) = 0}, (9.145)

to include functions that do not vanish at the endpoint. Take a sequence the
sequence of functions ya shown in figure 9.12. These functions vanish at the
origin, and converge in L2 to a function that does not vanish at the origin.
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a

ya
y

1 1

Figure 9.12: lima→0 ya = y in L2[0, 1].

Now, as figure 9.13 shows, the derivatives converge towards the derivative
of the limit function — together with a delta function near the origin. The
area under the functions |y′a(x)|2 grows without bound and the sequence Lya
becomes infinitely far from the derivative of the limit function when distance
is measured in the L2 norm.

a

a

1/a

y’

δ(x)

Figure 9.13: y′a → δ(x), but the delta function is not an element of L2[0, 1] .

We therefore cannot use closure to extend the domain to include these func-
tions. Another way of saying this is, that in order for the weak derivative of
y to be in L2, and therefore for y to be in the domain of d/dx, the function y
need not be classically differentiable, but its L2 equivalence class must con-
tain a continuous function — and continuous functions do have well-defined
values. It is the values of this continuous representative that are constrained
by the boundary conditions.

This story repeats for differential operators of any order: If we try to
impose boundary conditions of too high an order, they are washed out in the
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process of closing the operator. Boundary conditions of lower order cannot
be eliminated, however, and so make sense as statements involving functions
in L2.

9.8 Series solutions

One of the advantages of recasting a problem as an integral equation, is that
the equation often suggests a systematic approximation scheme. Usually we
start from the solution of an exactly solvable problem and expand the desired
solution about it as an infinite series in some small parameter. The terms in
such a perturbation series may become progressively harder to evaluate, but,
if we are lucky, the sum of the first few will prove adaquate for our purposes.

9.8.1 Liouville-Neumann-Born series

The geometric series
S = 1− x+ x2 − x3 + · · · (9.146)

converges to 1/(1 + x) provided |x| < 1. Suppose we wish to solve

(I + λK)ϕ = f (9.147)

where K is a an integral operator. It is then natural to write

ϕ = (I + λK)−1f = (1− λK + λ2K2 − λ3K3 + · · ·)f (9.148)

where

K2(x, y) =

∫
K(x, z)K(z, y) dz, K3(x, y) =

∫
K(x, z1)K(z1, z2)K(z2, y) dz1dz2,

(9.149)
and so on. This Liouville-Neumann series will converge, and yield a solution
to the problem, provided that λ‖K‖ < 1. In quantum mechanics this series
is known as the Born series.

9.8.2 Fredholm series

A familiar result from high-school algebra is Cramer’s rule, which gives the
solution of a set of linear equations in terms of ratios of determinants. For
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example, the system of equations

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2,

a31x1 + a32x2 + a33x3 = b3, (9.150)

has solution

x1 =
1

D

∣∣∣∣∣∣

b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣
, x2 =

1

D

∣∣∣∣∣∣

a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣
, x3 =

1

D

∣∣∣∣∣∣

a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣
,

(9.151)
where

D =

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
. (9.152)

Although not as computationally efficient as standard Gaussian elimination,
Cramer’s rule is useful in that it is a closed-form solution. It is equivalent to
the statement that the inverse of a matrix is given by the transposed matrix
of the co-factors, divided by the determinant.

A similar formula for integral equations was given by Fredholm. The
equations he considered were, in operator form

(I + λK)ϕ = f. (9.153)

Where I is the identity operator, K is an integral operator with kernel
K(x, y), and λ a parameter We motivate Fredholm’s formula by giving an
expansion for the determinant of a finite matrix. Let K be an n-by-n matrix

D(λ)
def
= det (I + λK) ≡

∣∣∣∣∣∣∣∣

1 + λK11 λK12 · · · λK1n

λK21 1 + λK22 · · · λK2n
...

...
. . .

...
λKn1 λKn2 · · · 1 + λKnn

∣∣∣∣∣∣∣∣
. (9.154)

Then

D(λ) =

n∑

m=0

λm

m!
Am, (9.155)

where A0 = 1, A1 = trK ≡∑iKii,

A2 =

n∑

i1,i2=1

∣∣∣∣
Ki1i1 Ki1i2

Ki2i1 Ki2i2

∣∣∣∣ , A3 =

n∑

i1,i2,i3=1

∣∣∣∣∣∣

Ki1i1 Ki1i2 Ki1i3

Ki2i1 Ki2i2 Ki2i3

Ki3i1 Ki3i2 Ki3i3

∣∣∣∣∣∣
. (9.156)
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The pattern for the rest of the terms should be obvious, as should the proof.
As observed above, the inverse of a matrix is the reciprocal of the deter-

minant of the matrix multiplied by the transposed matrix of the co-factors.
So, if Dµν is the co-factor of the term in D(λ) associated with Kνµ, then the
solution of the matrix equation

(I + λK)x = b (9.157)

is

xµ =
Dµ1b1 +Dµ2b2 + · · ·+Dµnbn

D(λ)
. (9.158)

If µ 6= ν we have

Dµν = λKµν + λ2
∑

i

∣∣∣∣
Kµν Kµi

Kiν Kii

∣∣∣∣+ λ3 1

2!

∑

i1i2

∣∣∣∣∣∣

Kµν Kµi1 Kµi2

Ki1ν Ki1i1 Ki1i2

Ki2ν Ki2i1 Ki2i2

∣∣∣∣∣∣
+ · · · .

(9.159)
When µ = ν we have

Dµν = δµνD̃(λ) (9.160)

where D̃(λ) is the expression analogous to D(λ), but with the µ’th row and
column deleted.

These elementary results suggest the definition of the Fredholm determi-
nant of the integral kernel K(x, y), a < x, y < b, as

D(λ) = Det |I + λK| ≡
∞∑

m=0

λm

m!
Am, (9.161)

where A0 = 1, A1 = TrK ≡
∫ b
a
K(x, x) dx,

A2 =

∫ b

a

∫ b

a

∣∣∣∣
K(x1, x1) K(x1, x2)
K(x2, x1) K(x2, x2)

∣∣∣∣ dx1dx2,

A3 =

∫ b

a

∫ b

a

∫ b

a

∣∣∣∣∣∣

K(x1, x1) K(x1, x2) K(x1, x3)
K(x2, x1) K(x2, x2) K(x2, x3)
K(x3, x1) K(x3, x2) K(x3, x3)

∣∣∣∣∣∣
dx1dx2dx3. (9.162)

etc. We also define

D(x, y, λ) = λK(x, y) + λ2

∫ b

a

∣∣∣∣
K(x, y) K(x, ξ)
K(ξ, y) K(ξ, ξ)

∣∣∣∣ dξ
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+λ3 1

2!

∫ b

a

∫ b

a

∣∣∣∣∣∣

K(x, y) K(x, ξ1) K(x, ξ2)
K(ξ1, y) K(ξ1, ξ1) K(ξ1, ξ2)
K(ξ2, y) K(ξ2, ξ1) K(ξ2, ξ2)

∣∣∣∣∣∣
dξ1dξ2 + · · · ,

(9.163)

and then

ϕ(x) = f(x) +
1

D(λ)

∫ b

a

D(x, y, λ)f(y) dy (9.164)

is the solution of the equation

ϕ(x) + λ

∫ b

a

K(x, y)ϕ(y) dy = f(x). (9.165)

If |K(x, y)| < M in [a, b]× [a, b], the Fredholm series for D(λ) and D(x, y, λ)
converge for all λ, and define entire functions. In this feature it is unlike the
Neumann series, which has a finite radius of convergence.

The proof of these claims follows from the identity

D(x, y, λ) + λD(λ)K(x, y) + λ

∫ b

a

D(x, ξ, λ)K(ξ, y) dξ = 0, (9.166)

or, more compactly with G(x, y) = D(x, y, λ)/D(λ),

(I +G)(I + λK) = I. (9.167)

For details see Whitaker and Watson §11.2.

Example: The equation

ϕ(x) = x + λ

∫ 1

0

xyϕ(y) dy (9.168)

gives us

D(λ) = 1− 1

3
λ, D(x, y, λ) = λxy (9.169)

and so

ϕ(x) =
3x

3− λ. (9.170)

(We have considered this equation and solution before, in section 9.4 )
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9.9 Further exercises and problems

Exercise 9.1: The following problems should be relatively easy.

a) Solve the inhomogeneous type II Fredholm integral equation

u(x) = ex + λ

∫ 1

0
xy u(y) dy .

b) Solve the homogeneous type II Fredholm integral equation

u(x) = λ

∫ π

0
sin(x− y)u(y) dy .

c) Solve the integral equation

u(x) = x+ λ

∫ 1

0
(yx+ y2)u(y) dy

to second order in λ using
(i) the Neumann series; and
(ii) the Fredholm series.

d) By differentiating, solve the integral equation: u(x) = x+
∫ x
0 u(y) dy.

e) Solve the integral equation: u(x) = x2 +
∫ 1
0 xy u(y) dy.

f) Find the eigenfunction(s) and eigenvalue(s) of the integral equation

u(x) = λ

∫ 1

0
ex−y u(y) dy .

g) Solve the integral equation: u(x) = ex + λ
∫ 1
0 ex−y u(y) dy.

h) Solve the integral equation

u(x) = x+

∫ 1

0
dy (1 + xy)u(y)

for the unknown function u(x)

Exercise 9.2: Solve the integral equation

u(x) = f(x) + λ

∫ 1

0
x3y3u(y)dy, 0 < x < 1

for the unknown u(x) in terms of the given function f(x). For what values
of λ does a unique solution u(x) exist without restrictions on f(x)? For what
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value λ = λ0 does a solution exist only if f(x) satisfies some condition? Using
the language of the Fredholm alternative, and the range and nullspace of the
relevant operators, explain what is happening when λ = λ0. For the case
λ = λ0 find explicitly the condition on f(x) and, assuming this condition is
satisfied, write down the corresponding general solution for u(x). Check that
this solution does indeed satisfy the integral equation.

Exercise 9.3: Use a Laplace transform to find the solution to the generalized
Abel equation

f(x) =

∫ x

0
(x− t)−µ u(t)dt, 0 < µ < 1,

where f(x) is given and f(0) = 0. Your solution will be of the form

u(x) =

∫ x

0
K(x− t)f ′(t)dt,

and you should give an explicit expression for the kernel K(x− t).
You will find the formula

∫ ∞

0
tµ−1e−ptdt = p−µ Γ(µ), µ > 0.

to be useful.

Exercise 9.4: Translationally invariant kernels:

a) Consider the integral equation: u(x) = g(x) + λ
∫∞
−∞K(x, y)u(y) dy,

with the translationally invariant kernel K(x, y) = Q(x− y), in which g,
λ and Q are known. Show that the Fourier transforms û, ĝ and Q̂ satisfy
û(q) = ĝ(q)/{1 −

√
2πλQ̂(q)}. Expand this result to second order in λ

to recover the second-order Liouville-Neumann-Born series.
b) Use Fourier transforms to find a solution of the integral equation

u(x) = e−|x| + λ

∫ ∞

−∞
e−|x−y| u(y) dy

that remains finite as |x| → ∞.
c) Use Laplace transforms to find a solution of the integral equation

u(x) = e−x + λ

∫ x

0
e−|x−y| u(y) dy x > 0.
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Exercise 9.5: The integral equation

1

π

∫ ∞

0
dy

φ(y)

x+ y
= f(x), x > 0,

relates the unknown function φ to the known function f .

(i) Show that the changes of variables

x = exp 2ξ, y = exp 2η, φ(exp 2η) exp η = ψ(η), f(exp 2ξ) exp ξ = g(ξ),

converts the integral equation into one that can be solved by an integral
transform.

(ii) Hence, or otherwise, construct an explicit formula for φ(x) in terms of a
double integral involving f(y).

You may use without proof the integral
∫ ∞

−∞
dξ

e−isξ

cosh ξ
=

π

cosh πs/2
.

Exercise 9.6: Using Mellin transforms. Recall that the Mellin transform f̃(s)
of the function f(t) is defined by

f̃(s) =

∫ ∞

0
dt ts−1 f(t) .

a) Given two functions, f(t) and g(t), a Mellin convolution f ∗ g can be
defined through

(f ∗ g)(t) =

∫ ∞

0
f(tu−1) g(u)

du

u

Show that the Mellin transform of the Mellin convolution f ∗ g is

f̃ ∗ g(s) =

∫ ∞

0
ts−1(f ∗ g)(t) dt = f̃(s)g̃(s).

Similarly find the Mellin transform of

(f#g)(t)
def
=

∫ ∞

0
f(tu)g(u) du.

b) The unknown function F (t) satisfies Fox’s integral equation,

F (t) = G(t) +

∫ ∞

0
dv Q(tv)F (v),

in which G and Q are known. Solve for the Mellin transform F̃ in terms
of the Mellin transforms G̃ and Q̃.
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Exercise 9.7: Some more easy problems:

a) Solve the Lalesco-Picard integral equation

u(x) = cosµx+

∫ ∞

−∞
dy e−|x−y| u(y) .

b) For λ 6= 3, solve the integral equation

φ(x) = 1 + λ

∫ 1

0
dy xy φ(y) .

c) By taking derivatives, show that the solution of the Volterra equation

x =

∫ x

0
dy (ex + ey)ψ(y)

satisfies a first order differential equation. Hence, solve the integral equa-
tion.

Exercise 9.8: Principal part integrals.

a) If w is real, show that

P

∫ ∞

−∞
e−u

2 1

u− wdu = −2
√
πe−w

2

∫ w

0
eu

2

du.

(This is easier than it looks.)
b) If y is real, but not in the interval (−1, 1), show that

∫ 1

−1

1

(y − x)
√

1− x2
dx =

π√
y2 − 1

.

Now let y ∈ (−1, 1). Show that

P

∫ 1

−1

1

(y − x)
√

1− x2
dx = 0.

(This is harder than it looks.)

Exercise 9.9:

Consider the integral equation

u(x) = g(x) + λ

∫ 1

0
K(x, y)u(y) dy ,

in which only u is unknown.
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a) Write down the solution u(x) to second order in the Liouville-Neumann-
Born series.

b) Suppose g(x) = x and K(x, y) = sin 2πxy. Compute u(x) to second
order in the Liouville-Neumann-Born series.

Exercise 9.10:: Show that the application of the Fredholm series method to
the equation

ϕ(x) = x+ λ

∫ 1

0
(xy + y2)ϕ(y) dy

gives

D(λ) = 1− 2

3
λ− 1

72
λ2

and

D(x, y, λ) = λ(xy + y2) + λ2(
1

2
xy2 − 1

3
xy − 1

3
y2 +

1

4
y).



Chapter 10

Vectors and Tensors

In this chapter we explain how a vector space V gives rise to a family of
associated tensor spaces, and how mathematical objects such as linear maps
or quadratic forms should be understood as being elements of these spaces.
We then apply these ideas to physics. We make extensive use of notions and
notations from the appendix on linear algebra, so it may help to review that
material before we begin.

10.1 Covariant and contravariant vectors

When we have a vector space V over R, and {e1, e2, . . . , en} and {e′
1, e

′
2, . . . , e

′
n}

are both bases for V , then we may expand each of the basis vectors eµ in
terms of the e′

µ as
eν = aµνe

′
µ. (10.1)

We are here, as usual, using the Einstein summation convention that repeated
indices are to be summed over. Written out in full for a three-dimensional
space, the expansion would be

e1 = a1
1e

′
1 + a2

1e
′
2 + a3

1e
′
3,

e2 = a1
2e

′
1 + a2

2e
′
2 + a3

2e
′
3,

e3 = a1
3e

′
1 + a2

3e
′
2 + a3

3e
′
3.

We could also have expanded the e′
µ in terms of the eµ as

e′
ν = (a−1)µνe

′
µ. (10.2)

387
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As the notation implies, the matrices of coefficients aµν and (a−1)µν are inverses
of each other:

aµν (a
−1)νσ = (a−1)µνa

ν
σ = δµσ . (10.3)

If we know the components xµ of a vector x in the eµ basis then the compo-
nents x′µ of x in the e′

µ basis are obtained from

x = x′µe′
µ = xνeν = (xνaµν ) e′

µ (10.4)

by comparing the coefficients of e′
µ. We find that x′µ = aµνx

ν . Observe how
the eµ and the xµ transform in “opposite” directions. The components xµ

are therefore said to transform contravariantly .
Associated with the vector space V is its dual space V ∗, whose elements

are covectors, i.e. linear maps f : V → R. If f ∈ V ∗ and x = xµeµ, we use
the linearity property to evaluate f(x) as

f(x) = f(xµeµ) = xµf(eµ) = xµ fµ. (10.5)

Here, the set of numbers fµ = f(eµ) are the components of the covector f . If
we change basis so that eν = aµνe

′
µ then

fν = f(eν) = f(aµνe
′
µ) = aµν f(e

′
µ) = aµνf

′
µ. (10.6)

We conclude that fν = aµνf
′
µ. The fµ components transform in the same man-

ner as the basis. They are therefore said to transform covariantly . In physics
it is traditional to call the the set of numbers xµ with upstairs indices (the
components of) a contravariant vector . Similarly, the set of numbers fµ with
downstairs indices is called (the components of) a covariant vector . Thus,
contravariant vectors are elements of V and covariant vectors are elements
of V ∗.

The relationship between V and V ∗ is one of mutual duality, and to
mathematicians it is only a matter of convenience which space is V and
which space is V ∗. The evaluation of f ∈ V ∗ on x ∈ V is therefore often
written as a “pairing” (f ,x), which gives equal status to the objects being
put togther to get a number. A physics example of such a mutually dual pair
is provided by the space of displacements x and the space of wave-numbers
k. The units of x and k are different (meters versus meters−1). There is
therefore no meaning to “x + k,” and x and k are not elements of the same
vector space. The “dot” in expressions such as

ψ(x) = eik·x (10.7)
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cannot be a true inner product (which requires the objects it links to be in
the same vector space) but is instead a pairing

(k,x) ≡ k(x) = kµx
µ. (10.8)

In describing the physical world we usually give priority to the space in which
we live, breathe and move, and so treat it as being “V ”. The displacement
vector x then becomes the contravariant vector, and the Fourier-space wave-
number k, being the more abstract quantity, becomes the covariant covector.

Our vector space may come equipped with a metric that is derived from
a non-degenerate inner product. We regard the inner product as being a
bilinear form g : V × V → R, so the length ‖x‖ of a vector x is

√
g(x,x).

The set of numbers
gµν = g(eµ, eν) (10.9)

comprises the (components of) the metric tensor . In terms of them, the
inner of product 〈x,y〉 of pair of vectors x = xµeµ and y = yµeµ becomes

〈x,y〉 ≡ g(x,y) = gµνx
µyν. (10.10)

Real-valued inner products are always symmetric, so g(x,y) = g(y,x) and
gµν = gνµ. As the product is non-degenerate, the matrix gµν has an inverse,
which is traditionally written as gµν. Thus

gµνg
νλ = gλνgνµ = δλµ. (10.11)

The additional structure provided by the metric permits us to identify V
with V ∗. The identification is possible, because, given any f ∈ V ∗, we can
find a vector f̃ ∈ V such that

f(x) = 〈f̃ ,x〉. (10.12)

We obtain f̃ by solving the equation

fµ = gµν f̃
ν (10.13)

to get f̃ ν = gνµfµ. We may now drop the tilde and identify f with f̃ , and
hence V with V ∗. When we do this, we say that the covariant components
fµ are related to the contravariant components f µ by raising

fµ = gµνfν, (10.14)
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or lowering

fµ = gµνf
ν, (10.15)

the index µ using the metric tensor. Bear in mind that this V ∼= V ∗ identi-
fication depends crucially on the metric. A different metric will, in general,
identify an f ∈ V ∗ with a completely different f̃ ∈ V .

We may play this game in the Euclidean space En with its “dot” inner
product. Given a vector x and a basis eµ for which gµν = eµ · eν, we can
define two sets of components for the same vector. Firstly the coefficients xµ

appearing in the basis expansion

x = xµeµ, (10.16)

and secondly the “components”

xµ = eµ · x = g(eµ,x) = g(eµ, x
νeν) = g(eµ, eν)x

ν = gµνx
ν (10.17)

of x along the basis vectors. These two set of numbers are then respectively
called the contravariant and covariant components of the vector x. If the
eµ constitute an orthonormal basis, where gµν = δµν , then the two sets of
components (covariant and contravariant) are numerically coincident. In a
non-orthogonal basis they will be different, and we must take care never to
add contravariant components to covariant ones.

10.2 Tensors

We now introduce tensors in two ways: firstly as sets of numbers labelled by
indices and equipped with transformation laws that tell us how these numbers
change as we change basis; and secondly as basis-independent objects that
are elements of a vector space constructed by taking multiple tensor products
of the spaces V and V ∗.

10.2.1 Transformation rules

After we change basis eµ → e′
µ, where eν = aµνe

′
µ, the metric tensor will be

represented by a new set of components

g′µν = g(e′
µ, e

′
ν). (10.18)
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These are be related to the old components by

gµν = g(eµ, eν) = g(aρµe
′
ρ, a

σ
νe

′
σ) = aρµa

σ
νg(e′

ρ, e
′
σ) = aρµa

σ
ν g

′
ρσ. (10.19)

This transformation rule for gµν has both of its subscripts behaving like the
downstairs indices of a covector. We therefore say that gµν transforms as a
doubly covariant tensor . Written out in full, for a two-dimensional space,
the transformation law is

g11 = a1
1a

1
1g

′
11 + a1

1a
2
1g

′
12 + a2

1a
1
1g

′
21 + a2

1a
2
1g

′
22,

g12 = a1
1a

1
2g

′
11 + a1

1a
2
2g

′
12 + a2

1a
1
2g

′
21 + a2

1a
2
2g

′
22,

g21 = a1
2a

1
1g

′
11 + a1

2a
2
1g

′
12 + a2

2a
1
1g

′
21 + a2

2a
2
1g

′
22,

g22 = a1
2a

1
2g

′
11 + a1

2a
2
2g

′
12 + a2

2a
1
2g

′
21 + a2

2a
2
2g

′
22.

In three dimensions each row would have nine terms, and sixteen in four
dimensions.

A set of numbers Qαβ
γδε, whose indices range from 1 to the dimension of

the space and that transforms as

Qαβ
γδε = (a−1)αα′(a−1)ββ′ a

γ′

γ a
δ′

δ a
ε′

ε Q
′α′β′

γ′δ′ε′, (10.20)

or conversely as

Q′αβ
γδε = aαα′a

β
β′(a

−1)γ
′

γ (a−1)δ
′

δ (a−1)ε
′

ε Q
α′β′

γ′δ′ε′, (10.21)

comprises the components of a doubly contravariant, triply covariant tensor.
More compactly, the Qαβ

γδε are the components of a tensor of type (2, 3).
Tensors of type (p, q) are defined analogously. The total number of indices
p+ q is called the rank of the tensor.

Note how the indices are wired up in the transformation rules (10.20)
and (10.21): free (not summed over) upstairs indices on the left hand side
of the equations match to free upstairs indices on the right hand side, simi-
larly for the downstairs indices. Also upstairs indices are summed only with
downstairs ones.

Similar conditions apply to equations relating tensors in any particular
basis. If they are violated you do not have a valid tensor equation — meaning
that an equation valid in one basis will not be valid in another basis. Thus
an equation

Aµνλ = Bµτ
νλτ + Cµ

νλ (10.22)
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is fine, but

Aµνλ
?
= Bν

µλ + Cµ
νλσσ +Dµ

νλτ (10.23)

has something wrong in each term.
Incidentally, although not illegal, it is a good idea not to write tensor

indices directly underneath one another — i.e. do not write Qij
kjl — because

if you raise or lower indices using the metric tensor, and some pages later in
a calculation try to put them back where they were, they might end up in
the wrong order.

Tensor algebra

The sum of two tensors of a given type is also a tensor of that type. The sum
of two tensors of different types is not a tensor. Thus each particular type of
tensor constitutes a distinct vector space, but one derived from the common
underlying vector space whose change-of-basis formula is being utilized.

Tensors can be combined by multiplication: if Aµ
νλ and Bµ

νλτ are tensors
of type (1, 2) and (1, 3) respectively, then

Cαβ
νλρστ = AανλB

β
ρστ (10.24)

is a tensor of type (2, 5).
An important operation is contraction, which consists of setting one or

more contravariant index index equal to a covariant index and summing over
the repeated indices. This reduces the rank of the tensor. So, for example,

Dρστ = Cαβ
αβρστ (10.25)

is a tensor of type (0, 3). Similarly f(x) = fµx
µ is a type (0, 0) tensor, i.e. an

invariant — a number that takes the same value in all bases. Upper indices
can only be contracted with lower indices, and vice versa. For example, the
array of numbers Aα = Bαββ obtained from the type (0, 3) tensor Bαβγ is not
a tensor of type (0, 1).

The contraction procedure outputs a tensor because setting an upper
index and a lower index to a common value µ and summing over µ, leads to
the factor . . . (a−1)µαa

β
µ . . . appearing in the transformation rule. Now

(a−1)µαa
β
µ = δβα, (10.26)

and the Kronecker delta effects a summation over the corresponding pair of
indices in the transformed tensor.
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Although often associated with general relativity, tensors occur in many
places in physics. They are used, for example, in elasticity theory, where the
word “tensor” in its modern meaning was introduced by Woldemar Voigt
in 1898. Voigt, following Cauchy and Green, described the infinitesimal
deformation of an elastic body by the strain tensor eαβ, which is a tensor
of type (0,2). The forces to which the strain gives rise are described by the
stress tensor σλµ. A generalization of Hooke’s law relates stress to strain via
a tensor of elastic constants cαβγδ as

σαβ = cαβγδeγδ. (10.27)

We study stress and strain in more detail later in this chapter.

Exercise 10.1: Show that gµν , the matrix inverse of the metric tensor gµν , is
indeed a doubly contravariant tensor, as the position of its indices suggests.

10.2.2 Tensor character of linear maps and quadratic

forms

As an illustration of the tensor concept and of the need to distinguish be-
tween upstairs and downstairs indices, we contrast the properties of matrices
representing linear maps and those representing quadratic forms.

A linear map M : V → V is an object that exists independently of any
basis. Given a basis, however, it is represented by a matrix Mµ

ν obtained
by examining the action of the map on the basis elements:

M(eµ) = eνM
ν
µ. (10.28)

Acting on x we get a new vector y = M(x), where

yνeν = y = M(x) = M(xµeµ) = xµM(eµ) = xµMν
µeν = Mν

µx
µ eν. (10.29)

We therefore have
yν = Mν

µx
µ, (10.30)

which is the usual matrix multiplication y = Mx. When we change basis,
eν = aµνe

′
µ, then

eνM
ν
µ = M(eµ) = M(aρµe

′
ρ) = aρµM(e′

ρ) = aρµe
′
σM

′σ
ρ = aρµ(a

−1)νσeνM
′σ
ρ.

(10.31)
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Comparing coefficients of eν, we find

Mν
µ = aρµ(a

−1)νσM
′σ
ρ, (10.32)

or, conversely,
M ′ν

µ = (a−1)ρµa
ν
σM

σ
ρ. (10.33)

Thus a matrix representing a linear map has the tensor character suggested
by the position of its indices, i.e. it transforms as a type (1, 1) tensor. We can
derive the same formula in matrix notation. In the new basis the vectors x
and y have new components x′ = Ax, and y′ = Ay. Consequently y = Mx
becomes

y′ = Ay = AMx = AMA−1x′, (10.34)

and the matrix representing the map M has new components

M′ = AMA−1. (10.35)

Now consider the quadratic form Q : V → R that is obtained from a
symmetric bilinear form Q : V × V → R by setting Q(x) = Q(x,x). We can
write

Q(x) = Qµνx
µxν = xµQµν x

ν = xTQx, (10.36)

where Qµν ≡ Q(eµ, eν) are the entries in the symmetric matrix Q, the suffix T
denotes transposition, and xTQx is standard matrix-multiplication notation.
Just as does the metric tensor, the coefficients Qµν transform as a type (0, 2)
tensor:

Qµν = aαµa
β
νQ

′
αβ. (10.37)

In matrix notation the vector x again transforms to have new components
x′ = Ax, but x′T = xTAT . Consequently

x′TQ′x′ = xTATQ′Ax. (10.38)

Thus
Q = ATQ′A. (10.39)

The message is that linear maps and quadratic forms can both be represented
by matrices, but these matrices correspond to distinct types of tensor and
transform differently under a change of basis.

A matrix representing a linear map has a basis-independent determinant.
Similarly the trace of a matrix representing a linear map

trM
def
= Mµ

µ (10.40)
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is a tensor of type (0, 0), i.e. a scalar, and therefore basis independent. On
the other hand, while you can certainly compute the determinant or the trace
of the matrix representing a quadratic form in some particular basis, when
you change basis and calculate the determinant or trace of the transformed
matrix, you will get a different number.

It is possible to make a quadratic form out of a linear map, but this
requires using the metric to lower the contravariant index on the matrix
representing the map:

Q(x) = xµgµνQ
ν
λx

λ = x ·Qx. (10.41)

Be careful, therefore: the matrices “Q” in xTQx and in x·Qx are representing
different mathematical objects.

Exercise 10.2: In this problem we will use the distinction between the trans-
formation law of a quadratic form and that of a linear map to resolve the
following “paradox”:

• In quantum mechanics we are taught that the matrices representing two
operators can be simultaneously diagonalized only if they commute.

• In classical mechanics we are taught how, given the Lagrangian

L =
∑

ij

(
1

2
q̇iMij q̇j −

1

2
qiVijqj

)
,

to construct normal co-ordinates Qi such that L becomes

L =
∑

i

(
1

2
Q̇2
i −

1

2
ω2
iQ

2
i

)
.

We have apparantly managed to simultaneously diagonize the matrices Mij →
diag (1, . . . , 1) and Vij → diag (ω2

1 , . . . , ω
2
n), even though there is no reason for

them to commute with each other!

Show that when M and V are a pair of symmetric matrices, with M being
positive definite, then there exists an invertible matrix A such that ATMA

and ATVA are simultaneously diagonal. (Hint: Consider M as defining an
inner product, and use the Gramm-Schmidt procedure to first find a orthonor-
mal frame in which M ′

ij = δij . Then show that the matrix corresponding to
V in this frame can be diagonalized by a further transformation that does not
perturb the already diagonal M ′

ij.)
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10.2.3 Tensor product spaces

We may regard the set of numbers Qαβ
γδε as being the components of an

object Q that is element of the vector space of type (2, 3) tensors. We
denote this vector space by the symbol V ⊗ V ⊗ V ∗⊗ V ∗⊗ V ∗, the notation
indicating that it is derived from the original V and its dual V ∗ by taking
tensor products of these spaces. The tensor Q is to be thought of as existing
as an element of V ⊗V ⊗V ∗⊗V ∗⊗V ∗ independently of any basis, but given
a basis {eµ} for V , and the dual basis {e∗ν} for V ∗, we expand it as

Q = Qαβ
γδε eα ⊗ eβ ⊗ e∗γ ⊗ e∗δ ⊗ e∗ε. (10.42)

Here the tensor product symbol “⊗” is distributive

a⊗ (b + c) = a⊗ b + a⊗ c,

(a + b)⊗ c = a⊗ c + b⊗ c, (10.43)

and associative
(a⊗ b)⊗ c = a⊗ (b⊗ c), (10.44)

but is not commutative
a⊗ b 6= b⊗ a. (10.45)

Everything commutes with the field, however,

λ(a⊗ b) = (λa)⊗ b = a⊗ (λb). (10.46)

If we change basis eα = aβαe
′
β then these rules lead, for example, to

eα ⊗ eβ = aλαa
µ
β e′

λ ⊗ e′
µ. (10.47)

From this change-of-basis formula, we deduce that

T αβeα ⊗ eβ = T αβaλαa
µ
β e′

λ ⊗ e′
µ = T ′λµ e′

λ ⊗ e′
µ, (10.48)

where
T ′λµ = T αβaλαa

µ
β. (10.49)

The analogous formula for eα⊗ eβ ⊗ e∗γ ⊗ e∗δ ⊗ e∗ε reproduces the transfor-
mation rule for the components of Q.

The meaning of the tensor product of a collection of vector spaces should
now be clear: If eµ consititute a basis for V , the space V ⊗V is, for example,
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the space of all linear combinations1 of the abstract symbols eµ ⊗ eν, which
we declare by fiat to constitute a basis for this space. There is no geometric
significance (as there is with a vector product a× b) to the tensor product
a⊗ b, so the eµ ⊗ eν are simply useful place-keepers. Remember that these
are ordered pairs, eµ ⊗ eν 6= eν ⊗ eµ.

Although there is no geometric meaning, it is possible, however, to give
an algebraic meaning to a product like e∗λ ⊗ e∗µ ⊗ e∗ν by viewing it as a
multilinear form V × V × V :→ R. We define

e∗λ ⊗ e∗µ ⊗ e∗ν (eα, eβ, eγ) = δλα δ
µ
β δ

ν
γ . (10.50)

We may also regard it as a linear map V ⊗ V ⊗ V :→ R by defining

e∗λ ⊗ e∗µ ⊗ e∗ν (eα ⊗ eβ ⊗ eγ) = δλα δ
µ
β δ

ν
γ (10.51)

and extending the definition to general elements of V ⊗ V ⊗ V by linearity.
In this way we establish an isomorphism

V ∗ ⊗ V ∗ ⊗ V ∗ ∼= (V ⊗ V ⊗ V )∗. (10.52)

This multiple personality is typical of tensor spaces. We have already seen
that the metric tensor is simultaneously an element of V ∗ ⊗ V ∗ and a map
g : V → V ∗.

Tensor products and quantum mechanics

When we have two quantum-mechanical systems having Hilbert spaces H(1)

and H(2), the Hilbert space for the combined system is H(1)⊗H(2). Quantum
mechanics books usually denote the vectors in these spaces by the Dirac “bra-
ket” notation in which the basis vectors of the separate spaces are denoted
by2 |n1〉 and |n2〉, and that of the combined space by |n1, n2〉. In this notation,
a state in the combined system is a linear combination

|Ψ〉 =
∑

n1,n2

|n1, n2〉〈n1, n2|Ψ〉, (10.53)

1Do not confuse the tensor-product space V ⊗W with the Cartesian product V ×W .
The latter is the set of all ordered pairs (x,y), x ∈ V , y ∈W . The tensor product includes
also formal sums of such pairs. The Cartesian product of two vector spaces can be given
the structure of a vector space by defining an addition operation λ(x1,y1) + µ(x2,y2) =
(λx1 +µx2, λy1 +µy2), but this construction does not lead to the tensor product. Instead
it defines the direct sum V ⊕W .

2We assume for notational convenience that the Hilbert spaces are finite dimensional.
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This is the tensor product in disguise. To unmask it, we simply make the
notational translation

|Ψ〉 → Ψ

〈n1, n2|Ψ〉 → ψn1,n2

|n1〉 → e(1)
n1

|n2〉 → e(2)
n2

|n1, n2〉 → e(1)
n1
⊗ e(2)

n2
. (10.54)

Then (10.53) becomes

Ψ = ψn1,n2 e(1)
n1
⊗ e(2)

n2
. (10.55)

Entanglement: Suppose that H(1) has basis e
(1)
1 , . . . , e

(1)
m and H(2) has basis

e
(2)
1 , . . . , e

(2)
n . The Hilbert spaceH(1)⊗H(2) is then nm dimensional. Consider

a state

Ψ = ψije
(1)
i ⊗ e

(2)
j ∈ H(1) ⊗H(2). (10.56)

If we can find vectors

Φ ≡ φie
(1)
i ∈ H(1),

X ≡ χje
(2)
j ∈ H(2), (10.57)

such that

Ψ = Φ⊗X ≡ φiχje
(1)
i ⊗ e

(2)
j (10.58)

then the tensor Ψ is said to be decomposable and the two quantum systems
are said to be unentangled . If there are no such vectors then the two systems
are entangled in the sense of the Einstein-Podolski-Rosen (EPR) paradox.

Quantum states are really in one-to-one correspondence with rays in the
Hilbert space, rather than vectors. If we denote the n dimensional vector
space over the field of the complex numbers as Cn , the space of rays, in which
we do not distinguish between the vectors x and λx when λ 6= 0, is denoted
by CP n−1 and is called complex projective space. Complex projective space is
where algebraic geometry is studied. The set of decomposable states may be
thought of as a subset of the complex projective space CP nm−1, and, since,
as the following excercise shows, this subset is defined by a finite number of
homogeneous polynomial equations, it forms what algebraic geometers call a
variety . This particular subset is known as the Segre variety .
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Exercise 10.3: The Segre conditions for a state to be decomposable:

i) By counting the number of independent components that are at our dis-
posal in Ψ, and comparing that number with the number of free param-
eters in Φ⊗X, show that the coefficients ψij must satisfy (n−1)(m−1)
relations if the state is to be decomposable.

ii) If the state is decomposable, show that

0 =

∣∣∣∣
ψij ψil

ψkj ψkl

∣∣∣∣

for all sets of indices i, j, k, l.
iii) Assume that ψ11 is not zero. Using your count from part (i) as a guide,

find a subset of the relations from part (ii) that constitute a necessary and
sufficient set of conditions for the state Ψ to be decomposable. Include
a proof that your set is indeed sufficient.

10.2.4 Symmetric and skew-symmetric tensors

By examining the transformation rule you may see that if a pair of up-
stairs or downstairs indices is symmetric (say Qµν

ρστ = Qνµ
ρστ ) or skew-

symmetric (Qµν
ρστ = −Qνµ

ρστ ) in one basis, it remains so after the basis
has been changed. (This is not true of a pair composed of one upstairs
and one downstairs index.) It makes sense, therefore, to define symmetric
and skew-symmetric tensor product spaces. Thus skew-symmetric doubly-
contravariant tensors can be regarded as belonging to the space denoted by∧2 V and expanded as

A =
1

2
Aµν eµ ∧ eν, (10.59)

where the coefficients are skew-symmetric, Aµν = −Aνµ, and the wedge prod-
uct of the basis elements is associative and distributive, as is the tensor
product, but in addition obeys eµ ∧ eν = −eν ∧ eµ. The “1/2” (replaced
by 1/p! when there are p indices) is convenient in that each independent
component only appears once in the sum. For example, in three dimensions,

1

2
Aµν eµ ∧ eν = A12 e1 ∧ e2 + A23 e2 ∧ e3 + A31 e3 ∧ e1. (10.60)

Symmetric doubly-contravariant tensors can be regarded as belonging to
the space sym2V and expanded as

S = Sαβ eα � eβ (10.61)
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where eα � eβ = eβ � eα and Sαβ = Sβα. (We do not insert a “1/2” here
because including it leads to no particular simplification in any consequent
equations.)

We can treat these symmetric and skew-symmetric products as symmetric
or skew multilinear forms. Define, for example,

e∗α ∧ e∗β (eµ, eν) = δαµδ
β
ν − δαν δβµ , (10.62)

and
e∗α ∧ e∗β (eµ ∧ eν) = δαµδ

β
ν − δαν δβµ . (10.63)

We need two terms on the right-hand-side of these examples because the
skew-symmetry of e∗α ∧ e∗β( , ) in its slots does not allow us the luxury of
demanding that the eµ be inserted in the exact order of the e∗α to get a non-
zero answer. Because the p-th order analogue of (10.62) form has p! terms
on its right-hand side, some authors like to divide the right-hand-side by p!
in this definition. We prefer the one above, though. With our definition, and
with A = 1

2
Aµνe

∗µ ∧ e∗ν and B = 1
2
Bαβeα ∧ eβ, we have

A(B) =
1

2
AµνB

µν =
∑

µ<ν

AµνB
µν , (10.64)

so the sum is only over independent terms.
The wedge (∧) product notation is standard in mathematics wherever

skew-symmetry is implied.3 The “sym” and � are not. Different authors use
different notations for spaces of symmetric tensors. This reflects the fact that
skew-symmetric tensors are extremely useful and appear in many different
parts of mathematics, while symmetric ones have fewer special properties
(although they are common in physics). Compare the relative usefulness of
determinants and permanents.

Exercise 10.4: Show that in d dimensions:

i) the dimension of the space of skew-symmetric covariant tensors with p
indices is d!/p!(d − p)!;

ii) the dimension of the space of symmetric covariant tensors with p indices
is (d+ p− 1)!/p!(d − 1)!.

3Skew products and abstract vector spaces were introduced simultaneously in Hermann
Grassmann’s Ausdehnungslehre (1844). Grassmann’s mathematics was not appreciated in
his lifetime. In his disappointment he turned to other fields, making significant con-
tributions to the theory of colour mixtures (Grassmann’s law), and to the philology of
Indo-European languages (another Grassmann’s law).
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Bosons and fermions

Spaces of symmetric and skew-symmetric tensors appear whenever we deal
with the quantum mechanics of many indistinguishable particles possessing
Bose or Fermi statistics. If we have a Hilbert space H of single-particle states
with basis ei then the N -boson space is SymNH which consists of states

Φ = Φi1i2...iN ei1 � ei2 � · · · � eiN , (10.65)

and the N -fermion space is
∧NH, which contains states

Ψ =
1

N !
Ψi1i2...iN ei1 ∧ ei2 ∧ · · · ∧ eiN . (10.66)

The symmetry of the Bose wavefunction

Φi1...iα...iβ ...iN = Φi1...iβ ...iα...iN , (10.67)

and the skew-symmetry of the Fermion wavefunction

Ψi1...iα...iβ ...iN = −Ψi1...iβ ...iα...iN , (10.68)

under the interchange of the particle labels α, β is then natural.
Slater Determinants and the Plücker Relations: Some N -fermion states can
be decomposed into a product of single-particle states

Ψ = ψ1 ∧ ψ2 ∧ · · · ∧ψN

= ψi11 ψ
i2
2 · · ·ψiNN ei1 ∧ ei2 ∧ · · · ∧ eiN . (10.69)

Comparing the coefficients of ei1 ∧ei2 ∧· · ·∧eiN in (10.66) and (10.69) shows
that the many-body wavefunction can then be written as

Ψi1i2...iN =

∣∣∣∣∣∣∣∣

ψi11 ψi21 · · · ψiN1
ψi12 ψi22 · · · ψiN2
...

...
. . .

...
ψi1N ψi2N · · · ψiNN

∣∣∣∣∣∣∣∣
. (10.70)

The wavefunction is therefore given by a single Slater determinant . Such
wavefunctions correspond to a very special class of states. The general
many-fermion state is not decomposable, and its wavefunction can only be
expressed as a sum of many Slater determinants. The Hartree-Fock method
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of quantum chemistry is a variational approximation that takes such a single
Slater determinant as its trial wavefunction and varies only the one-particle
wavefunctions 〈i|ψa〉 ≡ ψia. It is a remarkably successful approximation,
given the very restricted class of wavefunctions it explores.

As with the Segre condition for two distinguishable quantum systems to
be unentangled, there is a set of necessary and sufficient conditions on the
Ψi1i2...iN for the state Ψ to be decomposable into single-particle states. The
conditions are that

Ψi1i2...iN−1[j1Ψj2j3...jN+1] = 0 (10.71)

for any choice of indices i1, . . . iN−1 and j1, . . . , jN+1. The square brackets
[. . .] indicate that the expression is to be antisymmetrized over the indices
enclosed in the brackets. For example, a three-particle state is decomposable
if and only if

Ψi1i2j1Ψj2j3j4 −Ψi1i2j2Ψj1j3j4 + Ψi1i2j3Ψj1j2j4 − Ψi1i2j4Ψj1j2j3 = 0. (10.72)

These conditions are called the Plücker relations after Julius Plücker who
discovered them long before before the advent of quantum mechanics.4 It is
easy to show that Plücker’s relations are necessary conditions for decompos-
ability. It takes more sophistication to show that they are sufficient. We will
therefore defer this task to the exercises as the end of the chapter. As far as
we are aware, the Plücker relations are not exploited by quantum chemists,
but, in disguise as the Hirota bilinear equations, they constitute the geometric
condition underpinning the many-soliton solutions of the Korteweg-de-Vries
and other soliton equations.

10.2.5 Kronecker and Levi-Civita tensors

Suppose the tensor δµν is defined, with respect to some basis, to be unity if
µ = ν and zero otherwise. In a new basis it will transform to

δ′µν = aµρ(a
−1)σνδ

ρ
σ = aµρ(a

−1)ρν = δµν . (10.73)

In other words the Kronecker delta symbol of type (1, 1) has the same numer-
ical components in all co-ordinate systems. This is not true of the Kronecker
delta symbol of type (0, 2), i.e. of δµν .

4As well as his extensive work in algebraic geometry, Plücker (1801-68) made important
discoveries in experimental physics. He was, for example, the first person to observe the
deflection of cathode rays — beams of electrons — by a magnetic field, and the first to
point out that each element had its characteristic emission spectrum.
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Now consider an n-dimensional space with a tensor ηµ1µ2...µn whose com-
ponents, in some basis, coincides with the Levi-Civita symbol εµ1µ2 ...µn . We
find that in a new frame the components are

η′µ1µ2...µn
= (a−1)ν1µ1

(a−1)ν2µ2
· · · (a−1)νn

µn
εν1ν2...νn

= εµ1µ2...µn (a−1)ν11 (a−1)ν22 · · · (a−1)νn
n εν1ν2...νn

= εµ1µ2...µn detA−1

= ηµ1µ2...µn detA−1. (10.74)

Thus, unlike the δµν , the Levi-Civita symbol is not quite a tensor.
Consider also the quantity

√
g

def
=
√

det [gµν ]. (10.75)

Here we assume that the metric is positive-definite, so that the square root
is real, and that we have taken the positive square root. Since

det [g′µν ] = det [(a−1)ρµ(a
−1)σνgρσ] = (detA)−2det [gµν ], (10.76)

we see that √
g′ = |detA|−1√g (10.77)

Thus
√
g is also not quite an invariant. This is only to be expected, because

g( , ) is a quadratic form and we know that there is no basis-independent
meaning to the determinant of such an object.

Now define

εµ1µ2...µn =
√
g εµ1µ2...µn , (10.78)

and assume that εµ1µ2...µn has the type (0, n) tensor character implied by
its indices. When we look at how this transforms, and restrict ourselves
to orientation preserving changes of of bases, i.e. ones for which detA is
positive, we see that factors of detA conspire to give

ε′µ1µ2...µn
=
√
g′ εµ1µ2...µn . (10.79)

A similar exercise indictes that if we define εµ1µ2...in to be numerically equal
to εi1i2...µn then

εµ1µ2...µn =
1√
g
εµ1µ2...µn (10.80)
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also transforms as a tensor — in this case a type (n, 0) contravariant one
— provided that the factor of 1/

√
g is always calculated with respect to the

current basis.
If the dimension n is even and we are given a skew-symmetric tensor Fµν,

we can therefore construct an invariant

εµ1µ2...µnFµ1µ2
· · ·Fµn−1µn =

1√
g
εµ1µ2...µnFµ1µ2

· · ·Fµn−1µn . (10.81)

Similarly, given an skew-symmetric covariant tensor Fµ1...µm with m (≤ n)
indices we can form its dual , denoted by F ∗, a (n−m)-contravariant tensor
with components

(F ∗)µm+1...µn =
1

m!
εµ1µ2...µnFµ1 ...µm =

1√
g

1

m!
εµ1µ2...µnFµ1...µm . (10.82)

We meet this “dual” tensor again, when we study differential forms.

10.3 Cartesian tensors

If we restrict ourselves to Cartesian co-ordinate systems having orthonormal
basis vectors, so that gij = δij, then there are considerable simplifications.
In particular, we do not have to make a distinction between co- and contra-
variant indices. We shall usually write their indices as roman-alphabet suf-
fixes.

A change of basis from one orthogonal n-dimensional basis ei to another
e′
i will set

e′
i = Oijej, (10.83)

where the numbers Oij are the entries in an orthogonal matrix O, i.e. a real
matrix obeying OTO = OOT = I, where T denotes the transpose. The set
of n-by-n orthogonal matrices constitutes the orthogonal group O(n).

10.3.1 Isotropic tensors

The Kronecker δij with both indices downstairs is unchanged by O(n) trans-
formations,

δ′ij = OikOjlδkl = OikOjk = OikO
T
kj = δij, (10.84)
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and has the same components in any Cartesian frame. We say that its
components are numerically invariant . A similar property holds for tensors
made up of products of δij, such as

Tijklmn = δijδklδmn. (10.85)

It is possible to show5 that any tensor whose components are numerically
invariant under all orthogonal transformations is a sum of products of this
form. The most general O(n) invariant tensor of rank four is, for example.

αδijδkl + βδikδlj + γδilδjk. (10.86)

The determinant of an orthogonal transformation must be ±1. If we only
allow orientation-preserving changes of basis then we restrict ourselves to
orthogonal transformations Oij with detO = 1. These are the proper or-
thogonal transformations. In n dimensions they constitute the group SO(n).
Under SO(n) transformations, both δij and εi1i2...in are numerically invariant
and the most general SO(n) invariant tensors consist of sums of products of
δij’s and εi1i2...in’s. The most general SO(4)-invariant rank-four tensor is, for
example,

αδijδkl + βδikδlj + γδilδjk + λεijkl. (10.87)

Tensors that are numerically invariant under SO(n) are known as isotropic
tensors.

As there is no longer any distinction between co- and contravariant in-
dices, we can now contract any pair of indices. In three dimensions, for
example,

Bijkl = εnijεnkl (10.88)

is a rank-four isotropic tensor. Now εi1...in is not invariant when we transform
via an orthogonal transformation with detO = −1, but the product of two
ε’s is invariant under such transformations. The tensor Bijkl is therefore
numerically invariant under the larger group O(3) and must be expressible
as

Bijkl = αδijδkl + βδikδlj + γδilδjk (10.89)

for some coefficients α, β and γ. The following exercise explores some con-
sequences of this and related facts.

5The proof is surprisingly complicated. See, for example, M. Spivak, A Comprehensive
Introduction to Differential Geometry (second edition) Vol. V, pp. 466-481.
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Exercise 10.5: We defined the n-dimensional Levi-Civita symbol by requiring
that εi1i2...in be antisymmetric in all pairs of indices, and ε12...n = 1.

a) Show that ε123 = ε231 = ε312, but that ε1234 = −ε2341 = ε3412 = −ε4123.
b) Show that

εijkεi′j′k′ = δii′δjj′δkk′ + five other terms,

where you should write out all six terms explicitly.
c) Show that εijkεij′k′ = δjj′δkk′ − δjk′δkj′.
d) For dimension n = 4, write out εijklεij′k′l′ as a sum of products of δ’s

similar to the one in part (c).

Exercise 10.6: Vector Products. The vector product of two three-vectors may
be written in Cartesian components as (a× b)i = εijkajbk. Use this and your
results about εijk from the previous exercise to show that

i) a · (b× c) = b · (c× a) = c · (a× b),
ii) a× (b× c) = (a · c)b− (a · b)c,
iii) (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
iv) If we take a, b, c and d, with d ≡ b, to be unit vectors, show that

the identities (i) and (iii) become the sine and cosine rule, respectively,
of spherical trigonometry. (Hint: for the spherical sine rule, begin by
showing that a · [(a× b)× (a× c)] = a · (b× c).)

10.3.2 Stress and strain

As an illustration of the utility of Cartesian tensors, we consider their appli-
cation to elasticity.

Suppose that an elastic body is slightly deformed so that the particle that
was originally at the point with Cartesian co-ordinates xi is moved to xi+ηi.
We define the (infinitesimal) strain tensor eij by

eij =
1

2

(
∂ηj
∂xi

+
∂ηi
∂xj

)
. (10.90)

It is automatically symmetric: eij = eji. We will leave for later (exercise
11.3) a discussion of why this is the natural definition of strain, and also
the modifications necessary were we to employ a non-Cartesian co-ordinate
system.

To define the stress tensor σij we consider the portion Ω of the body in
figure 10.1, and an element of area dS = n d|S| on its boundary. Here, n is
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the unit normal vector pointing out of Ω. The force F exerted on this surface
element by the parts of the body exterior to Ω has components

Fi = σijnj d|S|. (10.91)

Ω

d

F

n
|S|

Figure 10.1: Stress forces.

That F is a linear function of n d|S| can be seen by considering the forces
on an small tetrahedron, three of whose sides coincide with the co-ordinate
planes, the fourth side having n as its normal. In the limit that the lengths
of the sides go to zero as ε, the mass of the body scales to zero as ε3, but
the forces are proprtional to the areas of the sides and go to zero only as ε2.
Only if the linear relation holds true can the acceleration of the tetrahedron
remain finite. A similar argument applied to torques and the moment of
inertia of a small cube shows that σij = σji.

A generalization of Hooke’s law,

σij = cijklekl, (10.92)

relates the stress to the strain via the tensor of elastic constants cijkl. This
rank-four tensor has the symmetry properties

cijkl = cklij = cjikl = cijlk. (10.93)

In other words, the tensor is symmetric under the interchange of the first
and second pairs of indices, and also under the interchange of the individual
indices in either pair.

For an isotropic material — a material whose properties are invariant
under the rotation group SO(3) — the tensor of elastic constants must be an
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isotropic tensor. The most general such tensor with the required symmetries
is

cijkl = λδijδkl + µ(δikδjl + δilδjk). (10.94)

As isotropic material is therefore characterized by only two independent pa-
rameters, λ and µ. These are called the Lamé constants after the mathemat-
ical engineer Gabriel Lamé. In terms of them the generalized Hooke’s law
becomes

σij = λδijekk + 2µeij. (10.95)

By considering particular deformations, we can express the more directly
measurable bulk modulus, shear modulus, Young’s modulus and Poisson’s
ratio in terms of λ and µ.

The bulk modulus κ is defined by

dP = −κdV
V
, (10.96)

where an infinitesimal isotropic external pressure dP causes a change V →
V + dV in the volume of the material. This applied pressure corresponds to
a surface stress of σij = −δij dP . An isotropic expansion displaces points in
the material so that

ηi =
1

3

dV

V
xi. (10.97)

The strains are therefore given by

eij =
1

3
δij
dV

V
. (10.98)

Inserting this strain into the stress-strain relation gives

σij = δij(λ+
2

3
µ)
dV

V
= −δijdP. (10.99)

Thus

κ = λ+
2

3
µ. (10.100)

To define the shear modulus, we assume a deformation η1 = θx2, so
e12 = e21 = θ/2, with all other eij vanishing.
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σ21
σ21

σ12

σ12

θ

Figure 10.2: Shear strain. The arrows show the direction of the applied
stresses. The σ21 on the vertical faces are necessary to stop the body rotating.

The applied shear stress is σ12 = σ21. The shear modulus, is defined to be
σ12/θ. Inserting the strain components into the stress-strain relation gives

σ12 = µθ, (10.101)

and so the shear modulus is equal to the Lamé constant µ. We can therefore
write the generalized Hooke’s law as

σij = 2µ(eij − 1
3
δijekk) + κekkδij, (10.102)

which reveals that the shear modulus is associated with the traceless part of
the strain tensor, and the bulk modulus with the trace.

Young’s modulus Y is measured by stretching a wire of initial length L
and square cross section of side W under a tension T = σ33W

2.

L

σ 33σ
33

W

Figure 10.3: Forces on a stretched wire.

We define Y so that

σ33 = Y
dL

L
. (10.103)

At the same time as the wire stretches, its width changes W → W + dW .
Poisson’s ratio σ is defined by

dW

W
= −σdL

L
, (10.104)
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so that σ is positive if the wire gets thinner as it gets longer. The displace-
ments are

η3 = z

(
dL

L

)
,

η1 = x

(
dW

W

)
= −σx

(
dL

L

)
,

η2 = y

(
dW

W

)
= −σy

(
dL

L

)
, (10.105)

so the strain components are

e33 =
dL

L
, e11 = e22 =

dW

W
= −σe33. (10.106)

We therefore have

σ33 = (λ(1− 2σ) + 2µ)

(
dL

L

)
, (10.107)

leading to

Y = λ(1− 2σ) + 2µ. (10.108)

Now, the side of the wire is a free surface with no forces acting on it, so

0 = σ22 = σ11 = (λ(1− 2σ)− 2σµ)

(
dL

L

)
. (10.109)

This tells us that6

σ =
1

2

λ

λ+ µ
, (10.110)

and

Y = µ

(
3λ+ 2µ

λ+ µ

)
. (10.111)

Other relations, following from those above, are

Y = 3κ(1− 2σ),

= 2µ(1 + σ). (10.112)

6Poisson and Cauchy erroneously believed that λ = µ, and hence that σ = 1/4.
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Γ
z

x
y

O

Figure 10.4: Bent beam.

Exercise 10.7: Show that the symmetries

cijkl = cklij = cjikl = cijlk

imply that a general homogeneous material has 21 independent elastic con-
stants. (This result was originally obtained by George Green, of Green func-
tion fame.)

Exercise 10.8: A steel beam is forged so that its cross section has the shape
of a region Γ ∈ R2. When undeformed, it lies along the z axis. The centroid
O of each cross section is defined so that

∫

Γ
x dxdy =

∫

Γ
y dxdy = 0,

when the co-ordinates x, y are taken with the centroid O as the origin. The
beam is slightly bent away from the z axis so that the line of centroids remains
in the y, z plane. (See figure 10.4) At a particular cross section with centroid
O, the line of centroids has radius of curvature R.

Assume that the deformation in the vicinity of O is such that

ηx = − σ
R
xy,

ηy =
1

2R

{
σ(x2 − y2)− z2

}
,

ηz =
1

R
yz.

Observe that for this assumed deformation, and for a positive Poisson ratio,
the cross section deforms anticlastically — the sides bend up as the beam
bends down. This is shown in figure 10.5.

Compute the strain tensor resulting from the assumed deformation, and show
that its only non-zero components are

exx = − σ
R
y, eyy = − σ

R
y, ezz =

1

R
y.
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O

Γ

x

y

Figure 10.5: The original (dashed) and anticlastically deformed (full) cross-
section.

Next, show that

σzz =

(
Y

R

)
y,

and that all other components of the stress tensor vanish. Deduce from this
vanishing that the assumed deformation satisfies the free-surface boundary
condition, and so is indeed the way the beam responds when it is bent by
forces applied at its ends.

The work done in bending the beam

∫

beam

1

2
eijcijklekl d

3x

is stored as elastic energy. Show that for our bent rod this energy is equal to

∫
Y I

2

(
1

R2

)
ds ≈

∫
Y I

2
(y′′)2dz,

where s is the arc-length taken along the line of centroids of the beam,

I =

∫

Γ
y2 dxdy

is the moment of inertia of the region Γ about the x axis, and y ′′ denotes
the second derivative of the deflection of the beam with respect to z (which
approximates the arc-length). This last formula for the strain energy has been
used in a number of our calculus-of-variations problems.
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y

z

Figure 10.6: The distribution of forces σzz exerted on the left-hand part of
the bent rod by the material to its right.

10.3.3 Maxwell stress tensor

Consider a small cubical element of an elastic body. If the stress tensor were
position independent, the external forces on each pair of opposing faces of
the cube would be equal in magnitude but pointing in opposite directions.
There would therefore be no net external force on the cube. When σij is not
constant then we claim that the total force acting on an infinitesimal element
of volume dV is

Fi = ∂jσij dV. (10.113)

To see that this assertion is correct, consider a finite region Ω with boundary
∂Ω, and use the divergence theorem to write the total force on Ω as

F tot
i =

∫

∂Ω

σijnjd|S| =
∫

Ω

∂jσijdV. (10.114)

Whenever the force-per-unit-volume fi acting on a body can be written
in the form fi = ∂jσij, we refer to σij as a “stress tensor,” by analogy with
stress in an elastic solid. As an example, let E and B be electric and magnetic
fields. For simplicity, initially assume them to be static. The force per unit
volume exerted by these fields on a distribution of charge ρ and current j is

f = ρE + j×B. (10.115)

From Gauss’ law ρ = div D, and with D = ε0E, we find that the force per
unit volume due the electric field has components

ρEi = (∂jDj)Ei = ε0

(
∂j(EiEj)− Ej ∂jEi

)

= ε0

(
∂j(EiEj)− Ej ∂iEj

)

= ε0∂j

(
EiEj −

1

2
δij|E|2

)
. (10.116)
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Here, in passing from the first line to the second, we have used the fact that
curlE is zero for static fields, and so ∂jEi = ∂iEj. Similarly, using j = curlH,
together with B = µ0H and div B = 0, we find that the force per unit volume
due the magnetic field has components

(j×B)i = µ0∂j

(
HiHj −

1

2
δij|H|2

)
. (10.117)

The quantity

σij = ε0

(
EiEj −

1

2
δij|E|2

)
+ µ0

(
HiHj −

1

2
δij|H|2

)
(10.118)

is called the Maxwell stress tensor . Its utility lies in in the fact that the
total electromagnetic force on an isolated body is the integral of the Maxwell
stress over its surface. We do not need to know the fields within the body.

Michael Faraday was the first to intuit a picture of electromagnetic stresses
and attributed both a longitudinal tension and a mutual lateral repulsion to
the field lines. Maxwell’s tensor expresses this idea mathematically.

Exercise 10.9: Allow the fields in the preceding calculation to be time depen-
dent. Show that Maxwell’s equations

curlE = −∂B
∂t
, divB = 0,

curlH = j +
∂D

∂t
, divD = ρ,

with B = µ0H, D = ε0E, and c = 1/
√
µ0ε0, lead to

(ρE + j×B)i +
∂

∂t

{
1

c2
(E×H)i

}
= ∂jσij .

The left-hand side is the time rate of change of the mechanical (first term)
and electromagnetic (second term) momentum density. Observe that we can
equivalently write

∂

∂t

{
1

c2
(E×H)i

}
+ ∂j(−σij) = −(ρE + j×B)i,

and think of this a local field-momentum conservation law. In this interpre-
tation −σij is thought of as the momentum flux tensor, its entries being the
flux in direction j of the component of field momentum in direction i. The
term on the right-hand side is the rate at which momentum is being supplied
to the electro-magnetic field by the charges and currents.
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10.4 Further exercises and problems

Exercise 10.10: Quotient theorem. Suppose that you have come up with some
recipe for generating an array of numbers T ijk in any co-ordinate frame, and
want to know whether these numbers are the components of a triply con-
travariant tensor. Suppose further that you know that, given the components
aij of an arbitrary doubly covariant tensor, the numbers

T ijkajk = vi

transform as the components of a contravariant vector. Show that T ijk does
indeed transform as a triply contravariant tensor. (The natural generalization
of this result to arbitrary tensor types is known as the quotient theorem.)

Exercise 10.11: Let T ij be the 3-by-3 array of components of a tensor. Show
that the quantities

a = T ii, b = T ijT
j
i, c = T ijT

j
kT

k
i

are invariant. Further show that the eigenvalues of the linear map represented
by the matrix T ij can be found by solving the cubic equation

λ3 − aλ2 +
1

2
(a2 − b)λ− 1

6
(a3 − 3ab+ 2c) = 0.

Exercise 10.12: Let the covariant tensor Rijkl possess the following symme-
tries:

i) Rijkl = −Rjikl,
ii) Rijkl = −Rijlk,
iii) Rijkl +Riklj +Riljk = 0.

Use the properties i),ii), iii) to show that:

a) Rijkl = Rklij.
b) If Rijklx

iyjxkyl = 0 for all vectors xi, yi, then Rijkl = 0.
c) If Bij is a symmetric covariant tensor and set we Aijkl = BikBjl−BilBjk,

then Aijkl has the same symmetries as Rijkl.

Exercise 10.13: Write out Euler’s equation for fluid motion

v̇ + (v · ∇)v = −∇h

in Cartesian tensor notation. Transform it into

v̇ − v ×ω = −∇
(

1

2
v2 + h

)
,
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where ω = ∇×v is the vorticity. Deduce Bernoulli’s theorem, that for steady
(v̇ = 0) flow the quantity 1

2v
2 + h is constant along streamlines.

Exercise 10.14: The elastic properties of an infinite homogeneous and isotropic
solid of density ρ are described by Lamé constants λ and µ. Show that the
equation of motion for small-amplitude vibrations is

ρ
∂2ηi
∂t2

= (λ+ µ)
∂2ηj
∂xi∂xj

+ µ
∂2ηi
∂x2

j

.

Here ηi are the cartesian components of the displacement vector η(x, t) of the
particle initially at the point x. Seek plane wave solutions of the form

η = a exp{ik · x− iωt},

and deduce that there are two possible types of wave: longitudinal “P-waves,”
which have phase velocity

vP =

√
λ+ 2µ

ρ
,

and transverse “S-waves,” which have phase velocity

vS =

√
µ

ρ
.

Exercise 10.15: Symmetric integration. Show that the n-dimensional integral

Iαβγδ =

∫
dnk

(2π)n
(kαkβkγkδ) f(k2),

is equal to

A(δαβδγδ + δαγδβδ + δαδδβγ)

where

A =
1

n(n+ 2)

∫
dnk

(2π)n
(k2)2f(k2).

Similarly evaluate

Iαβγδε =

∫
dnk

(2π)n
(kαkβkγkδkε) f(k2).
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Exercise 10.16: Write down the most general three-dimensional isotropic ten-
sors of rank two and three.

In piezoelectric materials, the application of an electric field Ei induces a
mechanical strain that is described by a rank-two symmetric tensor

eij = dijkEk,

where dijk is a third-rank tensor that depends only on the material. Show
that eij can only be non-zero in an anisotropic material.

Exercise 10.17: In three dimensions, a rank-five isotropic tensor Tijklm is a
linear combination of expressions of the form εi1i2i3δi4i5 for some assignment
of the indices i, j, k, l,m to the i1, . . . , i5. Show that, on taking into account
the symmetries of the Kronecker and Levi-Civita symbols, we can construct
ten distinct products εi1i2i3δi4i5 . Only six of these are linearly independent,
however. Show, for example, that

εijkδlm − εjklδim + εkliδjm − εlijδkm = 0,

and find the three other independent relations of this sort.7

(Hint: Begin by showing that, in three dimensions,

δi1i2i3i4i5i6i7i8

def
=

∣∣∣∣∣∣∣∣

δi1i5 δi1i6 δi1i7 δi1i8
δi2i5 δi2i6 δi2i7 δi2i8
δi3i5 δi3i6 δi3i7 δi3i8
δi4i5 δi4i6 δi4i7 δi4i8

∣∣∣∣∣∣∣∣
= 0,

and contract with εi6i7i8 .)

Problem 10.18: The Plücker Relations. This problem provides a challenging
test of your understanding of linear algebra. It leads you through the task of
deriving the necessary and sufficient conditions for

A = Ai1...ik ei1 ∧ . . . ∧ eik ∈
∧

kV

to be decomposable as
A = f1 ∧ f2 ∧ . . . ∧ fk.

The trick is to introduce two subspaces of V ,

7Such relations are called syzygies . A recipe for constructing linearly independent basis
sets of isotropic tensors can be found in: G. F. Smith, Tensor , 19 (1968) 79-88.
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i) W , the smallest subspace of V such that A ∈ ∧kW ,
ii) W ′ = {v ∈ V : v ∧A = 0},

and explore their relationship.

a) Show that if {w1,w2, . . . ,wn} constitute a basis for W ′, then

A = w1 ∧w2 ∧ · · · ∧wn ∧ϕ

for some ϕ ∈ ∧k−n V . Conclude that that W ′ ⊆ W , and that equal-
ity holds if and only if A is decomposable, in which case W = W ′ =
span{f1 . . . fk}.

b) Now show that W is the image space of
∧k−1 V ∗ under the map that

takes
Ξ = Ξi1...ik−1

e∗i1 ∧ . . . ∧ e∗ik−1 ∈
∧

k−1V ∗

to
i(Ξ)A

def
= Ξi1...ik−1

Ai1...ik−1jej ∈ V
Deduce that the condition W ⊆W ′ is that

(
i(Ξ)A

)
∧A = 0, ∀Ξ ∈

∧
k−1V ∗.

c) By taking
Ξ = e∗i1 ∧ . . . ∧ e∗ik−1 ,

show that the condition in part b) can be written as

Ai1...ik−1j1Aj2j3...jk+1ej1 ∧ . . . ∧ ejk+1
= 0.

Deduce that the necessary and sufficient conditions for decomposibility
are that

Ai1...ik−1[j1Aj2j3...jk+1] = 0,

for all possible index sets i1, . . . , ik−1, j1, . . . jk+1. Here [. . .] denotes anti-
symmetrization of the enclosed indices.



Chapter 11

Differential Calculus on
Manifolds

In this section we will apply what we have learned about vectors and ten-
sors in linear algebra to vector and tensor fields in a general curvilinear
co-ordinate system. Our aim is to introduce the reader to the modern lan-
guage of advanced calculus, and in particular to the calculus of differential
forms on surfaces and manifolds.

11.1 Vector and covector fields

Vector fields — electric, magnetic, velocity fields, and so on — appear every-
where in physics. After perhaps struggling with it in introductory courses, we
rather take the field concept for granted. There remain subtleties, however.
Consider an electric field. It makes sense to add two field vectors at a single
point, but there is no physical meaning to the sum of field vectors E(x1) and
E(x2) at two distinct points. We should therefore regard all possible electric
fields at a single point as living in a vector space, but each different point in
space comes with its own field-vector space.

This view seems even more reasonable when we consider velocity vectors
describing motion on a curved surface. A velocity vector lives in the tangent
space to the surface at each point, and each of these spaces is a differently
oriented subspace of the higher-dimensional ambient space.

419
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Figure 11.1: Each point on a surface has its own vector space of tangents.

Mathematicians call such a collection of vector spaces — one for each of the
points in a surface — a vector bundle over the surface. Thus, the tangent
bundle over a surface is the totality of all vector spaces tangent to the surface.
Why a bundle? This word is used because the individual tangent spaces are
not completely independent, but are tied together in a rather non-obvious
way. Try to construct a smooth field of unit vectors tangent to the surface
of a sphere. However hard you work you will end up in trouble somewhere.
You cannot comb a hairy ball. On the surface of torus you will have no such
problems. You can comb a hairy doughnut. The tangent spaces collectively
know something about the surface they are tangent to.

Although we spoke in the previous paragraph of vectors tangent to a
curved surface, it is useful to generalize this idea to vectors lying in the
tangent space of an n-dimensional manifold , or n-manifold. A n-manifold M
is essentially a space that locally looks like a part of Rn. This means that
some open neighbourhood of each point x ∈ M can be parametrized by an
n-dimensional co-ordinate system. A co-ordinate parametrization is called a
chart . Unless M is Rn itself (or part of it), a chart will cover only part of
M , and more than one will be required for complete coverage. Where a pair
of charts overlap, we demand that the transformation formula giving one set
of co-ordinates as a function of the other be a smooth (C∞) function, and to
possess a smooth inverse.1 A collection of such smoothly related co-ordinate
charts covering all of M is called an atlas. The advantage of thinking in
terms of manifolds is that we do not have to understand their properties
as arising from some embedding in a higher dimensional space. Whatever
structure they have, they possess in, and of, themselves

1A formal definition of a manifold contains some further technical restrictions (that the
space be Hausdorff and paracompact) that are designed to eliminate pathologies. We are
more interested in doing calculus than in proving theorems, and so we will ignore these
niceties.



11.1. VECTOR AND COVECTOR FIELDS 421

Classical mechanics provides a familiar illustration of these ideas. Except
in pathological cases, the configuration space M of a mechanical system is
a manifold. When the system has n degrees of freedom we use generalized
co-ordinates qi, i = 1, . . . , n to parametrize M . The tangent bundle of M
then provides the setting for Lagrangian mechanics. This bundle, denoted
by TM , is the 2n-dimensional space each of whose whose points consists of a
point q = (q1, . . . , qn) in M paired with a tangent vector lying in the tangent
space TMq at that point. If we think of the tangent vector as a velocity, the
natural co-ordinates on TM become (q1, q2, . . . , qn ; q̇1, q̇2, . . . , q̇n), and these
are the variables that appear in the Lagrangian of the system.

If we consider a vector tangent to some curved surface, it will stick out
of it. If we have a vector tangent to a manifold, it is a straight arrow lying
atop bent co-ordinates. Should we restrict the length of the vector so that
it does not stick out too far? Are we restricted to only infinitesimal vectors?
It is best to avoid all this by adopting a clever notion of what a vector in
a tangent space is. The idea is to focus on a well-defined object such as
a derivative. Suppose that our space has co-ordinates xµ. (These are not
the contravariant components of some vector) A directional derivative is an
object such asXµ∂µ, where ∂µ is shorthand for ∂/∂xµ. When the components
Xµ are functions of the co-ordinates xσ, this object is called a tangent-vector
field, and we write2

X = Xµ∂µ. (11.1)

We regard the ∂µ at a point x as a basis for TMx, the tangent-vector space at
x, and the Xµ(x) as the (contravariant) components of the vector X at that
point. Although they are not little arrows, what the ∂µ are is mathematically
clear, and so we know perfectly well how to deal with them.

When we change co-ordinate system from xµ to zν by regarding the xµ’s
as invertable functions of the zν ’s, i.e.

x1 = x1(z1, z2, . . . , zn),

x2 = x2(z1, z2, . . . , zn),
...

xn = xn(z1, z2, . . . , zn), (11.2)

2We are going to stop using bold symbols to distinguish between intrinsic objects and
their components, because from now on almost everything will be something other than a
number, and too much black ink would just be confusing.



422 CHAPTER 11. DIFFERENTIAL CALCULUS ON MANIFOLDS

then the chain rule for partial differentiation gives

∂µ ≡
∂

∂xµ
=
∂zν

∂xµ
∂

∂zν
=

(
∂zν

∂xµ

)
∂′ν , (11.3)

where ∂′ν is shorthand for ∂/∂zν . By demanding that

X = Xµ∂µ = X ′ν∂′ν (11.4)

we find the components in the zν co-ordinate frame to be

X ′ν =

(
∂zν

∂xµ

)
Xµ. (11.5)

Conversely, using
∂xσ

∂zν
∂zν

∂xµ
=
∂xσ

∂xµ
= δσµ , (11.6)

we have

Xν =

(
∂xν

∂zµ

)
X ′µ. (11.7)

This, then, is the transformation law for a contravariant vector.
It is worth pointing out that the basis vectors ∂µ are not unit vectors. As

we have no metric, and therefore no notion of length anyway, we cannot try
to normalize them. If you insist on drawing (small?) arrows, think of ∂1 as
starting at a point (x1, x2, . . . , xn) and with its head at (x1 + 1, x2, . . . , xn).
Of course this is only a good picture if the co-ordinates are not too “curvy.”

x =2 x =3 x =4

x =5

x =4

x =6
1 1 1

2

2

2

2

1

Figure 11.2: Approximate picture of the vectors ∂1 and ∂2 at the point
(x1, x2) = (2, 4).

Example: The surface of the unit sphere is a manifold. It is usually denoted
by S2. We may label its points with spherical polar co-ordinates, θ mea-
suring the co-latitude and φ measuring the longitude. These will be useful
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everywhere except at the north and south poles, where they become singular
because at θ = 0 or π all values of of the longitude φ correspond to the same
point. In this co-ordinate basis, the tangent vector representing the velocity
field due to a rigid rotation of one radian per second about the z axis is

Vz = ∂φ. (11.8)

Similarly

Vx = − sinφ ∂θ − cot θ cosφ ∂φ,

Vy = cosφ ∂θ − cot θ sinφ∂φ, (11.9)

respectively represent rigid rotations about the x and y axes.
We now know how to think about vectors. What about their dual-space

partners, the covectors? These live in the cotangent bundle T ∗M , and for
them a cute notational game, due to Élie Cartan, is played. We write the
basis vectors dual to the ∂µ as dxµ( ). Thus

dxµ(∂ν) = δµν . (11.10)

When evaluated on a vector field X = Xµ∂µ, the basis covectors dxµ return
its components:

dxµ(X) = dxµ(Xν∂ν) = Xνdxµ(∂ν) = Xνδµν = Xµ. (11.11)

Now, any smooth function f ∈ C∞(M) will give rise to a field of covectors
in T ∗M . This is because a vector field X acts on the scalar function f as

Xf = Xµ∂µf (11.12)

and Xf is another scalar function. This new function gives a number — and
thus an element of the field R — at each point x ∈ M . But this is exactly
what a covector does: it takes in a vector at a point and returns a number.
We will call this covector field “df .” It is essentially the gradient of f . Thus

df(X)
def
= Xf = Xµ ∂f

∂xµ
. (11.13)

If we take f to be the co-ordinate xν , we have

dxν(X) = Xµ ∂x
ν

∂xµ
= Xµδνµ = Xν, (11.14)
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so this viewpoint is consistent with our previous definition of dxν. Thus

df(X) =
∂f

∂xµ
Xµ =

∂f

∂xµ
dxµ(X) (11.15)

for any vector field X. In other words, we can expand df as

df =
∂f

∂xµ
dxµ. (11.16)

This is not some approximation to a change in f , but is an exact expansion
of the covector field df in terms of the basis covectors dxµ.

We may retain something of the notion that dxµ represents the (con-
travariant) components of a small displacement in x provided that we think
of dxµ as a machine into which we insert the small displacement (a vector)
and have it spit out the numerical components δxµ. This is the same dis-
tinction that we make between sin( ) as a function into which one can plug
x, and sin x, the number that results from inserting in this particular value
of x. Although seemingly innocent, we know that it is a distinction of great
power.

The change of co-ordinates transformation law for a covector field fµ is
found from

fµ dx
µ = f ′

ν dz
ν, (11.17)

by using

dxµ =

(
∂xµ

∂zν

)
dzν . (11.18)

We find

f ′
ν =

(
∂xµ

∂zν

)
fµ. (11.19)

A general tensor such as Qλµ
ρστ transforms as

Q′λµ
ρστ (z) =

∂zλ

∂xα
∂zµ

∂xβ
∂xγ

∂zρ
∂xδ

∂zσ
∂xε

∂zτ
Qαβ

γδε(x). (11.20)

Observe how the indices are wired up: Those for the new tensor coefficients
in the new co-ordinates, z, are attached to the new z’s, and those for the old
coefficients are attached to the old x’s. Upstairs indices go in the numerator
of each partial derivative, and downstairs ones are in the denominator.
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The language of bundles and sections

At the beginning of this section, we introduced the notion of a vector bundle.
This is a particular example of the more general concept of a fibre bundle,
where the vector space at each point in the manifold is replaced by a “fibre”
over that point. The fibre can be any mathematical object, such as a set,
tensor space, or another manifold. Mathematicians visualize the bundle as
a collection of fibres growing out of the manifold, much as stalks of wheat
grow out the soil. When one slices through a patch of wheat with a scythe,
the blade exposes a cross-section of the stalks. By analogy, a choice of an
element of the the fibre over each point in the manifold is called a cross-
section, or, more commonly, a section of the bundle. In this language, a
tangent-vector field becomes a section of the tangent bundle, and a field of
covectors becomes a section of the cotangent bundle.

We provide a more detailed account of bundles in Chapter 16.

11.2 Differentiating tensors

If f is a function then ∂µf are components of the covariant vector df . Suppose
that aµ is a contravariant vector. Are ∂νa

µ the components of a type (1, 1)
tensor? The answer is no! In general, differentiating the components of a
tensor does not give rise to another tensor. One can see why at two levels:

a) Consider the transformation laws. They contain expressions of the form
∂xµ/∂zν . If we differentiate both sides of the transformation law of a
tensor, these factors are also differentiated, but tensor transformation
laws never contain second derivatives, such as ∂2xµ/∂zν∂zσ .

b) Differentiation requires subtracting vectors or tensors at different points
— but vectors at different points are in different vector spaces, so their
difference is not defined.

These two reasons are really one and the same. We need to be cleverer to
get new tensors by differentiating old ones.

11.2.1 Lie bracket

One way to proceed is to note that the vector field X is an operator . It makes
sense, therefore, to try to compose two of them to make another. Look at
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XY , for example:

XY = Xµ∂µ(Y
ν∂ν) = XµY ν∂2

µν +Xµ

(
∂Y ν

∂xµ

)
∂ν . (11.21)

What are we to make of this? Not much! There is no particular interpretation
for the second derivative, and as we saw above, it does not transform nicely.
But suppose we take a commutator :

[X, Y ] = XY − Y X = (Xµ(∂µY
ν)− Y µ(∂µX

ν)) ∂ν. (11.22)

The second derivatives have cancelled, and what remains is a directional
derivative and so a bona-fide vector field. The components

[X, Y ]ν ≡ Xµ(∂µY
ν)− Y µ(∂µX

ν) (11.23)

are the components of a new contravariant vector field made from the two
old vector fields. This new vector field is called the Lie bracket of the two
fields, and has a geometric interpretation.

To understand the geometry of the Lie bracket, we first define the flow
associated with a tangent-vector field X. This is the map that takes a point
x0 and maps it to x(t) by solving the family of equations

dxµ

dt
= Xµ(x1, x2, . . .), (11.24)

with initial condition xµ(0) = xµ0 . In words, we regard X as the velocity field
of a flowing fluid, and let x ride along with the fluid.

Now envisage X and Y as two velocity fields. Suppose we flow along X
for a brief time t, then along Y for another brief interval s. Next we switch
back to X, but with a minus sign, for time t, and then to −Y for a final
interval of s. We have tried to retrace our path, but a short exercise with
Taylor’s theorem shows that we will fail to return to our exact starting point.
We will miss by δxµ = st[X, Y ]µ, plus corrections of cubic order in s and t.
(See figure 11.3)
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−sY tX

sY

−tX

X,Y[      ]st

Figure 11.3: We try to retrace our steps but fail to return by a distance
proportional to the Lie bracket.

Example: Let

Vx = − sinφ ∂θ − cot θ cosφ ∂φ,

Vy = cosφ ∂θ − cot θ sinφ ∂φ,

be two vector fields in T (S2). We find that

[Vx, Vy] = −Vz,

where Vz = ∂φ.

Frobenius’ theorem

Suppose that in some region of a d-dimensional manifold M we are given
n < d linearly independent tangent-vector fields Xi. Such a set is called a
distribution by differential geometers. (The concept has nothing to do with
probability, or with objects like “δ(x)” which are also called “distributions.”)
At each point x, the span 〈Xi(x)〉 of the field vectors forms a subspace of
the tangent space TMx, and we can picture this subspace as a fragment of
an n-dimensional surface passing through x. It is possible that these surface
fragments fit together to make a stack of smooth surfaces — called a foliation
— that fill out the d-dimensional space, and have the givenXi as their tangent
vectors.
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X 1
X 2

x

N

Figure 11.4: A local foliation.

If this is the case then starting from x and taking steps only along the Xi

we find ourselves restricted to the n-surface, or n-submanifold , N passing
though the original point x.

Alternatively, the surface fragments may form such an incoherent jumble
that starting from x and moving only along the Xi we can find our way to any
point in the neighbourhood of x. It is also possible that some intermediate
case applies, so that moving along the Xi restricts us to an m-surface, where
d > m > n. The Lie bracket provides us with the appropriate tool with
which to investigate these possibilities.

First a definition: If there are functions c k
ij (x) such that

[Xi, Xj] = c k
ij (x)Xk, (11.25)

i.e. the Lie brackets close within the set {Xi} at each point x, then the
distribution is said to be involutive. and the vector fields are said to be “in
involution” with each other. When our given distribution is involutive, then
the first case holds, and, at least locally, there is a foliation by n-submanifolds
N . A formal statement of this is:
Theorem (Frobenius): A smooth (C∞) involutive distribution is completely
integrable: locally, there are co-ordinates xµ, µ = 1, . . . , d such that Xi =∑n

µ=1X
µ
i ∂µ, and the surfaces N through each point are in the form xµ =

const. for µ = n + 1, . . . , d. Conversely, if such co-ordinates exist then the
distribution is involutive.
A half-proof : If such co-ordinates exist then it is obvious that the Lie bracket
of any pair of vectors in the form Xi =

∑n
µ=1 X

µ
i ∂µ can also be expanded in

terms of the first n basis vectors. A logically equivalent statement exploits the
geometric interpretation of the Lie bracket: If the Lie brackets of the fields
Xi do not close within the n-dimensional span of the Xi, then a sequence
of back-and-forth manœvres along the Xi allows us to escape into a new
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direction, and so the Xi cannot be tangent to an n-surface. Establishing the
converse — that closure implies the existence of the foliation — is rather
more technical, and we will not attempt it.

Involutive and non-involutive distributions appear in classical mechanics
under the guise of holonomic and anholonomic constraints. In mechanics,
constraints are not usually given as a list of the directions (vector fields) in
which we are free to move, but instead as a list of restrictions imposed on the
permitted motion. In a d-dimensional mechanical system we might have set
of m independent constraints of the form ωiµ(q)q̇

µ = 0, i = 1, . . . , m. Such
restrictions are most naturally expressed in terms of the covector fields

ωi =
d∑

µ=1

ωiµ(q)dq
µ, i = 1 ≤ i ≤ m. (11.26)

We can write the constraints as the m conditions ωi(q̇) = 0 that must be
satisfied if q̇ ≡ q̇µ∂µ is to be an allowed motion. The list of constraints is
known a Pfaffian system of equations. These equations indirectly determine
an n = d −m dimensional distribution of permitted motions. The Pfaffian
system is said to be integrable if this distribution is involutive, and hence
integrable. In this case there is a set of m functions gi(q) and an invertible
m-by-m matrix f ij(q) such that

ωi =

m∑

j=1

f ij(q)dg
j. (11.27)

The functions gi(q) can, for example, be taken to be the co-ordinate functions
xµ, µ = n + 1, . . . , d, that label the foliating surfaces N in the statement of
Frobenius’ theorem. The system of integrable constraints ωi(q̇) = 0 thus
restricts us to the surfaces gi(q) = constant.

For example, consider a particle moving in three dimensions. If we are
told that the velocity vector is constrained by ω(q̇) = 0, where

ω = x dx + y dy + z dz (11.28)

we realize that the particle is being forced to move on a sphere passing
through the initial point. In spherical co-ordinates the associated distribution
is the set {∂θ, ∂φ}, which is clearly involutive because [∂θ, ∂φ] = 0. The
functions f(x, y, z) and g(x, y, z) from the previous paragraph can be taken
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to be r =
√
x2 + y2 + z2, and the constraint covector written as ω = f dg =

r dr.
The foliation is the family of nested spheres whose centre is the origin.

(The foliation is not global because it becomes singular at r = 0.) Constraints
like this, which restrict the motion to a surface, are said to be holonomic.

Suppose, on the other hand, we have a ball rolling on a table. Here, we
have a five-dimensional configuration manifold M = R2 × S3, parametrized
by the centre of mass (x, y) ∈ R2 of the ball and the three Euler angles
(θ, φ, ψ) ∈ S3 defining its orientation. Three no-slip rolling conditions

ẋ = ψ̇ sin θ sinφ+ θ̇ cosφ,

ẏ = −ψ̇ sin θ cosφ+ θ̇ sin φ,

0 = ψ̇ cos θ + φ̇, (11.29)

(see exercise 11.17) link the rate of change of the Euler angles to the velocity
of the centre of mass. At each point in this five-dimensional manifold we
are free to roll the ball in two directions, and so we might expect that the
reachable configurations constitute a two-dimensional surface embedded in
the full five-dimensional space. The two vector fields

rollx = ∂x − sinφ cot θ ∂φ + cosφ ∂θ + cosec θ sin φ ∂ψ,

rolly = ∂y + cosφ cot θ ∂φ + sin φ ∂θ − cosec θ cosφ ∂ψ, (11.30)

describing the permitted x- and y-direction rolling motion are not in invo-
lution, however. By calculating enough Lie brackets we eventually obtain
five linearly independent velocity vector fields, and starting from one con-
figuration we can reach any other. The no-slip rolling condition is said to
be non-integrable, or anholonomic. Such systems are tricky to deal with in
Lagrangian dynamics.

The following exercise provides a familiar example of the utility of non-
holonomic constraints:

Exercise 11.1: Parallel Parking using Lie Brackets. The configuration space
of a car is four dimensional, and parameterized by co-ordinates (x, y, θ, φ), as
shown in figure 11.5. Define the following vector fields:

a) (front wheel) drive = cosφ(cos θ ∂x + sin θ ∂y) + sinφ∂θ.
b) steer = ∂φ.
c) (front wheel) skid = − sinφ(cos θ ∂x + sin θ ∂y) + cosφ∂θ.
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θ

(x,y)

drive

park

φ

Figure 11.5: Co-ordinates for car parking

d) park = − sin θ ∂x + cos θ ∂y.

Explain why these are apt names for the vector fields, and compute the six
Lie brackets:

[steer,drive], [steer, skid], [skid,drive],

[park,drive], [park,park], [park, skid].

The driver can use only the operations (±)drive and (±) steer to manœvre
the car. Use the geometric interpretation of the Lie bracket to explain how a
suitable sequence of motions (forward, reverse, and turning the steering wheel)
can be used to manoeuvre a car sideways into a parking space.

11.2.2 Lie derivative

Another derivative that we can define is the Lie derivative along a vector
field X. It is defined by its action on a scalar function f as

LXf def
= Xf, (11.31)

on a vector field by

LXY def
= [X, Y ], (11.32)

and on anything else by requiring it to be a derivation, meaning that it obeys
Leibniz’ rule. For example, let us compute the Lie derivative of a covector
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F . We first introduce an arbitrary vector field Y and plug it into F to get
the scalar function F (Y ). Leibniz’ rule is then the statement that

LXF (Y ) = (LXF )(Y ) + F (LXY ). (11.33)

Since F (Y ) is a function and Y is a vector, both of whose derivatives we
know how to compute, we know the first and third of the three terms in this
equation. From LXF (Y ) = XF (Y ) and F (LXY ) = F ([X, Y ]), we have

XF (Y ) = (LXF )(Y ) + F ([X, Y ]), (11.34)

and so
(LXF )(Y ) = XF (Y )− F ([X, Y ]). (11.35)

In components, this becomes

(LXF )(Y ) = Xν∂ν(FµY
µ)− Fν(Xµ∂µY

ν − Y µ∂µX
ν)

= (Xν∂νFµ + Fν∂µX
ν)Y µ. (11.36)

Note how all the derivatives of Y µ have cancelled, so LXF ( ) depends only
on the local value of Y . The Lie derivative of F is therefore still a covector
field. This is true in general: the Lie derivative does not change the tensor
character of the objects on which it acts. Dropping the passive spectator
field Y ν , we have a formula for LXF in components:

(LXF )µ = Xν∂νFµ + Fν∂µX
ν. (11.37)

Another example is provided by the Lie derivative of a type (0, 2) tensor,
such as a metric tensor. This is

(LXg)µν = Xα∂αgµν + gµα∂νX
α + gαν∂µX

α. (11.38)

The Lie derivative of a metric measures the extent to which the displacement
xα → xα + εXα(x) deforms the geometry. If we write the metric as

g( , ) = gµν(x) dx
µ ⊗ dxν, (11.39)

we can understand both this geometric interpretation and the origin of the
three terms appearing in the Lie derivative. We simply make the displace-
ment xα → xα + εXα in the coefficients gµν(x) and in the two dxα. In the
latter we write

d(xα + εXα) = dxα + ε
∂Xα

∂xβ
dxβ. (11.40)
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Then we see that

gµν(x) dx
µ ⊗ dxν → [gµν(x) + ε(Xα∂αgµν + gµα∂νX

α + gαν∂µX
α)] dxµ ⊗ dxν

= [gµν + ε(LXg)µν] dxµ ⊗ dxν. (11.41)

A displacement fieldX that does not change distances between points, i.e. one
that gives rise to an isometry , must therefore satisfy LXg = 0. Such an X is
said to be a Killing field after Wilhelm Killing who introduced them in his
study of non-euclidean geometries.

The geometric interpretation of the Lie derivative of a vector field is as
follows: In order to compute the X directional derivative of a vector field Y ,
we need to be able to subtract the vector Y (x) from the vector Y (x + εX),
divide by ε, and take the limit ε→ 0. To do this we have somehow to get the
vector Y (x) from the point x, where it normally resides, to the new point
x + εX, so both vectors are elements of the same vector space. The Lie
derivative achieves this by carrying the old vector to the new point along the
field X.

Xε
x

Lε
Xε

YX

Y(x+εX)

Y(x)

Figure 11.6: Computing the Lie derivative of a vector.

Imagine the vector Y as drawn in ink in a flowing fluid whose velocity field
is X. Initially the tail of Y is at x and its head is at x + Y . After flowing
for a time ε, its tail is at x + εX — i.e exactly where the tail of Y (x + εX)
lies. Where the head of transported vector ends up depends how the flow has
stretched and rotated the ink, but it is this distorted vector that is subtracted
from Y (x+ εX) to get εLXY = ε[X, Y ].

Exercise 11.2: The metric on the unit sphere equipped with polar co-ordinates
is

g( , ) = dθ ⊗ dθ + sin2 θ dφ⊗ dφ.
Consider

Vx = − sinφ∂θ − cot θ cosφ∂φ,
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which is the vector field of a rigid rotation about the x axis. Compute the Lie
derivative LVxg, and show that it is zero.

Exercise 11.3: Suppose we have an unstrained block of material in real space.
A co-ordinate system ξ1, ξ2, ξ3, is attached to the material of the body. The
point with co-ordinate ξ is located at (x1(ξ), x2(ξ), x3(ξ)) where x1, x2, x3 are
the usual R3 Cartesian co-ordinates.

a) Show that the induced metric in the ξ co-ordinate system is

gµν(ξ) =
3∑

a=1

∂xa

∂ξµ
∂xa

∂ξν
.

b) The body is now deformed by an infinitesimal strain vector field η(ξ).
The atom with co-ordinate ξµ is moved to what was ξµ+ηµ(ξ), or equiv-
alently, the atom initially at Cartesian co-ordinate xa(ξ) is moved to
xa + ηµ∂xa/∂ξµ. Show that the new induced metric is

gµν + δgµν = gµν + Lηgµν .

c) Define the strain tensor to be 1/2 of the Lie derivative of the metric
with respect to the deformation. If the original ξ co-ordinate system
coincided with the Cartesian one, show that this definition reduces to
the familiar form

eab =
1

2

(
∂ηa
∂xb

+
∂ηb
∂xa

)
,

all tensors being Cartesian.
d) Part c) gave us the geometric definitition of infinitesimal strain. If the

body is deformed substantially, the Cauchy-Green finite strain tensor is
defined as

Eµν(ξ) =
1

2

(
gµν − g(0)

µν

)
,

where g
(0)
µν is the metric in the undeformed body and gµν the metric in

the deformed body. Explain why this is a reasonable definition.

11.3 Exterior calculus

11.3.1 Differential forms

The objects we introduced in section 11.1, the dxµ, are called one-forms, or
differential one-forms. They are fields living in the cotangent bundle T ∗M
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of M . More precisely, they are sections of the cotangent bundle. Sections
of the bundle whose fibre above x ∈ M is the p-th skew-symmetric tensor
power

∧p(T ∗Mx) of the cotangent space are known as p-forms.
For example,

A = Aµdx
µ = A1dx

1 + A2dx
2 + A3dx

3, (11.42)

is a 1-form,

F =
1

2
Fµνdx

µ ∧ dxν = F12dx
1 ∧ dx2 + F23dx

2 ∧ dx3 + F31dx
3 ∧ dx1, (11.43)

is a 2-form, and

Ω =
1

3!
Ωµνσ dx

µ ∧ dxν ∧ dxσ = Ω123 dx
1 ∧ dx2 ∧ dx3, (11.44)

is a 3-form. All the coefficients are skew-symmetric tensors, so, for example,

Ωµνσ = Ωνσµ = Ωσµν = −Ωνµσ = −Ωµσν = −Ωσνµ. (11.45)

In each example we have explicitly written out all the independent terms for
the case of three dimensions. Note how the p! disappears when we do this
and keep only distinct components. In d dimensions the space of p-forms is
d!/p!(d− p)! dimensional, and all p-forms with p > d vanish identically.

As with the wedge products in chapter one, we regard a p-form as a p-
linear skew-symetric function with p slots into which we can drop vectors to
get a number. For example the basis two-forms give

dxµ ∧ dxν(∂α, ∂β) = δµαδ
ν
β − δµβδνα. (11.46)

The analogous expression for a p-form would have p! terms. We can define
an algebra of differential forms by “wedging” them together in the obvious
way, so that the product of a p-form with a q-form is a (p + q)-form. The
wedge product is associative and distributive but not, of course, commuta-
tive. Instead, if a is a p-form and b a q-form, then

a ∧ b = (−1)pq b ∧ a. (11.47)

Actually it is customary in this game to suppress the “∧” and simply write
F = 1

2
Fµν dx

µdxν , it being assumed that you know that dxµdxν = −dxνdxµ
— what else could it be?
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11.3.2 The exterior derivative

These p-forms may seem rather complicated, so it is perhaps surprising that
all the vector calculus (div, grad, curl, the divergence theorem and Stokes’
theorem, etc.) that you have learned in the past reduce, in terms of them,
to two simple formulæ! Indeed Élie Cartan’s calculus of p-forms is slowly
supplanting traditional vector calculus, much as Willard Gibbs’ and Oliver
Heaviside’s vector calculus supplanted the tedious component-by-component
formulæ you find in Maxwell’s Treatise on Electricity and Magnetism.

The basic tool is the exterior derivative “d”, which we now define ax-
iomatically:

i) If f is a function (0-form), then df coincides with the previous defini-
tion, i.e. df(X) = Xf for any vector field X.

ii) d is an anti-derivation: If a is a p-form and b a q-form then

d(a ∧ b) = da ∧ b + (−1)pa ∧ db. (11.48)

iii) Poincaré’s lemma: d2 = 0, meaning that d(da) = 0 for any p-form a.
iv) d is linear. That d(αa) = αda, for constant α follows already from i)

and ii), so the new fact is that d(a+ b) = da+ db.

It is not immediately obvious that axioms i), ii) and iii) are compatible
with one another. If we use axiom i), ii) and d(dxi) = 0 to compute the d of
Ω = 1

p!
Ωi1 ,...,ipdx

i1 · · ·dxip , we find

dΩ =
1

p!
(dΩi1,...,ip) dx

i1 · · ·dxip

=
1

p!
∂kΩi1,...,ip dx

kdxi1 · · ·dxip . (11.49)

Now compute

d(dΩ) =
1

p!

(
∂l∂kΩi1,...,ip

)
dxldxkdxi1 · · ·dxip. (11.50)

Fortunately this is zero because ∂l∂kΩ = ∂k∂lΩ, while dxldxk = −dxkdxl.
As another example let A = A1dx

1 + A2dx
2 + A3dx

3, then

dA =

(
∂A2

∂x1
− ∂A1

∂x2

)
dx1dx2 +

(
∂A1

∂x3
− ∂A3

∂x1

)
dx3dx1 +

(
∂A3

∂x2
− ∂A2

∂x3

)
dx2dx3

=
1

2
Fµνdx

µdxν, (11.51)
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where

Fµν = ∂µAν − ∂νAµ. (11.52)

You will recognize the components of curlA hiding in here.
Again, if F = F12dx

1dx2 + F23dx
2dx3 + F31dx

3dx1 then

dF =

(
∂F23

∂x1
+
∂F31

∂x2
+
∂F12

∂x3

)
dx1dx2dx3. (11.53)

This looks like a divergence.
The axiom d2 = 0 encompasses both “curl grad = 0” and “div curl =

0”, together with an infinite number of higher-dimensional analogues. The
familiar “curl =∇×”, meanwhile, is only defined in three dimensional space.

The exterior derivative takes p-forms to (p+1)-forms i.e. skew-symmetric
type (0, p) tensors to skew-symmetric (0, p + 1) tensors. How does “d” get
around the fact that the derivative of a tensor is not a tensor? Well, if
you apply the transformation law for Aµ, and the chain rule to ∂

∂xµ to find
the transformation law for Fµν = ∂µAν − ∂νAµ, you will see why: all the
derivatives of the ∂zν

∂xµ cancel, and Fµν is a bona-fide tensor of type (0, 2). This
sort of cancellation is why skew-symmetric objects are useful, and symmetric
ones less so.

Exercise 11.4: Use axiom ii) to compute d(d(a∧b)) and confirm that it is zero.

Closed and exact forms

The Poincaré lemma, d2 = 0, leads to some important terminology:
i) A p-form ω is said to be closed if dω = 0.
ii) A p-form ω is said to exact if ω = dη for some (p− 1)-form η.

An exact form is necessarily closed, but a closed form is not necessarily exact.
The question of when closed ⇒ exact is one involving the global topology of
the space in which the forms are defined, and will be subject of chapter 13.

Cartan’s formulæ

It is sometimes useful to have expressions for the action of d coupled with
the evaluation of the subsequent (p+ 1) forms.

If f, η, ω, are 0, 1, 2-forms, respectively, then df, dη, dω, are 1, 2, 3-forms.
When we plug in the appropriate number of vector fields X, Y, Z, then, after
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some labour, we will find

df(X) = Xf. (11.54)

dη(X, Y ) = Xη(Y )− Y η(X)− η([X, Y ]). (11.55)

dω(X, Y, Z) = Xω(Y, Z) + Y ω(Z,X) + Zω(X, Y )

−ω([X, Y ], Z)− ω([Y, Z], X)− ω([Z,X], Y ).(11.56)

These formulæ, and their higher-p analogues, express d in terms of geometric
objects, and so make it clear that the exterior derivative is itself a geometric
object, independent of any particular co-ordinate choice.

Let us demonstate the correctness of the second formula. With η = ηµdx
µ,

the left-hand side, dη(X, Y ), is equal to

∂µην dx
µdxν(X, Y ) = ∂µην(X

µY ν −XνY µ). (11.57)

The right hand side is equal to

Xµ∂µ(ηνY
ν)− Y µ∂µ(ηνX

ν)− ην(Xµ∂µY
ν − Y µ∂µX

ν). (11.58)

On using the product rule for the derivatives in the first two terms, we find
that all derivatives of the components of X and Y cancel, and are left with
exactly those terms appearing on left.

Exercise 11.5: Let ωi, i = 1, . . . , r, be a linearly independent set of one-forms
defining a Pfaffian system (see sec. 11.2.1) in d dimensions.

i) Use Cartan’s formulæ to show that the corresponding (d−r)-dimensional
distribution is involutive if and only if there is an r-by-r matrix of 1-forms
θij such that

dωi =

r∑

j=1

θij ∧ ωj.

ii) Show that the conditions in part i) are satisfied if there are r functions
gi and an invertible r-by-r matrix of functions f ij such that

ωi =
r∑

j=1

f ijdg
i.

In this case foliation surfaces are given by the conditions g i(x) = const.,
i = 1, . . . , r.
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It is also possible, but considerably harder, to show that i) ⇒ ii). Doing so
would constitute a proof of Frobenius’ theorem.

Exercise 11.6: Let ω be a closed two-form, and let Null(ω) be the space of
vector fields X such that ω(X, ) = 0. Use the Cartan formulæ to show that
if X,Y ∈ Null(ω), then [X,Y ] ∈ Null(ω).

Lie derivative of forms

Given a p-form ω and a vector field X, we can form a (p − 1)-form called
iXω by writing

iXω( . . . . . .︸ ︷︷ ︸
p−1 slots

) = ω(

p slots︷ ︸︸ ︷
X, . . . . . .︸ ︷︷ ︸

p−1 slots

). (11.59)

Acting on a 0-form, iX is defined to be 0. This procedure is called the interior
multiplication by X. It is simply a contraction

ωjij2...jp → ωkj2...jpX
k, (11.60)

but it is convenient to have a special symbol for this operation. It is perhaps
surprising that iX turns out to be an anti-derivation, just as is d. If η and ω
are p and q forms respectively, then

iX(η ∧ ω) = (iXη) ∧ ω + (−1)pη ∧ (iXω), (11.61)

even though iX involves no differentiation. For example, if X = Xµ∂µ, then

iX(dxµ ∧ dxν) = dxµ ∧ dxν(Xα∂α, ),

= Xµdxν − dxµXν,

= (iXdx
µ) ∧ (dxν)− dxµ ∧ (iXdx

ν). (11.62)

One reason for introducing iX is that there is a nice (and profound)
formula for the Lie derivative of a p-form in terms of iX . The formula is
called the infinitesimal homotopy relation. It reads

LXω = (d iX + iXd)ω. (11.63)

This formula is proved by verifying that it is true for functions and one-
forms, and then showing that it is a derivation – in other words that it
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satisfies Leibniz’ rule. From the derivation property of the Lie derivative, we
immediately deduce that that the formula works for any p-form.

That the formula is true for functions should be obvious: Since iXf = 0
by definition, we have

(d iX + iXd)f = iXdf = df(X) = Xf = LXf. (11.64)

To show that the formula works for one forms, we evaluate

(d iX + iXd)(fν dx
ν) = d(fνX

ν) + iX(∂µfν dx
µdxν)

= ∂µ(fνX
ν)dxµ + ∂µfν(X

µdxν −Xνdxµ)

= (Xν∂νfµ + fν∂µX
ν)dxµ. (11.65)

In going from the second to the third line, we have interchanged the dummy
labels µ ↔ ν in the term containing dxν. We recognize that the 1-form in
the last line is indeed LXf .

To show that diX + iXd is a derivation we must apply d iX + iXd to a∧ b
and use the anti-derivation property of ix and d. This is straightforward once
we recall that d takes a p-form to a (p + 1)-form while iX takes a p-form to
a (p− 1)-form.

Exercise 11.7: Let

ω =
1

p!
ωi1...ip dx

i1 · · · dxip .

Use the anti-derivation property of iX to show that

iXω =
1

(p− 1)!
ωαi2...ipX

αdxi2 · · · dxip ,

and so verify the equivalence of (11.59) and (11.60).

Exercise 11.8: Use the infinitesimal homotopy relation to show that L and d
commute, i.e. for ω a p-form, we have

d (LXω) = LX(dω).
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11.4 Physical applications

11.4.1 Maxwell’s equations

In relativistic3 four-dimensional tensor notation the two source-free Maxwell’s
equations

curlE = −∂B
∂t
,

divB = 0, (11.66)

reduce to the single equation

∂Fµν
∂xλ

+
∂Fνλ
∂xµ

+
∂Fλµ
∂xν

= 0. (11.67)

where

Fµν =




0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


 . (11.68)

The “F” is traditional, for Michael Faraday. In form language, the relativistic
equation becomes the even more compact expression dF = 0, where

F ≡ 1

2
Fµνdx

µdxν

= Bxdydz +Bydzdx +Bzdxdy + Exdxdt+ Eydydt+ Ezdzdt,

(11.69)

is a Minkowski-space 2-form.

Exercise 11.9: Verify that the source-free Maxwell equations are indeed equiv-
alent to dF = 0.

The equation dF = 0 is automatically satisfied if we introduce a 4-vector
1-form potential A = −φdt+ Axdx + Aydy + Azdz and set F = dA.

The two Maxwell equations with sources

divD = ρ,

curlH = j +
∂D

∂t
, (11.70)

3In this section we will use units in which c = ε0 = µ0 = 1. We take the Minkowski
metric to be gµν = diag (−1, 1, 1, 1) where x0 = t, x1 = x , etc.
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reduce in 4-tensor notation to the single equation

∂µF
µν = Jν. (11.71)

Here Jµ = (ρ, j) is the current 4-vector.
This source equation takes a little more work to express in form language,

but it can be done. We need a new concept: the Hodge “star” dual of a form.
In d dimensions the “?” map takes a p-form to a (d − p)-form. It depends
on both the metric and the orientation. The latter means a canonical choice
of the order in which to write our basis forms, with orderings that differ
by an even permutation being counted as the same. The full d-dimensional
definition involves the Levi-Civita duality operation of chapter 10 , combined
with the use of the metric tensor to raise indices. Recall that

√
g =

√
det gµν.

(In Minkowski-signature metrics we should replace
√
g by

√−g.) We define
“?” to be a linear map

? :

p∧
(T ∗M)→

(d−p)∧
(T ∗M) (11.72)

such that

? dxi1 . . . dxip
def
=

1

(d− p)!
√
ggi1j1 . . . gipjpεj1···jpjp+1···jddx

jp+1 . . . dxjd. (11.73)

Although this definition looks a trifle involved, computations involving it are
not so intimidating. The trick is to work, whenever possible, with oriented
orthonormal frames. If we are in euclidean space and {e∗i1 , e∗i2, . . . , e∗id} is an
ordering of the orthonormal basis for (T ∗M)x whose orientation is equivalent
to {e∗1, e∗2, . . . , e∗d} then

? (e∗i1 ∧ e∗i2 ∧ · · · ∧ e∗ip) = e∗ip+1 ∧ e∗ip+2 ∧ · · · ∧ e∗id. (11.74)

For example, in three dimensions, and with x, y, z, our usual Cartesian co-
ordinates, we have

? dx = dydz,

? dy = dzdx,

? dz = dxdy. (11.75)

An analogous method works for Minkowski-signature (−,+,+,+) metrics,
except that now we must include a minus sign for each negatively normed
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dt factor in the form being “starred.” Taking {dt, dx, dy, dz} as our oriented
basis, we therefore find4

? dxdy = −dzdt,
? dydz = −dxdt,
? dzdx = −dydt,
? dxdt = dydz,

? dydt = dzdx,

? dzdt = dxdy. (11.76)

For example, the first of these equations is derived by observing that (dxdy)(−dzdt) =
dtdxdydz, and that there is no “dt” in the product dxdy. The fourth fol-
lows from observing that that (dxdt)(−dydx) = dtdxdydz, but there is a
negative-normed “dt” in the product dxdt.

The ? map is constructed so that if

α =
1

p!
αi1i2...ipdx

i1dxi2 · · ·dxip , (11.77)

and

β =
1

p!
βi1i2...ipdx

i1dxi2 · · ·dxip, (11.78)

then
α ∧ (?β) = β ∧ (?α) = 〈α, β〉σ, (11.79)

where the inner product 〈α, β〉 is defined to be the invariant

〈α, β〉 =
1

p!
gi1j1gi2j2 · · · gipjpαi1i2...ipβj1j2...jp, (11.80)

and σ is the volume form

σ =
√
g dx1dx2 · · ·dxd. (11.81)

In future we will write α ? β for α ∧ (?β). Bear in mind that the “?” in this
expression is acting β and is not some new kind of binary operation.

We now apply these ideas to Maxwell. From the field-strength 2-form

F = Bxdydz +Bydzdx +Bzdxdy + Exdxdt+ Eydydt+ Ezdzdt, (11.82)

4See for example: Misner, Thorn and Wheeler, Gravitation, (MTW) page 108.
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we get a dual 2-form

?F = −Bxdxdt− Bydydt− Bzdzdt+ Exdydz + Eydzdx+ Ezdxdy. (11.83)

We can check that we have correctly computed the Hodge star of F by taking
the wedge product, for which we find

F ? F =
1

2
(FµνF

µν)σ = (B2
x +B2

y +B2
z − E2

x − E2
y − E2

z )dtdxdydz. (11.84)

Observe that the expression B2−E2 is a Lorentz scalar. Similarly, from the
current 1-form

J ≡ Jµdx
µ = −ρ dt+ jxdx + jydy + jzdz, (11.85)

we derive the dual current 3-form

?J = ρ dxdydz − jxdtdydz − jydtdzdx− jzdtdxdy, (11.86)

and check that

J ? J = (JµJ
µ)σ = (−ρ2 + j2

x + j2
y + j2

z )dtdxdydz. (11.87)

Observe that

d ? J =

(
∂ρ

∂t
+ div j

)
dtdxdydz = 0, (11.88)

expresses the charge conservation law.
Writing out the terms explicitly shows that the source-containing Maxwell

equations reduce to d?F = ?J. All four Maxwell equations are therefore very
compactly expressed as

dF = 0, d ? F = ?J.

Observe that current conservation d?J = 0 follows from the second Maxwell
equation as a consequence of d2 = 0.

Exercise 11.10: Show that for a p-form ω in d euclidean dimensions we have

? ? ω = (−1)p(d−p)ω.

Show, further, that for a Minkowski metric an additional minus sign has to be
inserted. (For example, ? ? F = −F , even though (−1)2(4−2) = +1.)
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11.4.2 Hamilton’s equations

Hamiltonian dynamics takes place in phase space, a manifold with co-ordinates
(q1, . . . , qn, p1, . . . , pn). Since momentum is a naturally covariant vector,5

phase space is usually the co-tangent bundle T ∗M of the configuration man-
ifold M . We are writing the indices on the p’s upstairs though, because we
are considering them as co-ordinates in T ∗M .

We expect that you are familiar with Hamilton’s equation in their q, p
setting. Here, we shall describe them as they appear in a modern book on
Mechanics, such as Abrahams and Marsden’s Foundations of Mechanics, or
V. I. Arnold’s Mathematical Methods of Classical Mechanics.

Phase space is an example of a symplectic manifold, a manifold equipped
with a symplectic form — a closed, non-degenerate, 2-form field

ω =
1

2
ωijdx

idxj. (11.89)

Recall that the word closed means that dω = 0. Non-degenerate means that
for any point x the statement that ω(X, Y ) = 0 for all vectors Y ∈ TMx

implies that X = 0 at that point (or equivalently that for all x the matrix
ωij(x) has an inverse ωij(x)).

Given a Hamiltonian function H on our symplectic manifold, we define
a velocity vector-field vH by solving

dH = −ivH
ω = −ω(vH , ) (11.90)

for vH . If the symplectic form is ω = dp1dq1 + dp2dq2 + · · ·+ dpndqn, this is
nothing but a fancy form of Hamilton’s equations. To see this, we write

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi (11.91)

and use the customary notation (q̇i, ṗi) for the velocity-in-phase-space com-
ponents, so that

vH = q̇i
∂

∂qi
+ ṗi

∂

∂pi
. (11.92)

Now we work out

ivH
ω = dpidqi(q̇j∂qj + ṗj∂pj , )

= ṗidqi − q̇idpi, (11.93)

5To convince yourself of this, remember that in quantum mechanics p̂µ = −i~ ∂
∂xµ , and

the gradient of a function is a covector.
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so, comparing coefficients of dpi and dqi on the two sides of dH = −ivH
ω, we

read off

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (11.94)

Darboux’ theorem, which we will not try to prove, says that for any point x
we can always find co-ordinates p, q, valid in some neigbourhood of x, such
that ω = dp1dq1 +dp2dq2 + · · ·dpndqn. Given this fact, it is not unreasonable
to think that there is little to gained by using the abstract differential-form
language. In simple cases this is so, and the traditional methods are fine.
It may be, however, that the neigbourhood of x where the Darboux co-
ordinates work is not the entire phase space, and we need to cover the space
with overlapping p, q co-ordinate charts. Then, what is a p in one chart
will usually be a combination of p’s and q’s in another. In this case, the
traditional form of Hamilton’s equations loses its appeal in comparison to
the co-ordinate-free dH = −ivH

ω.
Given two functions H1, H2 we can define their Poisson bracket {H1, H2}.

Its importance lies in Dirac’s observation that the passage from classical
mechanics to quantum mechanics is accomplished by replacing the Poisson
bracket of two quantities, A and B, with the commutator of the correspond-
ing operators Â, and B̂:

i[Â, B̂] ←→ ~{A,B}+O
(
~2
)
. (11.95)

We define the Poisson bracket by6

{H1, H2} def
=

dH2

dt

∣∣∣∣
H1

= vH1
H2. (11.96)

Now, vH1
H2 = dH2(vH1

), and Hamilton’s equations say that dH2(vH1
) =

ω(vH1
, vH2

). Thus,
{H1, H2} = ω(vH1

, vH2
). (11.97)

The skew symmetry of ω(vH1
, vH2

) shows that despite the asymmetrical ap-
pearance of the definition we have skew symmetry: {H1, H2} = −{H2, H1}.

Moreover, since

vH1
(H2H3) = (vH1

H2)H3 +H2(vH1
H3), (11.98)

6Our definition differs in sign from the traditional one, but has the advantage of mini-
mizing the number of minus signs in subsequent equations.



11.4. PHYSICAL APPLICATIONS 447

the Poisson bracket is a derivation:

{H1, H2H3} = {H1, H2}H3 +H2{H1, H3}. (11.99)

Neither the skew symmetry nor the derivation property require the con-
dition that dω = 0. What does need ω to be closed is the Jacobi identity :

{{H1, H2}, H3}+ {{H2, H3}, H1}+ {{H3, H1}, H2} = 0. (11.100)

We establish Jacobi by using Cartan’s formula in the form

dω(vH1
, vH2

, vH3
) = vH1

ω(vH2
, vH3

) + vH2
ω(vH3

, vH1
) + vH3

ω(vH1
, vH2

)

−ω([vH1
, vH2

], vH3
)− ω([vH2

, vH3
], vH1

)− ω([vH3
, vH1

], vH2
).

(11.101)

It is relatively straight-forward to interpret each term in the first of these
lines as Poisson brackets. For example,

vH1
ω(vH2

, vH3
) = vH1

{H2, H3} = {H1, {H2, H3}}. (11.102)

Relating the terms in the second line to Poisson brackets requires a little
more effort. We proceed as follows:

ω([vH1
, vH2

], vH3
) = −ω(vH3

, [vH1
, vH2

])

= dH3([vH1
, vH2

])

= [vH1
, vH2

]H3

= vH1
(vH2

H3)− vH2
(vH1

H3)

= {H1, {H2, H3}} − {H2, {H1, H3}}
= {H1, {H2, H3}}+ {H2, {H3, H1}}. (11.103)

Adding everything togther now shows that

0 = dω(vH1
, vH2

, vH3
)

= −{{H1, H2}, H3} − {{H2, H3}, H1} − {{H3, H1}, H2}.(11.104)

If we rearrange the Jacobi identity as

{H1, {H2, H3}} − {H2, {H1, H3}} = {{H1, H2}, H3}, (11.105)
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we see that it is equivalent to

[vH1
, vH2

] = v{H1,H2}.

The algebra of Poisson brackets is therefore homomorphic to the algebra of
the Lie brackets. The correspondence is not an isomorphism, however: the
assignment H 7→ vH fails to be one-to-one because constant functions map
to the zero vector field.

Exercise 11.11: Use the infinitesimal homotopy relation, to show that LvH
ω =

0, where vH is the vector field corresponding toH. Suppose now that the phase
space is 2n dimensional. Show that in local Darboux co-ordinates the 2n-form
ωn/n! is, up to a sign, the phase-space volume element dnp dnq. Show that
LvH

ωn/n! = 0 and that this result is Liouville’s theorem on the conservation
of phase-space volume.

The classical mechanics of spin

It is sometimes said in books on quantum mechanics that the spin of an elec-
tron, or other elementary particle, is a purely quantum concept and cannot
be described by classical mechanics. This statement is false, but spin is the
simplest system in which traditional physicist’s methods become ugly and it
helps to use the modern symplectic language. A “spin” S can be regarded
as a fixed length vector that can point in any direction in R3. We will take
it to be of unit length so that its components are

Sx = sin θ cosφ,

Sy = sin θ sinφ,

Sz = cos θ, (11.106)

where θ and φ are polar co-ordinates on the two-sphere S2.
The surface of the sphere turns out to be both the configuration space

and the phase space. In particular the phase space for a spin is not the
cotangent bundle of the configuration space. This has to be so: we learned
from Niels Bohr that a 2n-dimensional phase space contains roughly one
quantum state for every ~n of phase-space volume. A cotangent bundle
always has infinite volume, so its corresponding Hilbert space is necessarily
infinite dimensional. A quantum spin, however, has a finite-dimensional
Hilbert space so its classical phase space must have a finite total volume.
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This finite-volume phase space seems un-natural in the traditional view of
mechanics, but it fits comfortably into the modern symplectic picture.

We want to treat all points on the sphere alike, and so it is natural to
take the symplectic 2-form to be proportional to the element of area. Suppose
that ω = sin θ dθdφ. We could write ω = −d cos θ dφ and regard φ as “q”
and − cos θ as “p” (Darboux’ theorem in action!), but this identification is
singular at the north and south poles of the sphere, and, besides, it obscures
the spherical symmetry of the problem, which is manifest when we think of
ω as d(area).

Let us take our hamiltonian to be H = BSx, corresponding to an applied
magnetic field in the x direction, and see what Hamilton’s equations give for
the motion. First we take the exterior derivative

d(BSx) = B(cos θ cosφdθ − sin θ sinφdφ). (11.107)

This is to be set equal to

−ω(vBSx, ) = vθ(− sin θ)dφ+ vφ sin θdθ. (11.108)

Comparing coefficients of dθ and dφ, we get

v(BSx) = vθ∂θ + vφ∂φ = B(sin φ∂θ + cosφ cot θ∂φ), (11.109)

i.e. B times the velocity vector for a rotation about the x axis. This velocity
field therefore describes a steady Larmor precession of the spin about the
applied field. This is exactly the motion predicted by quantum mechanics.
Similarly, setting B = 1, we find

vSy = − cosφ∂θ + sin φ cot θ∂φ,

vSz = −∂φ. (11.110)

From these velocity fields we can compute the Poisson brackets:

{Sx, Sy} = ω(vSx, vSy)

= sin θdθdφ(sinφ∂θ + cos φ cot θ∂φ,− cosφ∂θ + sinφ cot θ∂φ)

= sin θ(sin2 φ cot θ + cos2 φ cot θ)

= cos θ = Sz.

Repeating the exercise leads to

{Sx, Sy} = Sz,

{Sy, Sz} = Sx,

{Sz, Sx} = Sy. (11.111)
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These Poisson brackets for our classical “spin” are to be compared with the
commutation relations [Ŝx, Ŝy] = i~Ŝz etc. for the quantum spin operators

Ŝi.

11.5 Covariant derivatives

Covariant derivatives are a general class of derivatives that act on sections
of a vector or tensor bundle over a manifold. We will begin by considering
derivatives on the tangent bundle, and in the exercises indicate how the idea
generalizes to other bundles.

11.5.1 Connections

The Lie and exterior derivatives require no structure beyond that which
comes for free with our manifold. Another type of derivative that can act on
tangent-space vectors and tensors is the covariant derivative ∇X ≡ Xµ∇µ.
This requires an additional mathematical object called an affine connection.

The covariant derivative is defined by:
i) Its action on scalar functions as

∇Xf = Xf. (11.112)

ii) Its action a basis set of tangent-vector fields ea(x) = eµa(x)∂µ (a local
frame, or vielbein7) by introducing a set of functions ωijk(x) and setting

∇ek
ej = eiω

i
jk. (11.113)

ii) Extending this definition to any other type of tensor by requiring ∇X

to be a derivation.
iii) Requiring that the result of applying ∇X to a tensor is a tensor of the

same type.
The set of functions ωijk(x) is the connection. In any local co-ordinate chart
we can choose them at will, and different choices define different covariant
derivatives. (There may be global compatibility constraints, however, which
appear when we assemble the charts into an atlas.)

7In practice viel , “many”, is replaced by the appropriate German numeral: ein-, zwei-,
drei-, vier-, fünf-, . . ., indicating the dimension. The word bein means “leg.”
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Warning: Despite having the appearance of one, ωijk is not a tensor. It
transforms inhomogeneously under a change of frame or co-ordinates — see
equation (11.132).

We can, of course, take as our basis vectors the co-ordinate vectors eµ ≡
∂µ. When we do this it is traditional to use the symbol Γ for the co-ordinate
frame connection instead of ω. Thus,

∇µeν ≡ ∇eµeν = eλΓ
λ
νµ. (11.114)

The numbers Γλνµ are often called Christoffel symbols.
As an example consider the covariant derivative of a vector f νeν. Using

the derivation property we have

∇µ(f
νeν) = (∂µf

ν)eν + f ν∇µeν

= (∂µf
ν)eν + f νeλΓ

λ
νµ

= eν
{
∂µf

ν + fλΓνλµ
}
. (11.115)

In the first line we have used the defining property that ∇eµ acts on the
functions f ν as ∂µ, and in the last line we interchanged the dummy indices
ν and λ. We often abuse the notation by writing only the components, and
set

∇µf
ν = ∂µf

ν + fλΓνλµ. (11.116)

Similarly, acting on the components of a mixed tensor, we would write

∇µA
α
βγ = ∂µA

α
βγ + ΓαλµA

λ
βγ − ΓλβµA

α
λγ − ΓλγµA

α
βλ. (11.117)

When we use this notation, we are no longer regarding the tensor components
as “functions.”

Observe that the plus and minus signs in (11.117) are required so that,
for example, the covariant derivative of the scalar function fαg

α is

∇µ (fαg
α) = ∂µ (fαg

α)

= (∂µfα) g
α + fα (∂µg

α)

=
(
∂µfα − fλΓλαµ

)
gα + fα

(
∂µg

α + gλΓαλµ
)

= (∇µfα) g
α + fα (∇µg

α) , (11.118)

and so satisfies the derivation property.
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Parallel transport

We have defined the covariant derivative via its formal calculus properties.
It has, however, a geometrical interpretation. As with the Lie derivative, in
order to compute the derivative along X of the vector field Y , we have to
somehow carry the vector Y (x) from the tangent space TMx to the tangent
space TMx+εX , where we can subtract it from Y (x+εX) . The Lie derivative
carries Y along with the X flow. The covariant derivative implicitly carries
Y by “parallel transport”. If γ : s 7→ xµ(s) is a parameterized curve with
tangent vector Xµ∂µ, where

Xµ =
dxµ

ds
, (11.119)

then we say that the vector field Y (xµ(s)) is parallel transported along the
curve γ if

∇XY = 0, (11.120)

at each point xµ(s). Thus, a vector that in the vielbein frame ei at x has
components Y i will, after being parallel transported to x+ εX, end up com-
ponents

Y i − εωijkY jXk. (11.121)

In a co-ordinate frame, after parallel transport through an infinitesimal dis-
placement δxµ, the vector Y ν∂ν will have components

Y ν → Y ν − ΓνλµY
λδxµ, (11.122)

and so

δxµ∇µY
ν = Y ν(xµ + δxµ)− {Y ν(x)− ΓνλµY

λδxµ}
= δxµ{∂µY ν + ΓνλµY

λ}. (11.123)

Curvature and torsion

As we said earlier, the connection ωijk(x) is not itself a tensor. Two important
quantities which are tensors, are associated with ∇X :

i) The torsion
T (X, Y ) = ∇XY −∇YX − [X, Y ]. (11.124)

The quantity T (X, Y ) is a vector depending linearly on X, Y , so T at
the point x is a map TMx × TMx → TMx, and so a tensor of type
(1,2). In a co-ordinate frame it has components

T λµν = Γλµν − Γλνµ. (11.125)
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ii) The Riemann curvature tensor

R(X, Y )Z = ∇X∇YZ −∇Y∇ZZ −∇[X,Y ]Z. (11.126)

The quantity R(X, Y )Z is also a vector, so R(X, Y ) is a linear map
TMx → TMx, and thus R itself is a tensor of type (1,3). Written out
in a co-ordinate frame, we have

Rα
βµν = ∂µΓ

α
βν − ∂νΓαβµ + ΓαλµΓ

λ
βν − ΓαλνΓ

λ
βµ. (11.127)

If our manifold comes equipped with a metric tensor gµν (and is thus
a Riemann manifold), and if we require both that T = 0 and ∇µgαβ = 0,
then the connection is uniquely determined, and is called the Riemann, or
Levi-Civita, connection. In a co-ordinate frame it is given by

Γαµν =
1

2
gαλ (∂µgλν + ∂νgµλ − ∂λgµν) . (11.128)

This is the connection that appears in General Relativity.
The curvature tensor measures the degree of path dependence in parallel

transport: if Y ν(x) is parallel transported along a path γ : s 7→ xµ(s) from
a to b, and if we deform γ so that xµ(s)→ xµ(s) + δxµ(s) while keeping the
endpoints a, b fixed, then

δY α(b) = −
∫ b

a

Rα
βµν(x)Y

β(x)δxµ dxν . (11.129)

If Rα
βµν ≡ 0 then the effect of parallel transport from a to b will be indepen-

dent of the route taken.
The geometric interpretation of Tµν is less transparent. On a two-dimensional

surface a connection is torsion free when the tangent space “rolls without
slipping” along the curve γ.

Exercise 11.12: Metric compatibility . Show that the Riemann connection

Γαµν =
1

2
gαλ (∂µgλν + ∂νgµλ − ∂λgµν) .

follows from the torsion-free condition Γαµν = Γανµ together with the metric
compatibility condition

∇µgαβ ≡ ∂µ gαβ − Γναµ gνβ − Γναµ gαν = 0.

Show that “metric compatibility” means that that the operation of raising or
lowering indices commutes with covariant derivation.
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Exercise 11.13: Geodesic equation. Let γ : s 7→ xµ(s) be a parametrized
path from a to b. Show that the Euler-Lagrange equation that follows from
minimizing the distance functional

S(γ) =

∫ b

a

√
gµν ẋµẋν ds,

where the dots denote differentiation with respect to the parameter s, is

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0.

Here Γµαβ is the Riemann connection (11.128).

Exercise 11.14: Show that if Aµ is a vector field then, for the Riemann con-
nection,

∇µAµ =
1√
g

∂
√
gAµ

∂xµ
.

In other words, show that

Γααµ =
1√
g

∂
√
g

∂xµ
.

Deduce that the Laplacian acting on a scalar field φ can be defined by setting
either

∇2φ = gµν∇µ∇νφ,
or

∇2φ =
1√
g

∂

∂xµ

(√
ggµν

∂φ

∂xν

)
,

the two definitions being equivalent.

11.5.2 Cartan’s form viewpoint

Let e∗j(x) = e∗jµ(x)dx
µ be the basis of one-forms dual to the vielbein frame

ei(x) = eµi (x)∂µ. Since
δij = e∗i(ej) = e∗jµe

µ
i , (11.130)

the matrices e∗jµ and eµi are inverses of one-another. We can use them to
change from roman vielbein indices to greek co-ordinate frame indices. For
example:

gij = g(ei, ej) = eµi gµνe
ν
j , (11.131)
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and
ωijk = e∗iν(∂µe

ν
j )e

µ
k + e∗iλe

ν
j e
µ
k Γλνµ. (11.132)

Cartan regards the connection as being a matrix Ω of one-forms with
matrix entries ωij = ωijµdx

µ. In this language equation (11.113) becomes

∇Xej = eiω
i
j(X). (11.133)

Cartan’s viewpoint separates off the index µ, which refers to the direction
δxµ ∝ Xµ in which we are differentiating, from the matrix indices i and
j that act on the components of the vector or tensor being differentiated.
This separation becomes very natural when the vector space spanned by the
ei(x) is no longer the tangent space, but some other “internal” vector space
attached to the point x. Such internal spaces are common in physics, an im-
portant example being the “colour space” of gauge field theories. Physicists,
following Hermann Weyl, call a connection on an internal space a “gauge po-
tential.” To mathematicians it is simply a connection on the vector bundle
that has the internal spaces as its fibres.

Cartan also regards the torsion T and curvature R as forms; in this case
vector- and matrix-valued two-forms, respectively, with entries

T i =
1

2
T iµνdx

µdxν, (11.134)

Ri
k =

1

2
Ri

kµνdx
µdxν. (11.135)

In his form language the equations defining the torsion and curvature become
Cartan’s structure equations:

de∗i + ωij ∧ e∗j = T i, (11.136)

and
dωik + ωij ∧ ωjk = Ri

k. (11.137)

The last equation can be written more compactly as

dΩ + Ω ∧Ω = R. (11.138)

From this, by taking the exterior derivative, we obtain the Bianchi identity

dR−R ∧Ω + Ω ∧R = 0. (11.139)
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On a Riemann manifold, we can take the vielbein frame ei to be orthonor-
mal. In this case the roman-index metric gij = g(ei, ej) becomes δij. There
is then no distinction between covariant and contravariant roman indices,
and the connection and curvature forms, Ω, R, being infinitesimal rotations,
become skew symmetric matrices:

ωij = −ωji, Rij = −Rji. (11.140)

11.6 Further exercises and problems

Exercise 11.15: Consider the vector fields X = y∂x, Y = ∂y in R2. Find the
flows associated with these fields, and use them to verify the statements made
in section 11.2.1 about the geometric interpretation of the Lie bracket.

Exercise 11.16: Show that the pair of vector fields Lz = x∂y − y∂x and Ly =
z∂x−x∂z in R3 is in involution wherever they are both non-zero. Show further
that the general solution of the system of partial differential equations

(x∂y − y∂x)f = 0,

(x∂z − z∂x)f = 0,

in R3 is f(x, y, z) = F (x2 + y2 + z2), where F is an arbitrary function.

Exercise 11.17: In the rolling conditions (11.29) we are using the “Y ” conven-
tion for Euler angles. In this convention θ and φ are the usual spherical polar
co-ordinate angles with respect to the space-fixed xyz axes. They specify the
direction of the body-fixed Z axis about which we make the final ψ rotation
— see figure 11.7.

a) Show that (11.29) are indeed the no-slip rolling conditions

ẋ = ωy,

ẏ = −ωx,
0 = ωz,

where (ωx, ωy, ωz) are the components of the ball’s angular velocity in
the xyz space-fixed frame.

b) Solve the three constraints in (11.29) so as to obtain the vector fields
rollx, rolly of (11.30).
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θ

φ

z

y

x

Z

Y

YX

ψ

Figure 11.7: The “Y” convention for Euler angles. The XY Z axes are fixed
to the ball, and the the xyz axes are fixed in space. We first rotate the ball
through an angle φ about the z axis, thus taking y → Y ′, then through θ
about Y ′, and finally through ψ about Z, so taking Y ′ → Y .

c) Show that

[rollx, rolly] = −spinz,

where spinz ≡ ∂φ, corresponds to a rotation about a vertical axis through
the point of contact. This is a new motion, being forbidden by the ωz = 0
condition.

d) Show that

[spinz, rollx] = spinx,

[spinz, rolly] = spiny,

where the new vector fields

spinx ≡ −(rolly − ∂y),
spiny ≡ (rollx − ∂x),

correspond to rotations of the ball about the space-fixed x and y axes
through its centre, and with the centre of mass held fixed.

We have generated five independent vector fields from the original two. There-
fore, by sufficient rolling to-and-fro, we can position the ball anywhere on the
table, and in any orientation.
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Exercise 11.18: The semi-classical dynamics of charge −e electrons in a mag-
netic solid are governed by the equations8

ṙ =
∂ε(k)

∂k
− k̇×Ω,

k̇ = −∂V
∂r
− eṙ×B.

Here k is the Bloch momentum of the electron, r is its position, ε(k) its band
energy (in the extended-zone scheme), and B(r) is the external magnetic field.
The components Ωi of the Berry curvature Ω(k) are given in terms of the
periodic part |u(k)〉 of the Bloch wavefunctions of the band by

Ωi = iεijk
1

2

(〈
∂u

∂kj

∣∣∣∣∣
∂u

∂kk

〉
−
〈
∂u

∂kk

∣∣∣∣∣
∂u

∂kj

〉)
.

The only property of Ω(k) needed for the present problem, however, is that
divkΩ = 0.

a) Show that these equations are Hamiltonian, with

H(r,k) = ε(k) + V (r)

and with

ω = dkidxi −
e

2
εijkBi(r)dxjdxk +

1

2
εijkΩi(k)dkjdkk.

as the symplectic form.9

b) Confirm that the ω defined in part b) is closed, and that the Poisson
brackets are given by

{xi, xj} = − εijkΩk

(1 + eB ·Ω)
,

{xi, kj} = − δij + eBiΩj

(1 + eB ·Ω)
,

{ki, kj} =
εijkeBk

(1 + eB ·Ω)
.

c) Show that the conserved phase-space volume ω3/3! is equal to

(1 + eB ·Ω)d3kd3x,

instead of the näıvely expected d3kd3x.

8M. C. Chang, Q. Niu, Phys. Rev. Lett. 75 (1995) 1348.
9C. Duval, Z. Horváth, P. A. Horváthy, L. Martina, P. C. Stichel, Modern Physics

Letters B 20 (2006) 373.
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The following pair of exercises show that Cartan’s expression for the curva-
ture tensor remains valid for covariant differentiation in “internal” spaces.
There is, however, no natural concept analogous to the torsion tensor for
internal spaces.

Exercise 11.19: Non-abelian gauge fields as matrix-valued forms. In a non-
abelian Yang-Mills gauge theory, such as QCD, the vector potential

A = Aµdx
µ

is matrix-valued, meaning that the components Aµ are matrices which do not
necessarily commute with each other. (These matrices are elements of the Lie
algebra of the gauge group, but we won’t need this fact here.) The matrix-
valued curvature, or field-strength, 2-form F is defined by

F = dA+A2 =
1

2
Fµνdx

µdxν .

Here a combined matrix and wedge product is to be understood:

(A2)ab ≡ Aac ∧Acb = AacµA
c
bν dx

µdxν .

i) Show that A2 = 1
2 [Aµ, Aν ]dx

µdxν , and hence show that

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].

ii) Define the gauge-covariant derivatives

∇µ = ∂µ +Aµ,

and show that the commutator [∇µ,∇ν ] of two of these is equal to Fµν .
Show further that if X, Y are two vector fields with Lie bracket [X,Y ]
and ∇X ≡ Xµ∇µ, then

F (X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

iii) Show that F obeys the Bianchi identity

dF − FA+AF = 0.

Again wedge and matrix products are to be understood. This equation
is the non-abelian version of the source-free Maxwell equation dF = 0.
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iv) Show that, in any number of dimensions, the Bianchi identity implies
that the 4-form tr (F 2) is closed, i.e. that d tr (F 2) = 0. Similarly show
that the 2n-form tr (F n) is closed. (Here the “tr” means a trace over the
roman matrix indices, and not over the greek space-time indices.)

v) Show that,

tr (F 2) = d

{
tr

(
AdA+

2

3
A3

)}
.

The 3-form tr (AdA+ 2
3A

3) is called a Chern-Simons form.

Exercise 11.20: Gauge transformations. Here we consider how the matrix-
valued vector potential transforms when we make a change of gauge. In other
words, we seek the non-abelian version of Aµ → Aµ + ∂µφ.

i) Let g be an invertable matrix, and δg a matrix describing a small change
in g. Show that the corresponding change in the inverse matrix is given
by δ(g−1) = −g−1(δg)g−1.

ii) Show that under the gauge transformation

A→ Ag ≡ g−1Ag + g−1dg,

we have F → g−1Fg. (Hint: The labour is minimized by exploiting the
covariant derivative identity in part ii) of the previous exercise).

iii) Deduce that tr (F n) is gauge invariant .
iv) Show that a necessary condition for the matrix-valued gauge field A to

be “pure gauge”, i.e. for there to be a position dependent matrix g(x)
such that A = g−1dg, is that F = 0, where F is the curvature two-form
of the previous exercise. (If we are working in a simply connected region,
then F = 0 is also a sufficient condition for there to be a g such that
A = g−1dg, but this is a little harder to prove.)

In a gauge theory based on a Lie group G, the matrices g will be elements of
the group, or, more generally, they will form a matrix representation of the
group.



Chapter 12

Integration on Manifolds

One usually thinks of integration as requiring measure – a notion of volume,
and hence of size and length, and so a metric. A metric, however, is not
required for integrating differential forms. They come pre-equipped with
whatever notion of length, area, or volume is required.

12.1 Basic notions

12.1.1 Line integrals

Consider, for example, the form df . We want to try to give a meaning to the
symbol

I1 =

∫

Γ

df. (12.1)

Here, Γ is a path in our space starting at some point P0 and ending at the
point P1. Any reasonable definition of I1 should end up with the answer
that we would immediately write down if we saw an expression like I1 in an
elementary calculus class. This answer is

I1 =

∫

Γ

df = f(P1)− f(P0). (12.2)

No notion of a metric is needed here. There is, however, a geometric picture of
what we have done. We draw in our space the surfaces . . . , f(x) = −1, f(x) =
0, f(x) = 1, . . ., and perhaps fill in intermediate values if necessary. We
then start at P0 and travel from there to P1, keeping track of how many of

461
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these surfaces we pass through (with sign -1, if we pass back through them).
The integral of df is this number. Figure 12.1 illustrates a case in which∫
Γ
df = 5.5− 1.5 = 4.

P1

f=1  2 3 4 5 6

Γ

P0

Figure 12.1: The integral of a one-form

What we have defined is a signed integral. If we parametrize the path as
x(s), 0 ≤ s ≤ 1, and with x(0) = P0, x(1) = P1 we have

I1 =

∫ 1

0

(
df

ds

)
ds (12.3)

where the right hand side is an ordinary one-variable integral. It is important
that we did not write

∣∣ df
ds

∣∣ in this integral. The absence of the modulus sign
ensures that if we partially retrace our route, so that we pass over some part
of Γ three times—twice forward and once back—we obtain the same answer
as if we went only forward.

12.1.2 Skew-symmetry and orientations

What about integrating 2 and 3-forms? Why the skew-symmetry? To answer
these questions, think about assigning some sort of “area” in R2 to the par-
allelogram defined by the two vectors x,y. This is going to be some function
of the two vectors. Let us call it ω(x,y). What properties do we demand of
this function? There are at least three:

i) Scaling: If we double the length of one of the vectors, we expect the area
to double. Generalizing this, we demand that ω(λx, µy) = (λµ)ω(x,y).
(Note that we are not putting modulus signs on the lengths, so we are
allowing negative “areas”, and for the sign to change when we reverse
the direction of a vector.)
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ii) Additivity: The drawing in figure 12.2 shows that we ought to have

ω(x1 + x2,y) = ω(x1,y) + ω(x2,y), (12.4)

similarly for the second slots.

x

x

y

x+x21

2

1

Figure 12.2: Additivity of ω(x,y).

iii) Degeneration: If the two sides coincide, the area should be zero. Thus
ω(x,x) = 0.

The first two properties, show that ω should be a multilinear form. The
third shows that it must be skew-symmetric:

0 = ω(x + y,x + y) = ω(x,x) + ω(x,y) + ω(y,x) + ω(y,y)

= ω(x,y) + ω(y,x). (12.5)

So we have
ω(x,y) = −ω(y,x). (12.6)

These are exactly the properties possessed by a 2-form. Similarly, a 3-form
outputs a volume element.

These volume elements are oriented . Remember that an orientation of a
set of vectors is a choice of order in which to write them. If we interchange
two vectors, the orientation changes sign. We do not distinguish orientations
related by an even number of interchanges. A p-form assigns a signed (±)
p-dimensional volume element to an orientated set of vectors. If we change
the orientation, we change the sign of the volume element.

Orientable and non-orientable manifolds

In the classic video game Asteroids, you could select periodic boundary con-
ditions so that your spaceship would leave the right-hand side of the screen
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a) b)

T RP2 2

Figure 12.3: A spaceship leaves one side of the screen and returns on the other
with a) torus boundary conditions, b) projective-plane boundary conditions.
Observe how, in case b), the spaceship has changed from being left handed
to being right-handed.

and re-appear on the left. The game universe was topologically a torus T 2.
Suppose that we modify the game code so that each bit of the spaceship
re-appears at the point diametrically opposite the point it left. This does not
seem like a drastic change until you play a game with a left-hand-drive (US)
spaceship. If you send the ship off the screen and watch as it re-appears on
the opposite side, you will observe the ship transmogrify into a right-hand-
drive (British) craft. If we ourselves made such an excursion, we would end
up starving to death because all our left-handed digestive enzymes would
have been converted to right-handed ones. The game-space we have con-
structed is topologically equivalent to the real projective plane RP 2. The
lack of a global notion of being left or right-handed makes it an example of
a non-orientable manifold.

A manifold or surface is orientable if we can choose a global orientation
for the tangent bundle. The simplest way to do this would be to find a
smoothly varying set of basis-vector fields, eµ(x), on the surface and define
the orientation by chosing an order, e1(x), e2(x), . . . , ed(x), in which to write
them. In general, however, a globally-defined smooth basis will not exist
(try to construct one for the two-sphere, S2!). We will, however, be able

to find a continously varying orientated basis e
(i)
1 (x), e

(i)
2 (x), . . . , e

(i)
d (x) for

each member, labelled by (i), of an atlas of coordinate charts. We should
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choose the charts so that the intersection of any pair forms a connected set.
Assuming that this has been done, the orientation of pair of overlapping
charts is said to coincide if the determinant, detA, of the map e

(i)
µ = Aνµe

(j)
ν

relating the bases in the region of overlap, is positive.1 If bases can be chosen
so that all overlap determinants are positive, the manifold is orientable and
the selected bases define the orientation. If bases cannot be so chosen, the
manifold or surface is non-orientable.

Exercise 12.1: Consider a three-dimensional ball B3 with diametrically oppo-
site points of its surface identified. What would happen to an aircraft flying
through the surface of the ball? Would it change handedness, turn inside out,
or simply turn upside down? Is this ball an orientable 3-manifold?

12.2 Integrating p-forms

A p-form is naturally integrated over an oriented p-dimensional surface or
manifold. Rather than start with an abstract definition, we will first explain
this pictorially, and then translate the pictures into mathematics.

12.2.1 Counting boxes

To visualize integrating 2-forms let us try to make sense of
∫

Ω

dfdg, (12.7)

where Ω is an oriented two-dimensional surface embedded in three dimen-
sions. The surfaces f = const. and g = const. break the space up into a
series of tubes. The oriented surface Ω cuts these tubes in a two-dimensional
mesh of (oriented) parallelograms as shown in 12.4.

We define an integral by counting how many parallelograms (including
fractions of a parallelogram) there are, taking the number to be positive if the
parallelogram given by the mesh is oriented in the same way as the surface,
and negative otherwise. To compute

∫

Ω

h dfdg (12.8)

1The determinant will have the same sign in the entire overlap region. If it did not,
continuity and connectedness would force it to be zero somewhere, implying that one of
the putative bases was not linearly independent there
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f=1
f=2

f=3

g=2

g=3

g=4

Ω

Figure 12.4: The integration region cuts the tubes into parallelograms.

we do the same, but weight each parallelogram, by the value of h at that
point. The integral

∫
Ω
fdxdy, over a region in R2 thus ends up being the

number we would compute in a multivariate calculus class, but the integral∫
Ω
fdydx, would be minus this. Similarly we compute

∫

Ξ

df dg dh (12.9)

of the 3-form df dg dh over the oriented volume Ξ, by counting how many
boxes defined by the level surfaces of f, g, h, are included in Ξ.

An equivalent way of thinking of the integral of a p-form uses its definition
as a skew-symmetric p-linear function. Accordingly we evaluate

I2 =

∫

Ω

ω, (12.10)

where ω is a 2-form, and Ω is an oriented 2-surface, by plugging vectors into
ω. In figure 12.5 we show a tiling the surface Ω by collection of (infinitesimal)
parallelograms, each defined by an oriented pair of vector v1 and v2 that lie
in the tangent space at one corner point x of the parallelogram. At each
point x, we insert these vectors into the 2-form (in the order specified by
their orientation) to get ω(v1,v2), and then sum the resulting numbers over
all the parallelograms to get I2. Similarly, we integrate a p-form over an
oriented p-dimensional region by decomposing the region into infinitesimal
p-dimensional oriented parallelepipeds, inserting their defining vectors into
the form, and summing their contributions.
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Ω
x

1v2 v

Figure 12.5: A tiling of Ω with small oriented parallelograms.

12.2.2 Relation to conventional integrals

In the previous section we explained how to think pictorially about the inte-
gral. Here, we interpret the pictures as multi-variable calculus.

We begin by motivating our recipe by considering a change of variables
in an integral in R2. Suppose we set x1 = x(y1, y2), x2 = x2(y1, y2) in

I4 =

∫

Ω

f(x)dx1dx2, (12.11)

and use

dx1 =
∂x1

∂y1
dy1 +

∂x1

∂y2
dy2,

dx2 =
∂x2

∂y1
dy1 +

∂x2

∂y2
dy2. (12.12)

Since dy1dy2 = −dy2dy1, we have

dx1dx2 =

(
∂x1

∂y1

∂x2

∂y2
− ∂x2

∂y1

∂x1

∂y2

)
dy1dy2. (12.13)

Thus ∫

Ω

f(x)dx1dx2 =

∫

Ω′

f(x(y))
∂(x1, x2)

∂(y1, y2)
dy1dy2 (12.14)

where ∂(x1,y1)
∂(y1 ,y2)

is the Jacobian determinant

∂(x1, y1)

∂(y1, y2)
=

(
∂x1

∂y1

∂x2

∂y2
− ∂x2

∂y1

∂x1

∂y2

)
, (12.15)
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and Ω′ is the integration region in the new variables. There is therefore no
need to include an explicit Jacobian factor when changing variables in an
integral of a p-form over a p-dimensional space—it comes for free with the
form.

This observation leads us to the general prescription: To evaluate
∫
Ω
ω,

the integral of a p-form

ω =
1

p!
ωµ1µ2...µpdx

µ1 · · ·dxµp (12.16)

over the region Ω of a p dimensional surface in a d ≥ p dimensional space,
substitute a paramaterization

x1 = x1(ξ1, ξ2, . . . , ξp),
...

xd = xd(ξ1, ξ2, . . . , ξp), (12.17)

of the surface into ω. Next, use

dxµ =
∂xµ

∂ξi
dξi, (12.18)

so that

ω → ω(x(ξ))i1i2...ip
∂xi1

∂ξ1
· · · ∂x

ip

∂ξp
dξ1 · · ·dξp, (12.19)

which we regard as a p-form on Ω. (Our customary 1/p! is absent here
because we have chosen a particular order for the dξ’s.) Then

∫

Ω

ω
def
=

∫

Ω

ω(x(ξ))i1i2...ip
∂xi1

∂ξ1
· · · ∂x

ip

∂ξp
dξ1 · · ·dξp, (12.20)

where the right hand side is an ordinary multiple integral. This recipe is a
generalization of the formula (12.3), which reduced the integral of a one-form
to an ordinary single-variable integral. Because the appropriate Jacobian
factor appears automatically, the numerical value of the integral does not
depend on the choice of parameterization of the surface.
Example: To integrate the 2-form x dydz over the surface of a two dimen-
sional sphere of radius R, we parametrize the surface with polar angles as

x = R sin φ sin θ,

y = R cosφ sin θ,

z = R cos θ. (12.21)
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Then

dy = −R sinφ sin θdφ+R cosφ cos θdθ,

dz = −R sin θdθ, (12.22)

and so
x dydz = R3sin2φ sin3θ dφdθ. (12.23)

We therefore evaluate
∫

sphere

x dydz = R3

∫ 2π

0

∫ π

0

sin2φ sin3θ dφdθ

= R3

∫ 2π

0

sin2φ dφ

∫ π

0

sin3θ dθ

= R3π

∫ 1

−1

(1− cos2 θ) d cos θ

=
4

3
πR3. (12.24)

The volume form

Although we do not need any notion of length to integrate a differential form,
a p-dimensional surface embedded or immersed in Rd does inherit a distance
scale from the Rd Euclidean metric, and this can be used to define the area
or volume of the surface. When the Cartesian co-ordinates x1, . . . , xd of
a point in the surface are given as xa(ξ1, . . . , ξp), where the ξ1, . . . , ξp, are
co-ordinates on the surface, then the inherited, or induced , metric is

“ds2 ” ≡ g( , ) ≡ gµν dξ
µ ⊗ dξν, (12.25)

where

gµν =

d∑

a=1

∂xa

∂ξµ
∂xa

∂ξν
. (12.26)

The volume form associated with the induced metric is

d(Volume) =
√
g dξ1 · · ·dξp, (12.27)

where g = det (gµν). The integral of this p-form over a p-dimensional region
gives the area, or p-dimensional volume, of the region.
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If we change the parameterization of the surface from ξµ to ζµ, neither
the dξ1 · · ·dξp nor the

√
g are separately invariant, but the Jacobian arising

from the change of the p-form, dξ1 · · ·dξp → dζ1 · · ·dζp cancels against the
factor coming from the transformation law of the metric tensor gµν → g′µν,
leading to √

g dξ1 · · ·dξp =
√
g′dζ1 · · ·dζp. (12.28)

The volume of the surface is therefore independent of the co-ordinate system
used to evaluate it.
Example: The induced metric on the surface of a unit-radius two-sphere
embedded in R3, is, expressed in polar angles,

“ds2 ” = g( , ) = dθ ⊗ dθ + sin2θ dφ⊗ dφ.
Thus

g =

∣∣∣∣
1 0
0 sin2 θ

∣∣∣∣ = sin2 θ,

and
d(Area) = sin θ dθdφ.

12.3 Stokes’ theorem

All of the integral theorems of classical vector calculus are special cases of
Stokes’ Theorem: If ∂Ω denotes the (oriented) boundary of the (oriented)
region Ω, then

∫

Ω

dω =

∫

∂Ω

ω

We will not provide a detailed proof. Apart from notation, it would
parallel the proof of Stokes’ or Green’s theorems in ordinary vector calculus:
The exterior derivative d has been defined so that the theorem holds for
an infinitesimal square, cube, or hypercube. We therefore divide Ω into
many such small regions. We then observe that the contributions of the
interior boundary faces cancel because all interior faces are shared between
two adjacent regions, and so occur twice with opposite orientations. Only
the contribution of the outer boundary remains.
Example: If Ω is a region of R2, then from

d

[
1

2
(x dy − y dx)

]
= dxdy,
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1−cos 0

0θ

θ

Figure 12.6: Sphere and circumscribed cylinder.

we have

Area (Ω) =

∫

Ω

dxdy =
1

2

∫

∂Ω

(x dy − y dx).

Example: Again, if Ω is a region of R2, then from d[r2dθ/2] = r drdθ we have

Area (Ω) =

∫

Ω

r drdθ =
1

2

∫

∂Ω

r2dθ.

Example: If Ω is the interior of a sphere of radius R, then

∫

Ω

dxdydz =

∫

∂Ω

x dydz =
4

3
πR3.

Here we have referred back to (12.24) to evaluate the surface integral.
Example: Archimedes’ tombstone.
Archimedes of Syracuse gave instructions that his tombstone should have
displayed on it a diagram consisting of a sphere and circumscribed cylinder.
Cicero, while serving as quæstor in Sicily, had the stone restored.2 Cicero
himself suggested that this act was the only significant contribution by a
Roman to the history of pure mathematics. The carving on the stone was to
commemorate Archimedes’ results about the areas and volumes of spheres,

2Marcus Tullius Cicero, Tusculan Disputations , Book V, Sections 64− 66
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including the one illustrated in figure 12.6, that the area of the spherical cap
cut off by slicing through the cylinder is equal to the area cut off on the
cylinder.

We can understand this result via Stokes’ theorem: If the two-sphere S2

is parametrized by spherical polar co-ordinates θ, φ, and Ω is a region on the
sphere, then

Area (Ω) =

∫

Ω

sin θdθdφ =

∫

∂Ω

(1− cos θ)dφ,

and applying this to the figure, where the cap is defined by θ < θ0 gives

Area (cap) = 2π(1− cos θ0)

which is indeed the area cut off on the cylinder.

Exercise 12.2: The sphere Sn can be thought of as the locus of points in Rn+1

obeying
∑n+1

i=1 (xi)2 = 1. Use its invariance under orthogonal transformations
to show that the element of surface “volume” of the n-sphere can be written
as

d(Volume on Sn) =
1

n!
εα1α2...αn+1

xα1 dxα2 . . . dxαn+1 .

Use Stokes’ theorem to relate the integral of this form over the surface of the
sphere to the volume of the solid unit sphere. Confirm that we get the correct
proportionality between the volume of the solid unit sphere and the volume
or area of its surface.

12.4 Applications

We now know how to integrate forms. What sort of forms should we seek
to integrate? For a physicist working with a classical or quantum field, a
plentiful supply of intesting forms is obtained by using the field to pull back
geometric objects.

12.4.1 Pull-backs and push-forwards

If we have a map φ from a manifold M to another manifold N , and we choose
a point x ∈ M , we can push forward a vector from TMx to TNφ(x), in the
obvious way (map head-to-head and tail-to-tail). This map is denoted by
φ∗ : TMx → TNφ(x).
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x

x+X
X Xφ

*φ(x)

φ(x+X)

M N

φ

Figure 12.7: Pushing forward a vector X from TMx to TNφ(x).

If the vector X has components Xµ and the map takes the point with co-
ordinates xµ to one with coordinates ξµ(x), the vector φ∗X has components

(φ∗X)µ =
∂ξµ

∂xν
Xν. (12.29)

This looks like the transformation formula for contravariant vector compo-
nents under a change of coordinate system. What we are doing here is
conceptually different, however. A change of co-ordinates produces a passive
transformation — i.e. a new description for an unchanging vector. A push
forward is an active transformation — we are changing a vector into differ-
ent one. Furthermore, the map from M → N is not being assumed to be
one-to-one, so, contrary to the requirement imposed on a co-ordinate trans-
formation, it may not be possible to invert the functions ξµ(x) and write the
xν ’s as functions of the ξµ’s.

While we can push forward individual vectors, we cannot always push
forward a vector field X from TM to TN . If two distinct points x1 and x2,
should happen to map to the same point ξ ∈ N , and X(x1) 6= X(x2), we
would not know whether to chose φ∗[X(x1)] or φ∗[X(x2)] as [φ∗X](ξ). This
problem does not occur for differential forms. A map φ : M → N induces a
natural, and always well-defined, pull-back map φ∗ :

∧p (T ∗N)→ ∧p (T ∗M)
which works as follows: Given a form ω ∈ ∧p (T ∗N), we define φ∗ω as a form
on M by specifying what we get when we plug the vectors X1, X2, . . . , Xp ∈
TM into it. We evaluate the form at x ∈ M by pushing the vectors Xi(x)
forward from TMx to TNφ(x), plugging them into ω at φ(x) and declaring
the result to be the evaluation of φ∗ω on the Xi at x. Symbolically

[φ∗ω](X1, X2, . . . , Xp) = ω(φ∗X1, φ∗X2, . . . , φ∗Xp). (12.30)
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This may seem rather abstract, but the idea is in practice quite simple:
If the map takes x ∈M → ξ(x) ∈ N , and if

ω =
1

p!
ωi1...ip(ξ)dξ

i1 . . . dξip, (12.31)

then

φ∗ω =
1

p!
ωi1i2...ip[ξ(x)]dξ

i1(x)dξi2(x) · · ·dξip(x)

=
1

p!
ωi1i2...ip[ξ(x)]

∂ξi1

∂xµ1

∂ξi2

∂xµ2
· · · ∂ξ

ip

∂xµ1
dxµp · · ·dxµp . (12.32)

Computationally, the process of pulling back a form is so transparent that
it easy to confuse it with a simple change of variable. That it is not the same
operation will become clear in the next few sections where we consider maps
that are many-to-one.

Exercise 12.3: Show that the operation of taking an exterior derivative com-
mutes with a pull back:

d [φ∗ω] = φ∗(dω).

Exercise 12.4: If the map φ : M → N is invertible then we may push forward
a vector field X on M to get a vector field φ∗X on N . Show that

LX [φ∗ω] = φ∗ [Lφ∗Xω] .

Exercise 12.5: Again assume that φ : M → N is invertible. By using the co-
ordinate expressions for the Lie bracket along with the effect of a push-forward,
show that if X, Y are vector fields on TM then

φ∗([X,Y ]) = [φ∗X,φ∗Y ],

as vector fields on TN .

12.4.2 Spin textures

As an application of pull-backs we consider some of the topological aspects
of spin textures which are fields of unit vectors n, or “spins”, in two or three
dimensions.
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Consider a smooth map ϕ : R2 → S2 that assigns x 7→ n(x), where n is a
three-dimensional unit vector whose tip defines a point on the 2-sphere S2.
A physical example of such an n(x) would be the local direction of the spin
polarization in a ferromagnetically-coupled two-dimensional electron gas.

In terms of n, the area 2-form on the 2-sphere becomes

Ω =
1

2
n · (dn× dn) ≡ 1

2
εijkn

idnjdnk. (12.33)

The ϕ map pulls this area-form back to

F ≡ ϕ∗Ω =
1

2
(εijkn

i∂µn
j∂νn

k)dxµdxν = (εijkn
i∂1n

j∂2n
k) dx1dx2 (12.34)

which is a differential form in R2. We will call it the topological charge
density . It measures the area on the two-sphere swept out by the n vectors
as we explore a square in R2 of side dx1 by dx2.

Suppose now that the n tends the same unit vector n(∞) at large distance
in all directions. This allows us to think of “infinity” as a single point, and
the assignment ϕ : x 7→ n(x) as a map from S2 to S2. Such maps are
characterized topologically by their “topological charge,” or winding number
N which counts the number of times the image of the originating x sphere
wraps round the target n-sphere. A mathematician would call this number
the Brouwer degree of the map ϕ. It is intuitively plausible that a continuous
map from a sphere to itself will wrap a whole number of times, and so we
expect

N =
1

4π

∫

R2

{
εijkn

i∂1n
j∂2n

k
}
dx1dx2, (12.35)

to be an integer. We will soon show that this is indeed so, but first we will
demonstrate that N is a topological invariant .

In two dimensions the form F = ϕ∗Ω is automatically closed because
the exterior derivative of any two-form is zero — there being no three-forms
in two dimensions. Even if we consider a field n(x1, . . . , xm) in m > 2
dimensions, however, we still have dF = 0. This is because

dF =
1

2
εijk∂σn

i∂µn
j∂νn

kdxσdxµdxν. (12.36)

If we plug infinitesimal vectors into the dxµ to get their components δxµ,
we have to evaluate the triple-product of three vectors δni = ∂µn

iδxµ, each
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of which is tangent to the two-sphere. But the tangent space of S2 is two-
dimensional, so any three tangent vectors t1, t2, t3, are linearly dependent
and their triple-product t1 · (t2 × t3) is therefore zero.

Although it is closed, F = ϕ∗Ω will not generally be the d of a globally
defined one-form. Suppose, however, that we vary the map so that n(x) →
n(x) + δn(x). The corresponding change in the topological charge density is

δF = ϕ∗[n · (d(δn)× dn)], (12.37)

and this variation can be written as a total derivative:

δF = d{ϕ∗[n · (δn× dn)]} ≡ d{εijkniδnj∂µnkdxµ}. (12.38)

In these manipulations we have used δn · (dn×dn) = dn · (δn×dn) = 0, the
triple-products being zero for the linear-dependence reason adduced earlier.
From Stokes’ theorem, we have

δN =

∫

S2

δF =

∫

∂S2

εijkn
iδnj∂µn

kdxµ. (12.39)

Because the sphere has no boundary, i.e. ∂S2 = ∅, the last integral vanishes,
so we conclude that δN = 0 under any smooth deformation of the map
n(x). This is what we mean when we say that N is a topological invariant.
Equivalently, on R2, with n constant at infinity, we have

δN =

∫

R2

δF =

∫

Γ

εijkn
iδnj∂µn

kdxµ, (12.40)

where Γ is a curve surrounding the origin at large distance. Again δN = 0,
this time because ∂µn

k = 0 everywhere on Γ.
In some physical applications, the field n winds in localized regions called

skyrmions. These knots in the spin field behave very much as elementary
particles, retaining their identity as they move through the system. The
winding number counts how many skyrmions (minus the number of anti-
skyrmions, which wind with opposite orientation) there are. To construct
a smooth multi-skyrmion map ϕ : R2 → S2 with positive winding number
N , take a set of N + 1 complex numbers λ, a1, . . . , aN and another set of N
complex numbers b1, . . . , bN such that no b coincides with any a. Then put

eiφ tan
θ

2
= λ

(z − a1) . . . (z − aN )

(z − b1) . . . (z − bN )
(12.41)
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where z = x1 + ix2, and θ and φ are spherical polar co-ordinates specifying
the direction n at the point (x1, x2). At the points z = ai the vector n points
straight up, and at the points z = bi it points straight down. You will show in
exercise 12.12 that this particular n-field configuration minimizes the energy
functional

E[n] =
1

2

∫
(∂1n · ∂1n + ∂2n · ∂2n) dx1dx2

=
1

2

∫ (
|∇n1|2 + |∇n2|2 + |∇n3|2

)
dx1dx2 (12.42)

for the given winding number N . In the next section we will explain the
geometric origin of the mysterious combination eiφ tan θ/2.

12.4.3 The Hopf map

You may recall that in section 10.2.3 we defined complex projective space
CP n to be the set of rays in a complex n + 1 dimensional vector space.
A ray is an equivalence classes of vectors [ζ1, ζ2, . . . , ζn+1], where the ζi are
not all zero, and where we do not distinguish between [ζ1, ζ2, . . . , ζn+1] and
[λζ1, λζ2, . . . , λζn+1] for non-zero complex λ. The space of rays is a 2n-
dimensional real manifold: in a region where ζn+1 does not vanish, we can
take as co-ordinates the real numbers ξ1, . . . , ξn, η1, . . . , ηn where

ξ1 + iη1 =
ζ1
ζn+1

, ξ2 + iη2 =
ζ2
ζn+1

, . . . , ξn + iηn =
ζn
ζn+1

. (12.43)

Similar co-ordinate charts can be constructed in the regions where other ζi
are non-zero. Every point in CP n lies in at least one of these co-ordinate
charts, and the co-ordinate transformation rules for going from one chart to
another are smooth.

The simplest complex projective space, CP 1, is the real two-sphere S2 in
disguise. This rather non-obvious fact is revealed by the use of a stereographic
map to make the equivalence class [ζ1, ζ2] ∈ CP 1 correspond to a point n on
the sphere. When ζ1 is non zero, the class [ζ1, ζ2] is uniquely determined by
the ratio ζ2/ζ1 = |ζ2/ζ1|eiφ, which we plot on the complex plane. We think
of this copy of C as being the x, y plane in R3. We then draw a straight line
connecting the plotted point to the south pole of a unit sphere circumscribed
about the origin in R3. The point where this line (continued, if necessary)
intersects the sphere is the tip of the unit vector n.
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Figure 12.8: Two views of the stereographic map between the two-sphere
and the complex plane. The point ζ = ζ2/ζ1 ∈ C corresponds to the unit
vector n ∈ S2.

If ζ2 were zero, n would end up at the north pole, where the R3 co-ordinate
z takes the value z = 1. If ζ1 goes to zero with ζ2 fixed, n moves smoothly to
the south pole z = −1. We therefore extend the definition of our map to the
case ζ1 = 0 by making the equivalence class [0, ζ2] correspond to the south
pole. We can find an explicit formula for this map. Figure 12.8 shows that
ζ2/ζ1 = eiφ tan θ/2, and this relation suggests the use of the “t”-substitution
formulæ:

sin θ =
2t

1 + t2
, cos θ =

1− t2
1 + t2

, (12.44)

where t = tan θ/2. Since the x, y, z components of n are given by

n1 = sin θ cosφ,

n2 = sin θ sinφ,

n3 = cos θ, (12.45)

we find that

n1 + in2 =
2(ζ2/ζ1)

1 + |ζ2/ζ1|2
, n3 =

1− |ζ2/ζ1|2
1 + |ζ2/ζ1|2

. (12.46)

We can multiply through by |ζ1|2 = ζ1ζ1, and so write this correspondence
in a more symmetrical manner:

n1 =
ζ1ζ2 + ζ2ζ1
|ζ1|2 + |ζ2|2

,
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n2 =
1

i

(
ζ1ζ2 − ζ2ζ1
|ζ1|2 + |ζ2|2

)
,

n3 =
|ζ1|2 − |ζ2|2
|ζ1|2 + |ζ2|2

. (12.47)

This last form can be conveniently expressed in terms of the Pauli sigma
matrices

σ̂1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
. (12.48)

as

n1 = (z1, z2)

(
0 1
1 0

)(
z1
z2

)
,

n2 = (z1, z2)

(
0 −i
i 0

)(
z1
z2

)
,

n3 = (z1, z2)

(
1 0
0 −1

)(
z1
z2

)
, (12.49)

where (
z1
z2

)
=

1√
|ζ1|2 + |ζ2|2

(
ζ1
ζ2

)
(12.50)

is a normalized 2-vector, which we think of as a spinor .
The correspondence CP 1 ' S2 now has a quantum-mechanical interpre-

tation: Any unit three-vector n can be obtained as the expectation value
of the σ̂ matrices in a normalized spinor state. Conversely, any normalized
spinor ψ = (z1, z2)

T gives rise to a unit vector via

ni = ψ†σ̂iψ. (12.51)

Now, since

1 = |z1|2 + |z2|2, (12.52)

the normalized spinor can be thought of as defining a point in S3. This
means that the one-to-one correspondence [z1, z2] ↔ n also gives rise to a
map from S3 → S2. This is called the Hopf map:

Hopf : S3 → S2. (12.53)
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The dimension reduces from three to two, so the Hopf map cannot be one-to-
one. Even after we have normalized [ζ1, ζ2], we are still left with a choice of
overall phase. Both (z1, z2) and (z1e

iθ, z2e
iθ), although distinct points in S3,

correspond to the same point in CP 1, and hence in S2. The inverse image of
a point in S2 is a geodesic circle in S3. Later, we will show that any two such
geodesic circles are linked, and this makes the Hopf map topologically non-
trivial, in that it cannot be continuously deformed to a constant map—i.e. to
a map that takes all of S3 to a single point in S2.

Exercise 12.6: We have seen that the stereographic map relates the point with
spherical polar co-ordinates θ, φ to the complex number

ζ = eiφ tan θ/2.

We can therefore set ζ = ξ + iη and take ξ, η as stereographic co-ordinates on
the sphere. Show that in these co-ordinates the sphere metric is given by

g( , ) ≡ dθ ⊗ dθ + sin2θ dφ⊗ dφ
=

2

(1 + |ζ|2)2 (dζ ⊗ dζ + dζ ⊗ dζ)

=
4

(1 + ξ2 + |η|2)2 (dξ ⊗ dξ + dη ⊗ dη),

and that the area 2-form becomes

Ω ≡ sin θ dθ ∧ dφ
=

2i

(1 + |ζ|2)2 dζ ∧ dζ

=
4

(1 + ξ2 + η2)2
dξ ∧ dη. (12.54)

12.4.4 Homotopy and the Hopf map

We can use the Hopf map to factor the map ϕ : x 7→ n(x) via the three-
sphere by specifying the spinor ψ at each point, instead of the vector n, and
so mapping indirectly

ϕ : R2 ψ→ S3 Hopf→ S2.

It might seem that for a given spin-field n(x) we can choose the overall phase
of ψ(x) ≡ (z1(x), z2(x))

T as we like, however, if we demand that the zi’s
be continuous functions of x then there is a rather non-obvious topological
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restriction which has important physical consequences. To see how this comes
about, we first express the winding number in terms of the zi. We find (after
a page or two of algebra) that

F = (εijkn
i∂1n

j∂2n
k) dx1dx2 =

2

i

2∑

i=1

(∂1zi∂2zi − ∂2zi∂1zi) dx
1dx2, (12.55)

and so the topological charge N is given by

N =
1

2πi

∫ 2∑

i=1

(∂1zi∂2zi − ∂2zi∂1zi) dx
1dx2. (12.56)

Now, when written in terms of the zi variables, the form F becomes a total
derivative:

F =
2

i

2∑

i=1

(∂1zi∂2zi − ∂2zi∂1zi) dx
1dx2

= d

{
1

i

2∑

i=1

(zi∂µzi − (∂µzi)zi) dx
µ

}
. (12.57)

Furthermore, because n is fixed at large distance, we have (z1, z2) = eiθ(c1, c2)
near infinity, where c1, c2 are constants with |c1|2 + |c2|2 = 1. Thus, near
infinity,

1

2i

2∑

i=1

(zi∂µzi − (∂µzi)zi)→ (|c1|2 + |c2|2)dθ = dθ. (12.58)

We combine this observation with Stokes’ theorem to obtain

N =
1

2πi

∫

Γ

1

2

2∑

i=1

(zi∂µzi − (∂µzi)zi) dx
µ =

1

2π

∫

Γ

dθ. (12.59)

Here, as in the previous section, Γ is a curve surrounding the origin at large
distance. Now

∫
dθ is the total change in θ as we circle the boundary. While

the phase eiθ has to return to its original value after a round trip, the angle
θ can increase by an integer multiple of 2π. The winding number

∮
dθ/2π

can therefore be non-zero, but must be an integer.
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We have uncovered the rather surprising fact that the topological charge
of the map ϕ : S2 → S2 is equal to the winding number of the phase angle
θ at infinity. This is the topological restriction referred to in the preced-
ing paragraph. As a byproduct, we have confirmed our conjecture that the
topological charge N is an integer. The existence of this integer invariant
shows that the smooth maps ϕ : S2 → S2 fall into distinct homotopy classes
labelled by N . Maps with different values of N cannot be continuously de-
formed into one another, and, while we have not shown that it is so, two
maps with the same value of N can be deformed into each other.

Maps that can be continuously deformed one into the other are said to
be homotopic. The set of homotopy classes of the maps of the n-sphere into
a manifold M is denoted by πn(M). In the present case M = S2. We are
therefore claiming that

π2(S
2) = Z, (12.60)

where we are identifying the homotopy class with its winding number N ∈ Z.

12.4.5 The Hopf index

We have so far discussed maps from S2 to S2. It is perhaps not too surprising
that such maps are classified by a winding number. What is rather more
surprising is that maps ϕ : S3 → S2 also have an associated topological
number. If we continue to assume that n tends to a constant vector at
infinity so that we can think of R3 ∪{∞} as being S3, this number will label
the homotopy classes π3(S

2) of fields of unit vectors n in three dimensions.
We will think of the third dimension as being time. In this situation an
interesting set of n fields to consider are the n(x, t) corresponding moving
skyrmions. The world lines of these skyrmions will be tubes outside of which
n is constant, and such that on any slice through the tube, n will cover the
target n-sphere once.

To motivate the formula we will find for the topological number, we begin
with a problem from magnetostatics. Suppose we are given a cable originally
made up of a bundle of many parallel wires. The cable is then twisted N
times about its axis and bent into a closed loop, the end of each individual
wire being attached to its begining to make a continuous circuit. A current I
flows in the cable in such a manner that each individual wire carries only an
infinitesimal part δIi of the total. The sense of the current is such that as we
flow with it around the cable each wire wraps N times anticlockwise about
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I

Figure 12.9: A twisted cable with N = 5.

all the others. The current produces a magnetic field B. Can we determine
the integer twisting number N knowing only this B field?
The answer is yes. We use Ampère’s law in integral form,

∮

Γ

B · dr = (current encircled by Γ). (12.61)

We also observe that the current density ∇ × B = J at a point is directed
along the tangent to the wire passing through that point. We therefore
integrate along each individual wire as it encircles the others, and sum over
the wires to find

NI2 =
∑

wires i

δIi

∮
B · dri =

∫
B · J d3x =

∫
B · (∇×B) d3x. (12.62)

We now apply this insight to our three-dimensional field of unit vectors n(x).
The quantity playing the role of the current density J is the topological cur-
rent

Jσ =
1

2
εσµνεijkn

i∂µn
j∂νn

k. (12.63)

Observe that div J = 0. This is simply another way of saying that the 2-form
F = ϕ∗Ω is closed.
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The flux of J through a surface S is

I =

∫

S

J · dS =

∫

S

F (12.64)

and this is the area of the spherical surface covered by the n’s. A skyrmion,
for example, has total topological current I = 4π, the total surface area of
the 2-sphere. The skyrmion world-line will play the role of the cable, and
the inverse images in R3 of points on S2 correspond to the individual wires.

If form language, the field corresponding to B can be any one-form A
such that dA = F . Thus

NHopf =
1

I2

∫

R3

B · J d3x =
1

16π2

∫

R3

AF (12.65)

will be an integer. This integer is the Hopf linking number, or Hopf index,
and counts the number of times the skyrmion twists before it bites its tail to
form a closed-loop world-line.

There is another way of obtaining this formula, and of understanding the
number 16π2. We observe that the two-form F and the one-form A are the
pull-back from S3 to R3 along ψ of the forms

F =
1

i

2∑

i=1

(dzidzi − dzidzi) ,

A =
1

i

2∑

i=1

(zidzi − zidzi) , (12.66)

respectively. If we substitute z1,2 = ξ1,2 + iη1,2, we find that

AF = 8(ξ1dη1dξ2dη2 − η1dξ1dξ2dη2 + ξ2dη2dξ1dη1 − η2dξ2dξ1dη1). (12.67)

We know from exercise 12.2 that this expression is eight times the volume
3-form on the three-sphere. Now the total volume of the unit three-sphere is
2π2, and so, from our factored map x 7→ ψ 7→ n we have that

NHopf =
1

16π2

∫

R3

ψ∗(AF ) =
1

2π2

∫

R3

ψ∗d(Volume on S3) (12.68)

is the number of times the normalized spinor ψ(x) covers S3 as x covers R3.
For the Hopf map itself, this number is unity, and so the loop in S3 that
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is the inverse image of a point in S2 will twist once around any other such
inverse image loop.

We have now established that

π3(S
2) = Z. (12.69)

This result, implying that there are many maps from the three-sphere to
the two-sphere that are not smoothly deformable to a constant map, was an
great surprise when Hopf discovered it.

One of the principal physics consequences of the existence of the Hopf
index is that “quantum lump” quasi-particles such as the skyrmion can
be fermions, even though they are described by commuting (and therefore
bosonic) fields.

To understand how this can be, we first explain that the collection of
homotopy classes πn(M) is not just a set . It has the additional structure
of being a group: we can compose two homotopy classes to get a third, the
composition is associative, and each homotopy class has an inverse. To define
the group composition law, we think of Sn as the interior of an n-dimensional
cube with the map f : Sn → M taking a fixed value m0 ∈ M at all points
on the boundary of the cube. The boundary can then be considered to be a
single point on Sn. We then take one of the n dimensions as being “time” and
place two cubes and their maps f1, f2 into contact, with f1 being “earlier”
and f2 being “later.” We thus get a continuous map from a bigger box into
M . The homotopy class of this map, after we relax the condition that the
map takes the value m0 on the common boundary, defines the composition
[f2] ◦ [f1] of the two homotopy classes corresponding to f1 and f2. The
composition may be shown to be independent of the choice of representative
functions in the two classes. The inverse of a homotopy class [f ] is obtained
by reversing the direction of “time” for each of the maps in the class. This
group structure appears to depend on the fixed point m0. As long as M
is arcwise connected, however, the groups obtained from different m0’s are
isomorphic, or equivalent. In the case of π2(S

2) = Z and π3(S
2) = Z, the

composition law is simply the addition of the integers N ∈ Z that label the
classes. A useful exposition of homotopy theory for physicists is to be found
in a review article by David Mermin.3

When we quantize using Feynman’s “sum over histories” path integral,
we have the option of multiplying the contributions of histories f that are

3N. D. Mermin, “The topological theory of defects in ordered media.” Rev. Mod. Phys.
51 (1979) 591.
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not deformable into one another by distinct phase factors exp{iφ([f ])}. The
choice of phases must, however, be compatible with the composition of histo-
ries by concatenating one after the other – the same operation as composing
homotopy classes. This means that the product exp{iφ([f1]))} exp{iφ([f2])}
of the phase factors for two possible histories must be the phase factor
exp{iφ([f2] ◦ [f1])} assigned to the composition of their homotopy classes.
If our quantum system consists of spins n in two space and one time dimen-
sion we can consistently assign a phase factor exp(iπNHopf) to a history. The
rotation of a single skyrmion twists the world-line cable through 2π and so
makes NHopf = 1. The rotation therefore causes the wavefunction to change
sign. We will show in the next section, that a history where two particles
change places can be continuously deformed into a history where they do not
interchange, but instead one of them is twisted through 2π. The wavefunc-
tion of a pair of skyrmions therefore changes sign when they are interchanged.
This means that the quantized skyrmion is a fermion.

12.4.6 Twist and writhe

Consider two oriented non-intersecting closed curves γ1 and γ2. Imagine that
γ2 carries a unit current in the direction of its orientation and so gives rise
to a magnetic field. Ampère’s law then tells us that the number of times γ1

encircles γ2 is

Lk(γ1, γ2) =

∮

γ1

B(r1) · dr1

=
1

4π

∮

γ1

∮

γ2

(r1 − r2) · (dr1 × dr2)

|r1 − r2|3
. (12.70)

Here the second expression follows from the first by an application of the
Biot-Savart law to compute the B field due the current. This expression also
shows that Lk(γ1, γ2), which is called the Gauss linking number , is symmetric
under the interchange γ1 ↔ γ2 of the two curves. It changes sign, however,
if one of the curves changes orientation, or if the pair of curves is reflected
in a mirror.

We can relate the Gauss linking number to the Brouwer degree of a map.
Introduce parameters t1, t2 with 0 < t1, t2 ≤ 1 to label points on the two
curves. The curves are closed, so r1(0) = r1(1), and similarly for r2. Let us
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also define a unit vector

n(t1, t2) =
r1(t1)− r2(t2)

|r1(t1)− r2(t2)|
. (12.71)

Then

Lk(γ1, γ2) =
1

4π

∮

γ1

∮

γ2

r1(t1)− r2(t2)

|r1(t1)− r2(t2)|3
·
(
∂r1

∂t1
× ∂r2

∂t2

)
dt1dt2

= − 1

4π

∫

T 2

n ·
(
∂n

∂t1
× ∂n

∂t2

)
dt1dt2. (12.72)

is seen to be (minus) the winding number of the map

n : [0, 1]× [0, 1]→ S2 (12.73)

of the 2-torus into the sphere. Our previous results on maps into the 2-sphere
therefore confirm our Ampère-law intuition that Lk(γ1, γ2) is an integer. The
linking number is also topological invariant, being unchanged under any de-
formation of the curves that does not cause one to pass through the other.

An important application of these ideas occurs in biology, where the
curves are the two complementary strands of a closed loop of DNA. We can
think of two such parallel curves as forming the edges of a ribbon {γ1, γ2} of
width ε. Let use denote by γ the curve r(t) running along the axis of the
ribbon midway between γ1 and γ2. The unit tangent to γ at the point r(t) is

t(t) =
ṙ(t)

|ṙ(t)| , (12.74)

where, as usual, the dots denote differentiation with respect to t. We also
introduce a unit vector u(t) that is perpendicular to t(t) and lies in the
ribbon, pointing from r1(t) to r2(t).
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t

u

γ γ
1 2

Figure 12.10: An oriented ribbon {γ1, γ2} showing the vectors t and u.

We will assign a common value of the parameter t to a point on γ and the
points nearest to r(t) on γ1 and γ2. Consequently

r1(t) = r(t)− 1

2
εu(t)

r2(t) = r(t) +
1

2
εu(t) (12.75)

We can express u̇ as
u̇ = ω × u (12.76)

for some angular-velocity vector ω(t). The quantity

Tw =
1

2π

∮

γ

(ω · t) dt (12.77)

is called the Twist of the ribbon. It is not usually an integer, and is a
property of the ribbon {γ1, γ2} itself, being independent of the choice of
parameterization t.

If we set r1(t) and r2(t) equal to the single axis curve r(t) in the integrand
of (12.70), the resulting “self-linking” integral, or Writhe,

Wr
def
=

1

4π

∮

γ

∮

γ

(r(t1)− r(t2)) · (ṙ(t1)× ṙ(t2))

|r(t1)− r(t2)|3
dt1dt2. (12.78)

remains convergent despite the factor of |r(t1)− r(t2)|3 in the denominator.
However, if we try to achieve this substitution by making the width of the
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ribbon ε tend to zero, we find that the vector n(t1, t2) abruptly reverses its
direction as t1 passes t2. In the limit of infinitesimal width this violent motion
provides a delta-function contribution

−(ω · t)δ(t1 − t2) dt1 ∧ dt2 (12.79)

to the 2-sphere area swept out by n, and this contribution is invisible to the
Writhe integral. The Writhe is a property only of the overall shape of the
axis curve γ, and is independent both of the ribbon that contains it, and of
the choice of parameterization. The linking number, on the other hand, is
independent of ε, so the ε→ 0 limit of the linking-number integral is not the
integral of the ε→ 0 limit of its integrand. Instead we have

Lk(γ1, γ2) =
1

2π

∮

γ

(ω · t) dt+ 1

4π

∮

γ

∮

γ

(r(t1)− r(t2)) · (ṙ(t1)× ṙ(t2))

|r(t1)− r(t2)|3
dt1dt2

(12.80)

This formula
Lk = Tw + Wr (12.81)

is known as the Calugareanu-White-Fuller relation, and is the basis for the
claim, made in the previous section, that the worldline of an extended particle
with an exchange (Wr = ±1) can be deformed into a worldline with a 2π
rotation (Tw = ±1) without changing the topologically invariant linking
number.

1

t2

t1
10

t−t
Γ Γ

t t( )
−t t( )

Figure 12.11: Cutting and reassembling the domain of integration in (12.83).

By setting

n(t1, t2) =
r(t1)− r(t2)

|r(t1)− r(t2)|
. (12.82)
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we can express the Writhe as

Wr = − 1

4π

∫

T 2

n ·
(
∂n

∂t1
× ∂n

∂t2

)
dt1dt2, (12.83)

but we must take care to recognize that this new n(t1, t2) is discontinuous
across the line t = t1 = t2. It is equal to t(t) for t1 infinitesimally larger
than t2, and equal to −t(t) when t1 is infinitesimally smaller than t2. By
cutting the square domain of integration and reassembling it into a rhom-
boid, as shown in figure 12.11, we obtain a continuous integrand and see
that the Writhe is (minus) the 2-sphere area (counted with multiplicies and
divided by 4π) of a region whose boundary is composed of two curves Γ, the
tangent indicatrix , or tantrix , on which n = t(t), and its oppositely oriented
antipodal counterpart Γ′ on which n = −t(t).

The 2-sphere area Ω(Γ) bounded by Γ is only determined by Γ up to the
addition of integer multiples of 4π. Taking note that the “wrong” orientation
of the boundary Γ (see figure 12.11 again) compensates for the minus sign
before the integral in (12.83), we have

4πWr = 2Ω(Γ) + 4πn. (12.84)

Thus,

Wr =
1

2π
Ω(Γ), mod 1. (12.85)

We can do better than (12.85) once we realize that by allowing crossings we
can continuously deform any closed curve into a perfect circle. Each self-
crossing causes Lk and Wr (but not Tw which, being a local functional, does
not care about crossings) to jump by ±2. For a perfect circle Wr = 0 whilst
Ω = 2π. We therefore have an improved estimate of the additive integer that
is left undetermined by Γ, and from it we obtain

Wr = 1 +
1

2π
Ω(Γ), mod 2. (12.86)

This result is due to Brock Fuller.4

We can use our ribbon language to describe conformational transitions in
long molecules. The elastic energy of a closed rod (or DNA molecule) can be
approximated by

E =

∫

γ

{
1

2
α(ω · t)2 +

1

2
βκ2

}
ds (12.87)

4F. Brock Fuller, Proc. Natl. Acad. Sci. USA, 75 (1978) 3557 - 61.
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Here we are parameterizing the curve by its arc-length s. The constant α is
the torsional stiffness coefficient, β is the flexural stiffness, and

κ(s) =

∣∣∣∣
d2r(s)

ds2

∣∣∣∣ =

∣∣∣∣
dt(s)

ds

∣∣∣∣ , (12.88)

is the local curvature. Suppose that our molecule has linking number n, i.e
it was twisted n times before the ends were joined together to make a loop.

Figure 12.12: A molecule initially with Lk = 3, Tw = 3, Wr = 0 writhes to
a new configuration with Lk = 3, Tw = 0, Wr = 3.

When β � α the molecule will minimize its bending energy by forming a
planar circle with Wr ≈ 0 and Tw ≈ n. If we increase α, or decrease β, there
will come a point at which the molecule will seek to save torsional energy at
the expense of bending, and will suddenly writhe into a new configuration
with Wr ≈ n and Tw ≈ 0. Such twist-to-writhe transformations will be
familiar to anyone who has struggled to coil a garden hose or electric cable.

12.5 Further exercises and problems

Exercise 12.7: A two-form is expressed in Cartesian co-ordinates as

ω =
1

r3
(zdxdy + xdydz + ydzdx)

where r =
√
x2 + y2 + z2.

a) Evaluate dω for r 6= 0.
b) Evaluate the integral

Φ =

∫

P
ω,

over the infinite plane P = {−∞ < x <∞,−∞ < y <∞, z = 1}.
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c) A sphere is embedded into R3 by the map ϕ, which takes the point
(θ, φ) ∈ S2 to the point (x, y, z) ∈ R3, where

x = R cosφ sin θ,

y = R sinφ sin θ,

z = R cos θ.

Pull back ω and find the 2-form ϕ∗ω on the sphere. (Hint: The form
ϕ∗ω is both familiar and simple. If you end up with an intractable mess
of trigonometric functions, you have made an algebraic error.)

d) By exploiting the result of part c), or otherwise, evaluate the integral

Φ =

∫

S2(R)
ω

where S2(R) is the surface of a two-sphere of radius R centered at the
origin.

The following four exercises all explore the same geometric facts relating to
Stokes’ theorem and the area 2-form of a sphere, but in different physical
settings.

Exercise 12.8: A flywheel of moment of inertia I can rotate without friction
about an axle whose direction is specified by a unit vector n. The flywheel and
axle are initially stationary. The direction n of the axle is made to describe a
simple closed curve γ = ∂Ω on the unit sphere, and is then left stationary.

γ

Ω
n

Figure 12.13: Flywheel
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Show that once the axle has returned to rest in its initial direction, the flywheel
has also returned to rest, but has rotated through an angle θ = Area(Ω) when
compared with its initial orientation. The area of Ω is to be counted as positive
if the path γ surrounds it in a clockwise sense, and negative otherwise. Observe
that the path γ bounds two regions with opposite orientations. Taking into
account the fact that we cannot define the rotation angle at intermediate
steps, show that the area of either region can be used to compute θ, the
results being physically indistinguishable. (Hint: Show that the component
LZ = I(ψ̇ + φ̇ cos θ) of the flywheel’s angular momentum along the axle is a
constant of the motion.)

Exercise 12.9: A ball of unit radius rolls without slipping on a table. The
ball moves in such a way that the point in contact with table describes a
closed path γ = ∂Ω on the ball . (The corresponding path on the table will not
necessarily be closed.) Show that the final orientation of the ball will be such
that it has rotated, when compared with its initial orientation, through an
angle φ = Area(Ω) about a vertical axis through its center. As in the previous
problem, the area is counted positive if γ encircles Ω in an anti-clockwise sense.
(Hint: recall the no-slip rolling condition φ̇+ ψ̇ cos θ = 0 from (11.29).)

Exercise 12.10: Let a curve in R3 be parameterized by its arc length s as r(s).
Then the unit tangent to the curve is given by

t(s) = ṙ
def
=

dr

ds
.

The principal normal n(s) and the binormal b(s) to the curve are defined by
the requirement that ṫ = κn with the curvature κ(s) positive, and that t, n

and b = t× n form a right-handed orthonormal frame.

t

b
n

n b t

Figure 12.14: Serret-Frenet frames.
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a) Show that there exists a scalar τ(s), the torsion of the curve, such that
t, n and b obey the Serret-Frenet relations




ṫ

ṅ

ḃ


 =




0 κ 0
−κ 0 τ
0 −τ 0






t

n

b


 .

b) Any pair of mutually orthogonal unit vectors e1(s), e2(s) perpendicular
to t and such that e1 × e2 = t can serve as an orthonormal frame for
vectors in the normal plane. A basis pair e1, e2 with the property

ė1 · e2 − ė2 · e1 = 0

is said to be parallel , or Fermi-Walker, transported along the curve. In
other words, a parallel-transported 3-frame t, e1, e2 slides along the
curve r(s) in such a way that the component of its angular velocity in
the t direction is always zero. Show that the Serret-Frenet frame e1 = n,
e2 = b is not parallel transported, but instead rotates at angular velocity
θ̇ = τ with respect to a parallel-transported frame.

c) Consider a finite segment of the curve such that the initial and final
Serret-Frenet frames are parallel, and so t(s) defines a closed path γ = ∂Ω
on the unit sphere. Fill in the line-by-line justications for the following
sequence of manipulations:

∫

γ
τ ds =

1

2

∫

γ
(b · ṅ− n · ḃ) ds

=
1

2

∫

γ
(b · dn− n · db)

=
1

2

∫

Ω
(db · dn− dn · db) (∗)

=
1

2

∫

Ω
{(db · t)(t · dn)− (dn · t)(t · db)}

=
1

2

∫

Ω
{(b · dt)(dt · n)− (n · dt)(dt · b)}

= −1

2

∫

Ω
t · (dt× dt)

= −Area(Ω).

(The line marked ‘∗’ is the one that requires most thought. How can we
define “b” and “n” in the interior of Ω?)

d) Conclude that a Fermi-Walker transported frame will have rotated through
an angle θ = Area(Ω), compared to its initial orientation, by the time it
reaches the end of the curve.
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The plane of transversely polarized light propagating in a monomode optical
fibre is Fermi-Walker transported, and this rotation can be studied experimen-
tally.5

Exercise 12.11: Foucault’s pendulum (in disguise). A particle of mass m is
constrained by a pair of frictionless plates to move in a plane Π that passes
through the origin O. The particle is attracted to O by a force −κr, and it
therefore executes harmonic motion within Π. The orientation of the plane,
specified by a normal vector n, can be altered in such a way that Π continues
to pass through the centre of attraction O.

a) Show that the constrained motion is described by the equation

mr̈ + κr = λ(t)n,

and determine λ(t) in terms of m, n and r̈.
b) Initially the particle motion is given by

r(t) = A cos(ωt+ φ),

Now assume that n changes direction slowly compared to the frequency
ω =

√
κ/m. Seek a solution in the form

r(t) = A(t) cos(ωt+ φ),

and, show that Ȧ = −n(ṅ · A). Deduce that |A| remains constant,
and so Ȧ = ω ×A for some angular velocity vector ω. Show that ω is
perpendicular to n.

c) Show that the results of part b) imply that the direction of oscillation A

is “parallel transported,” in the sense of the previous problem. Conclude
that if n slowly describes a closed loop γ = ∂Ω on the unit sphere,
then the direction of oscillation A ends up rotated through an angle
θ = Area(Ω).

The next exercise introduces a clever trick for solving some of the non-linear
partial differential equations of field theory. The class of equations to which
it and its generalizations are applicable is rather restricted, but when they
work they provide a complete multi-soliton solution.

5A. Tomita, R. Y. Chao, Phys. Rev. Lett. 57 (1986) 937-940.
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Problem 12.12: In this problem you will find the spin field n(x) that minimizes
the energy functional

E[n] =
1

2

∫

R2

(
|∇n1|2 + |∇n2|2 + |∇n3|2

)
dx1dx2

for a given positive winding number N .

a) Use the results of exercise 12.6 to write the winding number N , defined
in (12.35), and the energy functional E[n] as

4πN =

∫
4

(1 + ξ2 + η2)2
(∂1ξ∂2η − ∂1η∂2ξ) dx

1dx2,

E[n] =
1

2

∫
4

(1 + ξ2 + η2)2
(
(∂1ξ)

2 + (∂2ξ)
2 + (∂1η)

2 + (∂2η)
2
)
dx1dx2,

where ξ and η are stereographic co-ordinates on S2 specifying the direc-
tion of the unit vector n.

b) Deduce the inequality

E − 4πN
def
=

1

2

∫
4

(1 + ξ2 + η2)2
|(∂1 + i∂2)(ξ + iη)|2 dx1dx2 ≥ 0.

c) Deduce that, for winding number N > 0, the minimum-energy solutions
have energy E = 4πN and are obtained by solving the first-order linear
partial differential equation

(
∂

∂x1
+ i

∂

∂x2

)
(ξ + iη) = 0.

d) Solve the partial differential equation in part c), and hence show that
the minimal-energy solutions with winding number N > 0 are given by

ξ + iη = λ
(z − a1) . . . (z − aN )

(z − b1) . . . (z − bN )
,

where z = x1+ix2, and λ, a1, . . . , aN and b1, . . . , bN are arbitrary complex
numbers — except that no amay coincide with any b. This is the solution
that we displayed at the end of section 12.4.2.

e) Repeat the analysis for N < 0. Show that the solutions are given in
terms of rational functions of z̄ = x1 − ix2.

The idea of combining the energy functional and the topological charge into
a single, manifestly positive, functional is due to Evgueny Bogomol’nyi. The
resulting first-order linear equation is therefore called a Bogomolnyi equation.
If we had tried to find a solution directly in terms of n, we would have ended
up with a horribly non linear second-order partial differential equation.
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P

Q
X

Z

R−R

Figure 12.15: A slice through the embedding of two-dimensional Lobachevski
space into three-dimensional Minkowski space, showing the sterographic
parametrization of the embedded space by the Poincaré disc X2 + Y 2 < R2.

Exercise 12.13: Lobachevski space. The hyperbolic plane of Lobachevski ge-
ometry can be realized by embedding the Z ≥ R branch of the two-sheeted
hyperboloid Z2 − X2 − Y 2 = R2 into a Minkowski space with metric ds2 =
−dZ2 + dX2 + dY 2.

We can parametrize the emebedded surface by making an “imaginary radius”
version of the stereographic map, in which the point P on the hyperboloid
is labelled by the co-ordinates of the point Q on the X-Y plane (see figure
12.15).

i) Show that this embedding induces the metric

g( , ) =
4R4

(R2 −X2 − Y 2)2
(dX ⊗ dX + dY ⊗ dY ), X2 + Y 2 < R2,

of the Poincaré disc model (see problem 1.7) on the hyperboloid.
ii) Use the induced metric to show that the area of a disc of hyperbolic

radius ρ is given by

Area = 4πR2sinh2
( ρ

2R

)
= 2πR2(cosh(ρ/R)− 1),

and so is only given by πρ2 when ρ is small compared to the scale R of
the hyperbolic space. It suffices to consider circles with their centres at
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the origin. You will first need to show that the hyperbolic distance ρ
from the center of the disc to a point at Euclidean distance r is

ρ = R ln

(
R+ r

R− r

)
.

Exercise 12.14: Faraday’s “flux rule” for computing the electromotive force E
in a circuit containing a thin moving wire is usually derived by the following
manipulations:

E ≡
∮

∂Ω
(E + v ×B) · dr

=

∫

Ω
curlE · dS−

∮

∂Ω
B · (v × dr)

= −
∫

Ω

∂B

∂t
· dS−

∮

∂Ω
B · (v × dr)

= − d

dt

∫

Ω
B · dS.

a) Show that if we parameterize the surface Ω as xµ(u, v, τ), with u, v la-
belling points on Ω, and τ parametrizing the evolution of Ω, then the
corresponding manipulations in the covariant differential-form version of
Maxwell’s equations lead to

d

dτ

∫

Ω
F =

∫

Ω
LV F =

∫

∂Ω
iV F = −

∫

∂Ω
f,

where V µ = ∂xµ/∂τ and f = −iV F .
b) Show that if we take τ to be the proper time along the world-line of each

element of Ω, then V is the 4-velocity

V µ =
1√

1− v2
(1,v),

and f = −iV F becomes the one-form corresponding to the Lorentz-force
4-vector.

It is not clear that the terms in this covariant form of Faraday’s law can be
given any physical interpretation outside the low-velocity limit. When parts
of ∂Ω have different velocities, the relation of the integrals to measurements
made at fixed co-ordinate time requires thought.6

6See E. Marx, Journal of the Franklin Institute, 300 (1975) 353-364.
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The next pair of exercises explores some physics appearances of the contin-
uum Hopf linking number (12.65).

Exercise 12.15: The equations governing the motion of an incompressible in-
viscid fluid are ∇ · v = 0 and Euler’s equation

Dv

Dt

def
=

∂v

∂t
+ (v · ∇)v = −∇P.

Recall that the operator ∂/∂t + v · ∇, here written as D/Dt, is called the
convective derivative.

a) Take the curl of Euler’s equation to show that if ω = ∇×v is the vorticity
then

Dω

Dt
≡ ∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v.

b) Combine Euler’s equation with part a) to show that

D

Dt
(v · ω) = ∇ ·

{
ω

(
1

2
v2 − P

)}
.

c) Show that if Ω is a volume moving with the fluid, and f is a scalar
function, then

d

dt

∫

Ω
f(r, t) dV =

∫

Ω

Df

Dt
dV.

e) Conclude that when ω is zero at infinity the helicity

I =

∫
v · (∇× v) dV =

∫
v · ω dV

is a constant of the motion.

The helicity measures the Hopf linking number of the vortex lines. The dis-
covery7 of its conservation launched the field of topological fluid dynamics.

Exercise 12.16: Let B = ∇×A and E = −∂A/∂t −∇φ be the electric and
magnetic fields in an incompressible and perfectly conducting fluid. In such a
fluid, the co-moving electromotive force E+v×B must vanish everywhere.

a) Use Maxwell’s equations to show that

∂A

∂t
= v × (∇×A)−∇φ,

∂B

∂t
= ∇× (v ×B).

7H. K. Moffatt, J. Fluid Mech. 35 (1969) 117.
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b) From part a) show that the convective derivative of A ·B is given by

D

Dt
(A ·B) = ∇ · {B (A · v − φ)} .

c) By using the same reasoning as in the previous problem, and assuming
that B is zero at infinity, conclude that Woltjer’s invariant ,

∫
(A ·B) dV =

∫
εijkAi∂jAkd

3x =

∫
AF,

is a constant of the motion.

This result shows that the Hopf linking number of the magnetic field lines is
independent of time. It is an essential ingredient in the geodynamo theory of
the Earth’s magnetic field.



Chapter 13

An Introduction to Differential
Topology

Topology is the study of the consequences of continuity. We all know that
a continuous real function defined on a connected interval and positive at
one point and negative at another must take the value zero at some point
between. This fact seems obvious—although a course of real analysis will
convince you of the need for a proof. A less obvious fact, but one that
follows from the previous one, is that a continuous function defined on the
unit circle must posses two diametrically opposite points at which it takes the
same value. To see that this is so, consider f(θ + π)− f(θ). This difference
(if not initially zero, in which case there is nothing further to prove) changes
sign as θ is advanced through π, because the two terms exchange roles. It was
therefore zero somewhere. This observation has practical application in daily
life: Our local coffee shop contains four-legged tables that wobble because
the floor is not level. They are round tables, however, and because they
possess no misguided levelling screws all four legs have the same length. We
are therefore guaranteed that by rotating the table about its center through
an angle of less than π/2 we will find a stable location. A ninety-degree
rotation interchanges the pair of legs that are both on the ground with the
pair that are rocking, and at the change-over point all four legs must be
simultaneously on the ground.

Similar effects with a practical significance for physics appear when we
try to extend our vector and tensor calculus from a local region to an entire
manifold. A smooth field of vectors tangent to the sphere S2 will always
possess a zero — i.e. a point at which the the vector field vanishes. On
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the torus T 2, however, we can construct a nowhere-zero vector field. This
shows that the global topology of the manifold influences the way in which
the tangent spaces are glued together to form the tangent bundle. To study
this influence in a systematic manner we need first to understand how to
characterize the global structure of a manifold, and then to see how this
structure affects the mathematical and physical objects that live on it.

13.1 Homeomorphism and diffeomorphism

In the previous chapter we met with a number of topological invariants asso-
ciated with mappings. These homotopy invariants were unaffected by contin-
uous deformations of a map, and served to distinguish between topologically
distinct mappings. Similarly, homology invariants help classify topologically
distinct manifolds. The analogue of the winding number is the set of Betti
numbers of a manifold. If two manifolds have different Betti numbers they
are certainly distinct. Unfortunately, if two manifolds have the same Betti
numbers, we cannot be sure that they are topologically identical. It is a Holy
Grail of topology to find a complete set of invariants such that having them
all coincide would be enough to say that two manifolds were topologically
the same.

In the previous paragraph we were deliberately vague in our use of the
terms “distinct” and the “same”. Two topological spaces (spaces equipped
with a definition of what is to be considered an open set) are regarded as be-
ing the “same”, or homeomorphic, if there is a one-to-one, onto, continuous
map between them whose inverse is also continuous. Manifolds come with the
additional structure of differentiability: we may therefore talk of “smooth”
maps, meaning that their expression in coordinates is infinitely (C∞) differ-
entiable. We regard two manifolds as being the “same”, or diffeomorphic, if
there is a one-to-one onto C∞ map between them whose inverse is also C∞.
The distinction between homeomorphism and diffeomorphism sounds like a
mere technical nicety, but it has consequences for physics. Edward Witten
discovered1 that there are 992 distinct 11-spheres. These are manifolds that
are all homeomorphic to the 11-sphere, but diffeomorphically inequivalent.
This fact is crucial for the cancellation of global gravitational anomalies in
the E8 × E8 or SO(32) symmetric superstring theories.

1E. Witten, Comm. Math. Phys. 117 (1986), 197.
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Since we are interested in the consequences of topology for calculus, we
shall restrict ourselves to the interpretation “same” = diffeomorphic.

13.2 Cohomology

Betti numbers arise in answer to what seems like a simple calculus problem:
when can a vector field whose divergence vanishes be written as the curl of
something? We shall see that the answer depends on the global structure of
the space the field inhabits.

13.2.1 Retractable spaces: converse of Poincaré lemma

Poincaré’s lemma asserts that d2 = 0. In traditional vector-calculus language
this reduces to the statements curl (gradφ) = 0 and div (curlw) = 0. We
often assume that the converse is true: If curlv = 0, we expect that we can
find a φ such that v = gradφ, and if div v = 0 that we can find a w such
that v = curl w. You know a formula for the first case:

φ(x) =

∫ x

x0

v · dx, (13.1)

but you probably do not know the corresponding formula for w. Using dif-
ferential forms, and provided the space in which these forms live has suitable
topological properties, it is straightforward to find a solution for the general
problem: If ω is closed, meaning that dω = 0, find χ such that ω = dχ.

The “suitable topological properties” referred to in the previous para-
graph is that the space be retractable. Suppose that the closed form ω is
defined in a domain Ω. We say that Ω is retractable to the point O if there
exists a smooth map ϕt : Ω→ Ω which depends continuously on a parameter
t ∈ [0, 1] and for which ϕ1(x) = x and ϕ0(x) = O. Applying this retraction
map to the form, we will then have ϕ∗

1ω = ω and ϕ∗
0ω = 0. Let us set

ϕt(x
µ) = xµ(t). Define η(x, t) to be the velocity-vector field that corresponds

to the co-ordinate flow:
dxµ

dt
= ηµ(x, t). (13.2)

An easy exercise, using the interpretation of the Lie derivative in (11.41),
shows that

d

dt
(ϕ∗

tω) = Lη(ϕ∗
tω). (13.3)
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We now use the infinitesimal homotopy relation and our assumption that
dω = 0, and hence (from exercise 12.3) that d(ϕ∗

tω) = 0, to write

Lη(ϕ∗
tω) = (iηd+ diη)(ϕ

∗
tω) = d[iη(ϕ

∗
tω)]. (13.4)

Using this, we can integrate up with respect to t to find

ω = ϕ∗
1ω − ϕ∗

0ω = d

(∫ 1

0

iη(ϕ
∗
tω)dt

)
. (13.5)

Thus

χ =

∫ 1

0

iη(ϕ
∗
tω)dt (13.6)

solves our problem.
This magic formula for χ makes use of nearly all the “calculus on mani-

folds” concepts that we have introduced so far. The notation is so powerful
that it has also suppressed nearly everything that a traditionally-educated
physicist would find familiar. We will therefore unpack the symbols by means
of a concrete example. Let us take Ω to be the whole of R3. This can be
retracted to the origin via the map ϕt(x

µ) = xµ(t) = txµ. The velocity field
whose flow gives

xµ(t) = t xµ(1)

is ηµ(x, t) = xµ/t. To verify this, compute

dxµ(t)

dt
= xµ(1) =

1

t
xµ(t),

so xµ(t) is indeed the solution to

dxµ

dt
= ηµ(x(t), t).

Now let us apply this retraction to ω = Adydz +Bdzdx+ Cdxdy with

dω =

(
∂A

∂x
+
∂B

∂y
+
∂C

∂z

)
dxdydz = 0. (13.7)

The pull-back ϕ∗
t gives

ϕ∗
tω = A(tx, ty, tz)d(ty)d(tz) + (two similar terms). (13.8)
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The interior product with

η =
1

t

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
(13.9)

then gives

iηϕ
∗
tω = tA(tx, ty, tz)(y dz − z dy) + (two similar terms). (13.10)

Finally we form the ordinary integral over t to get

χ =

∫ 1

0

iη(ϕ
∗
tω)dt

=

[∫ 1

0

A(tx, ty, tz)t dt

]
(ydz − zdy)

+

[∫ 1

0

B(tx, ty, tz)t dt

]
(zdx− xdz)

+

[∫ 1

0

C(tx, ty, tz)t dt

]
(xdy − ydx). (13.11)

In this expression the integrals in the square brackets are just numerical
coefficients, i.e., the “dt” is not part of the one-form. It is instructive,
because not entirely trivial, to let “d” act on χ and verify that the con-
struction works. If we focus first on the term involving A, we find that
d[
∫ 1

0
A(tx, ty, tz)t dt](ydz − zdy) can be grouped as

[∫ 1

0

{
2tA+ t2

(
x
∂A

∂x
+ y

∂A

∂y
+ z

∂A

∂z

)}
dt

]
dydz

−
∫ 1

0

t2
∂A

∂x
dt (xdydz + ydzdx+ zdxdy). (13.12)

The first of these terms is equal to
[∫ 1

0

d

dt

{
t2A(tx, ty, tz)

}
dt

]
dydz = A(x, y, x) dydz, (13.13)

which is part of ω. The second term will combine with the terms involving
B, C, to become

−
∫ 1

0

t2
(
∂A

∂x
+
∂B

∂y
+
∂C

∂z

)
dt (xdydz + ydzdx+ zdxdy), (13.14)

which is zero by our hypothesis. Putting togther the A, B, C terms does,
therefore, reconstitute ω.
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13.2.2 Obstructions to exactness

The condition that Ω be retractable plays an essential role in the converse to
Poincaré’s lemma. In its absence, dω = 0 does not guarantee that there is an
χ such that ω = dχ. Consider, for example, a vector field v with curlv ≡ 0
in a two-dimensional annulus Ω = {R0 < |r| < R1}. In the annulus (a non-
retractable space) the condition that curlv ≡ 0 does not prohibit

∮
Γ
v · dr

being non zero for some closed path Γ encircling the central hole. When
this line integral is non-zero then there can be no single-valued χ such that
v = gradχ. If there were such a χ, then

∮

Γ

v · dr = χ(0)− χ(0) = 0. (13.15)

A non-zero value for
∮
Γ
v · dr therefore consititutes an obstruction to the

existence of a φ such that v = grad χ.

Example: The sphere S2 is not retractable: any attempt to pull its points
back to the north pole will necessarily tear a hole in the surface somewhere.
Related to this fact is that whilst the area 2-form sin θdθdφ is closed, it
cannot be written as the d of something. We can try to write

sin θdθdφ = d[(1− cos θ)dφ], (13.16)

but the 1-form (1− cos θ)dφ is singular at the south pole, θ = π. We could
try

sin θdθdφ = d[(−1− cos θ)dφ], (13.17)

but this is singular at the north pole, θ = 0. There is no escape. We know
that ∫

S2

sin θdθdφ = 4π, (13.18)

but if sin θdθdφ = dχ then Stokes theorem says that

∫

S2

sin θdθdφ
?
=

∫

∂S2

χ = 0 (13.19)

because ∂S2 = ∅. Again, a non-zero value for
∫
ω over some boundary-less

region has provided an obstruction to finding an χ such that ω = dχ.



13.2. COHOMOLOGY 507

13.2.3 De Rham cohomology

We have seen that, sometimes, the condition dω = 0 allows us to find a χ such
that ω = dχ, and sometimes it does not. If the region in which we seek χ is
retractable, we can always construct it. If the region is not retractable there
may be an obstruction to the existence of χ. In order to describe the various
possibilities we introduce the language of cohomology , or more precisely de
Rham cohomology , named for the Swiss mathematician Georges de Rham
who did the most to create it.

For simplicity, suppose that we are working in a compact manifold M
without boundary. Let Ωp(M) =

∧p(T ∗M) be the space of all smooth p-form
fields. It is a vector space over R: we can add p-form fields and multiply them
by real constants, but, as is the vector space C∞(M) of smooth functions on
M , it is infinite dimensional. The subspace Zp(M) of closed forms — those
with dω = 0 — is also an infinite-dimensional vector space, and the same
is true of the space Bp(M) of exact forms — those that can be written as
ω = dχ for some globally defined (p − 1)-form χ. Now consider the space
Hp = Zp/Bp, which is the space of closed forms modulo exact forms. In this
space we do not distinguish between two forms, ω1 and ω2 when there an χ,
such that ω1 = ω2 +dχ. We say that ω1 and ω2 are cohomologous in Hp(M),
and write ω1 ∼ ω2. We will use the symbol [ω] to denote the equivalence
class of forms cohomologous to ω. Now a miracle happens! For a compact
manifold M , the space Hp(M) is finite dimensional! It is called the p-th (de
Rham) cohomology space of the manifold, and depends only on the global
topology of M . In particular, it does not depend on any metric we may have
chosen for M .

Sometimes we write Hp
dR(M,R) to make clear that we are dealing with de

Rham cohomolgy, and that we are working with vector spaces over the real
numbers. This is because there is also a valuable space Hp

dR(M,Z), where
we only allow multiplication by integers.

The cohomology space Hp
dR(M,R) codifies all potential obstructions to

solving the problem of finding a (p − 1)-form χ such that dχ = ω: we can
find such a χ if and only if ω is cohomologous to zero in Hp

dR(M,R). If
Hp

dR(M,R) = {0}, which is the case if M is retractable, then all closed p-
forms are cohomologous to zero. If Hp

dR(M,R) 6= {0}, then some closed
p-forms ω will not be cohomologous to zero. We can test whether ω ∼ 0 ∈
Hp

dR(M,R) by forming suitable integrals.
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13.3 Homology

The language of cohomology seems rather abstract. To understand its topo-
logical origin it may be more intuitive to think about the spaces that are the
cohomology spaces’ vector-space duals. These homology spaces are simple to
understand pictorially.

The basic idea is that, given a region Ω, we can find its boundary ∂Ω.
Inspection of a few simple cases will soon lead to the conclusion that the
“boundary of a boundary” consists of nothing. In symbols, ∂2 = 0. The
statement “∂2 = 0” is clearly analgous to “d2 = 0,” and, pursuing the anal-
ogy, we can construct a vector space of “regions” and define two “regions”
as being homologous if they differ by the boundary of another “region.”

13.3.1 Chains, cycles and boundaries

We begin by making precise the vague notions of region and boundary.

Simplicial complexes

The set of all curves and surfaces in a manifold M is infinite dimensional, but
the homology spaces are finite dimensional. Life would be much easier if we
could use finite-dimensional spaces throughout. Mathematicians therefore
do what any computationally-minded physicist would do: they approximate
the smooth manifold by a discrete polygonal grid.2 Were they interested in
distances, they would necessarily use many small polygons so as to obtain
a good approximation to the detailed shape of the manifold. The global
topology, though, can often be captured by a rather coarse discretization.
The result of this process is to reduce a complicated problem in differential
geometry to one of simple algebra. The resulting theory is therefore known
as algebraic topology.

It turns out to be convenient to approximate the manifold by generalized
triangles. We therefore dissect M into line segments (if one-dimensional),

2This discrete approximation leads to what is known as simplicial homology. Simplicial
homology is rather primitive and old fashioned, having been supplanted by singular ho-
mology and the theory of CW complexes. The modern definitions are superior for proving
theorems, but are less intuitive, and for smooth manifolds lead to the same conclusions as
the simpler-to-describe simplicial theory.
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a) b)

Figure 13.1: Triangles, or 2-simplices, that are a) allowed, b) not allowed in
a dissection. In b) the problem is that only parts of edges are in common.
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Figure 13.2: A triangulation of the 2-torus. a) The torus as a rectangle
with periodic boundary conditions: The two edges labled α will be glued
togther point-by-point along the arrows when we reassemble the torus, and
so are to be regarded as a single edge. The two sides labeled β will be glued
similarly. b) The assembled torus: All four P’s are now in the same place,
and correspond to a single point.

triangles, (if two-dimensional), tetrahedra (if three-dimensional) or higher-
dimensional p-simplices (singular: simplex ). The rules for the dissection are:

a) Every point must belong to at least one simplex.
b) A point can belong to only a finite number of simplices.
c) Two different simplices either have no points in common, or

i) one is a face (or edge, or vertex) of the other,
ii) the set of points in common is the whole of a shared face (or edge,

or vertex).

The collection of simplices composing the dissected space is called a simplicial
complex . We will denote it by S.

We may not need many triangles to capture the global topology. For
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Figure 13.3: A second triangulation of the 2-torus.

example, figure 13.2 shows how a two-dimensional torus can be decomposed
into two 2-simplices (triangles) bounded by three 1-simplices (edges) α, β, γ,
and with only a single 0-simplex (vertex) P . Computations are easier to
describe, however, if each simplex in the decomposition is uniquely specified
by its vertices. For this, we usually need a slightly finer dissection. Figure
13.3 shows a decomposition of the torus into 18 triangles, each of which is
uniquely labeled by three points drawn from a set of nine vertices. In this
figure vertices with identical labels are to be regarded as the same vertex,
as are the corresponding sides of triangles. Thus, each of the edges P1P2,
P2P3, P3P1, at the top of the figure are to be glued point-by-point to the
corresponding edges on the bottom of the figure; similarly along the sides.
The resulting simplicial complex then has 27 edges.

We may triangulate the sphere S2 as a tetrahedron with vertices P1, P2,
P3, P4. This dissection has six edges: P1P2, P1P3, P1P4, P2P3, P2P4, P3P4,
and four faces: P2P3P4, P1P3P4, P1P2P4 and P1P2P3.

p-chains

We assign to simplices an orientation defined by the order in which we write
their defining vertices. The interchange of of any pair of vertices reverses the
orientation, and we consider there to be a relative minus sign between oppo-
sitely oriented but otherwise identical simplices: P2P1P3P4 = −P1P2P3P4.

We now construct abstract vector spaces Cp(S,R) of p-chains which have
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Figure 13.4: A tetrahedral triangulation of the 2-sphere. The circulating
arrows on the faces indicate the choice of orientation P1P2P4 and P2P3P4.

oriented p-simplices as their basis vectors. The most general elements of
C2(S,R), with S being the tetrahedral triangulation of the sphere S2, would
be

a1P2P3P4 + a2P1P3P4 + a3P1P2P4 + a4P1P2P3, (13.20)

where the coefficients a1, . . . , a4, are real numbers. We regard the distinct
faces as being linearly independent basis elements for C2(S,R). The space is
therefore four dimensional. If we had triangulated the sphere so that it had
16 triangular faces, the space C2 would be 16 dimensional.

Similarly, the general element of C1(S,R) would be

b1P1P2 + b2P1P3 + b3P1P4 + b4P2P3 + b5P2P4 + b6P3P4, (13.21)

and so C1(S,R) is a six-dimensional space spanned by the edges of the tetra-
hedron. For C0(S,R) we have

c1P1 + c2P2 + c3P3 + c4P4, (13.22)

and so C0(S,R) is four dimensional, and spanned by the vertices. Our man-
ifold comprises only the surface of the two-sphere, so there is no such thing
as C3(S,R).

The reason for making the field R explicit in these definitions is that we
sometimes gain more information about the topology if we allow only integer
coefficients. The space of such p-chains is then denoted by Cp(S,Z). Be-
cause a vector space requires that coefficients be drawn from a field, these
objects are no longer vector spaces. They can be thought of as either mod-
ules—“vector spaces” whose coefficient are drawn from a ring—or as additive
abelian groups.
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P2 P3

P4

Figure 13.5: The oriented triangle P2P3P4 has boundary P3P4 +P4P2 +P2P3.

The boundary operator

We now introduce a linear map ∂p : Cp → Cp−1, called the boundary operator.
Its action on a p-simplex is

∂pPi1Pi2 · · ·Pip+1
=

p+1∑

j=1

(−1)j−1Pi1 . . . P̂ij . . . Pip+1
, (13.23)

where the “hat” indicates that Pij is to be omitted. The resulting (p − 1)-
chain is called the boundary of the simplex. For example

∂2(P2P3P4) = P3P4 − P2P4 + P2P3,

= P3P4 + P4P2 + P2P3. (13.24)

The boundary of a line segment is the difference of its endpoints

∂1(P1P2) = P2 − P1. (13.25)

Finally, for any point,
∂0Pi = 0. (13.26)

Because ∂p is defined to be a linear map, when it is applied to a p-chain
c = a1s1 + a2s2 + · · · + ansn, where the si are p-simplices, we have ∂pc =
a1∂ps1 + a2∂ps2 + · · ·+ an∂psn.

When we take the “∂” of a chain of compatibly oriented simplices that
together make up some region, the internal boundaries cancel in pairs, and
the “boundary” of the chain really is the oriented geometric boundary of the
region. For example, in figure 13.6 we find that

∂(P1P5P2+P2P5P4+P3P4P5+P1P3P5) = P1P3+P3P4+P4P2+P2P1, (13.27)
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Figure 13.6: Compatibly oriented simplices.

which is the anti-clockwise directed boundary of the square.
For each of the examples above, we find that ∂p−1∂p s = 0. From the

definition (13.23) we can easily establish that this identity holds for any p-
simplex s. As chains are sums of simplices and ∂p is linear, it remains true
for any c ∈ Cp. Thus ∂p−1∂p = 0. We will usually abbreviate this statement
as ∂2 = 0.

Cycles, boundaries and homology

A chain complex is a doubly-infinite sequence of spaces (these can be vector
spaces, modules, abelian groups, or many other mathematical objects) such
as . . . , C−2, C−1, C0, C1, C2 . . ., together with structure-preserving maps

. . .
∂p+1→ Cp

∂p→ Cp−1
∂p−1→ Cp−2

∂p−1→ . . . , (13.28)

possessing the property that ∂p−1∂p = 0. The finite sequence of Cp’s that we
constructed from our simplicial complex is an example of a chain complex
where Cp is zero-dimensional for p < 0 or p > d. Chain complexes are a
useful tool in mathematics, and the ideas that we explain in this section
have many applications.

Given any chain complex we can define two important linear subspaces
of each of the Cp’s. The first is the space Zp of p-cycles. This consists of
those z ∈ Cp such that ∂pz = 0. The second is the space Bp of p-boundaries,
and consists of those b ∈ Cp such that b = ∂p+1c for some c ∈ Cp+1. Because
∂2 = 0, the boundaries Bp constitute a subspace of Zp. From these spaces
we form the quotient space Hp = Zp/Bp, consisting of equivalence classes of
p-cycles, where we deem z1 and z2 to be equivalent, or homologous, if they
differ by a boundary: z2 = z1 + ∂c. We write the equivalence class of cycles
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homologous zi to as [zi]. The space Hp, or more accurately, Hp(R), is called
the p-th (simplicial) homology space of the chain complex. It becomes the
p-th homology group if R is replaced by the integers.

We can construct these homology spaces for any chain complex. When
the chain complex is derived from a simplicial complex decomposition of a
manifold M a remarkable thing happens. The spaces Cp, Zp, and Bp, all
depend on the details of how the manifold M has been dissected to form
the simplicial complex S. The homology space Hp, however, is independent
of the dissection. This is neither obvious nor easy to prove. We will rely
on examples to make it plausible. Granted this independence, we will write
Hp(M), or Hp(M,R), so as to make it clear that Hp is a property of M . The
dimension bp of Hp(M) is called the p-th Betti number of the manifold:

bp
def
= dimHp(M). (13.29)

Example: The Two-Sphere. For the tetrahedral dissection of the two-sphere,
any vertex is Pi homologous to any other, as Pi − Pj = ∂(PjPi) and all
PjPi belong to C2. Furthermore, ∂Pi = 0, so H0(S

2) is one dimensional.
In general, the dimension of H0(M) is the number of disconnected pieces
making up M . We will write H0(S

2) = R, regarding R as the archetype of a
one-dimensional vector space.

Now let us consider H1(S
2). We first find the space of 1-cycles Z1. An

element of C1 will be in Z1 only if each vertex that is the begining of an edge
is also the end of an edge, and that these edges have the same coefficient.
Thus,

z1 = P2P3 + P3P4 + P4P2

is a cycle, as is
z2 = P1P4 + P4P2 + P2P1.

These are both boundaries of faces of the tetrahedron. It should be fairly
easy to convince yourself that Z1 is the space of linear combinations of these
together with boundaries of the other faces

z3 = P1P4 + P4P3 + P3P1,

z4 = P1P3 + P3P2 + P2P1.

Any three of these are linearly independent, and so Z1 is three dimensional.
Because all of the cycles are boundaries, every element of Z1 is homologous
to 0, and so H1(S

2) = {0}.
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We also see that H2(S
2) = R. Here the basis element is

P2P3P4 − P1P3P4 + P1P2P4 − P1P2P3 (13.30)

which is the 2-chain corresponding to the entire surface of the sphere. It
would be the boundary of the solid tedrahedron, but does not count as a
boundary because the interior of the tetrahedron is not part of the simplicial
complex.

Example: The Torus. Consider the 2-torus T 2. We will see that H0(T
2) = R,

H1(T
2) = R2 ≡ R ⊕ R, and H2(T

2) = R. A natural basis for the two-
dimensional H1(T

2) consists of the 1-cycles α, β portrayed in figure 13.7.

α

β

Figure 13.7: A basis of 1-cycles on the 2-torus.

The cycle γ that, in figure 13.2, winds once around the torus is homologous
to α + β. In terms of the second triangulation of the torus (figure 13.3) we
would have

α = P1P2 + P2P3 + P3P1,

β = P1P7 + P7P4 + P4P1, (13.31)

and

γ = P1P8 + P8P6 + P6P1

= α+ β + ∂(P1P8P2 + P8P9P2 + P2P9P3 + · · ·). (13.32)

Example: The Projective Plane. The projective plane RP 2 can be regarded
as a rectangle with diametrically opposite points identified. Suppose we
decompose RP 2 into eight triangles, as in figure 13.8.
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Figure 13.8: A triangulation of the projective plane.

Consider the “entire surface”

σ = P1P2P5 + P1P5P4 + · · · ∈ C2(RP
2), (13.33)

consisting of the sum of all eight 2-simplices with the orientation indicated
in the figure. Let α = P1P2 + P2P3 and β = P1P4 + P4P3 be the sides of the
rectangle running along the bottom horizontal and left vertical sides of the
figure, respectively. In each case they run from P1 to P3. Then

∂(σ) = P1P2 + P2P3 + P3P4 + P4P1 + P1P2 + P2P3 + P3P4 + P4P1

= 2(α− β) 6= 0. (13.34)

Although RP 2 has no actual edge that we can fall off, from the homological
viewpoint it does have a boundary! This represents the conflict between local
orientation of each of the 2-simplices and the global non-orientability of RP 2.
The surface σ of RP 2 is not a two-cycle, therefore. Indeed Z2(RP 2), and a
fortiori H2(RP 2), contain only the zero vector. The only one-cycle is α− β
which runs from P1 to P1 via P2, P3 and P4, but (13.34) shows that this is
the boundary of 1

2
σ. Thus H2(RP 2,R) = {0} and H1(RP 2,R) = {0}, while

H0(RP 2,R) = R.
We can now see the advantage of restricting ourselves to integer coeffi-

cients. When we are not allowed fractions, the cycle γ = (α−β) is no longer
a boundary, although 2(α−β) is the boundary of σ. Thus, using the symbol
Z2 to denote the additive group of the integers modulo two, we can write
H1(RP 2,Z) = Z2. This homology space is a set with only two members
{0γ, 1γ}. The finite group H1(RP 2,Z) = Z2 is said to be the torsion part
of the homology — a confusing terminology because this torsion has nothing
to do with the torsion tensor of Riemannian geometry.
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We introduced real-number homology first, because the theory of vector
spaces is simpler than that of modules, and more familiar to physicists. The
torsion is, however, invisible to the real-number homology. We were therefore
buying a simplification at the expense of throwing away information.

The Euler character

The sum

χ(M)
def
=

d∑

p=0

(−1)p dimHp(M,R) (13.35)

is called the Euler character of the manifold M . For example, the 2-sphere
has χ(S2) = 2, the projective plane has χ(RP 2) = 1, and the n-torus has
χ(T n) = 0. This number is manifestly a topological invariant because the
individual dimHp(M,R) are. We will show that that the Euler character is
also equal to V − E + F − · · · where V is the number of vertices, E is the
number of edges and F is the number of faces in the simplicial dissection. The
dots are for higher dimensional spaces, where the alternating sum continues
with (−1)p times the number of p-simplices. In other words, we are claiming
that

χ(M) =
d∑

p=0

(−1)p dimCp(M). (13.36)

It is not so obvious that this new sum is a topological invariant. The indi-
vidual dimensions of the spaces of p-chains depend on the details of how we
dissect M into simplices. If our claim is to be correct, the dependence must
somehow drop out when we take the alternating sum.

A useful tool for working with alternating sums of vector-space dimensions
is provided by the notion of an exact sequence. We say that a set of vector
spaces Vp with maps fp : Vp → Vp+1 is an exact sequence if Ker (fp) =
Im (fp−1). For example, if all cycles were boundaries then the set of spaces Cp
with the maps ∂p taking us from Cp to Cp−1 would consitute an exact sequence
— albeit with p decreasing rather than increasing, but this is irrelevent.
When the homology is non-zero, however, we only have Im (fp−1) ⊂ Ker (fp),
and the number dimHp = dim (Ker fp) − dim (Im fp−1) provides a measure
of how far this set inclusion falls short of being an equality.

Suppose that

{0} f0−→ V1
f1−→ V2

f2−→ . . .
fn−1−→ Vn

fn−→ {0} (13.37)
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is a finite-length exact sequence. Here, {0} is the vector space containing
only the zero vector. Being linear, f0 maps 0 to 0. Also fn maps everything
in Vn to 0. Since this last map takes everything to zero, and what is mapped
to zero is the image of the penultimate map, we have Vn = Im fn−1. Similarly,
the fact that Ker f1 = Im f0 = {0} shows that Im f1 ⊆ V2 is an isomorphic
image of V1. This situation is represented pictorially in figure 13.9.

}{ V1 V2 V3 V4 V5

fIm Im f Imf Imf

}{
f0 f f f f4 f5

0

0 0 0
21 3 4

0
1 2 3

0 0 0 0

Figure 13.9: A schematic representation of an exact sequence.

Now the range-nullspace theorem tells us that

dimVp = dim (Im fp) + dim (Ker fp)

= dim (Im fp) + dim (Im fp−1). (13.38)

When we take the alternating sum of the dimensions, and use dim (Im f0) = 0
and dim (Im fn) = 0, we find that the sum telescopes to give

n∑

p=0

(−1)p dim Vp = 0. (13.39)

The vanishing of this alternating sum is one of the principal properties of an
exact sequence.

Now, for our sequence of spaces Cp with the maps ∂p : Cp → Cp−1, we have
dim (Ker ∂p) = dim (Im ∂p+1) + dimHp. Using this and the range-nullspace
theorem in the same manner as above, shows that

d∑

p=0

(−1)pdimCp(M) =
d∑

p=0

(−1)pdimHp(M). (13.40)

This confirms our claim.
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Exercise 13.1: Count the number of vertices, edges and faces in the triangu-
lation we used to compute the homology groups of the real projective plane
RP 2. Verify that V − E + F = 1, and that this is the same number that we
get by evaluating

χ(RP 2) = dimH0(RP
2,R)− dimH1(RP

2,R) + dimH2(RP
2,R).

Exercise 13.2: Show that the sequence

{0} → V
φ→W → {0}

of vector spaces being exact means that the map φ : V → W is one-to-one
and onto, and hence an isomorphism V ∼= W .

Exercise 13.3: Show that a short exact sequence

{0} → A
i→ B

π→ C → {0}

of vector spaces is just a sophisticated way of asserting that C ∼= B/A. More
precisely, show that the map i is injective (one-to-one), so A can be considered
to be a subspace of B. Then show that the map π is surjective (onto), and
can be regarded as projecting B onto the equivalence classes B/A.

Exercise 13.4: Let α : A→ B be a linear map. Show that

{0}→Kerα
i→ A

α→ B
π→ Cokerα→ {0}

is an exact sequence. (Recall that Cokerα ≡ B/Imα.)

13.3.2 Relative homology

Mathematicians have invented powerful tools for computing homology. In
this section we introduce one of them: the exact sequence of a pair . We
describe this tool in detail because a homotopy analogue of this exact se-
quence is used in physics to classify defects such as dislocations, vortices and
monopoles. Homotopy theory is however harder and requires more technical
apparatus than homology, so the ideas are easier to explain here.

We have seen that it is useful to think of complicated manifolds as being
assembled out of simpler ones. We constructed the torus, for example, by
gluing together edges of a rectangle. Another construction technique involves
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shrinking parts of a manifold to a point. Think, for example, of the unit 2-
disc as a being circle of cloth with a drawstring sewn into its boundary. Now
pull the string tight to form a spherical bag. The continuous functions on
the resulting 2-sphere are those continuous functions on the disc that took
the same value at all points on its boundary. Recall that we used this idea in
section 12.4.2, where we claimed that those spin textures in R2 that point in
a fixed direction at infinity can be thought of as spin textures on the 2-sphere.
We now extend this shrinking trick to homology.

Suppose that we have a chain complex consisting of spaces Cp and bound-
ary operations ∂p. We denote this chain complex by (C, ∂). Another set of
of spaces and boundary operations (C ′, ∂′) is a subcomplex of (C, ∂) if each
C ′
p ⊆ Cp and ∂′p(c) = ∂p(c) for each c ∈ C ′

p. This situation arises if we have a
simplical complex S and a some subset S ′ that is itself a simplicial complex,
and take C ′

p = Cp(S
′)

Since each C ′
p is subspace of Cp we can form the quotient spaces Cp/C

′
p

and make them into a chain complex by defining, for c+ C ′
p ∈ Cp/C ′

p,

∂p(c+ C ′
p) = ∂pc + C ′

p−1. (13.41)

It easy to see that this operation is well defined (i.e. it gives the same output
independent of the choice of representative in the equivalence class c + C ′

p),

that ∂p : Cp → Cp−1 is a linear map, and that ∂p−1∂p = 0. We have
constructed a new chain complex (C/C ′, ∂). We can therefore form its ho-
mology spaces in the usual way. The resulting vector space, or abelian group,
Hp(C/C

′) is the p-th relative homology group of C modulo C ′. When C ′ and
C arise from simplicial complexes S ′ ⊆ S, these spaces are what remains of
the homology of S after every chain in S ′ has been shrunk to a point. In
this case, it is customary to write Hp(S, S

′) instead of Hp(C/C
′), and simi-

larly write the chain, cycle and boundary spaces as Cp(S, S
′), Zp(S, S

′) and
Bp(S, S

′) respectively.
Example: Constructing the two-sphere S2 from the two-ball (or disc) B2.
We regard B2 to be the triangular simplex P1P2P3, and its boundary, the
one-sphere or circle S1, to be the simplicial complex containing the points P1,
P2, P3 and the sides P1P2, P2P3, P3P1, but not the interior of the triangle.
We wish to contract this boundary complex to a point, and form the relative
chain complexes and their homology spaces. Of the spaces we quotient by,
C0(S

1) is spanned by the points P1, P2, P3, the 1-chain space C1(S
1) is

spanned by the sides P1P2, P2P3, P3P1, while C2(S
1) = {0}. The space of
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relative chains C2(B
1, S1) consists of multiples of P1P2P3 + C2(S

1), and the
boundary

∂2

(
P1P2P3 + C2(S

1)
)

= (P2P3 + P3P1 + P1P2) + C1(S
1) (13.42)

is equivalent to zero because P2P3 + P3P1 + P1P2 ∈ C1(S
1). Thus P1P2P3 +

C2(S
1) is a non-bounding cycle and spans H2(B

2, S1), which is therefore
one dimensional. This space is isomorphic to the one-dimensional H2(S

2).
Similarly H1(B

2, S1) is zero dimensional, and so isomorphic to H1(S
2). This

is because all chains in C1(B
2, S1) are in C1(S

1) and therefore equivalent to
zero.

A peculiarity, however, is that H0(B
2, S1) is not isomorphic to H0(S

2) =
R. Instead, we find that H0(B

2, S1) = {0} because all the points are equiva-
lent to zero. This vanishing is characteristic of the zeroth relative homology
space H0(S, S

′) for the simplicial triangulation of any connected manifold.
It occurs because S being connected means that any point P in S can be
reached by walking along edges from any other point, in particular from a
point P ′ in S ′. This makes P homologous to P ′, and so equivalent to to zero
in H0(S, S

′).

Exact homology sequence of a pair

Homological algebra is full of miracles. Here we describe one of them. From
the ingredients we have at hand, we can construct a semi-infinite sequence
of spaces and linear maps between them

· · · ∂∗p+1−→ Hp(S
′)

i∗p−→ Hp(S)
π∗p−→ Hp(S, S

′)
∂∗p−→

Hp−1(S
′)
i∗p−1−→ Hp−1(S)

π∗p−1−→ Hp−1(S, S
′)
∂∗p−1−→

...
∂∗1−→ H0(S

′)
i∗0−→ H0(S)

π∗0−→ H0(S, S
′)

∂∗0−→ {0}. (13.43)

The maps i∗p and π∗p are induced by the natural injection ip : Cp(S
′)→ Cp(S)

and projection πp : Cp(S)→ Cp(S)/Cp(S
′). It is only necessary to check that

πp−1∂p = ∂pπp,

ip−1∂p = ∂pip, (13.44)
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to see that they are compatible with the passage from the chain spaces to
the homology spaces. More discussion is required of the connection map ∂∗p
that takes us from one row to the next in the displayed form of (13.43).

The connection map is constructed as follows: Let h ∈ Hp(S, S
′). Then

h = z + Bp(S, S
′) for some cycle z ∈ Z(S, S ′), and in turn z = c + Cp(S

′)
for some c ∈ Cp(S). (So two choices of representative of equivalence class
are being made here.) Now ∂pz = 0 which means that ∂pc ∈ Cp−1(S

′). This
fact, when combined with ∂p−1∂p = 0, tells us that ∂pc ∈ Zp−1(S

′). We now
define the ∂∗p image of h to be

∂∗p(h) = ∂pc+Bp−1(S
′). (13.45)

This sounds rather involved, but let’s say it again in words: an element of
Hp(S, S

′) is a relative p-cycle modulo S ′. This means that its boundary is
not necessarily zero, but may be a non-zero element of Cp−1(S

′). Since this
element is the boundary of something its own boundary vanishes, so it is
(p − 1)-cycle in Cp−1(S

′) and hence a representative of a homology class in
Hp−1(S

′). This homology class is the output of the ∂∗p map.
The miracle is that the sequence of maps (13.43) is exact . It is an example

of a standard homological algebra construction of a long exact sequence out
of a family of short exact sequences, in this case out the sequences

{0} → Cp(S
′)→ Cp(S)→ Cp(S, S

′)→ {0}. (13.46)

Proving that the long sequence is exact is straightforward. All one must do
is check each map to see that it has the properties required. This exercise in
what is called diagram chasing is left to the reader.

The long exact sequence that we have constructed is called the exact
homology sequence of a pair . If we know that certain homology spaces are
zero dimensional, it provides a powerful tool for computing other spaces in
the sequence. As an illustration, consider the sequence of the pair Bn+1 and
Sn for n > 0:

· · · i∗p−→ Hp(B
n+1)︸ ︷︷ ︸

= {0}

π∗p−→ Hp(B
n+1, Sn)

∂∗p−→ Hp−1(S
n)

i∗p−1−→ Hp−1(B
n+1)︸ ︷︷ ︸

= {0}

π∗p−1−→ Hp−1(B
n+1, Sn)

∂∗p−1−→ Hp−2(S
n)
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...
i∗1−→ H1(B

n+1)︸ ︷︷ ︸
= {0}

π∗1−→ H1(B
n+1, Sn)

∂∗1−→ H0(S
n)︸ ︷︷ ︸

= R
i∗0−→ H0(B

n+1)︸ ︷︷ ︸
= R

π∗0−→ H0(B
n+1, Sn)

∂∗0−→ {0}. (13.47)

We have inserted here the easily-established data that Hp(B
n+1) = {0} for

p > 0 (which is a consequence of the (n+1)-ball being a contractible space),
and that H0(B

n+1) and H0(S
n) are one dimensional because they consist of

a single connected component. We read off, from the {0} → A→ B → {0}
exact subsequences, the isomorphisms

Hp(B
n+1, Sn) ∼= Hp−1(S

n), p > 1, (13.48)

and from the exact sequence

{0} → H1(B
n+1, S1)→ R→ R→ H0(B

n+1, Sn)→ {0} (13.49)

that H1(B
n+1, Sn) = {0} = H0(B

n+1, Sn). The first of these equalities holds
because H1(B

n+1, Sn) is the kernel of the isomorphism R → R, and the
second because H0(B

n+1, Sn) is the range of a surjective null map.
In the case n = 0, we have to modify our last conclusion because H0(S

0) =
R ⊕ R is two dimensional. (Remember that H0(M) counts the number of
disconnected components of M , and the zero-sphere S0 consists of the two
disconnected points P1, P2 lying in the boundary of the interval B1 = P1P2.)
As a consequence, the last five maps in (13.47) become

{0} → H1(B
1, S0)→ R⊕ R→ R→ H0(B

1, S0)→ {0}. (13.50)

This tells us that H1(B
1, S0) = R and H0(B

1, S0) = {0}.

Exact homotopy sequence of a pair

The construction of a long exact sequence from a short exact sequence is
a very powerful technique. It has become almost ubiquitous in advanced
mathematics. Here we briefly describe an application to homotopy theory.

We have met the homotopy groups πn(M) in section 12.4.4. As we saw
there, homotopy groups can be used to classify defects or textures in physical
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systems in which some field takes values in a manifold M . Suppose that the
local physical properties of a system are invariant under the action of a Lie
group G — for example the high temperature phase of ferromagnet may be
invariant under rotation group SO(3)). Now suppose that system undergoes
spontaneous symmetry breaking is becomes invariant only under a subgroup
H. Then manifold manifold of inequivalent states is the coset G/H. For
a ferromagnet the symmetry breaking will from G = SO(3) to H = SO(2)
where SO(2) is the group of rotations about the axis of magnetization. G/H
is then the 2-sphere of direction in which the magnetization can point.

The group πn(G) can be taken to be the set of continuous maps of an
n-dimensional cube into the group G, with the surface of the cube mapping
to the identity element e ∈ G. We similarly define the relative homotopy
group πn(G,H) of G modulo H to be the set of continuous maps of the
cube into G, with all-but-one face of the cube mapping to e, but with the
remaining face mapping to the subgroup H. It can then be shown that
πn(G/H) ∼= πn(G,H) (the hard part is to show that any continuous map
into G/H can be represented as the projection of some continuous map into
G).

The short exact sequence

{e} → H
i→ G

π→ G/H → {e} (13.51)

of group homomorphisms (where {e} is the group consisting only of the
identity element) then gives rise to the long exact sequence

· · · → πn(H)→ πn(G)→ πn(G,H)→ πn−1(H)→ · · · . (13.52)

The derivation and utility of this exact sequence is very well described in
the review article by Mermin cited in section 12.4.4. We have therefore
contented ourselves with simply displaying the result so that the reader can
see the similarity between the homology theorem and its homotopy-theory
analogue.

13.4 De Rham’s theorem

We still have not related homology to cohomology. The link is provided by
integration.
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The integral provides a natural pairing of a p-chain c and a p-form ω: if
c = a1s1 + a2s2 + · · ·+ ansn, where the si are simplices, we set

(c, ω) =
∑

i

ai

∫

si

ω. (13.53)

The perhaps mysterious notion of “adding” geometric simplices is thus given
a concrete interpretation in terms of adding real numbers.

Stokes’ theorem now reads

(∂c, ω) = (c, dω), (13.54)

suggesting that d and ∂ should be regarded as adjoints of each other. From
this observation follows the key fact that the pairing between chains and
forms descends to a pairing between homology classes and cohomology classes.
In other words,

(z + ∂c, ω + dχ) = (z, ω), (13.55)

so it does not matter which representatives of the two equivalence classes we
take when we compute the integral. Let us see why this is so.

Suppose z ∈ Zp and ω2 = ω1 + dη. Then

(z, ω2) =

∫

z

ω2 =

∫

z

ω1 +

∫

z

dη

=

∫

z

ω1 +

∫

∂z

η

=

∫

z

ω1

= (z, ω1) (13.56)

because ∂z = 0. Thus, all elements of the cohomology class of ω return the
same answer when integrated over a cycle.

Similarly, if ω ∈ Zp and c2 = c1 + ∂a then

(c2, ω) =

∫

c1

ω +

∫

∂a

ω

=

∫

c1

ω +

∫

a

dω

=

∫

c1

ω

= (c1, ω),
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since dω = 0.
All this means that we can consider the equivalence classes of closed forms

composing Hp
dR(M) to be elements of (Hp(M))∗, the dual space of Hp(M)

— hence the “co” in cohomology. The existence of the pairing does not
automatically mean that Hp

dR is the dual space to Hp(M), however, because
there might be elements of the dual space that are not in Hp

dR, and there
might be distinct elements ofHp

dR that give identical answers when integrated
over any cycle, and so correspond to the same element in (Hp(M))∗. This
does not happen, however, when the manifold is compact : De Rham showed
that, for compact manifolds, (Hp(M,R))∗ = Hp

dR(M,R). We will not try to
prove this, but be satisfied with some examples.

The statement (Hp(M))∗ = Hp
dR(M) neatly summarizes de Rham’s re-

sults, but, in practice, the more explicit statements given below are more
useful.

Theorem: (de Rham) Suppose that M is a compact manifold.
1) A closed p-form ω is exact if and only if

∫

zi

ω = 0 (13.57)

for all cycles zi ∈ Zp. It suffices to check this for one representative of
each homology class.

2) If zi ∈ Zp, i = 1, . . . , dimHp, is a basis for the p-th homology space,
and αi a set of numbers, one for each zi, then there exists a closed
p-form ω such that ∫

zi

ω = αi. (13.58)

If ωi constitute a basis of the vector space Hp(M) then the matrix of numbers

Ωi
j = (zi, ω

j) =

∫

zi

ωj (13.59)

is called the period matrix , and the Ωi
j themselves are the periods.

Example: H1(T
2) = R ⊕ R is two dimensional. Since a finite-dimensional

vector space and its dual have the same dimension, de Rham tells us that
H1

dR(T 2) is also two-dimensional. If we take as coordinates on T 2 the angles
θ and φ, then the basis elements, or generators, of the cohomology spaces are
the forms “dθ” and “dφ”. We have inserted the quotes to stress that these
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expressions are not the d of a function. The angles θ and φ are not functions
on the torus, since they are not single-valued. The homology basis 1-cycles
can be taken as zθ running from θ = 0 to θ = 2π along φ = π, and zφ running
from φ = 0 to φ = 2π along θ = π. Clearly, ω = αθdθ/2π+αφdφ/2π returns∫
zθ
ω = αθ and

∫
zφ
ω = αφ for any αθ, απ, so {dθ/2π, dφ/2π} and {zθ, zφ} are

dual bases.
Example: We have earlier computed the homology groups H2(RP 2,R) = {0}
and H1(RP 2,R) = {0}. De Rham therefore tells us that H2(RP 2,R) = {0}
and H1(RP 2,R) = {0}. From this we deduce that all closed one- and two-
forms on the projective plane RP 2 are exact.
Example: As an illustration of de Rham part 1), observe that it is easy to
show that a closed one-form φ can be written as df , provided that

∫
zi
φ = 0

for all cycles. We simply define f =
∫ x
x0
φ, and observe that the proviso

ensures that f is not multivalued.
Example: A more subtle problem is to show that, given a two-form ω on S2,
with

∫
S2 ω = 0 there is a globally-defined χ such that ω = dχ. We begin

by covering S2 by two open sets D+ and D− which have the form of caps
such that D+ includes all of S2 except for a neighbourhood of the south
pole, while D− includes all of S2 except a neighbourhood of the north pole,
and the intersection, D+ ∩D−, has the topology of an annulus, or cingulum,
encircling the equator.

D

D

+

_

Γ

Figure 13.10: A covering the 2-sphere by a pair of contractable caps.

Since both D+ and D− are contractable, there are one-forms χ+ and χ− such
that ω = dχ+ in D+ and ω = dχ− in D−. Thus,

d(χ+ − χ−) = 0, in D+ ∩D−. (13.60)
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Dividing the sphere into two disjoint sets with a common (but opposingly
oriented) boundary Γ ∈ D+ ∩D−, we have

0 =

∫

S2

ω =

∮

Γ

(χ+ − χ−), (13.61)

and this is true for any such curve Γ. Thus, by the previous example,

φ ≡ (χ+ − χ−) = df (13.62)

for some smooth function f defined in D+∩D−. We now introduce a partition
of unity subordinate to the cover of S2 by D+ and D−. This partition is a
pair of non-negative smooth functions, ρ±, such that ρ+ is non-zero only in
D+, ρ− is non-zero only in D−, and ρ+ + ρ− = 1. Now

f = ρ+f − (−ρ−)f, (13.63)

and f− = ρ+f is a function defined everywhere on D−. Similarly f+ =
(−ρ−)f is a function on D+. Notice the interchange of ± labels! This is not
a mistake. The function f is not defined outside D+∩D−, but we can define
ρ−f everywhere on D+ because f gets multiplied by zero wherever we have
no specific value to assign to it. We now observe that

χ+ + df+ = χ− + df−, in D+ ∩D−. (13.64)

Thus ω = dχ, where χ is defined everywhere by the rule

χ =

{
χ+ + df+, in D+,
χ− + df−, in D−.

(13.65)

It does not matter which definition we take in the cingular region D+ ∩D−,
because the two definitions coincide there.

The methods of this example can be extended to give a proof of de Rham’s
claims.

13.5 Poincaré duality

De Rham’s theorem does not require that our manifold M be orientable. Our
next results do, however, require orientablity. We therefore assume through-
out this section that M is a compact, orientable, D-dimensional manifold.
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We will also require that M is a closed manifold —- meaning that it has no
boundary.

We begin with the observation that if the forms ω1 and ω2 are closed then
so is ω1 ∧ω2. Furthermore, if one or both of ω1, ω2 is exact then the product
ω1∧ω2 is also exact. It follows that the cohomology class [ω1∧ω2] of ω1∧ω2

depends only on the cohomology classes [ω1] and [ω2]. The wedge product
thus induces a map

Hp(M,R)×Hq(M,R)
∧→ Hp+q(M,R), (13.66)

which is called the “cup product” of the cohomology classes. It is written
as

[ω1 ∧ ω2] = [ω1] ∪ [ω2], (13.67)

and gives the cohomology the structure of a graded-commutative ring, de-
noted by H•(M,R)

More significant for us than the ring structure is that, given ω ∈ HD(M,R),
we can obtain a real number by forming

∫
M
ω (This is the point at which

we need orientability. We only know how to integrate over orientable chains,
and so cannot even define

∫
M
ω when M is not orientable) and can com-

bine this integral with the cup product to make any cohomology class [f ] ∈
HD−p(M,R) into an element F of (Hp(M,R))∗. We do this by setting

F ([g]) =

∫

M

f ∧ g (13.68)

for each [g] ∈ Hp(M,R). Furthermore, it is possible to show that we can
get any element F of (Hp(M,R))∗ in this way, and the corresponding [f ] is
unique. But de Rham has already given us a way of identifying the elements
of (Hp(M,R))∗ with the cycles in Hp(M,R)! There is, therefore, a 1-1 onto
map

Hp(M,R)↔ HD−p(M,R). (13.69)

In particular the dimensions of these two spaces must coincide:

bp(M) = bD−p(M). (13.70)

This equality of Betti numbers is called Poincaré duality . Poincaré originally
conceived of it geometrically. His idea was to construct from each simplicial
triangulation S ofM a new “dual” triangulation S ′, where, in two dimensions
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for example, we place a new vertex at the centre of each triangle, and join the
vertices by lines through each side of the old triangles to make new cells —
each new cell containing one of the old vertices. If we are lucky, this process
will have the effect of replacing each p-simplex by a (D− p)-simplex, and so
set up a map between Cp(S) and CD−p(S

′) that turns the homolgy “upside
down.” The new cells are not always simplices, however, and it is hard to
make this construction systematic. Poincaré’s original recipe was flawed.

Our present approach to Poincaré’s result is asserting that for each basis
p-cycle class [zpi ] there is a unique (up to cohomology) (D − p)-form ωD−p

i

such that ∫

zp
i

f =

∫

M

ωD−p
i ∧ f. (13.71)

We can construct this ωD−p
i “physically” by taking a representative cycle zpi

in the homology class [zpi ] and thinking of it as a surface with a conserved
unit (d − p)-form current flowing in its vicinity. An example would be the
two-form topological current running along the one-dimensional worldline of
a skyrmion. (See the discussion surrounding equation (12.64).) The ωD−p

i

form a basis for HD−p(M,R). We can therefore expand f ∼ f iωD−p
i , and

similarly for the closed p-form g, to obtain

∫

M

g ∧ f = f igjI(i, j), (13.72)

where the matrix

I(i, j)
def
= I(zpi , z

D−p
j ) =

∫

M

ωD−p
i ∧ ωpj (13.73)

is called the intersection form. From its definition we see that I(i, j) satisfies
the symmetry

I(i, j) = (−1)p(D−p)I(j, i). (13.74)

Less obvious is that I(i, j) is an integer that reports the number of times
(counted with orientation) that the cycles zpi and zD−p

j intersect. This latter
fact can be understood from our construction of the ωpi as unit currents lo-
calized near the zD−p

i cycles. The integrand in (13.73) is non-zero only in the
neighbourhood of the intersections of zpi with zD−p

j , and at each intersection
constitutes a D-form that integrates up to give ±1.
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+1 +1−1+1 α α

β β

Figure 13.11: The intersection of two cycles: I(α, β) = 1 = 1− 1 + 1.

This claim is illustrated in the left-hand part of figure 13.11, which shows a
region surrounding the intersection of the α and β one-cycles on the 2-torus.
The co-ordinate system has been chosen so that the α cycle runs along the
x axis and the β cycle along then y axis. Each cycle is surrounded by the
narrow shaded regions −w < y < w and −w < x < w, respectively. To
construct suitable forms ωα and ωβ we select a smooth function f(x) that
vanishes for |x| ≥ w and such that

∫
f dx = 1. In the local chart we can then

set

ωα = f(y) dy,

ωβ = −f(x) dx,

both these forms being closed. The intersection number is given by the
integral

I(α, β) =

∫
ωα ∧ ωβ =

∫∫
f(x)f(y) dxdy = 1. (13.75)

The right-hand part of figure 13.11 illustrates why this intersection number
depends only on the homology classes of the two one-cycles, and not on their
particular instantiation as curves.

We can more conveniently re-express (13.72) in terms of the periods of
the forms

fi
def
=

∫

zp
i

f = I(i, k)f k, gj
def
=

∫

zD−p
j

g = I(j, l)gl, (13.76)

as ∫

M

f ∧ g =
∑

i,j

K(i, j)

∫

zp
i

f

∫

zD−p
j

g, (13.77)
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where
K(i, j) = I−1(i, k)I−1(j, l)I(k, l) = I−1(j, i) (13.78)

is the transpose of the inverse of the intersection-form matrix. The decom-
position (13.77) of the integral of the product of a pair of closed forms into
a bilinear form in their periods is one of the two principal results of this
section, the other being (13.70).

In simple cases, we can obtain the decomposition (13.77) by more direct
methods. Suppose, for example, that we label the cycles generating the
homology group H1(T

2) of the 2-torus as α and β, and that a and b are
closed (da = db = 0), but not necessarily exact, one-forms. We will show
that ∫

T 2

a ∧ b =

∫

α

a

∫

β

b−
∫

α

b

∫

β

a. (13.79)

To do this, we cut the torus along the cycles α and β and open it out into
a rectangle with sides of length Lx and Ly. The cycles α and β will form
the sides of the rectangle, and we will take them as lying parallel to the x
and y axes, respectively. Functions on the torus now become functions on
the rectangle. Not all functions on the rectangle descend from functions on
the torus, however. Only those functions that satisfy the periodic bound-
ary conditions f(0, y) = f(Lx, y) and f(x, 0) = f(x, Ly) can be considered
(mathematicians would say “can be lifted”) to be functions on the torus.

2T

α
α

α

β ββ

Figure 13.12: Cut-open torus

Since the rectangle (but not the torus) is retractable, we can write a = df
where f is a function on the rectangle — but not necessarily a function on
the torus, i.e. f will not, in general, be periodic. Since a∧ b = d(fb), we can
now use Stokes’ theorem to evaluate∫

T 2

a ∧ b =

∫

T 2

d(fb) =

∫

∂T 2

fb. (13.80)
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The two integrals on the two vertical sides of the rectangle can be combined
to a single integral over the points of the one-cycle β:

∫

vertical

fb =

∫

β

[f(Lx, y)− f(0, y)]b. (13.81)

We now observe that [f(Lx, y)− f(0, y)] is a constant, and so can be taken
out of the integral. It is a constant because all paths from the point (0, y) to
(Lx, y) are homologous to the one-cycle α, so the difference f(Lx, y)−f(0, y)
is equal to

∫
α
a. Thus,

∫

β

[f(Lx, y)− f(0, y)]b =

∫

α

a

∫

β

b. (13.82)

Similarly, the contributions of the two horizontal sides is
∫

α

[f(x, 0)− f((x, Ly)]b = −
∫

β

a

∫

α

b. (13.83)

On putting the contributions of both pairs of sides together, the claimed
result follows.

13.6 Characteristic classes

A supply of elements ofH2m(M,R) andH2m(M,Z) is provided by the charac-
teristic classes associated with connections on vector bundles over the man-
ifold M .

Recall that connections appear in covariant derivatives

∇µ
def
= ∂µ + Aµ, (13.84)

and are to be thought of as matrix-valued one-forms A = Aµdx
µ. In the

quantum mechanics of charged particles the covariant derivative that appears
in the Schrödinger equation is

∇µ =
∂

∂xµ
− ieAMaxwell

µ . (13.85)

Here, e is the charge of the particle on whose wavefunction the derivative
acts, and AMaxwell

µ is the usual electromagnetic vector potential. The matrix-
valued connection one-form is therefore

A = −ieAMaxwell
µ dxµ. (13.86)
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In this case the matrix is one-by-one.

In a non-abelian gauge theory with gauge groupG the connection becomes

A = iλ̂aA
a
µdx

µ (13.87)

The λ̂a are hermitian matrices that have commutation relations [λ̂a, λ̂b] =

if cabλ̂c, where the f cab are the structure constants of the Lie algebra of the

group G. The λ̂a therefore form a representation of the Lie algebra, and
this representation plays the role of the “charge” of the non-abelian gauge
particle.

For covariant derivatives acting on a tangent vector field f aea on a Rie-
mann n-manifold, where the ea are an orthonormal vielbein frame, we have

A = ωabµdx
µ, (13.88)

where, for each µ, the coefficients ωabµ = −ωbaµ can be thought of as the
entries in a skew symmetric n-by-n matrix. These matrices are elements of
the Lie algebra o(n) of the orthogonal group O(n).

In all these cases we define the curvature two-form to be F = dA + A2,
where a combined matrix and wedge product is to be understood in A2. In
exercises 11.19 and 11.20 you used the Bianchi identity to show that the
gauge-invariant 2n-forms tr (F n) were closed. The integrals of these forms
over cycles provide numbers that are topological invariants of the bundle.
For example, in four-dimensional QCD, the integral

c2 = − 1

8π2

∫

Ω

tr (F 2) (13.89)

over a compactified four-dimensional manifold Ω is an integer that a mathe-
matician would call the second Chern number of the non-abelian gauge bun-
dle, and that a physicist would call the instanton number of the gauge field
configuration. The closed forms themselves are called characteristic classes.

In the following section we will show that the integrals of characteristic
classes are indeed topological invariants. We also explain something of what
these invariants are measuring, and illustrate why, when suitably normalized,
they are integer-valued.
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13.6.1 Topological invariance

Suppose that we have been given a connection A and slightly deform it
A→ A + δA. Then F → F + δF where

δF = d(δA) + δAA+ AδA. (13.90)

Using the Bianchi identity dF = FA− AF , we find that

δ tr(F n) = n tr(δF F n−1)

= n tr(d(δA)F n−1) + n tr(δAAF n−1) + n tr(AδAF n−1)

= n tr(d(δA)F n−1) + n tr(δAAF n−1)− n tr(δAF n−1A)

= d
{
n tr(δAF n−1)

}
. (13.91)

The last line of (13.91) is equal to the penultimate line because all but the
first and last terms arising from the dF ’s in d {tr(δAF n−1)} cancel in pairs. A
globally-defined change in A therefore changes tr(F n) by the d of something,
and so does not change its cohomology class, or its integral over a cycle.

At first sight, this invariance under deformation suggests that all the
tr(F n) are exact forms — they can apparently all be written as tr(F n) =
dω2n−1(A) for some (2n− 1)-form ω2n−1(A). To find ω2n−1(A) all we have to
do is deform the connection to zero by setting At = t A and

Ft = dAt + A2
t = tdA+ t2A2. (13.92)

Then δAt = Aδt, and

d

dt
tr(F n

t ) = d
{
n tr(AF n−1

t )
}
. (13.93)

Integrating up from t = 0, we find

tr(F n) = d

{
n

∫ 1

0

tr(AF n−1
t ) dt

}
. (13.94)

For example

tr(F 2) = d

{
2

∫ 1

0

tr(A(tdA+ t2A2) dt

}

= d

{
tr

(
AdA +

2

3
A3

)}
. (13.95)
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You should recognize here the ω3(A) = tr(AdA + 2
3
A3) Chern-Simons form

of exercise 11.19. The näıve conclusion — that all the tr(F n) are exact
— is false, however. What the computation actually shows is that when∫

tr(F n) 6= 0 we cannot find a globally defined one-form A representing the
connection or gauge field. With no global A, we cannot globally deform A
to zero.

Consider, for example, an Abelian U(1) gauge field on the two-sphere S2.
When the first Chern-number

c1 =
1

2πi

∫

S2

F (13.96)

is non-zero, there can be no globally-defined one-form A such that F =
dA. Glance back, however, at figure 13.10 on page 527. There we see that
the retractability of the spherical caps D± guarantees that there are one-
forms A± defined on D± such that F = dA± in D±. In the cingular region
D+∩D− where they are both defined, A+ and A− will be related by a gauge
transformation. For a U(1) gauge field, the matrix g appearing in the general
gauge transformation rule

A→ Ag ≡ g−1Ag + g−1dg, (13.97)

of exercise 11.20 becomes the phase eiχ ∈ U(1). Consequently

A+ = A− + e−iχdeiχ = A− + idχ in D+ ∩D−. (13.98)

The U(1) group element eiχ is required to be single valued in D+ ∩D−, but
the angle χ may be multivalued. We now write c1 as the sum of integrals over
the north and south hemispheres of S2, and use Stokes theorem to reduce
this sum to a single integral over the hemispheres’ common boundary, the
equator Γ:

c1 =
1

2πi

∫

north

F +
1

2πi

∫

south

F

=
1

2πi

∫

north

dA+ +
1

2πi

∫

south

dA−

=
1

2πi

∫

Γ

A+ −
1

2πi

∫

Γ

A−

=
1

2π

∫

Γ

dχ (13.99)
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We see that c1 is an integer that counts the winding of χ as we circle Γ. A
non-zero integer cannot be continuously reduced to zero, and if we attempt
to deform A→ tA→ 0, we will violate the required single-valuedness of the
U(1) group element eiχ.

Although the Chern-Simons forms ω2n−1(A) cannot be defined globally,
they are still very useful in physics. They occur as Wess-Zumino terms
describing the low-energy properties of various quantum field theories, the
prototype being the Skyrme-Witten model of Hadrons.3

13.6.2 Chern characters and Chern classes

Any gauge-invariant polynomial (with exterior multiplication of forms un-
derstood) in F provides a closed, topologically invariant, differential form.
Certain combinations, however, have additional desirable properties, and so
have been given names.

The form

chn(F ) = tr

{
1

n!

(
i

2π
F

)n}
(13.100)

is called the n-th Chern character . It is convenient to think of this 2n-form
as being the n-th term in a generating-function expansion

ch(F )
def
= tr

{
exp

(
i

2π
F

)}
= ch0(F ) + ch1(F ) + ch2(F ) + · · · , (13.101)

where ch0(F )
def
= tr I is the dimension of the space on which the λ̂a act. This

formal sum of forms of different degree is called the total Chern character .
The n! normalization is chosen because it makes the Chern character behave
nicely when we combine vector bundles — as we now do.

Given two vector bundles over the same manifold, having fibres Ux and Vx
over the point x, we can make a new bundle with the direct sum Ux ⊕ Vx as
fibre over x. This resulting bundle is called the Whitney sum of the bundles.
Similarly we can make a tensor-product bundle whose fibre over x is Ux⊗Vx.

Let us use the notation ch(U) to represent the Chern character of the
bundle with fibres Ux, and U ⊕V to denote the Whitney sum. Then we have

ch(U ⊕ V ) = ch(U) + ch(V ), (13.102)

3E. Witten, Nucl. Phys. B223 (1983) 422; ibid. B223 (1983) 433.
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and
ch(U ⊗ V ) = ch(U) ∧ ch(V ). (13.103)

The second of these formulæ comes about because if λ̂
(1)
a is a Lie algebra

element acting on V (1) and λ̂
(2)
a the corresponding element acting on V (2),

then they act on the tensor product V (1) ⊗ V (2) as

λ̂(1⊗2)
a = λ̂(1)

a ⊗ I + I ⊗ λ̂(2)
a , (13.104)

where I is the identity operator on the appropriate space in the tensor prod-
uct, and for matrices A and B we have

tr {exp (A⊗ I + I ⊗B)} = tr {expA⊗ expB} = tr {expA} tr {expB} .
(13.105)

In terms of the individual chn(V ) equations (13.102) and (13.103) read

chn(U ⊕ V ) = chn(U) + chn(V ), (13.106)

and

chn(U ⊗ V ) =

n∑

m=0

chn−m(U) ∧ chm(V ). (13.107)

Related to the Chern characters are the Chern classes. These are wedge-
product polynomials in the Chern characters, and are defined, via the matrix
expansion

det (I + A) = 1 + trA+
1

2

(
(trA)2 − trA2

)
+ . . . , (13.108)

by the generating function for the total Chern class:

c(F ) = det

(
I +

i

2π
F

)
= 1 + c1(F ) + c2(F ) + · · · . (13.109)

Thus

c1(F ) = ch1(F ), c2(F ) =
1

2
ch1(F ) ∧ ch1(F )− ch2(F ), (13.110)

and so on.
For matrices A and B we have det(A ⊕ B) = det(A) det(B), and this

leads to
c(U ⊕ V ) = c(U) ∧ c(V ). (13.111)
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Although the Chern classes are more complicated in appearance than the
Chern characters, they are introduced because their integrals over cycles turn
out to be integers, and this property remains true of integer-coefficient sums
of products of Chern-classes. The cohomology classes [cn(F )] are therefore
elements of the integer cohomology ring H•(M,Z). This property does not
hold for the Chern characters, whose integrals over cycles can be fractions.
The cohomology classes [chn(F )] are therefore only elements of H•(M,Q).

When we integrate products of Chern classes of total degree 2m over
closed 2m-dimensional orientable manifolds we get integer Chern numbers.
These integers can be related to generalized winding numbers, and character-
ize the extent to which the gauge transformations that relate the connection
fields in different patches serve to twist the vector bundle. Unfortunately
it requires a considerable amount of combinatorial machinery (the Schubert
calculus of complex Grassmannians) to explain these integers.

Pontryagin and Euler classes

When the fibres of a vector bundle are vector spaces over R, the complex
skew-hermitian matrices iλ̂a are replaced by real skew symmetric matrices.
The Lie algebra of the n-by-n matrices iλ̂a was a subalgebra of u(n). The Lie
algebra of the n-by-n real, skew symmetric, matrices is a subalgebra of o(n).
Now, the trace of an odd power of any skew symmetric matrix is zero. As a
consequence, Chern characters and Chern classes containing an odd number
of F ’s all vanish. The remaining real 4n-forms are known as Pontryagin
classes. The precise definition is

pk(V )
def
= (−1)kc2k(V ). (13.112)

Pontryagin classes help to classify bundles whose gauge transformations
are elements of O(n). If we restrict ourselves to gauge transformations that lie
in SO(n), as we would when considering the tangent bundle of an orientable
Riemann manifold, then we can make a gauge-invariant polynomial out of
the skew-symmetric matrix-valued F by forming its Pfaffian.

Recall (or see exercise A.18) that the Pfaffian of a skew symmetric 2n-
by-2n matrix A with entries aij is

Pf A =
1

2nn!
εi1,...i2nai1i2 · · ·ai2n−1i2n . (13.113)
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The Euler class of the tangent bundle of a 2n-dimensional orientable manifold
is defined via its skew-symmetric Riemann-curvature form

R =
1

2
Rab,µνdx

µdxν (13.114)

to be

e(R) = Pf

(
1

2π
R

)
. (13.115)

In four dimensions, for example, this becomes the 4-form

e(R) =
1

32π2
εabcdRabRcd. (13.116)

The generalized Gauss-Bonnet theorem asserts — for an oriented, even-
dimensional, manifold without boundary — that the Euler character is given
by

χ(M) =

∫

M

e(R). (13.117)

We will not prove this theorem, but in section 16.3.6 we will illustrate the
strategy that leads to Chern’s influential proof.

Exercise 13.5: Show that

c3(F ) =
1

6

(
(ch1(F ))3 − 6 ch1(F )ch2(F ) + 12 ch3(F )

)
.

13.7 Hodge theory and the Morse index

The Laplacian, when acting on a scalar function φ in R3 is simply div (gradφ),
but when acting on a vector v it becomes

∇2v = grad (div v)− curl (curlv). (13.118)

Why this weird expression? How should the Laplacian act on other types of
fields?

For general curvilinear co-ordinates in Rn, a reasonable definition for the
Laplacian of a vector or tensor field T is ∇2T = gµν∇µ∇νT where ∇µ is the
flat-space covariant derivative. This is the unique co-ordinate independent
object that reduces in Cartesian co-ordinates to the ordinary Laplacian acting
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on the individual components of T. The proof that the rather different-
seeming (13.118) holds for vectors is that it too is constructed out of co-
ordinate independent operations, and in Cartesian co-ordinates reduces to
the ordinary Laplacian acting on the individual components of v. It must
therefore coincide with the covariant derivative definition. Why it should
work out this way is not exactly obvious. Now, div, grad and curl can all be
expressed in differential-form language, and therefore so can the scalar and
vector Laplacian. Moreover, when we let the Laplacian act on any p-form
the general pattern becomes clear. The differential-form definition of the
Laplacian, and the exploration of its consequences, was the work of William
Hodge in the 1930’s. His theory has natural applications to the topology of
manifolds.

13.7.1 The Laplacian on p-forms

Suppose that M is an oriented, compact, D-dimensional manifold without
boundary. We can make the space Ωp(M) of p-form fields on M into an L2

Hilbert space by introducing the positive-definite inner product

〈a, b〉p = 〈b, a〉p =

∫

M

a ? b =
1

p!

∫
dDx
√
g ai1i2...ipb

i1i2...ip. (13.119)

Here, the subscript p denotes the order of the forms in the product, and
should not to be confused with the p we have elsewhere used to label the
norm in Lp Banach spaces. The presence of the

√
g and the Hodge ? operator

tells us that this inner product depends on both the metric on M and the
global orientation.

We can use this new inner product to define a “hermitian adjoint” δ ≡ d†

of the exterior differential operator d. The inverted commas “. . .” are because
this hermitian adjoint is not quite an adjoint operator in the normal sense
— d takes us from one vector space to another — but it is constructed in an
analogous manner. We define δ by requiring that

〈da, b〉p+1 = 〈a, δb〉p, (13.120)

where a is an arbitrary p-form and b an arbitrary (p + 1)-form. Now recall
that ? takes p-forms to (D− p) forms, and so d ? b is a (D− p) form. Acting
twice on a (D− p)-form with ? gives us back the original form multiplied by
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(−1)p(D−p). We use this to compute

d(a ? b) = da ? b + (−1)pa(d ? b)

= da ? b + (−1)p(−1)p(D−p)a ? (?d ? b)

= da ? b− (−1)Dp+1a ? (? d ? b). (13.121)

In obtaining the last line we have observed that p(p − 1) is an even integer
and so (−1)p(1−p) = 1. Now, using Stokes’ theorem, and the absence of a
boundary to discard the integrated-out part, we conclude that

∫

M

(da) ? b = (−1)Dp+1

∫

M

a ? (? d ? b), (13.122)

or
〈da, b〉p+1 = (−1)Dp+1〈a, (? d ?)b〉p (13.123)

and so δb = (−1)Dp+1(? d ?)b. This was for δ acting on a (p−1) form. Acting
on a p form instead we have

δ = (−1)Dp+D+1 ? d ? . (13.124)

Observe how the sequence of maps in ? d ? works:

Ωp(M)
?−→ ΩD−p(M)

d−→ ΩD−p+1(M)
?−→ Ωp−1(M). (13.125)

The net effect is that δ takes a p-form to a (p− 1)-form. Observe also that
δ2 ∝ ? d2 ? = 0.

We now define a second-order partial differential operator ∆p to be the
combination

∆p = δd+ dδ, (13.126)

acting on p-forms This maps a p-form to a p-form. A slightly tedious calcu-
lation in cartesian co-ordinates will show that, for flat space,

∆p = −∇2 (13.127)

on each component of a p-form. This ∆p is therefore the natural definition
for (minus) the Laplacian acting on differential forms. It is usually called the
Laplace-Beltrami operator.

Using 〈a, db〉 = 〈δa, b〉 we have

〈(δd+ dδ)a, b〉p = 〈δa, δb〉p−1 + 〈da, db〉p+1 = 〈a, (δd+ dδ)b〉p, (13.128)



13.7. HODGE THEORY AND THE MORSE INDEX 543

and so we deduce that ∆p is self-adjoint on Ωp(M). The middle terms in
(13.128) are both positive, so we also see that ∆p is a positive operator —
i.e. all its eigenvalues are positive or zero.

Suppose that ∆pa = 0. Then (13.128) for a = b becomes

0 = 〈δa, δa〉p−1 + 〈da, da〉p+1. (13.129)

Because both of these inner products are positive or zero, the vanishing of
their sum requires them to be individually zero. Thus ∆pa = 0 implies that
da = δa = 0. By analogy with harmonic functions, we call a form that is
annihilated by ∆p a harmonic form. Recall that a form a is closed if da = 0.
We correspondingly say that a is co-closed if δa=0. A differential form is
therefore harmonic if and only if it is both closed and co-closed.

When a self-adjoint operator A is Fredholm (i.e the solutions of the equa-
tion Ax = y are governed by the Fredholm alternative) the vector space on
which A acts is decomposed into a direct sum of the kernel and range of the
operator

V = Ker (A)⊕ Im (A). (13.130)

It may be shown that our Laplace-Beltrami ∆p is a Fredholm operator, and
so for any p-form ω there is an η such that ω can be written as

ω = (dδ + δd)η + γ

= dα+ δβ + γ, (13.131)

where α = δη, β = dη, and γ is harmonic. This result is known as the
Hodge decomposition of ω. It is a form-language generalization of the of the
Hodge-Weyl and Helmholtz-Hodge decompositions of chapter 6. It is easy to
see that α, β and γ are uniquely determined by ω. If they were not, then we
could find some α, β and γ such that

0 = dα + δβ + γ (13.132)

with non-zero dα, δβ and γ. To see that this is not possible, take the d of
(13.132) and then the inner product of the result with β. Because d(dα) =
dγ = 0, we end up with

0 = 〈β, dδβ〉
= 〈δβ, δβ〉. (13.133)
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Thus δβ = 0. Now apply δ to the two remaining terms of (13.132) and take
an inner product with α. Because δγ = 0, we find 〈dα, dα〉 = 0, and so
dα = 0. What now remains of (13.132) asserts that γ = 0.

Suppose that ω is closed. Then our strategy of taking the d of the de-
composition

ω = dα + δβ + γ, (13.134)

followed by an inner product with β leads to δβ = 0. A closed form can thus
be decomposed as

ω = dα + γ, (13.135)

with α and γ unique. Each cohomology class in Hp(M) therefore contains
a unique harmonic representative. Since any harmonic function is closed,
and hence a representative of some cohomology class, we conclude that there
is a 1-1 correspondence between p-form solutions of Laplace’s equation and
elements of Hp(M). In particular

dim(Ker ∆p) = dim (Hp(M)) = bp. (13.136)

Here bp is the p-th Betti number. From this we immediately deduce from the
definition of the Euler character (13.35) that

χ(M) =
D∑

p=0

(−1)pdim(Ker ∆p), (13.137)

where χ(M) is the Euler character of the manifold M . There is therefore
an intimate relationship between the null-spaces of the second-order partial
differential operators ∆p and the global topology of the manifold in which
they live. This is an example of an index theorem.

Just as for the ordinary Laplace operator, ∆p has a complete set of eigen-
functions with associated eigenvalues λ. Because the the manifold is compact
and hence has finite volume, the spectrum will be discrete. Remarkably, the
topological influence we uncovered above is restricted to the zero-eigenvalue
spaces of p-forms . To see this, suppose that we have a p-form eigenfunction
uλ for ∆p:

∆puλ = λuλ. (13.138)

Then

λ duλ = d∆puλ
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= d(dδ + δd)uλ

= (dδ)duλ

= (δd+ dδ)duλ

= ∆p+1duλ. (13.139)

Thus, provided it is not identically zero, duλ is a (p+ 1)-form eigenfunction
of ∆(p+1) with eigenvalue λ. Similarly, δuλ is a (p − 1)-form eigenfunction
also with eigenvalue λ.

Can duλ be zero? Yes! It will certainly be zero if uλ itself is the d of
something. What is less obvious is that it will be zero only if it is the d of
something. To see this suppose that duλ = 0 and λ 6= 0. Then

λuλ = (δd+ dδ)uλ = d(δuλ). (13.140)

Thus duλ = 0 implies that uλ = dη, where η = δuλ/λ. We see that for λ
non-zero, the operators d and δ map the λ eigenspaces of ∆ into one another,
and the kernel of d acting on p-form eigenfunctions is precisely the image of
d acting on (p − 1)-form eigenfunctions. In other words, when restricted to
positive λ eigenspaces of ∆, the cohomology is trivial.

The set of spaces V λ
p together with the maps d : V λ

p → V λ
p+1 therefore

constitute an exact sequence when λ 6= 0, and so the alternating sum of their
dimension must be zero. We have therefore established that

∑

p

(−1)pdimV λ
p =

{
χ(M), λ = 0,
0, λ 6= 0.

(13.141)

All the topological information resides in the null-spaces, therefore.

Exercise 13.6: Show that if ω is closed and co-closed then so is ?ω. Deduce
that in a for a compact orientable D-manifold we have bp = bD−p . This
observation therefore gives another way of understanding Poincaré duality.

13.7.2 Morse theory

Suppose, as in the previous section, that M is a D-dimensional compact
manifold without boundary and V : M → R a smooth function. The global
topology of M imposes some constraints on the possible maxima, minima
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and saddle points of V . Suppose that P is a stationary point of V . Taking
co-ordinates such that P is at xµ = 0, we can expand

V (x) = V (0) +
1

2
Hµνx

µxν + . . . . (13.142)

Here, the matrix Hµν is the Hessian

Hµν
def
=

∂2V

∂xµ∂xν

∣∣∣∣
0

. (13.143)

We can change co-ordinates so as reduce the Hessian to a canonical form
which is diagonal and has only ±1, 0 on its diagonal:

Hµν =



−Im

In
0D−m−n


 . (13.144)

If there are no zeros on the diagonal then the stationary point is said to be
non-degenerate. The the number m of downward-bending directions is then
called the index of V at P. If P were a local maximum, then m = D, n = 0.
If it were a local minimum then m = 0, n = D. When all its stationary
points are non degenerate, V is said to be a Morse function. This is the
generic case. Degenerate stationary points can be regarded as arising from
the merging of two or more non-degenerate points.

The Morse index theorem asserts that if V is a Morse function, and if
we define N0 to be the number of stationary points with index 0 (i.e. local
minima), and N1 to be the number of stationary points with index 1 etc.,
then

D∑

m=0

(−1)mNm = χ(M). (13.145)

Here χ(M) is the Euler character of M . Thus, a function on the two-
dimensional torus (which has χ = 0) can have a local maximum, a local
minimum and two saddle points, but cannot have only one local maximum,
one local minimum and no saddle points. On a two-sphere (χ = 2), if V has
one local maximum and one local minimum it can have no saddle points.

Closely related to the Morse index theorem is the Poincaré-Hopf theorem.
This counts the isolated zeros of a tangent-vector field X on a compact D-
manifold and, amongst other things, explains why we cannot comb a hairy
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ball. An isolated zero is a point zn at which X becomes zero, and that has
a neighbourhood in which there is no other zero. If X possesses only finitely
many zeros then each of them will be isolated. For an isolated zero, we can
define a vector field index at zn by surrounding it with a small (D−1)-sphere
on which X does not vanish. The direction of X at each point on this sphere
then provides a map from the sphere to itself. The index i(zn) is defined to
be the winding number (Brouwer degree) of this map. This index can be any
integer, but in the special case that X is the gradient of a Morse function it
takes the value i(zn) = (−1)mn where m is the Morse index at zn.

a) b) c)

Figure 13.13: Two-dimensional vector-fields and their streamlines near zeros
with indices a) i(za) = +1, b) i(zb) = −1, c) i(zc) = +1.

The Poincaré-Hopf theorem states that, for a compact manifold without
boundary, and for a tangent vector field with only finitely many zeros,

∑

zeros n

i(zn) = χ(M). (13.146)

A tangent-vector field must therefore always have at least one zero unless
χ(M) = 0. For example, since the two-sphere has χ = 2, it cannot be
combed.
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Figure 13.14: Gradient vector field and streamilines in a two-simplex.

If one is prepared to believe that
∑

zeros i(zn) is the same integer for all
tangent vector fields X on M , it is simple to show that this integer must
be equal to the Euler character of M . Consider, for ease of visualization,
a two-manifold. Triangulate M and take X to be the gradient field of a
function with local minima at each vertices, saddle points on the edges, and
local maxima at the centre of each face (see figure 13.14). It must be clear
that this particular field X has

∑

zeros n

i(zn) = V − E + F = χ(M). (13.147)

In the case of a two-dimensional oriented surface equipped with a smooth
metric, it is also simple to demonstrate the invariance of the index sum.
Consider two vector fields X and Y . Triangulate M so that all zeros of both
fields lie in the interior of the faces of the simplices. The metric allows us
to compute the angle θ between X and Y wherever they are both non-zero,
and in particular on the edges of the simplices. For each two-simplex σ we
compute the total change ∆θ in the angle as we circumnavigate its boundary.
This change is an integral multiple of 2π, with the integer counting the
difference ∑

zeros of X∈σ
i(zn)−

∑

zeros of Y ∈σ
i(zn) (13.148)

of the indices of the zeros within σ. On summing over all triangles σ, each
edge is traversed twice, once in each direction, so

∑
σ ∆θ vanishes . The total

index of X is therefore the same as that of Y .
This pairwise cancellation argument can be extended to non-orientable

surfaces, such as the projective plane, In this case the edges constituting the
homological “boundary” of the closed surface are traversed twice in the same
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direction, but the angle θ at a point on one edge is paired with −θ at the
corresponding point of the other edge.

Supersymmetric quantum mechanics

Edward Witten gave a beautiful proof of the Morse index theorem for a closed
orientable manifold M by re-interpreting the Laplace-Beltrami operator as
the Hamiltonian of supersymmetric quantum mechanics on M . Witten’s
idea had a profound impact, and led to quantum physics serving as a rich
source of inspiration and insight for mathematicians. We have seen most
of the ingredients of this re-interpretation in previous chapters. Indeed you
should have experienced a sense of déjà vu when you saw d and δ mapping
eigenfunctions of one differential operator into eigenfunctions of a related
operator.

We begin with a novel way to think of the calculus of differential forms.
We introduce a set of fermion annihilation and creation operators ψµ and
ψ†µ which anti-commute, ψµψν = −ψνψµ, and obey the anticommutation
relation

{ψ†µ, ψν} ≡ ψ†µψν + ψνψ†µ = gµν. (13.149)

Here, gµν is the metric tensor, and the Greek indices µ and ν range from 1
to D. As is usual when we are given annihilation and creation operators,
we also introduce a vacuum state |0〉 which is killed by all the annihilation
operators: ψµ|0〉 = 0. The states

(ψ†1)p1(ψ†2)p2 . . . (ψ†n)pD |0〉, (13.150)

with each of the pi taking the value one or zero, then constitute a basis for
2D-dimensional Hilbert space. We call p =

∑
i pi the fermion number of the

state. We assume that 〈0|0〉 = 1 and use the anti-commutation relations to
show that

〈0|ψµp . . . ψµ2ψµ1 . . . ψ†ν1ψ†ν2 · · ·ψ†νq |0〉
is zero unless p = q, in which case it is equal to

gµ1ν1gµ2ν2 · · · gµpνp ± (permutations).

We now make the correspondence

1

p!
fµ1µ2...µp(x)ψ

†µ1
ψ†µ2 · · ·ψ†µp |0〉 ↔ 1

p!
fµ1µ2...µp(x)dx

µ1dxµ2 · · ·dxµp ,

(13.151)
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to identify p-fermion states with p-forms. We think of fµ1µ2...µp(x) as being
the wavefunction of a particle moving on M , with the subscripts informing
us there are fermions occupying the states µi. It is then natural to take the
inner product of

|a〉 =
1

p!
aµ1µ2 ...µp(x)ψ

†µ1
ψ†µ2

. . . ψ†µp |0〉 (13.152)

and

|b〉 =
1

q!
bµ1µ2...µq(x)ψ

†µ1
ψ†µ2

. . . ψ†µq |0〉 (13.153)

to be

〈a, b〉 =

∫

M

dDx
√
g

1

p!q!
a∗µ1µ2...µp

(x)bν1ν2...νq(x)〈0|ψµp . . . ψµ1ψ†ν1 . . . ψ†νq |0〉

= δpq

∫

M

dDx
√
g

1

p!
a∗µ1µ2...µp

(x)bµ1µ2...µp(x). (13.154)

This coincides the Hodge inner product of the corresponding forms.
If we lower the index on ψµ by defining ψµ to be gµνψ

µ then the action
of the annihilation operator Xµψµ on a p-fermion state coincides with the
action of the interior multiplication iX on the corresponding p-form. All the
other operations of the exterior calculus can also be expressed in terms of the
ψ and ψ†’s. In particular, in Cartesian co-ordinates where gµν = δµν , we can
identify d with ψ†µ∂µ. To find the operator that corresponds to the Hodge
δ, we compute

δ = d† = (ψ†µ∂µ)
† = ∂†µψ

µ = −∂µψµ = −ψµ∂µ. (13.155)

The hermitian adjoint of ∂µ is here being taken with respect to the standard
L2(RD) inner product. This computation becomes more complicated when
when gµν becomes position dependent. The adjoint ∂†µ then involves the
derivative of

√
g, and ψ and ∂µ no longer commute. For this reason, and

because such complications are inessential for what follows, we will delay
discussing this general case until the end of this section.

Having found a simple formula for δ, it is now automatic to compute

dδ + δd = −{ψ†µ, ψν} ∂µ∂ν = −δµν∂µ∂ν = −∇2. (13.156)

This much easier than deriving the same result by using δ = (−1)Dp+D+1?d?.
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Witten’s fermionic formalism simplifies a number of computations involv-
ing δ, but his real innovation was to consider a deformation of the exterior
calculus by introducing the operators

dt = e−tV (x)d etV (x), δt = etV (x)δ e−tV (x), (13.157)

and the t-deformed
∆t = dtδt + δtdt. (13.158)

Here, V (x) is the Morse function whose stationary points we seek to count.
It is easy to see that the deformed derivative continues to obey d2

t = 0.
We also see that dω = 0 if and only if dte

−tV ω = 0. Similarly, if ω = dη then
e−tV ω = dte

−tV η. The cohomology of d is therefore transformed into the
cohomologly of dt by multiplication by e−tV . Since the exponential function
is never zero, this correspondence is invertible and the mapping is an isomor-
phism. In particular the dimensions of the spaces Ker (dt)p/Im (dt)p−1 are t
independent and coincide with the t = 0 Betti numbers bp. Furthermore, the
t-deformed Laplace-Beltrami operator remains Fredholm with only positive
or zero eigenvalues. We can therefore make a Hodge decomposition

ω = dtα + δtβ + γ, (13.159)

where ∆tγ = 0, and concude that

dim (Ker (∆t)p) = bp (13.160)

as before. The non-zero eigenvalue spaces will also continue to form exact
sequences. Nothing seems to have changed! Why do we introduce dt then?
The motivation is that when t becomes large we can use our knowledge of
quantum mechanics to compute the Morse index.

To do this, we expand out

dt = ψ†µ(∂µ + t∂µV )

δt = −ψµ(∂µ − t∂µV ) (13.161)

and find

dtδt + δtdt = −∇2 + t2|∇V |2 + t[ψ†µ, ψν] ∂2
µνV. (13.162)

This can be thought of as a Schrödinger Hamiltonian on M containing a
potential t2|∇V |2 and a fermionic term t[ψ†µ, ψν] ∂2

µνV . When t is large and
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positive the potential will be large and positive everywhere except near those
points where ∇V = 0. The wavefunctions of all low-energy states, and in
particular all zero-energy states, will therefore be concentrated at precisely
the stationary points we are investigating. Let us focus on a particular sta-
tionary point, which we will take as the origin of our co-ordinate system, and
see if any zero-energy state is localized there. We first rotate the coordinate
system about the origin so that the Hessian matrix ∂2

µνV |0 becomes diagonal
with eigenvalues λn. The Schrödinger problem can then be approximated by
a sum of harmonic oscillator hamiltonians

∆p,t ≈
D∑

i=1

{
− ∂2

∂x2
i

+ t2λ2
ix

2
i + tλi[ψ

†i, ψi]

}
. (13.163)

The commutator [ψ†i, ψi] takes the value +1 if the i’th fermion state is oc-
cupied, and −1 if it is not. The spectrum of the approximate Hamiltonian
is therefore

t
D∑

i=1

{|λi|(1 + 2ni)± λi} . (13.164)

Here the ni label the harmonic oscillator states. The lowest-energy states
will have all the ni = 0. To get a state with zero energy we must arrange
for the ± sign to be negative (no fermion in state i) whenever λi is positive,
and to be positive (fermion state i occupied) whenever λi is negative. The
fermion number “p” of the zero-energy state is therefore equal to the number
of negative λi — i.e. to the index of the critical point! We can, in this
manner, find one zero-energy state for each critical point. All other states
have energies proportional t, and therefore large. Since the number of zero
energy states having fermion number p is the Betti number bp, the harmonic
oscillator approximation suggests that bp = Np.

If we could trust our computation of the energy spectrum, we would have
established the Morse theorem

D∑

p=0

(−1)pNp =
D∑

p=0

(−1)pbp = χ(M), (13.165)

by having the two sums agree term by term. Our computation is only ap-
proximate, however. While there can be no more zero-energy states than
those we have found, some states that appear to be zero modes may instead
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have small positive energy. This might arise from tunnelling between the
different potential minima, or from the higher-order corrections to the har-
monic oscillator potentials, both effects we have neglected. We can therefore
only be confident that

Np ≥ bp. (13.166)

The remarkable thing is that, for the Morse index, this does not matter ! If
one of our putative zero modes gains a small positive energy, it is now in
the non-zero eigenvalue sector of the spectrum. The exact-sequence property
therefore tells us that one of the other putative zero modes must also be a
not-quite-zero mode state with exactly the same energy. This second state
will have a fermion number that differs from the first by plus or minus one.
An error in counting the zero energy states therefore cancels out when we
take the alternating sum. Our unreliable estimate bp ≈ Np has thus provided
us with an exact computation of the Morse index.

We have described Witten’s argument as if the manifold M were flat.
When the manifold M is not flat, however, the curvature will not affect
our computations. Once the parameter t is large, the low-energy eigenfunc-
tions will be so tightly localized about the critical points that they will be
hard-pressed to detect the curvature. Even if the curvature can effect an
infintesimal energy shift, the exact-sequence argument again shows that this
does not affect the alternating sum.

The Weitzenböck formula

Although we we were able to evade them when proving the Morse index
theorem, it is interesting to uncover the workings of the nitty-gritty Rie-
mann tensor index machinary that lie concealed behind the polished facade
of Hodge’s d, δ calculus.

Let us assume that our manifold M is equipped with a torsion-free con-
nection Γµνλ = Γµλν , and use this connection to define the action of an
operator ∇̂µ by specifying its commutators with c-number functions f , and
with the ψµ and ψ†µ’s:

[∇̂µ, f ] = ∂µf,

[∇̂µ, ψ
†ν] = −Γνµλψ

†λ,

[∇̂µ, ψ
ν] = −Γνµλψ

λ. (13.167)
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We also set ∇̂µ|0〉 = 0. These rules allow us to compute the action of ∇̂µ on
fµ1µ2...µp(x)ψ

†µ1 . . . ψ†µp|0〉. For example

∇̂µ

(
fνψ

†ν|0〉
)

=
(
[∇̂µ, fνψ

†ν] + fνψ
†ν∇̂µ

)
|0〉

=
(
[∇̂µ, fν]ψ

†ν + fα[∇̂µ, ψ
†α]
)
|0〉

= (∂µfν − fαΓαµν)ψ†ν |0〉
= (∇µfν)ψ

†ν|0〉, (13.168)

where
∇µfv = ∂µfν − Γαµνfα, (13.169)

is the usual covariant derivative acting on the componenents of a covariant
vector.

The metric gµν counts as a c-number function, and so [∇̂α, g
µµ] is not

zero, but is instead ∂αg
µν. This might be disturbing — being able pass the

metric through a covariant derivative is a basic compatibilty condition in
Riemann geometry — but all is not lost. ∇̂µ (with a caret) is not quite the
same beast as ∇µ. We proceed as follows:

∂αg
µν = [∇̂α, g

µµ]

= [∇̂α, {ψ†µ, ψν}]
= [∇̂α, ψ

†µψν ] + [∇̂α, ψ
νψ†µ]

= −{ψ†µ, ψλ}Γναλ − {ψ†ν, ψλ}Γµαλ
= −gµλ Γναλ − gνλ Γµαλ. (13.170)

Thus, we conclude that

∂αg
µν + gµλΓναλ + gλνΓµαλ ≡ ∇αg

µν = 0. (13.171)

Metric compatibility is therefore satisfied, and the connection is therefore the
standard Riemannian

Γαµν =
1

2
gαλ (∂µgλν + ∂νgµλ − ∂λgµν) . (13.172)

Knowing this, we can compute the adjoint of ∇̂µ:
(
∇̂µ

)†
= − 1√

g
∇̂µ
√
g

= −∇̂µ − ∂µ ln
√
g

= −(∇̂µ + Γννµ). (13.173)
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That Γννµ is the logarithmic derivative of
√
g is a standard identity for the

Riemann connection (see exercise 11.14). The resultant formula for (∇̂µ)
†

can be used to verify that the second and third equations in (13.167) are
compatible with each other.

We can also compute [[∇̂µ, ∇̂ν], ψ
α], and from it deduce that

[∇̂µ, ∇̂ν] = Rσλµνψ
†σψλ, (13.174)

where

Rα
βµν = ∂µΓ

α
βν − ∂νΓαβµ + ΓαλµΓ

λ
βν − ΓαλνΓ

λ
βµ (13.175)

is the Riemann curvature tensor.
We now define d to be

d = ψ†µ ∇̂µ. (13.176)

Its action coincides with the usual d because the symmetry of the Γαµν’s
ensures that their contributions cancel. From this we find that δ is

δ ≡
(
ψ†µ ∇̂µ

)†

= ∇̂†
µ ψ

µ

= −(∇̂µ + Γνµν)ψ
µ

= −ψµ(∇̂µ + Γνµν) + Γµµνψ
ν

= −ψµ ∇̂µ. (13.177)

The Laplace-Beltrami operator can now be worked out as

dδ + δd = −
(
ψ†µ∇̂µψ

ν∇̂ν + ψν∇̂νψ
†µ∇̂µ

)

= −
(
{ψ†µ, ψν}(∇̂µ∇̂ν − Γσµν∇̂σ) + ψνψ†µ[∇̂ν, ∇̂µ]

)

= −
(
gµν(∇̂µ∇̂ν − Γαµν∇̂σ) + ψνψ†µψ†σψλRσλνµ

)
.(13.178)

(13.179)

By making use of the symmetries Rσλνµ = Rνµσλ and Rσλνµ = −Rσλµν we
can tidy up the curvature term to get

dδ + δd = −gµν(∇̂µ∇̂ν − Γσµν∇̂σ)− ψ†αψβψ†µψνRαβµν . (13.180)
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This result is called the Weitzenböck formula. An equivalent formula can
be derived directly from (13.124), but only with a great deal more effort.
The part without the curvature tensor is called the Bochner Laplacian. It is
normally written as B = −gµν∇µ∇ν with ∇µ being understood to be acting
on the index ν, and therefore tacitly containing the extra Γσµν that must be

made explicit — as we have in (13.180) — when we define the action of ∇̂µ

via commutators. The Bochner Laplacian can also be written as

B = ∇̂†
µ g

µν ∇̂ν (13.181)

which shows that it is a positive operator.

13.8 Further exercises and problems

Exercise 13.7: Let
A = Ax dx+Ay dy +Az dz,

be a closed form in R3. Use the formula (13.6) of section 13.2.1 to find a
scalar ϕ(x, y, z) such that A = dϕ. Compute the exterior derivative from your
expression for ϕ and verify that it reconstitutes A.

Exercise 13.8: By considering the example of the unit disc in two dimensions,
show that the condition of being closed — in the sense of having no bound-
ary — is a necessary condition in the statement of Poincaré duality. What
goes wrong with our construction of the elements of HD−p(M) from cycles in
Hp(M) in this case?

Exercise 13.9: Use Poincaré duality to show that that the Euler Character of
any odd-dimensional closed manifold is zero.



Chapter 14

Groups and Group
Representations

Groups usually appear in physics as symmetries of the system or model we
are studying. Often the symmetry operation involves a linear transformation,
and this naturally leads to the idea of finding sets of matrices having the same
multiplication table as the group. These sets are called representations of
the group. Given a group, we endeavour to find and classify all possible
representations.

14.1 Basic ideas

We begin with a rapid review of basic group theory.

14.1.1 Group axioms

A group G is a set with a binary operation that assigns to each ordered pair
(g1, g2) of elements a third element, g3, usually written with multiplicative
notation as g3 = g1g2. The binary operation, or product , obeys the following
rules:

i) Associativity: g1(g2g3) = (g1g2)g3.
ii) Existence of an identity: There is an element1 e ∈ G such that eg = g

for all g ∈ G.

1The symbol “e” is often used for the identity element, from the German Einheit ,
meaning “unity.”

557
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iii) Existence of an inverse: For each g ∈ G there is an element g−1 such
that g−1g = e.

From these axioms there follow some conclusions that are so basic that
they are often included in the axioms themselves, but since they are not
independent, we state them as corollaries.

Corollary i): gg−1 = e.
Proof : Start from g−1g = e, and multiply on the right by g−1 to get
g−1gg−1 = eg−1 = g−1, where we have used the left identity property of
e at the last step. Now multiply on the left by (g−1)−1, and use associativity
to get gg−1 = e.

Corollary ii): ge = g.
Proof : Write ge = g(g−1g) = (gg−1)g = eg = g.

Corollary iii): The identity e is unique.
Proof : Suppose there is another element e1 such that e1g = eg = g. Multiply
on the right by g−1 to get e1e = e2 = e, but e1e = e1, so e1 = e.

Corollary iv): The inverse of a given element g is unique.
Proof : Let g1g = g2g = e. Use the result of corollary (i), that any left inverse
is also a right inverse, to multiply on the right by g1, and so find that g1 = g2.

Two elements g1 and g2 are said to commute if g1g2 = g2g1. If the group
has the property that g1g2 = g2g1 for all g1, g2 ∈ G, it is said to be Abelian,
otherwise it is non-Abelian.

If the set G contains only finitely many elements, the group G is said to
be finite. The number of elements in the group, |G|, is called the order of
the group.

Examples of groups:

1) The integers Z under addition. The binary operation is (n,m) 7→ n+m,
and “0” plays the role of the identity element. This is not a finite group.

2) The integers modulo n under addition. (m,m′) 7→ m+m′, modn. This
group is denoted by Zn, and is finite.

3) The non-zero integers modulo p (a prime) under multiplication (m,m′) 7→
mm′, mod p. Here “1” is the identity element. If the modulus is not
a prime number, we do not get a group (why not?). This group is
sometimes denoted by (Zp)

×.
4) The set of numbers {2, 4, 6, 8} under multication modulo 10. Here, the

number “6” plays the role of the identity!
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5) The set of functions

f1(z) = z, f2(z) =
1

1− z , f3(z) =
z − 1

z
,

f4(z) =
1

z
, f5(z) = 1− z, f6(z) =

z

z − 1,

with (fi, fj) 7→ fi ◦ fj. Here, the “◦” is a standard notation for compo-
sition of functions: (fi ◦ fj)(z) = fi(fj(z)).

6) The set of rotations in three dimensions, equivalently the set of 3-by-3
real matrices O, obeying OTO = I and detO = 1. This is the group
SO(3). SO(n) is defined analogously as the group of rotations in n
dimensions. If we relax the condition on the determinant we get the
orthogonal group O(n). Both SO(n) and O(n) are examples of Lie
groups. A Lie group a group that is also a manifold M , and whose
multiplication law is a smooth function M ×M →M .

7) Groups are often specified by giving a list of generators and relations.
For example the cyclic group of order n, denoted by Cn, is specified by
giving the generator a and relation an = e. Similarly, the dihedral group
Dn has two generators a, b and relations an = e, b2 = e, (ab)2 = e.
This group has order 2n.

14.1.2 Elementary properties

Here are the basic properties of groups that we need:

i) Subgroups: If a subset of elements of a group forms a group, it is
called a subgroup. For example, Z12 has a subgroup of consisting of
{0, 3, 6, 9}. Any group G possesses at least two subgroups: the entirety
of G itself, and the subgroup containing only the identity element {e}.
These are known as the trivial subgroups. Any other subgroups are
called proper subgroups.

ii) Cosets: Given a subgroup H ⊆ G, having elements {h1, h2, . . .}, and
an element g ∈ G, we form the (left) coset gH = {gh1, gh2, . . .}. If two
cosets g1H and g2H intersect, they coincide. (Proof: if g1h1 = g2h2,
then g2 = g1(h1h

−1
2 ) and so g1H = g2H.) If H is a finite group,

each coset has the same number of distinct elements as H. (Proof: if
gh1 = gh2 then left multiplication by g−1 shows that h1 = h2.) If the
order of G is also finite, the group G is decomposed into an integer
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number of cosets,

G = g1H + g2H + · · · , (14.1)

where “+”denotes the union of disjoint sets. From this we see that the
order of H must divide the order of G. This result is called Lagrange’s
theorem. The set whose elements are the cosets is denoted by G/H.

iii) Normal subgroups: A subgroup H = {h1, h2, . . .} of G is said to be
normal , or invariant , if g−1Hg = H for all g ∈ G. This notation means
that the set of elements g−1Hg = {g−1h1g, g

−1h2g, . . .} coincides with
H, or equivalently that the map h 7→ g−1hg does not take h ∈ H out
of H, but simply scrambles the order of the elements of H.

iv) Quotient groups: Given a normal subgroup H, we can define a multi-
plication rule on the set of cosets G/H ≡ {g1H, g2H, . . .} by taking a
representative element from each of giH, and gjH, taking the product
of these elements, and defining (giH)(gjH) to be the coset in which this
product lies. This coset is independent of the representative elements
chosen (this would not be so were the subgroup not normal). The re-
sulting group is called the quotient group of G by H, and is denoted by
G/H. (Note that the symbol “G/H” is used to denote both the set of
cosets, and, when it exists, the group whose elements are these cosets.)

v) Simple groups: A group G with no normal subgroups is said to be sim-
ple. The finite simple groups have been classified. They fall into various
infinite families (Cyclic groups, Alternating groups, 16 families of Lie
type) together with 26 sporadic groups, the largest of which, the Mon-
ster , has order 808,017,424,794,512,875,886,459,904,961,710,757,005, 754,
368,000,000,000. The mysterious “Monstrous moonshine” links its rep-
resentation theory to the elliptic modular function J(τ) and to string
theory.

vi) Conjugacy and Conjugacy Classes: Two group elements g1, g2 are said
to be conjugate in G if there is an element g ∈ G such that g2 = g−1g1g.
If g1 is conjugate to g2, we write g1 ∼ g2. Conjugacy is an equivalence
relation,2 and, for finite groups, the resulting conjugacy classes have
orders that divide the order of G. To see this, consider the conjugacy

2An equivalence relation, ∼, is a binary relation that is
i) Reflexive: A ∼ A.
ii) Symmetric: A ∼ B ⇐⇒ B ∼ A.
iii) Transitive: A ∼ B, B ∼ C =⇒ A ∼ C

Such a relation breaks a set up into disjoint equivalence classes.
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class containing the element g. Observe that the set H of elements
h ∈ G such that h−1gh = g forms a subgroup. The set of elements
conjugate to g can be identified with the coset space G/H. The order
of G divided by the order of the conjugacy class is therefore |H|.

Example: In the rotation group SO(3), the conjugacy classes are the sets of
rotations through the same angle, but about different axes.
Example: In the group U(n), of n-by-n unitary matrices, the conjugacy
classes are the set of matrices possessing the same eigenvalues.
Example: Permutations. The permutation group on n objects, Sn, has order
n!. Suppose we consider permutations π1, π2 in S8 such that π1 that maps

π1 :




1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 3 1 5 4 7 6 8


 ,

and π2 maps

π2 :




1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 3 4 5 6 7 8 1


 .

The product π2 ◦ π1 then takes

π2 ◦ π1 :




1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
3 4 2 6 5 8 7 1


 .

We can write these partitions out more compactly by using Paolo Ruffini’s
cycle notation:

π1 = (123)(45)(67)(8), π2 = (12345678), π2 ◦ π1 = (132468)(5)(7).

In this notation, each number is mapped to the one immediately to its right,
with the last number in each bracket, or cycle, wrapping round to map to
the first. Thus π1(1) = 2, π1(2) = 3, π1(3) = 1. The “8”, being both first
and last in its cycle, maps to itself: π1(8) = 8. Any permutation with this
cycle pattern, (∗ ∗ ∗)(∗∗)(∗∗)(∗), is in the same conjugacy class as π1. We
say that π1 possesses one 1-cycle, two 2-cycles, and one 3-cycle. The class
(r1, r2, . . . , rn) having r1 1-cycles, r2 2-cycles etc., where r1+2r2 + · · ·+nrn =
n, contains

N(r1,r2,...) =
n!

1r1(r1!) 2r2 (r2!) · · ·nrn (rn!)
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elements. The sign of the permutation,

sgn π = επ(1)π(2)π(3)...π,(n)

is equal to
sgn π = (+1)r1(−1)r2(+1)r3(−1)r4 · · · .

We have, for any two permutations π1, π2,

sgn (π1)sgn (π2) = sgn (π1 ◦ π2),

so the even (sgn π = +1) permutations form an invariant subgroup called
the Alternating group, An. The group An is simple for n ≥ 5, and Ruffini
(1801) showed that this simplicity prevents the solution of the general quin-
tic by radicals. His work was ignored, however, and later independently
rediscovered by Abel (1824) and Galois (1829).

If we write out the group elements in some order {e, g1, g2, . . .}, and then
multiply on the left

g{e, g1, g2, . . .} = {g, gg1, gg2, . . .}

then the ordered list {g, gg1, gg2, . . .} is a permutation of the original list.
Any group G is therefore a subgroup of the permutation group S|G|. This
result is called Cayley’s Theorem. Cayley’s theorem arguably held up the
development of group theory for many years by its suggestion that permuta-
tions were the only groups worthy of study.

Exercise 14.1: Let H1, H2 be two subgroups of a group G. Show that H1∩H2

is also a subgroup.

Exercise 14.2: Let G be any group.

a) The subset Z(G) of G consisting of those g ∈ G that commute with all
other elements of the group is called the centre of the group. Show that
Z(G) is a subgroup of G.

b) If g is an element of G, the set CG(g) of elements of G that commute
with g is called the centralizer of g in G. Show that it is a subgroup of
G.

c) If H is a subgroup of G, the set of elements of G that commute with
all elements of H is the centralizer CG(H) of H in G. Show that it is a
subgroup of G.
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d) If H is a subgroup of G, the set NG(H) ⊂ G consisting of those g such
that g−1Hg = H is called the normalizer of H in G. Show that NG(H)
is a subgroup of G, and that H is a normal subgroup of NG(H).

Exercise 14.3: Show that the set of powers gn0 of an element g0 ∈ G form a
subgroup. Now, let p be a prime number. Recall that the set {1, 2, . . . p −
1} forms the group (Zp)× under multiplication modulo p. By appealing to
Lagrange’s theorem, prove Fermat’s little theorem that for any prime p, and
positive integer a that is not divisible by p, we have ap−1 = 1, mod p. (Fermat
actually used the binomial theorem to show that ap = a, mod p for any a —
divisible by p or not.)

Exercise 14.4: Use Fermat’s theorem from the previous excercise to establish
the mathematical identity underlying the RSA algorithm for public-key cryp-
tography: Let p, q be prime and N = pq. First, use Euclid’s algorithm for the
highest common factor (HCF) of two numbers to show that if the integer e is
co-prime to3 (p− 1)(q − 1), then there is an integer d such that

de = 1, mod (p− 1)(q − 1).

Then show that if,

C = M e, modN, (encryption)

then
M = Cd, modN. (decryption)

The numbers e and N can be made known to the public, but it is hard to find
the secret decoding key, d, unless the factors p and q of N are known.

Exercise 14.5: Consider the group G with multiplication table shown in Ta-
ble 14.1.

G I A B C D E
I I A B C D E
A A B I E C D
B B I A D E C
C C D E I A B
D D E C B I A
E E C D A B I

Table 14.1: Multiplication table of G. To find AB look in row A column B.

3Has no factors in common with.
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This group has proper a subgroup H = {I,A,B}, and corresponding (left)
cosets are IH = {I,A,B} and CH = {C,D,E}.

i) Construct the conjugacy classes of this group.
ii) Show that {I,A,B} and {C,D,E} are indeed the left cosets of H.
iii) Determine whether H is a normal subgroup.
iv) If so, construct the group multiplication table for the corresponding quo-

tient group.

Exercise 14.6: Let H and K, be groups. Make the cartesian product G =
H ×K into a group by introducing a multiplication rule ∗ for elements of the
Cartesian product by setting:

(h1, k1) ∗ (h2, k2) = (h1h2, k1k2).

Show that G, equipped with ∗ as its product, satsifies the group axioms. The
resultant group is called the direct product of H and K.

Exercise 14.7: If F and G are groups, a map ϕ : F → G that preserves the
group structure, i.e. if ϕ(g1)ϕ(g2) = ϕ(g1g2), is called a group homomorphism.
If ϕ is such a homomorphism show that ϕ(eF ) = eG, where eF , and eG are
the identity element in F , G respectively.

Exercise 14.8:. If ϕ : F → G is a group homomorphism, and if we define
Ker(ϕ) as the set of elements f ∈ F that map to eG, show that Ker(ϕ) is a
normal subgroup of F .

14.1.3 Group actions on sets

Groups usually appear in physics as symmetries: they act on a physical
object to change it in some way, perhaps while leaving some other property
invariant.

Suppose X is a set. We call its elements “points.” A group action on X
is a map g ∈ G : X → X that takes a point x ∈ X to a new point that we
denote by gx ∈ X, and such that g2(g1x) = (g2g1)x, and ex = x. There is
some standard vocabulary for group actions:

i) Given a a point x ∈ X we define the orbit of x to be the set Gx
def
=

{gx : g ∈ G} ⊆ X.
ii) The action of the group is transitive if any orbit is the whole of X.
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iii) The action is effective, or faithful , if the map g : X → X being the
identity map implies that g = e. Another way of saying this is that
the action is effective if the map G → Map (X → X) is one-to-one. If
the action of G is not faithful, the set of g ∈ G that act as the identity
map forms an invariant subgroup H of G, and the quotient group G/H
has a faithful action.

iv) The action is free if the existence of an x such that gx = x implies
that g = e. In this case, we equivalently say that g acts without fixed
points.

If the group acts freely and transitively then, having chosen a fiducial
point x0, we can uniquely label every point in X by the group element g
such that x = gx0. (If g1 and g2 both take x0 → x, then g−1

1 g2x0 = x0. By
the free-action property we deduce that g−1

1 g2 = e, and g1 = g2.). In this
case we might, for some purposes, identify X with G.

Suppose the group acts transitively, but not freely. Let H be the set
of elements that leaves x0 fixed. This is clearly a subgroup of G, and if
g1x0 = g2x0 we have g−1

1 g2 ∈ H, or g1H = g2H. The space X can therefore
be identified with the space of cosets G/H. Such sets are called quotient
spaces or homogeneous spaces. Many spaces of significance in physics can be
though of as cosets in this way.

Example: The rotation group SO(3) acts transitively on the two-sphere S2.
The SO(2) subgroup of rotations about the z axis, leaves the north pole of
the sphere fixed. We can therefore identify S2 ' SO(3)/SO(2).

Many phase transitions are a result of spontaneous symmetry breaking .
For example the water → ice transition results in the continuous translation
invariance of the liquid water being broken down to the discrete translation
invariance of the crystal lattice of the solid ice. When a system with symme-
try group G spontaneously breaks the symmetry to a subgroup H, the set
of inequivalent ground states can be identified with the homogeneous space
G/H.

14.2 Representations

An n-dimensional representation of a group G is formally defined to be a
homomorphism from G to a subgroup of GL(n,C), the group of invertible
n-by-n matrices with complex entries. In effect, it is a set of n-by-n matrices
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that obey the group multiplication rules

D(g1)D(g2) = D(g1g2), D(g−1) = [D(g)]−1. (14.2)

Given such a representation, we can form another one D′(g) by conjuga-
tion with any fixed invertible matrix C

D′(g) = C−1D(g)C. (14.3)

IfD′(g) is obtained fromD(g) in this way, we say thatD andD′ are equivalent
representations and write D ∼ D′. We can think of D and D′ as being
matrices representing the same linear map, but in different bases. Our task
in the rest of this chapter is to find and classify all representations of a finite
group G, up to equivalence.

Real and pseudo-real representations

We can form a new representation from D(g) by setting

D′(g) = D∗(g),

where D∗(g) denotes the matrix whose entries are the complex conjugates
of those in D(g). Suppose D∗ ∼ D. It may then be possible to find a
basis in which the matrices have only real entries. In this case we say the
representation is real . It may be, however, be that D∗ ∼ D but we cannot
find a basis in which the matrices become real. In this case we say that D is
pseudo-real .
Example: Consider the defining representation of SU(2) (the group of 2-by-2
unitary matrices with unit determinant). Such matrices are necessarily of
the form

U =

(
a −b∗
b a∗

)
, (14.4)

where a and b are complex numbers with |a|2 + |b|2 = 1. They are there-
fore specified by three real parameters, and so the group manifold is three
dimensional. Now(

a −b∗
b a∗

)∗
=

(
a∗ −b
b∗ a

)
,

=

(
0 1
−1 0

)(
a −b∗
b a∗

)(
0 −1
1 0

)
,

=

(
0 −1
1 0

)−1(
a −b∗
b a∗

)(
0 −1
1 0

)
, (14.5)
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and so U ∼ U∗. It is not possible to find a basis in which all SU(2) matrices
are simultaneously real, however. If such a basis existed then, in that basis,
a and b would be real,and we could specify the matrices by only two real
parameters — but we have seen that we need three real numbers to describe
all possible SU(2) matrices.

Direct sum and direct product

We can obtain new representations from old by combining them.
Given two representations D(1)(g) and D(2)(g), we can form their direct

sum D(1) ⊕D(2) as the set of block-diagonal matrices

(
D(1)(g) 0

0 D(2)(g)

)
. (14.6)

The dimension of this new representation is the sum of the dimensions of the
two constituent representations. We are particularly interested in taking a
representation and breaking it up as a direct sum of simpler representations.

Given two representations D(1)(g), D(2)(g), we can combine them in a
different way by taking their direct product D(1) ⊗D(2), which is the natural
action of the group on the tensor product of the representation spaces. In
other words, if D(1)(g)e

(1)
j = e

(1)
i D

(1)
ij (g) and D(2)(g)e

(2)
j = e

(2)
i D

(2)
ij (g), we

define

[D(1) ⊗D(2)](g)(e
(1)
i ⊗ e

(2)
j ) = (e

(1)
k ⊗ e

(2)
l )D

(1)
ki (g)D

(2)
lj (g). (14.7)

We think of D
(1)
ki (g)D

(2)
lj (g) being the entries in the direct-product matrix

matrix

[D(1)(g)⊗D(2)(g)]kl,ij ,

whose rows and columns are indexed by pairs of numbers. The dimension of
the product representation is therefore the product of the dimensions of its
factors.

Exercise 14.9: Show that if D(g) is a representation, then so is

D′(g) = [D(g−1)]T ,

where the superscript T denotes the transposed matrix.
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Exercise 14.10: Show that a map that assigns every element of a group G to
the 1-by-1 identity matrix is a representation. It is, not unreasonably, called
the trivial representation.

Exercise 14.11: A representation D : G → GL(n,C) that assigns an element
g ∈ G to the n-by-n identity matrix In if and only if g = e is said to be
faithful . Let D be a non-trivial, but non-faithful, representation of G by n-
by-n matrices. Let H ⊂ G consist of those elements h such that D(h) = In.
Show that H is a normal subgroup of G, and that D descends to a faithful
representation of the quotient group G/H.

Exercise 14.12: Let A and B be linear maps from U → U and let C and D
be linear maps from V → V . Then the direct products A⊗C and B ⊗D are
linear maps from U ⊗ V → U ⊗ V . Show that

(A⊗ C)(B ⊗D) = (AB)⊗ (CD).

Show also that
(A⊕ C)(B ⊕D) = (AB)⊕ (CD).

Exercise 14.13: Let A and B be m-by-m and n-by-n matrices respectively,
and let In denote the n-by-n unit matrix. Show that:

i) tr(A⊕B) = tr(A) + tr(B).
ii) tr(A⊗B) = tr(A) tr(B).
iii) exp(A⊕B) = exp(A)⊕ exp(B).
iv) exp(A⊗ In + Im ⊗B) = exp(A)⊗ exp(B).
v) det(A⊕B) = det(A) det(B).
vi) det(A⊗B) = (det(A))n(det(B))m.

14.2.1 Reducibility and irreducibility

The “atoms” of representation theory are those representations that cannot,
even by a clever choice of basis, be decomposed into, or reduced to, a direct
sum of smaller representations. Such a representation is said to be irreducible.
It is usually not easy to tell just by looking at a representation whether is is
reducible or not. To do this, we need to develop some tools. We begin with
a more powerful definition of irreducibilty.

We first introduce the notion of an invariant subspace. Suppose we have
a set {Aα} of linear maps acting on a vector space V . A subspace U ⊆ V
is an invariant subspace for the set if x ∈ U ⇒ Aα x ∈ U for all Aα.
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The set {Aα} is irreducible if the only invariant subspaces are V itself and
{0}. Conversely, if there is a non-trivial invariant subspace, then the set4 of
operators is reducible.

If the Aα’s posses a non-trivial invariant subspace U , and we decompose
V = U⊕U ′, where U ′ is a complementary subspace, then, in a basis adapted
to this decomposition, the matrices Aα take the block-partitioned form of
figure 14.1.

MNMNMNMNMMNMNMNMNMMNMNMNMNMMNMNMNMNMMNMNMNMNM

ONONONONOONONONONOONONONONOONONONONOONONONONO

PNPNPNPNPPNPNPNPNPPNPNPNPNPPNPNPNPNPPNPNPNPNP

QNQNQNQNQQNQNQNQNQQNQNQNQNQQNQNQNQNQQNQNQNQNQ

RNRNRNRNRRNRNRNRNRRNRNRNRNRRNRNRNRNRRNRNRNRNR

SNSNSNSNSSNSNSNSNSSNSNSNSNSSNSNSNSNSSNSNSNSNS
0

Aα

U

U

Figure 14.1: Block-partitioned reducible matrices.

If we can find a5 complementary subspace U ′ that is also invariant, then we
have the block partitioned form of figure 14.2.

TUTUTUTUTTUTUTUTUTTUTUTUTUTTUTUTUTUTTUTUTUTUT

VUVUVUVUVVUVUVUVUVVUVUVUVUVVUVUVUVUVVUVUVUVUV

WUWUWUWUWUWWUWUWUWUWUWWUWUWUWUWUWWUWUWUWUWUWWUWUWUWUWUW

XUXUXUXUXUXXUXUXUXUXUXXUXUXUXUXUXXUXUXUXUXUXXUXUXUXUXUX
0

0
Aα

U

U

Figure 14.2: Completely reducible matrices.

We say that such matrices are completely reducible. When our linear op-
erators are unitary with respect to some inner product, we can take the
complementary subspace to be the orthogonal complement . This, by uni-
tarity, is automatically invariant. Thus, unitarity and reducibility implies
complete reducibility.

Schur’s lemma

The most useful results concerning irreducibility come from:

4Irreducibility is a property of the set as a whole. Any individual matrix always has a
non-trivial invariant subspace because it possesses at least one eigenvector.

5Remember that complementary subspaces are not unique.
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Schur’s lemma: Suppose we have two sets of linear operators Aα : U → U ,
and Bα : V → V , that act irreducibly on their spaces, and an intertwining
operator Λ : U → V such that

ΛAα = Bα Λ, (14.8)

for all α, then either
a) Λ = 0,

or
b) Λ is 1-1 and onto (and hence invertible), in which case U and V have

the same dimension and Aα = Λ−1BαΛ.
The proof is straightforward: The relation (14.8) shows that Ker (Λ) ⊆ U and
Im(Λ) ⊆ V are invariant subspaces for the sets {Aα} and {Bα} respectively.
Consequently, either Λ = 0, or Ker (Λ) = {0} and Im(Λ) = V . In the latter
case Λ is 1-1 and onto, and hence invertible.
Corollary: If {Aα} acts irreducibly on an n-dimensional vector space, and
there is an operator Λ such that

ΛAα = AαΛ, (14.9)

then either Λ = 0 or Λ = λI. To see this, observe that (14.9) remains true if
Λ is replaced by (Λ− xI). Now det (Λ− xI) is a polynomial in x of degree
n, and, by the fundamental theorem of algebra, has at least one root, x = λ.
Since its determinant is zero, (Λ− λI) is not invertible, and so must vanish
by Schur’s lemma.

14.2.2 Characters and orthogonality

Unitary representations of finite groups

Let G be a finite group and let g 7→ D(g) be a representation of G by matrices
acting on a vector space V . Let (x,y) denote a positive-definite, conjugate-
symmetric, sesquilinear inner product of two vectors in V . From ( , ) we
construct a new inner product 〈 , 〉 by averaging over the group

〈x,y〉 =
1

|G|
∑

g∈G
(D(g)x, D(g)y). (14.10)

It is easy to see that this new inner product remains positive definite, and in
addition has the property that

〈D(g)x, D(g)y〉 = 〈x,y〉. (14.11)
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This means that the maps D(g) : V → V are unitary with respect to the
new product. If we change basis to one that is orthonormal with respect to
this new product then the D(g) become unitary matrices, with D(g−1) =
D−1(g) = D†(g), where D†

ij(g) = [Dji(g)]
∗ denotes the conjugate-transposed

matrix.
We conclude that representations of finite groups can always be taken

to be unitary. This leads to the important consequence that for such rep-
resentations reducibility implies complete reducibility. Warning: In this
construction it is essential that the sum over the g ∈ G converge. This is
guaranteed for a finite group, but may not work for infinite groups. In par-
ticular, non-compact Lie groups, such as the Lorentz group, have no finite
dimensional unitary representations.

Orthogonality of the matrix elements

Now let DJ(g) : VJ → VJ be the matrices of an irreducible representation
or irrep. Here, J is a label that distinguishes inequivalent irreps from one
another. We will use the symbol dim J to denote the dimension of the rep-
resentation vector space VJ .

Let DK be an irrep that is either identical to DJ or inequivalent to it, and
let Mij be a matrix possessing the appropriate number of rows and columns
for product DJMDK to be defined, but otherwise arbitrary. The sum

Λ =
∑

g∈G
DJ(g−1)MDK(g) (14.12)

obeys DJ(g)Λ = ΛDK(g) for any g. Consequently, Schur’s lemma tells us
that

Λil =
∑

g∈G
DJ
ij(g

−1)MjkD
K
kl(g) = λ(M)δilδ

JK. (14.13)

We are here summing over repeated indices, and have written λ(M) to stress
that the number λ depends on the chosen matrix M . Now take M to be zero
everywhere except for one entry of unity in row j column k. Then we have

∑

g∈G
DJ
ij(g

−1)DK
kl(g) = λjkδil, δ

JK (14.14)

where we have relabelled λ to indicate its dependence on the location (j, k)
of the non-zero entry in M . We can find the constants λjk by assuming that
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K = J , setting i = l, and summing over i. We find

|G|δjk = λjk dim J. (14.15)

Putting these results together we find that

1

|G|
∑

g∈G
DJ
ij(g

−1)DK
kl(g) =

1

dim J
δjkδilδ

JK. (14.16)

This matrix-element orthogonality theorem is often called the grand orthog-
onality theorem because of its utility.

When our matrices D(g) are unitary, we can write the orthogonality
theorem in a slightly prettier form:

1

|G|
∑

g∈G

(
DJ
ij(g)

)∗
DK
kl(g) =

1

dim J
δikδjlδ

JK. (14.17)

If we consider complex-valued functions G → C as forming a vector space,
then the individual matrix entries DJ

ij are elements of this space and this
form shows that they are mutually orthogonal with respect to the natural
sesquilinear inner product.

There can be no more orthogonal functions on G than the dimension of
the function space itself, which is |G|. We therefore have a constraint

∑

J

(dim J)2 ≤ |G| (14.18)

that places a limit on how many inequivalent representations can exist. In
fact, as you will show later, the equality holds: the sum of the squares of the
dimensions of the inequivalent irreducible representations is equal to the or-
der of G, and consequently the matrix elements form a complete orthonormal
set of functions on G.

Class functions and characters

Because
tr (C−1DC) = trD, (14.19)

the trace of a representation matrix is the same for equivalent representations.
Furthermore, because

trD(g−1
1 gg1) = tr

(
D−1(g1)D(g)D(g1)

)
= trD(g), (14.20)
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the trace is the same for all group elements in a conjugacy class. The char-
acter ,

χ(g)
def
= trD(g), (14.21)

is therefore said to be a class function.
By taking the trace of the matrix-element orthogonality relation we see

that the characters χJ = trDJ of the irreducible representations obey

1

|G|
∑

g∈G

(
χJ(g)

)∗
χK(g) =

1

|G|
∑

i

di
(
χJi
)∗
χKi = δJK, (14.22)

where di is the number of elements in the i-th conjugacy class.
The completeness of the matrix elements as functions on G implies that

the characters form a complete orthonormal set of functions on the space of
conjugacy classes equipped with inner product

〈χ1, χ2〉 def
=

1

|G|
∑

i

di
(
χ1
i

)∗
χ2
i . (14.23)

Consequently there are exactly as many inequivalent irreducible representa-
tions as there are conjugacy classes in the group.

Given a reducible representation, D(g), we can find out exactly which
irreps J it contains, and how many times, nJ , they occur. We do this forming
the compound character

χ(g) = trD(g) (14.24)

and observing that if we can find a basis in which

D(g) = (D1(g)⊕D1(g)⊕ · · ·)︸ ︷︷ ︸
n1 terms

⊕ (D2(g)⊕D2(g)⊕ · · ·)︸ ︷︷ ︸
n2 terms

⊕ · · · , (14.25)

then
χ(g) = n1χ

1(g) + n2χ
2(g) + · · · (14.26)

From this we find that the multiplicities are given by

nJ = 〈χ, χJ〉 =
1

|G|
∑

i

di (χi)
∗ χJi . (14.27)

There are extensive tables of group characters. Table 14.2 shows, for
example, the characters of the group S4 of permutations on 4 objects.
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Typical element and class size
S4 (1) (12) (123) (1234) (12)(34)

Irrep 1 6 8 6 3
A1 1 1 1 1 1
A2 1 -1 1 -1 1
E 2 0 -1 0 2
T1 3 1 0 -1 -1
T2 3 -1 0 1 -1

Table 14.2: Character table of S4

Since χJ(e) = dim J we see that the irreps A1 and A2 are one dimensional,
that E is two dimensional, and that T1,2 are both three dimensional. Also
we confirm that the sum of the squares of the dimensions

1 + 1 + 22 + 32 + 32 = 24 = 4!

is equal to the order of the group.

As a further illustration of how to read table 14.2, let us verify the or-
thonormality of the characters of the representations T1 and T2. We have

〈χT1, χT2〉 =
1

|G|
∑

i

di
(
χT1

i

)∗
χT2

i =
1

24
[1·3·3−6·1·1+8·0·0−6·1·1+3·1·1] = 0,

while

〈χT1, χT1〉 =
1

|G|
∑

i

di
(
χT1

i

)∗
χT1

i =
1

24
[1·3·3+6·1·1+8·0·0+6·1·1+3·1·1] = 1.

The sum giving 〈χT2, χT2〉 = 1 is identical to this.

Exercise 14.14: Let D1 and D2 be representations with characters χ1(g) and
χ2(g) respectively. Show that the character of the direct product representa-
tion D1 ⊗D2 is given by

χ1⊗2(g) = χ1(g)χ2(g).
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14.2.3 The group algebra

Given a finite group G, we construct a vector space C(G) whose basis vectors
are in one-to-one correspondence with the elements of the group. We denote
the vector corresponding to the group element g by the boldface symbol g.
A general element of C(G) is therefore a formal sum

x = x1g1 + x2g2 + · · ·+ x|G|g|G|. (14.28)

We take products of these sums by using the group multiplication rule. If
g1g2 = g3 we set g1g2 = g3, and require the product to be distributive with
respect to vector-space addition. Thus

gx = x1gg1 + x2gg2 + · · ·+ x|G|gg|G|. (14.29)

The resulting mathematical structure is called the group algebra. It was
introduced by Frobenius.

The group algebra, considered as a vector space, is automatically a rep-
resentation. We define the natural action of G on C(G) by setting

D(g)gi = g gi = gjDji(g). (14.30)

The matrices Dji(g) make up the regular representation. Because the list
g g1, g g2, . . . is a permutation of the list g1, g2, . . ., their matrix entries con-
sist of 1’s and 0’s, with exactly one non-zero entry in each row and each
column.

Exercise 14.15: Show that the character of the regular representation has
χ(e) = |G|, and χ(g) = 0, for g 6= e.

Exercise 14.16: Use the previous exercise to show that the number of times
an n dimensional irrep occurs in the regular representation is n. Deduce that
|G| =

∑
J(dim J)2, and from this construct the completeness proof for the

representations and characters.

Projection operators

A representation DJ of the group G automatically provides a representation
of the group algebra. We simply set

DJ(x1g1 + x2g2 + · · ·) def
= x1D

J(g1) + x2D
J(g2) + · · · . (14.31)
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Certain linear combinations of group elements turn out to be very useful
because the corresponding matrices can be used to project out vectors pos-
sessing desirable symmetry properties.

Consider the elements

eJαβ =
dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
g (14.32)

of the group algebra. These have the property that

g1e
J
αβ =

dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
(g1g)

=
dim J

|G|
∑

g∈G

[
DJ
αβ(g

−1
1 g)

]∗
g

=
[
DJ
αγ(g

−1
1 )
]∗ dim J

|G|
∑

g∈G

[
DJ
γβ(g)

]∗
g

= eJγβD
J
γα(g1). (14.33)

In going from the first to the second line we have changed summation vari-
ables from g → g−1

1 g, and in going from the second to the third line we have
used the representation property to write DJ(g−1

1 g) = DJ(g−1
1 )DJ(g).

From g1e
J
αβ = eJγβD

J
γα(g1) and the matrix-element orthogonality, it fol-

lows that

eJαβ eKγδ =
dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
g eKγδ

=
dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
DK
εγ(g)e

K
εδ

= δJKδαεδβγ eKεδ
= δJKδβγ eJαδ. (14.34)

For each J , this multiplication rule of the eJαβ is identical to that of matrices
having zero entries everywhere except for the (α, β)-th, which is a “1.” There
are (dim J)2 of these eJαβ for each n-dimensional representation J , and they
are linearly independent. Because

∑
J(dim J)2 = |G|, they form a basis for

the algebra. In particular every element of G can be reconstructed as

g =
∑

J

DJ
ij(g)e

J
ij . (14.35)
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We can also define the useful objects

PJ =
∑

i

eJii =
dim J

|G|
∑

g∈G

[
χJ(g)

]∗
g. (14.36)

They have the property

PJPK = δJKPK,
∑

J

PJ = I, (14.37)

where I is the identity element of C(G). The PJ are therefore projection
operators composing a resolution of the identity. Their utility resides in the
fact that when D(g) is a reducible representation acting on a linear space

V =
⊕

J

VJ , (14.38)

then setting g → D(g) in the formula for PJ results in a projection matrix
from V onto the irreducible component VJ . To see how this comes about, let
v ∈ V and, for any fixed p, set

vi = eJipv, (14.39)

where eJipv should be understood as shorthand for D(eJip)v. Then

D(g)vi = geJipv = eJjpvD
J
ji(g) = vjD

J
ji(g). (14.40)

We see that the vi, if not all zero, are basis vectors for VJ . Since PJ is
a sum of the eJij, the vector PJv is a sum of such vectors, and therefore
lies in VJ . The advantage of using PJ over any individual eJip is that PJ

can be computed from character table, i.e. its construction does not require
knowledge of the irreducible representation matrices.

The algebra of classes

If a conjugacy class Ci consists of the elements {g1, g2, . . . gdi
}, we can define

Ci to be the corresponding element of the group algebra:

Ci =
1

di
(g1 + g2 + · · ·gdi

). (14.41)
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(The factor of 1/di is a conventional normalization.) Because conjugation
merely permutes the elements of a conjugacy class, we have g−1Cig = Ci

for all g ∈ C(G). The Ci therefore commute with every element of C(G).
Conversely any element of C(G) that commutes with every element in C(G)
must be a linear combination: C = c1C1 + c2C2 + . . .. The subspace of C(G)
consisting of sums of the classes is therefore the centre Z[C(G)] of the group
algebra. Because the product CiCj commutes with every element, it lies in
Z[C(G)], and so there are constants cij

k such that

CiCj =
∑

k

cij
kCk. (14.42)

We can regard the Ci as being linear maps from Z[C(G)] to itself, whose
associated matrices have entries (Ci)

k
j = cij

k. These matrices commute,
and can be simultaneously diagonalized. We will leave it as exercise for the
reader to demonstrate that

CiP
J =

(
χJi
χJ0

)
PJ . (14.43)

Here χJ0 ≡ χJ{e} = dim J . The common eigenvectors of the Ci are therefore

the projection operators PJ , and the eigenvalues λJi = χJi /χ
J
0 are, up to nor-

malization, the characters. Equation (14.43) provides a convenient method
for computing the characters from knowledge only of the coefficients cij

k

appearing in the class multiplication table. Once we have found the eigen-
values λJi , we recover the χJi by noting that χJ0 is real and positive, and that∑

i di|χJi |2 = |G|.
Exercise 14.17: Use Schur’s lemma to show that for an irrep DJ(g) we have

1

di

∑

g∈Ci

DJ
jk(g) =

1

dimJ
δjkχ

J
i ,

and hence establish (14.43).

14.3 Physics applications

14.3.1 Quantum mechanics

When a group G = {gi} acts on a mechanical system, then G will act as set of
linear operators D(g) on the Hilbert space H of the corresponding quantum
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system. Thus H will be a representation6 space for G. If the group is a
symmetry of the system then the D(g) will commute with the hamiltonian
Ĥ. If this is so, and if we can decompose

H =
⊕

irrepsJ

HJ (14.44)

into Ĥ-invariant irreps of G then Schur’s lemma tells us that in each HJ the
hamiltonian Ĥ will act as a multiple of the identity operator. In other words
every state in HJ will be an eigenstate of Ĥ with a common energy EJ .

This fact can greatly simplify the task of finding the energy levels. If
an irrep J occurs only once in the decomposition of H then we can find the
eigenstates directly by applying the projection operator PJ to vectors in H.
If the irrep occurs nJ times in the decomposition, then PJ will project to the
reducible subspace

HJ ⊕HJ ⊕ · · ·HJ︸ ︷︷ ︸
nJ copies

=M⊗HJ .

HereM is an nJ dimensional multiplicity space. The hamiltonian Ĥ will act
inM as an nJ -by-nJ matrix. In other words, if the vectors

|n, i〉 ≡ |n〉 ⊗ |i〉 ∈ M⊗HJ (14.45)

form a basis forM⊗HJ , with n labelling which copy of HJ the vector |n, i〉
lies in, then

Ĥ|n, i〉 = |m, i〉HJ
mn,

D(g)|n, i〉 = |n, j〉DJ
ji(g). (14.46)

Diagonalizing HJ
nm provides us with nj Ĥ-invariant copies of HJ and gives

us the energy eigenstates.
Consider, for example, the molecule C60 (buckminsterfullerine) consisting

of 60 carbon atoms in the form of a soccer ball. The chemically active
electrons can be treated in a tight-binding approximation in which the Hilbert

6The rules of quantum mechanics only require that D(g1)D(g2) = eiφ(g1,g2)D(g1g2).
A set of matrices that obeys the group multiplication rule “up to a phase” is called a
projective (or ray) representation. In many cases, however, we can choose the D(g) so
that φ is not needed. This is the case in all the examples we discuss.
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Figure 14.3: A sketch of the tight-binding electronic energy levels of C60.

space has dimension 60 — one π-orbital basis state for each each carbon
atom. The geometric symmetry group of the molecule is Yh = Y × Z2,
where Y is the rotational symmetry group of the icosahedron (a subgroup
of SO(3)) and Z2 is the parity inversion σ : r 7→ −r. The characters of Y
are displayed in table 14.3. In this table τ = 1

2
(
√

5− 1) denotes the golden
mean. The class C5 is the set of 2π/5 rotations about an axis through the
centres of a pair of antipodal pentagonal faces, the class C3 is the set of
of 2π/3 rotations about an axis through the centres of a pair of antipodal
hexagonal faces, and C2 is the set of π rotatations through the midpoints of
a pair of antipodal edges, each lying between two adjacent hexagonal faces.
The geometric symmetry group acts on the 60-dimensional Hilbert space by
permuting the basis states concurrently with their associated atoms. Figure
14.3 shows how the 60 states are disposed into energy levels.7 Each level is
labelled by a lower case letter specifying the irrep of Y , and by a subscript
g or u standing for gerade (German for even) or ungerade (German for odd)
that indicates whether the wavefunction is even or odd under the inversion
σ : r 7→ −r.

The buckyball is roughly spherical, and the lowest 25 states can be
thought as being derived from the L = 0, 1, 2, 3, 4, eigenstates, where L is

7After R. C. Haddon, L. E. Brus, K. Raghavachari, Chem. Phys. Lett. 125 (1986) 459.



14.3. PHYSICS APPLICATIONS 581

Typical element and class size
Y e C5 C2

5 C2 C3

Irrep 1 12 12 15 20
A 1 1 1 1 1
T1 3 τ−1 −τ -1 0
T2 3 −τ τ−1 -1 0
G 4 -1 -1 0 1
H 5 0 0 1 -1

Table 14.3: Character table for the group Y .

the angular momentum quantum number that classifies the energy levels for
an electron moving on a perfect sphere. In the many-electron ground-state,
the 30 single-particle states with energy below E < 0 are each occupied by
pairs of spin up/down electrons. The 30 states with E > 0 are empty.

To explain, for example, why three copies of T1 appear, and why two
of these are T1u and one T1g, we must investigate the manner in which the
60-dimensional Hilbert space decomposes into irreducible representations of
120-element group Yh. Problem 14.23 leads us through this computation,
and shows that no irrep of Yh occurs more than three times. In finding the
energy levels, we therefore never have to diagonalize a bigger than 3-by-3
matrix.

The equality of the energies of the hg and gg levels at E = −1 is an
accidental degeneracy . It is not required by the symmetry, and will presum-
ably disappear in a more sophisticated calculation. The appearance of many
“accidental” degeneracies in an energy spectrum hints that there may be a
hidden symmetry that arises from something beyond geometry. For example,
in the Schrödinger spectrum of the hydrogen atom all states with the same
principal quantum number n have the same energy although they correspond
to different irreps L = 1, . . . , n− 1 of O(3). This degeneracy occurs because
the classical Kepler-orbit problem has symmetry group O(4), rather than the
näıvely expected O(3) rotational symmetry.
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14.3.2 Vibrational spectrum of H2O

The small vibrations of a mechanical system with n degrees of freedom are
governed by a Lagrangian of the form

L =
1

2
ẋTM ẋ− 1

2
xTV x (14.47)

where M and V are symmetric n-by-n matrices, and with M being positive
definite. This Lagrangian leads to the equations of motion

M ẍ = V x (14.48)

We look for normal mode solutions x(t) ∝ eiωitxi, where the vectors xi obey

−ω2
iMxi = V xi. (14.49)

The normal-mode frequencies are solutions of the secular equation

det (V − ω2M) = 0, (14.50)

and modes with distinct frequencies are orthogonal with respect to the inner
product defined by M ,

〈x,y〉 = xTMy. (14.51)

We are interested in solving this problem for vibrations about the equi-
librium configuration of a molecule. Suppose this equilibrium configuration
has a symmetry group G. This gives rise to an n-dimensional representation
on the space of x’s in which

g : x 7→ D(g)x, (14.52)

leaves both the intertia matrix M and the potential matrix V unchanged.

[D(g)]TMD(g) = M, [D(g)]TV D(g) = V. (14.53)

Consequently, if we have an eigenvector xi with frequency ωi,

−ω2
iMxi = V xi (14.54)

we see that D(g)xi also satisfies this equation. The frequency eigenspaces
are therefore left invariant by the action of D(g), and barring accidental
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degeneracy, there will be a one-to-one correspondence between the frequency
eigenspaces and the irreducible representations occurring in D(g).

Consider, for example, the vibrational modes of the water molecule H2O.
This familiar molecule has symmetry group C2v which is generated by two
elements: a rotation a through π about an axis through the oxygen atom,
and a reflection b in the plane through the oxygen atom and bisecting the
angle between the two hydrogens. The product ab is a reflection in the plane
defined by the equilibrium position of the three atoms. The relations are
a2 = b2 = (ab)2 = e, and the characters are displayed in table 14.4.

class and size
C2v e a b ab
Irrep 1 1 1 1
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

Table 14.4: Character table of C2v.

The group C2v is Abelian, so all the representations are one dimensional.

To find out what representations occur when C2v acts, we need to find
the character of its action D(g) on the nine-dimensional vector

x = (xO, yO, zO, xH1
, yH1

, zH1
, xH2

, yH2
, zH2

). (14.55)

Here the coordinates xH2
, yH2

, zH2
etc. denote the displacements of the la-

belled atom from its equilibrium position.

We take the molecule as lying in the xy plane, with the z pointing towards
us.
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Figure 14.4: Water Molecule.

The effect of the symmetry operations on the atomic displacements is

D(a)x = (−xO,+yO,−zO,−xH2
,+yH2

,−zH2
,−xH1

,+yH1
,−zH1

)

D(b)x = (−xO,+yO,+zO,−xH2
,+yH2

,+zH2
,−xH1

,+yH1
,+zH1

)

D(ab)x = (+xO,+yO,−zO,+xH1
,+yH1

,−zH1
,+xH2

,+yH2
,−zH2

).

Notice how the transformations D(a), D(b) have interchanged the displace-
ment co-ordinates of the two hydrogen atoms. In calculating the character
of a transformation we need look only at the effect on atoms that are left
fixed — those that are moved have matrix elements only in non-diagonal
positions. Thus, when computing the compound characters for a b, we can
focus on the oxygen atom. For ab we need to look at all three atoms. We
find

χD(e) = 9,

χD(a) = −1 + 1− 1 = −1,

χD(b) = −1 + 1 + 1 = 1,

χD(ab) = 1 + 1− 1 + 1 + 1− 1 + 1 + 1− 1 = 3.

By using the orthogonality relations, we find the decomposition



9
−1

1
3


 = 3




1
1
1
1


+




1
1
−1
−1


 + 2




1
−1

1
−1


+ 3




1
−1
−1

1


 (14.56)

or
χD = 3χA1 + χA2 + 2χB1 + 3χB2. (14.57)
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Thus, the nine-dimensional representation decomposes as

D = 3A1 ⊕ A2 ⊕ 2B1 ⊕ 3B2. (14.58)

How do we exploit this? First we cut out the junk. Out of the nine
modes, six correspond to easily identified zero-frequency motions – three of
translation and three rotations. A translation in the x direction would have
xO = xH1

= xH2
= ξ, all other entries being zero. This displacement vector

changes sign under both a and b, but is left fixed by ab. This behaviour
is characteristic of the representation B2. Similarly we can identify A1 as
translation in y, and B1 as translation in z. A rotation about the y axis
makes zH1

= −zH2
= φ. This is left fixed by a, but changes sign under b and

ab, so the y rotation mode is A2. Similarly, rotations about the x and z axes
correspond to B1 and B2 respectively. All that is left for genuine vibrational
modes is 2A1 ⊕ B2.

We now apply the projection operator

PA1 =
1

4
[(χA1(e))∗D(e) + (χA1(a))∗D(b) + (χA1(b))∗D(b) + (χA1(ab))∗D(ab)]

(14.59)
to vH1,x, a small displacement of H1 in the x direction. We find

PA1vH1,x =
1

4
(vH1,x − vH2,x − vH2,x + vH1,x)

=
1

2
(vH1,x − vH2,x). (14.60)

This mode is an eigenvector for the vibration problem.
If we apply PA1 to vH1,y and vO,y we find

PA1vH1,y =
1

2
(vH1,y + vH2,y),

PA1vO,y = vO,y, (14.61)

but we are not quite done. These modes are contaminated by the y trans-
lation direction zero mode, which is also in an A1 representation. After
we make our modes orthogonal to this, there is only one left, and this has
yH1

= yH2
= −yOmO/(2mH) = a1, all other components vanishing.

We can similarly find vectors corresponding to B2 as

PB2vH1,x =
1

2
(vH1,x + vH2,x)
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PB2vH1,y =
1

2
(vH1,y − vH2,y)

PB2vO,x = vO,x

and these need to be cleared of both translations in the x direction and
rotations about the z axis, both of which transform under B2. Again there
is only one mode left and it is

yH1
= −yH2

= αxH1
= αxH2

= βx0 = a2 (14.62)

where α is chosen to ensure that there is no angular momentum about O,
and β to make the total x linear momentum vanish. We have therefore
found three true vibration eigenmodes, two transforming under A1 and one
under B2 as advertised earlier. The eigenfrequencies, of course, depend on
the details of the spring constants, but now that we have the eigenvectors we
can just plug them in to find these.

14.3.3 Crystal field splittings

A quantum mechanical system has a symmetry G if the hamiltonian Ĥ obeys

D−1(g)ĤD(g) = Ĥ, (14.63)

for some group action D(g) : H → H on the Hilbert space. If follows that
the eigenspaces, Hλ, of states with a common eigenvalue, λ, are invariant
subspaces for the representation D(g).

We often need to understand how a degeneracy is lifted by perturbations
that break G down to a smaller subgroup H. An n-dimensional irreducible
representation of G is automatically a representation of any subgroup of G,
but in general it is no longer be irreducible. Thus the n-fold degenerate
level is split into multiplets, one for each of the irreducible representations
of H contained in the original representation. The manner in which an orig-
inally irreducible representation decomposes under restriction to a subgroup
is known as the branching rule for the representation.

A physically important case is given by the breaking of the full SO(3)
rotation symmetry of an isolated atomic hamiltonian by a crystal field Sup-
pose the crystal has octohedral symmetry. The characters of the octohedral
group are displayed in table 14.5.
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Class(size)
O e C3(8) C2

4 (3) C2(6) C4(6)
A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 -1 2 0 0
F2 3 0 -1 1 -1
F1 3 0 -1 -1 1

Table 14.5: Character table of the octohedral group O.

The classes are lableled by the rotation angles, C2 being a twofold rotation
axis (θ = π), C3 a threefold axis (θ = 2π/3), etc..

The chacter of the J = l representation of SO(3) is

χl(θ) =
sin(2l + 1)θ/2

sin θ/2
, (14.64)

and the first few χl’s evaluated on the rotation angles of the classes of O are
dsiplayed in table 14.6.

Class(size)
l e C3(8) C2

4 (3) C2(6) C4(6)
0 1 1 1 1 1
1 3 0 -1 -1 -1
2 5 -1 1 1 -1
3 7 1 -1 -1 -1
4 9 0 1 1 1

Table 14.6: Characters evaluated on rotation classes

The 9-fold degenerate l = 4 multiplet therefore decomposes as
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0
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3
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+




3
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1
−1



, (14.65)
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or
χ4
SO(3) = χA1 + χE + χF1 + χF2 . (14.66)

The octohedral crystal field splits the nine states into four multiplets with
symmetries A1, E, F1, F2 and degeneracies 1, 2, 3 and 3, respectively.

We have considered only the simplest case here, ignoring the complica-
tions introduced by reflection symmetries, and by 2-valued spinor represen-
tations of the rotation group.

14.4 Further exercises and problems

We begin with some technologically important applications of group theory
to cryptography and number theory.

Exercise 14.18: The set Zn forms a group under multiplication only when n is
a prime number. Show, however, that the subset U(Zn) ⊂ Zn of elements of
Zn that are co-prime to n is a group. It is the group of units of the ring Zn.

Exercise 14.19: Cyclic groups. A group G is said to be cyclic if its elements
consist of powers an of of an element a, called the generator . The group will
be of finite order |G| = m if am = a0 = e for some m ∈ Z+.

a) Show that a group of prime order is necessarily cyclic, and that any
element other than the identity can serve as its generator. (Hint: Let
a be any element other than e and consider the subgroup consisting of
powers am.)

b) Show that any subgroup of a cyclic group is itself cyclic.

Exercise 14.20: Cyclic groups and cryptography. In a large cyclic group G
it can be relatively easy to compute ax, but to recover x given h = ax one
might have to compute ay and compare it with h for every 1 < y < |G|. If
|G| has several hundred digits, such a brute force search could take longer
than the age of the universe. Rather more efficient algorithms for this discrete
logarithm problem exist, but the difficulty is still sufficient for it to be useful
in cryptopgraphy.

a) Diffie-Hellman key exchange. This algorithm allows Alice and Bob to
establish a secret key that can be used with a conventional cypher with-
out Eve, who is listening to their conversation, being able to reconstruct
it. Alice choses a random element g ∈ G and an integer x between 1 and
|G| and computes gx. She sends g and gx to Bob, but keeps x to herself.
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Bob chooses an integer y and computes gy and gxy = (gx)y. He keeps
y secret and sends gy to Alice, who computes gxy = (gy)x. Show that,
although Eve knows g, gy and gx, she cannot obtain Alice and Bob’s
secret key gxy without solving the discrete logarithm problem.

b) ElGamal public key encryption. This algorithm, based on Diffie-Hellman,
was invented by the Egyptian cryptographer Taher Elgamal. It is a
component of PGP and and other modern encryption packages. To use
it, Alice first chooses a random integer x in the range 1 to |G| and
computes h = ax. She publishes a description of G, together with the
elements h and a, as her public key. She keeps the integer x secret. To
send a message m to Alice, Bob chooses an integer y in the same range
and computes c1 = ay, c2 = mhy. He transmits c1 and c2 to Alice, but
keeps y secret. Alice can recover m from c1, c2 by computing c2(c

x
1)−1.

Show that, although Eve knows Alice’s public key and has overheard c1
and c2, she nonetheless cannot decrypt the message without solving the
discrete logarithm problem.

Popular choices for G are subgroups of (Zp)×, for large prime p. (Zp)× is itself
cyclic (can you prove this?), but is unsuitable for technical reasons.

Exercise 14.21: Modular arithmetic and number theory . An integer a is said
to be a quadratic residue mod p if there is an r such that a = r2 (mod p).
Let p be an odd prime. Show that if r2

1 = r22 (mod p) then r1 = ±r2 (mod p),
and that r 6= −r (mod p). Deduce that exactly one half of the p− 1 non-zero
elements of Zp are quadratic residues.

Now consider the Legendre symbol

(
a

p

)
def
=





0, a = 0,
1, a a quadratic residue (mod p),
−1 a not a quadratic residue (mod p).

Show that (
a

p

)(
b

p

)
=

(
ab

p

)
,

and so the Legendre symbol forms a one-dimensional representation of the
multiplicative group (Zp)×. Combine this fact with the character orthogonality
theorem to give an alternative proof that precisely half the p− 1 elements of
(Zp)× are quadratic residues. (Hint: To show that the product of two non-
residues is a residue, observe that the set of residues is a normal subgroup of
(Zp)×, and consider the multiplication table of the resulting quotient group.)



590 CHAPTER 14. GROUPS AND GROUP REPRESENTATIONS

Exercise 14.22: More practice with modular arithmetic. Again let p be an
odd prime. Prove Euler’s theorem that

a(p−1)/2 (mod p) =

(
a

p

)
.

(Hint: Begin by showing that the usual school-algebra proof that an equa-
tion of degree n can have no more than n solutions remains valid for arith-
metic modulo a prime number, and so a(p−1)/2 = 1 (mod p) can have no more
than(p− 1)/2 roots. Cite Fermat’s little theorem to show that these roots
must be the quadratic residues. Cite Fermat again to show that the quadratic
non-residues must then have a(p−1)/2 = −1 (mod p).)

The harder-to-prove law of quadratic reciprocity asserts that for p, q odd primes,
we have

(−1)(p−1)(q−1)/4

(
p

q

)
=

(
q

p

)
.

Problem 14.23: Buckyball spectrum. Consider the symmetry group of the C60

buckyball molecule of figure 14.3.

a) Starting from the character table of the orientation-preserving icosohe-
dral group Y (table 14.3), and using the fact that the Z2 parity inversion
σ : r → −r combines with g ∈ Y so that DJg(σg) = DJg(g), whilst
DJu(σg) = −DJu(g), write down the character table of the extended
group Yh = Y ×Z2 that acts as a symmetry on the C60 molecule. There
are now ten conjugacy classes, and the ten representations will be la-
belled Ag, Au, etc. Verify that your character table has the expected
row-orthogonality properties.

b) By counting the number of atoms left fixed by each group operation,
compute the compound character of the action of Yh on the C60 molecule.
(Hint: Examine the pattern of panels on a regulation soccer ball, and
deduce that four carbon atoms are left unmoved by operations in the
class σC2.)

c) Use your compound character from part b), to show that the 60-dimensional
Hillbert space decomposes as

HC60
= Ag ⊕ T1g ⊕ 2T1u ⊕ T2g ⊕ 2T2u ⊕ 2Gg ⊕ 2Gu ⊕ 3Hg ⊕ 2Hu,

consistent with the energy-levels sketched in figure 14.3.

Problem 14.24: The Frobenius-Schur Indicator. Recall that a real or pseudo-
real representation is one such that D(g) ∼ D∗(g), and for unitary matrices D
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we have D∗(g) = [DT (g)]−1. In this unitary case D(g) being real or pseudo-
real is equivalent to the statement that there exists an invertible matrix F
such that

FD(g)F−1 = [DT (g)]−1.

We can rewrite this statement as DT (g)FD(g) = F , and so F can be inter-
preted as the matrix representing a G-invariant quadratic form.

i) Use Schur’s lemma to show that when D is irreducible the matrix F is
unique up to an overall constant. In other words, DT (g)F1D(g) = F1

and DT (g)F2D(g) = F2 for all g ∈ G implies that F2 = λF1. Deduce
that for irreducible D we have F T = ±F .

ii) By reducing F to a suitable canonical form, show that F is symmetric
(F = F T ) in the case that D(g) is a real representation, and F is skew
symmetric (F = −F T ) when D(g) is a pseudo-real representation.

iii) Now let G be a finite group. For any matrix U , the sum

FU =
1

|G|
∑

g∈G
DT (g)UD(g)

is a G-invariant matrix. Deduce that FU is always zero when D(g) is
neither real nor pseudo-real, and, by specializing both U and the indices
on FU , show that in the real or pseudo-real case

∑

g∈G
χ(g2) = ±

∑

g∈G
χ(g)χ(g),

where χ(g) = trD(g) is the character of the irreducible representation
D(g). Deduce that the Frobenius-Schur indicator

κ
def
=

1

|G|
∑

g∈G
χ(g2)

takes the value +1, −1, or 0 when D(g) is, respectively, real, pseudo-real,
or not real.

iv) Show that the identity representation occurs in the decomposition of the
tensor product D(g) ⊗D(g) of an irrep with itself if, and only if, D(g)
is real or pseudo-real. Given a basis ei for the vector space V on which
D(g) acts, show the matrix F can be used to construct the basis for the
identity-representation subspace V id in the decomposition

V ⊗ V =
⊕

irreps J

V J .
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Problem 14.25: Induced Representations. Suppose we know a representation
DW (h) : W → W for a subgroup H ⊂ G. From this representation we can
construct an induced representation IndGH(DW ) for the larger group G. The
construction cleverly combines the coset space G/H with the representation
space W to make a (usually reducible) representation space IndGH(W ) of di-
mension |G/H| × dimW .

Recall that there is a natural action of G on the coset space G/H. If x =
{g1, g2, . . .} ∈ G/H then gx is the coset {gg1, gg2, . . .}. We select from each
coset x ∈ G/H a representative element ax, and observe that the product gax
can be decomposed as gax = agxh, where agx is the selected representative
from the coset gx and h is some element of H. Next we introduce a basis
|n, x〉 for IndGH(W ). We use the symbol “0” to label the coset {e}, and take
|n, 0〉 to be the basis vectors for W . For h ∈ H we can therefore set

D(h)|n, 0〉 def
= |m, 0〉DW

mn(h).

We also define the result of the action of ax on |n, 0〉 to be the vector |n, x〉:

D(ax)|n, 0〉 def
= |n, x〉.

We may now obtain the the action of a general element of G on the vectors
|n, x〉 by requiring D(g) to be representation, and so computing

D(g)|n, x〉 = D(g)D(ax)|n, 0〉
= D(gax)|n, 0〉
= D(agxh)|n, 0〉
= D(agx)D(h)|n, 0〉
= D(agx)|m, 0〉DW

mn(h)

= |m, gx〉DW
mn(h).

i) Confirm that the action D(g)|n, x〉 = |m, gx〉DW
mn(h), with h obtained

from g and x via the decomposition gax = agxh, does indeed define a
representation of G. Show also that if we set |f〉 =

∑
n,x fn(x)|n, x〉,

then the action of g on the components takes

fn(x) 7→ DW
nm(h)fm(g−1x).

ii) Let f(h) be a class function on H. Let us extend it to a function on G
by setting f(g) = 0 if g /∈ H, and define

IndGH [f ](s) =
1

|H|
∑

g∈G
f(g−1sg).
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Show that IndGH [f ](s) is a class function on G, and further show that if
χW is the character of the starting representation for H then IndGH [χW ]
is the character of the induced representation of G. (Hint, only fixed
points of the G-action on G/H contribute to the character, and gx = x
means that gax = axh. Thus DW (h) = DW (a−1

x gax).)
iii) Given a representation DV (g) : V → V of G we can trivially obtain a

(generally reducible) representation ResGH(V ) of H ⊂ G by restricting G
to H. Define the usual inner product on the group functions by

〈φ1, φ2〉G =
1

|G|
∑

g∈G
φ1(g

−1)φ2(g),

and show that if ψ is a class function on H and φ a class function on G
then

〈ψ,ResGH [φ]〉H = 〈IndGH [ψ], φ〉G.
Thus, IndGH and ResGH are, in some sense, adjoint operations. Mathe-
maticians would call them a pair of mutually adjoint functors.

iv) By applying the result from part (iii) to the characters of the irreducible
representations of G and H, deduce Frobenius’ reciprocity theorem: The
number of times an irrepDJ(g) of G occurs in the representation induced
from an irrepDK(h) ofH is equal to the number of times that DK occurs
in the decomposition of DJ into irreps of H.

The representation of the Poincaré group (= the SO(1, 3) Lorentz group to-
gether with space-time translations) that classifies the states of a spin-J ele-
mentary particle are those induced from the spin-J representation of its SO(3)
rotation subgroup. The quantum state of a mass m elementary particle is
therefore of the form |k, σ〉 where k is the particle’s four-momentum, which
lies is the coset SO(1, 3)/SO(3), and σ is the label from the |J, σ〉 spin state.
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Chapter 15

Lie Groups

A Lie group is a group which is also a smooth manifold G. The group
operation of multiplication (g1, g2) 7→ g3 is required to be a smooth function,
as is the operation of taking the inverse of a group element. Lie groups are
named after the Norwegian mathematician Sophus Lie. The examples most
commonly met in physics are the infinite families of matrix groups GL(n),
SL(n), O(n), SO(n), U(n), SU(n), and Sp(n), all of which we shall describe
in this chapter, togther with the family of five exceptional Lie groups: G2,
F4, E6, E7, and E8, which have applications in string theory.

One of the properties of a Lie group is that, considered as a manifold,
the neighbourhood of any point looks exactly like that of any other. Accord-
ingly, the group’s dimension and much of its structure can be understood by
examining the immediate vicinity any chosen point, which we may as well
take to be the identity element. The vectors lying in the tangent space at
the identity element make up the Lie algebra of the group. Computations in
the Lie algebra are often easier than those in the group, and provide much of
the same information. This chapter will be devoted to studying the interplay
between the Lie group itself and this Lie algebra of infinitesimal elements.

15.1 Matrix groups

The Classical Groups are described in a book with this title by Hermann
Weyl. They are subgroups of the general linear group, GL(n,F), which con-
sists of invertible n-by-n matrices over the field F. We will mostly consider
the cases F = C or F = R.

595
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A near-identity matrix in GL(n,R) can be written g = I + εA, where A
is an arbitrary n-by-n real matrix. This matrix contains n2 real entries, so
we can move away from the identity in n2 distinct directions. The tangent
space at the identity, and hence the group manifold itself, is therefore n2

dimensional. The manifold of GL(n,C) has n2 complex dimensions, and this
corresponds to 2n2 real dimensions.

If we restrict the determinant of a GL(n,F) matrix to be unity, we get
the special linear group, SL(n,F). An element near the identity in this group
can still be written as g = I + εA, but since

det (I + εA) = 1 + ε tr(A) +O(ε2), (15.1)

this requires tr(A) = 0. The restriction on the trace means that SL(n,R)
has dimension n2 − 1.

15.1.1 The unitary and orthogonal groups

Perhaps the most important of the matrix groups are the unitary and or-
thogonal groups.

The unitary group

The unitary group U(n) comprises the set of n-by-n complex matrices U such
that U † = U−1. If we consider matrices near the identity

U = I + εA, (15.2)

with ε real, then unitarity requires

I +O(ε2) = (I + εA)(I + εA†)

= I + ε(A + A†) +O(ε2), (15.3)

so Aij = −(Aji)
∗ —it i.e. A is skew hermitian. A complex skew-hermitian

matrix contains

n +

[
2× 1

2
n(n− 1)

]
= n2

real parameters. In this counting, the first “n” is the number of entries on
the diagonal, each of which must be of the form i times a real number. The
n(n− 1)/2 is the number of entries above the main diagonal, each of which
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can be an arbitrary complex number. The number of real dimensions in the
group manifold is therefore n2. As U †U = I, the rows or columns in the
matrix U form an orthonormal set of vectors. Their entries are therefore
bounded, |Uij| ≤ 1, and this property leads to the n2 dimensional group
manifold of U(n) being a compact set.

When a group manifold is compact, we say that the group itself is a
compact group. There is a natural notion of volume on a group manifold
and compact Lie groups have finite total volume. Because of this, they have
many properties in common with the finite groups we studied in the previous
chapter.

Recall that a group is simple if it possesses no invariant subgroups. U(n)
is not simple. Its centre Z is an invariant U(1) subgroup consisting of matrices
of the form U = eiθ I. The special unitary group SU(n), consists of n-by-
n unimodular (having determinant +1) unitary matrices. It is not strictly
simple because its center Z consists of the discrete subgroup of matrices
Um = ωm I with ω an n-th root of unity, and this is an invariant subgroup.
Because the centre, its only invariant subgroup, is not a continuous group,
SU(n) is counted as being simple in Lie theory. With U = I + εA, as above,
the unimodularity imposes the additional constraint on A that trA = 0, so
the SU(n) group manifold is n2 − 1 dimensional.

The orthogonal group

The orthogonal group O(n) consists of the the set of real matrices O with the
property that OT = O−1. For a matrix in the neighbourhood of the identity,
O = I + εA, this property requires that A be skew symmetric: Aij = −Aij.
Skew symmetric real matrices have n(n−1)/2 independent entries, and so the
group manifold of O(n) is n(n− 1)/2 dimensional. The condition OTO = I
means that the rows or columns of O, considered as row or column vectors,
are orthonormal. All entries are bounded, i.e. |Oij| ≤ 1, and again this leads
to O(n) being a compact group.

The identity

1 = det (OTO) = detOTdetO = (detO)2 (15.4)

tells us that detO = ±1. The subset of orthogonal matrices with detO = +1
constitute a subgroup of O(n) called the special orthogonal group SO(n). The
unimodularity condition discards a disconnected part of the group manifold
and does not reduce its dimension, which remains n(n− 1)/2.
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15.1.2 Symplectic groups

The symplectic groups (named from the Greek, meaning to “fold together”)
are perhaps less familiar than the other matrix groups.

We start with a non-degenerate skew-symmetric matrix ω. The symplec-
tic group Sp(2n,F) is then defined by

Sp(2n,F) = {S ∈ GL(2n,F) : STωS = ω}. (15.5)

Here F can be R or C. When F = C, we still use the transpose “T ,” not
the adjoint “†,” in this definition. Setting S = I2n + εA and demanding that
STωS = ω shows that ATω + ωA = 0.

It does not matter what skew matrix ω we start from, because we can
always find a basis in which ω takes its canonical form:

ω =

(
0 −In
In 0

)
. (15.6)

In this basis we find, after a short computation, that the most general form
for A is

A =

(
a b
c −aT

)
. (15.7)

Here, a is any n-by-n matrix, and b and c are symmetric (i.e. bT = b and
cT = c) n-by-n matrices. If the matrices are real, then counting the degrees
of freedom gives the dimension of the real symplectic group as

dim Sp(2n,R) = n2 +
[
2× n

2
(n+ 1)

]
= n(2n+ 1). (15.8)

The entries in a, b, c can be arbitrarily large. Sp(2n,R) is not compact.
The determinant of any symplectic matrix is +1. To see this take the

elements of ω to be ωij, and let

ω(x, y) = ωijx
iyj (15.9)

be the associated skew bilinear (not sesquilinear) form . Then Weyl’s identity
from exercise A.19 shows that

Pf (ω) (detM) det |x1, . . . , x2n|
=

1

2nn!

∑

π∈S2n

sgn (π)ω(Mxπ(1),Mxπ(2)) · · ·ω(Mxπ(2n−1),Mxπ(2n)),
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for any linear map M . If ω(x, y) = ω(Mx,My), we conclude that detM =
1 — but preserving ω is exactly the condition that M be an element of
the symplectic group. Since the matrices in Sp(2n,F) are automatically
unimodular there is no “special symplectic” group.

Unitary symplectic group

The intersection of two groups is also a group. We therefore define the unitary
symplectic group as

Sp(n) = Sp(2n,C) ∩ U(2n). (15.10)

This group is compact — a property in inherits from the compactness of the
U(n) in which it is embedded as a subgroup. We will see that its dimension
is n(2n + 1), the same as the non-compact Sp(2n,R). Sp(n) may also be
defined as U(n,H) where H denotes the skew field of quaternions.
Warning: Physics papers often make no distinction between Sp(n), which
is a compact group, and Sp(2n,R) which is non-compact. To add to the
confusion the compact Sp(n) is also sometimes called Sp(2n). You have to
judge from the context what group the author has in mind.
Physics Application: Kramers’ degeneracy.

Let σ̂i be the Pauli matrices, and L the orbital angular momentum oper-
ator. The matrix C = iσ̂2 has the property that

C−1σ̂iC = −σ̂∗
i . (15.11)

A time-reversal invariant Hamiltonian containing L ·S spin-orbit interactions
obeys

C−1HC = H∗. (15.12)

We regard the 2n-by-2n matrix H as being an n-by-n matrix whose entries
Hij are themselves 2-by-2 matrices. We therefore expand these entries as

Hij = h0
ij + i

3∑

n=1

hnijσ̂n.

The condition (15.12) now implies that the haij are real numbers. We therefore
say that H is real quaternionic. This is because the Pauli sigma matrices are
algebraically isomorphic to Hamilton’s quaternions under the identification

iσ̂1 ↔ i,
iσ̂2 ↔ j,
iσ̂3 ↔ k.

(15.13)
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The hermiticity of H requires that Hji = Hij where the overbar denotes
quaternionic conjugation, i.e. the mapping

q0 + iq1σ̂1 + iq2σ̂2 + iq3σ̂3 → q0 − iq1σ̂1 − iq2σ̂2 − iq3σ̂3. (15.14)

If Hψ = Eψ, then HCψ∗ = Eψ∗. Since C is skew, ψ and Cψ∗ are necessarily
orthogonal. Therefore all states are doubly degenerate. This is Kramers’
degeneracy.

H may be diagonalized by a matrix in U(n,H), where U(n,H) consists
of those elements of U(2n) that satisfy C−1UC = U∗. We may rewrite this
condition as

C−1UC = U∗ ⇒ UCUT = C,

so U(n,H) consists of the unitary matrices that preserve the skew symmet-
ric matrix C. Thus U(n,H) ⊆ Sp(n). Further investigation shows that
U(n,H) = Sp(n).

We can exploit the quaternionic viewpoint to count the dimensions. Let
U = I+εB be in U(n,H). Then Bij+Bji = 0. The diagonal elements ofB are
thus pure “imaginary” quaternions having no part proportional to I. There
are therefore 3 parameters for each diagonal element. The upper triangle has
n(n− 1)/2 independent elements, each with 4 parameters. Counting up, we
find

dim U(n,H) = dim Sp(n) = 3n+
[
4× n

2
(n− 1)

]
= n(2n+ 1). (15.15)

Thus, as promised, we see that the compact group Sp(n) and the non-
compact group Sp(2n,R) have the same dimension.

We can also count the dimension of Sp(n) by looking at our previous
matrices

A =

(
a b
c −aT

)

where a b and c are now allowed to be complex, but with the restriction that
S = I + εA be unitary. This requires A to be skew-hermitian, so a = −a†,
and c = −b†, while b (and hence c) remains symmetric. There are n2 free
real parameters in a, and n(n + 1) in b, so

dim Sp(n) = (n2) + n(n + 1) = n(2n+ 1),

as before.
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Exercise 15.1: Show that

SO(2N) ∩ Sp(2N,R) ∼= U(N).

Hint: Group the 2N basis vectors on which O(2N) acts into pairs xn and yn,
n = 1, . . . , N . Assemble these pairs into zn = xn + iyn and z̄ = xn − iyn. Let
ω be the linear map that takes xn → yn and yn → −xn. Show that the subset
of SO(2N) that commutes with ω mixes zi’s only with zi’s and z̄i’s only with
z̄i’s.

15.2 Geometry of SU(2)

To get a sense of Lie groups as geometric objects, we will study the simplest
non-trivial case, SU(2), in some detail.

A general 2-by-2 complex matrix can be parametrized as

U =

(
x0 + ix3 ix1 + x2

ix1 − x2 x0 − ix3

)
. (15.16)

The determinant of this matrix is unity, provided

(x0)2 + (x1)2 + (x2)2 + (x3)2 = 1. (15.17)

When this condition is met, and if in addition the xi are real, the matrix is
unitary: U † = U−1. The group manifold of SU(2) can therefore be identified
with the three-sphere S3. We will take as local co-ordinates x1, x2, x3. When
we desire to know x0 we will find it from x0 =

√
1− (x1)2 − (x2)2 − (x3)2.

This co-ordinate chart only labels the points in the half of the three-sphere
having x0 > 0, but this is typical of any non-trivial manifold. A complete
atlas of charts can be constructed if needed.

We can simplify our notation by using the Pauli sigma matrices

σ̂1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
. (15.18)

These obey

[σ̂i, σ̂j] = 2iεijkσ̂k, and σiσ̂j + σ̂jσ̂i = 2δijI. (15.19)

In terms of them, we can write the general element of SU(2) as

g = U = x0I + ix1σ̂1 + ix2σ̂2 + ix3σ̂3. (15.20)
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Elements of the group in the neighbourhood of the identity differ from e ≡ I
by real linear combinations of the iσ̂i. The three-dimensional vector space
spanned by these matrices is therefore the tangent space TGe at the identity
element. For any Lie group, this tangent space is called the Lie algebra,
g = LieG of the group. There will be a similar set of matrices iλ̂i for any
matrix group. They are called the generators of the Lie algebra, and satisfy
commutation relations of the form

[iλ̂i, iλ̂j] = −f k
ij (iλ̂k), (15.21)

or equivalently
[λ̂i, λ̂j] = if k

ij λ̂k (15.22)

The f k
ij are called the structure constants of the algebra. The “i”’s associ-

ated with the λ̂’s in this expression are conventional in physics texts because
for quantum mechanics application we usually desire the λ̂i to be hermitian.
They are usually absent in books aimed at mathematicians.

Exercise 15.2: Let λ̂1 and λ̂2 be hermitian matrices. Show that if we define
λ̂3 by the relation [λ̂1, λ̂2] = iλ̂3, then λ̂3 is also a hermitian matrix.

Exercise 15.3: For the group O(n) the matrices “iλ̂” are real n-by-n skew
symmetric matrices A. Show that if A1 and A2 are real skew symmetric
matrices, then so is [A1, A2].

Exercise 15.4: For the group Sp(2n,R) the iλ̂ matrices are of the form

A =

(
a b
c −aT

)

where a is any real n-by-n matrix and b and c are symmetric (aT = a and
bT = b) real n-by-n matrices. Show that the commutator of any two matrices
of this form is also of this form.

15.2.1 Invariant vector fields

Consider a matrix group, and in it a group element I + iελ̂i lying close to
the identity e ≡ I. Draw an arrow connecting I to I + iελ̂i, and regard
this arrow as a vector Li lying in TGe. Next, map the infinitesimal element
I + iελ̂i to the neighbourhood an arbitrary group element g by multiplying
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on the left to get g(I + iελ̂i). By drawing an arrow from g to g(I + iελ̂i), we
obtain a vector Li(g) lying in TGg. This vector at g is the push-forward of
the vector at e by left multiplication by g. For example, consider SU(2) with
infinitesimal element I + iεσ̂3. We find

g(I + iεσ̂3) = (x0 + ix1σ̂1 + ix2σ̂2 + ix3σ̂3)(I + iεσ̂3)

= (x0 − εx3) + iσ̂1(x
1 − εx2) + iσ̂2(x

2 + εx1) + iσ̂3(x
3 + εx0).

(15.23)

This computation can also be interpreted as showing that the multiplication
of g ∈ SU(2) on the right by (I + iεσ̂3) displaces the point g, changing its xi

parameters by an amount

δ




x0

x1

x2

x3


 = ε




−x3

−x2

x1

x0


 . (15.24)

Knowing how the displacement looks in terms of the x1, x2, x3 co-ordinate
system lets us read off the ∂/∂xµ components of a vector L3 lying in TGg:

L3 = −x2∂1 + x1∂2 + x0∂3. (15.25)

Since g can be any point in the group, we have constructed a globally-defined
vector field L3 that acts on a function F (g) on the group manifold as

L3F (g) = lim
ε→0

{
1

ε
[F (g(I + iεσ̂3))− F (g)]

}
. (15.26)

Similarly, we obtain

L1 = x0∂1 − x3∂2 + x2∂3

L2 = x3∂1 + x0∂2 − x1∂3. (15.27)

The vector fields Li are said to be left invariant because the push-forward
of the vector Li(g) lying in the tangent space at g by multiplication on the
left by any g′ produces a vector g′∗[Li(g)] lying in the tangent space at g′g,
and this pushed-forward vector coincides with the Li(g

′g) already there. We
can express this statement tersely as g∗Li = Li.
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Using ∂ix
0 = −xi/x0, i = 1, 2, 3, we can compute the Lie brackets and

find
[L1, L2] = −2L3. (15.28)

In general
[Li, Lj] = −2εijkLk, (15.29)

which coincides with the matrix commutator of the iσ̂i.
This construction works for all Lie groups. For each basis vector Li in the

tangent space at the identity e, we push it forward to the tangent space at g
by left multiplication by g, and so construct the global left-invariant vector
field Li. The Lie bracket of these vector fields will be

[Li, Lj] = −f k
ij Lk, (15.30)

where the coefficients f k
ij are guaranteed to be position independent because

(see exercise 12.5) the operation of taking the Lie bracket of two vector fields
commutes with the operation of pushing-forward the vector fields. Con-
sequently, the Lie bracket at any point is just the image of the Lie bracket
calculated at the identity. When the group is a matrix group, this Lie bracket
will coincide with the commutator of the iλ̂i, that group’s analogue of the
iσ̂i matrices.

The exponential map

Recall that given a vector field X ≡ Xµ∂µ we define associated flow by
solving the equation

dxµ

dt
= Xµ(x(t)). (15.31)

If we do this for the left-invariant vector field L, with initial condition
x(0) = e, we obtain a t-dependent group element g(x(t)), which we denote
by Exp (tL). The symbol “Exp ” stands for the exponential map which takes
elements of the Lie algebra to elements of the Lie group. The reason for the
name and notation is that for matrix groups this operation corresponds to
the usual exponentiation of matrices. Elements of the matrix Lie group are
therefore exponentials of matrices in the the Lie algebra. To see this, suppose
that Li is the left invariant vector field derived from iλ̂i. Then the matrix

g(t) = exp(itλ̂i) ≡ I + itλ̂i −
1

2
t2λ̂2

i − i
1

3!
t3λ̂3

i + · · · (15.32)
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is an element of the group, and

g(t+ ε) = exp(itλ̂i) exp(iελ̂i) = g(t)
(
I + iελ̂i +O(ε2)

)
. (15.33)

From this we deduce that

d

dt
g(t) = lim

ε→0

{
1

ε
[g(t)(I + iελ̂i)− g(t)]

}
= Lig(t). (15.34)

Since exp(itλ̂) = I when t = 0, we deduce that Exp (tLi) = exp(itλ̂i).

Right-invariant vector fields

We can also use multiplication on the right to push forward an infinitesimal
group element. For example:

(I + iεσ̂3)g = (I + iεσ̂3)(x
0 + ix1σ̂1 + ix2σ̂2 + ix3σ̂3)

= (x0 − εx3) + iσ̂1(x
1 + εx2) + iσ̂2(x

2 − εx1) + iσ̂3(x
3 + εx0).

(15.35)

This motion corresponds to the right-invariant vector field

R3 = x2∂1 − x1∂2 + x0∂3. (15.36)

Similarly, we obtain

R1 = x0∂1 + x3∂2 − x2∂3,

R2 = −x3∂1 + x0∂2 + x1∂3, (15.37)

and find that
[R1, R2] = +2R3. (15.38)

In general,
[Ri, Rj] = +2εijkRk. (15.39)

For any Lie group, the Lie brackets of the right-invariant fields will be

[Ri, Rj] = +fij
kRk (15.40)

whenever
[Li, Lj] = −fijkLk (15.41)
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are the Lie brackets of the left-invariant fields. The relative minus sign be-
tween the bracket algebra of the left- and right-invariant vector fields has
the same origin as the relative sign between the commutators of space- and
body-fixed rotations in classical mechanics. Because multiplication from the
left does not interfere with multiplication from the right, the left and right
invariant fields commute:

[Li, Rj] = 0. (15.42)

15.2.2 Maurer-Cartan forms

Suppose that g is an element of a group and dg denotes its exterior derivative.
Then the combination dg g−1 is a Lie-algebra-valued one form. For example,
starting from the elements of SU(2)

g = x0 + ix1σ̂1 + ix2σ̂2 + ix3σ̂3

g−1 = g† = x0 − ix1σ̂1 − ix2σ̂2 − ix3σ̂3 (15.43)

we compute

dg = dx0 + idx1σ̂1 + idx2σ̂2 + idx3σ̂3

= (x0)−1(−x1dx1 − x2dx2 − x3dx3) + idx1σ̂1 + idx2σ̂2 + idx3σ̂3.

(15.44)

From this we find

dgg−1 = iσ̂1

(
(x0 + (x1)2/x0)dx1 + (x3 + (x1x2)/x0)dx2 + (−x2 + (x1x3)/x0)dx3

)

+iσ̂2

(
(−x3 + (x2x1)/x0)dx1 + (x0 + (x2)2/x0)dx2 + (x1 + (x2x3)/x0)dx3

)

+iσ̂3

(
(x2 + (x3x1)/x0)dx1 + (−x1 + (x3x2)/x0)dx2 + (x0 + (x3)2/x0)dx3

)
.

(15.45)

Observe that the part proportional to the identity matrix has cancelled. The
result of inserting a vector X i∂i into dg g−1 is therefore an element of the
Lie algebra of SU(2). This is what we mean when we say that dg g−1 is
Lie-algebra-valued .

For a general group, we define the (right invariant) Maurer-Cartan forms

ωiR as being the coeffecient of the Lie algebra generator iλ̂i. Thus, for SU(2),
we have

dgg−1 = ωR = (iσ̂i)ω
i
R. (15.46)
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If we evaluate one-form ω1
R on the right invariant vector field R1, we find

ω1
R(R1) = (x0 + (x1)2/x0)x0 + (x3 + (x1x2)/x0)x3 + (−x2 + (x1x3)/x0)(−x2)

= (x0)2 + (x1)2 + (x2)2 + (x3)2

= 1. (15.47)

Working similarly, we find

ω1
R(R2) = (x0 + (x1)2/x0)(−x3) + (x3 + (x1x2)/x0)x0 + (−x2 + (x1x3)/x0)x1

= 0. (15.48)

In general, we discover that ωiR(Rj) = δij. The Maurer-Cartan forms therefore
constitute the dual basis to the right-invariant vector fields.

We may similarly define the left-invariant Maurer-Cartan forms by

g−1dg = ωL = (iσ̂i)ω
i
L. (15.49)

These obey ωiL(Lj) = δij, showing that the ωiL are the dual basis to the
left-invariant vector fields.

Acting with the exterior derivative d on gg−1 = I tells us that d(g−1) =
−g−1dgg−1. By exploiting this fact, together with the anti-derivation prop-
erty

d(a ∧ b) = da ∧ b+ (−1)pa ∧ db,
we may compute the exterior derivative of ωR. We find that

dωR = d(dgg−1) = (dgg−1) ∧ (dgg−1) = ωR ∧ ωR. (15.50)

A matrix product is implicit here. If it were not, the product of the two
identical 1-forms on the right would automatically be zero. When we make
this matrix structure explicit, we see that

ωR ∧ ωR = ωiR ∧ ωjR(iσ̂i)(iσ̂j)

=
1

2
ωiR ∧ ωjR [iσ̂i, iσ̂j]

= −1

2
f k
ij (iσ̂k)ω

i
R ∧ ωjR, (15.51)

so

dωkR = −1

2
f k
ij ω

i
R ∧ ωjR. (15.52)
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These equations are known as the Maurer-Cartan relations for the right-
invariant forms.

For the left-invariant forms we have

dωL = d(g−1dg) = −(g−1dg) ∧ (g−1dg) = −ωL ∧ ωL, (15.53)

or

dωkL = +
1

2
f k
ij ω

i
L ∧ ωjL. (15.54)

The Maurer-Cartan relations appear in the physics literature when we
quantize gauge theories. They are one part of the BRST transformations of
the Fadeev-Popov ghost fields. We will provide a further discussion of these
transformations in the next chapter.

15.2.3 Euler angles

In physics it is common to use Euler angles to parameterize the group SU(2).
We can write an arbitrary SU(2) matrix U as a product

U = exp{−iφσ̂3/2} exp{−iθσ̂2/2} exp{−iψσ̂3/2},

=

(
e−iφ/2 0

0 eiφ/2

)(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)(
e−iψ/2 0

0 eiψ/2

)
,

=

(
e−i(φ+ψ)/2 cos θ/2 −ei(ψ−φ)/2 sin θ/2
ei(φ−ψ)/2 sin θ/2 ei(ψ+φ)/2 cos θ/2

)
. (15.55)

Comparing with the earlier expression for U in terms of the co-ordinates xµ,
we obtain the Euler-angle parameterization of the three-sphere

x0 = cos θ/2 cos(ψ + φ)/2,

x1 = sin θ/2 sin(φ− ψ)/2,

x2 = − sin θ/2 cos(φ− ψ)/2,

x3 = − cos θ/2 sin(ψ + φ)/2. (15.56)

When the angles are taken in the range 0 ≤ φ < 2π, 0 ≤ θ < π, 0 ≤ ψ < 4π
we cover the entire three-sphere exactly once.

Exercise 15.5: Show that the Hopf map, defined in chapter 3, Hopf : S3 → S2

is the “forgetful” map (θ, φ, ψ) → (θ, φ), where θ and φ are spherical polar
co-ordinates on the two-sphere.
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Exercise 15.6: Show that

U−1dU = − i
2
σ̂i Ω

i
L,

where

Ω1
L = sinψ dθ − sin θ cosψ dφ,

Ω2
L = cosψ dθ + sin θ sinψ dφ,

Ω3
L = dψ + cos θ dφ.

Observe that these 1-forms are essentially the components

ωX = sinψ θ̇ − sin θ cosψ φ̇,

ωY = cosψ θ̇ + sin θ sinψ φ̇,

ωZ = ψ̇ + cos θ φ̇.

of the angular velocity ω of a body with respect to the body-fixed XY Z axes
in the Euler-angle conventions of exercise 11.17.

Similarly, show that

dUU−1 = − i
2
σ̂i Ω

i
R,

where

Ω1
R = − sinφdθ + sin θ cosψ dψ,

Ω2
R = cosφdθ + sin θ sinψ dψ,

Ω3
R = dφ+ cos θ dψ,

Compute the components ωx, ωy, ωz of the same angular velocity vector ω, but
now taken with respect to the space-fixed xyz frame. Compare your answer
with the Ωi

R.

15.2.4 Volume and metric

The manifold of any Lie group has a natural metric, which is obtained by
transporting the Killing form (see section 15.3.2) from the tangent space at
the identity to any other point g by either left or right multiplication by
g. In For a compact group, the resultant left- and right-invariant metrics
coincide. In the particular case of SU(2) this metric is the usual metric on
the three-sphere.
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Using the Euler angle expression for the xµ to compute the dxµ, we can
express the metric on the sphere as

ds2 = (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2,

=
1

4

(
dθ2 + cos2θ/2(dψ + dφ)2 + sin2θ/2(dψ − dφ)2

)
,

=
1

4

(
dθ2 + dψ2 + dφ2 + 2 cos θ dφ dψ

)
. (15.57)

Here, to save space, we have used the traditional physics way of writing a
metric. In the more formal notation, where we think of the metric as being
a bilinear function, we would write the last line as

g( , ) =
1

4
(dθ ⊗ dθ + dψ ⊗ dψ + dφ⊗ dφ+ cos θ(dφ⊗ dψ + dψ ⊗ dφ)) .

(15.58)

From (15.58) we find

g = det (gµν) =
1

43

∣∣∣∣∣∣

1 0 0
0 1 cos θ
0 cos θ 1

∣∣∣∣∣∣

=
1

64
(1− cos2θ) =

1

64
sin2θ. (15.59)

The volume element,
√
g dθdφdψ, is therefore

d(Volume) =
1

8
sin θdθdφdψ, (15.60)

and the total volume of the sphere is

Vol(S3) =
1

8

∫ π

0

sin θdθ

∫ 2π

0

dφ

∫ 4π

0

dψ = 2π2. (15.61)

This volume coincides, for d = 4, with the standard expression for the volume
of Sd−1, the surface of the d-dimensional unit ball,

Vol(Sd−1) =
2πd/2

Γ(d
2
)
. (15.62)
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Exercise 15.7: Evaluate the Maurer-Cartan form ω3
L in terms of the Euler

angle parameterization, and hence show that

iω3
L =

1

2
tr (σ̂3U

−1dU) = − i
2
(dψ + cos θ dφ).

Now recall that the Hopf map takes the point on the three-sphere with Euler
angle co-ordinates (θ, φ, ψ) to the point on the two-sphere with spherical polar
co-ordinates (θ, φ). Thus, if we set A = −dψ − cos θ dφ, then we find

F ≡ dA = sin θ dθ dφ = Hopf∗
(
d
[
AreaS2

])
.

Also observe that
A ∧ F = − sin θ dθ dφ dψ.

From this, show that the Hopf index of the Hopf map itself is equal to

1

16π2

∫

S3

A ∧ F = −1.

Exercise 15.8: Show that for U the defining two-by-two matrices of SU(2), we
have ∫

SU(2)
tr
[
(U−1dU)3

]
= 24π2.

Suppose we have a map g : R3 → SU(2) such that g(x) goes to the identity
element at infinity. Consider the integral

S[g] =
1

24π2

∫

R3

tr (g−1dg)3,

where the 3-form tr (g−1dg)3 is the pull-back to R3 of the form tr [(U−1dU)3]
on SU(2). Show that if we we make the variation g → g + δg, then

δS[g] =
1

24π2

∫

R3

d
{

3 tr
(
(g−1δg)(g−1dg)2

)}
= 0,

and so S[g] is topological invariant of the map g. Conclude that the functional
S[g] is an integer, that integer being the Brouwer degree, or winding number,
of the map g : S3 → S3.

Exercise 15.9: Generalize the result of the previous problem to show, for any
mapping x 7→ g(x) into a Lie group G, and for n an odd integer, that the
n-form tr (g−1dg)n constructed from the Maurer-Cartan form is closed, and
that

δ tr (g−1dg)n = d
{
n tr

(
(g−1δg)(g−1dg)n−1

)}
.

(Note that for even n the trace of (g−1dg)n vanishes identically.)
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15.2.5 SO(3) ' SU(2)/Z2

The groups SU(2) and SO(3) are locally isomorphic. They have the same
Lie algebra, but differ in their global topology. Although rotations in space
are elements of SO(3), electrons respond to these rotations by transforming
under the two-dimensional defining representation of SU(2). As we shall see,
this means that after a rotation through 2π the electron wavefunction comes
back to minus itself. The resulting orientation entanglement is characteristic
of the spinor representation of rotations and is intimately connected with
the Fermi statistics of the electron. The spin representations were discovered
by Élie Cartan in 1913, some years before they were needed in physics.

The simplest way to motivate the spin/rotation connection is via the
Pauli sigma matrices. These matrices are hermitian, traceless, and obey

σ̂iσ̂j + σ̂jσ̂i = 2δijI. (15.63)

If, for any U ∈ SU(2), we define

σ̂′
i = Uσ̂iU

−1, (15.64)

then the σ̂′
i are also hermitian, traceless, and obey (15.63). Since the original

σ̂i form a basis for the space of hermitian traceless matrices, we must have

σ̂′
i = σ̂jRji (15.65)

for some real 3-by-3 matrix having entries Rij. From (15.63) we find that

2δij = σ̂′
iσ̂

′
j + σ̂′

jσ̂
′
i

= (σ̂lRli)(σ̂mRmj) + (σ̂mRmj)(σ̂lRli)

= (σ̂lσ̂m + σ̂mσ̂l)RliRmj

= 2δlmRliRmj.

Thus
RmiRmk = δik. (15.66)

In other words, RTR = I, and so R is an element of O(3). Now the determi-
nant of any orthogonal matrix is ±1, but the manifold of SU(2) is a connected
set and R = I when U = I. Since a continuous map from a connected set to
the integers must be a constant, we conclude that detR = 1 for all U . The
R matrices are therefore in SO(3).
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We now exploit the principle of the sextant to show that the correspon-
dance goes both ways, i.e. we can find a U(R) for any element R ∈ SO(3).

Left−hand half of fixed  

hand half is transparant 
mirror is silvered. Right−      

View through telescope   
of sun brought down to  
touch horizon   

120

90
60 30

0o

o
o o

o

θ

Pivot

Movable Mirror

2θ

To sun

Telescope

Fixed, half silvered mirror

To Horizon

Figure 15.1: The sextant. The telescope and the half-silvered mirror are fixed
to the frame of the instrument, which also holds the scale. The second mirror
and attached pointer pivot so that the angle θ between the mirrors can be
varied and accurately recorded. The scale is calibrated so as to display the
altitude 2θ. For the configuration shown, θ = 15◦ while the pointer indicates
that the sun is 30◦ above the horizon.

This familiar instrument is used to measure the altitude of the sun above the
horizon while standing on the unsteady deck of a ship at sea. A theodolite or
similar device would be rendered useless by the ship’s pitching and rolling.
The sextant exploits the fact that successive reflection in two mirrors inclined
at an angle θ to one another serves to rotate the image through an angle 2θ
about the line of intersection of the mirror planes. This rotation is used to
superimpose the image of the sun onto the image of the horizon, where it
stays even if the instrument is rocked back and forth. Exactly the same trick
is used in constructing the spinor representations of the rotation group.
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Consider a vector x with components xi and form the matrix x̂ = xiσ̂i.
Now, if n is a unit vector with components ni, then

(−σ̂ini)x̂(σ̂kn
k) =

(
xj − 2(n · x)(nj)

)
σ̂j = x̂− 2(n · x)n̂ (15.67)

The vector x−2(n·x)n is the result of reflecting x in the plane perpendicular
to n. Consequently

−(σ̂1 cos θ/2 + σ̂2 sin θ/2)(−σ̂1) x̂ (σ̂1)(σ̂1 cos θ/2 + σ̂2 sin θ/2) (15.68)

performs two successive reflections on x. The first, a reflection in the “1”
plane, is performed by the inner σ̂1’s. The second reflection, in a plane at
an angle θ/2 to the “1” plane, is performed by the (σ̂1 cos θ/2 + σ̂2 sin θ/2)’s.
Multiplying out the factors, and using the σ̂i algebra, we find

(cos θ/2− σ̂1σ̂2 sin θ/2)x̂(cos θ/2 + σ̂1σ̂2 sin θ/2)

= σ̂1(cos θ x1 − sin θ x2) + σ̂2(sin θ x
1 + cos θ x2) + σ̂3x

3. (15.69)

The effect on x is a rotation

x1 7→ cos θ x1 − sin θ x2,

x2 7→ sin θ x1 + cos θ x2,

x3 7→ x3, (15.70)

through the angle θ about the 3 axis. We can drop the xi and re-express
(15.69) as

Uσ̂iU
−1 = σ̂jRji, (15.71)

where Rij is the 3-by-3 rotation matrix

R =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 , (15.72)

and

U = exp

{
− i

2
σ̂3θ

}
= exp

{
−i 1

4i
[σ̂1, σ̂2]θ

}
(15.73)

is an element of SU(2). We have exhibited two ways of writing the exponents
in (15.73) because the subscript 3 on σ̂3 indicates the axis about which we
are rotating, while the 1, 2 in [σ̂1, σ̂2] indicates the plane in which the rotation
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occurs. It is the second language that generalizes to higher dimensions. More
on the use of mirrors for creating and combining rotations can be found in
§41.1 of Misner, Thorne, and Wheeler’s Gravitation.

This mirror construction shows that for any R ∈ SO(3) there is a two-
dimensional unitary matrix U(R) such that

U(R)σ̂iU
−1(R) = σ̂jRji. (15.74)

This U(R) is not unique, however. If U ∈ SU(2) then so is −U . Furthermore

U(R)σ̂iU
−1(R) = (−U(R))σ̂i(−U(R))−1, (15.75)

and so U(R) and −U(R) implement exactly the same rotation R. Conversely,
if two SU(2) matrices U , V obey

UσiU
−1 = V σiV

−1 (15.76)

then V −1U commutes with all 2-by-2 matrices and, by Schur’s lemma, must
be a multiple of the identity. But if λI ∈ SU(2) then λ = ±1. Thus,
U = ±V . The mapping between SU(2) and SO(3) is therefore two-to-one.
Since U and −U correspond to the same R, the group manifold of SO(3)
is the three-sphere with antipodal points identified . Unlike the two-sphere,
where the identification of antipodal points gives the non-orientable projec-
tive plane, the SO(3) group manifold remains orientable. It is not, however,
simply connected: a path on the three-sphere from a point to its antipode
forms a closed loop in SO(3), but one that is not contractable to a point. If
we continue on from the antipode back to the original point, the complete
path is contractable. This means that the first Homotopy group, the group
π1(SO(3)) of based paths in SO(3) with composition given by concatenation,
is isomorphic to Z2. This two-element group encodes the topology behind the
Balinese Candle Dance, and keeps track of whether a sequence of rotations
that eventually bring a spin- 1

2
particle back to its original orientation should

be counted as a 360◦ rotation (U = −I) or a 720◦ ∼ 0◦ rotation (U = +I).

Exercise 15.10: Verify that

U(R)σ̂iU
−1(R) = σ̂jRji

is consistent with U(R2)U(R1) = ±U(R2R1).
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Spinor representations of SO(N)

The mirror trick can be extended to perform rotations in N dimensions. We
replace the three σ̂i matrices by a set of N Dirac gamma matrices, which
obey the defining relations of a Clifford algebra:

γ̂µγ̂ν + γ̂ν γ̂µ = 2δµνI. (15.77)

These relations are a generalization of the key algebraic property of the Pauli
sigma matrices.

If N (= 2n) is even, then we can find 2n-by-2n hermitian matrices γ̂µ
satisfying this algebra. If N (= 2n+1) is odd, we append to the matrices for
N = 2n the hermitian matrix γ̂2n+1 = −(i)nγ̂1γ̂2 · · · γ̂2n which obeys γ̂2

2n+1 =
1 and anti-commutes with all the other γ̂µ. The γ̂ matrices therefore act on
a 2bN/2c dimensional space, where the symbol bN/2c denotes the integer part
of N/2.

The γ̂’s do not form a Lie algebra as they stand, but a rotation through
θ in the µν-plane is obtained from

exp

{
−i 1

4i
[γ̂µ, γ̂ν]θ

}
γ̂i exp

{
i
1

4i
[γ̂µ, γ̂ν]θ

}
= γ̂jRji, (15.78)

and we find that the hermitian matrices Γ̂µν = 1
4i

[γ̂µ, γ̂ν] form a basis for the
Lie algebra of SO(N). The 2bN/2c dimensional space on which they act is the

Dirac spinor representation of SO(N). Although the matrices exp{iΓ̂µνθµν}
are unitary, they are not the entirety of U(2bN/2c), but instead constitute a
subgroup called Spin(N).

If N is even then we can still construct the matrix γ̂2n+1 that anti-
commutes with all the other γ̂µ’s. It cannot be the identity matrix, therefore,
but it commutes with all the Γµν . By Schur’s lemma, this means that the
SO(2n) Dirac spinor representation space V is reducible. Now, γ̂2

2n+1 = I,
and so γ̂2n+1 has eigenvalues ±1. The two eigenspaces are invariant under
the action of the group, and thus the Dirac spinor space decomposes into two
irreducible Weyl spinor representations:

V = Vodd ⊕ Veven. (15.79)

Here Veven and Vodd, the plus and minus eigenspaces of γ̂2n+1, are called the
spaces of right and left chirality . When N is odd the spinor representation
is irreducible.
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Exercise 15.11: Starting from the defining relations of the Clifford algebra
(15.77) show that, for N = 2n,

tr (γ̂µ) = 0,

tr (γ̂2n+1) = 0,

tr (γ̂µγ̂ν) = tr (I) δµν ,

tr (γ̂µγ̂ν γ̂σ) = 0,

tr (γ̂µγ̂ν γ̂σγ̂τ ) = tr (I) (δµνδστ − δµσδντ + δµτ δνσ).

Exercise 15.12: Consider the space Ω(C) =
⊕

pΩp(C) of complex-valued skew
symmetric tensors Aµ1...µp for 0 ≤ p ≤ N = 2n. Let

ψαβ =

N∑

p=0

1

p!

(
γ̂µ1
· · · γ̂µp

)
αβ
Aµ1...µp

define a mapping from Ω(C) into the space of complex matrices of the same
size as the γ̂µ. Show that this mapping is invertible — i.e. given ψαβ we can
recover the Aµ1 ...µp . By showing that the dimension of Ω(C) is 2N , deduce
that the γ̂µ must be at least 2n-by-2n matrices.

Exercise 15.13: Show that the R2n Dirac operator D = γ̂µ∂µ obeys D2 = ∇2.
Recall that Hodge operator d − δ from section 13.7.1 is also a “square root”
of the Laplacian:

(d− δ)2 = −(dδ + δd) = ∇2.

Show that

ψαβ → (Dψ)αβ = (γ̂µ)αα′∂µψα′β

corresponds to the action of d− δ on the space Ω(R2n,C) of differential forms

A =
1

p!
Aµ1 ...µp(x)dx

µ1 · · · dxµp .

The space of complex-valued differential forms has thus been made to look like
a collection of 2n Dirac spinor fields, one for each value of the “flavour index”
β. These ψαβ are called Kähler-Dirac fields. They are not really flavoured
spinors because a rotation transforms both the α and β indices.

Exercise 15.14: That a set of 2n Dirac γ’s have a 2n-by-2n matrix represen-
tation is most naturally established by using the tools of second quantization.



618 CHAPTER 15. LIE GROUPS

To this end, let ai, a
†
i i = 1, . . . , n be set of anti-commuting annihilation and

creation operators obeying

aiaj + ajai = 0, aia
†
j + a†jai = δijI,

and let |0〉 be the “no particle” state for which ai|0〉 = 0, i = 1, . . . , n. Then
the 2n states

|m1, . . . ,mn〉 = (a†1)
m1 · · · (a†n)mn |0〉,

where the mi take the value 0 or 1, constitute a basis for a space on which the
ai and a†i act irreducibly. Show that the 2n operators

γi = ai + a†i ,

γi+n = i(ai − a†i ),

obey
γµγν + γνγµ = 2δµνI,

and hence can be represented by 2n-by-2n matrices. Deduce further that spaces
of left and right chirality are the spaces of odd or even “particle number.”

The adjoint representation

We established the connection between SU(2) and SO(3) by means of a conju-
gation: σ̂i 7→ Uσ̂iU

−1. The idea of obtaining a representation by conjugation
works for an arbitrary Lie group. It is easiest, however, to describe in the case
of a matrix group where we can consider an infinitesimal element I + iελ̂i.
The conjugate element g(I + iελ̂i)g

−1 will also be an infinitesimal element.

Since gIg−1 = I, this means that g(iλ̂i)g
−1 must be expressible as a linear

combination of the iλ̂i matrices. Consequently, we can define a linear map
acting on the element X = ξiλ̂i of the Lie algebra by setting

Ad(g)λ̂i ≡ gλ̂ig
−1 = λ̂j[Ad (g)]ji. (15.80)

The matrices with entries [Ad (g)]ji form the adjoint representation of the
group. The dimension of the adjoint representation coincides with that of
the group manifold. The spinor construction shows that the defining repre-
sentation of SO(3) is the adjoint representation of SU(2).

For a general Lie group, we make Ad(g) act on a vector in the tangent
space at the identity by pushing the vector forward to TGg by left multiplica-
tion by g, and then pushing it back from TGg to TGe by right multiplication
by g−1.
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Exercise 15.15: Show that

[Ad (g1g2)]
j
i = [Ad (g1)]

j
k[Ad (g2)]

k
i,

thus confirming that Ad(g) is a representation.

15.2.6 Peter-Weyl theorem

The volume element constructed in section 15.2.4 has the feature that it is
invariant. In other words if we have a subset Ω of the group manifold with
volume V , then the image set gΩ under left multiplication has the exactly the
same volume. We can also construct a volume element that is invariant under
right multiplication by g, and in general these will be different. For a group
whose manifold is a compact set, however, both left- and right-invariant
volume elements coincide. The resulting measure on the group manifold is
called the Haar measure.

For a compact group, therefore, we can replace the sums over the group
elements that occur in the representation theory of finite groups, by con-
vergent integrals over the group elements using the invariant Haar measure,
which is usually denoted by d[g]. The invariance property is expressed by
d[g1g] = d[g] for any constant element g1. This allows us to make a change-
of-variables transformation, g → g1g, identical to that which played such an
important role in deriving the finite-group theorems. Consequently, all the
results from finite groups, such as the existence of an invariant inner product
and the orthogonality theorems, can be taken over by the simple replacement
of a sum by an integral. In particular, if we normalize the measure so that
the volume of the group manifold is unity, we have the orthogonality relation

∫
d[g]

(
DJ
ij(g)

)∗
DK
lm(g) =

1

dim J
δJKδilδjm. (15.81)

The Peter-Weyl theorem asserts that the representation matrices DJ
mn(g)

form a complete set of orthogonal functions on the group manifold. In the
case of SU(2) this tells us that the spin J representation matrices

DJ
mn(θ, φ, ψ) = 〈J,m|e−iJ3φe−iJ2θe−iJ3ψ|J, n〉,

= e−imφdJmn(θ)e
−inψ, (15.82)
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which you will likely have seen in quantum mechanics courses,1 are a complete
set of functions on the three-sphere with orthogonality relation

1

16π2

∫ π

0

sin θdθ

∫ 2π

0

dφ

∫ 4π

0

dψ
(
DJ
mn(θ, φ, ψ)

)∗
DJ ′

m′n′(θ, φ, ψ)

=
1

2J + 1
δJJ

′

δmm′δnn′. (15.83)

Since the DL
m0 (where L has to be an integer for n = 0 to be possible) are

independent of the third Euler angle, ψ, we can do the trivial integral over
ψ to obtain the special case

1

4π

∫ π

0

sin θdθ

∫ 2π

0

dφ
(
DL
m0(θ, φ)

)∗
DL′

m′0(θ, φ) =
1

2L + 1
δLL

′

δmm′ . (15.84)

Comparing with the definition of the spherical harmonics, we see that we can
identify

Y L
m (θ, φ) =

√
2L+ 1

4π

(
DL
m0(θ, φ, ψ)

)∗
. (15.85)

The complex conjugation is necessary here because DJ
mn(θ, φ, ψ) ∝ e−imφ,

while Y L
m (θ, φ) ∝ eimφ.

The character, χJ(g) =
∑

nD
J
nn(g) will be a function only of the rotation

angle θ and not the axis of rotation — all rotations through a common angle
being conjugate to one another. Because of this, χJ(θ) can be found most
simply by looking at rotations about the z axis, since these give rise to easily
computed diagonal matrices. Thus, we find

χ(θ) = eiJθ + ei(J−1)θ + · · ·+ e−i(J−1)θ + e−iJθ,

=
sin(2J + 1)θ/2

sin θ/2
. (15.86)

Warning: The angle θ in this formula and the next is not the the Euler
angle.

For integer J , corresponding to non-spinor rotations, a rotation through
an angle θ about an axis n and a rotation though an angle 2π− θ about −n
are the same operation. The maximum rotation angle is therefore π. For

1See, for example, G. Baym Lectures on Quantum Mechanics , Ch 17.
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spinor rotations this equivalence does not hold, and the rotation angle θ runs
from 0 to 2π. The character orthogonality must therefore be

1

π

∫ 2π

0

χJ(θ)χJ
′

(θ) sin2(θ/2)dθ = δJJ
′

, (15.87)

implying that the volume fraction of the rotation group containing rotations
through angles between θ and θ + dθ is sin2(θ/2)dθ/π.

Exercise 15.16: Prove this last statement about the volume of the equivalence
classes by showing that the volume of the unit three-sphere that lies between
a rotation angle of θ and θ + dθ is 2π sin2(θ/2)dθ.

15.2.7 Lie brackets vs. commutators

There is an irritating minus-sign problem that needs to be acknowledged.
The Lie bracket [X, Y ] of two vector fields is defined by first running along
X, then Y and then back in the reverse order. If we do this for the action
of matrices, X̂ and Ŷ , on a vector space, then, since the sequence of matrix
operations is to be read from right to left, we have

e−t2
bY e−t1

bXet2
bY et1

bX = I − t1t2[X̂, Ŷ ] + · · · , (15.88)

which has the other sign. Consider, for example, rotations about the x, y, z
axes, and look at effect these have on the co-ordinates of a point:

Lx :

{
δy = −z δθx
δz = +y δθx

}
=⇒ Lx = y∂z − z∂y, L̂x =




0 0 0
0 0 −1
0 1 0


 ,

Ly :

{
δz = −x δθy
δx = +z δθy

}
=⇒ Ly = z∂x − x∂z, L̂y =




0 0 1
0 0 0
−1 0 0


 ,

Lz :

{
δx = −y δθz
δy = +x δθz

}
=⇒ Lz = x∂y − y∂x, L̂z =




0 −1 0
1 0 0
0 0 0


 .

From this we find

[Lx, Ly] = −Lz, (15.89)
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as a Lie bracket of vector fields, but

[L̂x, L̂y] = +L̂z, (15.90)

as a commutator of matrices. This is the reason why it is the left-invariant
vector fields whose Lie bracket coincides with the commutator of the iλ̂i
matrices.

Some insight into all this can be had by considering the action of the
left-invariant fields on the representation matrices, DJ

mn(g). For example,

LiD
J
mn(g) = lim

ε→0

[
1

ε

(
DJ
mn(g(1 + iελ̂i))−DJ

mn(g)
)]

= lim
ε→0

[
1

ε

(
DJ
mn′(g)DJ

n′n(1 + iελ̂i)−DJ
mn(g)

)]

= lim
ε→0

[
1

ε

(
DJ
mn′(g)(δn′n + iε(Λ̂J

i )n′n)−DJ
mn(g)

)]

= DJ
mn′(g)(iΛ̂J

i )n′n (15.91)

where Λ̂J
i is the matrix representing λ̂i in the representation J . Repeating

this exercise we find that

Li
(
LjD

J
mn(g)

)
= DJ

mn′′(g)(iΛ̂J
i )n′′n′(iΛ̂J

j )n′n, (15.92)

Thus
[Li, Lj]D

J
mn(g) = DJ

mn′(g)[iΛ̂J
i , iΛ̂

J
j ]n′n, (15.93)

and we get the commutator of the representation matrices in the “correct”
order only if we multiply the infinitesimal elements in successively from the
right.

There appears to be no escape from this sign problem. Many texts simply
ignore it, a few define the Lie bracket of vector fields with the opposite sign,
and a few simply point out the inconvenience and get on the with the job.
We will follow the last route.

15.3 Lie algebras

A Lie algebra g is a (real or complex) finite-dimensional vector space with a
non-associative binary operation g× g → g that assigns to each ordered pair
of elements, X1, X2, a third element called the Lie bracket, [X1, X2]. The
bracket is:
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a) Skew symmetric: [X, Y ] = −[Y,X],
b) Linear: [λX + µY, Z] = λ[X,Z] + µ[Y, Z],

and in place of associativity, obeys
c) The Jacobi identity: [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Example: Let M(n) denote the algebra of real n-by-n matrices. As a vector
space over R, this algebra is n2 dimensional. Setting [A,B] = AB − BA,
makes M(n) into a Lie algebra.
Example: Let b+ denote the subset of M(n) consisting of upper triangular
matrices with any number (including zero) allowed on the diagonal. Then
b+ with the above bracket is a Lie algebra. (The “b” stands for the French
mathematician and statesman Émile Borel).
Example: Let n+ denote the subset of b+ consisting of strictly upper trian-
gular matrices — those with zero on the diagonal. Then n+ with the above
bracket is a Lie algebra. (The “n” stands for nilpotent.)
Example: Let G be a Lie group, and Li the left invariant vector fields. We
know that

[Li, Lj] = f k
ij Lk (15.94)

where [ , ] is the Lie bracket of vector fields. The resulting Lie algebra,
g = LieG is the Lie algebra of the group.
Example: The set N+ of upper triangular matrices with 1’s on the diagonal
forms a Lie group and has n+ as its Lie algebra. Similarly, the set B+

consisting of upper triangular matrices, with any non-zero number allowed
on the diagonal, is also a Lie group, and has b+ as its Lie algebra.

Ideals and quotient algebras

As we saw in the examples, we can define subalgebras of a Lie algebra. If
we want to define quotient algebras by analogy to quotient groups, we need
a concept analogous to that of invariant subgroups. This is provided by the
notion of an ideal . A ideal is a subalgebra i ⊆ g with the property that

[i, g] ⊆ i. (15.95)

In other words, taking the bracket of any element of g with any element of i

gives an element in i. With this definition we can form g − i by identifying
X ∼ X + I for any I ∈ i. Then

[X + i, Y + i] = [X, Y ] + i, (15.96)
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and the bracket of two equivalence classes is insensitive to the choice of
representatives.

If a Lie group G has an invariant subgroup H that is also a Lie group,
then the Lie algebra h of the subgroup is an ideal in g = LieG, and the Lie
algebra of the quotient group G/H is the quotient algebra g− h.

If the Lie algebra has no non-trivial ideals, then it is said to be simple.
The Lie algebra of a simple Lie group will be simple.

Exercise 15.17: Let i1 and i2 be ideals in g. Show that i1 ∩ i2 is also an ideal
in g.

15.3.1 Adjoint representation

Given an element X ∈ g, let it act on the Lie algebra, considered as a vector
space, by a linear map ad (x) defined by

ad (X)Y = [X, Y ]. (15.97)

The Jacobi identity is then equivalent to the statement:

(ad (X)ad (Y )− ad (Y )ad (X))Z = ad ([X, Y ])Z. (15.98)

Thus
(ad (X)ad (Y )− ad (Y )ad (X)) = ad ([X, Y ]), (15.99)

or
[ad (X), ad (Y )] = ad ([X, Y ]), (15.100)

and the map X → ad (X) is a representation of the algebra called the adjoint
representation.

The linear map “ad (X)” exponentiates to give a map exp[ad (tX)] defined
by

exp[ad (tX)]Y = Y + t[X, Y ] +
1

2
t2[X, [X, Y ]] + · · · . (15.101)

You probably know the matrix identity2

etABe−tA = B + t[A,B] +
1

2
t2[A, [A,B]] + · · · . (15.102)

2In case you do not, it is easily proved by setting F (t) = etABe−tA, noting that
d
dtF (t) = [A,F (t)], and observing that the RHS is the unique series solution to this
equation satisfying the boundary condition F (0) = B.
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Now, earlier in the chapter, we defined the adjoint representation “Ad ” of
the group on the vector space of the Lie algebra. We did this setting gXg−1 =
Ad (g)X. Comparing the two previous equations we see that

Ad (Exp Y ) = exp(ad (Y )). (15.103)

15.3.2 The Killing form

Using “ad ” we can define an inner product 〈 , 〉 on a real Lie algebra by
setting

〈X, Y 〉 = tr (ad (X)ad (Y )). (15.104)

This inner product is called the Killing form, after Wilhelm Killing. Using
the Jacobi identity and the cyclic property of the trace, we find that

〈ad (X)Y, Z〉+ 〈Y, ad (X)Z〉 = 0, (15.105)

or, equivalently,
〈[X, Y ], Z〉+ 〈Y, [X,Z]〉 = 0. (15.106)

From this we deduce (by differentiating with respect to t) that

〈exp(ad (tX))Y, exp(ad (tX))Z〉 = 〈Y, Z〉, (15.107)

so the Killing form is invariant under the action of the adjoint representation
of the group on the algebra. When our group is simple, any other invariant
inner product will be proportional to this Killing-form product.

Exercise 15.18: Let i be an ideal in g. Show that for I1, I2 ∈ i

〈I1, I2〉g = 〈I1, I2〉i

where 〈 , 〉i is the Killing form on i considered as a Lie algebra in its own
right. (This equality of inner products is not true for subalgebras that are not
ideals.)

Semisimplicity

Recall that a Lie algebra containing no non-trivial ideals is said to be sim-
ple. When the Killing form is non degenerate, the Lie algebra is said to be
semisimple. The reason for this name is that a semisimple algebra is almost



626 CHAPTER 15. LIE GROUPS

simple, in that it can be decomposed into a direct sum of decoupled simple
algebras:

g = s1 ⊕ s2 ⊕ · · · ⊕ sn. (15.108)

By “decoupled” we mean that the direct sum symbol “⊕” implies not only
a direct sum of vector spaces but also that [si, sj] = 0 for i 6= j.

The Lie algebra of all the matrix groups O(n), Sp(n), SU(n), etc. are
semisimple (indeed they are usually simple) but this is not true of the algebras
n+ and b+.

Cartan showed that our Killing-form definition of semisimplicity is equiv-
alent his original definition of a Lie algebra being semisimple if the algebra
contains no non-zero abelian ideal — i.e. no ideal with [Ii, Ij] = 0 for all
Ii ∈ i. The following exercises establish the direct sum decomposition, and,
en passant , the easy half of Cartan’s result.

Exercise 15.19: Use the identity (15.106) to show that if i ⊂ g is an ideal, then
i⊥, the set of elements orthogonal to i with respect to the Killing form, is also
an ideal.

Exercise 15.20: Show that if a is an abelian ideal, then every element of
a is Killing perpendicular to the entire Lie algebra. (Thus, non-degeneracy
implies no non-trivial abelian ideal. The null space of the Killing form is not
necessarily an abelian ideal, though, so establishing the converse is harder.)

Exercise 15.21: Let g be a semisimple Lie algebra and i ⊂ g an ideal. We
know from exercise 15.17 that i ∩ i⊥ is an ideal. Use (15.106), coupled with
the non-degeneracy of the Killing form, to show that it is an abelian ideal.
Use the previous exercise to conclude that i ∩ i⊥ = {0}, and from this that
[i, i⊥] = 0.

Exercise 15.22: Let 〈 , 〉 be a non-degenerate inner product on a vector space
V . Let W ⊆ V be a subspace. Show that

dimW + dimW⊥ = dimV.

(This is not as obvious as it looks. For a non-positive-definite inner product,
W and W⊥ can have a non-trivial intersection. Consider two-dimensional
Minkowski space. If W is the space of right-going, light-like, vectors then
W ≡W⊥, but dimW + dimW⊥ still equals two.)
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Exercise 15.23: Put the two preceding exercises together to show that

g = i⊕ i⊥.

Show that i and i⊥ are semisimple in their own right as Lie algebras. We can
therefore continue to break up i and i⊥ until we end with g decomposed into
a direct sum of simple algebras.

Compactness

If the Killing form is negative definite, a real Lie algebra is said to be compact ,
and is the Lie algebra of a compact group. With the physicist’s habit of
writing iXi for the generators of the Lie algebra, a compact group has Killing
metric tensor

gij
def
= tr {ad (Xi)ad (Xj)} (15.109)

that is a positive definite matrix. In a basis where gij = δij, the exp(adX)
matrices of the adjoint representations of a compact groupG form a subgroup
of the orthogonal group O(N), where N is the dimension of G.

Totally anti-symmetric structure constants

Given a basis iXi for the Lie-algebra vector space, we define the structure
constants fij

k through
[Xi, Xj] = ifij

kXk. (15.110)

In terms of the fij
k, the skew symmetry of ad (Xi), as expressed by equation

(15.105), becomes

0 = 〈ad (Xk)Xi, Xj〉+ 〈Xi, ad (Xk)Xj〉
≡ 〈[Xk, Xi], Xj〉+ 〈Xi, [Xk, Xj]〉
= i(fki

lglj + gilfkj
l)

= i(fkij + fkji). (15.111)

In the last line we have used the Killing metric to “lower” the index l and so
define the symbol fijk. Thus, fijk is skew symmetric under the interchange
of its second pair of indices. Since the skew symmetry of the Lie bracket
ensures that fijk is skew symmetric under the interchange of the first pair of
indices, it follows that fijk is skew symmetric under the interchange of any
pair of its indices.
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By comparing the definition of the structure constants with

[Xi, Xj] = ad (Xi)Xj = Xk[ad (Xi)]
k
j, (15.112)

we read-off that the matrix representing ad (Xi) has entries

[(ad (Xi)]
k
j = ifij

k. (15.113)

Consequently
gij = tr {ad (Xi)ad (Xj)} = −fiklfjlk. (15.114)

The quadratic Casimir

The only “product” that is defined in the abstract Lie algebra g is the Lie
bracket [X, Y ]. Once we have found matrices forming a representation of
the Lie algebra, however, we can form the ordinary matrix product of these.
Suppose that we have a Lie algebra g with basis Xi, and have found matrices
X̂i with the same commutation relations as the Xi. Suppose, further, that
the algebra is semisimple and so gij, the inverse of the Killing metric, exists.
We can use gij to construct the matrix

Ĉ2 = gijX̂iX̂j. (15.115)

This matrix is called the quadratic Casimir operator, after Hendrik Casimir.
Its chief property is that it commutes with all the X̂i:

[Ĉ2, X̂i] = 0. (15.116)

If our representation is irreducible then Shur’s lemma tells us that

Ĉ2 = c2I, (15.117)

where the number c2 is referred to as the “value” of the quadratic Casimir
in that irrep.3

Exercise 15.24: Show that [Ĉ2, Xi] = 0 is another consequence of the complete
skew symmetry of the fijk.

3Mathematicians do sometimes consider formal products of Lie algebra elementsX,Y ∈
g. When they do, they equip them with the rule that XY − Y X − [X,Y ] = 0, where XY
and Y X are formal products, and [X,Y ] is the Lie algebra product. These formal products
are not elements of the Lie algebra, but instead live in an extended mathematical structure
called the Universal enveloping algebra of g, and denoted by U(g). The quadratic Casimir
can then be considered to be an element of this larger algebra.
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15.3.3 Roots and weights

We now want to study the representation theory of Lie groups. It is, in fact,
easier to study the representations of the corresponding Lie algebra and then
exponentiate these to find the representations of the group. In other words,
given an abstract Lie algebra with bracket

[Xi, Xj] = ifij
kXk, (15.118)

we seek to find all matrices X̂J
i such that

[X̂J
i , X̂

J
j ] = ifij

kX̂J
k . (15.119)

(Here, as with the representations of finite groups, we use the superscript J to
distinguish one representation from another.) Then, given a representation

X̂J
i of the Lie algebra, the matrices

DJ(g(ξ)) = exp
{
iξiX̂J

i

}
, (15.120)

where g(ξ) = Exp {iξiXi}, will form a representation of the Lie group. To be
more precise, they will form a representation of the part of the group that
is connected to the identity element. The numbers ξi serve as co-ordinates
for some neighbourhood of the identity. For compact groups there will be
a restriction on the range of the ξi, because there must be ξi for which
exp{iξiX̂J

i } = I.

SU(2)

The quantum-mechanical angular momentum algebra consists of the com-
mutation relation

[J1, J2] = i~J3, (15.121)

together with two similar equations related by cyclic permutations. This,
once we set ~ = 1, is the Lie algebra su(2) of the group SU(2). The goal
of representation theory is to find all possible sets of matrices that have the
same commutation relations as these operators. Since the group SU(2) is
compact, we can use the group-averaging trick from section 14.2.2 to define
an inner product with respect to which these representations are unitary, and
the matrices Ji hermitian.
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Remember how this problem is solved in quantum mechanics courses,
where we find a representation for each spin j = 1

2
, 1, 3

2
, etc. We begin by

constructing “ladder” operators

J+
def
= J1 + iJ2, J−

def
= J†

+ = J1 − iJ2, (15.122)

which are eigenvectors of ad (J3)

ad (J3)J± = [J3, J±] = ±J±. (15.123)

From (15.123) we see that if |j,m〉 is an eigenstate of J3 with eigenvalue m,
then J±|j,m〉 is an eigenstate of J3 with eigenvalue m± 1.

Now, in any finite-dimensional representation there must be a highest
weight state, |j, j〉, such that J3|j, j〉 = j|j, j〉 for some real number j, and
such that J+|j, j〉 = 0. From |j, j〉 we work down by successive applications
of J− to find |j, j − 1〉, |j, j − 2〉... We can find the normalization factors of
the states |j,m〉 ∝ (J−)j−m|j, j〉 by repeated use of the identities

J+J− = (J2
1 + J2

2 + J2
3 )− (J2

3 − J3),

J−J+ = (J2
1 + J2

2 + J2
3 )− (J2

3 + J3). (15.124)

The combination J2 ≡ J2
1 + J2

2 + J2
3 is the quadratic Casimir of su(2), and

hence in any irrep is proportional to the identity matrix: J 2 = c2I. Because

0 = ‖J+|j, j〉‖2
= 〈j, j|J†

+J+|j, j〉
= 〈j, j|J−J+|j, j〉
= 〈j, j|

(
J2 − J3(J3 + 1)

)
|j, j〉

= [c2 − j(j + 1)]〈j, j|j, j〉, (15.125)

and 〈j, j|j, j〉 ≡ ‖|j, j〉‖2 is not zero, we must have c2 = j(j + 1).
We now compute

‖J−|j,m〉‖2 = 〈j,m|J†
−J−|j,m〉

= 〈j,m|J+J−|j,m〉
= 〈j,m|

(
J2 − J3(J3 − 1)

)
|j,m〉

= [j(j + 1)−m(m− 1)]〈j,m|j,m〉, (15.126)
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and deduce that the resulting set of normalized states |j,m〉 can be chosen
to obey

J3|j,m〉 = m|j,m〉,
J−|j,m〉 =

√
j(j + 1)−m(m− 1)|j,m− 1〉,

J+|j,m〉 =
√
j(j + 1)−m(m + 1)|j,m + 1〉. (15.127)

If we take j to be an integer or a half-integer, we will find that J−|j,−j〉 = 0.
In this case we are able to construct a total of 2j + 1 states, one for each
integer-spaced m in the range −j ≤ m ≤ j. If we select some other fractional
value for j, then the set of states will not terminate, and we will find an
infinity of states with m < −j. These will have ‖J−|j,m〉‖2 < 0, so the
resultant representation cannot be unitary.

SU(3)

The strategy of finding ladder operators works for any semisimple Lie algebra.
Consider, for example, su(3) = Lie(SU(3)). The matrix Lie algebra su(3) is
spanned by the Gell-Mann λ-matrices

λ̂1 =




0 1 0
1 0 0
0 0 0


 , λ̂2 =




0 −i 0
i 0 0
0 0 0


 , λ̂3 =




1 0 0
0 −1 0
0 0 0


 ,

λ̂4 =




0 0 1
0 0 0
1 0 0


 , λ̂5 =




0 0 −i
0 0 0
i 0 0


 , λ̂6 =




0 0 0
0 0 1
0 1 0


 ,

λ̂7 =




0 0 0
0 0 −i
0 i 0


 , λ̂8 =

1√
3




1 0 0
0 1 0
0 0 −2


 , (15.128)

which form a basis for the real vector space of 3-by-3 traceless, hermitian
matrices. They have been chosen and normalized so that

tr (λ̂iλ̂j) = 2δij, (15.129)

by analogy with the properties of the Pauli matrices. Notice that λ̂3 and λ̂8

commute with each other, and that this will be true in any representation.
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The matrices

t± =
1

2
(λ̂1 ± iλ̂2),

v± =
1

2
(λ̂4 ± iλ̂5),

u± =
1

2
(λ̂6 ± iλ̂7). (15.130)

have unit entries, rather like the step-up and step-down matrices σ̂± = 1
2
(σ̂1±

iσ̂2).
Let us define Λi to be abstract operators with the same commutation

relations as λ̂i, and define

T± =
1

2
(Λ1 ± iΛ2),

V± =
1

2
(Λ4 ± iΛ5),

U± =
1

2
(Λ6 ± iΛ7). (15.131)

These are simultaneous eigenvectors of the commuting pair of operators
ad (Λ3) and ad (Λ8):

ad (Λ3)T± = [Λ3, T±] = ±2T±,

ad (Λ3)V± = [Λ3, V±] = ±V±,
ad (Λ3)U± = [Λ3, U±] = ∓U±,

ad (Λ8)T± = [Λ8, T±] = 0,

ad (Λ8)V± = [Λ8, V±] = ±
√

3V±,

ad (Λ8)U± = [Λ8, U±] = ±
√

3U±. (15.132)

Thus, in any representation, the T±, U±, V±, act as ladder operators, chang-
ing the simultaneous eigenvalues of the commuting pair Λ3, Λ8. Their eigen-
values, λ3, λ8, are called the weights, and there will be a set of such weights
for each possible representation. By using the ladder operators one can go
from any weight in a representation to any other, but one cannot get outside
this set. The amount by which the ladder operators change the weights are
called the roots or root vectors, and the root diagram characterizes the Lie
algebra.
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Figure 15.2: The root vectors of su(3).

In a finite-dimensional representation there must be a highest-weight state
|λ3, λ8〉 that is killed by all three of U+, T+ and V+. We can then obtain
all other states in the representation by repeatedly acting on the highest-
weight state with U−, T− or V− and their products. Since there is usually
more than one route by which we can step down from the highest weight to
another weight, the weight spaces may be degenerate — i.e. there may be
more than one linearly independent state with the same eigenvalues of Λ3

and Λ8. Exactly what states are obtained, and with what multiplicity, is not
immediately obvious. We will therefore restrict ourselves to describing the
outcome of this procedure without giving proofs.

What we find is that the weights in a finite-dimensional representation of
su(3) form a hexagonally symmetric “crystal” lying on a triangular lattice,
and the representations may be labelled by pairs of integers (zero allowed)
p, q which give the length of the sides of the crystal. These representations
have dimension d = 1

2
(p+ 1)(q + 1)(p+ q + 2).
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3

3

3

3

3

λ 8

5

2

−7

−4

−1

0 λ3−4 −3 −2 −1 2 41 3

Figure 15.3: The weight diagram of the 24 dimensional irrep with p = 3,
q = 1. The highest weight is shaded.

Figure 15.3 shows the set of weights occurring in the representation of SU(3)
with p = 3 and q = 1. Each circle represents a state, whose weight (λ3, λ8)
may be read off from the displayed axes. A double circle indicates that there
are two linearly independent vectors with the same weight. A count confirms
that the number of independent weights, and hence the dimension of the
representation, is 24. For SU(3) representations the degeneracy — i.e. the
number of states with a given weight — increases by unity at each “layer”
until we reach a triangular inner core, all of whose weights have the same
degeneracy.

In particle physics applications, representations are often labelled by their
dimension. The defining representation of SU(3) and its complex conjugate
are denoted by 3 and 3̄,
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3

3

3

3

λ8

λ3−1 10

1

λ3

λ8

−1 10

2

−1−2

Figure 15.4: The weight diagrams of the irreps with p = 1, q = 0, and p = 0,
q = 1, also known, respectively, as the 3 and the 3.

while the weight diagrams of the adjoint represention, 8, and the 10 have
shape shown in figure 15.5.

Figure 15.5: The irreps 8 (the adjoint) and 10.

Cartan algebras: roots and co-roots

For a general simple Lie algebra we may play the same game. We first find
a maximal linearly-independent set of commuting generators hi. These hi
form a basis for the Cartan algebra h, whose dimension is the rank of the
Lie algbera. We next find ladder operators by diagonalizing the “ad” action
of the hi on the rest of the algebra:

ad (hi)eα = [hi, eα] = αieα. (15.133)

The simultaneous eigenvectors eα are the ladder operators that change the
eigenvalues of the hi. The corresponding eigenvalues α, thought of as vectors
with components αi, are the roots, or root vectors. The roots are therefore
the weights of the adjoint representation. It is possible to put factors of “i”
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in appropriate places so that the αi are real, and we will assume that this
has been done. For example, in su(3) we have already seen that αT = (2, 0),
αV = (1,

√
3), αU = (−1,

√
3).

Here are the basic properties and ideas that emerge from this process:
i) Since αi〈eα, hj〉 = 〈ad (hi)eα, hj〉 = −〈eα, [hi, hj]〉 = 0, we see that
〈hi, eα〉 = 0.

ii) Similarly, we see that (αi + βi)〈eα, eβ〉 = 0, so the eα are orthogonal to
one another unless α+ β = 0. Since our Lie algebra is semisimple, and
consequently the Killing form non-degenerate, we deduce that if α is a
root, so is −α.

iii) Since the Killing form is non-degenerate, yet the hi are orthogonal to
all the eα, it must also be non-degenerate when restricted to the Cartan
algebra. Thus, the metric tensor, gij = 〈hi, hj〉, must be invertible with
inverse gij. We will use the notation α · β to represent αiβjg

ij.
iv) If α, β are roots, then the Jacobi identity shows that

[hi, [eα, eβ]] = (αi + βi)[eα, eβ],

so if [eα, eβ] is non-zero then α + β is also a root, and [eα, eβ] ∝ eα+β.
v) It follows from iv) that [eα, e−α] commutes with all the hi, and since h

was assumed maximal, it must either be zero or a linear combination
of the hi. A short calculation shows that

〈hi, [eα, e−α]〉 = αi〈eα, e−α〉,

and, since 〈eα, e−α〉 does not vanish, [eα, e−α] is non-zero. We can
therefore choose to normalize the e±α so that

[eα, e−α] =
2αi

α2
hi

def
= hα,

where αi = gijαj, and hα obeys

[hα, e±α] = ±2e±α.

The hα are called the co-roots.
vi) The importance of the co-roots stems from the observation that the

triad hα, e±α obey the same commutation relations as σ̂3 and σ±, and
so form an su(2) subalgebra of g. In particular hα (being the analogue
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of 2J3) has only integer eigenvalues. For example, in su(3)

[T+, T−] = hT = Λ3,

[V+, V−] = hV =
1

2
Λ3 +

√
3

2
Λ8,

[U+, U−] = hU = −1

2
Λ3 +

√
3

2
Λ8,

and in the defining representation

hT =




1 0 0
0 −1 0
0 0 0




hV =




1 0 0
0 0 0
0 0 −1




hU =




0 0 0
0 1 0
0 0 −1


 ,

have eigenvalues ±1.
vii) Since

ad (hα)eβ = [hα, eβ] =
2α · β
α2

eβ,

we conclude that 2α · β/α2 must be an integer for any pair of roots α,
β.

viii) Finally, there can only be one eα for each root α. If not, and there
were an independent e′α, we could take linear combinations so that e−α
and e′α are Killing orthogonal, and hence [e−α, e

′
α] = αihi〈e−α, e′α〉 = 0.

Thus ad (e−α)e
′
α = 0, and e′α is killed by the step-down operator. It

would therefore be the lowest weight in some su(2) representation. At
the same time, however, ad (hα)e

′
α = 2e′α, and we know that the lowest

weight in any spin J representation cannot have positive eigenvalue.
The conditions that

2α · β
α2

∈ Z

for any pair of roots tightly constrains the possible root systems, and is the
key to Cartan and Killing’s classification of the semisimple Lie algebras. For
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example the angle θ between any pair of roots obeys cos2 θ = n/4 so θ can
take only the values 0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦, or 180◦.

These constraints lead to a complete classification of possible root systems
into the following infinite families:

An, n = 1, 2, · · · . sl(n + 1,C),

Bn, n = 2, 3, · · · . so(2n+ 1,C),

Cn, n = 3, 4, · · · . sp(2n,C),

Dn, n = 4, 5, · · · . so(2n,C),

together with the root systems G2, F4, E6, E7, and E8 of the exceptional
algebras. The latter do not correspond to any of the classical matrix groups.
For example, G2 is the root system of g2, the Lie algebra of the group G2 of
automorphisms of the octonions. This group is also the subgroup of SL(7)
preserving the general totally antisymmetric trilinear form.

The restrictions on the starting values of n in these families are to avoid
repeats arising from “accidental” isomorphisms. If we allow n = 1, 2, 3, in
each series, then C1 = D1 = A1. This corresponds to sp(2,C) ∼= so(3,C) ∼=
sl(2,C). Similarly, D2 = A1 + A1, corresponding to isomorphism SO(4) ∼=
SU(2)×SU(2)/Z2, while C2 = B2 implies that, locally, the compact Sp(2) ∼=
SO(5). Finally, D3 = A3 implies that SU(4)/Z2

∼= SO(6).

15.3.4 Product representations

Given two representations Λ
(1)
i and Λ

(2)
i of g, we can form a new representa-

tion that exponentiates to the tensor product of the corresponding represen-
tations of the group G. Motivated by the result of exercise 14.13

exp(A⊗ In + Im ⊗ B) = exp(A)⊗ exp(B), (15.134)

we take the representation matrices to act on the tensor product space as

Λ
(1⊗2)
i = Λ

(1)
i ⊗ I (2) + I (1) ⊗ Λ

(2)
i . (15.135)

With this definition

[Λ
(1⊗2)
i ,Λ

(1⊗2)
j ] = ([Λ

(1)
i ⊗ I (2) + I (1) ⊗ Λ

(2)
i ), (Λ

(1)
j ⊗ I (2) + I (1) ⊗ Λ

(2)
j )]

= [Λ
(1)
i ,Λ

(1)
j ]⊗ I (2) + [Λ

(1)
i , I(1)]⊗ Λ

(2)
j

+Λ
(1)
i ⊗ [I (2),Λ

(2)
j ] + I (1) ⊗ [Λ

(2)
i ,Λ

(2)
j ]

= [Λ
(1)
i ,Λ

(1)
j ]⊗ I (2) + I (1) ⊗ [Λ

(2)
i ,Λ

(2)
j ], (15.136)
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showing that the Λ
(1⊗2)
i obey the Lie algebra as required.

This process of combining representations is analogous to the addition
of angular momentum in quantum mechanics. Perhaps more precisely, the
addition of angular momentum is an example of this general construction.
If representation Λ

(1)
i has weights m

(1)
i , i.e. h

(1)
i |m(1)〉 = m

(1)
i |m(1)〉, and Λ

(2)
i

has weights m
(2)
i , then, writing |m(1), m(2)〉 for |m(1)〉 ⊗ |m(2)〉, we have

h
(1⊗2)
i |m(1), m(2)〉 = (h

(1)
i ⊗ 1 + 1⊗ h(2)

i )|m(1), m(2)〉
= (m

(1)
i +m

(2)
i )|m(1), m(2)〉 (15.137)

so the weights appearing in the representation Λ
(1⊗2)
i are m

(1)
i +m

(2)
i .

The new representation is usually decomposible. We are familiar with
this decomposition for angular momentum where, if j ≥ j ′,

j ⊗ j ′ = (j + j ′)⊕ (j + j ′ − 1)⊕ · · · ⊕ (j − j ′). (15.138)

This can be understood from adding weights. For example consider adding
the weights of j = 1/2, which are m = ±1/2 to those of j = 1, which are
m = −1, 0, 1. We get m = −3/2, −1/2 (twice) +1/2 (twice) and m = 3/2.
These decompose as shown in figure 15.6.

=

Figure 15.6: The weights for 1/2⊗ 1 = 3/2⊕ 1/2.

The rules for decomposing products in other groups are more compli-
cated than for SU(2), but can be obtained from weight diagrams in the same
manner. In SU(3), we have, for example

3⊗ 3̄ = 1⊕ 8,

3⊗ 8 = 3⊕ 6̄⊕ 15,

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27. (15.139)

To illustrate the first of these we show, in figure 15.7 the addition of the
weights in 3̄ to each of the weights in the 3.
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=

Figure 15.7: Adding the weights of 3 and 3̄.

The resultant weights decompose (uniquely) into the weight diagrams for the
8 together with a singlet.

15.3.5 Sub-algebras and branching rules

As with finite groups, a representation that is irreducible under the full Lie
group or algebra will in general become reducible when restricted to a sub-
group or sub-algebra. The pattern of the decomposition is again called a
branching rule. Here, we provide some examples to illustrate the ideas.

The three operators V± and hV = 1
2
Λ3 +

√
3

2
Λ8 of su(3) form a Lie sub-

algebra that is isomorphic to su(2) under the map that takes them to σ±
and σ3 respectively. When restricted to this sub-algebra, the 8 dimensional
representation of su(3) becomes reducible, decomposing as

8 = 3⊕ 2⊕ 2⊕ 1, (15.140)

where the 3, 2 and 1 are the j = 1, 1
2

and 0 representations of su(2).

We can visualize this decomposition as coming about by first projecting
the (λ3, λ8) weights to the “m” of the |j,m〉 labelling of su(2) as

m =
1

4
λ3 +

√
3

4
λ8, (15.141)

and then stripping off the su(2) irreps as we did when decomposing product
representions.
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m=1

m=1/2

m=0

m=−1/2

m=−1  

Figure 15.8: Projection of the su(3) weights on to su(2), and the decompo-
sition 8 = 3⊕ 2⊕ 2⊕ 1.

This branching pattern occurs in the strong interactions, where the mass
of the strange quark s being much larger than that of the light quarks u and
d causes the octet of pseudo-scalar mesons, which would all have the same
mass if SU(3) flavour symmetry were exact, to decompose into the triplet of
pions π+, π0 and π−, the pair K+ and K0, their antiparticles K− and K̄0,
and the singlet η.

There are obviously other su(2) sub-algebras consisting of {T±, hT} and
{U±, hU}, each giving rise to similar decompositions. These sub-algebras,
and a continuous infinity of related ones, are obtained from the {V±, hV }
algebra by conjugation by elements of SU(3).

Another, unrelated, su(2) sub-algebra consists of

σ+ '
√

2(U+ + T+),

σ− '
√

2(U− + T−),

σ3 ' 2hV = (Λ3 +
√

3Λ8). (15.142)

The factor of two between the assignment σ3 ' hV of our previous example
and the present assignment σ3 ' 2hV has a non-trivial effect on the branching
rules. Under restriction to this new subalgebra, the 8 of su(3) decomposes
as

8 = 5⊕ 3, (15.143)
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m=2

m=1

m=0

m=−1

m=−2  

Figure 15.9: The projection and decomposition for 8 = 5⊕ 3.

where the 5 and 3 are the j = 2 and j = 1 representations of su(2). A clue
to the origin and significance of this sub-algebra is found by noting that the
3 and 3̄ representations of su(3) both remain irreducible, but project to the
same j = 1 representation of su(2). Interpreting this j = 1 representation
as the defining vector representation of so(3) suggests (correctly) that our
new su(2) sub-algebra is the Lie algebra of the SO(3) subgroup of SU(3)
consisting of SU(3) matrices with real entries.

15.4 Further exercises and problems

Exercise 15.25: A Lie group manifold G has the property that it is paralleliz-
able. This term means that we can find a globally smooth basis for the tangent
spaces. We can, for example, take the basis vectors to be the left-invariant
fields Li. The existence of a positive-definite Killing metric also makes a com-
pact Lie group into a Riemann manifold. In the basis formed from the Li, the
metric tensor gij = 〈Li, Lj〉 is then numerically constant.

We may use the globally-defined Li basis to define a connection and covariant
derivative by setting ∇LiLj = 0. When we do this, the connection components
ωkij are all zero, as are all components of the Riemann curvature tensor. The
connection is therefore flat . The individual vectors composing a vector field
with position-independent components are therefore, by definition, parallel to
each other.

a) Show that this flat connection is compatible with the metric, but is not
torsion free.

b) Define a new connection and covariant derivative by setting ∇LiLj =
1
2 [Li, Lj ]. Show that this new connection remains compatible with the
metric but is now torsion free. It is therefore the Riemann connection.
Compute the the components ωkij of the new connection in terms of the
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structure constants defined by [Li, Lj ] = −fijkLk. Similarly compute
the components of the Riemann curvature tensor.

c) Show that, for any constants αi, the parametrized curves g(t) = Exp(tαiLi)g(0)
are geodesics of the Riemann metric.

Exercise 15.26: Campbell-Baker-Hausdorff Formulæ. Here are some useful
formula for working with exponentials of matrices that do not commute with
each other.

a) Let X and Y be matrices. Show that

etXY e−tX = Y + t[X,Y ] +
1

2
t2[X, [X,Y ]] + · · · ,

the terms on the right being the series expansion of exp[ad(tX)]Y .
b) Let X and δX be matrices. Show that

e−XeX+δX = 1 +

∫ 1

0
e−tXδXetXdt+O

[
(δX)2

]

= 1 + δX − 1

2
[X, δX] +

1

3!
[X, [X, δX]] + · · ·+O

[
(δX)2

]

= 1 +

(
1− e−ad(X)

ad(X)

)
δX +O

[
(δX)2

]
. (15.144)

c) By expanding out the exponentials, show that

eXeY = eX+Y+ 1
2
[X,Y ]+higher,

where “higher” means terms of higher order in X,Y . The next two terms
are, in fact, 1

12 [X, [X,Y ]]+ 1
12 [Y, [Y,X]]. You will find the general formula

in part d).
d) By using the formula from part b), show that that eXeY can be written

as eZ , where

Z = X +

∫ 1

0
g(ead(X)ead(tY ))Y dt.

Here,

g(z) ≡ ln z

1− 1/z

has a power-series expansion

g(z) = 1 +
1

2
(z − 1) +

1

6
(z − 1)2 +

1

12
(z − 1)3 + · · · ,
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which is convergent for |z| < 1. Show that g(ead(X)ead(tY )) can be ex-
panded as a double power series in ad(X) and ad(tY ), provided X and
Y are small enough. This ad(X), ad(tY ) expansion allows us to evaluate
the product of two matrix exponentials as a third matrix exponential
provided we know their commutator algebra.

Exercise 15.27: SU(2) disentangling theorems: Almost any 2 × 2 matrix can
be factored (a Gaussian decomposition) as

(
a b
c d

)
=

(
1 α
0 1

)(
λ 0
0 µ

)(
1 0
β 1

)
.

Use this trick to work the following problems:

a) Show that

exp

{
θ

2
(eiφσ̂+ − e−iφσ̂−)

}
= exp(ασ̂+) exp(λσ̂3) exp(βσ̂−),

where σ̂± = (σ̂1 ± iσ̂2)/2, and

α = eiφ tan θ/2,

λ = − ln cos θ/2,

β = −e−iφ tan θ/2.

b) Use the fact that the spin- 1
2 representation of SU(2) is faithful, to show

that

exp

{
θ

2
(eiφĴ+ − e−iφĴ−)

}
= exp(αĴ+) exp(2λĴ3) exp(βĴ−),

where Ĵ± = Ĵ1 ± iĴ2. Take care, the reasoning here is subtle! Notice
that the series expansion of exponentials of σ̂± truncates after the second
term, but the same is not true of the expansion of exponentials of the Ĵ±.
You need to explain why the formula continues to hold in the absence of
this truncation.

Exercise 15.28: Recall that that the Lie algebra so(N) of the group SO(N)
consists of the skew-symmetric N -by-N matrices A with entries Aµν = −Aνµ.
Let γ̂µ, µ = 1, . . . , N be the Dirac gamma matrices, and define Γ̂µν to be the
Hermitian matrix 1

4i [γ̂µ, γ̂ν ]. Construct the skew-hermitian matrix Γ(A) from
A by setting

Γ(A) =
i

2

∑

µν

Aµν Γ̂µν ,
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and similarly construct Γ(B) and Γ([A,B]) from the skew-symmetric matrices
B and [A,B]. Show that

[Γ(A),Γ(B)] = Γ([A,B]).

Conclude that the map A→ Γ(A) is a representation of so(N).

Exercise 15.29: Invariant tensors for SU(3). Let λ̂i be the Gell-Mann lambda
matrices. The totally antisymmetric structure constants, fijk, and a set of
totally symmetric constants, dijk, are defined by

fijk =
1

2
tr (λ̂i[λ̂j , λ̂k]), dijk =

1

2
tr (λ̂i{λ̂j , λ̂k}).

In the second expression, the braces denote an anticommutator:

{x, y} def
= xy + yx.

Let D8
ij(g) be the matrices representing SU(3) in “8” — the eight-dimensional

adjoint representation.

a) Show that

fijk = D8
il(g)D

8
jm(g)D8

kn(g)flmn,

dijk = D8
il(g)D

8
jm(g)D8

kn(g)dlmn,

and so fijk and dijk are invariant tensors in the same sense that δij and
εi1...in are invariant tensors for SO(n).

b) Let wi = fijkujvk. Show that if ui → D8
ij(g)uj and vi → D8

ij(g)vj , then

wi → D8
ij(g)wj . Similarly for wi = dijkujvk. (Hint: show first that the

D8 matrices are real and orthogonal.) Deduce that fijk and dijk are
Clebsh-Gordan coefficients for the 8⊕ 8 part of the decomposition

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27.

c) Similarly show that δαβ and the entries in the lambda matrices (λ̂i)αβ
can be regarded as Clebsch-Gordan coefficients for the decomposition

3̄⊗ 3 = 1⊕ 8.

d) Use the graphical method of plotting weights and peeling off irreps to
obtain the tensor product decomposition in part b).



646 CHAPTER 15. LIE GROUPS



Chapter 16

The Geometry of Fibre Bundles

In earlier chapters we have used the language of bundles and connections, but
in a relatively casual manner. We deferred proper mathematical definitions
until now, because, for the applications we meet in physics, it helps to first
have acquired an understanding of the geometry of Lie groups.

16.1 Fibre bundles

We begin with a formal definition of a bundle and then illustrate the defini-
tion with examples from quantum mechanics. These allow us to appreciate
the physics that the definition is designed to capture.

16.1.1 Definitions

A smooth bundle comprises three ingredients: E, π and M , where E and
M are manifolds, and π : E → M is a smooth surjective (onto) map. The
manifold E is the total space, M is the base space and π is the projection
map. The inverse image π−1(x) of a point in M (i.e., the set of points in E
that map to x in M) is the fibre over x.

We usually require that all fibres be diffeomorphic to some fixed manifold
F . The bundle is then a fibre bundle, and F is “the fibre” of the bundle. In
a similar vein, we sometimes also refer to the total space E as “the bundle.”
Examples of possible fibres are vector spaces (in which case we have a vector
bundle), spheres (in which case we have a sphere bundle), and Lie groups.
When the fibre is a Lie group we speak of a principal bundle. A principal

647
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bundle can be thought of the parent of various associated bundles, which are
constructed by allowing the Lie group to act on a fibre. A bundle whose fibre
is a one dimensional vector space is called a line bundle.

The simplest example of a fibre bundle consists of setting E equal to the
Cartesian product M × F of the base space and the fibre. In this case the
projection just “forgets” the point f ∈ F , and so π : (x, f) 7→ x.

A more interesting example can be constructed by taking M to be the
circle S1 equipped with co-ordinate θ, and F as the one-dimensional interval
I = [−1, 1]. We can assemble these ingredients to make E into a Möbius
strip. We do this by gluing the copy of I over θ = 2π to that over θ = 0 with
a half twist so that the end −1 ∈ [−1, 1] is attached to +1, and vice versa.

+1
φ

−1

−1

+1

0 2π

0

S

E

1π

Figure 16.1: Möbius strip bundle, together with a section φ.

A bundle that is a Cartesian product E = M × F , is said to be trivial .
The Möbius strip is not a Cartesian product, and is said to be a twisted
bundle. The Möbius strip is, however, locally trivial in that for each x ∈ M
there is an open retractable neighbourhood U ⊂ M of x in which E looks
like a product U × F . We will assume that all our bundles are locally trivial
in this sense. If {Ui} is a cover of M (i.e., if M =

⋃
Ui) by such retractable

neighbourhoods, and F is a fixed fibre, then a bundle can be assembled out
of the collection of Ui×F product bundles by giving gluing rules that identify
points on the fibre over x ∈ Ui in the product Ui×F with points in the fibre
over x ∈ Uj in Uj × F for each x ∈ Ui ∩ Uj. These identifications are made
by means of invertible maps ϕUiUj

(x) : F → F that are defined for each x
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in the overlap Ui ∩ Uj. The ϕUiUj
are known as transition functions. They

must satisfy the consistency conditions

ϕUiUi
(x) = Identity,

ϕUiUj
(x) = φ−1

UjUi
(x),

ϕUiUj
(x)ϕUjUk

(x)ϕUkUi
= Identity, x ∈ Ui ∩ Uj ∩ Uk 6= ∅. (16.1)

A section of a fibre bundle (E, π,M) is a smooth map φ : M → E such
that φ(x) lies in the fibre π−1(x) over x. Thus π ◦ φ = Identity. When the
total space E is a product M × F this φ is simply a function φ : M → F .
When the bundle is twisted, as is the Möbius strip, then the section is no
longer a function as it takes no unique value at the points x above which
the fibres are being glued together. Observe that in the Möbius strip the
half-twist forces the section φ(x) to pass through 0 ∈ [−1, 1]. The Möbius
bundle therefore has no nowhere-zero globally defined sections. Many twisted
bundles have no globally defined sections at all.

16.2 Physics examples

We now provide three applications where the bundle concept appears in
quantum mechanics. The first two illustrations are re-expressions of well-
known physics. The third, the geometric approach to quantization, is perhaps
less familiar.

16.2.1 Landau levels

Consider the Schrödinger eigenvalue problem

− 1

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
= Eψ (16.2)

for a particle moving on a flat two-dimensional torus. We think of the torus
as an Lx×Ly rectangle with the understanding that as a particle disappears
through the right-hand boundary it immediately re-appears at the point with
the same y co-ordinate on the left-hand boundary; similarly for the upper
and lower boundaries. In quantum mechanics we implement these rules by
imposing periodic boundary conditions on the wave function:

ψ(0, y) = ψ(Lx, y), ψ(x, 0) = ψ(x, Ly). (16.3)
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These conditions make the wavefunction a well-defined and continuous func-
tion on the torus, in the sense that after pasting the edges of the rectangle
together to make a real toroidal surface the function has no jumps, and each
point on the surface assigns a unique value to ψ. The wavefunction is a
section of an untwisted line bundle with the torus as its base-space, the fi-
bre over (x, y) being the one-dimensional complex vector space C in which
ψ(x, y) takes its value.

Now try to carry out the same program for a particle of charge emoving in
a uniform magnetic field B perpendicular to the x−y plane. The Schrödinger
equation becomes

− 1

2m

(
∂

∂x
− ieAx

)2

ψ − 1

2m

(
∂

∂y
− ieAy

)2

ψ = Eψ, (16.4)

where (Ax, Ay) is the vector potential. We at once meet a problem. Although
the magnetic field is constant, the vector potential cannot be chosen to be
constant — or even periodic. In the Landau gauge, for example, where we set
Ax = 0, the remaining component becomes Ay = Bx. This means that as the
particle moves out of the right-hand edge of the rectangle representing the
torus we must perform a gauge transformation that prepares it for motion in
the (Ax, Ay) field it will encounter when it reappears at the left. If equation
(16.4) holds, then it continues to hold after the simultaneous change

ψ(x, y) → e−ieBLxyψ(x, y)

−ieAy → −ieAy + e−iBLxy
∂

∂y
e+ieBLxy = −ie(Ay −BLx). (16.5)

At the right-hand boundary x = Lx this gauge transformation resets the
vector potential Ay back to its value at the left-hand boundary. Accordingly,
we modify the boundary conditions to

ψ(0, y) = e−ieBLxyψ(Lx, y), ψ(x, 0) = ψ(x, Ly). (16.6)

The new boundary conditions make the wavefunction into a section1 of a
twisted line bundle over the torus. The fibre is again the one-dimensional
complex vector space C.

1That the wave “function” is no longer a function should not be disturbing.
Schrödinger’s ψ is never really a function of space-time. Seen from a frame moving at
velocity v, ψ(x, t) acquires factor of exp(−imvx−mv2t/2), and this is no way for a self-
respecting function of x and t to behave.
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We have already met the language in which the gauge field −ieAµ is a
called connection on the bundle, and the associated ieB field is the curvature.
We will explain how connections fit into the formal bundle language in section
16.3.

The twisting of the boundary conditions by the gauge transformation
seems innocent, but within it lurks an important constraint related to the
consistency conditions in (16.1). We can find the value of ψ(Lx, Ly) from that
of ψ(0, 0) by using the relations in (16.6) in the order ψ(0, 0)→ ψ(0, Ly)→
ψ(Lx, Ly), or in the order ψ(0, 0) → ψ(Lx, 0) → ψ(Lx, Ly). Since we must
obtain the same ψ(Lx, Ly) whichever route we use, we need to satisfy the
condition

eieBLxLy = 1. (16.7)

This tells us that the Schrödinger problem makes sense only when the mag-
netic flux BLxLy through the torus obeys

eBLxLy = 2πN (16.8)

for some integer N . We cannot continuously vary the flux through a fi-
nite torus. This means that if we introduce torus boundary conditions as a
mathematical convenience in a calculation, then physical effects may depend
discontinuously on the field.

The integer N counts the number of times the phase of the wavefunction
is twisted as we travel from (x, y) = (Lx, 0) to (x, y) = (Lx, Ly) gluing the
right-hand edge wavefunction to back to the left-hand edge wavefunction.
This twisting number is a topological invariant. We have met this invariant
before, in section 13.6. It is the first Chern number of the wavefunction
bundle. If we permit B to become position dependent without altering the
total twist N , then quantities such as energies and expectation values can
change smoothly with B. If N is allowed to change, however, the these
quantities may jump discontinuously.

The energy E = En solutions to (16.4) with boundary conditions (16.6)
are given by

Ψn,k(x, y) =

∞∑

p=−∞
ψn

(
x− k

B
− pLx

)
ei(eBpLx+k)y. (16.9)

Here, ψn(x) is a harmonic-oscillator wavefunction obeying

− 1

2m

d2ψn
dx2

+
1

2
mω2ψn = Enψn, (16.10)
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with ω = eB/m the classical cyclotron frequency, and En = ω(n+1/2). The
parameter k takes the values 2πq/Ly for q an integer. At each energy En we
obtain N independent eigenfunctions as q runs from 1 to eBLxLy/2π. These
N -fold degenerate states are the Landau levels. The degeneracy, being of
necessity an integer, provides yet another explanation for why the flux must
be quantized.

16.2.2 The Berry connection

Suppose we are in possession of a quantum-mechanical hamiltonian Ĥ(ξ) de-
pending on some parameters ξ = (ξ1, ξ2, . . .) ∈M , and know the eigenstates
|n; ξ〉 that obey

Ĥ(ξ)|n; ξ〉 = En(ξ)|n; ξ〉. (16.11)

If, for fixed n, we can find a smooth family of eigenstates |n; ξ〉, one for
every ξ in the parameter space M , we have a vector bundle over the space
M . The fibre above ξ is the one-dimensional vector space spanned by |n; ξ〉.
This bundle is a sub-bundle of the product bundle M × H where H is the
Hilbert space on which Ĥ acts. Although the larger bundle is not twisted,
the sub-bundle may be. It may also not exist: if the state |n; ξ〉 becomes
degenerate with another state |m; ξ〉 at some value of ξ, then both states
can vary discontinuously with the parameters, and we wish to exclude this
possibility.

In the previous paragraph we considered the evolution of the eigenstates
of a time-independent Hamiltonian as we varied its parameters. Another,
more physical, evolution is given by solving the time-dependent Schrödinger
equation

i∂t|ψ(t)〉 = Ĥ(ξ(t))|ψ(t)〉 (16.12)

so as to follow the evolution of a state |ψ(t)〉 as the parameters are slowly var-
ied. If the initial state |ψ(0)〉 coincides with with the eigenstate |0, ξ(0)〉, and
if the time evolution of the parameters is slow enough, then |ψ〉 is expected to
remain close to the corresponding eigenstate |0; ξ(t)〉 of the time-independent

Schrödinger equation for the hamiltonian Ĥ(ξ(t)). To determine exactly how
“close” it stays, insert the expansion

|ψ(t)〉 =
∑

n

an(t)|n; ξ(t)〉 exp

{
−i
∫ t

0

E0(ξ(t)) dt

}
(16.13)
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into (16.12) and take the inner-product with |m; ξ〉. For m 6= 0, we expect
that the overlap 〈m; ξ|ψ(t)〉 will be small and of order O(∂ξ/∂t). Assuming
that this is so, we read off that

ȧ0 + a0〈0; ξ|∂µ|0; ξ〉∂ξ
µ

∂t
= 0, (m = 0) (16.14)

am = ia0
〈m; ξ|∂µ|0; ξ〉
Em − E0

∂ξµ

∂t
, (m 6= 0) (16.15)

up to first-order accuracy in time-derivatives of the |n; ξ(t)〉. Hence,

|ψ(t)〉 = eiγBerry(t)

{
|0; ξ〉+ i

∑

m6=0

|m; ξ〉〈m; ξ|∂µ|0; ξ〉
Em − E0

∂ξµ

∂t
+ · · ·

}
e−i

R t
0
E0(t)dt,

(16.16)
where the dots refer to terms of higher order in time-derivatives.

Equation (16.16) constitutes the first two terms in a systematic adiabatic
series expansion. The factor a0(t) = exp{iγBerry(t)} is the solution of the
differential equation (16.14). The angle γBerry is known as Berry’s phase, after
the British mathematical physicist Michael Berry. It is needed to take up the
slack between the arbitrary ξ-dependent phase-choice at our disposal when
defining the |0; ξ〉, and the specific phase selected by the Schrödinger equation
as it evolves the state |ψ(t)〉. Berry’s phase is also called the geometric phase
because it depends only on the Hillbert-space geometry of the family of states
|0; ξ〉, and not on their energies. We can write

γBerry(t) = i

∫ t

0

〈0; ξ|∂µ|0; ξ〉∂ξ
µ

∂t
dt, (16.17)

and regard the one-form

ABerry
def
= 〈0; ξ|∂µ|0; ξ〉dξµ = 〈0; ξ|d|0; ξ〉 (16.18)

as a connection on the bundle of states over the space of parameters. The
equation

ξ̇µ
(

∂

∂ξµ
+ ABerry ,µ

)
|ψ〉 = 0 (16.19)

then identifies the Schrödinger time evolution with parallel transport. It
seems reasonable to refer to this particular form of parallel transport as
“Berry transport.”
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In order for corrections to the approximation |ψ(t)〉 ≈ (phase)|0; ξ(t)〉 to
remain small, we need the denominator (Em − E0) to remain large when
compared to its numerator. The state that we are following must therefore
never become degenerate with any other state.

Monopole bundle

Consider, for example a spin-1/2 particle in a magnetic field. If the field
points in direction n, the Hamiltonian is

Ĥ(n) = µ|B| σ̂ · n (16.20)

There are are two eigenstates, with energy E± = ±µ|B|. Let us focus on
the eigenstate |ψ+〉, corresponding to E+. For each n we can obtain an E+

eigenstate by applying the projection operator

P̂ =
1

2
(I + n · σ̂) =

1

2

(
1 + nz nx − iny
nx + iny 1− nz

)
(16.21)

to almost any vector, and then multiplying by a real normalization constant
N . Applying P̂ to a “spin-up” state, for example gives

N 1

2
(I + n · σ̂)

(
1
0

)
=

(
cos θ/2
eiφ sin θ/2

)
. (16.22)

Here, θ and φ are spherical polar angles on S2 that specify the direction of
n.

Although the bundle of E = E+ eigenstates is globally defined, the family

of states |ψ(1)
+ (n)〉 that we have obtained, and would like to use as base for

the fibre over n, becomes singular when n is in the vicinity of the south pole
θ = π. This is because the factor eiφ is multivalued at the south pole. There
is no problem at the north pole because the ambiguous phase eiφ multiples
sin θ/2, which is zero there.

Near the south pole, however, we can project from a “spin-down” state
to find

|ψ(2)
+ (n)〉 = N 1

2
(I + n · σ̂)

(
0
1

)
=

(
e−iφ cos θ/2

sin θ/2

)
. (16.23)

This family of eigenstates is smooth near the south pole, but is ill-defined at
the north pole. As in section 13.6, we are compelled to cover the sphere S2
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by two caps, D+ and D−, and use |ψ(1)
+ 〉 in D+ and |ψ(2)

+ 〉 in D−. The two
families are related by

|ψ(1)
+ (n)〉 = eiφ|ψ(2)

+ (n)〉 (16.24)

in the cingular overlap region D+ ∩D−. Here, eiφ is the transition function
that glues the two families of eigenstates together.

The Berry connections are

A
(1)
+ = 〈ψ(1)

+ |d|ψ(1)
+ 〉 =

i

2
(cos θ − 1)dφ

A
(2)
+ = 〈ψ(2)

+ |d|ψ(2)
+ 〉 =

i

2
(cos θ + 1)dφ. (16.25)

In their common domain of definition, they are related by a gauge transfor-
mation:

A
(2)
+ = A

(1)
+ + idφ. (16.26)

The curvature of either connection is

dA = − i
2

sin θdθdφ = − i
2
d(Area). (16.27)

Being the area two-form, the curvature tells us that when we slowly change
the direction of B and bring it back to its original orientation the spin state
will, in addition to the dynamical phase exp{−iE+t}, have accumulated a
phase equal to (minus) one-half of the area enclosed by the trajectory of n
on S2. The two-form field dA can be though of as the flux of a magnetic
monopole residing at the centre of the sphere. The corresponding bundle of
one-dimensional vector spaces, spanned by |ψ+(n)〉, over n ∈ S2 is therefore
called the monopole bundle.

16.2.3 Quantization

In this section we provide a short introduction to geometric quantization.
This idea, due largely to Kirilov, Kostant and Souriau, extends the famil-
iar technique of canonical quantization to phase spaces with more structure
than that of the harmonic oscillator. We illustrate the formalism by quan-
tizing spin, and show how the resulting Hilbert space provides an example of
the Borel-Weil-Bott construction of the representations of a semi-simple Lie
group as spaces of sections of holomorphic line bundles.
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Prequantization

The passage from classical mechanics to quantum mechanics involves re-
placing the classical variables by operators in such a way that the classical
Poisson-bracket algebra is mirrored by the operator commutator algebra. In
general, this process of quantization is not possible without making some
compromises. It is, however, usually possible to pre-quantize a phase-space
and its associated Poisson algebra.

Let M be a 2n-dimensional classical phase-space with its closed symplec-
tic form ω. Classically a function f : M → R give rise to a Hamiltonian
vector field vf via Hamilton’s equations

df = −ivf
ω. (16.28)

We saw in section 11.4.2 that the closure condition dω = 0 ensures that that
the Poisson bracket

{f, g}=vfg = ω(vf , vg) (16.29)

obeys
[vf , vg] = v{f,g,}. (16.30)

Now suppose that the cohomology class of (2π~)−1ω in H2(M,R) has the
property that its integrals over cycles in H2(M,Z) are integers. Then (it can
be shown) there exists a line bundle L over M with curvature F = −i~−1ω.
If we locally write ω = dη, where η = ηµdx

µ, then the connection one-form
is A = −i~−1η and the covariant derivative

∇v
def
= vµ(∂µ − i~−1ηµ), (16.31)

acts on sections of the line bundle. The corresponding curvature is

F (u, v)= [∇u,∇v]−∇[u,v] = −i~−1ω(u, v). (16.32)

We define a pre-quantized operator ρ̂(f) that, when acting on sections
Ψ(x) of the line bundle, corresponds to the classical function f :

ρ̂(f)
def
= −i~∇vf

+ f. (16.33)

For hamiltonian vector fields vf and vg we have

[~∇vf
+ if,∇vg ] = ~∇[vf ,vg ] − iω(vf , vg) + i[f,∇vg ]

= ~∇[vf ,vg ] − i(ivf
ω + df)(vg)

= ~∇[vf ,vg ], (16.34)
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and so

[−i~∇vf
+ f,−i~∇vg + g] = −~2∇[vf ,vg ] − i~ vfg

= −i~(−i~∇[vf ,vg ] + {f, g})
= −i~(−i~∇v{f,g}

+ {f, g}). (16.35)

Equation (16.35) is Dirac’s quantization rule:

i [ρ̂(f), ρ̂(g)] = ~ ρ̂({f, g}). (16.36)

The process of quantization is completed, when possible, by defining a
polarization. This is a restriction on the variables that we allow the wave-
functions to depend on. For example, if there is a global set of Darboux
co-ordinates p, q we might demand that the wavefunction depend only on q,
only on p, or only on the combination p+iq. Such a restriction is necessary so
that the representation f 7→ ρ̂(f) be irreducible. As globally defined Darboux
co-ordinates do not usually exist, this step is the hard part of quantization.

The general definition of a polarized section is rather complicated. We
sketch it here, but give a concrete example in the next section. We begin
by observing that, at each point x ∈ M , the symplectic form defines a skew
bilinear form. We seek a Lagrangian subspace of Vx ⊂ TMx for this form. A
Lagrangian subspace is one such that Vx = V ⊥

x . For example, if

ω = dp1 ∧ dq1 + dp2 ∧ dq2
=

1

2i
{d(p1 − iq1) ∧ d(p1 + iq1) + d(p2 − iq2) ∧ d(p2 + iq2)}

(16.37)

then the space spanned by the ∂q’s is Lagrangian, as is the space spanned
by the ∂p’s, and the space spanned by the ∂p+iq’s. In the last case, we have
allowed the coefficients of the vectors in Vx to be complex numbers. Now we
let x vary and consider the distribution defined by the vector fields spanning
the Vx’s. We require this distribution to be globally integrable so that the
Vx are the tangent spaces to a global foliation of M . With these ingredients
at hand, we declare a section Ψ of the line bundle to be polarized if ∇ξ̄Ψ = 0
for all ξ ∈ Vx. Here, ξ̄ is the vector field whose components are the complex
conjugates of those in ξ.

We define an inner product on the space of polarized sections by using the
Liouville measure ωn/n! on the phase space. The quantum Hilbert space then
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consists of finite-norm polarized sections of the line bundle. Only classical
functions that give rise to polarization-compatible vector fields will have their
Poisson-bracket algebra coincide with the quantum commutator algebra.

Quantizing spin

To illustrate these ideas, we quantize spin. The classical mechanics of spin
was discussed in section 11.4.2. There we showed that the appropriate phase
space is the 2-sphere equipped with a symplectic form proportional to the
area form. Here we must be specific about the constant of proportionality.
We choose units in which ~ = 1, and take ω = j d(Area). The integrality of
ω/2π requires that j be an integer or half integer. We will assume that j is
positive.

We parametrize the 2-sphere using complex sterographic co-ordinates z,
z which are constructed similarly to those in section 12.4.3. This choice will
allow us to impose a natural complex polarization on the wavefunctions. In
contrast to section 12.4.3, however, it is here convenient to make the point
z = 0 correspond to the south pole, so the polar co-ordinates θ, φ, on the
sphere are related to z, z via

cos θ =
|z|2 − 1

|z|2 + 1
,

eiφ sin θ =
2z

|z|2 + 1
,

e−iφ sin θ =
2z

|z|2 + 1
. (16.38)

In terms of the z, z co-ordinates the symplectic form is given by

ω =
2ij

(1 + |z|2)2
dz ∧ dz. (16.39)

As long as we avoid the north pole, where z =∞, we can write

ω = d

{
ij
z dz − z dz

1 + |z|2
}

= dη, (16.40)

and so the local connection form has components proportional to

ηz = −ij z

|z|2 + 1
, ηz = ij

z

|z|2 + 1
. (16.41)
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The covariant derivatives are therefore

∇z =
∂

∂z
− j z

|z|2 + 1
, ∇z =

∂

∂z
+ j

z

|z|2 + 1
. (16.42)

We impose the polarization condition that ∇zΨ = 0. This condition
requires the allowed sections to be of the form

Ψ(z, z) = (1 + |z|2)−jψ(z), (16.43)

where ψ depends only on z, and not on z. It is natural to combine the
(1 + |z|2)−j prefactor with the Liouville measure so that the inner product
becomes

〈ψ|χ〉 = 2j + 1

2πi

∫

C

dz ∧ dz
(1 + |z|2)2j+2

ψ(z)χ(z). (16.44)

The normalizable wavefunctions are then polynomials in z of degree less than
or equal to 2j, and a complete orthonormal set is given by

ψm(z) =

√
2j!

(j −m)!(j +m)!
zj+m, −j ≤ m ≤ j. (16.45)

We desire to find the quantum operators ρ̂(Ji) corresponding to the com-
ponents

J1 = j sin θ cos φ, J2 = j sin θ sinφ, J3 = j cos θ, (16.46)

of a classical spin J of magnitude j, and also to the ladder-operator compo-
nents J± = J1 ± iJ2. In our complex co-ordinates, these functions become

J3 = j
|z|2 − 1

|z|2 + 1
,

J+ = j
2z

|z|2 + 1
,

J− = j
2z

|z|2 + 1
. (16.47)

Also in these co-ordinates, Hamilton’s equations dH = −ω(vH , ) take the
form

ż = i
(1 + |z|2)2

2j

∂H

∂z
,

ż = −i(1 + |z|2)2

2j

∂H

∂z
, (16.48)
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and the Hamiltonian vector fields corresponding to the classical phase space
functions J3, J+ and J− are

vJ3
= iz∂z − iz∂z ,

vJ+
= −iz2∂z − i∂z,

vJ− = i∂z + iz2∂z . (16.49)

Using the recipe (16.33) for ρ̂(H) from the previous section, together with
the fact that ∇zΨ = 0, we find, for example, that

ρ̂(J+)(1 + |z|2)−jψ(z) =

[
−z2

(
∂

∂z
− jz

(1 + |z|2)

)
+

2jz

(1 + |z|2)

]
(1 + |z|2)−jψ(z),

= (1 + |z|2)−j
[
−z2 ∂

∂z
+ 2jz

]
ψ (16.50)

It is natural to define operators

Ĵi
def
= (1 + |z|2)jρ̂(Ji)(1 + |z|2)−j (16.51)

that act only on the z-polynomial part ψ(z) of the section Ψ(z, z). We then
have

Ĵ+ = −z2 ∂

∂z
+ 2jz. (16.52)

Similarly, we find that

Ĵ− =
∂

∂z
, (16.53)

Ĵ3 = z
∂

∂z
− j. (16.54)

These operators obey the su(2) Lie-algebra relations

[Ĵ3, Ĵ±] = ±Ĵ±,
[Ĵ+, Ĵ−] = 2Ĵ3, (16.55)

and act on the ψm(z) monomials as

Ĵ3ψm(z) = mψm(z),

Ĵ±ψm(z) =
√
j(j + 1)−m(m± 1)ψm±1(z). (16.56)

This is the familiar action of the su(2) generators on |j,m〉 basis states.

Exercise 16.1: Show that with respect to the inner product (16.44) we have

Ĵ†
3 = Ĵ3, Ĵ†

+ = Ĵ−.
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Coherent states and the Borel-Weil-Bott theorem

We now explain how the spin wavefunctions ψm(z) can be understood as
sections of a holomorphic line bundle.

Suppose that we have a compact Lie group G and a unitary irreducible
representation g ∈ G 7→ DJ(g). Let |0〉 be the normalized highest (or lowest)
weight state in the representation space. Consider the states

|g〉 = DJ(g)|0〉, 〈g| = 〈0|
[
DJ(g)

]†
. (16.57)

The |g〉 compose a family of generalized coherent states.2 There is a contin-
uous infinity of the |g〉, and so they cannot constitute an orthonormal set on
the finite-dimensional representation space. The matrix-element orthogonal-
ity property (15.81), however, provides us us with a useful over-completeness
relation:

I =
dim(J)

VolG

∫

G

|g〉〈g|. (16.58)

The integral is over all of G, but many points in G give the same contribution.
The maximal torus, denoted by T , is the abelian subgroup of G obtained by
exponentiating elements of the Cartan algebra. Because any weight vector is
a common eigenvector of the Cartan algebra, elements of T leave |0〉 fixed up
to a phase. The set of distinct |g〉 in the integral can therefore be identified
with G/T . This coset space is always an even-dimensional manifold, and
thus a candidate phase space.

Consider, in particular, the spin-j representation of SU(2). The coset
space G/T is then SU(2)/U(1) ' S2. We can write a general element of
SU(2) as

U = exp(zJ+) exp(θJ3) exp(γJ−) (16.59)

for some complex parameters z, θ and γ which are functions of the three real
co-ordinates that parameterize SU(2). We let U act on the lowest-weight
state |j,−j〉. The rightmost factor has no effect on the lowest weight state,
and the middle factor only multiplies it by a constant. We therefore restrict
our attention to the states

|z〉 = exp(zJ+)|j,−j〉, 〈z| = 〈j,−j| exp(zJ−) = (|z〉)†. (16.60)

2A. Perelomov, Generalized Coherent States and their Applications (Springer-Verlag,
Berlin 1986).
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These states are not normalized, but have the advantage that the 〈z| are
holomorphic in the parameter z — i.e., they depend on z but not on z.

The set of distinct |z〉 can still be identified with the 2-sphere, and z, z
are its complex sterographic co-ordinates. This identification is an example
of a general property of compact Lie groups:

G/T ∼= GC/B+. (16.61)

Here, GC is the complexification of G — the group G, but with its parameters
allowed to be complex — andB+ is the Borel group whose Lie algebra consists
of the Cartan algebra together with the step-up ladder operators.

The inner product of two |z〉 states is

〈z′|z〉 = (1 + zz′)2j, (16.62)

and the eigenstates |j,m〉 of J2 and J3 possess coherent state wavefunctions:

ψ(1)
m (z) ≡ 〈z|j,m〉 =

√
2j!

(j −m)!(j +m)!
zj+m. (16.63)

We recognize these as our spin wavefunctions from the previous section.
The over-completeness relation can be written as

I =
2j + 1

2πi

∫
dz ∧ dz

(1 + zz)2j+2
|z〉〈z|, (16.64)

and provides the inner product for the coherent-state wavefunctions. If
ψ(z) = 〈z|ψ〉 and χ(z) = 〈z|χ〉 then

〈ψ|χ〉 =
2j + 1

2πi

∫
dz ∧ dz

(1 + zz)2j+2
〈ψ|z〉〈z|χ〉

=
2j + 1

2πi

∫
dz ∧ dz

(1 + zz)2j+2
ψ(z)χ(z), (16.65)

which coincides with (16.44).

The wavefunctions ψ
(1)
m (z) are singular at the north pole, where z = ∞.

Indeed, there is no actual state 〈∞| because the phase of this putative limiting
state would depend on the direction from which we approach the point at
infinity. We may, however, define a second family of coherent states:

|ζ〉2 = exp(ζJ−)|j, j〉, 2〈ζ| = 〈j, j| exp(ζJ+), (16.66)
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and form the wavefunctions

ψ(2)
m (ζ) = 2〈ζ|j,m〉. (16.67)

These new states and wavefunctions are well defined in the vicinity of the
north pole, but singular near the south pole.

To find the relation between ψ(2)(ζ) and ψ(1)(z) we note that the matrix
identity

[
0 −1
1 0

] [
1 0
z 1

]
=

[
1 0
−z−1 1

] [
−z 0
0 −z−1

] [
1 z−1

0 1

]
, (16.68)

coupled with the faithfulness of the spin- 1
2

representation of SU(2), implies
the relation

ŵ exp(zJ+) = exp (−z−1J−)(−z)2J3 exp (z−1J+), (16.69)

where ŵ = exp(−iπJ2). We also note that

〈j, j|ŵ = (−1)2j〈j,−j|, 〈j,−j|ŵ = 〈j, j|. (16.70)

Thus,

ψ(1)
m (z) = 〈j,−j|ezJ−|j,m〉

= (−1)2j〈j, j|ŵ ezJ−|j,m〉
= (−1)2j〈j, j|e−z−1J−(−z)2J3ez

−1J+|j,m〉
= (−1)2j(−z)2j〈j, j|ez−1J+|j,m〉
= z2jψ(2)

m (z−1). (16.71)

The transition function z2j that relates ψ
(1)
m (z) to ψ

(2)
m (ζ ≡ 1/z) depends only

on z. We therefore say that the wavefunctions ψ
(1)
m (z) and ψ

(2)
m (ζ) are the local

components of a global section ψm ↔ |j,m〉 of a holomorphic line bundle.
The requirement that the transition function and its inverse be holomorphic
and single valued in the overlap of the z and ζ co-ordinate patches forces 2j
to be an integer. The ψm form a basis for the space of global holomorphic
sections of this bundle.

Borel, Weil and Bott showed that any finite-dimensional representation of
a semi-simple Lie group G can be realized as the space of global holomorphic
sections of a line bundle over GC/B+. This bundle is constructed from the
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highest (or lowest) weight vectors in the representation by a natural general-
ization of the method we have used for spin. This idea has been extended by
Witten and others to infinite-dimensional Lie groups, where it can be used,
for example, to quantize two-dimensional gravity.

Exercise 16.2: Normalize the states |z〉, 〈z|, by multiplying them byN = (1 + |z|2)−j .
Show that

N2〈z|J3|z〉 = j
|z|2 − 1

|z|2 + 1
,

N2〈z|J+|z〉 = j
2z

|z|2 + 1
,

N2〈z|J−|z〉 = j
2z

|z|2 + 1
,

thus confirming the identification of z, z with the complex stereographic co-
ordinates on the sphere.

16.3 Working in the total space

We have mostly considered a bundle to be a collection of mathematical ob-
jects and a base space to which they are attached, rather than treating the
bundle as a geometric object in its own right. In this section we demonstrate
the advantages to be gained from the latter viewpoint.

16.3.1 Principal bundles and associated bundles

The fibre bundles that arise in a gauge theory with Lie group G are called
principal G-bundles, and the fields and wavefunctions are sections of associ-
ated bundles. A principal G-bundle comprises the total space, which we here
call P , together with the projection π to the base space M . The fibre can be
regarded as a copy of G, i,e,,

π : P →M, π−1(x) ∼= G. (16.72)

Strictly speaking, the fibre is only required to be a homogeneous space on
which G acts freely and transitively on the right ; x → xg. Such a set can
be identified with G after we have selected a fiducial point f0 ∈ F to be
the group identity. There is no canonical choice for f0 and, if the bundle is



16.3. WORKING IN THE TOTAL SPACE 665

twisted, there can be no globally smooth choice. This is because a smooth
choice for f0 in the fibres above an open subset U ⊆ M makes P locally
into a product U × G. Being able to extend U to the entirety of M means
that P is trivial. We will, however, make use of local assignments f0 7→ e
to introduce bundle co-ordinate charts in which P is locally a product, and
therefore parametrized by ordered pairs (x, g) with x ∈ U and g ∈ G.

To understand the bundles associated with P , it is simplest to define the
sections of the associated bundle. Let ϕi(x, g) be a function on the total
space P with a set of indices i carrying some representation g 7→ D(g) of
G. We say that ϕi(x, g) is a section of an associated bundle if it varies in a
particular way as we run up and down the fibres by acting on them from the
right with elements of G; we require that

ϕi(x, gh) = Dij(h
−1)ϕj(x, g). (16.73)

These sections can be thought of as wavefunctions for a particle moving in
a gauge field on the base space. The choice of representation D plays the
role of “charge,” and (16.73) are the gauge transformations. Note that we
must take h−1 as the argument of D in order for the transformation to be
consistent under group multiplication:

ϕi(x, gh1h2) = Dij(h
−1
2 )ϕj(x, gh1)

= Dij(h
−1
2 )Djk(h

−1
1 )ϕk(x, g)

= Dik(h
−1
2 h−1

1 )ϕk(x, g)

= Dik((h1h2)
−1)ϕk(x, g). (16.74)

The construction of the associated bundle itself requires rather more ab-
straction. Suppose that the matrices D(g) act on the vector space V . Then
the total space PV of the associated bundle consists of equivalence classes
of P × V under the relation ((x, g),v) ∼ ((x, gh), D(h−1)v) for all v ∈ V ,
(x, g) ∈ P and h ∈ G. The set of G-action equivalence classes in a Cartesian
product A× B is usually denoted by A×G B. Our total space is therefore

PV = P ×G V. (16.75)

We find it conceptually easier to work with the sections as defined above,
rather than with these equivalence classes.
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16.3.2 Connections

A gauge field is a connection on a principal bundle. The formal definition of
a connection is a decomposition of the tangent space TPp of P at p ∈ P into
a horizontal subspace Hp(P ) and a vertical subspace Vp(P ). We require that
Vp(P ) be the tangent space to the fibres and Hp(P ) to be a complementary
subspace, i.e., the direct sum should be the whole tangent space

TPp = Hp(P )⊕ Vp(P ). (16.76)

The horizontal subspaces must also be invariant under the push-forward
induced from the action on the fibres from the right of a fixed element
of G. More formally, if R[g] : P → P acts to take p → pg, i.e. by
R[g](x, g′) = (x, g′g) — we require that

R[g]∗Hp(P ) = Hpg(P ). (16.77)

Thus, we get to chose one horizontal subspace in each fibre, the rest being
determined by the right-invariance condition.

We now show how this geometric definition of a connection leads to
parallel-transport. We begin with a curve x(t) in the base space. By solving
the equation

ġ +
∂xµ

∂t
Aµ(x)g = 0, (16.78)

we can lift lift the curve x(t) to a new curve (x(t), g(t)) in the total space,
whose tangent is everywhere horizontal. This lifting operation corresponds
to parallel transporting the initial value g(0) along the curve x(t) to get

g(t). The Aµ = iλ̂aAaµ are a set of Lie-algebra-valued functions that are
determined by our choice of horizontal subspace. They are defined so that
the vector (δx,−Aµδxµg) is horizontal for each small displacement δxµ in the
tangent space of M . Here, −Aµδxµg is to be understood as the displacement
that takes g → (1 − Aµδxµ)g. Because we are multiplying A in from the
left , the lifted curve can be slid rigidly up and down the fibres by the right
action of any fixed group element. The right-invariance condition is therefore
automatically satisfied.

The directional derivative along the lifted curve is

ẋµDµ = ẋµ

((
∂

∂xµ

)

g

−AaµRa

)
, (16.79)
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where Ra is a right-invariant vector field on G, i.e., a differential operator on
functions defined on the fibres. The Dµ are a set of vector fields in TP . These
covariant derivatives span the horizontal subspace at each point p ∈ P , and
have Lie brackets

[Dµ,Dν] = −FaµνRa. (16.80)

Here, Fµν , is given in terms of the structure constants appearing in the Lie
brackets [Ra, Rb] = f cabRc by

F cµν = ∂µAcν − ∂νAcµ − f cabAaµAbν. (16.81)

We can also write

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν]. (16.82)

where Fµν = iλ̂aFaµν and [λ̂a, λ̂b] = if cabλ̂c.
Because the Lie bracket of the Dµ is a linear combination of the Ra, it lies

entirely in the vertical subspace. Consequently, when Fµν 6= 0 the Dµ are not
in involution, so Frobenius’ theorem tells us that the horizontal subspaces
cannot fit together to form the tangent spaces to a smooth foliation of P .

We now make contact with the more familiar definition of a covariant
derivative. We begin by recalling that right invariant vector fields are deriva-
tives that involve infinitesimal multiplication from the left . Their definition
is

Raϕi(x, g) = lim
ε→0

1

ε

(
ϕi(x, (1 + iελ̂a)g)− ϕi(x, g)

)
, (16.83)

where [λ̂a, λ̂b] = if cabλ̂c.
As ϕi(x, g) is a section of the associated bundle, we know how it varies

when we multiply group elements in on the right. We therefore write

(1 + iελ̂a)g = g g−1(1 + iελ̂a)g, (16.84)

and from this, (and writing g for D(g) where it makes for compact notation)
we find

Raϕi(x, g) = lim
ε→0

(
Dij(g

−1(1− iελ̂a)g)ϕj(x, g)− ϕi(x, g)
)
/ε

= −Dij(g
−1)(iλ̂a)jkDkl(g)ϕl(x, g)

= −i(g−1λ̂ag)ijϕj. (16.85)
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Here, i(λ̂a)ij is the matrix representing the Lie algebra generator iλ̂a in the
representation g 7→ D(g). Acting on sections, we therefore have

Dµϕ = (∂µϕ)g + (g−1Aµg)ϕ. (16.86)

This still does not look too familiar, because the derivatives with respect to
xµ are being taken at fixed g. We normally fix a gauge by making a choice of
g = σ(x) for each xµ. The conventional wavefunction ϕ(x) is then ϕ(x, σ(x)).
We can use ϕ(x, σ(x)) = σ−1(x)ϕ(x, e), to obtain

∂µϕ = (∂µϕ)σ +
(
∂µσ

−1
)
σϕ = (∂µϕ)σ −

(
σ−1∂µσ

)
ϕ. (16.87)

From this, we get a derivative

∇µ
def
= ∂µ + (σ−1Aµσ + σ−1∂µσ) = ∂µ + Aµ. (16.88)

on functions ϕ(x)
def
= ϕ(x, σ(x)) defined (locally) on the base space M . This

is the conventional covariant derivative, now containing gauge fields

Aµ(x) = σ−1Aµσ + σ−1∂µσ (16.89)

that are gauge transformations of our g-independent Aµ. The derivative has
been constructed so that

∇µϕ(x) = Dµϕ(x, g)|g=σ(x) , (16.90)

and has commutator

[∇µ,∇ν] = σ−1Fµνσ = Fµν. (16.91)

Note the sign change vis-à-vis equation (16.80).
It is the curvature tensor Fµν that we have met previously. Recall that it

provides a Lie-algebra-valued two-form

F =
1

2
Fµνdx

µdxν = dA+ A2 (16.92)

on the base space. The connection A = Aµdx
µ is a one-form on the base

space, and both F and A have been defined only in the region U ⊂ M in
which the smooth gauge-choice section σ(x) has been selected.
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16.3.3 Monopole harmonics

The total-space operations and definitions in these sections may seem rather
abstract. We therefore demonstrate their power by solving the Schrödinger
problem for a charged particle confined to a unit sphere surrounding a mag-
netic monopole. The conventional approach to this problem involves first
selecting a gauge for vector the potential A, which, because of the monopole,
is necessarily singular at a Dirac string located somewhere on the sphere,
and then delving into properties of Gegenbauer polynomials. Eventually we
find the gauge-dependent wavefunction. By working with the total space,
however, we can solve the problem in all gauges at once, and the problem
becomes a simple exercise in Lie-group geometry.

Recall that the SU(2) representation matrices DJ
mn(θ, φ, ψ) form a com-

plete orthonormal set of functions on the group manifold S3. There will be a
similar complete orthonormal set of representation matrices on the manifold
of any compact Lie group G. Given a subgroup H ⊂ G, we will use these
matrices to construct bundles associated to a principal H-bundle that has G
as its total space and the coset space G/H as its base space. The fibres will
be copies of H, and the projection π the usual projection G→ G/H.

The functions DJ(g) are not in general functions on the coset space G/H
as they depend on the choice of representative. Instead, because of the
representation property, they vary with the choice of representative in a well-
defined way:

DJ
mn(gh) = DJ

mn′(g)DJ
n′n(h). (16.93)

Since we are dealing with compact groups, the representations can be taken
to be unitary and therefore

[DJ
mn(gh)]

∗ = [DJ
mn′(g)]∗[DJ

n′n(h)]
∗ (16.94)

= DJ
nn′(h−1)[DJ

mn′(g)]∗. (16.95)

This is the correct variation under the right action of the group H for the
set of functions [DJ

mn(gh)]
∗ to be sections of a bundle associated with the

principal fibre bundle G→ G/H. The representation h 7→ D(h) of H is not
necessarily that defined by the label J because irreducible representations of
G may be reducible under H; D depends on what representation of H the
index n belongs to. If D is the identity representation, then the functions
are functions on G/H in the ordinary sense. For G = SU(2) and H being
the U(1) subgroup generated by J3, the quotient space is just S2, and the
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projection is the Hopf map: S3 → S2. The resulting bundle can be called
the Hopf bundle. It is not a really new object, however, because it is a gen-
eralization of the monopole bundle of the preceding section. Parameterizing
SU(2) with Euler angles, so that

DJ
mn(θ, φ, ψ) = 〈J,m|e−iφJ3e−iθJ2e−iψJ3 |J, n〉, (16.96)

shows that the Hopf map consists of simply forgetting about ψ, so

Hopf : [(θ, φ, ψ) ∈ S3] 7→ [(θ, φ) ∈ S2]. (16.97)

The bundle is twisted because S3 is not a product S2×S1. Taking n = 0 gives
us functions independent of ψ, and we obtain the well-known identification
of the spherical harmonics with representation matrices

Y L
m(θ, φ) =

√
2L + 1

4π
[D

(L)
m0 (θ, φ, 0)]∗. (16.98)

For n = Λ 6= 0 we get sections of a bundle whose Chern number is 2Λ. These
sections are the monopole harmonics:

YJm;Λ(θ, φ, ψ) =

√
2J + 1

4π
[DJ

mΛ(θ, φ, ψ)]∗ (16.99)

for a monopole of flux
∫
eB d(Area) = 4πΛ. The integrality of the Chern

number tells us that the flux 4πΛ must be an integer multiple of 2π. This
gives us a geometric reason for why the eigenvalues m of J3 can only be an
integer or half integer.

The monopole harmonics have a non-trivial dependence, ∝ eiψΛ, on the
choice we make for ψ at each point on S2, and we cannot make a globally
smooth choice; we always encounter at least one point where there is a singu-
larity. Considered as functions on the base space, the sections of the twisted
bundle have to be constructed in patches and glued together using transition
functions. As functions on the total space of the principal bundel, however,
they are globally smooth.

We now show that the monopole harmonics are eigenfunctions of the
Schrödinger operator −∇2 containing the gauge field connection, just as the
spherical harmonics are eigenfunctions of the Laplacian on the sphere. This
is a simple geometrical exercise. Because they are irreducible representations,
the DJ(g) are automatically eigenfunctions of the quadratic Casimir operator

(J2
1 + J2

2 + J2
3 )DJ(g) = J(J + 1)DJ(g). (16.100)
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The Ji can be either right or left-invariant vector fields on G; the quadratic
Casimir is the same second-order differential operator in either case, and it
is a good guess that it is proportional to the Laplacian on the group mani-
fold. Taking a locally geodesic co-ordinate system (in which the connection
vanishes) confirms this: J2 = −∇2 on the three-sphere. The operator in
(16.100) is not the Laplacian we want, however. What we need is the ∇2 on
the two-sphere S2 = G/H, including the the connection. This ∇2 operator
differs from the one on the total space since it must contain only differential
operators lying in the horizontal subspaces. There is a natural notion of or-
thogonality in the Lie group, deriving from the Killing form, and it is natural
to choose the horizontal subspaces to be orthogonal to the fibres of G/H.
Because multiplication on the right by the subgroup generated by J3 moves
one up and down the fibres, the orthogonal displacements are obtained by
multiplication on the right by infinitesimal elements made by exponentiating
J1 and J2. The desired ∇2 is thus made out of the left-invariant vector fields
(which act by multiplication on the right), J1 and J2 only. The wave operator
must therefore be

−∇2 = J2
1 + J2

2 = J2 − J2
3 . (16.101)

Applying this to the YJm;Λ, we see that they are eigenfunctions of −∇2 on S2

with eigenvalues J(J + 1)−Λ2. The Laplace eigenvalues for our flux = 4πΛ
monopole problem are therefore

EJ,m = (J(J + 1)− Λ2), J ≥ |Λ|, −J ≤ m ≤ J. (16.102)

The utility of the monopole Harmonics is not restricted to exotic monopole
physics. They occur in molecular and nuclear physics as the wavefunctions
for the rotational degrees of freedom of diatomic molecules and uniaxially
deformed nuclei that possess angular momentum Λ about their axis of sym-
metry.3

Exercise 16.3: Compare these energy levels for a particle on a sphere with
those of the Landau level problem on the plane. Show that for any fixed
flux the low-lying energies remain close to E = (eB/mparticle)(n+ 1/2), with
n = 0, 1, . . ., but their degeneracy is is equal to the number of flux units
penetrating the sphere plus one.

3This is explained, with chararacteristic terseness, in a footnote on page 317 of Landau
and Lifshitz Quantum Mechanics (Third Edition).
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16.3.4 Bundle connection and curvature forms

Recall that in section 16.3.2 we introduced the Lie-Algebra-valued functions
Aµ(x). We now use these functions to introduce the bundle connection form
A that lives in T ∗P . We set

A = Aµ dxµ (16.103)

and
A

def
= g−1

(
A+ δg g−1

)
g. (16.104)

In these definitions, x and g are the local co-ordinates in which points in
the total space are labelled as (x, g), and d acts on functions of x, and the
“δ” is used to denote the exterior derivative acting on the fibre.4 We have,
then, that δxµ = 0 and dg = 0. The combinations δg g−1 and g−1δg are
respectively the right- and left-invariant Maurer-Cartan form on the group.

The complete exterior derivative in the total space requires us to differen-
tiate both with respect to g and with respect to x, and is given by dtot = d+δ.
Because d2 , δ2 and (d+ δ)2 = d2 + δ2 + dδ + δd are all zero, we must have

δd+ dδ = 0. (16.105)

We now define the bundle curvature form in terms of A to be

F
def
= dtotA + A2. (16.106)

To compute F in terms of A(x) and g we need the ingredients

dA = g−1(dA)g, (16.107)

and
δA = −(g−1δg)A− A(g−1δg)− (g−1δg)2. (16.108)

We find that

F = (d+ δ)A + A2 = g−1
(
dA+A2

)
g

= g−1Fg, (16.109)

where

F =
1

2
Fµνdxµdxν, (16.110)

4It is not therefore to be confused with the Hodge δ = d† operator.
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and
Fµν = ∂µAν − ∂νAµ + [Aµ,Aν]. (16.111)

Although we have defined the connection form A in terms of the local
bundle co-ordinates (x, g), it is, in fact, an intrinsic quantity, i.e., it is has a
global existence, independent of the choice of these co-ordinates. A has been
constructed so that

i) A vector is annihilated by A if and only if it is horizontal. In particular,
A(Dµ) = 0 for all covariant derivatives Dµ.

ii) The connection form is constant on left-invariant vector fields on the

fibres. In particular, A(La) = iλ̂a.
Between them, the globally defined fields Dµ ∈ Hp(P ) and La ∈ Vp(P ) span
the tangent space TPp. Consequently the two properties listed above tell us
how to evaluate A on any vector, and so define it uniquely and globally.

From the globally defined and gauge invariant A and its associated cur-
vature F, and for any local gauge-choice section σ : (U ⊂ M) → P , we can
recover the gauge-dependent base-space forms A and F as the pull-backs

A = σ∗A, F = σ∗F, (16.112)

to U ⊂M of the total-space forms. The resulting forms are

A =
(
σ−1Aµσ + σ−1∂µσ

)
dxµ, F =

1

2

(
σ−1Fµνσ

)
dxµdxν, (16.113)

and coincide with the equations connecting Aµ with Aµ and Fµν with Fµν
that we obtained in section 16.3.2. We should take care to note that the
dxµ that appear in A and F are differential forms on M , while the dxµ that
appear in A and F are differential forms on P . Now the projection π is a left
inverse of the gauge-choice section σ, i.e. π ◦ σ = identity. The associated
pull-backs are also inverses, but with the order reversed: σ∗ ◦ π∗ = identity.
These maps relate the two sets of “dxµ” by

dxµ|M = σ∗ (dxµ|P ) , or dxµ|P = π∗ (dxµ|M) . (16.114)

We now explain the advantage of knowing the total space connection and
curvature forms. Consider the Chern character ∝ trF 2 on the base-space
M . We can use the bundle projection π to pull this form back to the total
space. From

Fµν = (gσ−1)−1Fµν(gσ
−1), (16.115)
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we find that
π∗ (trF 2

)
= tr F2. (16.116)

Now A, F and dtot have the same calculus properties as A , F and d. The
manipulations that give

trF 2 = d tr

(
AdA+

2

3
A3

)

also show, therefore, that

tr F2 = dtot tr

(
A dtotA +

2

3
A3

)
. (16.117)

There is a big difference in the significance of the computation, however. The
bundle connection A is globally defined; consequently, the form

ω3(A) ≡ tr

(
A dtotA +

2

3
A3

)
(16.118)

is also globally defined. The pull-back to the total space of the Chern char-
acter is dtot exact! This miracle works for all characteristic classes: but on
the base-space they are exact only when the bundle is trivial; on the total
space they are always exact.

We have seen this phonomenon before, for example in exercise 15.7. The
area form d[Area] = sin θ dθdφ is closed but not exact on S2. When pulled
back to S3 by the Hopf map, the area form becomes exact:

Hopf∗d[Area] = sin θ dθdφ = d(− cos θdφ+ dψ). (16.119)

16.3.5 Characteristic classes as obstructions

The generalized Gauss-Bonnet theorem states that, for a compact orientable
even-dimensional manifold M , the integral of the Euler class over M is equal
to the Euler character χ(M). Shiing-Shen Chern used the exactness of the
pull-back of the Euler class to give an elegant intrinsic proof5 of this theorem.
He showed that the integral of the Euler class over M was equal to the sum
of the Poincare-Hopf indices of any tangent vector field on M , a sum we
independently know to equal the Euler character χ(M). We illustrate his

5S-J. Chern, Ann. Math. 47 (1946) 85-121. This paper is a readable classic.
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strategy by showing how a non-zero ch2(F ) provides a similar index sum for
the singularities of any section of an SU(2)-bundle over a four-dimensional
base space. This result provides an interpretation of characteristic classes as
obstructions to the existence of global sections.

Let σ : M → P be a section of an SU(2) principal bundle P over a
four-dimensional compact orientable manifold M without boundary. For
any SU(n) group we have ch1(F ) ≡ 0, but

∫

M

ch2(F ) = − 1

8π2

∫

M

tr (F 2) = n, (16.120)

can be non-zero.
The section σ will, in general, have points xi where it becomes singular.

We punch infinitesimal holes in M surrounding the singular points. The
manifold M ′ = (M \ holes) will have as its boundary ∂M ′ a disjoint union
of small three-spheres. We denote by Σ the image of M ′ under the map
σ : M ′ → P . This Σ will be a submanifold of P , whose boundary will be
equal in homology to a linear combination of the boundary components of
M ′ with integer coefficients. We show that the Chern number n is equal to
the sum of these coefficients.

We begin by using the projection π to pull back ch2(F ), to the bundle,
where we know that

π∗ch2(F ) = − 1

8π2
dtot ω3(A). (16.121)

Now we can decompose ω3(A) into terms of different bi-degree, i.e. into
terms that are p-forms in d and q-forms in δ.

ω3(A) = ω0
3 + ω1

2 + ω2
1 + ω3

0. (16.122)

Here the superscript counts the form-degree in δ, and the subscript the form-
degree in d. The only term we need to know explicitly is ω3

0. This comes
from the g−1δg part of A, and is

ω3
0 = tr

(
(g−1δg) δ(g−1δg) +

2

3
(g−1δg)3

)

= tr

(
−(g−1δg)3 +

2

3
(g−1δg)3

)

= −1

3
(g−1δg)3. (16.123)
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We next use the map σ : M ′ → P to pull the right-hand side of (16.121)
back from P to M ′. We recall that acting on forms on M ′ we have σ∗ ◦ π∗ =
identity. Thus

∫

M

ch2(F ) =

∫

M ′

ch2(F ) =

∫

M ′

σ∗ ◦ π∗ch2(F )

= − 1

8π2

∫

M ′

σ∗dtot ω3(A)

= − 1

8π2

∫

Σ

dtot ω3(A)

= − 1

8π2

∫

∂Σ

ω3(A)

=
1

24π2

∫

∂Σ

(g−1δg)3. (16.124)

At the first step we have observed that the omitted spheres make a negligeable
contribution to the integral over M , and at the last step we have used the
fact that the boundary of Σ, has significant extent only along the fibres,
so all contributions to the integral over ∂Σ come from the purely vertical
component of ω3(A), which is ω3

0 = −1
3
(g−1dg).

We know (see exercise 15.8) that for maps g 7→ U ∈ SU(2) we have

∫
tr (g−1dg)3 = 24π2 × winding number

We conclude that
∫

M

ch2(F ) =
1

24π2

∫

∂Σ

(g−1δg)3 =
∑

singularitiesxi

Ni (16.125)

where Ni is the Brouwer degree of the map σ : S3 → SU(2) ∼= S3 on the
small sphere surrounding xi.

It turns out that for any SU(n) the integral of tr (g−1δg)3 is 24π2 times
an integer winding number of g about homology spheres. The second Chern
number of a SU(n)-bundle is therefore also equal to the sum of the winding-
number indices of the section about its singularities. Chern’s strategy can
be used to relate other characteristic classes to obstructions to the existence
of global sections of appropriate bundles.
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16.3.6 Stora-Zumino descent equations

In the previous sections we met the forms

A = g−1Ag + g−1δg (16.126)

and
A = σ−1Aσ + σ−1dσ. (16.127)

The group element g labeled points on the fibres and was independent x,
while σ(x) was the gauge-choice section of the bundle and depended on x.
The two quantities A and A look similar, but are not identical. A third
superficially similar but distinct object is met with in the BRST (Becchi-
Rouet-Stora-Tyutin) approach to quantizing gauge theories, and also in the
geometric theory of anomalies. We describe it here to alert the reader to the
potential for confusion.

Rather than attempting to define this new differential form rigorously,
we will first explain how to calculate with it, and only then indicate what it
is. We begin by considering a fixed connection form A on M , and its orbit
under the action of the group G of gauge transformations. This elements of
this infinite dimensional group are maps g : M → G equipped with pointwise
product g1g2(x) = g1(x)g2(x). This g(x) is neither the fibre co-ordinate g,
nor the gauge choice section σ(x). The gauge transformation g(x) acts on A
to give Ag where

Ag = g−1Ag + g−1dg. (16.128)

We now introduce an object

v(x) = g−1δg, (16.129)

and consider
A = Ag + v = g−1Ag + g−1dg + g−1δg. (16.130)

This 1-form appears to be a hybrid of the earlier quantities, but we will
see that it has to be considered as something new. The essential difference
from what has gone before is that we want v to behave like g−1δg, in that
δv = −v2, and yet to depend on x. In particular we want δ to behave as
an exterior derivative that implements an infinitesimal gauge transformation
that takes g → g + δg. Thus,

δ(g−1dg) = −(g−1δg)(g−1dg) + g−1δdg

= −(g−1δg)(g−1dg)− (g−1dg)(g−1δg) + (g−1dg)(g−1δg)− g−1dδg

= −v(g−1dg)− (g−1dg)v − dv, (16.131)
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and hence
δAg = −vAg − Agv − dv. (16.132)

Previously g−1dg ≡ 0, and so there was no “dv” in δ(gauge field).
We can define a curvature associated with A

F
def
= dtotA + A2, (16.133)

and compute

F = (d+ δ)(Ag + v) + (Ag + v)2

= dAg + dv + δAg + δv + (Ag)2 + Agv + vAg + v2

= dAg + (Ag)2

= g−1Fg, (16.134)

Stora calls (16.134) the Russian formula.
Because F is yet another gauge transform of F , we have

trF 2 = tr F2 = (d+ δ) tr

(
A(d + δ)A +

2

3
A3

)
(16.135)

and can decompose the right-hand side into terms that are simultaneously
p-foms in d and q-forms in δ.

The left hand side, tr F2 = trF 2, of (16.135) is independent of v. The
right hand side of (16.135) contains ω3(A) which we expand as

ω3(A
g + v) = ω0

3(A
g) + ω1

2(v, A
g) + ω2

1(v, A
g) + ω3

0(v). (16.136)

As in the previous section, the superscript counts the form-degree in δ, and
the subscript the form-degree in d. Explicit computation shows that

ω0
3(A

g) = tr
(
Ag dAg + 2

3
(Ag)3

)
,

ω1
2(v, A

g) = tr (v dAg),

ω2
1(v, A

g) = −tr (Agv2),

ω3
0(v) = −1

3
v3 (16.137)

For example,

ω3
0(v) = tr

(
v δv +

2

3
v3

)
= tr

(
v(−v2) +

2

3
v3

)
= −1

3
v3. (16.138)
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With this decomposition, (16.117) falls apart into the chain of descent equa-
tions

trF 2 = dω0
3(A

g),

δω0
3(A

g) = −d ω1
2(v, A

g),

δω1
2(v, A

g) = −d ω2
1(v, A

g),

δω2
1(v, A

g) = −d ω3
0(v),

δω3
0(v) = 0. (16.139)

Let us verify, for example, the penultimate equation δω2
1(v, A

g) = −d ω3
0(v).

The left-hand side is

−δ tr (Agv2) = −tr (−Av3 − vAgv2 − dv v2) = tr (dv v2), (16.140)

the terms involving Ag having cancelled via the cyclic property of the trace
and the fact that Ag anticommutes with v. The right-hand side is

−d
(
−1

3
tr v3

)
= tr (dv v2) (16.141)

as required.
The descent equations were introduced by Raymond Stora and Bruno Zu-

mino as a tool for obtaining and systematizing information about anomalies
in the quantum field theory of fermions interacting with the gauge field Ag.
The ωqp(v, A

g) are p-forms in the dxµ, and before use they are integrated over
p-cycles in M . This process is understood to produce local functionals of Ag

that remain q-forms in δg. For example, in 2n space-time dimensions, the
integral

I[g−1δg, Ag] =

∫

M

ω1
2n(g

−1δg, Ag) (16.142)

has the properties required for it to be a candidate for the anomalous vari-
ation δS[Ag] of the fermion effective action due to an infinitesimal gauge
transformation g → g + δg. In particular, when ∂M = ∅, we have

δI[g−1δg, Ag] =

∫

M

δω1
2n(v, A

g) = −
∫

M

dω2
2n−1(v, A

g) = 0. (16.143)

This is the Wess-Zumino consistency condition that δ(δS) must obey as a
consequence of δ2 = 0.
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In addition to producing a convenient solution of the Wess-Zumino condi-
tion, the descent equations provide a compact derivation of the gauge trans-
formation properties of useful differential forms. We will not seek to explain
further the physical meaning of these forms, leaving this to a quantum field
theory course.

The similarity between A and A led various authors to attempt to iden-
tify them, and in particular to identify v(x) with the g−1δg Maurer-cartan
form appearing in A. However the physical meaning of expressions such as
d(g−1δg) precludes such a simple interpretation. In evaluating dv ∼ d(g−1δg)
on a vector field ξa(x)La representing an infinitesimal gauge transformation,
we are to first to insert the field into v ∼ g−1δg to obtain the x dependent
Lie algebra element iξa(x)λ̂a, and only then to take the exterior derivative

to obtain iλ̂a∂µξ
a dxµ. The result therefore involves derivatives of the com-

ponents ξa(x). The evaluation of an ordinary differential form on a vector
field never produces derivatives of the vector components.

To understand what the Stora-Zumino forms are, imagine that we equip a
two dimensional fibre bundle E = M ×F with base-space co-ordinate x and
fibre co-ordinate y. A p = 1, q = 1 form on E will then be F = f(x, y) dx δy
for some function f(x, y). There is only one object δy, and there is no
meaning to integrating F over x to leave a 1-form in δy on E. The space
of forms introduced by Stora and Zumino, on the other hand, would contain
elements such as

J =

∫

M

j(x, y) dx δyx (16.144)

where there is a distinct δyx for each x ∈ M . If we take, for example,
j(x, y) = δ′(x− a). we evaluate J on the vector field Y (x, y)∂y as

J [Y (x, y)∂y] =

∫
δ′(x− a)Y (x, y) dx = −Y ′(a, y). (16.145)

The conclusion is that that the 1-form form field v(x) ∼ g−1δg must be
considered as the left-invariant Maurer-Cartan form on the infinite dimen-
sional Lie group G, rather than a Maurer-Cartan form on the finite dimen-
sional Lie group G. The

∫
M
ωq2n(v, A

g) are therefore elements of the coho-
mology group Hq(AG) of the G orbit of A, a rather complicated object. For
a thorough discussion see: J. A. de Azcárraga, J. M. Izquierdo, Lie groups,
Lie Algebras, Cohomology and some Applications in Physics, published by
Cambridge University Press.



Chapter 17

Complex Analysis I

Although this chapter is called complex analysis, we will try to develop
the subject as complex calculus — meaning that we shall follow the calculus
course tradition of telling you how to do things, and explaining why theorems
are true, with arguments that would not pass for rigorous proofs in a course
on real analysis. We try, however, to tell no lies.

This chapter will focus on the basic ideas that need to be understood
before we apply complex methods to evaluating integrals, analysing data,
and solving differential equations.

17.1 Cauchy-Riemann equations

We focus on functions, f(z), of a single complex variable, z, where z = x+iy.
We can think of these as being complex valued functions of two real variables,
x and y. For example

f(z) = sin z ≡ sin(x+ iy) = sin x cos iy + cos x sin iy

= sin x cosh y + i cos x sinh y. (17.1)

Here, we have used

sin x =
1

2i

(
eix − e−ix

)
, sinh x =

1

2

(
ex − e−x

)
,

cos x =
1

2

(
eix + e−ix

)
, cosh x =

1

2

(
ex + e−x

)
,

681
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to make the connection between the circular and hyperbolic functions. We
shall often write f(z) = u+ iv, where u and v are real functions of x and y.
In the present example, u = sin x cosh y and v = cos x sinh y.

If all four partial derivatives

∂u

∂x
,

∂v

∂y
,

∂v

∂x
,

∂u

∂y
, (17.2)

exist and are continuous then f = u + iv is differentiable as a complex-
valued function of two real variables. This means that we can approximate
the variation in f as

δf =
∂f

∂x
δx+

∂f

∂y
δy + · · · , (17.3)

where the dots represent a remainder that goes to zero faster than linearly
as δx, δy go to zero. We now regroup the terms, setting δz = δx + iδy,
δz = δx− iδy, so that

δf =
∂f

∂z
δz +

∂f

∂z
δz + · · · , (17.4)

where we have defined

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
,

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (17.5)

Now our function f(z) does not depend on z, and so it must satisfy

∂f

∂z
= 0. (17.6)

Thus, with f = u+ iv,

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv) = 0 (17.7)

i.e. (
∂u

∂x
− ∂v

∂y

)
+ i

(
∂v

∂x
+
∂u

∂y

)
= 0. (17.8)
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Since the vanishing of a complex number requires the real and imaginary
parts to be separately zero, this implies that

∂u

∂x
= +

∂v

∂y
,

∂v

∂x
= −∂u

∂y
. (17.9)

These two relations between u and v are known as the Cauchy-Riemann
equations, although they were probably discovered by Gauss. If our continu-
ous partial derivatives satisfy the Cauchy-Riemann equations at z0 = x0 +iy0

then we say that the function is complex differentiable (or just differentiable)
at that point. By taking δz = z − z0, we have

δf
def
= f(z)− f(z0) =

∂f

∂z
(z − z0) + · · · , (17.10)

where the remainder, represented by the dots, tends to zero faster than |z−z0|
as z → z0. This validity of this linear approximation to the variation in f(z)
is equivalent to the statement that the ratio

f(z)− f(z0)

z − z0
(17.11)

tends to a definite limit as z → z0 from any direction. It is the direction-
independence of this limit that provides a proper meaning to the phrase
“does not depend on z.” Since we are not allowing dependence on z̄, it is
natural to drop the partial derivative signs and write the limit as an ordinary
derivative

lim
z→z0

f(z)− f(z0)

z − z0

=
df

dz
. (17.12)

We will also use Newton’s fluxion notation

df

dz
= f ′(z). (17.13)

The complex derivative obeys exactly the same calculus rules as ordinary
real derivatives:

d

dz
zn = nzn−1,

d

dz
sin z = cos z,

d

dz
(fg) =

df

dz
g + f

dg

dz
, etc. (17.14)
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If the function is differentiable at all points in an arcwise-connected1 open
set, or domain, D, the function is said to be analytic there. The words regular
or holomorphic are also used.

17.1.1 Conjugate pairs

The functions u and v comprising the real and imaginary parts of an analytic
function are said to form a pair of harmonic conjugate functions. Such pairs
have many properties that are useful for solving physical problems.

From the Cauchy-Riemann equations we deduce that
(
∂2

∂x2
+

∂2

∂y2

)
u = 0,

(
∂2

∂x2
+

∂2

∂y2

)
v = 0. (17.15)

and so both the real and imaginary parts of f(z) are automatically harmonic
functions of x, y.

Further, from the Cauchy-Riemann conditions, we deduce that

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
= 0. (17.16)

This means that ∇u · ∇v = 0. We conclude that, provided that neither
of these gradients vanishes, the pair of curves u = const. and v = const.
intersect at right angles. If we regard u as the potential φ solving some
electrostatics problem ∇2φ = 0, then the curves v = const. are the associated
field lines.

Another application is to fluid mechanics. If v is the velocity field of an
irrotational (curlv = 0) flow, then we can (perhaps only locally) write the
flow field as a gradient

vx = ∂xφ,

vy = ∂yφ, (17.17)

where φ is a velocity potential . If the flow is incompressible (divv = 0), then
we can (locally) write it as a curl

vx = ∂yχ,

vy = −∂xχ, (17.18)

1Arcwise connected means that any two points in D can be joined by a continuous path
that lies wholely within D.
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where χ is a stream function. The curves χ = const. are the flow streamlines.
If the flow is both irrotational and incompressible, then we may use either φ
or χ to represent the flow, and, since the two representations must agree, we
have

∂xφ = +∂yχ,

∂yφ = −∂xχ. (17.19)

Thus φ and χ are harmonic conjugates, and so the complex combination
Φ = φ+ iχ is an analytic function called the complex stream function.

A conjugate v exists (at least locally) for any harmonic function u. To
see why, assume first that we have a (u, v) pair obeying the Cauchy-Riemann
equations. Then we can write

dv =
∂v

∂x
dx +

∂v

∂y
dy

= −∂u
∂y
dx+

∂u

∂x
dy. (17.20)

This observation suggests that if we are given a harmonic function u in some
simply connected domain D, we can define a v by setting

v(z) =

∫ z

z0

(
−∂u
∂y
dx +

∂u

∂x
dy

)
+ v(z0), (17.21)

for some real constant v(z0) and point z0. The integral does not depend on
choice of path from z0 to z, and so v(z) is well defined. The path indepen-
dence comes about because the curl

∂

∂y

(
−∂u
∂y

)
− ∂

∂x

(
∂u

∂x

)
= −∇2u (17.22)

vanishes, and because in a simply connected domain all paths connecting the
same endpoints are homologous.

We now verify that this candidate v(z) satisfies the Cauchy-Riemann
realtions. The path independence, allows us to make our final approach to
z = x+ iy along a straight line segment lying on either the x or y axis. If we
approach along the x axis, we have

v(z) =

∫ x(
−∂u
∂y

)
dx′ + rest of integral, (17.23)
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and may use
d

dx

∫ x

f(x′, y) dx′ = f(x, y) (17.24)

to see that
∂v

∂x
= −∂u

∂y
(17.25)

at (x, y). If, instead, we approach along the y axis, we may similarly compute

∂v

∂y
=
∂u

∂x
. (17.26)

Thus v(z) does indeed obey the Cauchy-Riemann equations.
Because of the utility the harmonic conjugate it is worth giving a practical

recipe for finding it, and so obtaining f(z) when given only its real part
u(x, y). The method we give below is one we learned from John d’Angelo.
It is more efficient than those given in most textbooks. We first observe that
if f is a function of z only, then f(z) depends only on z. We can therefore
define a function f of z by setting f(z) = f(z). Now

1

2

(
f(z) + f(z)

)
= u(x, y). (17.27)

Set

x =
1

2
(z + z), y =

1

2i
(z − z), (17.28)

so

u

(
1

2
(z + z),

1

2i
(z − z)

)
=

1

2

(
f(z) + f(z)

)
. (17.29)

Now set z = 0, while keeping z fixed! Thus

f(z) + f(0) = 2u
(z

2
,
z

2i

)
. (17.30)

The function f is not completely determined of course, because we can always
add a constant to v, and so we have the result

f(z) = 2u
(z

2
,
z

2i

)
+ iC, C ∈ R. (17.31)

For example, let u = x2 − y2. We find

f(z) + f(0) = 2
(z

2

)2

− 2
( z

2i

)2

= z2, (17.32)
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or

f(z) = z2 + iC, C ∈ R. (17.33)

The business of setting setting z = 0, while keeping z fixed, may feel like
a dirty trick, but it can be justified by the (as yet to be proved) fact that f
has a convergent expansion as a power series in z = x+ iy. In this expansion
it is meaningful to let x and y themselves be complex, and so allow z and
z to become two independent complex variables. Anyway, you can always
check ex post facto that your answer is correct.

17.1.2 Conformal mapping

An analytic function w = f(z) maps subsets of its domain of definition in
the “z” plane on to subsets in the “w” plane. These maps are often useful
for solving problems in two dimensional electrostatics or fluid flow. Their
simplest property is geometrical: such maps are conformal .

Z

Z

10

1−Z

Z
1

Z

1−Z
1

1−Z

Z−1
Z

Figure 17.1: An illustration of conformal mapping. The unshaded “triangle”
marked z is mapped into the other five unshaded regions by the functions
labeling them. Observe that although the regions are distorted, the angles of
the “triangle” are preserved by the maps (with the exception of those corners
that get mapped to infinity).

Suppose that the derivative of f(z) at a point z0 is non-zero. Then, for z
near z0 we have

f(z)− f(z0) ≈ A(z − z0), (17.34)
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where

A =
df

dz

∣∣∣∣
z0

. (17.35)

If you think about the geometric interpretation of complex multiplication
(multiply the magnitudes, add the arguments) you will see that the “f”
image of a small neighbourhood of z0 is stretched by a factor |A|, and rotated
through an angle argA — but relative angles are not altered. The map z 7→
f(z) = w is therefore isogonal . Our map also preserves orientation (the sense
of rotation of the relative angle) and these two properties, isogonality and
orientation-preservation, are what make the map conformal.2 The conformal
property fails at points where the derivative vanishes or becomes infinite.

If we can find a conformal map z (≡ x + iy) 7→ w (≡ u + iv) of some
domain D to another D′ then a function f(z) that solves a potential theory
problem (a Dirichlet boundary-value problem, for example) in D will lead to
f(z(w)) solving an analogous problem in D′.

Consider, for example, the map z 7→ w = z + ez. This map takes the
strip −∞ < x <∞, −π ≤ y ≤ π to the entire complex plane with cuts from
−∞+ iπ to −1 + iπ and from −∞− iπ to −1− iπ. The cuts occur because
the images of the lines y = ±π get folded back on themselves at w = −1± iπ,
where the derivative of w(z) vanishes. (See figure 17.2)

In this case, the imaginary part of the function f(z) = x + iy trivially
solves the Dirichlet problem ∇2

x,y y = 0 in the infinite strip, with y = π
on the upper boundary and y = −π on the lower boundary. The function
y(u, v), now quite non-trivially, solves ∇2

u,v y = 0 in the entire w plane, with
y = π on the half-line running from −∞+ iπ to −1 + iπ, and y = −π on the
half-line running from −∞− iπ to −1− iπ. We may regard the images of
the lines y = const. (solid curves) as being the streamlines of an irrotational
and incompressible flow out of the end of a tube into an infinite region, or as
the equipotentials near the edge of a pair of capacitor plates. In the latter
case, the images of the lines x = const. (dotted curves) are the corresponding
field-lines
Example: The Joukowski map. This map is famous in the history of aero-
nautics because it can be used to map the exterior of a circle to the exterior
of an aerofoil-shaped region. We can use the Milne-Thomson circle theorem
(see 17.3.2) to find the streamlines for the flow past a circle in the z plane,

2If f were a function of z only, then the map would still be isogonal, but would reverse
the orientation. We call such maps antiholomorphic or anti-conformal .
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Figure 17.2: Image of part of the strip −π ≤ y ≤ π, −∞ < x < ∞ under
the map z 7→ w = z + ez.
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and then use Joukowski’s transformation,

w = f(z) =
1

2

(
z +

1

z

)
, (17.36)

to map this simple flow to the flow past the aerofoil. To produce an aerofoil
shape, the circle must go through the point z = 1, where the derivative of f
vanishes, and the image of this point becomes the sharp trailing edge of the
aerofoil.

The Riemann mapping theorem

There are tables of conformal maps for D, D′ pairs, but an underlying prin-
ciple is provided by the Riemann mapping theorem:

Theorem: The interior of any simply connected domain D in C whose bound-
ary consists of more that one point can be mapped conformally one-to-one
and onto the interior of the unit circle. It is possible to choose an arbitrary
interior point w0 of D and map it to the origin, and to take an arbitrary
direction through w0 and make it the direction of the real axis. With these
two choices the mapping is unique.

fD
w0

w

O

z

Figure 17.3: The Riemann mapping theorem.

This theorem was first stated in Riemann’s PhD thesis in 1851. He re-
garded it as “obvious” for the reason that we will give as a physical “proof.”
Riemann’s argument is not rigorous, however, and it was not until 1912 that
a real proof was obtained by Constantin Carathéodory. A proof that is both
shorter and more in spirit of Riemann’s ideas was given by Leopold Fejér
and Frigyes Riesz in 1922.
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For the physical “proof,” observe that in the function

− 1

2π
ln z = − 1

2π
{ln |z|+ iθ} , (17.37)

the real part φ = − 1
2π

ln |z| is the potential of a unit charge at the origin,
and with the additive constant chosen so that φ = 0 on the circle |z| = 1.
Now imagine that we have solved the two-dimensional electrostatics problem
of finding the potential for a unit charge located at w0 ∈ D, also with the
boundary of D being held at zero potential. We have

∇2φ1 = −δ2(w − w0), φ1 = 0 on ∂D. (17.38)

Now find the φ2 that is harmonically conjugate to φ1. Set

φ1 + iφ2 = Φ(w) = − 1

2π
ln(zeiα) (17.39)

where α is a real constant. We see that the transformation w 7→ z, or

z = e−iαe−2πΦ(w), (17.40)

does the job of mapping the interior of D into the interior of the unit circle,
and the boundary of D to the boundary of the unit circle. Note how our
freedom to choose the constant α is what allows us to “take an arbitrary
direction through w0 and make it the direction of the real axis.”
Example: To find the map that takes the upper half-plane into the unit
circle, with the point z = i mapping to the origin, we use the method of
images to solve for the complex potential of a unit charge at w = i:

φ1 + iφ2 = − 1

2π
(ln(w − i)− ln(w + i))

= − 1

2π
ln(eiαz).

Therefore

z = e−iα
w − i
w + i

. (17.41)

We immediately verify that that this works: we have |z| = 1 when w is real,
and z = 0 at w = i.

The difficulty with the physical argument is that it is not clear that a so-
lution to the point-charge electrostatics problem exists. In three dimensions,
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for example, there is no solution when the boundary has a sharp inward
directed spike. (We cannot physically realize such a situation either: the
electric field becomes unboundedly large near the tip of a spike, and bound-
ary charge will leak off and neutralize the point charge.) There might well
be analogous difficulties in two dimensions if the boundary of D is patho-
logical. However, the fact that there is a proof of the Riemann mapping
theorem shows that the two-dimensional electrostatics problem does always
have a solution, at least in the interior of D — even if the boundary is an
infinite-length fractal. However, unless ∂D is reasonably smooth the result-
ing Riemann map cannot be continuously extended to the boundary. When
the boundary of D is a smooth closed curve, then the the boundary of D
will map one-to-one and continuously onto the boundary of the unit circle.

Exercise 17.1: Van der Pauw’s Theorem.3 This problem explains a practical
method of for determining the conductivity σ of a material, given a sample in
the form of of a wafer of uniform thickness d, but of irregular shape. In practice
at the Phillips company in Eindhoven, this was a wafer of semiconductor cut
from an unmachined boule.

A

B

D

C

Figure 17.4: A thin semiconductor wafer with attached leads.

We attach leads to point contacts A,B,C,D, taken in anticlockwise order, on
the periphery of the wafer and drive a current IAB from A to B. We record the
potential difference VD − VC and so find RAB,DC = (VD − VC)/IAB . Similarly
we measure RBC,AD. The current flow in the wafer is assumed to be two
dimensional, and to obey

J = −(σd)∇V, ∇ · J = 0,

3L. J. Van der Pauw, Phillips Research Reps . 13 (1958) 1. See also A. M. Thompson,
D. G. Lampard, Nature 177 (1956) 888, and D. G. Lampard. Proc. Inst. Elec. Eng. C.
104 (1957) 271, for the “Calculable Capacitor.”
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and n · J = 0 at the boundary (except at the current source and drain). The
potential V is therefore harmonic, with Neumann boundary conditions.

Van der Pauw claims that

exp{−πσdRAB,DC}+ exp{−πσdRBC,AD} = 1.

From this σd can be found numerically.

a) First show that Van der Pauw’s claim is true if the wafer were the entire
upper half-plane with A,B,C,D on the real axis with xA < xB < xC <
xD.

b) Next, taking care to consider the transformation of the current source
terms and the Neumann boundary conditions, show that the claim is
invariant under conformal maps, and, by mapping the wafer to the upper
half-plane, show that it is true in general.

17.2 Complex integration: Cauchy and Stokes

In this section we will define the integral of an analytic function, and make
contact with the exterior calculus from chapters 11-13. The most obvious
difference between the real and complex integral is that in evaluating the
definite integral of a function in the complex plane we must specify the path
along which we integrate. When this path of integration is the boundary of
a region, it is often called a contour from the use of the word in the graphic
arts to describe the outline of something. The integrals themselves are then
called contour integrals.

17.2.1 The complex integral

The complex integral ∫

Γ

f(z)dz (17.42)

over a path Γ may be defined by expanding out the real and imaginary parts
∫

Γ

f(z)dz
def
=

∫

Γ

(u+iv)(dx+idy) =

∫

Γ

(udx−vdy)+i
∫

Γ

(vdx+udy). (17.43)

and treating the two integrals on the right hand side as standard vector-
calculus line-integrals of the form

∫
v ·dr, one with v→ (u,−v) and and one

with v → (v, u).
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0
z1

ξ1 ξ2 2z z
N

N−1 ξ
N

Γ

zza= =b a b

Figure 17.5: A chain approximation to the curve Γ.

The complex integral can also be constructed as the limit of a Riemann sum
in a manner parallel to the definition of the real-variable Riemann integral
of elementary calculus. Replace the path Γ with a chain composed of of N
line-segments z0-to-z1, z1-to-z2, all the way to zN−1-to-zN . Now let ξm lie
on the line segment joining zm−1 and zm. Then the integral

∫
Γ
f(z)dz is the

limit of the (Riemann) sum

S =

N∑

m=1

f(ξm)(zm − zm−1) (17.44)

as N gets large and all the |zm − zm−1| → 0. For this definition to make
sense and be useful, the limit must be independent of both how we chop up
the curve and how we select the points ξm. This will be the case when the
integration path is smooth and the function being integrated is continuous.

The Riemann-sum definition of the integral leads to a useful inequality:
combining the triangle inequality |a + b| ≤ |a| + |b| with |ab| = |a| |b| we
deduce that

∣∣∣∣∣

N∑

m=1

f(ξm)(zm − zm−1)

∣∣∣∣∣ ≤
N∑

m=1

|f(ξm)(zm − zm−1)|

=

N∑

m=1

|f(ξm)| |(zm − zm−1)|. (17.45)

For sufficiently smooth curves the last sum converges to the real integral∫
Γ
|f(z)| |dz|, and we deduce that

∣∣∣∣
∫

Γ

f(z) dz

∣∣∣∣ ≤
∫

Γ

|f(z)| |dz|. (17.46)
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For curves Γ that are smooth enough to have a well-defined length |Γ|, we
will have

∫
Γ
|dz| = |Γ|. From this identification we conclude that if |f | ≤ M

on Γ, then we have the Darboux inequality
∣∣∣∣
∫

Γ

f(z) dz

∣∣∣∣ ≤M |Γ|. (17.47)

We shall find many uses for this inequality.
The Riemann sum definition also makes it clear that if f(z) is the deriva-

tive of another analytic function g(z), i.e.

f(z) =
dg

dz
, (17.48)

then, for Γ a smooth path from z = a to z = b, we have
∫

Γ

f(z)dz = g(b)− g(a). (17.49)

This claim is established by approximating f(ξm) ≈ (g(zm)−g(zm−1))/(zm−
zm−1), and observing that the resulting Riemann sum

N∑

m=1

(
g(zm)− g(zm−1)

)
(17.50)

telescopes. The approximation to the derivative will become accurate in the
limit |zm−zm−1| → 0. Thus, when f(z) is the derivative of another function,
the integral is independent of the route that Γ takes from a to b.

We shall see that any analytic function is (at least locally) the derivative
of another analytic function, and so this path independence holds generally
— provided that we do not try to move the integration contour over a place
where f ceases to be differentiable. This is the essence of what is known as
Cauchy’s Theorem — although, as with much of complex analysis, the result
was known to Gauss.

17.2.2 Cauchy’s theorem

Before we state and prove Cauchy’s theorem, we must introduce an orien-
tation convention and some traditional notation. Recall that a p-chain is a
finite formal sum of p-dimensional oriented surfaces or curves, and that a
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p-cycle is a p-chain Γ whose boundary vanishes: ∂Γ = 0. A 1-cycle that con-
sists of only a single connected component is a closed curve. We will mostly
consider integrals over simple closed curves — these being curves that do not
self intersect — or 1-cycles consisting of finite formal sums of such curves.
The orientation of a simple closed curve can be described by the sense, clock-
wise or anticlockwise, in which we traverse it. We will adopt the convention
that a positively oriented curve is one such that the integration is performed
in a anticlockwise direction. The integral over a chain Γ of oriented simple
closed curves will be denoted by the symbol

∮
Γ
f dz.

We now establish Cauchy’s theorem by relating it to our previous work
with exterior derivatives: Suppose that f is analytic with domain D, so that
∂zf = 0 within D. We therefore have that the exterior derivative of f is

df = ∂zf dz + ∂zf dz = ∂zf dz. (17.51)

Now suppose that the simple closed curve Γ is the boundary of a region
Ω ⊂ D. We can exploit Stokes’ theorem to deduce that

∮

Γ=∂Ω

f(z)dz =

∫

Ω

d(f(z)dz) =

∫

Ω

(∂zf) dz ∧ dz = 0. (17.52)

The last integral is zero because dz ∧ dz = 0. We may state our result as:
Theorem (Cauchy, in modern language): The integral of an analytic function
over a 1-cycle that is homologous to zero vanishes.

The zero result is only guaranteed if the function f is analytic throughout
the region Ω. For example, if Γ is the unit circle z = eiθ then

∮

Γ

(
1

z

)
dz =

∫ 2π

0

e−iθ d
(
eiθ
)

= i

∫ 2π

0

dθ = 2πi. (17.53)

Cauchy’s theorem is not applicable because 1/z is singular , i.e. not differen-
tiable, at z = 0. The formula (17.53) will hold for Γ any contour homologous
to the unit circle in C \ 0, the complex plane punctured by the removal of
the point z = 0. Thus ∮

Γ

(
1

z

)
dz = 2πi (17.54)

for any contour Γ that encloses the origin. We can deduce a rather remarkable
formula from (17.54): Writing Γ = ∂Ω with anticlockwise orientation, we use
Stokes’ theorem to obtain

∮

∂Ω

(
1

z

)
dz =

∫

Ω

∂z

(
1

z

)
dz ∧ dz =

{
2πi, 0 ∈ Ω,
0, 0 /∈ Ω.

(17.55)
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Since dz ∧ dz = 2idx ∧ dy, we have established that

∂z

(
1

z

)
= πδ(x)δ(y). (17.56)

This rather cryptic formula encodes one of the most useful results in math-
ematics.

Perhaps perversely, functions that are more singular than 1/z have van-
ishing integrals about their singularities. With Γ again the unit circle, we
have

∮

Γ

(
1

z2

)
dz =

∫ 2π

0

e−2iθ d
(
eiθ
)

= i

∫ 2π

0

e−iθ dθ = 0. (17.57)

The same is true for all higher integer powers:
∮

Γ

(
1

zn

)
dz = 0, n ≥ 2. (17.58)

We can understand this vanishing in another way, by evaluating the in-
tegral as
∮

Γ

(
1

zn

)
dz =

∮

Γ

d

dz

(
− 1

n− 1

1

zn−1

)
dz =

[
− 1

n− 1

1

zn−1

]

Γ

= 0, n 6= 1.

(17.59)
Here, the notation [A]Γ means the difference in the value of A at two ends
of the integration path Γ. For a closed curve the difference is zero because
the two ends are at the same point. This approach reinforces the fact that
the complex integral can be computed from the “anti-derivative” in the same
way as the real-variable integral. We also see why 1/z is special. It is the
derivative of ln z = ln |z| + i arg z, and ln z is not really a function, as it is
multivalued. In evaluating [ln z]Γ we must follow the continuous evolution
of arg z as we traverse the contour. As the origin is within the contour, this
angle increases by 2π, and so

[ln z]Γ = [i arg z]Γ = i
(
arg e2πi − arg e0i

)
= 2πi. (17.60)

Exercise 17.2: Suppose f(z) is analytic in a simply-connected domain D, and
z0 ∈ D. Set g(z) =

∫ z
z0
f(z) dz along some path in D from z0 to z. Use the

path-independence of the integral to compute the derivative of g(z) and show
that

f(z) =
dg

dz
.
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This confirms our earlier claim that any analytic function is the derivative of
some other analytic function.

Exercise 17.3:The “D-bar” problem: Suppose we are given a simply-connected
domain Ω, and a function f(z, z) defined on it, and wish to find a function
F (z, z) such that

∂F (z, z)

∂z
= f(z, z), (z, z) ∈ Ω.

Use (17.56) to argue formally that the general solution is

F (ζ, ζ̄) = − 1

π

∫

Ω

f(z, z)

z − ζ dx ∧ dy + g(ζ),

where g(ζ) is an arbitrary analytic function. This result can be shown to be
correct by more rigorous reasoning.

17.2.3 The residue theorem

The essential tool for computations with complex integrals is provided by
the residue theorem. With the aid of this theorem, the evaluation of contour
integrals becomes easy. All one has to do is identify points at which the
function being integrated blows up, and examine just how it blows up.

If, near the point zi, the function can be written

f(z) =

{
a

(i)
N

(z − zi)N
+ · · ·+ a

(i)
2

(z − zi)2
+

a
(i)
1

(z − zi)

}
g(i)(z), (17.61)

where g(i)(z) is analytic and non-zero at zi, then f(z) has a pole of order N at
zi. If N = 1 then f(z) is said to have a simple pole at zi. We can normalize

g(i)(z) so that g(i)(zi) = 1, and then the coefficient, a
(i)
1 , of 1/(z − zi) is

called the residue of the pole at zi. The coefficients of the more singular
terms do not influence the result of the integral, but N must be finite for the
singularity to be called a pole.
Theorem: Let the function f(z) be analytic within and on the boundary
Γ = ∂D of a simply connected domain D, with the exception of finite number
of points at which f(z) has poles. Then

∮

Γ

f(z) dz =
∑

poles ∈ D
2πi (residue at pole), (17.62)
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the integral being traversed in the positive (anticlockwise) sense.
We prove the residue theorem by drawing small circles Ci about each

singular point zi in D.

z3

z2

z1
Γ

D

1C

3

C

C

2

Ω

Figure 17.6: Circles for the residue theorem.

We now assert that
∮

Γ

f(z) dz =
∑

i

∮

Ci

f(z) dz, (17.63)

because the 1-cycle

C ≡ Γ−
∑

i

Ci = ∂Ω (17.64)

is the boundary of a region Ω in which f is analytic, and hence C is homol-
ogous to zero. If we make the radius Ri of the circle Ci sufficiently small, we
may replace each g(i)(z) by its limit g(i)(zi) = 1, and so take

f(z) →
{

a
(i)
1

(z − zi)
+

a
(i)
2

(z − zi)2
+ · · ·+ a

(i)
N

(z − zi)N

}
g(i)(zi)

=
a

(i)
1

(z − zi)
+

a
(i)
2

(z − zi)2
+ · · ·+ a

(i)
N

(z − zi)N
, (17.65)

on Ci. We then evaluate the integral over Ci by using our previous results
to get ∮

Ci

f(z) dz = 2πia
(i)
1 . (17.66)
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The integral around Γ is therefore equal to 2πi
∑

i a
(i)
1 .

The restriction to contours containing only finitely many poles arises for
two reasons: Firstly, with infinitely many poles, the sum over i might not
converge; secondly, there may be a point whose every neighbourhood contains
infinitely many of the poles, and there our construction of drawing circles
around each individual pole would not be possible.

Exercise 17.4: Poisson’s Formula. The function f(z) is analytic in |z| < R ′.
Prove that if |a| < R < R′,

f(a) =
1

2πi

∮

|z|=R

R2 − āa
(z − a)(R2 − āz)f(z)dz.

Deduce that, for 0 < r < R,

f(reiθ) =
1

2π

∫ 2π

0

R2 − r2
R2 − 2Rr cos(θ − φ) + r2

f(Reiφ)dφ.

Show that this formula solves the boundary-value problem for Laplace’s equa-
tion in the disc |z| < R.

Exercise 17.5: Bergman Kernel. The Hilbert space of analytic functions on a
domain D with inner product

〈f, g〉 =

∫

D
f̄ g dxdy

is called the Bergman4 space of D.

a) Suppose that ϕn(z), n = 0, 1, 2, . . ., are a complete set of orthonormal
functions on the Bergman space. Show that

K(ζ, z) =
∞∑

m=0

ϕm(ζ)ϕm(z).

has the property that

g(ζ) =

∫∫

D
K(ζ, z)g(z) dxdy.

4This space should not be confused with Bargmann-Fock space which is the space
analytic functions on the entirety of C with inner product

〈f, g〉 =
∫

C

e−|z|2 f̄g d2z.

Stefan Bergman and Valentine Bargmann are two different people.
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for any function g analytic in D. Thus K(ζ, z) plays the role of the delta
function on the space of analytic functions on D. This object is called
the reproducing or Bergman kernel . By taking g(z) = ϕn(z), show that
it is the unique integral kernel with the reproducing property.

b) Consider the case of D being the unit circle. Use the Gramm-Schmidt
procedure to construct an orthonormal set from the functions zn, n =
0, 1, 2, . . .. Use the result of part a) to conjecture (because we have not
proved that the set is complete) that, for the unit circle,

K(ζ, z) =
1

π

1

(1− ζz̄)2 .

c) For any smooth, complex valued, function g defined on a domain D and
its boundary, use Stokes’ theorem to show that

∫∫

D
∂zg(z, z)dxdy =

1

2i

∮

∂D
g(z, z)dz.

Use this to verify that this the K(ζ, z) you constructed in part b) is
indeed a (and hence “the”) reproducing kernel.

d) Now suppose that D is a simply connected domain whose boundary ∂D
is a smooth curve. We know from the Riemann mapping theorem that
there exists an analytic function f(z) = f(z; ζ) that maps D onto the
interior of the unit circle in such a way that f(ζ) = 0 and f ′(ζ) is real
and non-zero. Show that if we set K(ζ, z) = f ′(z)f ′(ζ)/π, then, by using
part c) together with the residue theorem to evaluate the integral over
the boundary, we have

g(ζ) =

∫∫

D
K(ζ, z)g(z) dxdy.

This K(ζ, z) must therefore be the reproducing kernel. We see that if we
know K we can recover the map f from

f ′(z; ζ) =

√
π

K(ζ, ζ)
K(z, ζ).

e) Apply the formula from part d) to the unit circle, and so deduce that

f(z; ζ) =
z − ζ
1− ζ̄z

is the unique function that maps the unit circle onto itself with the point
ζ mapping to the origin and with the horizontal direction through ζ
remaining horizontal.
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17.3 Applications

We now know enough about complex variables to work through some inter-
esting applications, including the mechanism by which an aeroplane flies.

17.3.1 Two-dimensional vector calculus

It is often convenient to use complex co-ordinates for vectors and tensors. In
these co-ordinates the standard metric on R2 becomes

“ds2” = dx⊗ dx+ dy ⊗ dy
= dz ⊗ dz
= gzzdz ⊗ dz + gzzdz ⊗ dz + gzzdz ⊗ dz + gzzdz ⊗ dz,(17.67)

so the complex co-ordinate components of the metric tensor are gzz = gzz = 0,
gzz = gzz = 1

2
. The inverse metric tensor is gzz = gzz = 2, gzz = gzz = 0.

In these co-ordinates the Laplacian is

∇2 = gij∂2
ij = 2(∂z∂z + ∂z∂z). (17.68)

When f has singularities, it is not safe to assume that ∂z∂zf = ∂z∂zf . For
example, from

∂z

(
1

z

)
= πδ2(x, y), (17.69)

we deduce that
∂z∂z ln z = πδ2(x, y). (17.70)

When we evaluate the derivatives in the opposite order, however, we have

∂z∂z ln z = 0. (17.71)

To understand the source of the non-commutativity, take real and imaginary
parts of these last two equations. Write ln z = ln |z| + iθ, where θ = arg z,
and add and subtract. We find

∇2 ln |z| = 2πδ2(x, y),

(∂x∂y − ∂y∂x)θ = 2πδ2(x, y). (17.72)

The first of these shows that 1
2π

ln |z| is the Green function for the Laplace
operator, and the second reveals that the vector field ∇θ is singular, having
a delta function “curl” at the origin.
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If we have a vector field v with contravariant components (vx, vy) and (nu-
merically equal) covariant components (vx, vy) then the covariant components
in the complex co-ordinate system are vz = 1

2
(vx− ivy) and vz = 1

2
(vx + ivy).

This can be obtained by a using the change of co-ordinates rule, but a quicker
route is to observe that

v · dr = vxdx+ vydy = vzdz + vzdz. (17.73)

Now

∂zvz =
1

4
(∂xvx + ∂yvy) + i

1

4
(∂yvx − ∂xvy). (17.74)

Thus the statement that ∂zvz = 0 is equivalent to the vector field v being
both solenoidal (incompressible) and irrotational. This can also be expressed
in form language by setting η = vz dz and saying that dη = 0 means that the
corresponding vector field is both solenoidal and irrotational.

17.3.2 Milne-Thomson circle theorem

As we mentioned earlier, we can describe an irrotational and incompressible
fluid motion either by a velocity potential

vx = ∂xφ, vy = ∂yφ, (17.75)

where v is automatically irrotational but incompressibilty requires ∇2φ = 0,
or by a stream function

vx = ∂yχ, vy = −∂xχ, (17.76)

where v is automatically incompressible but irrotationality requires ∇2χ = 0.
We can combine these into a single complex stream function Φ = φ + iχ
which, for an irrotational incompressible flow, satisfies the Cauchy-Riemann
equations and is therefore an analytic function of z. We see that

2vz =
dΦ

dz
, (17.77)

φ and χ making equal contributions.
The Milne-Thomson theorem says that if Φ is the complex stream func-

tion for a flow in unobstructed space, then

Φ̃ = Φ(z) + Φ

(
a2

z

)
(17.78)
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is the stream function after the cylindrical obstacle |z| = a is inserted into
the flow. Here Φ(z) denotes the analytic function defined by Φ(z) = Φ(z).
To see that this works, observe that a2/z = z on the curve |z| = a, and so on

this curve Im Φ̃ = χ = 0. The surface of the cylinder has therefore become
a streamline, and so the flow does not penetrate into the cylinder. If the
original flow is created by souces and sinks exterior to |z| = a, which will be
singularities of Φ, the additional term has singularites that lie only within
|z| = a. These will be the “images” of the sources and sinks in the sense of
the “method of images.”
Example: A uniform flow with speed U in the x direction has Φ(z) = Uz.
Inserting a cylinder makes this

Φ̃(z) = U

(
z +

a2

z

)
. (17.79)

Because vz is the derivative of this, we see that the perturbing effect of the
obstacle on the velocity field falls off as the square of the distance from the
cylinder. This is a general result for obstructed flows.

-2 -1 0 1 2
-2

-1

0

1

2

Figure 17.7: The real and imaginary parts of the function z+z−1 provide the
velocity potentials and streamlines for irrotational incompressible flow past
a cylinder of unit radius.

17.3.3 Blasius and Kutta-Joukowski theorems

We now derive the celebrated result, discovered independently by Martin
Wilhelm Kutta (1902) and Nikolai Egorovich Joukowski (1906), that the
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lift per unit span of an aircraft wing is equal to the product of the density
of the air ρ, the circulation κ ≡

∮
v · dr about the wing, and the forward

velocity U of the wing through the air. Their theory treats the air as being
incompressible—a good approximation unless the flow-velocities approach
the speed of sound—and assumes that the wing is long enough that the flow
can be regarded as being two dimensional.

U
F

Figure 17.8: Flow past an aerofoil.

Begin by recalling how the momentum flux tensor

Tij = ρvivj + gijP (17.80)

enters fluid mechanics. In cartesian co-ordinates, and in the presence of an
external body force fi acting on the fluid, the Euler equation of motion for
the fluid is

ρ(∂tvi + vj∂jvi) = −∂iP + fi. (17.81)

Here P is the pressure and we are distinguishing between co and contravariant
components, although at the moment gij ≡ δij. We can combine Euler’s
equation with the law of mass conservation,

∂tρ+ ∂i(ρvi) = 0, (17.82)

to obtain
∂t(ρvi) + ∂j(ρvjvi + gijP ) = fi. (17.83)

This momemtum-tracking equation shows that the external force acts as a
source of momentum, and that for steady flow fi is equal to the divergence
of the momentum flux tensor:

fi = ∂lTli = gkl∂kTli. (17.84)
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As we are interested in steady, irrotational motion with uniform density we
may use Bernoulli’s theorem, P + 1

2
ρ|v|2 = const., to substitute − 1

2
ρ|v|2 in

place of P . (The constant will not affect the momentum flux.) With this
substitution Tij becomes a traceless symmetric tensor:

Tij = ρ(vivj −
1

2
gij|v|2). (17.85)

Using vz = 1
2
(vx − ivy) and

Tzz =
∂xi

∂z

∂xj

∂z
Tij, (17.86)

together with

x ≡ x1 =
1

2
(z + z), y ≡ x2 =

1

2i
(z − z) (17.87)

we find

T ≡ Tzz =
1

4
(Txx − Tyy − 2iTxy) = ρ(vz)

2. (17.88)

This is the only component of Tij that we will need to consider. Tzz is simply
T , whereas Tzz = 0 = Tzz because Tij is traceless.

In our complex co-ordinates, the equation

fi = gkl∂kTli (17.89)

reads
fz = gzz∂zTzz + gzz∂zTzz = 2∂zT. (17.90)

We see that in steady flow the net momentum flux Ṗi out of a region Ω is
given by

Ṗz=

∫

Ω

fz dxdy =
1

2i

∫

Ω

fz dzdz =
1

i

∫

Ω

∂zT dzdz =
1

i

∮

∂Ω

T dz. (17.91)

We have used Stokes’ theorem at the last step. In regions where there is no
external force, T is analytic, ∂zT = 0, and the integral will be independent
of the choice of contour ∂Ω. We can subsititute T = ρv2

z to get

Ṗz = −iρ
∮

∂Ω

v2
z dz. (17.92)
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To apply this result to our aerofoil we take can take ∂Ω to be its boundary.
Then Ṗz is the total force exerted on the fluid by the wing, and, by Newton’s
third law, this is minus the force exerted by the fluid on the wing. The total
force on the aerofoil is therefore

Fz = iρ

∮

∂Ω

v2
z dz. (17.93)

The result (17.93) is often called Blasius’ theorem.
Evaluating the integral in (17.93) is not immediately possible because the

velocity v on the boundary will be a complicated function of the shape of
the body. We can, however, exploit the contour independence of the integral
and evaluate it over a path encircling the aerofoil at large distance where the
flow field takes the asymptotic form

vz = Uz +
κ

4πi

1

z
+O

(
1

z2

)
. (17.94)

The O(1/z2) term is the velocity perturbation due to the air having to flow
round the wing, as with the cylinder in a free flow. To confirm that this flow
has the correct circulation we compute

∮
v · dr =

∮
vzdz +

∮
vz dz = κ. (17.95)

Substituting vz in (17.93) we find that the O(1/z2) term cannot contribute as
it cannot affect the residue of any pole. The only part that does contribute
is the cross term that arises from multiplying Uz by κ/(4πiz). This gives

Fz = iρ

(
Uzκ

2πi

)∮
dz

z
= iρκUz (17.96)

so that
1

2
(Fx − iFy) = iρκ

1

2
(Ux − iUy). (17.97)

Thus, in conventional co-ordinates, the reaction force on the body is

Fx = ρκUy,

Fy = −ρκUx. (17.98)

The fluid therefore provides a lift force proportional to the product of the
circulation with the asymptotic velocity. The force is at right angles to the
incident airstream, so there is no drag .
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The circulation around the wing is determined by the Kutta condition
that the velocity of the flow at the sharp trailing edge of the wing be finite.
If the wing starts moving into the air and the requisite circulation is not
yet established then the flow under the wing does not leave the trailing edge
smoothly but tries to whip round to the topside. The velocity gradients
become very large and viscous forces become important and prevent the air
from making the sharp turn. Instead, a starting vortex is shed from the
trailing edge. Kelvin’s theorem on the conservation of vorticity shows that
this causes a circulation of equal and opposite strength to be induced about
the wing.

For finite wings, the path independence of
∮

v · dr means that the wings
must leave a pair of trailing wingtip vortices of strength κ that connect back
to the starting vortex to form a closed loop. The velocity field induced by the
trailing vortices cause the airstream incident on the aerofoil to come from a
slighly different direction than the asymptotic flow. Consequently, the lift is
not quite perpendicular to the motion of the wing. For finite-length wings,
therefore, lift comes at the expense of an inevitable induced drag force. The
work that has to be done against this drag force in driving the wing forwards
provides the kinetic energy in the trailing vortices.

17.4 Applications of Cauchy’s theorem

Cauchy’s theorem provides the Royal Road to complex analysis. It is possible
to develop the theory without it, but the path is harder going.

17.4.1 Cauchy’s integral formula

If f(z) is analytic within and on the boundary of a simply connected domain
Ω, with ∂Ω = Γ, and if ζ is a point in Ω, then, noting that the the integrand
has a simple pole at z = ζ and applying the residue formula, we have Cauchy’s
integral formula

f(ζ) =
1

2πi

∮

Γ

f(z)

z − ζ dz, ζ ∈ Ω. (17.99)
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Γ
ζ

Ω

Figure 17.9: Cauchy contour.

This formula holds only if ζ lies within Ω. If it lies outside, then the integrand
is analytic everywhere inside Ω, and so the integral gives zero.

We may show that it is legitimate to differentiate under the integral sign
in Cauchy’s formula. If we do so n times, we have the useful corollary that

f (n)(ζ) =
n!

2πi

∮

Γ

f(z)

(z − ζ)n+1
dz. (17.100)

This shows that being once differentiable (analytic) in a region automatically
implies that f(z) is differentiable arbitrarily many times!

Exercise 17.6: The generalized Cauchy formula. Suppose that we have solved a
D-bar problem (see exercise 17.3), and so found an F (z, z) with ∂zF = f(z, z)
in a region Ω. Compute the exterior derivative of

F (z, z)

z − ζ

using (17.56). Now, manipulating formally with delta functions, apply Stokes’
theorem to show that, for (ζ, ζ̄) in the interior of Ω, we have

F (ζ, ζ̄) =
1

2πi

∮

∂Ω

F (z, z)

z − ζ dz − 1

π

∫

Ω

f(z, z)

z − ζ dx dy.

This is called the generalized Cauchy formula. Note that the first term on the
right, unlike the second, is a function only of ζ, and so is analytic.

Liouville’s theorem

A dramatic corollary of Cauchy’s integral formula is provided by
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Liouville’s theorem: If f(z) is analytic in all of C, and is bounded there,
meaning that there is a positive real number K such that |f(z)| < K, then
f(z) is a constant.

This result provides a powerful strategy for proving that two formulæ,
f1(z) and f2(z), represent the same analytic function. If we can show that
the difference f1− f2 is analytic and tends to zero at infinity then Liouville’s
theorem tells us that f1 = f2.

Because the result is perhaps unintuitive, and because the methods are
typical, we will spell out in detail how Liouville’s theorem works. We select
any two points, z1 and z2, and use Cauchy’s formula to write

f(z1)− f(z2) =
1

2πi

∮

Γ

(
1

z − z1
− 1

z − z2

)
f(z) dz. (17.101)

We take the contour Γ to be circle of radius ρ centered on z1. We make
ρ > 2|z1 − z2|, so that when z is on Γ we are sure that |z − z2| > ρ/2.

>ρ/2

ρ

z2
z1

z

Figure 17.10: Contour for Liouville’ theorem.

Then, using |
∫
f(z)dz| ≤

∫
|f(z)||dz|, we have

|f(z1)− f(z2)| =
1

2π

∣∣∣∣
∮

Γ

(z1 − z2)
(z − z1)(z − z2)

f(z) dz

∣∣∣∣

≤ 1

2π

∫ 2π

0

|z1 − z2|K
ρ/2

dθ =
2|z1 − z2|K

ρ
. (17.102)

The right hand side can be made arbitrarily small by taking ρ large enough,
so we we must have f(z1) = f(z2). As z1 and z2 were any pair of points, we
deduce that f(z) takes the same value everywhere.
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Exercise 17.7: Let a1, . . . , aN be N distinct complex numbers. Use Liouville’s
theorem to prove that

∑

k 6=j

N∑

j=1

1

(z − aj)
1

(z − ak)2
=
∑

k 6=j

N∑

j=1

1

(ak − aj)
1

(z − ak)2
.

17.4.2 Taylor and Laurent series

We have defined a function to be analytic in a domain D if it is (once)
complex differentiable at all points in D. It turned out that this apparently
mild requirement automatically implied that the function is differentiable
arbitrarily many times in D. In this section we shall see that knowledge
of all derivatives of f(z) at any single point in D is enough to completely
determine the function at any other point in D. Compare this with functions
of a real variable, for which it is easy to construct examples that are once
but not twice differentiable, and where complete knowledge of function at a
point, or in even in a neighbourhood of a point, tells us absolutely nothing
of the behaviour of the function away from the point or neighbourhood.

The key ingredient in these almost magical properties of complex ana-
lytic functions is that any analytic function has a Taylor series expansion
that actually converges to the function. Indeed an alternative definition of
analyticity is that f(z) be representable by a convergent power series. For
real variables this is the definition of a real analytic function.

To appreciate the utility of power series representations we do need to
discuss some basic properties of power series. Most of these results are ex-
tensions to the complex plane of what we hope are familiar notions from real
analysis.

Consider the power series

∞∑

n=0

an(z − z0)
n ≡ lim

N→∞
SN , (17.103)

where SN are the partial sums

SN =

N∑

n=0

an(z − z0)
n. (17.104)

Suppose that this limit exists (i.e the series is convergent) for some z = ζ;
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then it turns out that the series is absolutely convergent 5 for any |z − z0| <
|ζ − z0|.

To establish this absolute convergence we may assume, without loss of
generality, that z0 = 0. Then, convergence of the sum

∑
anζ

n requires that
|anζn| → 0, and thus |anζn| is bounded. In other words, there is a B such
that |anζn| < B for any n. We now write

|anzn| = |anζn|
∣∣∣∣
z

ζ

∣∣∣∣
n

< B

∣∣∣∣
z

ζ

∣∣∣∣
n

. (17.105)

The sum
∑ |anzn| therefore converges for |z/ζ| < 1, by comparison with a

geometric progression.
This result, that if a power series in (z − z0) converges at a point then

it converges at all points closer to z0, shows that a power series possesses
some radius of convergence R. The series converges for all |z − z0| < R, and
diverges for all |z − z0| > R. What happens on the circle |z − z0| = R is
usually delicate, and harder to establish. A useful result, however, is Abel’s
theorem, which we will not try to prove. Abel’s theorem says that if the sum∑
an is convergent, and if A(z) =

∑∞
n=0 anz

n for |z| < 1, then

lim
z→1−

A(z) =
∞∑

n=0

an. (17.106)

The converse is not true: if A(z) has a finite limit as we approach the circle
of convergence, the corresponding sum need not converge

By comparison with a geometric progression, we may establish the fol-
lowing useful formulæ giving R for the series

∑
anz

n:

R = lim
n→∞

|an−1|
|an|

= lim
n→∞

|an|1/n. (17.107)

The proof of these formulæ is identical the real-variable version.

5Recall that absolute convergence of
∑
an means that

∑ |an| converges. Absolute
convergence implies convergence, and also allows us to rearrange the order of terms in the
series without changing the value of the sum. Compare this with conditional convergence,
where

∑
an converges, but

∑ |an| does not. You may remember that Riemann showed
that the terms of a conditionally convergent series can be rearranged so as to get any
answer whatsoever !
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We soon show that the radius of convergence of a power series is the
distance from z0 to the nearest singularity of the function that it represents.

When we differentiate the terms in a power series, and thus take anz
n →

nanz
n−1, this does not alter R. This observation suggests that it is legitimate

to evaluate the derivative of the function represented by the powers series by
differentiating term-by-term. As step on the way to justifying this, observe
that if the series converges at z = ζ and Dr is the domain |z| < r < |ζ| then,
using the same bound as in the proof of absolute convergence, we have

|anzn| < B
|zn|
|ζ|n < B

rn

|ζ|n = Mn (17.108)

where
∑
Mn is convergent. As a consequence

∑
anz

n is uniformly con-
vergent in Dr by the Weierstrass “M” test. You probably know that uni-
form convergence allows the interchange the order of sums and integrals:∫

(
∑
fn(x))dx =

∑∫
fn(x)dx. For real variables, uniform convergence is

not a strong enough a condition for us to to safely interchange order of sums
and derivatives: (

∑
fn(x))

′ is not necessarily equal to
∑
f ′
n(x). For complex

analytic functions, however, Cauchy’s integral formula reduces the operation
of differentiation to that of integration, and so this interchange is permitted.
In particular we have that if

f(z) =
∞∑

n=0

anz
n, (17.109)

and R is defined by R = |ζ| for any ζ for which the series converges, then
f(z) is analytic in |z| < R and

f ′(z) =

∞∑

n=0

nanz
n−1, (17.110)

is also analytic in |z| < R.

Morera’s theorem

There is is a partial converse of Cauchy’s theorem:
Theorem (Morera): If f(z) is defined and continuous in a domain D, and
if
∮
Γ
f(z) dz = 0 for all closed contours, then f(z) is analytic in D. To

prove this we set F (z) =
∫ z
P
f(ζ) dζ. The integral is path-independent by the
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hypothesis of the theorem, and because f(z) is continuous we can differentiate
with respect to the integration limit to find that F ′(z) = f(z). Thus F (z)
is complex differentiable, and so analytic. Then, by Cauchy’s formula for
higher derivatives, F ′′(z) = f ′(z) exists, and so f(z) itself is analytic.

A corollary of Morera’s theorem is that if fn(z) → f(z) uniformly in D,
with all the fn analytic, then

i) f(z) is analytic in D, and
ii) f ′

n(z)→ f ′(z) uniformly.
We use Morera’s theorem to prove (i) (appealing to the uniform conver-

gence to justify the interchange the order of summation and integration),
and use Cauchy’s theorem to prove (ii).

Taylor’s theorem for analytic functions

Theorem: Let Γ be a circle of radius ρ centered on the point a. Suppose that
f(z) is analytic within and on Γ, and and that the point z = ζ is within Γ.
Then f(ζ) can be expanded as a Taylor series

f(ζ) = f(a) +

∞∑

n=1

(ζ − a)n
n!

f (n)(a), (17.111)

meaning that this series converges to f(ζ) for all ζ such that |ζ − a| < ρ.
To prove this theorem we use identity

1

z − ζ =
1

z − a +
(ζ − a)
(z − a)2

+ · · ·+ (ζ − a)N−1

(z − a)N +
(ζ − a)N
(z − a)N

1

z − ζ (17.112)

and Cauchy’s integral, to write

f(ζ) =
1

2πi

∮

Γ

f(z)

(z − ζ) dz

=
N−1∑

n=0

(ζ − a)n
2πi

∮
f(z)

(z − a)n+1
dz +

(ζ − a)N
2πi

∮
f(z)

(z − a)N (z − ζ) dz

=

N−1∑

n=0

(ζ − a)n
n!

f (n)(a) +RN , (17.113)

where

RN
def
=

(ζ − a)N
2πi

∮

Γ

f(z)

(z − a)N(z − ζ) dz. (17.114)
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This is Taylor’s theorem with remainder. For real variables this is as far as
we can go. Even if a real function is differentiable infinitely many times,
there is no reason for the remainder to become small. For analytic functions,
however, we can show that RN → 0 as N → ∞. This means that the
complex-variable Taylor series is convergent, and its limit is actually equal
to f(z). To show that RN → 0, recall that Γ is a circle of radius ρ centered
on z = a. Let r = |ζ − a| < ρ, and let M be an upper bound for f(z) on Γ.
(This exists because f is continuous and Γ is a compact subset of C.) Then,
estimating the integral using methods similar to those invoked in our proof
of Liouville’s Theorem, we find that

RN <
rN

2π

(
2πρM

ρN(ρ− r)

)
. (17.115)

As r < ρ, this tends to zero as N →∞.
We can take ρ as large as we like provided there are no singularities of

f end up within, or on, the circle. This confirms the claim made earlier:
the radius of convergence of the powers series representation of an analytic
functionis the distance to the nearest singularity.

Laurent series

Theorem (Laurent): Let Γ1 and Γ2 be two anticlockwise circlular paths with
centre a, radii ρ1 and ρ2, and with ρ2 < ρ1. If f(z) is analytic on the circles
and within the annulus between them, then, for ζ in the annulus:

f(ζ) =

∞∑

n=0

an(ζ − a)n +

∞∑

n=1

bn(ζ − a)−n. (17.116)

Γ1
Γ2 ζ a

Figure 17.11: Contours for Laurent’s theorem.
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The coefficients an and bn are given by

an =
1

2πi

∮

Γ1

f(z)

(z − a)n+1
dz, bn =

1

2πi

∮

Γ2

f(z)(z − a)n−1 dz. (17.117)

Laurent’s theorem is proved by observing that

f(ζ) =
1

2πi

∮

Γ1

f(z)

(z − ζ) dz −
1

2πi

∮

Γ2

f(z)

(z − ζ) dz, (17.118)

and using the identities

1

z − ζ =
1

z − a +
(ζ − a)
(z − a)2

+ · · ·+ (ζ − a)N−1

(z − a)N +
(ζ − a)N
(z − a)N

1

z − ζ , (17.119)

and

− 1

z − ζ =
1

ζ − a +
(z − a)
(ζ − a)2

+ · · ·+ (z − a)N−1

(ζ − a)N +
(z − a)N
(ζ − a)N

1

ζ − z . (17.120)

Once again we can show that the remainder terms tend to zero.
Warning: Although the coefficients an are given by the same integrals as in
Taylor’s theorem, they are not interpretable as derivatives of f unless f(z)
is analytic within the inner circle, in which case all the bn are zero.

17.4.3 Zeros and singularities

This section is something of a nosology — a classification of diseases — but
you should study it carefully as there is some tight reasoning here, and the
conclusions are the essential foundations for the rest of subject.

First a review and some definitions:
a) If f(z) is analytic with a domain D, we have seen that f may be

expanded in a Taylor series about any point z0 ∈ D:

f(z) =

∞∑

n=0

an(z − z0)
n. (17.121)

If a0 = a1 = · · · = an−1 = 0, and an 6= 0, so that the first non-zero
term in the series is an(z− z0)

n, we say that f(z) has a zero of order n
at z0.
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b) A singularity of f(z) is a point at which f(z) ceases to be differentiable.
If f(z) has no singularities at finite z (for example, f(z) = sin z) then
it is said to be an entire function.

c) If f(z) is analytic in D except at z = a, an isolated singularity , then
we may draw two concentric circles of centre a, both within D, and in
the annulus between them we have the Laurent expansion

f(z) =
∞∑

n=0

an(z − a)n +
∞∑

n=1

bn(z − a)−n. (17.122)

The second term, consisting of negative powers, is called the principal
part of f(z) at z = a. It may happen that bm 6= 0 but bn = 0, n > m.
Such a singularity is called a pole of order m at z = a. The coefficient
b1, which may be 0, is called the residue of f at the pole z = a. If the
series of negative powers does not terminate, the singularity is called
an isolated essential singularity

Now some observations:
i) Suppose f(z) is analytic in a domain D containing the point z = a.

Then we can expand: f(z) =
∑
an(z − a)n. If f(z) is zero at z = 0,

then there are exactly two possibilities: a) all the an vanish, and then
f(z) is identically zero; b) there is a first non-zero coefficient, am say,
and so f(z) = zmϕ(z), where ϕ(a) 6= 0. In the second case f is said to
possess a zero of order m at z = a.

ii) If z = a is a zero of order m, of f(z) then the zero is isolated – i.e.
there is a neighbourhood of a which contains no other zero. To see this
observe that f(z) = (z− a)mϕ(z) where ϕ(z) is analytic and ϕ(a) 6= 0.
Analyticity implies continuity, and by continuity there is a neighbour-
hood of a in which ϕ(z) does not vanish.

iii) Limit points of zeros I: Suppose that we know that f(z) is analytic in D
and we know that it vanishes at a sequence of points a1, a2, a3, . . . ∈ D.
If these points have a limit point6 that is interior to D then f(z) must,
by continuity, be zero there. But this would be a non-isolated zero, in
contradiction to item ii), unless f(z) actually vanishes identically in D.
This, then, is the only option.

iv) From the definition of poles, they too are isolated.

6A point z0 is a limit point of a set S if for every ε > 0 there is some a ∈ S, other than
z0 itself, such that |a− z0| ≤ ε. A sequence need not have a limit for it to possess one or
more limit points.
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v) If f(z) has a pole at z = a then f(z)→∞ as z → a in any manner.
vi) Limit points of zeros II: Suppose we know that f is analytic in D,

except possibly at z = a which is limit point of zeros as in iii), but we
also know that f is not identically zero. Then z = a must be singularity
of f — but not a pole ( because f would tend to infinity and could
not have arbitrarily close zeros) — so a must be an isolated essential
singularity. For example sin 1/z has an isolated essential singularity at
z = 0, this being a limit point of the zeros at z = 1/nπ.

vii) A limit point of poles or other singularities would be a non-isolated
essential singularity .

17.4.4 Analytic continuation

Suppose that f1(z) is analytic in the (open, arcwise-connected) domain D1,
and f2(z) is analytic in D2, with D1 ∩D2 6= ∅. Suppose further that f1(z) =
f2(z) in D1 ∩ D2. Then we say that f2 is an analytic continuation of f1 to
D2. Such analytic continuations are unique: if f3 is also analytic in D2, and
f3 = f1 in D1 ∩ D2, then f2 − f3 = 0 in D1 ∩ D2. Because the intersection
of two open sets is also open, f1 − f2 vanishes on an open set and, so by
observation iii) of the previous section, it vanishes everywhere in D2.

D1
D2

Figure 17.12: Intersecting domains.

We can use this uniqueness result, coupled with the circular domains of
convergence of the Taylor series, to extend the definition of analytic functions
beyond the domain of their initial definition.
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The distribution xα−1
+

An interesting and useful example of analytic continuation is provided by the
distribution xα−1

+ , which, for real positive α, is defined by its evaluation on
a test function ϕ(x) as

(xα−1
+ , ϕ) =

∫ ∞

0

xα−1ϕ(x) dx. (17.123)

The pairing (xα−1
+ , ϕ) extends to an complex analytic function of α provided

the integral converges. Test functions are required to decrease at infinity
faster than any power of x, and so the integral always converges at the upper
limit. It will converge at the lower limit provided Re (α) > 0. Assume that
this is so, and integrate by parts using

d

dx

(
xα

α
ϕ(x)

)
= xα−1ϕ(x) +

xα

α
ϕ′(x). (17.124)

We find that, for ε > 0,

[
xα

α
ϕ(x)

]∞

ε

=

∫ ∞

ε

xα−1ϕ(x) dx+

∫ ∞

ε

xα

α
ϕ′(x) dx. (17.125)

The integrated-out part on the left-hand-side of (17.125) tends to zero as
we take ε to zero, and both of the integrals converge in this limit as well.
Consequently

I1(α) ≡ − 1

α

∫ ∞

0

xαϕ′(x) dx (17.126)

is equal to (xα−1
+ , ϕ) for 0 < Re (α) < ∞. However, the integral defining

I1(α) converges in the larger region −1 < Re (α) <∞. It therefore provides
an analytic continuation to this larger domain. The factor of 1/α reveals that
the analytically-continued function possesses a pole at α = 0, with residue

−
∫ ∞

0

ϕ′(x) dx = ϕ(0). (17.127)

We can repeat the integration by parts, and find that

I2(α) ≡ 1

α(α + 1)

∫ ∞

0

xα+1ϕ′′(x) dx (17.128)
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provides an analytic continuation to the region −2 < Re (α) < ∞. By
proceeding in this manner, we can continue (xα−1

+ , ϕ) to a function analytic
in the entire complex α plane with the exception of zero and the negative
integers, at which it has simple poles. The residue of the pole at α = −n is
ϕ(n)(0)/n!.

There is another, much more revealing, way of expressing these analytic
continuations. To obtain this, suppose that φ ∈ C∞[0,∞] and φ → 0 at
infinity as least as fast as 1/x. (Our test function ϕ decreases much more
rapidly than this, but 1/x is all we need for what follows.) Now the function

I(α) ≡
∫ ∞

0

xα−1φ(x) dx (17.129)

is convergent and analytic in the strip 0 < Re (α) < 1. By the same reasoning
as above, I(α) is there equal to

−
∫ ∞

0

xα

α
φ′(x) dx. (17.130)

Again this new integral provides an analytic continuation to the larger strip
−1 < Re (α) < 1. But in the left-hand half of this strip, where −1 <
Re (α) < 0, we can write

−
∫ ∞

0

xα

α
φ′(x) dx = lim

ε→0

{∫ ∞

ε

xα−1φ(x) dx−
[
xα

α
φ(x)

]∞

ε

}

= lim
ε→0

{∫ ∞

ε

xα−1φ(x) dx+ φ(ε)
εα

α

}

= lim
ε→0

{∫ ∞

ε

xα−1[φ(x)− φ(ε)] dx

}
,

=

∫ ∞

0

xα−1[φ(x)− φ(0)] dx. (17.131)

Observe how the integrated out part, which tends to zero in 0 < Re (α) < 1,
becomes divergent in the strip −1 < Re (α) < 0. This divergence is there
craftily combined with the integral to cancel its divergence, leaving a finite
remainder. As a consequence, for −1 < Re (α) < 0, the analytic continuation
is given by

I(α) =

∫ ∞

0

xα−1[φ(x)− φ(0)] dx. (17.132)
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Next we observe that χ(x) = [φ(x) − φ(0)]/x tends to zero as 1/x for
large x, and at x = 0 can be defined by its limit as χ(0) = φ′(0). This χ(x)
then satisfies the same hypotheses as φ(x). With I(α) denoting the analytic
continuation of the original I, we therefore have

I(α) =

∫ ∞

0

xα−1[φ(x)− φ(0)] dx, −1 < Re (α) < 0

=

∫ ∞

0

xβ−1

[
φ(x)− φ(0)

x

]
dx, where β = α + 1,

→
∫ ∞

0

xβ−1

[
φ(x)− φ(0)

x
− φ′(0)

]
dx, −1 < Re (β) < 0

=

∫ ∞

0

xα−1[φ(x)− φ(0)− xφ′(0)] dx, −2 < Re (α) < −1,

(17.133)

the arrow denoting the same analytic continuation process that we used with
φ.

We can now apply this machinary to our original ϕ(x), and so deduce
that the analytically-continued distribution is given by

(xα−1
+ , ϕ) =





∫ ∞

0

xα−1ϕ(x) dx, 0 < Re (α) <∞,

∫ ∞

0

xα−1[ϕ(x)− ϕ(0)] dx, −1 < Re (α) < 0,

∫ ∞

0

xα−1[ϕ(x)− ϕ(0)− xϕ′(0)] dx, −2 < Re (α) < −1,

(17.134)
and so on. The analytic continuation automatically subtracts more and more
terms of the Taylor series of ϕ(x) the deeper we penetrate into the left-hand
half-plane. This property, that analytic continuation covertly subtracts the
minimal number of Taylor-series terms required ensure convergence, lies be-
hind a number of physics applications, most notably the method of dimen-
sional regularization in quantum field theory.

The following exercise illustrates some standard techniques of reasoning
via analytic continuation.

Exercise 17.8: Define the dilogarithm function by the series

Li2(z) =
z

12
+
z2

22
+
z3

32
+ · · · .
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The radius of convergence of this series is unity, but the domain of Li2(z) can
be extended to |z| > 1 by analytic continuation.

a) Observe that the series converges at z = ±1, and at z = 1 is

Li2(1) = 1 +
1

22
+

1

32
+ · · · = π2

6
.

Rearrange the series to show that

Li2(−1) = −π
2

12
.

b) Identify the derivative of the power series for Li2(z) with that of an
elementary function. Exploit your identification to extend the definition
of [Li2(z)]

′ outside |z| < 1. Use the properties of this derivative function,
together with part a), to prove that the extended function obeys

Li2(−z) + Li2

(
−1

z

)
= −1

2
(ln z)2 − π2

6
.

This formula allows us to calculate values of the dilogarithm for |z| > 1
in terms of those with |z| < 1.

Many weird identities involving dilogarithms exist. Some, such as

Li2

(
−1

2

)
+

1

6
Li2

(
1

9

)
= − 1

18
π2 + ln 2 ln 3− 1

2
(ln 2)2 − 1

3
(ln 3)2,

were found by Ramanujan. Others, originally discovered by sophisticated
numerical methods, have been given proofs based on techniques from quantum
mechanics. Polylogarithms, defined by

Lik(z) =
z

1k
+
z2

2k
+
z3

3k
+ · · · ,

occur frequently when evaluating Feynman diagrams.

17.4.5 Removable singularities and the Weierstrass-

Casorati theorem

Sometimes we are given a definition that makes a function analytic in a
region with the exception of a single point. Can we extend the definition to
make the function analytic in the entire region? Provided that the function
is well enough behaved near the point, the answer is yes, and the extension
is unique. Curiously, the proof that this is so gives us insight into the wild
behaviour of functions near essential singularities.
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Removable singularities

Suppose that f(z) is analytic in D\a, but that limz→a(z−a)f(z) = 0, then f
may be extended to a function analytic in all of D — i.e. z = a is a removable
singularity . To see this, let ζ lie between two simple closed contours Γ1 and
Γ2, with a within the smaller, Γ2. We use Cauchy to write

f(ζ) =
1

2πi

∮

Γ1

f(z)

z − ζ dz −
1

2πi

∮

Γ2

f(z)

z − ζ dz. (17.135)

Now we can shrink Γ2 down to be very close to a, and because of the condition
on f(z) near z = a, we see that the second integral vanishes. We can also
arrange for Γ1 to enclose any chosen point in D. Thus, if we set

f̃(ζ) =
1

2πi

∮

Γ1

f(z)

z − ζ dz (17.136)

within Γ1, we see that f̃ = f inD\a, and is analytic in all ofD. The extension
is unique because any two analytic functions that agree everywhere except
for a single point, must also agree at that point.

Weierstrass-Casorati

We apply the idea of removable singularities to show just how pathological
a beast is an isolated essential singularity:
Theorem (Weierstrass-Casorati): Let z = a be an isolated essential singular-
ity of f(z), then in any neighbourhood of a the function f(z) comes arbitrarily
close to any assigned valued in C.

To prove this, define Nδ(a) = {z ∈ C : |z − a| < δ}, and Nε(ζ) = {z ∈
C : |z − ζ| < ε}. The claim is then that there is an z ∈ Nδ(a) such that
f(z) ∈ Nε(ζ). Suppose that the claim is not true. Then we have |f(z)−ζ| > ε
for all z ∈ Nδ(a). Therefore

∣∣∣∣
1

f(z)− ζ

∣∣∣∣ <
1

ε
(17.137)

in Nδ(a), while 1/(f(z) − ζ) is analytic in Nδ(a) \ a. Therefore z = a is a
removable singularity of 1/(f(z)− ζ), and there is an an analytic g(z) which
coincides with 1/(f(z)− ζ) at all points except a. Therefore

f(z) = ζ +
1

g(z)
(17.138)
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except at a. Now g(z), being analytic, may have a zero at z = a giving a
pole in f , but it cannot give rise to an essential singularity. The claim is
true, therefore.

Picard’s theorems

Weierstrass-Casorati is elementary. There are much stronger results:

Theorem (Picard’s little theorem): Every nonconstant entire function attains
every complex value with at most one exception.

Theorem (Picard’s big theorem): In any neighbourhood of an isolated essen-
tial singularity, f(z) takes every complex value with at most one exception.

The proofs of these theorems are hard.

As an illustration of Picard’s little theorem, observe that the function
exp z is entire, and takes all values except 0. For the big theorem observe
that function f(z) = exp(1/z). has an essential singularity at z = 0, and
takes all values, with the exception of 0, in any neighbourhood of z = 0.

17.5 Meromorphic functions and the winding-

number

A function whose only singularities in D are poles is said to be meromor-
phic there. These functions have a number of properties that are essentially
topological in character.

17.5.1 Principle of the argument

If f(z) is meromorphic in D with ∂D = Γ, and f(z) 6= 0 on Γ, then

1

2πi

∮

Γ

f ′(z)

f(z)
dz = N − P (17.139)

where N is the number of zero’s in D and P is the number of poles. To show
this, we note that if f(z) = (z − a)mϕ(z) where ϕ is analytic and non-zero
near a, then

f ′(z)

f(z)
=

m

z − a +
ϕ′(z)

ϕ(z)
(17.140)
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so f ′/f has a simple pole at a with residue m. Here m can be either positive
or negative. The term ϕ′(z)/ϕ(z) is analytic at z = a, so collecting all the
residues from each zero or pole gives the result.

Since f ′/f = d
dz

ln f the integral may be written

∮

Γ

f ′(z)

f(z)
dz = ∆Γ ln f(z) = i∆Γ arg f(z), (17.141)

the symbol ∆Γ denoting the total change in the quantity after we traverse Γ.
Thus

N − P =
1

2π
∆Γ arg f(z). (17.142)

This result is known as the principle of the argument.

Local mapping theorem

Suppose the function w = f(z) maps a region Ω holomorphicly onto a region
Ω′, and a simple closed curve γ ⊂ Ω onto another closed curve Γ ⊂ Ω′, which
will in general have self intersections. Given a point a ∈ Ω′, we can ask
ourselves how many points within the simple closed curve γ map to a. The
answer is given by the winding number of the image curve Γ about a.

fγ Γ

Figure 17.13: An analytic map is one-to-one where the winding number is
unity, but two-to-one at points where the image curve winds twice.

To that this is so, we appeal to the principal of the argument as

# of zeros of (f − a) within γ =
1

2πi

∮

γ

f ′(z)

f(z)− a dz,

=
1

2πi

∮

Γ

dw

w − a,

= n(Γ, a), (17.143)
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where n(Γ, a) is called the winding number of the image curve Γ about a. It
is equal to

n(Γ, a) =
1

2π
∆γ arg (w − a), (17.144)

and is the number of times the image point w encircles a as z traverses the
original curve γ.

Since the number of pre-image points cannot be negative, these winding
numbers must be positive. This means that the holomorphic image of curve
winding in the anticlockwise direction is also a curve winding anticlockwise.

For mathematicians, another important consequence of this result is that
a holomorphic map is open– i.e. the holomorphic image of an open set is
itself an open set. The local mapping theorem is therefore sometime called
the open mapping theorem.

17.5.2 Rouché’s theorem

Here we provide an effective tool for locating zeros of functions.
Theorem (Rouché): Let f(z) and g(z) be analytic within and on a simple
closed contour γ. Suppose further that |g(z)| < |f(z)| everywhere on γ, then
f(z) and f(z) + g(z) have the same number of zeros within γ.

Before giving the proof, we illustrate Rouché’s theorem by giving its most
important corollary: the algebraic completeness of the complex numbers, a
result otherwise known as the fundamental theorem of algebra. This asserts
that, if R is sufficiently large, a polynomial P (z) = anz

n+an−1z
n−1 + · · ·+a0

has exactly n zeros, when counted with their multiplicity, lying within the
circle |z| = R. To prove this note that we can take R sufficiently big that

|anzn| = |an|Rn

> |an−1|Rn−1 + |an−2|Rn−2 · · ·+ |a0|
> |an−azn−1 + an−2z

n−2 · · ·+ a0|, (17.145)

on the circle |z| = R. We can therefore take f(z) = anz
n and g(z) =

an−az
n−1 + an−2z

n−2 · · ·+ a0 in Rouché. Since anz
n has exactly n zeros, all

lying at z = 0, within |z| = R, we conclude that so does P (z).
The proof of Rouché is a corollary of the principle of the argument. We

observe that

# of zeros of f + g = n(Γ, 0)
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=
1

2π
∆γ arg (f + g)

=
1

2πi
∆γ ln(f + g)

=
1

2πi
∆γ ln f +

1

2πi
∆γ ln(1 + g/f)

=
1

2π
∆γ arg f +

1

2π
∆γ arg (1 + g/f). (17.146)

Now |g/f | < 1 on γ, so 1 + g/f cannot circle the origin as we traverse γ.
As a consequence ∆γ arg (1 + g/f) = 0. Thus the number of zeros of f + g
inside γ is the same as that of f alone. (Naturally, they are not usually in
the same places.)

The geometric part of this argument is often illustrated by a dog on a
lead. If the lead has length L, and the dog’s owner stays a distance R > L
away from a lamp post, then the dog cannot run round the lamp post unless
the owner does the same.

g
f+g

o

f

Γ

Figure 17.14: The curve Γ is the image of γ under the map f+g. If |g| < |f |,
then, as z traverses γ, f+g winds about the origin the same number of times
that f does.

Exercise 17.9: Jacobi Theta Function. The function θ(z|τ) is defined for
Im τ > 0 by the sum

θ(z|τ) =
∞∑

n=−∞
eiπτn

2

e2πinz.

Show that θ(z+1|τ) = θ(z|τ), and θ(z+τ |τ) = e−iπτ−2πizθ(z|τ). Use this infor-
mation and the principle of the argument to show that θ(z|τ) has exactly one
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zero in each unit cell of the Bravais lattice comprising the points z = m+ nτ ;
m,n ∈ Z. Show that these zeros are located at z = (m+ 1/2) + (n+ 1/2)τ .

Exercise 17.10: Use Rouché’s theorem to find the number of roots of the
equation z5 + 15z + 1 = 0 lying within the circles, i) |z| = 2, ii) |z| = 3/2.

17.6 Analytic functions and topology

17.6.1 The point at infinity

Some functions, f(z) = 1/z for example, tend to a fixed limit (here 0) as z
become large, independently of in which direction we set off towards infinity.
Others, such as f(z) = exp z, behave quite differently depending on what
direction we take as |z| becomes large.

To accommodate the former type of function, and to be able to legiti-
mately write f(∞) = 0 for f(z) = 1/z, it is convenient to add “∞” to the
set of complex numbers. Technically, we are constructing the one-point com-
pactification of the locally compact space C. We often portray this extended
complex plane as a sphere S2 (the Riemann sphere), using stereographic
projection to locate infinity at the north pole, and 0 at the south pole.

N

z

P

S

Figure 17.15: Stereographic mapping of the complex plane to the 2-Sphere.

By the phrase a open neighbourhood of z, we mean an open set containing
z. We use the stereographic map to define an open neighbourhood of infinity
as the stereographic image of a open neighbourhood of the north pole. With
this definition, the extended complex plane C ∪ {∞} becomes topologically
a sphere, and in particular, becomes a compact set.
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If we wish to study the behaviour of a function “at infinity,” we use the
map z 7→ ζ = 1/z to bring ∞ to the origin, and study the behaviour of the
function there. Thus the polynomial

f(z) = a0 + a1z + · · ·+ aNz
N (17.147)

becomes
f(ζ) = a0 + a1ζ

−1 + · · ·+ aNζ
−N , (17.148)

and so has a pole of orderN at infinity. Similarly, the function f(z) = z−3 has
a zero of order three at infinity, and sin z has an isolated essential singularity
there.

We must be a careful about defining residues at infinity. The residue is
more a property of the 1-form f(z) dz than of the function f(z) alone, and
to find the residue we need to transform the dz as well as f(z). For example,
if we set z = 1/ζ in dz/z we have

dz

z
= ζ d

(
1

ζ

)
= −dζ

ζ
, (17.149)

so the 1-form (1/z) dz has a pole at z = 0 with residue 1, and has a pole
with residue −1 at infinity—even though the function 1/z has no pole there.
This 1-form viewpoint is required for compatability with the residue theorem:
The integral of 1/z around the positively oriented unit circle is simultane-
ously minus the integral of 1/z about the oppositely oriented unit circle, now
regarded as a a positively oriented circle enclosing the point at infinity. Thus
if f(z) has of pole of order N at infinity, and

f(z) = · · ·+ a−2z
−2 + a−1z

−1 + a0 + a1z + a2z
2 + · · ·+ ANz

N

= · · ·+ a−2ζ
2 + a−1ζ + a0 + a1ζ

−1 + a2ζ
−2 + · · ·+ ANζ

−N

(17.150)

near infinity, then the residue at infinity must be defined to be −a−1, and
not a1 as one might näıvely have thought.

Once we have allowed ∞ as a point in the set we map from, it is only
natural to add it to the set we map to — in other words to allow ∞ as a
possible value for f(z). We will set f(a) =∞, if |f(z)| becomes unboundedly
large as z → a in any manner. Thus, if f(z) = 1/z we have f(0) =∞.

The map

w =

(
z − z0

z − z∞

)(
z1 − z∞
z1 − z0

)
(17.151)
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takes

z0 → 0,

z1 → 1,

z∞ → ∞, (17.152)

for example. Using this language, the Möbius maps

w =
az + b

cz + d
(17.153)

become one-to-one maps of S2 → S2. They are the only such globally con-
formal one-to-one maps. When the matrix

(
a b
c d

)
(17.154)

is an element of SU(2), the resulting one–to-one map is a rigid rotation of
the Riemann sphere. Stereographic projection is thus revealed to be the
geometric origin of the spinor representations of the rotation group.

If an analytic function f(z) has no essential singularities anywhere on
the Riemann sphere then f is rational , meaning that it can be written as
f(z) = P (z)/Q(z) for some polynomials P , Q.

We begin the proof of this fact by observing that f(z) can have only a
finite number of poles. If, to the contrary, f had an infinite number of poles
then the compactness of S2 would ensure that the poles would have a limit
point somewhere. This would be a non-isolated singularity of f , and hence
an essential singularity. Now suppose we have poles at z1, z2, . . ., zN with
principal parts

mn∑

m=1

bn,m
(z − zn)m

.

If one of the zn is ∞, we first use a Möbius map to move it to some finite
point. Then

F (z) = f(z)−
N∑

n=1

mn∑

m=1

bn,m
(z − zn)m

(17.155)

is everywhere analytic, and therefore continuous, on S2. But S2 being com-
pact and F (z) being continuous implies that F is bounded. Therefore, by
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Liouville’s theorem, it is a constant. Thus

f(z) =

N∑

n=1

mn∑

m=1

bn,m
(z − zn)m

+ C, (17.156)

and this is a rational function. If we made use of a Möbius map to move
a pole at infinity, we use the inverse map to restore the original variables.
This manoeuvre does not affect the claimed result because Möbius maps take
rational functions to rational functions.

The map z 7→ f(z) given by the rational function

f(z) =
P (z)

Q(z)
=
anz

n + an−1z
n−1 + · · ·a0

bnzn + bn−1zn−1 + · · · b0
(17.157)

wraps the Riemann sphere n times around the target S2. In other words, it
is a n-to-one map.

17.6.2 Logarithms and branch cuts

The function y = ln z is defined to be the solution to z = exp y. Unfortu-
nately, since exp 2πi = 1, the solution is not unique: if y is a solution, so is
y + 2πi. Another way of looking at this is that if z = ρ exp iθ, with ρ real,
then y = ln ρ + iθ, and the angle θ has the same 2πi ambiguity. Now there
is no such thing as a “many valued function.” By definition, a function is a
machine into which we plug something and get a unique output. To make
ln z into a legitimate function we must select a unique θ = arg z for each z.
This can be achieved by cutting the z plane along a curve extending from
the the branch point at z = 0 all the way to infinity. Exactly where we put
this branch cut is not important; what is important is that it serve as an
impenetrable fence preventing us from following the continuous evolution of
the function along a path that winds around the origin.

Similar branch cuts serve to make fractional powers single valued. We
define the power zα for for non-integral α by setting

zα = exp {α ln z} = |z|αeiαθ, (17.158)

where z = |z|eiθ. For the square root z1/2 we get

z1/2 =
√
|z|eiθ/2, (17.159)
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where
√
|z| represents the positive square root of |z|. We can therefore make

this single-valued by a cut from 0 to ∞. To make
√

(z − a)(z − b) single
valued we only need to cut from a to b. (Why? — think this through!).

We can get away without cuts if we imagine the functions being maps from
some set other than the complex plane. The new set is called a Riemann
surface. It consists of a number of copies of the complex plane, one for each
possible value of our “multivalued function.” The map from this new surface
is then single-valued, because each possible value of the function is the value
of the function evaluated at a point on a different copy. The copies of the
complex plane are called sheets, and are connected to each other in a manner
dictated by the function. The cut plane may now be thought of as a drawing
of one level of the multilayered Riemann surface. Think of an architect’s floor
plan of a spiral-floored multi-story car park: If the architect starts drawing
at one parking spot and works her way round the central core, at some point
she will find that the floor has become the ceiling of the part already drawn.
The rest of the structure will therefore have to be plotted on the plan of the
next floor up — but exactly where she draws the division between one floor
and the one above is rather arbitrary. The spiral car-park is a good model
for the Riemann surface of the ln z function. See figure 17.16.

O

Figure 17.16: Part of the Riemann surface for ln z. Each time we circle the
origin, we go up one level.

To see what happens for a square root, follow z1/2 along a curve circling the
branch point singularity at z = 0. We come back to our starting point with
the function having changed sign; A second trip along the same path would
bring us back to the original value. The square root thus has only two sheets,
and they are cross-connected as shown in figure 17.17.
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O

Figure 17.17: Part of the Riemann surface for
√
z. Two copies of C are cross-

connected. Circling the origin once takes you to the lower level. A second
circuit brings you back to the upper level.

In figures 17.16 and 17.17, we have shown the cross-connections being
made rather abruptly along the cuts. This is not necessary —there is no
singularity in the function at the cut — but it is often a convenient way
to think about the structure of the surface. For example, the surface for√

(z − a)(z − b) also consists of two sheets. If we include the point at infinity,
this surface can be thought of as two spheres, one inside the other, and cross
connected along the cut from a to b.

17.6.3 Topology of Riemann surfaces

Riemann surfaces often have interesting topology. Indeed much of modern
algebraic topology emerged from the need to develop tools to understand
multiply-connected Riemann surfaces. As we have seen, the complex num-
bers, with the point at infinity included, have the topology of a sphere. The√

(z − a)(z − b) surface is still topologically a sphere. To see this imagine
continuously deforming the Riemann sphere by pinching it at the equator
down to a narrow waist. Now squeeze the front and back of the waist to-
gether and (imagining that the the surface can pass freely through itself) fold
the upper half of the sphere inside the lower. The result is the precisely the
two-sheeted

√
(z − a)(z − b) surface described above. The Riemann surface

of the function
√

(z − a)(z − b)(z − c)(z − d), which can be thought of a two
spheres, one inside the other and connected along two cuts, one from a to
b and one from c to d, is, however, a torus. Think of the torus as a bicycle
inner tube. Imagine using the fingers of your left hand to pinch the front and
back of the tube together and the fingers of your right hand to do the same
on the diametrically opposite part of the tube. Now fold the tube about the
pinch lines through itself so that one half of the tube is inside the other,
and connected to the outer half through two square-root cross-connects. If
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α

b ca d

β

Figure 17.18: The 1-cycles α and β on the plane with two square-root branch
cuts. The dashed part of α lies hidden on the second sheet of the Riemann
surface.

α

β

Figure 17.19: The 1-cycles α and β on the torus.

you have difficulty visualizing this process, figures 17.18 and 17.19 show how
the two 1-cycles, α and β, that generate the homology group H1(T

2) appear
when drawn on the plane cut from a to b and c to d, and then when drawn
on the torus. Observe, in figure 17.18, how the curves in the two-sheeted
plane manage to intersect in only one point, just as they do when drawn on
the torus in figure 17.19.

That the topology of the twice-cut plane is that of a torus has important
consequences. This is because the elliptic integral

w = I−1(z) =

∫ z

z0

dt√
(t− a)(t− b)(t− c)(t− d)

(17.160)

maps the twice-cut z-plane 1-to-1 onto the torus, the latter being considered
as the complex w-plane with the points w and w+nω1 +mω2 identified. The
two numbers ω1,2 are given by

ω1 =

∮

α

dt√
(t− a)(t− b)(t− c)(t− d)

,

ω2 =

∮

β

dt√
(t− a)(t− b)(t− c)(t− d)

, (17.161)
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and are called the periods of the elliptic function z = I(w). The map w 7→
z = I(w) is a genuine function because the original z is uniquely determined
by w. It is doubly periodic because

I(w + nω1 +mω2) = I(w), n,m ∈ Z. (17.162)

The inverse “function” w = I−1(z) is not a genuine function of z, however,
because w increases by ω1 or ω2 each time z goes around a curve deformable
into α or β, respectively. The periods are complicated functions of a, b, c, d.

If you recall our discussion of de Rham’s theorem from chapter 4, you
will see that the ωi are the results of pairing the closed holomorphic 1-form.

“dw” =
dz√

(z − a)(z − b)(z − c)(z − d)
∈ H1(T 2) (17.163)

with the two generators of H1(T
2). The quotation marks about dw are

there to remind us that dw is not an exact form, i.e. it is not the exterior
derivative of a single-valued function w. This cohomological interpretation
of the periods of the elliptic function is the origin of the use of the word
“period” in the context of de Rham’s theorem. (See section 19.5 for more
information on elliptic functions.)

More general Riemann surfaces are oriented 2-manifolds that can be
thought of as the surfaces of doughnuts with g holes. The number g is called
the genus of the surface. The sphere has g = 0 and the torus has g = 1.
The Euler character of the Riemann surface of genus g is χ = 2(1− g). For
example, figure 17.20 shows a surface of genus three. The surface is in one
piece, so dimH0(M) = 1. The other Betti numbers are dimH1(M) = 6 and
dimH2(M) = 1, so

χ =
2∑

p=0

(−1)pdimHp(M) = 1− 6 + 1 = −4, (17.164)

in agreement with χ = 2(1− 3) = −4. For complicated functions, the genus
may be infinite.

If we have two complex variables z and w then a polynomial relation
P (z, w) = 0 defines a complex algebraic curve. Except for degenerate cases,
this one (complex) dimensional curve is simultaneously a two (real) dimen-
sional Riemann surface. With

P (z, w) = z3 + 3w2z + w + 3 = 0, (17.165)
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1α

β β β

α α

1

2

2

3

3

Figure 17.20: A surface M of genus 3. The non-bounding 1-cycles αi and
βi form a basis of H1(M). The entire surface forms the single 2-cycle that
spans H2(M).

for example, we can think of z(w) being a three-sheeted function of w defined
by solving this cubic. Alternatively we can consider w(z) to be the two-
sheeted function of z obtained by solving the quadratic equation

w2 +
1

3z
w +

(3 + z3)

3z
= 0. (17.166)

In each case the branch points will be located where two or more roots
coincide. The roots of (17.166), for example, coincide when

1− 12z(3 + z3) = 0. (17.167)

This quartic equation has four solutions, so there are four square-root branch
points. Although constructed differently, the Riemann surface for w(z) and
the Riemann surface for z(w) will have the same genus (in this case g = 1)
because they are really are one and the same object — the algebraic curve
defined by the original polynomial equation.

In order to capture all its points at infinity, we often consider a complex
algebraic curve as being a subset of CP 2. To do this we make the defining
equation homogeneous by introducing a third co-ordinate. For example, for
(17.165) we make

P (z, w) = z3 +3w2z+w+3→ P (z, w, v) = z3 +3w2z+wv2 +3v3. (17.168)

The points where P (z, w, v) = 0 define7 a projective curve lying in CP 2.
Places on this curve where the co-ordinate v is zero are the added points at

7A homogeneous polynomial P (z, w, v) of degree n does not provide a map from
CP 2 → C because P (λz, λw, λv) = λnP (z, w, v) usually depends on λ, while the co-
ordinates (λz, λw, λv) and (z, w, v) correspond to the same point in CP 2. The zero set
where P = 0 is, however, well-defined in CP 2.



17.6. ANALYTIC FUNCTIONS AND TOPOLOGY 737

infinity. Places where v is non-zero (and where we may as well set v = 1)
constitute the original affine curve.

A generic (non-singular) curve

P (z, w) =
∑

r,s

arsz
rws = 0, (17.169)

with its points at infinity included, has genus

g =
1

2
(d− 1)(d− 2). (17.170)

Here d = max (r + s) is the degree of the curve. This degree-genus relation
is due to Plücker. It is not, however, trivial to prove. Also not easy to prove
is Riemann’s theorem of 1852 that any finite genus Riemann surface is the
complex algebraic curve associated with some two-variable polynomial.

The two assertions in the previous paragraph seem to contradict each
other. “Any” finite genus, must surely include g = 2, but how can a genus
two surface be a complex algebraic curve? There is no integer value of d such
that (d− 1)(d− 2)/2 = 2. This is where the “non-singular” caveat becomes
important. An affine curve P (z, w) = 0 is said to be singular at P = (z0, w0)
if all of

P (z, w),
∂P

∂z
,

∂P

∂w
,

vanish at P. A projective curve is singular at P ∈ CP 2 if all of

P (z, w, v),
∂P

∂z
,

∂P

∂w
,

∂P

∂v

are zero there. If the curve has a singular point then then it degenerates and
ceases to be a manifold. Now Riemann’s construction does not guarantee
an embedding of the surface into CP 2, only an immersion. The distinction
between these two concepts is that an immersed surface is allowed to self-
intersect, while an embedded one is not. Being a double root of the defining
equation P (z, w) = 0, a point of self-intersection is necessarily a singular
point.

As an illustration of a singular curve, consider our earlier example of the
curve

w2 = (z − a)(z − b)(z − c)(z − d) (17.171)

whose Riemann surface we know to be a torus once two some points are
added at infinity, and when a, b, c, d are all distinct. The degree-genus formula
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applied to this degree four curve gives, however, g = 3 instead of the expected
g = 1. This is because the corresponding projective curve

w2v2 = (z − av)(z − bv)(z − cv)(z − dv) (17.172)

has a tacnode singularity at the point (z, w, v) = (0, 1, 0). Rather than
investigate this rather complicated singularity at infinity, we will consider
the simpler case of what happens if we allow b to coincide with c. When b
and c merge, the finite point P = (w0, z0) = (0, b) becomes a singular. Near
the singularity, the equation defining our curve looks like

0 = w2 − ad (z − b)2, (17.173)

which is the equation of two lines, w =
√
ad (z − b) and w = −

√
ad (z − b),

that intersect at the point (w, z) = (0, b). To understand what is happening
topologically it is first necessary to realize that a complex line is a copy of C
and hence, after the point at infinity is included, is topologically a sphere. A
pair of intersecting complex lines is therefore topologically a pair of spheres
sharing a common point. Our degenerate curve only looks like a pair of
lines near the point of intersection however. To see the larger picture, look
back at the figure of the twice-cut plane where we see that as b approaches
c we have an α cycle of zero total length. A zero length cycle means that
the circumference of the torus becomes zero at P, so that it looks like a
bent sausage with its two ends sharing the common point P. Instead of two
separate spheres, our sausage is equivalent to a single two-sphere with two
points identified.

P

P
P

α

β

α

β

Figure 17.21: A degenerate torus is topologically the same as a sphere with
two points identified.
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As it stands, such a set is no longer a manifold because any neighbourhood of
P will contain bits of both ends of the sausage, and therefore cannot be given
co-ordinates that make it look like a region in R2. We can, however, simply
agree to delete the common point, and then plug the resulting holes in the
sausage ends with two distinct points. The new set is again a manifold, and
topologically a sphere. From the viewpoint of the pair of intersecting lines,
this construction means that we stay on one line, and ignore the other as it
passes through.

A similar resolution of singularities allows us to regard immersed surfaces
as non-singular manifolds, and it is this sense that Riemann’s theorem is to
be understood. When n such self-intersection double points are deleted and
replaced by pairs of distinct points The degree-genus formula becomes

g =
1

2
(d− 1)(d− 2)− n, (17.174)

and this can take any integer value.

17.6.4 Conformal geometry of Riemann surfaces

In this section we recall Hodge’s theory of harmonic forms from section 13.7.1,
and see how it looks from a complex-variable perspective. This viewpoint
reveals a relationship between Riemann surfaces and Riemann manifolds that
forms an important ingredient in string and conformal field theory.

Isothermal co-ordinates and complex structure

Suppose we have a two-dimensional orientable Riemann manifold M with
metric

ds2 = gij dx
idxj. (17.175)

In two dimensions gij has three independent components. When we make a
co-ordinate transformation we have two arbitrary functions at our disposal,
and so we can use this freedom to select local co-ordinates in which only one
independent component remains. The most useful choice is isothermal (also
called conformal) co-ordinates x, y in which the metric tensor is diagonal,
gij = eσδij, and so

ds2 = eσ(dx2 + dy2). (17.176)
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The eσ is called the scale factor or conformal factor . If we set z = x + iy
and z = x− iy the metric becomes

ds2 = eσ(z,z)dz dz. (17.177)

We can construct isothermal co-ordinates for some open neighbourhood of
any point in M . If in an overlapping isothermal co-ordinate patch the metric
is

ds2 = eτ(ζ,ζ)dζ dζ, (17.178)

and if the co-ordinates have the same orientation, then in the overlap region
ζ must be a function only of z and ζ a function only of z. This is so that

eτ(ζ,ζ)dζ dζ = eσ(z,z)

∣∣∣∣
dz

dζ

∣∣∣∣
2

dζ dζ (17.179)

without any dζ2 or dζ
2
terms appearing. A manifold with an atlas of complex

charts whose change-of-co-ordinate formulae are holomorphic in this way is
said to be a complex manifold , and the co-ordinates endow it with a complex
structure. The existence of a global complex structure allows to us to de-
fine the notion of meromorphic and rational functions on M . Our Riemann
manifold is therefore also a Riemann surface.

While any compact, orientable, two-dimensional Riemann manifold has
a complex structure that is determined by the metric, the mapping: metric
→ complex structure is not one-to-one. Two metrics gij, g̃ij that are related
by a conformal scale factor

gij = λ(x1, x2)g̃ij (17.180)

give rise to the same complex structure. Conversely, a pair of two-dimensional
Riemann manifolds having the same complex structure have metrics that are
related by a scale factor.

The use of isothermal co-ordinates simplifies many computations. Firstly,
observe that gij/

√
g = δij, the conformal factor having cancelled. If you look

back at its definition, you will see that this means that when the Hodge “?”
map acts on one-forms, the result is independent of the metric. If ω is a
one-form

ω = p dx+ q dy, (17.181)

then
?ω = −q dx+ p dy. (17.182)
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Note that, on one-forms,
?? = −1. (17.183)

With z = x + iy, z = x− iy, we have

ω =
1

2
(p− iq) dz +

1

2
(p+ iq) dz. (17.184)

Let us focus on the dz part:

A =
1

2
(p− iq) dz =

1

2
(p− iq)(dx+ idy). (17.185)

Then

?A =
1

2
(p− iq)(dy − idx) = −iA. (17.186)

Similarly, with

B =
1

2
(p+ iq) dz (17.187)

we have
?B = iB. (17.188)

Thus the dz and dz parts of the original form are separately eigenvectors of ?
with different eigenvalues. We use this observation to construct a resolution
of the identity Id into the sum of two projection operators

Id =
1

2
(1 + i?) +

1

2
(1− i?),

= P + P, (17.189)

where P projects on the dz part and P onto the dz part of the form.
The original form is harmonic if it is both closed dω = 0, and co-closed

d ?ω = 0. Thus, in two dimensions, the notion of being harmonic (i.e. a
solution of Laplace’s equation) is independent of what metric we are given.
If ω is a harmonic form, then (p− iq)dz and (p+ iq)dz are separately closed.
Observe that (p− iq)dz being closed means that ∂z(p− iq) = 0, and so p− iq
is a holomorphic (and hence harmonic) function. Since both (p− iq) and dz
depend only on z, we will call (p− iq)dz a holomorphic 1-form. The complex
conjugate form

(p− iq)dz = (p + iq)dz (17.190)

then depends only on z and is anti-holomorphic.
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Riemann bilinear relations

As an illustration of the interplay of harmonic forms and two-dimensional
topology, we derive some famous formuæ due to Riemann. These formulæ
have applications in string theory and in conformal field theory.

Suppose that M is a Riemann surface of genus g, with αi, βi ,i = 1, . . . , g,
the representative generators of H1(M) that intersect as shown in figure
17.20. By applying Hodge-de Rham to this surface, we know that we can
select a set of 2g independent, real, harmonic, 1-forms as a basis of H1(M,R).
With the aid of the projector P we can assemble these into g holomorphic
closed 1-forms ωi, together with g anti-holomorphic closed 1-forms ωi, the
original 2g real forms being recovered from these as ωi + ωi and ?(ωi +
ωi) = i(ωi − ωi). A physical interpretation of these forms is as the z and
z components of irrotational and incompressible fluid flows on the surface
M . It is not surprising that such flows form a 2g real dimensional, or g
complex dimensional, vector space because we can independently specify the
circulation

∮
v·dr around each of the 2g generators ofH1(M). If the flow field

has (covariant) components vx, vy, then ω = vzdz where vz = (vx − ivy)/2,
and ω = vzdz where vz = (vx + ivy)/2.

Suppose now that a and b are closed 1-forms on M . Then, either by
exploiting the powerful and general intersection-form formula (13.77) or by
cutting open the surface along the curves αi, βi and using the more direct
strategy that gave us (13.79), we find that

∫

M

a ∧ b =

g∑

i=1

{∫

αi

a

∫

βi

b−
∫

βi

a

∫

αi

b

}
. (17.191)

We use this formula to derive two bilinear relations associated with a closed
holomorphic 1-form ω. Firstly we compute its Hodge inner-product norm

‖ω‖2 ≡
∫

M

ω ∧ ?ω =

g∑

i=1

{∫

αi

ω

∫

βi

?ω −
∫

βi

ω

∫

αi

?ω

}

= i

g∑

i=1

{∫

αi

ω

∫

βi

ω −
∫

βi

ω

∫

αi

ω

}

= i

g∑

i=1

{
AiBi −BiAi

}
, (17.192)
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where Ai =
∫
αi
ω and Bi =

∫
βi
ω. We have used the fact that ω is an anti-

holomorphic 1 form and thus an eigenvector of ? with eigenvalue i. It follows,
therefore, that if all the Ai are zero then ‖ω‖ = 0 and so ω = 0.

Let Aij =
∫
αi
ωj. The determinant of the matrix Aij is non-zero: If it

were zero, then there would be numbers λi, not all zero, such that

0 = Aijλj =

∫

αi

(ωjλj), (17.193)

but, by (17.192), this implies that ‖ωjλj‖ = 0 and hence ωjλj = 0, contrary
to the linear independence of the ωi. We can therefore solve the equations

Aijλjk = δik (17.194)

for the numbers λjk and use these to replace each of the ωi by the linear
combination ωjλji. The new ωi then obey

∫
αi
ωj = δij. From now on we

suppose that this has be done.
Define τij =

∫
βi
ωj. Observe that dz ∧ dz = 0 forces ωi ∧ ωj = 0, and

therefore we have a second relation

0 =

∫

M

ωm ∧ ωn =

g∑

i=1

{∫

αi

ωm

∫

βi

ωn −
∫

βi

ωm

∫

αi

ωn

}

=

g∑

i=1

{δimτin − τimδin}

= τmn − τnm. (17.195)

The matrix τij is therefore symmetric. A similar compuation shows that

‖λiωi‖2 = 2λi(Im τij)λj (17.196)

so the matrix (Im τij) is positive definite. The set of such symmetric matrices
whose imaginary part is positive definite is called the Siegel upper half-plane.
Not every such matrix correponds to a Riemann surface, but when it does it
encodes all information about the shape of the Riemann manifold M that is
left invariant under conformal rescaling.

17.7 Further exercises and problems

Exercise 17.11: Harmonic partners. Show that the function

u = sinx cosh y + 2 cos x sinh y
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is harmonic. Determine the corresponding analytic function u+ iv.

Exercise 17.12: Möbius Maps. The Map

z 7→ w =
az + b

cz + d

is called a Möbius transformation. These maps are important because they are
the only one-to-one conformal maps of the Riemann sphere onto itself.

a) Show that two successive Möbius transformations

z′ =
az + b

cz + d
, z′′ =

Az′ +B

Cz′ +D

give rise to another Möbius transformation, and show that the rule for
combining them is equivalent to matrix multiplication.

b) Let z1, z2, z3, z4 be complex numbers. Show that a necessary and suffi-
cient condition for the four points to be concyclic is that their cross-ratio

{z1, z2, z3, z4} def
=

(z1 − z4)(z3 − z2)
(z1 − z2)(z3 − z4)

be real (Hint: use a well-known property of opposite angles of a cyclic
quadrilateral). Show that Möbius transformations leave the cross-ratio
invariant, and thus take circles into circles.

Exercise 17.13: Hyperbolic geometry . The Riemann metric for the Poincaré-
disc model of Lobachevski’s hyperbolic plane (See exercises 1.7 and 12.13) can
be taken to be

ds2 =
4|dz|2

(1− |z|2)2 , |z|2 < 1.

a) Show that the Möbius transformation

z 7→ w = eiλ
z − a
āz − 1

, |a| < 1, λ ∈ R

provides a 1-1 map of the interior of the unit disc onto itself. Show that
these maps form a group.

b) Show that the hyperbolic-plane metric is left invariant under the group
of maps in part (a). Deduce that such maps are orientation-preserving
isometries of the hyperbolic plane.

c) Use the circle-preserving property of the Möbius maps to deduce that
circles in hyperbolic geometry are represented in the Poincaré disc by
Euclidean circles that lie entirely within the disc.
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The conformal maps of part (a) are in fact the only orientation preserving
isometries of the hyperbolic plane. With the exception of circles centered at
z = 0, the center of the hyperbolic circle does not coincide with the center
of its representative Euclidean circle. Euclidean circles that are internally
tangent to the boundary of the unit disc have infinite hyperbolic radius and
their hyperbolic centers lie on the boundary of the unit disc and hence at
hyperbolic infinity. They are known as horocycles.

Exercise 17.14: Rectangle to Ellipse. Consider the map w 7→ z = sinw. Draw
a picture of the image, in the z plane, of the interior of the rectangle with
corners u = ±π/2, v = ±λ. (w = u + iv). Show which points correspond to
the corners of the rectangle, and verify that the vertex angles remain π/2. At
what points does the isogonal property fail?

Exercise 17.15: The part of the negative real axis where x < −1 is occupied
by a conductor held at potential −V0. The positive real axis for x > +1
is similarly occupied by a conductor held at potential +V0. The conductors
extend to infinity in both directions perpendicular to the x− y plane, and so
the potential V satisfies the two-dimensional Laplace equation.

a) Find the image in the ζ plane of the cut z plane where the cuts run from
−1 to −∞ and from +1 to +∞ under the map z 7→ ζ = sin−1 z

b) Use your answer from part a) to solve the electrostatic problem and
show that the field lines and equipotentials are conic sections of the form
ax2+by2 = 1. Find expressions for a and b for the both the field lines and
the equipotentials and draw a labelled sketch to illustrate your results.

Exercise 17.16: Draw the image under the map z 7→ w = eπz/a of the infinite
strip S, consisting of those points z = x + iy ∈ C for which 0 < y < a.
Label enough points to show which point in the w plane corresponds to which
in the z plane. Hence or otherwise show that the Dirichlet Green function
G(x, y;x0, y0) that obeys

∇2G = δ(x− x0)δ(y − y0)

in S, and G(x, y;x0, y0) = 0 for (x, y) on the boundary of S, can be written as

G(x, y;x0, y0) =
1

2π
ln | sinh(π(z − z0)/2a)| + . . .

The dots indicate the presence of a second function, similar to the first, that
you should find. Assume that (x0, y0) ∈ S.
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Exercise 17.17: State Laurent’s theorem for functions analytic in an annulus.
Include formulae for the coefficients of the expansion. Show that, suitably
interpreted, this theorem reduces to a form of Fourier’s theorem for functions
analytic in a neighbourhood of the unit circle.

Exercise 17.18: Laurent Paradox. Show that in the annulus 1 < |z| < 2 the
function

f(z) =
1

(z − 1)(2 − z)
has a Laurent expansion in powers of z. Find the coefficients. The part of the
series with negative powers of z does not terminate. Does this mean that f(z)
has an essential singularity at z = 0?

Exercise 17.19: Assuming the following series

1

sinh z
=

1

z
− 1

6
z +

7

16
z3 + . . . ,

evaluate the integral

I =

∮

|z|=1

1

z2 sinh z
dz.

Now evaluate the integral

I =

∮

|z|=4

1

z2 sinh z
dz.

(Hint: The zeros of sinh z lie at z = nπi.)

Exercise 17.20: State the theorem relating the difference between the number
of poles and zeros of f(z) in a region to the winding number of argument of
f(z). Hence, or otherwise, evaluate the integral

I =

∮

C

5z4 + 1

z5 + z + 1
dz

where C is the circle |z| = 2. Prove, including a statement of any relevent
theorem, any assertions you make about the locations of the zeros of z5+z+1.

Exercise 17.21: Arcsine branch cuts. Let w = sin−1z. Show that

w = nπ ± i ln{iz +
√

1− z2}

with the ± being selected depending on whether n is odd or even. Where
would you put cuts to ensure that w is a single-valued function?
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Figure 17.22: Concurrent 1-cycles on a genus-2 surface.
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Figure 17.23: The cut-open genus-2 surface. The superscripts L and R denote
respectively the left and right sides of each 1-cycle, viewed from the direction
of the arrow orienting the cycle.
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Problem 17.22: Cutting open a genus-2 surface. The Riemann surface for the
function

y =
√

(z − a1)(z − a2)(z − a3)(z − a4)(z − a5)(z − a6)

has genus g = 2. Such a surface M is sketched in figure 17.22, where the four
independent 1-cycles α1,2 and β1,2 that generate H1(M) have been drawn so
that they share a common vertex.

a) Realize the genus-2 surface as two copies of C∪ {∞} cross-connected by
three square-root branch cuts. Sketch how the 1-cycles αi and βi, i = 1, 2
of figure 17.22 appear when drawn on your thrice-cut plane.

b) Cut the surface open along the four 1-cycles, and convince yourself that
resulting surface is homeomorphic to the octagonal region appearing in
figure 17.23.

c) Apply the direct method that gave us (13.79) to the octagonal region of
part b). Hence show that for closed 1-forms a, b, on the surface we have

∫

M
a ∧ b =

2∑

i=1

{∫

αi

a

∫

βi

b−
∫

βi

a

∫

αi

b

}
.



Chapter 18

Applications of Complex
Variables

In this chapter we will find uses what we have learned of complex variables.
The applications will range from the elementary to the sophisticated.

18.1 Contour integration technology

The goal of contour integration technology is to evaluate ordinary, real-
variable, definite integrals. We have already met the basic tool, the residue
theorem:

Theorem: Let f(z) be analytic within and on the boundary Γ = ∂D of a
simply connected domain D, with the exception of finite number of points
at which the function has poles. Then

∮

Γ

f(z) dz =
∑

poles ∈ D
2πi (residue at pole).

18.1.1 Tricks of the trade

The effective application of the residue theorem is something of an art, but
there are useful classes of integrals which we can learn to recognize.

749
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Rational trigonometric expressions

Integrals of the form ∫ 2π

0

F (cos θ, sin θ) dθ (18.1)

are dealt with by writing cos θ = 1
2
(z + z), sin θ = 1

2i
(z − z) and integrating

around the unit circle. For example, let a, b be real and b < a, then

I =

∫ 2π

0

dθ

a+ b cos θ
=

2

i

∮

|z|=1

dz

bz2 + 2az + b
=

2

ib

∮
dz

(z − α)(z − β)
.

(18.2)
Since αβ = 1, only one pole is within the contour. This is at

α = (−a +
√
a2 − b2)/b. (18.3)

The residue is
2

ib

1

α− β =
1

i

1√
a2 − b2

. (18.4)

Therefore, the integral is given by

I =
2π√
a2 − b2

. (18.5)

These integrals are, of course, also do-able by the “t” substitution t =
tan(θ/2), whence

sin θ =
2t

1 + t2
, cos θ =

1− t2
1 + t2

, dθ =
2dt

1 + t2
, (18.6)

followed by a partial fraction decomposition. The labour is perhaps slightly
less using the contour method.

Rational functions

Integrals of the form ∫ ∞

−∞
R(x) dx, (18.7)

where R(x) is a rational function of x with the degree of the denominator
exceeding the degree of the numerator by two or more, may be evaluated
by integrating around a rectangle from −A to +A, A to A + iB, A + iB to
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−A + iB, and back down to −A. Because the integrand decreases at least
as fast as 1/|z|2 as z becomes large, we see that if we let A,B → ∞, the
contributions from the unwanted parts of the contour become negligeable.
Thus

I = 2πi
(∑

Residues of poles in upper half-plane
)
. (18.8)

We could also use a rectangle in the lower half-plane with the result

I = −2πi
(∑

Residues of poles in lower half-plane
)
, (18.9)

This must give the same answer.

For example, let n be a positive integer and consider

I =

∫ ∞

−∞

dx

(1 + x2)n
. (18.10)

The integrand has an n-th order pole at z = ±i. Suppose we close the contour
in the upper half-plane. The new contour encloses the pole at z = +i and
we therefore need to compute its residue. We set z − i = ζ and expand

1

(1 + z2)n
=

1

[(i + ζ)2 + 1]n
=

1

(2iζ)n

(
1− iζ

2

)−n

=
1

(2iζ)n

(
1 + n

(
iζ

2

)
+
n(n+ 1)

2!

(
iζ

2

)2

+ · · ·
)
.(18.11)

The coefficient of ζ−1 is

1

(2i)n
n(n + 1) · · · (2n− 2)

(n− 1)!

(
i

2

)n−1

=
1

22n−1i

(2n− 2)!

((n− 1)!)2
. (18.12)

The integral is therefore

I =
π

22n−2

(2n− 2)!

((n− 1)!)2
. (18.13)

These integrals can also be done by partial fractions.
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18.1.2 Branch-cut integrals

Integrals of the form

I =

∫ ∞

0

xα−1R(x)dx, (18.14)

where R(x) is rational, can be evaluated by integration round a slotted circle
(or “key-hole”) contour.

y

x−1

Figure 18.1: A slotted circle contour Γ of outer radius Λ and inner radius ε.

A little more work is required to extract the answer, though.

For example, consider

I =

∫ ∞

0

xα−1

1 + x
dx, 0 < Reα < 1. (18.15)

The restrictions on the range of α are necessary for the integral to converge
at its upper and lower limits.

We take Γ to be a circle of radius Λ centred at z = 0, with a slot indenta-
tion designed to exclude the positive real axis, which we take as the branch
cut of zα−1, and a small circle of radius ε about the origin. The branch of
the fractional power is defined by setting

zα−1 = exp[(α− 1)(ln |z|+ iθ)], (18.16)
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where we will take θ to be zero immediately above the real axis, and 2π
immediately below it. With this definition the residue at the pole at z = −1
is eiπ(α−1). The residue theorem therefore tells us that

∮

Γ

zα−1

1 + z
dz = 2πieπi(α−1). (18.17)

The integral decomposes as

∮

Γ

zα−1

1 + z
dz =

∮

|z|=Λ

zα−1

1 + z
dz + (1− e2πi(α−1))

∫ Λ

ε

xα−1

1 + x
dx−

∮

|z|=ε

zα−1

1 + z
dz.

(18.18)
As we send Λ off to infinity we can ignore the “1” in the denominator com-
pared to the z, and so estimate

∣∣∣∣
∮

|z|=Λ

zα−1

1 + z
dz

∣∣∣∣→
∣∣∣∣
∮

|z|=Λ

zα−2dz

∣∣∣∣ ≤ 2πΛ× ΛRe (α)−2. (18.19)

This tends to zero provided that Reα < 1. Similarly, provided 0 < Reα, the
integral around the small circle about the origin tends to zero with ε. Thus

−eπiα2πi =
(
1− e2πi(α−1)

)
I. (18.20)

We conclude that

I =
2πi

(eπiα − e−πiα) =
π

sin πα
. (18.21)

Exercise 18.1: Using the slotted circle contour, show that

I =

∫ ∞

0

xp−1

1 + x2
dx =

π

2 sin(πp/2)
=
π

2
cosec (πp/2), 0 < p < 2.

Exercise 18.2: Integrate za−1/(z − 1) around a contour Γ1 consisting of a
semicircle in the upper half plane together with the real axis indented at
z = 0 and z = 1
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x

y

1

Figure 18.2: The contour Γ1.

to get

0 =

∮

Γ

za−1

z − 1
dz = P

∫ ∞

0

xa−1

x− 1
dx− iπ + (cos πa+ i sinπa)

∫ ∞

0

xa−1

x+ 1
dx.

As usual, the symbol P in front of the integral sign denotes a principal part
integral, meaning that we must omit an infinitesimal segment of the contour
symmetrically disposed about the pole at z = 1. The term −iπ comes from
integrating around the small semicircle about this point. We get −1/2 of the
residue because we have only a half circle, and that traversed in the “wrong”
direction. Warning: this fractional residue result is only true when we indent
to avoid a simple pole—i.e. one that is of order one.

Now take real and imaginary parts and deduce that

∫ ∞

0

xa−1

1 + x
dx =

π

sinπα
, 0 < Re a < 1,

and

P

∫ ∞

0

xa−1

1− xdx = π cot πa, 0 < Re a < 1.

18.1.3 Jordan’s lemma

We often need to evaluate Fourier integrals

I(k) =

∫ ∞

−∞
eikxR(x) dx (18.22)
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with R(x) a rational function. For example, the Green function for the
operator −∂2

x +m2 is given by

G(x) =

∫ ∞

−∞

dk

2π

eikx

k2 +m2
. (18.23)

Suppose x ∈ R and x > 0. Then, in contrast to the analogous integral
without the exponential function, we have no flexibility in closing the contour
in the upper or lower half-plane. The function eikx grows without limit as
we head south in the lower half-plane, but decays rapidly in the upper half-
plane. This means that we may close the contour without changing the value
of the integral by adding a large upper-half-plane semicircle.

R

k

im

−im

Figure 18.3: Closing the contour in the upper half-plane.

The modified contour encloses a pole at k = im, and this has residue
i/(2m)e−mx. Thus

G(x) =
1

2m
e−mx, x > 0. (18.24)

For x < 0, the situation is reversed, and we must close in the lower half-plane.
The residue of the pole at k = −im is −i/(2m)emx, but the minus sign is
cancelled because the contour goes the “wrong way” (clockwise). Thus

G(x) =
1

2m
e+mx, x < 0. (18.25)

We can combine the two results as

G(x) =
1

2m
e−m|x|. (18.26)
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The formal proof that the added semicircles make no contribution to the
integral when their radius becomes large is known as Jordan’s Lemma:
Lemma: Let Γ be a semicircle, centred at the origin, and of radius R. Sup-
pose

i) that f(z) is meromorphic in the upper half-plane;
ii) that f(z) tends uniformly to zero as |z| → ∞ for 0 < arg z < π;
iii) the number λ is real and positive.

Then ∫

Γ

eiλzf(z) dz → 0, as R→∞. (18.27)

To establish this, we assume that R is large enough that |f | < ε on the
contour, and make a simple estimate

∣∣∣∣
∫

Γ

eiλzf(z) dz

∣∣∣∣ < 2Rε

∫ π/2

0

e−λR sin θ dθ

< 2Rε

∫ π/2

0

e−2λRθ/π dθ

=
πε

λ
(1− e−λR) <

πε

λ
. (18.28)

In the second inequality we have used the fact that (sin θ)/θ ≥ 2/π for angles
in the range 0 < θ < π/2. Since ε can be made as small as we like, the lemma
follows.
Example: Evaluate

I(α) =

∫ ∞

−∞

sin(αx)

x
dx. (18.29)

We have

I(α) = Im

{∫ ∞

−∞

exp iαz

z
dz

}
. (18.30)

If we take α > 0, we can close in the upper half-plane, but our contour must
exclude the pole at z = 0. Therefore

0 =

∫

|z|=R

exp iαz

z
dz −

∫

|z|=ε

exp iαz

z
dz +

∫ −ε

−R

exp iαx

x
dx+

∫ R

ε

exp iαx

x
dx.

(18.31)
As R → ∞, we can ignore the big semicircle, the rest, after letting ε → 0,
gives

0 = −iπ + P

∫ ∞

−∞

eiαx

x
dx. (18.32)
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Again, the symbol P denotes a principal part integral. The −iπ comes from
the small semicircle. We get −1/2 the residue because we have only a half
circle, and that traversed in the “wrong” direction. (Remember that this
fractional residue result is only true when we indent to avoid a simple pole—
i.e one that is of order one.)

Reading off the real and imaginary parts, we conclude that

∫ ∞

−∞

sinαx

x
dx = π, P

∫ ∞

−∞

cosαx

x
dx = 0, α > 0. (18.33)

No “P” is needed in the sine integral, as the integrand is finite at x = 0.
If we relax the condition that α > 0 and take into account that sine is an

odd function of its argument, we have

∫ ∞

−∞

sinαx

x
dx = π sgnα. (18.34)

This identity is called Dirichlet’s discontinuous integral .
We can interpret Dirichlet’s integral as giving the Fourier transform of

the principal part distribution P (1/x) as

P

∫ ∞

−∞

eiωx

x
dx = iπ sgnω. (18.35)

This will be of use later in the chapter.

Example:

x

y

Figure 18.4: Quadrant contour.
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We will evaluate the integral
∮

C

eizza−1 dz (18.36)

about the first-quadrant contour shown above. Observe that when 0 < a < 1
neither the large nor the small arc makes a contribution, and that there are
no poles. Hence, we deduce that

0 =

∫ ∞

0

eixxa−1 dx− i
∫ ∞

0

e−yya−1e(a−1) π
2
i dy, 0 < a < 1. (18.37)

Taking real and imaginary parts, we find
∫ ∞

0

xa−1 cos x dx = Γ(a) cos
(π

2
a
)
, 0 < a < 1,

∫ ∞

0

xa−1 sin x dx = Γ(a) sin
(π

2
a
)
, 0 < a < 1, (18.38)

where

Γ(a) =

∫ ∞

0

ya−1e−y dy (18.39)

is the Euler Gamma function.
Example: Fresnel integrals. Integrals of the form

C(t) =

∫ t

0

cos(πx2/2) dx, (18.40)

S(t) =

∫ t

0

sin(πx2/2) dx, (18.41)

occur in the theory of diffraction and are called Fresnel integrals after Au-
gustin Fresnel. They are naturally combined as

C(t) + iS(t) =

∫ t

0

eiπx
2/2 dx. (18.42)

The limit as t→∞ exists and is finite. Even though the integrand does not
tend to zero at infinity, its rapid oscillation for large x is just sufficient to
ensure convergence.1

1We can exhibit this convergence by setting x2 = s and then integrating by parts to
get

∫ t

0

eiπx2/2 dx =
1

2

∫ 1

0

eiπs/2 ds

s1/2
+

[
eiπs/2

πis1/2

]t2

1

+
1

2πi

∫ t2

1

eiπs/2 ds

s3/2
.

The right hand side is now manifestly convergent as t→∞.
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As t varies, the complex function C(t)+iS(t) traces out the Cornu Spiral ,
named after Marie Alfred Cornu, a 19th century French optical physicist.

-0.75 -0.5 -0.25 0.25 0.5 0.75

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 18.5: The Cornu spiral C(t) + iS(t) for t in the range −8 < t < 8.
The spiral in the first quadrant corresponds to positive values of t.

We can evaluate the limiting value

C(∞) + iS(∞) =

∫ ∞

0

eiπx
2/2 dx (18.43)

by deforming the contour off the real axis and onto a line of length L running
into the first quadrant at 45◦, this being the direction of most rapid decrease
of the integrand.

L

y

x

Figure 18.6: Fresnel contour.
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A circular arc returns the contour to the axis whence it continues to ∞, but
an estimate similar to that in Jordan’s lemma shows that the arc and the
subsequent segment on the real axis make a negligeable contribution when L
is large. To evaluate the integral on the radial line we set z = eiπ/4s, and so

∫ eiπ/4∞

0

eiπz
2/2 dz = eiπ/4

∫ ∞

0

e−πs
2/2 ds =

1√
2
eiπ/4 =

1

2
(1 + i). (18.44)

Figure 18.5 shows how C(t) + iS(t) orbits the limiting point 0.5 + 0.5i and
slowly spirals in towards it. Taking real and imaginary parts we have

∫ ∞

0

cos

(
πx2

2

)
dx =

∫ ∞

0

sin

(
πx2

2

)
dx =

1

2
. (18.45)

18.2 The Schwarz reflection principle

Theorem (Schwarz): Let f(z) be analytic in a domain D where ∂D includes
a segment of the real axis. Assume that f(z) is real when z is real. Then
there is a unique analytic continuation of f into the region D (the mirror
image of D in the real axis) given by

g(z) =





f(z), z ∈ D,
f(z), z ∈ D,
either, z ∈ R.

(18.46)

x

y

D

D

Figure 18.7: The domain D and its mirror image D.
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The proof invokes Morera’s theorem to show analyticity, and then appeals
to the uniqueness of analytic continuations. Begin by looking at a closed
contour lying only in D: ∮

C

f(z) dz, (18.47)

where C = {η(t)} is the image of C = {η(t)} ⊂ D under reflection in the
real axis. We can rewrite this as

∮

C

f(z) dz =

∮
f(η)

dη̄

dt
dt =

∮
f(η)

dη

dt
dt =

∮

C

f(η) dz = 0. (18.48)

At the last step we have used Cauchy and the analyticity of f in D. Morera’s
theorem therefore confirms that g(z) is analytic in D. By breaking a general
contour up into parts in D and parts in D, we can similarly show that g(z)
is analytic in D ∪D.

The important corollary is that if f(z) is analytic, and real on some
segment of the real axis, but has a cut along some other part of the real axis,
then f(x+ iε) = f(x− iε) as we go over the cut. The discontinuity disc f is
therefore 2Im f(x+ iε).

Suppose f(z) is real on the negative real axis, and goes to zero as |z| → ∞,
then applying Cauchy to the contour Γ depicted in figure 18.8.

y

x

ζ

Figure 18.8: The contour Γ for the dispersion relation. .
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we find

f(ζ) =
1

π

∫ ∞

0

Im f(x+ iε)

x− ζ dx, (18.49)

for ζ within the contour. This is an example of a dispersion relation. The
name comes from the prototypical application of this technology to optical
dispersion, i.e. the variation of the refractive index with frequency.

If f(z) does not tend to zero at infinity then we cannot ignore the con-
tribution to Cauchy’s formula from the large circle. We can, however, still
write

f(ζ) =
1

2πi

∮

Γ

f(z)

z − ζ dz, (18.50)

and

f(b) =
1

2πi

∮

Γ

f(z)

z − b dz, (18.51)

for some convenient point b within the contour. We then subtract to get

f(ζ) = f(b) +
(ζ − b)

2πi

∫

Γ

f(z)

(z − b)(z − ζ) dz. (18.52)

Because of the extra power of z downstairs in the integrand, we only need f
to be bounded at infinity for the contribution of the large circle to tend to
zero. If this is the case, we have

f(ζ) = f(b) +
(ζ − b)
π

∫ ∞

0

Im f(x + iε)

(x− b)(x− ζ) dx. (18.53)

This is called a once-subtracted dispersion relation.
The dispersion relations derived above apply when ζ lies within the con-

tour. In physics applications we often need f(ζ) for ζ real and positive. What
happens as ζ approaches the axis, and we attempt to divide by zero in such
an integral, is summarized by the Plemelj formulæ: If f(ζ) is defined by

f(ζ) =
1

π

∫

Γ

ρ(z)

z − ζ dz, (18.54)

where Γ has a segment lying on the real axis, then, if x lies in this segment,

1

2
(f(x+ iε)− f(x− iε)) = iρ(x)

1

2
(f(x+ iε) + f(x− iε)) =

P

π

∫

Γ

ρ(x′)

x′ − x dx
′. (18.55)
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As always, the “P” means that we are to delete an infinitesimal segment of
the contour lying symmetrically about the pole.

+ = 2

− = 

Figure 18.9: Origin of the Plemelj formulae.

The Plemelj formulæ hold under relatively mild conditions on the function
ρ(x). We won’t try to give a general proof, but in the case that ρ is analytic
the result is easy to understand: we can push the contour out of the way
and let ζ → x on the real axis from either above or below. In that case the
drawing in figure 18.9 shows how the the sum of these two limits gives the
the principal-part integral and how their difference gives an integral round a
small circle, and hence the residue ρ(x).

The Plemelj equations usually appear in physics papers as the “iε” cabala

1

x′ − x± iε = P

(
1

x′ − x

)
∓ iπδ(x′ − x). (18.56)

A limit ε→ 0 is always to be understood in this formula.

Im fRe f

x’−x

x’−x

Figure 18.10: Sketch of the real and imaginary parts of f(x′) = 1/(x′−x−iε).
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We can also appreciate the origin of the iε rule by examining the following
identity:

1

x′ − (x± iε) =
x− x′

(x′ − x)2 + ε2
± iε

(x′ − x)2 + ε2
. (18.57)

The first term is a symmetrically cut-off version of 1/(x′ − x) and provides
the principal-part integral. The second term sharpens and tends to the delta
function ±iπδ(x′ − x) as ε→ 0.

Exercise 18.3: The Legendre function of the second kind Qn(z) may be defined
for positive integer n by the integral

Qn(z) =
1

2

∫ 1

−1

(1− t2)n
2n(z − t)n+1

dt, z /∈ [−1, 1].

Use Rodriguez’ formula to show that for x ∈ [−1, 1] we have

Qn(x+ iε)−Qn(x− iε) = −iπPn(x),

where Pn(x) is the Legendre Polynomial. Show further that Qn(z) satisfies the
conditions for the validity of an unsubtracted dispersion relation, and hence
deduce Neumann’s formula:

Qn(z) =
1

2

∫ 1

−1

Pn(t)

z − t dt, z /∈ [−1, 1].

18.2.1 Kramers-Kronig relations

Causality is the usual source of analyticity in physical applications. If G(t)
is a response function

φresponse(t) =

∫ ∞

−∞
G(t− t′)fcause(t

′) dt′ (18.58)

then for no effect to anticipate its cause we must have G(t) = 0 for t < 0.
The Fourier transform

G(ω) =

∫ ∞

−∞
eiωtG(t) dt, (18.59)

is then automatically analytic everywhere in the upper half plane. Suppose,
for example, we look at a forced, damped, harmonic oscillator whose dis-
placement x(t) obeys

ẍ + 2γẋ+ (Ω2 + γ2)x = F (t), (18.60)
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where the friction coefficient γ is positive. As we saw earlier, the solution is
of the form

x(t) =

∫ ∞

−∞
G(t, t′)F (t′)dt′,

where the Green function G(t, t′) = 0 if t < t′. In this case

G(t, t′) =

{
Ω−1e−γ(t−t

′) sin Ω(t− t′) t > t′

0, t < t′
(18.61)

and so

x(t) =
1

Ω

∫ t

−∞
e−γ(t−t

′) sin Ω(t− t′)F (t′) dt′. (18.62)

Because the integral extends only from 0 to +∞, the Fourier transform of
G(t, 0),

G̃(ω) ≡ 1

Ω

∫ ∞

0

eiωte−γt sin Ωt dt, (18.63)

is nicely convergent when Imω > 0, as evidenced by

G̃(ω) = − 1

(ω + iγ)2 − Ω2
(18.64)

having no singularities in the upper half-plane.2

Another example of such a causal function is provided by the complex,
frequency-dependent, refractive index of a material n(ω). This is defined so
that a travelling wave takes the form

ϕ(x, t) = ein(ω)k·x−iωt. (18.65)

We can decompose n into its real and imaginary parts

n(ω) = nR(ω) + inI(ω)

= nR(ω) +
i

2|k|γ(ω) (18.66)

2If a pole in a response function manages to sneak into the upper half plane, then
the system will be unstable to exponentially growing oscillations. This may happen, for
example, when we design an electronic circuit containing a feedback loop. Such poles, and
the resultant instabilities, can be detected by applying the principle of the argument from
the last chapter. This method leads to the Nyquist stability criterion.
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where γ is the extinction coefficient, defined so that the intensity falls off
as I ∝ exp(−γn · x), where n = k/|k| is the direction of propapagation. A
non-zero γ can arise from either energy absorption or scattering out of the
forward direction

Being a causal response, the refractive index extends to a function ana-
lytic in the upper half plane and n(ω) for real ω is the boundary value

n(ω)physical = lim
ε→0

n(ω + iε) (18.67)

of this analytic function. Because a real (E = E∗) incident wave must give
rise to a real wave in the material, and because the wave must decay in the
direction in which it is propagating, we have the reality conditions

γ(−ω + iε) = −γ(ω + iε),

nR(−ω + iε) = +nR(ω + iε) (18.68)

with γ positive for positive frequency.

Many materials have a frequency range |ω| < |ωmin| where γ = 0, so
the material is transparent. For any such material n(ω) obeys the Schwarz
reflection principle and so there is an analytic continuation into the lower
half-plane. At frequencies ω where the material is not perfectly transparent,
the refractive index has an imaginary part even when ω is real. By Schwarz, n
must be discontinuous across the real axis at these frequencies: n(ω + iε) =
nR + inI 6= n(ω − iε) = nR − inI . These discontinuities of 2inI usually
correspond to branch cuts.

No substance is able to respond to infinitely high frequency disturbances,
so n → 1 as |ω| → ∞, and we can apply our dispersion relation technology
to the function n− 1. We will need the contour shown below, which has cuts
for both positive and negative frequencies.
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Im

Re

ω

ωω min−ωmin

Figure 18.11: Contour for the n− 1 dispersion relation.

By applying the dispersion-relation strategy, we find

n(ω) = 1 +
1

π

∫ ωmin

−∞

nI(ω
′)

ω′ − ω dω
′ +

1

π

∫ ∞

ωmin

nI(ω
′)

ω′ − ω dω
′ (18.69)

for ω within the contour. Using Plemelj we can now take ω onto the real axis
to get

nR(ω) = 1 +
P

π

∫ ωmin

−∞

nI(ω
′)

ω′ − ω dω
′ +

P

π

∫ ∞

ωmin

nI(ω
′)

ω′ − ω dω
′

= 1 +
P

π

∫ ∞

ω2
min

nI(ω
′)

ω′2 − ω2
dω′2,

= 1 +
c

π
P

∫ ∞

ωmin

γ(ω′)

ω′2 − ω2
dω′. (18.70)

In the second line we have used the anti-symmetry of nI(ω) to combine the
positive and negative frequency range integrals. In the last line we have used
the relation ω/k = c to make connection with the way this equation is written
in R. G. Newton’s authoritative Scattering Theory of Waves and Particles.
This relation, between the real and absorptive parts of the refractive index,
is called a Kramers-Kronig dispersion relation, after the original authors.3

3H. A. Kramers, Nature, 117 (1926) 775; R. de L. Kronig, J. Opt. Soc. Am. 12 (1926)
547
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If n→ 1 fast enough that ω2(n− 1)→ 0 as |ω| → ∞, we can take the f
in the dispersion relation to be ω2(n− 1) and deduce that

nR = 1 +
c

π
P

∫ ∞

ω2
min

(
ω′2

ω2

)
γ(ω′)

ω′2 − ω2
dω′, (18.71)

another popular form of Kramers-Kronig. This second relation implies the
first, but not vice-versa, because the second demands more restrictive be-
havior for n(ω).

Similar equations can be derived for other causal functions. A quantity
closely related to the refractive index is the frequency-dependent dielectric
“constant”

ε(ω) = ε1 + iε2. (18.72)

Again ε→ 1 as |ω| → ∞, and, proceeding as before, we deduce that

ε1(ω) = 1 +
P

π

∫ ∞

ω2
min

ε2(ω
′)

ω′2 − ω2
dω′2. (18.73)

18.2.2 Hilbert transforms

Suppose that f(x) is the boundary value on the real axis of a function every-
where analytic in the upper half-plane, and suppose further that f(z) → 0
as |z| → ∞ there. Then we have

f(z) =
1

2πi

∫ ∞

−∞

f(x)

x− z dx (18.74)

for z in the upper half-plane. This is because we may close the contour with
an upper semicircle without changing the value of the integral. For the same
reason the integral must give zero when z is taken in the lower half-plane.
Using the Plemelj formulæ we deduce that on the real axis,

f(x) =
P

πi

∫ ∞

−∞

f(x′)

x′ − x dx
′. (18.75)

We can use this strategy to derive the Kramers-Kronig relations even if nI
never vanishes, and so we cannot use the Schwarz reflection principle.

The relation (18.75) suggests the definition of the Hilbert transform, Hψ,
of a function ψ(x), as

(Hψ)(x) =
P

π

∫ ∞

−∞

ψ(x′)

x− x′ dx
′. (18.76)
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Note the interchange of x, x′ in the denominator of (18.76) when compared
with (18.75). This switch is to make the Hilbert transform into a convolution
integral. Equation (18.75) shows that a function that is the boundary value
of a function analytic and tending to zero at infinity in the upper half-plane is
automatically an eigenvector of H with eigenvalue −i. Similarly a function
that is the boundary value of a function analytic and tending to zero at
infinity in the lower half-plane will be an eigenvector with eigenvalue +i. (A
function analytic in the entire complex plane and tending to zero at infinity
must vanish identically by Liouville’s theorem.)

Returning now to our original f , which had eigenvalue −i, and decom-
posing it as f(x) = fR(x) + ifI(x) we find that (18.75) becomes

fI(x) = (HfR)(x),

fR(x) = −(HfI)(x). (18.77)

Conversely, if we are given a real function u(x) and set v(x) = (Hu)(x),
then, under some mild restrictions on u (that it lie in some Lp(R), p > 1, for
example, in which case v(x) is also in Lp(R).) the function

f(z) =
1

2πi

∫ ∞

−∞

u(x) + iv(x)

x− z dx (18.78)

will be analytic in the upper half plane, tend to zero at infinity there, and
have u(x) + iv(x) as its boundary value as z approaches the real axis from
above. The last line of (18.77) therefore shows that we may recover u(x)
from v(x) as u(x) = −(Hv)(x). The Hilbert transform H : Lp(R) → Lp(R)
is therefore invertible, and its inverse is given by H−1 = −H. (Note that
the Hilbert transform of a constant is zero, but the Lp(R) condition excludes
constants from the domain of H, and so this fact does not conflict with
invertibility.)

Hilbert transforms are useful in signal processing. Given a real signal
XR(t) we can take its Hilbert transform so as to find the corresponding
imaginary part, XI(t), which serves to make the sum

Z(t) = XR(t) + iXI(t) = A(t)eiφ(t) (18.79)

analytic in the upper half-plane. This complex function is the analytic sig-
nal .4 The real quantity A(t) is then known as the instantaneous amplitude,

4D. Gabor, J. Inst. Elec. Eng. (Part 3), 93 (1946) 429-457.
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or envelope, while φ(t) is the instantaneous phase and

ωIF(t) = φ̇(t) (18.80)

is called the instantaneous frequency (IF). These quantities are used, for
example, in narrow band FM radio, in NMR, in geophysics, and in image
processing.

Exercise 18.4: Let f̃(ω) =
∫∞
−∞ eiωtf(t) dt denote the Fourier transform of

f(t). Use the formula (18.35) for the Fourier transform of P (1/t), combined
with the convolution theorem for Fourier transforms, to show that the Fourier
transform of the Hilbert transform of f(t) is

(̃Hf)(ω) = i sgn(ω)f̃(ω).

Deduce that the analytic signal is derived from the original real signal by
suppressing all positive frequency components (those proportional to e−iωt

with ω > 0) and multiplying the remaining negative-frequency amplitudes by
two.

Exercise 18.5: Suppose that ϕ1(x) and ϕ2(x) are real functions with finite
L2(R) norms.

a) Use the Fourier transform result from the previous exercise to show that

〈ϕ1, ϕ2〉 = 〈Hϕ1,Hϕ2〉.

Thus, H is a unitary transformation from L2(R)→ L2(R).
b) Use the fact that H2 = −I to deduce that

〈Hϕ1, ϕ2〉 = −〈ϕ1,Hϕ2〉

and so H† = −H.
c) Conclude from part b) that

∫ ∞

−∞
ϕ1(x)

(
P

∫ ∞

−∞

ϕ2(y)

x− y dy
)
dx =

∫ ∞

−∞
ϕ2(y)

(
P

∫ ∞

−∞

ϕ1(x)

x− y dx
)
dy,

i.e., for L2(R), functions, it is legitimate to interchange the order of “P”
integration with ordinary integration.

d) By replacing ϕ1(x) by a constant, and ϕ2(x) by the Hilbert transform
of a function f with

∫
f dx 6= 0, show that it is not always safe to

interchange the order of “P” integration with ordinary integration
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Exercise 18.6: Suppose that are given real functions u1(x) and u2(x) and sub-
stitute their Hilbert transforms v1 = Hu1, v2 = Hu2 into (18.78) to construct
analytic functions f1(z) and f2(z) that are analytic in the upper half-plane
and tend to zero at infinity there. Then, as we approach the real axis from
above, the product f1(z)f2(z) = F (z) has boundary value

FR(x+ iε) + iFI(x+ iε) = (u1u2 − v1v2) + i(u1v2 + u2v1).

By assuming that F (z) satisfies the conditions for (18.77) to be applicable to
this boundary value, deduce that

H ((Hu1)u2) +H((Hu2)u1)− (Hu1)(Hu2) = −u1u2. (?)

This result5 sometimes appears in the physics literature6 in the guise of the
distributional identity

P

x− y
P

y − z +
P

y − z
P

z − x +
P

z − x
P

x− y = −π2δ(x − y)δ(x− z),

where P/(x − y) denotes the principal-part distribution P
(
1/(x− y)

)
. This

attractively symmetric form conceals the fact that x is being kept fixed, while
y and z are being integrated over in specific orders. As the next exercise shows,
were we to freely re-arrange the integration order we could use the identity

1

x− y
1

y − z +
1

y − z
1

z − x +
1

z − x
1

x− y = 0 x, y, z distinct

to wrongly conclude that the right-hand side of (?) is zero.

Problem 18.7: Show that the identity (?) from exercise 18.6 can be written as

∫ ∞

−∞

(∫ ∞

−∞

u1(y)u2(z)

(z − y)(y − x)dz
)
dy =

∫ ∞

−∞

(∫ ∞

−∞

u1(y)u2(z)

(z − y)(y − x)dy
)
dz−π2u1(x)u2(x),

principal-part integrals being understood where necessary. This is a special
case of a more general change-of-integration-order formula

∫ ∞

−∞

(∫ ∞

−∞

f(x, y, z)

(z − y)(y − x)dz
)
dy =

∫ ∞

−∞

(∫ ∞

−∞

f(x, y, z)

(z − y)(y − x)dy
)
dz−π2f(x, x, x),

5A sufficient condition for its validity is that u1 ∈ Lp1(R), u2 ∈ Lp2(R), where p1 and p2

are greater than unity and 1/p1 + 1/p2 < 1. See F. G. Tricomi, Quart. J. Math. (Oxford),
series 2, 2, (1951) 199.

6For example, in R. Jackiw, A. Strominger, Phys. Lett. 99B (1981) 133.



772 CHAPTER 18. APPLICATIONS OF COMPLEX VARIABLES

which was first obtained by G. H. Hardy in 1908. Hardy’s result is often
referred to as the Poincaré-Bertrand theorem.

Verify Hardy’s formula for the particular case where x is zero and f(0, y, z)
is unity when both y and z lie within the interval [−a, a] but zero elsewhere.
You will need to show that

∫ ∞

0
ln

(
a− x
a+ x

)2 dx

x
= −π2sgn(a).

(Hint: Observe that the integrand is singular at x = |a|. Explain why it is
legitimate to evaluate the improper integral by expanding the logarithms as a
power series in x or x−1, and then integrating term-by-term.)

Exercise 18.8: Use the licit interchange of “P” integration with ordinary in-
tegration to show that

∫ ∞

−∞
ϕ(x)

(
P

∫ ∞

−∞

ϕ(y)

x− y dy
)2

dx =
π2

3

∫ ∞

−∞
ϕ3(x) dx.

Exercise 18.9: Let f(z) be analytic within the unit circle, and let u(θ) and
v(θ) be the boundary values of its real and imaginary parts, respectively, at
z = eiθ. Use Plemelj to show that

u(θ) = − 1

2π
P

∫ 2π

0
v(θ′) cot

(
θ − θ′

2

)
dθ′ +

1

2π

∫ 2π

0
u(θ′) dθ′,

v(θ) =
1

2π
P

∫ 2π

0
u(θ′) cot

(
θ − θ′

2

)
dθ′ +

1

2π

∫ 2π

0
v(θ′) dθ′.

18.3 Partial-fraction and product expansions

In this section we will study other useful representations of functions which
devolve from their analyticity properties.

18.3.1 Mittag-Leffler partial-fraction expansion

Let f(z) be a meromorphic function with poles (perhaps infinitely many)
at z = zj, (j = 1, 2, 3, . . .), where |z1| < |z2| < . . .. Let Γn be a contour
enclosing the first n poles. Suppose further (for ease of description) that the
poles are simple and have residue rn. Then, for z inside Γn, we have

1

2πi

∮

Γn

f(z′)

z′ − z dz
′ = f(z) +

n∑

j=1

rj
zj − z

. (18.81)
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We often want to to apply this formula to trigonometric functions whose
periodicity means that they do not tend to zero at infinity. We therefore
employ the same strategy that we used for dispersion relations: we subtract
f(0) from f(z) to find

f(z)− f(0) =
z

2πi

∮

Γn

f(z′)

z′(z′ − z) dz
′ +

n∑

j=1

rj

(
1

z − zj
+

1

zj

)
. (18.82)

If we now assume that f(z) is uniformly bounded on the Γn — this meaning
that |f(z)| < A on Γn, with the same constant A working for all n — then
the integral tends to zero as n becomes large, yielding the partial fraction,
or Mittag-Leffler , decomposition

f(z) = f(0) +
∞∑

j=1

rj

(
1

z − zj
+

1

zj

)
(18.83)

Example: Consider cosec z. The residues of 1/(sin z) at its poles at z = nπ
are rn = (−1)n. We can take the Γn to be squares with corners (n+1/2)(±1±
i)π. A bit of effort shows that cosec is uniformly bounded on them. To use
the formula as given, we first need subtract the pole at z = 0, then

cosec z − 1

z
=

∞∑

n=−∞

′

(−1)n
(

1

z − nπ +
1

nπ

)
. (18.84)

The prime on the summation symbol indicates that we are omit the n = 0
term. The positive and negative n series converge separately, so we can add
them, and write the more compact expression

cosec z =
1

z
+ 2z

∞∑

n=1

(−1)n
1

z2 − n2π2
. (18.85)

Example: A similar method applied to cot z yields

cot z =
1

z
+

∞∑

n=−∞

′(
1

z − nπ +
1

nπ

)
. (18.86)

We can pair terms together to writen this as

cot z =
1

z
+

∞∑

n=1

(
1

z − nπ +
1

z + nπ

)
,

=
1

z
+

∞∑

n=1

2z

z2 − n2π2
(18.87)
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or

cot z = lim
N→∞

N∑

n=−N

1

z − nπ . (18.88)

In the last formula it is important that the upper and lower limits of summa-
tion be the same. Neither the sum over positive n nor the sum over negative
n converges separately. By taking asymmetric upper and lower limits we
could therefore obtain any desired number as the limit of the sum.

Exercise 18.10: Use Mittag-Leffler to show that

cosec2z =
∞∑

n=−∞

1

(z + nπ)2
.

Now use this infinite series to give a one-line proof of the trigonometric identity

N−1∑

m=0

cosec2
(
z +

mπ

N

)
= N2cosec2(Nz).

(Is there a comparably easy elementary derivation of this finite sum?) Take a
limit to conclude that

N−1∑

m=1

cosec2
(mπ
N

)
=

1

3
(N2 − 1).

Exercise 18.11: From the partial fraction expansion for cot z, deduce that

d

dz
ln[(sin z)/z] =

d

dz

∞∑

n=1

ln(z2 − n2π2).

Integrate this along a suitable path from z = 0, and so conclude that that

sin z = z
∞∏

n=1

(
1− z2

n2π2

)
.

Exercise 18.12: By differentiating the partial fraction expansion for cot z, show
that, for k an integer ≥ 1, and Im z > 0, we have

∞∑

n=−∞

1

(z + n)k+1
=

(−2πi)k+1

k!

∞∑

n=1

nke2πinz.

This is called Lipshitz’ formula.
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Exercise 18.13: The Bernoulli numbers are defined by

x

ex − 1
= 1 +B1x+

∞∑

k=1

B2k
x2k

(2k)!
.

The first few are B1 = −1/2, B2 = 1/6, B4 = −1/30. Except for B1, the Bn
are zero for n odd. Show that

x cot x = ix+
2ix

e2ix − 1
= 1−

∞∑

k=1

(−1)k+1B2k
22kx2k

(2k)!
.

By expanding 1/(x2−n2π2) as a power series in x and comparing coefficients,
deduce that, for positive integer k,

∞∑

n=1

1

n2k
= (−1)k+1π2k 22k−1

(2k)!
B2k.

Exercise 18.14: Euler-Maclaurin sum formula. let f(x) be a real-analytic
function. Use the formal expansion

D

eD − 1
=
∑

k

Bk
Dk

k!
= 1− 1

2
D +

1

6

D2

2!
− 1

30

D4

4!
+ · · · ,

with D interpreted as d/dx, to obtain

(−f ′(x)−f ′(x+1)−f ′(x+2)+ · · ·) = f(x)− 1

2
f ′(x)+

1

6

f ′′(x)
2!
− 1

30

f (4)

4!
+ · · · .

By integrating this formula from 0 to M , where M is an integer, motivate the
Euler-Maclaurin sum formula:

1
2f(0) + f(1) + · · ·+ f(M − 1) + 1

2f(M)

=

∫ M

0
f(x) dx+

∞∑

k=1

B2k

(2k)!
(f (2k−1)(M)− f (2k−1)(0)).

The left hand side is the trapezium rule approximation to the integral on the
right hand side. This derivation gives no insight into whether the infinite-sum
correction to the trapezium rule converges (usually it does not), or what the
error will be if we truncate the sum after a finite number of terms. When
f(x) is a polynomial, however, only a finite number of derivatives f (2k−1) are
non-zero, and the result is exact.
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18.3.2 Infinite product expansions

We can play a variant of the Mittag-Leffler game with suitable entire func-
tions g(z) and derive for them a representation as an infinite product. Sup-
pose that g(z) has simple zeros at zi. Then (ln g)′ = g′(z)/g(z) is meromor-
phic with poles at zi, all with unit residues. Assuming that it satisfies the
uniform boundedness condition, we now use Mittag-Leffler to write

d

dz
ln g(z) =

g′(z)

g(z)

∣∣∣∣
z=0

+
∞∑

j=1

(
1

z − zj
+

1

zj

)
. (18.89)

Integrating up we have

ln g(z) = ln g(0) + cz +
∞∑

j=1

(
ln(1− z/zj) +

z

zj

)
, (18.90)

where c = g′(0)/g(0). We now re-exponentiate to get

g(z) = g(0)ecz
∞∏

j=1

(
1− z

zj

)
ez/zj . (18.91)

Example: Let g(z) = sin z/z, then g(0) = 1, while the constant c, which is
the logarithmic derivative of g at z = 0, is zero, and

sin z

z
=

∞∏

n=1

(
1− z

nπ

)
ez/nπ

(
1 +

z

nπ

)
e−z/nπ. (18.92)

Thus

sin z = z
∞∏

n=1

(
1− z2

n2π2

)
. (18.93)

Convergence of infinite products

We have derived several infinite problem formulæ without discussing the issue
of their convergence. For products of terms of the form (1+an) with positive
an we can reduce the question of convergence to that of

∑∞
n=1 an.

To see why this is so, let

pN =

N∏

n=1

(1 + an), an > 0. (18.94)
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Then we have the inequalities

1 +

N∑

n=1

an < pN < exp

{
N∑

n=1

an

}
. (18.95)

The infinite sum and product therefore converge or diverge together. If

P =
∞∏

n=1

(1 + |an|), (18.96)

converges, we say that

p =
∞∏

n=1

(1 + an), (18.97)

converges absolutely. As with infinite sums, absolute convergence implies
convergence, but not vice-versa. Unlike infinite sums, however, an infinite
product containing negative an can diverge to zero. If (1 + an) > 0 then∏

(1 + an) converges if
∑

ln(1 + an) does, and we will say that
∏

(1 + an)
diverges to zero if

∑
ln(1 + an) diverges to −∞.

Exercise 18.15: Show that

N∏

n=1

(
1 +

1

n

)
= N + 1,

N∏

n=2

(
1− 1

n

)
=

1

N
.

From these deduce that ∞∏

n=2

(
1− 1

n2

)
=

1

2
.

Exercise 18.16: For |z| < 1, show that

∞∏

n=0

(
1 + z2n)

=
1

1− z .

(Hint: think binary)

Exercise 18.17: For |z| < 1, show that

∞∏

n=1

(1 + zn) =
∞∏

n=1

1

1− z2n−1
.

(Hint: 1− x2n = (1− xn)(1 + xn).)
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18.4 Wiener-Hopf equations II

The theory of Hilbert transforms has shown us some the consequences of
functions being analytic in the upper or lower half-plane. Another applica-
tion of these ideas is to Wiener-Hopf equations. Although we have discussed
Wiener-Hopf integral equations in chapter 9, it is only now that we pos-
sess the tools to appreciate the general theory. We begin, however, with
the slightly simpler Wiener-Hopf sum equations, which are their discrete
analogue. Here, analyticity in the upper or lower half-plane is replaced by
analyticity within or without the unit circle.

18.4.1 Wiener-Hopf sum equations

Consider the infinite system of equations

yn =

∞∑

m=−∞
an−mxm, −∞ < n <∞ (18.98)

where we are given the yn and are seeking the xn.
If the an, yn are the Fourier coefficients of smooth complex-valued func-

tions

A(θ) =

∞∑

n=−∞
ane

inθ,

Y (θ) =

∞∑

n=−∞
yne

inθ, (18.99)

then the systems of equations is, in principle at least, easy to solve. We
introduce the function

X(θ) =
∞∑

n=−∞
xne

inθ, (18.100)

and (18.98) becomes

Y (θ) = A(θ)X(θ). (18.101)

From this, the desired xn may be read off as the Fourier expansion coefficients
of Y (θ)/A(θ). We see that A(θ) must be nowhere zero or else the operator A
represented by the infinite matrix an−m will not be invertible. This technique
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is a discrete version of the Fourier transform method for solving the integral
equation

y(s) =

∫ ∞

−∞
A(s− t)x(t) dt, −∞ < s <∞. (18.102)

The connection with complex analysis is made by regarding A(θ), X(θ), Y (θ)
as being functions on the unit circle in the z plane. If they are smooth enough
we can extend their definition to an annulus about the unit circle, so that

A(z) =

∞∑

n=−∞
anz

n,

X(z) =
∞∑

n=−∞
xnz

n,

Y (z) =
∞∑

n=−∞
ynz

n. (18.103)

The xn may now be read off as the Laurent expansion coefficients of Y (z)/A(z).
The discrete analogue of the Wiener-Hopf integral equation

y(s) =

∫ ∞

0

A(s− t)x(t) dt, 0 ≤ s <∞ (18.104)

is the Wiener-Hopf sum equation

yn =
∞∑

m=0

an−mxm, 0 ≤ n <∞. (18.105)

This requires a more sophisticated approach. If you look back at our earlier
discussion of Wiener-Hopf integral equations in chapter 9, you will see that
the trick for solving them is to extend the definition y(s) to negative s (anal-
ogously, the yn to negative n) and find these values at the same time as we
find x(s) for positive s (analogously, the xn for positive n.)

We proceed by introducing the same functions A(z), X(z), Y (z) as before,
but now keep careful track of whether their power-series expansions contain
positive or negative powers of z. In doing so, we will discover that the
Fredholm alternative governing the existence and uniqueness of the solutions
will depend on the winding number N = n(Γ, 0) where Γ is the image of the
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unit circle under the map z 7→ A(z) — in other words, on how many times
A(z) wraps around the origin as z goes once round the unit circle.

Suppose that A(z) is smooth enough that it is analytic in an annulus
including the unit circle, and that we can factorize A(z) so that

A(z) = λq+(z)zN [q−(z)]−1, (18.106)

where

q+(z) = 1 +

∞∑

n=1

q+
n z

n,

q−(z) = 1 +

∞∑

n=1

q−−nz
−n. (18.107)

Here we demand that q+(z) be analytic and non-zero for |z| < 1 + ε, and
that q−(z) be analytic and non-zero for |1/z| < 1 + ε. These no pole, no
zero, conditions ensure, via the principle of the argument, that the winding
numbers of q±(z) about the origin are zero, and so all the winding of A(z) is
accounted for by the N -fold winding of the zN factor. The non-zero condition
also ensures that the reciprocals [q±(z)]−1 have same class of expansions (i.e.
in positive or negative powers of z only) as the direct functions.

We now introduce the notation [F (z)]+ and [F (z)]−, meaning that we
expand F (z) as a Laurent series and retain only the positive powers of z
(including z0), or only the negative powers (starting from z−1), respectively.
Thus F (z) = [F (z)]++[F (z)]−. We will write Y±(z) = [Y (z)]±, and similarly
for X(z). We can therefore rewrite (18.105) in the form

λzNq+(z)X+ = [Y+(z) + Y−(z)]q−(z). (18.108)

If N ≥ 0, and we break this equation into its positive and negative powers,
we find

[Y+q−]+ = λzNq+(z)X+,

[Y+q−]− = −Y−q−(z). (18.109)

From the first of these equations we can read off the desired xn as the positive-
power Laurent coefficients of

X+(z) = [Y+q−]+(λzNq+(z))−1. (18.110)
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As a byproduct, the second alows us to find the coefficient y−n of Y−(z).
Observe that there is a condition on Y+ for this to work: the power series
expansion of λzNq+(z)X+ starts with zN , and so for a solution to exist the
first N terms of (Y+q−)+ as a power series in z must be zero. The given
vector yn must therefore satisfy N consistency conditions. A formal way of
expressing this constraint begins by observing that it means that the range of
the operator A represented by the matrix an−m falls short, by N dimensions,
of the being the entire space of possible yn. This is exactly the situation that
the notion of a “cokernel” is intended to capture. Recall that if A : V → V ,
then CokerA = V/ImA. We therefore have

dim [CokerA] = N.

When N < 0, on the other hand, we have

[Y+(z)q−(z)]+ = [λz−|N |q+(z)X+(z)]+

[Y+(z)q−(z)]− = −Y−(z)q−(z) + [λz−|N |q+(z)X+(z)]−. (18.111)

Here the last term in the second equation contains no more thanN terms. Be-
cause of the z−|N |, we can add any to X+ any multiple of Z+(x) = zn[q+(z)]−1

for n = 0, . . . , N−1, and still have a solution. Thus the solution is not unique.
Instead, we have dim [Ker (A)] = |N |.

We have therefore shown that

Index (A)
def
= dim (KerA)− dim (CokerA) = −N

This connection between a topological quantity – in the present case the
winding number — and the difference in dimension of the kernel and cokernel
is an example of an index theorem.

We now need to show that we can indeed factorize A(z) in the desired
manner. When A(z) is a rational function, the factorization is straightfor-
ward: if

A(z) = C

∏
n(z − an)∏
m(z − bm)

, (18.112)

we simply take

q+(z) =

∏
|an|>0(1− z/an)∏
|bm|>0(1− z/bm)

, (18.113)
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where the products are over the linear factors corresponding to poles and
zeros outside the unit circle, and

q−(z) =

∏
|bm|<0(1− bm/z)∏
|an|<0(1− an/z)

, (18.114)

containing the linear factors corresponding to poles and zeros inside the unit
circle. The constant λ and the power zN in equation (18.106) are the factors
that we have extracted from the right-hand sides of (18.113) and (18.114),
respectively, in order to leave 1’s as the first term in each linear factor.

More generally, we take the logarithm of

z−NA(z) = λq+(z)(q−(z))−1 (18.115)

to get

ln[z−NA(z)] = ln[λq+(z)]− ln[q−(z)], (18.116)

where we desire ln[λq+(z)] to be the boundary value of a function analytic
within the unit circle, and ln[q−(z)] the boundary value of function analytic
outside the unit circle and with q−(z) tending to unity as |z| → ∞. The
factor of z−N in the logarithm serves to undo the winding of the argument
of A(z), and results in a single-valued logarithm on the unit circle. Plemelj
now shows that

Q(z) =
1

2πi

∮

|z|=1

ln[ζ−NA(ζ)]

ζ − z dζ (18.117)

provides us with the desired factorization. This function Q(z) is everywhere
analytic except for a branch cut along the unit circle, and its branches, Q+

within and Q− without the circle, differ by ln[z−NA(z)]. We therefore have

λq+(z) = eQ+(z),

q−(z) = eQ−(z). (18.118)

The expression for Q as an integral shows that Q(z) ∼ const./z as |z|
goes to infinity and so guarantees that q−(z) has the desired limit of unity
there.

The task of finding this factorization is known as the scalar Riemann-
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Hilbert problem. In effect, we are decomposing the infinite matrix

A =




. . .
...

...
...

· · · a0 a1 a2 · · ·
· · · a−1 a0 a1 · · ·
· · · a−2 a−1 a0 · · ·

...
...

...
. . .




(18.119)

into the product of an upper triangular matrix

U = λ




. . .
...

...
...

· · · 1 q+
1 q+

2 · · ·
· · · 0 1 q+

1 · · ·
· · · 0 0 1 · · ·

...
...

...
. . .



, (18.120)

a lower triangular matrix L, where

L−1 =




. . .
...

...
...

· · · 1 0 0 · · ·
· · · q−−1 1 0 · · ·
· · · q−−2 q−−1 1 · · ·

...
...

...
. . .



, (18.121)

has 1’s on the diagonal, and a matrix ΛN which which is zero everywhere
except for a line of 1’s located N steps above the main diagonal. The set
of triangular matrices with unit diagonal form a group, so the inversion
required to obtain L results in a matrix of the same form. The resulting
Birkhoff factorization

A = LΛNU, (18.122)

is an infinite-dimensional extension of the Gauss-Bruhat (or generalized LU)
decomposition of a matrix. The finite-dimensional Gauss-Bruhat decompo-
sition provides a factorization of a matrix A ∈ GL(n) as

A = LΠU, (18.123)

where L is a lower triangular matrix with 1’s on the diagonal, U is an upper
triangular matrix with no zero’s on the diagonal, and Π is a permutation
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matrix, i.e. a matrix that permutes the basis vectors by having one entry of
1 in each row and in each column, and all other entries zero. Our present ΛN

is playing the role of such a matrix. The matrix Π is uniquely determined
by A. The L and U matrices become unique if L is chosen so that ΠTLΠ
is also lower triangular.

18.4.2 Wiener-Hopf integral equations

We now carry over our insights from the simpler sum equations to Weiner-
Hopf integral equations

∫ ∞

0

K(x− y)φ(y) dy = f(x), x > 0, (18.124)

by imagining replacing the unit circle by a circle of radius R, and then taking
R→∞ in such a way that the sums go over to integrals. In this way many
features are retained: the problem is still solved by factorizing the Fourier
transform

K̃(k) =

∫ ∞

−∞
K(x)eikx dx (18.125)

of the kernel, and there remains an index theorem

dim (KerK)− dim (CokerK) = −N, (18.126)

but N now counts the winding of the phase of K̃(k) as k ranges over the real
axis:

N =
1

2π
arg K̃

∣∣∣
k=+∞

k=−∞
. (18.127)

One restriction arises though: we will require K to be of the form

K(x− y) = δ(x− y) + g(x− y) (18.128)

for some continuous function g(x). Our discussion is therefore being re-
stricted to Wiener-Hopf Integral equations of the second kind.

The restriction comes about about because we will seek to obtain a fac-
torization of K̃ as

τ(κ)K̃(k) = exp{Q+(k)−Q−(k)} = q+(k)(q−(k))−1 (18.129)
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where q+(k) ≡ exp{Q+(k)} is analytic and non-zero in the upper half k-plane
and q−(k) ≡ exp{Q−(k)} analytic and non-zero in the lower half-plane. The
factor τ(κ) is a phase such as

τ(k) =

(
k + i

k − i

)N
, (18.130)

which winds −N times and serves serves to undo the +N phase winding in
K̃. The Q±(k) will be the boundary values from above and below the real
axis, respectively, of

Q(k) =
1

2πi

∫ ∞

−∞

ln[τ(κ)K̃(κ)]

κ− k dκ (18.131)

The convergence of this infinite integral requires that ln[τ(κ)K̃(k)] go to zero
at infinity, or, in other words,

lim
k→∞

K̃(k) = 1. (18.132)

This, in turn, requires that the original K(x) contain a delta function.
Example: We will solve the problem

φ(x)− λ
∫ ∞

0

e−|x−y|−α(x−y)φ(y) dy = f(x), x > 0. (18.133)

We require that 0 < α < 1. The upper bound on α is necessary for the
integral kernel to be bounded. We will also assume for simplicity that λ <
1/2. Following the same strategy as in the sum case, we extend the integral
equation to the entire range of x by writing

φ(x)− λ
∫ ∞

0

e−|x−y|−α(x−y)φ(y) dy = f(x) + g(x), (18.134)

where f(x) is nonzero only for x > 0 and g(x) is non-zero only for x < 0.
The Fourier transform of this equation is

(
(k + iα)2 + a2

(k + iα)2 + 1

)
φ̃+(k) = f̃+(k) + g̃−(k), (18.135)

where a2 = 1− 2λ and the ± subscripts are to remind us that φ̃(k) and f̃(k)
are analytic in the upper half-plane, and g̃(k) in the lower. We will use the
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notation H+ for the space of functions analytic in the upper half plane, and
H− for functions analytic in the lower half plane, and so

φ̃+(k), f̃(+k) ∈ H+, g̃−(k) ∈ H− (18.136)

We can factorize

K̃(k) =
(k + iα)2 + a2

(k + iα)2 + 1
=

[k + i(α− a)]
[k + i(α− 1)]

[k + i(α + a)]

[k + i(α + 1)]
(18.137)

Now suppose that a is small enough that α ± a > 0 and so the numerator
has two zeros in the lower half plane, and the numerator a one zero in each
of the upper and lower half-planes. The change of phase in K̃(k) as we go
from minus to plus infinity is therefore −2π, and so the index is N = −1.
We should therefore multiply K̃ by

τ(k) =

(
k + i

k − i

)−1

(18.138)

before seeking to break it into its q± factors. We can however equally well
take

τ(k) =

(
k + i(α− 1)

k + i(α− a)

)
(18.139)

as this also undoes the winding and allows us to factorize with

q−(k) = 1, q+(k) =

(
k + i(α + a)

k + i(α + 1)

)
. (18.140)

The resultant equation analagous to (18.108) is therefore

(
k + i(α + a)

k + i(α + 1)

)
φ̃+ =

(
k + i(α− 1)

k + i(α− a)

)
f̃+ +

(
k + i(α− 1)

k + i(α− a)

)
g̃−

q+φ̃+ = (τq−)f̃+ + τq−g̃− (18.141)

The second line of this equation shows the interpretation of the first line in
terms of the objects in the general theory. The left hand side is in H+ —
i.e. analytic in the upper half-plane. The first term on the right is also in
H+. (We are lucky. More generally it would have to be decomposed into its
H± parts.) If it were not for the τ(κ), the last term would be in H−, but
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it has a potential pole at k = −i(α − a). We therefore remove this pole by
substracting a term

− β

k + i(α− a)
(an element of H+) from each side of the equation before projecting onto the
H± parts. After projecting, we find that

H+ :

(
k + i(α + a)

k + i(α + 1)

)
φ̃+ −

(
k + i(α− 1)

k + i(α− a)

)
f̃+ −

β

k + i(α− a) = 0,

H− :

(
k + i(α− 1)

k + i(α− a)

)
g̃− −

β

k + i(α− a) = 0. (18.142)

We solve for φ̃+(k) and g̃−(k)

φ̃+(k) =

(
(k + iα)2 + 1

(k + iα)2 + a2

)
f̃− − β

(
k + i(α + 1)

(k + iα)2 + a2

)

g̃−(k) =
β

k + i(α− 1)
. (18.143)

Observe g−(k) is always in H− because its only singularity is in the upper
half-plane for any β. The constant β is therefore arbitrary. Finally, we invert
the Fourier transform, using

F
(
θ(x)e−αx sinh ax

)
= − a

(k + iα)2 + a2
, (α± a) > 0, (18.144)

to find that

φ(x) = f(x)− 2λ

a

∫ x

0

e−α(x−y) sinh a(x− y)f(y) dy

+β ′ {(a− 1)e−(α+a)x + (a + 1)e−(α−a)x} , (18.145)

where β ′ (proportional to β) is an arbitrary constant.
By taking α in the range −1 < α < 0 with (α ± a) < 0, we make index

to be N = +1. We will then find there is condition on f(x) for the solution
to exist. This condition is, of course, that f(x) be orthogonal to the solution

φ0(x) =
{
(a− 1)e−(α+a)x + (a + 1)e−(α−a)x} (18.146)

of the homogenous adjoint problem, this being the f(x) = 0 case of the α > 0
problem that we have just solved.
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18.5 Further exercises and problems

Exercise 18.18: Contour Integration: Use the calculus of residues to evaluate
the following integrals:

I1 =

∫ 2π

0

dθ

(a+ b cos θ)2
, 0 < b < a.

I2 =

∫ 2π

0

cos2 3θ

1− 2a cos 2θ + a2
dθ, 0 < a < 1.

I3 =

∫ ∞

0

xα

(1 + x2)2
dx, −1 < α < 2.

These are not meant to be easy! You will have to dig for the residues.

Answers:

I1 =
2πa

(a2 − b2)3/2 ,

I2 =
π(a3 + 1)

a2 − 1
=
π(1− a+ a2)

a− 1
,

I3 =
π(1− α)

4 cos(πα/2)
.

Exercise 18.19: By considering the integral of

f(z) = ln(1− e2iz) = ln(−2ieiz sin z)

around the indented rectangle

iY +iYπ

0 π

Figure 18.12: Indented rectangle.
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with vertices 0, π, π+iY , iY , and letting Y become large, evaluate the integral

I =

∫ π

0
ln(sinx) dx.

Explain how the fact that ε ln ε→ 0 as ε→ 0 allows us to ignore contributions
from the small indentations. You should also provide justification for any other
discarded contributions. Take care to make consistent choices of the branch of
the logarithm, especially if expanding ln(−2ieix sinx) = ix+ ln 2 + ln(sinx) +
ln(−i).
(Ans: −π ln 2.)

Exercise 18.20: By integrating a suitable function around the quadrant con-
taining the point z0 = eiπ/4, evaluate the integral

I(α) =

∫ ∞

0

xα−1

1 + x4
dx 0 < α < 4.

It should only be necessary to consider the residue at z0.
(Ans: (π/4)cosec (πα/4).)

Exercise 18.21: In section 5.5.1 we considered the causal Green function for
the damped harmonic oscillator

G(t) =

{
1
Ωe

−γt sin(Ωt), t > 0,
0, t < 0,

and showed that its Fourier transform
∫ ∞

−∞
eiωtG(t) dt =

1

Ω2 − (ω + iγ)2
, (18.147)

had no singularities in the upper half-plane. Use Jordan’s lemma to compute
the inverse Fourier transform

1

2π

∫ ∞

−∞

e−iωt

Ω2 − (ω + iγ)2
dω,

and verify that it reproduces G(t).

Problem 18.22: Jordan’s Lemma and one-dimensional scattering theory . In
problem 4.13 we considered the one-dimensional scattering problem solutions

ψk(x) =

{
eikx + rL(k)e−ikx, x ∈ L,
tL(k)eikx, x ∈ R,

k > 0.

=

{
tR(k)eikx, x ∈ L,
eikx + rR(k)e−ikx, x ∈ R. k < 0.
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and claimed that the bound-state contributions to the completeness relation
were given in terms of the reflection and transmission coefficients as

∑

bound

ψ∗
n(x)ψn(x

′) = −
∫ ∞

−∞

dk

2π
rL(k)e−ik(x+x

′), x, x′ ∈ L,

= −
∫ ∞

−∞

dk

2π
tL(k)e−ik(x−x

′), x ∈ L, x′ ∈ R,

= −
∫ ∞

−∞

dk

2π
tR(k)e−ik(x−x

′), x ∈ R, x′ ∈ L,

= −
∫ ∞

−∞

dk

2π
rR(k)e−ik(x+x

′), x, x′ ∈ R.

The eigenfunctions

ψ
(+)
k (x) =

{
eikx + rL(k)e−ikx, x ∈ L,
tL(k)eikx, x ∈ R,

and

ψ
(−)
k (x) =

{
tR(k)eikx, x ∈ L,
eikx + rR(k)e−ikx, x ∈ R.

are initially refined for k real and positive (ψ
(+)
k ) or for k real and negative

(ψ
(−)
k ), but they separately have analytic continuations to all of k ∈ C. The

reflection and transmission coefficients rL,R(k) and tL,R(k) are also analytic
functions of k, and obey rL,R(k) = r∗L,R(−k∗), tL,R(k) = t∗L,R(−k∗).

a) By inspecting the formulæ for ψ
(+)
k (x), show that the bound states ψn(x),

with En = −κ2
n, are proportional to ψ

(+)
k (x) evaluated at points k = iκn

on the positive imaginary axis at which rL(k) and tL(k) simultaneously
have poles. Similarly show that these same bound states are proportional

to ψ
(−)
k (x) evaluated at points −iκn on the negative imaginary axis at

which rR(k) and tR(k) have poles. (All these functions ψ
(±)
k (x), rR,L(k),

tR,L(k), may have branch points and other singularities in the half-plane
on the opposite side of the real axis from the bound-state poles.)

b) Use Jordan’s lemma to evaluate the Fourier transforms given above in
terms of the position and residues of the bound-state poles. Confirm
that your answers are of the form

∑

n

A∗
n[sgn(x)]e−κn |x|An[sgn(x′)]e−κn|x′|,

as you would expect for the bound-state contribution to the completeness
relation.
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Exercise 18.23: Lattice Matsubara sums: Let ωn = exp{iπ(2n + 1)/N}, for
n = 0, . . . , N − 1, be the N -th roots of (−1). Show that, for suitable analytic
functions f(z), the sum

S =
1

N

N−1∑

n=0

f(ωn)

can be written as an integral

S =
1

2πi

∫

C

dz

z

zN

zN + 1
f(z).

Here C consists of a pair of oppositely oriented concentric circles. The annulus
formed by the circles should include all the roots of (-1), but exclude all
singularites of f . Use this result to show that, for N even,

1

N

N−1∑

n=0

sinhE

sinh2E + sin2 (2n+1)π
N

=
1

coshE
tanh

NE

2
.

Let N → ∞ while scaling E → 0 in some suitable manner, and hence show
that ∞∑

n=−∞

a

a2 + [(2n+ 1)π]2
=

1

2
tanh

a

2
.

(Hint: If you are careless, you will end up differing by a factor of two from this
last formula. There are two regions in the finite sum that tend to the infinite
sum in the large N limit.)

Problem 18.24: If we define χ(h) = eαxφ(x), and F (x) = eαxf(x), then the
Wiener-Hopf equation

φ(x)− λ
∫ ∞

0
e−|x−y|−α(x−y)φ(y) dy = f(x), x > 0.

becomes

χ(x)− λ
∫ ∞

0
e−|x−y|χ(y) dy = F (x), x > 0,

all mention of α having disappeared! Why then does our answer, worked out
in such detail, in section 18.4.2 depend on the parameter α? Show that if α
small enough that α + a is positive and α − a is negative, then φ(x) really is
independent of α. (Hint: What tacit assumptions about function spaces does
our use of Fourier transforms entail? How does the inverse Fourier transform
of [(k + iα)2 + a2]−1 vary with α?)
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Chapter 19

Special Functions and Complex
Variables

In this chapter we will apply complex analytic methods so as to obtain a
wider view of some of the special functions of mathematical physics than can
be obtained from the real axis. The standard text in this field remains the
venerable Course of Modern Analysis of E. T. Whittaker and G. N. Watson.

19.1 The Gamma function

We begin by examining how Euler’s “Gamma function” Γ(z) behaves when
z is allowed to become complex. You probably have some acquaintance with
this creature. The usual definition is

Γ(z) =

∫ ∞

0

tz−1e−t dt, Re z > 0, (definition A). (19.1)

The restriction on the real part of z is necessary to make the integral converge.
We can, however, analytically continue Γ(z) to a meromorphic function on
all of C. An integration by parts, based on

d

dt

(
tze−t

)
= ztz−1e−t − tze−t, (19.2)

shows that [
tze−t

]∞
0

= z

∫ ∞

0

tz−1e−t dt−
∫ ∞

0

tze−t dt. (19.3)

793
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The integrated out part vanishes at both limits, provided the real part of z
is greater than zero. Thus we obtain the recurrence relation

Γ(z + 1) = zΓ(z). (19.4)

Since Γ(1) = 1, we deduce that

Γ(n) = (n− 1)!, n = 1, 2, 3, . . . . (19.5)

We can use the recurrence relation (19.4) to extend the definition of Γ(z) to
the left half-plane, where the real part of z is negative. Choosing an integer
n such that the real part of z + n is positive, we write

Γ(z) =
Γ(z + n)

z(z + 1) · · · (z + n− 1)
. (19.6)

We see that the extended Γ(z) has poles at zero, and at the negative integers.
The residue of the pole at z = −n is (−1)n/n!.

We can also view the analytic continuation as an example of Taylor series
subtraction. Let us recall how this works. Suppose that −1 < Re x < 0.
Then, from

d

dt
(txe−t) = xtx−1e−t − txe−t (19.7)

we have [
txe−t

]∞
ε

= x

∫ ∞

ε

dt tx−1e−t −
∫ ∞

ε

dt txe−t. (19.8)

Here we have cut off the integral at the lower limit so as to avoid the di-
vergence near t = 0. Evaluating the left-hand side and dividing by x we
find

−1

x
εx =

∫ ∞

ε

dt tx−1e−t − 1

x

∫ ∞

ε

dt txe−t. (19.9)

Since, for this range of x,

−1

x
εx =

∫ ∞

ε

dt tx−1, (19.10)

we can rewrite (19.9) as

1

x

∫ ∞

ε

dt txe−t =

∫ ∞

ε

dt tx−1
(
e−t − 1

)
. (19.11)
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The integral on the right-hand side of this last expression is convergent as
ε→ 0, so we may safely take the limit and find

1

x
Γ(x + 1) =

∫ ∞

0

dt tx−1
(
e−t − 1

)
. (19.12)

Since the left-hand side is equal to Γ(x), we have shown that

Γ(x) =

∫ ∞

0

dt tx−1
(
e−t − 1

)
, −1 < Rex < 0. (19.13)

Similarly, if −2 < Rex < −1, we can show that

Γ(x) =

∫ ∞

0

dt tx−1
(
e−t − 1 + t

)
. (19.14)

Thus the analytic continuation of the original integral is given by a new
integral in which we have subtracted exactly as many terms from the Taylor
expansion of e−t as are needed to just make the integral convergent at the
lower limit.

Other useful identities, usually proved by elementary real-variable meth-
ods, include Euler’s “Beta function” identity,

B(a, b)
def
=

Γ(a)Γ(b)

Γ(a + b)
=

∫ 1

0

(1− t)a−1tb−1 dt (19.15)

(which, as the Veneziano formula, was the original inspiration for string
theory) and

Γ(z)Γ(1− z) = πcosec πz. (19.16)

The proofs of both formulæ begin in the same way: set t = y2, x2, so that

Γ(a)Γ(b) = 4

∫ ∞

0

y2a−1e−y
2

dy

∫ ∞

0

x2b−1e−x
2

dx

= 4

∫ ∞

0

∫ ∞

0

e−(x2+y2)x2b−1y2a−1 dx dy

= 2

∫ ∞

0

e−r
2

(r2)a+b−1 d(r2)

∫ π/2

0

sin2a−1 θ cos2b−1 θ dθ.

We have appealed to Fubini’s theorem twice: once to turn a product of
integrals into a double integral, and once (after setting x = r cos θ, y =
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r sin θ) to turn the double integral back into a product of decoupled integrals.
In the second factor of the third line we can now change variables to t = sin2 θ
and obtain the Beta function identity. If, on the other hand, we put a = 1−z,
b = z, we have

Γ(z)Γ(1− z) = 2

∫ ∞

0

e−r
2

d(r2)

∫ π/2

0

cot2z−1 θ dθ = 2

∫ π/2

0

cot2z−1 θ dθ.

(19.17)
Now set cot θ = ζ. The last integral then becomes (see exercise 18.1):

2

∫ ∞

0

ζ2z−1

ζ2 + 1
dζ = π cosec πz, 0 < z < 1, (19.18)

establishing the claimed result. Although this last integral has a restriction
on the range of z (19.16) it holds for all z by analytic continuation. If we
put z = 1/2, we find that (Γ(1/2))2 = π. Because the definition A integral
for Γ(1/2) is manifestly positive, the positive square root is the correct one,
and

Γ(1/2) =
√
π. (19.19)

The integral in definition A for Γ(z) is only convergent for Re z > 0. A
more powerful definition, involving an integral that converges for all z, is

1

Γ(z)
=

1

2πi

∫

C

et

tz
dt, (definition B). (19.20)

C

Im(t)

Re(t)

Figure 19.1: Definition “B” contour for Γ(z).

Here, C is a contour originating at z = −∞ − iε, below the negative real
axis (on which a cut serves to make t−z single valued) rounding the origin,
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and then heading back to z = −∞+ iε, this time staying above the cut. We
take arg t to be +π immediately above the cut, and −π immediately below
it. This new definition is due to Hankel.

For z an integer, the cut is unnecessary and we can replace the contour
by a circle about z = 0 and so find

1

Γ(0)
= 0;

1

Γ(n)
=

1

(n− 1)!
, n > 0. (19.21)

Thus, definitions A and B agree on the integers. It is less obvious that they
agree for all z. A hint that this is true stems from integrating by parts

1

Γ(z)
=

1

2πi

[
et

(z − 1)tz−1

]−∞+iε

−∞−iε
+

1

(z − 1)2πi

∫

C

et

tz−1
dt =

1

(z − 1)Γ(z − 1)
.

(19.22)
The integrated-out part vanishes because et is zero at −∞. Thus the “new”
gamma function obeys the same functional relation as the “old” one.

To show that the equivalence holds for non-integer z we will examine the
definition-B expression for Γ(1− z):

1

Γ(1− z) =
1

2πi

∫

C

ettz−1 dt. (19.23)

We will assume initially that Re z > 0, so that there is no contribution to
the integral from the small circle about the origin. We can therefore focus
on contribution from the discontinuity across the cut, which is

1

Γ(1− z) =
1

2πi

∫

C

ettz−1 dt = − 1

2πi
(2i sin π(z − 1))

∫ ∞

0

tz−1e−t dt

=
1

π
sin πz

∫ ∞

0

tz−1e−t dt. (19.24)

The proof is then completed by using Γ(z)Γ(1 − z) = π cosec πz, which we
proved using definition A, to show that, under definition A, the right hand
side is indeed equal to 1/Γ(1 − z). We now use the uniqueness of analytic
continuation, noting that if two analytic functions agree on the region Re z >
0, then they agree everywhere.

Infinite product for Γ(z)

The function Γ(z) has poles at z = 0,−1,−2, . . ., and therefore (zΓ(z))−1 =
(Γ(z + 1))−1 has zeros as z = −1,−2, . . .. Furthermore, the integral in “def-
inition B” converges for all z, and so 1/Γ(z) has no singularities in the finite
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z plane i.e. it is an entire function. Thus means that we can use the infinite
product formula from section 18.3.2:

g(z) = g(0)ecz
∞∏

j=1

{(
1− z

zj

)
ez/zj

}
. (19.25)

We need to recall the definition of Euler-Mascheroni constant γ = −Γ′(1) =
0.5772157 . . ., and that Γ(1) = 1. Then

1

Γ(z)
= zeγz

∞∏

n=1

{(
1 +

z

n

)
e−z/n

}
. (19.26)

We can use this formula to compute

1

Γ(z)Γ(1− z) =
1

(−z)Γ(z)Γ(−z) = z
∞∏

n=1

{(
1 +

z

n

)
e−z/n

(
1− z

n

)
ez/n

}

= z
∞∏

n=1

(
1− z2

n2

)

=
1

π
sin πz,

and so obtain another (but not really independent) demonstration that
Γ(z)Γ(1− z) = πcosec πz.

Exercise 19.1: Starting from the infinite product formula for Γ(z), show that

d2

dz2
ln Γ(z) =

∞∑

n=0

1

(z + n)2
.

(Compare this “half series” with the expansion

π2cosec2πz =

∞∑

n=−∞

1

(z + n)2
.)

19.2 Linear differential equations

When linear differential equations have coeffecients that are meromorphic
functions, their solutions can be extended off the real line and into the com-
plex plane. The broader horizon then allows us to see much more of their
structure.
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19.2.1 Monodromy

Consider the linear differential equation

Ly ≡ y′′ + p(z)y′ + q(z)y = 0, (19.27)

where p and q are meromorphic. Recall that the point z = a is a regular
singular point of the equation if p or q is singular there but

(z − a)p(z), (z − a)2q(z) (19.28)

are both analytic at z = a. We know, from the explicit construction of power
series solutions, that near a regular singular point y is a sum of functions of
the form y = (z− a)αϕ(z) or y = (z− a)α(ln(z− a)ϕ(z) +χ(z)), where both
ϕ(z) and χ(z) are analytic near z = a. We now examine this fact from a
more topological perspective.

Suppose that y1 and y2 are linearly independent solutions of Ly = 0. Start
from some ordinary (non-singular) point of the equation and analytically
continue the solutions round the singularity at z = a and back to the starting
point. The continued functions ỹ1 and ỹ2 will not in general coincide with
the original solutions but, being still solutions of the equation, they must be
linear combinations of them. Therefore

(
ỹ1

ỹ2

)
=

(
a11 a12

a21 a22

)(
y1

y2

)
, (19.29)

for some constants aij. By a suitable redefinition of y1,2 we may either diag-
onalize this monodromy matrix to find

(
ỹ1

ỹ2

)
=

(
λ1 0
0 λ2

)(
y1

y2

)
(19.30)

or, if the eigenvalues coincide and the matrix is not diagonalizable, reduce it
to a Jordan form (

ỹ1

ỹ2

)
=

(
λ 1
0 λ

)(
y1

y2

)
. (19.31)

These matrix equations are satisfied, in the diagonalizable case, by functions
of the form

y1 = (z − a)α1ϕ1(z), y2 = (z − a)α2ϕ2(z), (19.32)
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where λk = e2πiαk , and ϕk(z) is single valued near z = a. In the Jordan-form
case we must have

y1 = (z− a)α
[
ϕ1(z) +

1

2πiλ
ln(z − a)ϕ2(z)

]
, y2 = (z− a)αϕ2(z), (19.33)

where, again, the ϕk(z) are single valued. Notice that coincidence of the
monodromy eigenvalues λ1 and λ2 does not require the exponents α1 and
α2 to be the same, only that they differ by an integer. This is the same
Frobenius condition that signals the presence of a logarithm in the traditional
series solution.

The occurrence of fractional powers and logarithms in solutions near a
regular singular point is therefore quite natural.

19.2.2 Hypergeometric functions

Most of the special functions of mathematical physics are special cases of the
hypergeometric function F (a, b; c; z), which may be defined by the series

F (a, b; c; z) = 1 +
a.b

1.c
z +

a(a+ 1)b(b + 1)

2!c(c+ 1)
z2 +

+
a(a+ 1)(a+ 2)b(b + 1)(b+ 2)

3!c(c+ 1)(c+ 2)
z3 + · · · .

=
Γ(c)

Γ(a)Γ(b)

∞∑

n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)Γ(1 + n)
zn. (19.34)

For general values of a, b, c, this series converges for |z| < 1, the singularity
restricting the convergence being a branch point at z = 1.
Examples:

(1 + z)n = F (−n, b; b;−z), (19.35)

ln(1 + z) = zF (1, 1; 2;−z), (19.36)

z−1 sin−1 z = F

(
1

2
,
1

2
;
3

2
; z2

)
, (19.37)

ez = lim
b→∞

F (1, b; 1/b; z/b), (19.38)

Pn(z) = F

(
−n, n+ 1; 1;

1− z
2

)
, (19.39)
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where in the last line Pn is the Legendre polynomial.
For future reference, note that expanding the integrand on the right hand

side as a power series in z and integrating term by term shows that F (a, b; c; z)
has the integral representation

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

(1− tz)−atb−1(1− t)c−b−1dt. (19.40)

If Re c > Re (a + b), we may set z = 1 in this integral to get

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) . (19.41)

The hypergeometric function is a solution of the second-order differential
equation

z(1− z)y′′ + [c− (a+ b+ 1)z]y′ − aby = 0. (19.42)

This equation has regular singular points at z = 0, 1,∞. Provided that 1− c
is not an integer, the general solution is

y = AF (a, b; c; z) +Bz1−cF (b− c+ 1, a− c+ 1; 2− c; z). (19.43)

A differential equation possessing only regular singular points is known as a
Fuchsian equation. The hypergeometric equation is a particular case of the
general Fuchsian equation with three1 regular singularities at z = z1, z2, z3.
This equation is

y′′ + P (z)y′ +Q(z)y = 0, (19.44)

1The Fuchsian equation with two regular singularities is

y′′ + p(z)y′ + q(z)y = 0

with

p(z) =

(
1− α− α′

z − z1
+

1 + α+ α′

z − z2

)
,

q(z) =
αα′(z1 − z2)2

(z − z1)2(z − z2)2
.

Its general solution is

y = A

(
z − z1
z − z2

)α

+B

(
z − z1
z − z2

)α′

.
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where

P (z) =

(
1− α− α′

z − z1

+
1− β − β ′

z − z2

+
1− γ − γ′
z − z3

)

Q(z) =
1

(z − z1)(z − z2)(z − z3)
×

(
(z1 − z2)(z1 − z3)αα′

z − z1
+

(z2 − z3)(z2 − z1)ββ ′

z − z2
+

(z3 − z1)(z3 − z2)γγ′
z − z3

)
.

(19.45)

The parameters are subject to the constraint α + β + γ + α′ + β ′ + γ′ = 1,
which ensures that z = ∞ is not a singular point of the equation. This
equation is sometimes called Riemann’s P -equation. The P probably stands
for Papperitz, who discovered it.

The indicial equation relative to the regular singular point at z1 is

r(r − 1) + (1− α− α′)r + αα′ = 0, (19.46)

and has roots r = α, α′. From this, we deduce that Riemann’s equation
has solutions that behave like (z − z1)

α and (z − z1)
α′

near z1. Similarly,
there are solutions that behave like (z− z2)

β and (z − z2)
β′

near z2, and like
(z− z3)

γ and (z− z3)
γ′ near z3. The solution space of Riemann’s equation is

traditionally denoted by the Riemann “P” symbol

P




z1 z2 z3
α β γ z
α′ β ′ γ′



 (19.47)

where the six quantities α, β, γ, α′, β ′, γ′, are called the exponents of the so-
lution. A particular solution is

y =

(
z − z1

z − z2

)α(
z − z3

z − z2

)γ
F

(
α+ β + γ, α + β ′ + γ; 1 + α− α′;

(z − z1)(z3 − z2)
(z − z2)(z3 − z1)

)
.

(19.48)
By permuting the triples (z1, α, α

′), (z2, β, β
′), (z3, γ, γ

′), and within them
interchanging the pairs α ↔ α′, γ ↔ γ′, we may find a total2 of 6× 4 = 24
solutions of this form. They are called the Kummer solutions. Only two of

2The interchange β ↔ β′ leaves the hypergeometric function invariant, and so does not
give a new solution.



19.2. LINEAR DIFFERENTIAL EQUATIONS 803

them can be linearly independent, and a large part of the theory of special
functions is devoted to obtaining the linear relations between them.

It is straightforward, but a trifle tedious, to show that

(z−z1)
r(z−z2)

s(z−z3)
tP




z1 z2 z3
α β γ z
α′ β ′ γ′



 = P





z1 z2 z3
α + r β + s γ + t z
α′ + r β ′ + s γ′ + t



 ,

(19.49)
provided r + s + t = 0. Riemann’s equation retains its form under Möbius
maps, only the location of the singular points changing. We therefore deduce
that

P




z1 z2 z3
α β γ z
α′ β ′ γ′



 = P




z′1 z′2 z′3
α β γ z′

α′ β ′ γ′



 , (19.50)

where

z′ =
az + b

cz + d
, z′1 =

az1 + b

cz1 + d
, z′2 =

az2 + b

cz2 + d
, z′3 =

az3 + b

cz3 + d
. (19.51)

By using the Möbius map that takes (z1, z2, z3) → (0, 1,∞), and by ex-
tracting powers to shift the exponents, we can reduce the general eight-
parameter Riemann equation to the three-parameter hypergeometric equa-
tion.

The P symbol for the hypergeometric equation is

P





0 ∞ 1
0 a 0 z

1− c b c− a− b



 . (19.52)

By using this observation and a suitable Möbius map we see that

F (a, b; a + b− c; 1− z)
and

(1− z)c−a−bF (c− b, c− a; c− a− b+ 1; 1− z)
are also solutions of the hypergeometric equation, each having a pure (as
opposed to a linear combination of) power-law behaviours near z = 1. (The
previous solutions had pure power-law behaviours near z=0.) These new
solutions must be linear combinations of the old ones, and we may use

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , Re (c− a− b) > 0, (19.53)
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together with the trick of substituting z = 0 and z = 1, to determine the
coefficients and show that

F (a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)F (a, b; a + b− c; 1− z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−bF (c− b, c− a; c− a− b+ 1; 1− z).

(19.54)

This last equation holds for all values of a, b, c such that the Gamma functions
make sense.

A complete set of pure-power solutions to the hypergeometric equation
can be taken to be

φ
(0)
0 (z) = F (a, b; c; z),

φ
(1)
0 (z) z1−cF (a+ 1− c, b+ 1− c; 2− c; z),
φ

(0)
1 (z) = F (a, b; 1− c+ a + b; 1− z),
φ

(1)
1 (z) = (1− z)c−a−bF (c− a, c− b; 1 + c− a− b; 1− z),
φ(0)
∞ (z) = z−aF (a, a+ 1− c; 1 + a− b; z−1),

φ(1)
∞ (z) = z−bF (a, b+ 1− c; 1− a+ b; z−1). (19.55)

Here the suffix denotes the point at which the solution has pure-power be-
haviour. The connection coefficients relating the solutions to one another are
then

φ
(0)
0 =

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)φ

(0)
1 +

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

φ
(1)
1 ,

φ
(1)
0 =

Γ(2− c)Γ(c− a− b)
Γ(1− a)Γ(1− b) φ

(0)
1 +

Γ(2− c)Γ(a+ b− c)
Γ(a+ 1− c)Γ(b+ 1− c)φ

(1)
1 ,

(19.56)

and

φ
(0)
0 = e−iπa

Γ(c)Γ(b− a)
Γ(c− a)Γ(b)

φ(0)
∞ + e−iπb

Γ(2− c)Γ(a− b)
Γ(a+ 1− c)Γ(1− b)φ

(1)
∞ ,

φ
(1)
0 = e−iπ(a+1−c) Γ(2− c)Γ(b− a)

Γ(b+ 1− c)Γ(1− a)φ
(0)
∞ + e−iπ(b+1−c) Γ(2− c)Γ(a− b)

Γ(a + 1− c)Γ(1− b)φ
(1)
∞ .

(19.57)
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These relations assume that Imz > 0. The signs in the exponential factors
must be reversed when Im z < 0.
Example: The Pöschel-Teller problem for general positive l. A substitution
z = (1 + e2x)−1 shows that the Pöschel-Teller Schrödinger equation

(
− d2

dx2
− l(l + 1)sech2x

)
ψ = Eψ (19.58)

has solution

ψ(x) = (1 + e2x)−κ/2(1 + e−2x)−κ/2F

(
κ+ l + 1, κ− l; κ+ 1;

1

1 + e2x

)
,

(19.59)
where E = −κ2. This solution behaves near x =∞ as

ψ ∼ e−κxF (κ+ l + 1, κ− l; κ+; 0) = e−κx. (19.60)

We use the connection formula (19.54) to see that it behaves in the vicinity
of x = −∞ as

ψ ∼ eκxF (κ+ l + 1, κ− l; κ+ 1; 1− e2x)

→ eκx
Γ(κ+ 1)Γ(−κ)
Γ(−l)Γ(1 + l)

+ e−κx
Γ(κ + 1)Γ(κ)

Γ(κ+ l + 1)Γ(κ− l) . (19.61)

To find the bound-state spectrum, assume that κ is positive. Then
E = −κ2 will be an eigenvalue provided that coefficient of e−κx near x = −∞
vanishes. In other words, the spectrum follows from the condition

Γ(κ+ 1)Γ(κ)

Γ(κ+ l + 1)Γ(κ− l) = 0. (19.62)

This condition is satisfied for a finite set κn, n = 1, . . . , blc (where blc denotes
the integer part of l) at which κ is positive but κ − l is zero or a negative
integer.

By setting κ = −ik, for real k we find the scattering solution

ψ(x) =

{
eikx + r(k)e−ikx, x� 0;
t(k)eikx, x� 0;

(19.63)

where

r(k) =
Γ(l + 1− ik)Γ(−ik − l)Γ(ik)

Γ(−l)Γ(1 + l)Γ(ik)

= −sin πl

π

Γ(l + 1− ik)Γ(−ik − l)Γ(ik)

Γ(−ik) , (19.64)
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and

t(k) =
Γ(l + 1− ik)Γ(−ik − l)

Γ(1− ik)Γ(−ik) . (19.65)

Whenever l is a (positive) integer, the divergent factor of Γ(−l) in the denom-
inator of r(k) causes the the reflected wave to vanish. This is something we
had observed in earlier chapters. In this reflectionless case, the transmission
coefficient t(k) reduces to a phase

t(k) =
(−ik + 1)(−ik + 2) · · · (−ik + l)

(−ik − 1)(−ik − 2) · · · (−ik − l) . (19.66)

19.3 Solving ODE’s via contour integrals

Our task in this section is to understand the origin of contour integral solu-
tions, such as the expression

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

(1− tz)−atb−1(1− t)c−b−1dt, (19.67)

which we have previously seen for the hypergeometric equation.
Suppose that we are given a differential operator

Lz = ∂2
zz + p(z)∂z + q(z) (19.68)

and seek a solution of Lzu = 0 as an integral

u(z) =

∫

Γ

F (z, t) dt (19.69)

over some contour Γ. If we can find a kernel F such that

LzF =
∂Q

∂t
, (19.70)

for some function Q(z, t), then

Lzu =

∫

Γ

LzF (z, t) dt =

∫

Γ

(
∂Q

∂t

)
dt = [Q]Γ . (19.71)

Thus, if Q vanishes at both ends of the contour, if it takes the same value at
the two ends, or if the contour is closed and thus has no ends, then we have
succeeded in our quest.
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Example: Consider Legendre’s equation,

Lzu ≡ (1− z2)
d2u

dz2
− 2z

du

dz
+ ν(ν + 1)u = 0. (19.72)

The identity

Lz

{
(t2 − 1)ν

(t− z)ν+1

}
= (ν + 1)

d

dt

{
(t2 − 1)ν+1

(t− z)ν+2

}
(19.73)

shows that

Pν(z) =
1

2πi

∫

Γ

{
(t2 − 1)ν

2ν(t− z)ν+1

}
dt (19.74)

will be a solution of Legendre’s equation, provided that

[Q]Γ ≡
[
(t2 − 1)ν+1

(t− z)ν+2

]

Γ

= 0. (19.75)

We could, for example, take a contour that encircles the points t = z and t =
1, but excludes the point t = −1. On going round this contour, the numerator
acquires a phase of e2πi(ν+1), while the denominator of [Q]Γ acquires a phase
of e2πi(ν+2). The net phase change is therefore e−2πi = 1. The function in the
integrated-out part is therefore single valued, and so the integrated-out part
vanishes. When ν is an integer, Cauchy’s formula shows that (19.74) reduces
to

Pn(z) =
1

2nn!

dn

dzn
(z2 − 1)n, (19.76)

which is Rodriguez’ formula for the Legendre polynomials.

1−1

 z

 Im

Re

(t)

(t)

Figure 19.2: Figure-of-eight contour for Qν(z).

The figure-of-eight contour shown in figure 19.2 gives us a second solution

Qν(z) =
1

4i sin πν

∫

Γ

{
(t2 − 1)ν

2ν(z − t)ν+1

}
dt, ν /∈ Z. (19.77)



808CHAPTER 19. SPECIAL FUNCTIONS AND COMPLEX VARIABLES

Here we define arg(t − 1) and arg(t + 1) to be zero for t > 1 and t >
−1 respectively. The integrated-out part vanishes because the phase gained
by the (t2 − 1)ν+1 in the numerator of [Q]Γ during the clockwise winding
about t = 1 is undone during the anti-clockwise winding about t = −1, and,
provided that z lies outside the contour, there is no phase change in the
(z − t)(ν+2) in the denominator.

When ν is real and positive the contributions from the circular arcs sur-
rounding t = ±1 become negligeable as we shrink this new contour down onto
the real axis. We observe that, with the arguments of (t ± 1) as specified
above,

(t2 − 1)ν → (1− t2)νe−iπν

for the left-going part of the contour on the real axis between t = +1 and
t = −1, and

(t2 − 1)ν → (1− t2)νe−iπνe2πiν = (1− t2)e+iπν

after we have rounded the branch point at t = −1 and are returning along
the real axis to t = +1. Thus, after the shrinking manœuvre, the integral
(19.77) becomes

Qν(z) =
1

2

∫ 1

−1

{
(1− t2)ν

2ν(z − t)ν+1

}
dt, ν > 0. (19.78)

In contrast to (19.77), this last formula continues to make sense when ν is
a positive integer. It then provides a convenient definition of Qn(z), the
Legendre function of the second kind (See exercise 18.3).

It is usually hard to find a suitable F (z, t) in one fell swoop. (The identity
(19.73) exploited in the example is not exactly obvious!) An easier strategy
is to seek solution in the form of an integral operator with kernel a K acting
on function v(t). Thus we try

u(z) =

∫

Γ

K(z, t)v(t) dt. (19.79)

Suppose that LzK(z, t) = MtK(z, t), where Mt is differential operator in t
that does not involve z. The operator Mt will have have a formal adjoint M †

t

such that ∫

Γ

v(MtK) dt−
∫

Γ

K(M †
t v) dt = [Q(K, v)]Γ (19.80)
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(This is Lagrange’s identity.) Now

Lzu =

∫

Γ

LzK(z, t)v dt

=

∫

Γ

(MtK(z, t))v dt

=

∫

Γ

K(z, t)(M †
t v) dt+ [Q(K, v)]Γ .

We can therefore solve the original equation, Lzu = 0, by finding a v such
that (M †

t v) = 0, and a contour with endpoints such that [Q(K, v)]Γ = 0.
This may sound complicated, but an artful choice of K can make it much
simpler than solving the original problem. A single K will often work for
families of related equations.
Example: We will solve

Lzu =
d2u

dz2
− zdu

dz
+ νu = 0, (19.81)

by using the kernel K(z, t) = e−zt. It is easy to check that LzK(z, t) =
MtK(z, t) where

Mt = t2 − t ∂
∂t

+ ν, (19.82)

and so

M †
t = t2 +

∂

∂t
t + ν = t2 + (ν + 1) + t

∂

∂t
. (19.83)

The equation M †
t v = 0 has a solution

v(t) = t−(ν+1)e−
1
2
t2 , (19.84)

and so

u =

∫

Γ

t−(1+ν)e−(zt+ 1
2
t2) dt, (19.85)

for some suitable Γ.

19.3.1 Bessel functions

As an illustration of the general method we will explore the theory of Bessel
functions. Bessel functions are members of the family of confluent hypergeo-
metric functions, obtained by letting the two regular singular points z2, z3 of
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the Riemann-Papperitz equation coalesce at infinity. The resulting singular
point is no longer regular, and confluent hypergeometric functions have an
essential singularity at infinity. The confluent hypergeometric equation is

zy′′ + (c− z)y′ − ay = 0, (19.86)

with solution

Φ(a, c; z) =
Γ(c)

Γ(a)

∞∑

n=0

Γ(a+ n)

Γ(c+ n)Γ(n+ 1)
zn. (19.87)

Observe that
Φ(a, c; z) = lim

b→∞
F (a, b; c; z/b). (19.88)

The second solution, provided that c is not an integer, is

z1−cΦ(a− c+ 1, 2− c; z). (19.89)

Other functions of this family are the parabolic cylinder functions, which
in special cases reduce to e−z

2/4 times the Hermite polynomials, the error
function,

erf (z) =

∫ z

0

e−t
2

dt = zΦ

(
1

2
,
3

2
;−z2

)
(19.90)

and the Laguerre polynomials ,

Lmn =
Γ(n+m+ 1)

Γ(n+ 1)Γ(m+ 1)
Φ(−n,m + 1; z). (19.91)

Bessel’s equation involves the operator

Lz = ∂2
zz +

1

z
∂z +

(
1− ν2

z2

)
. (19.92)

Experience shows that for Bessel functions a useful kernel is

K(z, t) =
(z

2

)ν
exp

(
t− z2

4t

)
. (19.93)

Then

LzK(z, t) =

(
∂t −

ν + 1

t

)
K(z, t) (19.94)
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so, again, M is a first order operator, which is simpler to deal with than the
original second order Lz. In this case the adjoint is

M † =

(
−∂t −

ν + 1

t

)
(19.95)

and we need a v such that

M †v = −
(
∂t +

ν + 1

t

)
v = 0. (19.96)

Clearly, v = t−ν−1 will work. The integrated out part is

[Q(K, v)]ba =

[
t−ν−1 exp

(
t− z2

4t

)]b

a

, (19.97)

and we see that

Jν(z) =
1

2πi

(z
2

)ν ∫

Γ

t−ν−1e

“
t− z2

4t

”

dt. (19.98)

solves Bessel’s equation provided we use a suitable contour.
We can take for Γ a curve C starting at −∞− iε and ending at −∞+ iε,

and surrounding the branch cut of t−ν−1, which we take as the negative t
axis.

C

Im(t)

Re(t)

Figure 19.3: Contour for solving Bessel equation.

This contour works because Q is zero at both ends of the contour.
A cosmetic rewrite t = uz/2 gives

Jν(z) =
1

2πi

∫

C

u−ν−1e
z
2(u−

1
u) du. (19.99)
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For ν an integer, there is no discontinuity across the cut, so we can ignore it
and take C to be the unit circle. Then, recognizing the resulting

Jn(z) =
1

2πi

∫

|z|=1

u−n−1e
z
2(u−

1
u) du. (19.100)

to be a Laurent coefficient, we obtain the familiar Bessel-function generating
function

e
z
2(u−

1
u) =

∞∑

n=−∞
Jn(z)u

n. (19.101)

When ν is not an integer, we see why we need a branch cut integral.
If we set u = ew we get

Jν(z) =
1

2πi

∫

C′

dw ez sinhw−νw, (19.102)

where C ′ starts goes from (∞− iπ) to −iπ to +iπ to (∞+ iπ).

π

π

+i

−i

Re(w)

Im(w)

Figure 19.4: Bessel contour after the changes of variables.

If we set w = t ± iπ on the horizontals and w = iθ on the vertical part,
we can rewrite this as

Jν(z) =
1

π

∫ π

0

cos(νθ − z sin θ) dθ − sin νπ

π

∫ ∞

0

e−νt−z sinh t dt. (19.103)

All these are standard formulæ for the Bessel function but their origins would
be hard to understand without the contour solutions trick.

When ν becomes an integer, the functions Jν(z) and J−ν(z) are no longer
independent. In order to have a Bessel-equation solution that retains its
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independence from Jν(z), even as ν becomes a whole number, we define the
Neumann function by

Nν(z)
def
=

Jν(z) cos νπ − J−ν(z)
sin νπ

=
cot νπ

π

∫ π

0

cos(νθ − z sin θ) dθ − cosec νππ

∫ π

0

cos(νθ + z sin θ) dθ

−cos νπ

π

∫ ∞

0

e−νt−z sinh t dt− 1

π

∫ ∞

0

eνt−z sinh t dt. (19.104)

+iπ

π−i
H ν

H ν

(2)

(1)

Figure 19.5: Contours defining H
(1)
ν (z) and H

(2)
ν (z).

Both the Bessel and Neumann functions are real for positive real x. As
x becomes large they oscillate as slowly decaying sines and cosines. It is
sometimes convenient to decompose these real functions into solutions that
oscillate as e±ix. We therefore define the Hankel functions by

H(1)
ν (z) =

1

iπ

∫ ∞+iπ

−∞
ez sinhw−νw dw, |arg z| < π/2

H(2)
ν (z) = − 1

iπ

∫ ∞−iπ

−∞
ez sinhw−νw dw, |arg z| < π/2. (19.105)

Then
1

2
(H(1)

ν (z) +H (2)
ν (z)) = Jν(z),
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1

2
(H(1)

ν (z)−H (2)
ν (z)) = Nν(z). (19.106)

19.4 Asymptotic expansions

We often need the understand the behaviour of solutions of differential equa-
tions and functions, such as Jν(x), when x takes values that are very large,
or very small. This is the subject of asymptotics.

As an introduction to this art, consider the function

Z(λ) =

∫ ∞

−∞
e−x

2−λx4

dx. (19.107)

Those of you who have taken a course quantum field theory based on path
integrals will recognize that this is a “toy,” 0-dimensional, version of the path
integral for the λϕ4 model of a self-interacting scalar field. Suppose we wish
to obtain the perturbation expansion for Z(λ) as a power series in λ. We
naturally proceed as follows

Z(λ) =

∫ ∞

−∞
e−x

2−λx4

dx

=

∫ ∞

−∞
e−x

2

∞∑

n=0

(−1)n
λnx4n

n!
dx

?
=

∞∑

n=0

(−1)n
λn

n!

∫ ∞

−∞
e−x

2

x4n dx

=

∞∑

n=0

(−1)n
λn

n!
Γ(2n+ 1/2). (19.108)

Something has clearly gone wrong here! The gamma function Γ(2n+1/2) ∼
(2n)! ∼ 4n(n!)2 overwhelms the n! in the denominator, so the radius of
convergence of the final power series is zero.

The invalid, but popular, manœuvre is the interchange of the order of
performing the integral and the sum. This interchange cannot be justified
because the sum inside the integral does not converge uniformly on the do-
main of integration. Does this mean that the series is useless? It had better
not! All quantum field theory (and most quantum mechanics) perturbation
theory relies on versions of this manœuvre.
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We are saved to some (often adequate) degree because, while the inter-
change of integral and sum does not lead to a convergent series, it does lead
to a valid asymptotic expansion. We write

Z(λ) ∼
∞∑

n=0

(−1)n
λn

n!
Γ(2n+ 1/2) (19.109)

where

Z(λ) ∼
∞∑

n=0

anλ
n (19.110)

is shorthand for the more explicit

Z(λ) =
N∑

n=0

anλ
n +O

(
λN+1

)
, N = 1, 2, 3, . . . . (19.111)

The “big O” notation,

Z(λ)−
N∑

n=0

anλ
n = O(λN+1) (19.112)

as λ→ 0, means that

lim
λ→0

{
|Z(λ)−∑N

0 anλ
n|

|λN+1|

}
= K <∞. (19.113)

The basic idea is that, given a convergent power series
∑

n anλ
n for the

function f(λ), we fix the value of λ and take more and more terms. The
sum then gets closer to f(λ). Given an asymptotic series, on the other hand,
we select a fixed number of terms in the series and then make λ smaller and
smaller. The graph of f(λ) and the graph of our polynomial approximation
then approach each other. The more terms we take, the sooner they get
close, but for any non-zero λ we can never get exacty f(λ)—no matter how
many terms we take.

We often consider asymptotic expansions where the independent variable
becomes large. Here we have expansions in inverse powers of x:

F (x) =

N∑

n=0

bnx
−n +O

(
x−N−1

)
, N = 1, 2, 3 . . . . (19.114)
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In this case

F (x)−
N∑

n=0

bnx
−n = O

(
x−N−1

)
(19.115)

means that

lim
x→∞

{
|F (x)−∑N

0 bnx
−n|

|x−N−1|

}
= K <∞. (19.116)

Again we take a fixed number of terms, and as x becomes large the function
and its approximation get closer.

Observations:
i) Knowledge of the asymptotic expansion gives us useful knowledge about

the function, but does not give us everything. In particular, two distinct
functions may have the same asymptotic expansion. For example, for
small positive λ, the functions F (λ) and F (λ)+ae−b/λ have exactly the
same asymptotic expansions as series in positive powers of λ. This is
because e−b/λ goes to zero faster than any power of λ, and so its asymp-
totic expansion

∑
n anλ

n has every coefficient an being zero. Physicists
commonly say that e−b/λ is a non-perturbative function, meaning that
it will not be visible to a perturbation expansion in powers of λ.

ii) An asymptotic expansion is usually valid only in a sector a < arg z < b
in the complex plane. Different sectors have different expansions. This
is called the Stokes’ phenomenon.

The most useful methods for obtaining asymptotic expansions require
that the function to be expanded be given in terms of an integral. This
is the reason why we have stressed the contour-integral method of solving
differential equations. If the integral can be approximated by a Gaussian, we
are lead to the method of steepest descents. This technique is best explained
by means of examples.

19.4.1 Stirling’s approximation for n!

We start from the integral representation of the Gamma: function

Γ(x + 1) =

∫ ∞

0

e−ttx dt (19.117)

Set t = xζ, so

Γ(x + 1) = xx+1

∫ ∞

0

ezxf(ζ) dζ, (19.118)
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where
f(ζ) = ln ζ − ζ. (19.119)

We are going to be interested in evaluating this integral in the limit that
x→∞ and finding the first term in the asymptotic expansion of Γ(x+1) in
powers of 1/x. In this limit, the exponential will be dominated by the part
of the integration region near the absolute maximum of f(ζ). Now, f(ζ) is
a maximum at ζ = 1 and

f(ζ) = −1− 1

2
(ζ − 1)2 + · · · . (19.120)

So

Γ(x+ 1) = xx+1e−x
∫ ∞

0

e−
x
2
(ζ−1)2+··· dζ

≈ xx+1e−x
∫ ∞

−∞
e−

x
2
(ζ−1)2 dζ

= xx+1e−x
√

2π

x

=
√

2π xx+1/2e−x. (19.121)

By keeping more of the terms represented by the dots, and expanding
them as

e−
x
2
(ζ−1)2+··· = e−

x
2
(ζ−1)2

[
1 + a1(ζ − 1) + a2(ζ − 1)2 + · · ·

]
, (19.122)

we would find, on doing the integral, that

Γ(z+1) ≈
√

2πxx+1/2e−x
[
1 +

1

12x
+

1

288x2
− 139

51840x3
− 571

24888320x4
+O

(
1

x5

)]
.

(19.123)
Since Γ(n+ 1) = n! we have the useful result

n! ≈
√

2πnn+1/2e−n
[
1 +

1

12n
+ · · ·

]
. (19.124)

We make contact with our discusion of asymptotic series by rewriting the
expansion as

Γ(x+ 1)√
2πxx+1/2e−x

∼ 1 +
1

12x
+

1

288x2
− 139

51840x3
− 571

24888320x4
+ . . . (19.125)

This is typical. We usually have to pull out a leading factor from the function
whose asymptotic behaviour we are studying, before we are left with a plain
asymptotic power series.
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19.4.2 Airy functions

The Airy functions Ai(x) and Bi(x) are closely related to Bessel functions,
and are named after the mathematician and astronomer George Biddell Airy.
They occur widely in physics. We will investigate the behaviour of Ai(x) for
large values of |x|. A more sophisticated treatment is needed for this problem,
and we will meet with Stokes’ phenomenon. Airy’s differential equation is

d2y

dz2
− zy = 0. (19.126)

On the real axis Airy’s equation becomes

−d
2y

dx2
+ xy = 0, (19.127)

and we we can think of this as the Schrödinger equation for a particle running
up a linear potential. A classical particle incident from the left with total
energy E = 0 will come to rest at x = 0, and then retrace its path. The point
x = 0 is therefore called a classical turning point .The corresponding quantum
wavefunction, Ai (x), contains a travelling wave incident from the left and
becoming evanescent as it tunnels into the classically forbidden region, x > 0,
together with a reflected wave returning to −∞. The sum of the incident
and reflected waves is a real-valued standing wave.

-10 -5 5 10

-0.4

-0.2

0.2

0.4

Figure 19.6: The Airy function Ai (x).

We will look for contour integral solutions to Airy’s equation of the form

y(x) =

∫

C

extf(t) dt. (19.128)
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Denoting the Airy differential operator by Lx ≡ ∂2
x − x, we have

Lx y =

∫

C

(t2 − x)extf(t) dt =

∫ b

a

f(t)

{
t2 − d

dt

}
ext dt.

=
[
−extf(t)

]
C

+

∫

C

({
t2 +

d

dt

}
f(t)

)
ext dt. (19.129)

Thus f(t) = e−
1
3
t3 and hence

y(x) =

∫

C

ext−
1
3
t3 dt, (19.130)

provided the contour ends at points where the integrated-out term,
[
ext−

1
3
t3
]
C
,

vanishes. There are therefore three possible contours, which end at any two
of

+∞, ∞ e2πi/3, ∞ e−2πi/3.

C1

C

C

2

3

Figure 19.7: Contours providing solutions of Airy’s equation.

Since the integrand is an entire function, the sum yC1
+ yC2

+ yC3
is zero, so

only two of the three solutions are linearly independent. The Airy function
itself is defined by

Ai (x) =
1

2πi

∫

C1

ext−
1
3
t3 dt =

1

π

∫ ∞

0

cos

(
xs+

1

3
s3

)
ds. (19.131)
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In obtaining last equality, we have deformed the contour of integration, C1,
which ran from ∞ e−2πi/3 to ∞ e2πi/3, so that it lies on the imaginary axis,
and there we have written t = is. You may check (by extending Jordan’s
lemma) that this deformation does not alter the value of the integral.

To study the asymptotics of this function we need to examine separately
two cases x� 0 and x� 0. For both ranges of x, the principal contribution
to the integral will come from the neighbourhood of the stationary points
of f(t) = xt − t3/3. In the complex plane, stationary points are never pure
maxima or minima of the real part of f (the real part alone determines
the magnitude of the integrand) but are always saddle points. We must
deform the contour so that on the integration path the stationary point is
the highest point in a mountain pass. We must also ensure that everywhere
on the contour the difference between f and its maximum value stays real .
Because of the orthogonality of the real and imaginary part contours, this
means that we must take a path of steepest descent from the pass — hence
the name of the method. If we stray from the steepest descent path, the
phase of the exponent will be changing. This means that the integrand will
oscillate and we can no longer be sure that the result is dominated by the
contributions near the saddle point.

b)a)

u

v v

u

Figure 19.8: Steepest descent contours, location of the stationary points and
orientation of the saddle passes for a) x� 0, b) x� 0.

i) x� 0 : The stationary points are at t = ±√x. Writing t = ξ −√x have

f(ξ) = −2

3
x3/2 + ξ2

√
x− 1

3
ξ3 (19.132)
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while near t = +
√
x we write t = ζ +

√
x and find

f(ζ) = +
2

3
x3/2 − ζ2

√
x− 1

3
ζ3 (19.133)

We see that the saddle point near −√x is a local maximum when we
route the contour vertically, while the saddle point near +

√
x is a local

maximum as we go down the real axis. Since the contour in Ai (x) is
aimed vertically we can distort it to pass through the saddle point near
−√x, but cannot find a route through the point at +

√
x without the

integrand oscillating wildly. At the saddle point the exponent, xt−t3/3,
is real. If we write t = u+ iv we have

Im (xt− t3/3) = v(x− u2 + v2/3), (19.134)

so the exact steepest descent path, on which the imaginary part remains
zero is given by the union of real axis (v = 0) and the curve

u2 − 1

3
v2 = x. (19.135)

This is a hyperbola, and the branch passing through the saddle point
at −√x is plotted in a).
Now setting ξ = is, we find

Ai (x) =
1

2π
e−

2
3
x3/2

∫ ∞

−∞
e−

√
xs2+··· ds ∼ 1

2
√
π
x−1/4e−

2
3
x3/2

. (19.136)

ii) x� 0 : The stationary points are now at ±i
√
|x|. Setting t = ξ ± i

√
|x|

find that

f(x) = ∓i2
3
|x|3/2 ∓ iξ2

√
|x|. (19.137)

The exponent is no longer real, but the imaginary part will be constant
and the integrand non-oscillatory provided we deform the contour so
that it becomes the disconnected pair of curves shown in b). The
new contour passes through both saddle points and we must sum their
contributions. Near t = i

√
|x| we set ξ = e3πi/4s and get

1

2πi
e3πi/4e−i

2
3
|x|3/2

∫ ∞

−∞
e−
√

|x|s2 ds =
1

2i
√
π
e3πi/4|x|−1/4e−i

2
3
|x|3/2

= − 1

2i
√
π
e−iπ/4|x|−1/4e−i

2
3
|x|3/2

(19.138)
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Near t = −i
√
|x|we set ξ = eπi/4s and get

1

2πi
eπi/4ei

2
3
|x|3/2

∫ ∞

−∞
e−
√

|x|s2 ds =
1

2i
√
π
eπi/4|x|−1/4ei

2
3
|x|3/2

(19.139)

The sum of these two contributions is

Ai (x) ∼ 1√
π|x|1/4 sin

(
2

3
|x|3/2 +

π

4

)
. (19.140)

The fruit of our labours is therefore

Ai (x) ∼ 1

2
√
π
x−1/4e−

2
3
x3/2

[
1 +O

(
1

x

)]
, x > 0,

∼ 1√
π|x|1/4 sin

(
2

3
|x|3/2 +

π

4

)[
1 + O

(
1

x

)]
, x < 0.

(19.141)

Suppose that we allow x to become complex x → z = |z|eiθ, with −π <
θ < π. Then figure 19.9 shows how the steepest contour evolves and leads
the two quite different expansion for positive and negative x. We see that
for 0 < θ < 2π/3 the steepest descent path continues to be routed through
the single stationary point at −

√
|z|eiθ/2. Once θ reaches 2π/3, though, it

passes through both stationary points. The contribution to the integral from
the newly acquired stationary point is, however, exponentially smaller as
|z| → ∞ than that of t = −

√
|z|eiθ/2. The new term is therefore said to

be subdominant , and makes an insignificant contribution to the asymptotic
behaviour of Ai (z). The two saddle points only make contributions of the
same magnitude when θ reaches π. If we analytically continue beyond θ = π,
the new saddle point will now dominate over the old, and only its contribtion
is significant at large |z|. The Stokes line, at which we must change the form
of the asymptotic expansion is therefore at θ = π.

If we try to systematically keep higher order terms we will find, for the
oscillating Ai (−z), a double series

Ai (−z) ∼ π−1/2z−1/4

[
sin(ρ+ π/4)

∞∑

n=0

(−1)nc2nρ
−2n

− cos(ρ+ π/4)

∞∑

n=0

(−1)nc2n+1ρ
−2n−1

]
(19.142)
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Figure 19.9: Evolution of the steepest-descent contour from passing through
only one saddle point to passing through both. The dashed and solid lines are
contours of the real and imaginary parts, repectively, of (zt−t3/3). θ = Arg z
takes the values a) 7π/12, b) 5π/8, c) 2π/3, d) 3π/4.
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where ρ = 2z3/2/3. In this case, therefore we need to extract two leading
coefficients before we have asymptotic power series.

The subject of asymptotics contains many subtleties, and the reader in
search of a more detailed discussion is recommended to read Bender and
Orszag’s Advanced Mathematical Methods for Scientists and Engineers.

Exercise 19.2: Consider the behaviour of Bessel functions when x is large. By
applying the method of steepest descent to the Hankel function contours show
that

H(1)
ν (x) ∼

√
2

πx
ei(x−νπ/2−π/4)

[
1− 4ν2 − 1

8πx
+ · · ·

]

H(2)
ν (x) ∼

√
2

πx
e−i(x−νπ/2−π/4)

[
1 +

4ν2 − 1

8πx
+ · · ·

]
,

and hence

Jν(x) ∼
√

2

πx

[
cos
(
x− νπ

2
− π

4

)
− 4ν2 − 1

8x
sin
(
x− νπ

2
− π

4

)
+ · · ·

]
,

Nν(x) ∼
√

2

πx

[
sin
(
x− νπ

2
− π

4

)
+

4ν2 − 1

8x
cos
(
x− νπ

2
− π

4

)
+ · · ·

]
.

19.5 Elliptic functions

The subject of elliptic functions goes back to remarkable identities of Guilio
Fagnano (1750) and Leonhard Euler (1761). Euler’s formula is

∫ u

0

dx√
1− x4

+

∫ v

0

dy√
1− y4

=

∫ r

0

dz√
1− z4

, (19.143)

where 0 ≤ u, v ≤ 1, and

r =
u
√

1− v4 + v
√

1− u4

1 + u2v2
. (19.144)

This looks mysterious, but perhaps so does
∫ u

0

dx√
1− x2

+

∫ v

0

dy√
1− y2

=

∫ r

0

dz√
1− z2

, (19.145)

where
r = u

√
1− v2 + v

√
1− u2, (19.146)
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until you realize that the latter formula (19.146) is merely

sin(a+ b) = sin a cos b + cos a sin b (19.147)

in disguise. To see this set

u = sin a, v = sin b (19.148)

and remember the integral formula for the inverse trigonometric sine function

a = sin−1 u =

∫ u

0

dx√
1− x2

. (19.149)

The Fagnano-Euler formula is a similarly-disguised addition formula for an
elliptic function. Just as we use the substitution x = sin y in the 1/

√
1− x2

integral, we can use an elliptic-function substitution to evaluate elliptic inte-
grals which involve square-roots of quartic or cubic polynomials. Examples
are

I4 =

∫ x

0

dt√
(t− a1)(t− a2)(t− a3)(t− a4)

, (19.150)

I3 =

∫ x

0

dt√
(t− a1)(t− a2)(t− a3)

. (19.151)

Note that I4 can be reduced to an integral of the form I3 by using a Möbius-
map substitution

t =
at′ + b

ct′ + d
, dt = (ad− bc) dt′

(ct′ + d)2
(19.152)

to send a4 to infinity. Indeed, we can use a suitable Möbius map to send any
three of the four points an to 0, 1,∞.

The idea of elliptic functions (as opposed to elliptic integrals, which are
their functional inverses) was known to Gauss, but Abel and Jacobi were the
first to publish (1827). For the developing the general theory, the simplest
elliptic function is the Weierstrass ℘. This is really a family of functions that
is parametrized by a pair of linearly independent complex numbers or periods
ω1, ω2. For a given pair of periods, the ℘ function is defined by the double
sum

℘(z) =
1

z2
+

∑

(m,n)6=(0,0)

{
1

(z −mω1 − nω2)2
− 1

(mω1 + nω2)2

}
. (19.153)
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Helped by the counterterm, the sum is absolutely convergent, so we can
rearrange the terms to prove double periodicity

℘(z +mω1 + nω2) = ℘(z), m, n ∈ Z. (19.154)

The function is thus determined everywhere by its values in the period paral-
lelogram P = {λω1 + µω2 : 0 ≤ λ, µ < 1}. Double periodicity is the defining
characteristic of elliptic functions.

.

.

.

.

.

.

.

.

ω

ω2

x

y

1

.

.

Figure 19.10: Unit cell and double-periodicity.

Any non-constant meromorphic function f(z) that is doubly periodic has
four basic properties:

a) The function must have at least one pole in its unit cell. Otherwise
it would be holomorphic and bounded, and therefore a constant by
Liouville.

b) The sum of the residues at the poles must add to zero. This follows
from integrating f(z) around the boundary of the period parallelogram
and observing that the contributions from opposite edges cancel.

c) The number of poles in each unit cell must equal the number of zeros.
This follows from integrating f ′/f around the boundary of the period
parallelogram.

d) If f has zeros at the N points zi and poles at the N points pi then

N∑

i=1

zi −
N∑

i=1

pi = nω1 +mω2

where m,n are integers. This follows from integrating zf ′/f around
the boundary of the period parallelogram.
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The Weierstrass ℘ has a second-order pole at the origin. It also obeys

lim
|z|→0

(
℘(z)− 1

z2

)
= 0,

℘(z) = ℘(−z),
℘′(z) = −℘′(−z). (19.155)

The property that makes ℘(z) useful for evaluating integrals is

(℘′(z))
2

= 4℘3(z)− g2℘(z)− g3, (19.156)

where

g2 = 60
∑

(m,n)6=(0,0)

1

(mω1 + nω2)4
, g3 = 140

∑

(m,n)6=(0,0)

1

(mω1 + nω2)6
.

(19.157)
Equation (19.156) is proved by examining the first few terms in the Laurent
expansion in z of the difference of the left hand and right hand sides. All
negative powers cancel, as does the constant term. The difference is zero at
z = 0, has no poles or other singularities, and, being continuous and peri-
odic, is automatically bounded. It is therefore identically zero by Liouville’s
theorem.

From the symmetry and periodicity of ℘ we see that ℘′(z) = 0 at ω1/2,
ω2/2 and (ω1+ω2)/2 where ℘(z) takes the values e1 = ℘(ω1/2), e2 = ℘(ω2/2),
and e3 = ℘((ω1 +ω2)/2). Now ℘′ must have exactly three zeros since it has a
pole of order three at the origin and, by property c), the number of zeros in
the unit cell is equal to the number of poles. We therefore know the location
of all three zeros, and can factorize:

4℘3(z)− g2℘(z)− g3 = 4(℘− e1)(℘− e2)(℘− e3). (19.158)

We note that the coefficient of ℘2 in the polynomial on the left side is zero,
implying that e1 + e2 + e3 = 0.

The roots ei can never coincide. For example, (℘(z) − e1) has a double
zero at ω1/2, but two zeros is all it is allowed because the number of poles
per unit cell equals the number of zeros, and (℘(z)− e1) has a double pole at
0 as its only singularity. Thus, (℘− e1) cannot be zero at another point, but
it would be if e1 coincided with e2 or e3. As a consequence, the discriminant

∆
def
= 16(e1 − e2)2(e2 − e3)2(e1 − e3)2 = g3

2 − 27g2
3, (19.159)
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is never zero.
We use ℘ and (19.156) to write

z = ℘−1(u) =

∫ u

∞

dt

2
√

(t− e1)(t− e2)(t− e3)
=

∫ u

∞

dt√
4t3 − g2t− g3

.

(19.160)
This maps the u plane, with cuts that we can take from e1 to e2 and e3 to∞,
one-to-one onto the 2-torus, regarded the unit cell of the ωn,m = nω1 +mω2

lattice.
As z sweeps over the torus, the points x = ℘(z), y = ℘′(z) move on the

elliptic curve
y2 = 4x3 − g2x− g3 (19.161)

which should be thought of as a set in CP 2. These curves, and the finite fields
of rational points that lie on them, are exploited in modern cryptography.

The magic that leads to addition formula, such as the Euler-Fagnano re-
lation (19.144) with which we began this section, lies in the (not immediatley
obvious) fact that any elliptic function having the same periods as ℘(z) can
be expressed as a rational function of ℘(z) and ℘′(z). From this it follows
(after some thought) that any two such elliptic functions, f1(z) and f2(z),
obey a relation F (f1, f2) = 0, where

F (x, y) =
∑

m,n

an,mx
nym (19.162)

is a polynomial in x and y. We can eliminate ℘′(z) in these relations by
writing ℘′(z) =

√
4℘3(z)− g2℘(z)− g3.

Modular invariance

If ω1 and ω2 are periods and define a unit cell, so are

ω′
1 = aω1 + bω2

ω′
2 = cω1 + dω2

where a, b, c, d are integers with ad− bc = ±1. This condition on the deter-
minant ensures that the matrix inverse also has integer entries, and so the ωi
can be expressed in terms of the ω′

i with integer coefficients. Consequently
the set of integer linear combinations of the ω′

i generate the same lattice as
the integer linear combinations of the original ωi. This notion of redefining
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the unit cell should be familiar to you from solid state physics. If we wish
to preserve the orientation of the basis vectors, we must restrict ourselves
to maps whose determinant ad − bc is unity. The set of such transforms
constitute the the modular group SL(2,Z). Clearly ℘ is invariant under this
group, as are g2 and g3 and ∆. Now define ω2/ω1 = τ , and write

g2(ω1, ω2) =
1

ω4
1

g̃2(τ), g3(ω1, ω2) =
1

ω6
1

g̃3(τ). ∆(ω1, ω2) =
1

ω12
1

∆̃(τ),

(19.163)
and also

J(τ) =
g̃3

2

g̃3
2 − 27g̃2

3

=
g̃3

2

∆̃
. (19.164)

Because the denominator is never zero when Im τ > 0, the function J(τ) is
holomorphic in the upper half-plane — but not on the real axis. The function
J(τ) is called the elliptic modular function.

Except for the prefactors ωn1 , the functions g̃i(τ), ∆̃(τ) and J(τ) are
invariant under the Möbius transformation

τ → aτ + b

cτ + d
, (19.165)

with (
a b
c d

)
∈ SL(2,Z). (19.166)

This Möbius transformation does not change if the entries in the matrix are
multiplied by a common factor of±1, and so the transformation is an element
of the modular group PSL(2,Z) ≡ SL(2,Z)/{I,−I}.

Taking into account the change in the ωα1 prefactors we have

g̃2

(
aτ + b

cτ + d

)
= (cτ + d)4g̃3(τ),

g̃3

(
aτ + b

cτ + d

)
= (cτ + d)6g̃3(τ),

∆̃

(
aτ + b

cτ + d

)
= (cτ + d)12∆̃(τ). (19.167)

Because c = 0 and d = 1 for the special case τ → τ +1, these three functions
obey f(τ+1) = f(τ) and so depend on τ only via the combination q2 = e2πiτ .
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For example, it is not hard to prove that

∆̃(τ) = (2π)12q2
∞∏

n=1

(
1− q2n

)24
. (19.168)

We can also expand these functions as power series in q2 — and here things
get interesting because the coefficients have number-theoretic properties. For
example

g̃2(τ) = (2π)4

[
1

12
+ 20

∞∑

n=1

σ3(n)q2n

]
,

g̃3(τ) = (2π)6

[
1

216
− 7

3

∞∑

n=1

σ5(n)q2n

]
. (19.169)

The symbol σk(n) is defined by σk(n) =
∑
d k, where d runs over all positive

divisors of the number n.
In the case of the function J(τ), the prefactors cancel and

J

(
aτ + b

cτ + d

)
= J(τ), (19.170)

so J(τ) is a modular invariant . One can show that if J(τ1) = J(τ2), then

τ2 =
aτ1 + b

cτ1 + d
(19.171)

for some modular transformation with integer a, b, c, d, where ad − bc = 1,
and further, that any modular-invariant function is a rational function of
J(τ). It seems clear that J(τ) is rather a special object.

This J(τ) is the function referred to on page 560 in connection with the
Monster group. As with the g̃i, J(τ) depends on τ only through q2. The first
few terms in the power series expansion of J(τ) in terms of q2 turn out to be

1728J(τ) = q−2+744+196884q2+21493760q4+864299970q6+· · · . (19.172)

Since AJ(τ)+B has all the same modular invariance properties as J(τ), the
numbers 1728 (= 123) and 744 are just conventional normalizations. Once we
set the coefficient of q−2 to unity, however, the remaining integer coefficients
are completely determined by the modular properties. A number-theory
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interpretation of these integers seemed lacking until John McKay and others
observed that

1 = 1

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296786

864299970 = 2×1 + 2×196883 + 21296786 + 842609326,

(19.173)

where “1” and the large integers on the right-hand side are the dimensions of
the smallest irreducible representations of the Monster. This “Monstrous
Moonshine” was originally mysterious and almost unbelievable, (“moon-
shine” = “fantastic nonsense”) but it was explained by Richard Borcherds
by the use of techniques borrowed from string theory.3 Borcherds received
the 1998 Fields Medal for this work.

19.6 Further exercises and problems

Exercise 19.3: Show that the binomial series expansion of (1 + x)−ν can be
written as

(1 + x)−ν =
∞∑

m=0

(−x)mΓ(m+ ν)

Γ(ν)m!
, |x| < 1.

Exercise 19.4: A Mellin transform and its inverse. Combine the Beta-function
identity (19.15) with a suitable change of variables to evaluate the Mellin
transform ∫ ∞

0
xs−1(1 + x)−ν dx, ν > 0,

of (1 + x)−ν as a product of Gamma functions. Now consider the Bromwich
contour integral

1

2πiΓ(ν)

∫ c+i∞

c−i∞
x−sΓ(ν − s)Γ(s) ds.

3“I was in Kashmir. I had been traveling around northern India, and there was one
really long tiresome bus journey, which lasted about 24 hours. Then the bus had to stop
because there was a landslide and we couldn’t go any further. It was all pretty darn
unpleasant. Anyway, I was just toying with some calculations on this bus journey and
finally I found an idea which made everything work”- Richard Borcherds (Interview in
The Guardian, August 1998).
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Here Re c ∈ (0, ν). The Bromwich contour therefore runs parallel to the imag-
inary axis with the poles of Γ(s) to its left and the poles of Γ(ν − s) to its
right. Use the identity

Γ(s)Γ(1− s) = π cosec πs

to show that when |x| < 1 the contour can be closed by a large semicircle lying
to the left of the imaginary axis. By using the preceding exercise to sum the
contributions from the enclosed poles at s = −n, evaluate the integral.

Exercise 19.5: Mellin-Barnes integral. Use the technique developed in the
preceding exercise to show that

F (a, b, c;−x) =
Γ(c)

2πiΓ(a)Γ(b)

∫ c+i∞

c−i∞
x−s

Γ(a− s)Γ(b− s)Γ(s)

Γ(c− s) ds,

for a suitable range of x. This integral representation of the hypergeometric
function is due to the English mathematician Ernest Barnes (1908), later a
controversial Bishop of Birmingham.

Exercise 19.6: Let

Y =

(
y1

y2

)

Show that the matrix differential equation

d

dx
Y =

A

z
Y +

B

1− z Y,

where

A =

(
0 a
0 1− c

)
, B =

(
0 0
b a+ b− c+ 1

)
,

has a solution

Y (z) = F (a, b; c; z)

(
1
0

)
+
z

a
F ′(a, b; c; z)

(
0
1

)
.

Exercise 19.7: Kniznik-Zamolodchikov equation. The monodromy properties
of solutions of differential equations play an important role in conformal field
theory. The Fuchsian equations studied in this exercise are obeyed by the
correlation functions in the level-k Wess-Zumino-Witten model.

Let V (a), a = 1, . . . n, be spin-ja representation spaces for the group SU(2). Let
W (z1, . . . , zn) be a function taking values in V (1)⊗V (2)⊗· · ·⊗V (n). (In other
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words W is a function Wi1,...,in(z1, . . . , zn) where the index ia labels states in
the spin-ja factor.) Suppose that W obeys the Kniznik-Zamolodchikov (K-Z)
equations

(k + 2)
∂

∂za
W =

∑

b,b6=a

J(a) · J(b)

za − zb
W, a = 1, . . . , n,

where
J(a) · J(b) ≡ J (a)

1 J
(b)
1 + J

(a)
2 J

(b)
2 + J

(a)
3 J

(b)
3 ,

and J
(a)
i indicates the su(2) generator Ji acting on the V (a) factor in the tensor

product. If we set z1 = z, for example and fix the position of z2, . . . zn, then
the differential equation in z has regular singular points at the n−1 remaining
zb.

a) By diagonalizing the operator J(a) · J(b) show that there are solutions
W (z) that behave for za close to zb as

W (z) ∼ (za − zb)∆j−∆ja−∆jb ,

where

∆j =
j(j + 1)

k + 2
, ∆ja =

ja(ja + 1)

k + 2
,

and j is one of the spins |ja− jb| ≤ j ≤ j1 + ja occuring in the decompo-
sition of ja ⊗ jb.

b) Define covariant derivatives

∇a =
∂

∂za
−
∑

b,b6=a

J(a) · J(b)

za − zb

and show that [∇a,∇b] = 0. Conclude that the effect of parallel transport
of the solutions of the K-Z equations provides a representation of the
braid group of the world lines of the za.
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Appendix A

Linear Algebra Review

In physics we often have to work with infinite dimensional vector spaces.
Navigating these vasty deeps is much easier if you have a sound grasp of the
theory of finite dimensional spaces. Most physics students have studied this
as undergraduates, but not always in a systematic way. In this appendix
we gather together and review those parts of linear algebra that we will find
useful in the main text.

A.1 Vector space

A.1.1 Axioms

A vector space V over a field F is a set equipped with two operations: a
binary operation called vector addition which assigns to each pair of elements
x, y ∈ V a third element denoted by x + y, and scalar multiplication which
assigns to an element x ∈ V and λ ∈ F a new element λx ∈ V . There is also
a distinguished element 0 ∈ V such that the following axioms are obeyed:1

1) Vector addition is commutative: x + y = y + x.
2) Vector addition is associative: (x + y) + z = x + (y + z).
3) Additive identity: 0 + x = x.
4) Existence of an additive inverse: for any x ∈ V , there is an element

(−x) ∈ V , such that x + (−x) = 0.
5) Scalar distributive law i) λ(x + y) = λx + λy.
6) Scalar distributive law ii) (λ+ µ)x = λx + µx.

1In this list 1, λ, µ,∈ F and x, y,0 ∈ V .

835
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7) Scalar multiplicatiion is associative: (λµ)x = λ(µx).
8) Multiplicative identity: 1x = x.

The elements of V are called vectors. We will only consider vector spaces
over the field of the real numbers, F = R, or the complex numbers, F = C.

You have no doubt been working with vectors for years, and are saying to
yourself “I know this stuff.” Perhaps so, but to see if you really understand
these axioms try the following exercise. Its value lies not so much in the
solution of its parts, which are easy, as in appreciating that these commonly
used properties both can and need to be proved from the axioms. (Hint:
work the problems in the order given; the later parts depend on the earlier.)

Exercise A.1: Use the axioms to show that:

i) If x + 0̃ = x, then 0̃ = 0.
ii) We have 0x = 0 for any x ∈ V . Here 0 is the additive identity in F.
iii) If x + y = 0, then y = −x. Thus the additive inverse is unique.
iv) Given x, y in V , there is a unique z such that x+z = y, to whit z = x−y.
v) λ0 = 0 for any λ ∈ F.
vi) If λx = 0, then either x = 0 or λ = 0.
vii) (−1)x = −x.

A.1.2 Bases and components

Let V be a vector space over F. For the moment, this space has no additional
structure beyond that of the previous section — no inner product and so no
notion of what it means for two vectors to be orthogonal. There is still much
that can be done, though. Here are the most basic concepts and properties
that need to be understand:

i) A set of vectors {e1, e2, . . . , en} is linearly dependent if there exist λµ ∈
F, not all zero, such that

λ1e1 + λ2e2 + · · ·+ λnen = 0. (A.1)

ii) If it is not linearly dependent, a set of vectors {e1, e2, . . . , en} is linearly
independent . For a linearly independent set, a relation

λ1e1 + λ2e2 + · · ·+ λnen = 0 (A.2)

can hold only if all the λµ are zero.
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iii) A set of vectors {e1, e2, . . . , en} is said to span V if for any x ∈ V there
are numbers xµ such that x can be written (not necessarily uniquely)
as

x = x1e1 + x2e2 + · · ·+ xnen. (A.3)

A vector space is finite dimensional if a finite spanning set exists.
iv) A set of vectors {e1, e2, . . . , en} is a basis if it is a maximal linearly

independent set (i.e. introducing any additional vector makes the set
linearly dependent). An alternative definition declares a basis to be a
minimal spanning set (i.e. deleting any of the ei destroys the spanning
property). Exercise: Show that these two definitions are equivalent.

v) If {e1, e2, . . . , en} is a basis then any x ∈ V can be written

x = x1e1 + x2e2 + . . . xnen, (A.4)

where the xµ, the components of the vector with respect to this basis,
are unique in that two vectors coincide if and only if they have the
same components.

vi) Fundamental Theorem: If the sets {e1, e2, . . . , en} and {f1, f2, . . . , fm}
are both bases for the space V then m = n. This invariant integer is
the dimension, dim (V ), of the space. For a proof (not difficult) see
a mathematics text such as Birkhoff and McLane’s Survey of Modern
Algebra, or Halmos’ Finite Dimensional Vector Spaces.

Suppose that {e1, e2, . . . , en} and {e′
1, e

′
2, . . . , e

′
n} are both bases, and that

eν = aµνe
′
µ. (A.5)

Since {e1, e2, . . . , en} is a basis, the e′
ν can also be uniquely expressed in terms

of the eµ, and so the numbers aµν constitute an invertible matrix. (Note that
we are, as usual, using the Einstein summation convention that repeated
indices are to be summed over.) The components x′µ of x in the new basis
are then found by comparing the coefficients of e′

µ in

x′µe′
µ = x = xνeν = xν

(
aµνe

′
µ

)
= (xνaµν ) e′

µ (A.6)

to be x′µ = aµνx
ν , or equivalently, xν = (a−1)νµ x

′µ. Note how the eµ and the
xµ transform in “opposite” directions. The components xµ are therefore said
to transform contravariantly .
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A.2 Linear maps

Let V and W be vector spaces having dimensions n and m respectively. A
linear map, or linear operator , A is a function A : V → W with the property
that

A(λx + µy) = λA(x) + µA(y). (A.7)

A.2.1 Matrices

The linear map A is an object that exists independently of any basis. Given
bases {eµ} for V and {fν} for W , however, the map may be represented by
an m-by-n matrix . We obtain this matrix

A =




a1
1 a1

2 . . . a1
n

a2
1 a2

2 . . . a2
n

...
...

. . .
...

am1 am2 . . . amn


 , (A.8)

having entries aνµ, by looking at the action of A on the basis elements:

A(eµ) = fνa
ν
µ . (A.9)

To make the right-hand-side of (A.9) look like a matrix product, where we
sum over adjacent indices, the array aνµ has been written to the right of the
basis vector.2 The map y = A(x) is therefore

y ≡ yνfν = A(x) = A(xµeµ) = xµA(eµ) = xµ(fνa
ν
µ) = (aνµx

µ)fν, (A.10)

whence, comparing coefficients of fν, we have

yν = aνµx
µ. (A.11)

The action of the linear map on components is therefore given by the usual
matrix multiplication from the left : y = Ax, or more explicitly




y1

y2

...
ym


 =




a1
1 a1

2 . . . a1
n

a2
1 a2

2 . . . a2
n

...
...

. . .
...

am1 am2 . . . amn







x1

x2

...
xn


 . (A.12)

2You have probably seen this “backward” action before in quantum mechanics. If we
use Dirac notation |n〉 for an orthonormal basis, and insert a complete set of states, |m〉〈m|,
then A|n〉 = |m〉〈m|A|n〉. The matrix 〈m|A|n〉 representing the operator A operating on
a vector from the left thus automatically appears to the right of the basis vectors used to
expand the result.
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The identity map I : V → V is represented by the n-by-n matrix

In =




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1



, (A.13)

which has the same entries in any basis.

Exercise A.2: Let U , V , W be vector spaces, and A : V → W , B : U → V
linear maps which are represented by the matrices A with entries aµν and B

with entries bµν , respectively. Use the action of the maps on basis elements
to show that the map AB : U →W is represented by the matrix product AB

whose entries are aµλb
λ
ν .

A.2.2 Range-nullspace theorem

Given a linear map A : V →W , we can define two important subspaces:
i) The kernel or nullspace is defined by

KerA = {x ∈ V : A(x) = 0}. (A.14)

It is a subspace of V .
ii) The range or image space is defined by

ImA = {y ∈ W : y = A(x),x ∈ V }. (A.15)

It is a subspace of the target space W .
The key result linking these spaces is the range-nullspace theorem which
states that

dim (KerA) + dim (ImA) = dim V

It is proved by taking a basis nµ for KerA and extending it to a basis for the
whole of V by appending (dimV − dim (KerA)) extra vectors eν. It is easy
to see that the vectors A(eν) are linearly independent and span ImA ⊆ W .
Note that this result is meaningless unless V is finite dimensional.

The number dim (ImA) is the number of linearly independent columns
in the matrix, and is often called the (column) rank of the matrix.
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A.2.3 The dual space

Associated with the vector space V is its dual space, V ∗, which is the set of
linear maps f : V → F. In other words the set of linear functions f( ) that
take in a vector and return a number. These functions are often also called
covectors. (Mathematicians place the prefix co- in front of the name of a
mathematical object to indicate a dual class of objects, consisting of the set
of structure-preserving maps of the original objects into the field over which
they are defined.)

Using linearity we have

f(x) = f(xµeµ) = xµf(eµ) = xµ fµ. (A.16)

The set of numbers fµ = f(eµ) are the components of the covector f ∈ V ∗.
If we change basis eν = aµνe

′
µ then

fν = f(eν) = f(aµνe
′
µ) = aµνf(e′

µ) = aµνf
′
µ. (A.17)

Thus fν = aµνf
′
µ and the fµ components transform in the same manner as the

basis. They are therefore said to transform covariantly .
Given a basis eµ of V , we can define a dual basis for V ∗ as the set of

covectors e∗µ ∈ V ∗ such that

e∗µ(eν) = δµν . (A.18)

It should be clear that this is a basis for V ∗, and that f can be expanded

f = fµe
∗µ. (A.19)

Although the spaces V and V ∗ have the same dimension, and are therefore
isomorphic, there is no natural map between them. The assignment eµ 7→ e∗µ

is unnatural because it depends on the choice of basis.
One way of driving home the distinction between V and V ∗ is to consider

the space V of fruit orders at a grocers. Assume that the grocer stocks only
apples, oranges and pears. The elements of V are then vectors such as

x = 3kg apples + 4.5kg oranges + 2kg pears. (A.20)

Take V ∗ to be the space of possible price lists, an example element being

f = (£3.00/kg) apples∗ + (£2.00/kg) oranges∗ + (£1.50/kg)pears∗.
(A.21)
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The evaluation of f on x

f(x) = 3× £3.00 + 4.5× £2.00 + 2× £1.50 = £21.00, (A.22)

then returns the total cost of the order. You should have no difficulty in
distinguishing between a price list and box of fruit!

We may consider the original vector space V to be the dual space of V ∗

since, given vectors in x ∈ V and f ∈ V ∗, we naturally define x(f) to be
f(x). Thus (V ∗)∗ = V . Instead of giving one space priority as being the set
of linear functions on the other, we can treat V and V ∗ on an equal footing.
We then speak of the pairing of x ∈ V with f ∈ V ∗ to get a number in the
field. It is then common to use the notation (f,x) to mean either of f(x) or
x(f). Warning: despite the similarity of the notation, do not fall into the
trap of thinking of the pairing (f,x) as an inner product (see next section) of
f with x. The two objects being paired live in different spaces. In an inner
product, the vectors being multiplied live in the same space.

A.3 Inner-product spaces

Some vector spaces V come equipped with an inner (or scalar) product.
This additional structure allows us to relate V and V ∗.

A.3.1 Inner products

We will use the symbol 〈x,y〉 to denote an inner product . An inner (or
scalar) product is a conjugate-symmetric, sesquilinear, non-degenerate map
V × V → F. In this string of jargon, the phrase conjugate symmetric means
that

〈x,y〉 = 〈y,x〉∗, (A.23)

where the “∗” denotes complex conjugation, and sesquilinear3 means

〈x, λy + µz〉 = λ〈x,y〉+ µ〈x, z〉, (A.24)

〈λx + µy, z〉 = λ∗〈x, z〉+ µ∗〈y, z〉. (A.25)

The product is therefore linear in the second slot, but anti-linear in the
first. When our field is the real numbers R then the complex conjugation is

3Sesqui is a Latin prefix meaning “one-and-a-half”.
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redundant and the product will be symmetric

〈x,y〉 = 〈y,x〉, (A.26)

and bilinear

〈x, λy + µz〉 = λ〈x,y)〉+ µ〈x, z〉, (A.27)

〈λx + µy, z〉 = λ〈x, z〉+ µ〈y, z〉. (A.28)

The term non-degenerate means that if 〈x,y〉 = 0 for all y, then x = 0.
Many inner products satisfy the stronger condition of being positive definite.
This means that 〈x,x〉 > 0 unless x = 0, in which case 〈x,x〉 = 0. Positive
definiteness implies non-degeneracy, but not vice-versa.

Given a basis eµ, we can form the pairwise products

〈eµ, eν〉 = gµν . (A.29)

If the array of numbers gµν constituting the components of the metric tensor
turns out to be gµν = δµν , then we say that the basis is orthonormal with
respect to the inner product. We will not assume orthonormality without
specifically saying so. The non-degeneracy of the inner product guarantees
the existence of a matrix gµν which is the inverse of gµν, i.e. gµνg

νλ = δλµ.
If we take our field to be the real numbers R then the additional structure

provided by a non-degenerate inner product allows us to identify V with V ∗.
For any f ∈ V ∗ we can find a vector f ∈ V such that

f(x) = 〈f ,x〉. (A.30)

In components, we solve the equation

fµ = gµνf
ν (A.31)

for f ν. We find f ν = gνµfµ. Usually, we simply identify f with f , and hence
V with V ∗. We say that the covariant components fµ are related to the
contravariant components fµ by raising

fµ = gµνfν, (A.32)

or lowering
fµ = gµνf

ν, (A.33)

the indices using the metric tensor. Obviously, this identification depends
crucially on the inner product; a different inner product would, in general,
identify an f ∈ V ∗ with a completely different f ∈ V .
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A.3.2 Euclidean vectors

Consider Rn equipped with its Euclidean metric and associated “dot” inner
product. Given a vector x and a basis eµ with gµν = eµ ·eν, we can define two
sets of components for the same vector. Firstly the coefficients xµ appearing
in the basis expansion

x = xµeµ,

and secondly the “components”

xµ = x · eµ = gµνx
ν,

of x along the basis vectors. The xµ are obtained from the xµ by the same
“lowering” operation as before, and so xµ and xµ are naturally referred to
as the contravariant and covariant components, respectively, of the vector x.
When the eµ constitute an orthonormal basis, then gµν = δµν and the two
sets of components are numerically coincident.

A.3.3 Bra and ket vectors

When our vector space is over the field of complex numbers, the anti-linearity
of the first slot of the inner product means we can no longer make a simple
identification of V with V ∗. Instead there is an anti-linear corresponence
between the two spaces. The vector x ∈ V is mapped to 〈x, 〉 which, since
it returns a number when a vector is inserted into its vacant slot, is an element
of V ∗. This mapping is anti-linear because

λx + µy 7→ 〈λx + µy, 〉 = λ∗〈x, 〉+ µ∗〈y, 〉. (A.34)

This antilinear map is probably familiar to you from quantum mechanics,
where V is the space of Dirac’s “ket” vectors |ψ〉 and V ∗ the space of
“bra” vectors 〈ψ|. The symbol, here ψ, in each of these objects is a label
distinguishing one state-vector from another. We often use the eigenvalues
of some complete set set of commuting operators. To each vector |ψ〉 we use
the (. . .)† map to assign it a dual vector

|ψ〉 7→ |ψ〉† ≡ 〈ψ|

having the same labels. The dagger map is defined to be antilinear

(λ|ψ〉+ µ|χ〉)† = λ∗〈ψ|+ µ∗〈χ|, (A.35)
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and Dirac denoted the number resulting from the pairing of the covector 〈ψ|
with the vector |χ〉 by the “bra-c-ket” symbol 〈ψ|χ〉:

〈ψ|χ〉 def
= (〈ψ|, |χ〉). (A.36)

We can regard the dagger map as either determining the inner-product on V
via

〈|ψ〉, |χ〉〉 def
= (|ψ〉†, |χ〉) = (〈ψ|, |χ〉) ≡ 〈ψ|χ〉, (A.37)

or being determined by it as

|ψ〉† def
= 〈|ψ〉, 〉 ≡ 〈ψ|. (A.38)

When we represent our vectors by their components with respect to an
orthonormal basis, the dagger map is the familiar operation of taking the
conjugate transpose,




x1

x2
...
xn


 7→




x1

x2
...
xn




†

= (x∗1, x
∗
2, . . . , x

∗
n) (A.39)

but this is not true in general. In a non-orthogonal basis the column vector
with components xµ is mapped to the row vector with components (x†)µ =
(xν)∗gνµ.

Much of Dirac notation tacitly assumes an orthonormal basis. For exam-
ple, in the expansion

|ψ〉 =
∑

n

|n〉〈n|ψ〉 (A.40)

the expansion coefficients 〈n|ψ〉 should be the contravariant components of
|ψ〉, but the 〈n|ψ〉 have been obtained from the inner product, and so are in
fact its covariant components. The expansion (A.40) is therefore valid only
when the |n〉 constitute an orthonormal basis. This will always be the case
when the labels on the states show them to be the eigenvectors of a complete
commuting set of observables, but sometimes, for example, we may use the
integer “n” to refer to an orbital centered on a particular atom in a crystal,
and then 〈n|m〉 6= δmn. When using such a non-orthonormal basis it is safer
not to use Dirac notation.
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Conjugate operator

A linear map A : V → W automatically induces a map A∗ : W ∗ → V ∗.
Given f ∈ W ∗ we can evaluate f(A(x)) for any x in V , and so f(A( )) is an
element of V ∗ that we may denote by A∗(f). Thus,

A∗(f)(x) = f(A(x)). (A.41)

Functional analysts (people who spend their working day in Banach space)
call A∗ the conjugate of A. The word “conjugate” and the symbol A∗ is
rather unfortunate as it has the potential for generating confusion4 — not
least because the (. . .)∗ map is linear . No complex conjugation is involved.
Thus

(λA+ µB)∗ = λA∗ + µB∗. (A.42)

Dirac deftly sidesteps this notational problem by writing 〈ψ|A for the
action of the conjugate of the operator A : V → V on the bra vector 〈ψ| ∈ V ∗.
After setting f → 〈ψ| and x→ |χ〉, equation (A.41) therefore reads

(〈ψ|A) |χ〉 = 〈ψ| (A|χ〉) . (A.43)

This shows that it does not matter where we place the parentheses, so Dirac
simply drops them and uses one symbol 〈ψ|A|χ〉 to represent both sides
of (A.43). Dirac notation thus avoids the non-complex-conjugating “∗” by
suppressing the distinction between an operator and its conjugate. If, there-
fore, for some reason we need to make the distinction, we cannnot use Dirac
notation.

Exercise A.3: If A : V → V and B : V → V show that (AB)∗ = B∗A∗.

Exercise A.4: How does the reversal of the operator order in the previous
exercise manifest itself in Dirac notation?

Exercise A.5: Show that if the linear operator A is, in a basis eµ, represented
by the matrix A, then the conjugate operator A∗ is represented in the dual
basis e∗µ by the transposed matrix AT .

4The terms dual , transpose, or adjoint are sometimes used in place of “conjugate.”
Each of these words brings its own capacity for confusion.
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A.3.4 Adjoint operator

The “conjugate” operator of the previous section does not require an inner
product for its definition, and is a map from V ∗ to V ∗. When we do have an
inner product, however, we can use it to define a different operator “conju-
gate” to A that, like A itself, is a map from V to V . This new conjugate is
called the adjoint or the Hermitian conjugate of A. To construct it, we first
remind ourselves that for any linear map f : V → C, there is a vector f ∈ V
such that f(x) = 〈f ,x〉. (To find it we simply solve fν = (fµ)∗gµν for fµ.)
We next observe that x 7→ 〈y, Ax〉 is such a linear map, and so there is a z
such that 〈y, Ax〉 = 〈z,x〉. It should be clear that z depends linearly on y,
so we may define the adjoint linear map, A†, by setting A†y = z. This gives
us the identity

〈y, Ax〉 = 〈A†y,x〉
The correspondence A 7→ A† is anti-linear

(λA+ µB)† = λ∗A† + µ∗B†. (A.44)

The adjoint of A depends on the inner product being used to define it. Dif-
ferent inner products give different A†’s.

In the particular case that our chosen basis eµ is orthonormal with respect
to the inner product, i.e.

〈eµ, eν〉 = δmuν , (A.45)

then the Hermitian conjugate A† of the operator A is represented by the
Hermitian conjugate matrix A† which is obtained from the matrix A by
interchanging rows and columns and complex conjugating the entries.

Exercise A.6: Show that (AB)† = B†A†.

Exercise A.7: When the basis is not orthonormal, show that

(A†)ρσ = (gσµA
µ
νg
νρ)∗ . (A.46)

A.4 Sums and differences of vector spaces

A.4.1 Direct sums

Suppose that U and V are vector spaces. We define their direct sum U ⊕ V
to be the vector space of ordered pairs (u,v) with

λ(u1,v1) + µ(u2,v2) = (λu1 + µu2, λv1 + µv2). (A.47)
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The set of vectors {(u, 0)} ⊂ U ⊕V forms a copy of U , and {(0,v)} ⊂ U ⊕V
a copy of V . Thus U and V may be regarded as subspaces of U ⊕ V .

If U and V are any pair of subspaces of W , we can form the space U +V
consisting of all elements of W that can be written as u+ v with u ∈ U and
v ∈ V . The decomposition x = u + v of an element x ∈ U + V into parts in
U and V will be unique (in that u1 + v1 = u2 + v2 implies that u1 = u2 and
v1 = v2) if and only if U ∩ V = {0} where {0} is the subspace containing
only the zero vector. In this case U + V can be identified with U ⊕ V .

If U is a subspace of W then we can seek a complementary space V such
that W = U ⊕ V , or, equivalently, W = U + V with U ∩ V = {0}. Such
complementary spaces are not unique. Consider R3, for example, with U
being the vectors in the x, y plane. If e is any vector that does not lie in
this plane then the one-dimensional space spanned by e is a complementary
space for U .

A.4.2 Quotient spaces

We have seen that if U is a subspace of W there are many complementary
subspaces V such that W = U ⊕ V . We can however define a unique space
that we might denote by W − U and refer to as the difference of the two
spaces. It is more common, however, to see this space written as W/U and
referred to as the quotient of W modulo U . This quotient space is the vector
space of equivalence classes of vectors, where we do not distinguish between
two vectors in W if their difference lies in U . In other words

x = y (mod U) ⇔ x− y ∈ U. (A.48)

The collection of elements in W that are equivalent to x (mod U) composes
a coset, written x +U , a set whose elements are x + u where u is any vector
in U . These cosets are the elements of W/U .

When we have a linear map A : U → V , the quotient space V/ImA is
often called the co-kernel of A.

Given a positive-definite inner product, we can define a unique orthogonal
complement of U ⊂ W . We define U⊥ to be the set

U⊥ = {x ∈ W : 〈x,y〉 = 0, ∀y ∈ U}. (A.49)

It is easy to see that this is a linear subspace and that U ⊕ U⊥ = W . For
finite dimensional spaces
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dimW/U = dimU⊥ = dimW − dimU

and (U⊥)⊥ = U . For infinite dimensional spaces we only have (U⊥)⊥ ⊇ U .
(Be careful, however. If the inner product is not positive definite, U and U⊥

may have non-zero vectors in common.)
Although they have the same dimensions, do not confuse W/U with U⊥,

and in particular do not use the phrase orthogonal complement without spec-
ifying an inner product.

A practical example of a quotient space occurs in digital imaging. A
colour camera reduces the infinite-dimensional space L of coloured light inci-
dent on each pixel to three numbers, R, G and B, these obtained by pairing
the spectral intensity with the frequency response (an element of L∗) of the
red, green and blue detectors at that point. The space of distingushable
colours is therefore only three dimensional. Many different incident spectra
will give the same output RGB signal, and are therefore equivalent as far
as the camera is concerned. In the colour industry these equivalent colours
are called metamers. Equivalent colours differ by spectral intensities that lie
in the space B of metameric black . There is no inner product here, so it is
meaningless to think of the space of distinguishable colours as being B⊥. It
is, however, precisely what we mean by L/B.

A.4.3 Projection-operator decompositions

An operator P : V → V that obeys P 2 = P is called a projection operator .
It projects a vector x ∈ V to Px ∈ ImP along KerP — in the sense of
casting a shadow onto ImP with the light coming from the direction KerP .
In other words all vectors lying in KerP are killed, whilst any vector already
in ImP is left alone by P . (If x ∈ ImP then x = Py for some y ∈ V , and
Px = P 2y = Py = x.) The only vector common to both KerP and ImP is
0, and so

V = KerP ⊕ ImP. (A.50)

A set of projection operators Pi that are “orthogonal”

PiPj = δijPi, (A.51)

and sum to the identity operator

∑

i

Pi = I, (A.52)
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is called a resolution of the identity . The resulting equation

x =
∑

i

Pix (A.53)

decomposes x uniquely into a sum of terms Pix ∈ ImPi and so decomposes
V into a direct sum of subspaces Vi ≡ ImPi:

V =
⊕

i

Vi. (A.54)

Exercise A.8: Let P1 be a projection operator. Show that P2 = I − P1 is
also a projection operator and P1P2 = 0. Show also that ImP2 = KerP1 and
KerP2 = ImP1.

A.5 Inhomogeneous linear equations

Suppose we wish to solve the system of linear equations

a11y1 + a12y2 + · · ·+ a1nyn = b1

a21y1 + a22y2 + · · ·+ a2nyn = b2
...

...

am1y1 + am2y2 + · · ·+ amnyn = bm

or, in matrix notation,
Ay = b, (A.55)

where A is the m-by-n matrix with entries aij. Faced with such a problem,
we should start by asking ourselves the questions:

i) Does a solution exist?
ii) If a solution does exist, is it unique?

These issues are best addressed by considering the matrix A as a linear
operator A : V → W , where V is n dimensional and W is m dimensional.
The natural language is then that of the range and nullspaces of A. There
is no solution to the equation Ay = b when Im A is not the whole of W
and b does not lie in Im A. Similarly, the solution will not be unique if
there are distinct vectors x1, x2 such that Ax1 = Ax2. This means that
A(x1 − x2) = 0, or (x1 − x2) ∈ KerA. These situations are linked, as we
have seen, by the range null-space theorem:

dim (KerA) + dim (ImA) = dimV. (A.56)
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Thus, if m > n there are bound to be some vectors b for which no solution
exists. When m < n the solution cannot be unique.

A.5.1 Rank and index

Suppose V ≡ W (so m = n and the matrix is square) and we chose an inner
product, 〈x,y〉, on V . Then x ∈ KerA implies that, for all y

0 = 〈y, Ax〉 = 〈A†y,x〉, (A.57)

or that x is perpendicular to the range of A†. Conversely, let x be perpen-
dicular to the range of A†; then

〈x, A†y〉 = 0, ∀y ∈ V, (A.58)

which means that
〈Ax,y〉 = 0, ∀y ∈ V, (A.59)

and, by the non-degeneracy of the inner product, this means that Ax = 0.
The net result is that

KerA = (ImA†)⊥. (A.60)

Similarly
KerA† = (ImA)⊥. (A.61)

Now

dim (KerA) + dim (ImA) = dimV,

dim (KerA†) + dim (ImA†) = dimV, (A.62)

but

dim (KerA) = dim (ImA†)⊥

= dim V − dim (ImA†)

= dim (KerA†).

Thus, for finite-dimensional square matrices, we have

dim (KerA) = dim (KerA†)

In particular, the row and column rank of a square matrix coincide.
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Example: Consider the matrix

A =




1 2 3
1 1 1
2 3 4




Clearly, the number of linearly independent rows is two, since the third row
is the sum of the other two. The number of linearly independent columns is
also two — although less obviously so — because

−




1
1
2


+ 2




2
1
3


 =




3
1
4


 .

Warning: The equality dim (KerA) = dim (KerA†), need not hold in infi-
nite dimensional spaces. Consider the space with basis e1, e2, e3, . . . indexed
by the positive integers. Define Ae1 = e2, Ae2 = e3, and so on. This op-
erator has dim (KerA) = 0. The adjoint with respect to the natural inner
product has A†e1 = 0, A†e2 = e1, A

†e3 = e2. Thus KerA† = {e1}, and
dim (KerA†) = 1. The difference dim (KerA)−dim (KerA†) is called the in-
dex of the operator. The index of an operator is often related to topological
properties of the space on which it acts, and in this way appears in physics
as the origin of anomalies in quantum field theory.

A.5.2 Fredholm alternative

The results of the previous section can be summarized as saying that the
Fredholm Alternative holds for finite square matrices. The Fredholm Alter-
native is the set of statements

I. Either
i) Ax = b has a unique solution,

or
ii) Ax = 0 has a solution.

II. If Ax = 0 has n linearly independent solutions, then so does A†x = 0.
III. If alternative ii) holds, then Ax = b has no solution unless b is orthog-

onal to all solutions of A†x = 0.
It should be obvious that this is a recasting of the statements that

dim (KerA) = dim (KerA†),
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and

(KerA†)⊥ = ImA. (A.63)

Notice that finite-dimensionality is essential here. Neither of these statement
is guaranteed to be true in infinite dimensional spaces.

A.6 Determinants

A.6.1 Skew-symmetric n-linear forms

You will be familiar with the elementary definition of the determinant of an
n-by-n matrix A having entries aij:

detA ≡

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣

def
= εi1i2...ina1i1a2i2 . . . anin. (A.64)

Here, εi1i2...in is the Levi-Civita symbol, which is skew-symmetric in all its
indices and ε12...n = 1. From this definition we see that the determinant
changes sign if any pair of its rows are interchanged, and that it is linear in
each row. In other words

∣∣∣∣∣∣∣∣

λa11 + µb11 λa12 + µb12 . . . λa1n + µb1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣∣∣∣∣∣∣∣

= λ

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣∣∣∣∣∣∣∣
+ µ

∣∣∣∣∣∣∣∣

b11 b12 . . . b1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣∣∣∣∣∣∣∣
.

If we consider each row as being the components of a vector in an n-dimensional
vector space V , we may regard the determinant as being a skew-symmetric
n-linear form, i.e. a map

ω :

n factors︷ ︸︸ ︷
V × V × . . . V → F (A.65)
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which is linear in each slot,

ω(λa + µb, c2, . . . , cn) = λω(a, c2, . . . , cn) + µω(b, c2, . . . , cn), (A.66)

and changes sign when any two arguments are interchanged,

ω(. . . , ai, . . . , aj, . . .) = −ω(. . . , aj, . . . , ai, . . .). (A.67)

We will denote the space of skew-symmetric n-linear forms on V by the
symbol

∧n(V ∗). Let ω be an arbitrary skew-symmetric n-linear form in∧n(V ∗), and let {e1, e2, . . . , en} be a basis for V . If ai = aijej (i = 1, . . . , n)
is a collection of n vectors5, we compute

ω(a1, a2, . . . , an) = a1i1a2i2 . . . aninω(ei1, ei2 , . . . , ein)

= a1i1a2i2 . . . aninεi1i2...,inω(e1, e2, . . . , en). (A.68)

In the first line we have exploited the linearity of ω in each slot, and in going
from the first to the second line we have used skew-symmetry to rearrange
the basis vectors in their canonical order. We deduce that all skew-symmetric
n-forms are proportional to the determinant

ω(a1, a2, . . . , an) ∝

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
,

and that the proportionality factor is the number ω(e1, e2, . . . , en). When
the number of its slots is equal to the dimension of the vector space, there is
therefore essentially only one skew-symmetric multilinear form and

∧n(V ∗)
is a one-dimensional vector space.

Now we use the notion of skew-symmetric n-linear forms to give a pow-
erful definition of the determinant of an endomorphism, i.e. a linear map
A : V → V . Let ω be a non-zero skew-symmetric n-linear form. The object

ωA(x1,x2, . . . ,xn)
def
= ω(Ax1, Ax2, . . . , Axn). (A.69)

5The index j on aij should really be a superscript since aij is the j-th contravariant
component of the vector ai. We are writing it as a subscript only for compatibility with
other equations in this section.
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is also a skew-symmetric n-linear form. Since there is only one such object
up to multiplicative constants, we must have

ω(Ax1, Ax2, . . . , Axn) ∝ ω(x1,x2, . . . ,xn). (A.70)

We define “detA” to be the constant of proportionality. Thus

ω(Ax1, Ax2, . . . , Axn) = det (A)ω(x1,x2, . . . ,xn). (A.71)

By writing this out in a basis where the linear map A is represented by the
matrix A, we easily see that

detA = detA. (A.72)

The new definition is therefore compatible with the old one. The advantage
of this more sophisticated definition is that it makes no appeal to a basis, and
so shows that the determinant of an endomorphism is a basis-independent
concept. A byproduct is an easy proof that det (AB) = det (A)det (B), a
result that is not so easy to establish with the elementary definition. We
write

det (AB)ω(x1,x2, . . . ,xn) = ω(ABx1, ABx2, . . . , ABxn)

= ω(A(Bx1), A(Bx2), . . . , A(Bxn))

= det (A)ω(Bx1, Bx2, . . . , Bxn)

= det (A)det (B)ω(x1,x2, . . . ,xn).

(A.73)

Cancelling the common factor of ω(x1,x2, . . . ,xn) completes the proof.

Exercise A.9: Let ω be a skew-symmetric n-linear form on an n-dimensional
vector space. Assuming that ω does not vanish identically, show that a set of
n vectors x1,x2, . . . ,xn is linearly independent, and hence forms a basis, if,
and only if, ω(x1,x2, . . . ,xn) 6= 0.

Exercise A.10: Extend the paring between V and its dual space V ∗ to a
pairing between the one-dimensional

∧n(V ∗) and its dual space. Use this
pairing, together with the result of exercise A.5, to show that

detAT = detA∗ = [detA]∗ = [detA]T = detA = detA,

where the “∗” denotes the conjugate operator (and not complex conjugation)
and the penultimate equality holds because transposition has no effect on a
one-by-one matrix. Conclude that detA = detAT . A determinant is therefore
unaffected by the interchange of its rows with its columns.
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Exercise A.11: Cauchy-Binet formula. Let A be a m-by-n matrix and B be
an n-by-m matrix. The matrix product AB is therefore defined, and is an
m-by-m matrix. Let S be a subset of {1, . . . , n} with m elements, and let AS

be the m-by-m matrix whose columns are the columns of A corresponding to
indices in S. Similarly let BS be the m-by-m matrix whose rows are the rows
of B with indices in S. Show that

detAB =
∑

S

detAS detBS

where the sum is over all n!/m!(n −m)! subsets S. If m > n there there are
no such subsets. Show that in this case detAB = 0.

Exercise A.12: Let

A =

(
a b

c d

)

be a partitioned matrix where a is m-by-m, b is m-by-n, c is n-by-m, and d

is n-by-n. By making a Gaussian decomposition

A =

(
Im x

0 In

)(
Λ1 0

0 Λ2

)(
Im 0

y In

)
,

show that, for invertible d, we have Schur’s determinant formula 6

detA = det(d) det(a− bd−1c).

A.6.2 The adjugate matrix

Given a square matrix

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


 (A.74)

and an element aij, we define the corresponding minor Mij to be the deter-
minant of the (n− 1)-by-(n− 1) matrix constructed by deleting from A the
row and column containing aij. The number

Aij = (−1)i+jMij (A.75)

6I. Schur, J. für reine und angewandte Math., 147 (1917) 205-232.
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is then called the co-factor of the element aij. (It is traditional to use up-
percase letters to denote co-factors.) The basic result involving co-factors is
that ∑

j

aijAi′j = δii′detA. (A.76)

When i = i′, this is known as the Laplace development of the determinant
about row i. We get zero when i 6= i′ because we are effectively developing
a determinant with two equal rows. We now define the adjugate matrix,7

AdjA, to be the transposed matrix of the co-factors:

(AdjA)ij = Aji. (A.77)

In terms of this we have

A(AdjA) = (detA)I. (A.78)

In other words

A−1 =
1

detA
AdjA. (A.79)

Each entry in the adjugate matrix is a polynomial of degree n − 1 in the
entries of the original matrix. Thus, no division is required to form it, and
the adjugate matrix exists even if the inverse matrix does not.

Exercise A.13: It is possible to Laplace-develop a determinant about a set of
rows. For example, the development of a 4-by-4 determinant about its first
two rows is given by:

∣∣∣∣∣∣∣∣

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

∣∣∣∣∣∣∣∣
=

∣∣∣∣
a1 b1
a2 b2

∣∣∣∣
∣∣∣∣
c3 d3

c4 d4

∣∣∣∣−
∣∣∣∣
a1 c1
a2 c2

∣∣∣∣
∣∣∣∣
b3 d3

b4 d4

∣∣∣∣+
∣∣∣∣
a1 d1

a2 d2

∣∣∣∣
∣∣∣∣
b3 c3
b4 c4

∣∣∣∣

+

∣∣∣∣
b1 c1
b2 c2

∣∣∣∣
∣∣∣∣
a3 d3

a4 d4

∣∣∣∣−
∣∣∣∣
b1 d1

b2 d2

∣∣∣∣
∣∣∣∣
a3 c3
a4 c4

∣∣∣∣+
∣∣∣∣
c1 d1

c2 d2

∣∣∣∣
∣∣∣∣
a3 b3
a4 b4

∣∣∣∣

Understand why this formula is correct, and, using that insight, describe the
general rule.

7Some authors rather confusingly call this the adjoint matrix .
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Exercise A.14: Sylvester’s Lemma.8 Let A and B be two n-by-n matrices.
Show that

detAdetB =
∑

detA′ detB′

where A′ and B′ are constructed by selecting a fixed set of k < n columns of B

(which we can, without loss of generality, take to to be the first k columns) and
interchanging them with k columns of A, preserving the order of the columns.
The sum is over all n!/k!(n−k)! ways of choosing columns of A. (Hint: Show
that, without loss of generality, we can take the columns of A to be a set of
basis vectors, and that, in this case, the lemma becomes a re-statement of your
“general rule” from the previous problem.)

Cayley’s theorem

You will know that the possible eigenvalues of the n-by-n matrix A are given
by the roots of its characteristic equation

0 = det (A− λI) = (−1)n
(
λn − tr (A)λn−1 + · · ·+ (−1)ndet (A)

)
, (A.80)

and have probably met with Cayley’s theorem that asserts that every matrix
obeys its own characteristic equation.

An − tr (A)An−1 + · · ·+ (−1)ndet (A)I = 0. (A.81)

The proof of Cayley’s theorem involves the adjugate matrix. We write

det (A− λI) = (−1)n
(
λn + α1λ

n−1 + · · ·+ αn
)

(A.82)

and observe that

det (A− λI)I = (A− λI)Adj (A− λI). (A.83)

Now Adj (A− λI) is a matrix-valued polynomial in λ of degree n− 1, and it
can be written

Adj (A− λI) = C0λ
n−1 + C1λ

n−2 + · · ·+ Cn−1, (A.84)

for some matrix coefficients Ci. On multiplying out the equation

(−1)n
(
λn + α1λ

n−1 + · · ·+ αn
)
I = (A−λI)(C0λ

n−1 +C1λ
n−2 + · · ·+Cn−1)

(A.85)

8J. J. Sylvester, Phil. Mag. 1 (1851) 295–305.
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and comparing like powers of λ, we find the relations

(−1)nI = −C0,

(−1)nα1I = −C1 + AC0,

(−1)nα2I = −C2 + AC1,
...

(−1)nαn−1I = −Cn−1 + ACn−2,

(−1)nαnI = ACn−1.

Multiply the first equation on the left by An, the second by An−1, and so
on down the last equation which we multiply by A0 ≡ I. Now add. We find
that the sum telescopes to give Cayley’s theorem,

An + α1A
n−1 + · · ·+ αnI = 0,

as advertised.

A.6.3 Differentiating determinants

Suppose that the elements of A depend on some parameter x. From the
elementary definition

detA = εi1i2...ina1i1a2i2 . . . anin ,

we find

d

dx
detA = εi1i2...in

(
a′1i1a2i2 . . . anin + a1i1a

′
2i2 . . . anin + · · ·+ a1i1a2i2 . . . a

′
nin

)
.

(A.86)
In other words,

d

dx
detA =

∣∣∣∣∣∣∣∣

a′11 a′12 . . . a′1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a′21 a′22 . . . a′2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
+· · ·+

∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
a′n1 a′n2 . . . a′nn

∣∣∣∣∣∣∣∣
.

The same result can also be written more compactly as

d

dx
detA =

∑

ij

daij
dx

Aij, (A.87)
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where Aij is cofactor of aij. Using the connection between the adjugate
matrix and the inverse, this is equivalent to

1

detA

d

dx
detA = tr

{
dA

dx
A−1

}
, (A.88)

or
d

dx
ln (detA) = tr

{
dA

dx
A−1

}
. (A.89)

A special case of this formula is the result

∂

∂aij
ln (detA) =

(
A−1

)
ji
. (A.90)

A.7 Diagonalization and canonical forms

An essential part of the linear algebra tool-kit is the set of techniques for the
reduction of a matrix to its simplest, canonical form. This is often a diagonal
matrix.

A.7.1 Diagonalizing linear maps

A common task is the diagonalization of a matrix A representing a linear
map A. Let us recall some standard material relating to this:

i) If Ax = λx for a non-zero vector x, then x is said to be an eigenvector
of A with eigenvalue λ.

ii) A linear operator A on a finite-dimensional vector space is said to be
self-adjoint , or Hermitian, with respect to the inner product 〈 , 〉 if
A = A†, or equivalently if 〈x, Ay〉 = 〈Ax,y〉 for all x and y.

iii) If A is Hermitian with respect to a positive definite inner product 〈 , 〉
then all the eigenvalues λ are real. To see that this is so, we write

λ〈x,x〉 = 〈x, λx〉 = 〈x, Ax〉 = 〈Ax,x〉 = 〈λx,x〉 = λ∗〈x,x〉. (A.91)

Because the inner product is positive definite and x is not zero, the
factor 〈x,x〉 cannot be zero. We conclude that λ = λ∗.

iii) If A is Hermitian and λi and λj are two distinct eigenvalues with eigen-
vectors xi and xj, respectively, then 〈xi,xj〉 = 0. To prove this, we
write

λj〈xi,xj〉 = 〈xi, Axj〉 = 〈Axi,xj〉 = 〈λixi,xj〉 = λ∗i 〈xi,xj〉. (A.92)
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But λ∗i = λi, and so (λi − λj)〈xi,xj〉 = 0. Since, by assumption,
(λi − λj) 6= 0 we must have 〈xi,xj〉 = 0.

iv) An operator A is said to be diagonalizable if we can find a basis for V
that consists of eigenvectors of A. In this basis, A is represented by the
matrix A = diag (λ1, λ2, . . . , λn), where the λi are the eigenvalues.

Not all linear operators can be diagonalized. The key element determining
the diagonalizability of a matrix is the minimal polynomial equation obeyed
by the matrix representing the operator. As mentioned in the previous sec-
tion, the possible eigenvalues an N -by-N matrix A are given by the roots of
the characteristic equation

0 = det (A− λI) = (−1)N
(
λN − tr (A)λN−1 + · · ·+ (−1)Ndet (A)

)
.

This is because a non-trivial solution to the equation

Ax = λx (A.93)

requires the matrix A−λI to have a non-trivial nullspace, and so det (A− λI)
must vanish. Cayley’s Theorem, which we proved in the previous section,
asserts that every matrix obeys its own characteristic equation:

AN − tr (A)AN−1 + · · ·+ (−1)Ndet (A)I = 0.

The matrix A may, however, satisfy an equation of lower degree. For exam-
ple, the characteristic equation of the matrix

A =

(
λ1 0
0 λ1

)
(A.94)

is (λ − λ1)
2. Cayley therefore asserts that (A − λ1I)

2 = 0. This is clearly
true, but A also satisfies the equation of first degree (A− λ1I) = 0.

The equation of lowest degree satisfied by A is said to be the minimal
polynomial equation. It is unique up to an overall numerical factor: if two
distinct minimal equations of degree n were to exist, and if we normalize
them so that the coefficients of An coincide, then their difference, if non-
zero, would be an equation of degree ≤ (n − 1) obeyed by A — and a
contradiction to the minimal equation having degree n.

If

P (A) ≡ (A− λ1I)
α1(A− λ2I)

α2 · · · (A− λnI)αn = 0 (A.95)
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is the minimal equation then each root λi is an eigenvalue of A. To prove
this, we select one factor of (A− λiI) and write

P (A) = (A− λiI)Q(A), (A.96)

where Q(A) contains all the remaining factors in P (A). We now observe
that there must be some vector y such that x = Q(A)y is not zero. If there
were no such y then Q(A) = 0 would be an equation of lower degree obeyed
by A in contradiction to the assumed minimality of P (A). Since

0 = P (A)y = (A− λiI)x (A.97)

we see that x is an eigenvector of A with eignvalue λi.
Because all possible eigenvalues appear as roots of the characteristic equa-

tion, the minimal equation must have the same roots as the characteristic
equation, but with equal or lower multiplicities αi.

In the special case that A is self-adjoint, or Hermitian, with respect to a
positive definite inner product 〈 , 〉 the minimal equation has no repeated
roots. Suppose that this were not so, and that A has minimal equation
(A− λI)2R(A) = 0 where R(A) is a polynomial in A. Then, for all vectors
x we have

0 = 〈Rx, (A− λI)2Rx〉 = 〈(A− λI)Rx, (A− λI)Rx〉. (A.98)

Now the vanishing of the rightmost expression shows that (A−λI)R(A)x = 0
for all x. In other words

(A− λI)R(A) = 0. (A.99)

The equation with the repeated factor was not minimal therefore, and we
have a contradiction.

If the equation of lowest degree satisfied by the matrix has no repeated
roots, the matrix is diagonalizable; if there are repeated roots, it is not. The
last statement should be obvious, because a diagonalized matrix satisfies an
equation with no repeated roots, and this equation will hold in all bases,
including the original one. The first statement, in combination with with
the observation that the minimal equation for a Hermitian matrix has no
repeated roots, shows that a Hermitian (with respect to a positive definite
inner product) matrix can be diagonalized.
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To establish the first statement, suppose that A obeys the equation

0 = P (A) ≡ (A− λ1I)(A− λ2I) · · · (A− λnI), (A.100)

where the λi are all distinct. Then, setting x→ A in the identity9

1 =
(x− λ2)(x− λ3) · · · (x− λn)

(λ1 − λ2)(λ1 − λ3) · · · (λ1 − λn)
+

(x− λ1)(x− λ3) · · · (x− λn)
(λ2 − λ1)(λ2 − λ3) · · · (λ2 − λn)

+ · · ·

+
(x− λ1)(x− λ2) · · · (x− λn−1)

(λn − λ1)(λn − λ2) · · · (λn − λn−1)
, (A.101)

where in each term one of the factors of the polynomial is omitted in both
numerator and denominator, we may write

I = P1 + P2 + · · ·+ Pn, (A.102)

where

P1 =
(A− λ2I)(A− λ3I) · · · (A− λnI)
(λ1 − λ2)(λ1 − λ3) · · · (λ1 − λn)

, (A.103)

etc. Clearly PiPj = 0 if i 6= j, because the product contains the minimal
equation as a factor. Multiplying (A.102) by Pi therefore gives P2

i = Pi,
showing that the Pi are projection operators. Further (A− λiI)(Pi) = 0, so

(A− λiI)(Pix) = 0 (A.104)

for any vector x, and we see that Pix, if not zero, is an eigenvector with
eigenvalue λi. Thus Pi projects into the i-th eigenspace. Applying the reso-
lution of the identity (A.102) to a vector x shows that it can be decomposed

x = P1x + P2x + · · ·+ Pnx

= x1 + x2 + · · ·+ xn, (A.105)

where xi, if not zero, is an eigenvector with eigenvalue λi. Since any x can
be written as a sum of eigenvectors, the eigenvectors span the space.

9The identity may be verified by observing that the difference of the left and right hand
sides is a polynomial of degree n−1, which, by inspection, vanishes at the n points x = λi.
But a polynomial that has more zeros than its degree must be identically zero.
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Jordan decomposition

If the minimal polynomial has repeated roots, the matrix can still be re-
duced to the Jordan canonical form, which is diagonal except for some 1’s
immediately above the diagonal.

For example, suppose the characteristic equation for a 6-by-6 matrix A
is

0 = det (A− λI) = (λ1 − λ)3(λ2 − λ)3, (A.106)

but the minimal equation is

0 = (λ1 − λ)3(λ2 − λ)2. (A.107)

Then the Jordan form of A might be

T−1AT =




λ1 1 0 0 0 0
0 λ1 1 0 0 0
0 0 λ1 0 0 0
0 0 0 λ2 1 0
0 0 0 0 λ2 0
0 0 0 0 0 λ2



. (A.108)

One may easily see that (A.107) is the minimal equation for this matrix. The
minimal equation alone does not uniquely specify the pattern of λi’s and 1’s
in the Jordan form, though.

It is rather tedious, but quite straightforward, to show that any linear
map can be reduced to a Jordan form. The proof is sketched in the following
exercises:

Exercise A.15: Suppose that the linear operator T is represented by an N×N
matrix, where N > 1. T obeys the equation

(T − λI)p = 0,

with p = N , but does not obey this equation for any p < N . Here λ is a
number and I is the identity operator.

i) Show that if T has an eigenvector, the corresponding eigenvalue must be
λ. Deduce that T cannot be diagonalized.

ii) Show that there exists a vector e1 such that (T − λI)Ne1 = 0, but no
lesser power of (T − λI) kills e1.
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iii) Define e2 = (T − λI)e1, e3 = (T − λI)2e1, etc. up to eN . Show that the
vectors e1, . . . , eN are linearly independent.

iv) Use e1, . . . , eN as a basis for your vector space. Taking

e1 =




0
...
0
1


 , e2 =




0
...
1
0


 , . . . , eN =




1
0
...
0


 ,

write out the matrix representing T in the ei basis.

Exercise A.16: Let T : V → V be a linear map, and suppose that the minimal
polynomial equation satisfied by T is

Q(T ) = (T − λ1I)
r1(T − λ2I)

r2 . . . (T − λnI)rn = 0.

Let Vλi
denote the space of generalized eigenvectors for the eigenvalue λi. This

is the set of x such that (T − λiI)rix = 0. You will show that

V =
⊕

i

Vλi
.

i) Consider the set of polynomials Qλi,j(t) = (t − λi)−(ri−j+1)Q(t) where
j = 1, . . . , ri. Show that this set of N ≡ ∑

i ri polynomials forms a
basis for the vector space FN−1(t) of polynomials in t of degree no more
than N − 1. (Since the number of Qλi,j is N , and this is equal to the
dimension of FN−1(t), the claim will be established if you can show that
the polynomials are linearly independent. This is easy to do: suppose
that ∑

λi,j

αλi,jQλi,j(t) = 0.

Set t = λi and deduce that αλi,1 = 0. Knowing this, differentiate with
respect to t and again set t = λi and deduce that αλi,2 = 0, and so on. )

ii) Since the Qλi,j form a basis, and since 1 ∈ FN−1, argue that we can find
βλi,j such that

1 =
∑

λi,j

βλi,jQλi,j(t).

Now define

Pi =

ri∑

j=1

βλi,jQλi,j(T ),
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and so
I =

∑

λi

Pi, (?)

Use the minimal polynomial equation to deduce that PiPj = 0 if i 6= j.
Multiplication of ? by Pi then shows that PiPj = δijPj . Deduce from this
that ? is a resolution of the identity into a sum of mutually orthogonal
projection operators Pi that project onto the spaces Vλi

. Conclude that
any x can be expanded as x =

∑
i xi with xi ≡ Pix ∈ Vλi

.
iii) Show that the decomposition also implies that Vλi

∩ Vλj
= {0} if i 6=

j. (Hint: a vector in Vλi
is called by all projectors with the possible

exception of Pi and a vector in Vλj
will be killed by all the projectors

with the possible exception of Pj . )
iv) Put these results together to deduce that V is a direct sum of the Vλi

.
v) Combine the result of part iv) with the ideas behind exercise A.15 to

complete the proof of the Jordan decomposition theorem.

A.7.2 Diagonalizing quadratic forms

Do not confuse the notion of diagonalizing the matrix representing a linear
map A : V → V with that of diagonalizing the matrix representing a
quadratic form. A (real) quadratic form is a map Q : V → R, which is
obtained from a symmetric bilinear form B : V × V → R by setting the two
arguments, x and y, in B(x,y) equal:

Q(x) = B(x,x). (A.109)

No information is lost by this specialization. We can recover the non-diagonal
(x 6= y) values of B from the diagonal values, Q(x), by using the polarization
trick

B(x,y) =
1

2
[Q(x + y)−Q(x)−Q(y)]. (A.110)

An example of a real quadratic form is the kinetic energy term

T (ẋ) =
1

2
mijẋ

iẋj =
1

2
ẋTMẋ (A.111)

in a “small vibrations” Lagrangian. Here, M, with entries mij, is the mass
matrix.

Whilst one can diagonalize such forms by the tedious procedure of finding
the eigenvalues and eigenvectors of the associated matrix, it is simpler to use
Lagrange’s method, which is based on repeatedly completing squares.
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Consider, for example, the quadratic form

Q = x2 − y2 − z2 + 2xy − 4xz + 6yz = (x, y, z )




1 1 −2
1 −1 3
−2 3 −1





x
y
z


 .

(A.112)
We complete the square involving x:

Q = (x + y − 2z)2 − 2y2 + 10yz − 5z2, (A.113)

where the terms outside the squared group no longer involve x. We now
complete the square in y:

Q = (x + y − 2z)2 − (
√

2y − 5√
2
z)2 +

15

2
z2, (A.114)

so that the remaining term no longer contains y. Thus, on setting

ξ = x+ y − 2z,

η =
√

2y − 5√
2
z,

ζ =

√
15

2
z,

we have

Q = ξ2 − η2 + ζ2 = ( ξ, η, ζ )




1 0 0
0 −1 0
0 0 1





ξ
η
ζ


 . (A.115)

If there are no x2, y2, or z2 terms to get us started, then we can proceed by
using (x + y)2 and (x− y)2. For example, consider

Q = 2xy + 2yz + 2zy,

=
1

2
(x+ y)2 − 1

2
(x− y)2 + 2xz + 2yz

=
1

2
(x+ y)2 + 2(x+ y)z − 1

2
(x− y)2

=
1

2
(x+ y + 2z)2 − 1

2
(x− y)2 − 4z2

= ξ2 − η2 − ζ2,
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where

ξ =
1√
2
(x + y + 2z),

η =
1√
2
(x− y),

ζ =
√

2z.

A judicious combination of these two tactics will reduce the matrix represent-
ing any real quadratic form to a matrix with ±1’s and 0’s on the diagonal,
and zeros elsewhere. As the egregiously asymmetric treatment of x, y, z in
the last example indicates, this can be done in many ways, but Cayley’s Law
of Inertia asserts that the signature — the number of +1’s, −1’s and 0’s
— will always be the same. Naturally, if we allow complex numbers in the
redefinitions of the variables, we can always reduce the form to one with only
+1’s and 0’s.

The essential difference between diagonalizing linear maps and diagonal-
izing quadratic forms is that in the former case we seek matrices A such that
A−1MA is diagonal, whereas in the latter case we seek matrices A such that
ATMA is diagonal. Here, the superscript T denotes transposition.

Exercise A.17: Show that the matrix

Q =

(
a b
b c

)

representing the quadratic form

Q(x, y) = ax2 + 2bxy + cy2

may be reduced to
(

1 0
0 1

)
,

(
1 0
0 −1

)
, or

(
1 0
0 0

)
,

depending on whether the discriminant , ac − b2, is respectively greater than
zero, less than zero, or equal to zero.

Warning: You might be tempted to refer to the discriminant ac− b2 as being
the determinant of Q. It is indeed the determinant of the matrix Q, but there
is no such thing as the “determinant” of the quadratic form itself. You may
compute the determinant of the matrix representing Q in some basis, but if
you change basis and repeat the calculation you will get a different answer.
For real quadratic forms, however, the sign of the determinant stays the same,
and this is all that the discriminant cares about.
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A.7.3 Block-diagonalizing symplectic forms

A skew-symmetric bilinear form ω : V × V → R is often called a symplectic
form. Such forms play an important role in Hamiltonian dynamics and in
optics. Let {ei} be a basis for V , and set

ω(ei, ej) = ωij. (A.116)

If x = xiei and y = yiei, we therefore have

ω(x,y) = ω(ei, ej)x
iyj = ωijx

iyj. (A.117)

The numbers ωij can be thought of as the entries in a real skew-symmetric
matrix Ω, in terms of which ω(x,y) = xTΩy. We cannot exactly “diagonal-
ize” such a skew-symmetric matrix because a matrix with non-zero entries
only on its principal diagonal is necessarily symmetric. We can do the next
best thing, however, and reduce Ω to block diagonal form with simple 2-by-2
skew matrices along the diagonal.

We begin by expanding ω as

ω =
1

2
ωije

∗i∧, e∗j (A.118)

where the wedge (or exterior) product e∗j ∧ e∗j of a pair of basis vectors in
V ∗ denotes the particular skew-symmetric bilinear form

e∗i ∧ e∗j(eα, eβ) = δiαδ
j
β − δiβδjα. (A.119)

Again, if x = xiei and y = yiei, we have

e∗i ∧ e∗j(x,y) = e∗i ∧ e∗j(xαeα, y
βeβ)

= (δiαδ
j
β − δiβδjα)xαyβ

= xiyj − yixj. (A.120)

Consequently

ω(x,y) =
1

2
ωij(x

iyj − yixj) = ωijx
iyj, (A.121)

as before. We extend the definition of the wedge product to other elements
of V ∗ by requiring “∧” to be associative and distributive, taking note that

e∗i ∧ e∗j = −e∗j ∧ e∗i, (A.122)



A.7. DIAGONALIZATION AND CANONICAL FORMS 869

and so 0 = e∗1 ∧ e∗1 = e∗2 ∧ e∗2, etc.
We next show that there exists a basis {f ∗i} of V ∗ such that

ω = f∗1 ∧ f∗2 + f∗3 ∧ f∗4 + · · ·+ f∗(p−1) ∧ f∗p. (A.123)

Here, the integer p ≤ n is the rank of ω. It is necessarily an even number.
The new basis is constructed by a skew-analogue of Lagrange’s method

of completing the square. If

ω =
1

2
ωije

∗i ∧ e∗j (A.124)

is not identically zero, we can, after re-ordering the basis if neceessary, assume
that ω12 6= 0. Then

ω =

(
e∗1 − 1

ω12

(ω23e
∗3 + · · ·+ ω2ne

∗n)

)
∧(ω12e

∗2+ω13e
∗3+· · ·ω1ne

∗n)+ω{3}

(A.125)
where ω{3} ∈ ∧2(V ∗) does not contain e∗1 or e∗2. We set

f∗1 = e∗1 − 1

ω12
(ω23e

∗3 + · · ·+ ω2ne
∗n) (A.126)

and
f∗2 = ω12e

∗2 + ω13e
∗3 + · · ·ω1ne

∗n. (A.127)

Thus,
ω = f∗1 ∧ f∗2 + ω{3}. (A.128)

If the remainder ω{3} is identically zero, we are done. Otherwise, we apply
the same same process to ω{3} so as to construct f ∗3, f∗4 and ω{5}; we continue
in this manner until we find a remainder, ω{p+1}, that vanishes.

Let {fi} be the basis for V dual to the basis {f ∗i}. Then ω(f1, f2) =
−ω(f2, f1) = ω(f3, f4) = −ω(f4, f3) = 1, and so on, all other values being zero.
This shows that if we define the coefficients aij by expressing f ∗i = aije

∗j ,
and hence ei = fja

j
i, then the matrix Ω has been expressed as

Ω = AT Ω̃A, (A.129)

where A is the matrix with entries aij, and Ω̃ is the matrix

Ω̃ =




0 1
−1 0

0 1
−1 0

. . .



, (A.130)



870 APPENDIX A. LINEAR ALGEBRA REVIEW

which contains p/2 diagonal blocks of

(
0 1
−1 0

)
, (A.131)

and all other entries are zero.

Example: Consider the skew bilinear form

ω(x,y) = xTΩy = ( x1, x2, x3, x4 )




0 1 3 0
−1 0 1 5
−3 −1 0 0

0 −5 0 0







y1

y2

y3

y4


 . (A.132)

This corresponds to

ω = e∗1 ∧ e∗2 + 3e∗1 ∧ e∗3 + e∗2 ∧ e∗3 + 5e∗2 ∧ e∗4. (A.133)

Following our algorithm, we write ω as

ω = (e∗1 − e∗3 − 5e∗4) ∧ (e∗2 + 3e∗3)− 15e∗3 ∧ e∗4. (A.134)

If we now set

f∗1 = e∗1 − e∗3 − 5e∗4,

f∗2 = e∗2 + 3e∗3,

f∗3 = −15e∗3,

f∗4 = e∗4, (A.135)

we have

ω = f∗1 ∧ f∗2 + f∗3 ∧ f∗4. (A.136)

We have correspondingly expressed the matrix Ω as




0 1 3 0
−1 0 1 5
−3 −1 0 0

0 −5 0 0


 =




1 0 0 0
0 1 0 0
−1 3 −15 0
−5 0 0 1







0 1
−1 0

0 1
−1 0







1 0 −1 −5
0 1 3 0
0 0 −15 0
0 0 0 1


 .

(A.137)
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Exercise A.18: Let Ω be a skew symmetric 2n-by-2n matrix with entries
ωij = −ωji. Define the Pfaffian of Ω by

Pf Ω =
1

2nn!

∑
εi1i2...i2nωi1i2ωi3i4 . . . ωi2n−1i2n .

Show that Pf (MTΩM) = det (M) Pf (Ω). By reducing Ω to a suitable canon-
ical form, show that (Pf Ω)2 = detΩ.

Exercise A.19: Let ω(x,y) be a non-degenerate skew symmetric bilinear form
on R2n, and x1, . . . x2n a set of vectors. Prove Weyl’s identity

Pf (Ω) det |x1, . . . x2n| =
1

2nn!

∑
εi1,...,i2nω(xi1 ,xi2) · · ·ω(xi2n−1

,xi2n).

Here det |x1, . . .x2n| is the determinant of the matrix whose rows are the xi
and Ω is the matrix corresponding to the form ω.

Now let M : R2n → R2n be a linear map. Show that

Pf (Ω) (detM) det |x1, . . . x2n|
=

1

2nn!

∑
εi1,...,i2nω(Mxi1 ,Mxi2) · · ·ω(Mxi2n−1

,Mxi2n),

Deduce that if ω(Mx,My) = ω(x,y) for all vectors x,y, then detM = 1.
The set of such matrices M that preserve ω compose the symplectic group
Sp(2n,R).
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Appendix B

Fourier Series and Integrals.

Fourier series and Fourier integral representations are the most important
examples of the expansion of a function in terms of a complete orthonormal
set. The material in this appendix reviews features peculiar to these special
cases, and is intended to complement the the general discussion of orthogonal
series in chapter 2.

B.1 Fourier series

A function defined on a finite interval may be expanded as a Fourier series.

B.1.1 Finite Fourier series

Suppose we have measured f(x) in the interval [0, L], but only at the discrete
set of points x = na, where a is the sampling interval and n = 0, 1, . . . , N−1,
with Na = L . We can then represent our data f(na) by a finite Fourier
series. This representation is based on the geometric sum

N−1∑

m=0

eikm(n′−n)a =
e2πi(n−n

′)a − 1

e2πi(n′−n)a/N − 1
, (B.1)

where km ≡ 2πm/Na. For integer n, and n′, the expression on the right
hand side of (B.1) is zero unless n′ − n′ is an integer multiple of N , when
it becomes indeterminate. In this case, however, each term on the left hand
side is equal to unity, and so their sum is equal to N . If we restrict n and n′

873
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to lie between 0 and N − 1, we have

N−1∑

m=0

eikm(n′−n)a = Nδn′n . (B.2)

Inserting (B.2) into the formula

f(na) =

N−1∑

n′=0

f(n′a) δn′n, (B.3)

shows that

f(na) =

N−1∑

m=0

ame
−ikmna, where am ≡

1

N

N−1∑

n=0

f(na)eikmna. (B.4)

This is the finite Fourier representation.
When f(na) is real, it is convenient to make the km sum symmetric about

km = 0 by taking N = 2M + 1 and setting the summation limits to be ±M .
The finite geometric sum then becomes

M∑

m=−M
eimθ =

sin(2M + 1)θ/2

sin θ/2
. (B.5)

We set θ = 2π(n′ − n)/N and use the same tactics as before to deduce that

f(na) =

M∑

m=−M
am e

−ikmna, (B.6)

where again km = 2πm/L, with L = Na, and

am =
1

N

2M∑

n=0

f(na) eikmna. (B.7)

In this form it is manifest that f being real both implies and is implied by
a−m = a∗m.

These finite Fourier expansions are algebraic identities. No limits have
to be taken, and so no restrictions need be placed on f(na) for them to be
valid. They are all that is needed for processing experimental data.

Although the initial f(na) was defined only for the finite range 0 ≤ n ≤
N − 1, the Fourier sum (B.4) or (B.7) is defined for any n, and so extends f
to a periodic function of n with period N .
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B.1.2 Continuum limit

Now we wish to derive a Fourier representation for functions defined every-
where on the interval [0, L], rather just at the sampling points. The natural
way to proceed is to build on the results from the previous section by re-
placing the interval [0, L] with a discrete lattice of N = 2M + 1 points at
x = na, where a is a small lattice spacing which we ultimately take to zero.
For any non-zero a the continuum function f(x) is thus replaced by the finite
set of numbers f(na). If we stand back and blur our vision so that we can no
longer perceive the individual lattice points, a plot of this discrete function
will look little different from the original continuum f(x). In other words,
provided that f is slowly varying on the scale of the lattice spacing, f(an)
can be regarded as a smooth function of x = an.

The basic “integration rule” for such smooth functions is that

a
∑

n

f(an)→
∫
f(an) a dn→

∫
f(x) dx , (B.8)

as a becomes small. A sum involving a Kronecker δ will become an integral
containing a Dirac δ-function:

a
∑

n

f(na)
1

a
δnm = f(ma)→

∫
f(x) δ(x− y) dx = f(y). (B.9)

We can therefore think of the δ function as arising from

δnn′

a
→ δ(x− x′). (B.10)

In particular, the divergent quantity δ(0) (in x space) is obtained by setting
n = n′, and can therefore be understood to be the reciprocal of the lattice
spacing, or, equivalently, the number of lattice points per unit volume.

Now we take the formal continuum limit of (B.7) by letting a → 0 and
N → ∞ while keeping their product Na = L fixed. The finite Fourier
representation

f(na) =
M∑

m=−M
ame

− 2πim
Na

na (B.11)

now becomes an infinite series

f(x) =

∞∑

m=−∞
am e

−2πimx/L, (B.12)
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whereas

am =
a

Na

N−1∑

n=0

f(na)e
2πim
Na

na → 1

L

∫ L

0

f(x)e2πimx/L dx. (B.13)

The series (B.12) is the Fourier expansion for a function on a finite interval.
The sum is equal to f(x) in the interval [0, L]. Outside, it produces L-periodic
translates of the original f .

This Fourier expansion (B.12,B.13) is same series that we would obtain
by using the L2[0, L] orthonormality

1

L

∫ L

0

e2πimx/L e−2πinx/L dx = δnm, (B.14)

and using the methods of chapter two. The arguments adduced there, how-
ever, guarantee convergence only in the L2 sense. While our present “contin-
uum limit” derivation is only heuristic, it does suggest that for reasonably-
behaved periodic functions f the Fourier series (B.12) converges pointwise to
f(x). A continuous periodic function possessing a continuous first derivative
is sufficiently “well-behaved” for pointwise convergence. Furthermore, if the
function f is smooth then the convergence is uniform. This is useful to know,
but we often desire a Fourier representation for a function with discontinu-
ities. A stronger result is that if f is piecewise continuous in [0, L] — i.e.,
continuous with the exception of at most finite number of discontinuities —
and its first derivative is also piecewise continuous, then the Fourier series
will converge pointwise (but not uniformly1) to f(x) at points where f(x) is
continuous, and to its average

F (x) =
1

2
lim
ε→0
{f(x+ ε) + f(x− ε)} (B.15)

at those points where f(x) has jumps. In the section B.3.2 we shall explain
why the series converges to this average, and examine the nature of this
convergence.

Most functions of interest to engineers are piecewise continuous, and this
result is then all that they require. In physics, however, we often have to
work with a broader class of functions, and so other forms of of convergence

1If a sequence of continuous functions converges uniformly, then its limit function is
continuous.
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become relevant. In quantum mechanics, in particular, the probability inter-
pretation of the wavefunction requires only convergence in the L2 sense, and
this demands no smoothness properties at all—the Fourier representation
converging to f whenever the L2 norm ‖f‖2 is finite.

Half-range Fourier series

The exponential series

f(x) =
∞∑

m=−∞
am e

−2πimx/L. (B.16)

can be re-expressed as the trigonometric sum

f(x) =
1

2
A0 +

∞∑

m=1

{Am cos(2πmx/L) +Bm sin(2πmx/L)} , (B.17)

where

Am =

{
2a0 m = 0,
am + a−m, m > 0,

Bm = i(a−m − am). (B.18)

This is called a full-range trigonometric Fourier series for functions defined on
[0, L]. In chapter 2 we expanded functions in series containing only sines. We
can expand any function f(x) defined on a finite interval as such a half-range
Fourier series. To do this, we regard the given domain of f(x) as being the
half interval [0, L/2] (hence the name). We then extend f(x) to a function
on the whole of [0, L] and expand as usual. If we extend f(x) by setting
f(x+ L/2) = −f(x) then the Am are all zero and we have

f(x) =
∞∑

m=1

Bm sin(2πmx/L), x ∈ [0, L/2], (B.19)

where,

Bm =
4

L

∫ L/2

0

f(x) sin(2πmx/L) dx. (B.20)

Alternatively, we may extend the range of definition by setting f(x+L/2) =
f(L/2− x). In this case it is the Bm that become zero and we have

f(x) =
1

2
A0 +

∞∑

m=1

Am cos(2πmx/L), x ∈ [0, L/2], (B.21)
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with

Am =
4

L

∫ L/2

0

f(x) cos(2πmx/L) dx. (B.22)

The difference between a full-range and a half-range series is therefore
seen principally in the continuation of the function outside its initial interval
of definition. A full range series repeats the function periodically. A half-
range sine series changes the sign of the continued function each time we
pass to an adjacent interval, whilst the half-range cosine series reflects the
function as if each interval endpoint were a mirror.

B.2 Fourier integral transforms

When the function we wish to represent is defined on the entirety of R then
we must use the Fourier integral representation.

B.2.1 Inversion formula

We formally obtain the Fourier integral representation from the Fourier series
for a function defined on [−L/2, L/2]. Start from

f(x) =
∞∑

m=−∞
am e

− 2πim
L

x, (B.23)

am =
1

L

∫ L/2

−L/2
f(x) e

2πim
L

x dx, (B.24)

and let L become large. The discrete km = 2πm/L then merge into the
continuous variable k and

∞∑

m=−∞
→
∫ ∞

−∞
dm = L

∫ ∞

−∞

dk

2π
. (B.25)

The product Lam remains finite, and becomes a function f̃(k). Thus

f(x) =

∫ ∞

−∞
f̃(k) e−ikx

dk

2π
, (B.26)

f̃(k) =

∫ ∞

−∞
f(x) eikx dx . (B.27)
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This is the Fourier integral transform and its inverse.
It is good practice when doing Fourier transforms in physics to treat x

and k asymmetrically: always put the 2π’s with the dk’s. This is because,
as (B.25) shows, dk/2π has the physical meaning of the number of Fourier
modes per unit (spatial) volume with wavenumber between k and k + dk.

The Fourier representation of the Dirac delta-function is

δ(x− x′) =

∫ ∞

−∞

dk

2π
eik(x−x

′). (B.28)

Suppose we put x = x′. Then “δ(0)”, which we earlier saw can be interpreted
as the inverse lattice spacing, and hence the density of lattice points, is equal
to
∫∞
−∞

dk
2π

. This is the total number of Fourier modes per unit length.
Exchanging x and k in the integral representation of δ(x − x′) gives us

the Fourier representation for δ(k − k′):
∫ ∞

−∞
ei(k−k

′)x dx = 2π δ(k − k′). (B.29)

Thus 2πδ(0) (in k space), although mathematically divergent, has the phys-
ical meaning

∫
dx, the volume of the system. It is good practice to put a 2π

with each δ(k) because this combination has a direct physical interpretation.
Take care to note that the symbol δ(0) has a very different physical in-

terpretation depending on whether δ is a delta-function in x or in k space.

Parseval’s identity

Note that with the Fourier transform pair defined as

f̃(k) =

∫ ∞

−∞
eikx f(x) dx (B.30)

f(x) =

∫ ∞

−∞
e−ikx f̃(k)

dk

2π
, (B.31)

Pareseval’s theorem takes the form
∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|f̃(k)|2 dk

2π
. (B.32)

Parseval’s theorem tells us that the Fourier transform is a unitary map
from L2(R)→ L2(R).
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B.2.2 The Riemann-Lebesgue lemma

There is a reciprocal relationship between the rates at which a function and
its Fourier transform decay at infinity. The more rapidly the function decays,
the more high frequency modes it must contain—and hence the slower the
decay of its Fourier transform. Conversely, the smoother a function the fewer
high frequency modes it contains and the faster the decay of its transform.
Quantitative estimates of this version of Heisenberg’s uncertainty principle
are based on the Riemann-Lebesgue lemma.

Recall that a function f is in L1(R) if it is integrable (this condition
excludes the delta function) and goes to zero at infinity sufficiently rapidly
that

‖f‖1 ≡
∫ ∞

−∞
|f | dx <∞. (B.33)

If f ∈ L1(R) then its Fourier transform

f̃(k) =

∫ ∞

−∞
f(x)eikx dx (B.34)

exists, is a continuous function of k, and

|f̃(k)| ≤ ‖f‖1. (B.35)

The Riemann-Lebesgue lemma asserts that if f ∈ L1(R) then

lim
k→∞

f̃(k) = 0. (B.36)

We will not give the proof. For f integrable in the Riemann sense, it is not
difficult, being almost a corollary of the definition of the Riemann integral.
We must point out, however, that the “| . . . |” modulus sign is essential in
the L1(R) condition. For example, the integral

I =

∫ ∞

−∞
sin(x2) dx (B.37)

is convergent, but only because of extensive cancellations. The L1(R) norm

∫ ∞

−∞
| sin(x2)| dx (B.38)
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is not finite, and whereas the Fourier transform of sin(x2), i.e.
∫ ∞

−∞
sin(x2) eikx dx =

√
π cos

(
k2 + π

4

)
, (B.39)

is also convergent, it does not decay to zero as k grows large.
The Riemann-Lebesgue lemma tells us that the Fourier transform maps

L1(R) into C∞(R), the latter being the space of continuous functions vanish-
ing at infinity. Be careful: this map is only into and not onto. The inverse
Fourier transform of a function vanishing at infinity does not necessariliy lie
in L1(R).

We link the smoothness of f(x) to the rapid decay of f̃(k), by combining
Riemann-Lebesgue with integration by parts. Suppose that both f and f ′

are in L1(R). Then

[̃f ′](k) ≡
∫ ∞

−∞
f ′(x) eikx dx = −ik

∫ ∞

−∞
f(x) eikx dx = −ikf̃ (k) (B.40)

tends to zero. (No boundary terms arise from the integration by parts be-
cause for both f and f ′ to be in L1(R) the function f must tend to zero at

infinity.) Since kf̃(k) tends to zero, f̃(k) itself must go to zero faster than
1/k. We can continue in this manner and see that each additional derivative
of f that lies in L1(R) buys us an extra power of 1/k in the decay rate of

f̃ at infinity. If any derivative possesses a jump discontinuity, however, its
derivative will contain a delta-function, and a delta-function is not in L1(R).

Thus, if n is the largest integer for which knf̃(k)→ 0 we may expect f (n)(x)
to be somewhere discontinuous. For example, the function f(x) = e−|x| has
a first derivative that lies in L1(R), but this derivative is discontinuous. The

Fourier transform f̃(k) = 2/(1 + k2) therefore decays as 1/k2, but no faster.

B.3 Convolution

Suppose that f(x) and g(x) are functions on the real line R. We define their
convolution f ∗ g, when it exists, by

[f ∗ g](x) ≡
∫ ∞

−∞
f(x− ξ) g(ξ) dξ . (B.41)

A change of variable ξ → x−ξ shows that, despite the apparently asymmetric
treatment of f and g in the definition, the ∗ product obeys f ∗ g = g ∗ f .
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B.3.1 The convolution theorem

Now, let f̃(k) denote the Fourier transforms of f , i.e.

f̃(k) =

∫ ∞

−∞
eikxf(x) dx. (B.42)

We claim that

[̃f ∗ g] = f̃ g̃. (B.43)

The following computation shows that this claim is correct:

[̃f ∗ g](k) =

∫ ∞

−∞
eikx

(∫ ∞

−∞
f(x− ξ) g(ξ) dξ

)
dx

=

∫ ∞

−∞

∫ ∞

−∞
eikxf(x− ξ) g(ξ) dξ dx

=

∫ ∞

−∞

∫ ∞

−∞
eik(x−ξ) eikξ f(x− ξ) g(ξ) dξ dx

=

∫ ∞

−∞

∫ ∞

−∞
eikx

′

eikξ f(x′) g(ξ) dξ dx′

=

(∫ ∞

−∞
eikx

′

f(x′) dx′
)(∫ ∞

−∞
eikξg(ξ) dξ

)

= f̃(k)g̃(k). (B.44)

Note that we have freely interchanged the order of integrations. This is not
always permissible, but it is allowed if f, g ∈ L1(R), in which case f ∗ g is
also in L1(R).

B.3.2 Apodization and Gibbs’ phenomenon

The convolution theorem is useful for understanding what happens when we
truncate a Fourier series at a finite number of terms, or cut off a Fourier
integral at a finite frequency or wavenumber.

Consider, for example, the cut-off Fourier integral representation

fΛ(x) ≡ 1

2π

∫ Λ

−Λ

f̃(k)e−ikx dk, (B.45)
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where f̃(k) =
∫∞
−∞ f(x) eikx dx is the Fourier transform of f . We can write

this as

fΛ(x) =
1

2π

∫ ∞

−∞
θΛ(k)f̃(k) e−ikx dk (B.46)

where θΛ(k) is unity if |k| < Λ and zero otherwise. Written this way, the
Fourier transform of fΛ becomes the product of the Fourier transform of the
original f with θΛ. The function fΛ itself is therefore the convolution

fΛ(x) =

∫ ∞

−∞
δD
Λ (x− ξ)f(ξ) dξ (B.47)

of f with

δD
Λ (x) ≡ 1

π

sin(Λx)

x
=

1

2π

∫ ∞

−∞
θΛ(k)e−ikx dk, (B.48)

which is the inverse Fourier transform of θΛ(x). We see that fΛ(x) is a kind of
local average of the values of f(x) smeared by the approximate delta-function
δD
Λ (x). The superscript D stands for “Dirichlet,” and δD

Λ (x) is known as the
Dirichlet kernel .

-4 -2 2 4

-0.5

0.5

1

1.5

2

2.5

3

Figure B.1: A plot of πδD
Λ (x) for Λ = 3.

When f(x) can be treated as a constant on the scale (≈ 2π/Λ) of the oscilla-
tion in δD

Λ (x), all that matters is that
∫∞
−∞ δD

Λ (x) dx = 1, and so fΛ(x) ≈ f(x).
This is case if f(x) is smooth and Λ is sufficiently large. However, if f(x) pos-
sesses a discontinuity at x0, say, then we can never treat it as a constant and
the rapid oscillations in δD

Λ (x) cause a “ringing” in fΛ(x) whose amplitude
does not decrease (although the width of the region surrounding x0 in which
the effect is noticeable will decrease) as Λ grows. This ringing is known as
Gibbs’ phenomenon.
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Figure B.2: The Gibbs phenomenon: A Fourier reconstruction of a piecewise
constant function that jumps discontinuously from y = −0.25 to +0.25 at
x = 0.25.

The amplitude of the ringing is largest immediately on either side of the the
point of discontinuity, where it is about 9% of the jump in f . This magnitude
is determined by the area under the central spike in δD

Λ (x), which is

1

π

∫ π/Λ

−π/Λ

sin(Λx)

x
dx = 1.18 . . . , (B.49)

independent of Λ. For x exactly at the point of discontinuity, fΛ(x) receives
equal contributions from both sides of the jump and hence converges to the
average

lim
Λ→∞

fΛ(x) =
1

2

{
f(x+) + f(x−)

}
, (B.50)

where f(x±) are the limits of f taken from the the right and left, respectively.
When x = x0−π/Λ, however, the central spike lies entirely to the left of the
point of discontinuity and

fΛ(x) ≈ 1

2
{(1 + 1.18)f(x−) + (1− 1.18)f(x+)}

≈ f(x−) + 0.09{f(x−)− f(x+)}. (B.51)

Consequently, fΛ(x) overshoots its target f(x−) by approximately 9% of the
discontinuity. Similarly when x = x0 + π/Λ

fΛ(x) ≈ f(x+) + 0.09{f(x+)− f(x−)}. (B.52)
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The ringing is a consequence of the abrupt truncation of the Fourier sum.
If, instead of a sharp cutoff, we gradually de-emphasize the higher frequencies
by the replacement

f̃(k)→ f̃(k) e−αk
2/2 (B.53)

then

fα(x) =
1

2π

∫ ∞

−∞
f̃(k)e−αk

2

e−ikx dk

=

∫ ∞

−∞
δG
α (x− ξ)f(y) dξ (B.54)

where

δG
α (x) =

1√
2πα

e−x
2/2α, (B.55)

is a non-oscillating Gaussian approximation to a delta function. The effect
of this convolution is to smooth out, or mollify , the original f , resulting in
a C∞ function. As α becomes small, the limit of fα(x) will again be the
local average of f(x), so at a discontinuity fα will converge to the mean
1
2
{f(x+) + f(x−)}.

When reconstructing a signal from a finite range of its Fourier components—
for example from the output of an aperture-synthesis radio-telescope—it is
good practice to smoothly suppress the higher frequencies in such a manner.
This process is called apodizing (i.e. cutting off the feet of) the data. If
we fail to apodize then any interesting sharp feature in the signal will be
surrounded by “diffraction ring” artifacts.

Exercise B.1: Suppose that we exponentially suppress the higher frequencies
by multiplying the Fourier amplitude f̃(k) by e−ε|k|. Show that the original
signal is smoothed by convolution with a Lorentzian approximation to a delta
function

δLε (x− ξ) =
1

π

ε

ε2 + (x− ξ)2 .

Observe that
lim
ε→0

δLε (x) = δ(x).

Exercise B.2: Consider the apodized Fourier series

fr(θ) =

∞∑

n=−∞
anr

|n|einθ,
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where the parameter r lies in the range 0 < r < 1, and the coefficients are

an ≡
1

2π

∫ 2π

0
e−inθf(θ) dθ.

Assuming that it is legitimate to interchange the order of the sum and integral,
show that

fr(θ) =

∫ 2π

0
δPr (θ − θ′)f(θ′)dθ′

≡ 1

2π

∫ 2π

0

(
1− r2

1− 2r cos(θ − θ′) + r2

)
f(θ′)dθ′.

Here the superscript P stands for for Poisson because δP
r (θ) is the Poisson

kernel that solves the Dirichlet problem in the unit disc. Show that δP
r (θ)

tends to a delta function as r→ 1 from below.

Exercise B.3: The periodic Hilbert transform. Show that in the limit r → 1
the sum

∞∑

n=−∞
sgn (n)einθr|n| =

reiθ

1− reiθ −
re−iθ

1− re−iθ , 0 < r < 1

becomes the principal-part distribution

P

(
i cot

(
θ

2

))
.

Let f(θ) be a smooth function on the unit circle, and define its Hilbert trans-
form Hf to be

(Hf)(θ) =
1

2π
P

∫ 2π

0
f(θ′) cot

(
θ − θ′

2

)
dθ′

Show the original function can be recovered from (Hf)(θ), together with
knowledge of the angular average f̄ =

∫ 2π
0 f(θ) dθ/2π, as

f(θ) = − 1

2π
P

∫ 2π

0
(Hf)(θ′) cot

(
θ − θ′

2

)
dθ′ +

1

2π

∫ 2π

0
f(θ′) dθ′

= −(H2f))(θ) + f̄ .
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Exercise B.4: Find a closed-form expression for the sum

∞∑

n=−∞
|n| einθr2|n|, 0 < r < 1.

Now let f(θ) be a smooth function defined on the unit circle and

an =
1

2π

∫ 2π

0
f(θ)e−inθ dθ

its n-th Fourier coefficient. By taking a limit r → 1, show that

π

∞∑

n=−∞
|n| ana−n =

π

4

∫ 2π

0

∫ 2π

0
[f(θ)− f(θ′)]2 cosec2

(
θ − θ′

2

)
dθ

2π

dθ′

2π
,

both the sum and integral being convergent. Show that these last two expres-
sions are equal to

1

2

∫∫

r<1
|∇ϕ|2 rdrdθ

where ϕ(r, θ) is the function harmonic in the unit disc, whose boundary value
is f(θ).

Exercise B.5: Let f̃(k) be the Fourier transform of the smooth real function
f(x). Take a suitable limit in the previous problem to show that that

S[f ] ≡ 1

4π

∫ ∞

−∞

∫ ∞

−∞

{
f(x)− f(x′)

x− x′
}2

dxdx′ =
1

2

∫ ∞

−∞
|k|
∣∣∣f̃(k)

∣∣∣
2 dk

2π
.

Exercise B.6: By taking a suitable limit in exercise B.3 show that, when acting
on smooth functions f such that

∫∞
−∞ |f | dx is finite, we have H(Hf) = −f ,

where

(Hf)(x) =
P

π

∫ ∞

−∞

f(x′)
x− x′ dx

′

defines the Hilbert transform of a function on the real line. (Because H gives
zero when acting on a constant, some condition, such as

∫∞
−∞ |f | dx being finite,

is necessary if H is to be invertible.)
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B.4 The Poisson summation formula

Suppose that f(x) is a smooth function that tends rapidly to zero at infinity.
Then the series

F (x) =
∞∑

n=−∞
f(x+ nL) (B.56)

converges to a smooth function of period L. It therefore has a Fourier ex-
pansion

F (x) =
∞∑

m=−∞
am e

−2πimx/L. (B.57)

We can compute the Fourier coefficients am by integrating term-by-term

am =
1

L

∫ L

0

F (x) e2πimx/L dx

=
1

L

∞∑

n=−∞

∫ L

0

f(x + nL) e2πimx/L dx

=
1

L

∫ ∞

−∞
f(x) e2πimx/L dx

=
1

L
f̃(2πm/L). (B.58)

Thus ∞∑

n=−∞
f(x+ nL) =

1

L

∞∑

m=−∞
f̃(2πm/L)e−2πimx/L. (B.59)

When we set x = 0, this last equation becomes

∞∑

n=−∞
f(nL) =

1

L

∞∑

m=−∞
f̃ (2πm/L) . (B.60)

The equality of this pair of doubly infinite sums is known as the Poisson
summation formula.
Example: As the Fourier transform of a Gaussian is another Gaussian, the
Poisson formula with L = 1 applied to f(x) = exp(−κx2) gives

∞∑

m=−∞
e−κm

2

=

√
π

κ

∞∑

m=−∞
e−m

2π2/κ, (B.61)
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and (rather more usefully) applied to exp(− 1
2
tx2 + ixθ) gives

∞∑

n=−∞
e−

1
2
tn2+inθ =

√
2π

t

∞∑

n=−∞
e−

1
2t

(θ+2πn)2 . (B.62)

The last identity is known as Jacobi’s imaginary transformation. It reflects
the equivalence of the eigenmode expansion and the method-of-images solu-
tion of the diffusion equation

1

2

∂2ϕ

∂x2
=
∂ϕ

∂t
(B.63)

on the unit circle. Notice that when t is small the sum on the right-hand side
converges very slowly, whereas the sum on the left converges very rapidly.
The opposite is true for large t. The conversion of a slowly converging series
into a rapidly converging one is a standard application of the Poisson sum-
mation formula. It is the prototype of many duality maps that exchange a
physical model with a large coupling constant for one with weak coupling.

If we take the limit t → 0 in (B.62), the right hand side approaches a
sum of delta functions, and so gives us the useful identity

1

2π

∞∑

n=−∞
einx =

∞∑

n=−∞
δ(x+ 2πn). (B.64)

The right-hand side of (B.64) is sometimes called the “Dirac comb.”

Gauss sums

The Poisson sum formula

∞∑

m=−∞
e−κm

2

=

√
π

κ

∞∑

m=−∞
e−m

2π2/κ. (B.65)

remains valid for complex κ, provided that Re κ > 0. We can therefore
consider the special case

κ = iπ
p

q
+ ε, (B.66)

where ε is a positive real number and p and q are positive integers whose
product pq we assume to be even. We investigate what happens to (B.65)
as ε→ 0.
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The left-hand side of (B.65) can be decomposed into the double sum

∞∑

m=−∞

q−1∑

r=0

e−iπ(p/q)(r+mq)2e−ε(r+mq)
2

. (B.67)

Because pq is even, each term in e−iπ(p/q)(r+mq)2 is independent of m. At the
same time, the small ε limit of the infinite sum

∞∑

m=−∞
e−ε(r+mq)

2

, (B.68)

being a Riemann sum for the integral
∫ ∞

−∞
e−εq

2m2

dm =
1

q

√
π

ε
, (B.69)

becomes independent of r, and so a common factor of all terms in the finite
sum over r.

If ε is small, we can make the replacement,

κ−1 =
ε− iπp/q
ε2 + π2p2/q2

→ ε− iπp/q
π2p2/q2

, (B.70)

after which, the right-hand side contains the double sum

∞∑

m=−∞

p−1∑

r=0

eiπ(q/p)(r+mp)2e−ε(q
2/p2)(r+mp)2 . (B.71)

Again each term in eiπ(q/p)(r+mp)2 is independent of m, and

∞∑

m=−∞
e−ε(q

2/p2)(r+mp)2 →
∫ ∞

−∞
e−εq

2m2

dm =
1

q

√
π

ε
, (B.72)

becomes independent of r. Also

lim
ε→0

{√
π

κ

}
= e−iπ/4

√
q

p
. (B.73)

Thus, after cancelling the common factor of (1/q)
√
π/ε, we find that

1√
q

q−1∑

r=0

e−iπ(p/q)r2 = e−iπ/4
1√
p

p−1∑

r=0

eiπ(q/p)r2 , pq even. (B.74)
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This Poisson-summation-like equality of finite sums is known as the Landsberg-
Schaar identity. No purely algebraic proof is known.
Gauss considered the special case p = 2, in which case we get

1√
q

q−1∑

r=0

e−2πir2/q = e−iπ/4
1√
2
(1 + eiπq/2) (B.75)

or, more exlicitly

q−1∑

r=0

e−2πir2/q =





(1− i)√q, q = 0 (mod 4),√
q, q = 1 (mod 4),

0, q = 2 (mod 4),
−i√q, q = 3 (mod 4).

(B.76)

The complex conjugate result is perhaps slightly prettier:

q−1∑

r=0

e2πir
2/q =





(1 + i)
√
q, q = 0 (mod 4),√

q, q = 1 (mod 4),
0, q = 2 (mod 4),
i
√
q, q = 3 (mod 4).

(B.77)

Gauss used these sums to prove the law of quadratic reciprocity.

Exercise B.7: By applying the Poisson summation formula to the Fourier
transform pair

f(x) = e−ε|x|e−ixθ, and f̃(k) =
2ε

ε2 + (k − θ)2 ,

where ε > 0, deduce that

sinh ε

cosh ε− cos(θ − θ′) =
∞∑

n=−∞

2ε

ε2 + (θ − θ′ + 2πn)2
. (B.78)

Hence show that the Poisson kernel is equivalent to an infinite periodic sum
of Lorentzians

1

2π

(
1− r2

1− 2r cos(θ − θ′) + r2

)
= − 1

π

∞∑

n=−∞

ln r

(ln r)2 + (θ − θ′ + 2πn)2
.
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Airy’s equation, 818
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analytic signal, 769
angular momentum, 14–16
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Dirichlet, Neumann and Cauchy,
194, 688

free fluid surface, 34
homogeneous, 113
inhomogeneous, 113, 168
mixed, 324
natural, 31
self-adjoint, 122
singular, 332

brachistochrone, 8
branch cut, 177, 731
branch point, 731
branching rules, 586, 640
Brouwer degree, 475, 547
bulk modulus, 408
bundle

co-tangent, 445
tangent, 420
trivial, 648
vector, 420

Caldeira-Leggett model, 162, 174,
210, 244

Calugareanu relation, 489
Cartan algebra, 635
Cartan, Élie, 423, 612
Casimir operator, 628
CAT scan, 355
catenary, 6, 39
Cauchy

data, 195
sequence, 60

Cayley’s
identity, 110
law of inertia, 867
theorem, 857
theorem for groups, 562

chain complex, 513

characteristic, 197, 275
chart, 420
Christoffel symbols, 451
Cicero, Marcus Tullius, 471
closed

form, 437, 445
set, 374

co-kernel, 847
co-ordinates

Cartesian, 404
conformal, see co-ordinates, isother-

mal
cylindrical, 297
generalized, 11
isothermal, 739
light-cone, 203
orthogonal curvilinear, 295
plane polar, 13, 296
spherical polar, 297

co-root vector, 636
cohomology, 507
commutator, 426
complementary

function, 104, 169
space, 847

complete
normed vector space, 60
orthonormal set, 67, 128, 132
set of functions, 62
set of states, 838

completeness condition, 87, 129, 136,
137, 143, 145

completion process, 65
complex algebraic curve, 735
complex differentiable, 683
complex projective space, 398, 477
components

covariant and contravariant, 842
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of matrix, 838
physical versus co-ordinate, 299

conjugate
Hermitian, see adjoint
operator, 845

connection rule, 319
conservation law

and symmetry, 16
global, 23
local, 23

constraint, 24, 37
holonomic versus anholonomic,

430
contour, 693
convergence

in Lp, 59
in the mean, 58
of functions, 57
pointwise, 58
uniform, 58

convolution, 881
Cornu spiral, 248, 759
coset, 847
covector, 388, 840
critical mass, 330
cup product, 529
curl

as a differential form, 437
in curvilnear co-ordinates, 300

cycloid, 10

d’Alembert, Jean le Ronde, 11, 202
d’Angelo, John, 686
D-bar problem, 698
Darboux

co-ordinates, 446, 448, 657
theorem, 446

de Rham’s theorem, 526

de Rham, Georges, 507
deficiency indices, 124
degree-genus relation, 737
dense set, 64, 67, 114
density of states, 136
derivation, 431, 439
derivative

complex, 683
convective, 499
covariant, 450
exterior, 436
functional, 3
half, 215
Lie, 431
of delta function, 76
of determinant, 858
weak, 83

descent equations, 679
determinant

derivative of, 858
elementary definition, 852
powerful definition, 853

diagonalizing
matrix, 859
quadratic form, 865
symplectic form, 869

Dido, queen of Carthage, 1
diffeomorphism, 502
diffraction, 248
dilogarithm, 721
dimensional regularization, 240, 721
Dirac comb, 889
Dirac gamma matrices, 616
Dirac notation, 838, 843

bra and ket vectors, 843
dagger (†) map, 843

direct sum, 846
Dirichlet
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principle, 225
problem, 225

dispersion, 257
equation, 259
relation, 762

distribution
involutive, 428
of tangent fields, 427

distributions
delta function, 77
elements of L2 as, 82
Heaviside, 93, 223
principal part, 84, 757
theory of, 79

divergence theorem, 20
divergence, in curvilinear co-ordinates,

300
domain, 684

of dependence, 208
of differential operator, 113
of function, 58

dual space, 79, 840

eigenvalue, 56, 859
as Lagrange multiplier, 38

eigenvector, 859
Eilenberger equation, 192
elliptic function, 735, 825
elliptic modular function, 829
embedding, 737
endpoint

fixed, 2
singular, 332
variable, 29

energy
as first integral, 17
density, 23

internal, 27

field, 26
enthalpy, 28
entire function, 717, 724
entropy, 38

specific, 28
equivalence class, 59, 847
equivalence relation, 560
equivalent sequence, 65
essential singularity, 717, 724
Euler

angles, 430, 456, 608
character, 517, 544, 735
class, 540

Euler’s equation, 28
Euler-Lagrange equation, 3
Euler-Maclaurin sum formula, 775
Euler-Mascheroni constant, 313, 798
exact form, 437
exact sequence, 517

long, 522
short, 519, 522

exponential map, 604

Faraday, Michael, 24
Fermat’s little theorem, 563
Feynman path integral, 485
fibre, 647
fibre bundle, 425
field

covector, 423
tangent vector, 421

field theory, 19
first integral, 10
flow

barotropic, 28
incompressible, 34, 684
irrotational, 27, 684
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Lagrangian versus Eulerian de-
scription, 27

of tangent vector field, 426
foliation, 427
form

n-linear, 853
closed, 445
quadratic, 865
symplectic, 868

Fourier series, 63, 876
Fourier, Joseph, 205
Fredholm

determinant, 380
equation, 349
operator, 372, 543
series, 381

Fredholm alternative
for differential operators, 155
for integral equations, 360
for systems of linear equations,

851
Fresnel integrals, 758
Fridel sum rule, 153
Frobenius’

integrability theorem, 428
reciprocity theorem, 593

Frobenius-Schur indicator, 590
Fréchet derivative, see functional

derivative
function space, 56

normed, 57
functional

definition, 2
derivative, 3
local, 2

Gauss
quadrature, 86

linking number, 486
sum, 891

Gauss-Bonnet theorem, 540, 674
Gauss-Bruhat decomposition, 783
Gaussian elimination, 367
Gelfand-Dikii equation, 184, 192
Gell-Mann “λ” matrices, 631
generalized functions, see distribu-

tions
generating function

for Legendre polynomials, 306
for Bessel functions, 314
for Chern character, 537

genus, 735
geometric phase, see Berry’s phase
geometric quantization, 655
Gibbs’ phenomenon, 883
gradient

as a covector, 423
in curvilinear co-ordinates, 298

Gram-Schmidt procedure, 69, 304
Grassmann, Herman, 400
Green function

analyticity of causal, 171
causal, 162, 207, 219
construction of, 157
modified, 165, 171
symmetry of, 167

Green, George, 411
group velocity, 261

Haar measure, 619
half-range Fourier series, 877
hanging chain, see catenary
Hankel function, 313

spherical, 329
harmonic conjugate, 684
harmonic oscillator, 133
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Haydock recursion, 90
Heaviside function, 93
Helmholtz

decomposition, 228
equation, 246, 313

Helmholtz-Hodge decomposition, 251
Hermitian

differential operator, see formally
self-adjoint operator

matrix, 114, 859, 861
Hermitian conjugate

matrix, 846
operator, see adjoint

heterojunction, 126
Hilbert space, 61

rigged, 81
Hilbert transform, 768, 886, 887
Hodge

“?” map, 442, 740
decomposition, 254, 543
theory, 541

Hodge, William, 541
homeomorphism, 502
homology group, 514
homotopy, 482, 615

class, 482
Hopf

bundle, see monopole bundle
index, 484, 611
map, 479, 608, 611

horocycles, 745
hydraulic jump, 280

ideal, 623
identity

delta function as, 74
matrix, 839

image space, 839

images, method of, 244
immersion, 737
index

of operator, 851
index theorem, 544, 781, 784
indicial equation, 107
induced metric, 469
induced representation, 592
inequality

Cauchy-Schwarz-Bunyakovsky, 61
triangle, 59, 60, 62

inertial wave, 292
infimum, 57
infinitesimal homotopy relation, 439
integral equation

Fredholm, 349
Volterra, 349

integral kernel, 74
interior multiplication, 439
intersection form, 530

Jacobi identity, 447, 623
Jordan form, 799, 863
jump condition, 158

Kelvin wedge, 265
kernel, 839
Killing

field, 433
form, 625

Killing, William, 433
Kirchhoff approximation, 248
Korteweg de Vries (KdV) equation,

112
Kramer’s degeneracy, 599
Kramers-Kronig relation, 179

Lagrange interpolation formula, 86
Lagrange multiplier, 37
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as eigenvalue, 38
Lagrange’s identity, 115
Lagrange’s theorem, 560
Lagrange, Joseph-Louis, 11
Lagrangian, 11

density, 19
Lamé constants, 408
Lanczos algorithm, 90
Landsberg-Schaar identity, 891
Laplace development, 856
Laplace-Beltrami operator, 542
Laplacian

acting on vector field, 251, 252,
301, 540

in curvilinear co-ordinates, 301
Lax pair, 112, 288
least upper bound, see supremum
Legendre function, 764
Legendre function Qn(x), 807
Levi-Civita symbol, 403
Levinson’s theorem, 153
Lie

algebra, 595
bracket, 426, 622
derivative, 431

Lie, Sophus, 595
limit-circle case, 332
line bundle, 648
linear dependence, 836
linear map, 838
linear operator

bounded, 371
closable, 375
closed, 374
compact, 371
Fredholm, 372
Hilbert-Schmidt, 372

Liouville measure, 38

Liouville’s theorem, 100
Liouville-Neumann series, 378
Lipshitz’ formula, 774
Lobachevski geometry, 43, 46, 497,

744
LU decomposition, see Gaussian elim-

ination

manifold, 420
orientable, 465
parallelizable, 642
Riemann, 453
symplectic, 445

map
anti-conformal, 688
isogonal, 688
Möbius, 730

Maupertuis, Pierre de, 11
Maxwell’s equations, 24
Maxwell, James Clerk, 24
measure, Liouville, 38
Mehler’s formula, 72
metric tensor, 842
minimal polynomial equation, 860
modular group, 829
monodromy, 107, 798
monopole bundle, 655, 670
moonshine, monstrous, 560, 831
Morse

function, 546
index, 546

Morse function, 545
multilinear form, 397
multipliers, undetermined, see La-

grange multipliers
Möbius

map, 730, 825
strip, 648
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Neumann function, 312
Neumann’s formula, 764
Noether’s theorem, 18
Noether, Emmy, 16
non-degerate, 842
norm

Lp, 59
definition of, 59
sup, 59

nullspace, see kernel
Nyquist criterion, 172, 765

observables, 123
optical fibre, 326
orbit,of group action, 564
order

of group, 558
orientable manifold, 464
orthogonal

complement, 847
orthonormal set, 62

Pöschel-Teller equation, 134, 143,
148, 343, 805

pairing, 80, 388, 525, 841
Parseval’s theorem, 68, 879
particular integral, 103, 169
Pauli σ matrices, 479, 599
Peierls, Rudolph, 138, 330
period

and de Rham’s theorem, 526
of elliptic function, 735

Peter-Weyl theorem, 619
Pfaffian system, 429
phase shift, 139, 336
phase space, 38
phase velocity, 261
Plücker relations, 402, 417

Plücker, Julius, 402
Plateau’s problem, 1, 4
Plemelj formulæ, 762
Plemelj, Josip, 177
Poincaré

disc, 46, 497, 744
duality, 545
lemma, 436, 503

Poincaré-Hopf theorem, 546
Poincaré-Bertrand theorem, 772
point

ordinary, 106
regular singular, 107
singular, 106
singular endpoint, 332

Poisson
bracket, 446
kernel, 235, 891
summation, 888

Poisson’s ratio, 409
pole, 698
polynomials

Hermite, 71, 134
Legendre, 70, 303, 373
orthogonal, 69
Tchebychef, 73, 361

Pontryagin class, 539
pressure, 28
principal bundle, 647
principal part integral, 84, 177, 361,

754
principle of least action, see action

principle
product

cup, 529
direct, 567
group axioms, 557
inner, 841
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of matrices, 839
tensor, 396
wedge, 399, 435

projective plane, 515
pseudo-momentum, 23
pseudo-potential, 339

quadratic form, 865
diagonalizing, 865
signature of, 867

quaternions, 599
quotient

of vector spaces, 847
group, 560
space, 565

range, see image space
range-nullspace theorem, 839
rank

column, 839
of Lie algebra, 635
of matrix, 839
of tensor, 391

Rayleigh-Ritz method, 131
realm, sublunary, 137
recurrence relation

for Bessel functions, 315, 332
for orthogonal polynomials, 69

residue, 698
resolution of the identity, 577, 849,

862, 865
resolvent, 179
resonance, 141, 339
retraction, 503
Riemann

P symbol, 802
sum, 694
surface, 732

Riemann-Hilbert problem, 367
Riemann-Lebesgue lemma, 880
Riesz-Fréchet theorem, 81, 85
Rodriguez’ formula, 70, 304, 807
rolling conditions, 430, 493
root vector, 632
Routhian, 15
Russian formula, 678

scalar product, see product, inner
scattering length, 336
Schwartz space, 79
Schwartz, Laurent, 79
Schwarzian derivative, 110
Scott Russell, John, 286
section, 649

of bundle, 425
Seeley coefficients, 185
self-adjoint extension, 124
self-adjoint matrix, 859
self-adjoint operator

formally, 116
truly, 122

seminorm, 79
Serret-Frenet relations, 494
sesquilinear, 841
sextant, 613
shear modulus, 408
sheet, 732
simplex, 509
simplicial complex, 509
singular endpoint, 332
singular integral equations, 361
skew-symmetric form, see symplec-

tic form
skyrmion, 476
soap film, 4
soliton, 112, 284
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space
Lp, 59
Banach, 61
Hilbert, 61
homogeneous, 565
of Cn functions, 56
of test functions, 79
retractable, 503

spanning set, 837
spectrum

continuous, 129, 333
discrete, 129
point, see discrete spectrum

spherical harmonics, 309
spinor, 479, 612
stereographic map, 477, 728
Stokes’

line, 822
phenomenon, 816
theorem, 470

strain tensor, 434
stream-function, 685
streamline, 685
string

sliding, 31
vibrating, 20

structure constants, 602
Sturm-Liouville operator, 40, 41, 76,

116
supremum, 57
symmetric differential operator, see

formally self-adjoint opera-
tor

symplectic form, 445, 868

tangent
bundle, 420
space, 419

tantrix, 490
Taylor column, 292
tensor

Cartesian, 404
curvature, 453
elastic constants, 45
energy-momentum, 22
isotropic, 405
metric, 842
momentum flux, 29
strain, 45, 406, 434
stress, 45, 406
torsion, 452

test function, 79
theorem

Abel, 712
addition

for spherical harmonics, 310
Blasius, 707
Cayley’s, 857
Darboux, 446
de Rham, 526
Frobenius integrability, 428
Frobenius’ reciprocity, 593
Gauss-Bonnet, 540, 674
Green’s, 242
Lagrange, 560
mean value for harmonic func-

tions, 235
Morse index, 546
Peter-Weyl, 619
Picard, 724
Poincaré-Hopf, 546
Poincaré-Bertrand, 772
range-nullspace, 839
residue, 698
Riemann mapping, 690
Riesz-Fréchet, 81, 85
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Stokes, 470
Weierstrass approximation, 70
Weyl’s, 332

Theta function, 727
tidal bore, see hydraulic jump
topological current, 483
torsion

in homology, 516
of curve, 494
tensor, 452

transfom
Hilbert, 768

transform
Fourier, 350, 878
Fourier-Bessel, see Hankel
Hankel, 322
Hilbert, 886, 887
Laplace, 350, 352
Legendre, 15, 29
Mellin, 350
Mellin sine, 236
Radon, 355

variational principle, 131
variety, 398

Segre, 398
vector

bundle, 450
Laplacian, 251, 252, 301, 540

vector space
definition, 835

velocity potential, 27, 684
as lagrange multiplier, 40

vielbein, 450
orthonormal, 456, 534

volume form, 469
vorticity, 28, 50

wake, 264

ship, 265
wave

drag, 264
equation, 200
momentum, see pseudo-momentum
non-linear, 274
shock, 277
surface, 33, 257
transverse, 21

Weber’s disc, 323
Weierstrass

℘ function, 825
approximation theorem, 70

weight, 632
Weitzenböck formula, 556
Weyl’s

identity, 598, 871
theorem, 332

Weyl, Hermann, 138, 332
Wiener-Hopf

integral equations, 365
sum equations, 778

winding number, 475
Wronskian, 98

and linear dependence, 100
in Green function, 158

Wulff construction, 51

Young’s modulus, 409


