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Chapter 1

Conductors, Semiconductors and Diodes

1.1 Simple Conduction1

Our initial studies will more or less be a review of topics in electricity that you may have seen before in
physics. However, if experience is any guide, there is no great harm in going back over this material, for it
seems that for many students, the whole concept of just how electricity actually works is just a little hazy.
Considering that you hope to be called an electrical engineer one of these days, this might even be a good
thing to know!

Most of the "laws" of how electricity behaves are really just mathematical representations of a number
of empirical observations, based on some assumptions and guesses which were made in attempt to bring the
"laws" into a coherent whole. Early investigators (Faraday, Gauss, Coulomb, Henry etc....all those guys)
determined certain things about this strange "invisible" thing called electricity. In fact, the electron itself
was only discovered a little over 100 years ago. Even before the electron itself was observed, people knew
that there were two kinds of electric charge, which were called positive and negative. Like charges exhibit
a repulsive force between them and opposite charges attract one another. This force is proportional to the
product of the absolute value of positive and negative charge, and varies inversely with the square of the
distance between them. Di�erent charge carriers have di�erent mass, some are very light, and others are
signi�cantly heavier. Electrical charges can experience forces, and can move about. Since force times distance
equals work, a whole system of energy (potential as well as kinetic) and energy loss had to be described.
This has lead to our current system of electrostatics and electrodynamics, which we will not review now but
bring up along the way as things are needed.

Just to make sure everyone is on the same footing however, let's de�ne a few quantities now, and then
we will see how they interact with one another as we go along.

The total charge in some region is de�ned by the symbolQ and it has units of Coulombs. The fundamental
unit of charge (that of an electron or a proton) is symbolized either by a little q or by e. Since we'll use e
for other things, in this course we will try to stick with q. The charge of an electron, q, has a value of
1.6× 10−19 Coulombs.

Since charge can be distributed throughout a region with varying concentrations, we will also talk about
the charge density, ρ (ν), which has units of Coulombscm3 . (In this book, we will use a modi�ed MKS system
of units. In keeping with most workers in the solid-state device �eld, volume will usually be expressed as a
cubic centimeter, rather than a cubic meter - a cubic meter of silicon is just far too much!) In most cases,
the charge density is not uniform but is a function of where we are in space. Thus, when we have ρ (ν)
distributed throughout some volume, V

Q =
∫
V

ρ (ν) dν (1.1)

1This content is available online at <http://cnx.org/content/m1000/2.21/>.
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2 CHAPTER 1. CONDUCTORS, SEMICONDUCTORS AND DIODES

describes the total charge in that volume.
We know that when we apply an electric �eld to a charge that there is a force exerted on it, and that if

the charge is able to move it will do so. The motion of charge gives rise to an electric current, which we
call I. The current is a measure of how much charge is passing a given point per unit time ( Coulombs

second ).
It will be helpful if we have some kind of model of how electricity �ows in a conductor. There are several

approaches which one can take, some more intuitive than others. The one we will look at, while not correct
in the strictest sense, still gives a very good picture of how electrical conduction works, and is perfectly �ne
to use in a variety of situations. In the Drude theory of conduction, the initial hypothesis consists of a
solid, which contains mobile charges which are free to move about under the in�uence of an applied electric
�eld. There are also �xed charges of polarity opposite that of the mobile charges, so that everywhere within
the solid, the net charge density is zero. (This hypothesis is based on the model of the atom, with a positively
charged nucleus and negatively charged electrons surrounding it. In a solid, the atoms are �xed in position
in the lattice, but it is assumed that some of the electrons can break free of their "host" atom and move
about to other places within the solid.) In our model, let us choose the polarity of the mobile charges to
be positive; this is not usually the case, but we can avoid a lot of "minus ones" this way, and have a better
chance of ending up with the right answer in the end.

Figure 1.1: Model of a conductor.

As shown in Figure 1.1, the model of the conductor consists of a number of mobile positive charges (rep-
resented by the balls with the "+" sign in them) and an equal number of �xed negative charges (represented
by the bare "-" sign). In subsequent �gures, we will leave out the �xed charge, since it can not contribute in
any way to the conduction process, but keep in mind that it is there, and that the total net charge is zero
within the material. Each of the mobile charge carriers has a mass, m, and an amount of charge, q.
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Figure 1.2: Applying a potential to a conductor

In order to have some conduction, we have to apply a potential or voltage across the sample (Figure 1.2).
We do this with a battery, which creates a potential di�erence, V , between one end of the sample and the
other. We will make the simplest assumption that we can, and say that the voltage, V , gives rise to a uniform
electric �eld within the sample. The magnitude of the electric �eld is given simply by

E =
V

L
(1.2)

where L is the length of the sample, and V is the voltage which is placed across it. (In truth, we should
be showing E as well as subsequent forces etc. as vectors in our equations, but since their direction will be
obvious, and unambiguous, let's keep things simple, and just write them as scalers.) Electric potential, or
voltage, is just a measure of the change in potential energy per unit charge going from one place to another.
Since energy, or work is simply force times distance, if we divide the energy per unit charge by the distance
over which that potential exists, we will end up with force per unit charge, or electric �eld, E. If you are
not sure about what you just read, write it out as equations, and see that it is so.

The electric �eld will exert a force on the movable charges (And the �xed ones too for that matter, but
since they can not go anywhere, nothing happens to them). The force is given simply as the product of the
electric �eld strength times the charge

F = qE (1.3)

The force acts on the charges and causes them to accelerate according to Newton's equations of motion

F = m d
dtv (t)

= qE
(1.4)

or
d

dt
v (t) =

qE

m
(1.5)

Thus, the velocity of a particle with no initial velocity will increase linearly with time as:

v (t) =
qE

m
t (1.6)

The rate of acceleration is proportional to the strength of the electric �eld, and inversely proportional to the
mass of the particle. The particle can not continue to accelerate forever however. Since it is located within
a solid, sooner or later it will collide with either another carrier, or perhaps one of the �xed atoms within
the solid. We will assume that the collision is completely inelastic, and that after a collision, the particle
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comes to a stop, only to be accelerated again by the electric �eld. If we were to make a plot of the particles
velocity as a function of time, it might look something like Figure 1.3.

Figure 1.3: Velocity as a function of time for charge carrier

Although the particle achieves various velocities, depending upon how much time there is between col-
lisions, there will be some average velocity, v, which will depend upon the details of the collision process.
Let us de�ne a scattering time τs which will give us that average velocity when we multiply it times the
acceleration of the particle. That is:

v =
qEτs
m

(1.7)

or
τs ≡

mv

qE
(1.8)

Now let's take a look at just a small section of the conductor (Figure 1.4). It will have the cross section of
the sample, A, but will only be v∆t long, where ∆t is just some arbitrary time interval.

Figure 1.4: Section of the conductor

After a time ∆t has passed, all of the charges within the box will have left it, as they are all moving with
the same average velocity, v. If the density of charge carriers in the conductor is n per unit volume, then
the number of carriers N within our little box is just n times the volume of the box v∆tA

N = nv∆tA (1.9)

Thus the total charge, Q, which leaves the box in time ∆t is just qN . The current �ow, I, is just the amount
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of charge which �ows out of the box per unit time

I = qnv∆tA
∆t

= qnvA

= q2nτsEA
m

= Q
∆t

(1.10)

We now have two choices, we can look at our result from a �eld quantity point of view, in which case we will
be interested in the current density, J , which is just the current, I, divided by the cross-sectional area

J = I
A

= q2nτs
m E

= σE

(1.11)

where σ is called the conductivity of the material. If we look at the conductor from a macroscopic point
of view, then we are interested in the relationship between the voltage and the current. The voltage is just
the electric �eld times the length of the sample, and the current is just the current density times is cross
sectional area. Thus we have

I = AJ

= AσE

= Aσ VL

(1.12)

or
V = L

σAI

= RI
(1.13)

where R is the resistance of the sample. We have discovered Ohm's law!
Note that (1.13) tells us that the resistance of the sample is proportional to its length (the longer the

sample, the higher the resistance) and inversely proportional to its cross sectional area (the fatter the sample,
the lower the resistance). The sample resistance is also inversely proportional to the conductivity σ of the
sample. Sometimes, instead of conductivity, the resistivity, ρ, is speci�ed for a resistive material. The
resistivity is simply the inverse of the conductivity

σ =
1
ρ

(1.14)

and thus:
R =

ρL

A
(1.15)

And, in an e�ort towards completeness, there is one other quantity which you might run into, and that is
the carrier mobility, µ. The mobility is just the proportionality factor between the average velocity of the
particle and the electric �eld. That is:

v = µE (1.16)

You should check that the following two relationships are correct:

σ = nqµ (1.17)

µ =
qτs
m

(1.18)

If we take an ordinary conductor (and we will have to de�ne later what we mean by that) and heat it up,
the atoms within the material start to vibrate faster due to the elevated temperature, and the carriers su�er
signi�cantly more collisions. The mean collision time τs decreases, and hence the conductivity goes down,
and the resistance of the sample goes up.
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1.2 Introduction to Semiconductors2

If we only had to worry about simple conductors, life would not be very complicated, but on the other
hand we wouldn't be able to make computers, CD players, cell phones, i-Pods and a lot of other things
which we have found to be useful. We will now move on, and talk about another class of conductors called
semiconductors.

In order to understand semiconductors and in fact to get a more accurate picture of how metals, or
normal conductors actually work, we really have to resort to quantum mechanics. Electrons in a solid are
very tiny objects, and it turns out that when things get small enough, they no longer exactly following the
classical "Newtonian" laws of physics that we are all familiar with from everyday experience. It is not the
purpose of this course to teach you quantum mechanics, so what we are going to do instead is describe the
results which come from looking at the behavior of electrons in a solid from a quantum mechanical point of
view.

Solids (at least the ones we will be talking about, and especially semiconductors) are crystalline materials,
which means that they have their atoms arranged in a ordered fashion. We can take silicon (the most
important semiconductor) as an example. Silicon is a group IV element, which means it has four electrons
in its outer or valence shell. Silicon crystallizes in a structure called the diamond crystal lattice. This is
shown in Figure 1.5. Each silicon atom has four covalent bonds, arranged in a tetrahedral formation about
the atom center.

Figure 1.5: Crystal structure of silicon

In two dimensions, we can schematically represent a piece of single-crystal silicon as shown in Figure 1.6.
Each silicon atom shares its four valence electrons with valence electrons from four nearest neighbors, �lling
the shell to 8 electrons, and forming a stable, periodic structure. Once the atoms have been arranged like
this, the outer valence electrons are no longer strongly bound to the host atom. The outer shells of all of
the atoms blend together and form what is called a band. The electrons are now free to move about within
this band, and this can lead to electrical conductivity as we discussed earlier.

2This content is available online at <http://cnx.org/content/m1001/2.13/>.
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Figure 1.6: A 2-D representation of a silicon crystal

This is not the complete story however, for it turns out that due to quantum mechanical e�ects, there is
not just one band which holds electrons, but several of them. What will follow is a very qualitative picture
of how the electrons are distributed when they are in a periodic solid, and there are necessarily some details
which we will be forced to gloss over. On the other hand this will give you a pretty good picture of what is
going on, and may enable you to have some understanding of how a semiconductor really works. Electrons
are not only distributed throughout the solid crystal spatially, but they also have a distribution in energy
as well. The potential energy function within the solid is periodic in nature. This potential function comes
from the positively charged atomic nuclei which are arranged in the crystal in a regular array. A detailed
analysis of how electron wave functions, the mathematical abstraction which one must use to describe
how small quantum mechanical objects behave when they are in a periodic potential, gives rise to an energy
distribution somewhat like that shown in Figure 1.7.

Figure 1.7: Schematic of the �rst two bands in a periodic solid showing energy levels and bands

Firstly, unlike the case for free electrons, in a periodic solid, electrons are not free to take on any energy
value they wish. They are forced into speci�c energy levels called allowed states which are represented by
the cups in the �gure. The allowed states are not distributed uniformly in energy either. They are grouped
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into speci�c con�gurations called energy bands. There are no allowed levels at zero energy and for some
distance above that. Moving up from zero energy, we then encounter the �rst energy band. At the bottom
of the band there are very few allowed states, but as we move up in energy, the number of allowed states
�rst increases, and then falls o� again. We then come to a region with no allowed states, called an energy
band gap. Above the band gap, another band of allowed states exists. This goes on and on, with any given
material having many such bands and band gaps. This situation is shown schematically in Figure 1.7, where
the small cups represent allowed energy levels, and the vertical axis represents electron energy.

It turns out that each band has exactly 2N allowed states in it, where N is the total number of atoms
in the particular crystal sample we are talking about. (Since there are 10 cups in each band in the �gure, it
must represent a crystal with just 5 atoms in it. Not a very big crystal at all!) Into these bands we must now
distribute all of the valence electrons associated with the atoms, with the restriction that we can only put
one electron into each allowed state. (This is the result of something called the Pauli exclusion principle.)
Since in the case of silicon there are 4 valence electrons per atom, we would just �ll up the �rst two bands,
and the next would be empty. (If we make the logical assumption that the electrons will �ll in the levels
with the lowest energy �rst, and only go into higher lying levels if the ones below are already �lled.) This
situation is shown in Figure 1.8.

Here, we have represented electrons as small black balls with a "-" sign on them. Indeed, the �rst two
bands are completely full, and the next is empty. What will happen if we apply an electric �eld to the sample
of silicon? Remember the diagram we have at hand right now is an energy based one, we are showing how
the electrons are distributed in energy, not how they are arranged spatially. On this diagram we can not
show how they will move about, but only how they will change their energy as a result of the applied �eld.
The electric �eld will exert a force on the electrons and attempt to accelerate them. If the electrons are
accelerated, then they must increase their kinetic energy. Unfortunately, there are no empty allowed states
in either of the �lled bands. An electron would have to jump all the way up into the next (empty) band in
order to take on more energy. In silicon, the gap between the top of the highest most occupied band and the
lowest unoccupied band is 1.1 eV. (One eV is the potential energy gained by an electron moving across an
electrical potential of one volt.) The mean free path or distance over which an electron would normally
move before it su�ers a collision is only a few hundred angstroms ( ≈

(
300× 10−8

)
cm) and so you would

need a very large electric �eld (several hundred thousand volts
cm ) in order for the electron to pick up enough

energy to "jump the gap". This makes it appear that silicon would be a very bad conductor of electricity,
and in fact, very pure silicon is very poor electrical conductor.
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Figure 1.8: Silicon, with �rst two bands full and the next empty

A metal is an element with an odd number of valence electrons so that a metal ends up with an upper
band which is just half full of electrons. This is illustrated in Figure 1.9. Here we see that one band is full,
and the next is just half full. This would be the situation for the Group III element aluminum for instance.
If we apply an electric �eld to these carriers, those near the top of the distribution can indeed move into
higher energy levels by acquiring some kinetic energy of motion, and easily move from one place to the next.
In reality, the whole situation is a bit more complex than we have shown here, but this is not too far from
how it actually works.
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Figure 1.9: Electron distribution for a metal or good conductor

So, back to our silicon sample. If there are no places for electrons to "move" into, then how does silicon
work as a "semiconductor"? Well, in the �rst place, it turns out that not all of the electrons are in the
bottom two bands. In silicon, unlike say quartz or diamond, the band gap between the top-most full band,
the next empty one is not so large. As we mentioned above it is only about 1.1 eV. So long as the silicon is
not at absolute zero temperature, some electrons near the top of the full band can acquire enough thermal
energy that they can "hop" the gap, and end up in the upper band, called the conduction band. This
situation is shown in Figure 1.10.
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Figure 1.10: Thermal excitation of electrons across the band gap

In silicon at room temperature, roughly 1010 electrons per cubic centimeter are thermally excited across
the band-gap at any one time. It should be noted that the excitation process is a continuous one. Electrons
are being excited across the band, but then they fall back down into empty spots in the lower band. On
average however, the 1010 in each cm3 of silicon is what you will �nd at any given instant. Now 10 billion
electrons per cubic centimeter seems like a lot of electrons, but lets do a simple calculation. The mobility of
electrons in silicon is about 1000 cm2

volt-sec
. Remember, mobility times electric �eld yields the average velocity

of the carriers. Electric �eld has units of voltscm , so with these units we get velocity in cm
sec as we should.) The

charge on an electron is 1.6× 10−19 coulombs. Thus from this equation (1.17):

σ = nqµ

= 1010
(
1.6× 10−19

)
1000

= 1.6× 10−6mhos
cm

(1.19)

If we have a sample of silicon 1 cm long by (1mm) (1mm) square, it would have a resistance of

R = L
σA

= 1
(1.6×10−6)0.12

= 62.5MΩ

(1.20)

which does not make it much of a "conductor". In fact, if this were all there was to the silicon story, we
could pack up and move on, because at any reasonable temperature, silicon would conduct electricity very
poorly.
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1.3 Doped Semiconductors3

To see how we can make silicon a useful electronic material, we will have to go back to its crystal structure.
Suppose somehow (and we will talk about how this is done later) we could substitute a few atoms of
phosphorus for some of the silicon atoms.

Figure 1.11: A silicon crystal "doped" with phosphorus

If you sneak a look at the periodic table, you will see that phosphorus is a group V element, as compared
with silicon which is a group IV element. What this means is the phosphorus atom has �ve outer or valence
electrons, instead of the four which silicon has. In a lattice composed mainly of silicon, the extra electron
associated with the phosphorus atom has no "mating" electron with which it can complete a shell, and so is
left loosely dangling to the phosphorus atom, with relatively low binding energy. In fact, with the addition
of just a little thermal energy (from the natural or latent heat of the crystal lattice) this electron can break
free and be left to wander around the silicon atom freely. In our "energy band" picture, we have something
like what we see in Figure 1.12. The phosphorus atoms are represented by the added cups with P's on them.
They are new allowed energy levels which are formed within the "band gap" near the bottom of the �rst
empty band. They are located close enough to the empty (or "conduction") band, so that the electrons
which they contain are easily excited up into the conduction band. There, they are free to move about and
contribute to the electrical conductivity of the sample. Note also, however, that since the electron has left
the vicinity of the phosphorus atom, there is now one more proton than there are electrons at the atom,
and hence it has a net positive charge of 1 q. We have represented this by putting a little "+" sign in each
P-cup. Note that this positive charge is �xed at the site of the phosphorous atom called a donor since it
"donates" an electron up into the conduction band, and is not free to move about in the crystal.

3This content is available online at <http://cnx.org/content/m1002/2.15/>.
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Figure 1.12: Silicon doped with phosphorus

How many phosphorus atoms do we need to signi�cantly change the resistance of our silicon? Suppose
we wanted our 1 mm by 1 mm square sample to have a resistance of one ohm as opposed to more than 60
MΩ. Turning the resistance equation around we get

σ = L
RA

= 1Ω
1×0.12

= 100mhocm

(1.21)

And hence (If we continue to assume an electron mobility of 1000 cm2

voltsec

n = σ
qµ

= 100
(1.6×10−19)1000

= 6.25× 1017cm3

(1.22)

Now adding more than 6×1017 phosphorus atoms per cubic centimeter might seem like a lot of phosphorus,
until you realize that there are almost 1024 silicon atoms in a cubic centimeter and hence only one in every
1.6 million silicon atoms has to be changed into a phosphorus one to reduce the resistance of the sample
from several 10s of MΩ down to only one Ω. This is the real power of semiconductors. You can make
dramatic changes in their electrical properties by the addition of only minute amounts of impurities. This
process is called "doping" the semiconductor. It is also one of the great challenges of the semiconductor
manufacturing industry, for it is necessary to maintain fantastic levels of control of the impurities in the
material in order to predict and control their electrical properties.

Again, if this were the end of the story, we still would not have any calculators, stereos or "Agent of
Doom" video games (Or at least they would be very big and cumbersome and unreliable, because they would
have to work using vacuum tubes!). We now have to focus on the few "empty" spots in the lower, almost
full band (Called the valence band.) We will take another view of this band, from a somewhat di�erent
perspective. I must confess at this point that what I am giving you is even further from the way things really
work, then the "cups at di�erent energies" picture we have been using so far. The problem is, that in order
to do things right, we have to get involved in momentum phase-space, a lot more quantum mechanics, and
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generally a bunch of math and concepts we don't really need in order to have some idea of how semiconductor
devices work. What follow below is really intended as a motivation, so that you will have some feeling that
what we state as results, is actually reasonable.

Consider Figure 1.13. Here we show all of the electrons in the valence, or almost full band, and for
simplicity show one missing electron. Let's apply an electric �eld, as shown by the arrow in the �gure. The
�eld will try to move the (negatively charged) electrons to the left, but since the band is almost completely
full, the only one that can move is the one right next to the empty spot, or hole as it is called.

Figure 1.13: Band full of electrons, with one missing

One thing you may be worrying about is what happens to the electrons at the ends of the sample. This
is one of the places where we are getting a somewhat distorted view of things, because we should really be
looking in momentum, or wave-vector space rather than "real" space. In that picture, they magically drop
o� one side and "reappear" on the other. This doesn't happen in real space of course, so there is no easy
way we can deal with it.

A short time after we apply the electric �eld we have the situation shown in Figure 1.14, and a little
while after that we have Figure 1.15. We can interpret this motion in two ways. One is that we have a net
�ow of negative charge to the left, or if we consider the e�ect of the aggregate of all the electrons in the
band (which we have to do because of quantum mechanical considerations beyond the scope of this book) we
could picture what is going on as a single positive charge, moving to the right. This is shown in Figure 1.16.
Note that in either view we have the same net e�ect in the way the total net charge is transported through
the sample. In the mostly negative charge picture, we have a net �ow of negative charge to the left. In the
single positive charge picture, we have a net �ow of positive charge to the right. Both give the same sign for
the current!
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Figure 1.14: Motion of the "missing" electron with an electric �eld

Figure 1.15: Further motion of the "missing electron" spot

Figure 1.16: Motion of a "hole" due to an applied electric �eld

Thus, it turns out, we can consider the consequences of the empty spaces moving through the co-ordinated
motion of electrons in an almost full band as being the motion of positive charges, moving wherever these
empty spaces happen to be. We call these charge carriers "holes" and they too can add to the total conduction
of electricity in a semiconductor. Using ρ to represent the density (in cm−3 of spaces in the valence band
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and µe and µh to represent the mobility of electrons and holes respectively (they are usually not the same)
we can modify this equation (1.17) to give the conductivity σ, when both electrons' holes are present.

σ = nqµe + ρqµh (1.23)

How can we get a sample of semiconductor with a lot of holes in it? What if, instead of phosphorus, we
dope our silicon sample with a group III element, say boron? This is shown in Figure 1.17. Now we have
some missing orbitals, or places where electrons could go if they were around. This modi�es our energy
picture as follows in Figure 1.18. Now we see a set of new levels introduced by the boron atoms. They are
located within the band gap, just a little way above the top of the almost full, or valence band. Electrons
in the valence band can be thermally excited up into these new allowed levels, creating empty states, or
holes, in the valence band. The excited electrons are stuck at the boron atom sites called acceptors, since
they "accept" an electron from the valence band, and hence act as �xed negative charges, localized there.
A semiconductor which is doped predominantly with acceptors is called p-type, and most of the electrical
conduction takes place through the motion of holes. A semiconductor which is doped with donors is called
n-type, and conduction takes place mainly through the motion of electrons.

Figure 1.17: Silicon doped with Boron

Figure 1.18: P-type silicon, due to boron acceptors

In n-type material, we can assume that all of the phosphorous atoms, or donors, are fully ionized when
they are present in the silicon structure. Since the number of donors is usually much greater than the native,
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or intrinsic electron concentration, ( ≈
(
1010cm−3

)
), if Nd is the density of donors in the material, then n,

the electron concentration, ≈ Nd.
If an electron de�cient material such as boron is present, then the material is called p-type silicon, and

the hole concentration is just p ≈ Na the concentration of acceptors, since these atoms "accept" electrons
from the valence band.

If both donors and acceptors are in the material, then which ever one has the higher concentration wins
out. (This is called compensation.) If there are more donors than acceptors then the material is n-type
and n ≈ Nd − Na. If there are more acceptors than donors then the material is p-type and p ≈ Na − Nd.
It should be noted that in most compensated material, one type of impurity usually has a much greater
(several order of magnitude) concentration than the other, and so the subtraction process described above
usually does not change things very much. ( 1018 − 1016 ≈ 1018).

One other fact which you might �nd useful is that, again, because of quantum mechanics, it turns out
that the product of the electron and hole concentration in a material must remain a constant. In silicon at
room temperature:

np ≡ ni2 ≈ 1020cm−3 (1.24)

Thus, if we have an n-type sample of silicon doped with 1017 donors per cubic centimeter, then n, the
electron concentration is just and p , the hole concentration, is 1020

1017 = 103cm−3. The carriers which dominate
a material are called majority carriers, which would be the electrons in the above example. The other
carriers are called minority carriers (the holes in the example) and while 103 might not seem like much
compared to 1017 the presence of minority carriers is still quite important and can not be ignored. Note that
if the material is undoped, then it must be that n = p and n = p = 1010.

The picture of "cups" of di�erent allowed energy levels is useful for gaining a pictorial understanding of
what is going on in a semiconductor, but becomes somewhat awkward when you want to start looking at
devices which are made up of both n and p type silicon. Thus, we will introduce one more way of describing
what is going on in our material. The picture shown in Figure 1.19 is called a band diagram. A band
diagram is just a representation of the energy as a function of position with a semiconductor device. In a
band diagram, positive energy for electrons is upward, while for holes, positive energy is downwards. That
is, if an electron moves upward, its potential energy increases just as a with a normal mass in a gravitational
�eld. Also, just as a mass will "fall down" if given a chance, an electron will move down a slope shown in a
band diagram. On the other hand, holes gain energy by moving downward and so they have a tendancy to
"�oat" upward if given the chance - much like a bubble in a liquid. The line labeled Ee in Figure 1.19 shows
the edge of the conduction band, or the bottom of the lowest unoccupied allowed band, while Ev is the top
edge of the valence, or highest occupied band. The band gap, Eg for the material is obviously Ec−Ev. The
dotted line labeled Ef is called the Fermi level and it tells us something about the chemical equilibrium
energy of the material, and also something about the type and number of carriers in the material. More on
this later. Note that there is no zero energy level on a diagram such as this. We often use either the Fermi
level or one or other of the band edges as a reference level on lieu of knowing exactly where "zero energy"
is located.

Figure 1.19: An electron band-diagram for a semiconductor
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The distance (in energy) between the Fermi level and either Ec and Ev gives us information concerning
the density of electrons and holes in that region of the semiconductor material. The details, once again, will
have to be begged o� on grounds of mathematical complexity. (Take Semiconductor Devices (ELEC 462) in
your senior year and �nd out how is really works!) It turns out that you can say:

n = Nce
−

“
Ec−Ef
kT

”
(1.25)

p = Nve
−

“
Ef−Ev
kT

”
(1.26)

Both Nc and Nv are constants that depend on the material you are talking about, but are typically on
the order of 1019cm−3. The expression in the denominator of the exponential is just Boltzman's constant,
k, times the temperature T of the material (in absolute temperature or Kelvin). Boltzman's constant
k =

(
8.63× 10−5

)
eV
K . At room temperature kT = 1/40 of an electron volt. Look carefully at the numerators

in the exponential. Note �rst that there is a minus sign in front, which means the bigger the number in the
exponent, the fewer carriers we have. Thus, the top expression says that if we have n-type material, then
Ef must not be too far away from the conduction band, while if we have p-type material, then the Fermi
level, Ef must be down close to the valence band. The closer Ef gets to Ec the more electrons we have. The
closer Ef gets to Ev, the more holes we have. Figure 1.19 therefore must be for a sample of n-type material.
Note also that if we know how heavily a sample is doped (That is, we know what Nd is for example) and
from the fact that n ≈ Nd we can use (1.25) to �nd out how far away the Fermi level is from the conduction
band

Ec − Ef = kT ln

(
Nc
Nd

)
(1.27)

To help further in our ability to picture what is going on, we will often add to this band diagram, some small
signed circles to indicate the presence of mobile electrons and holes in the material. Note that the electrons
are spread out in energy. From our "cups" picture we know they like to stay in the lower energy states if
possible, but some will be distributed into the higher levels as well. What is distorted here is the scale. The
band-gap for silicon is 1.1 eV, while the actual spread of the electrons would probably only be a few tenths
of an eV, not nearly as much as is shown in Figure 1.20. Lets look at a sample of p-type material, just for
comparison. Note that for holes, increasing energy goes down not up, so their distribution is inverted from
that of the electrons. You can kind of think of holes as bubbles in a glass of soda or beer, they want to �oat
to the top if they can. Note also for both n and p-type material there are also a few "minority" carriers, or
carriers of the opposite type, which arise from thermal generation across the band-gap.

Figure 1.20: Band diagram for an n-type semiconductor
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1.4 P-N Junction: Part I4

Figure 1.21: Band diagram for a p-type semiconductor

Figure 1.22: A non-equilibrium p-n junction

We are now ready to make an actual useful device! Let's take a piece of n-type material, and a piece of p-type
material, and stick them together, as shown in Figure 1.22. This way we will be making a pn-junction, or
diode, which will be our �rst real electric device other than a simple resistor.

There are a couple of things wrong with Figure 1.22. First of all, one of the rules regarding the Fermi
level is that when you have a system at equilibrium (that is, when it is a rest, and is not being in�uenced
by external forces such as thermal gradients, electrical potentials etc.), the Fermi level must be the same
everywhere. Secondly, we have a big bunch of holes on the right and a big bunch of electrons on the left, and
so we would expect, that in the absence of some force to keep them this way, they will start to spread out
until their distribution is more or less equal everywhere. Finally, we remember that a hole is just an absence
of an electron, and since an electron in the conduction band can lower the system energy by falling down into
one of the empty hole states, it seems likely that this will happen. This process is called recombination.
The place where this is most likely to occur, of course, would be right at the junction between the n and p
regions. This is shown in Figure 1.23.

4This content is available online at <http://cnx.org/content/m1003/2.13/>.
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Figure 1.23: Recombination of holes and electrons

Now is might seem that this recombination e�ect might just go on and on, until there are no carriers left
in the sample. This is not the case however. In order to see what brings everything to a halt, we need yet
another diagram. Figure 1.24 is more physical than what we have been looking at so far. It is a picture of
the actual p-n junction, showing both the holes and the electrons. We also need to put in the donors and
acceptors however, if we want to see what goes on. The �xed (can't move around) charges of the donors and
acceptors are represented by simple "+" and "-" signs. They are arranged in a nice lattice-like arrangement
to remind us that they are stuck to the crystal lattice. (In reality however, even though they are stuck in
the crystal lattice, there are so few of them compared to the silicon atoms that their distribution would be
quite random.) For the mobile holes and electrons, we will stay with the little circles with charge signs in
them. These are randomly distributed, to remind us that they are free to move about the crystal.

Figure 1.24: Spatial schematic of a p-n junction

We will now have to allow some of the holes and electrons (again near the junction) to recombine.
Remember, when an electron and a hole recombine, they both are annihilated and disappear. Note that this
process conserves charge (and if we could calculate it) momentum as well. There is obviously some energy
lost, but this will simply show up as vibrations, or heat, within the crystal lattice. Or, in the case of an
LED, as light emitted from the device. See, already we know enough about semiconductors to understand
(somewhat) how an actual device works. Light comming from an LED is simply the energy which is realeased
when an electron and hole recombine. We will take a look at this in more detail later. Let's allow some
recombination to occur, as shown in Figure 1.25.
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Figure 1.25: The junction after some recombination has occurred

And then in Figure 1.26 some more.....

Figure 1.26: After further recombination

1.5 PN-Junction: Part II5

If you look closely at these pictures, you will notice something. As we remove more and more electrons
and holes, we are starting to "uncover" the �xed charges associated with the donors and acceptors. We are
making what is known as a depletion region, so named because it is depleted of mobile carriers (holes
and electrons). The uncovered net charge in the depletion region is separated, with negative charge in the
p-region, and positive charge in the n-region. What will such a charge separation give rise to? Why, an
electric �eld! Of course! Which way will the �eld point? The electric �eld which arises from a separation of
charges always goes from the positive charge, towards the negative charge. This is shown in Figure 1.27.

Figure 1.27: The pn-junction with the resultant built-in electric �eld

5This content is available online at <http://cnx.org/content/m1004/2.14/>.
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What e�ect will this �eld have on our device? It will have the tendency to push the holes back into
the p-region and the electrons into the n-region. This is just what we need to counteract the recombination
which has been going on, and hopefully bring it to a stop.

Now try to think through what e�ect this �eld could have on our energy band diagram. The band
diagram is for electrons, so if an electron moves from the right hand side of the device (the n-region) towards
the left hand side (the p-region), it will have to move through an electric �eld which is opposing its motion.
This means it has do some work, or in other words, the potential energy for the electron must go up. We
can show this on the band diagram by simply shifting the bands on the left hand side upward, to indicate
that there is a shift in potential energy as electrons move from right to left across the junction.

Figure 1.28: Energy band diagram for a p-n junction at equilibrium

The shift of the bands, which is just the di�erence between the location of the Fermi level in the n-region
and the Fermi level is the p-region, is called the built-in potential, Vbi. This built-in potential keeps the
majority of holes in the p-region, and the electrons in the n-region. It provides a potential barrier, which
prevents current �ow across the junction. (On the band diagram we have to multiply the built-in potential
Vbi by the charge of an electron, q, so that we can represent the shift in energy in terms of electron volts,
the unit of potential energy used in band diagrams.)

How big is Vbi? This is not too hard to �gure out. Let's look at Figure 1.28 a little more carefully.
Remember, we know from this equation (1.25) and this equation (1.26) that since n = Nd in the n-region
and p = Na in the p-region, we can relate the distance of the Fermi level from Ec and Ef by

Ec − Ef = kT ln

(
Nc
Nd

)
(1.28)

and

Ef − Ev = kT ln

(
Nv
Na

)
(1.29)

Look at Figure 1.28 and see if you can agree that

qVBI = Eg − (Ec − Ef )− (Ef − Ev)
= Eg − kT ln

(
Nc
Nd

)
− kT ln

(
Nc
Nd

)
= Eg − kT ln

(
NcNv
NdNa

) (1.30)

Where Nd and Na are the doping densities in the n and p sinc respectively. Remember, kT = 1/40eV =
0.025eV , Eg = 1.1eV and Nc and Nv are both ≈

(
1019

)
. Thus,

qVBI = 1.1eV − 0.025eV ln
(

1038

NdNa

)
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Here the q in front of the VBI and the e in eV are both the charge of 1 electron and they cancel out making

VBI =
(

1.1− 0.025ln
(

1038

NdNa

))
volts

Suppose both Nd and Na are both about [10 to the 15th] - not uncommon values. How big would the built-in
potential be in this case?

It turns out that we can actually derive some speci�c details about the depletion region if we make
only a coupled of simplifying (and often justi�ed) assumptions. In order to make the math easier, and also
because many p-n junctions are built this way, we will consider what is known as a one sided junction.
Figure 1.29 is a picture of such a beast: In this diode, one side is much more heavily doped than the other.
In this particular example, the p-side is heavily doped, and the n-side is relatively lightly doped. We can
not show the true picture here, because typically, the more heavily doped side will be doped several orders
of magnitude greater than the lightly doped side. Typical values might be Na = 1019 and Nd = 1016.
Regardless of how big the di�erence is however, there must be exactly the same amount of "uncovered"
charge on both side of the junction. Why? Because each time a hole and electron recombine to form the
depletion region, they each leave behind either a donor or an acceptor. A careful count of the exposed charge
in Figure 1.29 shows that I was careful enough to draw my �gure accurately for you. We do not need to
have a one-sided diode to do the analysis that will follow, but the equations are easier to solve if we do.

Figure 1.29: An example of a one-sided diode

In order to proceed from here, the �rst thing we do is make a plot of the charge density ρ (x) as we move
through the junction. Naturally, in the bulk, since the holes and the acceptors (in the p-side), or the electrons
and the donors (in the n-side) just equal one another, the net charge density is zero. In the depletion region,
the charge density is - (−q)Na on the p-side and (+q)Nd on the donor side. (All the mobile carriers are
gone, and we are left with just the charged acceptors or donors.) We will make the assumption that on the
n-side, the depletion extends a distance −xn from the junction. On the p-side, the acceptor charge density is
so large, that we will treat it is a δ-function, with essentially no width. The areas of the two boxes must be
the same (equal amount of positive and negative charge) and hence, the tall thin box actually has a width
of NdNaxn, which, since Na is several orders of magnitude greater than Nd, means that the tall box has a very
very small width compared to the lower, wider one, which is qNd tall, and has a width of xn.
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Figure 1.30: Charge density as a function of position

1.6 Gauss' Law6

Now we have to review some �eld theory. We will be using �elds from time to time in this course, and when
we need some aspect of �eld theory, we will introduce what we need at that point. This seems to make more
sense than spending several weeks talking about a lot of abstract theory without seeing how or why it can
be useful.

The �rst thing we need to remember is Gauss' Law. Gauss' Law, like most of the fundamental laws
of electromagnetism comes not from �rst principle, but rather from empirical observation and attempts to
match experiments with some kind of self-consistent mathematical framework. Gauss' Law states that:∮

s

DdS = Qencl

=
∮
v

ρ (v) dV
(1.31)

where D is the electric displacement vector, which is related to the electric �eld vector, E, by the
relationship D = εE. ε is called the dielectric constant. In silicon it has a value of 1.1× 10−12 F

cm . (Note
that D must have units of Coulombscm2 to have everything work out OK.) Qencl is the total amount of charge
enclosed in the volume V , which is obtained by doing a volume integral of the charge density ρ (v).

6This content is available online at <http://cnx.org/content/m1005/2.15/>.
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Figure 1.31: Pictorial representation of Gauss' Law.

(1.31) just says that if you add up the surface integral of the displacement vector D over a closed surface
S , what you get is the sum of the total charge enclosed by that surface. Useful as it is, the integral form
of Gauss' Law, (which is what (1.31) is) will not help us much in understanding the details of the depletion
region. We will have to convert this equation to its di�erential form. We do this by �rst shrinking down the
volume V until we can treat the charge density ρ (v) as a constant ρ, and replace the volume integral with a
simple product. Since we are making V small, let's call it ∆V to remind us that we are talking about just
a small quantity. ∮

∆v

ρ (v) dV → ρ∆v (1.32)

And thus, Gauss' Law becomes: ∮
s

DdS = ε
∮
s

EdS

= ρ∆V
(1.33)

or

1
∆V

∮
s

EdS

 =
ρ

ε
(1.34)

Now, by de�nition the limit of the LHS of (1.34) as ∆V → 0 is known as the divergence of the vector E,
divE. Thus we have

lim
∆V→0

1
∆V

(∮
s

EdS

)
= divE

= ρ
ε

(1.35)

Note what this says about the divergence. The divergence of the vector E is the limit of the surface integral
of E over a volume V , normalized by the volume itself, as the volume shrinks to zero. I like to think of as a
kind of "point surface integral" of the vector E.
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Figure 1.32: Small volume for divergence

If E only varies in one dimension, which is what we are working with right now, the expression for
the divergence is particularly simple. It is easy to work out what it is from a simple picture. Looking at
Figure 1.32 we see that if E is only pointed along one direction (let's say x) and is only a function of x, then
the surface integral of E over the volume ∆V = ∆x∆y∆z is particularly easy to calculate.∮

s

EdS = E (x+ ∆x) ∆y∆z −E (x) ∆y∆z (1.36)

Where we remember that the surface integral is de�ned as being positive for an outward pointing vector
and negative for one which points into the volume enclosed by the surface. Now we use the de�nition of the
divergence

divE = lim
∆V→0

1
∆V

(∮
s

EdS

)
= lim

∆V→0

(E(x+∆x)−E(x))∆y∆z
∆x∆y∆z

= lim
∆V→0

E(x+∆x)−E(x)
∆x

= ∂
∂x (E (x))

(1.37)

So, we have for the di�erential form of Gauss' law:

∂

∂x
(E (x)) =

ρ (x)
ε

(1.38)

Thus, in our case, the rate of change of E with x, d
dx (E), or the slope of E (x) is just equal to the charge

density, ρ (x), divided by ε.

1.7 Depletion Width7

We can now go back to the charge density as a function of position graph (Figure 1.30) and easily �nd the
electric �eld in the depletion region as a function of position. If we integrate Gauss' Law (1.38), we get for
the electric �eld:

E (x) =
1
ε

∫
ρ (x) dx (1.39)

7This content is available online at <http://cnx.org/content/m1006/2.16/>.
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We could write down an expression for ρ (x) and then formally integrate it to get E (x) but we can also
just do it graphically, which is a lot easier, and gives us a much more intuitive feeling for what is going on.
Let's start doing our integral at [x equals -in�nity] Whenever we perform an integral such as (1.39), we've
got to remember to add a constant to our answer. Since we can not have an electric �eld which extends to
in�nity (either plus or minus) however, we can safely assume E (−infinity) = 0 and remains at that value
until we get to the edge of the depletion region at (essentially) x equals zero. Since the charge density is
zero all the way up to the edge of depletion region, Gauss tells us that the electric �eld can not change here
either. When we get to x=0 we encounter the large negative delta-function of negative charge at the edge of
the depletion region. If you can remember back to your calculus, when you integrate a delta function, you
get a step. Since the charge in the p-side delta function is negative, when we integrate it, we get a negative
step. Since we don't know (yet) how big the step will be, let's just call it -|Emax|.

Figure 1.33: Finding the electric �eld in the p-type region
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Figure 1.34: Finishing the integral

In the n-side of the depletion region

ρ (x) = (+q)Nd

= ε ∂∂x (E)
(1.40)

and so we plot E (x) with a (positive) slope of qNdε , starting at E (x) = −Emax at x = 0. This line continues
with this positive slope until it reaches a value of 0 at x = xn. We know that E(x) must equal 0 at x = xn
because there is no further charge outside of the depletion region and E must be 0 outside this region.

We are now done doing the integral. We would know everything about this problem, if we just knew
what xn was. Note that since we know the slope of the triangle now, we can �nd −Emax in terms of the
slope and xn. We can derive an expression for xn, if we remember that the integral of the electric �eld over
a distance is the potential drop across that distance. What is the potential drop in going from the p-side to
the n-side of the diode?

As a reminder, Figure 1.35 shows the junction band diagram again. The potential drop must just be Vbi
the "built-in" potential of the junction. Obviously Vbi can not be greater than 1.1 V, the band-gap potential.
On the other hand, by looking at Figure 1.35, and remembering that the bandgap in silicon is 1.1 eV, it will
not be some value like 0.2 or 0.4 volts either. Let's make life easy for ourselves, and say Vbi = 1V olt. This
will not be too far o�, and as you will see shortly, the answer is not very sensitive to the exact value of Vbi
anyway.
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Figure 1.35: Band diagram for a p-n junction

The integral of E (x) is now just the area of the triangle in Figure 1.34. Getting the area is easy:

area = 1
2base× height

= 1/2xn qNdxnε

= qNdxn
2

2ε

= Vbi

(1.41)

We can simply turn (1.41) around and solve for xn.

xn =

√
2εVbi
qNd

(1.42)

As we said, for silicon, εSi = 1.1×10−12. Let's let Nd = 1016cm−3 donors. As we already know from before,
q = 1.6 × 10−19 Coulombs. This makes xn = 3.7 × 10−5cm or 0.37 µm long. Not a very wide depletion
region! How big is |Emax|? Plugging in

Emax =
qNdxn
ε

(1.43)

We �nd |Emax| = 53, 000 V
cm ! Why such a big electric �eld? Well, we've got to shift the potential by about

a volt, and we do not have much distance to do it in (less than a micron), and so there must be, by default,
a fairly large �eld in the depletion region. Remember, potential is electric �eld times distance.

Enough p-n junction electrostatics. The point of this exercise was two-fold; a): so you would know
something about the details of what is really going on in a p-n junction ; b): to show you that with just
some very simple electrostatics and a little thinking, it is not so hard to �gure these things out!

1.8 Forward Biased8

Now let's take a look at what happens when we apply an external voltage to this junction. First we need
some conventions. We make connections to the device using contacts, which we show as cross-hatched
blocks. These contacts allow the free passage of current into and out of the device. Current usually �ows
through wires in the form of electrons, so it is easy to imagine electrons �owing into or out of the n-region.
In the p-region, when electrons �ow out of the device into the wire, holes will �ow into the p-region (so
as to maintain continuity of current through the contact.) When electrons �ow into the p-region, they will
recombine with holes, and so we have the net e�ect of holes �owing out of the p-region.

8This content is available online at <http://cnx.org/content/m1007/2.19/>.
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Figure 1.36: A p-n diode with contacts and external bias

With the convention that a positive applied voltage means that the terminal connected to the p-region
is positive with respect to the terminal connected to the n-region. This is easy to remember; "p is positive,
n is negative". Let us try to �gure out what will happen when we apply a positive applied voltage Va. If Va
is positive, then that means that the potential energy for electrons on the p-side must be lower than it was
under the equilibrium condition. We re�ect this on the band diagram by lowering the bands on the p-side
from where they were originally. This is shown in Figure 1.37.
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Figure 1.37: A p-n junction under forward bias

As we can see from Figure 1.37, when the p-region is lowered a couple of things happen. First of all, the
Fermi level (the dotted line) is no longer a �at line, but rather it bends upward in going from the p-region
to the n-region. The amount it bends (and hence the amount of shift of the bands) is just given by qVa,
where the energy scale we are using for the band diagram is in electron-volts which, as we said before,
is a common measure of potential energy when we are talking about electronic materials. The other thing
we can notice is that the electrons on the n-side and the holes on the p-side now "see" a lower potential
energy barrier than they saw when no voltage was applied. In fact, it looks as if a lot of electrons now have
su�cient energy such that they could move across from the n-region and �ow into the p-region. Likewise,
we would expect to see holes moving across from the p-region into the n-region.

This �ow of carriers across the junction will result in a current �ow across the junction. In order to see
how this current will behave with applied voltage, we have to use a result from statistical thermodynamics
concerning the distribution of electrons in the conduction band, and holes in the valence band . We saw
from our "cups" analogy, that the electrons tend to �ll in the lowest states �rst, with fewer and fewer of
them as we go up in energy. For most situations, a very good description of just how the electrons are
distributed in energy is given by a simple exponential decay. (This comes about from a statistical analysis
of electrons, which belong to a class of particles called Fermions. Fermions have the properties that they
are: a): indistinguishable from one another ; b): obey the Pauli Exclusion Principle which says that two
Fermions can not occupy the same exact state (energy and spin) ; c): remain at some �xed total number
N .)

If n (E) tells us how many electrons there are with an energy greater than some value Ec then n (E) is
given simply as:

n (E) = Nde
−(E−EckT ) (1.44)

The expression in the denominator is just Boltzman's constant times the temperature in Kelvins. At room
temperature kT has a value of about 1/40 of an eV or 25 meV. This number is sometimes called the thermal
voltage, VT , but it's ok for you to just think of it as a constant which comes from the thermodynamics of
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the problem. Because kT ≈ 1/40, you will sometimes see (1.44) and similar equations written as

n (E) = Nde
−40(E−Ec) (1.45)

Which looks a little strange if you forget where the 40 came from, and just see it sitting there.
If the energy E is Ec the energy level of the conduction band, then n (Ec) = Nd, the density of electrons

in the n-type material. As E increases above Ec, the density of electrons falls o� exponentially, as depicted
schematically in Figure 1.38: Now let's go back to the unbiased junction.

Figure 1.38: Distribution of electrons in the conduction band with energy

Remember, as we said before, there are currents �owing across the junction, even if there is no bias.
The current we have shown as If is due to those electrons which have an energy greater than the built-in
potential. They are �owing from right to left, as shown by the open arrow, which, of course, gives a current
�owing from left to right, as shown by the solid arrows. Based on (1.44) the current should be proportional
to: (

If ∝ Nde
−

“
qVbi
kT

”)
(1.46)
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Figure 1.39: Balanced �ow across a junction

The principle of detailed balance says that at zero bias, If = −Ir and so(
IR ∝ −

(
Nde

−
“
qVbi
kT

”))
(1.47)

IR = − (Ifα)−Nde
−

“
qVBI
kT

”
(1.48)

Now, what happens when we apply the bias? For the electrons over on the n-side, the barrier has been
reduced from a height of qVbi to q (Vbi − Va) and hence the forward current will be signi�cantly increased.(

If ∝ Nde
−

„
q(Vbi−Va)

kT

«)
(1.49)

The reverse current however, will remain just the same as it was before (1.47).
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Figure 1.40: Current when the junction is forward biased

The total current across the junction is just If + Ir

Nd

(
e
qVa
kT − 1

)
(1.50)

where we have factored out the Nde
−

“
qVbi
kT

”
term out of both expressions. We are not prepared, with what

we know at this point, to get the other terms in the proportionality that are involved here. Also, the astute
reader will note that we have not said anything about the holes, but it should be obvious that they will also
contribute to the current, and the arguments we have made for electrons will hold for the holes just as well.

We can take the e�ect of the holes, and the other unknowns about the proportionality, and bind them
all into one constant called Isat, so that we write:

I = Isat

(
e
qVa
kT − 1

)
(1.51)

This is the famous diode equation and is a very important result.

1.9 The Diode Equation9

The reason for calling the proportionality constant Isat will become obvious when we consider reverse bias.
Let us now make Va negative instead of positive. The applied electric �eld now adds in the same direction
to the built-in �eld. This means the barrier will increase instead of decrease, and so we have what is shown
in Figure 1.41. Note that we have marked the barrier height as q (Vbi − Va) as before. It is just that now,
Va is negative, and so the barrier is bigger.

9This content is available online at <http://cnx.org/content/m1008/2.17/>.
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Figure 1.41: P-N junction under reverse bias ( Va < 0)

Remember, the electrons fall o� exponentially as we move up in energy, so it does not take much of a
shift of the bands before there are essentially no electrons on the n-side with enough energy to get over the
barrier. This is re�ected in the diode equation (1.51) where, if we let Va be a negative number, e

qVa
kT very

quickly goes to zero and we are left with
I = −Isat (1.52)

Thus, while in the forward bias direction, the current increases exponentially with voltage, in the reverse
direction it simply saturates at −Isat. A plot of I as a function of voltage or an I-V characteristic curve
might look something like Figure 1.42.

Figure 1.42: Idealized I-V curve for a p-n diode

In fact, for real diodes (ones made from silicon) Isat is such a small value (on the order of 10−10 amps)
that you can not even see it on most common measuring devices (oscilloscope, digital volt meter etc.) and if
you were to look on a device called a curve tracer (which you will learn more about in Electronic Circuits
[ELEC 342]) what you would really see would be something like Figure 1.43.
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Figure 1.43: Realistic I-V curve

We see what looks like zero current in the reverse direction, and in fact, what appears to be no current
until we get a certain amount of voltage across the diode, after which it very quickly "turns on" with a very
rapidly increasing forward current. For silicon, this "turn on" voltage is about 0.6 to 0.7 volts.

Digital volt meters (DVM's) use this characteristic for their "diode check" function. What they do is,
when the "red" or positive lead is connected to the p-side (anode, or arrow in the diagram) and the "black"
or negative lead is connected to the n-side (cathode, or bar in the diagram) of a diode, the meter attempts
to pass (usually) 1 mA of current through the diode. If the 1 mA of current is allowed to �ow, the meter
then indicates the amount of forward voltage developed across the diode. If it reads something like 0.673
volts, then you can be pretty sure the diode is OK. Reverse the leads, and the diode is reverse biased, and
the meter should read "OL" (overload) or something like that to indicate that no current is �owing.

The diode equation (1.51) is usually approximated by two somewhat simpler equations, depending upon
whether the diode is forward or reverse biased:

I ≈

 0 if Va < 0

Isate
qVa
kT if Va > 0

(1.53)

For reverse bias, as we said, the current is essentially nil. In the forward bias case, the exponential term
quickly gets much larger than unity, and so we can forget the "-1" term in the diode equation (1.51).
Remember, we said that kT at room temperature had a value of about 1/40 of an eV, so q

kT ≈ 40V −1, this
means we can also say for forward bias that

I = Isate
40Va (1.54)

From this equation it is easy to see that only a small positive value for Va is needed in order to make the
exponential much greater than unity.

Now let's connect this "ideal diode equation" to the real world. One thing you might ask yourself is "How
could I check to see if an actual diode follows the equation given here (1.49)?" As we said, Isat is a very
small current, and so trying to do the reverse test is probably not going to be successful. What is usually
done is to measure the diode current (and forward voltage) over several orders of magnitude of current.

Note: While the current can vary by many orders of magnitude, the voltage is more or less
limited to values between 0 and 0.6 to 0.7 volts, not by any fundamental process, but rather simply
by the fact that too much forward current will burn up the diode.

If we take the natural log of both sides of the second piece of (1.53), we �nd:

lnI = lnIsat +
qVa
kT

(1.55)

Thus, a plot of lnI as a function of Va should yield a straight line with a slope of q
kT , or 40.
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Well, I went into the lab, grabbed a real diode and made some measurements. Figure 1.44 is a plot of the
natural log of the current as a function of voltage from 0.05 to 0.70 volts. Included with this plot, is a linear
curve �t to the data which is plotted as a dotted line. The linear �t goes through the data points quite nicely,
so the current is surely an exponential function of the applied voltage! From the expression for the best �t,
which is printed above the graph, we see that lnIsat = −19.68. That means that Isat = e−19.68 = 2.89×10−9

amps, which is indeed a very small current. Look at the slope however. Its supposed to be 40, and yet it turns
out to be slightly more than 20! This comes about because of some complex details of exactly what happens to
the electrons and holes when they cross the junction. In what is called the di�usion dominated situation
electrons and holes are injected across the junction, after which they di�use away from the junction, and also
recombine, until eventually they are all gone. This is shown schematically in Figure 1.45. The other regime
is called recombination dominated and here, the majority of the current is made up of the electrons and
holes recombining directly with each other at the junction. This is shown in Figure 1.46. For recombination
dominated diode behavior, it turns out that the current is given by

I = Isate
qVa
2kT (1.56)

Figure 1.44: Plot showing lnI as a function of Va for a 1N4123 silicon diode

Figure 1.45: Di�usion dominated diode behavior
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Figure 1.46: Recombination dominated diode behavior

In general, a particular diode might have a combination of these two e�ects going on, and so people often
use a more general form for the diode equation:

I = Isate
qVa
nkT (1.57)

where n is called the ideality factor and is a number somewhere between 1 and 2. For the diode which gave
the data for our example n = 1.92 and so most of the current is dominated by recombination of electrons
and holes in the depletion region.

1.10 Reverse Biased/Breakdown10

Before we leave diodes, it would be worthwhile exploring some other modes of operation, as well as some spe-
ci�c applications which will be of interest. We said that when the diode was reverse-biased (p-region negative
with respect to the n-region) that the only current which �ows is the reverse saturation current, resulting
from the few thermally generated minority carriers which can fall down (or up) the barrier (Figure 1.47).

Figure 1.47: Reverse saturation current

If we make the reverse bias even greater, the same current �ows, but the carriers pick up more energy
as they fall down the (now larger) junction potential. As they do this, it is possible for them to pick up so

10This content is available online at <http://cnx.org/content/m1009/2.11/>.
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much energy, that when they collide with a lattice site, they create an additional electron-hole pair through
a process called impact ionization (Figure 1.48). When this occurs, we now have current consisting of
two electrons and one hole. These additional carriers can themselves collide and generate additional electron
hole pairs as well. The current now consists of �ve electrons and two holes. This process is called avalanche
multiplication (Figure 1.49), because we start with one carrier, and through a succession of impacts create
more and more current. This process can in fact run away, much like an avalanche on a snowy mountain
side, in a process called avalanche breakdown.

Figure 1.48: Impact Ionization

The net e�ect is to change the reverse characteristics of the diode somewhat. If we include the e�ect of
breakdown in the I-V curve for the diode, we would see something like that in Figure 1.50.
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Figure 1.49: Avalanche multiplication

Figure 1.50: Diode I-V Curve showing both the forward characteristics and reverse breakdown

There is now a sudden onset of current after the avalanche breakdown voltage has been exceeded. Do
not be confused into thinking that this "breakdown" means that the diode has been damaged. The process
of avalanching itself is not destructive. But as you can see from Figure 1.48, the diode current increases very
rapidly once the breakdown threshold has been exceeded. Thus, if there is not something in series with the
diode to limit the maximum current through it, it could be damaged by overheating. Diodes in breakdown
are used as voltage references (the voltage across them is more or less independent of the current running
through them) but you will always �nd a series current limiting resistor used along with them. Such diodes
are called Zener Diodes (named after the grandfather of Will Rice's George Zener who graduated a few
years ago...that is George did, not his grandfather) but the name is kind of a misnomer. The Zener E�ect
is also a reverse breakdown phenomena, but comes from direct �eld generation of extra carriers, rather than
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as a result of impact ionization. In truth, you can not tell the one e�ect from the other by looking at the
diode I-V curve, and so all diodes used in reverse breakdown are called Zener Diodes. A circuit using a Zener
diode as a voltage reference is shown in Figure 1.51.

Figure 1.51: Voltage regulator circuit

1.11 Di�usion11

1.11.1 Introduction

Let us turn our attention to what happens to the electrons and holes, once they have been injected across a
forward-biased junction. We will concentrate just on the electrons which are injected into the p-side of the
junction, but keep in mind that similar things are also happening to the holes which enter the n-side.

As we saw a while back, when electrons are injected across a junction, they move away from the junction
region by a di�usion process, while at the same time, some of them are disappearing because they are
minority carriers (electrons in basically p-type material) and so there are lots of holes around for them to
recombine with. This is all shown schematically in Figure 1.52 (Di�usion across a P-N Junction).

Di�usion across a P-N Junction

Figure 1.52: Processes involved in electron transport across a p-n junction

1.11.2 Di�usion Process Quanti�ed

It is actually fairly easy to quantify this, and come up with an expression for the electron distribution within
the p-region. First we have to look a little bit at the di�usion process however. Imagine that we have a

11This content is available online at <http://cnx.org/content/m1010/2.14/>.
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series of bins, each with a di�erent number of electrons in them. In a given time, we could imagine that all
of the electrons would �ow out of their bins into the neighboring ones. Since there is no reason to expect
the electrons to favor one side over the other, we will assume that exactly half leave by each side. This is
all shown in Figure 1.53 (First example of a di�usion problem). We will keep things simple and only look at
three bins. Imagine I have 4, 6, and 8 electrons respectively in each of the bins. After the required "emptying
time," we will have a net �ux of exactly one electron across each boundary as shown.

First example of a di�usion problem

Figure 1.53

Di�usion from bins

Figure 1.54

Now let's raise the number of electrons to 8, 12 and 16 respectively (the electrons may overlap some now
in the picture.) We �nd that the net �ux across each boundary is now 2 electrons per emptying time, rather
than one. Note that the gradient (slope) of the concentration in the boxes has also doubled from one per
box to two per box. This leads us to a rather obvious statement that the �ux of carriers is proportional to
the gradient of their density. This is stated formally in what is known as Fick's First Law of Di�usion:

Flux = (−De)
d

dx
n (x) (1.58)

Where De is simply a proportionality constant called the di�usion coe�cient. Since we are talking about
the motion of electrons, this di�usion �ux must give rise to a current density Jediff . Since an electron has a
charge −q associated with it,

Jediff = qDe
d

dx
(n) (1.59)

Now we have to invoke something called the continuity equation. Imagine we have a volume V which
is �lled with some charge Q. It is fairly obvious that if we add up all of the current density which is �owing
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out of the volume that it must be equal to the time rate of decrease of the charge within that volume. This
ideas is expressed in the formula below which uses a closed-surface integral, along with the all the other
integrals to follow: ∮

S

JdS = −
(
d

dt
(Q)
)

(1.60)

We can write Q as

Q =
∮
V

ρ (v) dV (1.61)

where we are doing a volume integral of the charge density ρ over the volume V . Now we can use Gauss'
theorem which says we can replace a surface integral of a quantity with a volume integral of its divergence:∮

S

JdS =
∫
V

divJdV (1.62)

So, combining (1.60), (1.61) and (1.62), we have (note we are still dealing with surface and volume integrals):

∫
V

divJdV = −

∫
V

d

dt
(ρ) dV

 (1.63)

Finally, we let the volume V shrink down to a point, which means the quantities inside the integral must
be equal, and we have the di�erential form of the continuity equation (in one dimension)

divJ = ∂
∂x (J)

= −
(
d
dtρ (x)

) (1.64)

1.11.3 What about the Electrons?

Now let's go back to the electrons in the diode. The electrons which have been injected across the junction
are called excess minority carriers, because they are electrons in a p-region (hence minority) but their
concentration is greater than what they would be if they were in a sample of p-type material at equilibrium.
We will designate them as n′, and since they could change with both time and position we shall write them
as n′ (x, t). Now there are two ways in which n′ (x, t) can change with time. One would be if we were to
stop injecting electrons in from the n-side of the junction. A reasonable way to account for the decay which
would occur if we were not supplying electrons would be to write:

d

dt
n′ (x, t) = −

(
n′ (x, t)
τr

)
(1.65)

Where τr called the minority carrier recombination lifetime. It is pretty easy to show that if we start
out with an excess minority carrier concentration no′ at t = 0, then n′ (x, t) will goes as

n′ (x, t) = n′0e
−t
τr (1.66)

But, the electron concentration can also change because of electrons �owing into or out of the region x. The
electron concentration n′ (x, t) is just ρ(x,t)

q . Thus, due to electron �ow we have:

d
dtn
′ (x, t) = 1

q
d
dtρ (x, t)

= 1
qdiv (J (x, t))

(1.67)
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But, we can get an expression for J (x, t) from (1.59). Reducing the divergence in (1.67) to one dimension
(we just have a ∂

∂x (J)) we �nally end up with

d

dt
n′ (x, t) = De

d2

dx2
n′ (x, t) (1.68)

Combining (1.68) and (1.65) (electrons will, after all, su�er from both recombination and di�usion) and we
end up with:

d

dt
n′ (x, t) = De

d2

dx2
n′ (x, t)− n′ (x, t)

τr
(1.69)

This is a somewhat specialized form of an equation called the ambipolar di�usion equation. It seems
kind of complicated but we can get some nice results from it if we make some simply boundary condition
assumptions. Let's see what we can do with this.

1.11.3.1 Using the Ambipolar Di�usion Equation

For anything we will be interested in, we will only look at steady state solutions. This means that the
time derivative on the LHS of (1.69) is zero, and so we have (letting n′ (x, t) become simply n′ (x) since we
no longer have any time variation to worry about)

d2

dt2
n′ (x)− 1

Deτr
n′ (x) = 0 (1.70)

Let's pick the not unreasonable boundary conditions that n′ (0) = n0 (the concentration of excess electrons
just at the start of the di�usion region) and n′ (x) → 0 as x → ∞ (the excess carriers go to zero when we
get far from the junction) then

n (x) = n0e
−

“
x√
Deτr

”
(1.71)

The expression in the radical
√
Deτr is called the electron di�usion length, Le, and gives us some idea as

to how far away from the junction the excess electrons will exist before they have more or less all recombined.
This will be important for us when we move on to bipolar transistors.

Just so you can get a feel for some numbers, a typical value for the di�usion coe�cient for electrons in
silicon would be De = 25 cm

2

sec and the minority carrier lifetime is usually around a microsecond. Thus

Le =
√
Deτr

=
√

25× 10−6

= 5× 10−3cm

(1.72)

which is not very far at all!

1.12 Light Emitting Diode12

Let's talk about the recombining electrons for a minute. When the electron falls down from the conduction
band and �lls in a hole in the valence band, there is an obvious loss of energy. The question is; where
does that energy go? In silicon, the answer is not very interesting. Silicon is what is known as an indirect
band-gap material. What this means is that as an electron goes from the bottom of the conduction band
to the top of the valence band, it must also undergo a signi�cant change in momentum. This all comes about
from the details of the band structure for the material, which we will not concern ourselves with here. As we
all know, whenever something changes state, we must still conserve not only energy, but also momentum. In
the case of an electron going from the conduction band to the valence band in silicon, both of these things

12This content is available online at <http://cnx.org/content/m1011/2.23/>.



45

can only be conserved if the transition also creates a quantized set of lattice vibrations, called phonons,
or "heat". Phonons posses both energy and momentum, and their creation upon the recombination of an
electron and hole allows for complete conservation of both energy and momentum. All of the energy which
the electron gives up in going from the conduction band to the valence band (1.1 eV) ends up in phonons,
which is another way of saying that the electron heats up the crystal.

In some other semiconductors, something else occurs. In a class of materials called direct band-gap
semiconductors, the transition from conduction band to valence band involves essentially no change in
momentum. Photons, it turns out, possess a fair amount of energy (several eV/photon in some cases) but
they have very little momentum associated with them. Thus, for a direct band gap material, the excess
energy of the electron-hole recombination can either be taken away as heat, or more likely, as a photon of
light. This radiative transition then conserves energy and momentum by giving o� light whenever an
electron and hole recombine. This gives rise to (for us) a new type of device, the light emitting diode (LED).
Emission of a photon in an LED is shown schematically in Figure 1.55 (Radiative recombination in a direct
band-gap semiconductor).

Radiative recombination in a direct band-gap semiconductor

Figure 1.55

It was Planck who postulated that the energy of a photon was related to its frequency by a constant,
which was later named after him. If the frequency of oscillation is given by the Greek letter "nu" (ν), then
the energy of the photon is just hν, where h is Planck's constant, which has a value of 4.14×10−15eV seconds.

E = hν (1.73)

When we talk about light it is conventional to specify its wavelength, λ, instead of its frequency. Visible
light has a wavelength on the order of nanometers (Red is about 600 nm, green about 500 nm and blue is in
the 450 nm region.) A handy "rule of thumb" can be derived from the fact that λ = c

v , where c is the speed
of light. Since c = 3× 108 m

sec or c = 3× 1017 nm
sec

λ (nm) = hc
E(eV )

= 1242
E(eV )

(1.74)

Thus, a semiconductor with a 2 eV band-gap should give o� light at about 620 nm (in the red). A 3 eV
band-gap material would emit at 414 nm, in the violet. The human eye, of course, is not equally responsive
to all colors. We show this in Figure 1.56 (Relative response of the human eye to various colors), where we
have also included the materials which are used for important light emitting diodes (LEDs) for each of the
di�erent spectral regions.
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Relative response of the human eye to various colors

Figure 1.56

As you no doubt notice, a number of the important LEDs are based on the GaAsP system. GaAs is a
direct band-gap semiconductor with a band gap of 1.42 eV (in the infrared). GaP is an indirect band-gap
material with a band gap of 2.26 eV (550 nm, or green). Both As and P are group V elements. (Hence the
nomenclature of the materials as III-V compound semiconductors.) We can replace some of the As with
P in GaAs and make a mixed compound semiconductor GaAs1-xPx. When the mole fraction of phosphorous
is less than about 0.45 the band gap is direct, and so we can "engineer" the desired color of LED that we
want by simply growing a crystal with the proper phosphorus concentration! The properties of the GaAsP
system are shown in Figure 1.57 (Band gap for the GaAsP system). It turns out that for this system, there
are actually two di�erent band gaps, as shown in the inset (Figure 1.57: Band gap for the GaAsP system).
One is a direct gap (no change in momentum) and the other is indirect. In GaAs, the direct gap has lower
energy than the indirect one (like in the inset) and so the transition is a radiative one. As we start adding
phosphorous to the system, both the direct and indirect band gaps increase in energy. However, the direct
gap energy increases faster with phosphorous fraction than does the indirect one. At a mole fraction x of
about 0.45, the gap energies cross over and the material goes from being a direct gap semiconductor to
an indirect gap semiconductor. At x = 0.35 the band gap is about 1.97 eV (630 nm), and so we would
only expect to get light up to the red using the GaAsP system for making LED's. Fortunately, people
discovered that you could add an impurity (nitrogen) to the GaAsP system, which introduced a new level
in the system. An electron could go from the indirect conduction band (for a mixture with a mole fraction
greater than 0.45) to the nitrogen site, changing its momentum, but not its energy. It could then make a
direct transition to the valence band, and light with colors all the way to the green became possible. The use
of a nitrogen recombination center is depicted in the Figure 1.58 (Addition of a nitrogen recombination
center to indirectGaAsP).
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Band gap for the GaAsP system

Figure 1.57

Addition of a nitrogen recombination center to indirectGaAsP

Figure 1.58



48 CHAPTER 1. CONDUCTORS, SEMICONDUCTORS AND DIODES

If we want colors with wavelengths shorter than the green, we must abandon the GaAsP system and look
for more suitable materials. A compound semiconductor made from the II-VI elements Zn and Se make up
one promising system, and several research groups have successfully made blue and blue-green LEDs from
ZnSe. SiC is another (weak) blue emitter which is commercially available on the market. Recently, workers
at a tiny, unknown chemical company stunned the "display world" by announcing that they had successfully
fabricated a blue LED using the II-V material GaN. A good blue LED has been the "holy grail" of the
display and CD ROM research community for a number of years now. Obviously, adding blue to the already
working green and red LED's completes the set of 3 primary colors necessary for a full-color �at panel display
(Hang a TV screen on your wall like a picture?). Using a blue LED or laser in a CD ROM would more than
quadruple its data capacity, as bit diameter scales as λ, and hence the area as λ2.

1.13 LASER13

Speaking of lasers, what is the di�erence between an LED and a solid state laser? There are some di�erences,
but both devices operate on the same principle of having excess electrons in the conduction band of a
semiconductor, and arranging it so that the electrons recombine with holes in a radiative fashion, giving o�
light in the process. What is di�erent about a laser? In an LED, the electrons recombine in a random and
unorganized manner. They give o� light by what is known as spontaneous emission, which simply means
that the exact time and place where a photon comes out of the device is up to each individual electron, and
things happen in a random way.

There is another way in which an excited electron can emit a photon however. If a �eld of light (or a set of
photons) happens to be passing by an electron in a high energy state, that light �eld can induce the electron
to emit an additional photon through a process called stimulated emission. The photon �eld stimulates
the electron to emit its energy as an additional photon, which comes out in phase with the stimulating �eld.
This is the big di�erence between incoherent light (what comes from an LED or a �ashlight) and coherent
light which comes from a laser. With coherent light, all of the electric �elds associated with each phonon
are all exactly in phase. This coherence is what enables us to keep a laser beam in tight focus, and to allow
it to travel a large distance without much divergence or spreading out.

So how do we restructure an LED so that the light is generated by stimulated emission rather than
spontaneous emission? Firstly, we build what is called a heterostructure. All this means is that we build
up a sandwich of somewhat di�erent materials, with di�erent characteristics. In this case, we put two wide
band-gap regions around a region with a narrower band gap. The most important system where this is
done is the AlGaAs/GaAs system. A band diagram for such a set up is shown in Figure 1.59 (Double
Heterostructure GaAs/AlGaAs laser). AlGaAs (pronounced "Al-Gas") has a larger band-gap then does
GaAs. The potential "well" formed by the GaAs means that the electrons and holes will be con�ned there,
and all of the recombination will occur in a very narrow strip. This greatly increases the chances that the
carriers can interact, but we still need some way for the photons to behave in the proper manner. Figure 1.60
(Laser Diode) is a picture of what a real diode might look like. We have the active GaAs layer sandwich
in-between the two heterostructure con�nement layers, with a contact on top and bottom. On either end
of the device, the crystal has been "cleaved" or broken along a crystal lattice plane. This results in a shiny
"mirror-like" surface, which will re�ect photons. The back surface (which we can not see here) is also cleaved
to make a mirror surface. The other surfaces are purposely roughened so that they do not re�ect light. Now
let us look at the device from the side, and draw just the band diagram for the GaAs region (Figure 1.61
(Build up of a photon �eld in a laser diode)). We start things o� with an electron and hole recombining
spontaneously. This emits a photon which heads towards one of the mirrors. As the photon goes by other
electrons, however, it may cause one of them to decay by stimulated emission. The two (in phase) photons
hit the mirror and are re�ected and start back the other way . As they pass additional electrons, they
stimulate them into a transition as well, and the optical �eld within the laser starts to build up. After a bit,
the photons get down to the other end of the cavity. The cleaved facet, while it acts like a mirror, is not a

13This content is available online at <http://cnx.org/content/m1012/2.16/>.
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perfect one. Some light is not re�ected, but rather "leaks"; though, and so becomes the output beam from
the laser. The details of �nding what the ratio of re�ected to transmitted light is will have to wait until later
in the course when we talk about dielectric interfaces. The rest of the photons are re�ected back into the
cavity and continue to stimulate emission from the electrons which continue to enter the gain region because
of the forward bias on the diode.

Double Heterostructure GaAs/AlGaAs laser

Figure 1.59

Laser Diode

Figure 1.60
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Build up of a photon �eld in a laser diode

Figure 1.61

Output Coupling

Figure 1.62

In reality, the photons do not move back and forth in a big "clump" as we have described here, rather
they are distributed uniformly along the gain region. The �eld within the cavity will build up to the point
where the loss of energy by light leaking out of the mirrors just equals the rate at which energy is replaced
by the recombining electrons.
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1.14 Solar Cells14

Now let us look at the opposite process of light generation for a moment. Consider the following situation.

P-N diode under illlumination

Figure 1.63

We have just a plain old normal p-n junction, only now, instead of applying an external voltage, we
imagine that the junction is being illuminated with light whose photon energy is greater than the band-gap.
In this situation, instead of recombination, we will get photo-generation of electron hole pairs. The photons
simply excite electrons from the full states in the valence band, and "kick" them up into the conduction
band, leaving a hole behind15. As you can see from Figure 1.63 (P-N diode under illlumination), this creates
excess electrons in the conduction band in the p-side of the diode, and excess holes in the valence band of
the n-side. These carriers can di�use over to the junction, where they will be swept across by the built-in
electric �eld in the depletion region. If we were to connect the two sides of the diode together with a wire, a
current would �ow through that wire as a result of the electrons and holes which move across the junction.

Which way would the current �ow? A quick look at Figure 1.63 (P-N diode under illlumination) shows
that holes (positive charge carriers) are generated on the n-side and they �oat up to the p-side as they go
across the junction. Hence positive current must be coming out of the anode, or p-side of the junction.
Likewise, electrons generated on the p-side fall down the junction potential, and come out the n-side, but
since they have negative charge, this �ow represents current going into the cathode. We have constructed
a photovoltaic diode, or solar cell! Figure 1.64 (Schematic representation of a photovoltaic cell) is a
picture of what this would look like schematically. We might like to consider the possibility of using this
device as a source of energy, but the way we have things set up now, since the voltage across the diode is
zero, and since power equals current times voltage, we see that we are getting nada from the cell. What we
need, obviously, is a load resistor, so let's put one in. It should be clear from Figure 1.65 (Photovoltaic cell
with a load resistor) that the photo current �owing through the load resistor will develop a voltage which
it biases the diode in the forward direction, which, of course will cause current to �ow back into the anode.
This complicates things, it seems we have current coming out of the diode and current going into the diode
all at the same time! How are we going to �gure out what is going on?

14This content is available online at <http://cnx.org/content/m1013/2.13/>.
15This is similiar to the thermal excitation process we talked about earlier.
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Schematic representation of a photovoltaic cell

Figure 1.64

Photovoltaic cell with a load resistor

Figure 1.65

The answer is to make a model. The current which arises due to the photon �ux can be conveniently
represented as a current source. We can leave the diode as a diode, and we have the circuit shown in
Figure 1.66 (Model of PV cell). Even though we show Iout coming out of the device, we know by the usual
polarity convention that when we de�ne Vout as being positive at the top, then we should show the current
for the photovoltaic, Ipv as current going into the top, which is what was done in Figure 1.66 (Model of
PV cell). Note that Ipv = Idiode − Iphoto, so all we need to do is to subtract the two currents; we do this
graphically in Figure 1.67 (Combining the diode and the current source). Note that we have numbered the
four quadrants in the I-V plot of the total PV current. In quadrant I and III, the product of I and V is a
positive number, meaning that power is being dissipated in the cell. For quadrant II and IV, the product of
I and V is negative, and so we are getting power from the device. Clearly we want to operate in quadrant
IV. In fact, without the addition of an external battery or current source, the circuit, will only run in the
IV'th quadrant. Consider adjusting RL, the load resistor from 0 (a short) to∞ (an open). With RL = 0, we
would be at point A on Figure 1.67 (Combining the diode and the current source). As RL starts to increase
from zero, the voltage across both the diode and the resistor will start to increase also, and we will move to
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point B, say. As RL gets bigger and bigger, we keep moving along the curve until, at point C, where RL is
an open and we have the maximum voltage across the device, but, of course, no current coming out!

Model of PV cell

Figure 1.66

Combining the diode and the current source

Figure 1.67

Power is V I so at B for instance, the power coming out would be represented by the area enclosed by the
two dotted lines and the coordinate axes. Someplace about where I have point B would be where we would
be getting the most power out of out solar cell.

Figure 1.68 (A real solar cell) shows you what a real solar cell would look like. They are usually made
from a complete wafer of silicon, to maximize the usable area. A shallow (0.25 µm) junction is made on the
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top, and top contacts are applied as stripes of metal conductor as shown. An anti-re�ection (AR) coating is
applied on top of that, which accounts for the bluish color which a typical solar cell has.

A real solar cell

Figure 1.68

The solar power �ux on the earth's surface is (conveniently) about 1kWm2 or 100mWcm2 . So if we made a solar
cell from a 4 inch diameter wafer (typical) it would have an area of about 81cm2 and so would be receiving
a �ux of about 8.1 Watts. Typical cell e�ciencies run from about 10% to maybe 15% unless special (and
costly) tricks are made. This means that we will get about 1.2 Watts out from a single wafer. Looking at B
on 2.59 we could guess that Vout will be about 0.5 to 0.6 volts, thus we could expect to get maybe around
2.5 amps from a 4 inch wafer at 0.5 volts with 15% e�ciency under the illumination of one sun.



Chapter 2

Bipolar Transistors

2.1 Intro to Bipolar Transistors1

Let's leave the world of two terminal devices (which are all called diodes by the way; diode just means
two-terminals) and venture into the much more interesting world of three terminals. The �rst device we will
look at is called the bipolar transistor. Consider the structure shown in Figure 2.1 (Bipolar Transistor
Structure):

Bipolar Transistor Structure

Figure 2.1: Structure of an NPN bipolar transistor

The device consists of three layers of silicon, a heavily doped n-type layer called the emitter, a moderately
doped p-type layer called the base, and third, more lightly doped layer called the collector. In a biasing
(applied DC potential) con�guration called forward active biasing, the emitter-base junction is forward
biased, and the base-collector junction is reverse biased. Figure 2.2 (forward_active_biasing) shows the
biasing conventions we will use. Both bias voltages are referenced to the base terminal. Since the base-
emitter junction is forward biased, and since the base is made of p-type material, VEB must be negative. On
the other hand, in order to reverse bias the base-collector junction VCB will be a positive voltage.

1This content is available online at <http://cnx.org/content/m1014/2.15/>.
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forward_active_biasing

Figure 2.2: Forward active biasing of an npn bipolar transistor

Figure 2.3: Band diagram and carrier �uxes in a bipolar transistor

Now, let's draw the band-diagram for this device. At �rst this might seem hard to do, but we know
what forward and reverse biased band diagrams look like, so we'll just stick one of each together. We show
this in Figure 2.3. Figure 2.3 is a very busy �gure, but it is also very important, because it shows all of
the important features in the operation the transistor. Since the base-emitter junction is forward biased,
electrons will go from the (n-type) emitter into the base. Likewise, some holes from the base will be injected
into the emitter.

In Figure 2.3, we have two di�erent kinds of arrows. The open arrows which are attached to the carriers,
show us which way the carrier is moving. The solid arrows which are labeled with some kind of subscripted
I, represent current �ow. We need to do this because for holes, motion and current �ow are in the same
direction, while for electrons, carrier motion and current �ow are in opposite directions.

Just as we saw in the last chapter, the electrons which are injected into the base di�use away from the
emitter-base junction towards the (reverse biased) base-collector junction. As they move through the base,
some of the electrons encounter holes and recombine with them. Those electrons which do get to the base-
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collector junction run into a large electric �eld which sweeps them out of the base and into the collector.
(They "fall" down the large potential drop at the junction.)

These e�ects are all seen in Figure 2.3, with arrows representing the various currents which are associated
with each of the carriers �uxes. IEe represents the current associated with the electron injection into the base.
(It points in the opposite direction from the motion of the electrons, since electrons have a negative charge.)
IEh represents the current associated with holes injection into the emitter from the base. IBr represents
recombination current in the base, while ICe represents the electron current going into the collector. It
should be easy for you to see that:

IE = IEe + IEh (2.1)

IB = IEh + IBr (2.2)

IC = ICe (2.3)

In a "good" transistor, almost all of the current across the base-emitter junction consists of electrons
being injected into the base. The transistor engineer works hard to design the device so that very little
emitter current is made up of holes coming from the base into the emitter. The transistor is also designed
so that almost all of those electrons which are injected into the base make it across to the base-collector
reverse-biased junction. Some recombination is unavoidable, but things are arranged so as to minimize this
e�ect.

2.2 Transistor Equations2

There are several "�gures of merit" for the operation of the transistor. The �rst of these is called the emitter
injection e�ciency, γ. The emitter injection e�ciency is just the ratio of the electron current �owing in
the emitter to the total current across the emitter base junction:

γ =
Ie

IEe + IEh
(2.4)

If you go back and look at the diode equation (1.51) you will note that the electron forward current
across a junction is proportional to Nd the doping on the n-side of the junction. Clearly the hole current
will be proportional to Na, the acceptor doping on the p-side of the junction. Thus, at least to �rst order

γ =
NdE

NdE +NaB
(2.5)

(There are some other considerations which we are ignoring in obtaining this expression, but to �rst order,
and for most "real" transistors, (2.5) is a very good approximation.)

The second "�gure of merit" is the base transport factor, αT . The base transport factor tells us what
fraction of the electron current which is injected into the base actually makes it to collector junction. This
turns out to be given, to a very good approximation, by the expression

αT = 1− 1
2

(
WB

Le

)2

(2.6)

Where WB is the physical width of the base region, and Le is the electron di�usion length, de�ned in
the electron di�usion length equation (1.72).

Le =
√
Deτr (2.7)

2This content is available online at <http://cnx.org/content/m1015/2.14/>.
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Clearly, if the base is very narrow compared to the di�usion length, and since the electron concentration
is falling o� like e

−x
Le the shorter the base is compared to Le the greater the fraction of electrons who will

actually make it across. We saw before that a typical value for Le might be on the order of 0.005 cm or 50
µm. In a typical bipolar transistor, the base width, WB is usually only a few µm and so α can be quite close
to unity as well.

Looking back at this �gure (Figure 2.3), it should be clear that, so long as the collector-base junction
remains reverse-biased, the collector current ICe, will only depend on how much of the total emitter current
actually gets collected by the reverse-biased base-collector junction. That is, the collector current IC is just
some fraction of the total emitter current IE . We introduce yet one more constant which re�ects the ratio
between these two currents, and call it simply "α." Thus we say

IC = αIE (2.8)

Since the electron current into the base is just γIE and αT of that current reaches the collector, we can
write:

IC = αIE

= αT γIE
(2.9)

Looking back at the structure of an npn bipolar transistor (Figure 2.1: Bipolar Transistor Structure), we
can use Kircho�'s current law for the transistor and say:

IC + IB = IE (2.10)

or
IB = IE − IC

= IC
α − IC

(2.11)

This can be re-written to express IC in terms of IB as:

IC =
α

1− α
IB ≡ βIB (2.12)

This is the fundamental operational equation for the bipolar equation. It says that the collector current
is dependent only on the base current. Note that if α is a number close to (but still slightly less than) unity,
then β which is just given by

β =
α

1− α
(2.13)

will be a fairly large number. Typical values for a will be on the order of 0.99 or greater, which puts β, the
current gain, at around 100 or more! This means that we can control, or amplify the current going into the
collector of the transistor with a current 100 times smaller going into the base. This all occurs because the
ratio of the collector current to the base current is �xed by the conditions across the emitter-base junction,
and the ratio of the two, IC to IB is always the same.

2.3 Transistor I-V Characteristics3

Let's now take a look at some current voltage relationships for the bipolar transistor. In the absence of any
voltage or current on the emitter-base junction, if we were to make a plot of IC as a function of VCB it
would look something like Figure 2.4. Check back with the voltage convention in the �gures on the structure

3This content is available online at <http://cnx.org/content/m1016/2.15/>.
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(Figure 2.1: Bipolar Transistor Structure) and forward active biasing (Figure 2.2: forward_active_biasing)
of a bipolar transistor to make sure you agree with what I drew. All we've got here is a pn junction or diode.
It just happens to be biased in a reverse direction, so it conducts when VCB is negative and not when VCB
is positive. Thus, all we need to do is draw a diode curve, but upside down!

Figure 2.4: I-V for the collector-base terminals of the bipolar transistor

What happens if we now also have some bias applied to the emitter-base junction? As we saw, so long
as the base-collector junction is reverse biased, almost all of the collector current consists of electrons which
have been injected into the base by the emitter, di�use across the base region, and then fall down the base-
collector junction. The rate at which electrons fall down the junction does not depend on how large a drop
there is (e.g. how big VCB is). The only thing that matters, in so far as the collector current is concerned,
is how fast electrons are being injected into the base region, which is, of course, determined by the emitter
current IE Thus for several di�erent values of emitter current, IE1 , IE2 , and IE1 , we might see something like
Figure 2.5. In the �rst quadrant, which is in the "forward active bias mode," the output from the collector
terminal looks more or less like a current source; that is IC is a constant, regardless of what VCB is. Note
however, that we must use a controlled source, in this case, a current-controlled current source, since IC
depends on what IE happens to be. Obviously, looking in the (forward biased) emitter-base terminal, we
see the usual p-n junction. Thus, if we were interested in building a "model" of this device, we might come
up with something like Figure 2.6. Note that the base terminal is common to both inputs. Since we would
actually like to think of the transistor as a two-port device (with an input and an output) the model for the
transistor is often drawn as shown in Figure 2.7.
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Figure 2.5: Common base characteristics of the bipolar transistor

Figure 2.6: Model for the common base transistor

Figure 2.7: Re-drawn common base transistor

The only drawback with what we have so far is that except in some specialized high-frequency circuits,
the bipolar transistor is very rarely used in the common base con�guration. Most of the time, you will
see it in either the common emitter con�guration (Figure 2.8), or the common collector con�guration. The
common emitter is probably the way the transistor is most often used.
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Figure 2.8: Con�guration for the common emitter circuit

Note that we have a current source driving the base, and we have applied just one battery all the way
from the collector to the emitter. The battery now has to do two thing: a) It has to provide reverse bias
for the base-collector junction and b) it has to provide forward bias for the base emitter junction. For this
reason, the IC as a function of VCE curves look a little di�erent now. It is now necessary for VCE to become
slightly positive in order to get the transistor into its active mode. The other di�erence, of course, is that
the collector current is now shown as being βIB the base current instead of αIE the emitter current.

Figure 2.9: Common emitter characteristic curves for the transistor

2.4 Common Emitter Models4

Let's go ahead and draw a model for the transistor in the common emitter con�guration (Figure 2.10). We
again have a diode connected between the base and the emitter, and a new current controlled current source
between collector and emitter. There is one small caveat which we need to keep in mind however when
drawing the common emitter circuit. The diode we see in the base circuit is not the same one as we had in
the common base model. In the common base model, it was true that

IE = Isat

(
e
qVBE
kT − 1

)
(2.14)

4This content is available online at <http://cnx.org/content/m1017/2.10/>.
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Figure 2.10: Discrete model for the common emitter con�guration

For the base however, only a small fraction of the current that goes through this "diode" actually goes
in through the base, the rest is coming in through the collector. Thus we have to make a couple of changes

IC = αIE

= αIsat

(
e
qVBE
kT − 1

) (2.15)

IB = IC
β

= αIsat
β

(
e
qVBE
kT − 1

) (2.16)

So the operational equation for the diode in the base circuit still is the usual exponential function of VBE ,
except that it now has a saturation current of αIsatβ instead of just Isat.

In principle you could put this model into a circuit, and analyze it to �nd all of the necessary voltages
and currents. However, this would not be very convenient. The base-emitter junction is connected by a
diode, which as we know, has a very non-linear I-V relationship. It would be nice if we could come up with
a linear model which, at least over some limited range of inputs, we could use with con�dence.

2.5 Small Signal Models5

In order to do this we need to introduce the concept of bias, and large signal and small signal device
behavior. Consider the following circuit, shown in Figure 2.11. We are applying the sum of two voltages to
the diode, VB , the bias voltage (which is assumed to be a DC voltage) and vs the signal voltage (which is
assumed to be AC, or sinusoidal). By de�nition, we will assume that |vs| is much less than |VB | As a result
of these voltages, there will be a current IB �owing through the diode which will consist of two currents, IB
the so-called bias current, and is, which will be the signal current. Again, we assume that is is much
smaller than IB .

5This content is available online at <http://cnx.org/content/m1018/2.13/>.
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Figure 2.11: Putting together a large signal bias, and a small signal AC excitation

What we would like to do is to see if we can �nd a linear relationship between vs and is which we could
use in our signal analysis. There are two ways we can attack the problem; a graphical approach, and a
purely mathematical approach. Lets try the graphical approach �rst, as it is more intuitive, and then we
will con�rm what we �nd out with a mathematical one.

Let's remind ourselves about the I-V characteristics of a diode. In the present situation, VD is the sum
of two voltages, a DC bias voltage VB and an AC signal, vs Let's plot VD (t) on the VD axis as shown in
Figure 2.13. How are we going to �gure out what the current is? What we need to do is to project the
voltage up onto the characteristic I-V curve, and then project over to the vertical current axis We do this in
Figure 2.14. Note that the output current signal is somewhat distorted, which means we do not have linear
behavior yet. Let's reduce the amplitude of the signal voltage, as shown in Figure 2.15. Now we see two
things: a) the output is much less distorted, so we must getting a more linear behavior, and b) we could get
the amplitude of the output signal is simply by multiplying the input signal vs by the slope of the I-V curve
at the point where the device is biased. We have replaced the non-linear I-V curve of the diode by a linear
one, which is applicable over the range of the signal voltage.

is =
d

dVD
(ID) |ID=IB (2.17)

Figure 2.12: Diode I-V behavior
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Figure 2.13: Bias and signal excitation of a diode I-V curve

Figure 2.14: Graphically �nding the AC response
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Figure 2.15: With a smaller signal, the response is more linear

To get the slope, we need a few simple equations:

ID = Isat

(
e
qVD
kT − 1

)
≈ Isate

qVD
kT (2.18)

d

dVD
(ID) =

q

kT
Isate

qVD
kT (2.19)

When we evaluate the partial derivative at voltage VD, we note that

Isate
qVD
kT = IB (2.20)

and hence, the slope of the curve is just q
kT IB or 40IB , since q

kT just has a value of 40V −1 at room tem-
peratures. Note that current divided by voltage is just conductance, (which is just the inverse of resistance)
and so we have found the small signal linear conductance for the diode.

As far as the AC signal generator is concerned, we could replace the diode with a resistor whose value is
the inverse of the conductance, or r = 1

40IB , where IB is the DC bias current through the diode.
Students are sometimes confused about how we can replace a diode, which only conducts in one direction,

with a resistor, which conducts both ways. The answer is to look carefully at Figure 2.15. As the AC signal
voltage rises and falls, the AC output current also increases and decreases in the same manner. Over the
limited range of the AC signal parameters, the diode is indeed a linear signal element, not a rectifying one,
as it is for large signal applications.

Now let's get the same answer from a purely mathematical approach.

ID = IB + is = Isat

(
e
qVD
kT − 1

)
≈ e

q(VB+vs)
kT (2.21)

In the last expression, we dropped the −1 as it is very small compared to the exponential term and can be
neglected.

Now we note that:
e
q(VB+vs)

kT = e
qVB
kT e

qvs
kT (2.22)

And, for the second exponential, if qVB is much less than kT ,

e
qvs
kT ≈ 1 +

qvs
kT

+ . . . (2.23)
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where we have used the power series expansion for the exponential, but have only taken the �rst two terms.
Thus

IB + is ≈ Isate
qVB
kT

(
1 +

qvs
kT

)
(2.24)

Obviously
IB = Isate

qVB
kT (2.25)

and
is = Isate

qVB
kT

(
q
kT vs

)
= q

kT IBvs
(2.26)

which gives us the same result as before
is
vs

=
q

kT
IB (2.27)

2.6 Small Signal Model for Bipolar Transistor6

Thus if we go back to the circuit model (Figure 2.10) for the common emitter transistor, and re-draw it as
a small signal model it would look something like Figure 2.16. Here we have replaced the diode with a
linear element (a resistor, called rπ) and we have changed the notation for the currents from IB and IC to ib
and ic respectively, to remind us that we are now talking about small signal ac quantities, not large signal
ones. The bias currents IB and IC are still �owing through the device (and we will leave it to ELEC 342 to
discuss how these are generated and set up) but they do not appear in the small signal model. This model
is only used to �gure out how the transistor behaves for the ac signal going through it, not have it responds
to large DC values.

Figure 2.16: Small signal linear model for the common emitter transistor

Now rπ the equivalent small signal resistance of the base-emitter diode is given simply by the inverse of
the conductance of the equivalent diode. Remember, we found

rπ = 1
q
kT IB

= 1
q
kT

IC
β

= β
40IC

(2.28)

6This content is available online at <http://cnx.org/content/m1019/2.12/>.
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where we have used the fact that IC = βIB and q
kT = 40V −1. As we said earlier, typical values for βin a

standard bipolar transistor will be around 100. Thus, for a typical collector bias current of IC = 1mA, rπ
will be about 2.5 kΩ.

There is one more item we should consider in putting together our model for the bipolar transistor. We
did not get things completely right when we drew the common emitter characteristic curves (Figure 2.9)
for the transistor. There is a somewhat subtle e�ect going on when VCE is increased. Remember, we said
that the current coming out of the collector is not e�ected by how big the drop was in the reverse biased
base-collector junction. The collector current just depends on how many electrons are injected into the
base by the emitter, and how many of them make it across the base to the base-collector junction. As the
base-collector reverse bias is increased (by increasing VCE the depletion width of the base-collector junction
increases as well. This has the e�ect of making the base region somewhat shorter. This means that a few
more electrons are able to make it across the base region without recombining and as a result α and hence
β increase somewhat. This then means that IC goes up slightly with increasing VCE . The e�ect is called
base width modulation. Let us now include that e�ect in the common emitter characteristic curves. As
you can see in Figure 2.18, there is now a slope to the IC (VCE) curve, with IC increasing somewhat as VCE
increases. The e�ect has been somewhat exaggerated in Figure 2.17, and I will now make the slope even
bigger so that we may de�ne a new quantity, called the Early Voltage.

Figure 2.17: Common emitter response with base-width modulation e�ect

Figure 2.18: Finding the Early Voltage
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Back in the very beginning of the transistor era, an engineer at Bell Labs, Jim Early, predicted that there
would be a slope to the IC curves, and that they would all project back to the same intersection point on
the horizontal axis. Having made that prediction, Jim went down into the lab, made the measurement, and
con�rmed his prediction, thus showing that the theory of transistor behavior was being properly understood.
The point of intersection of the VCE axis is known as the Early Voltage. Since the symbol VE , for the
emitter voltage was already taken, they had to label the Early Voltage VA instead. (Even though the
intersection point in on the negative half of the VCE axis, VA is universally quoted as a positive number.)

How can we model the sloping I-V curve? We can do almost the same thing as we did with the solar cell.
The horizontal part of the curve is still a current source, and the sloped part is simply a resistor in parallel
with it. Here is a graphical explanation in Figure 2.19.

Figure 2.19: Combining a current course and a resistor in parallel

Usually, the slope is much less than we have shown here, and so for any given value of IC , we can just
take the slope of the line as IC

VA
, and hence the resistance, which is usually called ro is just VA

Ic
. Thus, we

add ro to the small signal model for the bipolar transistor. This is shown in Figure 2.20. In a good quality
modern transistor, the Early Voltage, VA will be on the order of 150-250 Volts. So if we let VA = 200, and
we imagine that we have our transistor biased at 1 mA, then

ro = 200V
1mA

= 200kΩ
(2.29)

which is usually much larger than most of the other resistors you will encounter in a typical circuit. In most
instances, ro can be ignored with no problem. If you get into high impedance circuits however, as you might
�nd in a instrumentation ampli�er, then vbe has to be taken into account.
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Figure 2.20: Including ro in the small signal linear model

Sometimes it is advantageous to use a mutual transconductance model instead of a current gain model
for the transistor. If we call the input small signal voltage vbe, then obviously

ib = vbe
rπ

= vbe
β

40IC

(2.30)

But

ic = βib =
βvbe
β

40IC

= 40ICvbe ≡ gmvbe (2.31)

Where gm is called the mutual transconductance of the transistor. Notice that β has completely cancelled
out in the expression for gm and that gm depends only upon the bias current, IC , �owing through the collector
and not on any of the physical properties of the transistor itself!

Figure 2.21: Transconductance small signal linear model

Finally, there is one last physical consideration we should make concerning the operation of the bipolar
transistor. The base-collector junction is reverse biased. We know that if we apply too much reverse bias to
a pn junction, it can breakdown through avalanche multiplication. Breakdown in a transistor is somewhat
"softer" than for a simple diode, because once a small amount of avalanche multiplication starts, extra
holes are generated within the base-collector junction. These holes fall up, into the base, where they act as
additional base current, which, in turn, causes IC to increase. This is shown in Figure 2.22.
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Figure 2.22: Ionization at the base-collector junction causes additional base current

A set of characteristic curves for a transistor going into breakdown is also shown in Figure 2.23.

Figure 2.23: Bipolar Transistor going into breakdown

Well, we have learned quite a bit about bipolar transistors in a very short space. Go back over this
chapter and see if you can pick out the two or three most important ideas of equations which would make
up a set of "facts" that you could stick away in you head someplace. Do this so you will always have them
to refer to when the subject of bipolars comes up (In say, a job interview or something!).



Chapter 3

FETs

3.1 Introduction to MOSFETs1

We now move on to another three terminal device - also called a transistor. (In truth this device really has at
least four, and probably �ve, terminals, but we will leave the subtle details for a later time.) This transistor,
however, works on much di�erent principles than does the bipolar junction transistor of the last chapter. We
will now focus on a device called the Field E�ect Transistor, or Metal-Oxide-Semiconductor Field
E�ect Transistor or simply, the MOSFET. Consider the following:

Figure 3.1: The start of a �eld e�ect transistor

Here we have a block of silicon, doped p-type. Into it we have made two regions which are doped n-type.
To each of those n-type regions we attach a wire, and connect a battery between them. If we try to get
some current, I, to �ow through this structure, nothing will happen, because the n-p junction on the RHS
is reverse biased (We have the positive lead from the battery going to the n-side of the p-n junction). If we
attempt to remedy this by turning the battery around, we will now have the LHS junction reverse biased,
and again, no current will �ow. If, for whatever reason, we want current to �ow, we will need to come up
with some way of forming a layer of n-type material between one n-region and the other. This will then
connect them together, and we can run current in one terminal and out the other.

1This content is available online at <http://cnx.org/content/m1020/2.12/>.
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To see how we will do this, let's do two things. First we will grow a layer of SiO2 (silicon dioxide, or
just plain "oxide") on top of the silicon. (This turns out to be relatively easy, we just stick the wafer in
an oven with some oxygen �owing through it, and heat everything up to about 1100 ◦C for an hour or so,
and we end up with a nice, high-quality insulating SiO2 layer on top of the silicon). On top of the oxide
layer we then deposit a conductor, which we call the gate. In the "old days" the gate would have been a
layer of aluminum (Hence the "metal-oxide-silicon" or MOS name). Today, it is much more likely that a
heavily doped layer of polycrystalline silicon (polysilicon, or more often just "poly") would be deposited to
form the gate structure. (I guess "POS" sounded funny to people in the �eld, because it never caught on as
a name for these devices). Polysilicon is made from the reduction of a gas, such as silane ( SiH4) through
the reaction

SiH4 (g)→ Si (s) + 2H2 (g) (3.1)

The silicon is polycrystalline (composed of lots of small silicon crystallites) because it is deposited on top
of the oxide, which is amorphous, and so it does not provide a single crystal "matrix" which would allow the
silicon to organize itself into one single crystal. If we had deposited the silicon on top of a single crystal silicon
wafer, we would have formed a single crystal layer of silicon called an epitaxial layer. (Epitaxy comes
from the Greek, and it just means "ordered upon". Thus an epitaxial layer is one which follows the order of
the substrate on which it is grown). This is sometimes done to make structures for particular applications.
For instance, growing a n-type epitaxial layer on top of a p-type substrate permits the fabrication of a very
abrupt p-n junction.

3.2 Basic MOS Structure2

Figure 3.2: Formation of the MOS structure

Figure 3.2 shows the steps necessary to make the MOS structure. It will help us in our understanding if we
now rotate our picture so that it is pointing sideways in our next few drawings. (Also, we will forget about
the two n-regions for awhile, and pick them back up later when we rotate the structure right side up again.)
Figure 3.3 shows the rotated structure. Note that in the p-silicon we have positively charged mobile holes,
and negatively charged, �xed acceptors. Because we will need it later, we have also shown the band diagram
for the semiconductor below the sketch of the device. Note that since the substrate is p-type, the Fermi level
is located down close to the valance band.

2This content is available online at <http://cnx.org/content/m1021/2.12/>.
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Figure 3.3: Basic MOS structure

Let us now place a potential between the gate and the silicon substrate. Suppose we make the gate
negative with respect to the substrate. Since the substrate is p-type, it has a lot of mobile, positively
charged holes in it. Some of them will be attracted to the negative charge on the gate, and move over to
the surface of the substrate. This is also re�ected in the band diagram below the sketch of the structure
(Figure 3.4). Remember that the density of holes is exponentially proportional to how close the Fermi level
is to the valence band edge. We see that the band diagram has been bent up slightly near the surface to
re�ect the extra holes which have accumulated there.

Figure 3.4: Applying a negative gate voltage
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An electric �eld will develop between the positive holes and the negative gate charge. Note that the
gate and the substrate form a kind of parallel plate capacitor, with the oxide acting as the insulating layer
in-between them. The oxide is quite thin compared to the area of the device, and so it is quite appropriate
to assume that the electric �eld inside the oxide is a uniform one. (We will ignore fringing at the edges.)
The integral of the electric �eld is just the applied gate voltage Vg. If the oxide has a thickness xox then
since Eox is uniform, it is given by

Eox =
Vg
xox

(3.2)

If we focus in on a small part of the gate, we can make a little "pill" box which extends from somewhere
in the oxide, across the oxide/gate interface and ends up inside the gate material someplace. The pill-box
will have an area ∆s. Now we will invoke Gauss' law which we reviewed earlier. Gauss' law simply says that
the surface integral over a closed surface of the displacement vector D (which is, of course, just ε times E)
is equal to the total charge enclosed by that surface. We will assume that there is a surface charge density
−Qg (Coulombscm2 ) on the surface of the gate electrode (Figure 3.5). The integral form of Gauss' Law is just:∮

εoxEdS = Qencl (3.3)

Figure 3.5: Finding the surface charge density

Note that we have used εoxE in place of D. In this particular set-up the integral is easy to perform, since
the electric �eld is uniform, and only pointing in through one surface - it terminates on the negative surface
charge inside the pill-box. The charge enclosed in the pill box is just − (Qg∆s), and so we have (keeping in
mind that the surface integral of a vector pointing into the surface is negative)∮

εoxEdS = − (εoxEox∆s)

= − (Qg∆s)
(3.4)

or
εoxEox = Qg (3.5)

Now, we can use (3.2) to get
εoxVg
xox

= Qg (3.6)
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or
Qg
Vg

=
εox
xox
≡ cox (3.7)

The quantity cox is called the oxide capacitance. It has units of Faradscm2 , so it is really a capacitance per
unit area of the oxide. The dielectric constant of silicon dioxide, εox, is about 3.3 × 10−13F/cm. A typical
oxide thickness might be 250 Å (or 2.5× 10−6cm). In this case, cox would be about 1.30× 10−7 F

cm2 . (The
units we are using here, while they might seem a little arbitrary and confusing, are the ones most commonly
used in the semiconductor business. You will get used to them in a short while.)

The most useful form of (3.7) is when it is turned around:

Qg = coxVg (3.8)

as it gives us a way to �nd the charge on the gate in terms of the gate potential. We will use this equation
later in our development of how the MOS transistor really works.

It turns out we have not done anything very useful by apply a negative voltage to the gate. We have
drawn more holes there in what is called an accumulation layer, but that is not helping us in our e�ort
to create a layer of electrons in the MOSFET which could electrically connect the two n-regions together.

Let's turn the battery around and apply a positive voltage to the gate. (Actually, let's take the battery
out of the sketch (Figure 3.6) for now, and just let Vg be a positive value, relative to the substrate which
will tie to ground.) Making Vg positive puts positive Qg on the gate. The positive charge pushes the holes
away from the region under the gate and uncovers some of the negatively-charged �xed acceptors. Now
the electric �eld points the other way, and goes from the positive gate charge, terminating on the negative
acceptor charge within the silicon.

Figure 3.6: Increasing the voltage extends the depletion region further into the device

The electric �eld now extends into the semiconductor. We know from our experience with the p-n junction
that when there is an electric �eld, there is a shift in potential, which is represented in the band diagram
by bending the bands. Bending the bands down (as we should moving towards positive charge) causes the
valence band to pull away from the Fermi level near the surface of the semiconductor. If you remember the
expression we had for the density of holes in terms of Ev and Ef (electron and hole density equations (1.25))
it is easy to see that indeed

p = Nve
−

“
Ef−Ev
kT

”
(3.9)
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there is a depletion region (region with almost no holes) near the region under the gate. (Once Ef − Ev
gets large with respect to kT , the negative exponent causes p→ 0.)

Figure 3.7: Threshold, Ef is getting close to Ec

The electric �eld extends further into the semiconductor, as more negative charge is uncovered and the
bands bend further down. But now we have to recall the electron density equation (1.25), which tells us how
many electrons we have

n = Nce
−

“
Ec−Ef
kT

”
(3.10)

A glance at Figure 3.7 above reveals that with this much band bending, Ec the conduction band edge,
and Ef the Fermi level are starting to get close to one another (at least compared to kT ), which means
that n, the electron concentration, should soon start to become signi�cant. In the situation represented by
Figure 3.7, we say we are at threshold, and the gate voltage at this point is called the threshold voltage,
VT .

Now, let's increase Vg above VT . Here's the sketch in Figure 3.8.
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Figure 3.8: Inversion - Electrons form an inversion layer under the gate

Even though we have increased Vg beyond the threshold voltage, VT , and more positive charge appears
on the gate, the depletion region no longer moves back into the substrate. Instead electrons start to appear
under the gate region, and the additional electric �eld lines terminate on these new electrons, instead of on
additional acceptors. We have created an inversion layer of electrons under the gate, and it is this layer
of electrons which we can use to connect the two n-type regions in our initial device.

Where did these electrons come from? We do not have any donors in this material, so they can not
come from there. The only place from which electrons could be found would be through thermal generation.
Remember, in a semiconductor, there are always a few electron hole pairs being generated by thermal
excitation at any given time. Electrons that get created in the depletion region are caught by the electric
�eld and are swept over to the edge by the gate. I have tried to suggest this with the electron generation
event shown in the band diagram in the �gure. In a real MOS device, we have the two n-regions, and it is
easy for electrons from one or both to "fall" into the potential well under the gate, and create the inversion
layer of electrons.

3.3 Threshold Voltage3

Our task now is to �gure out how much voltage we need to get Vg up to VT and then to �gure out how much
negative charge there is under the gate, once VT has been exceeded. The �rst part is actually pretty easy. It
is a lot like the problem we looked at, with the one-sided diode, but with just a little added complication. To
start out, lets make a sketch of the charge density distribution under the conditions of this image (Figure 3.7),
just when we get to threshold. Well include the sketch of the structure too, so it will be clear what charge
we are talking about. This is shown in Figure 3.9. Now, we just use the equation we developed before for
the electric �eld (1.39), which came from integrating the di�erential form of Gauss' Law.

E (x) =
∫
ρ (x)
ε

dx (3.11)

3This content is available online at <http://cnx.org/content/m1022/2.15/>.
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Figure 3.9: Charge distribution at threshold

As before, we will do the integral graphically, starting at the LHS of the picture. The �eld outside the
structure must be zero, so we have no electric �eld until we get to the delta function of charge on the gate,
at which time it jumps up to some value we will call Eox. There is no charge inside the oxide, so d

dx (E) is
zero, and thus E (x) must remain constant at Eox until we reach the oxide/silicon interface.

Figure 3.10: Electric �eld in the oxide

If we were to put our little "pill box" on the oxide-silicon interface, the integral of D over the face in
the silicon would be εSiESi∆S, where ESi is the strength of the electric �eld inside the silicon. On the face
inside the oxide it would be − (εoxEox∆S), where Eox is the strength of the electric �eld in the oxide. The
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minus sign comes from the fact that the �eld on the oxide side is going into the pill box instead of out of it.
There is no net charge contained within the pill box, so the sum of these two integrals must be zero. (The
integral over the entire surface equals the enclosed charge, which is zero.)

εSiEmax∆S − εoxEox∆S = 0 (3.12)

or
εSiEmax = εoxEox (3.13)

Figure 3.11: Using Gauss' Law at the silicon/oxide interface

This is just a statement that it is the normal component of displacement vector, D, which must be
continuous across a dielectric interface, not the electric �eld, E. Solving (3.12) for the electric �eld in the
silicon:

ESi =
εox
εSi

Eox (3.14)

The dielectric constant of oxides about one third that of the dielectric constant of silicon dioxide, so we
see a "jump" down in the magnitude of the electric �eld as we go from oxide to silicon. The charge density
in the depletion region of the silicon is just − (qNa) and so the electric �eld now starts decreasing at a rate
−(qNa)
εSi

and reaches zero at the end of the depletion region, xp.
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Figure 3.12: electric �eld and voltage drops across the entire structure

Clearly, we have two di�erent regions, each with their own voltage drop. (Remember the integral of
electric �eld is voltage, so the area under each region of E (x) represents a voltage drop.) The drop in the
little triangular region we will call ∆VSi and it represents the potential drop in going from the bulk, down
to the bottom of the drooping conduction band at the silicon-oxide interface. Looking back at the earlier
�gure (Figure 3.7) on threshold, you should be able to see that this is nearly one whole band-gaps worth of
potential, and so we can safely say that ∆VSi ≈ 0.8→ 1.0V .

Just as with the single-sided diode, the width of the depletion region xp, is (which we saw in a previous
equation (1.42)):

xp =

√
2εSi∆VSi
qNa

(3.15)

from which we can get an expression for ESi

ESi = qNa
εSi

xp

=
√

2qNa∆VSi
εSi

(3.16)

by multiplying the slope of the E (x) line by the width of the depletion region, xp.
We can now use (3.14) to �nd the electric �eld in the oxide

Eox = εSi
εox
ESi

= 1
εox

√
2qεSiNa∆VSi

(3.17)

Finally, ∆Vox is simply the product of Eox and the oxide thickness, xox

∆Vox = xoxEox

= xox
εox

√
2qεSiNa∆VSi

(3.18)

Note that xox divided by εox is simply one over cox, the oxide capacitance, which we described earlier.
Thus

∆Vox =
1
cox

√
2qεSiNa∆VSi (3.19)
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And the threshold voltage VT is then given as

VT = ∆VSi + ∆Vox

= ∆VSi + 1
cox

√
2qεSiNa∆VSi

(3.20)

which is not that hard to calculate! (3.20) is one of the most important equations in this discussion of �eld
e�ect transistors, as it tells us when the MOS device is turned on.

(3.20) has several "handles" available to the device engineer to build a device with a given threshold
voltage. We know that as we increase Na, the acceptor density, that the Fermi level gets closer to the
valance band, and hence ∆Vsi will change some. But as we said, it will always be around 0.8 to 1 Volt, so
it will not be the driving term which dominates VT . Let's see what we get with an acceptor concentration
of 1017. Just for completeness, let's calculate Ef − Ev.

p = Na

= Nve
Ef−Ev
kT

(3.21)

thus Ef − Ev = kT ln
(
Nv
Na

)
In silicon, Nv is 1.08× 1019 and this makes Ef −Ev = 0.117eV which we will call ∆E. It is conventional

to say that a surface is inverted if, at the silicon surface, Ec−Ef , the distance between the conduction band
and the Fermi level is the same as the distance between the Fermi level and the valance band in the bulk.
With a little time spent looking at (3.14), you should be able to convince yourself that the total energy
change in going from the bulk to the surface in this case would be

q∆VSi = Eg − 2∆E

= 1.1eV − 2 (0.117eV )

= 0.866eV

(3.22)

Figure 3.13: Example of �nding ∆VSi

Using NA = 1017, εSi = 1.1× 10−12 F
cm and q = 1.6× 10−19C, we �nd that√

2qεsiNa∆VSi = 1.74× 10−7 (3.23)
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We saw earlier that if we have an oxide thickness of 250Å, we get a value for cox of 1.3 × 10−7 F
cm2 (

Coulombs
V cm2 ), and so

∆Vox = 1
cox

√
2qεSiNa∆VSi

= 1
1.3×10−7 1.74× 10−7

= 1.32V

(3.24)

and
VT = ∆VSi + ∆Vox

= 0.866 + 1.32

= 2.18V

(3.25)

3.4 MOS Transistor4

Now we can go back now to our initial structure, shown in the introduction to MOSFETs (Figure 3.1),
only this time we will add an oxide layer, a gate structure, and another battery so that we can invert the
region under the gate and connect the two n-regions together. Well also identify some names for parts of
the structure, so we will know what we are talking about. For reasons which will be clear later, we call
the n-region connected to the negative side of the battery the source, and the other one the drain. We
will ground the source, and also the p-type substrate. We add two batteries, Vgs between the gate and the
source, and Vds between the drain and the source.

Figure 3.14: Biasing a MOSFET transistor

It will be helpful if we also make another sketch, which gives us a perspective view of the device. For
this we strip o� the gate and oxide, but we will imagine that we have applied a voltage greater than VT to
the gate, so there is a n-type region, called the channel which connects the two. We will assume that the
channel region is L long and W wide, as shown in Figure 3.15.

4This content is available online at <http://cnx.org/content/m1023/2.15/>.
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Figure 3.15: The inversion channel and its resistance

Next we want to take a look at a little section of channel, and �nd its resistance dR, when the little
section is dx long.

dR =
dx

σsW
(3.26)

We have introduced a slightly di�erent form for our resistance formula here. Normally, we would have a
simple σ in the denominator, and an area A, for the cross-sectional area of the channel. It turns out to be
very hard to �gure out what that cross sectional area of the channel is however. The electrons which form
the inversion layer crowd into a very thin sheet of surface charge which really has little or no thickness,
or penetration into the substrate.

If, on the other hand we consider a surface conductivity (units: simply mhos), σs, where

σs = µsQchan (3.27)

then we will have an expression which we can evaluate. Here, µs is a surface mobility, with units of cm2

V sec .
We ran into µ in earlier chapters (Section 1.1), when we were building our simple conduction model. It was
the quantity which represented the proportionality between the average carrier velocity and the electric �eld.

v = µE (3.28)

µ =
qτ

m
(3.29)

The surface mobility is a quantity which has to be measured for a given system, and is usually just a number
which is given to you. Something around 300 cm2

V sec is about right for silicon. Qchan is called the surface
charge density or channel charge density and it has units of Coulombscm2 . This is like a sheet of charge, which
is di�erent from the bulk charge density, which has units of Coulombscm2 . Note that:

cm2

V oltsec
Coulombs

cm2 =
Coul
sec

V olt

= I
V

= mhos

(3.30)

It turns out that it is pretty simple to get an expression for Qchan, the surface charge density in the
channel. For any given gate voltage Vgs, we know5 that the charge density on the gate is given simply as:

Qg = coxVgs (3.31)

5"Basic MOS Structure", (7) <http://cnx.org/content/m11351/latest/#eqn08>



84 CHAPTER 3. FETS

However, until the gate voltage Vgs gets larger than VT we are not creating any mobile electrons under
the gate, we are just building up a depletion region. We'll de�ne QT as the charge on the gate necessary to
get to threshold. QT = coxVT . Any charge added to the gate above QT is matched by charge Qchan in the
channel. Thus, it is easy to say:

Qchannel = Qg −QT (3.32)

or
Qchan = cox (Vg − VT ) (3.33)

Thus, putting (3.32) and (3.27) into (3.26), we get:

dR =
dx

µscox (Vgs − VT )W
(3.34)

If you look back at Figure 3.14, you will see that we have de�ned a current Id �owing into the drain.
That current �ows through the channel, and hence through our little incremental resistance dR, creating a
voltage drop dVc across it, where Vc is the channel voltage.

dVc (x) = IddR

= Iddx
µscox(Vgs−VT )W

(3.35)

Let's move the denominator to the left, and integrate. We want to do our integral completely along the
channel. The voltage on the channel Vc (x) goes from 0 on the left to Vds on the right. At the same time,
x is going from 0 to L. Thus our limits of integration will be 0 and Vds for the voltage integral dVc (x) and
from 0 to L for the x integral dx.∫ Vds

0

µscox (Vgs − VT )WdVc =
∫ L

0

Iddx (3.36)

Both integrals are pretty trivial. Let's swap the equation order, since we usually want Id as a function
of applied voltages.

IdL = µscoxW (Vgs − VT )Vds (3.37)

We now simply divide both sides by L, and we end up with an expression for the drain current Id, in terms
of the drain-source voltage, Vds, the gate voltage Vgs and some physical attributes of the MOS transistor.

Id =
(
µscoxW

L
(Vgs − VT )

)
Vds (3.38)

3.5 MOS Regimes6

This equation looks a lot like the I-V characteristics of a resistor! Id is simply proportional to the drain
voltage Vds. The proportionality constant depends on the dimensions of the device, W and L as they
intuitively should. The current increases as the transistor gets wider, it decreases as it gets longer. It also
depends on cox and µs, and on the di�erence between the gate voltage and the threshold voltage VT . Note
that if we adjust Vgs we can change the slope of the I-V curve. We have made a voltage-controlled resistor!

6This content is available online at <http://cnx.org/content/m1024/2.11/>.
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Figure 3.16: The MOSFET I-V in the linear regime

Caution is advised with this result however, because we have overlooked something quite important. Lets
go back to our picture of the gate and the batteries involved in the operation of the MOS transistor. Here
we have explicitly shown the channel as a black band and we have introduced a new quantity, Vc (x), the
voltage along the channel, and a coordinate x, which tells us where we are on the channel relative to the
source and drain. Note that once we apply a drain source potential, Vds, the potential in the channel Vc (x)
changes with distance along the channel. At the source end, Vc (0) = 0, as the source is grounded. At the
drain end, Vc (L) = Vds. We will de�ne a voltage Vgc which is the potential di�erence between the gate
voltage and the voltage in the channel.

Vgc (x) ≡ Vgs − Vc (x) (3.39)

Thus, Vgc goes from Vgs at the source end to Vgs − Vds at the drain end.

Figure 3.17: E�ect of Vds on channel potential

The net charge density in the channel depends upon the potential di�erence between the gate and the
channel at each point along the channel, not just Vgs−VT . Thus we have to modify the equation of another
module (3.32) to take this into account

Qchan = cox (Vgc (x)− VT )

= cox (Vgs − Vc (x)− VT )
(3.40)

This, in turn, modi�es the integral relation (3.36) between Id and Vgs.∫ Vds

0

µscox (Vgs − VT − Vc (x))WdVc (x) =
∫ L

0

Iddx (3.41)
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(3.41) is only slightly harder to integrate than the one before (Now what is the integral of xdx), and so
we get for the drain current

Id =
µscoxW

L

(
(Vgs − VT )Vds −

V 2
ds

2

)
(3.42)

This equation is called the Sah Equation after C.T. Sah, who �rst described the MOS transistor
operation this way back in 1964. It is very important because it describes the basic behavior of the MOS
transistor.

Note that for small values of Vds, a previous equation (3.37) and (3.42) will give us the same Id − Vds
behavior, because we can ignore the Vds

2 term in (3.42). This is called the linear regime because we have a
straight-line relationship between the drain current and the drain-source voltage. As Vds starts to get larger
however, the squared term will begin to kick in and the plot will start to curve over. Obviously, something
is causing the current to drop o� as Vds gets larger. This is because the voltage di�erence between the gate
and the channel is becoming less, which means there is less charge in the channel to provide conduction.
We can graphically show this by making the channel layer look thinner as we move from the source to the
drain. (3.42), and in fact, Figure 3.18 would make us think that if Vds gets large enough, that the drain
current Id should actually start decreasing again, and maybe even become negative!. This does not seem
very intuitive, so lets take a look in more detail at the place where Id becomes a maximum. We can de�ne
Vdsat as the source-drain voltage where Id becomes a maximum. We can �nd this by taking the derivative
of Id with respect to Vds and setting the derivative to 0.

d
dVds

(Id) = 0

= µscoxW
L (Vgs − VT − Vdsat)

(3.43)

On dropping constants:
Vdsat = Vgs − VT (3.44)

Rearranging this equation gives us a little more insight into what is going on.

Vgs − Vdsat = VT

= Vgc (L)
(3.45)

Figure 3.18: I-V characteristics showing turn-over
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Figure 3.19: E�ect of Vds on the channel

At the drain end of the channel, when Vds just equals Vdsat, the di�erence between the gate voltage and
the channel voltage, Vgc (L) is just equal to VT , the threshold voltage. Any further increase in Vds and the
di�erence between the gate and the channel (in the channel region just near the drain) will drop below the
threshold voltage. This means that when Vds gets bigger than Vdsat, the channel just near the drain region
disappears! We no longer have su�cient voltage between the gate and the channel region to maintain an
inversion layer, so we simply revert to a depletion condition. This is called pinch o� , as seen in Figure 3.20.

Figure 3.20: Channel in pinch-o�

What happens to the drain current when we hit pinch o�? It looks like it might go to zero, but that is
not the right answer! Although there is no active channel in the pinch-o� region, there is still silicon - it just
happens to be depleted of all free carriers. There is an electric �eld, going from the drain to the channel,
and any electrons which move along the channel to the pinch-o� region are sucked across by the �eld, and
enter the drain. This is just like the current that �ows in the reverse saturation condition of a diode. There
are no free carriers in the depletion region of the diode, yet Isat does �ow across the junction region.

Under pinch-o� conditions, further increases in Vds, does not result in more drain current. You can think
of the pinched-o� channel as a resistor, with a voltage of Vdsat across it. When Vds gets bigger than Vdsat,
the excess voltage appears across the pinch-o� region, and the voltage across the channel remains �xed at
Vdsat. If the channel keeps the same charge, and has the same voltage across it, then the current through
the channel (and into the drain) will remain �xed, at a value we will call Idsat.

There is one other �gure which sometimes helps in seeing what is going on. We will plot potential energy
for an electron, as it traverses across the channel. Since the source is at zero potential and the drain is at
+Vds, an electron will loose potential energy as it �ows from the source to the drain. Figure 3.21 shows some
examples for various values of Vds:
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Figure 3.21: Electron potential energy drop going from source to drain.

For the �rst two drain voltages, Vds1 and Vds2, we are below pinch-o�, and so the voltage drop across
Rchannel increases as Vds increases, and hence, so does Id. At Vdsat, we have just reached pinch-o�, and we
are starting to see the "high �eld" depletion region begin to develop. Since electric �eld is just the derivative
of the potential, the slope of curves in Figure 3.21 gives you an idea of how big the electric �eld will be. For
further increases in Vds, Vds4 and Vds5 all of the additional voltage just shows up as a high �eld drop at the
end of the channel. The voltage drop across the conducting part of the channel stays �xed (more or less) at
Vdsat and so the drain current stays more or less �xed at Idsat.

Substituting the expression for Vdsat into the expression for Id we can get an expression for Idsat

Idsat =
µscoxW

2L
(Vgs − VT )2 (3.46)

We can de�ne a new constant, k, where

k =
µscoxW

L
(3.47)

So that

Idsat =
k

2
(Vgs − VT )2 (3.48)

What this means for Figure 3.18 is that when Vds gets to Vdsat, we simply hold Id �xed from then on,
with a value of Idsat. For di�erent values of Vg, the gate voltage, we are going to have a di�erent Id − Vds
curve, and so once again, we end up with a family of "characteristic curves" for the MOSFET. These are
shown in Figure 3.23.
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Figure 3.22: Complete I-V curve for the MOSFET

Figure 3.23: Characteristic curves for a MOSFET

This also gives us a fairly easy way in which to "sketch" a set of characteristic curves for a given device.
Suppose we have a MOS �eld e�ect transistor which has a threshold voltage of 2 volts, a width of 10 microns,
and a channel length of 1 micron, an oxide thickness of 150 angstroms, and a surface mobility of 400 c

V sec .
using εox = 3.3× 10−13 F

cm , we get a value of 2.2× 10−7 F
c for cox. This then makes k have a value of

k = µscoxW
L

= 400×2.2×10−710
1

= 8.8× 10−4 amp
volt2

(3.49)

3.6 Plotting MOS I-V7

Now we use two of the equations ((3.44) and (3.48)) that we found in the discussion about MOS Regimes
(Section 3.5) to calculate a set of Vdsat and Idsat values for various value of Vgs. (Note that Vgs must be
greater than VT for the two equations to be valid.) When we get the numbers, we build a little table.

Once we have the numbers (Figure 3.24), then we sketch a piece of graph paper with the proper scale,
and plot the points (Figure 3.25) on it. Once the Idsat, Vdsat points have been determined, it is easy to

7This content is available online at <http://cnx.org/content/m1025/2.13/>.
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sketch in the I-V behavior. You just draw a curve from the origin up to any given point, having it "peak
out" just at the dot, and then draw a straight line at Idsat to �nish things o�. One such curve is shown in
Figure 3.26. And then �nally in Figure 3.27 they are all sketched in. Your curves probably wont be exactly
right but they will be good enough for a lot of applications.

Vgs Vdsat (V ) Vdsat (mA)

3 1 0.44

4 2 1.76

5 3 3.96

6 4 7.04

7 5 11

Figure 3.24: Results of calculating Vdsat and Idsat.

Figure 3.25: Plotting Idsat and Vdsat.

Figure 3.26: Sketching in one of the I-V curves.
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Figure 3.27: The complete set of curves.

There is a particularly easy way to measure by k and VT for a MOSFET. Let's �rst introduce the
schematic symbol for the MOSFET, it looks like Figure 3.28. Let's take a MOSFET and hook it up as
shown in Figure 3.29.

Figure 3.28: Schematic symbol for a MOSFET
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Figure 3.29: Circuit for �nding VT and k

Since the gate of this transistor is connected to the drain, there is no doubt that Vgs − Vds is less than
VT . In fact, since Vgs = Vds , their di�erence, is zero. Thus, for any value of Vds, this transistor is operating
in its saturated condition. Since Vgs = Vds, we can rewrite a previous equation (3.35) derived equation from
the section on MOS transistor (Section 3.4) as

Id =
k

2
(Vds − VT )2 (3.50)

Now let's take the square root of both sides:

√
Id =

√
k

2
(Vds − VT ) (3.51)

So if we make a plot (Figure 3.30) of
√
Id as a function of Vds, we should get a straight line, with a slope

of
√

k
2 and an x-intercept of VT .
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Figure 3.30: Obtaining VT and k

Because of the expected non-ideality, the curve does not go all the way to VT , but deviates a bit near
the bottom. A simple linear extrapolation of the straight part of the plot however, yields an unambiguous
value for the threshold voltage VT .

3.7 Models8

A second, and some people think more accurate, way to �nd VT is to look at the characteristics of the MOS
transistor in is linear regime. The test circuit looks like what you see in Figure 3.31. In this case, Vds is
kept quite small (0.2 Volts or so) and the gate voltage Vgs is swept over some range. If you look back at
equation in another module (3.37), which we can slightly re-write we see that

Id =
µscoxWVds

L
(Vgs − VT ) (3.52)

This equation will obviously give us a linear plot of Id as a function of Vgs, which will look something like
Figure 3.32. Obviously, this is a device with a threshold voltage of about 2 volts. Can you �gure out what
k is for this transistor? If not, go back a re-read some stu�.

8This content is available online at <http://cnx.org/content/m1026/2.11/>.
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Figure 3.31: Circuit for �nding VT

Figure 3.32: Id as a function of Vgs for a MOS transistor in its linear range.

Now let's address a fundamental question concerning all of this: So What? What do we have here?
One answer is that we have another device which in some way looks like the bipolar transistor we studied
in the last chapter. In the saturation regime, the device looks and acts like a current source, and could
probably be used as an ampli�er. It is pretty easy to make a small signal model. The drain acts like a
current source, which is controlled by Vgs. What should we do about the gate terminal? The gate really
is not connected to anything inside the transistor, so it looks just like an open circuit. (In fact, there is a
capacitance Cgate = coxAgate, where Agate = WL, the area of the gate, but in most low frequency linear
applications, this capacitance is not signi�cant.) Thus our small signal model for the MOSFET, if it is
operating in it saturation mode, is as seen in Figure 3.33.
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Figure 3.33: Small signal MOSFET model

This seems to be a pretty good ampli�er. It has in�nite input impedance (and hence will not load down
the previous stage of the ampli�er) and it has a nice (but non-linear) voltage controlled current source for
its output. A �gure (Figure 3.21) in the section on MOS regimes shows that as Vds is increased, the channel
length does, in fact, get a bit shorter. The increased Vds makes the pinch o� region expand a bit, which,
of course, robs from the channel region. A shorter channel means slightly less channel resistance, and so Id
actually increases a bit with increasing Vds instead of staying constant. We saw from the bipolar transistor,
that when this occurs, we must add a resistor in parallel with our current source. Thus, let's complete the
model with an additional ro but in fact, we will put it in with a dashed line, because except for very short
channel devices, it has very little e�ect on device performance (Figure 3.34).

Figure 3.34: Adding an ro

The MOSFET has several advantages over the bipolar transistor. One of the main ones, as we shall see,
is that it is much easier to make. You only need two n-regions in a single p-type substrate. It is basically a
surface device. This means you do not have to pile up di�erent layers of n and p type material as you do
with the bipolar transistor. Finally, we shall see that a variation on the MOSFET technology o�ers a huge
advantage over bipolar devices when it comes to building logic circuits with a large number of gates (VLSI
and ULSI circuits).

To see why this is so, we have to digress for just a little bit, and discuss logic circuits. (Section 3.8)
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3.8 Inverters and Logic9

As you already know, or will �nd out shortly, from taking a class in digital logic, logic circuits are primarily
based upon a circuit called an inverter. An inverter simply takes a signal and gives you the opposite one.
For instance, if a high voltage (a "one") is placed on the input of an inverter, it returns a low voltage (a
"zero"). Figure 3.35 is a simple inverter based on a MOSFET transistor:

Figure 3.35: Inverter circuit

If Vin is zero, the MOSFET is turned o� (Vgs is < VT ) and so no current �ows through the resistor, and
Vout = Vdd, a high. If Vin is high (and we assume that VT for the MOSFET is signi�cantly less than Vin)
then the transistor is turned on, and if R and W

L are chosen so that enough current �ows through R to drop
most of Vdd across it, then Vout will be low.

The way this is usually described is through a transfer function which tells us what the output voltage
is as a function of the input voltage. Let's digress for just a minute and see how such a function can be
arrived at. Looking back at Figure 3.35 it should be easy to see that

Vdd = IdRd + Vds (3.53)

We can re-write this as an equation for Id.

Id =
Vdd
Rd
− Vds
Rd

(3.54)

This is called a load-line equation. It says that Id varies linearly with Vds (with a negative slope) and
has a vertical o�-set of VddRd . Let's suppose we have the MOSFET transistor for which we have already plotted
the characteristic curves in a previous plot (Figure 3.27). We will let Vdd = 5 Volts, and let Rd = 1kΩ. From
(3.54) we can see that when Vds = 0, Id will be 5 mA, and when Vds = Vdd, Id will be 0. This then gives us a
straight line on the characteristic curve plot which is called the load line. This is shown in Figure 3.36. By
looking back at the schematic for the inverter in Figure 3.35 we see that the same current Id �ows through

9This content is available online at <http://cnx.org/content/m1027/2.12/>.



97

the load resistor, Rd, and through the transistor. Thus, the correct value of current and voltage for the
circuit for any given gate voltage is the simultaneous solution of the load line equation and the transistor
behavior, which, of course, is just the intersection of the load line with the appropriate characteristic curve.
Thus it is a simple matter of drawing vertical lines down from each Vin curve or Vgs value down to the
horizontal axis to �nd out what the appropriate Vdd or output voltage will be for the inverter. Assuming
that Vin only goes up to 5 Volts, the resulting curve that we get look like Figure 3.37. This is not a great
transfer characteristic. Vin has to get fairly large before Vout starts to fall, and even with the full 5 Volt
input, Vout is still greater than 1 Volt. Picking a transistor with a small VT and a bigger load resistor would
give us a better response, but at least with this example you can see what is going on.

Figure 3.36: Characteristic curves with load line
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Figure 3.37: Transfer characteristics for the inverter circuit.

Based on this simple inverter circuit, we can build circuits which perform the NOR and NAND function.

Cout = ¬ (A+B) (3.55)

and
Cout = ¬ (AB) (3.56)

It should, by now, be obvious to you how the two circuits in Figure 3.38 can perform the NAND and NOR
function. It turns out that with the capability to do NAND and NOR, we can build up any kind of logic
function we desire.

Figure 3.38: NAND and NOR circuits
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Let's look at the inverter a little more closely (Figure 3.39). Usually, the load for the inverter will be the
next stage of logic which, along with the associated interconnect wiring, we can model as a simple capacitor.
The value of the capacitance will vary, but it will be on the order of 10−12F.

Figure 3.39: Driving a capacitive load

When the input to the inverter switches instantaneously to a low value, current will stop �owing through
the transistor, and instead will start to charge up the load capacitance. The output voltage will follow the
usual RC charging curve with a time constant given just by the product of R times C. If C is 10−13F, then
to get a rise time of 1 ns we would have to make R about 104Ω.

As we shall see later, it is virtually impossible to make a 10 kΩ resistor using integrated circuit techniques.
Remember:

R =
ρL

A
(3.57)

And thus, to get a really big resistance we need either a very tiny A (Too hard to achieve and control.),
a really BIG L (Takes up too much room on the chip) or a huge ρ (Again, very hard to control when you
get to the very low doping densities that would be required.)

Even if we could �nd a way to build such big integrated circuit resistors, there would still be a problem.
The current �owing through the resistor when the MOSFET is on would be approximately

I = V
R

= 5V
104Ω

= 5× 10−4A

(3.58)

Which doesn't seem like much current until you consider that a Pentium©microprocessor has about 6
million gates in it. This would mean a net current of −300 Amps �owing into the CPU chip! We've got to
come up with a better solution (Section 3.9).

3.9 Transistor Loads for Inverters10

There are other kinds of MOSFET's besides the one we have studied so far. Strictly speaking, what we have
seen up to now is called an n-channel enhancement mode MOSFET. It turns out that you can build

10This content is available online at <http://cnx.org/content/m1028/2.10/>.
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a MOSFET which looks just like a previous �gure (Figure 3.14), except that by putting some additional
impurities under the gate region, we can arrange it so that there is a channel formed, even with Vg = 0. The
transistor now has a negative VT . The process by which the additional impurities are added is called a VT
adjust.

A MOSFET with a negative VT can be expected to have Id−Vds curves similar to those for a positive VT
device, except for one thing. For Vgs = 0, the device is already turned on, and so we get a usual MOSFET-
type curve. Positive gate voltage turns it on even more, while negative Vgs tends to reduce the drain current.
It takes a negative gate voltage to turn the thing o�. Figure 3.40 shows comparative characteristic curves
for an enhancement and depletion mode devices.

Figure 3.40: Enhancement and depletion characteristic curves

For an enhancement mode transistor, you have to get Vg > VT (-1 Volt in this example) to enhance the
conductivity or channel to make it conduct. For a depletion mode device, a gate voltage Vgs of 0, still �nds
the device conducting. You have to put some negative voltage on the gate to deplete the channel, in order
to turn it o�. We now have a depletion mode n-channel MOSFET.

How would we use a depletion mode device in an inverter gate? The answer is fairly straight-forward. In
the schematic in Figure 3.41, we indicate a depletion mode MOSFET by adding a second line, under the gate,
to suggest that a channel already exists in the device, even with no Vg. Note that the gate of the depletion
mode transistor (also sometimes called the pull up transistor) is connected to its source, so, in fact, Vgs
does equal 0 for this device. The input transistor (or the pull down transistor) is just an enhancement
mode MOSFET like we had before. It is not hard to choose appropriate W and L so that Idsat for the pull
up transistor is on the order of the 500 µA that we need to get our 1 ns rise time on the capacitive load.
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Figure 3.41: Depletion mode load

In order to get the transfer characteristic for this circuit, we �rst note that

Vsdd = Vdd − Vsde (3.59)

where Vsde is the source-drain voltage for the pull-down, or enhancement transistor, and Vsdd, is the source-
drain voltage for the depletion-mode transistor. If we want to plot the load-line for the pull-down transistor
that is created by the pull-up or depletion mode transistor, we should take its Vgs = 0 characteristic curve,
shift it over by an amount Vdd, and then reverse its polarity. When we do this we get the following shown
in Figure 3.42. Noting the intersection points of the load line and the characteristic curves allows us
the opportunity for drawing the transfer characteristic (Figure 3.43). This is a better looking curve. It
is symmetric around the mid-voltage point, and gets closer to zero for its output "low" condition. The
transition from "high" to "low" is also somewhat more abrupt, which is advantageous. Can you �gure out
why?

Figure 3.42: Characteristic curve and load line for a depletion MOS load
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Figure 3.43: Transfer characteristics for a depletion load inverter

Well, we solved one problem. At least we have a pull up structure that we can manufacture. It turns
out not to be too hard to build an enhancement MOSFET that has an equivalent resistance in the range we
need without taking up too much chip area. We have not solved the other problem however. We are still
looking at a huge current draw for large circuits. Since on average, half of the inverter gates will be "on"
in a logic circuit, we still have a large current sink to ground. This is something that would be completely
prohibitive in a modern-day VLSI integrated circuit.

Fortunately, we have not run out of options for MOS structures (Section 3.10) yet.

3.10 CMOS Logic11

Consider the following, shown in Figure 3.44.

Figure 3.44: A PMOS transistor

This looks a lot like our previous MOSFET except that now we have an n-type substrate and the source
and drain regions are p-type. If we apply a negative Vgs (with the source connected to the n-type substrate)

11This content is available online at <http://cnx.org/content/m1029/2.12/>.
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then the induced negative charge on the gate will drive away the electrons, and if the bands under the gate
are bent up su�ciently, form an inversion layer (Figure 3.45) of holes thus making an enhancement mode
p-channel MOSFET, or a PMOS transistor. (As opposed to an NMOS transistor which we studied �rst.).
Note that a PMOS transistor will have a negative VT . That is, the gate voltage has to be less than the
source/substrate voltage in order to turn the device on. The more negative Vgs, the more current we will
have �owing through the device.

Figure 3.45: Inversion of an n-type layer

It turns out that a combination of both an n-channel and a p-channel device on the same circuit can be
very advantageous. Such technology is called CMOS, for "complementary MOS". Here is how we use a
p-channel transistor in the inverter circuit.

First of all, however, we have to see how we would make one. There is a fundamental problem in trying
to use both n-channel and p-channel devices in the same circuit. What is it? It would seem we need two
di�erent kinds of substrates, both a p-type substrate for the n-channel transistor, and an n-type substrate
for the p-channel device. There is a way around this problem by making what is called a tank or a moat.
A moat is a relatively deep region of one type of material placed into a host substrate of the opposite type
(Figure 3.46). We can put n-type source/drain regions into the p-substrate and p-type source/drain regions
into the n-moat. In Figure 3.47, we will also show the gates, and how the whole inverter is connected
together.

Figure 3.46: Preparing for a CMOS inverter
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Figure 3.47: A CMOS inverter

Now let's draw the schematic (Figure 3.48): A p-channel device is drawn just like an n-channel device,
except we put a little "bubble" on the gate to signify that it is a MOSFET of a di�erent color. Although
we usually don't do this all the time, we have also shown the substrate connections in this diagram. These
connections show that a MOSFET is at least a four terminal device, not a three terminal one as people
often assume. Since, in a p-channel device, the substrate is n-type, we show the substrate connection as
an outward pointing arrow. The p-type substrate for the n-channel device is shown as an inward pointing
arrow. The n-channel substrate is connected to ground, the p-channel substrate is connected to Vdd. Note
that since the n-moat is at Vdd and the p-substrate is at ground, the moat-substrate p-n junction is reverse
biased, and so no current should �ow between them.

Figure 3.48: Schematic of a CMOS inverter

We usually do not label the source and drain either, but we do here, just for completeness. Note that
unlike the bipolar transistor, the FET is truly a symmetric device. There is really no way to tell the source
from the drain. By convention, we call the element which is connected to the substrate (or moat) the source,
and the other the drain. You will sometimes hear the region under the gate (either substrate or moat)
referred to as the backbody.

Now let's see how this circuit works. If Vin is high (at or near Vdd) the NMOS transistor will be turned
on. The voltage between the gate and substrate of the p-channel device is at or near zero. The gate is at
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Vdd and so is the moat! Hence the upper transistor will be turned o�. The output will thus be low.
If the input voltage is at or near ground (a "low") then the n-channel device is turned o�. The voltage

between the gate and substrate of the p-channel device is now h −Vdd. (The gate is h 0 and the substrate
is at +Vdd.) If the PMOS transistor has a threshold voltage VT of, say, -2 V, then it will be turned on and
the output will be high. Note however, that in either state, high or low, there is no static current �owing
through the inverter.

The transfer characteristics for this circuit. Are a little more complicated. First, let's make sure we have
our voltages and currents de�ned (Figure 3.49). From the �gure, Vgs−n the n-channel gate-source voltage is
just Vin. Vgs−p the gate-source voltage for the p-channel device is Vin−VddId−n = Id−p = IdVds−p the drain
source voltage for the p-channel transistor can be written as Vds−n−Vdd. We have two sets of characteristic
curves (Figure 3.50): Note that since Vgs−p = Vin−Vdd, when Vin = 0V, Vgs−p = −5V and so the transistor
is strongly turned on.

Figure 3.49: De�ning voltages
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Figure 3.50: Drain currents for the two transistor as a function of input voltage and Vds

We have a number of di�erent "load lines" in this case, because for each Vin we have a di�erent curve
for both the n and p channel transistors. This is shown in Figure 3.51. The black spots show the point of
intersection. Follow a few of the curves along to see if you agree with where the spots have been placed.
We have also added a pair of dotted curves for Vin = 2.5V so we can get the "turn-over" point. Projecting
the location of the black dots to the Vds−n (or Vout) axis will gives us a value for Vout for each of the input
voltages, Vin. The resulting curve is shown in Figure 3.52. This gives us a good "feel" for how the inverter
works, and how the output varies with the input. Note that this transfer curve is quite symmetric about 2.5
volts, and goes all the way from +5 to 0 volts on the output.

Figure 3.51: Getting the transfer function
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Figure 3.52: CMOS inverter transfer characteristics

3.11 JFET12

There is a lot more that we could do with �eld e�ect devices, but it is probably time to move on to new
topics. For one �nal point however, we might just look at something called the JFET, or junction �eld e�ect
transistor. The JFET structure looks like Figure 3.53. It consists of a piece of p-type silicon, into which two
n-type regions have been di�used. However, instead of being both on the same surface, as with a MOSFET,
the two regions are opposite one another on either side of the crystal. In cross-section, the JFET looks like
Figure 3.54. We also show the biasing here.

Figure 3.53: JFET

12This content is available online at <http://cnx.org/content/m1030/2.12/>.
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Figure 3.54: Biasing a JFET

The two n-regions are connected together, and are reverse biased with respect to the p-type substrate.
A second battery, Vds is used to pull current out of the source, by applying a negative voltage between the
drain and the source. The reverse biased n-p junctions creates a depletion region which extends into the
p-type material through which the holes travel as they go from source to drain (a channel?). By adjusting
the value of Vgs, one can make the depletion region smaller or larger, thus increasing or decreasing the drain
current.

The observant student will also note that the polarity of the Vds battery makes it so that there is more
reverse bias across the p-n junctions at the drain end of the channel than at the source end. Thus, a more
accurate depiction of the JFET would be what is shown in Figure 3.55. When the drain/source voltage
gets large enough, the two depletion regions will join together, and, just as with the MOSFET, the channel
pinches o�, as shown in Figure 3.56.

Figure 3.55: Depletion region controls current
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Figure 3.56: Pinch-O�

Surprising as it may seem, when you work out the equations which describe how the depletion region
extends with Vgs and how the pinch-o� mechanism changes ID, you end up with behavior, and equations,
which are quite similar to those of a depletion-mode MOSFET.

Using JFETs is a little more cumbersome than a normal MOSFET. You must make sure that the gate-
substrate junction always remains reverse biased, and since the JFET can only be a depletion-mode device,
you have to have a voltage on the gate if you want to turn the transistor o�. The JFET does have one
advantage over the MOSFET however. A while back we calculated the value for Cox the oxide capacitance
and found that it was on the order of 10−7 F

cm2 . A typical MOSFET gate might be 1 µm long by 20 µm
wide, and so it would have a gate area of 20 µm2 or 2× 10−7 cm2. Thus, the total gate capacitance is only
about 10−14F .

3.12 Electrostatic Discharge and Latch-Up13

As you are probably aware, you have to be very careful when handling MOS circuits, to be sure that you are
properly grounded, and that you do not transfer any static electricity to the chip. The standard human-
body model assumes a static charge transfer of about 0.1 micro-Coulombs ( 10−7C) upon static electricity
discharge between a human and a chip. This does not seem like enough charge to do any harm until we
remember the old formula:

Q = CV (3.60)

or

V =
Q

C
(3.61)

Last time I looked 10−7 divided by 10−14 is about 107 volts! Add to this the fact that the gate oxide
thickness is only about 10−6cm, so that we have electric �elds in the gate oxide which are on the order of
1013 V

cm ! No wonder the things break. This problem is called electrostatic discharge, or ESD, and is one
of the major concerns of IC manufacturers. Protecting against ESD is still very much a "black art" and is
something that people are still studying quite a bit. JFET's are much more rugged structures, and have
much higher gate capacitances, and are not nearly so prone to ESD failure.

Since we are on the subject of problems, lets take a look at one more "glitch" that plagues IC designers.
We have to go back to the CMOS circuit. Remember, the moat/substrate junction is reverse biased, so
we will have an electric �eld in the depletion region of that junction, pointing as shown in Figure 3.57.
Suppose, somehow, we have one or more stray electrons in the p-type substrate. They will be swept across
the substrate/moat junction by the electric �eld, and be attracted to the moat contact by Vdd. Let's focus

13This content is available online at <http://cnx.org/content/m1031/2.15/>.



110 CHAPTER 3. FETS

on what happens as the electron �ows out the VDD contact (Figure 3.58). As the electron moves through
the (resistive) n-type moat material, it develops a voltage drop between the n-type material under the
source, and the VDD contact (Which is also at the source potential since they are connected together by the
interconnect on the surface of the wafer.) Electron �ow in one direction means current �ow in the other and
so this makes the region under the source slightly negative with respect to the source region itself. This,
of course, forward biases the source/moat junction slightly, which causes a hole or two to be injected into
the moat from the p-source (Figure 3.59). The holes will be attracted by the �eld across the moat-substrate
depletion layer, and, once they get there, they will be swept into the p-substrate (Figure 3.60). Once the
holes get into the p-substrate, they will be attracted to the ground connection so that they can leave the
semiconductor. As these holes �ow past the n-source, and through the resistive p-substrate, they build up a
potential between the ground contact (Figure 3.61), and the material under the source with a polarity which
tends to forward bias the source-substrate junction, and cause electrons to be injected into the substrate.
The electrons, in turn, are attracted to the �eld across the substrate-moat junction (Figure 3.62). Some
of the electrons may recombine in the p-region, but in today's high-quality substrates, there are very few
active recombination centers, and so even though the electrons are minority carriers, they have quite a long
minority carrier lifetime, and most of them make it to the substrate-moat junction.and are swept into the
moat. Once inside the n-moat, the electrons are then attracted to the + Vdd contact, where, of course, they
build up a bigger forward bias across the source-moat junction, causing more holes to be emitted from the
source into the moat (Figure 3.63). These holes are swept across the moat-substrate junction, �ow to the
ground contact and, well ... you get the idea! It does not take long before we have a dead short circuit
between Vdd and ground. This is not healthy for integrated circuit chips in the least, and is a process called
latch up (Figure 3.64).

Figure 3.57: The start of trouble!
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Figure 3.58: Electron �ow builds up voltage

Figure 3.59: The forward biased source injects some holes

Figure 3.60: The holes are swept into the substrate
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Figure 3.61: Voltage drop at the n-channel source end.

Figure 3.62: The electrons are swept into the moat
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Figure 3.63: More current means a bigger voltage and more holes injected.

Figure 3.64: Latch Up!

There is an interesting circuit you can draw which shows what is happening from a somewhat di�erent
point of view. Note that we can consider the p-source, n-moat, and p-substrate as a pnp bipolar transistor.
Also the n-source, p-substrate and n-moat also make a �ne npn bipolar transistor. The two transistors are
intermingled however, with the base of the pnp and the collectors of the npn sharing the same n-moat, and
the collector of the pnp and the base of the npn sharing the p-substrate. The n-moat and p-substrates are
both collectors and bases at the same time. A little careful inspection of the cross section of the CMOS
inverter will lead you to the following schematic shown in Figure 3.65. We need something to get this circuit
started, so say we have a little collector current coming out of the top pnp transistor. This current �ows
down, through the resistor to ground. As it �ows through the resistor it builds up a little voltage which
forward biases the base-emitter junction of the lower, npn, transistor, and causes some collector current to
�ow into it. This current comes from Vdd through the upper resistor, and builds up a voltage across that
resistor which will forward bias the base-emitter junction of the top, pnp, transistor. This, in turn, causes
some additional collector current to �ow out of the pnp transistor, and away we go! Latch-up is bad, and is
something which IC designers work very hard to avoid.
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Figure 3.65: Schematic of latch up circuit

You might wonder what actually starts a circuit going into latch-up. Refer back to the CMOS inverter
(Figure 3.47), and note that the n-drain on the NMOS is connected to the output. The output could be a
real output, going beyond the chip into the "real world". If the "customer" who is using the chip is careless,
and somehow drags the output down below ground, the drain/p-substrate junction will be forward biased,
electrons will be injected into the p-substrate, and we are back at Figure 3.57. IC designers try to keep
the n-moat/ Vdd contact as close to the PMOS source, and the p-substrate/ground contact as close to the
NMOS source as they can to reduce the resistance between the contact and the source regions, and hence
lower the chance of the circuit going into latch-up.



Chapter 4

IC Manufacturing

4.1 Introduction to IC Manufacturing Technology1

It would probably be interesting to spend a little time seeing how integrated circuits are made. This chapter
will be long on description, and rather short on equations (yay!). This is not to say that there is not a lot of
analytical work in the IC fabrication process. It's just that things get very complicated in a hurry, and so
we probably are better o� just looking at most processes from a qualitative point of view.

Let's start out by taking a look at the state of the industry, and remark on a few trends. Figure 4.1 is a
plot of IC sales in the United States over the past 30 years. This might not be a bad �eld to get into! Maybe
there will be a job or two out there when you are ready to graduate.

Figure 4.1: Growth of IC Business

There has been a steady shift away from bipolar technology to MOS as is shown in Figure 4.2. Currently,
about 90% of the market is composed of MOS devices, and only about 10% of bipolar. This is likely to
be the case for some time to come. The change in slope, where MOS starts taking over from bipolar at a
more rapid rate about 1987 is when CMOS technology really started to come into heavy use. At that point,
bipolar TTL logic essentially faded to zero.

1This content is available online at <http://cnx.org/content/m1032/2.9/>.
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Figure 4.2: Percentage of Business

As you probably are aware, devices have been getting smaller and smaller, and chips have been get-
ting bigger and bigger with time. A most impressive plot (Figure 4.3) is one which shows the number of
components/chip as a function of time.

Figure 4.3: Number of transistors/chip

One of the main drivers for this has been feature size, which shows the same nearly exponential behavior
as components/chip. This is plotted in Figure 4.4 for your education. What is interesting to note about
this is that certain "doom sayers" have been predicting an abrupt halt to this curve for some time now. It
stands to reason that you can not image something which is �ner than λ, the wavelength of the light you use
to project it with. However, by going to the ultraviolet, and using a variety of image enhancing techniques,
lithographic engineers continue to be able to make �ner and �ner structures.
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Figure 4.4: Feature size with time

4.2 Silicon Growth2

How is it possible for the IC industry to continue to make such gains, and how do they build so many circuits
on one chip anyway? In order for us to be able to understand this, we have to take a look at themonolithic
fabrication process. Lith comes from the Greek word for stone, and mono means one, of course. Thus,
monolithic construction refers to building the circuit in "one stone" or in one single crystal substrate.

In order for us to do this however, we �rst of all need the "stone", so let's see where that comes from.
We start out with a natural form of silicon which is very abundant (and relatively pure); quartzite or

SiO2 (sand). In fact, silicon is one of the most abundant elements on the earth. This is reacted in a furnace
with carbon (from coke and/or coal) to make what is known as metallurgical grade silicon (MGS) which
is about 98% pure, via the reaction

SiO2 + 2C → Si+ 2CO (4.1)

We have seen that on the order of 1014 impurities will make major changes in the electrical behavior of a
piece of silicon. Since there are about 5× 1022 atoms/cm3 in a silicon crystal, this means we need a purity
of better than 1 part in 108 or 99.999999% pure material. Thus we have a long way to go from the purity
of the MGS if we want to make electronic devices that we can use in silicon.

The silicon is crushed and reacted with HCl (gas) to make trichlorosilane, a high vapor pressure liquid
that boils at 32 ◦C as in:

Si+ 3HCl (gas)→ SiHCl3 +H2 (4.2)

Many of the impurities in the silicon (aluminum, iron, phosphorus, chromium, manganese, titanium,
vanadium and carbon) also react with the HCl, forming various chlorides. One of the nice things about the
halogens is that they will react with almost anything. Each of these chlorides have di�erent boiling points,
and so, by fractional distillation, it is possible to separate out the SiHCl3 from most of the impurities. The
(pure) trichlorosilane is then reacted with hydrogen gas (again at an elevated temperature) to form pure
electronic grade silicon (EGS).

SiHCl3 +H2 → 2Si+ 3HCl (4.3)

Although the EGS is relatively pure, it is in a polycrystalline form which is not suitable for device manufac-
ture. The next step in the process is to grow single crystal silicon which is usually done via the Czochral-
ski(pronounced "cha-krawl-ski") method to make what is sometimes called CZ silicon. The Czochralski

2This content is available online at <http://cnx.org/content/m1033/2.15/>.
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process involves melting the EGS in a crucible, and then inserting a seed crystal on a rod called a puller
which is then slowly removed from the melt. If the temperature gradient of the melt is adjusted so that
the melting/freezing temperature is just at the seed-melt interface, a continuous single crystal rod of silicon,
called a boule, will grow as the puller is withdrawn.

Figure 4.5 is a diagram of how the Czochralski process works. The entire apparatus must be enclosed in
an argon atmosphere to prevent oxygen from getting into the silicon. The rod and the crucible are rotated
in opposite directions to minimize the e�ects of convection in the melt. The pull-rate, the rotation rate
and the temperature gradient must all be carefully optimized for a particular wafer diameter and growth
direction. The <111> direction (along a diagonal of the cubic lattice structure) is usually chosen for wafers
to be used for bipolar devices, while the <100> direction (along one of the sides of the cube) is favored for
MOS applications. Currently, wafers are typically 6" or 8" in diameter, although 12" diameter wafers (300
mm) are looming on the horizon.

Figure 4.5: Czochralski crystal growth

Once the boule is grown, it is ground down to a standard diameter (so the wafers can be used in automatic
processing machines) and sliced into wafers, much like a salami. The wafers are etched and polished, and
move on to the process line. A point to note however, is that due to "kerf" losses (the width of the saw
blade) as well as polishing losses, more than half of the carefully grown, very pure, single crystal silicon is
thrown away before the circuit fabrication process even begins!

4.3 Doping3

Starting with a prepared, polished wafer then how do we get an integrated circuit? We will focus on the
CMOS process, described in the last chapter. Let's assume we have wafer which was doped during growth so
that it has a background concentration of acceptors in it (i.e. it is p-type). Referring back to CMOS Logic
(Figure 3.46), you can see that the �rst thing we need to build is a n-tank or moat. In order to do this,
we need some way in which to introduce additional impurities into the semiconductor. There are several
ways to do this, but current technology relies almost exclusively on a technique called ion implantation.
A diagram of an ion-implanter is shown in the �gure in the previous section (Figure 4.5). An ion implanter
uses a dopant source gas, ionizes it, and drives the ions into the wafer. The dopant gas is ionized and the
resultant charged ions are accelerated through a magnetic �eld, where they are mass-analyzed. The vertical
magnetic �eld causes the beam of ions to spread out, according to their mass. A thin aperture selects the

3This content is available online at <http://cnx.org/content/m1034/2.11/>.
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ions of interest, and lets them pass, blocking all the others. This makes sure we are only implanting the ion
we want, and in fact, even selects for the proper isotope! The ionized atoms are then accelerated through
several tens to hundreds of kV, and then de�ected by an electric �eld, much like in an oscilloscope CRT. In
fact, most of the time the ion beam is "rastered" across the surface of the silicon wafer. The ions strike the
silicon wafer and pass into its interior. A measurement of the current �ow in the system and its integral, is
a measure of how much dopant was deposited into the wafer. This is usually given in terms of the number
of dopant atoms

cm2 to which the wafer has been exposed.
After the atoms enter the silicon, they interact with the lattice, creating defects, and slowing down until

�nally they stop. Typical atomic distributions, as a function of implant voltage are show in Figure 4.6
for implantation into amorphous silicon. When implantation is done on single crystal material, channeling,
the improved mobility of an ion down the "hallway" of a given lattice direction, can skew the impurity
distribution signi�cantly. Just slight changes of less than a degree can make big di�erences in how the
impurity atoms are �nally distributed in the wafer. Usually, the operator of the implant machine purposely
tilts the wafer a few degrees o� normal to the beam in order to arrive at more reproducible results.

Figure 4.6: Implant distribution with acceleration energy

As you might expect, shooting 100 kV ions at a silicon wafer probably does quite a bit of damage to the
crystal structure. Not only that, but just having, say boron, in your wafer does not mean you are going to
have holes. For the boron to become "electrically active" - that is to act as an acceptor - it has to reside on
a silicon lattice site. Even if the boron atom does, somehow, end up on an actual lattice site when it stops
crashing around in the wafer, the many defects which have been created will act as deep traps. Thus, the
hole which is formed will probably be caught at a trap site and will not be able to contribute to electrical
conductivity in the wafer anyway. How can we �x this situation? If we carefully heat up the wafer, we can
cause the atoms in the crystal to shake around, and if we do it right, they all get back where they belong.
Not only that, but the newly added impurities end up on lattice sites as well! This step is called annealing
and it does just what it is supposed to. Typical temperatures and times for such an anneal are 500 to 1000 ◦C
for 10 to 30 minutes.

Something else occurs during the anneal step however. We have just added, by our implantation step,
impurities with a fairly tight distribution as shown in Figure 4.6. There is an obvious gradient in impurity
distribution, and if there is a gradient, than things may start moving around by di�usion, especially at
elevated temperatures.
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4.4 Fick's First Law4

We talked about di�usion in the context of diodes, and described Fick's First Law of Di�usion for some
particle concentration N (x, t):

Law 4.1: Fick's First Law of Di�usion
Flux = (−D) d

dxN (x, t)
D is the di�usion coe�cient and has units of cm/sec.
In a semiconductor, impurities move about either interstitially, which means they travel around in-

between the lattice sites (Figure 4.7). Or, they move by substitutional di�usion, which means they hop
from lattice site to lattice site (Figure 4.8). Substitutional di�usion is only possible if the lattice has a
number of vacancies, or empty lattice sites, scattered throughout the crystal, so that there are places into
which the impurity can move. Moving interstitially requires energy to get over the potential barrier of the
regions between the lattice sites. Energy is required to form the vacancies for substitutional di�usion. Thus,
for either form of di�usion, the di�usion coe�cient D, is a strong function of temperature.

Figure 4.7: Interstitial di�usion

Figure 4.8: Substitutional di�usion

To a very good degree of accuracy, one can describe the temperature dependence of the di�usion coe�cient
with an activation energy EA, such that:

D (T ) = Doe
−(EakT ) (4.4)

4This content is available online at <http://cnx.org/content/m1035/2.8/>.
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The activation energy EA and coe�cient Do are obtained from a plot of the natural log of D vs. 1
kT ,

called an Arrhenius plot (Figure 4.9). The slope gives EA and the projection to in�nite T ( 1
T → 0) gives

lnDo.

Figure 4.9: Arrhenius plot of di�usion constant

The continuity equation holds for motion of impurities just like it does for anything else, so the divergence
of the �ux, divF must equal the negative of the time rate of change of the concentration of the impurities,
or, in one dimension:

d

dx
(Flux) = −

(
d

dx
(N (x, t))

)
(4.5)

4.5 Fick's Second Law5

Taking the derivative with respect to x of Fick's �rst law

d

dx
(Flux) = −

(
D
∂2

∂x2
N (x, t)

)
(4.6)

and then substituting the continuity equation into it, we have Fick's second law of di�usion:

∂

∂t
N (x, t) = D

∂2

∂x2
N (x, t) (4.7)

This is a standard di�usion equation, and one which shows up over and over again when one is dealing with
such phenomena.

In order to get a solution to the di�usion equation, we must �rst assume some boundary conditions. We
will deal with a semi-in�nite wafer, and assume that

lim
x→∞

N (x, t) = 0 (4.8)

This is a reasonable assumption, since at most our di�usion will only penetrate a micron or so into the
wafer, and the whole wafer itself is several hundred microns thick.

We also have to decide something about initial conditions. We will make the assumption that we have
at time t = 0 and x = 0 some surface concentration of impurities which we will call Q0 ( impuritiescm2 ). This

5This content is available online at <http://cnx.org/content/m1036/2.11/>.
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is the situation we would have if we introduce the impurities using a relatively shallow implant step. An
alternative surface boundary condition would be one where the concentration of impurities remains at some
�xed value. This is what happens when there are impurities in the gas �ow over the wafer during the time
that they are in the di�usion oven. This is called an in�nite source di�usion.

The �rst condition is called a limited source di�usion and that is what we shall consider further here.
It is not too hard to show that with this initial condition, the solution to the di�usion equation is:

N (x, t) =
Q0√
πDt

e
−

“
x2

4Dt

”
(4.9)

Note that N (x, t) is a function of distance into the wafer, and time t. The time is, of course, the time
of the di�usion process. D, the di�usion constant, depends on the temperature at which the di�usion takes
place. Figure 4.10 is a plot of D for three of the most commonly used dopants in silicon. Phosphorus
and boron are the most common acceptor and donor respectively. Arsenic is sometimes used because it is
signi�cantly bigger in diameter than either P or B and thus, moves around less after an implant.

Figure 4.10: Di�usion constant as a function of 1000/T

Suppose we do a relatively shallow implant of boron into our p-type wafer, and deposit a Q0 of 5× 1013

phosphorus atoms
cm2 . We then perform an anneal di�usion at 1100 ◦C for 60 minutes. At 1100 ◦C, D for

phosphorus seems to be about 2 × 10−13 cm2

sec . We will make a plot of N (x) for various times. If you do
this at home, be sure to put time in seconds, not minutes, hours, or fortnights. Looking at Figure 4.10, is
pretty easy to see how the impurities move into the semiconductor, and how the concentration at the surface,
N (0, t), decreases as more and more of the impurities moves deeper into the wafer.

Exercise 4.1 (Solution on p. 141.)

If the substrate had been doped at 1016 acceptors
cm3 where would be the location of the p-n junction

between the implanted phosphorus layer, and the background boron?
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Figure 4.11: Di�usion distribution at di�erent times

4.6 Photolithography6

Actually, implants (especially for moats) are usually done at a su�ciently high energy so that the dopant
(phosphorus) is already pretty far into the substrate (often several microns or so), even before the di�usion
starts. The anneal/di�usion moves the impurities into the wafer a bit more, and as we shall see also makes
the n-region grow larger.

"The n-region"! We have not said a thing about how we make our moat in only certain areas of the
wafer. From the description we have so far, is seems we have simply built an n-type layer over the whole
surface of the wafer. This would be bad! We need to come up with some kind of "window" to only permit
the implanting impurities to enter the silicon wafer where we want them and not elsewhere. We will do this
by constructing an implantation "barrier".

To do this, the �rst thing we do is grow a layer of silicon dioxide over the entire surface of the wafer. We
talked about oxide growth when we were discussing MOSFETs but let's go into a little more detail. You can
grow oxide in either a dry oxygen atmosphere, or in a an atmosphere which contains water vapor, or steam.
In Figure 4.12 (Oxide Thickness as a Function of Time), we show oxide thickness as a function of time for
growth with steam. Dry O2 does not behave too much di�erently, the rate is just somewhat slower.

Oxide Thickness as a Function of Time

Figure 4.12

On top of the oxide, we are now going to deposit yet another material. This is silicon nitride, Si3N4

or just plain "nitride" as it is usually called. Silicon nitride is deposited through a method called chemical
6This content is available online at <http://cnx.org/content/m1037/2.10/>.
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vapor deposition or "CVD". The usual technique is to react dichlorosilane and ammonia in a hot walled low
pressure chemical vapor deposition system (LPCVD). The reaction is:

(3SiH2Cl2 + 10NH3 → Si3N4 + 6NH4Cl + 6H2) (4.10)

Silicon nitride is a good barrier for impurities, oxygen and other things which do not want to get into the
wafer. Take a look at Figure 4.13 (Initial Wafer Con�guration) and see what we have so far. A word about
scale and dimensions. The silicon wafer is about 250µm thick (about 0.01") since it has to be strong enough
not to break as it is being handled. The two deposited layers are each about 1µm thick, so they should
actually be drawn as lines thinner than the other lines in the �gure. This would obviously make the whole
idea of a sketch ridiculous, so we will leave things distorted as they are, keeping in mind that the deposited
and di�used layers are actually much thinner than the rest of wafer, which really does not do anything
except support the active circuits up on top. (There we go again, wasting silicon. Good thing it's cheap and
plentiful!)

Initial Wafer Con�guration

Figure 4.13

Now what we want to do is remove part of the nitride, so we can make our n-well, but not put in
phosphorous where do not want it. We do this with a processes called photolithography and etching
respectively. First thing we do is coat the wafer with yet another layer of material. This is a liquid called
photoresist and it is applied through a process called spin-coating. The wafer is put on a vacuum chuck,
and a layer of liquid photoresist is sprayed uncap of the wafer. The chuck is then spun rapidly, getting to
several thousand RPM in a small fraction of a second. Centrifugal force causes the resist to spread out
uniformly across the wafer surface (most of it in fact �ies o�!). The solvent for the photoresist is quite
volatile and so the layer of photoresist dries while the wafer is still spinning, resulting in a thin, uniform
coating across the wafer Figure 4.14 (Photoresist is Spun On).

Photoresist is Spun On

Figure 4.14

The name "photoresist" gives some clue as to what this stu� is. Basically, photoresist is a polymer
mixed with some kind of light sensitizing compound. In positive photoresist, wherever light strikes it, the
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polymer is weakened, and it can be more easily removed with a solvent during the development process.
Conversely, negative photoresist is strengthened when it is illuminated with light, and is more resistant to the
solvent than is the unilluminated photoresist. Positive resist is so-called because the image of the developed
photoresist on the wafer looks just like the mask that was used to create it. Negative photoresist makes an
image which is the opposite of what the mask looks like.

We have to come up with some way of selectively illuminating certain portions of the photoresist. Anyone
who has ever seen a projector know how we can do this. But, since we want to make small things, not big
ones, we will change around our projector so that it makes a smaller image, instead of a bigger one. The
instrument that projects the light onto the photoresist on the wafer is called a projection printer or a
stepper Figure 4.15 (A Stepper Con�guration).

A Stepper Con�guration

Figure 4.15

As shown in Figure 4.15 (A Stepper Con�guration), the stepper consists of several parts. There is a light
source (usually a mercury vapor lamp, although ultra-violet excimer lasers are also starting to come into
use), a condenser lens to image the light source on the mask or reticle. The mask contains an image of the
pattern we are trying the place on the wafer. The projection lens then makes a reduced (usually 5x) image
of the mask on the wafer. Because it would be far too costly, if not just plain impossible, to project onto
the whole wafer all at once, only a small selected area is printed at one time. Then the wafer is scanned or
stepped into a new position, and the image is printed again. If previous patterns have already been formed
on the wafer, TV cameras, with arti�cial intelligence algorithms are used to align the current image with
the previously formed features. The stepper moves the whole surface of the wafer under the lens, until the
wafer is completely covered with the desired pattern. A stepper is not cheap. Usually, TI or Intel will fork
over several million dollars for each one! It is one of the most important pieces of equipment in the whole
IC fab however, since it determines what the minimum feature size on the circuit will be.

After exposure, the photoresist is placed in a suitable solvent, and "developed". Suppose for our example
the structure shown in Figure 4.16 (After PR Expose/Develop) is what results from the photolithographic
step.
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After PR Expose/Develop

Figure 4.16

The pattern that was used in the photolithographic (PL) step exposed half of our area to light, and
so the photoresist (PR) in that region was removed upon development. The wafer is now immersed in a
hydro�uoric acid (HF) solution. HF acid etches silicon nitride quite rapidly, but does not etch silicon dioxide
nearly as fast, so after the etch we have what we see in Figure 4.17 (After Nitride Etch).

After Nitride Etch

Figure 4.17

We now take our wafer, put it in the ion implanter and subject it to a "blast" of phosphorus ions
Figure 4.18 (Implanting Phospohrus).

Implanting Phospohrus

Figure 4.18

The ions go right through the oxide layer on the RHS, but stick in the resist/nitride layer on the LHS of
our structure.
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4.7 Integrated Circuit Well and Gate Creation7

We then remove the remaining resist, and perform an activation/anneal/di�usion step, also sometimes called
the "drive-in". The purpose of this step is two fold. We want to make the n-tank deep enough so that we
can use it for our p-channel MOS, and we want to build up an implant barrier so that we can implant into
the p-substrate region only. We introduce oxygen into the reactor during the activation, so that we grow a
thicker oxide over the region where we implanted the phosphorus. The nitride layer over the p-substrate on
the LHS protects that area from any oxide growth. We then end up with the structure shown in Figure 4.19
(After the Anneal/Drive-In).

After the Anneal/Drive-In

Figure 4.19

Now we strip the remaining nitride. Since the only way we can convert from p to n is to add a donor
concentration which is greater than the background acceptor concentration, we had to keep the doping in
the substrate fairly light in order to be able to make the n-tank. The lightly doped p-substrate would have
too low a threshold voltage for good n-MOS transistor operation, so we will do a VT adjust implant through
the thin oxide on the LHS, with the thick oxide on the RHS blocking the boron from getting into the n-tank.
This is shown in Figure 4.20 (Adjust Implant), where boron is implanted into the p-type substrate on the
LHS, but is blocked by the thick oxide in the region over the n-well.

Adjust Implant

Figure 4.20: VT adjust implant

Next, we strip o� all the oxide, grow a new thin layer of oxide, and then a layer of nitride Figure 4.21
(Strip Oxide, New Nitride). The oxide layer is grown only because it is bad to grow Si3N4 directly on top
of silicon, as the di�erent coe�cients of thermal expansion between the two materials causes damage to the

7This content is available online at <http://cnx.org/content/m1038/2.12/>.
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silicon crystal structure. Also, it turns out to be nearly impossible to remove nitride if it is deposited directly
on to silicon.

Strip Oxide, New Nitride

Figure 4.21

The nitride is patterned (covered with photoresist, exposed, developed, etched, and removal of photore-
sist) to make two areas which are called "active" Figure 4.22 (Nitride After Etching). (This is where we
will build our transistors.) The wafer is then subjected to a high-pressure oxidation step which grows a
thick oxide wherever the nitride was removed. The nitride is a good barrier for oxygen, so essentially no
oxide grows underneath it. The thick oxide is used to isolate individual transistors, and also to make for an
insulating layer over which conducting patterns can be run. The thick oxide is called �eld oxide (or FOX
for short) Figure 4.23 (Growing Field Oxide).

Nitride After Etching

Figure 4.22

Growing Field Oxide

Figure 4.23
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Then, the nitride, and some of the oxide are etched o�. The oxide is etched enough so that all of the
oxide under the nitride regions is removed, which will take a little o� the �eld oxide as well. This is because
we now want to grow the gate oxide, which must be very clean and pure Figure 4.24 (Ready to Grow Gate
Oxide). The oxide under the nitride is sometimes called sacri�cial oxide, because it is sacri�ced in the name
of ultra performance.

Ready to Grow Gate Oxide

Figure 4.24

Then the gate oxide is grown, and immediately thereafter, the whole wafer is covered with polysilicon
Figure 4.25 (Poly Deposition Over Gate Oxide).

Poly Deposition Over Gate Oxide

Figure 4.25

The polysilicon is then patterned to form the two regions which will be our gates. The wafer is covered
once again with photoresist. The resist is removed over the region that will be the n-channel device, but is
left covering the p-channel device. A little area near the edge of the n-tank is also uncovered Figure 4.26
(Preparing for NMOS Channel/Drain Implant). This will allow us to add some additional phosphorus into
the n-well, so that we can make a contact there, so that the n-well can be connected to Vdd.
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Preparing for NMOS Channel/Drain Implant

Figure 4.26

Back into the implanter we go, this time exposing the wafer to phosphorus. The poly gate, the FOX
and the photoresist all block phosphorus from getting into the wafer, so we make two n-type regions in the
p-type substrate, and we have made our n-channel MOS source/drain regions. We also add phosphorous to
the Vdd contact region in the n-well so as the make sure we get good contact performance there Figure 4.27
(Phosphorus S/D Implant).

Phosphorus S/D Implant

Figure 4.27

Note that the formation of the source and drain were performed with a self-aligning technology. This
means that we used the gate structure itself to de�ne where the two inside edges of the source and drain
would be for the MOSFET. If we had made the source/drain regions before we de�ned the gate, and then
tried to line the gate up right over the space between them, we might have gotten something that looks
like what is shown in Figure 4.28 (Misaligned Gate). What's going to be the problem with this transistor?
Obviously, if the gate does not extend all the way to both the source and the drain, then the channel will
not either, and the transistor will never turn on! We could try making the gate wider, to ensure that it
will overlap both active areas, even if it is slightly misaligned, but then you get a lot of extraneous fringing
capacitance which will signi�cantly slow down the speed of operation of the transistor Figure 4.29 (Wide
Gate). This is bad! The development of the self-aligned gate technique was one of the big breakthroughs
which has propelled us into the VLSI and ULSI era.
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Misaligned Gate

Figure 4.28

Wide Gate

Figure 4.29

We pull the wafer out of the implanter, and strip o� the photoresist. This is sometimes di�cult, because
the act of ion implantation can "bake" the photoresist into a very tough �lm. Sometimes an rf discharge in
an O2 atmosphere is used to "ash" the photoresist, and literally burn it o� the wafer! We now apply some
more PR, and this time pattern to have the moat area, and a substrate contact exposed, for a boron p+
implant. This is shown in Figure 4.30 (Boron p-Channel S/D Implant).

Boron p-Channel S/D Implant

Figure 4.30

We are almost done. The next thing we do is remove all the photoresist, and grow one more layer of
oxide, which covers everything, as shown in Figure 4.31 (Final Oxide Growth). We put photoresist over the
whole wafer again, and pattern for contact holes to go through the oxide. We will put contacts for the two
drains, and for each of the sources, make sure that the holes are big enough to also allow us to connect the
source contact to either the p-substrate or the n-moat as is appropriate Figure 4.32 (Contact Holes Etched).
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Final Oxide Growth

Figure 4.31

Contact Holes Etched

Figure 4.32

4.8 Applying Metal/Sputtering8

We now put the wafer in a sputter deposition system. In the sputter system, we coat the entire surface of
the wafer with a conductor. An aluminum-silicon alloy is usually used, although other metals are employed
as well.

A sputtering system is shown schematically in Figure 4.33 (Sputtering Apparatus). A sputtering system
is a vacuum chamber, which after it is pumped out, is re-�lled with a low-pressure argon gas. A high voltage
ionizes the gas, and creates what is known as the Crookes dark space near the cathode, which in our
case, consists of a metal target made out of the metal we want to deposit. Almost all of the potential of the
high-voltage supply appears across the dark space. (The glow discharge consists of argon ions and electrons
which have been stripped o� of them. Since there are about equal number of ions and electrons, the net
charge density is about zero, and hence by Gauss' law, so is the �eld.)

8This content is available online at <http://cnx.org/content/m1039/2.11/>.
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Sputtering Apparatus

Figure 4.33

The electric �eld accelerates the argon atoms which slam into the aluminum target. There is an exchange
of momentum, and an aluminum atom is ejected from the target (Figure 4.34 (Sputtering Mechanism)) and
heads to the silicon wafer, where it sticks, and builds up a metal �lm Figure 4.35 (Wafer Coated with Metal).

Sputtering Mechanism

Figure 4.34
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Wafer Coated with Metal

Figure 4.35

If you look at Figure 4.35 (Wafer Coated with Metal), you will note that we have seemingly done
something pretty stupid. We have wired all of the elements of our CMOS inverter together! Ah, but all is
not lost. We can do one more photolithographic step, and pattern and etch the aluminum, so we only have
it where we need it. This is shown in Figure 4.36 (After Interconnect Patterning).

After Interconnect Patterning

Figure 4.36

4.9 Integrated Circuit Manufacturing: Bird's Eye View9

It will no doubt be helpful if we also take a plane or "bird's eye" view of what this circuit looks like as well.
There are, in fact, some interesting things we can gain by looking at some of them.

We have been looking at the development of the circuit from a cross-sectional point of view, watching
the formation of the various levels which make up the �nished CMOS inverter. This is, in fact, not the way
a circuit designer looks at things. A circuit designer sees things from above, and only worries about the
placement of transistors, and how they will be connected together. In fact, the only factor in the actual
design of the layout engineer has any choice on is the transistor width, W. All other parameters are decided
upon beforehand by the process engineer. So what does the layout engineer see? We start with the n-
implant to make the n-tank, as shown in Figure 4.37 (Implanted n-Tank). (You should go back and follow
along with the cross-sectional views of the process, as we review looking at things from the top.)

9This content is available online at <http://cnx.org/content/m1040/2.7/>.
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Implanted n-Tank

Figure 4.37

A mask opposite to that of the n-tank allows us to an n-channel VT adjust. We next deposit and pattern
the nitride for the active regions, and grow the �eld oxide (FOX) Figure 4.38 (Growing FOX).

Growing FOX

Figure 4.38

We remove the nitride, and deposit and pattern the poly., as seen in Figure 4.39 (Gate Poly Pattern)

Gate Poly Pattern

Figure 4.39

Figure 4.40 (S/D Implants) shows what the two masks look like for the n+ and p+ source/drain implants:



136 CHAPTER 4. IC MANUFACTURING

S/D Implants

Figure 4.40

Note that the gate poly extends beyond where the implant is being performed (inside the dotted line).
This is a design rule which is the way the circuit designer takes into account the fact that the manufacturing
process must have some tolerance built in, because things will not always be lined up just perfectly. Now
we make some contact holes, seen in Figure 4.41 (Etching Contact Holes):

Etching Contact Holes

Figure 4.41

And �nally, we sputter and pattern the metallization, which is depicted in Figure 4.42 (Metallization
Patterning). You should go back to MOSFETs (Section 3.1), and convince yourself that the circuit shown in
Figure 4.37 (Implanted n-Tank) is indeed what has been constructed in Figure 4.42 (Metallization Pattern-
ing). See if you can identify all of the correct parts. Note that there is a connection between Vss (ground)
and the p-substrate very close to the n-channel source. There is also a contact between the n-moat and Vdd
which is very close to the p-channel source. What advantage would this have? Hint: review the discussion
of latch-up (Section 3.12).
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Metallization Patterning

Figure 4.42

4.10 Di�used Resistor10

Sometimes, in a circuit design, we will need a resistor. This is usually made either with poly or with a
di�usion (Figure 4.43: A Di�used Resistor). If we took our n-tank or similar n-type di�usion, we could
make a long narrow strip of it, and use it as a resistor. As long as we keep the substrate at ground, and any
voltages on the resistor greater than ground, the n-p junction will be reverse biased and the resistor will be
isolated from the substrate. Now we all know

R = ρL
A

= L
nqµtW

(4.11)

A Di�used Resistor

Figure 4.43

The only trouble is, what is n for a di�used resistor? A quick look at the chart (Figure 4.11) showing
carrier concentration as a function of depth after a di�usion shows that when we do a di�usion, n is not a
constant, but varies as we go down into the wafer. We will have to do some kind of integral, assuming lots
of parallel, thin resistors, each with a di�erent carrier concentration! This is not very satisfactory.

In fact, it is so unsatisfactory that IC engineers have come up with a better description resistance than
one involving n and µ. Note that we could write (4.11) as

R =
1

nqµt

L

W
(4.12)

10This content is available online at <http://cnx.org/content/m1041/2.9/>.
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We de�ne the �rst fraction (which contains the carrier concentration, thickness etc.) as the sheet resistance
Rs of the di�usion. While this can be more-or-less predicted, it is usually also a post-fabrication measured
value.

Rs ≡
1

nqµt
(4.13)

Rs has units of "ohms/square", and you are probably tempted to ask "per square what?". Well it can be
any square at all, cm, µm, km, since all we really need to know is Rs and the length to width ratio of the
resistor structure to �nd the resistance of a resistor. We do not need to know what units are used to measure
the length and the width, so long as they are the same for both. For instance if the resistor in Figure 4.43
(A Di�used Resistor) has a sheet resistivity of 50 Ω/square, then by blocking the resistor o� into squares
WxW in dimension, we see that the resistor is 7 squares long (Figure 4.44 (Counting the Squares)) and so
its resistance is given as:

R = 50 Ω
square

7squares

= 350Ω
(4.14)

Counting the Squares

Figure 4.44

4.11 Yield11

Perhaps a word about feature size, chip size and yield would be in order. We saw earlier that circuits
are repeated many times across a wafer's surface during the photolithographic stage. Although great care
is exercised in trying to prevent defects from becoming part of a wafer surface (clean rooms, "bunny"
suits, ultra-pure chemicals etc.) each wafer that goes through a fab will end up with some "killer" defects
distributed across the wafer surface Figure 4.45 (A Wafer with Defects).

11This content is available online at <http://cnx.org/content/m1042/2.7/>.
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A Wafer with Defects

Figure 4.45

Imagine that we try to manufacture some chips of a certain size. A glance at Figure 4.46 (Six Killed
Circuits) shows that we would have 15 of 21 good chips, for a yield of about 71%. Suppose we could, through
improved technology, perform a 30% "shrink" on the circuit - i.e. make its dimensions 30% smaller. Now,
as Figure 4.47 (Lots More Good Ones) shows, we get 40 good chips/wafer instead of 15 (and they cost no
more to produce) and our yield has gone to 40 out of 46 or 87%. We will be rich! Or at least we won't go
out of business!

Six Killed Circuits

Figure 4.46

Lots More Good Ones

Figure 4.47

Yield, reliability and manufacturability are all critical issues in the semiconductor industry. The business
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is highly competitive, and the technology keeps moving rapidly. It is an exciting and challenging �eld, one
which demands the very best, but which rewards someone who is willing to never stop thinking and to bring
forth the very best creative solutions to hard problems.
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Solutions to Exercises in Chapter 4

Solution to Exercise 4.1 (p. 122)
About 1.2 µm after 1 hour of di�usion time. You know this because for x < 1.2µm the phosphorus
concentration is greater than that of boron, and so the material is n-type. For x > 1.2µm, the boron
concentration exceeds that of the phosphorous, and so the material is now p-type.)
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Chapter 5

Introduction to Transmission Lines

5.1 Introduction to Transmission Lines: Distributed Parameters1

Having learned something about how we generate signals with bipolar and �eld e�ect transistors, we now
turn our attention to the problem of getting those signals from one place to the next. Ever since Samuel
Morse (and the founder of my alma mater, Ezra Cornell) demonstrated the �rst working telegraph, engineers
and scientists have been working on the problem of describing and predicting how electrical signals behave
as they travel down speci�c structures called transmission lines.

Any electrical structure which carries a signal from one point to another can be considered a transmission
line. Be it a long-haul coaxial cable used in the Internet, a twisted pair in a building as part of a local-area
network, a cable connecting a PC to a printer, a bus layout on a motherboard, or a metallization layer on
a integrated circuit, the fundamental behavior of all of these structures are described by the same basic
equations. As computer switching speeds run into the 100s of MHz, into the GHz range, considerations of
transmission line behavior are ever more critical, and become a more dominant force in the performance
limitations of any system.

For our initial purposes, we will introduce a "generic" transmission line Figure 5.1 ("Generic" Transmis-
sion Line), which will incorporate most (but not all) features of real transmission lines. We will then make
some rather broad simpli�cations, which, while rendering our results less applicable to real-life situations,
nevertheless greatly simplify the solutions, and lead us to insights that we can indeed apply to a broad range
of situations.

"Generic" Transmission Line

Figure 5.1

The generic line consists of two conductors. We will suppose a potential di�erence V (x) exists between
the two conductors, and that a current I (x) �ows down one conductor, and returns via the other. For the

1This content is available online at <http://cnx.org/content/m1043/2.9/>.
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time being, we will let the transmission line be "semi-in�nite", which means we have access to the line at
some point x, but the line then extends out in the +x direction to in�nity. (Such lines are a bit di�cult to
handle in the lab!)

In order to be able to describe how V (x) and I (x) behave on this line, we have to make some kind of
model of the electrical characteristics of the line itself. We can not just make up any model we want however;
we have to base the model on physical realities.

Let's start out by just considering one of the conductors and the physical e�ects of current �owing though
that conductor. We know from freshman physics that a current �owing in a wire gives rise to a magnetic
�eld, H (Figure 5.2 (Build Up of Magnetic Field)). Multiply H by µ and you get B, the magnetic �ux
density, and then integrate B over a plane parallel to the wires and you get Φ, the magnetic �ux "linking"
the circuit. This is shown in Figure 5.3 (Find the Flux Linkage) for at least part of the surface. The de�nition
of L, the inductance of a circuit element, is just

L ≡ Φ
I

(5.1)

where Φ is the �ux linking the circuit element, and I is the current �owing through it. Our only problem
in �nding Φ is that the longer a section of wire we take, the more Φ we have for the same I. Thus, we will
introduce the concept of a distributed parameter.

De�nition 1: distributed parameter
A distributed parameter is a parameter which is spread throughout a structure and is not con�ned
to a lumped element such as a coil of wire.
Example
For instance, we will hereby de�ne L as the distributed inductance for the transmission line.
It has units of Henrys/meter. If we have a length of transmission line x0 meters long, and if that
line has a distributed inductance of L H/m, then the inductance L of that length of line is just
L = Lx0.

Build Up of Magnetic Field

Figure 5.2

Likewise, if we have two conductors separated by some distance, and if there is a potential di�erence V
between the conductors, then there must be some charge ±Q on the two conductors which gives rise to that
potential di�erence. We can imagine a linear charge distribution on the transmission line, ρ (C/m), where we
have +ρ Coulombs/m on one conductor, and −ρ Coulombs/m on the other conductor. For a line of length
x0, we would have Q = ± (ρx0) on each section of wire. Whenever you have two charged conductors with
a voltage di�erence between them, you can describe the ratio of the charge to the voltage as a capacitance.
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The two conductors would have a capacitance

C = Q
V

= ρx0
V

(5.2)

and a distributed capacitance C (F/m) which is just ρ
V . A length of line x0 long would have a capacitance

C = Cx0 Farads associated with it Figure 5.4 (Line Capacitance).

Find the Flux Linkage

Figure 5.3

Line Capacitance

Figure 5.4

Thus, we see that the transmission line has both a distributed inductance L and a distributed capacitance
C which are tied up with each other. There is really no way in which we can separate one from the other.
In other words, we can not have only the capacitance, or only the inductance, there will always be some of
each associated with each section of line now matter how small or how big we make it.

We are now ready to build our model. What we want to do is to come up with some arrangement of
inductors and capacitors which will represent electrically, the properties of the distributed capacitance and
inductance we discussed above. As a length of line gets longer, its capacitance increases, so we had better
put the distributed capacitances in parallel with one another, since that is the way capacitors add up. Also,
as the line gets longer, its total inductance increases, so we had better put the distributed inductances in
series with one another, for that is the way inductances add up. Figure 5.5 (Distributed Parameter Model)
is a representation of the distributed inductance and capacitance of the generic transmission line.
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Distributed Parameter Model

Figure 5.5

We break the line up into sections ∆x long, each one with an inductance L∆x and a capacitance C∆x. If
we halve ∆x, we would halve the inductance and capacitance of each section, but we'd have twice as many of
them per unit length. Duh! The point is no matter how �ne we make C∆x, we still have Ls and Cs arranged
like we see in Figure 5.5 (Distributed Parameter Model), with the two kinds of components intermixed.

We could make a more realistic model and realize that all real wires have series resistance associated with
them and that whatever we use to keep the two conductors separated will have some leakage conductance
associated it. To account for this we would introduce a series resistance R (ohms/unit length) and a series
conductance G (ohms/unit length). One section of our line model then looks like Figure 5.6 (Complete
Distributed Model).

Complete Distributed Model

Figure 5.6

Although this is a more realistic model, it leads to much more complicated math. We will start out
anyway, ignoring the series resistance R and the shunt conductance G. This "approximation" turns out to
be pretty good as long as either the line is not too long, or the frequencies of the signals we are sending down
the line do not get too high. Without the series resistance or parallel conductance we have what is called an
ideal lossless transmission line.

5.2 Telegrapher's Equations2

Let's look at just one little section of the line, and de�ne some voltages and currents Figure 5.7 (Applying
Kircho�'s Laws).

2This content is available online at <http://cnx.org/content/m1044/2.12/>.
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Applying Kircho�'s Laws

Figure 5.7

For the section of line ∆x long, the voltage at its input is just V (x, t) and the voltage at the output
is V (x+ ∆x, t). Likewise, we have a current I (x, t) entering the section, and another current I (x+ ∆x, t)
leaving the section of line. Note that both the voltage and the current are functions of time as well as
position.

The voltage drop across the inductor is just:

VL = L∆x
∂

∂t
I (x, t) (5.3)

Likewise, the current �owing down through the capacitor is

IC = C∆x
∂

∂t
V (x+ ∆x, t) (5.4)

Now we do a KVL3 around the outside of the section of line and we get

V (x, t)− VL − V (x+ ∆x, t) = 0 (5.5)

Substituting (5.3) for VL and taking it over to the RHS we have

V (x, t)− V (x+ ∆x, t) = L∆x
∂

∂t
I (x, t) (5.6)

Let's multiply by -1, and bring the ∆x over to the left hand side.

V (x+ ∆x, t)− V (x, t)
∆x

= −
(
L
∂

∂t
I (x, t)

)
(5.7)

We take the limit as ∆x→ 0 and the LHS becomes a derivative:

∂

∂x
V (x, t) = −

(
L
∂

∂t
I (x, t)

)
(5.8)

Now we can do a KCL4 at the node where the inductor and capacitor come together.

I (x, t)−C∆x
∂

∂t
V (x+ ∆x, t)− I (x+ ∆x, t) = 0 (5.9)

3"Electric Circuits and Interconnection Laws": Section Kircho�'s Voltage Law (KVL)
<http://cnx.org/content/m0014/latest/#voltage>

4"Kircho�'s Laws": Section Kircho�'s Current Law <http://cnx.org/content/m0015/latest/#current>
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And upon rearrangement:

I (x+ ∆x, t)− I (x, t)
∆x

= −
(
C
∂

∂t
V (x+ ∆x, t)

)
(5.10)

Now when we let ∆x → 0, the left hand side again becomes a derivative, and on the right hand side,
V (x+ ∆x, t)→ V (x, t), so we have:

∂

∂x
I (x, t) = −

(
C
∂

∂t
V (x, t)

)
(5.11)

(5.8) and (5.11) are so important we will write them out again together:

∂

∂x
V (x, t) = −

(
L
∂

∂t
I (x, t)

)
(5.12)

∂

∂x
I (x, t) = −

(
C
∂

∂t
V (x, t)

)
(5.13)

These are called the telegrapher's equations and they are all we really need to derive how electrical
signals behave as they move along on transmission lines. Note what they say. The �rst one says that at
some point x along the line, the incremental voltage drop that we experience as we move down the line is
just the distributed inductance L times the time derivative of the current �owing in the line at that point.
The second equation simply tells us that the loss of current as we go down the line is proportional to the
distributed capacitance C times the time rate of change of the voltage on the line. As you should be easily
aware, what we have here are a pair of coupled linear di�erential equations in time and position for
V (x, t) and I (x, t)

5.3 Transmission Line Equation5

We need to solve the telegrapher's equations,

∂

∂x
V (x, t) = −

(
L
∂

∂t
I (x, t)

)
(5.14)

∂

∂x
I (x, t) = −

(
C
∂

∂t
V (x, t)

)
(5.15)

The way we will proceed to a solution, and the way you always proceed when confronted with a pair
of equations such as these, is to take a spatial derivative of one equation, and then substitute the second
equation in for the spatial derivative in the �rst and you end up with...well, let's try it and see.

Taking a derivative with respect to x of (5.14)

∂2

∂x2
V (x, t) = −

(
L

∂2

∂t∂x
I (x, t)

)
(5.16)

Now we substitute in for ∂
∂xI (x, t) from (5.15)

∂2

∂x2
V (x, t) = LC

∂2

∂t2
V (x, t) (5.17)

It should be very easy for you to derive

∂2

∂x2
I (x, t) = LC

∂2

∂t2
I (x, t) (5.18)

5This content is available online at <http://cnx.org/content/m1045/2.11/>.
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Oh, I know you all love di�erential equations! Well, let's take a look at these and just think for a minute.
For either V (x, t) or I (x, t), we need to �nd a function that has some rather stringent requirements. First
of all, the function must be of the form such that no matter whether we take its second derivative in space
(x) or in time (t), it must end up di�ering in the way it behaves in x or t by no more than just a constant
(LC).

In fact, we can be more speci�c than that. First V (x, t) must have the same functional form for both
its x and t variation. At most, the two derivatives must di�er only by a constant. Let's try a "lucky" guess
and let:

V (x, t) = V0f (x− vt) (5.19)

where V0 is the amplitude of the voltage, and f is some function, of a form yet undetermined. Well

∂

∂t
f (x− vt) = − (vf ′) (5.20)

and
∂2

∂t2
f (x− vt) = v2f ′′ (5.21)

Note also, that
∂2

∂x2
f (x− vt) = f ′′ (5.22)

Now, let's take (5.19), (5.21), and (5.22) and substitute them into (5.17):

V0f
′′ = LCV0v

2f ′′ (5.23)

Our "lucky" guess works as a solution as long as

v = ± 1√
LC

(5.24)

So, what is this f (x− vt)? We don't know yet what its actual functional form will be, but suppose at some
point in time, t1, the function looks like Figure 5.8 (f(x) At Some Point In Time).

f(x) At Some Point In Time

Figure 5.8: f (x) at time t1.

At point x1, the function takes on the value V1. Now, let's advance to time t2. We look at the function
and we see Figure 5.9 (f(x) At a Later Point In Time).
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f(x) At a Later Point In Time

Figure 5.9: f (x) at a later t2.

If t increases from t1 to t2 then x will have to increase from x1 to x2 in order for the argument of f to
have the same value, V1. Thus we �nd

x1 − vt1 = x2 − vt2 (5.25)

which can be re-written as
x2 − x1

t2 − t1
=

∆x
∆t
≡ vp =

1√
LC

(5.26)

where vpis the velocity with which the function is moving along the x-axis! (We use the subscript "p" to
indicated that what we have here is what is called the phase velocity. We will encounter another velocity
called the group velocity a little later in the course.)

If we had "guessed" an f (x+ vt) for our function, it should be pretty easy to see that this would have
given us a signal moving in the minus x direction, instead of the plus x direction. Thus we shall denote

Vplus = V +f

(
x− 1√

LC
t

)
(5.27)

the positive going voltage function and

Vminus = V −f

(
x+

1√
LC

t

)
(5.28)

which is the negative going voltage function. Notice that since we are taking the second derivative of f
with respect to t, we are free to choose either a + 1√

LC
or a −

(
1√
LC

)
in front of the time argument inside f .

Also note that these are our only choices for a solution. As we know from Di�erential Equations, a second
order equation has, at most, two independent solutions.

Since I (x, t) has the same di�erential equation describing its behavior, the solutions for I must also be
of the exact same form. Thus we can let

Iplus = I+f

(
x− 1√

LC
t

)
(5.29)

represent the current function which goes in the positive x direction, and

Iminus = I−f

(
x+

1√
LC

t

)
(5.30)

represent the negative going current function.
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Now, let's take (5.29) and (5.27) and substitute them into (5.14):

V +

√
LC

f

(
x− 1√

LC
t

)
= LI+f

(
x− 1√

LC
t

)
(5.31)

This can be solved for V + in terms of I+.

V + =

√
L
C
I+ ≡ Z0I

+ (5.32)

where Z0 =
√

L
C is called the characteristic impedance of the transmission line. We will leave it as an

exercise to the reader to ensure that indeed
√

L
C has units of Ohms. For practice, and understanding about

just how these equations work, the reader should ensure him/her self that

V − = −

(√
L
C
I−

)
≡ −

(
Z0I

−) (5.33)

Note the "subtle" di�erence here, with a "-" sign in front of the RHS of the equation!
We've been through lots of equations recently, so it is probably worth our while to summarize what we

know so far.

1. The telegrapher's equations allow two solutions for the voltage and current on a transmission line. One
moves in the +x direction and the other moves in the −x direction.

2. Both signals move at a constant velocity vp given by (5.34).
3. The voltage and current signals are related to one another by the characteristic impedance Z0, with

(5.35)

vp =
1√
LC

(5.34)

Z0 =

√
L
C

(5.35)

V +

I+
= Z0

V −

I−
= −Z0

5.4 Transmission Line Examples6

As an example, and also because it even has some practical importance, let's look at one kind of transmission
line. It is called a stripline and it looks like Figure 5.10 (A Stripline). It consists of a �at conductor, located
between two ground planes. It is supported by an insulating dielectric with dielectric constant ε. This is
kind of like the situation you would �nd on a multi-level PC board, where perhaps the bus lines would be
running on an inner layer with ground planes above and below them.

6This content is available online at <http://cnx.org/content/m1046/2.10/>.
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A Stripline

Figure 5.10

Between the center conductor and the ground plane, there will be some capacitance, C. If we can assume
that the electric �eld is more or less con�ned to the regions between the strip conductor and the ground
plane (which occurs when the ratio of WB is not too small) then for either capacitor (assuming unit length
into the picture) we will get a value

C =
εW
B
2

(5.36)

since the value of a capacitor is just the dielectric constant times the area of the plates, divided by the
spacing of the plates.

Looking quickly at Figure 5.10 (A Stripline) you might think the two capacitors are in series, but you
would be wrong! Note that each capacitor has one lead connected to the center conductor and the other
lead connected to ground, and so the two capacitors are in fact, in parallel, and hence their capacitances
add. Thus, for the capacitance per unit length for this line, we can write:

C =
4εW
B

(5.37)

It can be shown (although we won't do it here) that for any transmission line where the electric and
magnetic �elds are perpendicular to one another (called TEM or transverse electromagnetic) the speed
of propagation of the wave down the line is just

vp = c√
ε
ε0

= 3×108 m
s√

εr

(5.38)

Where εr is called the relative dielectric constant for the material. Well, we also know that

vp =
1√
LC

(5.39)

From which we can write
L = 1

vp2C

= B
vp24εW

(5.40)



153

We can now insert this value for L into the expression for Z0, the impedance of the line.

Z0 =
√

L
C

=

√
B

vp24εW
4εW
B

= B
4εWvp

= B
4εW c√

εr

(5.41)

And so, we have derived an equation for the impedance Z0 of the line in terms of the dimensions W and B,
the dielectric constant of the insulating material, ε, and c, the speed of light. How good is this expression,
and in particular how good is our assumption that the electric �eld is all con�ned to the region under the
conductor? Not so great actually Figure 5.11 (Exact and Approximate Impedance For a Stripline).

Exact and Approximate Impedance For a Stripline

Figure 5.11: Exact and approximate Z0 for a stripline

Figure 5.11 (Exact and Approximate Impedance For a Stripline) shows the results from using (5.41) and
a more exact calculation, which takes into account the fringing �elds. As you can see we have to get the
ratio W

B up to about 4 or so before the two match. But at least we get the right behavior and we're not
totally out of the ball park.

5.5 Exciting a Line7

We will now go on and look at what happens when we excite the line. Let's take a DC voltage source
with a source internal impedance Rs and connect it to our semi-in�nite line. The sketch in Figure 5.12
(Exciting a Transmission Line) is sort of awkward looking, and will be hard to analyze, so let's make a more
"schematic like" drawing Figure 5.13 (Schematic Representation), keeping in mind that it is a situation such
as Figure 5.12 (Exciting a Transmission Line) which we trying to represent.

7This content is available online at <http://cnx.org/content/m1047/2.9/>.
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Exciting a Transmission Line

Figure 5.12

Schematic Representation

Figure 5.13

Why have we shown an I+ and a V + but not V − or I−? The answer is, that if the line is semi-in�nite,
then the "other" end is at in�nity, and we know there are no sources at in�nity. The current �owing through
the source resistor is just I+

1 , so we can do a KVL around the loop

Vs − I+
1 (0, t)Rs − V +

1 (0, t) = 0 (5.42)

Substituting for I+
1 in terms of V +

1 using this equation (5.32):

Vs −
V +

1 (0, t)
Z0

Rs − V +
1 (0, t) = 0 (5.43)

Which we re-write as

V +
1 (0, t)

(
1 +

Rs
Z0

)
= Vs (5.44)

Or, on solving for V +
1 (0, t):

V +
1 (0, t) =

Z0

Z0 +Rs
Vs (5.45)

This should look both reasonable and familiar to you. The line and the source resistance are acting as a
voltage divider. In fact, (5.45) is just the usual voltage divider equation for two resistors in series. Thus, the
generator can not tell the di�erence between a semi-in�nite transmission line of characteristic impedance Z0

and a resistor with a resistance of the same value Figure 5.14 (Line is Initially a Voltage Divider!).
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Line is Initially a Voltage Divider!

Figure 5.14

Have you ever heard of "300Ω twin-lead" or maybe "75Ω co-ax" and wondered why people would want
to use wires with such a high resistance value to bring a TV signal to their set? Now you know. The 300Ω
characterization is not a measure of the resistance of the wire, rather it is a speci�cation of the transmission
line's impedance. Thus, if a TV signal coming from your antenna has a value of, say, 30µV , and it is being
brought down from the roof with 300Ω twin-lead, then the current �owing in the wires is I = 30µV

300Ω = 100nA,
which is a very small current indeed!

Why then, did people decide on 300Ω? An antenna which is just a half-wavelength long (Which turns out
to be both a convenient and e�cient choice for signals in the 100 MHz (λ ≈ 3m) range) acts like a voltage
source with a source resistance of about 300Ω. If you remember from ELEC 242, when we have a source
with a source resistance Rs and a load resistor with load resistance value RL Figure 5.15 (Power Transfer
To a Load), you calculate the power delivered to the load using the following method.

Power Transfer To a Load

Figure 5.15

PL, the power in the load, is just product of the voltage across the load times the current through the
load. We can use the voltage divider law to �nd the voltage across RL and the resistor sum law to �nd the
current through it.

PL = VLIL

= RL
RL+Rs

Vs
Vs

RL+Rs

= RL
(RL+Rs)

2Vs
2

(5.46)

If we take the derivative of (5.46) with respect to RL, the load resistor (which we assume we can pick, given



156 CHAPTER 5. INTRODUCTION TO TRANSMISSION LINES

some predetermined Rs) we have (ignoring the Vs
2),

d
dRL

(PL) = 1
(RL+Rs)

2
2RL

(RL+Rs)
3

= 0
(5.47)

Putting everything on (RL +Rs)
3 and then just looking at the numerator:

RL +Rs − 2RL = 0 (5.48)

Which obviously says that for maximum power transfer, you want your load resistor RL to have the same
value as your source resistor Rs! Thus, people came up with 300Ω twin lead so that they could maximize
the energy transfer between the TV antenna and the transmission line bringing the signal to the TV receiver
set. It turns out that for a co-axial transmission line (such as your TV cable) 75Ω minimizes the signal loss,
which is why that value was chosen for CATV.

5.6 Terminated Lines8

If, on the other hand, we have a �nite line, terminated with some load impedance, we have a somewhat more
complicated problem to deal with Figure 5.16 (A Finite Terminated Transmission Line).

A Finite Terminated Transmission Line

Figure 5.16

There are several things we should note before we head o� into equation-land again. First of all, unlike
the transient problems we looked at in a previous chapter (Section 5.6), there can be no more than two
voltage and current signals on the line, just V + and V −, (and I+ and I−). We no longer have the luxury of
having V +

1 , V +
2 , etc., because we are talking now about a steady state system. All of the transient solutions

which built up when the generator was �rst connected to the line have been summed together into just two
waves.

Thus, on the line we have a single total voltage function, which is just the sum of the positive and
negative going voltage waves

V (x) = V +e−(jβx) + V −e+jβx (5.49)

and a total current function
I (x) = I+e−(jβx) + I−e+jβx (5.50)

Note also that until we have solved for V + and V −, we do not know V (x) or I (x) anywhere on the line.
In particular, we do not know V (0) and I (0) which would tell us what the apparent impedance is looking

8This content is available online at <http://cnx.org/content/m1048/2.12/>.
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into the line.
Zin = Z (0)

= V ++V −

I++I−

(5.51)

Until we know what kind of impedance the generator is seeing, we can not �gure out how much of the
generator's voltage will be coupled to the line! The input impedance looking into the line is now a function
of the load impedance, the length of the line, and the phase velocity on the line. We have to solve this before
we can �gure out how the line and generator will interact.

The approach we shall have to take is the following. We will start at the load end of the line, and in a
manner similar to the one we used previously, �nd a relationship between V + and V −, leaving their actual
magnitude and phase as something to be determined later. We can then propagate the two voltages (and
currents) back down to the input, determine what the input impedance is by �nding the ratio of (V + +V −)
to (I+ + I−), and from this, and knowledge of properties of the generator and its impedance, determine
what the actual voltages and currents are.

Let's take a look at the load. We again use KVL and KCL (Figure 5.17 (Doing Kircho� at the End of
the Line)) to match voltages and currents in the line and voltages and currents in the load:

V +e−(jβL) + V −e+jβL = VL (5.52)

and
I+e−(jβL) + I−e+jβL = IL (5.53)

Doing Kircho� at the End of the Line

Figure 5.17: Change variables!

Now, we could substitute ±VZ0
for the two currents on the line and VL

ZL
for IL, and then try to solve for V −

in terms of V + using (5.52) and (5.53) but we can be a little clever at the outset, and make our (complex)
algebra a good bit cleaner Figure 5.18 (s=0 at the Load and So the Exponentials Go Away!). Let's make a
change of variable and let

s ≡ L− x (5.54)
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s=0 at the Load and So the Exponentials Go Away!

Figure 5.18

This then gives us for the voltage on the line (using x = L− s)

V (s) = V +e−(jβL)ejβL + V −ejβLe−(jβL) (5.55)

Usually, we just fold the (constant) phase terms e±jβL terms in with the V + and V − and so we have:

V (s) = V +ejβs + V −e−(jβs) (5.56)

Note that when we do this, we now have a positive exponential in the �rst term associated with V + and a
negative exponential associated with the V − term. Of course, we also get for I (s):

I (s) = I+ejβs + I−e−(jβs) (5.57)

This change now moves our origin to the load end of the line, and reverses the direction of positive motion.
But, now when we plug into ejβs the value for s at the load (s = 0), the equations simplify to:

V + + V − = VL (5.58)

and
I+ + I− = IL (5.59)

which we then re-write as
V +

Z0
− V −

Z0
=
VL
ZL

(5.60)

This is beginning to look almost exactly like a previous chapter (Section 5.1). As a reminder, we solve (5.60)
for VL

VL =
ZL
Z0

(
V + − V −

)
(5.61)

and substitute for VL in (5.58)

V + + V − =
ZL
Z0

(
V + − V −

)
(5.62)

From which we then solve for the re�ection coe�cient Γν , the ratio of V − to V +.

V −

V +
≡ Γν =

ZL − Z0

ZL + Z0
(5.63)
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Note that since, in general, ZL will be complex, we can expect that Γν will also be a complex number with
both a magnitude |Γν | and a phase angle θΓ. Also, as with the case when we were looking at transients,
|Γν | < 1.

Since we now know V − in terms of V +, we can now write an expression for V (s) the voltage anywhere
on the line.

V (s) = V +ejβs + V −e−(jβs) (5.64)

Note again the change in signs in the two exponentials. Since our spatial variable s is going in the opposite
direction from x, the V + phasor now goes as +jβs and the V − phasor now goes as − (jβs).

We now substitute in ΓνV + for V − in (5.64), and for reasons that will become apparent soon, factor out
an ejβs.

V (s) = V +ejβs + ΓνV +e−(jβs)

= V +
(
ejβs + Γνe−(jβs)

)
= V +ejβs

(
1 + Γνe−(2jβs)

) (5.65)

We could have also written down an equation for I (s), the current along the line. It will be a good test of
your understanding of the basic equations we are developing here to show yourself that indeed

I (s) =
V +ejβs

Z0

(
1− Γνe−(2jβs)

)
(5.66)

5.7 Bounce Diagrams9

Now this new V +
2 will head back towards the load and ...Hmmm... things are going to get kind of messy

and complicated. Fortunately for us, transmission line engineers came up with a scheme for keeping track of
all of the waves bouncing back and forth on the line. The scheme is called a bounce diagram. A bounce
diagram consists of a horizontal distance line, which represents distance along the transmission line, and a
vertical time axis, which represents time since the battery was �rst connected to the line. Just to keep things
conceptually clear, we usually �rst start out by showing the line, the battery, the load and a switch, S, which
is used to connect the source to the line. It doesnt hurt to make a little sketch like Figure 5.19 (Transient
Problem) , and write down the length of the line, Z0 and vp, along with the source and load resistances.
Now we draw the bounce diagram, which is shown in Figure 5.20 (A "Bounce Diagram")

Transient Problem

Figure 5.19

9This content is available online at <http://cnx.org/content/m1049/2.11/>.
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A "Bounce Diagram"

Figure 5.20

Normally, you would not put the formula for ΓvS and ΓvL by 0 and L in the diagram, but rather their
values. This will become clear when we do an example. The next thing we do is calculate V +

1 and draw a
straight line on the bounce diagram (nominally at a slope of 1

vp
) which will represent the initial signal going

down the line. We mark a τ = L
vp

on the vertical axis to show how long it takes for the wave to reach the
end of the line Figure 5.21 (Diagram With First Wave).

Diagram With First Wave

Figure 5.21
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Once the initial wave hits the load, a second, re�ected wave V −1 = ΓvLV +
1 is sent back the other way. So

we add it to the bounce diagram. This is shown in Figure 5.22 (Adding the First Re�ected Wave). Since all
of the waves move with the same phase velocity, we should be careful to draw all of the lines with the same
slope. Note that the time when the re�ected wave hits the generator end is a total round trip time of 2τ .
(This simple concept is one which students often forget come test time, so be forewarned!)

Adding the First Re�ected Wave

Figure 5.22

We saw that the next thing that happens is that another wave is re�ected from the generator, so we add
that to the bounce diagram as well. This is shown in Figure 5.23 (The Third Wave).
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The Third Wave

Figure 5.23

Finally, one last wave, as we are almost bounced right o� the diagram, as shown in Figure 5.24 (And the
Fourth)!

And the Fourth

Figure 5.24

OK, so we've got a bounce diagram, so what? Having the diagram is only part of the solution. We still
have to see what good they are. Let's do a numerical example, as it is maybe a little more illustrative, and
certainly will be easier to write out than all these ratios all the time. We will just pick some typical numbers,
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and then work out the answers. Let's let VS = 40V , RS = 150Ω, Z0 = 50Ω and RL = 16.7Ω. The line will
be 100m long, and vp = 2× 108m

s Figure 5.25 (A Numerical Example).

A Numerical Example

Figure 5.25

First we calculate the re�ection coe�cients

ΓvL = RL−Z0
RL+Z0

= 16.7−50
16.7+50

= −0.50

(5.67)

and
ΓvS = RS−Z0

RS+Z0

= 150−50
150+50

= 0.50

(5.68)

The initial voltage signal V +
1 is

V +
1 = 50

50+15040

= 10V
(5.69)

and the propagation time is

τ = L
vp

= 100m
(2×108)ms

= 0.5µs

(5.70)

So we draw the bounce diagrams seen in Figure 5.26 (The Bounce Diagram).
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The Bounce Diagram

Figure 5.26

Now, here's how we use a bounce diagram, once we have it. Suppose we want to know what V (t), the
voltage as a function of time, would look like half-way down the line. We draw a vertical line at the place
we are interested in (the dotted line in Figure 5.26 (The Bounce Diagram)) and then just go up along the
line, adding voltage to whatever we had before whenever we cross one of the "bouncing" signal lines. Thus
for the line as shown we would have for V (t) what we see in Figure 5.27 (V(t) at 50m Down the Line).

V(t) at 50m Down the Line

Figure 5.27

For the �rst 0.25µs we have no voltage, because V +
1 has not reached the half-way point yet. The voltage

then jumps to +10V when V +
1 comes by. It stays like that until the -5V V −1 comes by 0.5µs later. The

voltage then remains constant at 5V until the -2.5V V +
2 comes along to drop the total voltage down to only

2.5 volts. When V −2 comes along, it has been switched back to a positive voltage wave by the negative load
re�ection coe�cient, and so now the voltage jumps back up to 3.75V. It will keep oscillating back and forth
until it �nally settles down to some asymptotic value.

What will that asymptotic value be? One approach is to write down the following equation.

V (x,∞) = V +
1

(
1 + ΓL + ΓLΓS + ΓL2ΓS + . . .

)
(5.71)
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Which we can re-write as

V +
1

(
1 + ΓLΓS + (ΓLΓS)2 + . . .

)
+ ΓLV +

1

(
1 + ΓLΓS + (ΓLΓS)2 + . . .

)
(5.72)

Now, remembering the in�nite sum relationship:

∞∑
n=0

(xn) =
1

1− x
(5.73)

for |x| < 1 (which is always the case for a re�ection coe�cient). We can substitute (5.73) for the terms
inside the parentheses in (5.72) and we get

V (x,∞) = V +
1

(
1

1−ΓLΓS
+ ΓL

1−ΓLΓS

)
= V +

1
1+ΓL

1−ΓLΓS

(5.74)

We will leave it as an exercise to the reader to show that if we substitute (5.57), (5.62) and �nally (5.65)
into (5.74) we will eventually get:

V (x,∞) =
RL

RL +RS
VS (5.75)

Look back at Figure 5.19 (Transient Problem) and see if (5.75) makes any sense. It should. If we wait long
enough, it is reasonable to expect that any "transmission line" e�ects should go away, and we would be back
to the same situation we would have if the line was just some wire connecting the source to the load. In this
case, the load resistor and the source resistor would form a voltage divider, and we would expect the voltage
across the load to be determined by the voltage divider equation. That's all (5.75) is saying!

What do we do if we want, say, the voltage across the load with time? To do this we move up the RHS of
the bounce diagram, and count voltage waves as we move across them. We start out at zero, of course, and
do not see anything until we get to 0.5ms. Then we cross the 10V V +

1 wave and we cross the -5V V −1 wave
at the same time, so the voltage only goes up to +5V. Likewise, another 1ms later, we cross both the -2.5V
V +

2 and the +1.25V V −2 wave, and so the voltage ends up at the 3.75V position Figure 5.28 (V(t) Across
the Load).

V(t) Across the Load

Figure 5.28

We can also use the bounce diagram to �nd the voltage as a function of position, for some �xed time, t0
Figure 5.29 (Finding V(x) at t=0.75µs).
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Finding V(x) at t=0.75µs

Figure 5.29

To do this, we draw a horizontal line at the time we are interested in, say 0.75µs. Now, for each position
x, we go from the bottom of the diagram, up to the horizontal line, adding up voltage as we go. Thus for
the example: we get what we see in Figure 5.30 (V(x) at t = 0.75µs) . For the �rst half of the line, we cross
the +10V V +

1 , but that's it. For the second half of the line we cross both the +10V line as well as -5V V −1
wave, and so the voltage drops down to 5V.

V(x) at t = 0.75µs

Figure 5.30

Of particular interest to many of you will be the way in which a pulse moves down a line and is re�ected
etc. This is also quite easy to do with a re�ection diagram, if we simply break the pulse into two waves,
one which has a positive swing at t = 0 and another which is a negative going wave at t = τp, where τp is
the pulse width of the pulse being generated. The way we do this is suggested in Figure 5.31 (Simulating
a Pulse With Two Batteries and Two Switches) . We replace the pulse generator with two battery/switch
combinations. The �rst circuit is just like we have seen so far, with a battery equal to the open circuit
pulse height of the generator, and a switch which closes at t = 0. The second circuit has a battery with an
amplitude of minus the pulse height, and a switch which closes at t = τp, the pulse width of the pulse itself.
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Simulating a Pulse With Two Batteries and Two Switches

Figure 5.31

By superposition, we can just add these two generators, one after the other, and see how the pulse goes
down the line. Suppose Vp is 10 volts, τp = 0.25µs, RS = 50Ω, Z0 = 50Ω and RL = 25Ω. With the numbers,
we �nd that V +

1 = 25V . ΓvL = −1
3 and ΓvS = 0. Let's assume that the propagation time on the line is still

0.5µs to get from one end of the line to the other.
We draw the bounce diagram (Figure 5.32: Pulse Bounce Diagram), and launch two waves, one which

leaves at t = 0 has an amplitude of V +
1 = 5V . The second wave leaves at a time τp, later, and has an

amplitude of -5V.

Pulse Bounce Diagram

Figure 5.32
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Now when we want to see what the voltage as a function of time looks like, we again draw a line up the
middle, and add voltages as we cross them. Here we see, again, no voltage until we cross the �rst wave at
0.25µs, which pops us up to +5V. At a time 0.25µs later however, the -5V wave comes along, and we go
back down to zero. At t = 0.75µs, the re�ected -1.67V pulse comes along, and so we see that. Since the
source is matched to the line, ΓvS = 0 and so this is the end of the story Figure 5.33 (V(t) Half-way Down
the Line).

V(t) Half-way Down the Line

Figure 5.33

You can get somewhat more interesting waveforms if you go someplace where the two pulses at least
partially overlap. Let's look at say, x = 87.5m. Here (Figure 5.34: Finding V(t) Near the Load) is the
bounce diagram.

Finding V(t) Near the Load

Figure 5.34

And here (Figure 5.35: V(t) Near the Load) is the voltage waveform we get.
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V(t) Near the Load

Figure 5.35

This time the 1.67V pulse gets to us before the +5V pulse has completely passed, and so we drop from
5V to 3.33V. Then, when the -5V wave goes by, we drop down to -1.67V for a little while, until the +1.67V
wave comes along to bring us back to zero.

5.8 Cascaded Lines10

We can use bounce diagrams to handle somewhat more complicated problems as well.
Arnold Aggie decides to add an additional ethernet interface to the one already connected to his computer.

He decides just to add a "T" to the terminal where the cable is connected to his "thin-net" interface, and
add on some more wire. Unfortunately, he is not careful about the coaxial cable he uses, and so he has some
75Ω TV co-ax instead of the 50Ω ethernet cable. He ends up with the situation shown here (Figure 5.36:
Cascaded Line Problem). This kind of problem is called a cascaded line problem because we have two
di�erent lines, one hooked up after the other. The analysis is similar to what we have done before, just a
little more complicated is all.

Cascaded Line Problem

Figure 5.36

We will have to do a little more thinking before we can draw out the bounce diagram for this problem.
The driver for ethernet cable coming to Arnold's computer can be modeled as a 10V (open circuit) source
with a 50Ω internal impedance. Since the source does not (initially) know anything about how the line it is
driving is terminated, the �rst signal V +

1 will be the same as in our initial problem, in this case just a +5V
signal headed down the line.

10This content is available online at <http://cnx.org/content/m1050/2.11/>.
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Let's focus on the "T" for a minute Figure 5.37 (At the Junction).

At the Junction

Figure 5.37

V +
1 is incident on the junction. When it hits the junction, there will be a re�ected wave V −1 and also

now, a transmitted wave V +
T1. Since the incident wave can not tell the di�erence between a 75Ω resistor and

a 75Ω transmission line, it thinks it is seeing a termination resistor equal to a 50Ω resistor (RL1) in parallel
with a 75Ω resistor (the second line). 50Ω in parallel with 75Ω is 30Ω. Let's call this "apparent" load resistor
R'
L), so that we can then calculate ΓV12 , the �rst voltage re�ection coe�cient in going from line 1 to line 2

as:
ΓV12 = R'

L−Z01

R'

L+Z01

= 30−50
30+50

= −0.25

(5.76)

Note that we could have started from scratch and written down KVLs and KCLs for the junction

V +
1 + V −1 = V +

T1 (5.77)

and
I+
1 + I−1 = IRL + I+

T1 (5.78)

Then, by re-writing (5.78) in terms of voltage and impedances we have:

V +
1

Z01
− V −1
Z01

=
V +
T1

Z02
+
V +
T1

RL
(5.79)

We now have two equations with two unknowns (V −1 and V +
T1). By solving (5.79) for V

+
T1 and then plugging

that into (5.77), we could get the ratio of V −1 to V +
1 , or the voltage re�ection coe�cient. The interested

reader can con�rm that indeed, you get the very same result this way.
In order to completely solve this problem, we also need to know V +

T1, the transmitted wave as well. Since
(5.77) says V +

T1 is just the sum of the incident and re�ected waves on the �rst line

V +
T1 = V +

1 + ΓV12V
+
1 (5.80)

We can thus write

V +
T1

V +
L

= 1 + ΓV12 =
R'
L + Z01

R'
L + Z01

+
R'
L − Z01

R'
L + Z01

=
2R'

L

R'
L + Z01

=
60

30 + 50
= 0.75 ≡ TV12 (5.81)

An important thing to note is that
TV = 1 + ΓV (5.82)
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NOT
TV + ΓV = 1 (5.83)

We do not "conserve" voltage at a termination, in the sense that the re�ected and transmitted voltage have
to add up to be the incident voltage. Rather, the transmitted voltage is the sum of the incident voltage and
the re�ected voltage, so that we can obey Kircho�'s voltage law.

We can now start to make our bounce diagram. We propagate a +5V wave and a -5V wave (separated
by 100ns) down towards the junction. Since the line is 40m long, and the waves move at 2× 108m

s , it takes
200ns for them to get to the junction. There, a -1.25V wave is re�ected back towards the source, and a
+3.75V wave is transmitted into the second transmission line Figure 5.38 (Re�ection and Transmission At
the "T").

Re�ection and Transmission At the "T"

Figure 5.38

Since the load for the second line is 50Ω, and the characteristic impedance, Z02 for the second line is
75Ω, we will have a re�ection coe�cient,

ΓV2 = RL2−Z02
RL2+Z02

= 50−75
50+75

= −0.2

(5.84)

Thus a -0.75V signal is re�ected o� of the second load Figure 5.39 (Re�ection of Transmitted Pulse).

Exercise 5.1 (Solution on p. 179.)

What is the magnitude of the voltage which is developed across the second load?
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Re�ection of Transmitted Pulse

Figure 5.39

What happens to the 0.75V pulse when it gets to the "T"? Well there is another mismatch here, with a
re�ection coe�cient ΓV21 given by

ΓV21 = 25−75
25+75

= −0.5
(5.85)

(The 50Ω resistor and the 50Ω transmission line look like a 25Ω termination to the 75Ω line) and a
transmission coe�cient

TV21 = 1 + ΓV21

= 0.5
(5.86)

and so we add to the bounce diagram Figure 5.40 (When the Re�ected Load Pulse Hits the Junction).

When the Re�ected Load Pulse Hits the Junction

Figure 5.40

We could keep going, but the voltage re�ected o� of the second load will only be 75mV now, and so let's
call it a day.
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There are a couple of other interesting applications of bounce diagrams and the transient behavior of
transmission lines that we might look at before we move on to other things. The �rst is called the Charged
Line Problem. Here (Figure 5.41: The "Charged Line" Problem) it is:

The "Charged Line" Problem

Figure 5.41

We have a transmission line with characteristic impedance Z0 and phase velocity vp. It is L long, and for
some time has been connected to a battery of potential Vg Figure 5.42 (Initial Conditions). At time t = 0,
the switch S, is thrown, which removes the battery from the circuit, and connects the line to a load resistor
RL. The question is: what does the voltage across the load resistor, VL, look like as a function of time? This
is almost like what we have done before, but not quite.

Initial Conditions

Figure 5.42

In the �rst place, we now have non-zero initial conditions. For t < 0 we will have both voltages and
current on the line. In order to match boundary conditions, we must do more than have one voltage and one
current, because the voltage on the line must be Vg, while the current �owing down the line must be 0. So,
we will put in both a V + and a V − and their corresponding currents. Note that +x is going to the left this
time. Let's forget about the switch and the load resistor for a minute and just look at the line and battery.
We have two equations we must satisfy

V +
0 + V −0 = Vg (5.87)

and
I+
0 + I−0 = 0 (5.88)

We can use the impedance relationship to change (5.88) to:

V +
0

Z0
− V −0
Z0

= 0 (5.89)
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I hope most of you can then see by inspection that we must have

V +
0 = V −0

= Vg
2

(5.90)

OK, the switch S is thrown at t = 0. Now the end of the line looks like this (Figure 5.43: After the Resistor
is Connected).

After the Resistor is Connected

Figure 5.43

We have anticipated the fact that we are going to need another voltage and current wave if we are going
to be able to match boundary conditions when the load resistor is connected, and have added a V +

1 and a
V −1 to the line. These are new voltage and current waves which originate at the load resistor position in
order to satisfy the new boundary conditions there. Now we do KVL and KCL again.

V +
0 + V −0 + V +

1 = VL (5.91)

and
V +

0

Z0
− V −0
Z0

+
V +

1

Z0
= −

(
VL
RL

)
(5.92)

We have already made the impedance substitution for the current equation in (5.92). We know what the
sum and di�erence of V +

0 and V −0 are, so let's substitute in.

Vg + V +
1 = VL (5.93)

and
V +

1

Z0
= −

(
VL
RL

)
(5.94)

From this we get

VL = −
(
RL
Z0

V +
1

)
(5.95)

which we substitute back into (5.93)

Vg + V +
1 = −

(
RL
Z0

V +
1

)
(5.96)

which we can solve for V +
1

V +
1 = −

(
Vg

1+
RL
Z0

)
= −

(
Z0

RL+Z0
Vg

) (5.97)



175

The voltage on the load is given by (5.93) and is clearly just:

VL = Vg −
Z0

RL + Z0
Vg (5.98)

and in particular, when RL is chosen to be Z0 (which is usually done when this circuit is used), we have

VL =
Vg
2

(5.99)

Now what do we do? We build a bounce diagram! Let us stay with the assumption that RL = Z0, in which
case the re�ection coe�cient at the resistor end is 0. At the open circuit end of the transmission line Γ is
+1. So we have this (Figure 5.44: Bounce Diagram for the Charged Line Problem).

Bounce Diagram for the Charged Line Problem

Figure 5.44

Note that for this bounce diagram, we have added an additional voltage, Vg, on the baseline, to indicate
that there is an initial voltage on the line, before the switch is thrown, and t starts on the bounce diagram.

If we concentrate on the voltage across the load, we add +Vg and −
(
Vg
2

)
and �nd that the voltage

across the load resistor rises to Vg
2 at time t = 0 Figure 5.45 (Voltage Across the Load Resistor). The

−
(
Vg
2

)
voltage wave travels down the line, hits the open circuit, re�ects back, and when it gets to the load

resistor, brings the voltage across the load resistor back down to zero. We have made a pulse generator!

Voltage Across the Load Resistor

Figure 5.45: V (t) across RL
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In today's digital age, this might seem like a strange way to go about creating a pulse. Imagine however,
if you needed a pulse with a very large potential (100s of thousands or even millions of volts) for say, a
particle accelerator. It is unlikely that a MOSFET will ever be built which is up to the task! In fact, in a
�eld of study called pulsed power electronics just such circuits are used all the time. Sometimes they are
built with real transmission lines, sometimes they are built from discrete inductors and capacitors, hooked
together just as in the distributed parameter model (Figure 5.5: Distributed Parameter Model). Such circuits
are called pulse forming networks or PFNs for short.

Finally, just because it a�ords us a good opportunity to review how we got to where we are right now,
let's consider the problem of a non-resistive load on the end of a line. Suppose the line is terminated with
a capacitor! For simplicity, let's let Rs = Z0, so when S is closed a wave V +

1 = Vg
2 heads down the line

Figure 5.46 (Transient Problem with Capacitive Load). Let's think about what happens when it hits the
capacitor. We know we need to generate a re�ected signal V −1 , so let's go ahead and put this in the �gure
(Figure 5.47: Initial Pulse Hits the Load), along with its companion current wave.

Transient Problem with Capacitive Load

Figure 5.46

Initial Pulse Hits the Load

Figure 5.47

The capacitor is initially uncharged, and we know we can not instantaneously change the voltage across
a capacitor (at least without an in�nite current!) and so the initial voltage across the capacitor should be
zero, making V −1 (0) = −V +

1 , if we make time t = 0 be when the initial wave just gets to the capacitor. So,
at t = 0, ΓV (0) = −1. Note that we are making Γ a function of time now, as it will change depending upon
the charge state of the capacitor.
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The current into the capacitor, IC is just I+
1 + I−1 (t).

IC (0) = I+
1 + I−1 (0)

= Vg
Z0

(5.100)

since
I+
1 = V +

1
Z0

= Vg
2Z0

(5.101)

and
I−1 (0) = −

(
V1
Z0

)
= Vg

2Z0

(5.102)

How will the current into the capacitor IC (t) behave? We have to remember the capacitor equation:

IC (t) = C d
dtVC (t)

= C
(
∂
∂t

(
V +

1 + V −1 (t)
))

= C d
dtV

−
1 (t)

(5.103)

since V +
1 is a constant and hence has a zero time derivative. Well, we also know that

IC (t) = I+
1 + I−1 (t)

= V +
1
Z0
− V −1 (t)

Z0

(5.104)

So we equate (5.103) and (5.104) and we get

C
d

dt
V −1 (t) =

V +
1

Z0
− V −1 (t)

Z0
(5.105)

or
d

dt
V −1 (t) +

1
Z0C

V −1 (t) =
1
C

V +
1

Z0
(5.106)

which gets us back to another Di�-E-Q!
The homogeneous solution is easy. We have

d

dt
V −1 (t) +

1
Z0C

V −1 (t) = 0 (5.107)

for which the solution is obviously

V −1homo (t) = V0e
−

“
t

Z0C

”
(5.108)

After a long time, the derivative of the homogeneous solution is zero, and so the particular solution (the
constant part) is the solution to

1
Z0C

V −1part =
1
C

V +
1

Z0
(5.109)

or
V −1part = V +

1 (5.110)

The complete solution is the sum of the two:

V −1 (t) = V −1homo (t) + V −1part

= V0e
−

“
t

Z0C

”
+ V +

1

(5.111)
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Now all we need to do is �nd V0, the initial condition. We know, however, that V −1 (0) = −V +
1 , so that

makes V0 = −2V +
1 ! So we have:

V −1 (t) = −2V +
1 e
−

“
t

Z0C

”
+ V +

1

= V +
1

(
1− 2e−

“
t

Z0C

”) (5.112)

Since V +
1 = Vg

2 we can plot V −1 (t) as a function of time from which we can make a plot (Figure 5.48:
Re�ected Voltage as a Function of Time) of ΓV (t)

Re�ected Voltage as a Function of Time

Figure 5.48

The capacitor starts o� looking like a short circuit, and charges up to look like an open circuit, which
makes perfect sense. Can you �gure out what the shape would be of a pulse re�ected o� of the capacitor,
given that the time constant Z0C was short compared to the width of the pulse?
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Solutions to Exercises in Chapter 5

Solution to Exercise 5.1 (p. 171)
3 Volts!
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Chapter 6

AC Steady-State Transmission

6.1 Introduction to Phasors1

We will not always be dealing with transmission lines excited with a pulse. Although this is a good model
for digital circuitry, it will not always apply. When we go to analog signals (rf, high frequency analog, etc.)
we will need more tools than are available to us at this point. In the not-too-distant-past, the material
we will next consider was starting to be considered passé. The rf spectrum was more or less �lled up, and
the watchword was "digital". Now, in the new age of wireless communication, cell phones, and rf Local
Area Networks, demand for engineers who understand ac behavior on transmission lines and who can design
systems which work well with rf signals are very much in demand. Pay heed to what we say here, and you
might well �nd yourself with many lucrative job o�ers in the future.

To begin, we want to consider a transmission line which is being excited with an oscillating source
Figure 6.1 (Sinusoidal Excitation of a Loaded Transmission Line).

Sinusoidal Excitation of a Loaded Transmission Line

Figure 6.1

The usual set-up includes a source, with a sinusoidal output, a source impedance Zg a transmission line
with impedance Z0, L meters long, and a load of impedance ZL at the end.

Let's look at the source �rst. We can describe the output waveform from the generator as

V (t) = Vgcos (ωt+ θ) (6.1)

Which when plotted lookes like Figure 6.2 (Excitation Waveform).

1This content is available online at <http://cnx.org/content/m1051/2.11/>.
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Excitation Waveform

Figure 6.2

The oscillating waveform has a period T and its angular frequency ω is given as

ω = 2π
T

= 2πf
(6.2)

The angle, θ, which speci�es how much the wave is leading a cosine function with zero o�-set is given by

θ = 2π
τ

T
(6.3)

What we do not want to do, is carry a bunch of sine and cosine functions around with us everywhere. Once
we start multiplying and dividing, the trig turns into a big mess, and gets in the way of our understanding
of what is going on. The way we deal with this, as every good 242 student knows, is to introduce phasors.

Since we know from Euler's Identity

Vge
j(ωt+θ) = Vg (cos (ωt+ θ) + jsin (ωt+ θ)) (6.4)

If we take a real part of Vgej(ωt+θ) we will extract the voltage waveform we desire. We will re-write this
function as

Vge
j(ωt+θ) = Vge

jθejωt (6.5)

and then de�ne
∼
V g as the phasor voltage where

∼
V g = Vge

jθ (6.6)

Note that
∼
V g is a complex quantity, with both a magnitude |Vg| and a phase angle θ. In order to retrieve a

real voltage signal from a phasor, we have to multiply the phasor by ejωt and then take the real part. Note
that this is the same thing as plotting the phasor on the complex plane, and then observing the projection of
the phasor on the real axis, as the phasor rotates around at a rate ωt Figure 6.3 (Phasor Representation).
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Phasor Representation

Figure 6.3

This method of visualization will sometimes help make results seem a little easier to understand, or at
least check for reasonableness.

6.2 A/C Line Behavior2

If we are going to try to use phasors on a transmission line, then we have to allow for spatial variation as
well. This is simple to do, if we just let the phasor be a function of x, so we have

∼
V (x). How the phasor

varies in x is one of the things we now have to �nd out.
Let's start with the Telegrapher's Equations again.

∂

∂x
V (x, t) = (−L)

∂

∂t
I (x, t) (6.7)

∂

∂x
I (x, t) = (−C)

∂

∂t
V (x, t) (6.8)

For V (x, t) we can now substitute
∼
V (x) ejωt and for I (x, t) we plug in

∼
I (x) ejωt. So we get:

∂

∂x

( ∼
V (x) ejωt

)
= (−L)

∂

∂t

(∼
I (x) ejωt

)
(6.9)

and
∂

∂x

(∼
I (x) ejωt

)
= (−C)

∂

∂t

( ∼
V (x) ejωt

)
(6.10)

We take the derivative with respect to time, which brings down a jω and then we cancel the ejωt from both
sides of each equation:

∂

∂x

∼
V (x) = −

(
jωL

∼
I (x)

)
(6.11)

and
∂

∂x

∼
I (x) = −

(
jωC

∼
V (x)

)
(6.12)

Viola! In one simple motion, we have completely eliminated the time variable, t, from our equations! It is
not really gone, of course, for once we �gure out what

∼
V (x) is, we have to multiply it by ejωt and then take

2This content is available online at <http://cnx.org/content/m1052/2.14/>.
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the real part before we can extract once again, the actual V (x, t) that we want. Nonetheless, insofar as the
telegrapher's equations are concerned, t has disappeared from the radar screen.

To solve these we do just as we did with the transient problem. We take a derivative with respect to x
of (6.11), which gives us a ∂

∂x

∼
I (x) on the right hand side, for which we can substitute (6.12), which leaves

us with
∂2

∂x2

∼
V (x) = −

(
ω2LC

∼
V (x)

)
(6.13)

(- times - is +, but jj = −1 and so we have a - in front of the ω2). We then re-write (6.13) as

∂2

∂x2

∼
V (x) + ω2LC

∼
V (x) = 0 (6.14)

The simplest solution to this equation is

∼
V (x) = V0e

±jω
√

LCx (6.15)

from which we can then get the actual voltage signal

V (x, t) =
∼
V (x) ejωt

= V0e
j(ωt±ω

√
LCx) (6.16)

Note that we could factor out an ejω
√

LC, from the exponent, which, since it is just a constant, we could
include in V0 (and call it V '

0 , switch the order of x and t, and write (6.16) as

V (x, t) = V '
0e
j

“
x± 1√

LC
t
”

(6.17)

which looks a lot like the "general" f ((x± vt)) solution we were talking about earlier (5.19)!
The number ω

√
LC is special. It is usually represented with a Greek letter β and is called the propa-

gation coe�cient. Thus we have
V (x, t) = V0e

j(ωt±βx) (6.18)

As previously, a point on the wave of constant phase requires that the argument inside the parenthesis
remains constant. Thus if V (x1, t1) is going to equal V (x2, t2) (i.e. what was at point x1 at t1 is now at x2

at time t2 it must be that
(ωt1 ± βx1) = (ωt2 ± βx2) (6.19)

or
x2 − x1

t2 − t1
=

∆x
∆t

= ±
(
ω

β

)
= ±

(
ω

ω
√

LC

)
= ±

(
1√
LC

)
≡ vp (6.20)

Which one again, de�nes the phase velocity of the wave. Other relationships to keep in mind are

β =
2π
λ

(6.21)

λ = vp
f

=
ω
β
ω
2π

= 2π
β

(6.22)

The �rst comes from the fact that the wave varies in x as ejβx. Thus when x = γ, the wavelength, βγ just
increases by 2π, to get the phasor to go through one full rotation. Note also, as before, the choice of the
minus sign in the ± in (6.18) represents a wave going in the +x direction, while the choice of the + sign will
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give a wave going in the −x direction. Clearly, by starting out taking the x-derivative of the equation for
I (x, t) we would end up with

I (x, t) = I0e
j(ωt±βx) (6.23)

Let's consider the two phasors then, and de�ne the voltage phasor associated with the positive going voltage
wave as ∼

V plus (x) = V +e−(jβx) (6.24)

and the negative voltage phasor as
∼
V minus (x) = V −ejβx (6.25)

We should keep in mind that both V + and V − can be, and probably are, complex numbers. (From now
on we will drop the little ∼ over the variables because its very tedious to get it to show up with this word
processor. You will just have to keep in mind that any variable we do not explicitly put inside absolute
value markers (i.e. |V +|) is going to be, in general, a complex number). We will, of course, have similar
expressions for the positive and negative going current waves.

Let's consider the positive going current and voltage waves, and plug them into (6.11).

∂

∂x

(
V +e−(jβx)

)
= −

(
jωLI+e−(jβx)

)
(6.26)

The x-derivative brings down a − (jβ), the e−(jβx)'s cancel, and we have

V + =
jωL
jβ

I+ (6.27)

But, since β = ω
√

LC we have

V + =

√
L
C
I+ ≡ Z0I

+ (6.28)

as we had before.
So, what has changed? Not much from the case of transients on a line. We will now assume we have

a steady state problem. This means we turned on the generator a long time ago. We assume that it has
been connected to the line long enough so that all transient behavior has died away, and that voltages and
currents are not changing any more (except oscillating at frequency ω, of course).

If the line is semi-in�nite (or matched with a load equal to Z0) Figure 6.4 (A Wave On a Semi-In�nite
Line) then it is pretty obvious that

V + =
Z0

Z0 + Zg
Vg (6.29)

where Zg is the source impedance, and Vg is the source voltage phasor.

A Wave On a Semi-In�nite Line

Figure 6.4
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6.3 Terminated Lines3

If, on the other hand, we have a �nite line, terminated with some load impedance, we have a somewhat more
complicated problem to deal with Figure 6.5 (A Finite Terminated Transmission Line).

A Finite Terminated Transmission Line

Figure 6.5

There are several things we should note before we head o� into equation-land again. First of all, unlike
the transient problems we looked at in a previous chapter (Section 5.6), there can be no more than two
voltage and current signals on the line, just V + and V −, (and I+ and I−). We no longer have the luxury of
having V +

1 , V +
2 , etc., because we are talking now about a steady state system. All of the transient solutions

which built up when the generator was �rst connected to the line have been summed together into just two
waves.

Thus, on the line we have a single total voltage function, which is just the sum of the positive and
negative going voltage waves

V (x) = V +e−(jβx) + V −e+jβx (6.30)

and a total current function
I (x) = I+e−(jβx) + I−e+jβx (6.31)

Note also that until we have solved for V + and V −, we do not know V (x) or I (x) anywhere on the line.
In particular, we do not know V (0) and I (0) which would tell us what the apparent impedance is looking
into the line.

Zin = Z (0)

= V ++V −

I++I−

(6.32)

Until we know what kind of impedance the generator is seeing, we can not �gure out how much of the
generator's voltage will be coupled to the line! The input impedance looking into the line is now a function
of the load impedance, the length of the line, and the phase velocity on the line. We have to solve this before
we can �gure out how the line and generator will interact.

The approach we shall have to take is the following. We will start at the load end of the line, and in a
manner similar to the one we used previously, �nd a relationship between V + and V −, leaving their actual
magnitude and phase as something to be determined later. We can then propagate the two voltages (and
currents) back down to the input, determine what the input impedance is by �nding the ratio of (V + +V −)
to (I+ + I−), and from this, and knowledge of properties of the generator and its impedance, determine
what the actual voltages and currents are.

Let's take a look at the load. We again use KVL and KCL (Figure 6.6 (Doing Kircho� at the End of the
Line)) to match voltages and currents in the line and voltages and currents in the load:

V +e−(jβL) + V −e+jβL = VL (6.33)
3This content is available online at <http://cnx.org/content/m1053/2.10/>.
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and
I+e−(jβL) + I−e+jβL = IL (6.34)

Doing Kircho� at the End of the Line

Figure 6.6: Change variables!

Now, we could substitute ±VZ0
for the two currents on the line and VL

ZL
for IL, and then try to solve for V −

in terms of V + using (6.33) and (6.34) but we can be a little clever at the outset, and make our (complex)
algebra a good bit cleaner Figure 6.7 (s=0 at the Load and So the Exponentials Go Away!). Let's make a
change of variable and let

s ≡ L− x (6.35)

s=0 at the Load and So the Exponentials Go Away!

Figure 6.7

This then gives us for the voltage on the line (using x = L− s)

V (s) = V +e−(jβL)ejβs + V −ejβLe−(jβs) (6.36)

Usually, we just fold the (constant) phase terms e±jβL terms in with the V + and V − and so we have:

V (s) = V +ejβs + V −e−(jβs) (6.37)
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Note that when we do this, we now have a positive exponential in the �rst term associated with V + and a
negative exponential associated with the V − term. Of course, we also get for I (s):

I (s) = I+ejβs + I−e−(jβs) (6.38)

This change now moves our origin to the load end of the line, and reverses the direction of positive motion.
But, now when we plug into ejβs the value for s at the load (s = 0), the equations simplify to:

V + + V − = VL (6.39)

and
I+ + I− = IL (6.40)

which we then re-write as
V +

Z0
− V −

Z0
=
VL
ZL

(6.41)

This is beginning to look almost exactly like a previous chapter (Section 5.1). As a reminder, we solve (6.41)
for VL

VL =
ZL
Z0

(
V + − V −

)
(6.42)

and substitute for VL in (6.39)

V + + V − =
ZL
Z0

(
V + − V −

)
(6.43)

From which we then solve for the re�ection coe�cient Γν , the ratio of V − to V +.

V −

V +
≡ Γν =

ZL − Z0

ZL + Z0
(6.44)

Note that since, in general, ZL will be complex, we can expect that Γν will also be a complex number with
both a magnitude |Γν | and a phase angle θΓ. Also, as with the case when we were looking at transients,
|Γν | < 1.

Since we now know V − in terms of V +, we can now write an expression for V (s) the voltage anywhere
on the line.

V (s) = V +ejβs + V −e−(jβs) (6.45)

Note again the change in signs in the two exponentials. Since our spatial variable s is going in the opposite
direction from x, the V + phasor now goes as +jβs and the V − phasor now goes as − (jβs).

We now substitute in ΓνV + for V − in (6.45), and for reasons that will become apparent soon, factor out
an ejβs.

V (s) = V +ejβs + ΓνV +e−(jβs)

= V +
(
ejβs + Γνe−(jβs)

)
= V +ejβs

(
1 + Γνe−(2jβs)

) (6.46)

We could have also written down an equation for I (s), the current along the line. It will be a good test of
your understanding of the basic equations we are developing here to show yourself that indeed

I (s) =
V +ejβs

Z0

(
1− Γνe−(2jβs)

)
(6.47)
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6.4 Line Impedance4

Unfortunately, since we don't know what value the phasor V + has, these equations do not do us a whole
lot of good! One way to deal with this is to simply divide this equation (6.47) into this equation (6.46).
That gets rid of V + and the ejβs and so we now come up with a new variable, which we shall call line
impedance, Z (s).

Z (s) ≡ V (s)
I (s)

= Z0
1 + Γνe−2jβs

1− Γνe−2jβs
(6.48)

Z (s) represents the ratio of the total voltage to the total current anywhere on the line. Thus, if we have
a line L long, terminated with a load impedance ZL, which gives rise to a terminal re�ection coe�cient Γν ,
then if we substitute Γν and L into (6.48), the Z (L) which we calculate will be the "apparent" impedance
which we would see looking into the input terminals to the line!

There are several ways in which we can look at (6.48). One is to try to put it into a more tractable
form, that we might be able to use to �nd Z (s), given some line impedance Z0, a load impedance ZL and
a distance, s away from the load. We can start out by multiplying top and bottom by ejβs, substituting in
for Γν , and then multiplying top and bottom by ZL + Z0.

Z (s) = Z0
(ZL + Z0) ejβs + (ZL − Z0) e−(jβs)

(ZL + Z0) ejβs − (ZL − Z0) e−(jβs)
(6.49)

Next, we use Euler's relation, and substitute (cos (βs)± jsin (βs)) for the exponential. Lots of things will
cancel out, and if we do the math carefully, we end up with

Z (s) = Z0
ZL + jZ0tan (βs)
Z0 + jZLtan (βs)

(6.50)

For some people, this equation is more satisfying than (6.48), but for me, both are about equally opaque
in terms if seeing how Z (s) is going to behave with various loads, as we move down the line towards the
generator. (6.50) does have the nice property that it is easy to calculate, and hence could be put into
MATLAB or a programmable calculator. (In fact you could program (6.48) just as well for that matter.)
You could specify a certain set of conditions and easily �nd Z (s), but you would not get much insight into
how a transmission line actually behaves.

6.5 Crank Diagram5

We actually still have some options open to us. One of thenicest, at least in terms of getting some insight,
is call a crank diagram. Note that this equation6 is a complex equation, which requires us to take a the
ratio of two complex numbers; 1 + Γνe−(j2βs) and 1− Γνe−(j2βs).

Let's plot these two quantities on the complex plane, starting at s = 0 (the load end of the line). We can
represent Γν , the re�ection coe�cient, by its magnitude and its phase, |Γν | and φΓ. For the numerator we
plot a 1, and then add the complex vector Γ which has a length |Γ| and sits at an angle φΓ with respect to
the real axis Figure 6.8 (Plot). The denominator is just the same thing, except the Γ vector points in the
opposite direction Figure 6.9 (Another Plot).

4This content is available online at <http://cnx.org/content/m1054/2.5/>.
5This content is available online at <http://cnx.org/content/m1055/2.11/>.
6"Line Impedance", (1) <http://cnx.org/content/m11384/latest/#eqn1>



190 CHAPTER 6. AC STEADY-STATE TRANSMISSION

Plot

Figure 6.8: Plotting 1 + Γν

Another Plot

Figure 6.9: Plotting 1− Γν

The top vector is proportional to V (s) and the bottom vector is proportional to I (s) Figure 6.10 (Another
Crank Diagram). Of course, for s = 0 we are at the load so V (s = 0) = VL and I (s = 0) = IL.
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Another Crank Diagram

Figure 6.10: Showing that 1 + Γν = VL
V + and 1− Γν = Z0IL

V +

As we move down the line, the two "Γ" vectors rotate around at a rate of −2βs Figure 6.11 (Rotating the
Phasors On the Crank Diagram). As they rotate, one vector gets longer and the other gets shorter, and then
the opposite occurs. In any event, to get Z (s) we have to divide the �rst vector by the second. In general,
this is not easy to do, but there are some places where it is not too bad. One of these is when 2βs = −θΓ

Figure 6.12 (Rotating a Crank Diagram).

Rotating the Phasors On the Crank Diagram

Figure 6.11
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Rotating a Crank Diagram

Figure 6.12: Rotating to a Vmax

At this point, the voltage vector has rotated around so that it is just lying on the real axis. Obviously its
length is now 1 + |Γ|. By the same token, the current vector is also lying on the real axis, and has a length
1− |Γ|. Dividing one by the other, and multiplying by Z0 gives us Z (s) at this point.

Z (s) = Z0
1 + |Γν |
1− |Γν |

(6.51)

Where is this point, and does it have any special meaning? For this, we need to go back to our expression
for V (s) in this equation.

V (s) = V +ejβs
(
1 + Γνe−2jβs

)
= V +ejβs

(
1 + |Γν |ej(θΓ−2βs)

)
= V +ejβs

(
1 + |Γν |ejφ(s)

) (6.52)

where we have substituted |Γν |ejθ for the phasor Γν and then de�ned a new angle φ (s) = θΓ − 2βs.
Now let's �nd the magnitude of V (s). To do this we need to square the real and imaginary parts, add

them, and then take the square root.

|V (s) | = |V +|
(
1 + |Γν |ejφ(s)

)
= |V +|

√
(1 + |Γν |cos (φ (s)))2 + (|Γν |)2

sin2 (φ (s))
(6.53)

so,

|V (s) | = |V +|
√

1 + 2|Γν |cos (φ (s)) + (|Γν |)2
cos2 (φ (s)) + (|Γν |)2

sin2 (φ (s)) (6.54)

which, since sin2 (·) + cos2 (·) = 1

|V (s) | = |V +|
√

1 + (|Γν |)2 + 2|Γν |cos (φ (s)) (6.55)

Remember, φ (s) is an angle which changes with s. In particular, φ (s) = θΓ− 2βs. Thus, as we move down
the line |V (s) | will oscillate as cos (φ (s)) oscillates. A typical plot for V (s) (for |Γν | = 0.5 and θΓ = 45

◦
)

is shown here (Figure 6.13: Standing Wave Pattern).
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Standing Wave Pattern

Figure 6.13

6.6 Standing Waves/VSWR7

A Standing Wave Pattern

Figure 6.14

In making this plot (Figure 6.14: A Standing Wave Pattern), we have made use of the fact that the propa-
gation constant β can also be expressed as 2π

λ , and so for the independent variable, instead of showing s in
meters or whatever, we normalize the distance away from the load to the wavelength of the excitation signal,
and hence show distance in wavelengths. What we are showing here is called a standing wave. There are
places along the line where the magnitude of the voltage |V (s) | has a maximum value. This is where V +

and V − are adding up in phase with one another, and places where there is a voltage minimum, where V +

and V − add up out of phase. Since |V −| = |Γν ||V +|, the maximum value of the standing wave pattern is
1 + |Γν | times |V +| and the minimum is 1 − |Γν | times |V +|. Note that anywhere on the line, the voltage
is still oscillating at ejωt, and so it is not a constant, it is just that the magnitude of the oscillating signal
changes as we move down the line. If we were to put an oscilloscope across the line, we would see an AC
signal, oscillating at a frequency ω.

A number of considerable interest is the ratio of the maximum voltage amplitude to the minimum voltage
amplitude, called the voltage standing wave ratio, or VSWR for short. It is easy to see that:

V SWR =
1 + |Γ|
1− |Γ|

(6.56)

7This content is available online at <http://cnx.org/content/m1056/2.9/>.
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Note that because |Γν | ∈ [0, 1], V SWR ∈ [1,∞].
Although Figure 6.14 (A Standing Wave Pattern) looks like the standing wave pattern is more or less

sinusoidal, if we increase |Γ| to 0.8, we see that it most de�nitely is not. There is also a temptation to say
that the spacing between minima (or maxima) of the standing wave pattern is λ , the wavelength of the
signal, but a closer inspection of either Figure 6.14 (A Standing Wave Pattern) or Figure 6.15 (Standing
Wave Pattern with a Larger Re�ection Coe�cient), shows that in fact the spacing between features is only
half a wavelength, or λ

2 . Why is this? Well, φ (s) goes as −2βs and β = 2π
λ , and so every time s increases

by λ
2 , φ (s) decreases by 2π and we have come one full cycle on the way |V (s) | behaves.

Standing Wave Pattern with a Larger Re�ection Coe�cient

Figure 6.15

Now let's go back to the Crank Diagram (Figure 6.8: Plot). At the position shown, we are at a voltage
maximum, and Z(s)

Z0
just equals the VSWR.

Z(sVmax )
Z0

= V SWR

= 1+|Γν |
1−|Γν |

(6.57)

Note also that at this particular point, that the voltage and current phasors are in phase with one another
(lined up in the same direction) and hence the impedance must be real or resistive.

We can move further down the line, and now the V (s) phasor starts shrinking, and the I (s) phasor
starts to get bigger Figure 6.16 (Moving Further Down the Line).
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Moving Further Down the Line

Figure 6.16: Moving further down the line from a Vmax

If we move even further down the line, we get to a point where the current phasor is now at a maximum
value, and the voltage phasor is at a minimum value Figure 6.17 (Moving Even Further Down the Line). We
are now at a voltage minimum, the impedance is again real (the voltage and current phasors are lined up
with one another, so they must be in phase) and

Z (sVmin) = 1
V SWR

= 1−|Γν |
1+|Γν |

(6.58)

Moving Even Further Down the Line

Figure 6.17: Crank diagram at a Vmin

The only problem we have here is that except at a voltage minimum or maximum, �nding Z (s) from the
crank diagram is not very straightforward, since the voltage and current are out of phase, and dividing the
two vectors becomes somewhat tedious.
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6.7 Bilinear Transform8

There is a way that we can make things a good bit easier for ourselves however. The only drawback is that we
have to do some complex analysis �rst, and look at a bilinear transform! Let's do one more substitution,
and de�ne another complex vector, which we can call r (s):

r (s) ≡ |Γν |ej(θr−2βs) (6.59)

The vector r (s) is just the rotating part of the crank diagram which we have been looking at Figure 6.18
(The Vector r(s)). It has a magnitude equal to that of the re�ection coe�cient, and it rotates around at a
rate 2βs as we move down the line. For every r (s) there is a corresponding Z (s) which is given by:

Z (s) = Z0
1 + r (s)
1− r (s)

(6.60)

The Vector r(s)

Figure 6.18

Now, it turns out to be easier if we talk about a normalized impedance, which we get by dividing
Z (s) by Z0.

Z (s)
Z0

=
1 + r (s)
1− r (s)

(6.61)

which we can solve for r (s)

r (s) =
Z(s)
Z0
− 1

Z(s)
Z0

+ 1
(6.62)

This relationship is called a bilinear transform. For every r (s) that we can imagine, there is one and
only one Z(s)

Z0
and for every Z(s)

Z0
there is one and only one r (s). What we would like to be able to do, is

�nd Z(s)
Z0

, given an r (s). The reason for this should be readily apparent. Whereas, as we move along in s,
Z(s)
Z0

behaves in a most di�cult manner (dividing one phasor by another), r (s) simply rotates around on the
complex plane. Given one r (s0) it is easy to �nd another r (s). We just rotate around!

We shall �nd the required relationship in a graphical manner. Suppose I have a complex plane, repre-
senting Z(s)

Z0
. And then suppose I have some point "A" on that plane and I want to know what impedance

8This content is available online at <http://cnx.org/content/m1057/2.13/>.
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it represents. I just read along the two axes, and �nd that, for the example in Figure 6.19 (The Complex
Impedance Plane), "A" represents an impedance of Z(s)

Z0
= 4 + 2j. What I would like to do would be to get

a grid similar to that on the Z(s)
Z0

plane, but on the r (s) plane instead. That way, if I knew one impedence

(say Z(0)
Z0

= ZL
Z0

then I could �nd any other impedance, at any other s, by simply rotating r (s)around by

2βs, and then reading o� the new Z(s)
Z0

from the grid I had developed. This is what we shall attempt to do.

The Complex Impedance Plane

Figure 6.19

Let's start with (6.62) and re-write it as:

r (s) =
Z(s)
Z0

+1−2

Z(s)
Z0

+1

= 1 + −2
Z(s)
Z0

+1

(6.63)

In order to use (6.63), we are going to have to interpret it in a way which might seem a little odd to you.
The way we will read the equation is to say: "Take Z(s)

Z0
and add 1 to it. Invert what you get, and multiply

by -2. Then add 1 to the result." Simple isn't it? The only hard part we have in doing this is inverting
Z(s)
Z0

+ 1. This, it turns out, is pretty easy once we learn one very important fact.
The one fact about algebra on the complex plane that we need is as follows. Consider a vertical line, s,

on the complex plane, located a distance d away from the imaginary axis Figure 6.20 (A Vertical Line, s, a
Distance, d, Away From the Imaginary Axis). There are a lot of ways we could express the line s, but we
will choose one which will turn out to be convenient for us. Let's let:

s = d (1− jtan (φ))φ ∈
[
−
(π

2

)
,
π

2

]
, (6.64)
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A Vertical Line, s, a Distance, d, Away From the Imaginary Axis

Figure 6.20

Now we ask ourselves the question: what is the inverse of s?

1
s

=
1
d

1
1− jtan (φ)

(6.65)

We can substitute for tan (φ):
1
s = 1

d
1

1−j sin(φ)
cos(φ)

= 1
d

cos(φ)
cos(φ)−jsin(φ)

(6.66)

And then, since cos (φ)− jsin (φ) = e−(jφ)

1
s = 1

d
cos(φ)
e−(jφ)

= 1
dcos (φ) ejφ

(6.67)
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A Plot of 1/s

Figure 6.21

A careful look at Figure 6.21 (A Plot of 1/s) should allow you to convince yourself that (6.67) is an
equation for a circle on the complex plane, with a diameter = 1

d . If s is not parallel to the imaginary axis,
but rather has its perpendicular to the origin at some angle φ, to make a line s′ Figure 6.22 (The Line s').
Since s′ = sejφ, taking 1

s simply will give us a circle with a diameter of 1
d , which has been rotated by an

angle φ from the real axis Figure 6.23 (Inverse of a Rotated Line). And so we come to the one fact we
have to keep in mind: "The inverse of a straight line on the complex plane is a circle, whose diameter is the
inverse of the distance between the line and the origin."

The Line s'

Figure 6.22: The line s multiplied by ejφ
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Inverse of a Rotated Line

Figure 6.23

6.8 The Smith Chart9

Now let's see how we can use The Bilinear Transform (6.63) to get the co-ordinates on the Z(s)
Z0

plane

transferred over onto the r (s) plane. The Bilinear Transform (6.63) tells us how to take any Z(s)
Z0

and

generate an r (s) from it. Let's start with an easy one. We will assume that Z(s)
Z0

= 1 + jX, which is a
vertical line, which passes through 1, and can take on whatever imaginary part it wants Figure 6.24 (Complex
Impedence With Real Part = +1).

Complex Impedence With Real Part = +1

Figure 6.24

9This content is available online at <http://cnx.org/content/m1058/2.11/>.
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According to The Bilinear Transform (6.63), the �rst thing we should do is add 1 to Z(s)
Z0

. This gives us
the line 2 + jX Figure 6.25 (Adding 1).

Adding 1

Figure 6.25

Now, we take the inverse of this, which will give us a circle, of diameter 1/2 Figure 6.26 (Inverting). Now,
according to The Bilinear Transform (6.63) we take this circle and multiply by -2 Figure 6.27 (Multiplying
by -2).

Inverting

Figure 6.26



202 CHAPTER 6. AC STEADY-STATE TRANSMISSION

Multiplying by -2

Figure 6.27

And �nally, we take the circle and add +1 to it: as shown here (Figure 6.28: Adding 1 Once Again).
There, we are done with the transform. The vertical line on the Z(s)

Z0
plane that represents an impedance

with a real part of +1 and an imaginary part with any value from − (j∞) to +j∞ has been reduced to a
circle with diameter 1, passing through 0 and 1 on the complex r (s) plane.

Adding 1 Once Again

Figure 6.28

Let's do the same thing for Z(s)
Z0

= 0.5+jX and Z(s)
Z0

= 2+jX. We'll call these lines A and B respectively,
and just add these to the sketches we already have Figure 6.29 (Two More Examples). Follow along with
The Bilinear Transform (6.63), and see if you can �gure out where each of these sketches comes from. We
will simply be doing the same things again: add 1; invert; multiply by -2; add 1 once again. As you can
see in Figure 6.30 (Add +1 to Each), Figure 6.31 (Inverting), Figure 6.32 (Multiply By -2), and Figure 6.33
(The Final Result) we get more circles. For lines inside the +1 real part, we end up with a circle that is
larger than the +1 circle, and for lines which have a real part greater than +1, we end up with circles which
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are smaller in diameter than the +1 circle. All circles pass through the +1 point on the r (s) plane and are
tangent to one another.

Two More Examples

Figure 6.29
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Add +1 to Each

Figure 6.30

Inverting

Figure 6.31
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Multiply By -2

Figure 6.32

The Final Result

Figure 6.33

There are two special lines we should worry about. One is Z(s)
Z0

= jX, the imaginary axis. We will put
all of the transform steps together on Figure 6.34 (Another Transform). We start on the axis, shift over one,
get a circle with unity diameter when we invert, grow by two and �ip around the imaginary axis when we
multiply by -2, and then hop one to the right when +1 is added. Once again, you should work your way
through the various steps to make sure you have a good understanding as to how this procedure is supposed
to happen. Note that even the imaginary axis on the Z(s)

Z0
plane gets transformed into a circle when we go

over onto the r (s) plane.
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Another Transform

Figure 6.34: Transforming jX to the r (s) plane.

The other line we should worry about is Z(s)
Z0

= ∞+ jX. Now ∞+ 1 = ∞, and −2
∞ = 0.0 + 1 = 1, and

so the line 1 + jX gets mapped into a point at 1 when we do our transformation onto the r (s) plane. Even
points at ∞ on the Z(s)

Z0
plane end up on the r (s) plane, and are easily accessible!

OK, Figure 6.35 (Other Constant Real Part Lines) is a plot of the Z(s)
Z0

plane. The lines shown represent

the real part of Z(s)
Z0

that we want to transform. We run them all through The Bilinear Transform (6.63), to
get them onto the r (s) plane. Now we have a whole family of circles, the biggest of which has a diameter of 2
(which corresponds to the imaginary axis) and the smallest of which has a diameter of 0 (which corresponds
to points at ∞) Figure 6.36 (Family of Circles). The circles all �t within one another, and since a +1 was
added to every transform as the �nal bit of manipulation, all of the circles pass through the point +1, 0j.
Circles with smaller diameters correspond to larger values of real Z(s)

Z0
, while the larger circles correspond to

the lesser values of Z(s)
Z0

.

Other Constant Real Part Lines

Figure 6.35: Adding other constant real part line to the Z(s)
Z0

plane.
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Family of Circles

Figure 6.36: Family of Re
“
Z(s)
Z0

”

Well, we're half way there. Now all we have to do is �nd the transform for the co-ordinate lines which
correspond to the imaginary part of Z(s)

Z0
. Let's look at Z(s)

Z0
= R + j1. When we add +1 to this, nothing

happens! The line just slides over 1 unit, and looks just the same Figure 6.37 (A Line of Constant Imaginary
Part). Now we take its inverse. This will gives us a circle, but since the line we are inverting lies at an angle
of +90

◦
with respect to the real axis, the major diameter of the circle will lie at an angle of −90

◦
when we

go through the inversion process. This gives us a circle which is lying in the −j region of the complex plane
Figure 6.38 (After Inverting).

A Line of Constant Imaginary Part

Figure 6.37
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After Inverting

Figure 6.38

The next thing we do is to take this circle and multiply by -2. This will make the circle twice as large,
but will also re�ect it back up into the +j region of the complex plane Figure 6.39 (Mulitply By -2).

Mulitply By -2

Figure 6.39

And, �nally, we add 1 to it, which causes the circle to hop one over to the right Figure 6.40 (And Add
1).
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And Add 1

Figure 6.40

We can do the same thing to other lines of constant imaginary part and we can then add more circles.
(Or partial circles, for it makes no sense to go beyond the Re

(
Z(s)
Z0

)
= 0 circles, as beyond that is the region

corresponding to negative real part, which we would not expect to encounter in most transmission lines.)
Take at least one of the other circles drawn here (Figure 6.41: The Complete Transformation) and see if you
can get it to end up in about the right place.

The Complete Transformation

Figure 6.41

There is one line of interest which we have a take a little care with. That is the real axis, Z(s)
Z0

= 0 + jX.
This line is a distance 0 away from the origin, and so when we invert it, we get a circle with ∞ diameter.
That's OK though, because that is just a straight line. So, the real axis of the Z(s)

Z0
plane transforms into

the real axis on the r (s) plane.
We have done a most wondrous thing! (Although you may not realize it yet.) We have taken the entire

half plane of complex impedance Z(s)
Z0

and mapped the whole thing into a circle with diameter 1! Let's put

the two of them side by side. (Although we can't show the whole Z(s)
Z0

plane of course.) These are shown

here (Figure 6.42: The Mapping), where we show how each line on Z(s)
Z0

maps into a (curved) line on the

r (s) plane. Note also, that for every point on the Z(s)
Z0

plane ("A" and "B") there is a corresponding point

on the r (s) plane. Pick a couple more points, "C" and "D" and locate them either on the Z(s)
Z0

plane, or the
r (s) plane, and then �nd the corresponding point on the other plane.
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The Mapping

Figure 6.42

Note that the mapping is not very uniform. All of the region where either the real or imaginary part
of Z(s)

Z0
is < 1 (a small square on Z(s)

Z0
maps into a major fraction of the r (s) plane Figure 6.43 (Mapping)

whereas all the rest of the Z(s)
Z0

plane, all the way out to in�nity in three directions (+∞, +j∞, and − (j∞))
map into the rest of the r (s) circle Figure 6.44 (Mapping the Rest).

Mapping

Figure 6.43: Mapping 1, 1j
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Mapping the Rest

Figure 6.44

This graph or transformation is called a Smith Chart, after the Bell Labs worker who �rst thought it
up. It is a most useful and powerful graphical solution to the transmission line problem. In Introduction to
Using the Smith Chart (Section 6.9) we will spend a little time seeing how and why it can be so useful.

6.9 Introduction to Using the Smith Chart10

Using the Smith Chart (Figure 6.45: The Smith Chart), we will investigate some of the application and uses
of the Smith Chart. For the text, we will use my new "mini Smith Chart" which is reproduced below.
Clearly, there is not much detail here, and our answers will not be as accurate as they would be if we used a
full size chart, but we want to get ideas across here, not the best number possible, and with the small size,
we won't run out of paper before everything is done.

The Smith Chart

Figure 6.45

Note that we have a couple of "extras" on the chart. The two scales at the bottom of the chart can be
used to either set or measure radial variables such as the magnitude of the re�ection coe�cient |Γ|, or the
VSWR, as it turns out that in practice, what one can actually measure on a line is the VSWR. Remember,

10This content is available online at <http://cnx.org/content/m1059/2.11/>.
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there is a direct relationship between the VSWR and the magnitude of the re�ection coe�cient.

V SWR =
1 + |Γ|
1− |Γ|

(6.68)

|Γ| = V SWR− 1
V SWR+ 1

(6.69)

Since |r (s) | = |Γ|, once we have the VSWR, we have |r (s) | and so we know how big a circle we need on the
Smith Chart in order to go from one place to the next. Note also that there is a scale around the outside of
the chart which is given in fractions of a wavelength. Since r (s) rotates around at a rate 2βs and β = 2π

λ , we
could either show distance in cm or something, and then change the scale whenever we change wavelength.
Or, we could just use a distance scale in λ, and measure all distances in units of the wavelength. This is
what we shall do. Since the rate of rotation is 2βs, one trip around the Smith Chart is the same as going
one half of a wavelength down the line. Rotation in a clockwise direction is the same as moving away from
the load towards the generator, while motion along the line in the other direction (towards the load) calls
for counterclockwise rotation. The scale is, of course, a relative one, and so we will have to re-set our zero,
depending upon where the load etc. are really located. This will all become clearer as we do an example.

Let's start out with the simplest thing we can, with just a generator, line and load Figure 6.46 (Trans-
mission Line Problem). Our task will be to �nd the input impedance, Zin, for the line, so that we can �gure
the input voltage.

Transmission Line Problem

Figure 6.46

For this �rst problem, we are going to start out with all the basics. In later examples, we probably will
only give lengths in wavelengths, and impedances in terms of Z0, but let's do this the whole way through.

6.10 Simple Calculations with the Smith Chart11

So, what do we do for ZL? A quick glance at a transmission line problem (Figure 6.46: Transmission Line
Problem) shows that at the load we have a resistor and an inductor in parallel. This was done on purpose,
to show you one of the powerful aspects of the Smith Chart. Based on what you know from circuit theory
you would calculate the load impedance by using the formula for two impedances in parallel ZL = jωLR

jωL+R
which will be somewhat messy to calculate.

Let's remember the formula for what the Smith Chart represents in terms of the phasor r (s).

ZL
Z0

=
1 + r (s)
1− r (s)

(6.70)

11This content is available online at <http://cnx.org/content/m1060/2.17/>.
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Let's invert this expression
ZL
Z0

=
1
ZL
1
Z0

= YL
Y0

= 1−r(s)
1+r(s)

(6.71)

(6.72) says that is we want to get an admittance instead of an impedance, all we have to do is substitute
− (r (s)) for r (s) on the Smith Chart plane!

Y0 = 1
Z0

= 1
50

= 0.02

(6.72)

in our case. We have two elements in parallel for the load (YL = Y + jB), so we can easily add their
admittances, normalize them to Y0, put them on the Smith Chart, go 180

◦
around (same thing as letting

− (r (s)) = r (s)) and read o� ZL
Z0

. For a 200Ω resistor, G, the condunctance equals 1
200 = 0.005. Y0 = 0.02

so G
Y0

= 0.25. The generator is operating at a frequency of 200MHz, so ω = 2πf = 1.25 × 109s−1 and the
inductor has a value of 160nH, so jωL = 200j and B = 1

jωL = −0.005j and B
Y0

= −0.25j.
We plot this on the Smith Chart (Figure 6.47: Moving Down the Transmission Line) by �rst �nding the

real part = 0.25 circle, and then we go down onto the lower half of the chart since that is where all the
negative reactive parts are, and we �nd the curve which represents −0.25j and where they intersect, we put
a dot, and mark the location as YL

Y0
. Now to �nd ZL

Z0
, we simply re�ect half way around to the opposite side

of the chart, which happens to be about YL
Y0

= 2 + 2j, and we mark that as well. Note that we can take the
length of the line from the center of the Smith Chart to our ZL

Z0
and move it down to the |Γ| scale and �nd

that the re�ection coe�cient has a magnitude of about 0.6. On a real Smith Chart, there is also a phase
angle scale on the outside of the circle (where our distance scale is) which you can use to read o� the phase
angle of the re�ection coe�cient as well. Putting that scale on the "mini Smith Chart" would clog things
up too much, but the phase angle of Γ is about 3.0

◦
.
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Moving Down the Transmission Line

Figure 6.47

Now the wavelength of the signal on the line is given as

λ = νp
f

= 2.8×108

200×106

= 1m

(6.73)

The input to the line is located 21.5cm or 0.215λ away from the load. Thus, we start at ZL
Z0

, and rotate
around on a circle of constant radius a distance 0.215λ towards the generator. To do this, we extend a line
out from our ZL

Z0
point to the scale and read a relative distance of 0.208λ. We add 0.215λ to this, and get

0.423λ Thus, if we rotate around the Smith Chart, on our circle of constant radius Since, after all, all we are
doing is following r (s) as it rotates around from the load to the input to the line. When we get to 0.423λ,
we stop, draw a line out from the center, and where it intercepts the circle, we read o� ZL

Z0
from the grid

lines on the Smith Chart (Figure 6.48: Using a Smith Chart to Convert From Admittance to Impedance).
We �nd that

Zin
Z0

= 0.3− 0.5j (6.74)
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Using a Smith Chart to Convert From Admittance to Impedance

Figure 6.48

Thus, Zin = 15− 25j ohms Figure 6.49 (Find Vin). Or, the impedance at the input to the line looks like
a 15Ω resistor in series with a capacitor whose reactance jX = −25j, or, since Xcap = 1

jωC , we �nd that,

C = 1
2π200×200×106

= 31.8pF
(6.75)

To �nd Vin, there is no avoiding doing some complex math:

Vin =
15− 25j

50 + 15− 25j
10 (6.76)

Which, we write in polar notation, divide, �gure the voltage and then return to rectangular notation.

Vin =
29.1∠59

69.6∠− 21
10 (6.77)

Vin = 0.418∠− 38× 10

= 4.18∠− 38

= 3.30− 2.58j

(6.78)
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Find Vin

Figure 6.49

If at this point we needed to �nd the actual voltage phasor V + we would have to use the equation

Vin = V +ejβL + ΓV +e−(jβL)

= V +ejβL + |Γ|V +ej(θr−βL)
(6.79)

Where β = 2π
λ is the propagation constant for the line as mentioned in the last chapter (6.21), and L is the

length of the line.
For this example, βL = 2π

λ 0.215λ = 1.35radians and θΓ = Γ = 0.52radians. Thus we have:

Vin = V +ej1.35 + 0.52V +ej(0.52−1.35) (6.80)

Which then gives us:

V + =
Vin

ej1.35 + 0.52ej(0.52−1.35)
(6.81)

When you expand the exponentials, add and combine in rectangular coordinates, change to polar, and
divide, you will get a phasor value for V +. If you do it correctly, you will �nd that V + = 5.04∠− 71.59

Many times we don't care about V +itself, but are more interested in how much power is being delivered
to the load. Note that power delivered to the input of the line is also the amount of power which is delivered
to the load! Finding Iinis easy, it's just Vin

Zin
. All we have to do is change Zin to polar form.

Zin = 15− 25j

= 29.1∠59
(6.82)

Iin = Vin
Zin

= 4.18∠38
29.1∠59

= 0.144∠21

(6.83)

6.11 Power12

You might be tempted to now say that Pin = VinIin, but that is incorrect for sinusoidal excitation. Vin and
Iin are phasors! So let's digress for a second to see (or review, I hope) how to �nd power when the voltage

12This content is available online at <http://cnx.org/content/m1061/2.10/>.
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and current are phasor quantities. What really matters is not the absolute phase angle of the two quantities,
but rather the phase angle between them. Suppose we have a voltage phasor, V which has zero phase angle
and a complex impedance Z = |Z|ejθz . Obviously, the current is given by

Ĩ = Ṽ
Z̃

= |V |
|Z| e

−θz
(6.84)

To �nd power, we can not work just with phasors, we have to go back to the complete function of time as
well so we write:

V (t) = |V |cos (ωt) (6.85)

I (t) =
|V |
|Z|

cos (ωt− θz) (6.86)

I (t) = |I|cos (ωt− θz) (6.87)

The power as a function of time is given as

P (t) = I (t)V (t)

= |V ||V |cos (ωt) cos (ωt− θz)
(6.88)

We remember a useful trig identity:

cos (A−B) = cos (A) cos (B) + sin (A) sin (B) (6.89)

Hence:
cos (ωt− θz) = cos (ωt) cos (θz) + sin (ωt) sin (θz) (6.90)

which makes P (t)
P (t) = cos2 (ωt) cos (θz) + cos (ωt) sin (ωt) sin (θz) (6.91)

We are really interested in �nding average power since energy which �ows into and then back out of the
line does no work for us. Clearly the second term in (6.91) (going as cos (ωt) sin (ωt)) has an average value
of zero, and so we can forget about it. Time for one more trig identity:

cos2 (A) =
1
2

+
1
2
cos (2A) (6.92)

cos (2ωt) has zero average value as well, so we are left with the following for the average value of the power
P (t)

P (t) = |V ||I|
2 cos (θz)

= (|V |)2

2|Z| cos (θz)
(6.93)

Note that one useful way that people sometimes use to express this is to say

P (t) =
1
2

(
Ṽ Ṽ ∗

)
(6.94)

Back to our example: Vin = 4.18∠38 and Iin = 0.144∠21 Thus

Pin (t) = 1
2 (4.18× 0.144) cos (59)Watts

= 0.155
(6.95)

As an alternative way of calculating the power into the line note that we know the magnitude of the current
through both the capacitor and the resistor of the apparent Zin. They are just two elements in series, and so
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they both have the same current �owing through them, namely, Iin. No power is dissipated in the capacitor,
so we could just as well have said

Pin (t) = 1
2 (|I|)2

R

=
(

1
20.1442

)
15

= 0.155

(6.96)

and gotten the answer in an even easier fashion! (Note that we still have to keep the factor of "1/2" to
account for the time average of a sinusoidal product.) For reasons I do not understand, students have always
had an aversion to �nding power. It is not that hard, and in the end, is usually the "bottom line" with
regard to how a system will perform. Go back over this section until it makes sense, as you may see power
crop up someplace else one of these days!

6.12 Finding ZL13

Let's move on to some other Smith Chart applications. Suppose, somehow, we can obtain a plot of V (s)
on a line with some unknown load on it. The data might look like Figure 6.50 (A Standing Wave Pattern).
What can we tell from this plot? Well, V (max) = 1.7 and V (min) = 0.3 which means

V SWR = 1.7
0.3

= 5.667
(6.97)

and hence
|Γ| = V SWR−1

V SWR+1

= 4.667
6.667

= 0.7

(6.98)

A Standing Wave Pattern

Figure 6.50

Since |r (s) | = |Γ|, we can plot r (s) on the Smith Chart, as shown here (Figure 6.51: The VSWR Circle).
We do this by setting the compass at a radius of 0.7 and drawing a circle! Now, ZLZ0

is somewhere on this
circle. We just do not know where yet! There is more information to be gleaned from the VSWR plot
however.

13This content is available online at <http://cnx.org/content/m1062/2.15/>.
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The VSWR Circle

Figure 6.51

Firstly, we note that the plot has a periodicity of about 10 cm. This means that λ the wavelength of
the signal on the line is 20 cm. Why? According to this (6.55) equation, |V (s) | goes as cos (φ (s)) and
φ (s) = θΓ − 2βs and β = 2π

λ , thus |V (s) | goes as cos
(

4πs
λ

)
. Thus each λ

2 , we are back to where we started.
Secondly, we note that there is a voltage minima at about 2.5 cm away from the load. Where on

Figure 6.51 (The VSWR Circle) would we expect to �nd a voltage minima? It would be where r (s) has a
phase angle of 180

◦
or point "A" shown in here (Figure 6.52: Location of a Vmin). The voltage minima

is always where the VSWR circle passes through the real axis on the left hand side. (Conversely a voltage
maxima is where the circle goes through the real axis on the right hand side.) We don't really care about
Z(s)
Z0

at a voltage minima, what we want is Z(s=0)
Z0

, the normalized load impedance. This should be easy! If
we start at "A" and go 2.5

20 = 0.125λ towards the load we should end up at the point corresponding to ZL
Z0

.
The arrow on the mini-Smith Chart says "Wavelengths towards generator" If we start at A, and want to go
towards the load, we had better go around the opposite direction from the arrow. (Actually, as you can see
on a real Smith Chart, there are arrows pointing in both directions, and they are appropriately marked for
your convenience.)
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Location of a Vmin

Figure 6.52

So we start at "A" go 0.125λ in a counter-clockwise direction, and mark a new point "B" which represents
our ZLZ0

which appears to be about 0.35−0.95j or so Figure 6.53 (Moving from Vmin to the Load). Thus, the
load in this case (assuming a 50Ω line impedance) is a resistor, again by co-incidence of about 50Ω, in series
with a capacitor with a negative reactance of about 47.5Ω. Note that we could have started at the minima
at 12.5 cm or even 22.5 cm, and then have rotated 12.5

20 = 0.625λ or 22.5
20 = 1.125λ towards the load. Since

λ
2 = 0.5λ means one complete rotation around the Smith Chart, we would have ended up at the same spot,
with the same ZL

Z0
that we already have! We could also have started at a maxima, at say 7.5 cm, marked

our starting point on the right hand side of the Smith chart, and then we would go 0.375λ counterclockwise
and again, we'd end up at "B".
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Moving from Vmin to the Load

Figure 6.53

Now, here (Figure 6.54: Another Standing Wave Pattern) is another example. In this case the V SWR =
1.5
0.5 = 3, which means |Γ| = 0.5 and we get a circle as shown in Figure 6.55 (The VSWR Circle). The
wavelength λ = 2 (25− 10) = 30cm. The �rst minima is thus a distance of 10

30 = 0.333λ from the load. So
we again start at the minima, "A" and now rotate as distance 0.333λ towards the load.

Another Standing Wave Pattern

Figure 6.54
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The VSWR Circle

Figure 6.55

6.13 Matching14

This gets us to "B", and we �nd that ZL
Z0

= 1 + 1.2j. Now this is a very interesting

Figure 6.56: The load impedance

result. Suppose we take the load o� the line, and add, in series, an additional capacitor, whose reactance
is 1

j×ω×C = − (j1.2Z0).

14This content is available online at <http://cnx.org/content/m1063/2.12/>.
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Matching the load with a capacitor

Figure 6.57

The capacitor and the inductor just cancel each other out (series resonance) and so the apparent load
for the line is just Z0, the magnitude of the re�ection coe�cient (Γ) = 0 and the V SWR = 1.0! All of the
energy �owing down the line is coupled to the load resistor, and nothing is re�ected back towards the load.

We were lucky that the real part of ZLZ0
= 1. If there were not that case, we would not be able to "match"

the load to the line, right? Not completely. Let's consider another example. The next �gure (Figure 6.58)
shows a line with a Z0 = 50, terminated with a 25Ω resistor. ΓL = −1

3 , and we end up with the VSWR
circle shown in the subsequent �gure (Figure 6.59).

Figure 6.58: Matching with a series capacitor
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Figure 6.59: Plotting ZL
Z0

How could we match this load? We could add another 25Ω in series with the �rst resistor, but if we want
to maximize the power we deliver to the �rst one, this would not be a very satisfactory approach. Let's move
down the line a ways. If we go to point "B", we �nd that

Figure 6.60: Moving to the "right spot"

at this spot, ZsZ0
= 1 + 0.8j. Once again we have an impedance with a normalized real part equals 1! How

far do we go? It looks like it's a little more than 0.15λ. If we add a negative reactance in series with the line
at this point, with a normalized value of − (0.8j), then from that point on back to the generator, the line
would "look" like it was terminated with a matched load.

There's one awkward feature to this solution, and that is we have to cut the line to insert the capacitor.
It would be a lot easier if we could simply add something across the line, instead of having to cut it. This
is easily done, if we go over into the admittance world.
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6.14 Introduction to Parallel Matching15

Let's start with the load. With the same 25Ω resistor for the load, and plot its admittance YL
Y0

= 2. If we
start moving away from the load towards the generator, in about 0.10λ we again run into the circle which
represents Re

(
Y (s)
Y0

)
= 1. This is such an important circle is has gained its own name, and it is frequently

called the matching circle Figure 6.61 (Getting to the Matching Circle).

Getting to the Matching Circle

Figure 6.61

Note that to �nd out how far we had to move, we had to start at relative position 0.25λ as our zero, or
reference location. Point "B" seems to be at about 0.35λ on the scale, and since we started at 0.25λ, the
distance is 0.35 − 0.25 = 0.10. At "B", YsY0

= −1.0 + 0.7j. Thus, if we add a susceptance jB with a value
of +j0.014Ω−1 we would again match the line. Positive susceptance comes from a capacitor as well, and so
Figure 6.62 (Matching With a Shunt Capacitor) shows how we match.

Matching With a Shunt Capacitor

Figure 6.62

Note that we are not required to go to point "B". Any point on the matching circle that we can get
to is fair game. Another such point is "C" in Figure 6.61 (Getting to the Matching Circle). This is at a
distance of about 0.40λ from the load. At "C", YsY0

= 1.0 + 0.7j and so we would put in an inductor, with a
susceptance 1

jωL = −
(
j0.014Ω−1

)
Figure 6.63 (Matching With a Shunt Inductor).

15This content is available online at <http://cnx.org/content/m1064/2.14/>.
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Matching With a Shunt Inductor

Figure 6.63

6.15 Single Stub Matching16

Often, there are reasons why using a discrete inductor or capacitor for matching is not such a good idea.
At the high frequencies where matching is important, losses in both L or C mean that you don't get a good
match, and most of the time (except for some air-dielectric adjustable capacitors) it is hard to get just the
value you want.

There is another approach though. A shorted or open transmission line, when viewed at its input looks like
a pure reactance or pure susceptance. With a short as a load, the re�ection coe�cient has unity magnitude
|Γ| = 1.0 and so we move around the very outside of the Smith Chart (Figure 6.64: Input Impedance of a
Shorted Line) as the length of the line increases or decreases, and Zin

Z0
is purely imaginary. When we did

the bilinear transformation from the Z(s)
Z0

plane to the r (s) plane, the imaginary axis transformed into the
circle of diameter 2, which ended up being the outside circle which de�ned the Smith Chart.

Input Impedance of a Shorted Line

Figure 6.64

Another way to see this is to go back to this equation (6.50). There we found:

Z (s) = Z0
ZL + jZ0tan (βs)
Z0 + jZLtan (βs)

(6.99)

With ZL = 0 this reduces to
Z (s) = jZ0tan (βs) (6.100)

16This content is available online at <http://cnx.org/content/m1065/2.13/>.
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Which, of course for various values of s, can take on any value from +j∞ to − (j∞). We don't have to go
to Radio Shack©and buy a bunch of di�erent inductor and capacitors. We can just get some transmission
line and short it at various places!

Thus, instead of a discrete component, we can use a section of shorted (or open) transmission line
instead Figure 6.65 (A Shortened Stub). These matching lines are called matching stubs. One of the
major advantages here is that with a line which has an adjustable short on the end of it, we can get any
reactance we need, simply by adjusting the length of the stub. How this all works will become obvious after
we take a look at an example.

A Shortened Stub

Figure 6.65

Let's do one. In Figure 6.66 (Another Load) we can see that, ZLZ0
= 0.2 + 0.5j, so we mark a point "A"

on the Smith Chart. Since we will want to put the tuning or matching stub in shunt across the line, the
�rst thing we will do is convert ZL

Z0
into a normalized admittance YL

Y0
by going 180

◦
around the Smith Chart

(Figure 6.67: Converting to Normalized Admittance) to point "B", where
(
YL
Y0

h 0.7− 1.7j
)
. Now we rotate

around on the constant radius, r (s) circle until we hit the matching circle at point "C". This is shown in
Figure 6.68 (Moving to the Matching Circle). At "C", YSY0

= 1.0 + 2.0j. Using a "real" Smith Chart, I get
that the distance of rotation is about 0.36λ. Remember, all the way around is λ

2 , so you can very often
"eyeball" about how far you have to go, and doing so is a good check on making a stupid math error. If the
distance doesn't look right on the Smith Chart, you probably made a mistake!

Another Load

Figure 6.66
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Converting to Normalized Admittance

Figure 6.67: Converting to YL
Y0

Moving to the Matching Circle

Figure 6.68

OK, at this point, the real part of the admittance is unity, so all we have to do is add a stub to cancel
out the imaginary part. As mentioned above, the stubs often come with adjustable, or "sliding short" so we
can make them whatever length we want Figure 6.69 (Matching with a Shortened Stub).
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Matching with a Shortened Stub

Figure 6.69

Our task now, is to decide how much to push or pull on the sliding handle on the stub, to get the reactance
we want. The hint on what we should do is in Figure 6.64 (Input Impedance of a Shorted Line). The end of
the stub is a short circuit. What is the admittance of a short circuit? Answer: ∞, j∞! Where is this on the
Smith Chart? Answer: on the outside, on the right hand side on the real axis. Now, if we start at a short,
and start to make the line longer than s = 0, what happens to Y (s)

Y0
? It moves around on the outside of the

Smith Chart. What we need to do is move away from the short until we get Y (s)
Y0

= − (j2.0) and we will
know how long the shorted tuning stub should be Figure 6.70 (Finding the Stub length). In going from "A"
to "B" we traverse a distance of about 0.07λ and so that is where we should set the position of the sliding
short on the stub Figure 6.71 (The Matched Line).

Finding the Stub length

Figure 6.70
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The Matched Line

Figure 6.71

We sometimes think of the action of the tuning stub as allowing us to move in along the Re
(
Y (s)
Y0

)
to

get to the center of the Smith Chart, or to a match Figure 6.72 (Moving With a Stub). We are not in this
case, physically moving down the line. Rather we are moving along a contour of constant real part because
all the stub can do is change the imaginary part of the admittance, it can do nothing to the real part!

Moving With a Stub

Figure 6.72: Moving along the Re
“
Y (s)
Y0

”
= 1 circle with a stub.

6.16 Double Stub Matching17

There is one last technique we can look at which is somewhat more �exible than the single stub matching
which we just looked at. This is called double stub matching! Suppose we have the following situation, as
depicted in the �gure (Figure 6.73: Double Stub Matching Problem). There is a load of ZL

Z0
= 0.2 + 1.3j

located at the end of the line, and then some arbitrary distance away (0.11λ) an adjustable stub. Another

17This content is available online at <http://cnx.org/content/m1066/2.14/>.
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(arbitrary) 0.11λ from the �rst stub, there is a second one. Let's plot YL
Y0

on the Smith Chart (Figure 6.74:
Changing the Load to an Admittance), and then, since the stubs are in shunt across the line, switch to
admittance, and �nd YL

Y0
. It is easy to see that YL

Y0
= 1.5 + 2.3j.

Double Stub Matching Problem

Figure 6.73

Changing the Load to an Admittance

Figure 6.74

The �rst thing we might as well do is move down to the �rst stub, and see what admittance we have there
Figure 6.75 (Moving From the Load to the First Stub). We go from the load, to the �rst stub by rotating
on a circle of constant radius(constant |r (s) |)since all we are doing is going from one place on the line to
another. If we call the location on the line of the �rst stub "A", then we can see that YA

Y0
= 0.25 + 0.6j.
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Moving From the Load to the First Stub

Figure 6.75

Now, what can the �rst stub accomplish? A shorted stub can create any imaginary admittance we want,
but can not change the real part of the admittance. Thus, by adjusting the �rst stub, we can move around
on a circle of constant real part = 0.25Y0, and have any imaginary part we want. This is shown schematically
here (Figure 6.76: Possible E�ects of the First Stub).

Possible E�ects of the First Stub

Figure 6.76

Now, where do we want to go? Well, we would like to end up someplace so that, after we have moved
from A to B on the line (gone from the �rst stub to the second), we are on the matching circle. If this were
so, then, since we are on the matching circle, we could use the second stub to match the whole line and we
would be done.

This is tricky now, so you have to pay attention and think. If I want to �nd a place which, when moved
from A to B, ends up on the matching circle, then what I should do is take the matching circle and move
it from B to A. That is, if I rotate the matching circle around 0.175λ towards the load, then any place on
that rotated matching circle is guaranteed to end up on the real matching circle, when we go 0.175λ back
towards the generator.

OK, so here's what we do. First, we rotate the matching circle 0.175 around towards the load (go
counterclockwise) Figure 6.77 (Rotating the Matching Circle). Now what we have to do is somehow get from
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YA
Y0

without stub to someplace on the rotated matching circle. The only way we can do this is to change
the imaginary part of YA with the stub. Suppose we move as shown in Figure 6.78 (Moving to Rotated
Matching Circle). In going from YA

Y0
without stub to YA

Y0
with stub we have changed the imaginary part from

− (j0.6) to +j0.05, thus we have added j0.65 to the imaginary part of YAY0
. Thus using our standard method

for �nding the length of the �rst stub, we start at ∞, −∞ (the short at the end of the stub) and go around
the outside of the Smith Chart (Figure 6.79: Finding Length of the First Stub) until we �nd +j0.05. To get
from one place to the next we went (0.25 + 0.09)λ = 0.34λ and so the length of the �rst stub, L1 should
be 0.09λ. Now we are at YA

Y0
with stub. The next thing we have to do is to rotate another 0.175λ towards

the generator so that we can get to stub B. As we do this rotation, we again stay on a circle of constant
radius, because now we are moving down the transmission line not adding reactance by using a stub! This
rotation is guaranteed to end us up on the matching circle because every point on the rotated circle (the
one we start from) is exactly 0.175λ towards the load from the matching circle. As shown here (Figure 6.80:
Moving Down the Second Stub), we are now at the point YB

Y0
without stub = 1.0 + 1.6j. Thus we need to

adjust the length L2 of the second stub to give us − (j1.6) of reactance, so we can move (along a circle of
constant real part = 1.0) into the center of the Smith Chart (Figure 6.81: Making the Match). We have to
�nd the length L2 for the second stub, but that is now easy! (Figure 6.82 (Finding the Length of the Second
Stub))

Rotating the Matching Circle

Figure 6.77
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Moving to Rotated Matching Circle

Figure 6.78

Finding Length of the First Stub

Figure 6.79
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Moving Down the Second Stub

Figure 6.80

Making the Match

Figure 6.81
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Finding the Length of the Second Stub

Figure 6.82

Thus, by doing double stub matching, we are able, by adding the additional degree of freedom of two
adjustable stubs, not to have to specify exactly where the stubs have to be placed, so they can be in the
line before the matching is attempted. Here's (Figure 6.83: Double Stub Matching All Put Together!) the
whole sequence of changes that we made. See if you can begin at "Start" and go through the numbers 0→ 5
and get from ZL

Z0
to the matching point at the center of the Smith Chart. Remember, when we move from

one place to another on the line, we must stay on a circle of constant radius. When we change reactance by
adjusting a stub, we must move along circles of constant real part. If you do that, it's easy!

Double Stub Matching All Put Together!

Figure 6.83

There's just one little problem. What if YAY0
without stub had ended up as shown in here (Figure 6.84:

A Situation That Doesn't Work). We are on the Re
(
YA
Y0
|without stub

)
= 2.0 circle. No matter how hard I

try, and no matter where I set L1 all I can do is spin around on the little circle as shown (Figure 6.84: A
Situation That Doesn't Work), and I will never end up on the rotated matching circle, and I won't be able
to make a match! Well, if I add a third stub...I'll let you work it out!
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A Situation That Doesn't Work

Figure 6.84

6.17 Odds and Ends18

Just a few odds and ends. Consider the following (Figure 6.85: Cascaded Line) which is called a "cascaded
line" problem. These are problems where we have two di�erent transmission lines, with di�erent characteristic
impedances. Since we will give all of the distances in wavelengths, λ, we will assume that the λ we are talking
about is the appropriate one for the line involved. If the phase velocities on the two lines is the same, then
the physical lengths would correspond as well. The approach is relatively straight-forward. First let's plot
ZL
Z0

on the Smith Chart (Figure 6.86: Smith Diagram). Then we have to rotate 0.2λ so that we can �nd
ZA
Z01

, the normalized impedance at point A, the junction between the two lines Figure 6.87 (Towards the
Generator).

Cascaded Line

Figure 6.85

18This content is available online at <http://cnx.org/content/m1067/2.11/>.
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Smith Diagram

Figure 6.86

Thus, we �nd ZA
Z01

= 0.32 + 0.6j. Now we have to renormalize the impedance so we can move to the
line with the new impedance Z02. Since Z01 = 300Ω, ZA = 96− 180j. This is the load for the second length
of line, so let's �nd ZA

Z02
, which is easily found to be 1.9 − 3.6j, so this can be plotted on the Smith Chart

(Figure 6.88: More Smith Charts). Now we have to rotate around another 0.15λ so that we can �nd Zin
Z02

.
This appear to have a value of about 0.15 − 0.45j, so Zin = 7.5 − 22.5jΩ Figure 6.89 (Even More Smith
Charts).

Towards the Generator

Figure 6.87
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More Smith Charts

Figure 6.88

Even More Smith Charts

Figure 6.89

There is one application of the cascaded line problem that is used quite a bit in practice. Consider the
following: We assume that we have a matched line with impedance Z02 and we connect it to another line
whose impedance is Z01 Figure 6.90 (Simpli�ed Cascaded Line). If we connect the two of them together
directly, we will have a re�ection coe�cient at the junction given by

Γ =
Z02 − Z01

Z02 + Z01
(6.101)
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Simpli�ed Cascaded Line

Figure 6.90

Now let's imagine that we have inserted a section of line with length l = λ
4 and impedance Zm Figure 6.91

(Another Cascaded Line). At point A, the junction between the �rst line and the matchng section, we can
�nd the normalized impedance as

ZA
ZM

=
Z02

Zm
(6.102)

Another Cascaded Line

Figure 6.91

We take this impedence and rotate around on the Smith Chart λ
4 to �nd ZB

ZM

ZB
ZM

=
Zm
Z02

(6.103)

where we have taken advantage of the fact that when we go half way around the Smith Chart, the impedance
we get is just the inverse of what we had originally (half way around turns r (s) into − (r (s))).

Thus

ZB =
Zm

2

Z02
(6.104)
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If we want to have a match for line with impedence Z01, then ZB should equal Z01 and hence:

ZB = Z01

= Zm
2

Z02

(6.105)

or
Zm =

√
Z01Z02 (6.106)

This piece of line is called a quarter wave matching section and is a convenient way to connect two
lines of di�erent impedance.
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Glossary

D distributed parameter

A distributed parameter is a parameter which is spread throughout a structure and is not
con�ned to a lumped element such as a coil of wire.

Example: For instance, we will hereby de�ne L as the distributed inductance for the
transmission line. It has units of Henrys/meter. If we have a length of transmission line x0

meters long, and if that line has a distributed inductance of L H/m, then the inductance L of
that length of line is just L = Lx0.
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Introduction to Physical Electronics
An introduction to solid state device including �eld e�ect and bipolar transistors. Properties of transmission
lines and propagating E&M waves.
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