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CHAPTER
ONE

INTRODUCTION

1.1 Preface

I have a very bad memory. I am able to memorize quite a lot of things short term, but I am not able to remember most
formulas from quantum mechanics over the long term (e.g. like over the summer). I don’t remember formulas for
perturbation theory (neither time dependent or time independent), I don’t remember Feynman rules in quantum field
theory, I don’t even remember the Dirac equation exactly (where the i should be, if there is m or m?2, ...). The thing
about quantum field theory is not that some particular steps are difficult, but that there are so many of them and one
has to master all of them at once, in order to really “get it”.

I never got QFT, because once I mastered one part sufficiently, I forgot some other part and it took so much time to
master that other part that I forgot the first part again. However, I was determined that I would get it. In order to
do so, I realized I need to keep notes of things I understood, written in my own way. Then, when I relearn some
parts that I forgot, it just takes me a few minutes to go over my reference notes to get into it quickly. My own style
of understanding is that the notes should be complete (no need to consult external books), yet very short and getting
directly to the point, and also with every single calculation carried out explicitly.

See also the preface to the QFT part.

If you want to study physics, learn math the physics way (as opposed to the usual mathematics way of a definition,
theorem, proof, ...). When I was beginning my undergrad physics studies (and even on a high school), I also had
this common misconception, that I need to study math and understand every proof and then I'll be somehow prepared
for physics. I was very wrong. I used to study calculus by myself and then trying to learn the proofs, and Lebesgue
integral and I was learning that from the mathematics books. At the university, I always did all my math exams first (as
far as I remember, I always got A from those), hoping that would be a good start for the physics exams, but I always
found out that it was mostly useless.

Now I know that the only way to study physics is to go and do physics directly and learn the math on the way as needed.
The math section of this book reviews all the math, that is necessary for studying theoretical physics (graduate level).

There are actually quite a lot of good math books written by physicists as well as many excellent physics books,
covering everything that I cover here. But I really like to have all the theoretical physics and the corresponding math
explained in one book, and to keep it as short as possible. Also everyone has a bit different style and amount of rigor
and I have not found a book that would perfectly suite my own style, thus I wrote one.

1.2 Introduction

The Theoretical Physics Reference is an attempt to derive all theoretical physics equations (that are ever needed for
applications) from the general and special relativity and the standard model of particle physics.

The goals are:

* All calculations are very explicit, with no intermediate steps left out.




Theoretical Physics Reference, Release 0.5

Start from the most general (and correct) physical theories (general relativity or standard model) and derive the

specialized equations from them (e.g. the Schrodinger equation).

Math is developed in the math section (not in the physics section).

Theory should be presented as short and as explicitly as possible. Then there should be arbitrary number of

examples, to show how the theory is used.

There should be just one notation used throughout the book.

It should serve as a reference to any physics equation (exact derivation where it comes from) and the reader
should be able to understand how things work from this book, and be ready to understand specialized literature.

This is a work in progress and some chapters don’t conform to the above goals yet. Usually first some derivation is
written, as we understood it, then the mathematical tools are extracted and put into the math section, and the rest is fit
where it belongs. Sometimes we don’t understand some parts yet, then those are currently left there as they are.

There are many excellent books about theoretical physics, that one can consult about particular details. The goal of
this book (when completed) is to show where things come from and serve as a reference to any particular field, so that
one doesn’t get lost when reading specialized literature.

Here is an incomplete list of some of the best books in theoretical physics (we only picked those that we actually read):

1.

R A o R

[\ I O R e e e e T e e e

Landau, L. D.; Lifshitz, E. M: Course of Theoretical Physics
Richard Feynman: The Feynman Lectures on Physics

Walter Greiner: “Classical Theoretical Physics” series of texts
Herbert Goldstein: Classical Mechanics

J.D. Jackson: Classical Electrodynamics

Charles W. Misner, Kip S. Thorne, John Wheeler: Gravitation
Bernard Schutz: A First Course in General Relativity

Carrol S.: The Lecture Notes on General Relativity

J.J. Sakurai: Advanced Quantum Mechanics

Brown L. S.: Quantum Field Theory

. Mark Srednicki: Quantum Field Theory
. Claude Itzykson, Jean-Bernard Zuber: Quantum Field Theory
. Zee A.: Quantum Field Theory in a Nutshell

Steven Weinberg: The Quantum Theory of Fields

. L.H. Ryder: Quantum Field Theory

. Jifi Hofej$i: Fundamentals of Electroweak Theory

. Michele Maggiore: A Modern Introduction to Quantum Field Theory

. MLE. Peskin & D.V. Schroeder: An Introduction to Quantum Field Theory
. JW. Negele, H. Orland: Quantum Many-Particle Systems

X-G. Wen: Quantum Field Theory of Many-Body Systems

. Dirac, PA.M.: General Theory of Relativity

Chapter 1
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CHAPTER
THREE

3.1 Integration

MATHEMATICS

This chapter doesn’t assume any knowledge about differential geometry. The most versatile way to do integration over

manifolds is explained in the differential geometry section.

3.1.1 General Case

We want to integrate a function f over a k-manifold in R", parametrized as:

wl(t17t27 .. 7tk)
, @a(ti,ta, ... tr)
@ZRk—>Rn (p(tl,tg,...,tk): .
On(ti,ta, ... t)
then the integral of f(xz1, zo,...,xy,) over ¢ is:
f(fEl,.’EQ, NN 7l'n) ds = f(@(tl,tQ, RN ,tk))\/ detGdtldtQ s dtk
M R"
where G is called a Gram matrix and J is a Jacobian:
Opr, Opy,
G)ij = (I"d)ij = Jindj = o H—
( )J ( )] kY kj ot; (9tj
99  dp . Op
8751 8t2 atk
90, . . . .
J i = =
( )J atj

The idea behind this comes from the fact that the volume of the k-dimensional parallelepiped spanned by the vectors

9o  Op
oty Oty

is given by

V =vdetJTJ

where J is an n x k matrix having those vectors as its column vectors.
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Example

Let’s integrate a function f(z,y, z) over the surface of a sphere in 3D (e.g. kK = 2 and n = 3):

rsin 6 cos ¢

0(0,¢) = | rsinfsin o
r cos 0

—rsinfsing rcosfcos ¢
J=| rsinfcos¢ rcosfsing
0 —rsind

. . . —rsinfsing rcosfcos ¢ . 9
—7rsin # sin 7 sin 0 cos 0 . . r?sin’g 0
G=J7= (rcos@cos ¢¢ TCOS@Sini —7rsin 9) rsinfcosg reosfsing | = ( 0 7"2)
0 —rsinf
det G = rtsin® 0

Vdet G = r2sin 6

/ f(z,y,2)dS = f(rsinf cos ¢, rsin @ sin ¢, 7 cos §) 72 sin § df do =
M R»

T 2m
= / do d¢ f(rsin @ cos ¢, rsin O sin ¢, r cos §) 2 sin @
0 0

Let’s say we want to calculate the surface area of a sphere, so we set f(z,y,z) = 1 and get:

T 27 T
/ ds = / d9/ do r’sinf = 2777’2/ dfsin 6 = 4mr?
M 0 0 0

3.1.2 Special Cases
k=n

det G = det JRJ = (det J)?
dS = |det J| dt; dty - - - dty,

_ dpq 2 deo ? _ d<p2
detGdet<<dt) +<dt Lo ) = o

dy
ds = |=X| dt

6 Chapter 3. Mathematics
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det G = det J®J =
=det(---)? +det(--- )2 +---+det(...)* =

o do .. O 2
t1 Oto Oty €1
: Sl ey
= |det . . . . . = |wso‘2
€en

ds = ‘UJ@| dtl dtQ . 'dtk

w,, is a generalization of a vector cross product. The det(- - - ) symbol means a determinant of a matrix with one row
removed (first term in the sum has first row removed, second term has second row removed, etc.).

k=2,n=3
detG = | 2% X%Q
10t Oty
| op 0
ds = Btl X 8152 dtl dt2
y =1(x, 2)

B of 2 of 2
e =1+ () (2)

- of 2 of 2
dS_\/1+<8;v) +(6z> drdz

in general for x; = f(z1,22,...,2,) We get:
arN> [or\’
detG =1 — —
¢ + <6$1> + (63:2 *

2 2
ds = 1+ ﬁ + ﬁ +---dxydxs - -dz,
8951 8182

The “x;” term is missing in the sums above.

Implicit Surface

For a surface given explicitly by

F(zy,z9,...;x,) =0

we get:

3.1. Integration 7
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Orthogonal Coordinates

If the coordinate vectors are orthogonal to each other:

dp Oy _ ..
aiti aitz =0 for ¢ # ]
we get:
| 9¢ || 0 e
s = Ot || Ota Oty diy -~ diy

3.1.3 Motivation

Let the k-dimensional parallelepiped P be spanned by the vectors

Oy e
R

and let J is n x k matrix having these vectors as its column vectors. Then the area of P is
V =vdetJTJ

so the definition of the integral over a manifold is just approximating the surface by infinitesimal parallelepipeds and
integrating over them.

3.1.4 Example

Let’s calculate the total distance traveled by a body in 1D, whose position is given by s(t):
to d
l:/&:/ e
2 t1 dt
ds l

t’ t

ds 2 |ds

iy I Zldt+--- =
+/t/ ’dt + +/t

t/
_/f,l dt o | dE

= |5(tl) —s(t1)| + |s(t”) — s(t')‘ oo s(tg) — S(t”//"')|

dt =

dt =

where ', t”, ... are all the points at which |%’ = 0, so each of the integrals in the above sum has either positive or
negative integrand.

3.2 Complex Numbers

We start by defining arg(z) by its principal value, then everything else follows from this definition. We could have
also used any other branch, but then most results in this chapter would need to be updated with the new convention.

Then we define exponential, logarithm, power and so on using simple natural formulas. From these definitions,
everything else follows using a very simple algebra manipulation, all the “messy” features are hidden in the definition
and properties of the real atan2 function. In the derivation of each formula, only formulas introduced before (above)
are used.

Every formula in this chapter holds for all complex numbers, unless explicitly specified otherwise.

8 Chapter 3. Mathematics
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3.2.1 Real and Imaginary Part
A complex number z can be written using its real and imaginary parts:
z=Rez+ilmz

The absolute value |z| is defined as:

|z2] = VRe? z + Im? 2

3.2.2 Argument Function
Principal value of arg(z) is defined as
arg z = atan2(Im z, Re 2)

Thus we have —m < argz < m. All operations with arg z are then derived using the properties of the real atan2
function.

3.2.3 Exponential

Exponential is defined using:

z _ eRCZ+ZImZ — eRcz(

e cosIm z + i sinIm 2)
It follows:
e th — eRe(‘”b)(cos Im(a + b) +isinIm(a + b)) =
= eReaeRed (cos(Im a) cos(Im b) — sin(Im @) sin(Im b) + 4 sin(Im a) cos(Im b) + i cos(Im a) sin(Im b)) =

= eR?(cosTma + i sinIm a)eR°?(cos Im b 4 i sin Im b) =

_ eaeb

Any complex number can be written in a polar form as follows:

z=Rez+ilmz = |z| <Rez Imz) =

+1
|| ||

_ |2 < Rez Ly Imz ) _
\/Rezz+1m22 \/R€22+Im22
= |z| (cosatan2(Im z, Re z) + isinatan2(Im z, Re 2)) =
= |z| (cosarg z + isinarg z) =

— ‘Z|eiargz

The following formula holds:

argez — argeRezezImz _ argezlmz _

= arg(cosImz +isinIm z) =
= atan2(sinIm z, cosIm z) =
7w —Im zJ

=1 2
mz -+ ﬂ'{ o

3.2. Complex Numbers 9
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and also:

arg ab = arg(|ale’ T8 @ |b|e! 28 Y) =
— angJafjpe’ (75 50 =

_ arg(ei(arg a+arg b)) —

= arg(cos(arga + argb) + isin(arg a + argb)) =
= atan2(sin(arga + argb), cos(arga + arg b)) =
_arga — argh

— arga+ argh+ 2n VagaagJ

2

and

T+ arng

1
argZ:—argz—i—?ﬂ{ o

1 .
g ezarg}’) _

B o| mtargh
ez(arga—argb)—&-%ml_%gj) _

and

rarga

- =arg ( Jal
argb—arg ale
1

= arg \a|g

— arg(ei(arg a—arg b)) —

= arg(cos(arga — argb) + isin(arga — argh)) =
= atan2(sin(arga — argb), cos(arga — argh)) =
T —arga + arng

=arga —argb+ 27 {
27

3.2.4 Logarithm

The logarithm is defined as:
logz =log|z| +iargz 3.1

The motivation is from the following formula:

iarg z log\z|eiargz _ elog\z\Jriargz

z=|zle =e
which using our definition becomes:

¥ = elog\zH—iargz _ elogz (3.2)

so a logarithm is an inverse function to an exponential. The formula (3.2) would be satisfied even if we add a factor of
2min (where n is an integer) to the right hand side of (3.1). However, the convention is to define logarithm using the
equation (3.1) exactly.

We can now derive a few important formulas:

log |e*| = log|eR¢#e'™?| = log|eR®?| = Re z

—1I —1I
loge® =logle*| +iarge® =Rez+1i (Imz+27r VTZsz) =2+ 2m {71-21111
T T

10 Chapter 3. Mathematics
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and
log ab = log |ab| + i arg ab = (3.3)
—arga—argh
= log|a| + log |b| + iarga + iargb + 2mi Lwarg;argJ =
T
_arga—argh
~loga-+logb + 2ri | T AL MED
L 27
and
log%:log’% —i—iarg%: 3.4
- b
= log|a| —log |b| + iarga — iargb + 2mi {ﬁargQaJrargJ =
T
—loga  log+ 2 | T ELEMED
T

3.2.5 Power

A power of two complex numbers is defined as:
P log z
From above we can also write the power z® in two different ways:
20— (elog z)a _ elog z®

But these two cannot be used as a definition of a power, because both require the knowledge of %, which we are trying
to define, where © = z or x = €198 %,

It follows:
—Imal
log z¢ = log e?1°8% = qlog & + 2mi {W?WJ (3.5)
™
and
(:L,a)b _ eblogm"’ _ eb(alogz+2ﬂiL%J) _ (3.6)
— eablog erTribL%J _
_ pab2mib| T=lnaloss |
As a special case for x = e one gets:
(ea)b _ eab62ﬂibt"_21? “J (37)

Similarly:

(xy)a _ ealoga:y _ ealogx+alogy+2wiaL%J _

T—argx—argy
2

a, a 27ruL|_ -

3.2.6 Examples

For integer n we get from (3.6):

7—Im alog x

(xa)n — $ane2ﬂinl_TJ — gan

3.2. Complex Numbers 11
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Using (3.6):

Va? = (a)b = ph2emib [T | _ o[ mges | [ ==gpes]y
Using (3.7):
Ver = (%)% = edemil ] = (1)l
Using (3.3):
0=logl=1log(—1)(—1) =log(—1) + log(—1) + 2mi {W_;T_WJ =
=47 +im + 27t L—%J =im4imr — 27 =0
Code:

>>> from math import floor, pi

>>> from cmath import log

>>> log ((~1)=(-1))

03

>>> log(-1)+log(-1)+2+pixlj*«floor ((pi-pi-pi)/ (2xpi))
03

Another example:

.0 ; ; i2 i _
it = ezlogl — el A181 — o3

Code:

>>> from math import exp, pi
>>> 13*x173
(0.20787957635076193+07)

>>> exp(-pi/2)
0.20787957635076193

Another example, using (3.5):

ﬂ—Im%long _

log(v/z) = log(2?) = 1logz + 2mi { 5
7r

1
1 | T—zargz|
= 5 logz + 2mi {%J = 5 log 2z
and
—Im2l
log(2?) = 2log z + 2mi {W - ngJ:
2
| m—2argz
=2logz+2mi | —————
27
and

™

1 —Im(—1) 1
log (z) =log(z ') = —log z + 2mi rr m(-1) ngJ =

— logz 4 2mi {HWJ

2w

Another example, following from (3.1) and (3.4):

1 1 — 1
argz = —(logz — log|z]) = = logi—Qm' m—arg: + arg 2| = flogi
i i |z] 27 i |z]

12 Chapter 3. Mathematics
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3.2.7 Complex Conjugate

The complex conjugate is defined by:

z=Rez+1i1Imz

Zz=Rez—ilmz
Now we can solve for Re z and Im z:
1 _
Rez = 5(2—&—2)
)
Imz= §(fz+2)

Any complex function f can be written using Re z and Im z, i.e. f = f(Re z,Im z) or using z and Z, i.e. f = f(z, 2).

Examples

|2 = VRe? z + Im? 2z = \/(;(z+2))2+ (i(z+2)>2—\/§
2| = VRe? 2+ Im? z = \/Re2z+(—1mz)2: |z]

1
arg z = atan2(Im z, Re z) = atan2 (;(—z +2),=(z+ z)) = atan2 (i(—z + 2), z + 2)

2

tan2(1 R
arg Z = atan2(— Im z, Re z) = —atan2(Im z, Re z) + 27 {a an2( m;, °2) + WJ = —argz+27m Frg;HJ
7r s
logz =log|z| —iargz =log|z| +iargz — 2mi {WJ =logz — 2mi {arg;—HTJ
™
o L llogz l(log‘\z\+iargz) l(log|z|—iarg‘z) l(log\2\-1—1'argZ—Qﬂ'iLiargZJ“'J)
\/5222:62 = e2 =e2 = e2 2m =
1 arg z+m arg 247
= ()2 el = Tl yz
3.2.8 Complex Derivatives
The complex derivative is defined by
dz h—0 h

3.2. Complex Numbers 13
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Let’s calculate the complex derivative in the direction 6, i.e. we use h = te'® with real ¢ and we introduce f = f(z,v)
with £ = Re 2z, y = Im 2 to simplify the notation:
df _ . flz+te”) — f(2)

— = lim . =
dz t=0 et

~ lim flx+tcosl,y+tsinfh) — f(a?,y)e_w _
t—0 t

= %f(m—i—tcos@,y—l—tsin&)e*le =

_(9F of o _
(Ba: cos O + ay sm¢9> =

_ (af ezf) +e—i0 N gew _26—1'9) e—i9 _
(3

ox 2 Jy

_ % 14+ 6721’9 g 1— 6721‘9 _

) oy 2

af of f JAPEEY
1) 1 210 —
2 <3w 8y) " <3w‘+ 3y>

af af 7219
T 0z t oz Bz

In the last step we have expressed the derivatives with respect to x, y in terms of derivatives with respect to z, Z, using
the relations:

3l 8x8f 8y8f

0z 0z 0x * oz 0z 0y (3-9)
1of _iof
20r 20y

of 0xof  Oyof

9 0z0x 0oy
_16f iaf_
“99s T30y "

0 0
1)

df(z,2) _ 0f(z2) 3f(22)67m0 (3.11)

dz 0z 0z

The equation (3.11) states that the complex derivative along the direction 6 of any function can be calculated, but the
result in general depends on . The derivatives for all possible angles 6 lie on a circle, with the center % and the

(3.10)

Let’s repeat the important result:

radius ‘a—f ’ When the derivative has different values for different 6, i.e. when 8—[ # 0, it means that the complex limit

(3.8) does not exist. On the other hand, if the derivative does not depend on 6, i.e. when 6f = 0, then the complex
limit (3.8) exists, and the function has a complex derivative — such functions are called analyt1c Analytic functions
thus do not depend on z and we can write just f = f(z) for those.

The af and af are called Wirtinger derivatives.
We can see that the function is analytic (i.e. has a complex derivative) if and only if:

of of  Of
95 - 2<a+ ay) !
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We can write f = u + iv:

of ~ of
ox +25y =0
O(u + ) +i8(u+w)

ox dy
%f@ +' %4,@ =0
dr Oy ! oy ox)

both the real and imaginary parts must be equal to zero:

=0

Ou  0Ov
dx Oy
ou  Ov
dy Oz

These are called the Cauchy-Riemann equations.

‘We can derive the chain rule:

df(g) _ df(g) 4 6f(9)6721'0 _
dz 0z 0z
_ (9199  0f0g 0f0g  Of99\ 26 _
_(8g82+8§82>+(8982+8§82>e =
_0F (99 09 o\ . OF (09 05 s\ _
= 99 (az Tzt ) tag\as et )T
_ordg o1 dg
~ dgdz  0gdz

Another useful formula is the derivative of a conjugate function:

df _0f Of s _ O  OF _5ip _
iz 0z ta:¢ Tzt T
_ ai—me ai *22'9_@*2%'9
_<(“)ze +az>e T aC

Using (3.13), the chain rule (3.12) can also be written as:

Af(g) 07 dg 07 dg _0fdg 05y
dz dgdz 0gdz 0Ogdz 0gdz

(3.12)

(3.13)

(3.14)

Which has the advantage that only the % derivative is needed, the rest is just conjugation and multiplication. If f is

analytic, then g—g = 0, the second term vanishes and the chain rule is analogous to real functions.

3.2. Complex Numbers
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Examples
dz _ % % —210 1
dz 0z 0z B
dz _ % 0z —210 —2i0
dz 0z 0z
dRe: d}(+7) OMG+2) 03G+D) a4 4 a
dz dz 0z 0z 202
dimz _ d5(—z+2) _ 05(—2+2) N 05(—2+ z)e_Qw _ i N s
dz dz 0z 0z 2 2
dlz| _ dvzz _ 0veaz n 8\/2267%9 _Z+ze7 2z 4 e
dz  dz 0z 0z wzz 27
dif ()| _alfldf , afldf _ e+ rat
dz of dz = 9f dz 2|f]
dargz datan2(i(—z+2),z+2) Oatan2(i(—z+2),z+2) OJdatan2(i(—z+2),z2+2Z) _o
= = + — e =
dz dz 0z 0z
(z4+2)(=i) —i(—24+2) (2+2)i—i(—24+2) _s
prmnd — + — e =
42z 42z
I ) [ ikl ze” 20
2\ z z 2 |z|2
dloglz| 1 z+ ze 20z 4 ze 2
dz 2| 22| 222
dlogz  d(log|z| +iargz) z+4 ze 2 —i—ié —Z4ze?N\ 2z oz 1
dz dz o 252)2 2 |z|? 22 22 2
dlogz Ologz  Ologz 5, 0Ologz 0dlogz 50 1 5
& 9. ez ¢ T ez e ¢ T
dllog:]  ToEEU: 4 log =905 1ogs 4 Lllog2)e ™ slogs + (log )e~"
dz 2| log z| B 2| log z| B 227|log z|

Note that if z is real, i.e. z = Z, we recover the real derivative results by setting # = 0, i.e. taking the derivative along
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the z-axis:
dr
dz
dRez |
dx =zt =1
dImz __1'_'_2'_0
de 2 2
M_m—}—m_ T
de — 2lz| ||
d d d
dif@)| _fa+rd _ra
dz 2|f] |f]

dargx 1 1 1
& :2<‘x+x>:°
dloglz| z+2 o
dz — 2z2 |22
dlogz
de
dllogz| wlogz +xlogz  logx

1
T

dr 222|logz|  x|logz|

The above approach to first express things in terms of z and z and then differentiate is probably the easiest, but we
can do things in any order we want. For example the derivative of |z| can also be calculated in this (arguably more
complicated) way:

dlz| d\/m B Rez% +Imzd}jr2z B

o (%(z + 2)) (% + %6—21‘9) + (%(—z + 5)) (_% + %e—zw)
R ] =
_ Ftze™
2|z|

3.2.9 Testing Identities Using Computer Code

All the complex identities in this chapter can be tested using the following codes. test_complex.py:

def arg(x):

mmn

The argument function.
from cmath import log
return log(x) .imag

def generate_values():

mmn

Create values to test the function at.

mrmmn

from math import sin, cos, pi

from random import random

# Generate 3 circles in complex plane, with diameters 0.5, 1 and 2. We

# avoid special values like -1, +/- i, etc., because they typically send
# the numerical values close to the branch cut, and numerical errors then
# flip the sign, e.g.:

3.2. Complex Numbers 17
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# In [1]: sqrt((-0.57)*%2)

# Oout[1]: -0.57

#

# In [2]: (=0.57) %2

# out[2]: (-0.25-07)

#

# In [3]: sqrt(-0.25)

# Out[3]: 0.57

# Here [3] is the correct value and [1] is incorrect, but that happens due
# to the round off errors in [2] (the small negative imaginary part makes
# sqrt () return -0.5j instead of +0.57).

#

# For this reason, we chose N=7.

N =7

circle = []

for n in range(N): circle.append(cos (2+pi*n/N)+1j+sin (2+pi»n/N))

values = []

for n in range (N): values.append(0.5xcircle[n])
for n in range (N): values.append(l.0xcircle[n])
for n in range (N): values.append(2.0xcircle[n])
# Add some random points:
for n in range (30):
values.append((random()-0.5)*20 + 1j%(random()-0.5)=*20)
return values
values = generate_values ()

def feq(a, b, max_relative_error=le-12, max_absolute_error=le-12):
mmwn
Returns True 1f a==b to the given relative and absolute errors, otherwise
False.
mmwn
# if the numbers are close enough (absolutely), then they are equal
if abs(a-b) < max_absolute_error:
return True
# 1f not, they can still be equal if their relative error is small
if abs(b) > abs(a):
relative_error = abs (a-b) /abs (b)
else:
relative_error = abs (a-b) /abs (a)
#print abs (a-b), relative_error
return relative_error <= max_relative_error

def test_zerol (lhs, rhs):

mmn

Tests that a complex function f(x) of one complex variable is zero.
mmwmn
for x in values:
r = feqg(lhs(x), rhs(x))
if not r:
print "x lhs(x) rhs(x)"
print x, lhs(x), rhs(x)
assert False

def test_zero2(lhs, rhs):

mmn

Tests that a complex function f(x, y) of two complex variables is zero.
mmwn

for x in values:
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for y in values:

r = feq(lhs(x, vy), rhs(x, vy))

if not r:
print "x y lhs(x, y) rhs(x, y)"
print x, vy, lhs(x, y), rhs(x, vy)

assert False

def test_zero3(lhs,

mmn

rhs) :

Tests that a complex function f(x,

mmn

Y

for x in values:
for y in values:
for z in values:

r = feq(lhs(x, vy, z), rhs(x, vy, z))
if not r:

print "x y z lhs(x, vy, z) rhs(x, vy, z)"

print x, vy, z, lhs(x, y, z), rhs(x, y, z)

assert False
from math import floor, pi
from cmath import sqrt, exp, log
I =17
# Test the various identities
test_zerol (lambda x: sqrt(x+*2), lambda x: (-1)**floor ((pi-2+arg(x))/ (2+pi)) *x)
test_zerol (lambda x: sqrt(exp(x)), lambda x: (-1)+xfloor((pi-x.imag)/ (2+pi))*exp(x/2))
test_zerol (lambda x: log(exp(x)), lambda x: x+2xpixIxfloor((pi-x.imag)/ (2+pi)))
test_zerol (lambda x: log(abs(exp(x))), lambda x: x.real)
test_zerol (lambda z: z, lambda z: abs(z)xexp(I*xarg(z)))
test_zerol (lambda z: arg(exp(z)), lambda z: z.imag + 2xpixfloor((pi-z.imag)/(2+pi)))
test_zerol (lambda z: sqrt(z).conjugate(), lambda z: (-1)=++floor((arg(z)+pi)/ (2+pi)) +*sqrt (z.conjugate
test_zerol (lambda z: arg(z.conjugate()), lambda z: -arg(z) + 2xpixfloor ((arg(z)+pi)/ (2xpi)))
test_zero2 (lambda a,b: exp(a)++b, lambda a,b: exp(axb)+exp(2+«pirI+xb+floor ((pi-a.imag)/ (2+pi))))
test_zero2 (lambda x,a: log(x*xa), lambda x,a: axlog(x)+2+pixIxfloor ((pi-(axlog(x)) .imag)/ (2xpi)))
test_zero2 (lambda a,b: log(axb), lambda a,b: log(a)+log(b)+2+pixIxfloor((pi-arg(a)-arg(b))/(2+pi)))
test_zero2 (lambda a,b: arg(axb), lambda a,b: arg(a)+arg(b)+2+pi+xfloor ((pi-arg(a)-arg(b))/(2+pi)))
test_zero3(lambda x,a,b: (x*xa)+xb, lambda x,a,b: xx* (axb)xrexp(2+pi+ I+b+xfloor ((pi-(arxlog(x)) .imag)/ (:
test_zero3 (lambda x,y,a: (xxy)+**a, lambda x,y,a: (xxxa)x(y*r*a)rexp(2+«pixIraxfloor((pi-arg(x)-arg(y)),

test_complex_diff.py:

def arg(x):

mrmmn

The argument function.
mmwn

from cmath import log
return log(x) .imag

def generate_values():

mon

Create values to test the function at.
mrmamn

from math import sin, cos,
from random import random
# Generate 3 circles in complex plane,

pi

with diameters 0.5,

z) of three complex variables 1is zero.

1 and 2. We

3.2. Complex Numbers
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# avoid special values like -1, +/- i, etc., because they typically send
# the numerical values close to the branch cut, and numerical errors then
# flip the sign, e.g.:

# In [1]: sqrt((-0.57)*%2)

# out[1]: -0.57

#

# In [2]: (-0.57)#*#2

# out[2]: (-0.25-07)

#

# In [3]: sqrt(-0.25)

# Out[3]: 0.57

# Here [3] is the correct value and [1] is incorrect, but that happens due
# to the round off errors in [2] (the small negative imaginary part makes
# sqrt () return -0.5j instead of +0.57).

#

# For this reason, we chose N=7.

N =7

circle = []

for n in range(N): circle.append(cos (2+pi*n/N)+1j+sin (2+pixn/N))
values = []
for n in range (N): values.append(0.5xcircle[n])
for n in range (N): values.append(l.0xcircle[n])
for n in range (N): values.append(2.0xcircle[n])
# Add some random points:
for n in range (30):
values.append((random()-0.5)*20 + 1j% (random()-0.5)=*20)
return values

values = generate_values ()

def

def

def

feg(a, b, max_relative_error=le-12, max_absolute_error=le-12):
mmwn
Returns True 1f a==b to the given relative and absolute errors, otherwise
False.
mmwn
# if the numbers are close enough (absolutely), then they are equal
if abs(a-b) < max_absolute_error:
return True
# 1f not, they can still be equal if their relative error is small
if abs(b) > abs(a):
relative_error = abs (a-b) /abs (b)
else:
relative_error abs (a-b) /abs (a)
#print abs (a-b), relative_error
return relative_error <= max_relative_error

test_zerol (1lhs, rhs):

mmn

Tests that a complex function f(x) of one complex variable is zero.
mmwmn
for x in values:
r = feqg(lhs(x), rhs(x))
if not r:
print "x lhs(x) rhs(x)"
print x, lhs(x), rhs(x)
assert False

test_zero2 (lhs, rhs):

mmn

20
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Tests that a complex function f(x, y) of two complex variables is zero.
for x in values:
for y in values:
r = feqg(lhs(x, y), rhs(x, vy))
if not r:
print "x y lhs(x, y) rhs(x, y)"
print x, vy, lhs(x, y), rhs(x, vy)
assert False

def test_zero3(lhs, rhs):

mmn

Tests that a complex function f(x, y, z) of three complex variables 1s zero.

mmn

for x in values:
for y in values:
for z in values:

r = feq(lhs(x, vy, z), rhs(x, vy, z))

if not r:
print "x y z lhs(x, vy, z) rhs(x, vy, z)"
print x, y, z, lhs(x, y, z), rhs(x, y, z)
assert False

def diff(f, z0, theta, eps=le-8):
h = epsxexp(Ixtheta)
return (f(z0+h)-£f(z0)) / h

def diff2(dfdz, dfdconjz, z0, theta):
return dfdz (z0) + dfdconjz (z0) xexp(-2+xIxtheta)

def test_zero(f, dfdz, dfdconjz, z0, theta, eps=le-8):
assert feq(diff(f, z0, theta, eps), diff2(dfdz, dfdconjz, z0, theta),
max_relative_error=eps+le2, max_absolute_error=epsxle?2)

from math import floor, pi
from cmath import sqgrt, exp, log
I =17

angles = [0, pi/7, pi/4, pi/2, 3*pi/4, pi]

for x in values:
for theta in angles:
test_zero(lambda x: abs(x), lambda x: x.conjugate()/ (2xabs(x)),
lambda x: x/(2+abs(x)), x, theta)
test_zero(lambda x: log(x), lambda x: 1/x, lambda x: 0, x, theta)
test_zero(lambda x: log(exp(x-x.conjugate())), lambda x: 1,
lambda x: -1, x, theta)

test_zero(lambda x: sqgrt(xx+2), lambda x: sqgrt(xx+2)/x, lambda x: 0, x, theta)
test_zero(lambda x: sqgrt(xx+2), lambda x: x/sqrt(x+x2), lambda x: 0, x, theta)
3.2. Complex Numbers 21



Theoretical Physics Reference, Release 0.5

3.3 Residue Theorem

The Residue Theorem says that a contour integral of an analytic function f over a closed curve -y (loop) is equal to the
sum of residues Res,, f(z) of the function at all singularities zj, inside the loop:

/f( dZ*ZmzzRgsf
v k

Residue Res,, f(z) is defined as the contour integral around z( divided by 27ri:

5%ﬂa—2;/’_ﬂ@m

and it is equal to the coefficient of ﬁ in the Laurent series of f(z) around the point zg, as can be easily calculated:

Res f(2) =55 / fle)dz = o / ZCnZ—ZO"dZ—

|2—z0|=¢ lz—zo|=e "7
oo 1 oo
— n — —
= E cn% / (z — 20)"dz = E CnOn,—1 = C_1
n=-—00 n=-—00
lz—z0|=¢

where we used the result of the following integral (we integrate over the curve z = zg + e¥, 0 < ¢ < 27, s0
dz = iee’?dy):

27 2m

1 ) . 6n+1 ) 1
— / (z — 2z0)" / 20 + €e'? — zp)"ieePdp = o /6“”(”+ )dcp =

|z—z0|=¢€ 0 0

n+1 ‘iup(nﬁ»l) 2m
6277{_ |:P’L(’117+1):| 0 =0 forn # -1
= 2 = 571,—1
= [dp=1 forn=—-1
0

3.3.1 Computation of Residues

One has to calculate the c_ coefficient in the Laurent series. One way to do that is to write f(z) as

H(z)

(z — z0)™

fz) =
where H (z) is analytic in the vicinity of 2o, e.g. f(z) has a pole of order m at zy. Then:

1 d™H(z
szezi Hz)=ca = (m—1)! dz”E )

in particular for m = 1:

Res f(z) = H(zp) = lim (z — 20) f(2)

Z=2z0 Z—r20

form = 2:

Res £(2) = H'(20) = lim ~[(z — 20)2£(2)]

Z=Zz0 Z—Z20 dZ
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f has a pole of order 1 at zq, g is analytic at zg:

Res (2)g(2) = Jim (2 — 20)/(2)g(2) = 9(z0) lim (= = 20)(2) = g(z0) Res f(2)

Z—r20 zZ=Zz0
f(z0) =0, but f'(29) # 0 and g is analytic at zo:

Res g(z) — 9(2’0) lim ) Z— 20 g(ZO)

Res ) M e T M T T T )

3.3.2 Useful Formulas

Jordan’s Lemma

For estimating integrals over semicircles §2 (z = Re™, 0 < ¢ < ), we can use the following estimates:

/Qg(z)dz

/ e g(2)dz
Q

(In the first case the integration path can be extended to the full circle if needed (0 < ¢ < 27), in the second case the
semicircle is the maximum path. Also if o < 0, we need to integrate over the lower semicircle.) These formulas can
be used to make sure the integral over the semicircle goes to zero as R — oo. Intuitively speaking, in the first case
9(z) must vanish faster than % (e.g. gz is ok), in the second case it’s enough if () just goes to 0 (no matter how
fast).

< mRmax |g(2)|

7r
< — f
< amgx|g(z)| ora >0

The estimates can be proved easily:

/Qg(z)dz

/ g(Re“")iRe“"d@’ S/ |9(Re™?)| Rdp < ngXlg(Z)l/ dip = 7 Rmax |g(z)|
0 0 0

and

/eiazg(z)dz / eiaReiwg(Reigp)iReigad(p‘ <

Q 0

< / e~ oftsing |g(Re'?)| Rdyp < RméiX \g(z)|/ e"fsineqy <
0 0

™
< Zmax|g(2)|

where we use the following useful estimate for the integral (valid for a > 0):

P ™ —aR2 7r/2
/ e aRsineqy, < 2/2 eiD‘R%“"dgp —o| "~ ’ ﬂ; =
0 0 —OZR; 0
2 —aR T —aR T
fozR% [e ] ozR( ¢ ) aR

Other

Sometimes it is useful to integrate over the arc z = zy + ee'®, wo < ¢ < o+ a, and let € — 0O at the end. If the
function is analytic, the result is 0. If the function has a pole of order n > 1, the result is infinity, unless it’s a full
circle (in which case the result is 0). The remaining case is if the function has a pole of order one, e.g. it can be written
(H (z) is analytic at zp):

fz) =
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Then:
wota rr ip )
/ f(z H(z) . _ / Hzo +ee?) gy —
Q%= %20 o 2o + €e* — 2
pota ) pota
= / H(zp + e*¥)idp — / H(z)ide = iaH(z9) = ia Res f(2)
Yo %o z=%0

3.3.3 Complex Substitution

When substituting in integrals, as long as we just substitute for real functions, we use the regular substitution theorem,
e.g. t =y + 1 (f(x) can be a complex function):

/ Z fwyae = [ z Fy+ 1)dy

if, on the other hand, we substitute for complex functions, e.g. x = iy:

/_ O:O f(z)dz = / ™ iy — / T Fayidy

o) 0o

then the first two integrals in the left hand side are equal, however the integral on the right hand side is over a different
integration path and we need to use the Residue Theorem to relate those integrals, e.g. in general the two integrals on
the LHS and the integral on the RHS are not equal. However the idea is that the integral after the substitution (and
changing the limits, e.g. the integration path) is easier to evaluate, so the substitution guides us which integration path
to choose for the Residue Theorem.

3.4 Fourier Transform
The 1D Fourier transform is:
Flf()] = f / fla)e™" da
P ) = ) = 5- / et

To show that it works:

FLF(f(2) = / U /e dx] o= o [ UOO F@)e " da | o du =

/ flz { /Z el l@=2) dw] dz’ = /Z f(@)d(z —2')da' = f(x)

If z is time (unit [s]), then w is angular frequency (unit [rad/s]). One can express the Fourier transform in terms of
ordinary frequency v (unit [1/s] = [Hz]) by substituting w = 27v:

R

.I‘) — [ f/(y)e+2ﬁiuz dv

Both transformations are equivalent and only differ in whether we express the transform in terms of w or v, the
conversion being given by f(w) = f(27v) = f'(v). Third frequently used convention that is however not equivalent
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to the above is:

s _ L > —ikx
f) = <= [ fa)e e aa
_ L <z +ikx
@) = = | e
The 3D Fourier transform is:
PG = flw) = [ e xa’s G.15)

FHf(w)] = f(x) =

With obvious analogs for other conventions and dimensions.

The sign convention in the exponentials e**“? is arbitrary, one can as well flip the sign of the direct and inverse
transforms. In particular, one often uses both sign conventions in the same equation. Consider a spacetime plane-wave
ehw = i wt=kX) Then we obtain (using plus sign convention in the e**'* exponential for the direct transformation):

F[f(x)] f(k:) = /_OO Fz)er® diy = /_OO f(x)eq',(wt—kx) d4a

(271T)4 L f(k)efik.z d4]€ — (271T)4 L f-(k)efi(wtka) d4]€

Finally, the equation k - x = wt — k - x depends on the metric signature, in this case diag(1,—1,—1,—1). For a
signature diag(—1,1,1,1) we would get k - = = —wt + k - x.

FRUf(R)] = f(2) =

Unlike the normalization convention, where one has to be very careful, the sign convention in Fourier transform is not
a problem, one just has to remember to flip the sign for the inverse transform.

3.4.1 Shift Theorem

The Fourier transform of a shifted function, in 3D:
o .
FlfGer bl = [ fxt ble @ b -
—00
— / f(x)efiw-(xfb) de _

_ ei(.u-b/ f(x)efiw-x d3£L' _

= “PF[f(x)]
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3.4.2 Radial Fourier Transform

As a special case when the function f(x) = f(r) is spherically symmetric, we introduce spherical coordinates such
that the z-axis is along the w vector and calculate (we use r = |x| and w = |w|):

F[f( E / f —iW-x d3x _ /_OC f(r)e—ia}x d?’(E —

2m
:/ dr/ d9/ dpf(r)ercosf 2 ging =
0 0 0
= 27r/ dr/ dff(r)eiwreost p2gin g =
0 0

=dr /000 f(r)jo(wr) r2dr =
° sinwr
= 477/0 f(r)iwr r2dr =
A [ |
= /o rsin(wr) f(r) dr,

where we used:

™ 1 iwru! iwr —iwr :
—i 0 . ; e e —e sinwr ,
eiwreost gin gdh = e“du = | — = - =2 = 2jo(wr).
0 1 iwr | iwr wr

So the transform is real and spherically symmetric, since the result only depends on w.

Similarly, for the inverse transform:

)] = 109 = i g3,
+zwxd3
NE /
1 : wsin(wr) f(w) dw =

A wsin(wr) f(w) dw

= on2y

3.5 Fourier Transform of a Periodic Function (e.g. in a Crystal)

The Fourier transform in (3.15) requires the function f(x) to be decaying fast enough in order to converge. In an
infinite crystal, on the other hand, the function f(x) is typically periodic (and thus not decaying):

f(x+T(n1,n2,n3)) = f(x)
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where T'(n) = T(ny,ng, ng) = n1a; +ngas+nszag are the crystal translation vectors. As such, the Fourier transform
in (3.15) is infinite, but it can be made finite by the following definition:

Flf()]

flw) = — /Q fx)e ™ dr = (3.16)

chyst al

crystal

1 .
) D IO )
Qcen

chystal

n

— e [ pge T
n “Q

chystal cell

_ 1 efiw-T(n) / f(x)efiw-x d3£E _
JQ

chystal n

cell
1 .
—iw- 3, _
= QiNCCH fx)e"™*d%x =
crystal Qeell
1

= (x)e” > d3y
Qecen Qeen

This assumes that the wave vector w = G is equal to the reciprocal space vectors G, defined by
G T) — 1, (3.17)

because then > e WTM) =5 1 = Ny

For w # G, the expression ﬁ >on e~ Tm) — ( vanishes, because the sum is bounded, and so dividing by the

crystal >
(infinite) crystal volume makes the expression vanish, and so f(w) = 0. In other words, the only non-zero Fourier
components f(w) of any periodic function f(x) are those with w = G. Equivalently said, if the Fourier components
of a given function are non-zero for some w # G, then the function is not periodic.

Summary: the only difference between the crystal Fourier transform (3.16) and the usual Fourier transform (3.15) is
the (crystal factor. The Fourier transform (3.16) of a periodic function is nonzero only for w = G and is equal to:

Flf(x)] = f(G) = Q:en /Q fx)e ' C> d’s (3.18)

Note: the fact that the sum is bounded follows from:

oo
§ ezkn

n=-—oo

N
lim etkn
N

N—o00
n=-—

N
li 1 =
Ngnoo ( —‘rQZCOSkn)‘

n=1

cos kN — cosk(N + 1) ‘ 2

’N—wo 1—cosk |1 — cos k|

Because |cos kN — cos k(N + 1)| < 2. So for k # 27 (i.e. the denominator is non-zero), the sum is bounded (to
be precise, the infinite sum does not converge, because it oscillates, but the point is that the partial sum is always
bounded). For k = 2, the sum is infinite, because e*>™ = 1.

Since we divided the direct Fourier transform in (3.15) by {2¢ystal to obtain (3.16), we need to multiply the inverse
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transform in (3.15) by Qcrystal:

_ cellNcell / f +2w x d3w _

F_l[f(w)] _ f(X) _ chystal /oo f’(w)e-l-iwx d3w — (3.19)

_ cell Z f G + w) +i(G+Ww)- xd3

Qpz

= Neet Z etiGx f(G + w)e”w'x dBw =
Q Qpz

= Zf(G)eHG'x S(w)eT > @3y =
G

Qpz
— Zf(G)e'HG'x
G
where we used the fact that:
Nce r rs
UG +w) = f(@)ow).
BZ

Alternatively, if one is only interested to show that the inverse transformation works, one can directly substitute the
direct formula (3.18) into (3.19) as follows:

(@) = 2 F(@)ere -

( / f —LG~X/ dBSL'I) e+iG~x _
cell

Qcen

/ f Z iG-(x—x") d3 I
Cell chll G

/ f(x")(2n)3 < ) &z =
Qeent Qeen cell

/Cell f(x)(2n)? gce)l S(x —x)d*r =

chll

Thus we have shown that F~1[f(G)] = f(x).

3.5.1 One Dimension (Fourier Series)

In one dimension with a periodic function f(z + L) = f(z), the volume of a unit cell is Qo1 = L and the reciprocal
space vectors G are defined using ¢'“% = 1 from which G,, = 2Xn. The equation (3.18) then becomes:

Flf(z)] = f(Gn) = cn = % : f(x)e G da = % B f(z)e"@mma/L) 4y (3.20)

ot~
ot~

This is exactly the definition of a Fourier series (c,, are the Fourier coefficients). The inverse transform follows from
(3.19):

S F(Gae = 3 ettt

n=—oo n=—oo
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3.6 Discrete Fourier Transform

Starting from
fo)= [~ s
flo) = [ Foyerean

When the x space is discrete, that is f(z) — f(xx) = fx, where z, = kA and k =0,1,--- , N — 1, we obtain:

N—-1

_ (N—-1)A _ N-1 _ _
f(V) = / f(x)e*Qﬂ"LVI dz = Z fk€727r“/zk — Z fke,%”ykA
0 k=0

k=

o

We only need to sample the reciprocal space at the intervals v = 1x where n = 0,1,--- , N — 1. We finally get:
3 . N-1
Flm) = fo=_ fre?mwk (3.21)
k=0

For the inverse transform, we obtain:

fo= ) Fe2midk (3.22)

3.7 Fast Fourier Transform (FFT)
We write the discrete Fourier transform (3.21) using a notation more commonly used for FFTs:
X(k)=Y z(n)Wkr

where:

WN — 6727T’L'/N

Similarly, the inverse discrete Fourier transform (3.22) becomes:

=2

-1

1 —kn
w(n) = X (k)W
0

b
Il
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3.7.1 Decimation In Frequency (DIF)

We start with radix-4:

N-1
X(k)= Z ()W =
n=0
&1 2N N1 N
= z(n)Wh" 4 z(n)W" + z(n)Wh" + Z z(n)Wh" =
n=0 n==N n=2N n—=3N
4 4 4
%_1 k N k(n+ﬂ) 2N k(n+2N) 3N k(n+ﬂ)
:Z[w(n)WN"+x<n+4>WN 4 <n+4>WN : +x<n+4>WN 1 ]:
n=0
il N\ _ &x 2N 26N 3N\ . sen
= Z |:$(77/)+.T (n+4) WN4 +x <n+4) WN4 +x (n+4) WN4 :| Wkn =
n=0
. N 2N 3N
= Z [35(”) +a (n + 4> (=) +z (n + 4> (1) +z (n + 4) ik} wkn
n=0

Now we subdivide the X (k) sequence into 4 subsequences:

o+

N
N_g

X(4k) =Y

n=0

n+ —

N) (—i)* + (n + 25) (—1)* 4+ 2 <n + %

() oo )]

A
4

Similarly:

X (4k +1) =

X(4k+2) =

|
X (4k) = Z:O Fo(m)Wh
4
X(4k +1) = ngo Fy(n)Wh"
|
X(4k+2) =Y Fy(n)Wh
X(4k+3) =Y Fs(n)Wh"
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where
Fy(n) zn)+z(n+f)+z(n+ )+ (n+ 2
Fi(n) | _ z(n) —iz (n+ %) —z (n+ ) + iz (n+ 2X) _
Fy(n) 1'(77/)—(13(714—%)—'-1'(71—]—%)—x(n+%}\)
F5(n) z(n)+iz(n+ %) —z(n+2Y) —iz (n+ 2N)
1 1 1 1 x(n)
I B A B z(n+ %)
Tl -1 1 -1 e+ Y
1 ¢ -1 — T (n + %)
This coefficient matrix for various radix-n schemes can be generated by:
>>> from sympy import exp, I, pi, pprint, Matrix
>>> n = 2
>>> Matrix(n, n, lambda i, j: exp(-2xpi*Ixix7j/n))
[1 1]
[1 -1]
>>>n = 3
>>> Matrix(n, n, lambda i, j: exp(—2*pixI*(i*j % n)/n))
[1, 1, 1]
[1, exp(-2xIxpi/3), exp(—-4+Ixpi/3)]
[1, exp(—4xI*xpi/3), exp(—2xIxpi/3)]
>>> n = 4
>>> Matrix(n, n, lambda i, j: exp(-2+pixIxi*j/n))
[(r 1 1 1]
[1 -T -1 1]
[1 -1 1 -1]
[1 I -1 -1]
>> n =5
>>> Matrix(n, n, lambda i, j: exp(-2+pi*Ix(i*Jj % n)/n))
[1, 1, 1, 1, 1]
[1, exp(-2xIxpi/5), exp(-4*Ixpi/5), exp(-6xI+pi/5), exp (-8+Ixpi/5)]
[1, exp(-4*Ixpi/5), exp(-8+I*pi/5), exp(-2+xIxpi/5), exp(-6*Ixpi/5)]
[1, exp(=6xIxpi/5), exp(—2+Ixpi/5), exp(-8xI*pi/5), exp (—4+Ixpi/5)]
[1, exp(=8xIxpi/5), exp(-6+Ixpi/5), exp(-4xI+pi/5), exp (-2+Ixpi/5)]
>>> n = 8
>>> Matrix(n, n, lambda i, j: exp(-2+pixI*(i*j % n)/n))
[1, 1, 1, 1, 1, 1, 1, 1]
[1, exp (-Ixpi/4), -I, exp(-3*Ixpi/d), -1, exp(-5+Ixpi/4), I, exp(=7+Ixpi/4)]
[1, -1, -1, I, 1, -I, -1, 1]
[1, exp(-3xIxpi/4), I, exp (-Ixpi/4), -1, exp(-T7+Ixpi/4), -I, exp(-5xIxpi/4)]
1, -1, 1, -1, 1, -1, 1, -1]
[1, exp(=5xIxpi/4), -I, exp(-T+Ixpi/4), -1, exp (-Ixpi/4), I, exp(=3xIxpi/4)]
[1, I, -1, -I, 1, I, -1, -T1]
) ]

[1, exp(=T7xIxpi/4), I, exp(-5xIxpi/4), -1, exp(-3xIxpi/4), -I, exp (-Ixpi/4

One then recursively solves the smaller problems. This approach is used for example in FFTPACK. There are also
other approaches how to decompose the DFT, used in various other libraries.
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3.8 Laplace Transform

Laplace transform of f(z) is:

_ /OOO F(z)e" da

o+1i00
W)= g [ Feeds = 3 Res(F(s)e

—100

The contour integration is over the vertical line ¢ + iw and o is chosen large enough so that all residues are to the
left of the line (that’s because the Laplace transform f(s) is only defined for s larger than the residues, so we have to
integrate in this range as well). It can be shown that the integral over the left semicircle goes to zero:

/Q e g(s)ds

37
/2 e(”“:‘ew)zg(a+Rew)z’Rewdcp <

2

B}

37
2 i
< Rugxlg(z)fee [ [ern|ap =
2
i
—RmaX|g (T’I‘/ TRcosapd(p:
= Rugxlg(a)e [ eRnea, -
0
oxr
< T max|g(2)]

so the complex integral is equal to the sum of all residues of f(s)e*® in the complex plane.

To show that it works:

o+i0o o+i0o o)
-1 —sz s N —sx’ / s _
L= Lf(z)] = 5 /U -~ {/ flx dx] ds = —27” - [/0 f(ze dx] e’ ds

/ flx [27” Ait:o es(“‘_l/)ds} da’ :/0 f(@)o(x —2')da' = f(2)

1 o+ic0 , 1 o+i00 , 1 o0 . ’
ST qs = — ST qg = — elo )@= jdy =

2mi o—ioco 2mi oc—ico 211 Lo

where we used:

eo(z—a’)  poo iw(z—a') 4 o(z—a)§ ! d '
= T on / e w=e (z —a) = 0(z — ')

—00

and it can be derived from the Fourier transform by transforming a function U (x):

—oT forg >
Ux) = f(x)e orxz >0
0 forz <0

and making a substitution s = o + iw:
Lif(z)] = f(s) = FlU(2)] = U(w) = /OO U(x)e ™% da = /000 f(z)e 7%e " dg = /OOO f(z)e ** dx
“Hf(9)) = flz) = Ulx)e”™ = FHU(w)]e™ = FH[f(s)]e” = F~![f(0 +iw)e” ]

1 o+1i00 B B
Tds = E R
s)e’* ds a S:esi(f(s)e

1 [ - .
- . TTLAWT J 5 —
o [m flo+iw)e™e W= g
Where the bar ( f ) means the Laplace transform and tilde (ﬁ ) means the Fourier transform.

o —100
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3.9 Periodic Functions

A function f(z) is periodic with period T":
fle+T) = f(z)
Then you can shift the integration limits by the period 7"

/ab f(z)dz = /ab flz+T)dx = /aj;T f(z)dz

If you integrate f(x) from 0 to 7', you can shift = in f(x) by any constant «:
T
/ flz+ a)de =
0

T+ao
- / f(x)da =
= /ao f(z)dx + /OT flx)dx + /T+a flx)dx =

T

:_/Oa f(gc)d:c+/0Tf(x)dx+/Oa f(x)da =
= /OT f(z)dx

3.10 Polar Coordinates

Polar coordinates (radial, azimuth) (r, ¢) are defined by

r = 7rcos¢

= rsing

3.10.1 Example

When evaluating integrals of the type:

27
I(z,y) = \/(x—rcos¢)2+(y—rsin¢)2d¢
0

we write z and y using polar coordinates:

x =1 cos ¢’

y=r7'"sin¢’

3.9. Periodic Functions
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and then use the 27 periodicity of cos x:

27
Iz, y) = ; \/(x —rcosd)? + (y — rsing)?2de =
27

= Va2 +y2 + 12 —2r(zxcosd + ysing) dp =
0

2
= \/r’2 + 72— 2rr'(cos ¢ cos ¢ + sin ¢’ sin @) dpp =
0

27

= V2 + 12 — 21 cos(¢p — ¢ ) dop =

2
= \/r'2+r2—2rr’cos¢d¢=
0

comparing to:

27

1(0,y) = \/y2+r2—2rysin¢d¢
0

we can see that because the integral is symmetric, we can just set z = 0 and then replace y — . The above method
does everything algebraically, but you can use this symmetry argument to remember what to do, or even skip the
calculation if you are sure that you didn’t make a mistake in the “symmetry argument”.

3.11 Spherical Coordinates

Spherical coordinates radial (p), zenith (6), azimuth (¢):

T = psinfcos ¢
y = psinfsin ¢ (3.23)

z = pcosf

Note: this meaning of (6, ¢) is mostly used in the USA and in many books. In Europe people usually use different
symbols, like (¢, 8), (9, ) and others.

The motivation is to first write  and y using polar coordinates:

T = gy COS @
Y = paySing
and then write 2z and the projection p,, of p onto the plane x — y using polar coordinates:
z = pcosb
Pay = psind
so by combining these two we get:
T = gy COS P = psinfcos @

Y = Py Sin @ = psinfsin ¢

z = pcosb
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3.11.1 Example |

To transform differential operators such as i into spherical coordinates, we make use of the chain rule:
0 _0p0 W0 050
oxr  dxdp 0xdi Oz do

where r, 6 and ¢ are functions of x, y, z to be expressed by inverting (3.23):

p(z,y,2) = Va? +y? + 22

-z
/.'172 +y2 +22

o(x,y, z) = arctan J
x

0(x,y, z) = arccos

At the end, the derivatives are expressed using p, 8, ¢ again. For example

Op _OVaP+yr+2?

ox oz
—_ :I; —
/x2+y2+22
inf
_ psinlcosd i fcosd
p

Finally we obtain

g_sinecos¢£+cosn9ws¢g_ sin ¢ E
or dp P 00  psinf 0¢

cos@sin(bg cos¢p O

(3.24)

2 = sinﬁsin(bg +
Ip

oy p 80+psin0%
9 s 0 sinf O
dz dp p 00

These expressions can be combined to obtain more complicated objects such as Laplacian (in spherical coordinates).
However straightforward this approach is, it is also rather cuambersome; an alternative is discussed in the Spherical
Coordinates section of differential geometry (where it is shown, that the coefficients in (3.24) are simply the matrix
elements of the inverse Jacobian).

3.11.2 Example

When evaluating integrals of the type:

™ 2
l(z,y,2) = / d9/ dp/(z — rsin @ cos )2 + (y — rsin@sin )2 + (z — rcosh)? sin
0 0
we write x and y using polar coordinates:

T = pyycos @’

Y = Pgy Sin Qb/
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and simplify:

™ 2m
l(x,y,z):/ d9/ dp/(z — rsin@cos )2 + (y — rsin@sin )2 + (z — rcos #)2 sinf =
0 0

™ 2w
:/ dﬁ/ d¢\/x2+y2+z2+r2f2r(xsin9<;os¢>+ysin9$in¢+zcos@) sinf) =
0 0

T 2m
= / dH/ d¢\/p,;y + 22 4+ 12 — 2r(pyy cos ¢’ sin b cos ¢ + pgy sin ¢’ sinfsin ¢ + zcos ) sinh =
0 0

™ 2m
= / d9/ dd)\/pzy + 22+ 12 — 2r(pyy cos(¢p — ¢')sinh + z cos ) sinf =
0 0

™ 2m
= / d@/ d(b\/pwy + 22 + 12 — 27 (pgy cos psinf + zcos ) sind
0 0

comparing to:

T 27
1(0,0,2) = / d9/ d¢\/z2 +7r2 —2rzcosf sinf =
0 0

we can see that because the integral is symmetric, we can just set x = 0, y = 0 and then replace z — p.

3.12 Argument function, atan2

Argument function arg(z) is any ¢ such that
z =re'?

Obviously arg(z) is unique up to any integer multiple of 2. By taking the principal value of the arg(z) function,
e.g. fixing arg(z) to the interval (—, 7] (so that the branch cut is on the negative x-axis, as usual), we get the Arg(z)
function:

—m < Argz <7

then arg z = Argz + 27n, where n = 0, 1, +2,.... We can then use the following formula to easily calculate Argz
for any z = x + 1y (except z = y = 0, i.e. z = 0, where it is not defined):

. T y=0;2 <0;
Arg(z +y) = 2 atan Y otherwise
.’E2+’IJ2+fI:
Finally we define atan2(y, x) as:
) T y=0;2 <0
atan2(y, z) = Arg(z +iy) = 2atan—%L—— otherwise
x2+y2+m

The angle ¢ = atan2(y, ) is the angle of the point (z,y) on the unit circle (assuming the usual conventions), and it
works for all quadrants (¢ = atan(Z) only works for the first and fourth quadrant, where atan(%) = atan2(y, x), but
in the second and third qudrant, atan(¥) gives the wrong angles, while atan2(y, x) gives the correct angles). So in
particular:

0
atan2(0,1) = 2atan————=—— =0
©.1) V12 +02+1
atan2(0,—1) ==

1 U

atan2(1,0) = 2atan———=—— = 2atanl = —

10) V02 +12+0 2
tan2(—1,0) = 2at 1 2atan] = ——
atan2(—1,0) = 2atan———— = —2atanl = ——
V02412 +0 2
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This convention (atan2(y, x)) is used for example in Python, C or Fortran. Some people might interchange x with y
in the definition (i.e. atan2(z,y) = Arg(y + ix)), but it is not very common.

The following useful relations hold:
Y

sinatan2(y, z) = ————
/IQ +y2

atan2(y, x) <
cos Y &) = ———
Va2 +y?

exceptr =y =0

exceptx =y =0

tan atan2(y, x) = y forz # 0
x
atan2(ky, kx) = atan2(y, x) fork > 0

atan2(sinzx, cosx) = x + 2w VT — IJ
2m

atan2(y, ) + 7T'J

atan2(—y, x) = —atan2(y, x) + 27 { 5
m

2atan?(y7 x)

Ay T 242
0 atan2(y, x) Y
9 ) =__9
Ox 4 22 + 92

We now prove them. The following works for all z, y except for z =y = 0:

sin y=0;2 <0

sin atan2(y, x) =
(v, ) sin (2 atan—%4—— > otherwise
24y2 4z

o

y=0;2<0;
- 4 otherwise -

/222

Y y=0;z <O0;

Vv x24y2 o Yy

B \/mzy+7y2 otherwise Va2 +y?

Ccos T y=0;2 <0
cosatan2(y, z) = cos (2 atany> otherwise
24yt
-1 y=0;2 <0
= { \/l:_s_iyg otherwise -
- \/ﬁ y=0;z <0; B T

\/% otherwise \x2 + 42
x24y
Tangent is infinite for 7, which corresponds to z = 0, so the following works for all  # 0:

tan y=0;2<0;

y .
tan (2 atan\/m+z> otherwise
{0 y=0;z<0;

tan atan2(y, z) =

4 otherwise

y=0;2<0; y

otherwise T

Il
,_/H
Bl 8
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Finally:

™

2 atan SR

atan2(sinx, cos x) = {

\/0052 z4sin? z+cos z

T T =T
2 atan 2L otherwise

14cosx

T T =T; P
= =z T
2 atan (tan %) otherwise
In the above, we used the following double angle formulas:
2tanx
sin 2x = 5
14 tan“z
1—tan’z
cos2r = 5
1+ tan®x
2tanx
tan 2z = 5
1 —tan®x

T =T,

otherwise

T—2x
2

38
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to simplify the following expressions:

2 tan atan——L——
sin (2 atan Y ) = =
SR 2 v
2 +y2 4z 1+ tan atanmﬂ
y
QW Qy( x2—|—y2+x)
= 5 = 2 -
1+ —=— ( "’32+y2+x) v
x24y2+x
y< x2+y2+l‘) y( :v2+y2+w)
22 + o2 + /22 + 92 Va2 42 <\/x2+y2—|—x)
- _ ¥
1 — tan? atan——2L——
cos <2 atan i ) = Vet =
S 2 v
2 4+y2 4 1+ tan atan\/mﬂ

2
2
o —y
1 ( w2+y2+w> ( x2+y2+x) —y2

2 2
1+(y> ( $2+y2+x) +y?

24y2+zx
x( x2+y2—|—x) x( m2—|—y2+x)

N V2 +y? <\/x2+y2+x)
X

2 tan atan ——L——
tan (2 atan Y ) = Bivite
2 2 _ 2 y
e + Y + x 1 tan“ atan pE
y
2,/x2+y2+z 23/( % +y? +I)

= s = > =
1— y ( 2 +y?+ x) — g2
2 4y? o

(/T )

a:( m2+y2+x) x

Finally, for all £ > 0 we get:

(ky. k) = Arg(ke + k) = 41 y =0z <0;
atan2 Y,kx) = Arg x + 1 y) = " . _
2 atanm otherwise
T y=0;2<0; .
~ )2atan——%—— otherwise Arg(z + iy) = atan2(y, z)
z2+y2 4

3.12. Argument function, atan2
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The symmetry property can be proven by:

T y =02 <O0;
atan2(—y, ) = § o atan sy, otherwise
- y=0;2 <0

) —(2atan——%—— otherwise
24y2+zx

tan2
— atan2(y, z) + 2r {WJ
i

To prove the derivatives, we do:

0 0

—atan2(y, x) = 2——atan Y =— < 5
Ay dy 22 +y2+a 2Pty
0 0
—atan2(y, ) = 2——atan Y - Y
Ox Ox 22t 22 + 42

Code:

>>> from sympy import atan, sqgrt, var

>>> var("x y")

(x, y)

>>> (2+atan(y/ (sqrt (xx*2+y**2)+x)) .diff(y)) .simplify ()
X/ (X*x*2 + yx*2)

>>> (2xatan(y/ (sqrt (x*x+2+y*+2)+x)) .diff(x)) .simplify ()
—y/ (%x%2 4 yxx2)

An example of an application:

A B
Asinx + Bceosz =/ A? + B2 ( cosx)-
VA2 + B2 VA2 + B2
=V A2+ B2 (cosdsinz +sindcosx) =/ A% + B2sin(z + ) =
=/ A? + B?sin(x + atan2(B, A))

sinx +

where

B A
VAZ £ B2 \/A? + B2

0 = atan2 ( > = atan2(B, A)

Another application

. . T T
atan2(cos z, — sin ) = atan2 (sm (.T + E) , COS (x + 7)> =z+

T
2 2

3.13 Multiple Argument Formulas

3.13.1 sin(a x)

Systematic way to derive all multiple argument formulas is to use the following relation:

sin(az) = U,—1(cosx) sinx
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where U, (x) are the Chebyshev polynomials of the second kind, first few are:

U_s(z) = -2z
U_z(z)=-1
U_i(z)=0

_ 1
0= AT
Up(z) =1

2z +1

SN

Ui(z) =2z

Us(x) = 42 — 1
Us(z) = 82° — 4z
Uy(z) = 162* — 1227 + 1
Us(z) = 3225 — 322° + 62
Us(z) = 642 — 802" + 2422 — 1
Code:

>>> from sympy import chebyshevu, var
>>> Var("X")

>>> for i in range(7): print "U_ (x) = " % (i, chebyshevu (i, x))
U_0(x) =1

U_1(x) = 2*x

U_2(x) = =1 + 4+x+%x2

U_3(x) = —4%x + 8*x**3

U_4(x) =1 — 12#x*%x2 + 1loxxx*4

U_5(x) = 6xx — 32xx**3 + 32%x*%5

U_6(x) = =1 + 24%xx%2 — 80*x*xx4 + 64xxX*%6

One can then use this to calculate:
sin(—2z) = U_3(cosx) sinz = —2coszsinx
sin(—z) = U_z(cosx)sinx = —sinx

sin0 = U_q(cosz)sinz =0

.z U )si sinz V1 ——cos?z V1 —cosz
sin= =U_1(cosz)sinz = = -
2 2 V2v/eosx +1 2 /cosz + 1 V2

sinaz = Up(cos ) sinx = sinx

3z (2cosz + 1)sinz  (2cosx + 1)vV/1—cos?2z  (2cosz 4+ 1)/1 —cosz

sin— =U

1(cosx)sinz = = —
2 é( ) V2 /cosz + 1 V2+v/cosx + 1 V2
sin 2z = Uy (cosx) sinx = 2 coszsinx
sin3z = Us(cosx)sina = (4cos’z — 1) sinz
Code:

>>> from sympy import chebyshevu, var, sin, cos
>>> var("x")

>>> for n in range(l, 7): print "sin( *X) = " % (n, chebyshevu(n-1, cos(x))*sin(x))
sin(1xx) = sin(x)

sin (2xx) = 2*cos (x)*sin (x)

sin(3*xx) = —(1 - 4%xcos(x)**2)*sin (x)
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sin(4xx) = (—4xcos(x) + 8%cos (x)**3)*sin (x)
sin (5xx) = (1 = 12%cos(x)**2 + 16%cos (x)**4)+sin (x)
sin(6*xx) = (6*cos(X) — 32xcos(x)**3 + 32%xcos(x)**5)*sin (x)

3.13.2 cos(a x)

Similarly as above, we use:
cos(az) = T,(cosx)

where T),(x) are the Chebyshev polynomials of the first kind, first few are:

V2
Ti(x) =x
T (2) = (Zx—i}ﬁx—i—l

$
To(z) =22 — 1
Ts(z) = 42® — 3z
Ty(z) = 8z* — 822 + 1
Ts(z) = 162° — 202° + 5z
To(z) = 322° — 482 + 1822 — 1

Code:

>>> from sympy import chebyshevt, var
>>> var("x")

>>> for i in range(7): print "T_ (x) = " % (i, chebyshevt (i, x))
T_0(x) =1

T_1(x) = X

T 2(x) = -1 + 2xxx%2

T 3(x) = —3%x + 4xxx%*3

T 4(x) = 1 — 8*x*%2 + 8xx*x4

T 5(x) = 5*x — 20*x**3 + 16*xX*%*5

T _6(x) = =1 + 18xx*x%x2 — 48xx%*x4 + 32%x*x%6

One can then use this to calculate:

cos0 = Tp(cosz) =1

V1+cosz
V2
cosx = Ty (cosx) = cosx
(2cosx — 1)y/1 +cosx
V2

cos 2z = Ty(cosx) = 2cos’x — 1

T
cos o = Ty (cosx) =

3z
cos - = T (cosx) =

cos 3z = T3(cosz) = 4cos® x — 3cosx

Code:
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>>> from sympy import chebyshevt, wvar, cos

>>> var ("x")

>>> for n in range(7): print "cos (%dxx) = " % (n, chebyshevt (n, cos(x)))
cos (0*x) =1

cos (1*x) = cos (x)

cos (2*x) = -1 4+ 2*cos (X) **2

cos (3*x) = =3xcos(x) + 4*cos (X)**3

cos (4xx) = 1 — 8%cos (x)**2 + 8xcos (x) x4

cos (5*%x) = 5%cos(x) - 20%cos (x)**x3 + 1l6*cos (xX)**5

cos (6*x) = =1 4+ 18%cos(x)**x2 — 48*cos (X)**x4 + 32xcos(xX)*#*6

3.14 Delta Function

Delta function §(z) is defined such that this relation holds:

/f (x —t)dz = f(t) (3.25)
No such function exists, but one can find many sequences “converging” to a delta function:
O}i_)rr;o 0a(x) = 6(2) (3.26)
more precisely:
ah_{rgo f(x)dq(x)da = /f ah_}rréo 0o (x)da = £(0) (3.27)

one example of such a sequence is:

0a(x) = % sin(ax)

It’s clear that (3.27) holds for any well behaved function f(x). Some mathematicians like to say that it’s incorrect to
use such a notation when in fact the integral (3.25) doesn’t “exist”, but we will not follow their approach, because it is
not important if something “exists” or not, but rather if it is clear what we mean by our notation: (3.25) is a shorthand
for (3.27) and (3.26) gets a mathematically rigorous meaning when you integrate both sides and use (3.25) to arrive at
(3.27). Thus one uses the relations (3.25), (3.26), (3.27) to derive all properties of the delta function.

Let’s give an example. Let f be the unit vector in 3D and we can label it using spherical coordinates ¥ = (6, ¢). We
can also express it in cartesian coordinates as #(6, ¢) = (cos ¢ sin 6, sin ¢ sin 6, cos 6).

FE) = / S(F — #) f(F) di (3.28)
Expressing f(#) = f(6, ¢) as a function of § and ¢ we have

10, ) = / 50— 8)5(6 — ¢') (6, 6) d8dg (3.29)

Expressing (3.28) in spherical coordinates we get

= /5(f~ —#)(6, ¢) sin 0 dode

and comparing to (3.29) we finally get
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In exactly the same manner we get
)
6(r—r/):6(f‘ f-)(p72p>
p
See also (3.32) for an example of how to deal with more complex expressions involving the delta function like 62 ().

When integrating over finite interval, this formula is very useful:

/ F@)d(x — t)dz = F(1)8(b — )0(t — a)
in other words, the integral vanishes unless a < ¢ < b. In the limit a = —o0 and b — co we get:

O(b—t) — (oo —t) = 1
0(t —a) — 0(t — (—00)) = 0(t + 00) =1

3.15 Distributions

Some mathematicians like to use distributions and a mathematical notation for that, which I think is making things less
clear, but nevertheless it’s important to understand it too, so the notation is explained in this section, but I discourage
to use it — I suggest to only use the physical notation as explained below. The math notation below is put into quotation
marks, so that it’s not confused with the physical notation.

The distribution is a functional and each function f(z) can be identified with a distribution "7 " that it generates using
this definition ((z) is a test function):

T (o)) = / Fa)p(@)de = " Flo()" = "(F(@), o))"

besides that, one can also define distributions that can’t be identified with regular functions, one example is a delta
distribution (Dirac delta function):
"3(0(a))" = 6(0) = [ B(a)o

The last integral is not used in mathematics, in physics on the other hand, the first expressions (" (¢(x))") is not used,
so 0(x) always means that you have to integrate it, as explained in the previous section, so it behaves like a regular
function (except that such a function doesn’t exist and the precise mathematical meaning is only after you integrate it,
or through the identification above with distributions).

One then defines common operations via acting on the generating function, then observes the pattern and defines it for
all distributions. For example differentiation:

d
T =" Tpe) = [ fodo = - [ g -1y

So:
d
n__ " — n_T I\ n
el () (¢")
Multiplication:
"gTs(p)" = "Ter()" = / gfpdr ="Ty(gp)"
SO:

9T (9)" = "T(ge)"
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Fourier transform:

"FTy(p)" = "Trs(p)" = / F(f)pdz =

:/ [/ e_“””f(k)dk] o(z)dx = /f(k) {/ e_ik“:go(;v)dx] dk = /f(x) {/ e_““”go(k)dk] dz =
— [ 1P =1y(Fey
s0:
FT(p)" = "T(Fy)"

But as you can see, the notation is just making things more complex, since it’s enough to just work with the integrals
and forget about the rest. One can then even omit the integrals, with the understanding that they are implicit.

Some more examples:

[ 3t~ a0)g@rts = [ s(@)ple + aolde = plan) = "8(p(a + 20))

Proof of §(—z) = §(x):

[ staptaar == [ swet-pan= [ s@et-e)s ="5e-0) = w0 = "50@)" = [ @)

o0

Proof of zd(z) = 0:

[ as@@ris = "s(ap(a)) = 0-4(0) =0

Proof of d(cz) = %:

/§(cx)<p(a:)dm = |1?|/6(x)ap (%) dz ="0 <LP(C|C) ) "= 6|(C(T) = "5(<Tc(|$))” = / 5|(j>¢(x)dx

3.16 Variations and Functional Derivatives

Variations and functional derivatives are generalization of differentials and partial derivatives to functionals. It is
important to master this subject just like regular differentials/derivatives in calculus.

3.16.1 Functions of One Variable

Let’s first review differentials and derivatives of functions of one variable. We will use an approach that directly
generalizes to multivariable functions and functionals. The differential d f is defined as:
h) —
af = lim LEFR 2@ _

e—0 IS

Last equality follows from the fact, that the limit is a linear function of h:

oy JE TR S) o) o Sla) _(

£—0 € n—0 (%) him,

n—0

(CELESCIN
n
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Where we used the substitution = ch. We define the derivative % as
df
—~ —a
dz
To get a formula for %, we set h = 1 and get:
o o fare )= f@) | fete) - f(@)
dx e—0 € e—0 €
Using the formulas above we get an equivalent expression for the differential:
d h) — h
L IR { GRS CRR) L) R (G0 B
de e—g M0 n e=0
_ iy S ) — (@)
n—0 n
o fateh) = f(@)
e—0 £

So we get a general formula (the analogy of which we will use later):
d h) —

af= Lraten)| - N -I@ _

e—0 £

de e=0

The variable = can be treated as a function (a very simple one):
z = g(x)

So we define dx as:
d
de=dg=Th=h
dz
As such, dz can have two meanings: either dvt = h = x — x¢ (a finite change in the variable x) or a differential
(if = depends on another variable, thanks to the chain rule everything will work). With this understanding, for all

calculations, we only need the following two formulas — the definition of the differential (using a limit):

o5 =ty L2+ E10) 1)

e—0

and the definition of the derivative (using the differential):

_df

where dz is either a differential or a finite change in the variable x.
If for example 2 = p(y) is a function of y then in the above dx is a differential and we get

Ay e
df = dwdx dx dydy

Thanks to the chain rule, this can also be written as:
d

ar = Lay
dy

and so the notation is consistent.
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3.16.2 Functions of several variables

Let’s have x = (21, %2, ...,2xN). The function f(x) assigns a number to each x. We define a differential of f in the
direction of h as:

i X E) - f)
e—0 £

df = %f(x—i—ah)

e=0

The last equality follows from the fact, that d% f(x+¢€h) |e=0 is a linear function of h. We define the partial derivative

% of f with respect to x; as the i-th component of the vector a:

_(90F of af \ _
a(aml’au”am]\,)v'}c

This also gives a formula for computing 5%: we set h; = 0;;h; and

af d
=a; = ~h:7 070,...,1,...,0 =
Gy = Gi=a ACRA! ) .
_ lim flz1,22,. ...,z +¢e,...,on) — f(z1,22,.. ., T4y ..., TN)
e—0 €

The usual way to define partial derivatives is to use the last formula as the definition, but here this formula is a
consequence of our definition in terms of the components of a. Every variable can be treated as a function (very
simple one):

i =g(z1,...,xN) = 05T,
and so we define

do; = dg = d(di;25) = hy
and thus we write h; = dz; and h = dx and

df
So dx has two meanings — it’s either h = x — x; (a finite change in the independent variable x) or a differential,
depending on the context. The above is a detailed explanation why things are defined the way they are and what
the exact meaning is. With this understanding, the only things that are actually needed for any calculations are the

following — the definition of a differential:

d

df = — d

f= gl boredn)|
Only a regular derivative (defined in the previous section) is needed for this definition. The definition of a partial
derivative (and a gradient):

d
df = da{idxi = (Vf) -dx

And finally the understanding that dx means either h = x — x¢ or a differential depending on the context. That’s all
there is to it.

3.16.3 Functionals

Let’s now define functional derivatives and variations. Functional F'[f] assigns a number to each function f(z). The
variation is defined as

SF[f] = (%F[f + eh] = lim FIf +eh] = F1f] = /a(az)h(m)dm

e—0 e—0 €
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a
We define 5 s

This also gives a formula for computing %: we set h(y) = 0(x — y) and

oF d
Sy = o) = [ ai -y = LFUG) 4w -y)| = (3.30)
i P @) + 8@z — )] — Flf(y)]
e—0 £

Sometimes the functional derivative is defined using the last formula, here this formula just follows from our definition.
Every function can be treated as a functional (although a very simple one):

f(x) = Glf] = / F()8(x — y)dy

and so we define

o =d6lf) = LOUE +eh@]| = LU +eh)| = h
thus we write h = 0 f and
oF
OF[f] = Wdf(x)dx

s0 0 f have two meanings — it’s either h(x) = f(z) — fo(x) (a finite change in the function f) or a variation of a
functional, depending on the context. It is completely analogous to dx. Let’s summarize the only formulas needed in
actual calculations — the definition of a variation (using a regular derivative):

d
OF[f] = —F|[f +¢edf] (3.31)
de c—0
the definition of the functional derivative:
oF
OF|fl= | ——d6f(x)dx
1= | 5770

and the understanding that § f means either h(z) = f(x) — fo(x) or a variation. The last equation is the best way to
calculate functional derivative — apply & variation, until you get the integral into the form | ( )5 f(x)dz and then
you read off the functional derivative from the expression in the parentheses.

The correspondence between the finite and infinite dimensional case can be summarized using a functional F'[n],
function n(x) of continuous parameter x (which can be a scalar or a vector) and its discretized version n; = n(x;),
together with a function F'(n):

1 &= X
n, <= n(x)
dFF =0 <= JF=0
OF OF
on; 0 = on(x) 0

In other words, the basic difference is that the continuous parameter x has been replaced with a discrete parameter
i. Then the function n(x) becomes a vector of values n;, variation becomes a differential and functional derivative
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becomes a partial derivative. To minimize a functional, one must search for zero functional derivative, while in the
discrete case one searches for zero partial derivatives (gradient).

We now extend the d-variation notation to any any function g which contains the function f(z) being varied, you just
need to replace f by f + €d f and apply d% to the whole g, for example (here g = 9,,¢ and f = ¢):

d
= @(rb +¢e6¢) = 0,00

e=0

d
00,0 = @f{%@) +e69)

e=0

As such, the F' in (3.31) can be either a functional or any expression that contains the function f. This notation allows
us a very convenient computation, as shown in the following examples.

First, when computing a variation of some integral, we can interchange ¢ and |

Fif) = [ K@)fa)ds

d

5F = 5/K(x)f(a:)dx -2 /K(m)(f +eh)da

e=0

— [ s(@p(a)da
In the expression 6 (K (x) f(x)) we must understand from the context if we are treating it as a functional of f or K. In
our case it’s a functional of f, so we have §(K f) = Kdf.

The second very important note is when taking variation of expression like:
) / f(t1) f(te)dt dts =
= [s(sa)andrs =
= [ ) + 85 (F ) + 20 (12))| drada =

e=0

- / (SF(E))F(t) + F(1) (55 (t2))dtrdts =
- / (GF(E)F(t) + F(t2) (5£(t1))dtrdts =
_ 2/f(t2)6f(t1)dt1dt2

then when f is replaced by f + e f, one has to keep track of the independent variable, so f(¢1) gets replaced by
f(t1) + edf(t1) and f(t2) gets replaced by f(t2) + €df(t2). Thus the two variations 6 f(¢;) and  f(¢2) are different
(independent). If there is only one indepenent variable, one can simply write § f as it is clear what the independent
variable is. This is analogous to using differentials, e.g. d(f(z)f(v)) = (df(z))f(y) + f(x)df(y) = f'(z)dzf(y) +
f (@) f'(y)dy, where one has to keep track of the independent variable as well for each d f.

Another useful formula is differentiation of a functional F'[¢)(#)] where the function 1/(f) depends on a parameter 6:

dFp(0)]  d d dy(0) 2 d dy(0) SF[y] dy(6)
— == —Fy(d = —F |y(0 — = —F |y(0 — = [ ———=d
a0~ awlToll =g B ) temgm v 0@ = g B vO e | 5y g
where we used the definition of a variation and a functional derivative with §¢ = d'ﬁée) :
d OF
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3.16.4 Examples

Some of these examples show how to use the delta function definition of the functional derivative in equation (3.30).
However, the simplest way is to calculate variation first and then read off the functional derivative from the result, as
explained above.

it ] 590 = o [ e —aw)| <o)
6/dtf(t) /dt t)+edf(t)g(t)| = /g(t)(df(t))dt
e=0
SFE) A -
5@ = () Fed =) ==t

of(t1)f(t2) _ d
— == —(f(¢ ot —t t ot —t
S0 = eV edlt = ) ((t) + 2Bt~ 12)
The next example shows that when taking variation of an expression containing the function f of different independent
variables, one has to keep track of these variables in the variations:

=0(t = t1) f(t2) + f(t1)0(t — t2)

e=0

o(f(t)[f(t2)) = i(f(lh) +e0f(t1))(f(t2) +e0f(t2))

de = (0f(t1)) f(t2) + f(t1)(0f(t2))

e=0

(S(S(t)é/dt1dt2K(t17t2)f(f1)f(t2) = %/dt1dt2K(t1,t2)W =

= % (/ dt; K tl, tl /dtQK t tg t2 > /dt2 t t2 t2)

5%/dtldtQK(tl,tQ)f(tl)f(tg) = %/dtldth(tl,tg)(éf(tl)f(tQ)) =
= 3 [t (0, ) (G (0)) 112 + (02 (55(02)) =
~ [ dndak(n, ) f(2)05(0)

The last equality follows from K (t1,t3) = K (t2,t1) (any antisymmetrical part of a K would not contribute to the
symmetrical integration).

Another example is the derivation of Euler-Lagrange equations for the Lagrangian density £ = £(1,, 0,1, z"):

oL oL
0:65:5/£d4x”:/5£d4x”:/—5 + ——6(0,n,)d*z" =
anp 77p a(aunp) ( Up)
oL N oL 9, (5n,) da —

an," " 8(8,m,)

oL oL oL
= | 2260, — 0, (5 ) O, dia +/8(5)d4”
/5% e <a(8u77p)> e &% Vnp) e !

oL oL
= = 9, | =——— )| on, d*z*
/ [anp <8(6V77p) >} T

We can also write it using a functional derivative g—s as:

550y (e
o, On, “\a(0,1,)
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Another example:

e=0

0 3 _i T E0\T — S.T
s [ F@ae = L [+ esta o)t

= /3(f(m) +ed(x —1))?6(x — t)dx

. / 312(2)5(z — t)dz = 312(1)

e=0

One might think that the above calculation is incorrect, because 62(x — t) is undefined. In case of such problems the

above notation automatically implies working with some sequence o () — d(z) (for example 0, (z) = - sin(ax))
and taking the limit o« — oo:
L/]ﬁ(x)dx = lim i/(f(:r)+56 (x —t))3dz =
6f(t) s de “ e=0 -
= lim [ 3(f(2) + da(z —1))%6a (2 — t)da = lim [ 3f%(x)6q(z —t)dz =
a—r 00 e=0 a—00
- / 3£2(x) lim_da (e — t)dz = / 312(2)0(x — t)da = 312(1) (3.32)

As you can see, we got the same result, with the same rigor, but using an obfuscating notation. That’s why such
obvious manipulations with ¢, are tacitly implied. However, the best method is to first calculate the variation:

o / P (z)dr = /5f3(ac)dac = / 3f%(x)d f (z)dw
and immediately read off the functional derivative:
s [ Pade=3£20)
6 (t)
Another example with a metric as a function of coordinates g,,, = g, (z*):

= i(m” +e(0x7))

de aoguu = (53;0)809;1,1/

e=0

d
6gW = 6guu(1‘#) = &g;w('r# + 5(533”))
e=0

And an example of varying with respect to a metric:

(5\/| det g, | = \/\ det g,.,| 0 log \/\ det g | = %\/| det g,,,| 0log | det g, | =

= %\/|detgw| 0Tr log g = % | det g, | Trdlog g =
= 31/1det 9| Trg"" 89, = 51/| det g | 6" 89,0 =
= _% \/ | det g | Gy 09"
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Another example (varying energy functional):

Elp] = 477/%7‘%7“

’“”:(Mim)é

b _1( 3 NP3 1/ 3 N
dp 3 \dn(—p)) A4mp>  3p \4n(-p))  3p

SE[p] = 4776/ bipr r?dr =

adp ap 2
=4 — ors dr =
ﬂ—/(b—‘,—rs (b+rs>2 T()T T
adp ap Ts 2
:4 — _— =
o G - (5 ) e
a
=4
W/(b+rs+

=

Another example (Hartree energy):
1 n(x)n(x") 5, 45,
En] = /|r’—r”| d’r'd°r
we calculate the variation first:
1 n(x)n(x") 5, 45, _
5E[n]25/|r/—r”d 'l"d71 =

/ (On(x")n(x") + n(x) (6n(c"))

|I" _ I.//|

d37“/d37‘” _

N[ =

/

= / |r7/](_r2/,|((5n(r”))d3r’d3r" =

_ / :(_r/gll(én(r))dgr’d?’r

so the functional derivative is:

S _ [ nte) g,
on(r) |r — r/|
Another example (functional with gradients):

Fln] = / h(n)@d%
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the variation is:

6F[n] = / 5 (h<n)'vg'2) & —

2 , _ 2 ‘
:/@|Vn| 5n+ h(n) <2nVn Von — |Vn| 5n> B —
n

dn n?

2 .
_ / <dh B h(n)> |Vn| 5n+2h(n)vn Vénd?)r _
n

dn n n

2
_ / <dh _ h”) Vol s — oy (h(n)vn) on d*r =
dn n n n
2 2 2 2
= / (jh — h(n)) [Vl on —2 (dh [Vl + h(n)V n_ h(n) N ) on d®r =
n

n n dn n n n?
2 2
:/ {(h(n) - dh) [Val® 2h(n)L n] on d3r
n dn n n
from which we read off the functional derivative:
2 2
dF[n] _ h(n) dh\ [Vn* Qh(n)v n
on(r) n dn n n

3.17 Dirac Notation

The Dirac notation allows a very compact and powerful way of writing equations that describe a function expansion
into a basis, both discrete (e.g. a Fourier series expansion) and continuous (e.g. a Fourier transform) and related things.
The notation is designed so that it is very easy to remember and it just guides you to write the correct equation.

Let’s have a function f(x). We define

(zf) = [f(x)
@lf) = f@@)
('|x) = &' —x)

B

S~

"
o,
5
1l
=

The following equation
fa) = [ 80"~ ) f(a)aa

then becomes
@) = [ o) (alfr s

and thus we can interpret | f) as a vector, |z) as a basis and (z|f) as the coefficients in the basis expansion:

=115 = [ la) el do|f) = [ fo) (lf) o

That’s all there is to it. Take the above rules as the operational definition of the Dirac notation. It’s like with the
delta function - written alone it doesn’t have any meaning, but there are clear and non-ambiguous rules to convert any
expression with § to an expression which even mathematicians understand (i.e. integrating, applying test functions and
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using other relations to get rid of all § symbols in the expression — but the result is usually much more complicated than
the original formula). It’s the same with the ket |f): written alone it doesn’t have any meaning, but you can always
use the above rules to get an expression that make sense to everyone (i.e. attaching any bra to the left and rewriting all
brackets (a|b) with their equivalent expressions) — but it will be more complex and harder to remember and — that is
important — less general.

Now, let’s look at the spherical harmonics:

Yim () = (£[Im)

/|f> <f\df:/|f> #d0 =1

on the unit sphere, we have

thus

27
/ / Yim (0, 9) Yy, (0, ¢)sin6df de = / {I'm/|#) (#lm) dQ = {(I'm/|Im)
and from (??) we get
<l/m/|lm> = Omm/ Ol
now

me O (0',0") = > (Elim) (Im|#)

lm
from (??) we get
> (#ftm) (Im|¥) = (B[F)
lm

so we have

> i) (Im| =1

lm

so |lm) forms an orthonormal basis. Any function defined on the sphere f(#) can be written using this basis:

F®) = (Elf) =D (#lim) (Im| f) = me ) fim

lm

where
fom = (imlf) = / (Im[f) (8] f) A0 = / Y (8) f(£)d0

If we have a function f(r) in 3D, we can write it as a function of p and ¥ and expand only with respect to the variable

I

In Dirac notation we are doing the following: we decompose the space into the angular and radial part

r) = [£) @ |p) = |F) [p)
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and write

fe) = (el f) = & (plf) = ZYzm (Im| (pl.f)

where
(iml (plf) = / (ImlE) (F] (plf) d2 = / Yt (8) £ (£)d2
Let’s calculate {(p|p)

(r[r’) = (& {olp") ) = (F[F') (plp")

SO

We must stress that |lm) only acts in the |#) space (not the |p) space) which means that

(eflm) = (& (plim) = (E[Im) (p| = Yim (F) (p|

and V' |lm) leaves V' |p) intact. Similarly,
> jim) (Im] =1
lm

is a unity in the |#) space only (i.e. on the unit sphere).
Let’s rewrite the equation (??):

47

A al
TSR

> (#im) (Im]#) =

m

Using the completeness relation (??):

l

20+ 1
DR = —(Bl=1
l

we can now derive a very important formula true for every function f(# - #'):

2
£ = 610 = 30 6 #1R) 2 Rl = 3 e ity P ) =
l Ilm
= (#ltm) fy (Im|#')
ilm

where

(20 +1)?

fi= 4"

1
i = B0 [ gy inyar = A [ R

or written explicitly

e’} l
FE-) =D V@AY () (3.33)
=0 m=-1
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3.18 Homogeneous functions

A function of several variables f(x1,x2,...) = f(x;) is homogeneous of degree k if

Fay) = A" f(x)
By differentiating with respect to A:

: = kXM f (g
A Fw)
and setting A = 1 we get the so called Euler equation:
of ()
i =kf(z
0 L2 = kf(a)

in 3D this can also be written as:

x - Vf(x) = kf(x)

3.18.1 Example 1

The function f(z,y, 2) = “¥ is homogeneous of degree 1, because:

AT Ay Ty
AT, Ay, Az) = =A==
Fa, Ay, Az) = = ~ = AM(2,y,2)
and the Euler equation is:
of , of of _
e +y8y +Z@z =/
or
syt (-5 =2
z z z z
Which is true.

3.18.2 Example 2

The function V' (r) = —% is homogeneous of degree -1, because:

V(\r) = 7% =\ (r)

and the Euler equation is:

av _ _
dr
or
Z__(_Z
"2 r
Which is true.
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3.19 Green Functions

Green functions are an excellent tool for working with a solution to any ODE or PDE. In this text we explain how it
works and then show how one can calculate them using FEM.

3.19.1 Introduction

Let’s put any ODE or PDE in the form:
Lu(z) = f(x) (3.34)

Here L is a differential operator and = can have any dimension, e.g. 1D (ODE), 2D, 3D or more (PDE). Then we can
express the solution as

u(w) = L7 (0) = [ Glo o)1) (3.35)
where G(z, z) is a Green function, that needs to satisfy the equation:
LG(z,2") = §(x — ') (3.36)

Remember, that L acts on = only, so we can check, that (3.35) indeed solves the PDE (3.34):

Lu(z) = L/G(m,x’)f(x’)dx’ = /LG(m,x’)f(m’)dx’ = /(5(1‘ — ') f(z')dz’ = f(x)

3.19.2 Boundary Conditions

The equation (3.36) doesn’t determine the Green function uniquely, because one can add to it any solution of the
homogeneous equation Lu(xz) = 0. We can use this freedom to solve (3.36) for any boundary condition. So we
prescribe a boundary condition and find the Green function (by solving (3.36)) that satisfies the boundary condition.
It can be shown, that u(z) determined from (3.35) then also needs to satisfy the same boundary condition.

3.19.3 Symmetry

We write the equation for Green functions at two different points x; and x5:

LG(z,21) =

1 (z — 1)
LG(z, z2)

(x — x2)

)
)
and multiply the first equation by G(z, x2), second by G(z, x1):

G(z,29)LG(x,x1) = §(x — x1)G(x, x2)
G(z,21)LG(x,x9) = §(x — 22)G(x, 21)

substract them and integrate over x:
G(z,22)LG(x,21) — G(x,21)LG(x,22) = 6(x — 21)G(x,x2) — 0(x — 22)G(x, 1)
/(G(x,xQ)LG(z,xl) — G(z,21)LG(z,x2)) dz = / (0(x —21)G(z,22) — d(x — 22)G(x,21)) dz

/ (G(z,22)LG(x,21) — G(z,21)LG(x, x2)) dx = G(z1, 22) — G(x2,21)
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Assuming that the operator L is Hermitean, we get:
/((LG(x,xg))G(m,x1) — G(x,21)LG(x,x2)) do = G(x1,22) — G(x2,21)
0 = G(fﬁl,xz) — G(.’E27£C1)
So the Green function is symmetric for Hermitean operators L.

3.19.4 Examples

Poisson Equation in 1D

Poisson equation:

d2
— g2 @) = f(2)
We calculate the Green function using the Fourier transform:
82 / !
—@G(x,x )=6(x — )
L 2@ b eikz'
7(1 ) ( ) L ) - \/ﬂ
Ah o ek’
() V2 k?
G(z,2')=—i(z—2')sign(z —2') = —3(z —2")2H(z —2') — 1) = H(z — 2')(2' —2) + 1 (z — 2’)
Check:
a—G(%x’) =6z—a )2’ —2)+ Hx—2')(-1)+i=-H@x—-2")+3
82 ! !
@G(x,x )= —d(x — ")
Then:

/
r — X

u(x) = /G(:z:,a:’)f(:c')d:z:’ = / (H(x —2)( )+ %(x - x’)) fz")da'

The green function can also be written using < = min(z, 2’) and x> = max(x,z’):

Gz,2")=H(x—2' )2 —z)+ 3z —2') = 3(z< — z5)

Radial Poisson Equation

Let’s write - and r. using the Heaviside step function:

r forr > 7’

r’ =H@r—rYyr+HF —r)y’ =

rv = max(r,r’) = {

=H(r—rYyr+Q—-Hr—r")r'"=H@r—rYr—r)+7r

forr <7’

and:
/ f /
T<=miﬂ(7“’7“/):{r Orr>r,:H(r—r’)r’+H(r’—r)r:
r forr <r
=H@r—r"Yy+Q—-H@r—r")r=H@r—-1)r"—r)+r
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Then we can differentiate:

0
5> =5(r—rYr—r"Y+H(r—7")=H(r—r")
82
w’r> = (S(T — T/)
0
o< =5(r—r)r'=r)—H(r—7r")+1=1—H(r—r)Y=H(" —7r)
82
e = ~d(r = 1)
Given:
[e%¢] 1\, 2
u(r):/ Mdr’ (3.37)
0 r>
The Green function is
12
n-"-
G(T,T ) - s
Let’s differentiate:
b 70/2 o 2 12
aG(T, /)*7€ET>— T%H(T‘f’f’l)zfrzH(Tf’r/)
and
82 27,,/2 7,,/2
WG(T, r') = +;r—2H(T —7r') — r—26(r —7r)
So we get:
0? , 20 , 272 r'? 27" r'?
s s v — 2 gy T o s T ) o
aTQG(’I“,’I“) r@rG(T’r) 2 (r 7‘)+T25(r T)+TT2H(T ) 7"26(T r)y=46(r—1")

So u(r) from (3.37) is a solution to the radial Poisson equation:

d? 2d
—qpulr) = ulr) = f(r)

Helmholtz Equation in 1D

((i; + 1> u(z) = f()
(dQ + 1> G(z,2') = §(z — 2')

da?

with boundary conditions u(0) = u(5) = 0. We use the Fourier transform:

B eikac/
((ik)* +1) G(k,2") = Nors
- eikx/
Ch) = i =)

G(z,2') = Lsign(z — 2') sin(z — 2')
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Check:

= Gla,2') = 0 — &) sin( — ') +  sign(e — 2') cos(e — ') =
= 1 sign(z — ') cos(z — @)
8—;6‘(:5, 2') = §(z — ') cos(z — 2') — L sign(z — ') sin(z — 2') =
= —3sign(z — 2’) sin(z — 2’) + 6(z — 2)
02 0
WG(x,w') + %G(x,x’) =6(x — ')

The general solution of the homogeneous equation is:
u(z) = Cysinz + Cy cosx
so the general Green function is:
G(z,2") = Lsign(z — 2’) sin(z — 2) + Cy sin(z + 2”) + Cy cos(z + ')

Satisfying the boundary conditions (for all 2" # 0):

G(0,2) = G(g,x') =0

we get:
= _1
C1=—3
Co=0
and:
G(z,2') = Lsign(z — 2') sin(z — /) — L sin(z + 2') =
= —H(2' — z)sinzcosx’ — H(x — 2') coswsina’ =
—sinz cos z’ z <z .
= . , = —sinzccosas
—coszsinz T>x
and

u(x) = /G(x,x’)f(x')dx’ = —cosx/: f(z')sinz’dz’ — sinx/é f(z") cosz’da’

To show that this really works, let’s take for example f(x) = 3sin 2z. Then
3

xT G
u(z) = —cosw / 3sin 2z’ sinz’da’ — sinz / 3sin 2z’ cos 2'dx’
0 T

We can use SymPy to evaluate the integrals:

In [1l]: u = —-cos(x)+*integrate (3xsin(2xy)*sin(y), (y, 0, x)) = \
sin(x)xintegrate (3«sin (2xy) *xcos(y), (y, x, pi/2))

In [2]: u
Oout[2]:
—(cos (x)*sin(2*x) — 2xcos (2*x)*sin(x))*cos(x) — (sin(x)*sin(2*x)

+ 2%xcos (X) xcos (2*x) ) *sin (x)

In [3]: simplify (u)
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Out [3]:
2 2
— CcO0s (X)*sin(2+x) — sin (X)*sin(2+x)

In [4]: trigsimp(_)
Out[4]: —-sin(2*x)

And we get
u(z) = —sin 2z

We can easily check, that v + u = 3 sin 2z:

>>> u = —-sin(2+x)
>>> u.diff(x, 2) + u
3xsin (2+xx)

and since f(z) = 3sin 2x, we have verified, that u(x) = — sin 2z is the correct solution.

Poisson Equation in 2D

Let x = (x,y) and we want to solve:

So we have:
V3G (x,x') = §(x — x)
The solution is:

1 1 1
" = e — / = — —_ /12 = —_— — "2 — "2
Glx,x) = g_log[x —x'| = —log|x —x|" = —log((z —2")" + (y = ¥/)")
Poisson Equation in 3D

Viu(w) = f(x)
V3G (z,2') = 6(x — ')
with boundary condition G(x) = 0 at infinity. Then:

1 1

G(z,2") = *Em

and

u(z) = 7%/ f($2/|d:17/

|z —

Helmholtz Equation in 3D

(V2 + k*)u(z) = f(z)
(V2 +E)G(z,2") = §(z — 2)
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with boundary condition G(x) = 0 at infinity. Then:

1 eik\xfa:ﬂ
!
Gl ) =~ =T
1 f(x/)eik\x—x/\ ,
S A Sl S— |
u(®) 47 |z — '] “

Finite Element Method
Let’s show it on the Laplace equation. We want to solve:
V2G(x,2') = 6(x — ')
We will treat 2’ as a parameter, so we define g,/ (z) = G(z, 2'):
V2. (x) = 8(z — ')
We set g, () = 0 on the boundary and we get:
—/ng/(x) -Vu(z)dz = /v(w)é(w —2')dz
— / Vg (z) - Vo(z)dr = v(z")
So we choose z’ and then solve for g, (x) using FEM and we get the Green function G(z, ') for all = and one
particular 2. We can then evaluate the integral (3.35) numerically — one would have to use FEM for all 2’ that are

needed in the integral, so that is not efficient, but it should work. One will then be able to play with Green functions
and be able to calculate them numerically for any boundary condition (which is not possible analytically).

3.20 Binomial Coefficients

For n and k integers, the binomial coefficients are defined by:

<Z) . n nm—1)-(n—k+1)

I(n — k)! k!
For r real, one just uses the second formula as a definition:

(r> r(r—1)- (r—k+1)

k k!
Example I:
-n (=n)(—n—1)---(—n—k+1) nn+1)---(n+k—1) n+k—1
() - . ~ (-1 . (")
Example II:

k! k

(k—§> (k—3)k—5-1)(k—5-k+1) (k—g5)(k—5-1)-3
2k —1)(2k —3)---1  (2k—1)II  (2k)! 1<2k>

2k ! T2k @Rk~ 4R\ k
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The binomial formula is for n integer:

SO:

k
k=0
S (1+k—1 [k =
-1 _ k _ k _ k
(1—-2a) —Z( k )x —Z(k>x —Zx
k=0 k=0 k=0
1 S +k-1\ , S E-L1N S 12k
(1-2) 2—Z<2 k )x _Z( k2>z _Z4k<k)x
k=0 k=0 k=0

Another example:
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where we used (3.39) and

G- () 6)

The P, (z) are Legendre Polynomials.

3.21 Double Sums

When evaluating double sums, one can use triangular summation to reorder them:

Stk =) an ki (3.38)

n=0 k=0 n=0 k=0

Also it holds

o n oo L%J
SN ak =YY ankn (3.39)

n=0 k=0 n=0 k=0

3.22 Triangle Inequality

Triangle inequality (condition) means that none of the three quantities a, b, c is greater than the sum of the other two:

a+b>c (3.40)
b+c>a
c+a>b
This is equivalent to just one equation:
la—b<c<a+bd (3.41)

we can do any permutation of the symbols, i.e. the above equation is equivalent to any of these:

b—c|<a<b+c

lc—al<b<c+a
So instead of stating the three inequalities (3.40) it is more convenient to just write (3.41), using any permutation that
we like.

To show, that (3.40) implies (3.41) we rewrite (3.40):

at+b>c
c>a—>b
c>b—a

SO

a+b>c
c>la—b|
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and we get (3.41). To show, that (3.41) implies (3.40) we rewrite (3.41) for a > b first:

a>b
la—b<c<a+b

SO:
a>b
a—b<c<a+b
rearranging:
a+b>c
b+c>a
a>b

since c is positive, if @ > b then also ¢ + ¢ > b and we get (3.40). Finally, for a < b:

a<b
la—b<c<a+bd

so:
a<b
—(a—b)<c<a+bd
rearranging:
at+b>c
b>a
c+a>b

since c is positive, if b > a then also b 4 ¢ > a and we get (3.40).

3.23 Gamma Function

The Gamma function I'(x) is defined by the following properties for z > 0:

r(1)=1

Dz +1) =2l(x)

log'(x) is convex

(3.42)

(3.43)

(3.44)

It can be shown that this determines the function uniquely for x > 0 (this is called the Bohr-Mollerup theorem) and

then it can be extended analytically to the whole complex plane.

The most common formula for I'(z) that satisfies (3.42), (3.43) and (3.44) is:

F(z):/ t*~tetdt
0

(3.45)

3.23. Gamma Function

65



Theoretical Physics Reference, Release 0.5

It satisfies (3.42) because:

(1) = / Pele—tqy — / etdt = [—e = 1
0 0
It satisfies (3.43) by integrating by parts:

T(z) = /0 Fletdt = (s — 1)/0 F2etdt — [ 1e= = (2 — DT(= — 1)

Finally it satisfies (3.44) by verifying the convex condition directly (z,y > 0and 0 < A < 1):
logT(Az + (1 = \)y) = log/ pret=Ny=le=tqy —
0

= log/ (" e )M tv e )T At <
0

oo )\ o0 1—k
<log ((/ tm_le_tdt) (/ ty_le_tdt) ) =
0 0

= AlogI'(z) + (1 — ) logI'(y)

And thus (3.45) uniquely determines the Gamma function. We can use (3.45) to calculate I‘(%):

1 R 1 —¢ & e*t & 67362 o 2
I‘fz/ ﬁ*e*dt:/ —dt:/ dex:Q/ e ¥ dx =
(2) 0 0o WVt 0 € 0
:/ e dy = \// e—$2dx/ e vdy = \/277/ e~ rdr =
— 0o —00 —00 0
:”2’/T/ e~vidu=r
0

From this and the definition of the Gamma function we get for integer n:

'n+1)=nT'(n)=n(n—1)I'n—1)=nn—-1)(n-2)---2-1-T'(1) =
=nn—1)(n—-2)---1=nl

and

Fn+3)=m-4Hrn-H=m-Hn-1-IHrn-1-H=n-Hn-1-1)...1r3) =
_2n—-12n-32n-5 1 (2n—1)!!r

IR =
2 2 2 2 (2) 2n

3.24 Incomplete Gamma Function
The upper incomplete gamma function is defined by:

I‘(z,x):/ t*~letdt

Integrating by parts we get:

I(z+1,2) :/

x

o0 o0
tPetdt = z/ t*~letdt — [tPe ! = 2T (2, 2) + 2%e
x

(3.46)
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Some special values are:
I'(z,0) = / t*~le7tdt = I'(2)
0
I(l,z) = / eldt = —[e | =e"

o0 1 o0 2
r(i,z) = / t2e7tdt = 2/ e % ds = /merfc(\/x)
z VT
For integer n we get:
I'(n+1,2) =nl(n,z) + 2" * =n(n—1)I'(n—1,2) + (na" ' +2™)e™* =
=nn-1)(n-2T(n—-2,2)+ (n(n—1)z"2 +nz" ' +2")e® =

=nn—1n-2)--2-1.-T(L,z)+ (n(n—-1)--- 22" + -+ n(n—1)z" 2 4+ na"" +2™)e”

=nle "+ (nn—-1)---2c" +---+nn—Da2" % +nz" 4 2")e " =

n :L-V
N N
e
v=0
and
Tn+ia)=mn-HIn-32)+2" 2e"=n—-L)n—-1-H(n—-1-3,2)+((n— 12"~

o 2 on (2v — !
v=1
1
(277,—1)” f f (f)—{— _rzn: WV T2
= Teric x (& 0
on (v - 1)l

The lower incomplete gamma function is defined by:

v(z,x) = /0z t*~le7tdt =T'(2) — T'(z, )

and as such all expressions can be easily derived using the gamma and upper incomplete gamma functions. The
recursion relation is then:
Yz+1,2)=T(z+1)-T(z+1,2) = 2T'(2) — (2T'(2,2) + z°e™") = z7y(z,2) — x"e™
Some special values are:
7(2,0) =T(2) = T'(2,0) = F(Z) —I(z)=0
v(1,2) =T(1)-T(l,z) =1—e""
Y(5:2) =T(3) —T(5,2) = V7 — ferfC(f) Vrerf(v/x)
By repeated application of the recursion formula we get:
1 il 1 x? 7L
= — 1 - = 2 T — —_— | =
o) = 1+ L)+ et D = ez e (T )
1 n xz+k:
= z+n+1l,x2)+e* =
Py vy pam U ) 2tz D) (21 k)
I'(z) e ¥
=\ 1 2T eNT 2
Ternin FHntLo)+aTze kz:;)l“(z—&—k:-i-l)
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e x
¢ kZ:OF(HkJrl) (3.48)
where we used:
lim 23 _ g
2% T(2)

which can be proven by the following inequality which uses the fact that the function f(t) = t*~'e~! is an increasing
function fort < z — 1, soaslong as x < z — 1 we get:

Y(z,2) = /tz te~tdt = /f t)dt <

< [ et = afw) -
:L/z fla)dt <

z—1—2x

z—1
< L/ F)dt <

z—1—zx

T o0
<m/0 J(hdt =

x
=——7T
z—1—=x (2)

Using (3.48) we can now write y(z, ) using the Kummer confluent hypergeometric function 1 F (a, b, z) as follows:

Y(z,z) = - Z (et k .y =2z e " Fi(l,z4+ 1,2) =272 Y Fi(z,2 + 1, —x)
k=0

3.24.1 Example

Consider the class of integrals:
1 2
Fu(t) :/ u?me” " du, (t>0,m=0,1,2,...)
0

We write them using the lower incomplete gamma function as:

t m -1 t 1 —+ 1

F(t) = Y e (2) 2 7d ! " 2e7dy = 77(7'1 2:!)
m t t 2 1 1
0 5 Jo 3

2™+ 3 2tmt3

We can also write it using the confluent hypergeometric function as follows:

1
m+ Lt "2 (m + 1)L ) Fiim+im+3 -t
Fulty = 202320 PO D b g g,y = T 2 5 D

For m = 0 we get:
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Using the recursion relation we get:

1
Ym+ 3+t (m+ Hy(mt g t) — " 2et (m+ ) e’
Fm+1(t) = 1 = T = Fm(t) — =
opmtg+l opmt3¢ t 2t
(2m+1)E,(t)—et
N 2t

By expressing F;, (t) from the equation we obtain the inverse relation:

2F,1(t) +et

Fo.(t) =
*) 2m +1
From (3.48) we get:
+ 3.t 1 > th
Fm(t):’Y(m 21 ) = m+2r m—|— tz
oMty th+2 k=0 L(m+3 5+t 1)

_ 1 1y, —t i _
= gl(m+3)e Zrm+k+§) N

2 om (2m+2k+1)l'f
omTk+1
(2m - 1)!!(2t)

= e _—_ =
k=

< (2m + 2k +1)!!

o0

o0
= (2t)
k:O 2m+1)2m+3)---(2m+2k+1)

3.25 Factorial

The factorial n! is defined as
nl=nn—-—1)Mn-2)---3-2-1
By (3.46) it can be written using the Gamma function as:

nl=T(n+1)

3.26 Double Factorial

The double factorial n!! is defined as:
i {n(n—?)(n—4)(n—6)-~-5~3-1 for odd n = 2k + 1
T ln(n—-2)(n—4)(n—6)---6-4-2  forevenn = 2k
One can rewrite double factorial using a factorial as:
(2K =2-4-6---(2k) =2%(1-2-3--- k) = 2"E!

1-2-3-4-5---(2k)  (2k)!  (2k)!
2-4-6---(2k)  (2k)11  2FK!

For odd n it can be written using the Gamma function, see (3.47):

(2k—1)"'=1-3-5---(2k—1) =

2k — 1)l = %ri‘ (k+1)
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3.26.1 Example

_1-3-5 -2n—1) (2n-D!  (2n)! 1 (2n
Aln) = 1-2-3----- no n! _2"(n!)2_2’1(n>
~1-3-5-----(2n—1) (2n-1!  (2n)! 1 [2n
B =— s T @ _(Q”n!)2_4”(n>

3.27 Fermi-Dirac Integral

The Fermi-Dirac integral (sometimes just called a Fermi integral) is defined as:

© e2de
- [ e

ec=h 41
Examples:

> ede
A
0 e + 1

3

> ezde
1 = —_—
=

The Fermi-Dirac integral can also be written using the polylogarithm, see The Series pFq for details.

3.28 Legendre Polynomials

Legendre polynomials P;(x) defined by the Rodrigues’ formula

l
Pi(x) = gl ~ 1)

they also obey the completeness relation

o
204+1
> "5 Pla)Pe) = 6 — )
1=0
and orthogonality relation:
1
Py (z)P(z)dx =
/_1 2k+1
Two Legendre polynomials can be expanded in a series:
k+1 ol om\2
Pi(z)P(z) = Y (0 0 o) (2m + 1) Py, ()
m=|k—1|

This was first proven by [Adams], where he shows:

k+l1

m=|k—l|

(3.49)
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where s = k“% and

1-2-3----- n 2n(nl)2  2n

n
The coefficient in the expansion can then be written using a 35 symbol as:

A(n) 1:3:5--(2n-1) _ (2n)! 1(2n>

A(s—k)A(s—DA(s—m) 1

A(s) 25+1
PO ) 1
2 (%) 2541
_ o CENCEINCE 1
257k+sfl+sfm (258) 2g _|_1

oemhemnessy v

a (2;) 2s+1

(2s —2k)! (25 —20)! (2s —2m)! (s!)? 1
((s—EN2((s=DN2 ((s—m))2 (2s)!12s +1
(25— 2k)!(2s — 20)!(25 — 2m)!

s! 2

(2s+1§! [(sk)!(sl)!(sm)!
(5 0 %)

So we will be just using the 35 symbol form from now on. We can now calculate the integral of three Legendre
polynomials:

[ Pula)Pi@) P (e)da

(3.50)
L E koon)’
:/ 3 ( ) (20 + 1) Py (2) P (2)dz
1 0 0 0
n=|k—I|
k1 2
kI n 26nm _
2 <0 0 0) SR
n=|k—I|
(k1 mY
~7\0 0 0
This is consistent with the series expansion:
k+1 1
2m+1
Pi(z)P(z) = Y 5 / Py(2)Py(2) P (x)dx Py (z) =
m=|k—I| -1
K+l 2
E Il m
% l| (0 0 O) (2m +1)P,,(z)

Any function f(x) (where —1 < z < 1) can be expanded as:

fl@) =) hib(@)
=0

1
£ (21;1) /_1f($)Pl($)d$

3.28. Legendre Polynomials
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For the following choice of f(z) we get (for |¢| < 1):
1
V1 —2xt + 2
—R?4¢?
20+1) [ P o1+ 1) =t P (4
JONCESY )y, CxD (-5 )(R>dR:
\

1+t R

2 Vit 2 t
20+1) [N /1 R2 442 2A+1) [ /1-R24+¢2
:(l+)/ Pl( R+t>dR:(l+)/ Pz( R+t>dR:

| 1

2t Jiy 2t 2t i 2t

fz) =

— ¢
Code:

>>> from sympy import var, legendre, integrate
>>> var ("1 R t")

(1, R, t)

>>> f = (2+x1+1) / (2+t) » integrate(legendre(l, (1-R**2+txx2) / (2%t)),
(R, 1-t, 1+t))

>>> for _1 in range(20): print _1, f.subs(l, _1).doit () .simplify ()
1

t

txx2

t**x3

txx4

tx*x5

t**x6

txx7

tx*8

t**x9

10 t*+10

11 t*+11

12 t*%12

13 t*+13

14 t*x14

15 t«*%15

16 txx16

17 t*x17

18 t«*%18

19 tx%x19

O J o U W NP O

NeJ

So the Legendre polynomials are the coefficients of the following expansion for |¢| < 1:

1 oo
EE——— Py(z)t!
V1 —2xt + 2 P

Note that for |t| > 1 we get:

= — == P(x) () =signt Y P(z)t !
VI—2zt+e2 |t 1 - 221+ ( )2 \ﬂ; ¢ ;

1
t
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3.28.1 Example |

Very important is the following multipole expansion:

I B 1 B 1 B
r—r| —2 2 —or-r 2 2 351
O Y (DY FO P 32D
> rs rs
T A “ > A N
S CORTTE W
"> 1= =0

3.28.2 Example Il

Let’s find the expansion of

—_ — 4l /2
e av1—2xt+t

r= -
/(@) V1 — 2zt + 2
for |t| < 1. We get:
2l +1 B .’,C e_a /1—2xt+12 (2l + 1) /|1—t Pl (1—R21+t2) e_aR ( R) dR
Tr = _—— =
1 — 2l’t+t2 2 \1+t\ R t

2 + 1 '1“‘ 1— R2 4 ¢2 241) [ /1 R*4+ 12
(1| 1

—t

Here is the result for the first few (:

(62005 _ 1) e—(xt—a

Jo= 2at
B 3 (a2t62at + a2t + ateZat +at — anat +oa— erzt + 1) e—ozt—oz
h= 2 o3t2
F 5 (a4t262at — a2 + 3a3t2e2 — 30312 — 3a’te?t — 303t 4+ 3a2t2e2t — 30212 — 9a2te?® — 90t + X) e~ at—a
9= =
2

abt3
X = 3a2e®® — 302 — 9ate®®t — 9at + 9ae?t — 9o + 9e%t — 9
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Expanding in t up to O (t7) we get:

fi=e g

1 1 1
go=14+=a2t? + —ao*t* + —a%5 4+ 0 (t7)

6 120 5040

1 1 1 1
g=t+at+—a’t+ —a*+ —a't’ + —a’t° + O (t7)

10 10 280 280

1 1 1 1 1 1 1
go = ot + o+ =t + =Pt + =ttt —attf 4+ —Pt+ ——aft5 4+ O

n
3 14 14 42 504 504 1512 ( )

2 1 1 1 1 1
g=t2+atd + 2’3+ —a?tP+ PP+ —alt 4+ oMt + —PP + O

7
5 18 15 18 45 270 (t )

3 1 2 1 1 3 1 1
g =t + ot + St + =5 + —aPtt 4+ =l + —attt 4+ ot + —aft5 + ——a51° 4+ O

Code:

>>>
>>>
(1,
>>>
>>>

47
7 22 21 22 105 154 231 2310 ( )

from sympy import var, legendre, integrate, exp, latex, cse
var ("1 R t alpha™)

R,

f =

for

2R
Il

t, alpha)

(2%1+1) / (2xt) * integrate(legendre(l, (1-Rx#2+t**2) / (2%t)) \
* exp (—-alphaxR),
(R, 1-t, 1+t))

_1 in range(3):
print "f_2d &

n

o\

= _1, latex(f.subs(l, _1).doit () .simplify()), "\\\\"

\frac{\left (e”{2 \alpha t} -1\right) e”{- \alpha t - \alpha}}{2 \alpha t} \\

\frac{3}{2} \frac{\left (\alpha~{2} t e”{2 \alpha t} + \alpha”{2} t + \alpha t e”{2 \alpha t}
\frac{5}{2} \frac{\left (\alpha”~{4} t~{2} e”{2 \alpha t} - \alpha”~{4} t~{2} + 3 \alpha”~{3} t*
_1 in range(5):

result = f.subs(l, _1).doit().simplify() / exp(-alpha)

print "g_2d & =" %_1, latex(result.series(t, 0, 7)), "\\\\"

1 + \frac{1l}{6} \alpha~{2} t~{2} + \frac{1}{120} \alpha~{4} t~{4} + \frac{1}{5040} \alpha”{6
t + \alpha t + \frac{1}{10} \alpha”~{2} t*{3} + \frac{1}{10} \alpha”{3} t~{3} + \frac{1}{280}
t~{2} + \alpha t"{2} + \frac{1l}{3} \alpha”{2} t~{2} + \frac{l}{14} \alpha~{2} t~{4} + \frac{:
t~{3} + \alpha t"{3} + \frac{2}{5} \alpha~{2} t"~{3} + \frac{1}{18} \alpha”~{2} t”{5} + \frac{:
t~{4} + \alpha t"{4} + \frac{3}{7} \alpha”{2} t~{4} + \frac{l}{22} \alpha~{2} t~{6} + \frac{!:

3.28.3 Example lll

T £.8/ r< 2
6_% 67T>\/172(T§D>r +(T§) 1 e_m/m
rsV1—22t+ 12

r—r/| . N\2
rs 1—2(%)r~r’—|—(i)

where:
o=
D)
=77
t="<
r>
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3.28.4 Example IV

_Iry—ro|
€ D
V(|r1 — I'2|) = 7“-1 .

The potential V' is a function of 71, 73 and cos § only:

V(lry =) =V <\/r% —2r1 -To +r§) =V <\/T% — 2ryrycosf + r%) =V (ry,ra,cos0)

So we expand in the cos # variable using the Legendre expansion:

V(r1 —ra|) = V(r1,re,cos0) = Z Vi(r1,72) P(cos0)
1=0

where V;(r1,r2) only depends on 71 and 75:

2041 (!
Vi(ry,re) = 5 V(|r1 — r2|)Py(cos 8)d(cosb) =
-1
_Iry—ral

20+1 [*
2t / ¢ Py(cosB)d(cosb) =
1 |r1— 12

2 -

ri+ra 2 _ .2 2
:22l—|—1/ 6_5Pl<r1 7 —|—r2>dT
r172

In the limit D — oo we get:

In general, the V;(r1,72) expressions are complicated. For the first few [ we get:

D _Ir1—ral _ritra
Volrisre) = 572 (6 v )
172

3D (—Dzez% + D? — Dr1€®B + Dry + Droe®B + Dry + riree® D + r17‘2> e~ DB

Vi(ri,re) = 3 273

In Vi (r1,r2) we assume 71 > ro.

3.29 Spherical Harmonics

2041 —m)! ,
Yim (0, 9) =4/ 4—; El n :; P/™(cos 0) "™

where P/™ are associated Legendre polynomials defined by

Are defined for m > 0 by

dm
pm = (—=1)"(] — 2\m/2 P
(@) = (~1)"(1 = 2?2 R @)
and P, are Legendre polynomials. For m < 0 they are defined by:

Yim (Q) = (=1)"Y,_,,.(Q)

l,—m
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Sometimes the spherical harmonics are written as:

Yim (0, ) = Oun (0) 1 (9)

where:
b
V2r
2xl U=m)l pm (cos @) form > 0

@lm(g) — { (I+m)!
(=1)mO;,_m(8) form <0

imae

O (¢) =

The spherical harmonics are ortonormal:

2 T
/ Vi Vi, dQ = / / Vi (0,0) Yy (60, ) sin 0d0 dé = 8,y S11
0 0

and complete (both in the /-subspace and the whole space):

2l+1
Z |Yim (6, )2

m=—I

1
> Z Yim (0,0)Yi5, (01, 6') = ——=3(0 = 0)3(9 — &) = 3(F — ¥

=0 m=—1

The relation (3.53) is a special case of an addition theorem for spherical harmonics

2 1
S V(6 Vi (0 ) — "L Bifeosn)
I8

m=—I

where - is the angle between the unit vectors given by & = (6, ¢) and & = (§', ¢'):

«/

cosy = cosfcosf +sinfsinb’ cos(¢p — ¢') =¢ - ¢
Relations between complex conjugates is:

Vi (Q) = (=1)"Y,, ()
(D)"Y () = Yim ()

3.29.1 Examples

[ Pufa)da [ Pua)Pa(o)ds = 26
[ Yio(@42 = [ Yio(@)VIrYan(@)d2 = Virsig

3.30 Gaunt Coefficients
We use the Wigner-Eckart theorem:

) ) w7k 7N, .
gty = (- (28T G

—m

(3.52)

(3.53)

(3.54)

(3.55)
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Where:
k
T) =Yy

In order to calculate the reduced matrix element (j||T%]|;’), we evaluate the W-E theorem for m = g = m’ = 0:
GOm0 = (-1 (3 & 4 Gl
0 0 0 O
and also evaluate the left hand side explicitly:
GOITELT0) = (0Yiali0) = [ ¥5o()¥io(@)V0(2)0 =

_ \/(23' + 1)(2k447rr 1)(2j + 1) % /PJ (cos 0) Py (cos 0) Py (cos 0) sin 0d0d =

. ! 1
_ \/(23 + 1)(2k4jr 1)(25' + 1);/1 P;(2) Py (x) Py (x)dz =

:\/(2j+1)(2k447-rl)(2j/+1) (‘(7) ]S %,>2

where we used (3.50). Comparing these two results, we get:

(25 + 1) (2k +1)(25" + 1) (j k j’)
0

GIT*5") = (—l)j\/ 1
s
and finally:
/ Q) Yiq ()Y (2)dQ =

= ity = (1 (08T Gl -

= (-1)™ (_j k j’/) (—1)" \/(23+1)(2k+1) 2j' 4+ 1) <é ]g jo/> _

BT 4 (5 k)

In order to evaluate other integrals of spherical harmonics, we just use the above result, for example:

/ Vi () ¥iys () Vi (2)dS2 =

= (71)m1 Y’lj—ml (Q)}/lzm2 (Q)}/bms(g)dﬂ =

mi( y—(emn), [ QL D@L+ D@ +1) (1 1y I lo I3
T e e (I I ) | Ry

_\/(211+1)(212+1)(213+1) holy I\ (L L s
- 47 0O 0 O myp Mg M3

This is the most symmetric relation. It was first obtained by [Gaunt] (equation (9), p. 194, where he expanded the 3j
symbols, so his formula is more complex but equivalent to the above).
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It is useful to incorporate the selection rule my + my + m3 = 0 of the 35 symbols into the formula and we get

4 N
') =[5 [ Vi (Vi (@)Yirme ()0 =
[y Arr \/(2Z+1)(2k+1)(21’+1) I kU ! k I\
4k + 1 4dn 00 0/\-m m-m' m')
l/

= ()R DR+ D) (é : z()) (_lm kL m,)

From the other selection rules of the 3 symbols it follows, that the ¢* (I, m, ", m/ ) coefficients are nonzero only when
=V <k<I+4V
I+ 1" + k = even integer

3.30.1 Example |

O(Z,m,l’,m/) = v47T/}/lTn(Q)Y00(Q))/l/m/(Q)dQ = 5ll’5mm’

3.30.2 Example Il

l
47 . -
m;lck(l,rm l,m) = Z \/E/Ylm(Q)YkO(Q)Ylm(Q)dQ _
B \/E / Z|Ylm(9)|2Yko(Q)dQ —

dr 2 +1
dk+1 47 /Y’“O(Q)‘m*
dr 2 +1
4k +1 4 " Amoko =

= (20 + 1)dxo

3.30.3 Example Il

[ Am
l m, ll / 4k+1/ lm Ykm m! (Q)}/l’ I(Q)dQ =

27
\/E/ @lm@km m/@l/m/ 51n9d9/ (I) m m,@m,d¢_
1 3 27 b )¢
O, —im¢ _i(m—m’ im’ ¢ _
\/E/ @lmekm m @lm sin 8d# (\/ﬂ) /0 e e e d¢
1 3 27
\/E/ @lm@km m/®l, /sm9d9( 271_) ; d¢:

- 4k + 1 /0 O1m Ok, m—m’ O sin 0do
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3.30.4 Example IV

&, —m, ', —m!) =

= (=)™l + 1)U +1) <é ’S g)(l —m]j-m/ _17;1/)—
= (=1)™(=D)H R+ )20+ 1) ( 0>< m m km TZ) -
= (=D +T) ( )( mm—m' ﬂl%):
(l7m7l7 m')

Where we used the fact, that [ + k + I’ is an even integer and (—1)™ = (—1)~"™. c* is not symmetric in lm and I'm

f(U',m! 1m)

= (-1)"" /@I +1)(20+1) (10

= (1) @I+ D@ +1)

O o~

k
0
( k
0
— (1) R 1)( 2zf+1( ol
= (=)™ (=) 20+ )20 + 1) (
= ()" (m

Few other identities:
Fuor0 - varoain(t 'Y
b ) b 0 O O

(z k Z')2 o0 dW0k0) ,0,k,0)
0 0 0 VEI+FD)@RU+1) R+ D)RE+1)  JRU+D)(2k+1)
*(1,0,1',0) = *(',0,1,0)

3.30.5 Example V

2 2
, I kU I A
ZQH_I 2l+1)<0 0 0 -m m-m' m')

2 2
B , I kU l k '\
_(2l+1)(21+1)(0 0 0) 2\cm m-m w) =

3.30. Gaunt Coefficients 79



Theoretical Physics Reference, Release 0.5

3.30.6 Example VI

3 / Vi () () Vg ()Y () Vi ()Y = (3.56)
m’ q

o0 +1 2% +1
- [FE R ) R Yin(@)ae -
_/21’+12k+1 ML

A
4
k(1 * / / ’_
oA 1 (l,O,)\,O)Z/\_i_lMZ/\YM(Q )Y () Vi (')A

o +12k+1 *L* \/mk , ir &
= TN y,(© _
e D DI a A ULRE e i DR A DL

A=|l/—k|

L 2%k41 A1,
==\ 0.1 0)Yim(@)

Where we used the following identities:

Note: using the integral of 3 spherical harmonics directly in (3.56):

3 / Yoo ()Y () Vg (V7 () Vi ()Y =

47
=D Yirm () Yimnr (V] 5= ¢ (G, Uym)

doesn’t straightforwardly lead to the final result, as it is not obvious how to simplify things further.

3.31 Wigner 3j Symbols
Relation between the Wigner 35 symbols and Clebsch-Gordan coefficients:

JJ2 J3 (—1)frgzmme -
(o ) = St gl = ma

(jimajamaljsms) = (1)1 7724 /245 + 1 (jl e n )

mp Mg  —Ms3
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They are nonzero only when:

my+mo+m3 =0
J1 + j2 + j3 = integer (or even integer if m; = mg = mg = 0)
Im| < ji
|71 — Jo| < Jjs <1+ g2

They have lots of symmetries. The 35 symbol is invariant for an even permutation of columns:
JioJ2 g3\ _
mi; Mo M3
_(J2 sz g\ _
meo M3 My

_ (I3 g1 g2
ms Mmi M2

For an odd permutation of columns it changes sign if j; + j2 + j3 is an odd integer:

JuoJ2 Js ) _
mip Mo M3

= (—1)tiatis (j2 J jg) _

mz MMy M3

- (_1)j1+j2+j3 (Jl Js ]2) —

mip m3z M2

— (_1)j1+j2+j3 (]3 J2 J1 )

m3 MMz My

and the same if you change the sign of the second row:

JuoJ2 g3\ _
mi Mmo M3

= (—1)fr+iatis < J1 J2 J3 >

—mi1 —M2 —M3
Orthogonality relations:

3 juvod2 F\ (o gz 3\ _ 95 0mm
my mg m) \mi mo m 25 +1

mima2

As a special case, we get:

3 ! k '\ o1 G5
-m m-m' m') 2141 )
m/
Here is a script to check that the equation (3.57) works:
from sympy import S
from sympy.physics.wigner import wigner_3j
def doit(l, k, lp, m):
s =0
for mp in range(-lp, 1lp+l):
s += wigner_33(1, k, lp, —m, m-mp, mp)**2
print " "% (1, k, 1lp, m), s, " ", S(1)/(2%1+1)
81
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k

lp =

print " 1 lp m: lhs

for 1 in range(l, 6):
for m in range (-1,

doit (1, k, lp, m)

it prints:

1 k 1lp m: 1lhs rhs

1 4 3 -1 1/3 1/3

1 4 3 0 1/3 1/3

1 4 3 1 1/3 1/3

2 4 3 =2 1/5 1/5

2 4 3 -1 1/5 1/5

2 4 3 0 1/5 1/5

2 4 3 1 1/5 1/5

2 4 3 2 1/5 1/5

3 4 3 -3 1/7 1/7

3 4 3 -2 1/7 1/7

3 4 3 -1 1/7 1/7

3 4 3 0 1/7 1/7

3 4 3 1 1/7 1/7

3 4 3 2 1/7 1/7

3 4 3 3 1/7 1/7

4 4 3 -4 1/9 1/9

4 4 3 -3 1/9 1/9

4 4 3 -2 1/9 1/9

4 4 3 -1 1/9 1/9

4 4 3 0 1/9 1/9

4 4 3 1 1/9 1/9

4 4 3 2 1/9 1/9

4 4 3 3 1/9 1/9

4 4 3 4 1/9 1/9

5 4 3 -5 1/11 1/11

5 4 3 -4 1/11 1/11

5 4 3 -3 1/11 1/11

5 4 3 -2 1/11 1/11

5 4 3 -1 1/11 1/11

5 4 3 0 1/11 1/11

5 4 3 1 1/11 1/11

5 4 3 2 1/11 1/11

5 4 3 3 1/11 1/11

5 4 3 4 1/11 1/11

5 4 3 5 1/11 1/11

1+1):

82
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Values of the 35 coefficients for a few special cases (use the symmetries above to obtain values for permuted symbols):

E ol m\ _ < [(2s —2k)I(2s — 21)!(2s — 2m)! s! _
(0 0 o)‘H)\/ @51 1) (s Rl(s _Di(s i [or2s= kA lAmeven
(’8 é 73):0 for 25 = k + 1 +m odd
j+% J : _ j*mfé jier%
(m -m= 3)_“) V @i+ 1)@ +2)
<j+1 j 1)_(_1)jm1\/ (j—m)( —m+1)
m -m—-1 1 (27 + 1)(2j + 2)(2j + 3)
(j+1 j 1)_(1)jm1 2+m+1)(-—m+1)
m “m 0 2j+ D)2 +2)(2 +3)

o] )=(h 2 D-Ca 2 -
mz—3 5 ~M3 —m3 mz—3 3 T T e 2 e gim=—ma

. 1 1 N
= (fl)js—%ﬂns—% J3—5+m3+ 3 — (71)j3+m371 _Jstm3
(275 =1+ 1)(2js — 1 +2) 2j5 (275 + 1)

; 1 1 ; ; : 1 1 S 1 : 1
J3 — 2 2 J3 ) _ (_1)3‘3—%-&-%4—]‘3 J3 J3 — 2, 7)) = (—n¥s Jt3 J . 2
mz+5 —5 —ma mz —m3—35 3 m -m—=35 3/,

. 1 1 -
= (_1)2j3(_1)j3—%—m3—% : J3 3~ md + 2 — (_1)2j3(_1)j37m371 M
(25— 1+1)(2j5 — 1 +2) %75(2j3 + 1)

(j3 + %1 % J3 ) _ (_1)j3+%+%+j3 <j3 + %1 J3 %) _ (—1)2st (j + 3 J ) %) _
ms — 5 5 —ms3 ms — 5 —ms 5 m —m — 5 5 j=j3;m=m3—%

. 1 1 .
= (_1)213+1(_1>j37m3+%*% ]3.7 ms + 5 T3 = (_1)2j3+1(_1)j3—m3 ;73 —ms + 1
(275 +1)(245 +2) (2j3 +1)(2j3 +2)

js+3 3 Jz \ _ Jats  Js % - its J %
my+g —3 —ma —mz—3 M3 3 m.o —m-—j3 3 j=jaim=—ms—3

. 1 1 .
_(qytmety—y, [S3EMB RSy, [ Szt ma ]
(273 4+ 1)(273 +2) (273 + 1)(243 +2)
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3.32 Multipole Expansion

Using (3.51) we get:

1 gl o L 4n AN
7/| = Z ﬁﬂ(r . I'/) = Z < Ylm(r)}/lm(r/)

I+1
r—r 20+ 1
‘ =0 "> Im r>

where we used the formula:

2041, .
IR

> (#]im) (Im|¥') =

m

3.33 Hypergeometric Functions

The series:
oo
>t
k=0
with g = 1 is geometric if the ratio of two consecutive terms ¢x1/tx is a constant (with respect to k):
tk+1
tk
then we get:

oo oo
D =) "
k=0 k=0

It is hypergeometric if the ratio ¢5 1/t is a rational function (with respect to k):

tht1 _ P(k)
23 Q(k)
where P(k) and Q(k) are polynomials in &, which we can completely factor into the form
tey1 _ P(k) (k+a)(k+asz)---(k+ap)

= = T (3.58)
te  Q(k)  (k+bi)(k+b2)- - (k+bg)(k+1)
where x is a constant and the (k + 1) factor is just a convention (if the polynomial (k) does not contain the factor
(k + 1) we can just add it to both numerator and denominator and absorb the “1” into a,,). The hypergeometric series
is then given by:

o (a)k(a2) -~ (ap)p @
F, ;A2 ...y Gy b1, b0, b ) = —
P Q(al ag Qp; 01, 02 q fE) kZ:O (bl)k(b2)k"'(bq)k k!

where
(@) T(a+k) ala+1)(a+2)---(a+k—-1), ifk>1;
a = —— =
) 1, ifk=0
is the rising factorial function (also called the Pochhammer symbol).

To write a function as a hypergeometric series, we simply expand it in series and then write the ratio t;1/¢x in the
form (3.58) and immediately identify the proper , F;, function. If the ratio cannot be put into the form (3.58) then the
function is not hypergeometric.

84 Chapter 3. Mathematics



Theoretical Physics Reference, Release 0.5

3.33.1 Convergence Conditions

If any a; = 0,—1, -2, ..., then the series is a polynomial of degree —aj.

Ifany b, = 0, —1, —2, ... then the denominators eventually become O (unless the series is terminated as a polynomial
before that, due to the previous point) and the series is undefined.

Except the previous two cases, the radius of convergence R of the hypergeometric series is:
oo ifp<gq
R=¢1 ifp=q+1;
0 ifp>q+1.

3.33.2 Elementary and Special Functions

The hypergeometric functions for low p and ¢ have special names:

oF1 | confluent hypergeometric limit function
1F1 | Kummer’s confluent hypergeometric function of the first kind
2F) | Gauss’ hypergeometric function

Most common functions can be expressed using ,, F; as follows:

The Series OF0

Elementary functions:

The Series 1F0

Elementary functions:

1 (oo}
T2 :Zxkleo(l;a;)
k=0
1 — (a+k—1) , .
1—x) =2 - nm © o)
k=0
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The Series 0F1

Elementary functions:
sinz =z oF1(3;—=)
cosz = 0F1(%;
sinhz =z oF1(3; =)

cosh z = OFI(%

Bessel function:

O

Spherical Bessel function of the first kind:

Ju(x) = \/ZJH_%(@ 2\1{2(?”) ol (u+ g; —f)

Modified Bessel functions:

The Series 1F1

Elementary functions:

z%* =1Fi(a;a —2z)

1.
— 5

Lower incomplete gamma function:

v(z,2) = 2°T(2)e™ " kio;) I‘(erxZJrl) =2z e \Fi(Lz+ o) =227 (Fi(z 2+ 1;—x)
Error function:
erf(z) = %'y(l,xz) = % 1F1(%; %,—xZ)
Hermite polynomials:
Hon(e) = (<1 228 (o )
Hon (@) = (-1 L 0 By (s 317

Laguerre polynomials:

Ly(r) = (n Z a) 1Fi(—n;a+ 1 2) (3.59)

86 Chapter 3. Mathematics



Theoretical Physics Reference, Release 0.5

Solution P,,;(r) = rRy,;(r) of the radial Schrodinger equation in the Coulomb potential V (r)
in the second equation below):

+1
27 r 27
Pri(r) = Nt (r) e %R (—n+l+1;2l+2; ’") _
n n

22r\'""t e g (220 @I+ Dl(n—1—-1)!
= iVnl T e n Ln e =

—=1\ n (n+1)!
1 Z—1-1) (220" o poen (22
o\ T gt ) © T (T
N 1 Z(n+1)!
nl

T n@l+ )\ =1 — 1)

The Series 2F1

Elementary functions:

log(1+2) =2z2F1(1,1;2; —2)
log(z) = (2 — 1) 2F1(1,1;2;1 — 2)

arcsinz = z 2F1(%, %; %;22)
™
arccosz = o — 2 gFl(%, %; %;22)
arctanz = z o Fy (1, 3; 3; —27)

Legendre polynomials (and associated Legendre polynomials):

1 —
Po(z) =2F (—n7n+ Ll— Z)
Chebyshev polynomials:

]__
Un(z) =(n+1) 2F <—n,n+ 2; %; 22>

Gegenbauer polynomials:

C%(z) = (2:!% JF <_n7 200+ nyo+ 3 1;)
Jacobi polynomials:
PlB) () = (‘1;7'1)71 2 Fy <—n, l+a+B+na+1; 1;Z>
Complete elliptic integrals:
K(k) = g 2Fi (5, 515 K7)
(k) = 5 2Fi(—§. 5 1:4)

—Z/r (we use (3.59)
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The Series 3F2

Elementary functions:

8z
tan(z) = m 3F2(1,% —

Dilogarithm:
Lix(2) = 2z 3F5(1,1,1;2,2; 2)
Digamma:
V(z)=(2—1)3F>(1,1,2 — 2;2,2;1) — v
The Wigner 3j symbol:

. . . L 1
<]1 /2 ]3> = (71) lerj2+mg6—m3,m1+m2

(—j2 + js +ma)l(—j1 + js — m2)!
V01— G2+ 33 (s + 2 + J3)!Gn + m)1Ga — ma)l(s + ms)!(js — ms)!
V(1 + g2 = 33)! G + g2 + gz + DI — ma)! (a2 + mo)!
3Fo(—j1 — j2 + g3, m1 — j1, —j2 — ma; —j1 + 3 —ma + 1, —jo + jz +my + 1;1)

my m2 M3

The Series pFq

Polylogarithm:
Lis(2) = 2z 541 Fs(1,1,...,1;2,...,2; 2)

Fermi-Dirac integral:

o tl/ . .
I,,(x) = /O 1+mdt = _P(V + 1)Lly+1(—€ )

3.33.3 Example |
By writing out the series expansion for the 51 /t) ratio we can prove that:

piFi(a;bix) +q1Fi(a+1bx) = (p+q) 2 (a,a(§+1> +1;b,a <Z+1> ;1:)
The left hand side is equal to:

a)r +qla+ 1) k
(b) k!

p1Fi(a;b;2) +q1Fi(a+ 1;02) = Zp(
k=0

We simplify the ¢ term:

pla +glat 1)y, @k (prar®)

t = =
b ekl (b)ik! v
We calculate the ratio ¢41/t as well as ¢ to get the normalization:
tlo=p+q
k41
byt _ (k+a) (p+q+ %) o (k+a) (k+a(§+1) +1) i

tk (k+b)(k+1)(p+q+%) (k+b)(k+a<§+1))(k+1)

From which we read the arguments of the hypergeometric function o F on the right hand side and we need to multiply
it by the normalization factor ¢y = p + q.
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3.33.4 Example Il

By writing out the series expansion for the 51 /t) ratio we can prove that:

B ,1:2
e " 1l(152;22) = o Y (; 4)

. . 2
‘We can also use the substitution z = %:

e VEIR(124Vz) = oFy (3:2)
Which is a special case of
oF (a;2) = e V% | Fi(a — 120 — 1;4v/z)

3
fora = 5

3.33.5 Example lll

One way to express sinh(z) is
sinhz = ze™* 1 F1(1;2;22)

using the previous example, this is equal to:
52
sinhz = ze™® 1 F1(1;2;22) = z o Fy (g, 4)

So the lowest hypergeometric function that can express sinh(z) is o Fy.

3.34 Feynman Parameters

When integrating a denominator like ﬁ, the idea is to introduce auxiliary parameters in order to make the denomi-
nator simpler. We start with the identity:

/ / dx/ ”Hy_l) (3.60)
AB (zA+ (1 —z)B :rA+yB)

which can be proven easily:

>>> var ("A B")

(A, B)

>>> integrate(l/(x*xA + (1-x)*B)=**2, (x, 0, 1))
1/ (A*B — A*x*2) — 1/ (-A*B + Bxx2)

>>> simplify (_)

1/ (AxB)

By repeatedly differentiating with respect to B:

/ / 2yd( :c—i—y—l) (3.61)
(A +yB)® '
/ / 3y26(x +y — 1)
(zA+yB)*
y T lS(r+y—1)
dz
AB" / / (zA+yB)" !
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Then we prove:

1 ! ! (n—'6(x1 4+ +z,—1)
= [ day [ da, - 3.62
AiAy - A, /0 o /O T G AL+t 2 A) (.62)

For n = 2 we get (3.60) and if it holds for n it also holds for n + 1, because we multiply (3.62) by

1
Ang1
1 1
A1A2 e An A7L+1 B

1 1
1
= dxyp --- de,(n — )6z 4+ -+, — 1 = =
/0 ! /0 ( ) (1 )(x1A1+ +ann) An—i—l

1 1 i1 .
:/ dxl---/ dzn(n — 1)1 6(21 + - + 2 — /dx/ dy Sz +y—1) .
0 0 (zAn+1 + y(xlz‘h + -+ zpAy))

1 | T
:/ day - - / dxn/ dy ”5(3314- o, — Dy ——
(1—y)Api1+y (1l + -+ 2,4,))

15 n— n
:/ dxq - / dxn/ dy nto(yzs + - +ye vy T =
0 1 - 71+1 +y($1A1 ++-T71An))

15 -
:/ ydxy - / ydxn/ dy & (yxl ARk L y) ntl
0 (1 —y)Apt1 + (yxlAl + - Fyz,Ay))
| _
— / dz; - / dzn/ dy oz + -+ 2 —y) — =
0 ]- - n+1 + (ZlAl + -+ ZnAn))

! r_
/le /dzn/ ay n(521+ +z2nty 1)n+1:
(Y A1+ (2141 + -+ 2, 45))
16 na1 — 1
_/ difl / dxn+1 n (xl"'_ Tt +1 ) -
0 0 (

xlAl + e+ (En+1An+1)n+

Where we used (3.61) and the fact, that §(z1 + - - - + =, — 1) = y §(yz1 + - - - + yz, — y), after the substituation we
also restricted the limits of integration from 1 to %, since x1, T3, ... are all positive.

3.34.1 Example 1

[t = [ |

D =z(k —p)? +y(k* —m?) = (x + y)k* — 22k - p+ xp® — ym? = k? — 2xk - p + xp* — ym?

where

In the last part we used =z + y = 1. We now shift k by introducing:
l=k—xp
d*k = d*l
and we get:

D =k*—2zk - p+ ap® —ym? = 1? — 2%p* + xp? — ym?

/d4/dd x“’ fety=1)

4 O(x +y—1)
/l k/ dxdy — 22p? + xp? — ym?)?
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3.34.2 Example 2

d*k o [ 20(x+y+2z—1)
/ (k2 —m?2 +ie)((k + p)2 —m2 +ie)((k — p)2 +ie) /d k/o dadydz E

where
D = z(k? —m? +ie) + y((k + p)* — m? +ie) + z((k — p)? +ie) =
=(@+y+2)k*+2k-(yg—2p) +ya® +z2p° — (x + y)m* + (x + y + 2)ie =
= k?+ 2k - (yg — 2p) + y@* + 2p” — (z + y)m” + ie

In the last part we used x + y + z = 1. We now shift k by introducing:

l=k+yqg—zp
d*k = a4
and we get:
D =k +2k - (yg — 2p) + yq® + 2p*> — (z + y)m® + ic =

=12 - A+ie

where
A = —zyg® + (1 — 2)*m?

thus:

/d4k/ dzdydz> “’“_1)_

/d4/d dydz 26x+y+z—1)
—A+ie)3

25 (r+y+z—-1)
d*l dedydz =
/ E/ v (1% + A)3

) 26(z+y+2—1)%
— dQ dl dxdyd =
“/ R R

1 o] 3
l
(—idm )/0 dadydzd(z +y + 2 )/o dlE(l2 A
h—A

1
:(—i47r2)/ dxdydzé(m+y+z—1)/ dh——— 573
0 A

1
1
= (—idn? —1)— =
( zw)/o dzdydzé(z 4+ y + 2 )4A
1
-1
=(—i7r2)/ dmdydz—6($+y+z ):
0 A
! dz+y+z—-1)
= (—ir?) [ dadyd
() [ e

This integral has an infrared divergence. We can cure this by pretending that the photon has a small nonzero mass g,
then in the denominator of the photon propagator we need to change:

(k—p)® = (k—p)* —p°
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This denominator is multiplied by z later on, so at the end we need to do the change:
A= A+ zp?
and we get:

1
) Mz +y+z-1)
—ir? dzdyd
(”)/0 VT —

1
. dz+y+2z—1)
2
= ( 277)/0 dﬂz:dydz(1 EE — 2yt o

for ¢> = 0 we get:
e+y+z-1)
(1—2)2m? — z2yq? + zp?

! rt+y+z—1
—>(—z7r)/ dzdydz (( )2m2—|—z,u) =

1—2
d
—in’ / z/ 1722m2+zu

1
(—in?) /0 dzdydz

We can use the following integral:

1 -5
atan | ———— atan | ——t—
/1 1—2z 1 (4-2) + iz itz
0

dz = - log (u _
_ 2 2
1-2z+42°4+zu 2 _1+% _1_’_%
that is equal to 3 log(>) in the limit s — 0.
here are a few special cases for p = 1, u = 1/2 and pn = 1/3:
1
1—=2 1
———dz=—-mV3
/0 1—2122% 971-\[
1
1—2 1 1 1 1 7
———dz = -log(4) + ——Vv15atan | —V1 —+V1batan | —V1
/0 e 7= og ( )+15\/ S5a an<15v 5)+15v 5a an<15\/ 5)
1
1—=2 1 1 1 1 17
———— dz = ;log (9) + -Vv35at —V35 —Vv3bat —V3b
/0 [ g los )+ 55 aa“(35 >+35 Mn(35 )

Code:

>>> from sympy import log, atan, var, sqgrt, Eq, Integral, S
>>> var ("z m mu")
>>> F = -log(z*(1 — 2/m) + 1/m + zx+2/m)/2 + \
atan((1 - 2/m + 2%z/m)/sqrt (-1 + 4/m))/sqrt (-1 + 4/m)
>>> f = F.diff(z) .simplify ()
>>> print £
(1 — 2)/(1 — 2%z 4+ m*z + z%x%2)
>>> integ_f 0_1 = F.subs(z, 1) - F.subs(z, 0)
>>> e = Eq(Integral (f.subs(m, mu**2), (z, 0, 1)), integ_f_0_1.subs(m, mu*=*2))
>>> print e

Integral ((1 — z)/(1 - 2%z + z**x2 + z*mux*2), (z, 0, 1)) == log(mu*=*(-2))/2 + atan((-1 + 4/mux*2) x* (-

>>> print e.subs (mu, 1)
Integral ((1 - z)/(1 - z + z**2), (z, 0, 1)) == pix3%+(1/2)/9
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>>> print e.subs (mu, S(1)/2)

Integral ((1 - z)/(1 = 7*z/4 + z*x2), (z, 0, 1)) == log(4)/2 + 15+ (1/2)*atan(15+%(1/2)/15)/15 + 15xx
>>> print e.subs (mu, S(1)/3)
Integral ((1 - z)/(1 - 17%z/9 + z**2), (z, 0, 1)) == 1log(9)/2 + 35%%(1/2)«*atan(35+«%(1/2)/35)/35 + 35«

Then for m = 1 and small i we get:

1
1—=2
. 2
_ d =
i) [ e

. 1
= (—ir?)3 log 7

3.35 Groups

These are notes of Karel Vyborny and Ondiej Certik on the group theory as a result of the first VDNK (Vyprava do
nezndmych kraji) held between October 30 and November 2, 2006 in Prague. So that the next time we look at it we
should be able to quickly recover our forgotten ideas.

3.35.1 Theory

Definition of a group:
clliz,yeG=2yec G

e 12: there exist e such that ex = xe = x foreachx € G

1 -1

* I3: there exist ! such that zz ! =z~ 'z = e foreachz € G
» 14: (zy)z = z(yz) foreach z,y,z € G

Every finite group is isomorphic to a subgroup of .S;, (permutations).

Representation

Set of linear operators 7'(z) (for each x € G there is one T'(z))
T(x)T(y) = T(xy), T(e)=1.

T'(z) fulfills all the group axioms I1, 12, I3, 14. The requirement T'(e¢) = 1 is non-trivial, consider for example the

following 4 matrices
o 0 1 0

that fulfill T'(x)T (y) = T'(zy) butnot T'(e) = 1.

The representation T'(z) is said to be faithful if there is a one-to-one relationship between 7'(x) and = (an isomor-
phism).
Equivalent representations 7} and Th: there exist S such that T, = ST} (x)S~! foreach z € G.

Reducible representation 7'(x): there exist an equivalent representation that is diagonal:

T 0

T'(x) = ST(z)S~" = (0 I

) . Vred. (3.63)
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We say that T is a direct sum of T} and T: T" =T & Ty.
Irreducible representation: is not reducible.

Conjugate element: x is conjugate to y (x ~ y) if there exist ¢ such that:

T = cyc_1

ifr~yandy ~ zthenz ~ z.
Conjugate class: elements which are all conjugate to each other
No element may belong to more than one class = every group may be broken up into separate classes.
Character x of the representation T'(x): set of numbers x(z) = TrT(z) as the group element = runs through the
group.
Equivalent representations have the same character:
X (2) =TT (z) = Tr ST(z)S™! = Tr T(x) = x(x)
Representations having the same character are equivalent.

Proof: Characters can be thought of as elements of a q-dimensional vector space where q is the number of conjugacy
classes. Using the orthogonality relations derived above, we find that the q characters for the q inequivalent irreducible
representations forms a basis set. Also, according to Maschke’s theorem, both representations can be expressed as the
direct sum of irreducible representations. Since the character of the direct sum of representations is the sum of their
characters, from linear algebra, we see they are equivalent.

All the elements in the same class have the same character.

Maschke’s theorem: for finite groups, every class of equivalent representations contains unitary representations. The
theorem is also true for most infinite groups of interest in physics.

Let T be a reducible representation, then:
T = mlT(l) ® m2T(2) a m3T(3) D

where T, T(2) T3) dots are all the inequivalent irreducible representations and mq (o = 1,2,3,...) gives the
number of times that the irreducible representation 7(®) occurs in the reduction.

Similar relation holds for group characters:
X = le(l) 4 m2x(2) + mSX(B) 4o
and it can be shown [Elliott] (eq. 4.28, page 63):

ma =+ 3 @) =

ze€G
1 *
T > eoxy X
P
where ¢, is the number of elements in the class p, g is the number of elements in G (the order of the group).

Example

Consider the S3 permutation group. The character table is:

Ss | e 3(12) 2(123)
A1 1 1
Ay |1 —1 1
El2 0 ~1
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From the table weread ¢y = 1,3 = 3,¢c3 =2and g = ¢1 + co +¢c3 = 1 + 3 4+ 2 = 6. There are 3 classes and 3

irreducible representations.
Case I We are given a representation given by the following matrices:
oo (L0 o1 1 V3 po1( L V3
= 0 1 5 ) 7\/3 -1 ’ - 2 \/:;7’ 1 ’
e (10 g1 1 V3 fo1 -1 -3
“\0 1)’ S 2\-V3 1) S 2\V3 -1 )

These 6 matrices belong to the following three classes {e}, {a,b,c}, {d, f} and the corresponding characters

for each class are:
X1 =2
x2=0

x3 = —1

and we get:
1
m==(1-1-24+3-1-04+2-1-(-1))=0

6
Mo = 2(1-1-243-(—1)-042-1-(=1)) =0

Mg = ~(1-2-243-0-042-(1)- (=1)) = 1

So this representation is irreducible and it is equivalent to m, A1 ® moAs @ msE = E.

Case II We are given a representation given by the following matrices:
(-1 V3

0 1

These 6 matrices belong to the following three classes {e}, {a,b,c}, {d, f} and the corresponding characters

for each class are:
X1 =2

x2 =0

X3 =2

and we get:
1
=—-(1-1-243-1-0+2-1-2)=1

1
my= (11243 (=1)-042:1-2) =1
1
~(1-2:-243-0-042-(=1)-2)=0

So this representation is reducible and it is equivalent to mq A; & moAs @ msFE = Ay & As. The matrices are

equivalent to:

e:d:f:<(1) (1)>, a:b:c:(é _01)
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Other facts

Number of irreducible representations = the number of classes.

Regular representation of G: Take R™ with n = #G and assign a canonical basis to the elements g; of G. A matrix
A, assigned to a € G now describes the mapping (g1, g2, ...) — (ag1,ags,...), i.e. inif ag; = gs, then the
fifth element of the first row is one and others of that row are zero in A,. Each IR of the reg. rep. occurs in its
decomposition with the multiplicity equal to its dimension. Thus (p. 65, [Sternberg])

#G = p;.

Element Order The order n of an element g is the least integer for which g = e. The order n can be determined
from the group multiplication table for example. Theorem: n must divide the size (order) of the group (for finite
groups). Example: For a group of six elements, the only possible orders are 1, 2, 3 and 6. Note: the element
order is the same for the whole conjugacy class because: 7™ = (cyc™1)" = cy"c ™! 1

=cec !t =e.
Schur’s lemma (a) Be 7 an IR of G. If [r(a),T] = 0,Va € G, then T = cI.

(b) Be r1, ro two inequivalent IRs of G. Then r1(a)T = Try(a) valid Va € G implies T' = 0. See p. 55 in
[Sternberg]. This can be used to derive the orthogonality relations for characters.

Complete reducibility Every rep can be decomposed into IRs: true for finite (p. 52) and compact (p. 179 in [Stern-
berg]) groups. Counterexample for larger groups, p. 53.

Sum of reps. Opposite process to reduction, p @ o, it lives on the direct sum of the two vector spaces of p and o.

Take an IR p of G. Then p will also be a rep. of any subgroup H C G, but it need not be an IR, because the condition
for reducibility, Eq. (3.63), is less strict: it suffices if the matrices T'(g) are simultaneously block diagonal only for
g € H, not for all g € G. This is called restriction and it is denoted by .

Induced representation, denoted by 1, is an opposite of the restriction. It works as follows: if FF = G ® H, then
p(f) = p(g), when f = g @ h.

Product of representations, p ® o lives on the direct product of the two vector spaces. Product of IRs need not be an
IR. Most prominent example: adding of angular momenta.

Interesting examples

O and Ty (see Crystallographic Point Groups) are isomorphic to S4 (p. 35 in [Sternberg]). Written as matrices in 3D,
they are 3D representations. Since O has only det A = 1 matrices unlike 7}, they are inequivalent.

Homeomorphism of SL(2,C) into the Lorentz group [or SU(2) into SO(3)], p. 7 [Sternberg]}. Start with the
following 1 — 1 correspondence between & and x:

f:(Io,zl,IQ,x?))T, Tr = m0+¢3 T .
r1+1x2 Xo— I3

For any matrix of A € SL(2,C) take AzA* = z’. Decode 2’ into Z' and the relation between & and Z’ defines
uniquely a Lorentz transformation; thus A was mapped into some Lorentz group element. If g = 0 this gives a
mapping from SU(2) into SO(3). The mapping is 2 — 1 because A and —A give the same z’.

SO(3) is not simply connected. Consider matrices Uy = diag(e=", e??) € SU(2), 6 € [0, 7]. These map into SO(3)
rotations by 26 around the z—axis. These matrices Ag = R, 2¢ in SO(3) form a closed loop, R, o = R, 2. If SO(3)
were simply connected it would be possible to contract this loop into a point while keeping A and A, unchanged.
But then the same would have to happen with the original curve of matrices Uy while keeping Uy and U, at their place.
Since U, = —1 # Uy = I, this curve is not closed and such a contraction is not possible.

All IRs of S5 are in [Sternberg], p. 57.
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3.35.2 Crystallographic Point Groups

Point group is a subgroup of O(3).

Crystallographic point groups are all subgroups of O(3), which leave a monoatomic crystal lattice invariant. Those
can be symmetries of an infinite crystal (e.g. C5 is excluded since pentagons cannot cover the plane).

There are only 7 crystallographic point groups: Ss (triclinic), Co (monoclinic), Dsyp, (orthorhombic), D34 (thombo-
hedral), Dy, (tetragonal), Dgj, (hexagonal) and Oy, (cubic).

For simple monoatomic crystals with one atom per unit cell these seven are the only possible crystallographic point
groups. For more complicated crystals with a molecule or an arrangement of atoms in the unit cell, the symmetry will
be reduced to the subgroup which leaves not only the lattice but also the unit cell invariant.

The complete list of all possible crystallographic point groups will therefore be given by the above seven together with
all their subgroups (Tab. 3 in [Birss] or Tab. 4 in [Sternberg]):

Sy Cin, S2

Can Cs, Cip, Copy

Doy, Dy, Cyy, Doy,

D3q C3, 86, D3, Cs3y, D3q

Dy, C4, 84, Cyp, Dy, Cuyy, Dag, Dap,

Den C3, 86, D3, U3y, D3q, Cs, Csn, Cony Doy Coos Dan, Den
Oy, T,T,,0,Ty4,0p

There are 37 subgroups together. D3, is a subgroup of Dgy, (so all 5 subgroups of D3, are also subgroups of Dgp).
Together we get 37-5 = 32 distinct subgroups. Groups, which might at first sight appear to be missing from the list are
Chy, D1, D1, S1, and S3, but these are the same as Cy,, Cy, Cy,,, C1p, and Csy, respectively.

The following groups are isomorphic:

Cin, S2, Co

Sy, Cy

Se: Csn, Cs

Can, Cov, D2

Csy, D3

Dsg, Cayy Dy
D34, D3p, Ceu, Ds
Ty, O

The way to derive the above lists is the following.
Procedure:
1. Find all finite crystallographic subgroups of SO(3) called rotation subgroups
2. Take each subgroup from 1) and add —I and close the subgroup (‘non-rot containing — /)

3. for each subgroup G” in 1), find whether it has some normal subgroups G of index 2 (half a size of G") and
construct GT U (—I)aG™, where a ¢ Gt and a € G"; this will be a ‘non-rot not containing —I¢ (for each G
there can be zero, one or more such G1).

The sum of 1.,2.,3. are all finite crystallographic groups of O(3). The procedure is described in [Sternberg], p. 28-40.

An example: O (all rot. symm. of a cube, i.e. no mirroring) is 1), O™ (all symm. of a cube) is 2) made of O and T}
(all symm. of a tetrahedron) is 3) made of 1).
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Zoology

Schonflies notation: C), is an n—fold rotation (2., 3, ...) group (planar polygon), D,, is a diedric group, i.e. C,, plus
turn-the-page two-fold rotations (e.g. 2,, 2, ), T, O and I (= Y') are the rotational symmetries of a tetrahedron, octa-
hedron (identical to those of a cube) and icosahedron (identical to those of a dodecahedron), respectively. Additional
indexes mean reflection planes, horizontal, vertical, diagonal (h,v,d) or —I (i). Some atypical notation: Sy = C;
Se = C34, S4 = Coy, Cs = Chp.

Hermann-Mauguin (HM, international) notation: 2,3,4 means C,,, 4 means rotation-inversion axis (rotation followed
by —1I), m is a vertical mirror plane, /m is a horizontal mirror plane.

Symmetry operations (in Table 3 of [Birss]): like HM, 2, means a two-fold rotation around z—axis, 2 means some
other axis in the zy plane than x,y or xy (diagonal), 3, is a rotation followed by —I. 3(2. ) means three different
two-fold axes 2 .

Construction and usage of the character table

For simpler groups the character tables can be fully constructed by the following rules:

1. The sum of the squares of the dimensions n; of the irreducible representations is equal to the order g of the point
group:

k

}: 2 _
nu*g

p=1

The dimension n,, is given by the character of the identity matrix (first column) n,, = x*(E), so the sum of
squares of the first column is g. It is customary to put the characters of the one dimensional representation
(x*(C;) = 1) into the first row, so the first row is filled with 1s. Also, n; must divide g.

2. The number of irreducible representations 7 (rows) is equal to the number of classes k (columns)

3. The rows must satisfy

4. The columns must satisfy

5. Characters of all one-dimensional representation must be roots of unity, equal to x = e* =", where n is the
element order, which must divide the group size ¢ (and it is the same for the whole conjugacy class). In
general, k is any integer (for faithful representation it would be £k = 1). This follows from the fact, that the
character is also the one-dimensional representation matrix and they all commute, thus the group is Abelian.
Also, the characters (=representation matrices) must respect the group operations, so for example if for two
group elements g7 = go, then their characters must also obey x? = yo.

6. Character of an element is the complex conjugate of its inverse. If they both belong to the same conjugacy class,
the character must be real. If the character is complex, it means that its inverse is not from the same conju-
gacy class and then there must be a complex conjugate for another conjugacy class from the same irreducible
representation.
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7. Characters come in complex conjugate pairs, since complex conjugate of a representation is also a representa-
tion. If there is only one representation of the dimension d, then it must be real (since it is its own conjugate).
If there are two representations of dimension d and one is complex, then the other one must be its complex
conjugate. Another way to look at this is that if we conjugate each entry of the character table, then we must get
the same character table (up to a possible reordering of rows within the same dimension).

8. If there is one dimensional representation A; (with characters x1) and any other representation 7" of dimension
d (with characters ), then there must be a representation of dimension d with characters y1 x (corresponding to
the tensor product 47 ® T).

There exists a systematic approach that works for any group, but it is complicated (see for example [Dixon67],
[Blokker72], [Cannon69] and [Chillag86]).

The notation for irreducible representation: One-dimensional irreducible representations are labeled either A or B
according to whether the character of a 27” (proper or improper) rotation about the symmetry axis of highest order n
is +1 or —1. If there is no symmetry axis, all one-dimensional representations are labeled A.

For general information, see [Elliott] (sec. 4.15, page 67) and [Bishop], page 128.

Example |

Let’s take the group Cs,, which has three classes F (1 element), C'5 (2 elements) and o, (3 elements).

Sog; =1, g2 = 2 and g3 = 3 and the order is g = g; + g2+ g3 = 6. Therefore it has three irreducible representations,
whose dimensions must satisfy:

n?4+ni+ni=6
The only integer solution (up to a permutation) is n; = ng = 1 and n3 = 2. So we immediately have:

Cso | E 205 3o,

1 1 1
1 a b
2 c d

The rule 3. generates the following equations for all x4 and v:

S g (C)XY(C)* = gb,u

6=206
1+2a+3b=0
242c+3d=0

1+2a%+3b2=6
24+ 2ac+3bd =0
4422 +3d2=6

W NN~ =T
W W W -

Solving all these equations simultaneously, we get two independent solutions. One is:
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and the other is:

e 1
5
3
b="2
5
_ 1
=5
g 2
5

The rule 4. generates the following equations for all ¢ and j:

i g | e X(COX(Cy) = L4y
1 1 6=6

1 2 1+a+2c=0

1 3 1+b6+2d=0

2 2 14+a24+c%2=3

2 3 1+ab4+cd=0

3 3 1+b62+d*>=2

Both of the above solutions for (a, b, ¢, d) satisfy all of these equations, so the column equations are redundant.

Now we use the rule 5. and see that the second solution is not a root of unity, so we discard it. The final character table

is:

Cs | B 2C5 30,

A, 1 1 1
Ay |11 -1
E |2 -1 0

Code:

from sympy import var, solve, Matrix
var("a, b, c, d")

g = [1, 2, 3]

M = Matrix ([
[t, 1, 11,
[1, a, bl,
(2, ¢, dll)

def rows(mu, nu, M, g):
eq = 0
for i in range(len(qg)):
eq += g[i] * M[mu, i] = M[nu, 1]
if mu == nu:
eq —= sum(g)
return eq

def cols(i, j, M, 9g):
eq = 0
for nu in range(len(qg)):
eq += M[nu, 1] % M[nu, 7Jj]
if i == 7J:
eq —= sum(g) / glil
return eq

print "Character table:"
print M
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print "Rows conditions:"
eqgs = []
for mu in range(3):

for nu in range (mu, 3):

eq = rows (mu, nu, M, Qg)
egs.append (eq)
print mu+l, nu+l, ": ", eq
print "-"x40
print "Columns conditions:"
egs2 = []

for i in range(3):
for j in range(i, 3):
eq = cols(i, j, M, g)
egs2.append (eq)
print i+1, j+1, ": ", eq
print "-"x40
print "Solving the 1, 2, 4, 5 equations out of 0..5 from the rows conditions"
s = solve(egs[l:3]+egs([4:], [a, b, c, d])
print s
print "Test that all the solutions satisfy the rest of the equations:"
for a, b, ¢, d in s:
print
print "Solution:", a, b, c, d
r = egs[3].subs ({
"a": a,
"b": b,
"c": c,
"d": d,
})
print "Equation 3 from rows conditions, result: ", r
assert r ==
print "Columns conditions:"
for i, eq in enumerate (egs2):
r = eqg.subs ({

"a": a,
"b": b,
"c": ¢,
"d": d,
})
print "Equation %1 from columns conditions, result: %r" % (i, r)
assert r ==
This prints:
Character table:
[1, 1, 1]
[1, a, Db]
[2, c, d]
Rows conditions:
11 : 0
12 : 2+a + 3xb + 1
1 3 : 2+xc + 3xd + 2
2 2 : 2xax*x2 + 3xbxx2 - 5
2 3 2%xaxc + 3xbxd + 2
33 2xC*x*x2 + 3xdxx2 — 2

Columns conditions:
11 : 0
12 : a + 2+xc + 1
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13 b + 2xd + 1

2 2 : axx2 + C**x2 — 2

2 3 : axb + cxd + 1

33 b**2 + dxx2 — 1

Solving the 1, 2, 4, 5 equations out of 0..5 from the rows conditions
[(=7/5, 3/5, 1/5, -4/5), (1, -1, -1, 0)]

Test that all the solutions satisfy the rest of the equations:

Solution: -7/5 3/5 1/5 -4/5
Equation 3 from rows conditions, result: O
Columns conditions:

Equation 0 from columns conditions, result: 0
Equation 1 from columns conditions, result: 0
Equation 2 from columns conditions, result: O
Equation 3 from columns conditions, result: 0
Equation 4 from columns conditions, result: 0
Equation 5 from columns conditions, result: 0
Solution: 1 -1 -1 O

Equation 3 from rows conditions, result: O
Columns conditions:

Equation 0 from columns conditions, result: 0
Equation 1 from columns conditions, result: 0
Equation 2 from columns conditions, result: 0
Equation 3 from columns conditions, result: 0
Equation 4 from columns conditions, result: 0
Equation 5 from columns conditions, result: O
Example Il

We derive the character table for C'3,, again, using another approach. First we determine the element orders, that must
divide the size of the group (possible values are 1, 2, 3, 6). Element order of the class E is 1, because E? = 1. The
element order of (5 is 3, because C’g = 1. Finally, the element order of o, is 2, because 05 =1.

Cgv E 203 SUU
class sizes 1 2 3
element orders | 1 3 2
Ay 1 1 1
A2 1 a b
FE 2 c d

Rule 7: The characters of the representation As must be real, because otherwise A; would have to be a complex
conjugate. F is the only representation of dimension 2, so it must be real as well.

Rule 5: A, is Abelian, with element orders 1, 3 and 2. As such, we must have:

Where k and [ are unknown integers. However, since both a and b is real, the only solution is £ = 0 (corresponding to
a =1)and [ = 0,1 (corresponding to b = £1).

Rule 3 gives:

1+2a+3b=0
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And plugging in a = 1 this implies b = —1, consistent with the previous paragraph.

Rule 8: multiplying A2 by E must give characters of dimension 2, which is E, so we get:

+l-c=c
—1-d=d
From which d = 0. Rule 3 gives:
24+2c+3d=0
Where we use d = 0 and we get ¢ = —1. The final character table is:

031, ‘ E 205 301)
Ay |1 1 1
Ay | 1 1 -1
E |12 -1 0

Example Il

We derive the character table for Cs.

Cy E

class sizes 1 1
elementorders | 1 2
Aq 1 1

A2 1 a

We have two classes, group order is 2, so we must have two representations of dimension 1. Using the rule 3. we get:

1+a=0

so a = —1 and the final character table is:

Example IV

We derive the character table for C's.

Cs E Cs C§
class sizes 1 1 1
elementorders | 1 3 3

We have 3 classes and representations, group order is 3, so they must be one dimensional:

Cs E Cs C’§
class sizes 1 1 1
elementorders | 1 3 3
Ay 1 1 1
A2 1 a b
A 3 1 C d

3.35. Groups 103



Theoretical Physics Reference, Release 0.5

Rule 3 says:

Rule 5 says:

27

where w = €73, so:

14w+ =0

Which has only two solutions: £ = 1, = 2 and k = 2,1 = 1. If we choose the first solution, we get a = w and
b=w?=0a. Using the rule 7. it follows thatc = a = & = w? and d = b = w. If we choose the second solution,
we get the pairs a, b and ¢, d interchanged, however, we can reorder the rows, so these two options are equivalent. The
final character table is:

Cs ‘ E C; (3
A1 1 1
Ay |1 w  w?
As |1 w? w
s —14iV3
w=€e3 = —"°6©8H—/0——
2
Example V
Group Cy:
Cy E C, C: C3
class sizes 1 1 1 1
element orders | 1 4 2 4
A, T 1 1 1
Ay 1 a b c
As 1
Ay 1
Rule 5 gives:
a =ik
= (-1
c=1i"
Rule 3 gives:
l+a+b+c=0 (3.64)
Using the rule 7. we know that at least one of A, A3 and A4 must be real, so let it be As. The only real solutions of
the equation (3.64) are a = 1, b = —1, ¢ = —1 and permutations. The representation however must be isomorphic to
the Cy4 group, so in particular a® = b, from which b = 1 and thena = —1 and ¢ = —1.

The group operations give:

a®>=b
ab=c
ac=1
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which gives:

2k =1
k+l=m
k+m=0,4,812,...

The possible solutions are:

W = DN
NN O~
»—AOJI\DS

The first solution is real and it is equal to A5. The other two solutions are complex conjugate and they must be solutions
of Az and A4, because A3 and A4 cannot be real (otherwise they would have to be equal to A5 and the orthogonality
relation for columns would not hold). The final character table is:

Cy \ E Cy C} C3
A |1 1 1 1
Ay |1 -1 1 -1
As |1 & -1 —i
Ay |1 —1 =1 4
Example VI
Group T
T E 4C3 4C3% 30,
class sizes 1 4 4 3
element orders | 1 3 3 2
Aq 1 1 1 1
As 1 a b c
As 1
T 3 d e f

The group size is 1 + 4 + 4 + 3 = 12, so the only possible option for dimensions of the 4 representations is 1, 1, 1 and
3.

Rule 5 gives:

27

where w = e”3 . Rule 3 gives:

1+ 40k + 40! +3(-1)™ =0

The only solution is m = 0, k = 1 and [ = 2 (and k with [ interchanged). This fully determines A5 and Ag. The last
row is determined from column orthogonality conditions (we compare the given column with the first column):
l+w+w”+3d=0
1+ +w+3e=0
1+41+1+3f=0
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Using the relation 1 +w +w? = 0we getd =0,e = 0and f = —1.

The final character table is:

T ‘ E 4C3 4C3% 30,
Ay |1 1 1 1
A2 1 w (,«.)2 1
As |1 W? w 1

T |3 0 0 -1

3.35.3 Applications of finite groups

Distinct energy levels (‘vibrations’)
Assume that we know number of atoms in a molecule and measure the number of its distinct vibrational modes
(frequencies) in a multiplet. We want to know its symmetry.

We go through the list of all possible (point) symmetries .S of such a molecule and look at what all reps. .S has. If an
n—tuplet was observed among the vibrational modes and there is no n-dimensional IR of S, then can be excluded.

This procedure assumes that (a) the original symmetry S is slightly disturbed because of something and (b) two
multiplets (m and n dimensional) do not accidentally happen to have the same frequencies (‘accidental degeneracy’).

Selection rules (‘transitions’)

According to [Pilar], p. 572.

Probability of an optical transition is proportional to
(i[Hilf) , (3.65)

where |7), | f) are the initial and final states and H; is the operator of the interaction causing the transition. This is the
Fermi golden rule (first order time dep. perturbation theory).

The integral ((3.65)) may vanish because of the symmetry. A simple 1D example is that | ) is an even function f(x),
) is an odd function i(z) and H; is an even function hj(x). Then i*(x)hq () f(x) is odd and thus the integral over
(—00, 00) vanishes. The group theory only generalizes this observation.

The procedure is: find the IRs p;, py to which |¢), | f) belong and also p, the regular rep of H; in order to catch all
IRs of H; (is this procedure correct?). Then construct p; ® p ® pr, decompose it into IRs and see if the trivial rep is
present. If not, the integral ((3.65)) vanishes. This procedure is claimed to be equivalent to checking whether p; ® py
and p contain at least one common IR.

The infrared absorption (IRa) is described by H; o z (or y, z, depending probably on the polarization of light), the
Raman scattering has H; oc 22 (it comes from the second order perturbation theory?).

Zoology

Todo:
* Describe the representations Ay, As, By, E etc.

* Reps are specified by the generating functions f(x,y, z) and the symmetry operations 7" acting on these func-
tions f(z,y,z) — f(2',y',2") then transform the arguments, (z,y,z) — (2/,y/,2") = T(x,y,2). Explain
what functions are commonly used (z, R, . ..) and give maybe some examples.

* Further reading: Davydov, p. 318, 195. Joe Penrose: Symmetry in Science.
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3.35.4 Continuous Groups

Lie groups+algebras

A continuous group with metrics is a Lie group (more exactly a differentiable manifold and ¢ — ag and a — a~!
are differentiable Vg, p. 172 in [Sternberg]) usually a subgroup of GL(n) is meant, a linear Lie group (i.e. matrices).
Peter—Weyl theorem (p. 179 in [Sternberg]) looks like that compact Lie groups are practically as nice as finite groups.

Consider G = O(n), p. 234 in [Sternberg]. If A € G then exp(—tA) C G where t € R. At least in O(3) and
probably in any O(n), any element of G can be written as exp(—tA) where A is a 7/2 rotation around some axis.
These A‘s are the generators of G.

Typical example: for G = SO(3) there are three generators, ¢A,, i4,, iA,, where A, is the rotation by 7/2 around
z—axis in R®. The generators form a vector space (here the linear span of i A, iA4,, iA,) with an additional operation
of commutation. This structure is closed and it is called the Lie algebra of the group G. The commutation relations
between the generators fully specify the Lie algebra. E.g. [1A,,7A,] = ¢A, and the two other ones.

This is a great simplification because a continuous (infinite) group was thus mapped on a vector space, the algebra,
where it suffices to look at the basis elements, the generator. The net effect is that we have to watch only three objects
instead of infinitely many in the example above.

Todo: weights, roots and Dynkin diagrams. Octets and decuplets. Classification of IRs of SU(n). From [Georgi].

IRs of SU(2)

16. 181 in [Sternberg]; alternative somewhere in [Georgi].

The Peter-Weyl theorem concerns also the orthogonality of characters and that in turn strongly restricts any possible
characters of SU(2). The conjugacy classes of SU(2) are exemplified by matrices Uy = diag(e*?, e~%) and their
possible characters can only be

S

X(0) = Y exp(—i2ko)

k=—s
with 2s integer.

All the corresponding reps exist, they are defined on the space 27%, 22 125, ..., 23° by U_22*"F25 s [expi(2s —
2k)0] 2257 2k,

For an IR of SU(2) the complex conjugate is just the original. For other SU(n) it is not necessarily the case, p. 182
in [Sternberg].

IRs of SO(3) are just those of SU(2) but s must be an integer.

Young diagrams

YD is a systematic method to find all IRs of any symmetric group S,, (permutations of an n-element set). The idea:
* find all conjugacy classes of S,
* assign an IR to each of them

Char’n of the conjugacy classes: each permutation can be decomposed into cycles. This cycle structure (i.e. how
many cycles of length 1, how many of length 2, etc. = [v1, 12 ..., 1)) is a unique mark of each conjugation class.
The Young diagram is written by rows, each row has A; empty boxes and A\; — A\;;; = v; > 0. Each conjugacy class
has one YD. An YD of .S, has n boxes.
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A Young tabloid (YTd) is obtained by filling an YD with numbers 1,...,n where ordering in each row does not
matter. A Young tableau is an YTd where all orderings (thus also in rows) matter.

The IRs of S,,. Take an YD A. On the space of all corresponding YTd’s (M)) a rep. of the S, is created. It is
decomposed into IRs and shown to have some ‘new’ IR compared to > A.

Details are explained in [Sternberg], p. 76 or in the lecture notes of J. Niederle.

Comments from p. 82 of [Sternberg]: Basis of M) is defined (e;; 6{t} means probably a function on M), which is zero
for all {y} unless {y} = {t}). The action of @ € S, on this basis functions is described.

3.35.5 Literature

Books:

Articles:

3.36 Wigner D Function

The Wigner D function gives the matrix elements of the rotation operator R in the jm-representation. For the Euler
angles «, f3, 7, the D function is defined as:

<jv m|R(a7 ﬁa ’7)|.7/7 ml> = 6jj’D(j7 m, m/7 «, ﬁ7 7)
Where the rotation operator R(c, 3,7) is defined using the z-y-z convention:
R(O[, ﬂ, ’Y) _ €7ia‘]267iﬁ‘]y€7i’y]z

Here J; is the projection of the total angular momentum on an i-axis. The |jm) is the eigenstate of the operators .J>
and J,. Using the fact that e~ |jm) = e~"™7 |jm), we can see that the Wigner D function can always be written
using the Wigner small-d function as:

D(j,m,m’,a, 8,7) = (j,m|R(a, B,7)|j, m') = (j,m|e”"*/=e™Flve= 2| j m") =
_ e—ima <J7 m‘e—iﬂJy |.7, m/> e—im’,y _ e_z'mozd(j’ m, m/, ﬁ)e—im/,y
where

—iBJ

d(j’m7m/’/8):<j’m‘e y|j7m/>

We can use the following relations to evaluate d(j, m, m’, 3):

d(j,m,m’, B) = i =m=m (~1)2m Z d(j,m,m", Z)e” ™ Pd(.m" —m!, 2)

. N mfm/i (]—l—m' j+m j—m/
d(]7m7m32)_( 1) 23\/(.]_|_m | IZ ( ><k‘+m—m’

3.36.1 Derivation

The small-d function formula above can be derived from the following formula:

. / _ \/(.] +m)'(.] — )'(.] +m/)'(.] — )' m—m'— ﬂ . m’ —m ﬂ
d(j7m’m’6)7;(71)k(j—m’—k)'(j+m P _m)'coszj+ 2k551n2k+ 5
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by substituting

into

Z(_l)k \/(] + m)'(] - m)‘(] + m/)!(j B m’)! aj—m’—ka*j+m—kbkb*k+m/—m
p (G —m' =G +m—k)E(E+m —m)!

This follows from:
€ =ae+bC
¢'=-be+a*¢
let the polynomial be:
6j+m<j —m

Il = G =

and (using binomial theorem in the process):

Pufm(e,C) = fm(a e — b, b%e + al) = (a%e — bOYIT™(b*e + al)i—m _

VG +m)l(j —m)!
i+m m - 7
— JZ JZ \/( + m) ( m)' a ’a*j+m7kbkb*j7mfk’62j_k_k’<k+k' _
— k‘k" i +m —k)I(j —m— k)]
= Z Z j a m) (] _ )'(‘7 + m/)'(‘] — m/)' aj—m/—ka*j+m—kbkb*k-‘rm’—mfm'(67 C)

] —m/ = k)I(j+m—k)kI(k+m —m)!

And it is the coefficient of f,,.

3.37 Ordinary Differential Equations

3.37.1 Finite Difference Formulas

We define the backward difference operator V;, by:
Vif(a) = f(a) = fla—h)
Repeated application gives:
Vif(a) = Va(f(a) = fla—h)) = f(a) = fla = h) = fla—h) + f(a—2h) = f(a) = 2f(a — h) + f(a — 2h)
Vif(a) = f(a) = 3f(a—h) +3f(a—2h) — f(a—3h)

n

vis@ =Y () -1 sa - )

k=0
We can also derive a formula for f(a + t) where ¢ is any real number, independent of h:
fla—=h)=(1-Vu)f(a)
(1= Vi)~ fla—h) = f(a)
(1-Va) "' fa) = fla+h)
(1=Vi)""f(a) = f(a+nh)
(1= Vi) % f(a) = fla+1)
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Now we can express the following general integral using the function value from either left (f(a)) or right (f(a + h))
hand side of the interval h:

a+h h h
/a+ f(t)dt:/o f(a—i—t)dt:/O (1—Vp) "% fa)dt =

hVy,

T (- Va)log(l— Vh)f(a) N

) 3
:h(1+;vh+12v2+8vi’;+---)f(a)=

h‘7h h‘7h

= —m(l—vh)_lf(a) = —mf(a‘*‘h) =
:h< —%Vh—lgv,%—;ivz—i—-~->f(a+h)

Code:

>>> from sympy import var, simplify, integrate

>>> var ("nabla t h")

(nabla, t, h)

>>> s = integrate((l-nabla)+**(-t/h), (t, 0, h))

>>> simplify(s)

hxnabla/ (-log(l - nabla) + nablaxlog(l - nabla))

>>> s.series (nabla, 0, 5)

h + h*nabla/2 + 5xhx*nabla=**2/12 + 3xhx*nabla**3/8 + 251xh*nabla**4/720 + O (nablax=*5)
>>> 52 = sx(l-nabla)

>>> simplify(s2)

-hxnabla/log (1l - nabla)

>>> gs2.series (nabla, 0, 5)

h — h*nabla/2 - h*nablaxx2/12 - h*nablax*3/24 — 19xh*nabla*x+*4/720 + O (nablaxx5)

Keeping terms only to third-order, we obtain:

ath hV), ~ 5 3 B
/a F0)dt =~ g g vy (@ = (1 + 3Vt Vit 8v;°;> fla) =

= hf(a) +h3 (f(a) = fla—h)) +h% (f(a) =2f(a—h) + f(a—2h))+

+hg (f(a) =3f(a—h)+3f(a—2h)— f(a—3h)) =

:h(1+;+152+:>f(a)—h<§+21'25+?’5';3>f(a—h)+

+h (152 + 383> fla—2h)—h (2) fla—3h) =
55 59 37 3
= hﬂf(a) —hﬁf(a—h) —l—hﬂf(a—Qh) —héf(a—Sh) =

_ N (55f(a) —59f(a — h) +37f(a — 2h) — 9f(a — 3h))

24
Similarly:
/a+hf(t)dt——hvhf(a+h)~h 11y, - Lyz o Llgs fla+h)=
; " log(1—Vy) - 2V T T T gtk B
:%(Qf(a—l-h)—l-le(a)—5f(a—h)+f(a—2h))
Code:
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>>> from sympy import var

>>> var ("f0 f1 f2 £3")

(f0, f£1, f2, £3)

>>> nablal = f0 - f1

>>> nabla2 = f0 - 2+fl1 + £2

>>> nabla3 = f0 - 3%xfl + 3%xf2 - £3

>>> 24% (£0 + nablal/2 + 5xnabla2/12 + 3xnabla3/8)
—-59%f1 — 9%xf3 + 37xf2 + 55xf0

>>> 24% (£0 - nablal/2 - nabla2/12 - nabla3/24)

£f3 — 5xf2 + 9xf0 + 19«fl

3.37.2 Integrating ODE

Set of linear ODEs can be written in the form:

dy
= _ 3.66
I (3.60)
For example for the Schrodinger we have
(o)
7@
0 1
G =
(2(E —v) - 4l o)
Now we need to choose a grid r = r(t), where ¢ is some uniform grid. For example r = ro(e! — 1):
ri = ro(e’ — 1)
t;=(G—1)h
where : = 1,2,3,..., N. We also need the derivative, for the exampe above we get:
dr ‘
—-— = Tg€
a
Now we substitute this into (3.66):
dy dr
dt —at Y
We can integrate this system from a to a + h on a uniform grid ¢;:
a+h dr a+h
varm =y + [ Toydt=ya+ [ fwa
where f(t) = %Gy and we use some method to approximate the integral, see the previous section.
3.37.3 Radial Poisson Equation
Radial Poisson equation is:
2
V" (r)+ =V'(r) = —4nn(r) (3.67)
T
The left hand side can be written as:
2 1 1
V// + 7vl —— (rvll + 2v/) —— (’]"V)/I
T T T
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So the Poisson equation can also be written as:
(rvV)" = —dnrn (3.68)

Now we determine the values of V' (0), VV’(0) and the behavior of V' (c0) and V' (o). The equation determines V' up
to an arbitrary constant, so we set V' (co) = 0 and now the potential V" is determined uniquely.

The 3D integral of the (number) density is equal to the total (numeric) charge, which is equal to Z (number of
electrons). We can then use the Poisson equation to rewrite the integral in terms of V:

Z/M@@z/n@ﬁﬂMrAwMMﬂﬂw
= - /OOO(TV)”Tdr =

o0

(rVYdr — (VY1 =

I
S~

= VI~ [V =
=[rV - (rV)rl5° =

= - =
= lim V' (r)r? — lim V' (r)r?
Let
lim V'(ryr?=C
Then around r — 0 we get V/(r) = & and V(r) = —< + D (for some constant D). As such, C'is a point charge

(delta function) at the origin. From now on, we will assume no point charge, i.e. C' = 0.

In the limit » — oo, we get the equation:

wm:_Z—C: z

r2 r2

Integrating (3.68) directly, we get:

(V)] = —4nm /OOC rn(r)dr

[V +rV|5° = —47?/ rn(r)dr
0

We already know that V/ behaves like — 7% in infinity, so 7V’ vanishes. Requiring V itself to vanish in infinity, the left
hand side simplifies to —V'(0) and we get:

V(0) =4r /OOO rn(r)dr

Last thing to determine is V/(0). To do that, we expand the charge density and potential (and it’s derivatives) into a
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series around the origin:
n(r) = ng +nr+ngri 4= anrk
o0
V() =Vo+Vir+Var? +- = Virk
o0
"(r) = ZkaTk_l

V' (r Z Vik(k — 1)r

And substitute into the equation (3.67):
oo 2 oo oo
> Vik(k = 1)t 4 2N Vikrb T = —dr Y g
k=2 "= k=0
Z Viek(k — 1)7']““72 + -Vi+ - Z VikrF—! = —4x anrk
r r
k=2 k=2 k=0

o0 2 o0 [ee]
Vik(k — D)r*2 + 2V, oV krF2 = —4 k
Z wk( )r JrT 1+Z kT ﬂ'anr

k=2
2 o0
;V1+k22vkk(( —1)+2)r =—47rZW
4/1+ka1< (k+1 =—47TZW“
k=2
*V1+ZVZ+2 (+2)(1+3)r' = —4”2””
=0
2 o0
SV ==Y (A + Vi (k+2) (k4 3)) r*
k=0

We now multiply the whole equation by r and then set » = 0. We get V; = 0, so V/(0) = V4 = 0. We put it back into
the equation to get:

NE

(dmny, + Vigo(k +2)(k+3))rF =0

>
Il

0

This must hold for all , so we get the following set of equations for £k = 0,1, --:
drng + Vigo(E+2)(k+3) =0

from which we express Vj; for all £ > 2. We already know the values for £ = 1 and k£ = 0 from earlier, so overall we
get:

Vo = 471'/ rn(r)dr
0

Vi=0
4mrny,
Vit = T (k+2)(k+3)
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in particular:

Vo=~ 6 — 3
4mny T
o=y =M
4y ™
Vi = — -
! 20 5
4mns 2
Ve = — _
° 30 15 °
So we get the following series expansion for V and V":
2 2
V=W- ;nor - gnlr - gnﬂ — Tgngr —
4 4 2
V= fgnor —mngr? — gngr?’ - %ngr‘l -

Examples
It is useful to have analytic solutions to test the numerical solvers. Here we present a few.

Gaussian Charge

The Gaussian charge is simply a Gaussian, normalized in such a way that the total charge is Z:

A 3
n(r) = ~emo”
T2

Let us verify the normalization by calculating the total charge Q:

@~ [t = ax [ nirrar -

Ooz3

o~ 2.2

:471'/ —e T iy =
0

T2
= 4523 /OO e~ 2y =
™ Jo
B 4Za3ﬁ _z
/T 4ad

So the total charge is Q) = Z, as expected. Code:

>>> from sympy import var, integrate, exp, Symbol,
>>> var("r")

r

(0]

>>> alpha=Symbol ("alpha", positive=True)
>>> integrate (exp (—alphax*2xr**2)*rxx2, (r, O,

00))
sqrt (pi) / (d+«alphax+*3)

(3.69)
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Now we calculate the potential V' (r) from the Poisson equation (3.68):

4a3rZ 2,2

(rV(r)" = —drrn(r) = — N e
(rv(r)) = NG +A
rV(r) = Zerf(ar) + Ar+ B
Vir)=2 fro”) A+ g

We have two integration constants A and B. We fix the potential using the condition V' (c0) = 0, which implies A = 0.
The other constant B is a point charge at the origin, which in our case (3.69) is zero, so B = 0.

We finally obtain the potential:

erf(ar)
r

Vir)y=2

We can calculate the electrostatic self-energy, i.e. the energy of interaction of the charge n(r) with the potential
generated by this charge V' (r):

Eself**/ (x)V d?’a:f—/ yr2dr =

> Z rf
= 27r/ —?é —a®r? erf(ar) 2 dr =
O /,1

Code:

>>> from sympy import var, integrate, exp, Symbol, oo, erf
>>> Var("r")

r

>>> alpha=Symbol ("alpha", positive=True)

>>> integrate (exp (—alphax*2xr*«%2)xerf (alphax*r)*r, (r, 0, 00))
sqgrt (2) / (4~alpha**2)

Exponential Charge
The exponential charge is simply an exponential, normalized in such a way that the total charge is Z:

n(r) = e " (3.70)
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Let us verify the normalization by calculating the total charge Q:

Q= /n(x)d?’z =dr /OOO n(r)ridr =

*© Zas3

= 47r/ = ey =
0 i
Zo® [ "
— 2o e r2dr =
2 Jo
B Za® 2 B
2 a3

So the total charge is @ = Z, as expected.

Now we calculate the potential V' (r) from the Poisson equation (3.68):

3
(rvV(r)" = —4rrn(r) = _Za re” "
1 B
V(r)=-2Z (O‘+) A
2 r T

Similarly as for the Gaussian charge, we require the potential V(1) to vanish at infinity, which implies A = 0. Then

we calculate the point charge at the origin:
C = lim V'(r)r? =
r—0
= lir%% (=2Be*" + Zar (ar+ 1)+ Z (ar +2))e™ " =
r—
=7Z-B

We do not have any point charge at the origin, so C = Z — B = 0, from which it follows B = Z. We finally obtain:

1

)ear+ Z(lffam)
T T

I

2

Z_
=

Let us calculate the self-energy:

Esarr = %/n(x)V(x)de n(r)V (r)ridr =

0

00 3 _ —ar
= 27r/ Z—ae*‘”Z (16 - a/2) r2dr =
o 8m r
ZZ 3 o] 1 —e@r
_z@ / e " (e — a/Z) r2dr =
4 0 r

_ Z%a3 1 _
4 4a2)
_Z2a
16
Code:
>>> from sympy import var, integrate, exp, Symbol, oo

>>> var ("r Z B")

(r, 2, B)

>>> alpha=Symbol ("alpha", positive=True)

>>> integrate (exp (—alphax*r)*rxx2, (r, 0, 00))

2/alphax«*3

>>> V = integrate (-Zxalpha++3/2 » r » exp(-alpha*r), r, r)/r
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>>> V.simplify ()

-Z* (alpha*r + 2)xexp(-alphaxr)/ (2xr)

>>> ((V+B/r) .diff (r)+r*+2) .simplify ()

(-2xBxexp (alpha*r) + Zxalphaxrx (alphaxr + 1) + Zx (alphaxr +

2)) xexp (—alphaxr) /2

>>> ((V4+B/r) .diff (r)r**2).limit (r, 0)

-B + Z

>>> integrate (exp (—alphax*r) * ((l-exp (-alphax*r)) /r-alpha/2)*rx+2, (r, 0, 00))
-1/ (4xalpha*«2)

Piecewise Polynomial Charge

We will use a second-derivative continuous piecewise polynomial for n(r), normalized in such a way that the total
charge is Z:

(3.71)

r) —21Z(r —1.)3(6r% + 3rr. +r2)/(57rd) for0<r<r,
n(r) =
0 forr > r.

Let us verify the normalization by calculating the total charge Q:

Q= /n(x)dgz =A4r /00 n(r)ridr =
0
=4r /TC —21Z(r —r.)*(6r2 + 3rr. +r2)/(57rd)ridr =
O =7

So the total charge is ) = Z, as expected.

Now we calculate the potential V' (r) from the Poisson equation (3.68):

(rV(r)" = —dwrn(r) = 4nr - 21Z(r — ro)2(6r% 4 3rr. + 12) ) (57rd)
Vir) = {Z’”z (97° — 30rtre + 28r3r2 — 1477) + Ay + % for0 <r <r,

g
578

Ag—i—% forr > r.

Similarly as for the Gaussian charge, we require the potential V() to vanish at infinity, which implies A5 = 0. Then
we calculate the point charge at the origin:

C=limV'(r)r? =
r—0

i (. 1 6321° 362, 287wz
= lim [ — —_— — —r % —
r—0 ! 5r8 rl r8 5r3

[ c

:_Bl

We do not have any point charge at the origin, so C' = —B; = 0, from which it follows B; = 0. Then Bs is calculated
from the condition of a continuous first derivative at r = r.:

Vi(re) = {:

So By = Z. Finally, A is calculated from the continuous values of V' (r.):

A —IZ for0<r<r,
V(Tc):{zl ore

for0 <r <r,

2
B forr > r.

Z
2
c
2
2
r{?

= forr > r.

Tc
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127

which implies A; = £=.

We finally obtain:

V() Zs (9r7 — 30757, + 28r°r2 — 14r?r} +1207)  for0<r <r,
r)= c
% forr > 7,

Let us calculate the self-energy:

_Am [

5 /. n(r)V (r)ridr =

Egelr = %/TL(X)V(X)dBl'
Te Z
= 27r/ —21Z(r — r.)3(6r2 + 3rre + rf)/(5ﬂ'r§)5—8 (97 = 30r0re + 287572 — 14r°r + 1277) r2dr =
0 Te
_ 1596222
178757,

Let us also calculate the following integral:

= [ (2= vea) ato = [ at) (£ - vin) rar
1097622

- 17875r,
Which agrees with [Pask2012], equation (10c). The following integral over the sphere of radius r.:

o= [ (Z-vio)aa=tn [ (£-vi)riar=

_ l4nZr?
7
Again in agreement with [Pask2012], the paragraph after equation (17).

Code:

>>> from sympy import var, pi, integrate, solve
>>> var("r r_c Z A B")
(r, r_c, 2, A, B)

>>> n = —21xZ%(r-r_cC) **3% (6+%r*+2+3+r+xr_ctr_c*+2)/ (5+pix r_c*+*8)

>>> 4dxpixintegrate (nxr*+2, (r, 0, r_c))

7

>>> V = integrate(-4+pi*r*n, r, r)/r

>>> V.simplify ()

Zxrxx2% (9%r**x5 — 30*r**xdxr_c + 28xrx*3*r_c*x2 — 14d*xr_cxx5)/ (5*r_c**8)

>>> ((V+A+B/r) .diff(r)+r++2) .simplify ()

—B 4+ 63xZ*xr*xx8/ (5*xr_c**x8) — 36xZ*rxx7/r_Cxx7] + 28%xZ*r*x*x6/r_Cx*x6 — 28%xZxr*x*x3/ (5xr_cx%3)
>>> (V+A) .diff(r) .subs(r, r_c)

—-Z/r_Cc*x*x2

>>> (V+A) .subs(r, r_c)

A - T7x2/(5%r_c)

>>> A = solve ((V+A) .subs(r, r_c)-Z/r_c, A)[0]
>>> A

12%7/ (5xr_c)

>>> V =V + A

>>> V.simplify ()

Zx (xx2% (9%r*xx5 — 30%rxxdxr_c + 28xr**3*xr_cx*x2 — ldxr_c**5) + 12xr_c**7)/ (5+r_c*x8)
>>> 2+pixintegrate (n*Vxr++2, (r, 0, r_c))
15962xZ**2/ (17875%r_c)

>>> 4dxpixintegrate (nx (Z2/r-V)*rx*x2, (r, 0, r_c))
10976%xZx%2/ (17875xr_c)

>>> 4dxpixintegrate((Z2/r-V)+r*x2, (r, 0, r_c))
14+pixZ*xr_c*x2/75
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Alternatively, one can also calculate this using a Piecewise function:

>>> from sympy import var, pi, integrate, solve, Piecewise, oo, Symbol

>>> var("r 72 A B")

(r, 2, A, B)

>>> r_c = Symbol ("r_c", positive=True)

>>> n = Piecewise ((-21xZ+(r — r_cC)*#3% (6xr**x2 + 3%rxr_c + r_c**2)/(5+pi*r_c+*x8), r <= r_c), (0, True
>>> 4dxpixintegrate (nxr**x2, (r, 0, 00))

Z

>>> V = integrate(-4xpi*r*n, r, r)/r

>>> V.simplify ()

Piecewise ((Zxr*x%2% (9%r*x5 — 30*r**4xr_c + 28*r**3xr_c*x*x2 — 1ldxr_cxx5)/(5+xr_cxx8), r <= r_c), (0, Trucs
>>> ((V+A+B/r) .diff(r)+r++2) .simplify ()

Piecewise ((-B + 63%Zxr**8/ (5*xr_c**8) — 36xZ*r**x7/r_cC**71 + 28*Z+r*+x6/r_C**6 — 28xZ*r**3/(5xr_c**3), r
>>> (V+A) .diff (r) .subs(r, r_c)

—-Z2/r_Cc*x*2

>>> (V+A) .subs(r, r_c)

A — 7xZ/(5%xr_c)

>>> A = solve ((V+A) .subs(r, r_c)-Z/r_c, A)[0]

>>> A

12xZ/ (5%xr_c)

>>> V = V + Piecewise((A, r <= r_c), (0, True))

>>> V.simplify ()

Piecewise ((Zx (r**2% (9xrxx5 — 30*r**4xr_c + 28*r**x3xr_c**x2 — 1l4dxr_cx*x5)/r_cxx7 + 12)/(5*r_c), r <= r_«
>>> 2+pixintegrate (n+Vxrxx2, (r, 0, 00))

15962x2xx2/ (17875*r_c)

>>> 4xpixintegrate(n* (Z/r-V)*rxx2, (r, 0, 00))

10976xZxx2/ (17875*r_c)

3.38 Linear Algebra

3.38.1 Scalar Product

Virtually all spaces used in physics are Hilbert spaces (treated in the weak sense, i.e. equipped with distributions),
which means that they have a scalar product and a norm.

The braket { f|g) in Dirac notation is a scalar product and we are free to define it anyway we like, as long as it satisfies
the following properties:

(flg) = (gl H)"
(flag) = a(flg)
(fi + falg) = (filg) + (f2lg)

{flf)=0
where (f|f) = 0if, and only if, | f) = 0. Scalar product induces the norm:
A= VA{fLF)
Any norm has to satisfy the following properties:
alf) 11 = lalll 1) 1]
LY+ 1 <A+ g ]
1)1 =0

where || |f) || = 01if, and only if, | f) = 0. Those properties are automatically satisfied by the induced norm.
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In general, any of these properties can be weakened, one can study spaces that have a norm, but not a scalar product, or
spaces, that have objects resembling a norm (or a scalar product), that only satisfy some of the properties of the norm
(or a scalar product). Those are not very important in physics. On the other hand, it is very important to understand
how to work with Hilbert spaces (in the weak sense). Dirac notation makes it very easy to understand and remember
how to work with such spaces.

Examples

Some examples of frequently used spaces and scalar products follows.

Finite dimensional spaces:

n
Fl=(h fo o f)

R™ Euclidean scalar product:

g1
92
<f|9>:(f1 fa - fn) . = fig2 + fago + -+ + fugn
gn
Infinite dimensional spaces:
f1
=1 I
(fl= ( fi fe )
12 scalar product:
g1

(flop=CfH fo ) 9.2 = figo + fogs + -

Function spaces:

L? scalar product:

H?' scalar product:
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H? scalar product:
(o) = [ £ @) + @' @)+ £ @) (a)da

Energy scalar product:

(flg) = ./f o(@) + ™ (@)p(x)g (x)dz

All of these scalar products automatically satisfy all of the properties of the scalar product, only the energy scalar
product doesn’t automatically satisfy (f|f) > 0, which imposes some conditions on the parameters p(z) and g(x).

3.38.2 Projections

Projection is a linear idempotent operator P:
p?=p

It takes a vector |u) from V' and projects it onto a vector |w) = P |u) from W. Further application of the operator P
gains nothing: P |w) = P2?|u) = P|u) = |w). It decomposes the space V into a direct sum V = W @& W of the
projection subspace W and its complement W L. If |w) is from W then its complement |u) — P |u) is from W+,

Orthogonal projection is a projection that is Hermitean:
Pi=p
The complement of an orthogonal projection is orthogonal to any vector from W:
(u — Pulw) = (ulw) — (Puw) = (ulw) — (ul P|w) =
= (uw) = (u|Plw) = (ufw) — (ujw) =0

In other words, orthogonal projection projects a vector |u) from the space V' into an orthogonal subspace (projection
subspace) . The two spaces W and W are orthogonal, because any vector from W is orthogonal to all vectors
from W=. Given the space W, the operator P is unique.

The complement of non-orthogonal projection is not orthogonal to any vector from W:
(u— Pulw) = (u|w) — (u|Plw) # (ulw) — (ul P|w) = (u]w) - (ulw) =0

And the two spaces W and W are not orthogonal, because any vector from W is not orthogonal to any vector from
W, Given both spaces W and W+, the operator P is unique.

If we choose any orthonormal basis |wg), |w1), |ws), ..., of the subspace W, then the orthogonal projection P is:

P =" |w) (wy] (3.72)
k=
because:

lek wklZ\wz (wy| = Z |wi) (wi|wr) (wi] =

k,l=0

Z W) Okt ( wz|—Z\wk (wi| =

k,1=0
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and

- b s .
Pt = (Z |wk) <wk|> = (Jww) (wi)" =" Jwe) (wi| = P

k=0 k=0 k=0

P is independent of the basis, i.e Yoo [wg) (wi| = Y=, [u) (w], as long as |u;) span the same subspace as |wy),
because the operator P is unique.

To find the closest vector |w) from W to the vector |u) from V, we need to minimize the norm || [u) — |w) ||. So we
write |w) = P |u) + |z) for some vector |z) from W and simplify the norm:

[l ) = Jw) ||* = (u = wlu — w) = (u— Pu—zlu — Pu—z) =
= (u — Pu|u — Pu) + (z|z) — (u — Pu|z) — (z|u — Pu) =
= (u— Pulu — Pu) + (z|z)

which is minimal for |z) = 0, so we found out that the closest vector is |w) = P |u). We used the fact that
(u — Pu|z) = 0, because |u — Pu) is from the orthogonal complement to the subspace W. In other words, orthogonal
projection finds the closest vector from a subspace onto which it projects.

Projection Coefficients

Given the basis |vy) (orthogonal or non-orthogonal), we would like to find a formula for the projection coefficients ¢y,
defined by:

oo

Plu) = Z |vk) ¢ (3.73)

This holds, because P |u) belongs to the space W and every vector from it can be expressed as a linear combination
of |ug).

Projecting to Orthogonal Basis
For orthogonal projections we simply substitute the equation (3.72) into (3.73) and get:

Pluy =" w) (welu) = wi) ¢ ,
k=0 k=0

from which the projection coefficients ¢, are given by

or = (wilu) . (3.74)
Projecting to Nonorthogonal Basis

In order to project onto a nonorthogonal basis |vj) (for example a finite element basis), we multiply (3.73) by (v|
from the left and simplify:

(0| Plu) = (vilvx) o
k=0
(0| PTlu) = (orlow) o

k=0
o0
’Ul‘ Z ’Ul|’Uk

k=0
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so we need to solve a linear system for the coefficients ¢x:

Aidr = fi, (3.75)

where

A = (vi|vg)
fl = <vl|u> .

This works for any basis, it doesn’t have to be normalized nor orthogonal. In the special case of a (normalized)
orthogonal basis, we get A;;, = (v;|vg) = 0ix, and from (3.75) we get

Ao = odr = &1 = fi = (uilu) ,

so we recovered the equation (3.74) as expected.

Examples

R3 orthogonal projection. Orthogonal basis:

1
|w0>: 0
0
0
|w1>: 1
0
1 0 0 0 0O 1 00
P = |wp) (wo| + |w1) {w1]=[ 0 0 O |+ 0 1 0 |=(0 1 0
0 0 0 0 0 0 0 0 0
Different orthogonal basis:
1
1
\w0>:— 1
2\ 0
=2
wy) =— | —
v\ o
1 1 10 1 1 -1 0 1 0 0
PZ‘U}O><’LU0|—|—|’LU1><U)1|:§ 1 1 0 +§ -1 1 0 = 01 0
0 0 0 0 0 0 0 0 0
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Because the projection is not orthogonal (in the R? Euclidean scalar product), the projected point (z +ay, 0) is not the
closest point (in the induced Euclidean R? norm) to (x, ). For a = 0 the projection becomes orthogonal and indeed
the projected point (x, 0) then becomes the closest point to (x, y).

Lagrange interpolation projection onto the space {1, z}:

lu) = f(x)
play _ S ) = f)
2 2
L? projection onto the space {1, z}. Orthogonal basis
lu) = f(x)
o) = =
wo \/§
fwn) =1/ 32
P |u) = [wo) (wolu) + |wi) (wi|u) =

f/ \[ dx+\/> / \/>33f 2/11f(a:)da:+gx/11xf(a:)dx

Different orthogonal basis:

|wo) = ?(1 +x)
fwr) = %1 ~ 30)
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Nonorthogonal basis:

Apdr = fi
A — ( Ao Aot ) _ ( (wolwo)  (wolwy) ) _
th Ao An <U/1|wo> <w1|w1)
_ f_lldx f_111+xdx <2 2)
B f_lll—i—a:dx f_ll(l—l—x)Qd:E 2 8

a=(5)- () -(p )
by = ( itl) > = A fi = ( _2% _gg > ( f11{£+f;:);?ﬂf)dm ) )
f

_< 2fj1f<x)—g(1+m> (z)dz )_
f(z)dx

B @+ 30t
Plu) = Iwo> o + |w1) ¢
:1(2/_11f(x)_2(1+x)f(x)dx) 1+ x) (—/ f(z 1+x ()dx):
_ ;/11f(x)dx+3x/1$f(l")dx

\/v
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H' projection. Nonorthogonal basis:

|’LUO> =1
lwi) =142z
Appdr = fi

Ay, = < Ao Aox ) _ ( (wolwo)  (wolwr) ) _

Ay An (wrlwo)  (wi|wr)
B fildx fi11+xdx <2 2 >
Shi+ede [ (1+2)2+1de 2 3

1 7 _3
Ag = _8§ §8
s 8

_(fo ) _( {wolw) ) _ 4y f(@)de
= (8= (i) = (o)
o Do\ _ 41 _ : -3 filf(x)da: _
w=(0)=min=(% ) ( L1+ ) f @) + @) do )
_ ( L@ - 20+ o) f(e) - 2f (w)de ) _
JL =3 @) + 20+ 2)f(2) + 3 f (w)da
Plu) = |wo) ¢o + [w1) 1 =

1

=1([ Lo -2aense - 2rwe) sarn ([ 2w+ danse + e -

—1 —

1 3, '3 3 . _
:Ll§f(x)—§f (:c)dx+x/71 gt/ (@) + g fi(a)de =

8 8

1 1
= [ gr@aao [ Lef@de - 200 = F-1) + Gals D)~ F(-1) =

1 1
=3/ S e [ e gt - o)

3.39 Differential Geometry

3.39.1 Manifolds

Scalars, Vectors, Tensors

Differentiable manifold U is a space covered by an atlas of maps, each map covers part of the manifold and is a one to
one mapping to an euclidean space R™:

¢:U—R"
Let’s have a one-to-one transformation between x* and x'# coordinates (we simply write z = z*, etc.):

2 =1 ()

x = x(x)
Scalar ¢(x) is such a field that transforms as (¢’ (z') is it’s value in 2’ coordinates):

¢'(z') = ¢(x)
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One form p,, (z) is such a field that transforms the same as the gradient 8;’;? of a scalar, that transforms as (

it’s value in &’ coordinates):

¢’ (z') -
ox'H 18

o¢'(x')  O0x¥ 0¢'(x')  Ox¥ O¢(x)

dx'm  dr'm Hxv  Ox't Oz
SO
ox?
p,/u,(x/) = ax/‘upl/(x)

Vector V¢ is such a field that produces a scalar ¢ = V*p, when contracted with a one form and this fact is used to
deduce how it transforms:

oxP
8x/()¢

o =V, =V —ps=0¢=V’ps

so we have

. oxP Vo

az/a -

. . ’ . B ’ ’
multiplying by % and using the fact that gj,a %ﬁ;; = g%: = 0 we get

ozx'*
ozP

Higher tensors are build up and their transformation properties derived from the fact, that by contracting with either a
vector or a form we get a lower rank tensor that we already know how it transforms.

Vit = V7’

Having now defined scalar, vector and tensor fields, one may then choose a basis at each point for each field, the only
requirement being that the basis is not singular. For example for vectors, each point in U has a basis €,, so a vector
(field) V' has components VV* with respect to this basis:

V =V,

Covariant differentiation

The derivative of the basis vector gi‘; is a vector, thus it can be written as a linear combination of the basis vectors:
06y
axﬁ - FaﬁeH
Differentiating a vector is then easy:
v o o Ve 98, Ve P )7
o VgV = 5P €y +Va6‘a:5 - 5P €y +V I‘aﬁ w=\ 5.7 +FZ‘BV €a
So we define a covariant derivative:
ove
VeV = 2P + I‘gBV”

and write
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IL.e. we have:
VsV = Vs(VE,) = (VsV)ea
We also define:
ViV =Vxse,V=XVsV = XP(VsV)e,

A scalar doesn’t depend on basis vectors, so its covariant derivative is just its partial derivative

3¢>
Vap =~
Differentiating a one form p,, is done using the fact, that ¢ = p, V' is a scalar, thus
Opa VY Opa 8V“ _ Opa
Vs = S5V 55V +pa (VaV —TsVH) =
= 50 T 0aP a7~ gn "’ TP (Ve woV")

8 « « (0% «
= ye (aiﬁ Fﬂﬂpu) +paVaV® = VOVppa + paVsV

where we have defined
Vipa = a 75 — CagPu
This is obviously a tensor, because the above equation has a tensor on the left hand side (V 3¢) and tensors on the right

hand side (p, VgV ® and V). Similarly for the derivative of the tensor A*” we use the fact that V# = A"p, is a
vector:

VeV = Va(A™p,) = 05(A™p,) + " jA®p, = p, 05 A" + AP Ogp, + T, A% p, =

— p,Os AP 4 APV (vgpy n rgﬁpﬂ) +TH A%, = p, V5 AR + AT gp,
where we define
Vg AM = g A™ + FZBAW + FgﬂA‘“"
and so on for other tensors, for example:

VaAl, = 9gAl, +T! A%, — T2, A%,

VA =04 —TjgAay —T)5Au0
One can now easily proof some common relations simply by rewriting it to components and back:

Ve(fY)= (V)Y + fVY

Change of variable:

dzh dxv _, Ox'™ N ox'*  9%z°
ox'B oz~ M oxe T Oz dx'BoxY

/
Faﬁ’v:
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Parallel transport

If the vectors V' at infinitesimally close points of the curve z#(\) are parallel and of equal length, then V is said to be
parallel transported along the curve, i.e.:

So

AV d(VeE,)

da? o d
D - Vi) =y

. B
In components (using the tangent vector U” = ‘%\):

dve
=UPV3Ve =0
d\ A
Fermi-Walker transport
In local inertial frame:
Uy = (1,0,0,0)
ds?
=0
de

We require orthogonality S,,U#* = 0, in a general frame:

dse o dU#
dr =AU =5, dr

UCE

where A\ was calculated by differentiating the orthogonality condition. This is called a Thomas precession.

For any vector, we define: the vector X* is Fermi-Walker tranported along the curve if:

dx* dUu« dUu#
= —_— N —_— @
dA “dA U = XU dA

If X*# is perpendicular to U*, the second term is zero and the result is called a Fermi transport.

Why: the U* is transported by Fermi-Walker and also this is the equation for gyroscopes, so the natural, nonrotating
tetrade is the one with & = U*, which is then correctly transported along any curve (not just geodesics).

Geodesics

Geodesics is a curve () that locally looks like a line, i.e. it parallel transports its own tangent vector:
UPVsU* =0

o)

UPosU* +T4,UPUY =0
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or equivalently (using the fact UP 95U = % 5242t — d;Tx;)I

d2z da? da
- a =0 (3.76)
dx2 TP AN da
Let’s determine all possible reparametrizations that leave the geodesic equation invariant:
N=f\)

dz®  d) da* ;o daz®
dh T dh AV _f()\)d/\’

dQﬁ _ i <f,()\)d330‘> _ f”()\)dgja +f/()\)idxa _

dA2 dA %\ dN dA dX
dz® d dz®
_en 2 - _
= d)\’ +f (/\)dX dxN
dQl‘a
" 12

Substituting into the geodesic equation, we get:

')

dx® 2 d2z® o dzfda?
v T )<d/\’2 v av ) T

So we can see that the equation is invariant as long as f”(\) = 0, which gives:
fA) =a\+b

This is called an affine reparametrization.

Another way to derive the geodesic equation is by finding a curve that extremizes the proper time:

dx# dav
T_/dT_ /\/—d32 /\/ égﬂydxﬂdx'/ —/ cZgW o —d\ = /Kd)\

Here ) can be any parametrization. We have introduced K to make the formulas shorter:

1 dz# dxv
K=\ — =g —
29N T
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We vary this action with respect to x*:

oT = 6/Kd/\ =
T et der
2y ax
dz* dz e dz* T
_ / = ((9g,0) G5 %A + 9w (055) S C 9 S dx (5d ))d/\ _
2K
¥ dx zH x”
_ 1 (=3009) S5 5 — 9 (055) %) A\ =
c? K
dz* dz¥ d(éz®) 5517 dz”
=3 T =
1 _%(595 )aaguvddx; (g)\ d gal’% o

dx”
Jov dx | _ 1 L
¢? < dA( ) 200w d\ dA (62)dA =
1 d 1 dga, dz¥ A%z 1 dzt dz¥ o _
= 02/K< Y (K) Ty e _28“9“”cucu) (02%)dA =
1

2.V n v n v
Kf( )—I—gwdx gy AT g dxdx)((sgﬂ)dxz

axz " OmderT Ty T 2% T

C
1 1 d 1 A2 do da
2 ( (K) + Gow d)\2 + 2(8Mgoa/ + augau aagw/)id)\ ) ) (61‘ )d)\

1 d (1 d?a” dat da”
— | K— [ — L — 1 » dar g) o ST ap _
/K ( d K) + 9o d)2 + 2(8Mg + 0vgap — Oagu ) I dr ) g ((Sl'p)d)\

A
1 1 d d%z” da’ dz”
= 5 / E (K () gap + 51/p ° + égap<8ugozu + augau - 8<¥9HV)L i ) ((5$p)d>\ =

dx dA
1 1 d /1 A2z dz#* dx¥

T B I Pt [l IC7 re
2 K( ax (K)g o e ) (0zp)d

By setting the variation 7 = 0 we obtain the geodesic equation:

d /1 d2z? dz* dz”
K (=) gor re ST ST 3.77
ax (K)g e P =Y ©77

We have a freedom of choosing A, so we choose such parametrization so that dA = d7, which makes K = 1 and we
recover (3.76):

d2zr o di“dx” B

da? MR dA dA

Note that the equation (3.77) is parametrization invariant, but (3.76) is not (only affine reparametrization leaves (3.76)
invariant).

Riemann Curvature Tensor

Curvature means that we take a vector V*, parallel transport it around a closed loop (which is just applying a com-
mutator of the covariant derivatives [V, V3]V#) and see how it changes. We express the result in terms of the vector
V.

[VQ,Vg]V“ = R”VQBVV
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The coefficients [?#,,3 form a tensor called Riemann curvature tensor. Expanding the left hand side:
[V, Vg|VF =V, VgVH =V, VgVH =
=V, VaVH —(a e ) =
= 0o VpVH =175V VE+TE VeV —(a > ) =
= 0q (85V“ + FgaV") =I5 (0 VH+TL,VY)+ T4, (831/" + F"VV”) —(aep) =
= 00 (9V" + T, V) +Th, (V7 +T5,V*) = (a & B) =
= 0003V" + 0,1, V7 + FgaaaV” + 18,08V + L, T3, VY — (a < ) =
= &JZUV" +TE T2,V —(a+ ) =
= (0aTf, + T2, TG, — (a6 8)) V"

Where we have used the fact that all terms symmetric in /3 (in particular I'g 5 and 0,03V * and Fgaaa VI4THE 05V )
get canceled by the same term in the (a <> 3). We get

RVyap = 0o, + T4, T, — (a ¢+ f) = .1, — 93T, + T T, —Th T7

Bo™ av

In order to see all the symmetries, that the Riemann tensor has, we lower the first index
Ruuaﬁ = g#)\RAVQB = gll)\ (aargu + P/o\zargu - (OZ & ﬁ))
and use local inertial frame coordinates, where all Christoffel symbols vanish (not their derivatives though):

Ruvap = gur (0I5, — (a < B))
= gux (0a (397 (08900 + Ov9op — Osgp)) — (a > B)) =
= 3909 (0 (0890w + Ovgos — Osgpy) — (o 4> B)) =
= 50,7 (0 (089ov + Ougop — Dogp) — (& B)) =
= 5 (00089 + 000u9up — 0adugp, — (a & B)) =
= 5 (0a0u9up — FaOugpy — (a & B)) =
= 3 (0a0v9up — 0aOugpy — 00y Gpa + 930uga)

We will also need:
v)\Ruyaﬂ = %fh (aaaygﬂg — 8Q8Hggu — (Oz s ﬂ)) =
= 1 (0x0a0u 95 — Ox0a0ugpy — 02030y Gua + Or030uGar)

Using these expressions for the curvature tensor in a local inertial frame, we derive the following 5 symmetries of the
curvature tensor by simply substituting for the left hand side and verify that it is equal to the right hand side:

Ruvop = —Ruvpa
Ruvap = —Rupap
Ruvap = Rapuv
Ruvap + Ruapy + Rugva =0
VaBRwas + VuRuxag + ViRauag =0

These are tensor expressions and so even though we derived them in a local inertial frame, they hold in all coordinates.
The last identity is called a Bianchi identity.

The Ricci tensor is defined as:

A A
R;w =R pI v — g URUMAV
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From the last equality we can see that it is symmetric in . A Ricci scalar is defined as:
R=R',=¢""R,,
The Einstein tensor is defined as:

G;u/ = R;UJ - %RQW/

It is symmetric in pv due to the symmetry of the metric and Ricci tensors. By contracting the Bianchi identity twice,

we can show that Einstein tensor has zero divergence:

39" (VARuap + VuRuras + ViRrjas) =
=V Ruvap + V0 RPrap + VP9 Ry s =
= V9" Ryppo = Vg R’ xpa + VPR o =
= VQRBMM - vug/\aR/\a + vﬂRuﬁ =
= VR0 — VR + VP R,5 =

=2V*R,a — V,R =
=2Vv* (Rua - %guaR) =
= 2VGe = 0

Lie derivative

Definition of the Lie derivative of any tensor 7' is:

LT = lim ¢ T(¢e(p)) — T(p)

t—0 t

it can be shown directly from this definition, that the Lie derivative of a vector is the same as a Lie bracket:
L;V =[U,V]
and in components
LpVe =[U,V]* =UPVaVe —VPVaU® = UP9zVe — VU™
Lie derivative of a scalar is
Lof=V"o.f
and of a one form p,, is derived using the observation that f = p, V* is a scalar:
Lopy=V"'Vupu +0,V, VY =VY0,p, + p,0, V"
and so on for other tensors, for example:

Lo =V Vaguw + 9 ViV + 90 ViV = V00900 + 9o 00V + 9ua0,V®
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Metric

In general, the Christoffel symbols are not symmetric and there is no metric that generates them. However, if the
manifold is equipped with metrics, then the fundamental theorem of Riemannian geometry states that there is a unique
Levi-Civita connection, for which the metric tensor is preserved by parallel transport:

Vugag =0
We define the commutation coefficients of the basis ¢, by
Ca,wé'a = Vg“é'l, - Vajé}t

In general these coefficients are not zero (as an example, take the units vectors in spherical or cylindrical coordinates),
but for coordinate bases they are. It can be proven, that

Ths = 39" (989oa + Oagos — OoGap + Cacs + Cooa — Coap)
and for coordinate bases c*,,,, = 0, so
I‘Zﬁ = I‘ga
Iy = 39" (08900 + Oadop — Oogop)
As a special case:
FZB = %g/w (9890 + Opugos — o gup) = %g””@gggu =
= %Trgflagg = %Trag logg = %5‘5Tr logg = %85 log | det g| = 93 log m =

1 1
= ———0gdetg = ——0 det
Sdet g0 49 FET 54/ | det g|

All last 3 expressions are used (but the last one is probably the most common). g is the matrix of coefficients g, .
At the beginning we used the usual trick that g"° is symmetric but 0,903 — 959, is unsymmetric. Later we used
the identity Tr log g = log | det g|, which follows from the well-known identity det exp A = exp Tr A by substituting
A = log g and taking the logarithm of both sides.

Diagonal Metric

Many times the metric is diagonal, e.g. in 3D:

Rt 0 0
9i; =0 hi 0
0 0 h3

(in general g;; = diag(h?, h3,...)), then the Christoffel symbols I‘fj can be calculated very easily (below we do not
sum over i, 5 and k):

IF = 10" (09 + 0igi; — 019i5) = 39" (0 9k + Oigrj — Ongij)

If k =iork = jthen

i i i i 1 1
IV =T =T% = 19" (0;9i + 0;9i; — 0ig9i;) = 39"0;9i = %ﬁajh? = 7-0;hi (3.78)
otherwise (i.e. k # i and k # j) then either i = j:
1 h;
TF =TV = 19" (Oigri + Oigki — Okgis) = — 39" Ongii = —%hﬁakhf = —hﬁﬁkhi (3.79)
k k
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ori = j(ie. 1 # j #k):
IF = 19" (0;gxi + Oigrj — Orgij) =0

In other words, the symbols can only be nonzero if at least two of 7, j or k are the same and one can use the two
formulas (3.78) and (3.79) to quickly evaluate them. A systematic way to do it is to write (3.78) and (3.79) in the
following form:

X , 1
; hi .
I, = —ﬁajhi i#£]
J

Then find all ¢ and j for which 9;h; is nonzero and then immediately write all nonzero Christoffel symbols using the
equations (3.80).

For example for cylindrical coordinates we have h, = h, = 1 and hy = p, so J;h; is only nonzero for ¢ = ¢ and
7 = p and we get:

1 1 1

I =T% = —0,hy = -0,p=—~

ép 2 hy ? ¢ p pP P
he p

all other Christoffel symbols are zero. For spherical coordinates we have h, = 1, hg = p and hy = psiné, so 9;h; is
only nonzero fori =6, j = pori=¢,j =pori= ¢, j =0 and we get:

1 1 1
Y =T% =—0,hg = -0,p = -
0p po h9 p!to p pP p
he p
Fge = ——(%he = ——8pp = —p
h2 12
o —pe — Lo ! d,(psind) = =
dp ~ Tpd T ] pd’_psi p\P -
h sin 6
T4y = —h—g(‘)phqs = —%{%Wsm@) = —psin? 6
P
1 1 cos 0
% =T% = —0ghy = Dp(psinf) =
®0 09" h, o' psin 0 b (psin6) o
h in6
Fg(b:—h—g@g%:—pj? Op(psing) = —sinfcosd

All other symbols are zero.

Symmetries, Killing vectors

We say that a diffeomorphism ¢ is a symmetry of some tensor T if the tensor is invariant after being pulled back under

¢:
6T =T

Let the one-parameter family of symmetries ¢, be generated by a vector field V#(x), then the above equation is
equivalent to:

LT =0
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If T'is the metric g,,,, then the symmetry is called isometry and V'# is called a Killing vector field and can be calculated
from:

Lygu =V Vaguw + 9o ViV + gua VLV =V, V, +V,V, =0

The last equality is Killing’s equation. If x# is a geodesics with a tangent vector U* and V'# is a Killing vector, then
the quantity V,,U* is conserved along the geodesics, because:

d(V.U")

S = UYVL(VU) = UM URN, Y, + VUV, UM =0

where the first term is both symmetric and antisymmetric in (u, v), thus zero, and the second term is the geodesics
equation, thus also zero.

Symmetry and Antisymmetry

Every tensor can be decomposed into symmetric and antisymmetric parts:
Top = 3(Tap + Tpa) + 3(Tap — Tga)
In particular, for a symmetric tensor So3 = S, We get:
Sap = 3(Sap + Spa)
and for antisymmetric tensor A, = —Ag, we get:
Aap = 5(Aap — Apa)
When contracting a symmetric tensor with an antisymmetric tensor we get zero:
Sap AP =
= 150547 — 4%%) =
(SapA®” — SagA®?)
(SapA®” — SpaA”?)

(SapA®? — SapA®P)
=0

N N~ N

When contracting a general tensor 7" with a symmetric tensor S, only the symmetric part of 7" contributes:
TopS af —
= 5(Tap + Tpa) S + §(Tap — Tpa) 5 =
= 3(Tap + Tpa) 5’
When contracting a general tensor 7" with an antisymmetric tensor A, only the antisymmetric part of T" contributes:
T.pA*P =
= L(Tup + Tpa) AP + L (Top — Tpa) AP =
5(Top + Tpa) A" + 5(Tap — Tha)
~ Han - Toa) A
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Example |

We want to rewrite:
dzt da”
20,
92" qs ds ds

So we write the left part as a sum of symmetric and antisymmetric parts
da* dz¥

(aug,uA + 8,ugu>\ + augu)\ - augu)\) ds d

N . . H v N . . .
Ougyy is antisymmetric and ddis ddis is symmetric in u, v, so the contraction is zero. The final result is
dz* dz¥

Here 0,9, —
(8ugu/\ + augz/)\) ds dS

Example Il

0y A,. Then we can simplify:
FrFE,,
2F‘“’%(8MAV

0,A,,) is the antisymmetric part (the only one that contributes, because F*¥ is antisymmetric) of

Let F,, = 0, A, —
= FM"(0,A, —0,A,) =

- 0,A,) =2F"0,A,
Here (0, A, —
OuA,.
Example Il

0y A,,. Then we get

Let ELI/ = auAu — Uy
F,

vt =0,

because I}, is an antisymmetric tensor, while v#v" is a symmetric tensor.
Divergence Operator

VAR = 9, AP 4 TV, A7 =

— 9, A" + % (00 /Tdetgl) 47 =
|dt (\/|detg A“)

If the metric is diagonal (let’s show this in 3D)

then
\/ | de | =h h2h3
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and

V- A=V A = 9; (hihahs AY)

hihohs

Laplace Operator
Vip =V, Vip=0,VFp +F“ Voo =08,0"p+Th, 070 =
9,4/ |detg|) 87 =

1

= 0,0 + ———

‘d ” f%( Idetglg“"f)aw)

If the metric is diagonal (let’s show this in 3D):

hi 0 O
g =10 h% 0
0 0 h?
then
\/ | det gij| = hihahs
1
W 0 0
g7=10 3 0
0 0 h—lg
and

Covariant integration

If f(x) is a scalar, then the integral [ f(z)d
coordinates is:

/ F@)VIgld

where g = det g,,,,. The Gauss theorem in curvilinear coordinates is:

V,ut gd41:—/
[ =
2/ \/|g|u“nud3x= u“nH\/|g|d3x
o o

where 0f2 is the boundary (surface) of {2 and n,, is the normal vector to this surface.

\/gu") \/gd‘lx = /Qau (\/EU“) d*z =

42 depends on coordinates. The correct way to integrate f(z) in any
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3.39.2 Examples
Weak Formulation of Laplace Equation
As an example, we write the weak formulation of the Laplace equation in arbitrary coordintes:
Vip—f=0
/ (Vzgov — fv) \/@d?’x =0
/ <\/1?82 ( |g|gij8jg0> v— fv) Vigld®z =0

[ (@ (Viglaose) v = so/Tgl) db =0
Now we apply per-partes (assuming the boundary integral vanishes):

/ (— 1919 0, p0iv — fU\/E) dr=0

/ (—gijajgo@iv - fv) \/Ed“?'x =0

For diagonal metric this evaluates to:

/ ( Z %aZQDaZU - f’l}) hlhghgdgl' =0

Cylindrical Coordinates

T = pcosqo
y=psing
z=2z

The transformation matrix is

oz, y,2) cos¢p —psing 0

— = sing pcos¢p O
(p, 9,2) 0 0 1

The metric tensor of the cartesian coordinate system % = (z,y, 2) iS Gab

= diag(1, 1, 1), so by transformation we
get the metric tensor g;; in the cylindrical coordinates z° = (p, ¢, 2):

A
i3 = ozt OxJ Jab = Oz gax

100
:(a<x,y7z>>T 0 1 o) @2
0 0 1 Ap, o,z

)
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cos ¢ sing 0 1 0 0 cos¢p —psing 0 1 0 0
= | —psing pcos¢p 0 01 0 sing pcosg¢ 0| =[0 p?> 0
0 0 1 0 0 1 0 0 1 0 0 1
1 0 0
g7=1[0 5 0
0 0 1
detg:detgij:p2
hy,="h,=1
hg = p
1 1 1
¢ _ 19 _
F¢pf1ﬂp¢fh—¢5ph¢— 8,,p—;

he p
Gy = g Ol =~ 3000 = =0

i __ 1 . At _1 . 7\ _
V- A= VZA = hthhgaZ (hlhghdA ) = pal ([)A ) =

1 1
= S0p(pA”) + 0pA® + 0. A% = 9,A° + A+ 0pA? + 0, A7

V2p = ViV,p = o, ( [det g] gifajw) -

1
V| detg|

1 . 1 1 1 1
— 28, (pg8;0) = =8, (pD,0) + -0 <a >+az 9.0) =
p (pg” 0;¢) p b (p,0) 00 (P a0ep ) + 2 (p0=p)

1 1
= ;3;) (POpp) + ;%%sﬁ +0.0.¢ =

1 1
= 0,0,p + ;6,,4,0 + ?8(258(1590 + 0,0,p

As a particular example, let’s write the Laplace equation with nonconstant conductivity for axially symmetric field.
The Laplace equation is:

V.-oVp=0
so we use the formulas above to get:
- 0 Op 1 0 9p 0 0Op ocdp
0=V -oVp=VieV,p= —0—+ —-—0—" + —0-2 + =X
oV Vv 8p08p+p28¢08¢+8206z p Op
but we know that ¢ = ¢(p, 2), so g—g = 0 and the final equation is:
0 Odp 0 Op 00y
=0 —+ 70—+ —F% =
Op Op 0z 0z pOp
To write the weak formulation for it, we need to integrate covariantly (e.g. p dpd¢dz in our case) and rewrite it using

per partes. We did exactly this in the previous example in a coordinate free maner, so we just use the final formula we
got there for a diagonal metric:

0

/ (—6/,908,,@ — p—lzaz,gpo%v — 62908211) opdpdpdz =0

and for 0y = 0, we get:

27 / (0pp0,v + 0.¢0.v) opdpdz = 0
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Spherical Coordinates

The relation between cartesian coordinates 2 = (x, ¥, z) and spherical coordinates z° = (p, 6, ¢) is:

x = psinf cos ¢
y = psinfsin ¢ (3.81)

z = pcosf

The transformation matrix (Jacobian) is calculated by differentiating (3.81):

N sinfcos¢p pcosfcos¢ —psinfsing
g—x = g(x,# = | sinfsing pcosfsing psinfcos (3.82)
v LA cosf —psind 0

The inverse Jacobian is calculated by inverting the matrix (3.82):

sinfcos¢ sinfsing cosf

% - 5(p, 9, Qb) . cos 0 cos ¢ cos 6 sin ¢ __sinf
9% O(z,y,2) _#mo cos ¢ 0
psin @ psin 6

We expressed the above Jacobians using p, 6, ¢ and we can use (3.81) to express them using x, y, z. Code:

from sympy import var, sin, cos, zeros, Matrix, simplify, latex
var ("rho theta phi")
x_hat = Matrix ([
rho * sin(theta) * cos(phi),
rho % sin(theta) * sin(phi),
rho * cos(theta)])
x = Matrix([rho, theta, phil])

M = zeros (3, 3)
for i in range(3):
for j in range(3):
M[i, j] = x_hat[i].diff(x[j])

N = M.inv (method="ADJ")

one = sin(phi)*+2+sin(theta)**2 — cos(phi)**2+cos (theta)*2 + \
cos (phi) **2 + cos (theta) »*2
one_simple = one.subs(sin(phi)**2, l-cos(phi)**2).expand() .simplify ()

N.simplify ()
# one_simple is equal to 1, but simplify() can’t do this automatically yet:
N = N.subs (one, one_simple)

print "J =", latex(M)
print
print "J*{-1} =", latex(N)

Output:

sin (¢) sin (0) psin (¢) cos (0) psin (0) cos (¢)
cos (0) —psin () 0

lsin (0) cos (¢) sin (¢) sin (8) cos (0) ‘|
J =

7o |:sin (0) cos (¢) pcos(¢p)cos(0) —psin (¢)sin (6) :l

cos (¢) cos (6) sin (¢)cos () _ sin (0)

3 o o
_ sin(¢) cos (¢) 0
bsin (0) psin (0)

The transformation matrices (Jacobians) are then used to convert vectors

_ o

Vi -V,
ox?
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and tensors
Az 9zb .
= ———Tuw
oxt OxJ

between spherical and cartesian coordinates. For example the partial derivatives from cartesian to spherical coordinates
transform as:

Tij

01,

= 50

sinfcos¢p pcosfcos¢ —psinfsing
(ap Oy 8¢) = (8:5 Oy 8Z) sinfsing pcosfsing psinfcos ¢
cos 6 —psinf 0

0;

and from spherical to cartesian as:
- oz’
Oa = 5
oze
sinfcos¢ sinfsing cosh

(8x ay az) = (ap 30 a¢) cosf cos ¢ cos 0 sin ¢ 7%

0;

) o
_ sing cos ¢ 0
psin 6 psin 6

Care must be taken when rewriting the index expression into matrices — the top index of the Jacobian is the row index,
the bottom index is the column index.

The metric tensor of the cartesian coordinate system 2% is §o, = diag(1, 1, 1), so by transformation we get the metric
tensor g;; in the spherical coordinates x*:

02 07b (a&)?aaz

9 = o0t o1 =\ o) 95z =
_(au,y,z))T 01 o) ey
sin 6 cos ¢ sin 0 sin ¢ cos 1 00 sinfcos¢ pcosfcosep —psinfsing
= | pcosfcos¢ pcosfsing —psiné 0 1 0 sinfsing pcosfsing psinfcos¢p | =

—psinfsing psinfcos ¢ 0 0 0 1 cos —psinf 0

10 0

=10 p? 0
0 0 p?sin?0

Once we have the metric tensor expressed in spherical coordinates, we don’t need the cartesian coordinates anymore.
All formulas only contain the spherical coordinates and the metric tensor.

1 0 0
gi=1(0 2 0
0 1

0

p2sin? 0

det g = det g;; = ptsin? 6

IN7.oh — D). . jk =
ViVip =00+ 55 -0; (detg) ¢’" Ok

= g70,0;¢ + (9,(p* sin® 0) g*?0,¢ + Op(p* sin® 0) g”dpp)

2p4 sin? 6
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. cosf
:g’]8¢8j<p+ 3pga+ 89(,0:
p%siné
1 1 cosf
=9,0 — 090, ————040, 8
pp(erPz 09<P+P2sin29 00+ p@er sin 6

Rotating Disk

Let’s have a laboratory Euclidean system z* = (¢, z, y, z) and a rotating disk system a'* = (t', 2/, ¢/, 2’

between the frames is

t 1 0 0 0 t t
| |0 coswt sinwt 0 T 2 coswt + y sinwt
y | |0 —sinwt coswt 0 y| | —xsinwt + ycoswt
2! 0 0 0 1 z z
The inverse transformation can be calculated by simply inverting the matrix:
t 1 0 0 0 t
x| [0 coswt —sinwt O |2
y| |0 sinwt coswt 0 y
z 0 0 0 1 Z
so the transformation matrices are:
1 0 0 0
Oz | —zwsinwt +ywceoswt  coswt  sinwt 0| _ 02’
Ozv | —zwcoswt —ywsinwt —sinwt coswt 0] 9z
0 0 0 1
1 0 0 0
gz | —2'wsinwt’ —y'wcoswt’ coswt’ —sinwt’ 0| _ Oz
ozt | Pwceoswt —y'wsinwt’  sinwt’  coswt’ 0] 9z
0 0 0 1

). The relation

The problem now is that Newtonian mechanics has a degenerated spacetime metrics (see later). Let’s pretend we have

the following metrics in the z* system:

10 0 0
1010 Of _
=10 0o 1 of =Y
00 01
and
1+w2(x’2+y’2) _wy/ wr 0
,  Oxt Oz [0z T ox B —wy' 1 0 0
Jab = Pura gup9 = \ oz ) I\ ox ) wa' 0 10
0 0 0 1
However, if we calculate with the correct special relativity metrics:
-2 0 0 0
10 10 0] _
=190 o1 0| 7
0 0 0 1
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and
—62 +w2($/2+y/2) _wy/ wr' 0
, _ Oxt Oz [0z T oz B —wy/ 1 o o] _
Jop = i ggrB I = (&T’) g (&T’) B wa' 0 1 of Y
0 0 0 1

We get the same Christoffel symbols as with the diag(1, 1,1, 1) metrics, because only the derivatives of the metrics
are important. Then the only nonzero Christoffel symbols are

g = —2'w?
1 _ 1l
Poo =T =-w
2 _ 12
I'oo=-yw

2 2
o =Tl =w
If we want to avoid dealing with metrics, it is possible to start with the Christoffel symbols in the z* system:
I, =0
and then transforming them to the 2'# system using the change of variable formula:

oxt dox¥ __ Oz’  0x'* 0%x° o' 9%2°

ox'B oz~ M dze + Oxo 9x'Boxy — Hxo x'Box!Y

/i
[y =
As an example, let’s calculate the coefficients above:

ox'? 0%z° oz 0 0x°

22 — —
o0 = Oz 0000 9z 920 92’0
1
o Y S I ) /
= (—zw coswt — ywsinwt —sinwt coswt O) — fwbmwé z{w?oswzf =
ot | T'wcoswt —y wsinwt
0
0
. . —2'w? coswt’ + y'w? sin wt’ P
= (fxw coswt —ywsinwt —sinwt coswt O) —2e? sinwt! — yw? coswt’ | T —yw
0
F’loo — _x/w2
o 2 ox'?  9%2° oz’ 9 0x°
01 =110 = = =
0x® 0x00x"t Oz Ox'0 Jx't
0
. . 0 t/
= (—xw coswt —ywsinwt —sinwt coswt 0) ET Ziorfsjt’ =
0
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(—xw coswt —ywsinwt —sinwt coswt 0)

So we got the same results.

n n
Mo =1"2=—w

0
—wsinwt’
w cos wt’
0

Now let’s see what we have got. Later we’ll show, that the T}, coefficients are just ;¢ in the Newtonian theory. E.g.

in our case we have:

from which:

no_ ;2
00 = —Tw =00
2 /2
Lo =—vyw —3y¢5

)~ 0= ol

o(t,m,y,2) = —5 (2" + y*)w? + C(t)

and the force acting on a test particle is then:

F=-mV¢=m(2,y,0)w? =mr'w

2

where we have defined v’ = (2’;%’,0). This is just the centrifugal force. Also observe, that we could have read ¢

directly from the metrics itself — just compare it to the Lorentzian metrics (with gravitation) in the next chapter.

The other two terms (I'y,, T'3 and the symmetric ones) don’t behave as a gravitational force, but rather only act when
we are differentiating (e.g. only act on moving bodies). Below we show this is just the —2w x % term (responsible
for the Coriolis acceleration).

Let’s write the full equations of geodesics:

This becomes:
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d?z
— =0
dt?

we can define r = (x,y,0) and w = (0,0, w). Then the above equations can be rewritten as:

d’r 9 dr
@:rw —QWXE

So we get two fictituous forces, the centrifugal force and the Coriolis force.

Now imagine a static vector in the x# system along the z axis, i.e.

1
1
M = =
V 0 Vv
0
then
1 1
ox'" o’ —zwsinwt + t+ t w4+ t/
Ve — ve = 9y rwsinwt +ywcoswt +coswt | _ | y'w+cosw —
ox™ ox —2w cos wt — Yyw sin wt — sinwt —z'w — sinwt’
0 0

In the last equality we transformed from x* to x’# using the relation between frames.

Differentiating any vector in the z* coordinates is easy — it’s just a partial derivative (due to the Euclidean metrics).
Let’s differentiate any vector in the 2’/ coordinates with respect to time (since ¢ = t/, the time is the same in both
coordinate systems):

VoV'# = 8gV'* +Th V'

V/O 80V/0 a()V/O
o V/l B aovll + F(l)ov/o + F(l)Qv/Q B aovll _ x/w2vl0 _ WV/Q B
0 V/Q - aovl2 4 Fgov/o T F(Zjlvll - 80‘//2 _ ylw2vl0 + W‘//1 -
V/3 8OV/3 aOVIS
Vo 0 0 0 O Vo
Vit —2'w? 0 —w 0| V"
il RN I A N B (3.83)
1% 0 0 0 O %6

For our particular (static) vector this yields:

1

v, y'w + coswt’ _

—2'w — sinwt’

0

o O oo

as expected, because it was at rest in the x* system. Let’s imagine a static vector in the z/# system along the z’ axis,
ie.

Wk =

O O = =
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1 1
W — ort .. | —2wsinwt’ —y'wcoswt’ +coswt’ | | —yw + coswt
T Ozl T | Pwcoswt —ywsinwt’ +sinwt’ | | zw+ sinwt
0 0
then
1 0
1 —z'w?
mo_
VoW =Vo | —y'w? +w
0 0
1 0 00 0 O 0
w_ —yw + coswt _ | w sin wt 0 0 —w O cos wt _
Vol % Tw + sinwt w cos wt 0 w 0 O sin wt wx W
0 0 00 0 O 0
Similarly
0
’ YW — w2
VoVoW'H == o ?
0
0
—w? coswt
T
VoVl —w? sinwt
0
How can one prove the relation:
dA dA
- = A 3.84
g CYxAT (3.84)

that is used for example to derive the Coriolis acceleration etc.? We need to write it components to understand what it
really means:

A0 00 0 O A0 A0
o (A _ [0 0 —w o] far], ,|4”
0 A/2 - 0 w 0 0 A/Q + 0o A/2
AP 00 0 0 AP A

Comparing to the covariant derivative above, it’s clear that they are equal (provided that 2’ = 0 and ¢’ = 0, i.e. we are
at the center of rotation).

Let’s show the derivation by Goldstein. The change in a time dt of a general vector G as seen by an observer in the
body system of axes will differ from the corresponding change as seen by an observer in the space system:

(dG)space = (dG)body + (G )rot
Now consider a vector fixed in the rigid body. Then (dG)pody = 0 and
(dG)rot = (dG)space = A2 x G
For an arbitrary vector, the change relative to the space axes is the sum of the two effects:

(dG)space - (dG)body + dQd x G
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A more rigorous derivation of the last equation follows from:

Gi = ajiG’»

J
dGl = aﬂdG; + daﬂG;

Let’s make the space and body instantaneously coincident at time t, then a;; = J;; and daj; = —€;j,dSd, = €5 dS 0,
so we get the same equation as earlier:

dGl = dG; + EikdekG;-
Anyhow, introducing w by:

b 12
Todt

( dG ) ( dG )
o= = (== twxG
dt space dt body

Linear Elasticity Equations in Cylindrical Coordinates

we get

Authors: Pavel Solin & Lenka Dubcova

In this paper we derive the weak formulation of linear elasticity equations suitable for the finite element discretization
of axisymmetric 3D problems.

Original equations in Cartesian coordinates

Let’s start with some notations: By u = (uy, us, U3)T we denote the displacement vector in 3D Cartesian coordinates,
and by e the tensor of small deformations,

1 8ui 81,63' i
i = 5 , 1<i4,5<3.
i 2 (8(E] 81'1> bJ
The stress tensor o has the form
oij = Adigdive + 2pe;;, 1 <14,5 <3, (3.85)

where

3

3
8uk
ivu . D ];:1 exr = Tr(e)

The symbols A and ;. are the Lam’e constants and d;; is the Kronecker symbol (6;; = 1if ¢ = j and §;; = 0 otherwise).
The equilibrium equations have the form
3 Oo ij

817]‘

+f=0 1<i<3, (3.86)
j=1

where (f1, fa, f3)T is the vector of internal forces (such as gravity).
The boundary conditions for linear elasticity are given by

Ui = U; OIlFl
3
» oymn; = g onTy,
i=1

where g; are surface forces.
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Weak formulation

Multiplying by test functions and integrating over the domain {2 we obtain
[

Ox;

Using Green’s theorem and the boundary conditions

3
/ZUZJaxJ /{)Q;O’Z‘jnjvi:/ﬂfi v, 1<i<3.

i:/fivh 1<i <3,
Q

Thus

/Zabjaxj_/r2glUL /fzv'u 1<Z<3

Let us write the equations (3.88) in detail using relation (3.85)
8 5’01 8u1 6‘uQ 5‘1}1 8u1 8u3 81)1 /
Adi 2 — 4+ — | =— —+ — | — =
/Q [ R ] 2 T <8$2 - 8301) B2y T (axg "o ) 0w, I
8u1 8u2 87)2 ou u 31}2 8u2 8u3 81)2 /
— 4+ — Adi 2 — —
/Q“ (a@ + 81‘1) N [ Nt P } 0y M <8x3 + 8332) o5y, P2
8u1 811,3 81)3 /
— Adi 2 — —
/QM (al’g + v + ual’3:| 6x3 Ty g3vs

Ous\ Ous Ous Ous 8’03
o) oo (o) |

5‘:1:1 (9553 (9932
Elementary transformation relations

(3.87)

(3.88)

/Qfl vy,
/QfZ V2,
/Qf:svs-

First let us show how the partial derivatives of a scalar function g are transformed from Cartesian coordinates z1, x2, 3

to cylindrical coordinates 7, ¢, z. Note that

xl(’f’,¢):7’COS¢, $2(T,¢):TSin¢7 .’I,'S(Z):Z
Since
g(x1, 22, 23) = g(21(7, @), T2(7, D), 23(2)),
it is
09 _ 9y 99
% = 8xlcosd>+a2smd>,
o9 _ 99 99
9 = 83:1( Tsqu)JraQrcosgb,
9 _ 99
0z  Oxg
From here we obtain
dg 8 1 0g
o ¢**%Sm¢v
dg 89 1 0g
Omy  oromet a¢COS¢’
99 _ 9
drs 0z’
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The relations between displacement components in Cartesian and cylindrical coordinates are

Uy = UpCOSQ,
Uy = U,Sine,
us = Uyz.

The same relations hold for surface forces g; and volume forces f;.

Applying (??) to u;, we obtain

Oouy . aul 6Ul g
9m  or 08 ¢ ¢ no,
8u1 _ aul . a

97 or sin ¢ + " 00 Cos @,
oun _ Ow

81'3 o 0z '

Using (??) and the fact that ., does not depend on ¢, this yields

0 Ou, 1 .
a—;i = 871:“ cos® ¢ + ;ur sin? ¢,
0 ou,. . 1 .
an Lcosqﬁsmgb— — U, COS ¢ sin ¢,
0xo or T
ouq ou,
87553 = E COS ¢
Analogously, for us we calculate
0 Ou, 1
guz Lcosqbsincf)— — U, COS ¢ sin ¢,
0x1 or T
6’[1,2
87172 = 8 cos ¢7
Oup  _ Ouy
81‘3 N 0z
For w3, using that it does not depend on ¢, we have
Ous ou,
6‘7171 = % cos @,
3U3 auz .
87332 = % sin ¢,
Ous - _ Ous
drs Oz

For further reference, transform also divu into cylindrical coordinates

8u1 3u2 aU3

d. = _— _— _—
v (91‘1 + 81‘2 * (933‘3
ou, 1 ou, . 1 ou,,
- cos® ¢ + ~u,.sin® ¢ + lsmz(b—i— —Up -
or r or r 0z
ou, . 1 n Ou,,
= 7u7’
or r 0z
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Axisymmetric formulation

Assuming that the domain {2 is axisymmetric, we can begin to transform the integrals in (??) to cylindrical coordinates.
Recall that the Jacobian of the transformation is J(r, ¢, z) = r. The first equation in (??) has the form:

ou, 1 ou, ou
/{[“arh“r* 5o )T

Uy

cos? ¢ + 1u7 sin? d))] (aa—r

1
cos® ¢ 4 —v, sin? ¢) +
T

2 (%Q:j cos psin ¢ — %ur cos ¢ sin (b) (%1: cos ¢ sin g — %vr cos ¢ sin ¢> +

ou,
TH 0z

The second equation in (??) has the form:

z a T
0s ¢ Y — FgrUpCOS°h = / T fy vy cOS° @,
3 32’ s Q

/ 24 (8 cos ¢sin g — luT COb¢bln¢) (81)' cos ¢sin ¢ — lvr cos¢sin¢) +
Q or r or r

ou, 1 ou, ou,
r[)\(ar +;ur+ o )+ 20 (a

cos qb)] (881" in? ¢ + v,«cos 2o) +
T (E?ZT sin ¢ + 3 sin ¢> (——sing) — /F 79, vy sin® ¢ = /Qrfr v sin® ¢,

Adding these two equations together we get

ou, 1 ou, ., 0v, 1
/Qr/\( or + ;UT + 0z ) or + ;UT) +

T T 1 T . 1 1
/ ru |2 Ouy 9 cos* ¢ + —u, —av sin 2 Ouy sin? ¢ cos? ¢ —|— —5 UrVy sin* ¢ | +
Q ar or r o Or r Or

Ou, Ov, . 4 1 Ov, 1 0u,
2 ( a or sin (b—i—;ur o - sin? ¢ cos? qb—!— urvrcos ¢>
ou, Ov, 1 Ov, 1 Ou,
4((% o cos? ¢sin? ¢ — urﬁ — cos? ¢ sin? ng— urvrcos ¢ sin? (b)

ou, 0v, n ou, Ov, _/ B / f
0z 0z ar 0z r, Jrtnl = Q r ot

This can be simplified to
/ (aur n 1 n 3u2)(5vr n 1 )+/ 9 ou, Ov, n i n ou, Ov, n Oou, Ov,
ar T e Vo TR Q e ar or i 0z 0z or 0z

_/ grUrT = / fr VrT
I's Q

Finally, the third equation in (??) has the form
ou, Ou, v, Ou,. 2 . ov, .
/Qru<(;;cos¢+ au os¢>é;;cosq§—|—ru<;; 5 smd))(;;smqb—l—

ou, 1 Oou, Oou, | Ovu, B
r |:)\( or +;U’T+E)+2N 8Z:| 9z _/Fzgzvzr—/gfzvzr-

This gives us
/r auravz+auzauz+23uzavz A a“’”+1u +8u2 8027/ vr—/f o
Q K\ 8z ar " or or 0z Oz o r " 0z ) 0z F2gz = gt
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Since the integrands do not depend on ¢, we can simplify this to integral over €2y, where g is the intersection of the
domain €2 with the 7 z3 half-plane. Dividing both equations by 27 we get

% . 1 n ou,, )(807. n 1 ) +/ 9 ou, Ov, n 1 i ou, Ov, n Ou, Ov,
T e e TR o e ar or  pzirer 0z 0z or 0z

7/ GrUrT = fr UrT
I's Qo

/ . 8u,.8v2+8u2802+28uz v, . 3u7-+1u +3uz v, _/ o — fovar
% H\ 8z or or Or 0z 0z or r " 0z ) 0z FQQZ Y

Coordinate Independent Way

rA
Qo ( 37“

Let’s write the elasticity equations in the cartesian coordinates again:

05 = Adijakuk + u(ajui + &u])
@-Jij + fz =0

Those only work in the cartesian coordinates, so we first write them in a coordinate independent way:

o = \gIVu® + p(Viu' + Vi)
VjO'ij + fi =0

so:
Vi (A7 Vpu? + p(Viu' + Viud)) + f1 =0
The weak formulation is then (do not sum over 7):
f/Vj (AT VP + p(Viu' + Viud)) viy/|gld®z = /fivi\/Edg'x
We apply the integration by parts:

/ ()\gijvkuk + p(Vu' + Vi) Vﬂ)’\/@d?’m = /fiui\/Ed?’x

152 Chapter 3. Mathematics



Theoretical Physics Reference, Release 0.5

This is the weak formulation valid in any coordinates. Using the cylindrical coordinates (see above) we get:

x = (p, ¢,2)
d3z =dpdedz
1 0 0
g7=1[0 5 0
0 0 1

Vgl = \/Idetgi;[ = p

1 1
Vit = —=0(V/lglu") = ;ak(l’uk) =

Vgl
1
= —uf + O,uf + Opu’ + 9,

p

(VIu? + VA )V 07 = (¢7F"Vu® + g7V ) V07 = (,u* + 9,uP)0,0° + (8,u” + 0,u™)0,0" =
= (0,u® + 0,u”)0,v° + 20.u*0,v*
. 1
gV jvP = gPPV of = 9,0P + szvk =9,v” + ;v¢

1
02
gzjvj,vz _ gzzvzvz — azvz +FZz

/ (/\g” (pup + dpu’ + dgu® + 8zuz) + p(VVu' + Vluj)) Vv'pdpdedz = /flvlp dpdeodz

A 1 1
g9V 0% = g?Vv? = = (95v° + Tipyob) = = (950° + ;vp) =

p
kE _ azvz

fort =1,2,3 we get:
1 1

//\ <pup + Opu’ + dgu® + azuz> (Gpvp + pv¢> p+ 1 (20,u”0,0” + (0.u” + 0,u*)0;v”) pdpdpdz = /f”v”pdpdd)dz
1 1 1

/)\ (up + 0,u” + 6¢,u¢ + azu2> — (8¢v¢ + ’Up> p+ 1 (20,u”0,0° + (0.u” + 0,u*)0,0v”) pdpdpdz = /f¢v¢pdpdgbdz
P p p

//\ <;u" + 0,u” + Opu® + 8Zuz> 0.v"p + 1 ((0,u” + 0,u”)0,v* + 20,u*0,v*) pdpdedz = /fzvzp dpdedz

3.40 Operators

3.40.1 Introduction
The domain of the operator A is D(A), a subspace of the Hilbert space ¢ . Linear operator is:
A fu) + B 10)) = aAlu) + BA o)
for all |u) , |[v) € D(A). Symmetric operator is:
(u|Av) = (Aulv)
for all |u) ,|v) € D(A) dense in 2. If D(A) is dense in 7, then the adjoint operator AT is defined by
(u|ATv) = (Aulv)

for all |u) € D(A). The domain D(AT) is given by all |v) for which the above relation holds. It can be shown that
D(A) C D(AT).
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Operator A is self-adjoint if A = AT. Symmetric operator is self-adjoint only if D(A) = D(A"). (Bounded symmetric
operator is always self-adjoint.) Hermitean operator is a bounded symmetric operator.

Hermitian implies self-adjoint implies symmetric, but all converse implications are false. Below, we need the operator
to be self-adjoint (we assume unbounded by default).

3.40.2 Spectrum

To obtain a spectrum of the operator A, we need to solve the following problem:
AN = AN

Those values of A for which the solution |\) € J# belong to the discrete part of the spectrum. \ are called eigenvalues
and |\) eigenvectors. Those values of A for which |A) can be normalized to a delta function:

(Alr) = 8(A = k)
belong to the continuous part of the spectrum (note that in this case |\) ¢ 7).

Eigenvectors belonging to the continous part of the spectrum obey the completeness relation:

/ Ay (AldA =1
Eigenvectors belonging to the discrete part obey the following completeness relation:
SN Ada=1
A

The sum or integral runs over the whole spectrum (if the spectrum contains both discrete and continous part, we simply
combine sums and integrals).

Spectrum of a self-adjoint operator is real, because
(AJAA) = A AN = A" AV
The eigenvectors are orthogonal:
(AlA]x) = r (Alr) = A {Alx)
(k=X (A\lk) =0
So for k # A we get (A|x) = 0, for k = A the (A|)) is equal to 1 if A belongs to the discrete spectrum and we get:
(Alk) = dxn
or it is normalized as a delta function if it belongs to the continous part:
(Alr) = 8(A = k)

As such, eigenvectors of a self-adjoint operator are complete and orthogonal in the above sense. Thus any function
from the space can then be expanded into the series:

flx) = {alf) =D (@A) (Alf)
A

where (z|\) are the eigenvectors and the coefficients (\|f) are given by:

WD = [ W) (ol do = [ Q) fa)de

The sum over A runs over the whole spectrum (i.e. it becomes an integral over the continuos parts). Also the coeffi-
cients (\| f) are either discrete or continous depending on the part of the spectrum. The series converges in the norm,
i.e. the following norm goes to zero as we sum over A:

Fla) = (xl\) <Af>H =0

A
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3.40.3 Derivative Operator

We have the eigenvalue problem

Au = \u
where
d
A=—i—
de

The operator A is unbounded. A is self-adjoint if:

/ab u* (7)) Av(z)dr = /b(AU(x))*v(x)dx

a

So

/ab u*(x) Av(z)de = /ab u* (z) (—z;x) v(z)dz =

The operator is self-adjoint if and only if [u*(z)v(z)]2 = 0. Few boundary conditions that satisfy this condition:

¢ Dirichlet boundary conditions

¢ Periodic boundary conditions

u(a) = u(b)
* Antiperiodic boundary conditions
u(a) = —u(d)
Solving the eigenproblem:
Au = du
—i@u = Au
u(z) = e

Fourier Series

We restrict our space to periodic functions. Applying the periodic boundary condition:

u(a) = e = u(b) = e’
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o)
eik(b—a) — 1
2mn
A= forn =0,£1,+£2,...

b—a

The normalized eigenvectors are:
1 27n
up () = Rk
b—a

These eigenvectors belong to our space and as such all A = % form a discrete spectrum. Other solutions do not

satisfy the periodic boundary condition and so there is no continous part in the spectrum.

The eigenvectors must be orthogonal, as we can check:

/a b () (z)dz =

P ipme L gmmeg

o \/b—ae b—a

b
1 27r(m n)
= e Ta tdy =
b—a /,

1 (b oo _
[, e’dx form=n

= 1 j2rim=n) b =
I b—a
Fe ey [e L form #n

1 form=mn

= 2 (m—n) 2ﬂ<m n) =
1 b b—a @
=) (e e’ ) form #n

1 form =n

— 2w (m—n)

—a a 7r(m n)
L(ez (b=a) 1) form #n

2w (m—mn)

1 form=n
P :(Sm/n
0 form#n

The eigenvectors must be complete:

> In)nl=1
Y (zln) (nl2') = (ala’)
Z up(z)uy (2 )de = 6(z — ')

Any function f(x) can then be expanded on the interval [a, b] into the Fourier series:

oo oo

f@) =@l = 3 @)yl = 3 du@) =3 ﬂg: S ettt

n=—oo n=—oo n=—oo n=—oo

L[ L
Cn = \/m <n|f>\/lf \/7/ ) (z]f)d b—a/a un(a:)f(:c)dx—b_a/ e f(x)dz

156 Chapter 3. Mathematics



Theoretical Physics Reference, Release 0.5

Equivalently, this can be written using sin and cos directly:

o0
;2mn
K2 x
E Ccpe' b=

n=—oo

Z cnc05< >+ i chsm(b_ax):

n=—oo

> 2mn
= z_:cn—i—c)cos( _aac)—i—;z Sm(b—cﬁ)

=1

By introducing the coefficients a,, and b,,:

Ap = Cn + C_p forn=0,1,2,...
by,

i(cn —c_n) forn=1,2,...

we can write the series as:

S () ¢ S (2

)

b b
) s (2 o
L 2mn 2 [ 2
bp =i(cn —cp) = ; i a/ (e_lb aT _ e%w“) f(z)dz m/ sin (b m;x) f(x)dz

Conceptually, we are taking the complex orthonormal basis u,,(x) = ﬁezb,ar and creating a real orthonormal

we get:

basis vy, (z) composed of ug, Reuy, Reua, ..., Imuy, Im us, ... as follows:

\/§Reun:\/‘/lcosb2—”nx forn >0
vp(z) = uozﬁ forn =0
V2Imuy, = \/% sin 2% |n|z  forn <0

We are only summing over the positive arguments in sin and cos, thus the absolute value for n < 0. The basis v, is
orthonormal:

b
/ U (2) v (2)dx = Sy

and complete:

oo

Z U (2)vy (2')dz = 6(z — 2')

n=—oo
This is not the only way to create the real orthonormal basis. In general:

un(z) = (z|n)

on () = (x[n) g

Mg =D Unim [m)
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We require the new basis |n) , to be orthonormal:

(n|m) p = dnm

Z (k|UnkUnull) = 61
kl

Z U;kUml(Skl = 6nm

kl
k

This restricts the U,,,,, matrices to be unitary (U~ = U"), because:

uUt =1

k

k

The unitarity condition also makes sure, that the real basis is complete:

Dolgnlg =" U k) U = dulk) (=) |k) (k| =1
n kl k

n kil

Requiring |n) , to be real and using |m)" = |—m) we get:

Vg =[n)g

Z Upp Im)" = Z Unm |m)

m

Z Upm |[—m) = Z Unm [m)
Z U;,—m, |m> = Z Unm ‘m>
Z(Unm —Upn—m)|m) =0

m
_ *
Unm - Un,—m
* p—
Unm - Un»*m

Because the basis |m) is complete. So the only conditions on the matrices U, are:

ut=ut
U;m = Un,—m
They imply that the new basis will be real, orthonormal and complete. Our final restriction is that we want each real

basis element to correspond to the same frequency +m (possible sign change is ok): this means that we can only mix
the same frequencies, i.e.:

Upm =0 for |n| # |m|

and also that the nonzero matrix elements can only be of the form Re’=™ forn = 0, 1,2, 3 (i.e. =R or 43R for some
positive R).
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Up to possible sign changes and permutations, this determines the matrix uniquely. Our choice above is:

Onm+0n,—m
V2
Unm = < dom forn =0

Onm—0n,—m

s forn <0

forn >0

In other words, we get (except that the matrix is infinite):

1 1
U3 V2 1 1 V2 us
Vo V2 . . V2 U2
U1 V2 V2 u1
Vo = 1 (')
v L - U
-1 2 2 -1
- i =G
iv2 /2
_ 1! ! 1 U_3

z
|
S

Fourier Transform

Our domain is (—o00, 00), so the solution of the eigen problem is:
Au = du
d
i—u =\
e u

U(Z‘) _ ei)\z

The normalized eigenfunctions are:

‘We calculate the normalization:

/ u (x)uy(x)de =
e}
1 _'A y
= —€ v wie“’@wdx =
,/_Oo V2T V2
_ 1
L A

=d(k—A)

ei(n—))mdx —

So the spectrum is continous. The eigenvectors must be complete:

/oo A) (A[dA = 1

— 00

/ (@) (Ala’) dA = (al)

— 00

/Oo ux(z)ul (2" )d\ = 6(z — ')

— 00
Any function f(x) can then be written as:

o0 o0

f(@) = (alf) = / (2 \) (ALf) dA = /

— 00 — 00

R _ i > ei)\x n
w@far= == [ e fay
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where f()) is called the Fourier transform of f(z):

oo o0

A~ 1 o0

A) = (A :/ Az (z dmz/ u} (z xdx:—/e
f=0in =[O blnar= [ wEiear= o |
Note that both for Fourier series and Fourier transform, the sign convention in the exponentials (e****) follows from
choosing the sign in A = fi% and as such it is arbitrary. We can also choose A’ = i(% and then the sign will be
flipped.

71)@.]0(:(3)(158

3.40.4 Sturm-Liouville Operator

The Sturm-Liouville operator L is:

pue) = 5 (o (4052 ) + gloputo))

Everything is real. The scalar product is weighted by w(z). The operator is self-adjoint if:

b b
/u(m)Lv(x)w(:c)do::/ (Lu(x))v(x)w(z)dz

SO

b
/ u(z)Lv(x)w(x)da =

-/ bu<x>w(1x) (-3 (™) + oo ) wioas =
_ / ' (—u(m)di <p(x) di’;?) + u(x)q(m)v(m)) dz —

= [ (S0 T ¢ o)) e a2

dz e
- /ab (‘cic (pu)cﬁ(f)) o) + u(x)Q(x)v(x)) do = [W)p(”” - dl;;@p(x)v(x)ﬁ i

= [ o) oo - [ump(x) ) dl;f)pm(x)}

And the operator L is self-adjoint if and only if:

b
[u(z)p(z)v(2) — ' (2)p(z)v(2)], =0
This condition can be satisfied by various boundary conditions. For example:

¢ Dirichlet boundary conditions

* Neumann boundary conditions

¢ Periodic boundary conditions
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* Antiperiodic boundary conditions
u(a) = —u(b)
u'(a) = —u/(b)

or mixtures of these, e.g. Dirichlet at + = a and Neumann at z = b.

Legendre Polynomials

Legendre polynomials P, () are solutions of the Sturm—Liouville problem on the interval [—1, 1] with p(z) = 1 — 22,

q(z) =0, w(z) =land A =n(n+1):

The operator L is self-adjoint due to vanishing p(x) at the endpoints:

1

(@) (z) — ' (2)o(@)p(@)]-, = [(u(@)e (@) = (@)o(@)) (1 - )], =0

We restrict our space to bounded functions. The solutions of the eigenvalue problem for integer n are Legendre
polynomials P, (z), the normalized eigenvectors u, (z) are:

un (%) = ¢ /@Pn(x)

Solutions for non integer n are Legendre functions that are singular at the end points and as such are not solutions
that we want. As such, the spectrum is discrete and the Legendre polynomials form a complete orthogonal basis for
functions on the interval [—1, 1]:

[ n@en) =2 [ R@ Pt = b

St (@)un(@) = TS Pal@)Pale!) = 6 — o)
n=0 n=0

any function f(z) on the interval [—1, 1] can be expanded as:
— - 2n + 1 =
F@) = frun(e) =D fin) =5 Pala) = 3 _ fuPu(®)
n=0 n=0 n=0

fo=t 2 = [ e =252 [ pwse)

-1

3.40.5 Angular Momentum Operator

The angular momentum operators L1, Lo and L3 are given by:
Lj = —’iEjkl.fL'kal
in spherical coordinates:

Ly =i(sin¢ 0y + cot§ cos ¢ 0y)
Ly =i(—cos¢ 0p + cot@sing 0y)
Ly = —id,
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and

1
L? :L§+L§+L§:—( g (sin989)+,a;)

1
sin 0 sin? 6
The eigenproblem is:

L2 |lm) = I(1 + 1) |Im)

L3 [lm) = m|lm) (389
Using Condon & Shortley phase convention, it can be shown that:
(L £ iLa) |l,m) = /I Fm)(I+m+1)|l,m=+1) (3.90)
and by repeated application:
(Ly +iLy)" |I,m) =
=ViTm)(ITm—-1) - (IFm—-k+1)(£tm+1)(Ixm+2)---(Tm+k)|[,mEzk)=
| !
= T
where
Ly +iLy =isin¢g 0p +icotfcosd Oy £ (cosd Jg — cotOsin g Oy) =
= et (+0y + i cot 00;)
The solution of (3.89) is of the form:
(00]m) = Yim(0, ) = O (0) P (¢) (3.91)

and we get from (3.89):

. d
~i g5 %m (@) = mPm(9)

on the interval [0, 27| with the boundary condition ®@,,,(0) = ®,,,(27). From Derivative Operator the eigenvalues are
all integer m and the normalized eigenvector is:

1
(I)m(Qi)) = E€Zm¢ (3.92)

Substituting (3.92) into (3.91) we get from (3.89) an ordinary second order differential equation for Oy, (9):

L?|lm) = I(1 + 1) |Im)

N ] - _ — 1
(sin@a9 (sin0 9p) + sin? 98¢> \/ﬁe Om = Ui+ )\/ﬁe Oum
1 d d m?
— | si o Zlm 1) — —— m =
sin 6 df (bmedQ@l ) * (l(l b sin20> i 0

d d 2
1—cos?0)——@,, W+ - —""_\eo,, =
dcosf <( o8 )dcosﬁe)l )+<( +1) 1—cos29) © 0

d 2,46y, m? B
dz((lz) Tz )*(l<l“>1_z2>@lmo

where

z = cosf
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This equation can be solved using the following approach. From (3.90) we get:
(Ll + iLQ)}/lm(gv ¢) = (Ll + ZLQ)Glm(g)q)m((b)

ezmqﬁ _

= %1 (£ + i cot 00,) sz(e)m

L d
_= pilmEl)e (ide — mcot 9) elm(e) =

Ve
= x%ei(mil)d’ sin'*™ ¢ (dcdose sint™ 0 6, (9)) =
= F®,,41(4) sin’*™ @ (dcis@ sint™ @ @lm(e))
and by repeated application we get:
(L1 £ iL2)*Y i (0, ¢) = (F1)*®pir () sin =™ @ ((d;i:e)k sinT™ ¢ 61m(0)> =

I Fm)! (I Em+ k)
- \/(z Tm) (Fm— k) Pt (8)Otmaci (9)
from which we obtain:
_ 1)* g mol 2 gipT™ 3.93
Ot mesk (0) \/(z Tl U m g R TS gy ST 0 Oum () (399
As a special case for m = 0 and kK = m > 0 we get:
(I—m)! . am
m(0) = (F1)™ | ———=sin™ 0 | ————— 3.94
Ortm(0) = (¥1) U+ m) sin™ ¢ (doos 9)m910(9) (3.94)
and form =l and k = [ — m we get (we only use the ©; ,,,_j, branch):
O (0) = Or1—(1—m)(0) = (3.95)
=Dl +1-=(1-m))! l—m e d—m—l di-m I
= 1 —_——— ==
\/(z Tl =T =yt PO gy s 0 Oul6)
B 1 (I+m)! 1 di-m o
V@D (1 —m)!sin™ @ <(dcos f)i—m st 6 ©u (0)
From (3.90) we get:
(Ly+iLa)Yi = /A= D+ 1+ 1)Y= 0
Using (3.92) this gives us a first order differential equation:
(Ll + iLg)@ll(I)l =0
¢ (9 + i cot 00) O \/%eiw —0
00
(Tou —lcot Oy =0
from which
e et+nt g (3.96)
Ou(0) =(-1) 5 oy St 0
163
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It is normalized as:
/ O sinf do =1
0

We used the value of the integral:

/‘” g gy~ VALU+1) Ve A s N U o5 V1V
0 L(+32) 20+ D)/7 (20 + 1) (20 +2)!
N2 +1) 4241 202)?
(20+2) @2+ D1204+1)  (20+1)!

Using (3.96) in (3.95) we get:

[2l+1(1+m) 1 1 di-m ,
m(0) = (=1 ! YT 5 219
Oum(6) = (1) 2 (I—m)! 2! sin™ 0 (dcosf)i—m™ i

[20+1 1  d
_ 1 S92l
On(6) = (1) 2 2! (dcosf) sin™ 0 =
2411 d 5 -
B 2 ZTl!(dcosﬁ)l(COS -1 =
:\/2131]31((3056‘)

1 d o,
= i1 g

for m = 0 we obtain:

where

Bi(2) - 1)

is the Rodrigues’ formula for Legendre polynomials. We substitute ©,q into (3.94) and get:

A+1(1-—m) dm
O11m(6) = (F1)™ ;EHg!SmMQ(WB(mSa)) (3.97)

Hence Oy, = (—1)™0;,_,,. Using associated Legendre polynomials, we can write:

204+ 1 (1 —m)!
O (0) = ,/2El+:§!plm(cos 0) (3.98)

m _olEm)t 1 d-m 2l
P (cos6) = (1) (I —m)! 21! sin™ 6 (d cos ) =™ sin™ 6 =
(+m)! 1 1 di-m
I —m)! 24! sin™ 6 (d cos )™
(

1 (1—cos?)mg  ditm

where (for all m):

(cos>6 —1)! =

:_17n7 29_112
(=1) 21 sin™ @ (dcosh)itm (cos )
m 1 om dl+m 2 l
= (—1) ﬁsm HW(COb 60— 1) =
. 1 m dl+m
=(-1) 2T“(1*22)2 W(ZQ*UZ
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hence (comparing the second and fourth equation above):

(I —m)!
(I +m)!

BM(z) = (=)™ B (2) (3.99)

This is valid for all m (positive or negative). For m > 0 we get from (3.97) and (3.99):

P(cosf) = (—1)msmme$ ) (cos 6)
P (eost) = Z;I S 07 ci:e)m Pr(cos 6)
PP e) = ()71 - )% ()
P = (e (1= ) E SR

This is usually used as the definition of the associated Legendre polynomials. They include the Condon & Shortley
phase factor (—1)™ (only for positive m). Some authors omit it (then it needs to be included in the equation (3.98)).
Note that (3.98) for m < 0 can be also written as:

2410-—m) . 2l—|—1l m)! (I —m)! " B
O (0) = 7(l+m)'Pl (cos®) T—m) (+m) ,Pl (cosf) =
B 21 +m) A+ —=mD! iy,
=(-1) - m)'Pl (cos®) = = |m|)‘Pl (cos9)
Thanks to
me‘ml 1 form >0
(—=1)™ form <0
we can write for all m:
—m) Zml (2L T = m)! )
O (0 l—|—m " (cos 0) > Ut ) |m|)'Pl (cos @)

The normalization of associated Legendre polynomials is:
1
/ @lm(e)@l/m(e) sin df = 5”/
-1

Y pm 2 (L+m)
[13 (@)Py (@) = 5 (b

Finally, we get (for all m):

2l —l— 1(I—-m .
Yim (0, ¢) = Oum (0) P () = (l I+ mi P™(cos 0)e™™? =
—|m| |m| le‘ COSH im¢ _
H— Im
. 2l+1(l—\m\) Iml
= (-1 mlm—Hm\ P cos imae
. et 17 €0
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Any function on the sphere can be expanded as:

f(0,¢) = (0¢]f) =

fe'e) 1
Z Z Oltm) (Imlf) =" 3" Vien(0,9) fim
1=0 m=—1 1=0 m=—1

— (imlf) = [ (iml) (017) a2 =

27 T 27 T
= [ a0 [ anmios) wolrysing = [ ao [ a0 0.005(0.0)sin0

Real Spherical Harmonics

The most obvious approach is to use a similar way as for Fourier series. We rearrange the sum:

Sy
f(6,9) = ;m;mm 6) fim = l};ﬂ; Ot (0 ﬁ € fim =
= \/%—W 2 mz_l;l (O1m (0, ) cosme fim + O (0, ¢)isinme fi,) =
- % 2 (610(67 ®) fio + mzl_:l ((O1m (0, ) fim + Ot —m (0, ) f1.—m) cosm + i(Opn (6, ®) fim — Ot —m (0, 0) f1. —m) Sinm¢)> _
— 127”2 (910(9, ) fio + mzl_:l (O (0, 8) (fim + (—=1)™ f1—m) cosmep + O (6, )i frm — (—1)™ fi.—m) Sinm¢)> _
- L% 2 (@lo(e, @) fio + mzljl (e (0, 0) Tt <}1Q)mfz,—m 3 cos g + Oy (6, 6)i <}12>mfl,_m 25inm¢)> _

l
(@lo (0.6)fio+ > (O (@,

m=1

!
(910(9 ) fro + Z O (0

o0

flm\/i(ZOS m¢ + ®lm(97 (Z))fl,—m\/isnl m¢)> =

flmfcosm¢+ Z Ojm (0

m=—I1

)flm\/ibln |m¢>

l

:Z Z Zlm(£7¢)flm

=0 m=—1
Where the real spherical harmonics Z;,,, are:
V25 cosmg  form >0 (\/2Re(Yin (0, 9)) 5 (Yim (0,0) + Yi5,, (6, 9))
Zim(0,0) = 3ﬂ form =0 = { Yio(0,¢) =9 Yio(0,9)
\fg” sin|m|¢ form <0 V2Im(Yy (0, ¢)) ilz(Yl|m|(9a¢) Vi (0,9))
and the coefficients flm are:
. YL+ =D"Y L,
) fnt S e form >0 [ f XS e
Jim = § fio form =0 = [V fd
ifl,—m*\(/*il) flm form < O f,éYl,fm_E/_il) Ylm fdQ
f Yltn\%ylm fdQ f YlerYlm fdQ
=4 [ Yo fd = leofdlQ Zim fAQ
fyl _Yl— fdQ j‘Y’\m\ Yl\m\fdQ
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The factor /2 in the definition makes the real spherical harmonics properly normalized:

/ Zi(0,8) Zirms (0, )AL = 511Gy

From the above derivation, it is not immediately clear how to obtain other parametrizations of real spherical harmonics.
And also what identities they obey. More systematic approach is to use the transformation matrices just like for the
Fourier series:

l
Z1u(0,0) = 081y g = D Ul Yim (0 Z m (06]1m)
m=—I m=—I
i) = Z L 1)
m=—I

We require orthonormality:
() g = S

This implies unitarity of the U' matrices for the given . Requiring |Ip1) , to be real and using |Im)™ = (—1)™ |I, —m)
we get:

) = i) g
> (UL, [im)* Z Lo 1)
> UL (1™ |, —m Z o |10)
S WL )t (=)™ fim) = Z L |l

Z(U;lun - (U;l1 - )*)(*1) ) |lm> =0

m
U = (1™ (U, )"
Uhm)* = (= 1)”‘Ul —m

As for Fourier series, we require not to mix frequencies and phases, so we get:

UL, =0 for|n| # m]

and also that the nonzero matrix elements can only be of the form Re’=" forn = 0, 1,2, 3 (i.e. £R or +iR for some
positive R). Up to signs and permutations, this determines the matrices uniquely. As for Fourier series, this implies
orthonormality and completeness of the real spherical harmonics:

<l/m/‘lm>R - 5”’5m’m’
Z Z [tm) p (Im|p, =1
=0 m=—1

Also, thanks to unitarity we get:

l
Z Zlm( Zlm Z Z Umm’ lm’ )(Umm”) lem” Q/ Z 57” m”}/lm ) lrn”(Q/)

m=—1 m=—Ilm’'m’’ m/m/’’

21+1
ZYlm )Y, () = = —Pi(cos)

m=—1
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and

1 = rl< 7l a7
= P& 1) Y ®YEEF) =Y =7, () 2 (P
Tl e Z WH @Y ) =3 i () Zim ()

Following the Fourier series, the most natural way to choose the signs in the U! matrices is such so as to keep sin and
cos in the basis with positive frequencies (thus the absolute value for m < 0):

V2Re(Yim(0,6))  form >0 75 (Yim (0, 0) + Y1, (6, 9))
Zim(0,9) = { Yio(6,9) form=0 = Ylo(9 9) =
\/ilm(yvl\m\(eﬂb)) form <0 Z\[(Y—l\m\(e (b) l‘m‘(e ¢))

Y—lm(aa ¢) + lejn(av ¢)) %(lem(gv d)) + (_ )val,fm(ev ¢))
=< Yio(0, ¢
Yim(0,0) = Y17,,(0,9)) 5 (Yimm(0,6) = (=1)"Yim(0,9))

A4l E§+:§' P/™(cos @) cosme

= % Py(cos )

I—|m m
2l EH-I‘ B,P‘ | (cos 0) sin |m|¢

%\

S~—"
|

This gives:

Fpum+(=1)"0pu,—m
7 forpu >0

Uimz dom forp =20
W for u < 0

Other convention

Some people use the following convention:

(=1)™V2Re(Yim(0,¢)) form >0 %((—l)mYzm(ﬂ, ®) + Y, —m(0,90))
Zim (0, 0) = < Yio(0, ) form =0 = ¢ Yjo(0,
(=1)"™V2Im (Y (0, ¢)) form <0 5 (1)1 (0, 0) = Yim (0, 9))

(—1)m, /2L Eilzg: P (cos 6) cosmg

\/ 2L Py (cos 0)

(=1 B i P (cos B) sin fm]o

It has the advantage that there are no minus signs in the final expressions using sin, cos or using z, y, z. However, we
will not use this convention.
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Tables

Spherical harmonics:

Yo,0(0,¢) = %
~ V6e?sin (0)
v
V3 cos ()
2Vr
Via(o,9) = -0
/30e2% gin? (9)
8V
~ V/30e*?sin () cos (6)
v
3 2 1
Ya0(0,0) = V5 (3 C;’i/%(e) - 3)
B v/30e* sin () cos ()
L/
~ V/30e*¢sin’ (0)
8V
V35e~%% sin® ()
8V
—26 oi02
Vs 2(0,0) = V/210e ¢SS\1;% (0) cos (0)
V21 (6sin* (0) — 24sin” (6) cos? (0)) e~*¢
48 /7 sin (6)
VT (=2 sin® () cos () + cos® (9))
2Vr
V21 (360 cos? (6) — 72) €' sin (6)
576y/7
¢ i 2
Ya2(0,0) = 210e ¢;1\r;%(9) cos (0)
B V353 sin® (0)
8V

Yi,-1(0,9)

YI,O (97 ¢) =

Y2,1(0a ¢) =

Y2,2(07 ¢)

Y3,73(97 (b) =

Y3,—1(6a ¢) = -

}/370 (37 ¢) =

Y31(0,¢) = —

Y3,3(97 d)) =
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Real spherical harmonics:

Zo,o(8, ¢) = %
Z1,4(0,) = W
Z10(6,9) = \/320\3; (©)

Zur(0,0) = Y3 Sin;j);os ()
Zoa(0,6) = Y10 ) sin? (0)
Zy_1(0,¢) = — V15sin (er%(a) cos (6)
Zro(0,9) = 2 <3cgig> - 1)
Zs1(0,¢) = — V15sin (9)232(@ cos ()
Zaa(t,0) = Y22 n&r cos (26)
Zy_(0,9) = Y705 é?;@ sin (0)

Zs (0, 6) = Y1005 <2<Z) 5?2 (6) cos ()

Zs 1(6,0) = — V42 (360 cos? (26— \/7;) sin () sin (6)
Zs0(0, ) = VT (=3 sin® (9)2 :;;;(9) + cos® (0))
Zoa(0,6) = — V42 (360 cos? (?76_ \/7;) sin (8) cos (¢)
Zya(6,0) = YIS QEOED
Zs5.3(0,0) = — msin‘;(\%cos (30)
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Real spherical harmonics (using z, y and z, assuming x2 + y? + 22 = 1):

1
Zoo(x,y,2) = PN

Vi3y
Zl,—l(xvya Z) = 7%

V32
ZLO(I,y,Z) = 2ﬁ

V3z
Zl,l(xaya Z) = 7%

V15zy
ZQ,—Q(x7yaz): 2ﬁ

V15yz
227,1($,y72) = - 2ﬁ

22—
Zyo(z,y,2) = \/5(43\51)

V1bxz
Zra(x,y,2) = BCN

Z2,2(93,y,2) = \/ﬁgfiﬁr_y)

V70y (=322 + 32
Z3,73(m>yaz) = (8ﬁ )

7 ( ) v 1056zyz
3,2\, Y,2) = —5—F7—=—
: NG

42y (—522 + 1)

Zs,_1(z,y,2) = o
Zso(z,y,2) = \@5152\/;3)
Zs1(z,y,2) = VA2 (8_\/5;2 n 1)
Z3o(z,y,2) = 1052;1(\33;1-—y2)
Zs3(x,y,2) = V70 (;j;-i- 3y?)

These tables were generated using spherical_harmonics.py:

from sympy import (sympify, factorial, var, cos, S, sin, Dummy, sqgrt, pi, exp,
I, latex, symbols)

def Plm(l, m, z):

mmn

Returns the associated Legendre polynomial P_{lm} (z).

The Condon & Shortley (-1)”"m factor is included.
1 = sympify (1)
m = sympify (m)
z = sympify(z)
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def

def

def

def

if m >= 0:

r = ((zx#2-1)#%*1).diff(z, 1l+m)

return (—1)*xm * (l-z*x2)**(m/2) » r / (2+x+1 * factorial(l))
else:

m = -m

r = ((z+x+2-1)%*1).diff(z, 1+m)

return factorial (l-m)/factorial (1l+m) * (l-z*%2)*x(m/2) = r / (2xx1 % factorial (1))

Plm_cos(l, m, theta):

mmn

Returns the associated Legendre polynomial P_{1lm} (cos(theta)).

The Condon & Shortley (-1)"m factor is included.

mmn

1 = sympify(1l)

m = sympify (m)

theta = sympify (theta)

z = Dummy ("z")

r = ((zx+x2-1)+**1).diff(z, 1l+m).subs(zx+x2-1, -sin(theta)*+2).subs(z, cos(theta))
return (-1)++m * sin(theta)**m = r / (2+xx1 * factorial (1))

Ylm(l, m, theta, phi):

mmn

Returns the spherical harmonics Y_{1lm} (theta, phi) using the Condon & Shortley convention.
1, m, theta, phi = sympify(l), sympify(m), sympify(theta), sympify (phi)
return sqrt ((2+1+1)/ (4»pi) =+ factorial (l-m)/factorial (l+m)) % Plm _cos(l, m, theta) *» exp(I+mxphi

Zlm(l, m, theta, phi):

mon

Returns the real spherical harmonics 7_{1lm} (theta, phi).
mmwn
1, m, theta, phi = sympify(l), sympify(m), sympify(theta), sympify(phi)
ifm> 0:
return sqrt ((2+1+1)/(2+pi) * factorial (l-m)/factorial (l+m)) * Plm_cos(l, m, theta) % cos (m+pl
elif m < O:
m = -m
return sqrt ((2+1+1)/(2+pi) * factorial (l-m)/factorial(l+m)) » Plm_cos(l, m, theta) % sin (m+pl
elif m ==
return sqrt ((2+1+1)/(4xpi)) » Plm_cos(l, 0, theta)
else:
raise ValueError ("Invalid m.")

Zlm_xyz(l, m, x, y, z):

mmn

Returns the real spherical harmonics Z_{Im} (x, vy, z).

It is assumed x##2 + y*+2 + z#*2 == 1.
1, m, x, v, z = sympify(l), sympify(m), sympify(x), sympify(y), sympify(z)
ifm > 0:
r = (x+tIxy)**m
r = r.as_real_imag() [0]
return sqrt ((2x1+1)/(2xpi) » factorial (l-m)/factorial (l+m)) » Plm(l, m, z) * r / sqgrt(l-z+«2)
elif m < O:
m = -m
r = (x+Ixy)**m
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r = r.as_real_imag() [1]

return sqgrt ((2+«1+1)/(2xpi) =+ factorial (l1-m)/factorial(l+m)) = Plm(l, m, z) * r / sqrt(l-z*x2)
elif m ==

return sqrt ((2+1+1)/(4xpi)) » Plm(l, O, z)
else:

raise ValueError ("Invalid m.")

var ("theta phi")

X, y, z = symbols("x vy z", real=True)
print "Spherical harmonics:"

print

print ".. math::"

print

for 1 in range(4):
for m in range (-1, 1+1):

print r" Y {&d, ¢d} (\theta, \phi) =" % (1, m), \
latex (Ylm(l, m, theta, phi))
print
print
print "Real spherical harmonics:"
print
print ".. math::"
print

for 1 in range(4):
for m in range (-1, 1+1):

print r" 7Z_{%d, $d} (\theta, \phi) =" % (1, m), \
latex (Z1lm(l, m, theta, phi))

print
print
print "Real spherical harmonics (using $x$, $y$ and $z$, assuming $x"°2 + y*2 + z"2 = 1$):"
print
print ".. math::"
print

for 1 in range(4):
for m in range (-1, 1+1):

print " Z_{%d,%d}y(x, v, z) ="% (1, m), \
latex (Zlm_xyz (1, m, x, y, z).simplify())
print
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CHAPTER
FOUR

CLASSICAL MECHANICS, SPECIAL AND GENERAL RELATIVITY

4.1 Gravitation and Electromagnetism as a Field Theory

The action for macroscopic gravity, electromagnetism and (possibly) charged relativistic dust is:

S=S8ag+Su+Sem~+ 5,

where:

Sulg"] = Ry/—gd'z
Hlg 16 a /

Sa[gh, at]) = /p«/vuv/‘\/ gdiz

1
SE]\/[[Q'U‘V,A#] = —— /FagFaﬁ\/ —gd4$
4p1o

Sqlzt, AH] = f/pEMv“AH\/fgd‘lx
where x* is the field of the matter, A is the electromagnetic field and ¢g"” is the gravitational field. We vary with
respect to each of them to obtain (interacting) equations of motion. c is the speed of light, GG is the gravitational

constant, y( the permeability of vacuum. p is the mass density of the dust, pgjs is the charge density of the dust,
vH = % is 4-velocity of the dust, [\, = V,Ag — Vg A, is the electromagnetic field tensor, R is the Ricci scalar.

4.1.1 Gravitation

We vary with respect to g*”. By changing the metric, we also change the invariant volume element (thus also p), so
we need to be careful to vary properly. We start with Sp:

4.
0SH 5166’ R\/—gd*z =

C4
= 167G / (69" Ruw V=9 + 9" (0 )V/=g + R(6y/=g)d*z =

c4
— 1o [ RuN=G+ g (VAGTS,) = VuOT3,)) V=5 + R(- 3G90 ))d%s =
4

C
= (59“">RWFQ + (Vag™ (OT3,) = Vog" (OT3,)) V=9 — $ Rgv/=g (89" )d'z =

16 G Ruy A\ Rg/ﬂ/ V=g ((;gwj)dzl‘:C =

= i | (R = 3Ry (69")v/=gd"e
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Variation of Sy is:

0SSy = —cé/p\/vuv“\/—gd‘lx =

~ 5 / e/t =
5(gm
:7/6 ("8by) 10
2/pp”

pu‘pu v 4
=— | c——6§(g"")d*x =
/ 2y/pp° (9")

2
— _/vaupvu\/ —9 (5(9””)(14115
2pcy/—g

= —/%pvuvﬁ(g"”)x/—gd"‘x

The variation of Sgjy is:
1
0SEMm = —6/ 7Fa6Fa6\/—gd4x =
4pio

1

= —(5/74 gakgﬁpFaﬂF)\p\/?gdzlx =
Ho

1

=~ i (6(9°*¢"7) FapFapv/=g + 9™ ¢ FapFx, (6v/=g)) d'z =

1 14
N _%/ (2(69°") g% FapFopv/—g + 9°* 9" FapFxp (— 3V =99, (6g"))) d*z =

1
410

1 1 ,
= _27 (F},LBFVﬂ - i a,BFO(Bg/LV) ((SgH )V —gd4$
Ho

(2(69°M) Fap 2P — L FasF*Pg,,(69")) v/—gd*z =

The variation of 65, = 0.

The equations of motion are:

C4

1 1
1 1 af —
167G (RW - §R9W) — 2PV — %0 (FuﬂFVB 1 apl’ gxw> =0

We rearrange:

87G 87G 1 1 .
Ry — 3Ry = e Ponte T e <F;L6Fuﬁ = qFosl 59#:/)

We define the stress energy tensor as:

87rGTW

Ry — %Rgl“’ T

T 2 5(SM + SeEm + Sq)
N g
And we get:
Ty =Thp + T M
T% = pU,U,

1 1
oM = — (F F,% — ZF,5Fg )
I ,UO MB 4 B M

4.1

(4.2)

(4.3)
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The equations (4.1) are called Einstein’s equations and the equations (4.3) are stress energy tensors for the relativistic
dust and electromagnetism. The equation (4.2) is the stress energy tensor corresponding to the given action. Sometimes
it is not possible to write an action for more complex matter (perfect fluid, Navier-Stokes equations for fluid, ...) in
which case we cannot use (4.2), but we can still specify the stress energy tensor directly and (4.1) are the equations of
motion.

4.1.2 Electromagnetism

We vary with respect to A*. The variation of 55y = 0. The variation of 6.53; = 0. The variation of Sg; is:

0SEM =
- v 4 .
1 5/ F, Fry\/—gd*z =
— L [ B, )y=gdte =
2#0
_ / v (50,A,)v—gd'z
Ho
1 Fr9,(6A,)/—gdts =
Mo
= ui Oy (FM\/=g)(0A,)d z =
0
= ui <a (Fr /= )) (6A,)y/—gd*z =
0

— / V, F"(5A,)V/—gd's
The variation of S, is:
05 =
_ 5 / pngv” Ay/—gdie =
—/pEMv"(cSAl,)\/—igd‘l:U:
The equation of motion is:

1
—V, F" — ppyv” =0
Ho

Rearranging:

VMFW = popemv”
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4.1.3 Relativistic Dust

We vary the whole action with respect to z*. The variation of 6 Sy = 0. The variation of Sy is:

0Sn = —c5/p\/vuvf‘\/—gd4z =
= 75/01 /pup“d4x =

5(gm
:_/C (" Buby) 1 _
2\/b 0"
29"p (6
_ _/C 9", ( py)d%_
2/ p°
Py 4
=—ec op)d*x =
/ \/pap“( )
:_/C b, (5 (5u+) — " (02")) d*a =
VBT

:/ <Dy ( w{::T) (p” (62#) — p" (62¥)) d'z =
) (orta -

P

- (Gw) - (G

(5 ()
_ / (Vov — V,0,) o (624)y/—gda =

— [ o0 Gatyy=gats

The variation of Sgps = 0. The variation of S is:
05 = fé/pEMv“Aw/fgdzlz =

= 75/j“A#d4x =
. / (1) A, d"e =
_ / 9y (F (3a#) — J*(5a*)) Ad'z =
_ / (“ (627 — J*(627)) B, A, d e =
- / ¥ (62")(0, A,y — 8, A, )d e =
_ / penv” (Vo A, — V,A,) (0a")y/=gd'z =

= [ oo B 62 gt

The equation of motion is:
p(Vov )v” — penmv’ Fp, =0

Rearranging:
p(Vyv,)v” = ppamv” Fu

This is the geodesic equation with Lorentz force.
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4.1.4 Equations of Motion

All together, the equations of motion are:
8rG 871G 1

1 (07
Ry = 3Rgu = — - popos + & <FMﬂFuﬂ = g Fesl ﬁQuV)

VuF" = poppmv”
p(V,u,)v” = ppuv” Fu,

The first equation determines g,,,, from the given sources (the stress energy tensors) on the right hand side, that depend
on p, v*, A* and g,,. The second equation determines A* from the sources (pgys and v*) and from g,,,, (through
the covariant derivative). Finally, the last equation determines z* and v* from the given fields A* (through the
electromagnetic field tensor) and g,,,, (through the covariant derivative).

Conservation

We apply covariant 4-divergence and use Bianci identities on the first equation:
0=V, T" =V, (Ty +Tir)

So the total stress energy tensor is conserved. This fact makes the equations of motion (that follow from the action
principle) not all independent. The third equation can be derived from the fist two as follows.

We calculate:

VLT = V(o)

VuTgy = F* pemva
and we get:

Vu(pvHv”) + F* pppve =0
Vo (pv)v” + pvHV 0" + FY pppve =0
The first term vanishes, because:
U,V (pv*)vY + v, pv*V 0" + 0, F* pparvg =0
U,V (pv")v” + v, F* pparvg =0
czvu(pv”) + 0, F ppprve =0
AV, (") =0

where we used v, V,v” = 0 (follows from differentiating c? = v,v") and v, F*"v, = 0 (contracting symmetric and
antisymmetric tensors). We are left with:

puHV 0" + F* pparvg =0
p"'V v" = —F* pppvg
PV, 0" = FY ppava

Which is the third equation.

4.2 Classical Mechanics

4.2.1 Rigid Body Rotation

In all the sections below, the rigid body is rotating around the w axis, so:

V=wXTr
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Kinetic Energy

The kinetic energy is:

where L is the total angular momentum:

Angular Momentum

Total angular momentum is:
L— /p(r)(r x v)dPr =
_ / p(r)(r x (w x 1))dr =
— [ per® ~ (e’ =
_ /p(r)(]lr2 — ) w =

=1 w

Where I is the moment of inertia tensor:

I= /p(r)(llr2 —rr)d’r

Moment of Inertia
The moment of inertia tensor and its components are:
I= /p(r)(]lr2 —rr)d®r
IV = /p(r)(éijrkrk —rirh)d3r
Let’s write w = wn (where n is a unit vector), then the kinetic energy is:

n-I-nw :§Iw2

1, 1=, 1. w=1
T—2w L—Zwlw—2
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where I is the moment of inertia about the axis of rotation:

I=n-I-n=
:n-/p(r)(]lr2 —rr)d?’r-n:
— [ o) - ()

Cylinder

Solid cylinder of radius R, height h and mass m. We’ll use cylindrical coordinates. First for rotation about the z axis:
V =naR’h
=(0,0,1)
r = (pcos ¢, psin g, z)
rn=z

r2 = p? 4 2
I= /p(r)(r2 —(r-n)?)d%r = /%(p2 + 22 = 2A)d3r =

27
:/Tp%l?’r T/ d¢>/ dR/ dzp?p =
v 5

m_ R* m 9
= V27r 1 h = R2h27r—h = 7mR

Code:
>>> from sympy import var, integrate, pi

>>> var("m V R rho z phi h")
(m, V, R, rho, z, phi, h)

>>> I = m/V * integrate(rho+*2 % rho, (rho, 0, R), (phi, 0, 2+pi), (z, -h/2, h/2))
>>> T.subs(V, pi * R#x%x2 % h)
Rx*x2+*m/2

And about the z axis:
= (1,0,0)
r = (pcose,psing, z)
r-n=pcoso

7"2:p2+z2

1= /p(r)(r2 — (r-n)})d®r = / %(p2 + 22 — p?cos? ¢)d®r =

m 27 R %
= — / d(b/ dR/ dz(p* + 2% — p? cos® ¢)p =
V 0 0 _L

m (ﬂ'R4h n 7rR2h3 - TR*h >

\% 2
_m TR n 7TR2h3 h
" wR2h 2 12

12(6R2 +h? - 3R2) =
12(3R2 + h?)
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Code:

>>> from sympy import var, integrate, pi, cos

>>> var("m V R rho z phi h")

(m, V, R, rho, z, phi, h)

>>> T = m/V » integrate((rho**2+z++2-rhox*2+cos(phi)**2) % rho, (rho, 0, R), (phi, 0, 2+pi), (z,
>>> T.subs(V, pi % Rx*2 % h).simplify ()

mx (3*xR*x*2 + hx%x2) /12

Special cases are a rod of length h (set R = 0 above) and a thin solid disk of radius R and mass m (set h = 0 above).

Sphere

Solid sphere of radius R and mass m. We’ll use spherical coordinates. All axes are equivalent, so we use rotation
about the z axis:

V= gwRi”
n=(0,0,1)
r = (pcos¢sinb, psin psin b, p cos )
r-n=pcosf

r? = p?
I= /,o(r)(r2 — (r-n)?)d®r = / %(,o2 — p?cos? 0)d*r =

m 27 R s
= —/ d¢/ dR/ dfp*(1 — cos® 0)p? sin§ =
VJo 0 0

27 R T
:T/ d¢/ dR/ d8p*sin® 9 =
V 0 0 0

_m, B4
V"5 3
m 8 m 8 2
= ——7R? = —7R® = SmR?
vis' T Iipsis 5"

Code:

>>> from sympy import var, integrate, pi, sin

>>> var("m V R rho theta phi")

(m, V, R, rho, theta, phi)

>>> I = m/V * integrate(rho**4 % sin(theta)x*3, (rho, 0, R), (phi, 0, 2+pi), (theta, 0, pi))
>>> T

8xpi*R**x5xm/ (15xV)

>>> T.subs (V, 4xpixR+x3/3)

2xRx*x2+m/5

4.3 Relativity

4.3.1 Introduction: Why Tensors

This section gives a brief introduction, and in the next sections we derive everything in detail. The Newton law is:

d?x

ST _F
e
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and using a potential for F, we get:

d?x

il v
dt? ¢
A%zt '
-y
dt? ¢

the last two equations are two different equivalent ways to write a tensor equation in 3D, which means that this equation
has the exact same form (is valid) in any (spatial) coordinate system (rotated, translated, in cartesian coordinates,
spherical coordinates, ...). Each coordinate system has a different metric, but we can always locally transform into
gij = diag(1,1,1).

However, if our coordinate transformation depends on time (e.g. a rotating disk), then the above tensor equation
changes (e.g. for the rotating disk, we get the Coriolis acceleration term), that’s because time is treated as a parameter,
not as a coordinate.

To fix this, we need to work in 4D and treat time as a coordinate, so we introduce z° = ¢t where ¢ is any constant

speed (it can be any speed, doesn’t have to be the speed of light). Then in 4D, the above equations are not tensor
equations anymore, because the operator % = c0Op is not a tensor. The 4D tensor formulation happens to be the
geodesic equation:

daf o da®
ax Pan
ROO = 47TGp

RijZO

=0

Which (given that we know how to calculate the Ricci tensor in our coordinates) is valid in any coordinates, not only
rotated, translated, cartesian, spherical, ..., but also with arbitrary time dependence, e.g. a rotating disk, accelerating
disk, ...

After suitable local coordinate transformation, we can only get two possible metrics (that connect the time and spatial
coordinates): diag(—1,1,1,1) and diag(1,1,1,1). Inertial systems have no fictitious forces, so the metrics is one of
the two above (possibly with ¢ — 00). Transformation between inertial systems is such a coordinate transformation
that leaves the metric intact, e.g.:

g =ATgA

There is no coordinate transformation that turns the metric diag(—1, 1,1, 1) into diag(1,1, 1, 1), so we need to choose
either one to describe one inertial system and then all other inertial systems will automatically have a metric with the
same signature.

The Newton law is valid for small speeds compared to the speed of light, so when we want to extend the theory
for all speeds, we only have 4 options: O(3, 1) with either ¢ — oo or ¢ finite and O(4) with either ¢ — oo or ¢
finite. If c is finite, it has to be large enough, so that we still recover the Newton law for small speeds with the given
experimental precision. All 4 cases give the correct Newton law, but give different predictions for large speeds. All
we need to do to decide which one is correct is to perform such large speeds (relativistic) experiments. It turns out
that all such relativistic experiments are in agreement with the O(3, 1) case where c is the (finite) speed of light and
with disagreement with the 3 other cases. For small speeds however (i.e. Newtonean physics), all 4 cases will work,
as long as c is chosen large enough.

Given a tensor equation, we can easily determine, if it transforms correctly under the Galilean (¢ — o0) or Lorentz
transformations (c is finite). All we have to do is to perform the limit ¢ — co. For example the Newton second law is
recovered if we do the ¢ — oo limit, but Maxwell equations are only recovered if we choose c to be exactly the speed
of light in the Maxwell equations.

The reason why we write equations as tensor equations in 4D is that we can then use any coordinates (including any
time dependence), i.e. any observer, and the equations still have the exact same form. So specifying the metrics is
enough to define the coordinates (observer) and since the equations has only one form, that is all we need. If we write
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equations only as tensors in 3D, we not only need to specify the (3D) metrics, but also how the observer accelerates
with respect to some (usually inertial) frame where the equations (let’s say Newton law) is defined and we then need
to transform all the time derivatives correctly. By using tensors in 4D, all those transformations are taken care of by
the standard tensor machinery and all we need to care about is exactly one observer, defined by its metric tensor.

By choosing the correct metrics and ¢ (i.e. diag(—1, 1, 1,1) and c the speed of light), all equations are then automati-
cally Lorentz invariant. If we choose ¢ — oo (and any metric), we automatically get all equations Galilean invariant.

4.3.2 High School Formulation

The usual (high school) formulation is the second Newton’s law:

for some particle of the mass m and position x. To determine the force F, we have at hand the Newton’s law of
gravitation:

mimsa

F| =G

r2

that expresses the magnitude |F| of the force between two particles with masses m; and ms and we also know that
the direction of the force is directly towards the other particle. We need to take into account all particles in the system,
determine the direction and magnitude of the force due to each of them and sum it up.

4.3.3 College Formulation
Unfortunately, it is quite messy to keep track of the direction of the forces and all the masses involved, it quickly

becomes cumbersome for more than 2 particles. For this reason, the better approach is to calculate the force (field)
from the mass density function p:

V-F=—-4rGmp(t,z,y,2)
To see that both formulations are equivalent, integrate both sides inside some sphere:
/V -Fdxdydz = —4nGms /pdxdydz
apply the Gauss theorem to the left hand side:

/V-Fdxdydz:/F-ndS:47rr2F~n

where n = T:I and the right hand side is equal to —47Gmyms and we get:
F-n=-G m172ng
r

now we multiply both sides with n, use the fact that (F - n)n = F (because F is spherically symmetric), and we get
the traditional Newton’s law of gravitation:

mime
F=-G n
r2

It is useful to deal with a scalar field instead of a vector field (and also not to have the mass m of the test particle in
our equations explicitly), so we define a gravitational potential by:

F= _mv¢(tv z,Y, ’Z)
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then the law of gravitation is

V¢ = 4nGp

and the second law is:
d?x
mW =—-mVo(t,x,y,z2)

Note about units:

[r] = [x] =m

[m] = kg
[p] = kgm™?
[F] = kgms™?

Example

4.4)

Calculate the force acting on a test particle inside an infinitely thin spherical shell of radius R and surface mass

distribution o (6, ¢) = 1. We need to solve

V24 = 4nGp 4.5)
with
dR—r
oa.9.2) = 00,0227
r=+/x2+y2+ 22
the Green function of (4.5) is
1
G(x,y) =
(x,5) F——
so the solution is:
o= [ GlxymGay)ay = 16 [ L2 &y =
e / o16.0) 7 sind d6ded
= T T =
V/(z —rsinfcos )2 + (y — rsinfsin )2 + (2 — r cos §)2
ype. / OB —r)sinb d0dedr =
V/(z —rsinfcos )2 + (y — rsinfsin )2 + (z — r cos 0)2
4rG / sin 0 d0de
= 47 =
V/(z — Rsinfcos ¢)?2 + (y — Rsinfsin ¢)2 + (2 — Rcos0)?
e / sin dodg
=d4r
Va2 +y?+ 22 + R? — 2R(zsinf cos ¢ + ysinfsin ¢ + z cos )
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for symmetry reasons we can set x = 0, y = 0 (it can also be done more exactly, as shown in Example II):

27 T B
(0,0, 2) = 4nG / dé / 0 sin 0 =

0 0 V22 + R2 —2Rzcosf

- SWQG/Tr 9 sin 0 -
0 V22 + R2 —2Rzcosf
1

= 87r2G/ dy =
—1 22+ R%2 - 2Rzy

elel /<R+Z>2 du
RZ (sz)Q \/’lj
47 G (R+2)?
=- [2 u} =
Rz (R—2)2

- 747;5’ 2IR+ 2 - 2R -] =
- ]
_167°G
R

This must hold for all x and y (less than R), so:

B 1672G

o,y 2) = 7

And the force is

1 2
F =-mV¢(t,x,y,z) = —mV <— 6; G> =0

So the force acting on a test particle inside the shell is zero.

4.3.4 Differential Geometry Formulation

There are still problems with this formulation, because it is not immediatelly clear how to write those laws in other
frames, for example rotating, or accelerating — one needs to employ nontrivial assumptions about the systems, space,
relativity principle and it is often a source confusion. Fortunately there is a way out — differential geometry. By
reformulating the above laws in the language of the differential geometry, everything will suddenly be very explicit
and clear. As an added bonus, because the special and general relativity uses the same language, the real differences
between all these three theories will become clear.

We write z, y, z and ¢ as components of one 4-vector

In this section, you can imagine ¢ = 1, but we’ll need it later, so we put it in right now, so that we don’t need to rederive
all equations again. Now we need to connect the Newtonian equations to geometry. To do that, we reformulate the
Newton’s second law:

A%zt

3z T070;6=0
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by choosing a parameter A such, that ‘527;\ = 0, so in general
A=at+b
and
d2 ) d2
g
de? dA?
o)

d?zt 1 s
W + E(W(“)j(b =0

and using the relation % = a we get

2z dt \ 2
ijg. i _
LKA am(dA) 0

So using 2" instead of ¢, we endup with the following equations:

220

e
d%a’ 1 .. dz®\?
e Tl ajd)(dA) 0

But this is exactly the geodesic equation for the following Christoffel symbols:
f L sii 4.6
Foo = 675 9o (4.6)

and all other components are zero.

In order to formulate the gravitation law, we now need to express V2¢ in terms of geometric quantities like I'g, or
R%3.5. We get the only nonzero components of the Riemann tensor:

. . 1
R oro = =R ook, = géﬁ 0;0k ¢
we calculate the R, 5 by contracting:
Roo = Rlopo = Rioio = ~590,0,
00 = Rfou0 = Roio = —50"0; )j &

Rij:O

comparing with (4.4) we see that the Newton gravitation law is

e
Roo = —5-p
Rij =0

Thus we have reformulated the Newton’s laws in a frame invariant way — the matter curves the geometry using the
equations:

4G
Roo = 2P
Ri]‘ =0
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from which one can (for example) calculate the Christoffel symbols and other things. The particles then move on the
geodesics:
d2z® 4T daf dzv
dxz AN dh
Both equations now have the same form in all coordinate systems (inertial or not) and it is clear how to transform them
— only the Christoffel symbols (and Ricci tensor) change and we have a formula for their transformation.

Obviously this works for any value of ¢ (as it cancels out in the final equations of motion) and at this level we don’t
really need it yet, so we can set ¢ = 1 and forget about it. In the next section we will need some constant in the metric
to send to infinity in order to obtain the correct Christoffel symbols, and we can conveniently just use c. Later on we
introduce special relativity and we need to introduce a speed of light and it turns out that we can again just use c for
that without any loss of generality.

4.3.5 Metrics

There is a slight problem with the metrics — it can be proven that there is no metrics, that generates the Christoffel
symbols above. However, it turns out that if we introduce an invariant speed c in the metrics, then calculate the
Christoffel symbols (thus they depend on c¢) and then do the limit ¢ — oo, we can get the Christoffel symbols above.

In fact, it turns out that there are many such metrics that generate the right Christoffel symbols. Below we list several
similar metrics and the corresponding Christoffel symbols (in the limit ¢ — c0), so that we can get a better feeling
what metrics work and what don’t and why:

=26 0 0 0
B 0 1 0 0
G = 0 0 -1 0
0 0 0 1
F(%0 = 6w¢
I3y = —0y¢
F00 =0.¢
-2 0 0 0
0 1 0 0
Guw 0 0 -1 0
0 0 0 -1
1 _
F00 - aTd)
Fgo = *ay‘b
Fgo =—0.¢
-2 0 0 0
0 1 0 0
Guw = 0 0 -1 0
0 0 0 -1
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1"(1)0:—81¢
FgO:_Mb
F802_2¢
—c?445-2¢ 0 0 O
B 0 10 0
Guw = 0 01 0
0 00 1
1 _
oo = 09
F%0:8y¢
F80:8Z¢
—2—2¢ 0 0 0
B 0 1-2 0 0
G = 0 0 1-2 0
0 0 0o 1-2
1
F00_8$¢
F(Q)ozay(l5
Foozazﬁf’
2 _
—2—2% 0 0 0
_ 0 1 0 0
G = 0 01 0
0 00 1
1 _
Lo = 020
F30:8y¢
Fgo:azﬁf’
2-26 0 0 0
0 10 0
Jpw = 0 01 0
0 00 1
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P(l)ozazﬁb
Fgozay¢
F80:8Z¢
-2 0 0 0
B 0 A 00
G = 0 0 10
0 0 0 1
Fgo:ay¢
F80232¢
=2 0 0 0
| o 10 %2
G = 0 01 0
0 00 1
1 _
FOO_aﬂCd)
F%0:8y¢
Fgozazﬁf’
-2 0 0 0
_ 0 1 0 ¢2
G = 0 01 0
0 00 1
g = —o0
F%0:8y¢
Fgozazﬁf’
2—-26 0 0 0
B 0 1 05
G = 0 01 0
0 00 1

1_\(1)0 = 8x¢ - 582¢
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Fgo = ay¢

Fgo =09
- 20 0 5 0
. 0 1 0 O
G = 0 01 0
0 0 0 1

1 _

oo = 0x0

Fgo = ay¢

Fgo =09

If we do the limit ¢ — oo in the metrics itself, all the working metrics degenerate to:

oo 0 0 O
- 0 1 0 O
=110 010
0 0 01
(possibly with nonzero but finite elements go; = g0 # 0). So it seems like any metrics whose limit is
diag(+o00,1,1,1), generates the correct Christoffel symbols:
1j(l)o =029
Fgo =0y¢
Fgo =0:¢

but this would have to be investigated further.

Let’s take the metrics diag(—c? — 2¢,1 — i—f, 1-— i—f, 1— i—f) and calculate the Christoffel symbols (without the limit
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c — 00):

N

pr

pr

Bt ¢(t 1)"/7'2) _ éz ¢'(t z,Y,2 ) _ E%q&(t@,y,z) _ %tb(t,w,y,z)

—2¢(t,x,y,2) — —20(ta,y,2) = —2¢(t,z,y,2)— —2¢(t,@,y,2)—c?
¢7(t z,Y, z) Fr ¢(t z,Y,2) 0 0

*2¢(t z,y,2)—c? 2 (—20(L,z,y,2)—c?)

5 0(t.29.2) 0 $0.00,2) 0
—2¢(t,@,y,2)—c? c2(—2¢(t,x,y,2)—c?)

%(ﬁ(t@,y’z) 0 0 %¢(t,%y,2)
—2¢(t,x,y,2)—c? c2(—2¢(t,a,y,2)—c?)

%d)(t,w,y,z) ét o (t,x,y,2) 0 0

t,0,Y,2
1—92%( CZU )

c2(1 2¢(tzy2)

, ) , ,
%q&(t@,%z) _ 3,_ o(t,z,y,2) _ Ty‘b(tvwﬂxz) %Qﬁ(t@ﬁl}’z)
02(172‘1’(’":2’“’2)) c2(1 2¢(’f T Y Z)) 02(172 ¢(t1:21?/,2)) 62(172¢(t=:2,y12))
0 B B(t,2..2) 7 (1,2,Y,2) 0
02(1 2¢>(t,w,y Z)) 52(172 ¢(t,j2,y,Z))
0 L 2eltaye) 0 2 o(t,7,y,2)
02( 2¢(tmy Z)) 62(172‘7)(747:2»3112))
& o(t.e.9.2) 0 So(tay.2) 0
1-2 d)(tvmzvyvz) 62(1 2¢(t g 7/ Z))
0 2 6(ta,y,2) 2, Iﬁy 2) 0
(1 2¢(*T7/ Z)) 52(1 2¢(*T7/ Z))
%Mt%y&) aL o(t,x,y,2) ¢(t 51’7?/ 2) . %¢(t,$,y,z)
62(1,2M2=y‘5)) (1 QM) 52(1 2¢(ffyz)) 62(1,2M2=y‘5))
0 ) 0 ) ¢(t ,Y,2) c%q&(t,z,y;z)
62(1 2ri>(f Tyz)) 62(172¢<t’m2’y’z))
%47(75793’%3) 0 0 _ t¢(t z,Y,2)
1—2 d)(f/,.:z,?/YZ) CQ( 2(75(t,.7:.1/ z))
0 £ o(tx,y,2) 0 2o, @y.2)
(122t p.2)) cz( —220e e
0 0 L o(t,2.,2) £ 0(t2,.7)
62(1 2¢(1Tyz)) 02(1 2¢(fryz))
Fo(t,z,y,2) _ EZétay.z) _ getay,2) Zo(t,m,y,2)
o(t,x,y,2) ot x,y,2) ot x,y,2) ¢~(f Y, B)
2 (1—2¢hsuz)) 2 (1—22tbwa)) ¢ (1 g #lLsy.2)) c2(1—22tL.2) )

By taking the limit ¢ — oo, the only nonzero Christoffel symbols are:

or written compactly:

So the geodesics equation

1—‘(1)0 = 00
00 = 0y¢
00 =09
80 = zjaJ"b
d?ze o dzf dz¥

ey T

becomes
220
axz
d2at i da?
dx? +5Jaj¢< ) -
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From the first equation we get x° = a\ + b, we substitute to the second equation:

1 d%2t
a? d\? +049;¢=0
or
d2at i
d(z0)2 +0Y0;0 =0
dQjS .
= 00,0

So the Newton’s second law is the equation of geodesics.

In the above, we have set ¢ = 1 in the Christoffel symbols themselves (see the last paragraph from the last section) and
introduced another constant ¢ in the metric itself. As we can see, the metric will become infinite with this approach in
the limit ¢ — oo. Another approach is to store this c in the z* vector itself, then the metric stays finite (in fact becomes
a diagonal matrix diag(+1, 1,1, 1), thus it gives all the Christoffel symbols equal to zero, in the limit), but the vector
becomes infinite in the limit.

Either way our formalism breaks down, and thus we need to keep c finite and only do the limit in the final equations
(after we don’t need differential geometry anymore). When needed, we can also carefully neglect higher terms in c,
that will not appear in the final equations after doing the limit, but one needs to make sure that no mistake is made.

It is customary to put the constant c into the vector x* and so we will do so too from this point on.

4.3.6 Conclusion About Metric

We will use the convention to keep c in the 4-vector and the simplest metric that generates the correct Christoffel
symbols is the following:

£1-2 0 0 0

B 0 1-22 0 0
I =19 0 1-2 0
0 0 0o 1-%

In the limit ¢ — co we get the following nonzero Christoffel symbols (for both signs in 1 above):
i L i
00 = 2 0Y0;¢

all other symbols contain higher powers of ¢ and thus will not contribute in the limit ¢ — oc. The remaining ¢? in T},
will cancel with the ¢ in 20 = ct in the final equations.

As seen above, there is some freedom in which metric we can use in order to obtain the correct Christoffel symbols,
but the above metric is the simplest, so we’ll use it from now on.

4.3.7 Einstein’s Equations

Einstein’s equations are derived from the Hilbert action:

ct 4 ct
= — 1224 4
Sk —— /R1 /| det g, |d*z e /g R,/| det g]d*x

The Lagrangian density Ry/|det g,,,,| has to be given, that’s our assumption and everything else is derived from it.
In principle it can have other terms, for example o R? + ag Ry, RYY + a3gh”V, RV, R + - - - and there are a lot of
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possibilities and ultimately the exact form of the Lagrangian has to be decided by experiment. The Hilbert action is
the simplest possible action and it already gives a theory which agrees with experiment, so that will be our starting
point.

Varying it with respect to the metric g"¥ we get:
o5 16 167G / R/l det gld‘z =
- 160;:6’ /(59W)RW\/er 9" (6Ryw) /[ det g| + R(6\/[det g)d"z =
- % (59" )Ry/] det g| + g (Vk(él“;\#) — Vy(él“;\#)) VI det g + R(—1/]det g g, (59"
= o [0 R TETT + (Va9 6T, — Vg (973,0) V106t~ }Rguu/Taet ] (55 )% =
- 16C;G / (69" )Ry /] det g| — 5 Rgu/| det g| (8g")d* e =

4
C 174
=160 | (Buv = 3Rguw) (69")/| det gld'a

Where we used the following identities:
5+/|det g| = f%\/Idetg | 90 (6"")
ORP = V(1) (6F§\#)
SRy = 0R 5, = VA(T),) = V, (6T3,)

and the fact that the four divergence doesn’t contribute to the integral. By setting Sy = 0, we get:

2 5SH . 64
/| det g| 0g#* 871G

Combining the Hilbert action Sy with the action for matter Sy, we get:

(Ryuw — %RQW) =0

S =8Syg+Su
Varying this action as above we get:

2 55 C4 2 5SM
T = g e~ ) + e =0

/I det g| g

SO:
8rG 2 (SSM o 8rG

= T v
/| detg\ 5_9/“/ C4 1

Ruy = 5Rguw = —

Where we set:
2 0Sm

Ty = — o 0OM
: /I det g| 69"

This is a definition of the stress energy tensor corresponding to the action Sy = [ L4/ det g|d*z. We can also
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write it in terms of the Lagrangian £, directly as:

)
Ty = S _

7\/|detg| oghv
2 § [ Lary/]det g|ld*z _
/| det g ogh” a

o JELw)/Tdetg] + Lu (8y/[detg]) '
VI detg] b9 -

o (f;f% (59’”)) VIdet g+ L (—%\/mgw(ég"”)) d*z
VIdetg| og+

S N TN
JTaera] \og

0Ly
= —2597 =+ Q;WEM

If this action contains electromagnetic field, we get an electromagnetic stress energy tensor. For continous matter, we
get the stress energy tensor for continous matter, see the next section. The right hand side of the Einstein’s equations
contains the sum of all stress energy tensors (for all fields in the Lagrangian).

4.3.8 Continuous Distribution of Matter

The action is:

Sy = —/pcw/v”v#\/|detg\d49:

But it isn’t suitable for applying variations because p and v* are not independent quantities. So we write it in terms of
a 4-momentum vector density p*:

P = po*

p = pty/|detg| = pvy/| detg|
/B P = \/pvw/ | det g|pvr+/| det g| = py/vuviy/ | det g|

and the action becomes:

Sv = —/pC\/W\/md% = _/c\/ p#p“d‘lx

We vary Sy with respect to g*”:

8Sy = 75/01 /pprdle =

6 ing
:_/C (g pﬂpy)d%:
2¢/p P

By .
=— | c——=§(¢"")d*z =
/ N A

2

B pULpvLA/ | det g g4

=—ec 6(g"")d x =
2pc+/| det g

= —/%pvuvué(g“”)\/\detmd%
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And the stress energy tensor is:
B 2 0Sm

Tw—_i =
! /| det g| g

2
=~ (Thoun/Tdetl) =

= pu,v,

Now we vary Sj; with respect to x#:

0Sy = —5/0, /{Jup“d‘lx =

§(g™
_ —/C (g p"p”)d4x:
AV
2g1p (6
:—/C g ‘p/l,( py)d4x_
2/
P 4
=—|c opt)d*x =
/ W‘l( )
= f/c P, (b (dat) — p(627)) d*z =
VB ®
= /cay ({{:"pa) (p” (0a") — p*(d2")) d'a =

:/C(a"(w{::T)_a“<\/;{;:7>)*’y(5l’“>d4x=

(5 ) () s
= /(Vuv,,, — V,0,) pu¥ (62*) /[ det gldiz =

= /p(V,,v#)v”(ém“)\Mdet gldiz

So the equation of motion is the geodesic:

p(Vyu,)v" =0
Charged matter has the interaction action:

S0=— [ peanva/Taetglate = - [,/ Tactgiate = - [ auate

where we have introduced the 4-current j* and 4-current density j*:

g = pepmvt

= j*+/| det g| = pearvt+/| det g
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We vary S,; with respect to z:
55, = —5/)‘“Aud4x _
= / (6f)A,d'z =
_ / 9y ( (02) — 1 (5a*)) A,z =
= [ ey 0,4, =
_ / ¥ (62")(0, A,y — B, A )d e =
= [ prait @y~ 3,4,) 08 et gl =
__ / pEare” F(52) /[ det gld*a

So the combined action Sy; + .S, yields:
p(Vyu, )0 — pppv”Fu, =0

Varying S, with respect to A* yields the 4-current j* = pgasv* which ends up on the right hand side of the Maxwell’s
equations when varying the Sgjs action.

4.3.9 Obsolete Section

This section is obsolete, ideas from it should be polished (sometimes corrected) and put to other sections.

The problem is, that in general, Christoffel symbols have 40 components and metrics only 10 and in our case, we cannot
find such a metrics, that generates the Christoffel symbols above. In other words, the spacetime that describes the
Newtonian theory is affine, but not a metric space. The metrics is singular, and we have one metrics diag(—1, 0,0, 0)
that describes the time coordinate and another metrics diag(0, 1, 1, 1) that describes the spatial coordinates. We know
the affine connection coefficients I'g_ , so that is enough to calculate geodesics and to differentiate vectors and do
everything we need.

However, for me it is still not satisfactory, because I really want to have a metrics tensor, so that I can easily derive
things in exactly the same way as in general relativity. To do that, we will have to work in the regime c is finite and
only at the end do the limit ¢ — oo.

We start with Einstein’s equations:

81G
Raﬁ - %Rgaﬂ = CTTQB

or

81G
RozB = CT(T@,@ - %Tg(xﬂ)

817G,
(7% = 37T)

R%g =
B ot

The energy-momentum tensor is

7% = pUueU”
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in our approximation U? ~ 0 and U ~ ¢, so the only nonzero component is:

700 _ ch
T = pc
and
;o 8rG, 4 ArG
R, o (=3pc7) = - 2
831G 47 G
0 _ 1,2y _
R A (zpc°) = 2
We need to find such a metric tensor, that
1
R = 5V?%p
c

then we get (4.4).

There are several ways to choose the metrics tensor. We start We can always find a coordinate transformation, that
converts the metrics to a diagonal form with only 1, 0 and —1 on the diagonal. If we want nondegenerate metrics, we
do not accept 0 (but as it turns out, the metrics for the Newtonian mechanics is degenerated). Also, it is equivalent if
we add a minus to all diagonal elements, e.g. diag(1,1,1,1) and diag(—1, —1, —1, —1) are equivalent, so we are left
with these options only: signature 4:

g = diag(1,1,1,1)
signature 2:

g = diag(—1,1,1,1)
g = diag(1,—-1,1,1)
Guv = dlag(17 17 _1’ 1)

Guv = dlag(]~7 17 17 _1)
signature 0:

Guv = dlag(_17 _1a 1) 1)
gu = diag(—1,1,-1,1)

Guv = diag(_17 17 1a _1)

No other possibility exists (up to adding a minus to all elements). We can also quite easily find coordinate transforma-
tions that swap coordinates, i.e. we can always find a transformation so that we first have only —1 and then only 1 on
the diagonal, so we are left with: signature 4:

g = diag(1,1,1,1)
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signature 2:

g = diag(—1,1,1,1)
signature 0:

g = diag(—1,—1,1,1)

One possible physical interpretation of the signature O metrics is that we have 2 time coordinates and 2 spatial coor-
dinates. In any case, this metrics doesn’t describe our space (neither Newtonian nor general relativity), because we
really need the spatial coordinates to have the metrics either diag(1, 1,1) or diag(—1,—1, —1).

So we are left with either (this case will probably not work, but I want to have an explicit reason why it doesn’t work):

10 0 0

10 1 0 0

=10 0 1 0

0 0 01

or (this is the usual special relativity)

-1 0 0 O

10 1 0 0

=10 010

0 0 0 1

It turns out, that one option to turn on gravitation is to add the term — i—f]l to the metric tensor, in the first case:

1-22 0 0 0

0 1-2 0 0

I =1 ¢ 0 1-2 o0

0 0 0o 1-%

and second case:

-1-22 0 0 0

N 0 1-2 0 0

=19 0 1-2% 0
0 0 0o 1-%

The second law is derived from the equation of geodesic:

N
dxz A dh
in an equivalent form
dU«
dr

a 178 _
+T5, U0 =0

The only nonzero Christoffel symbols in the first case are (in the expressions for the Christoffel symbols below, we set
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c=1):

and in the second case, only ng is different:

Now we assume that 9, ~ ¢ < 2, so all '3, are of the same order. Also |U!| < |U°] and U° = ¢, so the only

nonnegligible term is

prv T

w T

py T

prv T

pyv

Fo(tr,y,2)

_ Zo(tm,y,2)

2 6(t2,5,2)

2 o(t,z,y,2)

T 1-2¢(t,a,y,2) 1-2¢(t,w,y,2)  1-2¢(t,x,y,z)  1-2¢(t,a,y,2)

2 o(tmy,z) 2 o(t,x,y,2) 0 0
1-2¢(t,2,y,2) 1-2¢(t,2,y,2)

_ %Mt%%z) 0 %q&(t,w,y,z) 0
1-2¢(t,z,y,2) 1-2¢(t,2,y,2)

_ %(ﬁ(t,x,y,z) O O %¢(tvxvyvz)
1-2¢(t,2,y,2) 1-2¢(t,2,y,2)
%(z)(tVl"yVZ) _ %d}(t,x,y,z) 0 0
1-2¢(t,2,y,2) 1-2¢(t,2,y,2)

_ Zolttwyz)  Zettwyz) Fotwwe) Loty
1-20(t,2,y,2) 1-20(tz,y,2)  1-26(6ay,2)  1-20(6,2,y,2)

2 o(tzy.2)

2 o(t,x,y,2)

0 T 1-2¢(t,x,y,2) 1-2¢(t,x,y,2) 0
0 _ B oltays) 0 Bty
1-2¢(t,x,y,2) 1-2¢(t,x,y,2)
By tey.z) 0 _ &otayz) 0
1-2¢(t,2,y,2) 1-2¢(t,x,y,2)
0 %¢(tvz1y72) . %d)(t,z,y,z) 0
1-2¢(t,x,y,2) 1-2¢(t,x,y,2)
2 o(tz,y,2) 2 o(t,2,y,2) 2 o(t,w,y,2) 2 o(t,a,y,2)
1-2¢(t,x,y,2) 1-2¢(t,x,y,2) 1-2¢(t,x,y,2) 1{)—2¢(t,x,y,z)
0 0 _ Bolieyy)  gpeltes:)
1-2¢(t,x,y,2) 1-2¢(t,x,y,2)
B (tTy,2) 0 0 _ Hotayz)
1-2¢(t,x,y,2) 1-2¢(t,x,y,2)
1-2¢(t,2,y,2) 1-2¢(t,x,y,2)
0 0 7z ¢(t,2.y,2) 5y 0 (tw.y.2)
1-2¢(t,x,y,2) 1-2¢(t,x,y,2)
_ %¢(t7x7yvz) _ %q&(t,x,y,z) _ %¢(t7$7y72) _ %qb(t,;c,y,z)
1-2¢(t,x,y,2) 1-2¢(t,x,y,2) 1-2¢(t,x,y,2) 1-2¢(t,x,y,2)

Z(t,z,y,2)

Zo(t,m,y,2)

& o(ta,y,2)

£ o(t,2,y,2)

14+2¢(t,,,2)
75 6(,7,y,2)

1+26(t,2,y,2)
2 é(t,z,y,2)

1420(%,2,,2)
2 6(t,,9,2)
14+2¢(t,z,y,2)
£ o(t,x,y,2)
14+2¢(t,z,y,2)

T 124(tw,y,2)
0

0

dU~
dr

Substituting for the Christoffel symbol we get

Ut 899;%
=

dr

o

N
e

and multiplying both sides with m:

dU?

de

1+2¢(t,,y,2)
0

_ Zotay,2)
1+2¢(t,2,y,2)

0

+ L5 (U%)? =0

= —m8j¢ (Sij

1+2¢(t,,y,2)
0

0

Lty
14+26(t,2.y.2)

¢ ==510,0) (1+0(5)) = =500 +0 <<¢)>

which is the second Newton’s law. For the zeroth component we get (first case metric)

mdUO B
dr

=m

d¢
dr
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second case:

dv’ _ dg

"ar T "ar

Where mU° = p° is the energy of the particle (with respect to this frame only), this means the energy is conserved
unless the gravitational field depends on time.

To summarize: the Christoffel symbols (4.6) that we get from the Newtonian theory contain ¢, which up to this point
can be any speed, for example we can set ¢ = 1 ms~!. However, in order to have some metrics tensor that generates
those Christoffel symbols, the only way to do that is by the metrics

2¢

diag(—1,1,1,1) — —1
c

2
then calculating the Christoffel symbols. If we neglect the terms of the order O ( (;%) ) and higher, we get the

Newtonian Christoffel symbols (4.6) that we want. It’s clear that in order to neglect the terms, we must have |¢| < 2,
so we must choose ¢ large enough for this to work. To put it plainly, unless c is large, there is no metrics in our
Newtonian spacetime. However for c large, everything is fine.

4.3.10 Inertial frames

What is an inertial frame? Inertial frame is such a frame that doesn’t have any fictitious forces. What is a fictitious
force? If we take covariant time derivative of any vector, then fictitious forces are all the terms with nonzero Christoffel
symbols. In other words, nonzero Christoffel symbols mean that by (partially) differentiating with respect to time, we
need to add additional terms in order to get a proper vector again — and those terms are called fictitious forces if we
are differentiating the velocity vector.

Inertial frame is a frame without fictitious forces, i.e. with all Christoffel symbols zero in the whole frame. This is
equivalent to all components of the Riemann tensor being zero:

R%~5 =0

In general, if R¥g,5 # 0 in the whole universe, then no such frame exists, but one can always achieve that locally,
because one can always find a coordinate transformation so that the Christoffel symbols are zero locally (e.g. at one
point), but unless 2% s = 0, the Christoffel symbols will not be zero in the whole frame. So the (local) inertial frame
is such a frame that has zero Christoffel symbols (locally).

What is the metrics of the inertial frame? It is such a metrics, that I'“ 3, = 0. The derivatives ,,I'“ 3, however doesn’t
have to be zero. We know that taking any of the metrics listed above with ¢ = const we get all the Christoffel symbols
zero. So for example these two metrics (one with a plus sign, the other with a minus sign) have all the Christoffel
symbols zero:

2 0 0 0
o 100
Iww=1 "0 0 1 0

0 0 0 1

Such a metrics corresponds to an inertial frame then.

What are the (coordinate) transformations, that transform from one inertial frame to another? Those are all transfor-
mations that start with an inertial frame metrics (an example of such a metrics is given above), transform it using the
transformation matrix and the resulting metrics is also inertial. In particular, let z# be inertial, thus g,,,, is an inertial
metrics, then transform to z’* and ¢':

, oz Oxz" ox\ " ox
Jop = Gpra geB 9 =\ o ) I\ o
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if we denote the transformation matrix by A:

oxt
Ao = ox'e

then the transformation law is:
g = AT gl

Now let’s assume that ¢’ = g, i.e. both inertial systems are given by the same matrix and let’s assume this particular
form:

+c2 0 0 0
;o 1 0 1 0 0
G =9 ="1"0 0 1 0
0 0 01
(e.g. this covers almost all possible Newtonian metrics tensors).
4.3.11 Lorentz Group
The Lorentz group is O(3,1), e.g. all matrices satisfying:
g=A"gA 4.7)

with g = diag(—c?,1,1,1). Taking the determinant of (4.7) we get (det A)? = 1 or det A = £1. Writing the 00
component of (4.7) we get

—62 _ _C2(A00)2 + (A01)2 + (A02)2 + (A03)2
or
1
(A00)2 =1+ 672 ((A01)2 =+ (A02)2 + (A03)2)
Thus we can see that either A% > 1 (the transformation preserves the direction of time, orthochronous) or A%, < —1
(not orthochronous). Thus we can see that the O(3, 1) group consists of 4 continuous parts, that are not connected.

First case: elements with det A = 1 and A% > 1. Transformations with det A = 1 form a subgroup and are called
SO(3, 1), if they also have A% > 1 (orthochronous), then they also form a subgroup and are called the proper Lorentz
transformations and denoted by SO (3, 1). They consists of Lorentz boosts, example in the z-direction:

1 2
. c 0 0
7 V3
_ UC 1 © 0 0
e R
0 0 1 0
0 0 0 1
which in the limit ¢ — oo gives
1 0 0 0
w _|-v 1.0 0
Aty = 0 0 1 0
0 0 0 1
and spatial rotations:
1 0 0 0
0 1 0 0
Ri(9) = 0 0 cos¢ sing
0 0 —sing coso
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1 0 0 0

0 cos 0 sin
Ba(9)=10 0 ’ 10 ’
0 —sing 0 cos¢
1 0 0 0
|10 cos¢ sing O
Rs(9) = 0 —sing cos¢ 0
0 0 0 1

(More rigorous derivation will be given in a moment.) It can be shown (see below), that all other elements (improper
Lorentz transformations) of the O(3, 1) group can be written as products of an element from SO™ (3,1) and an element
of the discrete group:

{1, P, T, PT}

where P is parity (also called space reflection or space inversion):

1 0 0 0

0 -1 o0 0

P= 0 0 -1 0

0 0 0 -1
and T is time reversal (also called time inversion):

-1 0 0 O
0 1 0 0
= 0 0 10
0 0 0 1

Second case: elements with det A = 1 and A%y < —1. An example of such an element is PT". In general, any product
from SO (3,1) and PT belongs here.

Third case: elements with det A = —1 and A% > 1. An example of such an element is P. In general, any product
from SO (3,1) and P belongs here.

Fourth case: elements with det A = —1 and A%, < —1. An example of such an element is 7". In general, any product
from SO (3,1) and T belongs here.

Example: where does the reflection around a single spatial axis (¢, x,y,z) — (¢, —x,y, z) belong to? It is the third

case, because the determinant is det A = —1 and the 00 element is 1. Written in the matrix form:
1 0 00 1 0 0 0 1 0 0 0
A 0 -1 0 0] [0 -1 O 0 01 0 01 _
“{o o 1 0] {0 0 -1 0 0 0 -1 0]
0O 0 0 1 0 0 0 -1 0O 0 0 -1
1 0 0 0 1 0 0 0
0 -1 0 0 0 1 0 0
“10 0 -1 o0 0 0 cosm sinwm | PR, ()
0 0 0 -1 0 0 —sinm cosw

So it is constructed using the R; element from SO™ (3, 1) and P from the discrete group above.

We can now show why the decomposition O(3,1) = SO™(3,1) x {1, P, T, PT} works. Note that PT = —1. First
we show that SO(3,1) = SO™(3,1) x {1, —1}. This follows from the fact, that all matrices with A% < —1 can be
written using —1 and a matrix with Ay > 1. All matrices with det A = —1 can be constructed from a matrix with
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det A = 1 (i.e. SO(3, 1)) and a diagonal matrix with odd number of -1, below we list all of them together with their
construction using time reversal, parity and spatial rotations:

diag(—1,1,1,1) =T
diag(1,—1,1,1) = PRy (m)
diag(1,1,~1,1) = PRy (r)
diag(1,1, 1, —1) = PR3(m)
diag(1,-1,-1,-1)=P
diag(— 1,1, —1) = TRy(r)
diag(—1, — —1) = TRy(m)
diag(—1,— 17 1) = TRs(m)

But R;(7) belongs to SOT (3, 1), so we just need two extra elements, 7' and P to construct all matrices with det A =
—1 using matrices from SO(3, 1). So to recapitulate, if we start with SOt (3,1) we need to add the element PT = —
to construct SO(3, 1) and then we need to add P and T to construct O(3, 1). Because all other combinations like
PPT = T reduce to just one of {1, P, T, —1}, we are done.

The elements from SO (3, 1) are proper Lorentz transformations, all other elements are improper. Now we’d like to
construct the proper Lorentz transformation matrix A explicitly. As said above, all improper transformations are just
proper transformations multiplied by either P, T or PT, so it is sufficient to construct A.

We can always write A = el then:
det A =detel =eTE =1
so Tr L = 0 and L is a real, traceless matrix. Rewriting (4.7):

g=A"gA
A—l _ g—lATg

—L -1 LT -iLT

€=y g=el 77

~L=g'L"g

—gL = (gL)"
The matrix gL is thus antisymmetric and the general form of L is then:

0 Loy Lo Los
c2? c2 c2

Loy 0 Lo L3
L02 _L12 0 L23
Loz —Liz —Lx3 O

One can check, that gL is indeed antisymmetric. However, for a better parametrization, it’s better to work with a metric
diag(—1,1,1,1), which can be achieved by putting c into (ct, x, y, z), or equivalently, to work with z* = (¢, z,y, 2)
and multiply this by a matrix C' = diag(c,1,1,1) to get (ct,z,y,2). To get a symmetric L, we just have to do
Ca' = LCz, so to get an unsymmetric L from the symmetric one, we need to do C~!LC, so we get:

0 G G G

L=C! g 53 o 2| e=—ip-L-ic-cTMC

(3 —p2  ¢1 0
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We have parametrized all the proper Lorentz transformations with just 6 parameters (i, (2, (3, ©1, @2 and @3. The
matrices L and M are defined as:

00 0 0
oo o o
Li==ifg o o 1
00 -1 0
000 0
o 0o 0o -1
La==i1g 0 0 o
010 0
0 0 0 0
o o 10
Ls==iy 1 ¢ o
0 0 0 0
010 0
11 0 0 0
Mi=ilg o0 0 0
000 0
001 0
1o 0o 0 o
My=ily o o o
000 0
00 0 1
000 0
Ms=i1g 0 0 0
100 0

Straightforward calculation shows:

[Li, Lj] = deijn L
[Li, Mj] = i€sjp My

[M;, Mj] = —ie€iji Ly
The first relation corresponds to the commutation relations for angular momentum, second relation shows that M
transforms as a vector under rotations and the final relation shows that boosts do not in general commute.
We get:

A= eficp-LfiC-C_lMC — 1 L—i¢M
As a special case, the rotation around the z-axis is given by ¢ = (0,0,

0 0

%)
1
i 0 cos sin
— —ieLs 1 T2 T 2 _ ¥ ¥
A=e 1— L5+ iLssinp+ Lycosy 0 —sing cose
0

0 0

_ o O O
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The boost in the a-direction is ¢ = 0 and ¢ = (¢, 0,0), e.g.:
A=C e MO =C"" (1 + M} —iM;sinh ¢ — M7 cosh¢) C =

cosh( sinh¢ 0 0 cosh ¢ % sinh¢ 0 O

_ ot sinh{ cosh¢ 0 0 c—|¢ sinh( cosh¢ 0 0O
0 0 1 0 0 0 10

0 0 0 1 0 0 01

from the construction, —oco < ¢ < 0o, so we may do the substitution ( = atanh (%), where —c < v < c. The inverse
transformation is:

1
cosh( =
-5
sinh ( = c
2
1-=
and we get the boost given above:
1 P
cosh ¢ %sinh( 0 0 1—22 1-22 00
| esinh¢ cosh¢ 0 O] v 1 0 0
A= 0 10| |VitE Viom
0 0 0 1 0 0 10
0 0 0 1

Depending on the sign of v, we can also put a minus sign in front of the off-diagonal elements.

Adding two boosts together:

- ——=— 0 0 - ——=— 0 0
Vimm s Viis o s
_ u 1 0 0 _ v 1 0 0
AwALY =1 "img s N -
0 0 10 0 10
0 0 01 0 0 0 1
L 200
Viem s
— 0 0
|V =
0 0 10
0 0 0 1
with
w U+ v
1+
4.3.12 O(4) Group
The group of rotations in 4 dimensions is O(4), e.g. all matrices satisfying:
g=ATgA 4.8)

206 Chapter 4. Classical Mechanics, Special and General Relativity



Theoretical Physics Reference, Release 0.5

with ¢ = diag(c?,1,1,1). Taking the determinant of (4.8) we get (det A)?> = 1 or det A = +1. Writing the 00
component of (4.8) we get

02 — 02<A00)2 + <A01)2 + <A02)2 + <A03)2

or
(AOO)2 -1 C% ((A01)2 + (A02)2 + (A03)2)

Thus we always have —1 < A% < 1. That is different to the O(3, 1) group: the O(4) group consists of only 2
continuous parts, that are not connected. (The SO(4) part contains the element —1 though, but one can get to it
continuously, so the group is doubly connected.)

Everything proceeds much like for the O(3, 1) group, so gL is antisymmetric, but this time g = diag(c?,1,1,1), so
we get:

0 _Lon Loz _ Los
c? c? c?

L01 0 L12 L13
Los —Li 0 L3
Loz —Liz —Los 0

and so we also have 6 generators, but this time all of them are rotations:
A=Clewala g

with a = 1,2, 3,4, 5, 6. The spatial rotations are the same as for O(3, 1) and the remaining 3 rotations are (¢, z), (¢, y)
and (¢, z) plane rotations. So for example the (¢, ) rotation is:

1

cospy sinpg 0 0 COS Py ;sin<p4 0 0
1| —singpy cospy 0 O —csingpg  cospg 0 0
A=C 0 0 10 ¢= 0 0 10
0 0 0 1 0 0 0 1
Now we can do this identification:
sin ¢ SR S—
LVITr
1
CoS Py = ————
4 I+ (2)2
so we get the Galilean transformation in the limit ¢ — oo:
1 2
vraE v 00 1 000
- 1 —v 1 0 0
A=|"ymmr v 00 -
0 01 0
0 0 10 0 0 0 1
0 0 0 1
Adding two boosts together:
1 oz 1 =
= 0 0 < 0 0
Virg s Virs i
u 1 v 1
— 0 0 - 0 0
AwAW = | “VE ViE A=
0 0 10 0 0 10
0 0 01 0 0 0 1
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1 2
o 0 0
Vit e
_ _ w - 1 - 0 O
= 2 14+
0 0 1 0
0 0 0 1
with
u+v
w = uv

However, there is one peculiar thing here that didn’t exist in the O(3, 1) case: by adding two velocities less than ¢, for
example u = v = ¢/2, we get:

c 4c <
w= =5 >cC
1-3 3
(as opposed to w = 1j1 = % < cin the O(3, 1) case). So one can get over c easily. By adding u = v = % together:
4
8c
=5 24c
3
w = =" <0
11— 7
(as opposed to w = 1?& = % > 01in the O(3, 1) case). So we can also get to negative speeds easily. One also needs
9

1

to be careful with identifying cos ¢4 = because for ¢4 > 7/2 we should probably set cos 4 = — BV Ee

I S
All of this follows directly from the structure of SO(4), because one can get from A% > 0 to A% < 0 continuously
(this corresponds to increasing (4 over 7/2). In fact, by adding two speeds u = v > ¢(v/2 — 1), one always gets

w > c. Butif c(\/§ — 1) = 0.414c is larger than any speed that we are concerned about, we are fine.

4.3.13 Proper Time

Proper time 7 is a time elapsed by (physical) clocks along some (4D) trajectory. Coordinate time ¢ is just some time
coordinate assigned to each point in the space and usually one can find some real clocks, that would measure such a
time (many times they are in the infinity). To find a formula for a proper time (in terms of the coordinate time), we
introduce a local inertial frame at each point of the trajectory — in this frame, the clocks do not move, e.g. z, y, z is
constant (zero) and there is no gravity (this follows from the definition of the local inertial frame), so the metric is just
a Minkowski metric.

For any metrics, ds? is invariant:
ds? = Guvdatdx”

so coming to the local inertial frame, we have z, y, z constant and we get:

ds? = goodr?
s0:
ds?
dr = &
goo
since we are still in the local inertial frame (e.g. no gravity), we have gog = —c? (depending on which metrics we take
it could also be +¢?), so:
ds?
dr = - CT
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This formula was derived in the local inertial frame, but the right hand side is the same in any inertial frame, because
ds? is invariant and c too. So in any frame we have:

ds? Gupdarda
dr = V e \/ e

We’ll explain how to calculate the proper time on the 1971 Hafele and Keating experiment. They transported cesium-
beam atomic clocks around the Earth on scheduled commercial flights (once flying eastward, once westward) and
compared their reading on return to that of a standard clock at rest on the Earth’s surface.

We’ll calculate it with all the metrics discussed above, to see the difference.

Weak Field Metric

Let’s start with the metrics:

d52<1+2c(f)c2dt2 (1%) (d2® + dy* + d2?)

Then:
(T [ )9 122 az = L (1220 (a2 + dy? + 22
TAB—/A T—/A T2 / (+02> —C<—c)(m+y+z)
B B 2¢ 1 2¢ dz\ 2 dy 2 dz\> _
e (-2) -5 (-2 () () (%)) -
_ (7 20\ 1 2¢
a2 a2
where

dz\ 2 dy 2 dz\?
2 had _J _
M ‘(dt) +(dt) *(dt)

is the nonrelativistic velocity. Then we expand the square root into power series and only keep terms with low powers

of c:
B
TM_/&¢1+1QM)WAd4H;;w@
B 1 /1
TAB:/A dt(102<2|V2¢>>)

Now let V;, = V,(t) be the speed of the plane relative to the (rotating) Earth (positive for the eastbound flights,

negative for the westbound ones), Vg = Q’TR@ = the surface speed of the Earth, then the proper time for the clocks on

the surface is:
B
1 /1,
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and for the clocks in the plane

7_/ABdt (1012<;(Vg+v@)2¢>)

then the difference between the proper times is:

1 [P 1 ) 1, 1 [P 1
T—T@ZATZC*Q/A dt (=5 (Vg +Ve) + o+ Vs — ¢e ZCj/A dt (¢ —de — 5Vy(Vy +2Va)

but ¢ — ¢g = gh, where h = h(t) is the altitude of the plane, so the final formula is:

1 [B 1
AT = . dt { gh — 5 Vy(Vy +2Ve)
Let’s evaluate it for typical altitudes and speeds of commercial aircrafts:

Rg = 6378.1km = 6.3781 - 10°m

2rRg 1 27rRs 1 276.3781-105m m
Vi — g — e 463.83 —
@ 24 h  24-3600 s 24-3600 s s
km m
= 870 —— = 241.67 —
Vy =870 - 67—
h = 12km = 12000 m
2 27 6.3781 - 106
p = 2rfe _ 2m63T8L- 107 © oot 415 ~ 461

v, 241.67

c=3-1082
s
For eastbound flights we get:

t 1
Ar=— (gh — 5ValVy + zv@)> = —4.344-10"%s = —43.44ns

and for westbound flights we get:

t 1
Ar <gh — VoV — 21/'@)) = 3.6964- 10~ 7s = 369.63ns

T2
By neglecting gravity, one would get: eastbound flights:

t

AT = —
2

1
(—QVQ(Vg + QV@)) = —260.34 ns
and for westbound flights:

t (1
A=t (Qvg(vg - 2\/@)) — 152.73ns

By just taking the clocks to the altitude 12km and staying there for 46 hours (without moving with respect to the
inertial frame, e.g. far galaxies), one gets:

ht
Ar =22 — 216.90ns
C
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Rotating Disk Metric

The rotating disk metrics is (taking weak field gravitation into account):

2 2
ds? = — (1 + o _w (z + y2)> Adt? + (do? + dy? + dz?) — 2wy dzdt + 2wz dydt

e 2
Then:
B B
ds2
A A ¢
B 2¢  w? 1 2wy 2wx
:/ 1+ = — (224 y?) ) dt? — < (da? + dy? + d2?) + —- dedt — —— dydt =
A 2 2 c2 c? c?
B
290  w? 1 2wy dx 2wz dy
= diy/ {1+ = — =22 +¢?) | — 5| VIP+ — — — — —
/A \/( +02 02(1: —l—y)) 02| *+ ¢ dt ¢ dt
where

dz\? dy 2 dz\?
2 _ (4T il hid
ve-(a) < (@) + (@)

is the nonrelativistic velocity. Then we expand the square root into power series and only keep terms with low powers
of c:

B
10} 1 5 wydr wzxdy
= dt(1+ =5 ——|V —_ - = =
TAB /A <+02 202‘ "+ 2 dt 2 dt

SO

B
_ 1 /1, 9 dz dy
TAB—/A dt (1 =2 <2V| ¢ —wy a + wx dt))

Now as before let V, = V() be the speed of the plane (relative to the rotating Earth, e.g. relative to our frame),

Vo = 2’;1:@ % the surface speed of the Earth, so wRg, = Vg . For the clocks on the surface, we have:

QCZR@
y=0
z2=0

SO
de _dy _dz _
de A&t dt

V=0

then the proper time for the clocks on the surface is:

g = /ABdt (1 - C% (—¢@)>
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and for the clocks in the plane we have:

x = (Rg + h) cos
y = (Rg + h)sin Qt

z=0
where  is defined by Q(Rg + h) =V, so

dx .
i —(Rg + h)Qsin Ot
dy
i (Rg + h)Qcos Ot
dz
T 0

IV = Q*(Rg + h)?
Wy = —wQ(Rg + h)?sin? Qt

wr—> = wQ(Rg + h)? cos? Qt

and

e [ (1= 5 (320 + 7 - o wnia ) )

A

then the difference between the proper times is:

1 (" 1
T—T@:ATZ—/ dt(—QQQ(R@-I-h)Q—wQ(R@+h)2+¢_¢®>:

62 A

1 [P 1, h
:g " dt —5%—‘/@% 1+R7@ +¢—¢@ ==

1 (B 1 h
:E/A dt(qs—qs@—QVg (Vg+2wB (1+R@>>>

but ¢ — ¢g = gh, where h = h(t) is the altitude of the plane and we approximate

so the final formula is the same as before:
1 (B 1
AT = — dt | gh — ZV4(Vy +2Vg)
C A 2

2
Note: for the values above, the bracket (1 + %) = 1.00377, so it’s effect on the final difference of the proper times

is negligible (e.g. less than 1 ns). The difference is caused by a slightly vague definition of the speed of the plane, e.g.
the ground speed is a bit different to the speed relative to the rotating Earth (this depends on how much the atmosphere
rotates with the Earth).
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Concluding Remarks

The coordinate time ¢ in both cases above is totally different. One can find some physical clocks in both cases that
measure (e.g. whose proper time is) the particular coordinate time, but the beauty of the differential geometry approach
is that we don’t have to care about this. ¢ is just a coordinate, that we use to calculate something physical, like a proper
time along some trajectory, which is a frame invariant quantity. In both cases above, we got a different formulas for the
proper time of the surface clocks (and the clocks in the plane) in terms of the coordinate time (because the coordinate
time is different in both cases), however the difference of the proper times is the same in both cases:

1 [P 1
AT:C—Z ’ dt ghfivg(vg+2v@)

There is still a slight difference though — the ¢ here used to evaluate the integral is different in both cases. To do it
correctly, one should take the total time as measured by any of the clocks and then use the right formula for the proper
time of the particular clock to convert to the particular coordinate time. However, the difference is small, of the order
of nanoseconds, so it’s negligible compared to the total flying time of 46 hours.

4.3.14 FAQ

How does one incorporate the fact, that there are only two possible transformations, into all of this? For more
info, see: http://arxiv.org/abs/0710.3398. Answer: in that article there are actually three possible transformations,
K < 0 corresponds to O(4), K > 0to O(3, 1) and K = 0 to either of them in the limit ¢ — oc.

What is the real difference between the Newtonian physics and special relativity? E.g. how do we derive the
Minkowski metrics, how do we know we need to set ¢ = const and how do we incorporate gravity in it? Answer:
there are only three possible groups of transformations: O(4), O(3, 1) and a limit of either for ¢ — oo. All three
provide inequivalent predictions for high speeds, so we just choose the right one by experiment. It happens to be the
03, 1). As to gravity, that can be incorporated in either of them.

4.3.15 Questions Without Answers (Yet)

How can one reformulate the article http://arxiv.org/abs/0710.3398 into the language of the O(4) and O(3, 1) groups
above? Basically each assumption and equation must have some counterpart in what we have said above. I'd like to
identify those explicitely.

What are all the possible metrics, that generate the Newtonian Christoffel symbols? (Several such are given above, but
I want to know all of them) Probable answer: all metrics, whose inverse reduces to g*” = diag(0, 1, 1, 1) in the limit
¢ — oo. I would like to have an explicit proof of this though.

What is the role of the different metrics, that generate the same Christoffel symbols in the limit (¢ — 00)? Can one
inertial frame be given with one and another frame with a different form of the metrics (e.g. one with ggg = ¢ and
the other one with ggg = —c??) Possible answer: there is no transformation to convert a metrics with signature +4 to
signature +2, so one has to choose one and then all other inertial frames have the same one.

What are all the allowed transformations between inertial frames? If we assume that the inertial frames are given with
one given metrics (see the previous question), then the answer is: representation of the O(3, 1) group if gog = —c? or
O(4) group if goo = 2. But if one frame is goo = —c? and we transform to another frame with goo = 2, then it is not
clear what happens. Possible answer: one has to choose some signature and stick to it, see also the previous question.

What is the real difference between Newtonian physics and general relativity? Given our formulation of Newtonian
physics using the differential geometry, I want to know what the physical differences are between all the three theories
are.
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CHAPTER
FIVE

CLASSICAL ELECTROMAGNETISM

5.1 Maxwell’s Equations

5.1.1 Electromagnetic Field

The electromagnetic field is fully described by a vector field called the 4-potential A*. It has four components that we
can label any way we want, the traditional way is to use:

o (2
(&

where ¢ is called the electrostatic scalar potential, A is called the vector potential and c is the speed of light. The
Lagrangian density for the free (noninteracting) field is:

1
L=———0,A30"A"
240 g

The Lagrangian for a (charged) particle is:

Lzt v") = —%mvav"‘

it produces the following charge density:
p=qé(r—s)

The interaction between the charged particle (or in general any charged body) with some charge density and the
electromagnetic field is given by the Lagrangian density:

L=—j A%
where:
j* = pv* =yple,v)

There are several approaches how to obtain the above Lagrangians from some other assumptions, but ultimately the
exact form of the Lagrangians has to be given by experiment. It is our only assumption and we derive everything else
from it. All together, the Lagrangian of a charged particle and an electromagnetic field is:

1
L(xt vt A* 0, A*) = —%mvavo‘ — / mﬁaAﬂaaAﬁd?’x - /juAO‘d?’x = 5.1
= f%mvavo‘ — / i(‘f)otAgé)o‘ABde — /pvaAO‘dB:E =
210

1
= —Imuav® — / Q—aaABaaAﬁd% — qUa A”
Ko
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Note that:
VaAY = —yp+yv - A

The Euler-Lagrange equations for the electromagnetic field (in terms of A* and 0,, A") are:

9 __ (—1aaAﬁaaAﬂ —jaAa) _ 9 (—18aAg8aA'8 —jaAa)
0

O(O*Av) 240 oA 2u
0] 1 0
m - 5 peqa AB ) . «
O oA (%Ogaageﬁa A9 A ) oA
1

» " gsages (05050 AP + 0° A°626L0) = jadl
0

1 (83 € .
Tau (guaguﬁa Aﬂ + gépgevaéA ) =Jv
Ho

1
Iz —
2#08 (0,AL +0,AL) = Ju

1
—0"0, A, = ju
Ho
"0, Ay = pojv (5.2)
Equations for the particle (in terms of z* and v*) are:
dor _or
dr ov, Oz,
d 0 5 HA™
- (2 « o aAa — o
dr v, (2mg Vap T4V ) qv oz,

d HA™
dr (%mg“ﬁ(éaﬂvﬁ + Uadﬁ#) + qéauAa) = qvaa
d 4 uB o w 0A%
7 (am(g"7vg + g*"va) + ¢A") = qua oz,

d P o 0A”

I (3m(v* + ") + qA") = quq o,

d HA™

= By g AR —
g5 (M +qA") = qua o,
dov# dAH
— _ Iy
mn dr ( dr +vad )
do*
m dv = q (—va 0% A" + v, 0" AY)
T
N
m% = q(OMAY — 9% Ay,
-
do#
m% = qF"%v, (5.3)

Where F'# is called the electromagnetic field strength tensor:
FHY = gFAY — 9" A¥

The only way to measure the electric field is through its interaction with the charge particle. As such, the actual
physical field (that can be measured) is F'*¥, which is invariant under any gauge transformation:

A% = A% + 0%y
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where 1 is a gauge function:
FH — OF(AY + 07) — OV (AY + OMp) = OM AV — 9V AP + OHOY Y — §YOMp = OH AV — 9¥ AH = FHY

In other words, two different A* related by the gauge transformation represent the exact same physical electromagnetic
field (as given by the field tensor). As such, we can modify the Lagrangian by applying the gauge transformation to
the field A*: this changes the equations of motion for the field (thus the numerical values for A* will be different),
but doesn’t change the equation of motion for the particle, so the change will not have any physical effect (cannot be
measured).

By choosing ¢ as a solution to the equation 0,,0*¢ = —0,, A", we get:
Ou(A* + 0%yY) = 0, A" + 0,04y = 9, A" — 9, A" =0

So for any 4-potential we can find ¢ such that the transformed 4-potential A* obeys the Lorenz gauge condition
0 A" = 0.

In order to obtain a gauge invariant Lagrangian, we need to express it using F'* using the following identity:

1 1
1 wpFP = 1(0aAs — 0pAa) (0% AP — 9P A%) =
1
= Z((’9a;1ﬁ('3<w3 — 05 An0*AP — 0, AgdP A* + 05 A,0° A%) =
1
= §(aaAﬁaaAﬂ — 95A,0"AP) =
= 10,450 A° — $05A4,0°AP =
= 20,450 A% — 3(0°An)? — $05(Aa0” AP — APO*A,)

The 4-divergence 95 (A,0% AP — AP9*> A, ) doesn’t change Euler-Lagrange equations, so we can ignore it. We can see,
that in the Lorenz gauge 0* A, = 0 the term iFa BFQB (which is gauge invariant) simplifies to the term 0, Ag0“ AP
in the Lagrangian (5.1). The gauge invariant Lagrangian is:

1
L(a* o, A*, 0, A*) = —%mvava _/E a/gFo‘ﬁdgx—/jaAo‘de (5.4)
0

The E.-L. equation for the particle doesn’t change, the equation for the field becomes:

0"(0, A, — 0, A,) = lody

M Fuy = pojv (5.5

Which in Lorenz gauge simplifies to equation (5.2). In order to write equations of motion in terms of F'*” only, we
need another equation for it:

P10 Frp = P00, (00 As — 05 As) = (5.6)
= 199,09, A5 — 109,054, =0

We used the fact, that the partial derivatives are symmetric in the indices ya and /3 while €*#7? is antisymmetric.

5.1.2 Maxwell’s Equations

Maxwell’s equations are the equations for the electromagnetic field in terms of the physical field strengh tensor,
equations (5.5) and (5.6):

auF;Lu - MOjU
P19 Fop =0
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The field strength tensor is antisymmetric, so it has 6 independent components (we use metric tensor with signature
-2):

FOi:aOAiiaiAozlaAi 0 ¢ 1( 8¢3Ai>

c Ot + axiE ¢ 76.%‘1‘ ot
G aiaiajai L OAT OA o o 8A™ g DA™
Fi9 —9iAl — i A = — = —(6489,, — §%,,07 _ g km
o0x; + 8$j ( ! Z) ox; €ke o0x;

There is freedom in how we label the components. The standard way is to express them using physical fields E and B
that are introduced by:

0A
E=-V¢—-—
¢ ot
B=VxA
or in components:
; dp  OA
E'=— —
8l‘i ot
Bk — lemlem
Comparing to the above, we get:
FO’i —_ 7E
c
Fi — —GijkBk

In particular:
F12 — _GIQkBk — —6123B3 — _Bd
F13 = _(13, gb— _ 13,32 — 4 g2

F23 — _623kBk: — —623131 — _Bl

so we get:

B! E? B3

Eol - T T

. = 0 —B3 B2

£ B> 0 -B!

B g2 B' 0
E! E? E3
951 : T3 T2
—= 0 -B B

F/M/ = gu(xgvﬂFaﬁ = &

In terms of E and B fields, the Maxwell’s equations become:

V-E=c*uop
1 OE
B=pj+—=—
VX HO'H—c?Z?t
V-B=0
0B

E-_22
V x T
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In Lorenz gauge, the equation for the 4-potential is (5.2):

auap,AV = ;U/Oju
The solution to this equation is:

-8 t— [x—y|
AB(XJ):@/J (¥, = ) s,
in x—yl
For scalar potential (8 = 0) we get:

o) o feplnts 2F)

c  4rm |x —y|

2 t— Ix=vl 1 t— Ix=vl
¢(X, t) _ MOC /p<y’ c )dSy _ / p(y7 c )
A Ix =yl
And for vector potential (5 = i) we get:

5.7
x — Y
: |x—y]
t_ = J
A(x,t) = /‘O/J(y’c)di%y (5.8)
A Ix -yl

5.1.3 Lorentz Force

The equation for the charge particle (5.3) is:

do#
m—d = qF"%v,
T
In components:
d’l)o %
mg— = aF e = —g—v;
do? '

m

gr W va=a (— - B) =4 ( + B) = q7(E' + (v x B))

Using coordinate time ¢ and coordinates x instead of the proper time 7 and 4-vector x*, we need to rewrite the action

S = /L(az“,v“)dT:/EL(x”,v“)dt: /Lcoord(x,v)dt
Y

where Lcoord(X, V) is the Lagrangian expressed in coordinates x and v (and thus is not Lorentz invariant):

1
Lcoord(x7v) = 7L(mﬂ7vﬂ) =
vy

m02 (&

— T+ v A
v

ch

-——+ E(—C’YAO + v AY) =
Y Y

2
2 l-——5—eptev-A
c

= —mc
the particle’s canonical momentum P is:

OL(1)

1 —2v; i
P, = = —mc? ( v)—l—eAi—mU—I—eAi
0v; o f1_ 2 \ & 2
p__

\/72+6A:fymv+eA:p+eA
-2

5.1. Maxwell’s Equations
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where p = P — eA = ymv is the kinetic momentum. Euler-Lagrange equations are:

gaLcoord _ aLcoord

dt 8vi (“)xz
d aLcoord
—p = Z—coord
dt ! 8:&
d mu; 0 9 |, 02
T (w—i—eAz) = oz, (—mc 1—6—2—e¢+ev-A
d [ mv d4; _  0¢ Yev. 0A
dt w2 “ar ~ eaxi v Ox;
af mo \_ (oo an oa
dt w2 B 83:1 dt J 6.131
g muv; _ 8¢ _ 8141 _ 8141 + OAJ
at B oz, ot  ox; 0w

d mv
— | — | =e(E+v xB)

For continuous case (current), the force due to the magnetic field is:

F:/ijd3x:I/dle
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5.1.4 Hamiltonian

Expressing v in terms of P we get:

P= mv +eA
'1)2

P—-cA= mv
-

P oA, = mu;

2 (Pz — eAi)ch
N + (P —ecA)?
|I%-—€Aﬂ
\/m + L(P —eA)?
fﬁ——eAi
V; =
\/m + 5 (P —eA)?
P—cA
VvV =
\/m2 + 5 (P —cA)?
v c(P —eA)
Vm2c2 + (P — eA)?

The system of equations was solved for v; using the code (in there vls = v%, vs =v?and P1 = P; — eA;):

>>> from sympy import var, solve
>>> var("Pl1 P2 P3 m ¢ vls v2s v3s")

(p1, P2, P3, m, c, vls, v2s, v3s)

>>> vs = vlst+v2s+v3s

>>> solve ([Plx+2% (1-vs/cxx2) —vls mx*2,
P2#%2% (1-vs/c*x*2) —-v2sxmxx*2,

(

P3%#2% (1-vs/c**2) —-v3sxmxx2], [vls, v2s, v3s])

{vlis: Plx#2xc*%2/ (Pl*%x2 + P2%x2 + P3xx2 + Cxx24mx%2),

v2s: P2xx2%Cx%2/ (Plx*2 + P24%2 + P3%%2 + C**2+mx*2)
(

14
v3s: P3%x*2xc**x2/ (PLl*xx2 4+ P2%xx2 + P3x%x2 + cCx*x2*m*x*2) }

And the absolute value was removed by using the fact, that v; has the same sign as p;
the second equation.

P; — eA; which follows from

5.1. Maxwell’s Equations
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The Hamiltonian is:

Hx,P,t)=v-P—-L=

/ 2
=v-P+mc 1*%+€¢*6V'A:
c
02
=v- (P —eA)+mc? l—— tep=
c

2
_c(P—eA)-(P—ecA) 2 |, 1 c(P—eA) o=
- /m2E 4 (P —eA)? e c? (\/m262+(P—eA)2> teo=

c(P —eA)? 5 (P —eA)?
= +mc |1 —
Vm2c2 + (P — eA)? m2c? 4+ (P —eA)

_ c(P —eA)? n ch\/ m2c? tep=
Vm2c + (P — eA)? m2c? 4 (P — eA)?

_c (P —eA)? + m2c?)

Vm2c2 + (P — eA)?

=cy/m2c 4+ (P — eA)? + eg

5 tep=

+ep=

5.1.5 Electromagnetic Stress Tensor

The stress tensor is calculated from the Lagrangian:

1
L=——F,pF*=—

9, Ag0*AP — 95A,0%AP
e 3 5 )

1
7.
Ho

using the Noether formula:

oL
TH, = —=9,A, — "L =
(0, An)

1 1
= ——F"0,Aq + — 0", FapF*?
Ho 4pio

‘We raise the v index:
v VA 1 Lo Qv 1 W af
T = g""THy = ——F"*0"Ay + —g"" FopF
Ho 4p0

This tensor is not symmetric under the exchange of the pv indices. To make it symmetric, we add a total derivative
term O, KK **", where K “*” is antisymmetric in its first two indices. This guarantees that 0,0, K “*” = 0 so that the
new stress energy tensor is still conserved. We choose K **" = ﬁF“O‘A” and get:

1 1 1
T + 9 K = —— FF*9Y A, + 4—g’“’FaﬁF“ﬁ + — 04 (FH*AY) =
Mo Mo

Ho
1 1 1
= —FHY(DuAY — 8" Ay) + —— " Fopg FOP 4 — (9, F1)AY =
Ho 4/1,0 Lo
1 1
— 7F'U’QFO[V + 79#VF04,8FQB —
Ho 4po
1 1
—_ (Fl:,aFua _ g;LyFaﬁFa,l%)
Ho 4

where we used 9, F** = 0.
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Another way to derive the stress energy tensor is from general relativity using the formula:

2 6Sem

_«/|detg| oghv

T';w =

So we write the action:
1 1
Sem = — / rFaﬁF(w\/ |d€t9‘d4$ = - / rga)‘gﬁpFa,@F)\p\/ | detg\d‘lx
1o Ho

And vary with respect to g":

1
5SE'M = 75\/ rga)\gﬂpFagFAp\/Md4z =

Ho
1
=~ (8(9°2 9" FupFrp/Tdet g] + g7 Fap P, (8/Tdetg]) ) d*o =
1 o o v
- / (200997 Fus Frp/Tdetg] + 9707 Fos iy (— 3/ Tdet g (39)) ) d'a =
dpo (2(69° M) FapFa’ — §FapF g, (5g")) /] det gld*a =

1 1 o »
= _% <FMBFvﬁ ~1 wpE ﬁgw> (6g* )\/|detg\d4x

And we get:

1 1
Ty = — | FusF.’ — ~FosF*Pg,,
% ’uo(uﬁ 4 b gu)

5.1.6 Examples

Coulomb Law
Maxwell’s equations in Lorenz gauge (5.2):
0o 0% A% = p1oj°

have the solution for the scalar potential (5.7):

_ x=yl
b(x.1) = 1 /p(yJ — )dgy

47eg |x — y]

Assuming @ < t:

(b(XJ) _ 1 / p(yat) d3y

Cdmey ) x|

Assuming the vector potential A (x,t) = A(x) is time independent, we get for the electric field:

- aA(X,t) - _ 1 P(Y7t> 3, _
E(x,t) = =Vo(x,t) o Vo(x.t) = v47reo |x — Y‘d v
1 I s

1

X—-y 3
= t ,d
T /,O(y, )|X7y|d y
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If the charge distribution can be approximated by an infinitely-narrow wire with linear charge density A(y,t) = dgz(lt) ,
we get:

p(y, t)d®y = Ay, t)dl

and:

Example: Straight Wire

Let’s assume infinite straight wire with constant linear charge density A:

1=(0,0,1)
dl = (0,0,1)dl
X = (z,9,2)

x—1=(z,y,2 1)
A * x-1
E(X):47reo /_OO |x—1|3dl:
A i (z,y,z—1)dl
~ dmeg [oo (22 4+ 92 + (2 = 1)2)3
A o (z,y,0)dl
 dme /—oo (2 4+ 92+ (2 —1)?)
oo
:(x,y,0)4 / du T =
T J—oo (22 + Y2 +u2)2
A2
drega? +y%
A 1
2meg 22 + 32

3
2

= (2,9,0)

= (2,4,0)
For y = 0:

Al A
E(x,0,2) = (2,0,0) — —= = (1,0,0) ———
(2,0,2) = (@ )27'('60 2 ( )2776030
We can also calculate the scalar potential as follows:

6(x) A /°° dl

~ dmeo o X =1 -

R /°° dl
Ao ) (22 442+ (s 1)

B /°° du B
_471'60 —oo</x2—|—y2—|—u2_

= o0

Note that in the radial direction (let’s set for example y = 0) the result is scale (translation) invariant, i.e. ¢(kx) =

¢(x).
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In order to calculate with ¢(x), we need to regularize it first. Cutoff regularization is:

p(x

- A /L du 7
477'60 I /x2+y2—|—u2
A Vai+y?+ L2+ L
lo

 dmeg 2 +4y2+ L2~ L

where L is the regulator and also an auxiliary scale. In this regularization, we lost the translational symmetry. The
physical quantities don’t depend on L in the limit . — oo:

B 0 é(x) A L N A
= —— xTr) =
v 2mepr /L2 + 12 2mepx

ox

and

A \/m§+L2+L\/x%+L2—L_> A x?
4reg g\/x§+L2—L\/x%+L2+L dreg w3

Dimensional regularization expresses the integral in the dimension n = 1 — 2¢ as follows:

Ap = ¢(z2) — ¢(x1) =

oo ,n—1
47eg 0 An—1 /12 + y2 + 2

A r(5")
i4ﬂ_€0 R 1—m
(55 7)
A T'(e)
T dre ; 2e o
=)
A [1 A?
= - —~v—-1 log———= +0
o[ E e togr o Y 000

Here € is the regulator and A is the auxiliary scale. This regularization preserves the translational symmetry. Now we
can renormalize the integral. The minimal subtraction (MS) renormalization is:

oms(x) A logm + lo 7A2
= —y —logm
MS 4dmeg K & & x2 +y?

Another option is the modified minimal subtraction (MS) renormalization is:

A A?
[Osvrd = —_— 1 —_—
MS () 47eg 8 x2 + y?
Once we choose a renormalization scheme, we can calculate the electric field as follows:
0 g A A2
Hx "M (2) Oz 4meg o8 2

fi‘ﬁAZ 2 =
4dmeg A2 3
_a1
727‘(’60.%‘

and the potential difference as:

A2 22 A x?
Ad — — ¢ - - il S 1
¢ = Pns(2) wis(41) 4reg 8 3 A2 4we 8 x3

In agreement with the previous result. The final results don’t depend on the auxiliary scale A and we are not doing any
limits.
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Biot-Savart Law

Maxwell’s equations in Lorenz gauge (5.2):
8aaaAB = /J/OJB

have the solution for the vector potential (5.8):

: Ix—y|
ot — =
A(x,t) = MO/J(Y e ),
dr Ix -yl
Assuming @ <t
j(y,t
Alx.t) = Mo iyt s,

dr ] |x -yl

The magnetic field is then:

B(x,t):VXA(x,t):Vx%;/|

Ho 1 . 3
= — —_— t =
. <V|x_y>><3(y, )4’y

1o X—y . 3
= — 5 X ,td ==
g ( X_y|3) iy, t)d%y
Mo . X—Y 3
== ,t) X d
1 [0 x—ypl Y

If the current can be approximated by an infinitely-narrow wire, we get:

iy, t)d%y = I(t)dl

and:
x—1

x —1?

Ho

ym /I(t)dl X

B(x,t) =

Example: Straight Wire

Let’s assume infinite straight wire carrying constant current [:
1=(0,0,1)
dl = (0,0,1)dl
x = (z,y,2)

X—1:($7y7z—l)
x—1

pol
B(x) = -2 =
)= Tn PESTE

(z,y,z—1)dl

i(y, t
i(y, )dsy_
X —y|

_ ol [

= 0,0,1) x 5
4m ( )(x2+y2+(z—l)2>f

— 00

/°° dl

o (22 92 + (s = 1))
pol 2
(ya z, )47'(' x2+y2 -
(.~ 01
T o 22 2

226
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Where we used the value of the folowing integral:

/°° dl /°° du
o @2+ (- 02)3

- e @y )

o)
u

(x2+y2) /x2+y2 +’LL2

sign u

(@ + 2/ (2)" + (2)* +1

u u

— 00

1 1\ 2
7x2_~_y2 x2+y2 7x2+y2

Fory = 0:

pol 1 pol
B(J,‘7O,Z) - (07 —.I‘,O);? = (Oa _170)%

Example: Circular Loop
Let’s assume a circular loop:

1= (rcos¢,rsing,0)
dl
1 = (—rsin¢,r cos ¢,0)
x = (r,y,2)
x—1=(z—rcos¢,y —rsing, z)
ol x—1
B = — 1 —_—
)= Tn X1
2w
_ tol

_ i
08 [ (rsing,rosg,0) x L8y ZTon 0 2)d0
T Jo

((z —rcosd)? + (y — rsing)? 4 22)3
_ pol T (—zcos ¢, —zsin ¢, (x — 7 cos @) cos ¢ + (y — 7sin ¢) sin ¢)rde _
_E/o ((x —rcosd) + (y — rsing)? + 22)3 B
_ pol 2T (—zcos ¢, —zsin ¢, x cos ¢ + ysin g — r)rde
_ﬂ/o (22 4+ y2 4 22 4 r2 — 227 cos ¢ — 2yrsin ¢) 2

Due to the symmetry of the problem, we can set y = 0:

2w :
wol —zcos ¢, —zsin¢,xcosop — r)rde
B(z,0,2) = L/ ( 2 2 2 ; =
i Jo (22 + 224+ r2 —2xrcos¢)?
ol /2” (—zcos¢,0,zcosp —r)rdo
0

am (22 + 22 + 12 — 2zrcos ¢)?

In the last equation we used the fact, that sin ¢ is odd and cos ¢ is even on the interval (0, 27r). For x = y = 0 we get:

B(0,0,2) = 1! / " (czc0s 0, —r)rdg _
0

i (74 )t
27 2
wol red¢
= (0,0,—1) / 2 2\ 2 =
i Jy (7" + z )2

T 2
= (07 0, _1) fo - 3
2 (1"2 —+ 7;2)5
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Helmholtz Coil

Helmholtz coil is a set of two circular loops of radius r, that are d apart, where d = r. Let’s calculate the magnetic
field on the axis. Magnetic field of the first coil is (see the previous example):

pol 72

Bi(0.0.2) = (0.0 -V 5157

Second coil is positioned d above the first one:

I 2
B»(0,0,2) = (0,0,—1)F~ "
2 (124 (z—d)2)}

The total magnetic field is:

B(0,0,2) =B1(0,0, z) + B2(0,0,2) =

1 2 1 2
= (050?_1)&7“73—’—(050?_1)& . 3 =
2 (7 +27)3 2 (P +(-dp)
Ir? 1 1
= (0,0, 1) " ( -+ 3>
2 \(@+2)1 T (24 (-0
The field in the middle:
d Ir? 1 1
B(Ovovi):(oﬂo’il)ﬂozr ( d\2\ 3 + d\2 3) =
@ e (@)
I 2
— 0.0l
(r*+(3)7)2
For r = d we get:
d Ir?
B(0,0,5) = (0,0, 1) — T — —
(r?+(5))2
pol
(0707 ) 1 2 3 =
r(l+(3)7)>
3
poldz
8 ,U,()I
=(0,0,-1)—="—=
( )5\/5 r
=(0,0,—-1)B
where the magnitude of B is:
_ 8 ml
5vV5 T

For r = 0.15m and N = 130 turns we get the magnitude of the field as (we use SI units, so [ is in A and B in tesla):

8 uoNI 8 471077 -1301

— = =7.79-107%1
55 T 5v/5 0.15

Code:
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>>> from math import pi, sqgrt
>>> "ge" & (8x4xpixle-7x130 / (5+sqrt(5)+0.15))
"77.792861e-04"

Equation of motion for an electron in this field is:

d?x
2 ¢ (vxB)
d?x
2 eB (vy, —vy,0)
The general solution is:
um n eB(t o) ,eB(t o)
X=— |2+ cos—(t — —sin —(t — o), 2
eB m 0)hY m 0

So the electron is moving in a circle with a center (x, y, z), to depends on the initial direction of the velocity and v is
the magnitude of the initial velocity. There can also be a possible movement in the z direction, but for the following
initial conditions there is none:

Xp = (07 0) O)
Vo = (07 -, 0)
Then we get:
vm eB . eB
X=—|—-1+cos—1t,—sin —t¢,0
eB m m
. eB eB
v =v | —sin —t,—cos —t,0
m m
So the radius of the circle is R = 7. Let the electrons by accelerated by the electric potential V'
%mv2 =eV
So the initial velocity is:
2V
B m
and we get for the radius:
poum_m 26V_1\/2mV
~eB eBV m B e

from which the electron charge versus mass ratio is:

e 2V 2V B
m  R*B? R2 (LM)Q -
55 T
125V72
T 3212R2N?I?

Forr =0.15m, N =130,V =300V, R = 0.05m, I = 1.48 A we get:
£ 180101 C kg
m

Code:
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>>> from math import pi

>>> r = 0.15

>>> N = 130

>>> V = 300

>>> R = 0.05

>>> I = 1.48

>>> mul = 4xpixle-7

>>> "Ze" & (125 % V ox rxx2 / (32 x muOx*x2 * Rx*2 x Nx%x2 % Ixx2))

71.804238e+11”

Reference value is:

£ 17588101 C - kg !
m

Code:

>>> e 1.6021766e-19

>>> ¢ = 299792458

>>> eV = e

>>> KeV = 1le3 x eV

>>> m = 510.998910 * KeV / c**2

>>> m
9.109382795192204e-31
>>> "Ze" % (e / m)

71.758820e+11"

or even simpler (we do not actually need the value of the electron charge e):

>>> ¢ = 299792458

>>> KeV = le3

>>> m = 510.998910 » KeV / cx*2
>>> "Ze" % (1/m)

71.758820e+11"

We can use the experimental value to calculate the electron rest mass energy:

2
2 C

= Ts0mas T ¢V = 4981356 KeV

mc

Ampeére’s Force Law

The force on a wire 1 due to a magnetic field of a wire 2 is:

F = Il /d11 X B(ll)

Ho x—1lp
B(X) = E/Ig(t)dlg X m

Where B(x) is the magnetic field produced by the wire 2. Combining these two equations we get:

szl/dll XB(ll):

Ho I —1p
=71 1 — [ I 1 — | =
1/d1><(47r/ 2(t)d2><|11_12|3)

_ /Jolllz // d11 X (dlg X (11 —12)) _
4dm

L —Ipf?
_ ,u01112 // dlg(dll . (11 — 12)) — (11 — 12)(d12 . dll)
o 471' |11 — 12|3
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Parallel Straight Wires

We calculate the force between two parallel straight infinite wires:

d
11 = (§7O7l1)
dl, = (0,0,dl)
d
12 = (_§7O7l2)

dl = (0,0, dly)
1 — 1y = (d,0,1; — Is)
dly(dly - (1 — 1)) — (I, — Lp)(dly - dly) = (0,0,dl2) (11 — Io)dly — (d, 0,1y — Io)dladly = (—d,0,0)dlydly
uoflfg // dly(dly - (1 — 1)) — (I} — lp)(dly - dly)

L —L[? B

/Lofllg // d O O dlldlg
(d2 + (Iy — 15)2)3
:(_17070)N0I1I2/dl1/ de d o=
Am —oo (P4 (b —12)?)?

NOIIIZ/ 2
= (~1,0,0 Al = =
( ) 4 Yd

JL I
= (~1,0,0)He2 2/d11

2md

Where we used the value of the folowing integral:

> d e d
/ dls J:/ de—m—5 =
B PR ETE R S VR

signx

T o0
_[d\/d2+$2]oo_ d (%)2+1

As such, the direction of the force on the first wire (at coordinates (g, 0,0) going in the z direction) will be to the left
and the force per unit length is:

tolr 1o

Fm =
2md

Because the second wire is at the coordinates (—%,0,0) and the force on the first wire is in the direction (—1,0,0),
the force between the wires is attractive, as long as I; and I have the same sign (either both currents go up, or both
down) and repulsive if I; and I have opposite signs.

Letd = 1m, I; = I, = 1 A, then the force is attractive and (we also use pg = 4 - 10~7):

47 - 1077
F,o=" " N.m'=2.100"N-m"!
27
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Perpendicular Straight Wires

We calculate the force between two perpendicular straight infinite wires:

d
11 = (§7O7l1)
dly = (0,0,dl)
d
12 = (_§7l2a0)

dly = (0, dls,0)
L =1y = (d,—la, 1)
dly(dly - (1 — 1)) — (I, — 1p)(dly - dly) = (0, dla, 0)11dly = (0,11, 0)dlydly
uoflfg // dly(dly - (1 — 1)) — (I} — lp)(dly - dly)

L —L[? B

Molllg// Oll, dlldlg -
(d2+ 12 +13)2

ST
= (0,1,0)H12 12/ dll/ dly—————— =
d2+l2+l2)5

/1,011]2 2ll
1,0,0 dly——— =
= (LOD=E /_oo "Bt

=0

The integral is an odd functin of /4, so it is zero. We used the value of the folowing integral (but in fact it is already
seen before this integral is needed that the double integral must be zero):

/ I —
oo (d2+12+13)2

l1lo 00 _ llsignlg .
21 72 3172 1 ]2 2 2 o
(@ +B)EP+E+13]| (dQH%)\/(g) +(§7) 1

_ ll N ll _ 211
2+ 2+13) 2+
As such, there will be no net force.

Infinitely Long Wire and a Square Loop

We calculate the net force on a square loop with current I; of side a, whose center is d far from an infinitely long wire
with current I5:

The wire has coordinates (0, 0, z) and the magnetic field from it is (see the example above):

pol

B(z,0,z) = (0,-1 0)2 .
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The four sides of the loop are (0 < [; < a):

and the differentials are:

dl; = (1,0,0)dl;

dl; = (0,0,-1)dly

dl; = (-1,0,0)dly

dl; = (0,0,1)dly
The net force on the loop is:

I
F:h/dlle:Il/dll x(0,7170)27l:?12) -
1)z

M()Illg e (0, O7 1)dll e (1, 0, O)dll @ (0, 0, —1>dll @ (—1, 0, O)dll
= a + a + a + a =
2T 0 d*§+ll 0 d+§ 0 d+§*ll 0 d*i

polils ‘ a ‘ ‘ a ‘a a a
= 0,0,1) |log|d — =+ 11| —log|d+ = —1 1,0,0 — =
om <(7 ) )|:Og 2+1 0og +2 1:|0+(7 ) ) d+% d—

polils a?
= 1)-04+(1 — | =
D) ((0507 ) O ( 3070) d2 _ )2>

™

/L()IlIQ CL2

= (1,0,0) o d2_(%)2

Magnetic Dipole

fo M X T
A7 3

B(r):VxA:Z—;VX (mr§r>
2 - (35) v (5)
e (n((52] - ) (52)r- )
() o) (£ 2)-
(22 em (58

A(r)
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Bar Magnet

A good model of a bar magnet of the length L and width W is a combination of two magnetic monopoles (that sit

inside the magnet, so one cannot actually see them, just their behavior outside the magnet):

:HOQnL(X_pl X — P2 >

B(x)

A7 \X—p1|3_ |x — p2|3
where:
P1 = (anvd)
P2 = (05 07 7d)
L-W
d =
2

The magnetic moment vector is:
m = Qn(P1 — P2)
and its magnitude then is:
m = 2Qnd
The permeability is:
po=4r-100"H- m ' =47-107"V-s-A"L.m~!

For a typical bar magnet, we have for example:

L =5cm
W =1cm
Qm:3.3A'm
=W _0om

m=2Qmd=2x33x0.02A -m?=0.132A - m?

The unit of B is Tesla: 1T =V -s-m™2.

Bar Magnet in a Coil

We throw a magnet through a coil and calculate the voltage on the coil. We use two model of the bar magnet: a

magnetic dipole and two monopoles 2d apart.

Geometry:
v =(0,0,v)
1 = (acos¢,asing, z)
dl .
Fr i (—asin ¢, acos ¢, 0)
Field of the dipole:
E =
_bo (3r(m-r) m
B(r) = 47 < 5 7“3>
m = (0,0, m)
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we will need:

1o 3(v x 1)(m - 1)
s E -
o 3(vasin®, —vacosf,0)mz
- E (a2 —+ 22)%
_ 3pem  avz
C An (a? + 22)%

(sinf, —cos6,0)

and

dl
vxB-—

dé

3
= ST (sin, —cos0,0) - (~asing, acos $,0) =
AT (a2 + 22)2

uom  a’vz

4 (a2 + 22)3

Field of two monopoles:

E=0
Ho@m X — Pp1 X — P2
B(x) = __ {
(x) 4 <xp1|5 |Xp25>
p1 = (0,0,d)
p2 = (0,0, —d)
L-W
i=
we will need:
HoQm [V X (l - p1) Vv X (l — p2))
x B(l) = — —
VBl =T ( 1—pyf? TENE
~ poQm ((0,0,1}) X (acos¢,asing,z —d)  (0,0,v) X (acos¢,asin¢,z—|—d)> B
4 (a2+(z—d)2)% (a2+(z+d)2)%
MOQmCL’U< 1 1 ) '
- 3 = | (sing, —cos ¢, 0
dm (a2 + (z—d)?)z (a2 + (2 +d)?)2 (sin ¢ ,0)
and
1
v><B~(C11—¢:
HoQmav 1 1 ) _ .
- 3 = | (sing, —cos@,0) - (—asing,acos ¢,0) =
am <<a2+<z—d>2>z @1 Gy ) Sme s 0) - (masing, acos,0)

_ _qumaQU ( 1 B 1 )
A (@2+(z—d)2)? (a4 (z+d)?)3
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Now we can calculate the voltage:

V:?{(E+VXB)~d1:

:%VXB'dl:

o dl
= vxB-—d
/0 a1

for the dipole we get

V:...:_/%?’“Om gy
0 47 (a2 + 22)2

_ 3uem a’vz
B 2 (a2+22)%

For two monopoles we get

o T 10Qmat 1 3 1 _
V= /o 4r ((a2+(z—d)2)§ (a2+(z+d)2)2)d¢
_ _,qumagv ( 1 B 1 ‘ >
> \@rG-dpi (@1l

[N

For the dipole, the function

has a maximum and minimum for:

with the max value:

Code:

>>> from sympy import var, solve, S, refine, Q
>>> var ("a z")

(a, z)

>>> f = z / (ax*2+z%%2)*%(S(5)/2)

>>> golve(f.diff(z), =z)

[-a/2, a/2]

>>> f.subs(z, a/2)

16+sqrt (5) xa/ (125% (a*x*2) «x (5/2))

>>> refine(f.subs(z, a/2), Q.positive(a))
16xsqgrt (5)/ (125%ax*4)

So the maximum voltage is:

po 3va’mz Lo 216\/5
= ———— = —3mua =
2 (a2 —+ 22)5 2 125(14
_ 24+/5 omu

125 a2
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If we drop the magnet from height h above the coil into it, then its speed will be vy = +/2hg in the middle of the coil,
when ¢t = 0. Then:

z = vt + %gt2

v =19+ gt
And we get for the voltage dependence for dipole:
Vo _Ho 3va’mz _ Mo 3(vo + gt)a?m(vot + 3gt?)
2 (a2 + 22)3 2 (a2 + (vot + %gt2)2)%
The time difference between the maximum and minimum is the time difference between z = —5 and z = +3, so:

At — 2h—|—a_ 2h —a
g g

The total flux doesn’t depend on the particular dependence of z(¢) and v(t):

2+z >>%
3u0m/
= =dz =
a2—|—z2 2
_ _3u0m aj du —

4 a2 U2
3uoma? 2\ | 1 o _
Bugma® (2 [=1] _

B 4 3) La®]

_ _Hom

2a

For the voltage dependence of two monopoles, we get:

Ho Qma2v o

1 1
=" 2 ((az—i—(z—d)?)g_(a2+(z+d)2)g)_

_ _MOQmGQ(UO + gt) 1 _ 1
2 (a2 + (vot + 2gt2 — d)2)%  (a® + (vot + 19t + d)?)?
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The total flux doesn’t depend on the particular dependence of z(t) and v(t):
o= [ V()=
/0 (1)t

_ _/oo quma2U(t) ( 1 _ 1 )dt:

0 2 (a®+ (2(t) = d)?)7  (a®+ (2(t) + d)?)?
:_/ foQma’ %z ( 1 B 1 )dt:

0 2 (a2 + (2(8) =d)?)7  (a? + (2(t) +d)?)?

:_/“qumaQ( 1 B 1 )dZ:
0 2 (a4 (z—d)2)z (a2 + (2 4d)?)?

_ _#Qma’ ( RS S S 1 ) _
a 2 /0 (a2+(z—d)2>%dz /o (a2 (z+d @t i)

W(l(Hd)l(l ))
2 a2 /a2 + d2 a2 a2 o+ d2
IU’Ode

Va? +d?

Note that in the limit d — 0, we get the magnetic moment m = 2d(@),,, and the last formula for two monopoles flux
becomes the dipole flux.

As a particular example, consider a coil with N = 500 loops, a = 1.4cm, d = 1.8cm, Q,, = 43 A - m. Then the
total flux from the second peak is:

N d
o= 7% — 0.021V -5
va
Code:
>>> from math import pi, sqgrt
>>> mu0 = 4xpixle-7
>>> cm = 0.01
>>> Q. m = 43
>>> d = 1.8*cm
>>> a = 1.4%cm
>>> N = 500
>>> -N+mu0+Q_m*d/sqrt (a*+2+d*+2)
-0.02132647889395681
For a single loop with @ = 1.25 cm we get:
,U'Ode -5
=——""—"-T-"—=-444%x10""V"s
and for a single loop with a = 1.8 cm we get:
,U'OQm 5
b =— =-382x107°V-s
Code:
>>> a = 1.25+cm

>>> —mu0+Q_m+d/sqgrt (a*x+2+d**2)
-4.438304942066266e-05

>>> a = 1.8%cm

>>> —mu0+Q_m+d/sqgrt (a*x*2+d**2)
-3.820879326816195e-05
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RC Circuit

Let’s consider resistor (with voltage V' = RI) and capacitor (with voltage V' = % and current I(¢t) = Q'(t)) in a
series. Voltage on the battery is V, then the equation for the circuit is:

Q)
I(t) + 2 =
RI(t) + C Vv
with initial condition Q(0) = 0. We differentiate it:
1(t)
I'(t =
RI'(t) + c 0

and the initial condition follows from the first equation I(0) = %. The solution is:

I(t) = %e*ﬁ

Now we calculate the charge (using the initial condition for the charge above for the lower bound of the integral):

Q(t)=/0t R/ e~ e dt = [ RCe™ Rc];:

v

- = [—Rce—% + RC} —ve (1 - e—ﬁ)

The voltage on the resistor is:
V t t
RI(t) = REe_IT = Ve ®rC

The voltage on the capacitor is:

C C
Half life of the capacitor is defined as the time 7 so that the charge is half of the total charge, and we get:

Q(r) = 3Q(00)
VC(l—e 7o) =1iVC

-

l—e™ E

ou _Ve(i-e ) V(1)

.
logs =36
T= —RC’log% = RClog 2

5.2 Semiconductor Device Physics

In general, the task is to find the five quantities:
n(xa t)7p(X, t)v Jn(X, t)v Jh(X7 t)a E(Xa t)
where n (p) is the electron (hole) concentration, J,, (J,,) is the electron (hole) current density, E is the electric field.

And we have five equations that relate them. We start with the continuity equation:

dp
VeIt o =0
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where the current density J is composed of electron and hole current densities:
J=J,+J,
and the charge density p is composed of mobile (electrons and holes) and fixed charges (ionized donors and acceptors):
p=qp—n+0C)

where n and p is the electron and hole concetration, C'is the net doping concetration (C' = pp — n4 where pp is the
concentration of ionized donors, charged positive, and n 4 is the concentration of ionized acceptors, charged negative)
and q is the electron charge (positive). We get:

dp on OC
Assuming the fixed charges C' are time invariant, we get:
on dp
Jp—q—=— -J — | =
v rm (V pt qat> qR

where R is the net recombination rate for electrons and holes (a positive value means recombination, a negative value
generation of carriers). We get the carrier continuity equations:

on 1
Frin —R+ gv -Jn (5.9
op 1

Then we need material relations that express how the current J is generated using E and n and p. A drift-diffusion
model is to assume a drift current (qu,,nE) and a diffusion (¢D,, Vn), which gives:

Jn = qu.,nE +q¢D,Vn (5.10)
Jp = quppE — ¢Dp,Vp
where i, fip, Dy, D), are the carrier mobilities and diffusivities.

Final equation is the Gauss’s law:

V-(eE)=p

V- -EE)=q(p—n+0C) (5.11)

5.2.1 Equations

Combining (5.10) and (5.9) we get the following three equations for three unknowns n, p and E:

% =—R+V:(u,nE)+ V- (D,Vn)

dp

o —R—=V - (pE) +V - (DpVp)

V-(eE)=q(p—n+C)
And it is usually assumed that the magnetic field is time independent, so E = —V ¢ and we get:

0
aitl = —R—V - (uunV¢)+ V- (D,Vn) (5.12)
Ip

ot R+ V- (uppVe) + V- (D, Vp)

V- (eVo) = —qlp —n+C)

These are three nonlinear (due to the terms y,nV ¢ and p1,pV ¢) equations for three unknown functions 7, p and ¢.
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Example 1

We can substract the first two equations and we get:

dq(p —n
0 1) — 49 (agp + 120)E) + 4V - (D,¥p ~ D, V)

V- (eE)=q(p—n+0C)
and using p = g(p —n+ C) and 0 = q(upp + pnn), we get:

Jdp oC
5 0g =V (o0E) + ¢V - (D,Vp — D, Vn)

V- (eE)=p

So far we didn’t make any assumptions. Most of the times the net doping concetration C' is time independent, which
gives:

% =—-V.(¢E)+ ¢V (D,Vp— D, Vn)
V- (eE)=p
Assuming further D,Vp — D, Vn = 0, we just get the equation of continuity and the Gauss law:
% +V.-(cE)=0
V-(eE)=p
Finally, assuming also that that p doesn’t depend on time, we get:
V- (cE)=0
V-(eE)=p

Example 2

As a simple model, assume D,,, D, fin, pi, and € are position independent and C' = 0, R = 0:

d
aitl = 4V -E+ p,E - Vn+ D, V?n

Ip
57 = 1PV - E = B - Vp+ DyV7p

eV-E=gq(p—n)
Using E = —V¢ we get:

% = _Nnnv2¢ — V- Vn + D,V°n

p)
a—f = +pppV20 + 1V - Vp + D, V2p

eV2¢ = —q(p—n)
5.2.2 Example 3

Let’s calculate the 1D pn-junction. We take the equations (5.12) and write them in 1D for the stationary state (%’t‘ =
op _ 0)
ot — Y-

0=-R- (/Ln”d)/ + (Dn”/)/

0=—-R+ (ﬂpp¢/)/ + (Dpp/)l
(e¢') = —qlp—n+0O)
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We expand the derivatives and assume that ;4 and D is constant:

0=—-R— Mnn/¢l - Mnn¢// + Dpn”
0=—R+ ppp'¢’ + pppd” + Dypp”

e = —q(p—n+0C)
and we put the second derivatives on the left hand side:

"

1
no= F(R + P’nn/¢l + Mnné//)

1
p'=p-(R- pipp' & — pppd”)

S|

now we introduce the variables y;:

and rewrite (5.13):

n="p- (R + pnY1Ys + UnYoYs)
! 1 !
=5 (R — 1pY3ys — pY2ys)
p
ys = (yz —yo+C)

So we are solving the following six nonlinear first order ODE:

/

q
Y5 = —g(yz —yo+ C)

:Uf) =
1
n=15 (R + pnt1Ys + HnYoys)
n

(5.13)

(5.14)
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CHAPTER
SIX

FLUID DYNAMICS

6.1 Fluid Dynamics

6.1.1 Stress-Energy Tensor
In general, the stress energy tensor is the flux of momentum p* over the surface z”. It is a machine that contains a
knowledge of the energy density, momentum density and stress as measured by any observer of the event.

Imagine a (small) box in the spacetime. Then the observer with a 4-velocity u* measures the density of 4-momentum
dp®

“ay in his frame as:

dp®

S Ao C}

av o
and the energy density that he measures is:

E uapa a dpa ua UB
= e—= — = —UuU — = @
F=v v av g

One can also obtain the stress energy tensor from the Lagrangian £ = L£(7,, 0,7,, ") by combining the Euler-

Lagrange equations
oL oL
0 ()
on, 0(0unp)

dl oL oL
= on, 0 o, O T O =

oL oL
=0 (8(&%)) Outly + 8(&%)6”8“% TOouk =

oL
= a,j (a(aynp)au'r]p) + 8M£

dc .

with the total derivative $7:

or

oL Y B
Oy (8(@%)8“% — L6, > +0,L=0

This can be written as:

o1, + fu=0
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where
oL
T,) = ——0,n, — L5,”
w a(um,) uTlp I
fu=0.L

The Navier-Stokes equations can be derived from the conservation law:
o,T" 4+ f+ =0

To obtain some Lagrangian (and action) for the perfect fluid, so that we can derive the stress energy tensor T/
from that, is not trivial, see for example arXiv:gr-qc/9304026. One has to take into account the equation of state and
incorporate the particle number conservation V,,(nu#) = 0 and no entropy exchange V,,(nsu*) = 0 constraints.

The equation of continuity follows from the conservation of the baryon number — the volume V' that contains certain
number of baryons can change, but the total number of baryons n} must remain constant:

d(nV)

dr

dn dVv
u®(0qn)V + n(0qu*)V =0

Oa(nu®) =0

Perfect Fluids
Perfect fluids have no heat conduction (I°° = T% = 0) and no viscosity (I"J = p1), so in the comoving frame:
7% = diag(pc,p,p.p) = (p + i%) uu? + pg®”

where in the comoving frame we have g*¥ = diag(—1,1,1,1), u® = c and u* = 0, but ,U* # 0. p is the pressure
with units [p] = Nm~? = kgm ™' s (then [4] = kgm™?), p is the rest mass density with units [p] = kgm™?, and
pc? is the energy density with units [pc?] = kgm~!s2.

The last equation is a tensor equation so it holds in any frame. Let’s write the components explicitly:

1 v?
T = (p+ %) uu® —p = (p+ %) AP —p= (p62+p(1— 2))72 = (p02+p2> e
c c ~ c

. . . 1 .
T =7° = (p + %) uu' = (p + %) c'y® = = (pc® + p) v'y?
c c c
i PN i i — P yigin? ij
TV = (p+ = Ju'v! +pd? = (p+ ) v'o?y" +pd
c c
We now use the conservation of the stress energy tensor and the conservation of the number of particles:

0, T" =0 6.1)
Ou(nut) =0 6.2)
The equation (6.2) gives:

B (ny) + 9 (nv'y) = 0

Ot (nmry) + 9;(nmu'y) =0 (6.3)
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dr(nmc2y) + 0;(nmc*viy) =0 (6.4)
The equation (6.1) gives for p = O:

9,T% =0
80T00 + 8iT0i =0

1 2 v*\ 1 2 i2
O ez )y + 0 E(pc +p)v'y? | =0

v? ;
2 ((pc2 + p2> 72> +9; ((pc® +p) v'4?) =0 (6.5)
c
We now substract the equation (6.4) from (6.5):
2 2 v? 2 2 i
Oy ((pc v — nmc —i—pCQ’y) 'y) + 0; ((pc v —nmc —|-pry) UW) =0
We define the nonrelativistic energy as:
2 2 2 2 v
E = pc*y — nmc® = 5pv° + (p — nm)c® + O <02>
so it contains the kinetic plus internal energies. We substitute back into (6.5):

2 .
O ((E +p2ﬂ) v) +0i ((E+py)v'y) =0 (6.6)

This is the relativistic equation for the energy. Substituting nm = py — c% into (6.3):

E E )
Oy (mz - CJ) + 0; ((mZ - CJ) v’) =0 6.7)

The equation (6.1) for p = 1 gives:
9,T" =0
0T™ + 0,7 =0
1 ) o )
0 < (e +p) UWQ> +0; ((p + %) vioin? +p5”) =0

c2

Oy ((p + %) viv2) +0; ((p + %) ipdy? +p5ij> =0 (6.8)
This is the momentum equation. The equations (6.7), (6.8) and (6.6) are the correct relativistic equations for the perfect
fluid (no approximations were done). We can take either (6.7) or (6.5) as the equation of continuity (both give the same
nonrelativistic equation of continuity). Their Newtonian limit is obtained by ¢ — oo (which implies v — 1):
Op + ﬁi(pvi) =0
9 (pv') + 05 (pv'v! +ps) =0
HE +9; (v (E+p)) =0

those are the Euler equations, also sometimes written as:

ap _
XY (o) =0 (©9)
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9(pv)

5 +V-(pvvI)+Vp=0 (6.10)
O 4V (v (B ) =0 ©.11)

The momentum equation can be further simplified by expanding the parentheses and using the continuity equation:

(’9(8,0:) +V-(pvw)+Vp=0
dp ov B
(&+V~(pv)>v+p<at+V'Vv>+Vp—0
0
ov
p(é)t —I-V-Vv) +Vp=0 (6.12)

Where we used:

v (pva)]i = 9;(pv'v?) = 00 (p?) + pr? dv° = [VV - (pv) + pv - V]’
Alternative Derivation

We can also take the non-relativistic limit in the stress energy tensor:
T s pe?
70 — Pi0 _ }pCQUi
c
T — pviod + ps
and plug it into the equation (6.1). For i = 0 we get the equation of continuity:

9, T =0
8T” +9,T" =0

1 1 ;
Oy <p02) + 0; (pc%l) =0
c c
op+0; (pv') =0
and for u = ¢ we get the momentum equation:
9,T" =0
9T +0;T =0
1 i i, ij
Oy (czpc% ) +0; (pv v’ —l—pé]) =0
9 (pv') + 05 (pv'v! +ps) =0

However, in order to derive the equation for energy F, one needs to take into account the full relativistic stress energy
tensor, see the previous section for details.
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Energy Equation

The energy equation can also be derived from thermodynamic and the other two Euler equations. We have the follow-
ing two Euler equations:

Oip + Bi(pu’) = 0

poyu’ + pujajui + (5ij8jp =0
We’ll need the following formulas:

Oy (usu®) = (Opuy)u’ + udpu’ = (8tui)5ijuj + u; Ot =
= (5tu7;5ij)uj + u; O’ = (3tuj)uj + w;0pu’ = 2u;0,u°
9, (wiu') = 2u;0u

Oip = —0,(pu’)
—u0;p + 9y (pU) =

at'l.l/l = —ujajul —

d
= —2 0w+ (V) =

_dp _
T +0:(pU +p) =

dp d j B

it a(pUer) u’ 0;(pU +p) =

_ dp dp P d P j _
= dt+dt(U+p>+pdt(U+p w0 (pU +p) =
dp

2) (U + )0~ 0+ ) =

_|,4 py_dp PN VAP o il 8o o) —

= {pdt (U+p> dt} + <U+p) {dt + pdju 0;(pUw + pu’) =
= —0;(pUn’ + pu?)

1 1
O:dQ:TdSsz—i—pdV:d(U—i-pV)—Vdpzd(U—i—Z;) — dp=at - ~dp
»

where V' = 1 is the specific volume and H = U + % is entalphy (heat content).
Then:

O FE =
= i(3pusu’ + pU) =

— 1
— =

w0 (pul) — puju? djut — u; 67 0;p + 0y (pU) =
—2uu'9;(pu?) — 2pu? 8;(wiu') — w6 0;p + Oy (pU) =
= —30i(puiu'e?) — ! 9;p + 0,(pU) =
= —50;(puiu'e’) — 0;(pUn’ +pu’) =
= —0; (u/ (3puu’ + pU +p)) =

= —8j (Uj (E +p))
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SO:
HE +0; (v (E+p)) =0
OF

E—FV-(u(E-HD)):O

6.1.2 Navier-Stokes Equations

We start with the following nonrelativistic components of the stress energy tensor:
TOO — pC2
70 _ i0 _ }pc%i
c
T — pv'od — g™

where 0% = —pé% + T (more below) and plug it into the equation (6.1). For ;1 = 0 we get the equation of continuity
as for perfect fluids:

8,T% =0
8T” +9,T" =0

1 1 )
O (ch) + 0; (pc%z) =0
c c
op+8; (pv') =0
and for . = 7 we get the momentum equation:
ayTiu — fz
8T + 9,7 = fi
1 4 o g 4
Oy (Qpcgvz) +0; (pv'v) —o¥) = f*
c
O (pvi) + 0 (pv'v? —a') = f
By using the continuity equation in the momentum equation (as in perfect fluids), we get:
p (00" +0'007) — 00" = f*

This is sometimes called the Cauchy momentum equation:

0
p(%—l—v-Vv) =V.o+f
where the stress tensor o can be written as:

c=—-pl+T

and we get the Navier-Stokes equations:

0
p(a:—‘y-V~VV> — —Vp+V-T+f
Those are the most general equations. If we assume some more things about the fluid, they can be further simplified.

For Newtonian fluids, we want T to be isotropic, linear in strain rates and it’s divergence zero for fluid at rest. It
follows that the only way to write the tensor under these conditions is:

Tij = 2/~L€ij + 5”)\V '
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where the strain rate is:
1
¢ij = 5 (9jvi + 0iv))
The trace of T is:

Note that T has zero trace, which is automatically satisfied for incompressible flow (V - v = 0), but for compressible
flow this imposes:

A= —2
3k

The divergence of the tensor is:
0;T;; = 2udjeij + 00:;AV - v = p0;0jv; + pd;V - v + A0,V - v = 10d;0jv; + (u + AoV - v
or in vector form (these are usually called the compressible Navier-Stokes equations):
V-T=pupuV*v+ (u+NVV-v
For incompressible fluid we have V - v = 0, so we get the incompressible Navier-Stokes equations:
V-T =pViv
and for a perfect fluid we have no viscosity, e.g. i = 0, then we get the Euler equations (for perfect fluid):

V-T=0

6.1.3 Incompressible Equations

Incompressible flow means that the material derivative of density is zero:

dp Op
— Vp=0. 6.13
: " +v-Vp=0 ( )

Putting this into the equation of continuity (6.9) one obtains pV - v = 0 or equivalently:
V.-v=0. (6.14)

But also (6.14) implies (6.13), so these two equations are equivalent: the divergence of the velocity field is zero if and
only if the material derivative of the density is zero.

Using the condition V - v = 0 in (6.9) and (6.12) we obtain:

V-v=0,
Ip
E—I—V-Vp—o,
ov 9
P E‘FV-VV + Vp=puVav.

In addition to incompressibility, we can also assume a constant density p(z,y, z) = po, then we obtain the incom-
pressible Navier-Stokes equations:

V-v=0, (6.15)
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9
po (a: Yy vV> FVp = uViv. 6.16)

For p = 0 they become the incompressible Euler equations. At the given time step with known v and p, the equation
(6.16) is solved for v at the new time step. Then we solve for new p as follows. Apply divergence to (6.16):

ot

0
poV-(V+v-Vv>+V-Vp=uV-V2v,
+V'(V'VV)>+V2PZMV~V2V,

now we use the following identities:

V. (v-Vv) = 0;(v79;0%) = (9;07)(0jv") + v70;0;0" = Tr (Vv)2 +v-V(V - v),
V- V2V = 8i8j8jvi = 8j8j8ivi = Vz(V . V) s

to get:

N (a(v V)

a5 + Tr (Vv)? —|—V-V(V~v)) + V2 = uVi(V . v).

Finally we use the equation (6.15) to simplify:
—V2p = poTr (Vv)?, (6.17)

which is a Poisson equation for p. Note again that Tr (Vv)? = (9;v7)(8;v"). The equation (6.17) is then used to solve
for p at the new time step.

Divergence Free Velocity

Typically by propagating (6.16), we obtain a velocity v* that is not divergence free. To make it so, we minimize the
following functional:

R[v, )\ = / t(v—v*")? =V . vd’z,
where we used a Langrange multiplier A = A\(x) in the second term to impose the zero divergence on v = v(x) for

all points x (that is why A is a function of x and not a constant) and in the first term we ensure that v is as close as
possible to the original field v*. Let’s calculate the variation:

5R[v,)\]:/(v—v*)~6v—)\V-5vd3x:
:/(V—v*)-5v—|—(V)\)-5vd3x+/)\6v-ndS=
:/(va*JrV)\)~6vd3x+/)\(5v~nd5.

From the condition 0 R[v, A] = 0 and assuming the surface integral vanishes (i.e. either A = 0 or §v-n = 0 everywhere
on the boundary) we obtain the two Euler-Lagrange equations:

SRV A o i va—o, (6.18)
ov
SR[v, Al
> =V-v=0. 6.19
Y V-v=0 ( )
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Applying divergence to (6.18) and using (6.19) we obtain:
VA=V v*. (6.20)
After solving this Poisson equation for A we can calculate the divergence free v from (6.18):

v=v*-V\. (6.21)

6.1.4 Bernoulli’s Principle

Bernoulli’s principle works for a perfect fluid, so we take the Euler equations:
0
p<a‘t,+v~Vv> =—-Vp+f

and put it into a vertical gravitational field f = (0,0, —pg) = —pgV z, so:

0
p(a‘tf—f—v-Vv) =—-Vp—pgVz,

we divide by p:

ov D
at—&-v-Vv-—V(p—i—gz)

and use the identity v - Vv = 1Vo? + (V x v) x v:

o 1o 5 b _
a+§Vv +(V><v)><V+V<p+gz)0,

SO:

ov v2 D
8t+(V><v)><v+V<2+gz+p> =0.

If the fluid is moving, we integrate this along a streamline from the point A to B:

ov v? D B
—-dl4 | = =l =0.
ot +[2+9Z+P]A

So far we didn’t do any approximation (besides having a perfect fluid in a vertical gravitation field). Now we assume

a steady flow, so %—‘t’ = 0 and since points A and B are arbitrary, we get:

U2

— tgz+ b_ const.
2 p

along the streamline. This is called the Bernoulli’s principle. If the fluid is not moving, we set v = 0 in the equations
above and immediately get:

gz + L const.
p

The last equation then holds everywhere in the (nonmoving) fluid (as opposed to the previous equation that only holds
along the streamline).
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Hydrostatic Pressure

Let p; be the pressure on the water surface and py the pressure h meters below the surface. From the Bernoulli’s
principle:

By -+ 2
p p

SO

p1+ hpg = p2

and we can see, that the pressure i meters below the surface is hpg plus the (atmospheric) pressure p; on the surface.

Torricelli’s Law
We want to find the speed v of the water flowing out of the tank (of the height i) through a small hole at the bottom.
The (atmospheric) pressure at the water surface and also near the small hole is p;. From the Bernoulli’s principle:

2
P1 v D1
—=—+4g-(-h)+=
p 2 (=h) p

SO:

v =1+/2gh

This is called the Torricelli’s law.

Venturi Effect

A pipe with a cross section A1, pressure p; and the speed of a perfect liquid v; changes it’s cross section to As, so the
pressure changes to po and the speed to vo. Given Ap = p; — po, A; and A, calculate vy and vs.

We use the continuity equation:
Al’l)l = AQ'UQ
and the Bernoulli’s principle:

2 2
vop_ v P

2 p 2 p

so we have two equations for two unknowns vy and vs, after solving it we get:

A 2Ap
V] = _—
P (A7 - 43)
2Ap
Vg = A14| —5—ov
27N p(A7 - 43)
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Hagen-Poiseuille Law

We assume incompressible (but viscuous) Newtonean fluid (in no external force field):

ov
(5‘15 +v- Vv) = —Vp+ uV3v

flowing in the vertical pipe of radius R and we further assume steady flow %‘t’ = 0, axis symmetry v, = vy =

9p(--+) = 0 and a fully developed flow 0,v, = 0. We write the Navier-Stokes equations above in the cylindrical
coordinates and using the stated assumptions, the only nonzero equations are:

0=— rP

1
0=-90.p+ u;@r(rarvz)
from the first one we can see the p = p(z) is a function of z only and we can solve the second one for v, = v, (r):

1
v, (r) = @(@p)r2 + Cylogr + Cs

We want v, (r = 0) to be finite, so C; = 0, next we assume the no slip boundary conditions v,(r = R) = 0, so
Cy = —ﬁ (0.p)R? and we get the parabolic velocity profile:

0s(r) = i(—aszR? — )

A

Assuming that the pressure decreases linearly across the length of the pipe, we have —d.p = 2F and we get:

v (r) = m(RQ —r?)

‘We can now calculate the volumetric flow rate:

27 R
Q= dt dt/zdS / —dS = /vz ds = ; A vyrdrd¢ =

APr (R, APrmR*
—m/ (R - T )Td’l"— SML

so we can see that it depends on the 4th power of R. This is called the Hagen-Poiseuille law.

6.2 MHD Equations

6.2.1 Introduction

The magnetohydrodynamics (MHD) equations are:

dp
i . = 6.22
v +V-(pv)=0 (6.22)
ov
p(atJr(v V)v >:_vp+u(VxB)xB+pg (6.23)
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%—? =V x (vxB)+nV’B (6.24)

V-B=0 (6.25)

assuming 7 is constant. See the next section for a derivation. We can now apply the following identities (we use the
fact that V - B = 0):

[(V X B) X B]Z = 5ijk(V X B)]Bk = 5ijk5jlm(ale)Bk = (5kl51m — 5km511)(8,Bm)Bk =

= (0xBi) By, — (0;By) By, = |(B-V)B — %V|B|2

(VxB)xB= (B-V)B—%V\BF = (B~V)B+B(V-B)—%V|B|2 :V-(BBT)—%V|B|2
Vx(vxB)=(B-V)v-B(V-v)+v(V-B) - (v-V)B=V-(Bvl —vBT)

0
V(o) = (V- (V) v+ pl(v - D)v = V2 4 p(v - W)
So the MHD equations can alternatively be written as:
dp

huld . = 6.26
ET V.-(pv)=0 (6.26)

dpv T 1 T 1 2
W-ﬁ-v-(pvv )= —Vp—l—ﬁ V- (BB )—§V|B| + pg (6.27)
D v (BT VBT 4 V*B (6.28)
V-B=0 (6.29)

One can also introduce a new variable p* = p + %V|B\2, that simplifies (6.27) a bit.

6.2.2 Derivation

The above equations can easily be derived. We have the continuity equation:

ap B
a—i—V-(pv)—O

Navier-Stokes equations (momentum equation) with the Lorentz force on the right-hand side:

0
p(a:f’+(v~V)v) =-Vp+jxB+pg

where the current density j is given by the Maxwell equation (we neglect the displacement current %):

1
j=-VxB
w
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and the Lorentz force:
1,
—j=E+vxB
o

from which we eliminate E:

1 1
E=-vxB+-j=-vxB+—VxB
o op

and put it into the Maxwell equation:

0B
= _ _ E
5 V x
so we get:
8—B=V><(VXB)—V>< (1V><B)
ot ol

assuming the magnetic diffusivity n = # is constant, we get:

%—]?:Vx(va)—an(VXB):VX(va)+n(V2B—V(V-B)):Vx(va)+nV2B

where we used the Maxwell equation:

6.2.3 Finite Element Formulation

We solve the following ideal MHD equations (we use p* = p + 3 V|B|?, but we drop the star):

O (u-V)u—(B-V)B+Vp=0 (6:30)
O w-V)B-(B-V)u=0 (631)
V-u=0 (6.32)

V-B=0 (6.33)

If the equation (6.33) is satisfied initially, then it is satisfied all the time, as can be easily proved by applying a

divergence to the Maxwell equation %—? = —V X E (or the equation (6.31), resp. (6.24)) and we get %(V -B) =0,

so V - B is constant, independent of time. As a consequence, we are essentially only solving equations (6.30), (6.31)
and (6.32), which consist of 5 equations for 5 unknowns (components of u, p and B).

We discretize in time by introducing a small time step 7 and we also linearize the convective terms:

u”® — unfl
+ @ V)u" - (B V)B"+Vp=0 (6.34)

T

6.2. MHD Equations 255



Theoretical Physics Reference, Release 0.5

B" — anl

. + ("' V)B" - (B" - V)u" =0

Vou'=0

(6.35)

(6.36)

Testing (6.34) by the test functions (v1,v3), (6.35) by the functions (C7, Cs) and (6.36) by the test function ¢, we
obtain the following weak formulation:

/ ulTvl + (" V)ugoy — (B" - V) By *P% dx = / g dx (637
0 Q
n—1
/ UgV2 + (unfl . V)UQUQ — (anl . V)BQUQ —p% dx = / U ©2 dx
Q T ay Q T
B Bn—l
/ fl + (" V)BiCy — (BY - V)uy Oy dx = %Ol dx (6.38)
o Q
B Bn—l
/ B2Cs + " V)ByCy — (B" - V)usCrdx = / B G dx
a T Q T
Ouy Ouy
gh 92 — )
/anqu 5 0dx =0 (6.39)

To better understand the structure of these equations, we write it using bilinear and linear forms, as well as take into
account the symmetries of the forms. Then we get a particularly simple structure:

+A(u,v1) —X(p,v1) —B(B1,v1) = li(v1)
+A(uz,v2) Y (p, va) —B(Bg,v2) = la2(v2)
+X(q7ul) +Y(q7u2) =
—B(u1,Cq) +A(B1,Ch) = UL(C1)
_B(UQ,CQ) +A(B2,CQ) = l5(02)
where:
A(u,v) :/ L ("t V)uvdx
o T
B(u,v) :/(B" L V)uw dx
Q
ov
X(u,v)f/ﬂu%dx
ov
Y(u,v) = | u—dx
(u,v) Ly
n—1
l1(U) :/ Uq ’Ud
Q T
un—lv
o (v) = / 2 Y4
Q T
n—1
l4(v):/ Br v gy
Q T
n—1
Is(v) = / By vy
Q T
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E.g. there are only 4 distinct bilinear forms. Schematically we can visualize the structure by:

A -X | -B
A |-y B
X Y
-B A
-B A
In order to solve it with Hermes, we first need to write it in the block form:
air(u,v1)  + ae(ug,v1) + aiz(p,vi) + aua(Br,v1) + ais(B2,v1) = lLi(v)
agi(u1,v2)  + aza(uz,v2) + a(p,v2) + au(Bi,ve) + ass(B2va) = la(v2)
asi(ui,q)  + asz2(u2,q)  + asz(p,g) + as(Big) 4+ ass(B2,q) = I3(g)
ag1(u1,C1) +  age(uz,C1) + ass(p,C1) + aaa(B1,C1) + ass(B2,C1) = UL(Ch)
asi(u1,C2) + asz(uz,C2) + as3(p,C2) + as54(B1,C2) + as5(B2,C2) = 15(C2)
comparing to the above, we get the following nonzero forms:
aii(u,v1) + 0 + aiz(p,v1) + awu(Bi,v) + 0 = lLi(n)
0 +  age(uz,v2) + ags(p,v2) + 0 + ax(B2,v2) = la(v2)
az1(u1,q) +  asz(u2,q) + 0 + 0 + 0 = 0
as(ui,C1) + 0 + 0 + au(B1,C1) + 0 = l(Cy)
0 + a52(u2,02) + 0 + 0 + a55(B2,02) = 15(02)
where:
a1 (ur,v1) = A(uy, v1)
a2 (ug,v2) = A(uz, v2)
a44(B1,Cr) = A(B4,Ch)
as5(Bz, C1) = A(B3,C»)
a13(p7 Ul) = —X(p, Ul)
a31(u1,q) = X(Qaul)
azs3(p,v2) = =Y (p, va)
a32(u27q) = Y(q,UQ)
a14(B1,v1) = —B(By,v1)
as1(u1,Cr) = —B(u1,Ch)
azs(B2,v2) = —B(Ba,v2)
asz(uz, C2) = —B(ug, Ca)

and [1, ..., [5 are the same as above.

6.3 Compressible Euler Equations

6.3.1 Introduction

The compressible Euler equations are equations for perfect fluid. Perfect fluids have no heat conduction (70 = 7% =
0) and no viscosity (I'J = p1), so in the comoving frame the stress energy tensor is:
7% = diag(pc®, p, p,p) = (p + c%) uu” 4 pg®”
(we use g*¥ = diag(—1, 1, 1,1)). Relativistic Euler equations are given by the conservation of the stress energy tensor
and the particle number conservation:
0,T"" =0
Ou(nu?) =0
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By doing the nonrelativistic limit (see Perfect Fluids for a detailed derivation), we get the following Euler equations:

% w0

ot
9(pu) (puu”) +Vp—£f=0
ot
oF
E =
V- (u(E+p) =0
where
E = pe + %pu2

is the total energy per unit volume, composed of the kinetic energy per unit volume ( %qu) and the internal energy per
unit volume (pe), where e is the internal energy per unit mass (e = lejw)' The energy F doesn’t contain the rest mass
energy, but all other energies are hidden in the internal energy.

We use the ideal gas equations, so:

e=1Tec,

nM R R
VRT = 7MT pRT = prv a(E — pu?)
where n is the number of moles of gas, M is the molar mass of the gas (i.e. a mass of one mole of the gas, e.g. for
dry air we get M = 28.956 g/mol, as it is mainly composed of 20% of oxygen with atomic mass 16 and 78% of
nitrogen with atomic mass 14, both form diatomic molecules, so the molecular mass is twice the atomic mass giving
the total of 0.2 - 2 - 16 + 0.78 - 2 14 = 28. 24 the rest is given by the other components and one also has to average
over all isotopes), R = N Ak B = 8.3145 = is the ideal gas constant (N4 is the Avogadro constant and kg is the

Boltzmann constant) R= M is the spec1ﬁc 1dea1 gas constant (e.g. for dry air we get R = 38351;512 2K = = 287.14 Ke K)

= "?M = 4 is the density of the gas (e.g. for dry air at the pressure 10° Pa and temperature 22°C we get p =

__ 105 kg
287.14-(22+273.15) nﬁ

to heat one kg by one Kelvin at constant volume, e.g. for dry air the experimental value is about ¢, = 717.5 kg—K), v

=1.18 % ), ¢, 18 the specific heat capacity at constant volume (i.e. the amount of energy needed

is the volume and 7' is the temperature of the gas. Of those, V', n, M, R, R are constants, p, e, . and T are functions
of (¢,z,y, 2).

Here are the SI units of the various terms in the Euler equations:

[u] = ms™!
[o] = kgm™
N =kgms 2
J:Nm:kngs*2
[p] = 2 —kgm ts7?
[30u?] = [p][u]* = kgm™?m®s™? = kgm~'s7?

[E]=Jm 3 =kgm 's?
[Rl=Jkg 'K ! =m?s2K!
[co] = Tkg 'K =m?s 2K~}
[E] kgm™'s™2 _
[6]27:71{ 3 :m252
P~ kem
In order to calculate the specific heat ratio x, we use R = ¢, — cy:

v+ R R
Co Cy Cy
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and the speed of sound is:

Cc = R—

6.3.2 Dimensionless Euler Equations

We choose 3 constants [,., u, and p,. - characteristic length of the domain, velocity and density. Now we multiply the

Euler equations with proper combinations of these constants as follows:

dp
ar ) =0
[315 v (pu)] Prlr
9(pu) T L
. —_ f =
[ 5 +V-(puu')+Vp 2 0
OFE r
bt (u(E =
Y )] S
This is equal to:
0 < ..
5 (p)

A(pi) = .
(P) | & (pua”) +Vp—F=0
ot

0E - -
—+V-(u(E+p)=0
V(B + 5)
where:
Ly
t, = —
Uy
~ t
i=—
tr
G L
pr
. u
a=—
Uy
V=1V
- E
E =
pru?
p=—L
pru}
~ l
f=f——
prug
In particular, if £ = (0,0, —pg), then
f=(0,0,—49)
il
§=9.5=97

So the dimensionless Euler equations look exactly the same as the original ones, we just need to rescale all the

quantities using the relations above.
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6.3.3 Conservative Form of the Euler Equations

We can write the Euler equations as:

ow of, of, Of,

N =0
o " or oy "o, 8
where:
0 Wo
puU w1
W = PU2 = w2
pus w3
E Wy
pu1 1
w
pui +p we D
f:C = pULUL = 7“’&;;]”2
PULU3 wiws
wo
ui(E +p) s (wg +p)
pUQ w/lfl%]
pPU2U7L Lo
f,=| pid+p |= 24p
pusus wawy
wo
uz(E + p) w2 (ws + p)
w
pug ’wg’lil
pU3UL wng
f, = puU3U2 = zfvoz
pu3 +p Yitp
us(E + p) w2 (ws +p)
0
_fw
g= _fy
7fz
0
R R w? + w2 + w?
L e R e
Cy v 2U}0

We solve for the unknowns wo, w1, wa, ws and wy as functions of (¢, x,y, z), the rest (R, ¢y, fq, fy, f-) are either
constants or depend on the unknowns. In order to convert from the physical quantities p, u1, us, us, & and p to w,
<.ey Wy, WE USE:

Wo = P
w1 = puy
Wo = pus
w3 = pusz

Cy
wy = E = po +3p (uf +u3 +13)
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the opposite conversion is:

P = Wo

w1

Uy = —

Wo

w2

Ug = —

Wo

w3

uz = —

Wo

E:w4
R w} + wi + w3
p=—|lwy— ———

Cy 2wy

Sometimes people also use u, v and w instead of uy, us and ug.

Note: pu = j, where j is the fluid density current (it’s a 3-vector) and also w* = j* (here w* is the same as w,, €.g.
we are a bit sloppy about the notation), where j* is the density 4-current (e.g. the first 4 components of w are exactly
the components of the 4-current j*):

gt =pv" = py(c,u) =~y

where as usual @ = 0,1, 2, 3 is the relativistic index, c is the speed of light, and in the nonrelativistic limit (¢ — o0)
we get v — 1 and the remaining c in 5° will cancel with ¢ in 9y = %%, so it will not be present in the final equations
(that involve terms like 0,,5*). We can also just set ¢ = 1 as usual in relativistic physics.

6.3.4 Weak Formulation

The Euler equations:
ow of, of, Of,
2z -0
ot "o "oy "o T8

are nonlinear. The time-derivative is approximated using the implicit Euler method

whtl — wn N afw(wn+1) N 8fy(W"+1) N afZ(W"'H)

=0
T ox dy 0z ts
The vector-valued test functions for the above system of equations have the form:
¢° 0 0 0 0
0 ot 0 0 0
0 ) 0 l) 802 Pl 0 3 0
0 0 0 @3 0
0 0 0 0 ot

After multiplying the equation system with the test functions and integrating over the domain €2, we obtain (here the
index ¢ = 0, 1, 2, 3,4 is numbering the 5 equations, so we are not summing Over it):

/ w?+1 —wy o+ o (fl(wnﬂ))i(pi + 9 (fy(wnﬂ))i@i + 9 (fZ(Wn+1))
Q T ox oy 0z

Now we integrate by parts:

w?-’_l_w:in i n+1 ' n+1 o' n+1 i 13
/Qf‘P — (B(w") 5y — (BWT), 5 = (BT, 5 it Pt

_|_/ (fa;(wn_‘—l))i Spi ne + (fy(wn+1))i (Pi ny + (fz(wn+1))i (Pi n, dQZ‘ =0
[219]

L'+ gip' dPr =0

0’
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where n = (ng, ny, n.) is the outward surface normal to 0€). Rearranging:

wi™ ni1yy 9% ni1yy 0 niiyy 09 3
/Q T o' = (E(w ))i%*(fy(w ))iaiy*(fz(w ))i@dyr

. . . wh . .
b [ (), o (B )0 (£ ) e = [ Bt d
o0 Ja
We can then linearize this for example by taking the flux jacobians A, (w"™*1) on the previous time level A, (w").

The finite element formulation is obtained from here by replacing in the standard way the unknown solution w™*! by
a piecewise-polynomial unknown function

N
1 _
wy fE Yek,
=1

where 1)y are the basis functions of the piecewise-polynomial finite element space. This turns the above weak for-
mulation into a finite number of nonlinear algebraic equations of the form F'(Y) = 0 that will be solved using the
Newton’s method.

Explicit Method

We also derive the weak formulation for the explicit method. Euler equations:

ow | O, 0f, OF.

ot Tox Toy Tz

g=0

The time-derivative is approximated using the explicit Euler method

witl —wn o of,(wh)  Of,(w")  Of,(wh)
=0
T * ox + dy * 0z ts
The vector-valued test functions for the above system of equations have the form:
@0 0 0 0 0
0 ot 0 0 0
o |, o [. [ ] 0], | O
0 0 0 @3 0
0 0 0 0 @t

After multiplying the equation system with the test functions and integrating over the domain €2, we obtain (here the
index © = 0, 1, 2, 3, 4 is numbering the 5 equations, so we are not summing Over it):

/ witt — ot a(ft(wn))i@i 4 3(fy(wn))i<pi n 9 (F.(w"))
Q T al‘ 6y 82

Now we integrate by parts:

Lo+ gip' e =0

’w:,"—"_l B U),? 7 n 3801 n 6()01 n 6801 7 13
[ = (), G = (), o (0w, B+ gt
4 /a W) (B (), 5y + (6. (07, P = 0

where n = (ng, ny, n,) is the outward surface normal to 2. Rearranging:

w;l-’_l i 13 T,U,Z’L i n 8<)01 n 6801 n a@l i 13
[t e = [t (), G+ (), G (), S — gt e

- / (B (W™); 0 10 + (B, (W), 0 1y + (£-(W); & iz %2
oQ
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6.3.5 Flux Jacobians

Now we write the spatial derivatives using the so called flux Jacobians A, A, and A .:

Ot _ 0% ow _ , Ow
or Owor =~ "ox
of,
A, =A, = —
v o(W) ow
Similarly for y and z, so we get:
ow ow ow ow
A A, A g =0
ot " Depr Thugy THe TR

One nice thing about these particular f;, f, and f, functions is that they are homogeneous of degree 1:
f.(Aw) = A, (w)

so the Euler equation/formula for the homogeneous function is:

Of(w)
R AMTASSY
T (w)
w-A, ="f(w)
So both the f,, and it’s derivative can be nicely factored out using the flux Jacobian:
f,=A,w
of, ow
oxr "oz
by differentiating the first equation and substracting the second, we get:
0A,
=0
ar
similarly for y and z. To calculate the Jacobians, we’ll need:
@ — E ( witwitwi  _wi _wa  _ws 1 )
6W Cy ng wo wo wo

then we can calculate the Jacobians (and we substitute for p):

0 1 0
2 2 2 2
_wi | R witwytws 2wy _ Rwy _Rwsy
w? Cy 2w? wo Cy Wo Cy Wo
A oty — wiws wy wy
ac(w) = w§ wo wo
6W _wiws w3 0
w? wo
2 2 2 2 2 2 2 2 2 2
_wiwg _ wp R (), witwedwi ) | wy Rwjtwidw;  wg 4 1 R,  witwitw;) Rw R wiw
w? wg ¢y 4 2w wo Cy 2w? wo wo Cy 4 2w cy w3 cy  wi
0 0 1
_ Wawy w2 wy
wi wo wo
of, _wy | R witwitw] _Ruw 2wy _ Rws
Ay( ) - = wd Cy 2w? Cy Wo wo Cy Wo
ow _ wows 0 w3
w§ wo
_wows _wy R (), witwitwi) | w, Rwitwitwi  Rwswy ws 1 R (,  witwitwi) R w;
wg w% Cy 4 2w wo Cy 2w? cy Wi wo wo Cy 2wo Cv W3
0 0 0 1
__w3w; w3 0 wi
’wg wo wo
af _ w3wsz 0 w3 wa
AZ(W) === 2 wgz 2, 2 "o o
ow _wi , R witwitwg _Rw _Rws 2wy _ R ws
w2 o 2w25 s o Cy Wo Cy Wo wo Cowo
_wswy _wz R (), witwptwi) | wy Rwitwitw;  Rwgwy _ Rwswy wy . LR (,,  witwytw;
w2 wg ¢y 4 2wo wo Cy 2w? cy  wi cy  wi wo wo Cy 4 2wo
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6.3.6 2D Version of the Equations

aiw + % + % + =0
ot " or oy &7
where:
0 Wo
W — pul _ w1
pu2 w2
FE w3
pul et
e | puitp | _ bt
xr - wi w2
pratie “wo
u1(E +p) 1 (ws + p)
pu2 w2
W2 W1
f = pU2U1 = 21110
v pu3 +p ©otp
uz(E +p) w2 (w3 +p)
0
_fa;
g =
—fy
0
pzﬁ(E_;p(u%Hf)):ﬁ e W WS
Cy 2 ! 2 v 3 2’[00
Discretizing the time derivative:
wtl —wn  Of, (wht! of, (w1
OB R
T Ox oy
The vector-valued test functions for the above system of equations have the form:
@0 0 0 0
0 ot 0 0
0 ) 0 ) SDQ ’ 0
0 0 0 @3

After multiplying the equation system with the test functions and integrating over the domain €2, we obtain:

/ wi ™ — wp o+ o (fi’(wnﬂ))icpi + 9 (£,(w"*h))
Q T ox Jy

o'+ gigp! AP =0
Now we integrate by parts:

wnJrl —wr . a(pi 8S0i )
7 7 7 n+1 n+1 7 12
/977 o' = (E(w); 5 — (W), 5o+ g’ da

—l—/ (fm(w"H))i goi Ng + (fy(w"H))i <pi ny dz =0
o0

where n = (ng, n,) is the outward surface normal to J€2. Rearranging:

wzﬁ—H i n+1 Ay’ n+1 ¢’
/Q — ' (L), o - (B), B da

+/ (£ (wW"™)), " e + (£, (W) " ny da =/ DLt~ gip' da
0 o 7
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The 2D flux Jacobians are:

2 2, 2
Wi Rwitwy 2wy _ R wy _Ruws
A . of, . wi cy  2wd wo Cy Wo Cy Wo
(W) === _wiws wy wy
ow w[z) wo wo
2,2 2,2 2,2 2
_wiws _ wi R Wa — wi +wy 4w Rwitws;  ws 4 1 R w3 — witwy ) _ RWy _ Rwws
w% wg Co 2w wo Co ng wo wo Coy 2w cy wj Co wg
_ Wawi w2 w1
8fy w(% Wo wo
2 2,2
Ay(w) == = _ w5 | Rwitw] _Ruwy 2w, _ Rows
8w w% Cop 2w(2) Cy Wo wo Cy Wo
2, 2 2,2 2,2 2
_waws _ wy R _witws ) owy Rwitwy  Rwswy  wy . 1R, Witw; ) R W
wg wg Co 3 2wq wo Cy 2w3 Cy wg wo wo Co 2wq Cy W,

6.3.7 Sea Breeze Modeling

In our 2D model we make the following assumptions:

and the boundary condition is as follows:

T'(x,t) = (’;) sin <”(t;4t°)) <1 + tanh (S(;)))

T(z) =Ty +T'(z,t)

The weak formulation in 2D is (here ¢ = 0, 1, 2, 3):

wn+1 n +1 8901 n +1 8<p2 2
[ = (alw) G = (M) P G P
n 7 w'? % 7
Jr/ (Aac(wn))] n—H(PZ Ng + (Az(wn))] I—H‘P n, dz = / T‘p — 9i¥ A’z
o0 Q

In order to specify the input forms for Hermes, we’ll write the weak formulation as:

Boo(wo, ¢°) + Bo1 (w1, ¢°) + Boz(wa, ¢°) + Bos(ws, ¢°) = lo(¢")
Bio(wo, @) + Bii(wi, ¢') + Biz(wa, ¢') 4+ Bis(ws, ') = 11 (")
Bao(wo, ¢?) + Bai (w1, 9?) + Baz(wa, 9*) + Bas(ws, ¢?) = l2(?)
Bso(wo, ¢°) 4+ Bsi (w1, %) + Baa(wa, ¢°) + Bas(ws, ¢°) = l3(¢”)
where the forms are (we write w; instead of w"“)
n, 0
hle?) = [ L5
0 T
n, 1
11(801) / wyp d2
Q T
w
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In the last expression we do not sum over ¢ nor j. In particular:

OV AV
Boo(wo, ¢ /@990— W”))Oowo—aﬁ —(AZ(W”))OOwO—ai d%::/g%(po d%z
o¢° ¢° ¢°
0y __ _ n n 2 — _ n 2
Boi (w1, ¢ )—/Q (Ap(W™))gy w1—— o — (A (W"))g; w1 02 d®x /Q (Az(W"))o w1 o d*z
dp” dyp” / dp°
0y _ _ n n 2, _ n 2
Bz (we, ¢ )—/Q (Az(W"))pe w2 —H— o — (AL (W")) o w2 P d*z A (AL (W"))gp w2 P d*z
n d¢° n dp°
BOB(wS,QQO):/Qf(Am(W Do s = (A= (W")g w5 S 2w =0

Ot ol
Brofun ') = [ = (Aa(w™) g w050 — (Auw™)yg w0 -

1y ﬂ 1 _ n 87501_ n 67301 2
Bii(wi,97) = g o — (Az(W"))}; w1 o (AL (W"))}; w1 02 d*z

6.3.8 Boundary Conditions

We rewrite the boundary integral by rotating coordinates, so that the flow is only in the x direction (thus we only have
f.):

L&um»¢%+@wm¢%+@wmwm&m:
:/ T, (Tw)p' A%z
o0

Now we need to approximate f,,(7'w) somehow. We do that by solving the following 1D problem (Riemann problem):

ow 0
— 7f =
o o) =0
or:
ow ow
— = 6.40
B +A(w) 5 0 (6.40)
Wo
w1
w(z,t) = | we
w3
Wy
And we approximate f,(w) = f(w(0, t)). The initial condition is:
<0
w(z,0) = {WL , wi(1— H(z)) +wrH ()
WR T > 0
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Now we write:

= Zfi(x,t)r
WL = Z QT
Wr=) Bir;

i o <0
g(xvo)_{ﬁt Z‘>O

and substitute into (6.40):

g og! B
Z(@t +A(w)8x)ri0

%

o o¢? B
Z(@t +>\i(w)8x)ri()

%

So we get:
o¢! o¢!
ot ox

This is a nonlinear problem, that cannot be solved exactly. First, let A doesn’t depend on w. Then also \; are
constants:

ot ot
ot +A or

and the solution is constant along the characteristic () = A;t + ¢ for ¢ > 0 and we get:

=0

(673 £E*>\it<0

B w—At>0 a;(1 = H(x = Ait)) + BiH (z — Ait)

Eix,t) = €' (x = \it, 0) = {

and

= Zfi(l‘,t)ri = Z (ai(l - H(.’L‘ - )\it)) + BZH(.%‘ — )\it)) r;

i

w(0,t) =Y (ei(1 = H(=Ait)) + BiH(=Nit)) 1; =

i

- Z (aiH(Nit) + BiH (=\it)) 1y =
- Z (aZH()‘l) + ﬁzH(—/\Z)) r, =

Z alrl + Z/Blrl

i=k+1
SO:

f(w(0,t)) = Aw(0,t) Z Aar; + ZAﬂZrZ

i=k+1

Z )\ozlrz—i—zx\ Bir; =

i=k-+1

=A" Z%I‘z’ +A” Zﬁiri =
i=1 i=1

= A+WL + A" wg
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In the nonlinear case we cannot solve it exactly, but we can approximate the solution by:

f(w(0,t) =ft(wr) +f (wg) =

=f(wg) — o AT (w)dw =
=f(wr) + o A~ (w)dw =
~ f(WL) + A~ (WR)WR — A~ (WL)WL (6.41)

Let’s say the domain is for z < 0 and we are applying the BC condition from = > 0. Then wy, is taken from the
solution and w, is prescribed, for example at the bottom it could be:

14
pu1
Wgr = 0
0
E
Now we need to calculate A ™. First we write:
— -1
A, =RD,R
- —-n-—1
A; =RD,R
up—c 0 0 0 0
0 U 0 O 0
w1 . 1
D,(w) = —1 + diag(—¢,0,0,0,¢) = 0 0 uw O 0
w
0 0 0 0 wuw 0
0 0 0 0 wu+c
1 wi w; wi wy
D (W77 dlag(wo ’wo’w()’wo’o) U)1<0
T - .
dlag(%) -¢0,0,0,0) wy >0
Explicit forms of the matrices:
1 1 1 1 1
u—c u u u ct+u
R = v v v—c v v
w w w w—c w
7cu7%+%u2+%v2+%w2 %u2+%v2+%w2 7cv+%u2+%v2+%w2 7cw+%u2+%vz+%w2 cu— 1”;2’{+%u2+%v2+%w2
%cufizﬂfiv27%w2+%nu2+%/{v2+iﬁw2 %U7%67%I€u %vfémj %wfénw 7%+%n
R71 ]_ —cv—cw+c2+%u2+%v2+%w2—%an—%nvz—%nwz —u+Ku c—v+KV c—wt+KRwW 11—k
= 3 cv 0 —c 0 0
c cw 0 0 —c 0
7%cufiu27iv27iw2+%nu2+%nv2+iﬁw2 %ch%uf%nu %U*%H’U %wfénw 7%4’%[{
u—c 000 O
0 00 O
D, = 0 0ul 0
0 00w O
0 000 ctu
1 0 0 0
7%uQ7%v27%w2+%mu2+%mv2+%nw2 3u—kKku V—RU w—rw —14+k
A$ — —uv v u 0 0
—uw w 0 u 0
72uv272uw2+2u02—ur:2v27u~22w_22«:3nuu2+3;1uw272u3—N2u3+3nu3 v2+w272(‘.2+3u2—532;mw2—5&u2+2w2u2 UV— KUY YW — KUW KU
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For u; < 0O:

—2c242

—2c3u2 26302 2c3w2 4203024203 w2 —6ucZv? —buc?w? —4rudv2 —arud w2 —2rkcBu242cv2 w24 2reB 024 2meB w24 2uv2w2 4262 uB 024 2k2 W w2 +6cu v +6cuw

For uy > 0:

—10c2u

—2c3u2 2302 —2c3 w2 —2u30v2 —2u3 w2 —2kc3u? —2uc?v? —2uc?w? —2uvZw2 —2k2uBv2 —2k2uB w24 2cv2 w2 423 V2 42k w24 aruS v Farud w2 +6cuv2 f6cuw

Boundary Conditions for the Sea Breeze Model

In the boundary (line) integral we prescribe wé’“ using a Dirichlet condition and calculate it at each iteration using:
2 2
wy + w
w?“ =FE =pTc, + %qu = woTlc, + #
0

where T'(t) is a known function of time (it changes with the day and night) and also prescribe w{“rl = 0 on the left

and right end of the domain and ng = 0 at the top and bottom.

All the surface integrals turn out to be zero. On the top and bottom edges we have n = (n,, n,) = (0, £1) respectively
and we prescribe wy = 0, so we get (remember we do not sum over 7):

/ (Ap (W), w50 1 + (Ay (W), w5 ny do =
o0
- / (f$(W"))Z <pi Ng + (fy(W"))i <pi ny de =
o0

" /a (6w, s

where:
(105} 0
W2 W1
Y 22 4 P
wo p
w2 (w3 + p) 0

So all the components i # 3 of the surface integral are zero, and for i = 3 the test function ¢ is not there, because
we prescribe the Dirichlet BC w3 = 0, so the surface integral vanishes for all i.

Similarly on the left and right edges we have n = (n,,n,) = (£1,0) respectively and we prescribe w; = 0, so we
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get (remember we do not sum over ¢):
| wytna + (8y (w7, =
= | ) s+ (g 7)oy da =

=+ [ ()t da

where:
wi
2
wy
wo + p

w1 w2
wo

(w3 + p)

oo o

So all the components i # 1 of the surface integral are zero, and for 7 = 1 the test function ¢! is not there, because
we prescribe the Dirichlet BC w! = 0, so the surface integral vanishes for all 4.

6.3.9 Newton Method

The residual is:

n+1

Fin(veh) = [ Bl )0 oy p () 2
Q T ox

0 i,m
= Lo (™) =52 + Gy mgpim d dy

| fem(W(y"™))@imVe + fym(w(y"))pimvy dS =0

where m = 0, 1, 2,4 numbers the equations, ¢+ = 1,2, ..., M numbers the finite element basis functions, N = 4M,
Y = (3, 1,93, 3,43, yi, ). The Jacobian is:

aFi,m 8901',711 a@i,m

Pr.s
JY” :7}/” = : im_AI'ms " 7,8 _A m,s " 7'87(1 d
() = G = [ E A ) T = Ay () Ay
+ 6 Az m,s(W(Y"™))or s PimVa + Ay,m,S(w(yn))@r,s@i,mVy ds
And the Newton method then is:
J(Y™MoYy"tt = —F(Y™)
6.3.10 Older notes
Author: Pavel Solin
Governing Equations and Boundary Conditions
o ; o | & UR9 o o ) b
U o + o 0 0
= — — = 6.42
alw | Tar| W | Ta| ire || o 0| (€42
0 o ow B divy 0
0 ) Co

where g is the air density, v = (u,w) is the velocity, U = gu, W = pw, T is the temperature, § = o7, and g is the
gravitational acceleration constant. We use the perfect gas state equation p = gRT = R# for the pressure.

Boundary conditions are prescribed as follows:
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e edge a: Jp/0v =0,0U/0v =0, W = 0, § = tanh(z) * sin(7t/86400)
* edges b,c: p/Ov =0,U =0,0W/0v =0,00/0v =0
* edge d: 9p/0v =0,0U/0v =0,W =0,00/0v =0

Initial conditions have the form

—  po— 11476—— + 52 4( ) ( ) ,
p(2) 7 1000 +529-54 (1500) ~ 228 (1000
T(z) = 194—2— 22( )7.1(7)7
(2) — 8:31945500 T 92932 (3000~ O0199 (1000
_ p(Z)

9@ = Rreay

0(z) = o(2)T(2),

U(z) = 0,

W(z) = 0.
Discretization and the Newton’s Method
We will use the implicit Euler method in time, i.e.,

8@ Qn—i-l Qn
a T
etc. Let’s discuss one equation of (6.42) at a time:
Continuity equation: The weak formulation of
n+1 n n+1 n+1
0 -0 oUu ow
=0
T + ox + 0z
reads
n+1 aUn-H 8W"+1
P (Y Ml R el M (6.43)

The global coefficient vector Y1 consists of four parts Y2, YV, YW and Y? corresponding to the fields o, U, W
and 6, respectively. The same holds for the vector function F' which consists of four parts F¢, FV, FW and F?. Thus
the global Jacobi matrix will have a four-by-four block structure. We denote

N NY NY
Zyk‘ﬁk, Uttt = Zyk <Pk7 W = Zyk @ka gt = ZZ/k‘Pk (6.44)
k=1 k=1 k=1

It follows from (6.43) and (6.44) that

oF7 8(,05] o OF7 890}/[/

o Oz v 39}”

o OFf

0
o 0z v 39;”

OF} 2
= 7@.,
3?/5 T " 5ij

=0.

First momentum equation: The second equation of (6.42) has the form

oU 200U U?dp 00 Wou UOW UWOdo

EJrg@xiQ@er %+g8z+gaz 02 0z
After applying the implicit Euler method, we obtain

8Un+1 8Un + 2Un+1 aUn+1 (Un+1)2 8Qn+1 + RaonJrl
T T ot Ox (omt1)2 Oz ox
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Wn+1 aUnJrl Un+1 awn+1 Un+1wn+1 aQnJrl
— =0.
‘Qn—i-l 82 Q”+1 82 (Q7n+1)2 82
Thus we obtain
OFY 2U oU 10 1 9¢
2 ——/ o E—’%U—/U2 (—2)= 220 4 — 20| gV
dy; Q 0% 0z Q 030x™7 % Ox
W oU U ow 1 do 1 09}
= (=)%Y = (1) — [ UW [(-2) = =2+ = —L | V.
2 5, (1@ Jr/ﬂg2 5, (TLwjei /Q ( )ggazs@] 2. | ¥
Analogously,
OFf _ ‘P§]U+/2‘9UU 0% u_/g@w
ayY Tt Qo |0x™ ox |7 Q 020z
Woe) v, [ A g [ 0y
Qo0 0z 7" oo dz VT Jg 0?0270 T
o [2W s [V [ Uy
oy Jae0dzT ! oo 0z 0020277 T
Second momentum equation: The third equation of (6.42) reads
oW  WoUu UOW UW o 2WOW W29 00
-+t —F—+t—"——F— - —+——F— - —7—+R—+09=0.
ot o Ox o Ox 0% Oz o Oz 0% Oz 0z
After applying the implicit Euler method, we obtain
awn+1 awn Wn+1 6U”+1 Un+1 6wn+1 Un+1wn+1 8Qn+1
T T ontt Oz ontt Oz (ont1)2 Ox
2 n+1 n+1 n+1\2 n+1 n+1
w ow _ (W12 9o +R69 +omg =0,
ot Oz (o"*t1)2 Oz 0z
Thus we obtain
OFW W oU Uow 2W oW
i — 2 1D Z 2 (D)l - 2 e W
57 L gy (THejei + 7 5, ("L el
1 do 1 0] 1 8o 1 9p?
— | UW |(-2)=—¢?+ 5L ,W—/W2 —2——4’——]W/4’.W.
/Q ( )QB 8(1}’¢‘7 ,Q2 aw (IOL Q ( )93 az J 92 az SOZ + ng‘]gp’t
Analogously,
OFN [ W02y wy [LOW vow [ W0e u w
3ij Qo Oz Qo dx ™! 0?0zl Tt
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an'W:/% W / Wy U og)” o /Ua@ W
6y}’v an ¥ Q 0 ar © 29570 Y
+/ aWWJFW% W_/%@WW

0z 92 |7 Q 02 927 ¥io

OFW / d¢!
= | R2ol.
dy? 0z

Internal energy equation: The last equation of (6.42) has the form

00 0
a5t +div(fv) + Jj—vdivv =0
where 6 = oT'. This can be written equivalently as
00

% + V0 - v 4+ v0divv = 0.

Written in terms of single derivatives, this is

00 00U o00W 98<U>+98<W>:0’

E+8x9+82g 7 oz

el v o G
ie.,
00 00U 00W 0 oU oU 0o 0 oW oW 0o

§+8x9+8zg+ gax 7?%—&- 0 0z 7?@:
Weak formulation:

9n+1 on 39n+1 Un+1 aanJrl Wn+1
FO(Y) = o [ / 0 / WrT o
K3 ( ) /3:) ‘Pz Q <p’L + Q am Qn+1 901 + Q az ,Qn+1 <p’L

T

/ 9n+1 aUn+1 0 / 9n+1Un+1 8Qn+1 p / 9n+1 8Wﬂ+l 0 / 9n+1wn+l 8Qn+1
+ Vi — i Y —
Q €

’Y‘QnJrl a{E v (Qn+1)2 8x v Qn+1 Bz

For the derivatives of the weak form we obtain:

oF? BU , 4 @[99_/ gaﬂge_/ 0 oW
ay]g 8mg2<p3% Qaz QQSD] Q’YQQ 833901901 Y= 2 9z SOJSO'L

Uag ot / oU 5 o / OW do , 4 oW #5
— L DR AP I AL B
Jr/Q Y% 29,7 iR L R

(Qn+1)2

7

OFf _ [901 4 4 /esagfe / 0 0o y o4
8yj o Oz Q@j ©; + Q’V;%% 97?%% ;-
OFf [ 901 0oy 0 0 w o
8y}/v 5‘29% ©i +/Q’YEE% _/QVE&%‘ i

jaUee/jawee_/L@ee/ﬂ@ee
+/5195$%%+ Q0 0z i q 0 535%% o 0° 32%%.
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CHAPTER
SEVEN

QUANTUM FIELD THEORY AND QUANTUM MECHANICS

7.1 Introduction

The aim of these (work in progress) notes is to use the Standard Model of particle physics to derive all equations in
quantum mechanics (and quantum field theory) that we need for our research.

We start by deriving the electroweak Standard Model from the SU(2) x U(1) symmetry and couple other (standard)
assumptions in the quantum field theory. After that, we only want to derive things and make nonrelativistic limits or
other approximations in order to derive everything else in quantum mechanics. In particular we show how to derive the
Dirac and Schrodinger equations (as a low energy limit). We then show some particular ways to solve those equations,
like perturbation theory, scattering theory, ...

The goal is to have a complete theory on about 30 or 40 pages and then lots of examples (arbitrarily long), that use the
theory (but do not develop new ideas), so that one can learn how the theory works from the examples. For instance,
one can ask “why is there the term (p — eA)? in the Schrodinger equation for electromagnetic field, why this and
not something else?” or “why is there the o - B term in the Pauli equation?”, to find the answer, one just finds the
Pauli equation in the theory and then looks at the derivation, so in this case one quickly finds that it follows from
the minimal coupling in QED, e.g. it’s the easiest way how electron-foton interaction can be coupled, e.g. the U(1)
symmetry. Nice thing about QFT is that one can find really nice geometrical reasons why things are that way and not
some other way (just open any advance book on QFT), but the problem is that basically nowhere is some easy (but
correct) translation of those results to regular QM, so that everything fits into just couple dozens pages, so that it can
serve as a reference.

The advantage of this top-down approach is that it is easy to see where things come from and also to understand exactly
what approximations one is using when dealing with any equation in QM. However, as is well-known in physics, to be
a good physicist one has to understand all the approaches, e.g. both top-down and bottom-up and all other approaches
to QM and QFT, because there are no two approaches that would be 100% equivalent, so one has to use the right
approach for the particular problem. So these notes do not aspire to be the right way to teach QM, but rather to serve
as a reference to get quickly oriented and to find the equations to start from.

7.2 Standard Model

7.2.1 Electroweak Standard Model

Lagrangian with a global SU(2) x U(1) symmetry:

_ _ 1 _
L£=iLWy,0" LY +ilgy,0Mlp + 10,070 ® — m*®* P — ZA(@*@)Q — heLO®ep — hec.
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where I =e,p,7anda =1,2,l; g = (1 F 75)l and

10— ( Yoo
L

Local SU(2) x U(1) symmetry: This consists of two things. First changing the partial derivatives to covariant ones:

1

o= D' =0 — o

g AL — %g'YB“
and second adding the kinetic terms
1 a auv 1 v
_ZF;WF By ZB‘“'BM

of the vector gauge particles to the lagrangian.

FS, = 0,A5 — 0,A% + ge"™ AV AS,
B,, =0,B,-0,B,
i.a a 0
P=ev™ (z)7
€ ( 5 (v + H(z)) )
This breaks the gauge invariance. The 97 are going to be added to A, so we can set 7, = 0 now.
Higgs Terms

1
Liiggs = 50,0*0"® — m*®*® — ZA(@*@)Q

Plugging in the covariant derivatives and ® in U-gauge (symmetry breaking):

2

1 — T¢ - T¢ v
Liigys = 5<1>+( 0, + igAZ7 +ig'YB,) (0" + z'gA““? +ig Y B")® — \(®T® — 7)2 —
— a - @ 2
= of(0, + igAZ% +igYB,)(" + igA‘“‘% +ig'Y Bu)®y — N®Fdy — %)2 -

1 1
= 50, HO"H — M?H? — WwH? — iAH4+

B A HiAT Al — A%

+ 2+4y2 /2
NG 7 (g g9°)

—I—l(v + H)? (29 9gAL —2Yg' By g A% — QYQ’B“> _
8

\/92 +4Y29/2 \/92 +4y2g/2

1 ) 1 1 _ 92
= —9,HO"H — MW>H? — \wH® — ) \H* + = H)? (| 247 tr Z. 7" =
23“ 0 Av v 1 + 8(1} + H) gW, W+ cos? Oy 20

1 1 g*v? 1
= 29, HO"H — M?H? + Z¢?0*W - Wth 4 27 7t _ \pH® — ~\H*
9 n VT g T S cos? by " Y M

276 Chapter 7. Quantum Field Theory and Quantum Mechanics



Theoretical Physics Reference, Release 0.5

2 2

| — g 1 - g
“vg?W, WHH + ——Z,Z'H + W, WHH? + ——— 7, 7" H?
+21)g K +4C089Wv H Jr49 H +80059W K
Where we put
1 }
Wi = 72(14,5 FiAD)
— #Aff _ LQ/B
® /92 +4Y2¢ K /92 +4Y2g s
we defined 0y, by the relation
g
cosby = ———
w /92 + 4Y2g/2
so that the expressions simplify a bit, e.g. we now get:
2Y g
sin Oy = =9
/g2 + 4Y 2g72
Z,, = cos HWAi — sin Oy By,
2
2 2 12 g
4Y =
g+ 9 cos? Oy
Yukawa terms
EYukawa = —heifl)eR —hec. = —heE(I)UeR —h.c. =
1h(+H)(‘ + érer) 1h(+H)—
=———he(v ere erer) = ———=he(v ee =
NG LER T EREL 7
1 1
= ——hevee — —h.éecH
V2 © V2 ©

The term L®ep is U(1) (hypercharge) invariant, so

Y. +Y+Yr=0

Leptonic Terms
L= uiwa#L +iery"Ouer —

— 1Ly (9, — igAZ% —ig'YLB,)L + iegy* (8, — ig'YrB,)er =
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= iLy"9,L + iepy" O, er + gDy“%LAZ + ¢ YLIN*LB,, + ¢'Yréry"erB, =

_ 1 - _
= iLy"0, L + iegy" O er + i(DLfy“eLWj +he)+ §gL7HT3LAi + ¢ YL Ly LB,, + ¢'Yréry"erB, =

V2

= vy Oy + ey 0 e + %

7

+QIYLDL’Y#VLBM + g’YLéL’y“eLBH + g/YRéR’}/’ueRBH =

1 1
(DL’y”eLW; +he)+ igf/L’y“VLAz - igéL’y”eLAz

=iy ouv +iey" o e + i(17L’y”eLI/V#+ +hec.)

V2
+ [(3gsinbw + Yig' cosOw )y v + (—3gsinbw + Yog' cosOw)epy*er + Yry' cosbweryter) A,
+ [(%g cos By — YLg/ sin ow)ﬁL’Y#VL + (*%gCOS Ow — YLgl sin HW)EL’W@L - QYLg/ sin QwéR’yﬂeR] Zy,
Where we substituted new fields Z,, and A, for the old ones Ai and B,, using the relation:

Z,, = cos HWAi —sin Oy By,

A, =sin QWAi + cos fw By,

The angle 0y must be the same as in the Higgs sector, so that the field Z,, is the same. We now need to make the
following requirement in order to proceed further:

Y =-Yp,

This follows for example by requiring that neutrinos have zero charge, i.e. setting % gsinfy + Y,¢' cos Oy = 0 and
substituting for Ay from the definition (see the Higgs terms), from which one gets Y = —Y,. From =Y, +Y +Yr =0
we now get

Y = 2V,
it now follows:
1gsinfw + Yrg cosy =0

—1gsinOw + Yig' cos by = —gsin by

Yrg' cos Oy = —gsin Oy

/

tan Oy, = —2YLg—
g

and the Lagrangian can be further simplified:

L =ivpy"o, vy + iey' o e + %(DLv“eLWJ +he)

V2

—gsinbw(ery'er, + ery'er)A,

[%ﬁL’y#VL + (7% + sin? GW)EL'y“eL + sin? QwéR’yueR] Z/L =
cos Oy

9

22

(9" (1 = ys)v + &y (=5 + 2sin® Ow + 75)e] 2,

=iy ouvr +iey" o e + (oy*(1 = ’}/5)6le +hec.) —gsinfyeyteAd,

2 cos Oy

Where we used the relations 7,y e;, = 07" (1 — v5)e and vryer = Lvy" (1 + y5)e .
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Gauge terms

1 1
[-:Gauge = _ZngFaﬁw _ ZBW)B#V =

1 T 1
= =1 (0uAy = O, Al + ge™ AL AD) (DM A — Y A 4 geTRATMARY) — S By, B =

1

a av ]' 1% 1 a a aoc cv 1 abc _aj c v
= OuALOMA™ — 2By B — (0, AY - 0, A7 )ge be pbr gcv Zg% beerih Ab AG ARt Al =

1

1 1
= —iw};wﬂw - ZAWA‘“’ - ZZWZ’“’ —gl(0u A, — 0, A},) A* A* + cycl. perm. (123)]

1
P l(Ag AT (AL AY) — (A AT) (A A™)] =

11 L1 , o
fiVVWWJ”‘ - ZAWA” - ZZ‘WZM - g[A}LAz d " A3 + cycl. perm. (123)]
1 a a v a a 17
—192[(14“14 H)(ALAY) — (AL AL (AP AP)] =
= Ly Xy am Z g g wow Gt 4 ey 0
= oW — 74w = 1 Zu —ig(W, W, + cycl. perm. (0-+))
TWTEY? — S(WEW YW, W) + (WIWO(WIW ) — (W, WH(WHW) =

(S o1 i}
= —§Wﬂyw+“ - ZA;WA“ - ZZWZ” + Lwwy + Lwwz + Lww~y + Lwwww + Lwwzz + Lwwz,

Where W) = A3 = cos 6w Z,, + sin A, and:

Lovwy = —igsin by (AW, 8 "W+ + cycl. perm. (A W~ WH))
Lwwz = —igeosw (Z, W, 9 PWH + cycl. perm. (Z W= W+))
Lywway = —g°sin® Oy (W, WHHA,AY — W AHW,FAY)
Lwwww = 59> (W, WHFW W — W WHW, W)
Lwwzz =—g° cos® Ow (W, WHHZ,2" — W, ZFW FZY)

Lywwzy = g°sinby cos Oy (—2W, WA, Z" + W ZFWFAY + W, AFW,FZY)
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GWS Lagrangian

Plugging everything together we get the GWS Lagrangian:

c=Lto.morm - e 4 L2 wowen 4 G el amts
27t 4 " 8cos2 @y 4

2

| 92 1 - g
—vg? W WHH + ——vZ,Z"H + -¢*W_ WH? + —~ 7 Z+H?
—|—2vg i +4COSHWUl +4g ® +800$9W "
1 1
——hvée — —h.ecH
V2 V2

1 o1 i}
—§W,WWW - EA””A# — —ZwZ" + Lww~ + Lwwz + Lwwyy + Lwwww + Lwwzz + Lwwzy
+ivpy" O, v + eyt oue + 2"%(97“(1 —75)eW,f +he) —gsinfyeyteA,

[177“(1 —y5)v + é'y“(—% +2sin? 0y + %75)8] Z,

2 cos Oy

+(e, Ve, he <> 1,V hy) + (€, Ve, he 3 7,07, hy)

The free parameters are g, Oy, v, A, he, by, by

Particle Masses

The particle masses are deduced from the terms

1 1
L= —§m%1H2 + m%,VWM_Wﬂ‘ + §m2ZZMZ“’ —meee+ -

comparing to the above:
2,2

1 g-v 1
— 2772 2 21— 147+ >
L=-\W"H +1g W, W u+800829 ZMZ”fﬂhevee+~-

we get
my = %gv
gu mw
m = =
27 9cos Ow  cosbOy
myg = vV 2\
1
Me = —=hev
V2
1
m# ﬁhﬂv
1
m; = —=h;v
V2

Note that those are the bare masses (e.g. in order to obtain the real mesaured masses of the particles, one has to

renormalize them by calculating the higher order corrections given by the loop diagrams).
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Parameters of the Standard Model

The free parameters are g, Oy, v, A, then three masses of the charged leptons he, h,, h., six quark masses and four
parameters of the CKM mixing matrix, which gives 4 + 3 + 6 + 4 = 17 free parameters (if one allows for three neutrino
masses and the corresponding four mixings parameters, one gets 17 + 3 + 4 = 24 free parameters).

They can be traded for other physical parameters (see below), but their numerical values are not predicted by the
theory, so they have to be measured and their experimental values are approximately:
g =0.631
Ow = 28.67°
v = 246.218 GeV
0.2<A<40
he =2.929-107%eV
h, = 6.065-10"*eV
h; =1.021-1072eV

All the parameters have been measured quite exactly, except \.

Other physical constants can then be calculated using the formulas:

my = %gv =T77.7GeV

my = — W _ 88.6GeV
cos Oy
my = vV 2\ = from 150 GeV to 700 GeV
1
me = —=hev = 511 KeV
V2
1
my, = %huv = 105.6 MeV
1
my; = —h,v = 1.777 GeV
V2
1
Gr = Taut = (1.16639 4 0.00001) x 107> GeV 2
v
e=g¢gsinfy =0.3
1 5 . 1
= Oy = ——
OT g W T gy

Code:

>>> from math import pi, sin, cos, sgrt
>>> eV = 1

>>> KeV = 1e3

>>> MeV = leob

>>> GeV = 1le9

>>> g = 0.631

>>> theta_ W = 28.67 * pi / 180
>>> v = 246.218 x GeV

>>> h_e = 2.935 % le-6 % eV
>>> h_mu = 6.065 » le-4 * eV
>>> h_tau = 1.021 » le-2 % eV
>>> gxv/2 / GeV

77.681779

>>> g*v/2/cos (theta_W) / GeV
88.5365869768
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>>> h_e » v / sqrt(2) / KeVv
510.99059521630568

>>> h_mu ~ v / sqrt(2) / MeV
105.59311618353983

>>> h_tau » v / sqrt(2) / GeV
1.7775856821664329

>>> 1./sqrt(2)/v++2 / (le=5 % GeVx%—-2)
1.1663943402665491

>>> g*sin(theta_W)

0.30273118431564783

>>> 1. / (gx*2*sin(theta_W) %2/ (4%pi))
137.11833915409719

Quarks
Efermion'i_: Z Zf’éq)’yuaulléq)_k Z iQOR’YHaNQOR
q=d,s,b q=d,u,s,c,b,t
Lyuravat=— Y hagil§"®qpp +he.— > hegil§ ®qhp + hec.
Y b
7.2.2 QFT

Field Operators

The free (non-interacting) fields in the interaction picture are expressed using the creation and anihilation operators
below, also the corresponding non-interacting Hamiltonian is shown.

The general idea behind the machinery is that the field operator ¢)(x) = 3 & Wr(x)cy, is constructed as a sum (or an
integral, depending on if the index k is discrete or continuous) of single-particle wave functions (i.e. solutions of the
noninteracting equation of motion) multiplied by the creation/anihilation operators (cj or c;i) that create/destroy the
particle in the given single-particle state. Note that the noninteracting equation of motion usually means that we set
all potentials (interactions) as zero, but in principle it can be any equation that we can solve exactly.

The coefficients 15 (x) don’t depend on time (so neither the field operators in the Schrédinger picture), but we work
in the interaction picture, where the creation/anihilation operators depend on time, and the time dependence is put into
the exponentials below (but the integration is still done over the spatial components of p only).

Scalar bosons:

where:

[ap, al] = (2m)*6% (p — @)
(all other commutators are equal to zero). The equal-time commutation relations for ¢ and 7 are then:

[6(x), 7(y)] = i6® (x — y)
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(all other commutators are equal to zero).

The Hamiltonian is

d3p
H / (271_)3 Epa;f)ap

Fermions:
dgp 1 2 s s —ip-x st .8 ip-T
Yr(z) = 3 (bpu®(p)e™ ™ + difvs(p)e? ™)
(2m)3 \/2F,
s=1
_ By 1 2 . _
br(x) = Pj(x)y° = / (dsv*(p)e™ " + blu® (p)e? ™)
(277)3 2Ep S:ZI P o
where

VP oé’
sy _ [ V/Pon®
> ut(p)ut(p) =p+m

> v (p)vi(p) =p-m
s=1
{bhob3'} = {dp, dgf} = (2m)*0 ) (p — @)™
(all other anticommutators are equal to zero). The equal-time anticommutation relations for 1 and 1! are then:
{ax), 65()} = 69 x = y)0us
(a3, 0 (¥)} = {¥l(x), 6 (3) } =0

The Hamiltonian is

d3p 2 st1,s st s
H = / (2m)3 Z:l Ejp (bp'bp + dy'dy)

and the total charge:

2

d3 S S S S
Q= / (27TZ))3 Z (prbp B dedp)

s=1

So the b-type particles and d-type particles are identical except the charge. In QED, we identify the b-type particles as
electrons and the d-type particles as positrons.

Vector bosons:
3

d3p 1 o —ipz | ot r ip-x
Aula) = / (2m)? \/2E, ,;) (apeu(p)e PE+ apTeu (p)e’”)

where
[ap, ag] = (2m)*6% (p — @)™
The equal-time commutation relations for A,, are then:

[AH(X)v Al (Y)] =@ (X - Y)6uu
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Calculating Scattering Amplitudes using Green Functions

We are interested in calculating the following scattering amplitudes:
(£l2)

where the initial |¢) and final | f) states are created by creation operators of the fields from the previous section. For
example

i) = bibh |€2)
|f) = bl,bL, 1)

Depending on the particular creation and anihilation operators, it can be shown that they can be replaced by:

4, ikz (92 2 k* —m? - ot
al i — z’/d v (0 +m?) o) = (k) = Dzk)(b(—kz)
Ak out = / d*ze ™ (9% + m?) ¢(z) = K _imQ&(k) = ~zk)¢3(k)
b — i / At () (10 +m) uw (e = (k) —# —u’ (k) = O(—k) g(i T
s : 4, —ikz s — m ) = G° k_ m = g° L~
b = [ dtzeRa (19 (<19 -+ m) wla) = w0 F () 09 57909
= =i [ atac 500 (i -+ m) vte) = <000 ET0(8) = <5700 220
eon = =i [ A%i(@) (55 +m) 009 = ~30) 0200 = (k) 5(1 L

ag in — i€, (k) -/d4xei’”82A“(x) =€, (k)—A"(—k)

g o — i€, (k) / d*ze 92 A () = € (k) — A" (k)

14
where the “in” is the operator for ¢ — —oco and “out” for ¢t — oc. The fields ¢(z), 1(x), ¥)(z) and A*(x) have to be
time ordered. On the left hand side is a position space representation, the two expressions on the right hand side are
the momentum representation (the last expression is written using the propagators), e.g. a Fourier transform, which is
essentially just the following substitutions:

9% — —k?
i — K
e p(x) — o(Fk)
k2 — m? 1
y — =
{ D(k)
+h—m 1

. —
( S(xk)

both representations are of course equivalent (but the momentum one is easier to use, since the formulas are shorter).
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For our example we get in the position space:
(fli) = (Qbp, bp,, b, bL, |2) = (QUT by, by, b}, b],,[2) =
= / Az d*zydiey Aoy
e P (@ (ky) (—idh +m)],
e P [0 (kor) (=il +m)],,
QT ¢a2, (902')1%1/ (xl')izal (xl)z/_]az (72)]€2)
(CRBECIRE

[(z% + m) u®? (pz)} P22

a2

where the a1, ae, a1/ and aiyr spinor indices were introduced to show how the matrices should be multiplied. The
vacuum amplitude is called a 4 point interacting Green function in position space:

G o onas (T1, T2, 01, T2) = (T Yy, (22)Pay, (21/)Pa, (1) Vay (22)]Q)

we can also take a Fourier transform to get the Green function in momentum space:
n
G(ﬂ) (p17 R 7p71) = /H d4xi6_lpimi G(n) (xla tee axn)
i=1

then the scattering amplitude becomes (resuming the previous calculation):
(fliy=---=i*
[@* (ky) (=P +m)],,,
[@* (k') (—p2r +m)l,,,
(4
G(al)/QQ/Oélag (p1/3p2/7 —P1, _p2)
[(P1 + m) w (P1)],
(P2 +m) u** (p2)]q,
We can get the same result much faster if we use the momentum space from the beginning:

<f|Z> = <Q|bpz/bp1/bT bT |Q> = <Q|prz’ b131/bJr bT |Q> =

—So/ /#~ o )%V 1/;~21,__1~1 usll j:_2~1 u®2 (pa —
=(QTu (Pz)g(m,)?f’(p Ju (p )S(pl,)zb(p J(=p )S(_pl) (P1)Y(-p )S(_pz) (P2)[$2)
o] ()L
- [engs| rwogs]

(QUT Py, (P2, (P1) Vs, (—P1) Py (—P2)|2)
e uﬂ(pl)Ll[~ L)

S(—p1) S(—p2)

This is called Lehmann-Symanzik-Zimmermann (LSZ) reduction formula. One obtains similar expressions for other
fields as well (if there were different creation operators between the initial and final states). All that remains is to
calculate the interacting Green functions (for which we need to know the interaction Lagrangian). But first couple
more examples:

a1

Example 1

v, - e elastic scattering:

ve(k) + e(p) = ve(K') + e(p')
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So the initial and final states are:
[i) = bLbL 192)
|F) = blbl 1)
and we get:

(fi) = (bg by bl b |Q> = (Q|T by bk,b* bi|Q) =

:{ 3 }[ }

<Q[T1/J( )i ﬁ

We only multiply the matrices with the same momentum, i.e. {ﬂs(p/ )3 (L,)] with 4 (p’), { *(k)3 (k,)} with (k)

and so on. Also we don’t write the spin anymore, e.g. u(k) should in fact be u** (k) and so on.

Example 2

Muon decay:
w(P) = e(p) + ve (k') + v, (k)
So the initial and final states are:

i) = b |©2)
|f) = bldl.bl )

and we get:
(f1i) = (Qbidie bpbp€2)
1 B 1
_Pw@&ﬂpfﬁmﬁ
QT Y (X)(p) v (K )b(—P)|Q)
1 , 1

[s<m““}&<m“m}

Example 3

et + e scattering:
e~ (p1) + e (p2) = e (k1) + e (ka)
Initial and final states:

i) = b dul |Q)
If) = by il 1)
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And we get:

(fli) = (Qbg, di, by, dy} Q) =

k2"p1“p2

= (QITb, dy, b dul|)

A | AP ] | e §<_1_pl)ut<p1>} oo

- [ o] o2

U(—p2) | Q) =

1
S(p2)

Example 4

H(p) — Z(k) + Z(l) decay. Initial and final states:
i) = a}, 192)
1) = a7 2)

and we get:

(fli) = (Qlagaial|Q) = (Q|Tajaial|Q) =

k2 - 2. 1 -
= e (k)—A*(K)e?* (1) —AY (1) = — =
(T (k) — A% (k)" (1) - (l)D(p)cb( p)|€)
= VW o 3y A ()3 (-p)l)
=ED®)

Example 5

ete™ — WTW ™ scattering:
e (k) +et (=) =W~ (p) + WT(r)
So the initial and final states are:
i) = bidl, 92)
) = aplal? Q)
and we get:

(fli) = (Qakapbld’ | |0)
2 2

= eg(r>% M) [‘“ ”S(l 1)]
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Example 6

WTW— — WTW ™ scattering:
W=(k) +WT(p) = W (r)+ WT()
So the initial and final states are:
i) = af a1 19)
1) = ey 9)
and we get:

(fli) = (Qlaagal ak!|2)

= e (1) e (p) 2 (U () A () A7 (-p) A7 (100 () S ) -

7

Evaluation of the Interacting Green Functions

The interacting Green functions can be evaluated using the formula:

G™ (z1,...,20) = QT dp(x1) ... o5 () |Q) =

(O[T ¢1(x1) ... ¢1(x,)S]0)
{0[510)

where
S = Ur(oo,—00) = T exp (—;_l/ Hl(t)dt> =Texp (—; /d4x7{1(x)>

¢g is a field in the Heisenberg picture (¢(x,t) = eHlp(x,0)e 1) and ¢; is a field in the interaction picture
(B(x,t) = etHotp(x, 0)e~*Hot) where the Hamiltonian is H = Hy+ H; and the vacua (ground states) are Hg [0) = 0
and H |Q) = 0.

This can be proven by evaluating the right hand side:
OIT ¢r(x1) ... or(xn)S|0y  (OT ¢pr(x1) ... d1(xn)Ur(c0, —00)|0)

(0]5]0) (0]Ur(00,0)Ur (0, —00)[0)
(0|Ur (00, t1)dr(x1)Ur(t1,t2) ... Ur(tn-1,tn) 01 (xn)Us (t, —00)|0)

(0]Ur(00,0)Ur (0, —00)|0)

(0]Ur(00,0)pp (1) - .- dr (2,)Ur(0, —0)|0)
(0]U1(00,0)Ur (0, —00)|0)

_ {01 QT ¢u (1) - dm(xn)[) (2/0)

(0]€2) (22]€2) {€2]0)
QT ou(z1) .- du(2a)[2)

(Q[Q2)
= (QUTowu(21) .. o (2n)|2)

where we used the following relations:

Ur(ti—1,ts) 1 (@) Ur (tr tis1) = Ur(te—1,0) U} (tx, 0)p1 (21)Us (g, 0)U7 (0, ts1) = Ur(ts—1,0)0 5 (24)Ur (0, tyy1)

Ur(0, —00) |0) = Ur(0, —o0) [Im @+ In) <n|] 0) = 12) {Q10) + lim_» ¢ n) (n|0) = ©2) (2/0)

n#0 n#0
Q) =1
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Evolution Operator, S-Matrix Elements

The evolution operator U is defined by the equations:

|p(t2)) = Ulta, 1) |o(t1))

A GV
o
Uty t) =1

We are interested in calculating the S matrix elements:
(f1U (00, ~00)li) = {fISli) = Si

so we first calculate U (oo, —o0). Integrating the equation for the evolution operator:

tz > t2

HOU(t t)dt =1— ~ | HEU(L t)dt

to,t1) =U(t1,t1) — —
U( 2, 1) U( 1, 1) i ” ) 7 ”

Now:

S =U(oo, oo—l—f/ H"U{, —o0)dt’ =

=1+ (;) /ZH(t’) ', —o0)dt’ + () / / HHA"U (", —oc0)dt'dt” =
- = 0(_‘) n'/ / S T{H(t)H(ts) - Yt dty - =

n=

=T exp (; /O:o H(t)dt) =T exp (; /O:C d4z’H(x))

If £ doesn’t contain derivatives of the fields, then H = —L so:
U(oo, —o0) = T exp (;/ d4a:£(x)>
Let’s write S = 1+ 4T and [i) = |k1 -+ k), |f) = |p1 -+ - pn). As afirst step now, let’s investigate a scalar field, e.g.

L= —%(b‘l (e.g. a Higgs self interaction term above), we’ll look at other fields later:

1 1

(AISI) = (T = v puliTlhs o) = s e

/d4$1 . d4xme—i(’€1$1+"‘+km13m) /d4y1 . d4yne+i(my1+~~+pnyn)G(x17 e T Y1, 7ym)

where

G, xn) = (QUT{¢(21) - - - P(20) }2) =
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OIT{1(21) -+ b1(wn) exp (£ 2, d'aL(x)) }10)
(O[T exp (% I d4a:£(33)) 10)

This is called the LSZ formula. Now we use the Wick contraction, get some terms like Da3 D3, integrate things out,
this will give the delta function and D(p)‘s and that’s it.

Let’s see how it goes for £ = —%qb‘l for the process k1 + ko — p1 + p2:

< ‘S“{} ko) fd41'1d41'26*i(k1:r1+k2$2) fd4y1d4yzei(1’1y1+pzyz)
p1p2 1ko) = _ _ g 1
D(k1)D(k2)D(p1)D(p2)

OIT{¢1(x1)¢r(x2)r(y1) 1 (y2) exp (— 5 [ d*zi(x))}0)
(O[T exp (=4 [ dizgi(2))[0)

B [ Atz dizge=ithroithone) [ g4y, gy, eiPrurtraye)

D(k1)D(k2)D(p1)D(p2)

<0|T{¢I($1)¢1(I2)¢I(y1)¢l(y2)}|0>
(0T exp (=g [ dtaz¢i(2)) |0)

_|_

(—32) [ d*z (0| T{¢r(21)dr(w2) b1 (y1)br(y2)d? () }]0)

’ (OlT exp (— 2 [ dizo}(x)) [0)

+

(—22)? [ dtz dy (0|T{¢1(1)dr(wa)dr(y1)dr(y2) bk ()bt (y) }]0)

" (0T exp (— 2 [ dai(x)) [0)

1
" D(k1)D(k2)D(p1)D(p2)

[(27)26) (1 + p2)(2m) 0 (hy + k2) D(p1) Dk )+
(—iN)6(2m) 6™ (p1 + p2 — k1 — ko) D(k1) D(k2) D(p1) D(p)+
(—i\)(disconnected terms with not enough D(---)s) + (—i\)?(---) 4+ --- | =

((21:;415(/@)15(2?1 +p2 — k) 4 (—iN)3( )+ - }

The denominator cancels with the disconnected terms. We used the Wick contractions (see below for a thorough
explanation+derivation):

(01T{¢1(x1)p1(x2)d1(y1)D1(y2)}0) = D(x1 — x2)D(y1 — y2) + D(x2 — y1)D(21 — y2) + D(x2 — y2) D(x1 — y1)

= (2m)*0™ (py + p2 — k1 — ko) [6(—iX) + 3(—2'/\)2/

O|T{p1(z1)pr(x2)Pr(y1) D1 (y2)P7(2)}0) = D(x1 — x)D (x5 — 2)D(y1 — x)D(y2 — x) + disconnected
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(01T {¢1(21)br(x2) 01 (1)1 (y2) 87 ()07 (4)}0) = D(w1 — ) D(w2 — 2)D(y1 — y) D(y2 — y) D(x — y)D(w — y)

+disconnected

Where the “disconnected” terms are D(z1 — y1) D (22 — y2)D(z — x) D(x — x) and similar. When they are integrated
over, they do not generate enough D(p;) propagators to cancel the propagators from the LSZ formula, which will
cause the terms to vanish.

For the £ = ¢3(z) theory, one also needs the following contractions:

(01T{¢r(x1)pr(x2) b1 (y1) 1 (y2) 97 (2)}0) = 0

OIT{¢1 (1)1 (x2) 1 (Y1) b1 (y2) 97 () $3(y) }|0) = D(x1 — ) D(w2 — x)D(x — y)D(y1 — y)D(y2 — )

Thus it is clear that the only difference from the above is the factor D(x — y) which after integrating changes to

D(p1 + p2) and this ends up in the final result.

One always gets the delta function in the result, so we define the matrix element M f; by:

Spi=2m)*6W(p1+pa+-— k1 —ka— - )iMy;

Propagators for Scalar Bosons, Fermions and Vector Bosons

The only nonzero contractions that can occur are the propagators below. All other contractions are zero.
Propagator for a scalar boson is:

4 ~ .
(OIT{b1(2) b1 (y)}|0) = D(x — y) = / (;1;;1 D(p)e=ir—v

with

For fermions (Feynman propagator):

OIT {1 (x)1(y)}0) = S(z —y) = / (2m)4

with

For vector bosons:

d4p ~ —ip(z—1
OIT{A2) A HO) = Diola =) = [ 5 EeBulp)e e
with
™ - .~ Yuv + p:;gu
Dy (p) = Zp2 —m? + ie

For massless bosons:

~ . —9uv
DLV = .
/ (p) Zpg iy
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Wick Theorem

As seen above, we need to be able to calculate

OIT{¢1(z1) - - r(n)}|0)

The Wick theorem says, that this is equal to all possible contractions of fields (all fields need to be contracted), where
a contraction is defined as:

(0[T{¢1(2)91(y)}0) = D(z —y) = / (;171)213(17)6—1'?@—1/)

with

~ i
Dp)= —
() p2 —m?2 + e

A few lowest possibilities:

(0]T{¢s(x1)}[0) =0
(01T{¢1(z1)p1(22)}|0) = D12
(01T{1(x1)pr(22)¢1(x3)}|0) =0

(O1T{¢1(x1)¢p1(22)¢1(23)Pr(24)}[0) = disconnected

O1T{1(z1)pr(2)d1(x3)P1(74)Pr(2) }0) = 0
(O[T {p1(x1)¢r(w2)d1(x3)pr(wa)d7(x)}]0) = disconnected
(OIT{p1(x1)¢r(w2)d1(x3)pr(w4) 97 (2)}|0) = 0
(01T {1 (x1) b1 (22) 1 (23) 1 (24)$ () }0) = 4! D(wy — 2)D (w5 — 2)D(x5 — x)D (a4 — ) + disconnected
(OIT{p1(x1)¢r(w2)d1(x3)pr(wa) 67 ()87 (y)}[0) =
= D(z; — 2)D(x2 — 7)D(x — y)D (x5 — y)D(z4 — y) + disconnected
(OIT{p1(x1)¢r(22)d1(x3)pr(w4) 67 ()87 (y)}0) =
= D(z1 — 2)D(x5 — 2)D(x — y)D(x — y)D (x5 — y)D (w4 — y) + disconnected

For the last two equations, not all possibilities of the connected graphs are listed (and also the combinatorial factor is
omitted).
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Nonrelativistic Field Operators

One difference in nonrelativistic quantum mechanics is that the noninteracting solutions to the equation of motion
(Schrodinger equation in this case) can be numbered using a discrete index, so for example the momentum q is not
continuous, thus the (anti)commutation relations for creation and anihilation operators contain the Kronecker delta
(instead of a delta function) and integrals over the index are replaced by sums. The reason for that is that we usually
employ boundary conditions (like a lattice, or one particle potential due to nuclei, etc.) that make the spectrum discrete.

For bosons the field operators are given by:

x) = Z Y (X)ck
k

x) = > W (x)ct
k

where the coefficients are the single-particle wave functions.
(ks c} | = 6w
ek, 1] = [ef, e} = 0

so the commutation relations for 1/3 and 1/7r are:

For fermions:

x) =) it (x)c]

k s=1

where

{Ck,C;r} = Ot
{ek,at ={cl.c[} =0

so the commutation relations for 1[) and ’L[JT are:

{$(x), 9" (y)} = (3)(X—Y)
{d(x),d(y)} = (¥ (x). ¥ (y)} =0

The (interacting) Hamiltonian for both bosons and fermions is
iho, |W(1)) = H |¥(1))

ﬁ:T—l—V:Zc i|T|7) ¢; + Zc 1|V |El) erep
1] ijkl

Note the ordering of the final two destruction operators c;cg, which is opposite that of the last two single-particle wave
functions in the matrix elements of the potential (ij|V|kl) (for bosons it doesn’t matter, for fermions it changes a
sign).
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Nonrelativistic Propagator

Nonrelativistic limits of the propagators are obtained by assuming |p|/mc < 1, and then expressing the propagator
using the nonrelativistic energy w (total energy minus the rest mass energy) by using the well-known relations:

poc=FE =mc® +w

2\ 2
vp2c2 +m2ct = Ep, = me ++O< 5 (p ) >
mc

2 m

we use them to simplify £? — Eg in the limit ¢ — oo:

1 1
S (B~ B}) = (B~ Bp)(E+ Ep) =

(e dnos (2))) (o e 2o s (2))
ofe-f mg(w(;i);;(;@@i))%

Where E is the total energy, w is the nonrelativistic energy, EY, is the relativistic energy of a noninteracting particle
(kinetic energy). Now we can rewrite the propagator of a scalar boson:

D(p) = 2 Z22 T2 Z T : .
p?—m2c? +ie  p§—p?—m2c2+ie L (pic® — p2c® — m3ct) +ie
%(EQ_E;%)"‘Z'G 2m(w—%)+ie
1 i 1 i

9. 52 | . < o pz .,
o= B by 2w i

As you can see, we are interested in the behavior of the propagator in the vicinity of its positive frequency pole
2
~ P
wR .
2m

Similarly for fermions (we set ¢ = 1):

S(p) = ip+m) i —pyy+m) 1 i(pPy —ply; +m)

p? —m? + e p? —m? +ie 2m w_2pi+i6/
m

Li((w+myo —plyj+m) 1 i(my —ply; +m)

- ~ —
= ~ =

2m _p> 2m _ P
w 2m+ze w 2m+7’€

i(30+1)-52)

_ p? el
w 2m+ze

(7.1)

The first term

Tw+1)=

o O O
o o= O
o O oo
o O o o
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selects the two upper components of a given bispinor. The second term

Py _ (0 -5z
om ~ \ Ploi 0

2m

mixes the upper and lower components of the bispinor and the contribution of this term is quadratic in - so it can be
neglected. The numerator of (7.1) reduces to a unit matrix (in spin space):

) '
i(30+1) - 52) i

where G(J{ (p,w) is the nonrelativistic retarded propagator defined by:

[ dp dw ip-(x—y) ,—iw(te—
G(}L(x — y) = Z/ (27-[-)3 %G(J)r(pvw)e p-( Y)e (ta—ty)

(For the other pole pg = —+/p2 + m?, we define w = —py — m and we would see that the antiparticles’ propagator
reduces to the advanced Green’s function in the nonrelativistic limit.)

As shown above, the nonrelativistic free propagator is defined by:

d3p dw . )
+ s ‘ - - x — Uy,
Giw—u) =i [ 3 [ oG pw)eyIemiatioty
with:
+ i
Gg (pyw) = 2 .
W — 5 F 1€
If we use the energies of the nonineracting particles £y, = €, = h;]ff = 2’%, we can write it as:
i i
G+ p’w = = "
0 (P, w) w,%jqe w— By + e
SO
Gt hyw) = ———
w— Ey + 1€
using E = hw we can also write:
Gg (k,E) = .
E — B +ic
Other equivalent ways of representing the propagator:
d3pdE

Gi (o= 0) = G (rtasy) = [ UGS (b E)er v ittt =

3
™

Sometimes it’s useful to calculate the mixed representation G (k,t):

dw Ciw dw iw { —i(Ey—ie
L e R e e

(The ““- - -” means to use the Residue Theorem and distinguish two cases ¢ < 0 and ¢ > 0, thus getting the Heaviside
step function 6 in the result.)
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Very often, in practice, one just needs to work with G (k,t) and G (k,w), here is how to convert between those:

™

Giho = [ Sre Gl (k)

— 00

Gg(k,w):/ dt et G (k,t)

— 00

The relation to the contraction of operators is:
G (ki ta —t1) = —ib,—¢, (Wolex(ta)el (1) o)
where |U) is the ground state wavefunction and:
cx(t) = eiHot gy e iHot
so to understand the meaning of G (k,ta — t;), we write it as:
G (k,ta — t1) = =i, —s, (Volex(ta)el (t1)[To) = —iyy—s, (FoleH0t2epe Holtzmt) o] o=iHoty |y =

= i, ., (e—ngt2 |\I,0>)T (Cke—iHo(tz—tl)cLe—iHotl |\I,0>)

which describes the probability amplitude of adding a bare particle at time ¢, removing at time ¢, and regaining the
original many-body system (that in the meantime evolved into e ~*0t2 | W)

Evaluating the Interacting Green Functions

The Green functions below can either be evaluated using the Wick theorem, or using Feynman diagrams and the
corresponding Feynman rules.

Example 1

Lzzy = AZ,Z"H, in the first order:

(QUT A" (k) A" (1)$(—p)|Q) = iA(2m)*6(k +1 — p) D" o (k) D" (1) D(p)

Example 2

Leey = —Aéy*eA,, in the second order:
(QUTD (k) (k)1 (—p1 ) —p2) |2) =
= (—i)\)2(2ﬂ')4(5(k’1 + ko —p1 — pg) S’(k’l)’y”g(—k‘g)Duy(kl + kz)g(pg)’yyg(—pl)—l—

+5(k1 )7 S(=p1) Dy (1 — 1) S(p2)7"S(—k2) |
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Example 3
Ling = 5% 77" (1 = 75)eW,l + h.c., in the second order:
(QUT A% (r) AP (p) i (— )b (~1)|2) =
= [ atodty (0744 ) I R)3(-)
Pe()y* (1 = 35)e(x) W] (x)

Ze(y)y” (1 = vs)e(y)W,F (y)
0) =

= (iz\g/i)Q / 'z d*y df dp di di /7P =D
(0] TA (1) A% () (k) (0)
ve(@)y" (1 = y5)e(@) W,/ (2)
Ze(y)7" (1 =35)e(w) W, (v)
|0> =

2 ~ ~
= (szﬁ) / d*z d*y di dp di di i 7 +or—Rk=l)
D, (7 — 2) D", (p — y)S(I — a)y"(1 = 75)S(x — y)y" (1 = 75)S(k — y) =
2
= <12\’>§> / d*z d*y dr dp dk dl (CF2)r+P+y)p=(k+y)k=(l+)D)

D“u(f)D"y(ﬁ)S(l)’V”(l —5)S(x = y)y" (1 = 75)S (k) =

2f
2x/§

2
2 /d4l'd4y ez(aerryp yk—zl)

2
D®,(r) D", (p)S(A" (1 — v5)S(z — y)7" (1 — 5)S(k) =

2
= Z.g) d4x d4y (@ +y)r+yp—yk—(z+y)l)
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ZZH interaction

Let’s calculate the Lz 7y = AZ,Z" H interaction in the SM, where A = ﬁ. Consider H(p) — Z(k) + Z(1):

(f1S]i) = (fliTli) = (kliT|p) = (Qagaiab|Q) = (QTajata}|2) =
2 12 1

= (QITe (k) ~ AF (k) (1) =AY (1) =—(—p)[2) =
1 i D(p)
= M (QIT A" (E)AY (1)d(—p)| Q)
wD(p)

_ qrke (D) 4 Pk 0
= X 2iN(2m)*0(k + 1 — p) D" (k) D (1) D(p)

;TzrzD(p)

e (ke (1 —igha —ig"" =
- L D0) A@m)*o(k +1 = p)—5=—5—D(p)

= ¢, (K)ey" (ir2m) o(k + 1 — p)g"ag”™
= eL*(k)ei*(l)iA(?w)%(k +1—p)g"
IA2m) 6 (k + 11— p)e) (k)e**(1)

|
-

where we used the fact, that the first order contribution of the A7, Z" H interaction to the interacting Green function
is:

(QUT A" (k) A” (1) $(—p)|2) = iA(2m)*5(k + 1 — p) D* o (k) D** (1) D(p)
eeH interaction

This is only approximate, it will be fixed soon.

Let’s calculate the L.z = —\éeH interaction in the SM, where A\ = = Consider H(p) — e~ (k) + e*(1):

V2
(F1S]i) = (FT i) = (KI|iT|p) = ?i&% 1>

/d4$167im1 /d4y1d4y26+i(kyl+ly2) /d%(*i)\)s(yl —2)S(y2 —x)D(21 — ) =

— (=i @)D (p — k — Da(k)o(l)

where we used the fact, that the only nonzero element of the Green function is

[ e QT emetue) Haelwre(@)H ) 0)
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ee gamma interaction

This is only approximate, it will be fixed soon.

Let’s calculate the Le., = —Aéy*eA,, interaction in the SM, where A\ = g sin fy,. Consider v(p) — e~ (k) + et (1):
u(k)o(l) eu(p)

(71816 = (F1iTli) = (WINTIp) = Zmers 2o

/ dtayemPn / dtydtyset vitu) (0T {e(yr )e(y2) A" (21)}]0) =

(B)o(l) _eu(p)
(F)5(1) Das ()

|

/d4x167"ml /d4y1d4yge+i(ky1+ly2) /d4x(—i>\)5’(y2 —2)y"S(y1 — 2) Dy (21 — ) =

= (2m)*6 W (p — k — Da(k)(=iX)y"v(l)e,(p)

where we used the fact, that the only nonzero element of the Green function is
[ ke 017 el )etve) A° ()l e(e) A (w)}H0) =

= £5(y> — )"S (1 — ) D (1 — )

eeee interaction

Let’s calculate the L., = —\éy"eA,, interaction in the SM, where A = gsinfy,. Consider e~ (p1) + e (p2) —
Y(q) — e (k1) + et (k)

(F1S1i) = (FIT1i) = GrnkaliTlpipa) = (Qbf, di, b, 2 10) =
= (QUTH,, di, b, dih |92) =

— O o ) )] | =0k ) gt o) [ o) g 1) =
- [“’:(k”g(;lﬂ W]

+5(k1 )7 S(=p1) Dy (1 — 1) S(p2)7" S(—k2)|

s ) [s@) -

1
= —X\*(2m)*0(k1 + k2 — p1 — p2) {Ur(kl)’wvs(k?)

m@u(m)wut(m)-f—

+Ur(k1)7uut(P1)(kl_lpl)gvu(m)ﬁ’ws(kz)}
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where we used the fact, that the interacting Green function is in the lowest nonzero order equal to:
(QUT (k1) (ko) (—p1) v (—p2)|) =
= (—iA)?(2m)*0 (k1 + k2 — p1 — p2) | S(k1)V*S(—k2) Dy (k1 + k2)S(p2)y"S(—p1)+

+5(k1 )7 S(—p1) Dy (1 — 1) S(p2)7"S(—k2)|

7.2.3 Low energy theories

Fermi-type theory

This is a low energy (m3, > m,m.) model for the EW interactions, that can be derived for example from the muon
decay:

woo—e F+v,tve
From the SM the relevant Lagrangian is

9 /. - 9 /- -
2\/5(6,7”(1 - 75)1/6‘/[/” ) + ﬁ(y"y“(l - FY5)VILVV,U, )

and one gets the diagram =~ + ,,+ — ¢~ + U, and the corresponding matrix element:

2 —g" + ¢
M = =i [@9,(1 ~ 93)u] S [y, (1 = 75)0)
iM = =g iyl = s )u] =7 g i (1 =350
which when the momentum transfer ¢ is much less than m,, becomes

2

iM = _i8312 [ (1 = s )ul [y (1 = 75)v]
w

but this matrix element can be derived directly from the Lagrangian:

G -
L= —ﬁ[wyﬂ“(l = 75)ul e (1 = v5)¢0,]
with
Gy _ ¢
V2 8myy

This is the universal V-A theory Lagrangian (after adding the h.c. term). Note that the Fermi constant G is equal to
G,.

For the beta decay we get:

_ G
V2

where Gg = G'p cos Oc, Oc = 13° is the Cabibbo angle and f = 1.26.

L [hpy" (1 = fy5)nl[her™ (1 = 75)y,]
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7.3 Quantum Electrodynamics (QED)

7.3.1 QED Lagrangian

The QED Lagrangian density is

where
(3
| ¥
O
Wy

and
;
Dl“ = au + ﬁeAM

is the gauge covariant derivative and (e is the elementary charge, which is 1 in atomic units, i.e. the electron has a
charge —e)

F,, =0,A, -0,A,

is the electromagnetic field tensor. It’s astonishing, that this simple Lagrangian can account for all phenomena from
macroscopic scales down to something like 1073 cm. So it’s not a surprise that Feynman, Schwinger and Tomonaga
received the 1965 Nobel Prize in Physics for such a fantastic achievement.

Plugging this Lagrangian into the Euler-Lagrange equation of motion for a field, we get:

(ihey" D, —mc*)p =0

O, FF = —ectpytap

The first equation is the Dirac equation in the electromagnetic field and the second equation is a set of Maxwell
equations (0, F'"* = —ej*) with a source j# = cipy*1), which is a 4-current comming from the Dirac equation.

7.3.2 Magnetic moment of an electron

In this section we derive the order-« correction to the magnetic moment of an electron.

We start by computing the electron vertex function for the process v(q) — e™(p) + ¢~ (p'):
. 9 1
iM = ie® (u(p")T*(p', p)ulp)) P (@(k)yuu(k))

where k corresponds to some heavy target. If Af} is a fixed classical potential, we get:
iM2mo(p” — p°) = —ieu(p' )" (p', p)u(p) Af)
Using general arguments (Lorentz invariance, parity-conservation, Ward identity) we can always write I'* as:

i qy,

F 2
o L2(d)

I*(p',p) = v*Fi(¢*) +
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where F} and F; ar unknown functions of ¢* = (p’ —p)? = —2p’ - p+2m? called form factors. As we will see below,
in the lowest order we get F; = 1 and Fs = 0.

We can calculate the amplitude for elastic Coulomb scattering of a nonrelativistic electron from a region of nonzero
electrostatic potential by setting A%/ (z) = (¢(x),0), then:

A% (q) = (2(q°)(a), 0)
iM2rs(p” — p°) = —iea(p )T (0, p)u(p)278(¢°)d(q)
iM = —ieu(p")T°(p, p)u(p)d(q)

If the electrostatic field is very slowly varying over a large (even macroscopic) region, J)(q) will be concentrated about
q = 0, then we can take the limit q — 0:

iM = —ieu(p)TO(p', p)u(p)d(q)

ic% ~
iM = —ieu(p) ( "Fi(d*) + qusz(QQ)) u(p)o(q)

iM = —ieu(p' )y u(p) F1(0)d(q)
iM = —ie2m¢ 1EF) (0)(q)

iM = —i (eFl(O)qu(q)) ome'te

This corresponds to the Born approximation for scattering from a potential
V(x) = eF1(0)p(x)

Thus F7(0) is the electric charge of the electron, in units of e. Since F} (0) = 1 already in the first order of perturbation
theory, radiative corrections to Fi (¢?) must vanish at ¢* = 0.

Now we calculate the scattering from a static vector potential by setting A¢!(z) = (0, A¢/(x)), then:

Al(q) = (0,2m6(¢") A%y (@)
iM2mo(p — p') = iea(p) )T (p', p)u(p)27d(q") ALy (q)
iM = iea(p )T (p', p)u(p) ALy (q)

it = ieaty) (15 + 5L E() ) ) A
In the limit ¢ — O this becomes:
Jgh _
iM = ie2mé T (—ié’jk qQ—m(Fl(o) + Fz(O))> §Au(a)
Jk .. o~
iM = —ie2m¢ | (—Qm(Fl(O) + F2(0))) 3 (—ie”kquél(Q))
O'k ad
iM = —ie2mé T <—2m(F1(0) + F2(0))> ¢B*(q)
it =i (- S (RO + RN B a )
where
BY(a) = (—ie"" ¢ Aiy(a))

is the Fourier transform of the magnetic field produced by A (x).
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This corresponds to the Born approximation for scattering from a potential

V0 =~ (R(0) + Fa0))¢ T8 )
V() = ——(F1(0) + F2(0)€ ' 2¢ - B()
V(x)=—-<p>B(x)
where
<p>=(R(0)+F(0)¢12¢
< p>= g%S
where

g =2(F1(0) + F2(0))
S=¢12¢

The coefficient g is called the Landé g-factor, and since the leading order of perturbation theory gives F5(0) = 0 (and
we know that F; (0) = 1 to all orders), we get:

g =2(F1(0) + F»(0)) =2+ 2F5(0) =2+ O(«)
This is the standard prediction of the Dirac equation. The anomalous magnetic moment is then:

qg—2
e = —— = It
Qe 9 2(0)

To calculate that, we need to evaluate the one-loop correction to the vertex function, so we start by deriving the
appropriate Green function for the process v(q) + et (p) — et (p'):

i) = ag'of |92)
) =g )
(fli) = (@ byragvyf ©2) =
= (Q|TbS agl bl Q) =

_ 2 -
= (01T (0) g0 (@) A () ) g () )

=

Il
|
w
’U\
[}
¥y
a
. ‘ <,
=
~
S
)B\
‘:E’
|
=2
<
|
=
2

— a°(p’ 1 €r* 4 A ! ) —ut =
= u*(p') ACY .G(p7p7q)s(_p) (p)

2 1
7
where:

G(p, v, q) = (Q TP ) A" (—q)ib(—p) |Q)

is the interacting Green function for the Lagrangian —Aevy*eA,,. In the first order:
G(p.¥',q) = (QUTH() A" (~q)i(-p) 1) =
= /d4x (O] T(p') A¥ (—q)h (—p) (= N)e(w)e(w) A, () [0) =
= (=) / d*xdp/dgdpe™ P =17 (0| T (') A* ()b (pe(a)y e(x) Ay(x) |0) =
= (=) / d'adp/dgdpe’™ P~ PP Dh(G — 2)S( — 2)7°S(p — x) =

= (=N (2m)*(p — q—p) D (@)SP)7*S(p)
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so the amplitude is:

and we got I'* = ~4#, so I} = 1 and F» = 0 in the lowest order. In the next order we get:
G(p,p',q) = (=N (2m)*(p' — g — p)D"(q)S(p')oT*S(p)

4 ~ - -
5T — / (jﬂ’; Dok — p)(—ien”) Sk )" 5 (k) (~ier?)

Now we can write:
a(p" )T (p', p)u(p) = a(p") (" + 6T'*)u(p)
Dyp(k — p)u(p’)(—iey”)S (K )y* S (k) (—iey”)u(p) =

_ [ AR gy o B Am) i m)
B / (2m)* (k —p)* + iﬁu(p (=iey )k’2 —m?+ie’ k?2—m2+ie
— 9i¢2 / d*k a(p’) (Fy™ul’ +m2y* = 2m(k + k')*) u(p) _

(2m)* ((k — p)? +i€) (k"2 — m? + ie)(k? — m? + ie)

(—iey”)u(p) =

o q,

a1 ! 2

— 9502 _ = (] w(e_ 142 1— 1— 2 1—4 2 2 9 2 1—

2ie /(27T)4/0 drdydzdé(r +y+ 2 1)D3u(p)<7( P+ (1—x)(1—y)g® +( 2+ 2M)m?) + = (2m?2(1 - 2

o ! ZA2 1 Z'O"ul/q 1
=— —Da) (v |log =+ — (A —2) (1 —y)¢®* + (1 — 4 Hym? Yl —2m?z(1 —

o [ dwdpdsato by e - 0u) (2 flog T+ g (=01 = )+ (= ax o 2) | + G | Lo )
where

K=k+gq
D=101>-A+ic

A=—zyi* + (1 —2)*m* >0
So the expressions for the form factors are:

2A2 1
7+7

1
Fl(qz)zl—&-;/ dedydzo(z +y+2—1) [log
T Jo
! 1
Fy(q?) = g/ dedydzd(z+y+2z—-1) [2m22(1 —z)] +0(a?) =
0

2m A
2m22;(1 — Z) :| " O(OéQ)

(1—-2)*=q*zy

1
a
= %/0 dedydzdé(z+y+2z—1) [mQ

F contains both ultraviolet and infrared divergencies. To cure the infrared divergence, we add a term 2z to A. To
cure the ultraviolet divergence, we make the substitution:

Fi(¢®) = Fi(¢®) — 6F1(0)
where 6 F is the first order (in ) correction to Fy (i.e. Fy = 1+ 6F; + O(a?)):

5F(0)a/1dxd dzd(x+y+2—-1) |lo A" + !
o Jy Y *A@P=0) " A[Z=0)
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so the corrected F} is:
9 a [1 zA? 1 9 oy 9
Fi(q ):1+7/ dedydzd(z+y+2-1) {long((l:r)(ly)q +(1—-4z+2 )m)+
log 2zA? 1
AlZ=0) A(@=0)
1 2 2 2 2y, 2
@ m?(1 — 2) 1-z)1—-y)g®+ (1 —4z+4 z%)m
=14+ — dxdydzd -1 |1
+27T/0 mdydzo@+y+ e ){Ong(l—Z)Q—quer( m2(1 — 2)? — g*xy + p?2 -

(1—4z+ 2%)m? ] L 0(e?)

Cm2(1—2)? + 2z
Neither the ultraviolet nor the infrared divergence affects F»(q?), so we just set ¢ = 0:

2m?z(1 — 2)
m2(1 —2)?

(1—4z+ zz)mz} +0(a?) =

FQ(O);T/Oldxdydzé(z+y+zl){ ]+0( 2) _

:—/ dxdydz5(l‘+y+2*1) (0*) =

2
/ dy/ dz0(1— (1—y—2)0((1—y— =) — 0)1 ¥ 100 =
o [ty / Az 0(y + 2)0(1 —y — 2)—22 -~ +0(a?) =
277 Y < 1—
a (! ! 2z
01—y — =
=5 dy dz 6( z)l Z+O(a )
11—z
dZ/ (a2) =
dz(lfz) 2 +O( 3 =
T or 1-—
1
= —/ dz2z + O(a?) =
2 0
_« 2
o7 +0(a)
Thus we get the correction to the g-factor of the electron:
_9=2_ _ L
te = = = F»(0) = 5 0.0011614

Code:

>>> from math import pi
>>> alpha = 1/137.035999
>>> a_e = alpha / (2xpi)
>>> a_e
0.0011614097335977778

Experiments give a. = 0.00115965218073 £ 0.00000000000028.

Higher order corrections from QED can also be calculated:

o (2 (2 o) (2

we already know that A; = % See for example hep—ph/9410248 for the expression for As:

197 1, 1,

= —0.328478965579 e
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Code:

>>> from sympy import zeta, S, log

>>> A_2 = S(197)/144 + zeta(2)/2 + 3xzeta(3)/4 — 3xzeta(2) * log(2)
>>> A_2.n()

-0.328478965579194

See hep-ph/9602417, where the author obtains the following expression for the coefficient As:

28259 215 100 {1 1 1

Ay =22 =< —E———2122 — log* (2

3= = 24((5)+ 3 <n—1 72 log ()+24 og* (2) | +
139 298 83 ,
- — %00 (2 -
+18§(3) T 0g()+7277§(3)+

9
= 1.181241456. ..

17101 , 239 ,

810 © 2160

Code:

>>> from sympy import pi, zeta, S, log, sum, var, oo

>>> var("n")

n

>>> a4 = sum(l/(2*«*n * nxx4), (n, 1, 00))

>>> A_3 = 83xpix*2xzeta(3)/72 — 215«zeta(5)/24 + 100%(ad + log(2)*x4/24 — \
pix*2xlog(2)*%2/24)/3 — \

239xpix*x4/2160 + 139xzeta(3)/18 — 298 % pix*2 x log(2)/9 + \
c 17101 » pi**2 / 810 + S(28259)/5184

>>> A_3.n/()
1.18124145658720

Numerical approximation for A4 can be found in hep-ph/0507249:
Ay = —1.7283(35)
So the total value of a. is:

ae = 0.00115965223273643 + O(a*)
ae = 0.00115965218242334 + O(a®)

Let’s state the experimental value again for comparison (see above):
a. = 0.00115965218073 £ 0.00000000000028

At this level of accuracy, the uncertainty of the exact value of o as well as other corrections coming from the Standar
Model come into play, so one should not take the numbers above too seriously, but one can roughly say, that the
agreement between the QED prediction and experiment is about 8 significant figures.

Code:

>>> from sympy import pi, zeta, S, log, sum, var, oo
>>> Var("n")
n

>>> a4 = sum(l/(2*«*n = nx+x4), (n, 1, 00))

>>> A1 = S(1)/2

>>> A_2 = S(197) /144 + zeta(2)/2 + 3xzeta(3)/4 - 3xzeta(2) = log(2)

>>> A_3 = 83xpix*2xzeta(3)/72 — 215«zeta(5) /24 + 100+ (ad + log(2)**4/24 — \

pi+#2+1og(2) *%2/24) /3 — \

239xpix*4/2160 + 139xzeta(3)/18 — 298 x pix*2 x log(2)/9 + \
. 17101 % pi*x2 / 810 + S(28259)/5184
>>> alpha = 1/137.035999
>>> a_e = A_1 = (alpha/pi) + A_2 » (alpha/pi)*+2 + A_3 * (alpha/pi)~*+3
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>>> a_e.n()

0.00115965223273643

>>> A_4 = —-1.7283

>>> (a_e + A_4 » (alpha/pi)*+*4).n()
0.00115965218242334

7.4 Quantum Mechanics

7.4.1 From QED to Quantum Mechanics
The QED Lagrangian density is
L = P(ihey" D, — mc®)y) — %FWFW

Plugging this Lagrangian into the Euler-Lagrange equation of motion for a field, we get:

(ihey" D, — mc®) = 0

0, F"" = —ecipy')

The first equation is the Dirac equation in the electromagnetic field and the second equation is a set of Maxwell
equations (9, F"* = —ej") with a source j* = cyy*1p, which is a 4-current comming from the Dirac equation.

The fields ¢ and A* are quantized. The first approximation is that we take v as a wavefunction, that is, it is a classical
4-component field. It can be shown that this corresponds to taking the tree diagrams in the perturbation theory.

We multiply the Dirac equation by 7 from left to get:

0 = ~°(ihey" D, — me?)yp = v°(ihey® (0o + %eAO) + eyt (0; + %eAi) —mc*)) =
= (ihcdy + ihey’~'0; — Ome? — ceAy — cen®v Ay
and we make the following substitutions (it’s just a formalism, nothing more): 3 = 7°, o = %4, p; = ihd;,

do = %% to get

(zh% + calp; — fme? — ceAy — ceo/Ai)w =0.

or:

Zh%/: = (ca(—p; + eA;) + Bmc? + ceAoy)ib .

This can be written as:

OY

ZE:Hw7

where the Hamiltonian is given by:
H = ca'(—p; + eA;) + Bmc? + ceAy,

or introducing the electrostatic potential ¢ = cAg and writing the momentum as a vector (see the appendix for all the
details regarding signs):

H=ca (p—-eA)+Bmc*+ed.
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The right hand side of the Maxwell equations is the 4-current, so it’s given by:
" = ey

Now we make the substitution ¢ = e‘imcztcp, which states, that we separate the largest oscillations of the wavefunc-
tion and we get

70 = ey = Ty = cplep
it = ey = cyptaiy = eplaly

Derivation of the Pauli Equation

We start from the Dirac equation:
Hy =Wr
where:

H=ca-(p—eA)+pmc* +ep.
W = E + mc?

W is the relativistic energy, E is the nonrelativistic energy, e¢p = V is the potential. The matrices o and (3 are given
by:

so written explicitly:

And the Dirac equation is:
V +mc? co-(p—eA)\ (vE\ W Pl
co-(p—eA) V —mc? S ) Ol
1% co-(p—eA)\ (vE\ > g
co-(p—eA) V —2mc? S ) S
We put everything on the left hand side:

(ca -‘?p_—EeA) 50_- ng_— zeml%) (Zg) =0

After introducing E we get:

We put ¢ next to 1°:
V-F o (p—eA)\ [ yF _o
co-(p—eA) Y=E-_2me) \ey®)
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And we divide the second equation by c:
V-F o-(p—ecA) Pt _0
o-(p—eA) YE_2m cpd)

Now we express i) from the second equation:

o (p—cA)pt

V_E
2m — -5

S =

And substitute into the first equation:

(v-E+a.(p-eA)Wa~<p—eA>>wL—o

C2

So we get the following equation (so far this is an exact equation for the first two components of the Dirac equation,
no approximation has been made):

("'(p‘eA)mlv—Ea-<p—eA>+V> Wb = Byt

c2

Note that the first operator p (on the left hand side) acts among other things on the V' in the denominator. By doing
the nonrelativistic approximation Y2 < 2m we obtain the Pauli equation:

((a . (p — eA))’

+V> Yl = Byt

We can see, that the quantity
V-F

M=m—
m 2c2

can be interpreted as relativistic mass.
Using the relations between the Pauli matrices, we can further simplify:
(0-(p—eA)’=(p—cA)’+io-(p—cA)x (p—cA) =
= (p—cA)’ +io- (Pxp—eAxp—epxA+e’AxA)=
—(p—cA)’ —ico- (Axp+pxA)=
—(p—ecA)P —icoc-(Axp—Axp—il(VxA))=
= (p—eA)’ —cho - (V xA) =
= (p—cA)’ —¢cho-B

At the end, we have introduced the magnetic field B = V x A. In the above, one has to be careful, because p
and A don’t commute and also the operator p acts on everything on the right. We used the formula p x A =
—A x p —ih(V x A), that can be proven by:

(P X AvY); = €jipj Apt) =
= —ihe;j0;(Ary) =
= —ihe;ji ((0Ar)Y + Ar0j1p) =
= —ihieiji((0;Ar)Y — A;Opt)) =
= €iji(—ih(9; Ar) — A;pit)) =
= —ih((V x A)); — (A x py);

Putting this into the Pauli equation, we get:

2
<W+V—$U-B>¢L:E¢L
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Nonrelativistic Limit in the Lagrangian

We use the identity 2- (e*imgtf(t)) = e Mt (_imce? + 2)f(t) to get:

chza“w*8#¢—mzc4z/)*1/1 — %w*%¢_c2ai¢*aiw_m2c4w*w —

0 0 -
= (imc? + a)g@*(—imCQ + &M — 200 0,0 — mPctotp =

1 9p* 0y

— 2mc? 12-( Oo _ Opt, 1 _- 9v 9%
2me2 Ot Ot

S 5p wﬁ) 2m890ai§0+

The constant factor 2mc? in front of the Lagrangian is of course irrelevant, so we drop it and then we take the limit
¢ — oo (neglecting the last term) and we get

T e T om ¥ ¥

After integration by parts we arrive at the Lagrangian for the Schrodinger equation:

L=ip"— — i
R ot 2m g

Klein-Gordon Equation

The Dirac equation implies the Klein-Gordon equation:

0 = (—ihey" D, — mc?)(ihey” D, — me*)y = (h*c2y~Y D, D, + m*c*)y =

= (h*c*¢" DD, +m?*c* ) = (h*c2D"D,, + m*c*)
Note however, the v in the true Klein-Gordon equation is just a scalar, but here we get a 4-component spinor. Now:

DD, = (0, +ieA,) (9, +ieA,) = 0,0, +ie(A,0, + A0, + (0,A4,)) — e*A, A,

[DN, D, = D,D,-D,D, = ie(@NA,,) — ie(&,AM)
We rewrite D* D,

DFD, = g D,D, = 0", +ic((0"A,) + 24"0,) — > AP A, =
= 8M8u —+ 16((80140) —+ 2A060 + (81141) —+ 2A131) — 62(A0A0 + AlAq) =

10V Vo ; ; I&: .
— M e A . i A . . 1. 2 Al 4.
0 3H+ZC2 5 +2@c2 5 +ie(0"A;) + 2ie A'0; = ¢ A A;

The nonrelativistic limit can also be applied directly to the Klein-Gordon equation:

0= (R*®D*D,, + m’c*)p =
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(h2 26“8 + Z@@V + Zng +ihec® (9" A;) + 2ihec? A'0; — V2 — 2P AT A; + m204> 8_%m62t¢ =

2 i 2
= <h288t2 — RV 4 2iV% + 188—‘; +ihec?(9'A;) 4 2ihec? A'9; — VZ — 22 AT A; + m264) e RmE iy =

— K22 4+ 22V(—fmc + 0 + za—v + ihec® (9" A;) + 2ihec? A'0; — V24

_ —%mczt 2 _i 2 9
- (h( Rt h 8t> ot

8t)

2PATA +mPct) o=

= e Mt [ 94 Q+h232 ARV 42V 2+2Va+ a—v+ hec® (0 A;) + 2ihec? A'9; — V2 +
=€ 1 mc 8t (%2 mh 1 8t 7 a 1nec 1nec i
2PANA) o =
2 2 . 2 :
= —2mcleimet < hé +h— v -V - L & i oV V=V

—+
ot 2m 2mec? 0t2  2mc? Ot  2mc?  mc? Ot

2
IR i, — eAiai + eAiAl-) o
2m 2m

Taking the limit ¢ — co we again recover the Schrodinger equation:
0 v? ih
hLp=(-h y V1 EaZA + 1 Ala - —A’A 0,
ot 2m
we rewrite the right hand side a little bit:

2

0

N h2 3 7 7
zhatw—< (8(’9—1——68%1 +2— eAa—h

Ai)+V> @

0

L0 1 o
Zo=—n%D'D,
zhatgo <2mh l—i—V)go

Using (see the appendix for details):
_ - i 2
h’D'D; = —h%6;;D'DI = —h? (h(p - eA)> =(p—eA)?

we get the usual form of the Schrodinger equation for the vector potential:

9 (p—ecA)?
Zhat(p_ ( 2m Ve

A little easier derivation:

0= (h262D“DV +m2ct)p =
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= (W*¢*D°Dy + h*® D' D; + m’c*)yp =

2 hQ 0 h2 % 1 2

h? j n?
= 2mc? <2m (80 + ;leAO) (80 + heA()) + %mc2 + %DZD ) e~ Rme Qp =

h? j ; j j h?
= 2mc? <2 <80 + ;LeAO> e~ Rme’t <8o — e + %er) + %mc2 + —
m

D'D; ) p=
h 2m ) 4

2

—Lime? n’ i i 0 o N
= 9mcle FMCY ( (80 - ﬁmc—&— ﬁeA ) (80 - ﬁmc—i— eA()) + %mc + %D Di) =

2 2 40 2 . B2
= 2mcReimet h—ﬁoﬁo — tme® — e A4 + ceA® + h—ie(aOAO + A°0%) — ihcdo + tmc? + —D'D; | o =
2m 2m m h 2m
o R R 9% e2¢®  ieh , O
-9 2 —tmc?t e 7DD AO -
mee ( m@t * e 2me? 0t?2  2mc? * ch( T )>
0  (p—eA)? h? 2 62¢2 ieh , 0
— 2 me 2¢ ﬁf -
mete < ot 2m Tedt 2me2 02 2mc? ch ((’9t¢ d) )
and letting ¢ — oo we get the Schrédinger equation:
9 (p—ecA)?
zh& < o +ep |
7.4.2 Perturbation Theory
We want to solve the equation:
Zh* [(t)) = H(t) [$(1)) (7.2)

with H(t) = H® + H*(t), where H" is time-independent part whose eigenvalue problem has been solved:
HO [n) = ES [n°)
and H'(t) is a small time-dependent perturbation. |n°) form a complete basis, so we can express |¢(¢)) in this basis:

() = dn(t)e FE5 [n0) (13)

n

Substituting this into (7.2), we get:

Z(ihidn(t)“‘Egdn(t))e FEnt In®) Z t)+ H'd, ())e ' ”t|n>

n
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so:
SO (d (1)) e FER ) = 3 du(t)e FEHT n0)
Choosing some particular state | f°) of the H° Hamiltonian, we multiply the equation from the left by (f°| e Ejt,

d
D in g () ) = 3 dnt)et e (Y )

where w,, = @ Using (f%|n%) = 6sn:
Zd et (fO)H [n°)
we integrate from ¢; to ¢:
UCIOREVEDS / du (1) (fOH (¢)]n°) a’

Let the initial wavefunction at time #; be some particular state [1(¢1)) = |i®) of the unperturbed Hamiltonian, then
dn,(t1) = p; and we get:

. t
0= — 3 3 [ty (Ul ar 7.4

This is the equation that we will use for the perturbation theory.

In the zeroth order of the perturbation theory, we set H'(¢) = 0 and we get:

df(t) = oy

In the first order of the perturbation theory, we take the solution d,, () = J,,; obtained in the zeroth order and substitute
into the right hand side of (7.4):

-
dy(0) = b5 — 3 [ )

ty

In the second order, we take the last solution, substitute into the right hand side of (7.4) again:

50 =55+ (=3 [ et ot

. 2 t n
H(og) T [ar [ avemee o) e ol @)
n 4 ty

And so on for higher orders of the perturbation theory — more terms will arise on the right hand side of the last
formula, so this is our main formula for calculating the d,, (¢) coefficients.

Time Independent Perturbation Theory

As a special case, if H' doesn’t depend on time, the coefficients d,, (t) simplify, so we calculate them in this section
explicitly. Let’s take

H(t)=H® 4+ ¢/"H*
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so at the time ¢; = —oo the Hamiltonian H (t) = HY is unperturbed and we are interested in the time ¢ = 0, when the
Hamiltonian becomes H (t) = H® + H" (the coefficients d,, (t) will still depend on the 7 variable) and we do the limit
T — oo (this corresponds to smoothly applying the perturbation H'! at the time negative infinity).

Let’s calculate df(0):

. 0
dy(0) = bfi + (‘2) | emntetar o) +
—oo

0 o
<_) Z/ dt”/ At eiwsnt” giwnit’ S5 oL <fO|H |n ><nO|H1|z’O> _

l 1
=0y B Y AT
f+( h)iﬂwﬁﬁl i)+

N2
¢ 1 1 0(771(,.0 0y 771:0
+ | —= E H H

( h) — %—i—zwm + W + W (P ) (7 HE)

Taking the limit 7 — oo:

450 =05+ (=3 ) o (1) +

2
+(—;) S (POH ") (O[O =

n Wni Win + Wni

(f1Hi%)

R - R

(fOLH[n°) (n°|H]i°)
(Ep — B))(EY — EY)

2

Substituting this into (7.3) evaluated for ¢ = 0:

[£(0)) =) da(0)[n%) =

[n°) O|H1|7 )
= 1i°) Z EO T

Zln (n°|Hm®) (m°|H i)
(Ep, — E)(E, — E)

The sum ), is over all n # 4, similarly for the other sum. Let’s also calculate the energy:

E = ($(0)[H[$(0)) = ($(0)|H® + H'|¢(0)) =
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(i°H %) (0] o 04 [y [n°) (n°|H[i% O|H1|Z>

To evaluate this, we use the fact that (i°| H°|i®) = EY and (i°| HO|n®) = E?6,,;:

(i°)H[n®) (n°| H'[i®)

E:E?+<iO|H1|iO>—Z o 4=
n#i n %
0[ f71|;0\ |2
0 4 0 0 | (n |H |3°) |
=B + (°|H'[i%) = > T + -
n#i

Where we have neglected the higher order terms, so we can identify the corrections to the energy E coming from the
particular orders of the perturbation theory:

EY = (°|HO|)

B} = (@°[H]i°)

K O\H Hi°) 2
Z EO
7.4.3 Scattering Theory
The incoming plane wave state is a solution of
Hy k) = Ej |k)
2
with Hy = 2. E.g.
(xlk) = e
27.2
B, = hok
2m

We want to solve:

(Ho + V) [¢) = Ex )

The solution of this is:

) = k) + =—=V ) = [k) + GV [¢)

By H

where

1

G:Ek—HO

is the Green function for the Schrodinger equation. G is not unique, it contains both outgoing and ingoing waves. As
shown below, one can distinguish between these two by adding a small ze into the denominator, that moves the poles
of the Green functions above and below the z-axis:

1

Gp=—————
+ Ekao*FZ'G

7.4. Quantum Mechanics 315



Theoretical Physics Reference, Release 0.5

1

G.= 57—
Ek—Ho—iG

Both G and G _ are well-defined and unique. One can calculate both Green functions explicitly:

1 N
Ek»—HO—FZf |I‘> N
A3k’ <I‘|k/> <k’|r’> B d3E’ 6ik’-(:z-fr’) B om A3k’ e’ik,‘(l‘fr,)
/ (27)3 By — B +ie /

Ga(r,r) = (Xl r') = (x]

Qr)p By — Ep +ic 12 ) @@ k2 — k% +ic

4 0 ik’ |r—r’| 4 ik|r—r’|
(27)3h%ir — v /oo k2 —k* +ie  (2m)3h%|r — /| 2k
metklr=r'|
= 2 1]
Similarly:

1 me—ik|r—r’|

G_(r,v)={r|G_|") = (r e L —

( ) < | | > < |Ek—H0—Z€ > 27rh2|r—r’|

Assuming |r'| < |r|, we can taylor expand |r — r'|:
r—r/|=e " V|| = (1 v V+(-r V)40 (r'3)> | = x| =1/ V|r| + O (+2) =
:r—r’-f'—i—O(r’z)
so:

i ! sl g /.5
ezk|r r'| etlwe ikr' -

r—1'| ~r
and simplify the result even further:

m eik'r‘ I
G rr) = L e

2rh* r
m e*ikr o
G_ (I‘, I‘/) — . ikr’-F

2Th* T

Let’s get back to the solution of the Schrodinger equation:

¥) = k) + GV [¢)

It contains the solution |¢) on both sides of the equation, so we express it explicitly:

V) = GV ) = |k)
1
) = [N k)
and multiply by V:
v
Viyp) = WM =T k)

where 7' is the transition matrix:

Vv

T—_ "
1-G.V

VA+ GV A+ (GLV)2+-) =
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1 1 1

=V+V—"——"--V4+V 14 14
+ E, — Hy + i€ + Ep — Hy+1ie FEy— Hy+ie +

Then the final solution is:
) = [K) + GV [§) = |k) + G4 T |k)

and in a coordinate representation:

() = (2w} = (el + (K1 TI) = (ol + [ (1]Gr ) (071K) =
= (ell)+ [ AR (1] ) () (] T1K) =

= e 4 / &' d* K Gy (r,r)e™ ™ (K| Tk)

Plugging the representation of the Green function for |r’| < |r| in:

¢(r) _ eik_r + 2:;2 etkr /d3rld3k/67ikr’.f'eik'-r' <k’|T|k> =
ey T e / APk e 0 R (| Tk =
er I - [ s~ k) (|71K) =
= % (kF(Tk) =
=T 4 £, ) ei:T

where the scattering amplitude f (0, ¢) is:

F(0.6) = 5 (KEITI) = oy (K| T(k)

Where k’ = kf is the final momentum.

The differential cross section 3—5 is defined as the probability to observe the scattered particle in a given state per solid
angle, e.g. the scattered flux per unit of solid angle per incident flux:

do_ ldn_ 2 dn _r?dn o2, .o
40 [j[de T 20 s et T
r? hk (1 ) 1

= — S5+ ) IfO.8)=(1+—)I[f0,0) 0,9)
i (2 ) 008 = (14 5 ) 170,00 10,9

where we used |j;| = 2 and

h h
Jor B =5 (WYY — VYY) E = o (waw - waw*) =
ma m r

ikr

:;m(me,qbf‘j’";(fw»@i )‘f(9’¢) ; &«(f*w"i’)e:kr)) -
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hk '
2 (5t ) 6007

m

Let’s write the explicit formula for the transition matrix:

(X'|T|k) :/d?’r (K|r) <r\V\k>+/d3rd3r' K'|r) (r|VG4|t)) (K |VIK) + - -

3 pilk—K)r 3 3./ —ik'-r etklr—r'|
= d°re V(r) + d’rd’r'e V(r)

Vir iker’ |
|r — 1’| (r)e +

Born Approximation
The Born approximation is just the first term:
K'|Tk) ~ /dgrei(k_kl)'rV(r) = /dr dOdg eSOV (r)r? sinf =
=d4r /OO rV(r)sin(gr) dr
0
We can also write it as:

K'|T|k) ~ / dPre” 9TV (r) = V(q)

where q = k’ — k. Note that for |k’| & |k| we can write |q| using the angle 0 between the vectors k” and k:

lal = K — k| = Vk?2 + k2 — 2k'kcos 0 ~ /K + k2 — 2k cos 0 =

= \/2k2(1 — cos ) = 1/ 4k? sin® g = 2k sin (g)

Given the V(q) we can then calculate the scattering potential V(r) by the Fourier transform:

3 ~ .

Example 1:
2
Yy _ g
@ lql? +m3
" Al —g? g% 1
1% _ iqr _ _Jd T —mgr
0= | et anr’
Example 2:
2
~ e
Vi) = —5
@)= fqp
d3q €% . e2
Vie)= [ —L % _giar — ... — =
= [ i nr
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Example 3 — Yukawa potential in Born approximation:

efar

V(T) = —VO r
- 47V
Viq)=——F—
m m - m  4rV 2m W
0,6) = —— KTk) = —V(Q)=—-—s—0 _=_"__70
1(0,9) 27rh2< |Tk) o2 (a) o7h? Ja]2 + a2 R2 |al2 + o2

do . [(2mVp)? 1 2mVp \ > 1
dQ = |f(97¢)‘ = 2 2 2 2 = 2 270 2
h (laf* + ) h (4k2sin? (%) + a2)

U:/d—ng:/d—asinﬁdeqﬁ:

dQ

2mVy \ 2 1 .
2
B <2mV0)2 o /’* sin 0df B
h? 0 (4k? sin? (g) + a2)2
(QmVo ) 2 9 /ﬂ sin 646
= _— T =
h? 0 (2k2(1 — cos ) + a?)?

<2mVO>2 /1 dy
= 3 27‘[‘ 3 =
h ~1 (2k2(1 +y) +a?)

B (vao>227r/4k2+a2 2k2dz B

2 2’2

Example 4 — Coulomb potential in Born approximation:

a—0
do <2mVO>2 1 3 (2mV0)2 1
dQ R (4k?2 sin? (%))2 4h%k2 )  sin* g
p2 h2k2
- 2m - 2m
do _ (T 1
a0~ \4E) sin'?
ZZ/ 2
Vo — 225 _ 77 ahe
47eg
do  (ZZ'ohc\® 1
dQ o 4F sin4g

By setting E = %mv% we obtain the classical Rutherford cross-section formula.

7.5 Systematic Perturbation Theory in QM

‘We have
H=Hy+e H,
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where the ground state of the noninteracting Hamiltonian Hy is:
H() ‘0> - E() ‘0>
and the ground state of the interacting Hamiltonian H is:
H|Q) = E[Q)
Then:
H Q) = (Ho+ Hy1) ) = E[Q)
(0[Ho + H:1|2) = E(0]2)
Ey (0|Q2) + (0|H1|Q) = E (0]2)
(01H1[$2)
E=Fy+-——F>—
(0€2)
We can also write

) = Jim U0, ~50)[0)
where

-
Ud(t,to) = T exp (—;/ dt'e=1 7, (t’))
to

Let’s write several common expressions for the ground state energy:

B Q) U0, o))
AE=E=E= 00 = 000, =)0
U —o0)0) (0BT —o0)0) i, (O[Tt —s0)|0)

50 (0|U(t, —00)|0) 50 (0]U(E, —o0)|0) 50 (0[U(t, —00)[0)

= }ir% i0¢log (0|U (t, —o0)|0) =  lim z% log (0|U (t, —00)|0)
—

t—oo(1—ie) d

The last expression incorporates the € dependence of U, explicitly. The vacuum amplitude is sometimes denoted by
R(t):

R(t) = (0|U (¢, —00)[0)
The two point (interacting) Green (or correlation) function is:

(01T ¢(x)(y)U (0, —00)|0)
(0]U (o0, —00)|0)

Gz, y) = (QUT¢(x)o(y)|2) =

The ¢ — 0 limit of U, is tacitly assumed to make this formula well defined (sometimes the other way ¢ — oo(1 — i¢)
of writing the same limit is used). Another way of writing the formula above for the Green function in QM is:

C CT o0, —0
Gk, ko, ta — 1) = i (T, (t2)cl, (11)]2) = 0T iﬁéi‘éﬁtiﬂiﬂ@ )10)

Last type of similar expressions to consider is the scattering amplitude:
(F1U (o0, —00)li)
where the initial state is let’s say a boson+fermion and the final state a boson+antifermion:
i) = aldy" 0)
|f) = abag! [0)

This is just an example, the |¢) and | f) states can contain any number of (arbitrary) particles.
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7.6 Appendix

7.6.1 Units and Dimensional Analysis

The evolution operator is dimensionless:

U(—00,00) = Texp <; /OO d%ﬁ(x))

— 00

So:
U:&M@ﬂ:W:MO

where M is an arbitrary mass scale. Length unit is M !, so then
[L(2)] = M*
For the particular forms of the Lagrangians above we get:
[mee] = [m*Z,Z"] = [m*H?] = [iey"0,e] = [L] = M*

so [ee] = M3, [Z,Z"] = [H?] = M? and we get

2,] = [2"] = [H] = [0,] = [0"] = M*

G
V32

[£] =[Gy

Example: what is the dimension of G, in £ = —Z£[th,, v (1 — 75)¢bu][ther* (1 — 75) ¢y, ]? Answer:

3
2

M* =[G, M3 M

(M)
Wl

M2M

Gul =M -
In order to get the above units from the SI units, one has to do the following identification:

kg — M*

7.6. Appendix
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The SI units of the above quantities are:

kg :M2

The SI units are useful for checking that the ¢, e and & constants are at correct places in the expression

7.6.2 Atomic Units

Hartree atomic units are defined using the relations:
h:m:€:47f60:1

so for example for the Bohr radius we get:

4egh?
ag = 3 =1
me
for fine structure constant (o = 1/137.036...) we get:
e? 1

o =
dreghe ¢

from which we calculate the speed of light ¢ in atomic units as:

Energy is measured in Hartrees, one Hartree being

h2
1Ha = —5 =1(au.) = 27.211eV
mag

Hamiltonian and the corresponding spectrum of the Hydrogen atom:
2

2
H:_FLV2_ L e
2m 4meg T
h? o1
Ep=——s=—s
maj 2n?
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become in atomic units:

1 1
H=-_-V*--
2 r
1
E,=—
2n?
Poisson equation (Gauss’s law)
p
v2 _
¢ o«
becomes:
V2 = —dmp

7.6.3 Tensors in Special Relativity and QFT

In general, the covariant and contravariant vectors and tensors work just like in special (and general) relativity. We use
the metric g, = diag(1,—1,—1, —1) (e.g. signature -2, but it’s possible to also use the metric with signature +2).
The four potential A* is given by:

Al = <¢,A) = (A%, A1, A%, AP)

c

where ¢ is the electrostatic potential. Whenever we write A, the components of it are given by the upper indices, e.g.
A = (A, A% A3). The components with lower indices can be calculated using the metric tensor, so it depends on the
signature convention:

A, = gAY = (A% —A) = (A", - A", — A% - 47)

In our case we got Ay = A” and A; = —A° (if we used the other signature convention, then the sign of Ay would
differ and A; would stay the same). The length (squared) of the vector is:

A= A = (A0 AP = (A7) - A
where A2 = |A|2 = (A1) + (A%)2 + (A43)2.

The position 4-vector is (in any metric):

Gradient is defined as (in any metric):

0 10 0 0 0
0, = (0o, 01,02,03) = = < v 9 >

ozt
the upper indices depend on the signature, e.g. for -2:

8/1.:(80 81 82 83):(16 0 0 a)

cot’ 9r’ 9y 0z
and +2:
190 o0 0 0
o (0] 1 2 3 — - = = =
6 (8787678) < cat7ax78y7az>
The d’ Alembert operator is:

0% = 0,0"
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the 4-velocity is (in any metric):
da*  dt dz*
= 3 = ’Y(cv V)

ot = =
dr dr dt
where T is the proper time, v = é‘—i = -1 —~and v = E is the velocity in the coordinate time ¢. In the metric with
1-=
signature +2:
2 2
2 22, 2.2 —C+V 2
V7 =v,0" = gt = St TV = ———— = —¢
e

2. The 4-momentum is (in any metric)

With signature -2 we get v° = ¢
' =mot = my(e,v)

where m is the rest mass. The fluid-density 4-current is (in any metric)
gt = pvt = py(e,v)

where p is the fluid density at rest. For example the vanishing 4-divergence (the continuity equation) is written as (in

any metric):
. 10 0 0 P pv
— w_— - . = — [ — | ==
0=0u5" =~ 5, (pe) + V- (pyv) = 5:(p) + V- (pvy) = 5 \/j +V —
02 02
Momentum (p = —thV) and energy (E = ih%) is combined into 4-momentum as

pt = (f;p) =ih (igt,—V) =1h (80,—(%') =ih (80,8j) = {ho"

DPp = Guvp” = thgu, 0" = iho,

For the signature 42 we get p* = —iho" and p, = —ih0,,.
For p? we get (signature -2):

E2
L:(p0)2_p2: (p0)2_p2: 072_ 2

Ho= mzvuv“ = m?2c?

p® = pupt
p* =pup

comparing those two we get the following useful relations (valid in any metric)

E2
cT_pzzmzCz
2 =m2t +pc

2 4
E= \/m204—|—p02—m0\/1—|— 1+- P2 _4o(2 =
2m2c? mict
p

_ 2, P
= mc +2m+0<m3c2

the following relations are also useful:
H = —h?0,0" = —h*0? = —h* (00" + 0;0") = —h* (30y — 0;0;) =
_ (L2 e\l P e
= h(628t2 Vo = 28t2+hv
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For the signature +2 we get:

p? = pupt = —h?9,0" = —h*9* = -1 (990° + 0;0") = —h* (—=000o + 0;0;) =

2L\ _ B8,
=h (‘czawv =z MV

So for example the Klein-Gordon equation:

2 92

can be for signature —2 written as:
(+h%0% + m*)y = (—=p* + m’)Y =0
and for -2 as:
(=h20? + m2c)p = (P + m2)p =0
Note: for the signature +2, we would get p* = —ihd* and p, = —ihd,,.

For the minimal coupling D,, = 9, + #eA,, we get:

DY =9 + %eAO

DJ =i 1 4j__l' ihoT — e AV __i — eA
+ he h(z eAr) h(p eA)
and for the lower indices:

DQ = 80 + EBAO
h
D;=0;+ 3‘eA' = fi(iha —eA;) = i(iﬁaj —eAl) = i(p—eA)
J J h J A J J A A

7.6.4 Adding Angular Momenta
Angular momenta are added using the Clebsch-Gordan coefficients (or equivalently 35 symbols):

iajsms) = Y (imajams|jsms) |j1majama) =

(7.5)
= Z (_1)J'1—jz>+m31 /253 + 1 (Tilll 7‘222 —iibg) |j1m1j2m2>
Spin Orbit Coupling (Spin Spherical Harmonics)
This is just a special case of (7.5) for:
=1
my =m
j2 =3
mo = 8§
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So the kets |j1m1j2m2) can be written as:
ljimajame) = |lmis) = Y, @

Where:

o
o,
w

3
<
Il
-
o
=
~
N}
+
3
w
[\
o,
w
]
—_
TN
®» N|=
| S
S @
N——
3
N
v
~
I

m=—1 __ 1
S=732
!
i l 1
(=172 /245 + 1 Z <<m 2 J;)lmé(—éﬁ—i—
2

l 3 J3 )
1 ( 11 o1
= (TR N TRy A T
2
(mg + % *% —ms l,m3+%

These are called spin-angular functions or spin spherical harmonics. Using the triangle selection rule of the 35 symbols,

we can see that there are only two options for js:

J3=1+
Ja=1-

N= D=
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So we get for js = [ + %:

J3
Y 1 1
—ms J3—35.m3—5

. J3 ) )
ms + 5 T3 —m3 Jjs—3.,m3+3

_1\jz+mz—1 Jjs+ms
1) V 273(243+1) YVB—%,WQ_%

(
—1)2d3(_1)ds—ma—1 M
(—1)%73(—1)I37ms— 2333{233+31)Y]3—%,m3+%

1
|(js — 3)5jsms) = (—1)* 7272

=
+
3
w
[\
o,
w
]
—
/\/\
S <
w
|
—
vl N —
SISl
Il

1 \/l+m3+%Y a1

2
V2I+1
+1 \/l ms + 5 Ylmg—&-*

The allowed values for mg are mg = —l — 3, —l+ 3, =+ 5 +1,...,1— 3,1+ 3, total of 20 + 2 values. For the case

==+ %), the spherical harmonic is not defined (m > [) but its coefficient (the square root /1 + mg + %) is zero,
so the whole element is defined as zero.

FOI‘ngZ—%:

1
3ty 5 I3
. 1N1 - j3+lfl+m3 - (mg —2% i —mg) Yja-‘r%ﬂ%-%
|(J3 + 5)gdsma) = (=1)°727277 /25 + 1 g+ 1 7 i =
2 2
(mg + l —% —ms j3+%7m3+%

(_1)2j3+1(_1)j37m3 Jjz—ma+1 Y 1
I TG st |
o J3 (—1)dstms Jatmstl _y B
(273+1)(273+2) 33+2,m3+2

—1)4is+1 /js—_m3+1Y

(=1) 2js+2 j3+%,m3—% _

[iztmstlys
2j3+2 j3+%177l3+%

1 —VJjz3—m3+1 Y+ 1
= 2MsTy |
V2j3 +2 \/=73-i-m3+1YJr
2m3+2

1 Vl_m3+ }/l-mg—%

S VRH T \/Z+m3+ Y,

%+2

The allowed values for mg3 are mg = —[ + %7 -1+ % +1,...,0 — % total of 2! values (in particular, the values
mg = +(l + 3) are not allowed).

The last formula is the spin spherical harmonics given in terms of [, m3, the second last formula is in terms of js, ms3

(both are used). The spin spherical harmonics is usually denoted by x}** or y] 33 See the next section for the
definition of .
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Kappa

In order to define the state, one needs to specify both js and [ (distinguishng the two cases j3 = [ & %). This can be
unified into just one integer x, where —hx is defined as the eigenvalue of the operator:

2 1
K:a-L—&—h:(hQSL—i—l)h:(FLQ(JZ—LQ—Sz)—i-l)h

Then:

K¢(TL12(J2L252)+1)5¢
=(js(s+1) = U1 +1) —s(s+ 1)+ 1) hep =

= (jg(jg +1)—I1(1+1)+ i) hp =

from which

= —xhy

iy 1
/€=—]3(j3+1)+l(l+1)—1=

_ (]3+1)+(]3*l)(‘73*l+1) L forj3:l+%:
J(]3+1+J3+ Ds+3+1)—3; forjs=1-1

L

The opposite relation is:

l:{—/{—l;
K

Code:

>>> from sympy import var, S
>>> var("j l")
(3, 1

>>> k = g% (+1) + 1x(1+1) - S(1)/4

>>> k.subs (1, j-S(1)/2).expand()
-j - 1/2
>>> k.subs (1, Jj+S(1)/2).expand()
j o+ 1/2

1 1

(s+3); forjs=1+1
+(js+3); forjs=1—1%

{—l—l; for js =1+ 3

l;

fOI'jg:l—%

for k < 0, equivalently j3 = [ +

NN

for k > 0, equivalently j3 = [ —

Some useful relations with « that follow from the above for both cases j3 = [ + %:

I0+1) = k(k+1)

328
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In order to enumerate all possibilities, one needs to count all integers except zero: K =

k | j3 js3—1 degeneracy label
-1 0 05 0.5 2 5172
1 1 05 -05 2 P12
2 2 15 =05 4 ds /2
-3 2 25 0.5 6 ds /2
3 3 25 -05 6 Is5/2
-4 3 35 0.5 8 f7)2
4 4 35 —0.5 8 g7/2
5 5 45 -0.5 10 hg /2
—6 5 5.5 0.5 12 hi1/2
6 6 55 —0.5 12 i11/2

~1,1,-2,2,-3,3,...:

The degeneracy of the individual states for each  is equal to 2j3 + 1 = 2|x| (which is equal to 21 + 2 for j5 = | + %
and 2[ for j3 = [ — % see the previous section), that is 2, 4, 6, 8 for j3 = 0.5,1.5,2.5,3.5 (or equivalently x =
+1, +2, +3, +4) respectively. All states together with the given [ have total degeneracy 21 4+ 2 + 21 = 2(2 + 1), that

is 2, 6, 10, 14 for [ = 0, 1, 2, 3 respectively.

The states are labeled by a letter corresponding tol = 0,1,2,3,... (s,p,d, f, g, h,1,j,k, 1, m,n,0,q,1,t,u, v, W, X,
v,z,a,b,c,e, EG H LI, K,L, M,N,O,P,Q,R,S, T, U, VW, X, Y, Z, A, B, C, D, E) with a subscript equal to the

total angular momentum j3 = n/2 withn =1,3,5,7,....

7.7 Examples

7.7.1 Two Particles in Harmonic Potential

It is a 1D, two-body problem with an interacting Hamiltonian

L 0% 02 1

2022 20x3

Hie,z2) = R

and it can be solved analytically. The Schrodinger equation is

19
2922

we use the substitution:

| 0 1

5(97.%'% |z — 29|

1 1
+ 3w r] + 5w

21,3

+ tw2? + %w%%) U(x1,x0) = EV (21, 22)

1
u= ﬁ(ml — I9)
1
v = ﬁ(azl + z2)
then
02 0? 0? 0?
02 o2 "o "o
|21 — x2| = V2|ul
x% + :c% =u? + v?
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and

—la—Q - la—z + L + 2w?u? + 1w?? | U(u,v) = BV (u,v)
2 Hu2 2 92 \/i‘u| 2 2 ’ ’

Note also the symmetry of the Hamiltonian H(x1, x2) = H(x2, 1) which after substitution is equivalent to H (u, v) =
H(—u,v). Now we can separate the equation:

U(u,v) = f(u)g(v)
( 1 d + L + §w2u2> Ji(u) = €x fr(u)

w2
(< + 1) o) = ()
2392 ' 2 i 1gqi\v
By =er + ¢
the solution of the second equation is:
1
o= A (2)}

g=w(l+13) forl=0,1,2,...
where H,, (z) are the Hermite polynomials:

2 d” 2
Hn — _1 n_x —X
() = (1)’ e

The solution to the first equation can be approximated around the minimum of the potential, which occurs at point
u = ug (since the potential is symmetric with respect to u, we only treat the branch v > 0):

Viu) = —=— + s’ = (2_% + 2_%) wi + ng(u —0)> + O ((u—1up)?)

w

ol
@l

Uy =27

So the first few states can be approximated by the harmonic oscillator solution with frequency v/3w:

1 \/gw
fe(u) = \/ﬁ (

€ = (2_% +2_%>w% +\/§w(k+%) fork =0,1,2,...

™

1
1 VBw(u—ug)?
) e T Hy (34 Vio(u — wo))

The final solution is then:

Wi (u,v) = fe(u)gi(v) =

1 \/gw N _ VBw(u—ug)? 1 1 w % _ we?
= \/ﬁ (ﬂ_) e 2 Hk(34\/a(u - UO))\/W (;) e 2 Hl(\/(;’l))

Ey=e+e= (27% + 27%) w8 +V3w(lk+ 1) +w( + 1)

7.7.2 Quantum Harmonic Oscillator

The quantum harmonic oscillator for one particle in 1D is:

K2 92

- 2m 9z

L0
Zhaw%t) = U(w,t) + V(z)(z, 1)

330 Chapter 7. Quantum Field Theory and Quantum Mechanics



Theoretical Physics Reference, Release 0.5

V(z) = imwsz
This is a partial differential equation for the time evolution of the wave function ¥ (x, t), but one method to solve it is

the eigenvalues expansion:
t) = ZcEz/JE(x)e_fEt
E

where the sum goes over the whole spectrum (for continuous spectrum the sum turns into an integral), the cg coeffi-
cients are determined from the initial condition and ¢ () satisfies the one dimensional one particle time independent
Schrodinger equation:

h d?
 2mda?
and this is just an ODE and thus can be solved with Hermes1D. There can be many types of boundary conditions

for this equation, depending on the physical problem, but in our case we simply have lim,_,+ ¥g(z) = 0 and the
normalization condition [ [¢p(z)[*dz = 1.

Vu(z) + V(z)e(r) = Edp(z)

We can set m = i = 1 and from now on we’ll just write ¢)(x) instead of ¢ (x):

la
2 dz?

and we will solve it on the interval (a, b) with the boundary condition )(a) = 1 (b) = 0. The weak formulation is

/ji%ﬁ?‘ﬁfUVQ)w(x)v(x)dx {dwd; x} iE/ "

but due to the boundary condition v(a) = v(b) = 0 so [¢/(x)v(z)]; = 0 and we get

b b
/ LD D |y iyt de = B [ v

P(z) + V(z)y(z) = Ey(x)

And the finite element formulation is then ¢(z) = >, y;¢;(z) and v = ¢;():

(/ Lo (@) (@) + V(@) di(a )asj()dw)yj—E/ 61(2) 5 () dz

which is a generalized eigenvalue problem:
Aijyj = EBijy;

with

"1y
Ay = [ 5@ @) + Vi) (a)o,a) da

b
B, = / 64(2) 0, (x) da

7.7.3 Radial Schrodinger Equation

Another important example is the three dimensional one particle time independent Schrodinger equation for a spheri-
cally symmetric potential:

VR0 + V() = Bi(x)
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The way to solve it is to separate the equation into radial and angular parts by writing the Laplace operator in spherical
coordinates as:

vyl O 20
op*  pdp*  p?

062 sin20 042  tanf 00
Substituting 1 (x) = R(p)Y (0, ¢) into the Schrodinger equation yields:

1
—§V2(RY) +VRY = ERY

L?RY

57 +VEY = ERY

1 1
——R'"Y - =R'Y +
2 p

Using the fact that L?Y = [(l + 1)Y we can cancel Y and we get the radial Schrodinger equation:

1 1 (l+1
gy A JWHDR yp pp
2 p 2p?

The solution is then:

960 = 3 cum o r)Yim ()
nlm

where R,,;(r) satisfies the radial Schrodinger equation (from now on we just write R(r)):

Loy L I(1+1)
_iR (r)— ;R M+ (V+ 5,2 R(r) = ER(r)
Again there are many types of boundary conditions, but the most common case is lim, o, R() = 0 and R(0) = 1 or
R(0) = 0. One solves this equation on the interval (0, a) for large enough a.

The procedure is similar to the previous example, only we need to remember that we always have to use covariant
integration (in the previous example the covariant integration was the same as the coordinate integration), in this case
r2 sin drdfde, so the weak formulation is:

/ (;R”(r) - %R’(r) + (V s 1)) R(r)) o(r)r? sin drdfd —

2r2

_ / ER(r)u(r)r? sin 0drddds

Integrating over the angles gives 47 which we cancel out at both sides and we get:

/Oa <_;R”(r) _ %R’(T) N <V Ll 1)> R(T)) o

2r2

_B /0 " R)o(r)r2dr

We apply per partes to the first two terms on the left hand side:

[ (3770~ 2r)vowar = [ =5 62R6) vonar =

r
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= [ =5 CROY v = [ SRR 00 SR 00l -

/ —R/(r)v' (r)ridr — a2R’(a)v(a)

We used the fact that lim,. o 72 R’(r) = 0. If we also prescribe the boundary condition R'(a) = 0, then the boundary
term vanishes completely. The weak formulation is then:

/011 %R/(r)v’(r)r2 + <V + l(l2:21)> R(r)v(r)r?dr = E/ R(r)v(r)r®dr

11 + Do

or

/ LR ()2 + V) R + Y Ry dr—E/ P2 dr

Another approach

Another (equivalent) approach is to write a weak formulation for the 3D problem in cartesian coordinates:

/ ST Vo(x) + V(r)(x) a:—E/w

and only then transform to spherical coordinates:

/02” de /07r de /Oa dr <;V1/)(X)VU(X) + V(r)qp(x)v(x)) 2sind —

2
—E/ dgp/ d9/ drp x)r? sin 0

The 3d eigenvectors ¢ (x) however are not spherically symmetric. Nevertheless we can still proceed by choosing our
basis as

vilm( ) ¢1l( )mm( )

and seek our solution as

X) = Yjim®i1(r)Yim (0, ©)

jlm

Using the properties of spherical harmonics and the gradient:

/Ylel/m/ sin 0 d6 dy = 611 Ommy

/ 2V Y1 VY sin 0 d dg = 1(1 4 1)81p: Sy

afA 10f » 1 Of »
Vi= or Jr;%éwrrsin987¢q5

the weak formulation becomes:

(/ SR IG(r) + X +

0

11 ; 1)¢m(r)¢jz(r) + 72V (1) it (r)dju (1) dr) Yjtm =
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— E/Oa r2¢>il(r)¢jl(r) dr Yjim
where both [ and m indices are given by the indices of the particular base function v;;,,,. The X term is (schematically):
X = [125i000)Yi0n (6, )(607 6,1 + Téuds0) Vi
There is an interesting identity:
/rf'YlmVYl/m/ sinfdfdy =0

But it cannot be applied, because we have one more r in the expression. Nevertheless the term is probably zero, as can
be seen when we compare the weak formulation to the one we got directly from the radial equation.

How Not To Derive The Weak Formulation

If we forgot that we have to integrate covariantly, this section is devoted to what happens if we integrate using the
coordinate integration. We would get:

/ —R'(z)v'(z) — fR’( Jo(z) + (V + 1(12—:21)> R(z)v(x)dz = E/Oa R(z)v(x)dz

Notice the matrix on the left hand side is not symmetric. There is another way of writing the weak formulation by
applying per-partes to the R'(r)v(r) term:

- /Oa %R/(x)v(:c)d:c =

= Oa %R(m)v’(az)dx - /Oa %R(w)v(m)dx - [iR'(m)v’(m)} ’ + [1R/(x)v(x)}
We can use v(a) = 0 and R'(a) = 0 to simplify a bit:
- /Oa 1R’(:c)v(:z:)d:z: =

r

= /Oa }R(x)v’(sc)dx — /Oa T%R(:c)v(x)dw + lim (R’(m)v’(x) — R’(x);)(x))

r r—0 r T

Since R(z) ~ r! near 7 = 0, we can see that for [ > 3 the limits on the right hand side are zero, but for [ = 0,1, 2
they are not zero and need to be taken into account. Let’s assume [ > 3 for now, then our weak formulation looks like:

/ SR @) + R ()+(v+l(l2j21)—>3( dx—E/R

/ —R'(z)v'(z) + R() ()+(V+(l 2)(j+1)>R( dx—E/R

The left hand side is also not symmetric, however we can now take an average of our both weak formulations to get a
symmetric weak formulation:

/Oa %R'(x)v'(x) + R(w)v’(m)Q—TR’(;U)v(gc) + (V PG —;ig — 1) R(z)v(z)dr =
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= E/Oa R(z)v(x)dx

Keep in mind, that this symmetric version is only correct for [ > 3. For | < 3 we need to use our first nonsymmetric
version.

As you can see, this is something very different to what we got in the previous section. First there were lots of technical
difficulties and second the final result is wrong, since it doesn’t correspond to the 3D Schrédinger equation.

Scattering in radial potential

If V = 0, the radial equation is:

1 1 (l+1
B~ R )+ Y R = BRe(r)

The general solution is a linear combination of the spherical Bessel functions j; (kr) and n;(kr):
REpi(r) = Ayji(kr) + Bing(kr)

where £ = v2F and E > 0 is a continuous spectrum. The asymptotic expansion for » — oo is:

so we get for large r:

REl(T‘) = Aljl(kﬂ“) + Bml(k:r) —
1 . %8 1 %
— Alﬁsm (kr— 2) +Blﬂ cos (kr— 2> =
—\/A2+BQL' k—l—w—kt 2(By, Ay) —Ci' k—lj—ké
= i lkrsm r 5 atan2(B;, 4;) | = lkrsm r 5 !

where

o = atan2(Bl,Al) (7.6)

) = \/Al2+Bl2

The C; and §; are physical variables, so we express A; and B; using them:

Al = Cl COS (Sl (77)
Bl = Cl sin (5[
and write the exact solution Rp; as:
Rgi(r) = Cy(cos oy ji(kr) + sin §; ny(kr)) (7.8)
eik‘T

We can then compare this to ¢ =~ e'** + f(6, ¢)

, by expanding e?%* = k7 cos0 = N™(2] 4 1)ilj; (kr) Py(cos 0):

eile
k
[(0,¢) = ﬁ Z(zl + 1)(e*® — 1) Py(cos )

C =
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Since o (#) = |f(0)|? and integrating over w we get the total cross section:

4m .
o=— Z(Ql + 1)sin? 5

In order to find the phase shifts d;, we solve the radial equation for the full potential

Lo

3R = TR+ (v (R

2r2

> Ryi(r) = ERu(r)

and then fit it to the above asymptotic solution for V=0. We require that the value and the slope must be continuous,
so we use (7.8) and R,,; must satisfy the following two equations (for the value and the derivative) at the point r = a:

Rpi(a) = Aji(ka) + Bny(ka)) = Cy(cos d; ji(ka) + sind; ny(ka)) (7.9)
R'y,(a) = kAj|(ka) + kBnj(ka)) = Cik(cos §; jj(ka) + sin &, nj(ka))

This is a set of two equations for two unknowns C; and ;. The solution is:

D = k(ji(ka)nj(ka) — ji(ka)n(ka)) (7.10)
A Rpi(a)knj(ka) — Ry (a)n(ka)
D
g — _ Be@)kj(ka) — R (a)ji(ka)
D

And one can calculate C; and ¢; from (7.6). Code:

>>> from sympy import var, solve

>>> var("R Rp j jp n np A B k")

(R, Rp, J, Jjp, n, np, A, B, k)

>>> eql = R - Axj — Bxn

>>> eqg2 = Rp — k*Axjp — k*Bxnp

>>> solve([egl, eqg2], [A, B])

{A: (Rxkxnp — Rp*n)/(k*(Jxnp - Jpxn)), B: (-RxJjpxk + RpxJ)/(k*(Jxnp - Jpxn))}

Another approach to calculate ¢ is to take the logarithmic derivative ((log |u|)’ = %) at the point r = a:

d R (a)  Cik(cosd; jj(ka) + sind; nj(ka))
=4 _ fgla) _ ! 1 _
=8 Rl o REia) Ci(cos d; ji(ka) + sin §; ny(ka))
-/ i
_ i (ka) + tand; nj(ka) (7.11)
Ji(ka) + tan &, ny(ka)
and solving for §; we get:
tan 8 — kjj(ka) —ygi(ka)  —kjiri(ka) + kl% —njka)
1=- =— ) =
knj(ka) —yimi(ka) — —knyyq (ka) + kIS gy (ka)

kajiy1(ka) — U (ka) + aji(ka)y

- 7.12
kaniy1(ka) — Iny(ka) + ani(ka)y (7.12)

where we used the following relations:

() = () + 122

ny(2)

ny(2) = —nig1(z) +1
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The disadvantage of (7.12) is that we only know tan §;, while in (7.10) we know ¢; directly using the atan2 function.

Now we can use these J; in the formula for the total cross section. We can define a reduced phase-shift 7; by
h=Mm—-1—1m+mn
where n — [ — 1 is the number of radial nodes and 0 < n; < 7.

The problem can now be formulated in two ways. Either to solve the radial equation for a potential with finite reach and
then “measure” those phase shifts in the solution. Or by prescribing those phase shifts and we now need to calculate
the solutions (e.g. the energies) from the radial equation.

7.8 Radial Schroédinger and Dirac Equations

7.8.1 Variational Formulation of the Schrédinger equation

Lagrangian is:

L(y) = 5(V)* + V(2)y*(2)

Subject to the normalization constrain:
Nl = [ [o@)Pds - 1=0
The action is:
S[p] = / L3
Variating it (subject to the normalization condition) we get:
0= 5(S — eN) = 5/ L(T4) + V(@) (@) d — ¢ (/ (@) 2dPe — 1> -
= / (Vah) - (V) + 2Vpdrp — 2epdapd®x
= 2/ (=3V% + Vi — e) Sypd’z + /(n V) d*x

Which gives the Schrodinger equation assuming the surface integral vanishes.

Note: to apply the variation § correctly, one uses the definition:

SFI] = P+ i)

e=0

Weak Formulation

The weak formulation is obtained from the above by substituting 51 — v (the test function) so we get:

/%(V'L/)) (Vo) + Voo — epv d3x

7.8.2 Radial Schrodinger equation

There are two ways to obtain the radial Schrodinger equation. Either from the Lagrangian, or from the equation itself.
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From the Equation

VR0 + V() = Bi(x)

The way to solve it is to separate the equation into radial and angular parts by writing the Laplace operator in spherical
coordinates as:
0? 20 L?
vy P20 L
9p>  pdp p

0602 sin?0 092  tan® 00
Substituting 1»(x) = R(p)Y (0, ¢) into the Schrodinger equation yields:

1
—§V2(RY) +VRY = ERY

L?RY

2p2

+VRY = ERY

1 1
——R"Y — =R'Y +

2 p
Using the fact that L?Y = [(l + 1)Y we can cancel Y and we get the radial Schrodinger equation:
1 1 I+ 1R

7RH_7R/+

VR=ER
2 p 2p2 +

Normalization:

1 :/|w|2d3x:/R2|Y|2d3x:/RZ\Y|2p2dep:/R2p2dp/|Y|2dQ:/R2p2dp

From the Lagrangian

We need to convert the Lagrangian to spherical coordinates. In order to easily make sure we do things covariantly, we
start from the action (which is a scalar):

St = [ 4V + V(@) da =
— [GE @2+ v(RY ) -
- /(%(R’2Y2 + RY(VY)? 4+ 2RR/(pY) - VY) + V(RY)?)p*dpdQ =
— / (; (R’2 + 321(1:21)) - VB?) p’dp =
— [50PR PV - d )R dp =
where we used the following properties of spherical harmonics:

/YQszl

/pQ(VY)2dQ =1(+1)
(Yp)- (pVY) =0
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We now minimize the action (subject to the normalization [ p? R?dp = 1) to obtain the radial equation:

0=206(S—eN)= 5/5;)23'2 + PV + 311+ 1)R* — ep*R?*dp =

=2 / 1p*R/(6R) + (p*V + 31(1+ 1))R6R — ep’ R6Rdp =

= 2/ ((=3p°R"Y + (p°V + 311+ 1))R — €pR) 6Rdp + [p*R'6R];

So the radial equation is:
(=3p’R) + (p*V + 311+ 1))R = p°R (7.13)

In agreement with the previous result.
Solving for u=rR

We can also make the substitution © = r R and solve for u:

and we substitute this to (7.13):

12 /
1 o (v wu (l+1) B
-5 (7‘ <7°_7"2>) + |V + o2 TU = €Ty

11+ 1)
—%ru” + (V + 5.3 ) ru = eru

(l+1
—éu"—i—(V—&— (+ )>u:eu

Perturbative Correction to Energy
We introduce P and @ by P(r) = u(r) and Q(r) = P’'(r) = «'(r). The radial Schrodinger equation is then:
P'(r) = Q(r)
1
@ =-2(5-vi- ) poy

2r2

Let P; and @), represent the radial wave function and its derivative at F; and P», (5 at Fs, so the following holds:

@i =-2(B v - G5 ) non

Q) =2 (2= Vi) - (G52 ) P

Now we evaluate (Q2P; — P>@Q1)’ using the relations above:
(Q2P1 — P2Q1) = Q4P + Q2P — PyQ1 — P,Q) = Q5P + Q2Q — Q5Q1 — PoQ) = Q4P — P,Q) = 2(Ey — Eo) PPy

We integrate the last formula on the intervals (0, a.) and (a., 00):

Gc

(QoP1 — PyQuI2 = 2(E, — Ey) / Py(r)Pa(r) dr

0

@:Pr - PQUE = 2B - B) [ T PP dr

c
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On the interval (0, a.) we know the exact solution corresponding to the energies £ and Fs by integrating outwards
(the solution will eventually diverge for large r except for the eigenvalues, but we only need it up to a.) and we know
that P;(0) = P(0) = 0, so we get:

Ac
Qu(o:)Pr(a;) — Pola; )Qa(a;) = 2By~ B) [ A Palr) dr
0
where a_ means that we need the values at a. when integrating the equation from the left (the value will generally

be different when integrating the equation from the right, unless the energy is an eigenvalue). Similarly on the other
interval where P;(00) = Py(00) = 0:

~(Qula)Pr(ad) — Paa)Qi(a)) = 2B~ ) [ AO)Pa(r)
Taking the sum of the last two expressions:
2(Ey — Ey) /000 Pi(r)Pa(r) dr = Q2(a; ) Pi(a, ) — Pala; )Qi(a;) — (Q2(al ) Pr(al) — Paal)Qi(al))

Now we use the fact that Pj(a; ) = Pi(a}) and Py(a; ) = Ps(al), because we match the two solutions from the left
and right, so that the function is continuous (it’s derivative will have a jump though):

2(8: - ) | " P Py(r) dr = Py (a)(Qa(a7) — Qa(a?)) — Palac)(Qu(a7) — Qu(ad))

By requiring, that the energy E» is an eigenvalue, it follows that there is no jump in the derivative, so we set Q2(a; ) =
Q2(a}) and we get:

2B~ E2) [ Pi)Pa(r)dr = ~Pafa)(@a(a;) - Qu(a))
0
that gives us an exact formula for the eigenvalue Fs:

Py(ac)(Qi(ag) — Qi(al))
2 [° Py(r)Pa(r) dr

Ey =FE +

We approximate the value of P;(a.) by Py(ac) as well as the integral [ Py(r)Py(r) dr by [;° PZ(r) dr and we get
an approximation for the eigenenergy:

Pi(ac)(Qi(a;) — Qi(al))
2 fooo P2(r)dr

EQ%El—F

We use this approximation iteratively until the convergence is achieved (the discontinuity in Q(r) at r = a, is small
enough, or equivalently, the correction to the energy is small enough).

For Dirac equation, one obtains a similar formula:
Pi(ac)(Qi(a;) — Qi(a}))
fooo P12(7") + Q%(T) dr

So it is just the previous formula multiplied by 2¢ and the normalization is calculated using both P and () (as usual
for the Dirac equation).

EQ%El—FC

Weak Formulation

The weak formulation is obtained from the action above by substituting 6 R — v (the test function) so we get:

/%sz’v' + (pP°V + 21+ 1))Rvdp = e/pQRv dp
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We can also start from the equation itself, multiply by a test function v:
(—3p°R) v+ (p°V + 21(1 + 1)) Rv = ep* Ro

We integrate it. Normally we need to be using p?dp in order to integrate covariantly, but the above equation was
already multiplied by p? (i.e. strictly speaking, it is not coordinate independent anymore), so we only integrate by dp:

—1p0?RY v+ (p*V + L1+ 1)Rvdp =€ | p?Rudp
2 2
After integration by parts:
/%pQR’v' + (pP°V + L1+ 1))Rudp — S[p*R/v]§ = e/p2Rvdp
Where a is the end of the domain (the origin is at 0). The boundary term is zero at the origin, so we get:
/%pgR’v' + (p°V + 21+ 1))Rvdp + $p* R/ (a)v(a) = e/p2RUdp

We usually want to have the boundary term 3 p*R’(a)v(a) equal to zero. This is equivalent to either letting R/ (a) = 0
(we prescribe the zero derivative of the radial wave function at a) or we set v(a) = 0 (which corresponds to zero
Dirichlet condition for R, i.e. setting R(a) = 0).

Weak Formulation for u

1
/%u’v’ + (V + l(;—; )) uwwdp — % [u’v]OR = e/uv dp

We prescribe u(0) = u(R) = 0, so we get:

I(l+1
/%ul’ul+ <V+ ( +2 )>uvdpe/uvdp
2p

Dirac Notation

We can also write all the formulas using the Dirac notation:

1= /dpp2 o) (p]

n = de=r)
{plp') = e
(p|R) = R(p)
iR = 2Ry + v + 3R
H|R) = E|R)

Then normalization is:

(RIR) = / dpp? (Rlp) (o] R) = / dpp R (p)
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The operator H can be written as:
~ 1 d d (1+1)
iy = ’ 1 - % 2 - 1
{p|H|p") <p|p>( 27 (,0 dp) +(V+3 ))

so to recover the above formula, we do:

AIR) = [ o (110 (01) =

= [t 22 (4 () + 4 31D RO = SRy v 3

/f 9" pPdp = /plj(ff/)’gfdp

(o|H|R) = E (u[R)
/ dpp? (v]p) (p|H|R) = E / dpg? (v]p) (pIR)

Jamoo) (3Ry 4 v 31 R) < 8 [anelomio

Operator H is symmetric, because:

The weak formulation is:

and we obtain the FE formulation by expanding [R) = >, R;|j) (note that the basis [j) is not orthogonal, so in
particular . |j) (j| # 1)

J

> lH|) Ry = EY (ili) R

This is a generalized eigenvalue problem. In the special case of an orthonormal basis, (i|j) = d;; (which FE is not),

we get:
> (ilH|j)R; =R,
J
R; = (i|R)

Which is an eigenvalue problem.

7.8.3 Variational Formulation of the Dirac equation

The QED Lagrangian density is

1
= Y (ihey" D, — me? ) — ZFM,,F’“’
where:

D,=0,+ %eAN

F,, =0,A, —-0,A,

We will treat the fields as classical fields, so we get the classical wave Dirac equation, after plugging this Lagrangian
into the Euler-Lagrange equation of motion:

(ihey" D, — mc®)y = 0
-
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Notice that the Lagrangian happens to be zero for the solution of Dirac equation (e.g. the extremum of the action).
This has nothing to do with the variational principle itself, it’s just a coincindence.

In this section we are only interested in the Dirac equation, so we write the Lagrangian as:

L= @(iﬁcv"Du - mc2)1/1 =
= 1/1Tfyo(ih¢:’y“Du — ch)w =

= 170 (ihey® (0o + %er) +icy' (0; + %eAi) —me?)p =
= T (ihedy + ihey?y'0; — Y0mc® — ceAg — cen Py A =
= wT(ih% + calp; — fmc® — ceAy — cea’ A)p =
= —wT(—ih% + ca(—p; + eA;) + Bmc® + ceAg)p =
= —1/1*(—1'73% +ca-(p—eA)+ Bmc + V)i

where we introduced the potential by V' = ceAy. We also could have done the same manipulation to the dirac equation
itself and we would get the same expression:

(—ih% +ca- (p—eA)+ pmc* + V) =0

The corresponding eigenvalue problem is:

(co- (p—eA) + Bmc + V) = Wep

7.8.4 Radial Dirac equation

As for the Schrodinger equation, there are two ways to obtain the radial Dirac equation. Either from the Lagrangian,
or from the equation itself.

From the Equation

The manipulations are well known, one starts by writing the Dirac spinors using the spin angular functions and radial

components P and Q:
P s
X«
’(/} = . /4 .
i2x”,

ol = (xS )

and putting this into the Dirac equation one obtains:

(fhc (g - ,ﬁ) Q+ (V+me?— W)P) 0 b\,
0 (ne (& + %) P+ (V= me = w)Q) i,
So one obtains the following radial equations:
d & 5
—he|l ———-)1Q+(V+mec—W)P=0
dp p

hc<d+”>P+(V—mc2—W)Q:0
dp p
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From the Lagrangian

We can reuse the calculations from the previous sections, because the Lagrangian happens to be zero for the solution
of the Dirac equation:

L = (ihey" D, — mc®)yp =

= —M(—ih% +ca-(p—eA)+ Bmc® + V) =

_ d _ k 2 1 s

(e e (O "

B : (e +2) e v -men) ) \ i

1 d 1 d o

=P <—7'w ( - H) Q+(V+ ch)P) XExE + 5Q (hc ( + ’“) P+ (V- mc2)Q) XX

p dpp p dp ~p

‘We can now write the action:
S = /Lp2 dpdQ

the spin angular functions integrate to 1:
/ XEXEAQ =1
[oan =1

the p? cancels out and we get:

K

S[P,Q] = /P (—hc (d - ) Q+ (V+m02)P) +Q (hc <d + K) P+ (V- ch)Q> dp =
dp p dp p
2
- / “he(PQ' — QP') + hcfPQ FV(P? 4+ Q%) +mc(P? — Q*)dp
the normalization condition is:
N:/P2+Q2dp—1:O
and we can variate the action, we also shift the energy W = ¢ + mc?:
0=0(S—WN) =65 —eN—mc®N)

which effectively adds —mc?(P? + Q?) into the Lagrangian, which changes the term mc?(P? — Q?) into —2mc?Q?.
We can now variate the (constrained) action:

0=90 / —he(PQ' — QP') + hc%‘PQ +V(P* + Q% — 2mc*Q?*dp =
=2 / (—hc((éP)Q’ —P5Q) + hc%((&P)Q + PSQ)) + (PSP + QOQ)V — 2mcQQ — (PSP + Q(SQ)) dp
+[P6Q — Q5P =
-9 / 5P (-th’ + hc%Q L PV - 6P> +6Q (th’ + hc%P L QV - 2mc*Q — eQ) dp + [P6Q — Q5P| =
which gives the two radial equations:
—heQ' + hc%Q L PV =¢P

heP' + he2P 4+ QV — 2mc®Q = €Q
P
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Weak Formulation

The weak formulation can be obtained by substituting P — v; and 6¢) — v5 into the action above (and separating
the integrals) and omitting the the boundary term:

/—ﬁcQ’vl + ﬁcEQvl + PVuidp = E/Pvldp
P
/hCP/UQ + hCEP’UQ + QVvy — 2mc?Quadp = G/Q’I)de
p

We can also start from the radial equations themselves to get the same result. If we start from the equations themselves
(which is the most elementary approach), there are no boundary terms (because we didn’t integrate by parts). We can
separate the integrals according to the matrix elements that they contribute to:

/PVvlder/fth’m + FLCEQ’Uldp = e/Pvldp
P
/th v + hel Pvg + /(V —2mc?)Quadp = e/Qvgdp

To show that this problem generates a symmetric matrix, it is helpful to write the radial equations in the following
form:

H|P,Q) =¢€|P,Q)

where:

. N N i
the operator H is Hermitean (H t = H), because (—ip) =4d.

[ [ (-4

and all the other quantities are just scalars.

Stricly speaking, the exact Dirac notation (that is coordinate/representation independent) would be the following (no-
tice the missing p? in the completeness relation, which is different to the radial Schrodinger equation):

HI|P,Q) =¢|P,Q)

11—/dp\p (ol

(plp") = d(p— ")
[t} (01P.@yas = e (oiP.@)

wr=( o)
Vip) hc( dp—|—5)

(plH|p") =6d(p—p') b <%+> V(o) — 2me

ﬁ
D=

7.8. Radial Schrédinger and Dirac Equations 345



Theoretical Physics Reference, Release 0.5

The normalization is:
(P.QIP.Q) = [ dp(P.QIp) (oIP.Q) = [ dp(P*+ Q%) =1

The weak formulation is:

(W|H|P,Q) = ¢ (v|P,Q)

where the test function |v) is one of:

[v1)

v) =

_ o O =

|v2)

The FE formulation is then obtained by expanding |P, Q) = >, qx |k):

SO A g =Y (kD @

l l

The basis |k) can be for example the FE basis, some spline basis set, or gaussians. The basis has actually 2n base
functions and it enumerates each equation like this:

|4) fori=k<n
k) =
fori =k >=n

@)

= O O =

So at the end of the day, the (k|H|l) matrix looks like this:

. GVl hell— &+ 20
%Wm_<mm$+w>@vwf%ﬁm>

The matrix is 2n x 2n, composed of those 4 matrices n x n. The (k|l) matrix looks like this:

. 0
(k1) = ( wla () )
We can also write the matrix elements explicitly. Let |i) = B;(p), then:
i) = [ Bi
(V1) = /BiVBj dp
G|V —2mc?|j) = /BZ-(V —2mc?)B; dp
hc<i|dip + %\j) = hc/BZ-B;- + BigBj dp

d
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7.8.5 Other Forms of Dirac Equations

The radial Dirac equations are:
H|P,Q)=¢|P,Q)
P
P = ( g

(o 62

After substitution S = f(r)P and T = f(r)Q, we get:

fflPQ>=e|PQ>
|s T>—e 1S, T)

H=>1S =€l|S
fl,T> S, T)

where:

and after using:

p41_d
dof dp f
we get:
d K f
e ) he(-g+5+74)
f hc (% +5— f7) V(p) — 2mc?
Example |

In order to obtain equations for g and f, related to P and @ by:

P =pg

Q=rpf
so f(r) = 7and

f__1

o p
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Example Il

For f(r) = p we get

f/

fop
and

f[fll B V(p) fic (—d% + %‘1)
o\ ne(g+=t) Vi) —2me

Example Il
For f(r) = p™ we get

f/

fow
and

fﬁl B V(p) he (—d% + “2")
f he (d% + %) V(p) — 2mc?
Example I is just a special case for n = —1, Example II for n = 1.
Example IV
For f(r) = tanh p we get
[ 1
f  sinhpcoshp
and
d
f[:Il _ V(p) he (_Tp + % + sinhplcoshp)
d K
f he (Tp + p — sinh plcoshp) V(p) — 2m02
Example V
For f(r) = tanh™ kp we get
A L
f  sinhkpcoshkp
and
d K nk
fﬁl: V(p) ﬁC(—Tp+;+m)
f he (dip + % " sinh k;ﬂccosh kp) V(p) — 2mc?

Example IV is just a special case forn =1, k = 1.
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7.8.6 Asymptotic
Schrédinger

The radial Schrédinger equation is:

P'(r) +2 (E _vy - W 1)) P(r) =0

2r2
Q(r) = P'(r)
For r — oo, assuming V' (r) — 0 we get:
P"(r)+2EP(r)=0
And the asymptotic is:
P(r) = e~ V2Er
Q(r) = P'(r) = —v/=2Be 2"
(+1)

For r — 0 and assuming that V() can be neglected compared to the =55~ term (for example V'(r) = —Z/r + O(1)
is ok) we get:

P"(r) -

And the asymptotic is:
P(r) =¢!*!
Q(r) =1+ 1)

From the derivation this is valid for / > 0, but it turns out to be valid also for [ = 0, because for V' (r) = —Z/r+ O(1)
the equations become:

27
P'(ry+ —=P(r)=0
T
the asymptotic of which is:
P(r)y=r(1-2r)
P(ry=1-22Zr
P'(r)y=-27

Which in the first order is just the above asymptotic for | = 0:

Note that Z can be both positive and negative.

Dirac

The Dirac equation is:
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Where the relativistic energy W = E + ¢2. In terms of the nonrelativistic energy it becomes:

o (o2 D)

=
Homra ( 0 ) =2 (640 )

For r — oo, assuming V' (r) — 0 we get:

and in terms of P(r) and Q(r):

let’s put the derivatives on the left hand side:

cP' = (W +HQ
Q' = —(W —-cHP

write a second order equation:
AP =W +cH)eQ = —(W+ (W — )P = —(W? - )P

and finally we get:

The asymptotic is:

.4
Plry=e Va2 "

4 _ 2 A _we2 2 A_we2
Q(r) < ( e W)e\/ R S We*\/TT

:W+02 c? 2+ W

‘We can also write it in terms of E:

Q) = /g P

(V+ )P —cQ + ch — WP

For r — 0 we write the full equations:

P +cEP+ (V- A)Q=WQ
T
Then we assume P(r) = 77 and use the second equation to express Q(r):

_ P +ctP cBrP=t + cErf e c(B+ k)
W -V +¢2 W -V +¢2 W -V +¢2

Q(r)
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Z(r)
c(B+ k) 5 c(B+ k)

:ﬁ_l =
Q=r W20 2 Z0)+ (Wt

We can always write any potential as V (r) = — and we get:

If Z(r) — Z as v — 0 then the term (W + ¢2)r goes to zero and we get:

_ sclB4n)
Qlr) ="

If Z(r) — Z;r, then we get:

c(B + k) s c(B+K)

— B - AT
Q) Ter+(W+c2)r " Zy+ W+ 2

If Z(r) ~ r® (harmonic oscillator) or Z(r) ~ r2, then the Z(r) term goes to zero and we get:

= B-1 M
Q(T> r W + 02
In order to determine the constant 3 for Z # 0, we write the fraction % in two ways:

Q(r) _ c(f+k) 4

P(r) Z (k- B)

The second equation follows from first assuming Q(r) = r° and using the first Dirac equation to express P(r) =
P Lz_ﬂ) Now we can express J (we can assume 3 > 0):

2 2
2 k2
c? p

7.9 Density Functional Theory (DFT)

7.9.1 Many Body Schroédinger Equation

We use (Hartree) atomic units in this whole section about DFT. We use the Born-Oppenheimer approximation, which
says that the nuclei of the treated atoms are seen as fixed. A stationary electronic state (for N electrons) is then
described by a wave function ¥(rq,re, - ,ry) fulfilling the many-body Schridinger equation

HIW) = (T + U +V)|¥) = B|¥)

where

is the kinetic term,
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is the electron-electron interaction term and

Z Rk\

is the interaction term between electrons and nuclei, where R, are positions of nuclei and Zj, the number of nucleons
in each nucleus (we are using atomic units). So for one atomic calculation with the atom nucleus in the origin, we

have just v(r;) = — \fl .

|W|2 = U*V gives the probability density of measuring the first electron at the position ry, the second at rz, dots
and the Nth electron at the position ry. The normalization is such that f \<I>|2d37"1d37"2 ...d® N = 1. The ¥ is
antisymmetric, i.e. ¥(ry,r2, - ,ry) = —U(ra,rq1, -+ ,ry) = —¥(rq,ry, -+ ,ra) etc.

Integrating |W|? over the first N — 1 electrons is the probability density that the N-th electron is at the position r .
Thus the probability density n(r) that any of the N electrons (i.e the first, or the second, or the third, dots, or the N-th)
is at the position r is called the particle (or number) density and is therefore given by:

n(r) = / *(ryro, -, rN)¥(r,ro, - 7I‘N)d37’2 d®ry- - dPra+
+/\Il ri,r, - ,ry)U(ry,r, - - ,rN)d3r1d3r3~~d3rN+~~
—1—/\11* (r1,ra, - ,r)¥(ry,re, -+ ,r) Bry Brod3rg - Bry_g =

:/(6(r—r1)+§(r—r2)+~-~+§(r—rN))

U*(ry, g, ,vN)P(ry, T, ,ry) d3ry dProddry - - - d3ry =
N
= Z/(\Il|r1,r2,-~- ,eN) O(r — 1) (g, 10, - N |U) APy dProdirg - dry =
i=1

= N/(lll\rl,rg,~-~ , TN O(r — 1) (r1,1r9, -+, rN|T) Bry Brodirg - Bry =

= N/\I/*(I', ro,--- 7I‘N)\I/(I‘,I‘2,”~ 7rN)d3T2 d3T3"'d3’I‘N (714)

Thus fQ r) d*r gives the number of particles in the region of integration 2. Obviously [ n(r) d*r = N.

Note that the number density n(r) and potential V' (r) in the Schroedinger equation is related to the electron charge
density p(r) and electrostatic potential energy ¢(r) b

p(r) = gn(r)
q¢(r) =V (r)
where ¢ is the particle elementary charge, which for electrons is ¢ = —e = —1 in atomic units. The amount of

electronic charge in the region €2 is given by:

Q= /Q p(r) dPr = g /Q n(r) dr = — /Q n(r) ddr

The energy of the system is given by

= (U|H|W) = (U|T|®) + (O|U|T) + (U|V|¥) =T+ U +V (7.15)
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where

N
T = (U|T|T) = Z/‘l!*(rl,r2,~-- IN)(—3VHU(ry, 12, o) APy dPro - dPry
U= {¥|U)

N
V = (U|V|¥) = Z / U*(ry, 12, ,on)0(ri)¥(ry, r2, - - oN) dPry dPrg - dry =

U*(rq,rg, -+, rN)0(r1)¥(ry, v, -, oN) Ay g - dBry =

= N/\I/*(rl,rz,~~~ ,rN)V(r1)U(ry,ra, - - ,rN)dSn Bry---Bry =

= /v(r)n(r)d?’r= = VIn] (7.16)

It needs to be stressed, that E' generally is not a functional of n alone, only the V[n] is. In the next section we show
however, that if the |¥) is a ground state (of any system), then E becomes a functional of n.

7.9.2 The Hohenberg-Kohn Theorem

The Schrodinger equation gives the map

C: Vv

where U is the ground state. C is bijective (one-to-one correspondence), because to every V' we can compute the
corresponding ¥ from Schrédinger equation and two different V' and V’ (differing by more than a constant) give two
different U, because if V and V' gave the same W, then by substracting

H|V) = E,, |U)
from
H|9)=(H-V+V) W) =FE,|V)

we would get V — V/ = E — FE’, which is a contradiction with the assumption that V" and V' differ by more than a
constant.

Similarly, from the ground state wavefunction ¥ we can compute the charge density n giving rise to the map

D:V —n

which is also bijective, because to every ¥ we can compute n from (7.14) and two different ¥ and ¥’ give two different
n and n’, because different ¥ and ¥’ give

Egs = (V[H|) < (V|H|W) = (V|H' +V - V'|V) = E_ + /n/(r)(u(r) —/(r))d®r

Ego = (VH'|V) < {U|H'|W) = (V|H + V' = V|¥) = By, + /n(r)(v’(r) —v(r))d’r
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adding these two inequalities together gives

0< / W (0) (u(r) — v/ (r)) d*r + / () (W' (x) — v(r)) d¥r = / (n(r) — n'(0) (v (x) — v(x)) dr

which for n = n’ gives 0 < 0, which is nonsense, so n # n’.

So we have proved that for a given ground state density ng(r) (generated by a potential Vo) it is possible to calculate
the corresponding ground state wavefunction ¥o(rq,r2, -+ ,rn), in other words, ¥y is a unique functional of ng:

Vo = Wo[no]

so the ground state energy F is also a functional of ng

Ey = (Uo[no)|T + U + V| Wo[no]) = Eln]

We define an energy functional
By [n] = (Un)|T + U + Vo|¥[n]) = (U[n)|T + U|¥[n]) + /vo(r)n(r)dgr (7.17)

where |U[n]) is any ground state wavefunction (generated by an arbitrary potential), that is, n is a ground state density
belonging to an arbitrary system. Ey which is generated by the potential V{; can then be expressed as

Ey = Ey,[no]
and for n # ny we have (from the Ritz principle)
Ey < E’U(] [n]
and one has to minimize the functional E,,,[n]:
Ey = mrin E,, [n] (7.18)

The term
(U[n]|T + U|¥[n]) = Fln]

in (7.17) is universal in the sense that it doesn’t depend on VO. It can be proven [DFT], that F'[n] is a functional of n
for degenerated ground states too, so (7.18) stays true as well.

The ground state densities in (7.17) and (7.18) are called pure-state v-representable because they are the densities
of (possible degenerate) ground state of the Hamiltonian with some local potential v(r). One may ask a question
if all possible functions are v-representable (this is called the v-representability problem). The question is relevant,
because we need to know which functions to take into account in the minimization process (7.18). Even though not
every function is v-representable [DFT], every density defined on a grid (finite of infinite) which is strictly positive,
normalized and consistent with the Pauli principle is ensemble v-representable. Ensemble v-representation is just a
simple generalization of the above, for details see [DFT].

The functional E,,,[n] in (7.18) depends on the particle number N, so in order to get n, we need to solve the variational
formulation

% (Ev[n} - M(N)/n(r)df"r) =0
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o)
0E,[n)
= u(N 7.19
5 = M) (7.19)
Let the n (r) be the solution of (7.19) with a particle number N and the energy En:
EN = EU [TLN]
The Lagrangian multiplier 4 is the exact chemical potential of the system
OEN
) = Fx
becuase
0E, 3
Exye— En = Eylnntd] — Ey[nn] = W(nN+e —ny)d’r =
- / ) (e — ) dPr = p(N)(N + ¢ — N) = p(N)e
o)
Enie— En OFEN
N =
1(N) . — N
7.9.3 The Kohn-Sham Equations
Consider an auxiliary system of N noninteracting electrons (noninteracting gas):
H,=T+V,
the Schrodinger then becomes:
(=3 V% +vs(r))ei(r) = eifi(r)
N
ns(r) = Y [i(r)?
and the total energy is:
Ey[n] = T[{i[n]}] + Vi[n]
where
Tln] = (U[n)|T|W[n]) = (i = $V°|0)
Vilo) = (Ul V1¥(n]) = [ o)
So:
Bl = 3 (0 = 39w + [ vu(r)n(r)a®r =
= Z/w;‘ (=1V2) ¢ d®r + /us(r)qum d*r =
=Y [ (A7 ) i =
= Zéi/iﬁwid?’?“ =
~Y e
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The total energy is the sum of eigenvalues (energies of the individual independent particles) as expected. From the last
equation it follows:

Ts[n] = Z (il = %V2|¢i> = Zﬁi - /Us(r)”(r)d3T

In other words, the kinetic energy of the noninteracting particles is equal to the sum of eigenvalues minus the potential
energy coming from the total effective potential vs used to construct the single particle orbitals 1);.

From (7.19) we get

0B n]  Ti[n]  6Viln]  0Ts[n]
r= sn(r)  on(r) = on(r)  on(r)

+ vs(r) (7.20)

Solution to this equation gives the density n.

Now we want to express the energy in (7.15) using T and E'g; for convenience, where 'y is the classical electrostatic
interaction energy of the charge distribution p(r), defined using following relations - we start with a Poisson equation
in atomic units

V25 (x) = —dmp(x)
and substitute p(r) = gn(r), Vi (r) = q¢x(r) and we use the fact that ¢ = 1 in atomic units:
V2Vh(r) = —4mg*n(r) = —47mn(r)

or equivalently by expressing Vi using the Green function:

1 —47n(r
Vi = —— 7.21
(r) 47r/ |r—r |r—r’| (7.21)
and finally Ey is related to Vi using:
0Fy
V =
n) =5

so we get:

Ly [

Using the rules for functional differentiation, we can check that:

5E

_ d3/
/|r—r’| "

Using the above relations, we can see that
EH [TL] = % / VH(I‘)’H(I‘)d?)’I’

So from (7.17) we get

E[n] = (T +U)[n] + V[n] = Ti[n HEH[ |+ (T —Ts+U - En)[n]+ V[n] = (7.22)
=Ti[n] + En(n] + Exc[n] + Vn]
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The rest of the energy is denoted by E,. = U — Eyg + T — T, and it is called is the exchange and correlation energy
functional. From (7.19)

_ dE[n] _ 0Ts[n] ~ dEmn] n dEyzc[n]  dVin]
a dn(r)  In(r) on(r) on(r) on(r)

From (7.21) we have

0By
on(r) Vi (x)
from (7.16) we get
§Vin] _
on(r) v(r)
we define
0Eyc[n]
nr) el v
SO we arrive at
OE[n] _ 8Tu[n] Vir (r) + Vae(r) + v(r) (7.24)

h= on(r)  dn(r)
Solution to this equation gives the density n. Comparing (7.24) to (7.20) we see that if we choose
vs =V +Vee+o (7.25)
then ns(r) = n(r). So we solve the Kohn-Sham equations of this auxiliary non-interacting system
(—2V2 4+ 0, (2)i(r) = (— 3V + V(1) + Vie(r) 4+ v(r))i(r) = e9(x) (7.26)

which yield the orbitals 1); that reproduce the density n(r) of the original interacting system

N
n(r) = ny(r) = Z | (r)[? (7.27)

The sum is taken over the lowest N energies. Some of the 1; can be degenerated, but it doesn’t matter - the index ¢
counts every eigenfunction including all the degenerated. In plain words, the trick is in realizing, that the ground state
energy can be found by minimizing the energy functional (7.17) and in rewriting this functional into the form (7.22),
which shows that the interacting system can be treated as a noninteracting one with a special potential.

7.9.4 The XC Term
The exchange and correlation functional
Eye[n] = (T + U)[n] = En[n] - Ts[n]

can always be written in the form

Eye[n] = /n(r’)emc(r’;n)dg’r'

where the €,.(r’; n) is called the XC energy density. The XC potential is defined as:

O0Ec[n] O€ze(r’;m)

Vie(rin) = on(r) €ae(T; ) +/n(r/)T(r)d37"'
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7.9.5 Total Energy

We already derived all the necessary things above, so we just summarize it here. The total energy is given by:

E[n] = (T +U)[n] + V[n] = Ti[n] + Egn] + (T — Ty + U — Eg)[n] + Vn] =
=Ts[n] + Egn] + Eyc[n] + Vn|

where
Ty = Y - / vs(r)n(r)d3r

Eyln] = %/VH(r)n(r)d?’r

This is the correct, quadratically convergent expression for the total energy. We use the whole input potential V;,, = v,
and its associated eigenvalues ; to calculate the kinetic energy Ts[n], this follows from the derivation of the expression
for T5[n]. Then we use the calculated charge density to express Eg[n], Eyc[n] and Vn].

If one is not careful about the potential associated with the eigenvalues, i.e., confusing V;,, with V,,,;, one gets a slowly
converging formula for the total energy. By expanding v, using (7.25):

/ ven(r)dir = / (Vi + Vie + 0)n(r)d?r = 21 / Vin(e)d®r + / Vien(r)d®r + / on(r)d3r =
= 2Ey[n] + / Veen(r)d®r + Vn)

So T is equal to:

And then the slowly converging form of total energy is:

E[n] = Ts[n] + Eg[n] + Eze[n] + Vn] = Z e, — 2Ey[n] — /chn(r)d?’r —Vin]+ Egn] + Ezc[n] + Vin] =
= > Bulal + Bl - / Vo (r: ) (r)d3r

The reason it is slowly converging is because the new formula for kinetic energy is mixing V;,, with V,, so it is not
as precise (see above) and converges much slower with SCF iterations. Once self-consistency has been achieved (i.e.
Vin = Vout), the two expressions for total energy are equivalent.

7.9.6 XC Approximations

All the expressions above are exact (no approximation has been made so far). Unfortunately, no one knows €,.(r’; n)
exactly (yet). As such, various approximations for it exist.
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LDA

The most simple approximation is the local density approximation (LDA), for which the xc energy density €, at r
is taken as that of a homogeneous electron gas (the nuclei are replaced by a uniform positively charged background,
density n = const) with the same local density:

€xc(rin) ~ €, (n(r))

The xc potential V.. defined by (7.23) is then

o 0Bgn] _ nO€(r)sn) 4,
Vae(r;n) = ) €xe(T;n) +/n(r) S () d°r
which in the LDA becomes
deEP(n) d
P N = LD —xc V7 = — LD = LD (7‘28)
VJ?C(r?n) Exc (n) +7’l dn dn (nemc (TL)) ch (n)

The xc energy density €Z of the homogeneous gas can be computed exactly:

ere (n) = P (n) + €27 (n)

where the LD is the electron gas exchange term given by

the rest of €£2 is hidden in £ (n) for which there doesn’t exist an analytic formula, but the correlation energies are

known exactly from quantum Monte Carlo (QMC) calculations by Ceperley and Alder [pickett]. The energies were
fitted by Vosko, Wilkes and Nussair (VWN) with ¢£? (n) and they got accurate results with errors less than 0.05 mRy
in €&P, which means that e£” (n) is virtually known exactly. VWN result:

2
elP(n) ~ g {ln (Yy(y)> + 2abalfctan (chi_ b) +

7o) [ln (@&2’?2) # 20 etan (2yQ+ b)] }

where y = /15, Y(y) = y? + by + ¢, Q = Vdc — b2, yo = —0.10498, b = 3.72744, ¢ = 12.9352 (note that the
value of ¢ is wrong in [pickett]), A = 0.0621814 and r; is the electron gas parameter, which gives the mean distance
between electrons (in atomic units):
1
3 3
s T (47m>
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The xc potential is then computed from (7.28):

A y? 2b Q
VEP = = 4] — arct
c 2{n<Y(y)>+Qarcan<2y+b +

st [ () ¢ g e (55

_Ac(y —yo) — byoy
6 (y—y0)Y(y)

Some people also use Perdew and Zunger formulas, but they give essentially the same results. The LDA, although
very simple, is surprisingly successful. More sophisticated approximations exist, for example the generalized gradient
approximation (GGA), which sometimes gives better results than the LDA, but is not perfect either. Other options
include orbital-dependent (implicit) density functionals or a linear response type functionals, but this topic is still
evolving. The conclusion is, that the LDA is a good approximation to start with, and only when we are not satisfied,
we will have to try some more accurate and modern approximation.

_|_

RLDA

Relativistic corrections to the energy-density functional (RLDA) were proposed by MacDonald and Vosko:

e P(n) =P (n)R

L 3 (Bu—mB+m\ . 3,
R=1 5 ( 72 =1 2A
where
p=1+p?
8= (37r2n)% _ 4T p
c 3 ®
4= Pr—log(B+p)
= 2
We now calculate V2P
LD
viep _ iop o daT R (7.29)
x xr dn
LD
:efDRJrnder RJrne{:D@:
v dn Yo dn
deLP dRdS

where the derivative % can be evaluated as follows:

A d (3x*n)s 1 (3n%n)s _ B

dn ~ dn c 3n c 3n
dGLD .
And —3=— in exactly the same manner:
deLP kP
dn 7 3n
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So we can write

dgﬁDR+nE£D31;j§ _
;L ﬁDR+; ﬁDdlgﬁ—
1
§ e’ <R+4ﬂi‘§)
1.d
=VEP <R+ 4ﬂd§)

VLD — LPR 4 1

where

di _ —%2AA/ = —3AA" =

dg
1 A
=_6A(=-—-=
6 (u 5)

where we used the derivative of A(f), which after a tedious, but straightforward differentiation is:

1 A
AB) == (_>
(8) P
Plugging this back in, we get:
1 _dR
RLD _ /LD
% =V, (R+46d5)

3 1 1 A
=ytP (1 - 5A2 + 78(=64) (u - >) =

B
3 6 6 A
D4 242,92 0
=V, (1 2A +4A 46/1)

=yLP (1 — wA) =
2p

_ /LD §§ B — log (B + 1) .
v (-5 (M) -

().

_ oo (3log(B+u) )
=V ( 284

For ¢ — oo we get 3 — 0, R — 1 and V,FEP — 2eLP = VI a5 expected, because

i By/1+ B2 —1In(B + +/1+ (2) ~0

B—0 52

INIE

Code:

>>> from sympy import limit, wvar, sqgrt, log

>>> var ("beta")

beta

>>> limit ((betaxsqgrt (1+betax+2) — log(beta+tsqgrt (l+betaxx2)))/beta*xx2, beta, 0)
0
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7.9.7 Radial DFT Problem

Kohn-Sham Equations

For spherically symmetric potentials, we write all eigenfunctions as:

wnlm = RuYim
and we need to solve the following Kohn-Sham equations:

1+ 1)R
2r2

/Rilr2d7":1

For Schroedinger equation, the charge density is calculated by adding all “(n, 1, m)” states together, counting each one
twice (for spin up and spin down):

n(r) = 2huml* =D RE2Yim|* =Y RL2> " |[Yin|* = ﬁ > fuRy

nlm nlm nl nl

1 1
_inl — ;R’:Ll + (V + ) R = eni Ry

With normalization:

where we have introduced the occupation numbers f,,; by
fnl - 47722 |}/lm|2
Normalization of the charge density is:
Z = /n(r)de = /n(r) r2dQdr = 47T/n(r) r2dr =
1
=47 / o Zl frR2, r2dQdr =
= Z Jni /szl rPdr =
nl
= Z Jni
nl

So we can see, that it must hold:
Z fnl =7
nl

where Z is the atomic number (number of electrons), and as such, f,,; are indeed the occupation numbers (integers).
The factor 47 is explicitly factored out, as it cancels with the spherical harmonics: assuming all m states are occupied,
this can be simplified to:

20+ 1
_ 2 _ _
S =4m2 gm [Yim|* = 472 e 2021+ 1)
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We can also use this machinery to prescribe “chemical occupation numbers”, that don’t necessarily correspond to the
DFT ground state. For example for U atom we get:

<2

By summing all these f,;, we get 92 as expected:
S =24 (246)+ (24 6+10) + (24 6+ 10+ 14) + (2+ 6 + 10)+
nl

+3+2+6+1+2=92

But this isn’t the DFT ground state, because some KS energies are skipped, for example there is only one state for
n = 6, = 2, but there are nine more states with the same energy — instead two more states are occupied inn = 7,
I = 0, but those have higher energy. So this corresponds to excited DFT state, strictly speaking not physically valid in
the DFT formalism, but in practice this approach is often used. One can also prescribe fractional occupation numbers
(in the Dirac case).

Poisson Equation
Poisson equation becomes:

Vif(r) + 2V (r) = ~don(r)

Total Energy

The total energy is given by:
E[n] = Ts[n] + Egn] + Exc[n] + Vn]

where

Do) = 3 futeus = [ Vi) + V) + 0(0)) () =
nl

= anlEnl - / (VH(r) + Vae(r) — f)n n(r)d3r

nl
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doing the integrals a bit we get:

r

Tiln] = Zf”lenl - 477/ (VH(T) + Vae(r) — Z>m n(r)r®dr

nl

Egln] = 27T/VH(7’)TL(’I“)’I“2 dr
Buon] = 4r / €aers )n(r)r? dr
Vin] = —4n / %n(r)rz dr = —4nZ / n(r)r dr

We can also express everything using the charge density p(r) = —n(r):

ol = 3 s 47 [ (V) +Vetr) = 7)o
Euln] = —27 / Vi (1)p(r)r dr
Boi) = 47 [ relrim)ptryr®ar

Vin] = 4n / %p(r)rQ dr =4nZ / p(r)rdr

7.9.8 DFT As a Nonlinear Problem

The task is to find such a charge density n, so that all the equations below hold (e.g. are self-consistent):

Z
V=S Vit Ve
(_VQ +V) Om = €mPm, m=12...,4

4
2
n=2_ ¢
m=1

Vmc = f(n)
V2Vy = —4mn

This is a standard nonlinear problem, except that the Jacobian is dense, as shown below.
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Reformulation

Let’s write everything in terms of ¢,, () explicitly:

r) =) ¢n(@)

m=1

Vie(z) = f(n(x)) = f <Z qfn(w))

VH@:/W r— /Zmlf; s

Viz) = —g + Vu(z) + Vie(z) =

/ 4
:_74_/ Zn|LI1¢2 dCC/+f (Z ¢3n(x)>

m=1

Now we can write everything as just one (nonlinear) equation:

< /Zm 1¢2 /d +f<z¢m >> n_en¢n7 n:1,2,..-,4

FE Discretization

The correspondig discrete problem has the form

/ Von(x) - Vo (z

:/end)n(x)vi(x)dx, n=12,...,4; i=1,2...,N
Q

4

2 /
2y [ B h) d:c’+f<z ¢$n<x>)]¢n<x>w<r>dw=

m=1

where
N
¢n = ¢n(Y(n)) = Zy§n)vj (l‘)
=1
Here Y = (8™ 4{™ . 4\ is the vector of unknown coefficients for the n-th wavefunction ¢, (z). Our

equation can then be written in the compact form
F(Y™)=0, n=12,....4
where F = (Fy, Fy, ..., Fy)T with

Fi(Y™) = /Q Vén(x) - Vui(z

W+/ Zm 1¢2 Lm=1 Onl®) 4, +f<Z & (a )]%(xm(x)dm

—/ €ndn(z)v;(x)da
Q
Jacobian
The Jacobi matrix has the elements:
OF;
Tik =25
oy,
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The only possible dense term is:

0 E?ﬂ:l ¢72n(x,) / ) .
(s) /Q Q dz (bn(x)vz(ﬂf)dx—

2" — |

m), o) N
m= 1 j ly] Uj('r) n
i ), / — Ve (S0 s -
j=1
N ’
S 500 ) )
[ HER N (5 o) e

2

// = 1 = 13/]( )”j(l“/)) da’ 8, svg () v; (z)d

|2 — |

Now we can see that we have in there the following term:

//vk dz'dz
|2’ —33|

which is dense in (k7), as can be easily seen be fixing ¢ and writing

/sz /sz |’ — $| wilz)de

vy ()
" —=|

so for each k there is some contribution from the integral [,
the Jacobian J;; dense.

dz’ for such x where v;(z) is nonzero, thus making

7.9.9 Thomas-Fermi-Dirac Theory
There are two ways to derive equations for Thomas-Fermi-Dirac theory. One way is to start from grand potential and

derive all equations from it. The other way is to start with low level equations and build our way up. Will start with
the former.

Top Down Approach

We start with a grand potential:

p2
QB u] = /d3 / p?log <1+eﬂ(2“’(x)“))dp:
B 3#252/ / 14 eu— 5# V(x))d

2
- 3W252 I3 (B(n—V(x)) d

The potential V' (x) = Vep, (%) + Vee (x) + Vi (%) is the total potential that the electrons experience (it contains nuclear,
Hartree, and XC terms) The density is a functional derivative with respect to p:

() = _mgf; M 3i“§ sl (81 = V() = Bffﬂ B2, (B (n— V(X)) =
- L G- V)
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By defining the function ®(n.(x)):

O(ne(x) =B (n—V(x) =1 (Wﬁne(X)>

Nl

we can express the grand potential using n. as follows:

) = -2 [ 13000, (0)
Now we can calculate the free energy:
Fe[B,ne] = Q[B,ne] + uN = Q[B, n] +u/ne(x) d*z = / (%IS(@(ne(x)))Jrune(x)) diz =
= —ﬂ : Nel X ln X MNel X Nel X X 31‘
—/( b5 13 (100)) + (2 (0) + eV >>d

where we used the fact that ;4 = %@(ne(x)) + V(x), i.e. the left hand side p is a constant, thus the sum of the terms
on the right hand side is also constant (even though the individual terms are not).

We can calculate pressure (times volume):

2v2 Is (®(n.(x))) >z

PV = -Q[B,n.] = = F
[Bme] 3r232 2

Bottom Up Approach

The other way to derive these equations is to use the following considerations. The number of states in a box of side
L is given by:

dBp . d3p . d3p Pf 4rpdp o L3 [Pf
N= [ —=2[%= 2L3:/ 2L3:/ 213 = 2 24
/ X / (27h)? (2r)? SENCLE w2 fy PP

We use atomic units, so s = 1. The electronic particle density is:

3
2

N 1 /pfpzdp: i _ R(B -V (7.30)

ne(x) = 73 = 32 32

L3 72

2
where we used the relation for Fermi energy £y = %f + V(x). The potential V' (x) is the total potential that the
electrons experience (it contains Hartree, nuclear and XC terms). At finite temperature 7" we need to use the Fermi
distribution and this generalizes to:
L[>  pidp
Ne(x)
0

] eBE-u) 41

Now we use the relation £ = % + V(x) and substitutions € = %, y = (e to rewrite this using the Fermi-Dirac

Integral:

() 1 /°° p2dp 1 [ p2dp V2 [ Vede
ne X)) = — —_— = — = — —_— =
w2 Jo ePE-M 41 w2 Jo BB V(- 11 72 Jo eBletVe)—n) 41
V2 o[> ydy V2

= 21 (- V()

- Wzﬁg o ey Bl=V() 41 7r25% 3
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At low temperature (1" — 0) we have 8 — oo, I1 (z) — %x% and we obtain:

[MS]

22 s 20— V()
Ne(x) — m Blp—V(x)))? = 32

Identical with (7.30). We can see that the chemical potential ;» becomes the Fermi energy E in the limit 7' — 0. In
the finite-temperature case, p is determined from the normalization condition for the number of electrons V:

N = / ne(x) d*x

d®p p? 1
3
Fin = /d / 326/3('? DS
P 47rp2dpp 1 B
(2m)3 2 eBE-m) 41

/d3 /°° 47rf\[de 1

2m)3 BV 11

€3 de
vz [ 3 _
2 /d x/o eB(s+V(X)—u) 11
_ yrdy
_Wzﬁg e¥—Bu=Vx) 11

Iy (B(u— V(x))) d*a

The kinetic energy is

7r2 ﬁ 2
From the last formula it can be shown that the kinetic energy is equal to

3 1 1
E in — PV — *Een - 7Eee
kin =3PV =3 2

The potential energy is equal to:
Epot = Een + Fee
The internal energy F is equal to:
E = Ekin + Epot = Egin + Een + Eee =
= gPV + %Een + %Eee
The entropy S is equal to:

5
TS = gEkzn + Een + 2Eee - :U/N =

5 1 7
=PV 4B, + E.. — uN
5t VTt TG H

The free energy is equal to:

2
F=E~TS =~ Fpin— Eee+ uN =

1 2
=—-PV + gEen - gEee +,UN
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We can now express the free energy functional F,[3, n.| as a function of the density:

2
Fe[ﬁane} = _gEkin - Eee +MN -

-/ (_32\@13 (B(n.() — e (Ve () +;me<x>> & =

w232 2

-/ (— 22 fg(cb(ne(x)»—;ne<x>vee<x>+;ne<x>¢><ne<x>>+ne<x>v<x>> dr =

M

-/ (— 2 1 @(0.00)) ~ (V) + S x8(0x) + (O Ven() + Ve ) + Vwc<x>>) & =

B
- / (— 2\/5g I3 (®(ne(x))) + lm;()c)fI)(?”Le(x)) + (%) (Ven (%) + $Vee (x) + VM(X))> Py —

B
_ <_§ Eron + / %ne(x)ib(ne(x)) d%) + Eun + Eee + Eae

7.9.10 Orbital Free Density Functional Theory
The orbital-free electronic free energy is given by:

Fe[ne] = To[ne] + Uen[ne] + Uce[ne] + Fuc[nel,
where the kinetic energy can be written in a few different equivalent ways as

T() [ne] =

where f(y) is a special function of one variable, composed of a Fermi-Dirac Integral of order % and its inverse of
order %:

the electron-nuclei term has the form

Uen[ne] :/Md%cd3 ’:/ne(x)%n(x)d?’x,
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The electron-electron (Hartree) term takes the form:

Uee[ne] — %/Mdi’)xd& r_ %/ne(x)%e(x)diix’

[x — x|
and the exchange and correlation functional F..[n.] is given by the Perdew-Zunger LDA:
Fuclnd) = [ ne(oek? (no)ds.

ne(x) is the (positive) electron density, 7., (x) is the (positive) nuclei density.

We minimize this free energy under the condition of particle conservation. The constrained functional is (we use
n = n, from now on):

The variational solution is:

5] _
on 0
Or:
0Fe[n] _ (7.31)
on
Finally we get:
Hin = 0F.[n] _ 0To[n] n OUen[n] n 0Uee[n] n S Fyeln)] . (7.32)

The individual terms are:

0Toln] 1 df(y) ™
ol = 2 (s + 0 T
and
6Uen[n] nn(x) 3,
o ) w0 & = Venl®)
and
6Uee[n] n(x') 5,
on |x—x’|d = Vee(x)
and
6Fye[n] LD defP(n) _
on €xc (n) + n(x) dn = VIC(X)
All together the Hamiltonian is:
1 df(y) = 3)
Hn|=— +n(x)—=—=02 | + Ven(X) + Vee(x) + Vie(x
= 5 (£0) + 100 T T 58) 0 4 Vi) + Vi
We can also introduce an artificial orbital 1)(x) as follows:
n(x) = ¢*(x)
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and minimize €2 with respect to v:

0Qn]
=0.
oY
We will use tilde to denote functions in terms of . So Q[n] = Q[)?] = Q[]. Using the relation
d dn o ]
= 22—
61/) dw on v on
we obtain:
082n] QY n]
o v on 0
So the equation (7.31) gets multiplied by 21):
2¢5Fe[n] — 2
on
as well as the equation (7.32):
- SE.[]  OF.[n] F.[n]
HyY| = = =2 =2H =2
W= Tt = T = e = 2 = 2ey

So the Hamiltonian H[n] expressed using n and the Hamiltonian H|[¢)] expressed using ¢ are related by H|[y] =
2H|[n]3.

Free Energy Minimization

For clarity, we will be using H [n] from equation (7.32) as our main quantity, but we will also write the final relations
using H [¢] for completeness.

We start with some initial guess for |¢) (it must be normalized as (¢)|¢)) = N). Let’s calculate e:

Hin] =
HI9) = el
(WIHl]l) = (1)
e =
N HE) = & [ Hedts = oo [ i)

We calculate the steepest-descent (SD) vector |x):

X) = 2(e — H[n)) [v) = 2¢|4) — [H[V])

The conjugate-gradient (CG) vector |¢) is calculated as:

) = o) + X

<Xk71‘Xk:71>

To satisfy the normalization constraint of |¢)), the CG vector is further orthogonalized to |3/} and normalized to N
(this step is one particular, but not the only way to impose the normalization constraint):

) = (1= 5 101 w1 o)

N !
>\<p>

") ==
(¢'l¢
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That is, now (p”'|¢)) = 0 and (¢"|p”) = N. The new CG vector |t511) is then updated as usual in CG by |¢)+a |¢”),
but then it must be normalized. As such, equivalently, it is updated by a linear combination of |¢) and |¢"'):

[Vet1) = a i) +ble”)

such that it remains normalized:

(Yra1Un1) = (@ (@] + (") (al) +bl¢")) = (a® + V)N = N

So a, b are any real numbers satisfying the equation a® + b> = 1, whose parametric solution is @ = cos, b = sin
with 0 < 0 < 27

[tp+1) = cos @) +sinf |o")

where 6 is determined by minimizing the free energy F.[t¢);11] as a function of 6.

7.9.11 References

7.10 Hartree-Fock (HF) Method

7.10.1 Derivation

The interacting Hamiltonian for many body Schrodinger equation is (see the general QFT notes for derivation):
iho, [¥(t)) = H (1))

ﬁ:TJrV:Zc iT|5) ¢ + 5 Zc 1|V |El) crep
1] ijkl

where |i) are spin orbitals (thus the integration over w below) and:

<NTU>t/XﬂX)(%VQE:leﬁLA>xﬂxyﬁxdw

1
71 Xk (X)x1 (y)dgz dw, d®y dw,

VI = [ 0=

We would like to minimize the energy £ = (¥|H|¥) using the following basis for Z electrons:
) = cle} -~} [0)

We express the energy F in this basis:

— (w|A|w) =
= (0|cz---caer Heleh - ¢l 0) =
z z
={0|cz - cacq Z c;r (@T|4) ¢; + % c;.rc;f (i§|V'|kl) ciex c];c; . -~CTZ |0)y =
i,j=1 Wik =1

z z

=D Tl + 5 D (lVIig) — G5IVIi)

i=1 i,j=1

We minimize it with the constrain (i|j) = ;;:

z
E - Z €ij (ilj) | =0

i,5=1
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‘We obtain:
zZ
iy + > ((IVIig) = (GIVIGi)) = e i) (7.33)
j=1

in the x-representation:

Z
(x|Tz) +Z (x| (Vi) = [ GV 1) = e (x[2)

Z

X|TVi) + Y (GxIVIig) — (x[V]ji) = € (x]i)

j=1

And writing the individual terms explicitly (in this section, all orbitals are spin orbitals):

(xli) = i (x)
el ( 3V Zb«—m) .
. 2
uxivis) = [ w;<y>fwi<x>wj<y>d3y = [ 1y v
Geivisi = [0y = [y 0

we get the Hartree-Fock equations:

SLOE Y g S [ B o
( / x — y| )wz(x) ;/ eyl LY i) = () (7.34)

Let’s introduce the number density n(x), Hartree potential V7 (x) and nonlocal exchange potential V,, with its kernel
U(x,y):

Z

:Z|¢j(Y)2
2
/Z] 1145 ()] 3y =

Ix —y| ) x—yl

_Z/de3y (%) = /U(x,y)f(Y)d3y

Ulx,y) = — Z ¢](;()_¢J;(|Y)

j=1

then we can write the HF equations as:

<_5v2 — % + Vi (x) + Vub) $i(x) = eii(x)

A
(—éV2 gt VH<x>) Vi(x) + / Ux,y)i(y)d®y = eni(x)
The Hartree potential can be calculated by solving the Poisson equation:

V3V (x) = —4mn(x)

7.10. Hartree-Fock (HF) Method 373



Theoretical Physics Reference, Release 0.5

where:
z
x) = Z s (x)[?
i=1

The application of the exchange potential V, on any function f(x) can be calculated by:
Z Wyj(x

Wil /flx—y

VAW (x) = —dn f (x)9] (x)

7.10.2 Roothaan Equations For Closed Shell Systems

Starting from (7.33) and integrating over spins we get (here 4, k are spatial orbitals, not spin orbitals):

N/2

Tli) + ) (2(KIVIik) — (k|V|ki)) = & |i)

k=1

(7.35)

We introduce basis functions |u) by (below the greek letters are basis functions, latin letters are spatial orbitals):

iy =Y Cuilv)

substitute into (7.35) and multiply by (u| from the left:

N/2
D (WITW) Coi+ Y (2 (uk[VIvk) — (uk|V|kv)) Cui = e Y (ulv) C
v v k=1 v

Now we expand the functions |k):

N/2
Y T Cri+ Y > (2 3 cakcz;k) ((uBIVIva) — 3 (uBIV]av)) Cui =i y_ (ul) Cui
v v af k=1

v

we introduce the density matrix:

N/2 N/2
A:2Z|k Z|Ox 2ZCakC[3k (B = Z|O‘ B (
k= af k=1
N/2
Paﬁ S 220041602;16
k=1

and get:

Do T+ Pag ((uBlVIva) = 5 (uBlV]aw)) | Cui = ey (ulv) C.

v af v

(7.36)

(7.37)

(7.38)
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introducing:
F _ Hcore + G
H™ = (ulT|v >

af

Suw = (ulv)
the equation (7.38) is:

Z F;wcui =€ Z Sp,l/cui

These are the Roothaan equations. It is a generalized eigenvalue problem.

(7.39)

Total energy is given by (the ¢, 7 in the first equation are spin orbitals, in the other equations ¢, j are spatial orbitals):

EZZ i|Td) QZ (i§|V lig) — (ij|V]ji)) =
= ZQI +Z (2J(i,9) 1) =

_Zz i) +Z (i|V]ig) — (ij|V|ji)) =

—22 i|Tli) +2Z (i§|V]ig) — & (i4|V |ji))

—222 (Tl cmcmzZZZcmc;iOajCEj ((uBlVIva) = 5 (uB|V]av))

HY aff i,

_Z (ulT|v Pl/;t"'gzzpuupa,@ uB|V|1/Oz>—7<,uﬁ\V\al/>)

v af
COI'C 1 —
- § :PVIL H;w §Gltl’) -

- zpw (HHES™ + J(HE™ + ) =

=1 ZP”“ Hcore F.)

The same thing can be derived in z-representation starting from (7.34) and introducing spatial orbitals:

N/2 N/2
VQ _ +/ QZk 1 |wk( )| d3 /wl y '(bk;(x) — Ei'(bi(X) (740)
] x -yl [x — yl
We introduce basis functions ¢,
X) = Z Cvi¢u(x)
substitute into (7.40) and also multiply the whole equation by ¢}, and integrate over x:
N/2
> [ ot ( A / il y> 6,00 Gy (.41
N/2 b
* v 3 _ * 3
_ ; / ¢/¢ / |X — y| 1/)k(x)d xC’m = €; ;/qﬁﬂ(x)gby(x)d ZECM'
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This can be written as:

Z F,uucl/i =€ Z S,ul/Cui

Fu = H/Sl(l)re + G =T + Vi + Gy

where:
T = / ¢ (x) (—3V?) ¢ (x)d%z = § / V¢ (x) - Vo, (x)d*x
Vﬂuzjas;(x)( |X|)¢V< )’
G = / <z>,1<x>< Wd3y> ¢y (x)d%z — / ¢ (x) N/Z / . By i (x)d’z

S = [ G000, (x)8%
Introducing the density matrix and density:

p(x,y) = (x|ply) =D (xla) Pag (Bly) = Z% Papdi(y)

apf
N/2
PaB =2 ankc;;’k
k=1
N/2 N/2 N/2
x) =23 WG =23 1) 7 =23 (xlk) (k) = () = Z% Fasdh(x)
k=1 k=1

Expanding the v, functions and using the density matrix we get for G, :

G = %B:Paﬁ/qsz (/ Md?’ )% Sp— 72Paﬁ/¢ /¢V d3y ¢a(x)d3x

or

=0 [ BB ~ SR g, g,

x —y]

1
=5 P (Bl ve) — 3 Bl
B 12 12
In physical and chemistry notation this is written as:
G = ZPM; ((uBlvay — 3 (uBlav)) = ZPaﬁ ((w]Ba) — §(palpv))
af af

Note that this notation implicitly assumes the T factor, so for example (u3|va) actually means (u S | ~|va) and one
has to understand this from the context.

7.10.3 Two Particle Matrix Element

The two pal‘thle matrix element 1S:
w w Qp wl X 3 ./

= (ik|jl) = /1/) x) (X)) (x )d’l(x/)dgxdgx/

[x — x|

= (7.42)
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The (ik|jl) is called the physicists’ notation because the |jl) and |ik) kets are:
130) = (%) (x')
|ik) = i (x)r (x')

The (ij|kl) is called the chemists’ notation. From (7.42) there are two types of symmetries — interchanging of the
dummy variables:

(ij|kl) = (ik|jl) = _/w 2 WZ(Xl)wl(X/)ded%’:

|x — x/|

i ( Ye(X) () 13 03 g .
/ |X’ _ X| '’z = (kllig) = (killj)
and taking complex conjugate:

(i|k1)* = (ik|51)* ( / B w’“‘x X,( )wl(X/)d‘?xd%’)*:

|
— / Vi () (x |X )_1/’;(| X)Vi (x )d3xd3m’=<jl\z'k>:(ji|lk)

If the matrix elements are real, then:
(ig]kl) = (ikl|jl) = (jllik) = (5illk)
In general those are the only symmetries (4 total).

If however, the 1);(x) functions are real, then there are additional symmetries: an exchange i <> j and k <> [. The
symmetries of (ij|kl) are exchange of ¢ with j or k with [ or the ij and k! pairs (8 total):

(ekl) = (jilkl) = (ij|tk) = (jillk) =

= (kllij) = (Iklij) = (kl|ji) = (Ik|ji)
So if we view (ij|kl) as two boxes (+|-) then we can permute the labels in the given box “-”, as well as exchange the
boxes (the only thing we cannot do is to take one particle from one box and put it into the other). As such the box “-”

is a pair of two electrons (in any order) and the two electron integral assigns a unique number to a pair of such boxes
(in any order). The symmetries of the (ik|;jl) symbol are:

(ik|jl) = (Gklil) = (il|jk) = (jllik) =
= (killg) = (lilkg) = (kglli) = (L5]k1)

TR

Example I: the Slater integral R* (i, 7, k, () has all 8 symmetries (Slater integral uses physical notation).
Example II: In spherical symmetry, the 2-particle integrals can be written as (see below for derivation):
(aB|y0) = (nalama nglgmg|n,lymy nslsms) = (nalama nylymynglgmg nslsms) =

min(lo+1y,lg+1s)
= Z ck(la,ma,lw,mv)ck(lg,m(;,llg,mﬁ)

k=max(|lo Ly ||l —Ls],[me—m )
5ma+m5 —m~—myg,0

Rk(nala, nglg, nyly, nsls)
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They only have 4 symmetries, because spherical harmonics are complex. In particular:

min(lg+ls,la+ly)
k k
(Baloy) = > F(lg,mp, U5, ms)c" (Ly, Moy, Loy ma)
k=max(|lg—ls|,|la —ly];|mag—ms])
6mﬁ+mufm57m7,0
k
R (nglg,nala,nglg,nvlw) =
min(lg+ls,la+1y)
k k o -
= Z c (la?mavl’vam’Y)c (lg,mg,lﬁ,mﬁ)(—l)m My tme=ms
k=max(|lg—ls|,|la —ly];|mg—ms])
6mﬁ+mufm57mw,0

Rk(nala»nﬂlﬁvn'ylwntilz?) = (aplyd)

and

(volaB) = (nylymy nslsms|nalama nglgmg) = (nylymy neloma|nslsms nglgmg) =
min(l.y+la,l(;+l5)
= Z Ck(l'yamwlaama)ck(lﬁamﬁvlﬁvmﬁ)

k:max(‘lv_lalvllé_lﬁM”"’Y_'m/al)

5mw+m5—ma—mg,0
RE (1, nsls, nala, npls)
= (aB|v9d)

We used the symmetries of the Slater integrals as well as the c¢* coefficients that change a sign, but thanks to the
O +ms—ma—myg,0, the overall sign does not change. The other two symmetries are missing, i.e. (y3|ad) # (aB|v0)

and (ad|yf) # {(afB|vd).

7.10.4 General Matrix Elements in Spherical Symmetry

Spherical symmetry is this particular choice of a basis:

¢nul (T)
¢#(X) = ‘bnul,l,mu, (x) = %Ylum,l,(ﬂ)
It can be shown that the solutions are of the form:
Pnl (7“)

U4 = Yrim (%) = 2 ()
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‘We can now write:

= ZCyi¢y(X)
/ b (X) i (x)d*x = ZSWCW
ZSMV /¢u wz .23— vi

Zal”lu(sm“,my ( n} n, /¢7L,l oM )wnlm( )d T = Cn l,my;nlm
m

n P,
Sttt (80) [ 2 (T @)r%0r40 = ot
m
71
Zél“lu(smumy (Srfmny /¢n“lu (T)Pnl(r)dr(sllu(smmu = Cn,,lumu;nlm
I

5ll,,5mm,, n} ny ‘/gbnM dT - On,,ll,mu;nhn

5ll 5mmucnyn = Cn vlomyinlm

where

Also we get:

'(/)nlm ch,, lymy; nlm¢ny ,,mu( )

Pnl('f')

chyl my;nlm ¢ny ,,( )}/l LMy (Q) =
= Z(Sll,,(smmVC,fl (b”” G )Yl m, (Q) =

From which it follows:

Z i (7
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The p index runs over all combinations of nim. In particular, here is an example of one possible way to index the
basis of 12 radial functions for each I:

polng Ly omy
1] 1 0 0
21 2 0 0
31 3 0 0
12112 0 0
13 1 1 -1
14 2 1 -1
15 3 1 -1
24112 1 -1
251 1 1 0
26| 2 1 0
271 3 1 0
36|12 1 0
371 1 1 1
381 2 1 1
391 3 1 1
481 12 1 1
491 1 2 =2
50 2 2 =2
511 3 2 =2

So the radial index n,, always starts from 1 for each [,,.

Overlap

The overlap matrix element

Suu = /¢;<X)¢V(X)d3$

becomes
Suv = Sntumunilym, = / M}/—l:m“ () ¢miﬁ, (T)Ylumu (Q)r2drdQ =
= 01,1, Om, m,, /OOO Bn,, (r)on,1, (r)dr =
= 01,1, Om, m,, /000 bn,t,, (1) Py, (r)dr =
= 81,1, Omm, Syt
where

St = / G (F) b ()l
0
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Potential

The potential matrix element

Vo= [ 6100 (- ) dus

becomes
Vi = Vot = [ 22805, (o) (-2) 2ty (@para
r p r r
> Z
= 5lHl,,5mumu / ¢nul“ (T) <_) ¢nul (’I")d’l“ =
0 r
> Z
= 6lulu5m“m,,/ (bn“lu (’I") (_) (bn Iy (T)d?" =
0 T
- 5l“l,,5m,lm,, Vrlefny
where
Z
Ve = [ 000 (- ) duariar
T
Kinetic
The kinetic matrix element
o= [ 600 (-19%) 6, (%
becomes
T/“/ = Tnulumu"l/lvmv = / ¢n“; ) l*m; (Q) ((_éVQ) (Z)”u U( )Ylumu( )) T2deQ =
(bn 1 (’f‘) 1 0? 10 ZV(ZV—FI) ¢n 1 (T‘) 2
_ TSI Ve S Y2 lY o, (22 drd) =
/ r Yium, (©) 29r2  ror 2r2 r tm, (2) | rodr
. o (bn“l“ (7“) 1 o 10 l/t(lu +1)\ én,, () 21
= 5zulu5m”mu/0 -, 252 7o o2 - redr =
Ly
= 6lulu(5m“m,,Tuy
where
d)n‘ 9? 10 +1)N dni(r)\ o _
_Qw_ré)r—i_ 2r2 r rhdr =

1 82 l l+1)) (bn,,l(r)) 7“2d’l“:

¢n“
o 87”2 272 r
1 82 l(l"‘l)) ¢nul(r)dT:

:/0 Gn,a(r) (‘2(97a+ 272
:L£m3<‘%¢nd<m¢ny<>-+¢nu<> Grrlonal )
—Aw@dWW%AH+%M>Z+1%" )
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G Matrix
The G matrix is given by:
Gro = 3 Pas (uBlva) — 3 (uBlow)) = 3 Pas (|Ba) — S(ual5n))
af af
Now we use:
(aBlv8) = (nalama nglgmp|n,lymy nslsms) = (nalama nylymy|nglgmg nslsms) =

min(la-‘rl«,,lg-‘rl(;)
= Z ck(la,m@,lv,mv)ck(lg,m(;,lg,m/@)

k=max(|la—ly|,|lg—ls|,|ma—m~|)
5m(,+m5 —m~—myg,0

R¥(nala,npls, nqly,nsls)

and
Paﬁ =2 E CaiCBi
[
Pnalama;nﬁlﬁm/i =2 § :Cﬂalama;nz‘limiC’n[slﬁmﬁ;nilimi =
7
l; l;
=2 § 5l ile 5m m(,al l55m mgc C"Bn7
= 2(Sl lB mamg E nanL ngnl -
lo
= 5lalg6mamgpnan5
where

nng_QE N ngnl

Where the sum over all occupied orbitals 7 can be written as:

ZZZZZ

n;l;m; =0 m=—In;=1

Where the sum over [ is the outer sum, both m = m; and n = n; depend on [. We get:

G;w = Gnul“munulmny = Z Pnalamanglg'rrzg (<MB|VO‘> - % <,U/8‘04V>) = Juu - Kuu

Nalamanglgmg
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The first part is the direct term, the second part the exchange term. Let’s treat the direct term first:

J,ul/ = Z Pnalamangl/gm/g </Jﬁ|l/0[> =

nalamanglgmg

min(lu+l,,,lﬁ+la)
k k
= § Pnalamanﬁlﬁmﬁ § c (l/um;mluaml/)c (locamavlﬁ7mﬁ)

nalamanglsmg k=max(|l, —Ly |, [lg—La | lm, —m )
5mu+mg —Mmy—mg,0
Rk(nulu,ngl,@,nyly,nala) =
min(l,+1,,lg+1a)
= Z 5lal/i6mamﬁPTlL g Z Ly mpy Ly ) (Lo M, g, mg)

nalamanglgmg k=max(|l,—1,|,|lg—lal|,|mu—m,])
5mu+mg—mu—ma,0
k
R¥(nulu,nglg,nuly, nala) =
min(l,+1,,20)

= Z ZPflanﬁ Z ck(lu,mu,lu,my)ck(l,m,l,m)

neng lm k=max(|l,—l,|,/m,—m.,|)
5m“7mu,0
Rk(n#l#,ngl,nylwnal) =
= Omym, Y Z Ly (L, Ly ) (204 1RO (e, mgl, gl mal) =

Nang

= 81,1, O, m, Z 2A+1) Y Pl RO(nulu,npl,nyl,nal)

Nang

For the exchange term we get:

K/,LV = % Z Pnalamanﬁlﬁmﬁ <,Ltﬂ|0ll/> =

Nalamanglgmg
min(l,+la,lg+1)
1 k k
=3 E Pnalaman['llﬁm[-} E ¢ (l#,m#,la,ma)c (lV’mwlﬁvmﬁ)

nalamanpglgmg k=max(|ly—lal,llg=ly]|mu—mal)
5m“+mg—ma—mu,0
R¥(nulu,mpls, nala, nul,) =
min(l,+la,lg+,)
=1 Z (SZQZﬁ(SmQ,mPfI s Z Ly My Loy ma ) (L, my, L, mp)

Nalamanglgmg k=max(|l,—la|,|lg—1l,],|mu—mal)
5m“+m5—ma—m,,,0
k
R¥(nulu,nglg, nala,nuly) =
min(l,+1,1+1,)

= 20mum, Z Z s Z (L, my, 1, m)ek (L, my,, 1,m)

nang Im k=max(|l,,—1|,|l—1,|,|m,—m])
k
R¥(nulu,ngl,nal,nyl,) =
min(l,+1,04+1,)

= 16m,m. Z ZP,ZLMLB Z (L myp, L, m)c (1, my, 1,m)

nang Im k=max(|l,—1|,|]l—l,|,|m,—m]|)

RF(nul,,ngl,ngl,n,l,)
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For [,, = [, this can be written as:

L+l
Ky = %616 P! k(1 1,m)c*(1 1,m)
pr — 290,01, %m, m, nang C gy Ty by T )C by Ty £, 1T
nang lm k=max([l,—1|,|m,—m])

RE(nyly,npl,ngl,nyl,) =

L+l
:%51,‘,1 Smom, Z Z s Z 2l+1 k(l#,O,l,O)
nang k=|l,—1|
Rk(n#l#,ngl,nahnul#) =
lutl 2
zalul,,amﬂmuz @+ > P, Y ;(lg : é)

nang k=|l,,—I|

RE(nyl,mpl,nal,nyl,)

All together we get:

Grw = 81,1, O Z 20+1) Y P,

n TLB
L+l I i I 2
R (nyulysnpl, by nal) = > ;(5 0 0) RF(nuly,ngl,nal,n,ly,) | =
k=|l,—|
= 5l,l,ly5mumu Gln“n,,

where

Gl —Z 2'+1) Y P

Nnang
I+
0 / AN 1 l k l/ k / /
R(n, l,ngl",n,l,ngl R nul,ngl’,nal’,nyl
iz B 2\0 0 0 iz B
k=|l1-1|

Note: performing the sum over n,, and ng we get:

o, =20+ 1)l LCh L
7

n’ nang

I+ 2
RO(nul, ngl! s nyl, nal') — (LR UNT Bk 1l ml ml) | =
pts Mpl Nyl Ney ) Z 2\o 0 o (nuanﬁ ;' nyl) | =
k=|i—1']

=> 202 +1))
14 n’

I+ A 2
R(n,,n'l',n,l,n'l") — Z z (é g ZO) RE(n 0/l 'l nyl)
k=|l—|
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Radial Roothaan Equations

The Roothaan equations are:

Z(T +V+ G)MVCVi =€ Z S;U/Cui

v

g (T +V+ G)n#lumun,,lumyCnulumumlzmi = €n;lim; E :S”ulumu"ulvmvC"Vlumvnilimi

v v

L l;
E (T +V+ G)nulumunulumu(slilu(smimuC’I’Z,,’I’Li = €n;l;m; E Snulp.mp.null/mu5lil1/5mim1 Cn n;

v

§ § L
(T + v + G)nul“munyl 7’nlC’nlun1 = €n;l;m; Snul“m“nyl micnynl

ny ny

5luli5mumi E (T + V =+ G)n“n,,Cnl,ni - 5l“l 5777«;47717 Enzl Lz § n,lnl, n,,nI

ny

The eigenvalues will be degenerate with respect to m; and so the radial Roothaan equations are to be solved for each
l:

Z(T +V+ G)n wny n,,m = €n;l Z nun, num

ny

The total energy is:

=3 ZPW H™ + Fu) =
= ZPVIL(FIW - %GMV) =
nv

l 1 l
= § 5lp.lu(5mumuPninuéluluémumu (F_ §G)7{Ln,, =

g
=22 2 Pt (F = 5@, =
po Mp Mpny
—Z Y @+ VP, (F =3, =
=3 > @+yp, (F-1G), . =
I npny
=S Y @+ 22 i G (Fh i, = 3Gl n,) =
I nuyny
=Y > @+ 22 s <enszl,,,ny —3) 22+ 1))
I nuny v "

1+l
RO(nu 0,0l ny,l,n'l') — i (kT 2Rk(n LUl n,l) | | =
[128) s Tovly ki‘l l,‘ 2 0 0 0 j138) 9 ) Ty

k=141’ A 2
=D 3 20@+1) [eu—D Y @' +1) | ROl 0V nln'l) -4 Y (é ’8 l0> RE(nl,n'l', 0/l nl)
l n

Y k=[1—1|
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Two particle

We use the following functions for :

P, (r
v = 22Uy, @)
]D’n’ll'1 (T)
Yj(x) = — o Yimy ()
P, (7
we) = 220y, @)
P, 1 (7‘)
) = =Yg ()
And the multipole expansion:
4dr
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And we get:
(i]k) = (ik|jl) = (11']22') = (12[1')) =

1 ! !
= (Limylomg|—— | | |13 ,1127”/2> =
/ ¥r (X)) (x ( Ml(x/)d?’xd?’x’ _

IX—X’I

Pnl T * Pn’l/() Pnl P’rl' (/)
- [Pty <Q>+wmgm>%”mm<ﬂ )L (@)
Z pa %H Yig (Y3 ()12 drdr’dQdSY =
> [ Vit (Vi (ViDL [ i, () Vi (), ()l

k
T 47
/ @ 21 (1) Py, (1) Prayty, (1) Py, () drdr” =

= Y (—1ymitmata / Yir s () ¥ig () Vi ()2 / Vi ()Y ()Y g ()Y
k

/ e dm Pty (P) Py iy (1) Pty (') Py () drds” =
k+12k+1 1t1 nyly 262 2bo

— Z(_l)m1+m2+q\/(211 + 1)(21/1 + 1)(2k + 1) I lll k I l/1 k
g 4T 0 0 0/\-m m] ¢

\/(212+1)(21§+1)(2k+1) lo 1) k lh 1y, k
4 0 0 0/\-my m)j —gq

/ e dm P (1) Pt (1) Py, (') Por () drds! =
k+1 2k +1 161 14 2t2 ol

Wl kY (k1 k
%:\/%H (20 + 1)(2l + 1)(2l5 + 1) (5 0 o) (5 0 o)

k
Z (_1)m1+m2+q Iy lll k lo ZIQ k
—my my q —mg mh —q

q==k

k
r
/Tkilp 12 (1) Py (1) Prgty (T/)Pnlgl/z (r")drdr’ =
>
min(ly+17,l2+15)

- S V(20 + D20+ D)2 + 1)(20 + 1)

k=max(|ly =11 |,|l2—15],lm1—m1])

, Lol k(L & k
_1\mitm ’ / . ) ) )
( 1) 257n1+7n2—””1_m2’0 <0 0 0> <0 0 0>
) " k lo Iy k
—mi mip mpi—mi) \—my mh my—mj

k
-
/ kil Poyty (1) Py (1) Pty (') Py (1) drdr”

In the last step we used the fact that the 35 symbols are zero unless —my +m/ + ¢ = 0 and —mg +m} — q = 0, from
which it follows that ¢ = my —m/} = —ms+m/, and so one of the 3j symbols is zero unless my +my—mj —mf = 0,
which is expressed by d,; 1m,—m/ —m;,0. Given this condition, the sum over ¢ must be such that one q is equal to
my — my = —mg + mb, which means that k& > |my — m}| = |ma2 — m}| otherwise the 3j symbols will be zero.
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Finally, k¥ must also satisfy the conditions |l; — ]| < k < Iy + 1 and |ls — l}| < k < Il + 1. The sign factor
(_1)m1+m2+q — (_l)m1+m2+m1—ml — (_1)m1+m2—m2+m2 is equal to both (_1)m1+m2 and (_1)m2—m1 SO we
just used the former.

We can write this using the ¢* symbols as:

min(l1+l'1,l2+l'2)
(ijlkl) = S V@ 1)1+ 1) + 128+ 1)

k=max(|ls ~1}],la—1} ], [m1 —m} )

e LU\ (I, I, k
) ) ma (o6 0) (56 5)

hool k Ll k
—my; mj mip—mi) \—ma ms mo—m)

k
r
/ Tk;%Pnlll (T)Pn’ll’l (T)Pn212 (T/)Pn’gl’z (T’)deT’ =
>

min(ly +17,l2+15)
= Z (1, my, 1, my) Iy, ma, Uy, mb)

k=max(|l1 =1} ],|la—=15],|m1—m]])

’
_1\ma2—mjy
( 1) 57n1+m277n’1*m/2,0

k
.
/ e Pt (1) Py (1) Pty () Py () drdr” =
>

mln(l1+l/1,l2+l/2)
2 : k / AV /
= & (ll7m1all7m1)c (l27m2al27m2)

k=max(|l1 =13 ],|l2=l5],Im1—m1])

6m1 +ma—mfj—m},0

k
r
/ /r];%Pnlll (T)Pn’ll’l (T)Pn212 (T/)Pn;lfz (T’/)deT, =

min(ll-‘rl/l,lg-‘rl/z)
§ : k / N k! /
= & (llvmlallvml)c (127m23127m2)

k=max(|l1—11|,|l2—13],|m1—m]])
5'm1 +mo—mfj—m},0

k
R*(nqly, nala, nill, nSl})
We can also couple the angular momenta as follows:

|l1l2LM> = Z (l1m1l2m2|LM) |llm1> |l2m2) =

mimz

_ l l L
= Z (71)[1 l2+M,/2L+ 1 (mll 7;2 —M) |llm1> ‘12m2>

mim2
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and we get for the matrix elements:
1

=
> > (-t TR

mima mim}

o le L A
my me —M)\m}y ml —M

1
(lima | (lama| x| |[1ymh) |lamy) =

oD (Cyh MM DL L 1) (2L 4+ 1)

mimsa m’l m’2

Ll L A A
my mo —M)\m{ ml —-M
(i7]kl) =
= Z Z (_1)l1—lz+l/1_l,2+M+M’\/(2L+1)(2L/+1)

mi1ma mim}

o le L nolh L
my me —M)\m}y ml —M
I I kY[l U k
/ / 1 2
S/ @+ D@+ 1)@+ 1)+ 1) (o . o) (o ; o)

k
k
Z (_1)m1+m2+q Zl lll k l2 l/2 k
—-mi my q) \—-m2 mh —q

q=—k
rlé ’ ’ /
k+1 P, 111( )Pn/llll (T)melz (7’ )Pn'gl/z (T )d?“d?“ =

=Y Y (—phlthhr 4

mimsa miml

s (b LY(L L
MMICLLE \'my mg =M ) \ml mh —M

, ’ LUk (I
Z\/(211+1)(211+1)(212+1)(212+1)(0 . 0) (0 20

k
k
Z (71)m1+m2+q I l/1 k lo 1’2 k
—m; my q)\-ma mh —q

a=—k
e / -
/ k+1P w(r )P",ll/l (r) Prg, (7 )Pn'gl’g (r")drdr’ =
= (_1)l1_l2+l/1—l/2 (2L + 1)
L U kN [(ly 1
/ / 1 A
Z \/(2l1 + 1)<2l1 + 1)(2l2 + 1)(2[2 +1) <0 . 0) <0 :

k

(WlsLM|——— UL M) =

N
N———

o
N——

/ li 9 L
, S(—1)atl+L )t b2
Smmorr (—1) {1/2 I k}
Tt p (1) P 1y (1) Prgiy (') Py (¢ )drdr” =
k}+1 nlll ) ,l/ ( ) nalg (T ) 1’L'2l,2 (T ) rar =

rk
= Z/ kilp 1l1 /l' ( )Pnzlz (r/)Pnlzl/z (’I“/)deT/

(=122 (L 4 1)Sppns ﬁLLMv/(Ql1 4 1)1 4 1)(20 = 1)(215 4 1)
7.10. Hartree-Fock (HF) Metho LonoR (b R\ (L 6 L)
00 o0o/\o o o)\, U, K[

k
N T b (P (VP (VP (D) iy
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Where we used the 65 symbol:

{;/1 5/2 i} — Z (_1)l1+l2+l’1+l/2+L+k—m1—mg—nz’l—m/z—M—q
2 1

mymom|m,Mgq

Lols LN( L U KN(& & L\(U 1 k\._
mi me —M)\-mi m{ q)\mh —-mi M)\-mbh —-ms —q)

— § (_1)l1+l2+l'1+l/2+L+k—m1—mQ—m'l—m’Q—]VI—q

mymom)mi,Mq

L L l Ik 4 1 L (_1)lg+l’2+k Iy 15 k' _
my mg —M)\-mi my q)\m} -mh —-M —mg —mh —q

’
= Z 5A17m,1+m/2(_1)l1+l1+L(_1)m1+m2+q

!’ !
mimamimsq

Lo LN( L I K(L 8 L\{(lL U &k
my me —M)\-m; miy q)\mi 4+mh —M)\-ms +m) —q

Where we have renamed —m, to m.

7.10.5 Slater Type Orbitals (STO)

In this section we express the matrix elements in the STO basis. It turns out that all integrals that we need can be
expressed in terms of the following simple integral (where n, { > 0):

® e > /x\" __dz S e I'(n+1) n!
/0 recdr:/o (C) e ?:C”H/o e Pdr = e :Cn+1 (7.43)

The STO basis function for the radial Schrédinger equation for P(r) is:

Poc(r) = Nper™e ™" (7.44)

Where the normalization constant IV, is such that the STO orbital is normalized as the radial wavefunction P(r):

_ [T e e [T on cacr e (20)!
1 7/0 Png(r)dr = Nnc/o r2re=2rdr = NnCW
from which we get:
(2021
Npe = —F—————
a (2n)!
Note that for R(r) = @ we get the following STO basis function:
P, 1 -
Rn((r) _ Lj(T) _ Nn(rn 1o qr (7.45)

One uses either (7.44) or (7.45) depending on whether one solves the radial Schrédinger equation for P or for R = %
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Overlap

Sii = /Pnig (r) Py, (r)dr =
- /N e Ny, e 9T dr =
mils n;¢j
= Np;¢; Nnj¢; /Tm+nje—(<i+<j)rdr _

=Np.¢cNp¢e, —————
iCitVn;¢; (Cz ¥ Cj)ni+nj+1

Potential

Vij = /Pm-ci (r) (—f) Py, (r)dr =

Z
= /ngir"ie_c” (_r> Nnjcjr""e_wdr =

- 7ZN"L71<7‘,N7LJ'CJ' /TniJrnjilei(CiJer)rd’r =

(ni +n; — 1)'
=—ZN,.c. Np.¢c. ——t—"
iGi JCJ (C’L + Cj)n1+n‘7

Kinetic

1004 1)

92 Py, (7")) dr =

7%‘/@%&@%@m+ﬂm@

d ng; ,—GQiT d n; ,—Gq4;7r ng; ,— T‘l(l+1) n; ,—GC4;7r
—éNmCZ_NnJQ/(dT(T g6 )E(T TeTCIT) e —a e S >dr—

= %fvﬁigjvﬁjijj/ (e =tem6m — Grmeem6m) (yra1em6r — G 6T (14 1)rretn 2 GO dr =

NN n;C; + 1 e (it Mo =2 (i )
:%Nni(iN7lj<j/<< ;2] - iGj ; 5Gi +<i<j> pritng o= (Git¢) +1(14+D)r it =2 5= (Ci+¢5) )d?"z

= 5Nn:¢: Nayg, / ((ninj U+ 1))t 2T GHGDT — (¢ (it le (G 4 CiCjT"i+nje_(Ci+Cj)T) dr=

2
(n; +n,)! )
G+ et

(n; +n; —2)!
i+ Gy

(n,’ +n; — 1)‘
Gr G

= %NniCiNnjCj ((nln] + l(l + 1)) - (niCj + njgi) + ClC]

Two particle

In this section we also need the following integral:

> I I(n+1 ! —~ u ("
/ r”e*CTdr:Cn_H/ e Tdr = (ntlow _ n e*C“Zu ¢

v!

u (nt+l B ¢+l ~
where
0o n—1
T(n,z) = / t"leTtdt = (n —1)le™® Z '
z v=0
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is the incomplete gamma function.

The Slater integral is

/k

(4,4, k,1) / / 71;-<-1 Py(r) Py (r)P; (r") P, (r")drdr” =
dr

:/dr
0

[
+Am“/ &' P Pr) Py (1) Pir) =
Amwﬂm” () Pe(r) Py () P (") +
+'/£a3drljé dr e P Pu(r) Py () Br) =
:Amwldﬂml (r)Pu(r) Py () PL(r")+

+A / () Po(r") Py (1) Py(r) =

:%mmm+%mmw

(r) Pk (r) P (r') Pu(r')+

where R’“A(i, J, k, 1) is the integral over the lower triangle (assuming r is the z-axis and r’ is the y-axis), thatis r > r/:
o) T T‘lk
R (i,4,k,1) :/ dr/ dr’ﬁPi(r)Pk(r)Pj(T’)H(r’) =
/ dr’ / dr (r)Py(r)P;(r")P(r') =

k
:NniCiNnjCankaNnLCl/O dT/ // dTTkJrl Tm+nk7/nj+nl6_(<i+<k)re_(<j+@)r =
T

ni+ng—k—1 ,V

oo . —k—1)!

_ 1otk g4y —(C4C)r (ni +ng — k —1)! —(Cit+Cr)r’ E : (G +Cr)”

= NniCiNnj(ankaan(l/o A (Ci + C)ritmn—rh € o ~ V! B
nit+nrg—k—1

(n;i+ni —k—1)! (nj +ny +Ek+v)(¢+ )
= Nni 1Nn Nn Nn - =
¢ 'S kCk 16 (Cz +Ck)’m+nk—k VZZO V!(Cz +Cj + Ck + Cl)n]+nl+k+v+1

(ni—l—nk—k—l)! b
:NmCiN”jCankaNmCz @ +<k)ni+nk*k Hijkl

where:
o "i*"f’“‘l (nj +ni+k+ )¢+ )
T (GGG QR

Much more tedious method is the following:

u oo 0o n n uVCl/
/ e ST dr = / e Tdr — / e STdr = (1= e Su Z
0 0 u ¢nt v!

v=0

The Slater integral is given by:
e} k
Rk = [ SPGB RO =
0

Yk(PjP)l,’/‘)dr
T

=AMHW&@)
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where
k * 7"]2 / / 1 " 1k / / k+1 > 1 / /

Y¥(f(r),r)=r ) Tk+1f(7" )dr’ = W " f(rh)dr’ +r T/k+1f(r )dr

> T
and we get:

1 T (o]

Y*(Pj(r)Pi(r),r) = Tk/o ' Py (r")Py(r")dr’ + rF T i P;(r"\P,(r")dr' =

N,.c.N, " o
_ nJC]k fLLCL/ r/kr’”je er /nle G’ dT +Nn ¢ an(z / /k+1 /nJG er r””e Gr' d?" _
r 0
— Nnj(j]‘jvnl,ﬁ / m; +nl+k (C,+Q)r d’/‘ +NVLJC] er” k+1/ /n itni—k—1 7(C7+Q)rd /
r 0
+
_ NnjCijCl (nj +n; + k)' 1- —(¢HC)T Z Cj + Cl +
R (G A )t =
’n]‘+’n¢l*k71 v v
et (it —k =Dl e, (¢ + Q)
-|—Nm¢ijQ7“ (CjJrCl)njw”—k e I ;) !
Putting everything together we get:
n;+n;+k
o 11 (nj4+nm+k)! ey (G + Q)Y
k(: = — ng ,—CiT : =G J —(¢i+C)r J
R(i,j,k,1) = NniCiN”JCjN”kaanCz/O re e kr; TC(C] + ¢)na Tkl 1— e (G Z o
v=0

ni+n;—k—1 v v

g1 (nj + g —k—1)! —(C+C)T S (¢ + Q) _

+r —w e’ Z - dr =
(Cj _|_<l)n]+nl—k s !

ni+n;+k
(nj +m+ k)Y [ k1 (Gt (G ™G+ Q)"
niCiN”jCj NnkaNmCz (C] n Cl)nj+nl+k+1 0 r g e g L—e > Zo o dr+

o0 nitm k=l bkt v
+/ o= (CH GGty (g 1 —k —1)! e ,(Cj +Q)" .
0 12

(G + G)ratm= F =0
i+ny+k
_ N. - N. - N (nj +n +k)! (ni +ng —k—1)! _n,§+ G+ Q) (ni+nk—k+v—1)
niCidVn; ¢ Vng (i Vn (Cj + Cl)nj+nl+k+1 (Cz + Ck)n,;—i-nk—k prt V!(Ci 4 Cj + Ck + Cl)ni+nk—k+l/

itni—k—1
Lt —k =1t Z (ni + 1 + b+ )G + Q)
GHQ T 2 G G Gt Qe
B (nj +ny + k)! (ni +ni —k—1)! k1
= ”iCiNn_i<_7N77«k<anl<l <(Cg +Cl)nj+nl+k+1 (Ci‘f‘CIc)”H_"k_k Hﬂlk +
(anrnl*k*l)!Hk B
(G + Gy ) =
_ (n; +nx —k —1)!
= mCiNnjCerbkaanCl ( (Ci+<k)ni+nkik

(nj+nl—k—1)! k
Hijkl (Cj""Cl)anrmik Hjilk:

where:
ni+ng—k—1 (nj+n +Ek4+v)I(¢+ )

z]kl 1,2:(:) V'(Q Jrcj Jer + Cl)n~7+nl+k+y+1
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7.10.6 Gaussian Type Orbitals (GTO)

In this section we express the matrix elements in the GTO basis. It turns out that all integrals that we need can be
expressed in terms of the following simple integral (where n, > 0):

o0 2 1 oo 2 n— F L“Fl
/ e " dr = "™ dx = "Tetdt = ( n2+1) (7.46)
0

1 oo
Nl W/o t 20

(n—1)I! /s@eyr  forevenn

= n—1
2( \/ZL% for odd n

The GTO basis function for the radial Schrodinger equation for P(r) is:

Poc(r)= Nngr”efcr2 (7.47)

However, unlike STO, the GTO functions must satisfy the condition n = [ 4+ 2¢ + 1 where ¢ = 0,1,2,... (this
condition is later used in (7.46) to determine whether 7 is even or odd). The normalization constant V,,¢ is such that
the GTO orbital is normalized as the radial wavefunction P(r):

s

I A o2 [T e o a2
1_/0 Pnc(r)dr—NnC/O rteT 3 dr = Nye(2n — 1)1 20yt

from which we get:

B 1 2(4¢)2n+1
Nng = \/(2n—1)!! v

Note that for R(r) = Pr) e get the following GTO basis function:

-

P, 1 _ep2
Ruc(r) = T2 — iyt (7.48)

One uses either (7.44) or (7.45) depending on whether one solves the radial Schrodinger equation for P or for R = g.

Overlap

Sy = [ Paci(6)Pog, (r)dr =
X 2 . 2
= /NniCiTnle_ClT Nn].CjT'nje_C]T dr =

= NniCiNnjCj /rni+nje_(gi+<j)T2dr _

I\(ni+;j+1)

= Vn; (¢, Nnj(j

nitn;+1

2(Gi+¢) =

™

— N, o Ny o (ni+n; — I
iCi JCy(n +n] ) \/2(2Ci+2cj)ni+nj+1
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Potential

Vij = / Prici(r) <—f) Poy¢, (r)dr =

Z
= /chir""’e_c“"2 (—) Nnjgjrnje_c-“er =
r

_ *ZNnIQNn]Q /Tni+nj71€7(Ci+<j)r2dT’ =

F n,;—‘—nj
— _ZNniCiNnjCj# —

ni+n;

2(G +¢j) =2

= —ZNn¢,Nny¢, :
PN T

Kinetic

11+ 1)
7y = [ (32000 (004 Puc ) G P ) =

d i, —Cir? d nj —Cr2 ni —Cir? l(l+1) nj —C;r?
:éNniCiNnjCj/<dr(T e ¢ )g(r ie= )+re ¢ r2 e )d?"z

= $Nnici Ny, / (e 6 — oGt lemr?) (rypi=1em6r* — 2 tlemGr’) g1 4 1)yt 2 (@O ) 4 =

= 5N Nay / ((nﬁ] = 2(ni¢; +nyG) + 4CiCj’"2> TR (R 1)7’"#“]'7267((#9%2) dr =

= 5Nni¢: Nue, / ((ni”j UL+ 1))t 2e T GFDT g0, ) e (GG 4Cz‘€j7“n"+nj+2€7(g+gj)r2) dr=

(m—&-nj—l) F(ni+nj+1) F(m+nj+3)
= %NniCiN"jCj ((ninj + l(l + 1)) 2ni+nj—1 - 2(711(]- + ng(z) 2"i+"]‘+1 + 4CiCj 2"i+"7'j+3 > dr =
2(Gi+¢)~ 2 2(Gi+¢) = 206G+ ¢~ 2

s
+
(2 + 26

= 3 Nni¢: Nuy¢ ((TLJL] +1(+1))(ni +n; — 3)”\/2

T
=2(niCj +n;G)(ni +nj — 1)”\/2(2@ g,y +

e
+4G ¢ (ni + 1y + 1)”\/2(2@ T QCj)ernjH)

Two particle

We will need the following integral:

& 1 > n— I LH, U2
/ e dr = — / 2" T e dy = 7( 2 +<1 )
U 2( 2 Cu? 2( 2

Just like for STO, we get:

RF(i,j,k,1) = RE (i, 5, k,1) + R% (4,i,1, k)
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where R’“A(i7 J, k, 1) is the integral over the lower triangle (assuming r is the z-axis and r’ is the y-axis), thatis r > r/:

(i,7,k,1) = / dr/ Ar' ——Pi(r) Pp(r)P; (') P(r") =
/ dr/ dr (r)Pi(r)Pi(r" ) Pi(r') =

P +nkrlnj+nze—(Ci+Ck)7‘26—(C,~ +¢)r'? —

= Noi¢:Nns¢; NkaanCz/ &’ / dr

ey DB (G4 G)r'?)
:NnigiNnjC_ankaNnZCLA dr'ykpmatr = (G nl T =

(Cz + Ck)

nitn—k-—2

vi+ng—k
J R e e DI i

- n;C; N”JC) Nnka n1G

P +n
2Gi+ )T IS vt
nitng—k—2
nitng—k _ 1) 2 (C + Ck)y F(7Lj+m+k+2u+1)
2 7 —
= n7C1Nn7<7 NnkaNnLCL g +nk k Z V' n +nl+k+2u+1 =
2(¢i + Cr) v=0 ’ 2(¢; + G+ G+ Cl)
( . . ) nitng,—k—2
g — 1 : (G + Cw)” (nj+m+k+2v—-1)/r1
= NniCiNTLj(jNTLkaanCl ", +'n.k k Z - o nj+nl+k+2uj+ nytn T ht2vkl
2(Gi + i) =0 o2 (GH GG+ T T
VT ,
= Ny, Nuye; N, H

n Nn
kCk 16 2p+2\/ C’L+Cj +Ck+€l)2p+1

itn; —2
where p = % and:

ﬂz;k:_ (2p — 20 — DN (BEGE=R)199(G + G + G + Q)"
(ni +np = v)H A + M)+

ko _
Hijkl -
v=0

7.10.7 Exchange Integral in Spherical Symmetry

Let’s calculate the exchange integral

Brd3z’

/1/) X)¢h; (X) 95 (x) i (x')

IX*X’I

for the particular choice of the functions 1/:

P(r
vix) = 20y, ()
Pn/ "\r
w0 = 0y ()
We use multipole expansion:
1 rk ar . o
= Yig ()Y ()

k
|X — X/‘ k,q T>+1 2k +1
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And we get:

/¢* %'X ( /)wi(x/)dgxd;gx/ _

x/|

-/ P"Z(T)KMQ)P”'ﬁf ) Py Py )

r! !

Z k+1 2]€ + 1 kq(Q)Yk*q(Q/)T2T’/2d’rd’r/deQ/ =
-y / Vi () Yirms ()i (D [ i () Vi ()75, ()Y

rk o 4m
[ T PO P R Pl i -

=2 / Vi ()i () Vg ()dQ(—1) ™7 / Yir—m ()Y () Y, — () QY
k,q

/ le Am Pnl( )Pn/l/(’r‘)Pn/l/(’/‘/)Pnl(’l"/)d’l"d’l”/ =
k+1 2k +1

2k+1 / / 2k+1
l l/ / 1m+m+mfm kl* l’* /
-t L) R

/ re _dn T P (1) P () Py () P (7 drdr =
k+1 2k +1

k

= ch(l7m7l'7m’)ck(l7—m,l’,—m’)/:—;PM(T)PW;/ (r) Py (") Py (r')drdr’ =
k >

k
= Sl m, ) (L, ) / S Pat(1) P (1) P () P ()’ =
k >
el 2 rk
= Y (Fum,m)) / kjlp (1) Ppryr (r) P (7)) Py () drdr”
k=[l—1'|

7.10.8 Occupation Numbers

‘We have a sum over N electron states like this:

N
ZAZ(X) - Z Anlms(x)

nlms

where A,;ms(X) are some functions that depend on the state numbers (for example squares of the wavefunctions).
Then there are two options — either there is a way to sum over the m and s degrees of freedom, so that the sum can
be written exactly as:

§ Anlms E Bnl
nlms nlms

where B,,; (that don’t depend on m and s) will in general be different to A,,;,,s, but the sum will be the same. Or we
have to approximate the sum (for example by averaging over the angles, or in some other way) as:

Z Anlms Z Bnl

nlms nlms
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In either case, the occupation numbers f,,; are simply the number of times the functions B,,;(x) appear in the sum for
the given n and [:

Z B (X) = Z fnanl (X)
nl

nlms

So for closed shells atoms, it is always:
for =2(204+1)

because there are two spins, and 2[ + 1 possibilities for m, for open shell atoms, f;,; is anything between 0 and 2/ 4 1.

Example |

As an example, let’s say that after some calculation for closed shell systems we get exactly:

> Apims(x) = > 2(20 + 1) By (x)

nlms nl

Then because there are exactly 2(2] + 1) states in the nl shell, we write the above as:

> Apims(x) =D 2020+ 1)Bu(x) = fruBnu(x)

nlms nl nl

Then we do similar calculation for the open shell system, and we have to use some approximations to get the following
formula, where the B,,;(x) happen to be exactly the same as for the closed shell system:

D Anims(x) = Y 2Bui(x)

nlms nlm

Then we denote by f,; the number of electrons in the shell nl (at least one of them will be open, for which nl we have
frni < 2(21 4 1)), and we can write the above as:

Z Anlms(x) — Z 2Bnl(X) = Z fnanl(X)

nlms nlm nl

Example Il

The usual chemical occupation numbers for the Uranium atom are:

fu=2@20+1)

fa=2(20+1)
far=202041)
fu=2020+1)
fsi=2(2041) forl <2
f53=3

Jeo =2

Je1 =16

fez=1

fro=2

Sothen = 5,1 = 3 and n = 6, [ = 2 shells are open, all others are closed. By summing all these f,,;, we get 92 states
as expected:

> far =24 2+6)+ (246 +10) + (2+ 6+ 10+ 14) + (2+ 6 + 10)+

nl

+34+2+6+1+2=92
Code:
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def f_ nl(n, 1):

if n < 50r (n ==5and 1 <= 2):
return 2+ (2+x1+1)
else:
d = {
(5, 3): 3,
(6, 0): 2,
(6, 1): 6,
(6, 2): 1,
(7, 0): 2,
}

if (n, 1) in d:
return d[n, 1]
else:
return 0

print "Sum f nl =", sum([f_nl(n, 1) for n in range(8) for 1 in range(n)])

prints:

Sum f_nl = 92

7.10.9 Hartree Screening Functions

Hartree screening function Y*(f, ) is defined as:

oo k
YR(fr) = 7"/0 ri1 Frhdr’

k
r>

and it occurs in many formulas in the Hartree Fock theory, so this section shows how to calculate it. It depends on &
and a function f(r).

We first do the integral:

k >~ 7“12 / / " T,k / / > Tk / /
Y*(f,r)=r —kﬂf(r Ydr' =r —k_ﬂf(r )dr' +r 7/k+1f(r )dr' =
0 r> o’ T r

B Tik or xkf(x)dx o /TOO g;k1+1 f(z)de = Zk(r) +rit /TOO xk1+1 f(x)dx
where:
Zk(r) = le/or 2* f(z)dx
dZ*(r) kg
0 = 220 + ()
zZk0) =0
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Now we differentiate Y (r):

Av¥(r)y dZF(r) k41 . [ 1
dr ~  dr + r " /T rhtl flz)de = f(r) =
k 1

:>_zwm+ﬂn+5;iwﬂ/“xﬁgmwmfﬂm:

,
:—EZk(r)+7k+1rk+1/ L f(z)dz =

r r xhtl
~2£240)+ ) - 24 -
:_2k::—1zk( )+kt1Y’“(T)

Also Y*(00) = ZF(c0), so we get the following set of first order differential equations with boundary conditions:

(5 - ) o =-E 20

dr r r

(5+5) 20 =50

r

YF(o0) = Z%(c0)
ZF0) =0

One way to calculate the Hartree screening function is to integrate the second equation from the left using the boundary

condition Z¥(0) = 0 and then integrate the first equation from the right, using the boundary condition Y*(c0) =
Z¥(00).

Another way is to obtain one second order equation. Expressing Z* from the first equation:

2 = T (d_k+1>yk(r):

S 2k+1 \dr r
roodYE(r) k41,
T %+l adr TR

and substituting into the second equation we get:

d k& roodYR(r) o k+1 .\
_(dr+r><2k—|—l dr +2k+1y)f(r)
r d?  k(k+1) B
g7 (= ) Y =50

r
A k(k+1)\ 2k+1

(gt ) =2

With boundary condition on the left:
E+1
7k(0) = VE() =
0) 2k+1 (0)=0
Y*(0)=0

and on the right:

o dY*(r) n E+1
2k+1 dr 2k +1
T dYk(r) k k

_ _ Yy —
il dr 2ka1 =0

avk(r) ko,
dr + ;Y (T) =0

Z8(r) = Y*(r) = Y*(r)
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which for » — oo becomes:

dY*(r)

=0
dr

=00

but in practise, it’s better to use the former Newton (Robin) boundary condition. We have obtained one second order
equation for Y*(r)

2
(-4 + ) o) = E )

with boundary conditions:

Y*(0)=0
dilkr(r) + éYk(r) -0

The weak formulation is:

/Tmaw Yk/(?")v/(r) i k(k + 1) Yk(r)v(r)dr _ [Y’C/(T)U(T,)](’r)ynaz _ /Tm” Qk:— 1
0 0

fro(r)dr

The boundary term can be simplified using the boundary conditions as:

k
7[Yk,(r)v(r)]6mam = 7Yk,(rmnx)v(rmnx) + Yk/(o)v(o) = *Yk/(rmax)v(rmax) = r Yk(rma.'c)v(rma:c)
So we get
/ ’ YR () (r) + k(k+1) —; D) YE(r)o(r)dr + YE (Fmae)0(Fmaz) = / 2kt1 f(r)v(r)dr
0 r Tmaz 0 r

where the test functions v(r) have the constrain v(0) = 0 on the left boundary and no constrain on the right.
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7.10.10 Hartree Potential in Spherical Symmetry

For both open and closed shell atoms we get exactly:

Vi) = /|x—y\ /Zﬂi%y =

nlm ‘X_y|

=2 Z Z / l’+1 21/ + 1}/l"L(Q/)}/l”L(Q )Yﬁm’(Q)Yi’m’(Q/)Psl(’r/)dgld’/‘/ =

nlml/'m’
" 20041
2 [ 5o o m P -
nlm 1’

—QZZ/ V“”Ql’ 1 Yol Zc (I, m,1,m)P?,(r")dr’ =

nl I'=

—22/ VATY (9 Zc (I,m, 1, m) P2 (r")dr'+

m

+QZZ/ l'+1”211+1 7o Zc (I,m,1,m) P2 (r")dr’

nl =1
—Z Zc (I, m,l,m) /—Pﬁl(r')dr’—&—
>

+2ZZ/ zf+ﬂ/2p Yol Zc (I,m,1,m)P%,(")dr" =

—Z Z/ r)dr+

+2ZZ/ l’+1‘/2l'+1 ()Y (1, m, 1 m) P ()

nl U'=1 m

—anl/ (r)dr'+

+QZZ\/;110 Zc lm,l,m/ l,< P2(r')dr’

=1
For closed shell atoms we use the fact, that

l

S m,lm) = (20 + 1)drg

m=—1

and the second term disappears, and for open shell atoms we have to use the central field approximation: we average
the integral for Vi over the angles:

%@%WMZﬁ/W@M

and using the fact, that

/ Yiiy(Q) dQ = VAo
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the second term disappears as well. We got the same expression for both open shell (with central field approximation)
and closed shell (no approximation) atoms. The radial charge density is:

) = Z;T;fnl (Pn;(r)f

So we got:
Z Iy / Ny = / den(r')r' 4 — YO(4mn(r)r?,r)
> T
The Hartree screening function Y°(47n(r)r?, r) is given by the equation:
d? 1
—ﬁYO( r)= ;4#71(7‘)7‘2

So Vi (r) satisfies the radial Poisson equation:

(Vi (r)yr)" = —%47m(7“)7"2
Vi(r)r + 2V (r) = —4mn(r)r

Vii(r) + 2V (r) = ~d4mn(r)

7.10.11 Nonlocal Exchange Potential in Spherical Symmetry

Similarly, we calculate:

i(x
/ GO 301 4, 0) =
’I’Ll P n'l * P n’l’
> / i@ )ﬁ ERCOKEC )
n’l'!m’ k,q
rk 47 "
T g 11 ke (DY (@) draey
PTL’ "\r 471' * * rk
-y Y e / Yion () Vi ()Y () Vi () Vig ()Y / vt Dot () P (r)dr’ =
o T Okt rs
Pou(r) 4r 2k+1\/ﬁk , /r’i / Ny
_ Q Pu(r') B -
zz:zk: rookr 1 ar Va1 HOLOYim() rht ) B (e

k=I+1'
_ Yim N+ 1
! ( F k O,Z,O k:+1 nl( /) ’l’( )d’l’ P 'l/( ):

’l’k u |

Yz k=I+1U' il ok
ns Ty 2”1( 0 o) / et Pt P () P (1) =
'l k=[1—1|
k=1+1 2 k
ylm I kU r
'S g 30 (o 0 o) [ TP P

n'l’ k=|1—U|

Functions with different spins don’t contribute to the sum, so there is no multiplication by 2. We assumed closed shells
atoms (we summed over all m/ in the above). We used the result of the integral in Example VI and also:

4T 4oy 0 +1 N AN Lok
/ _ 7.49
ETC (',0,1,0) = 1 U +1)(20+1) 00 0 (2U'+1) 00 0 (7.49)
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7.10.12 Radial Hartree-Fock Equations

Using the above integrals, the HF equations become:

320+ (55 - Z v P+

2r2

AN
S Y ;(0 ¢ 0) /- et Pl P () P () = e Pt

n'l’ k=[i—1|

with:
=g [ R
nl

Using the Hartree screening functions, the HF equations are:

(l+1) =z
1
nl(r) + < 972 - ?

N va) Pulr)+

N

k=Il+1' 2 vk
I kU Y (Pnl (T)Pn’l’ (’I"), 7‘)
— E fn/l/ Z (0 O 0 PTL/l' (T) = eannl(T)

r
n'l’ k=|1—1'|

with:

(r) = anl YO(PT%;(T),T) Y0(47mr( r)r2,r)

7.10.13 Total Energy

The total energy is:

2
E=Y 2(2,+1) <ea =Y (@ +1) <R0(a,b,a,b) -1 (lg 0 lg) Ry(a,b,b, a))) =

b l

A 2
= anz <enl 72 T <R0(nl n'l',nl,n'l') — Z% ((l) lg i)) Rz(nl,n'l',n'l’,nl))) =

n’l’ k

—anzenz—ZZ Fat i < / %dhz (0 ¢ 3)2 / Poy() P )Y(Pnz(mfn/lf(r),r

nl n'l’
2

o) 0
— anlenl _ %/ drn(r)r? Mdﬁt
nl

.
N T 1y
N 2 oo 1 .
- Zlfnzenl - 27r/ Vi (r)n(r)r2dr + lel L furfurt Z 1 ( ]8 i)) /0 Pnl(r)Pn/l/(T)Y (Pnz(r)fnz (1):7) 4.

where:

YY(Py(r)Pa(r),r)

Ri(a,b,c,d) = /000 P,(r)P.(r) dr
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Example: Helium

For Helium atom, the only nonzero occupation numbers are:
Jio=2
and the sum over n’l’ simplifies to:
N a (LR Y 00 0N
an’l’ Z 2 0 0 0 _f10§ 00 0 _fl()§_
n'l’ k=|1—1|
so we only need to solve for the 1s state and we get:

YO(Pio(r)Pro(r),r)

r

—3Pio(r) + (—f + VH(T)) Pro(r) — Pyo(r) = e10Pro(r)

with:

YO(PZ(r),r) _ YO(4mn(r)r?,r)

VH (7‘) =2
We can combine the equations:

Z | YO(P(r),r)

, YO(PE(r),r
—LP(r) + (T+2 Y2 (Pro(r),7)

) Pyo(r) — Pro(r) = €10P1o(r)

r r
and we obtain:
Z YYPZ(r),r
*%Plﬂo(r) + (r + (17?())> Pro(r) = e10P1o(r)

7.10.14 FEM

The weak formulation is (u(r) = Py (r)):

/OOC (;u’(r)u’(r) + (l(z +1) % - VH(T)) u(r)u(r)> dr+

or2
k=1+1 2
I kU
1
S X 4o 6 o)

n'l’ k=|1—1'|

° R(w(r) Py (1), r >
[ o RO e~ [ sryotryar

0 r 0

for closed shell atoms:

/O"o GU'(T)U'(T) + <l(12:21) _ % + VH(r)> u(7~)v(7n)> dr+

k=141’ 2 o0 k oo
_ ! 1l ok U ()P (17 Y2 (u(r) Py (r), ) r=c¢ w(r)v(r)dr
> 22 +1) 2<0 0 0> /0 (r) Py (1) d /0 (r)v(r)d

r
n'l’ k=|1—1'|

or (here we use the il index to label all functions u; for the given 1)

/OOO <;u§z(r)v’(r) + (l(l +1) % + VH(r)> Uil(T)’U(T‘)) drt

k=1+0 ; 0o (i (r) Py (1), 7 =
DY \/ﬁck(z,o,z’,m/ () Par () -0 )fnl( - )drze/ wa(rjo(r)dr
| 0

nl’ k=|l—1'
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Introducing radial basis ¢,,;(r) (where p, v labels all basis functions for the given {):

uzl Z Cwl¢ul
v(r) = Gui(r)

we get (here ¢ is again restricted for the subset corresponding to the given [):

S (b

k=41 - () -
DI IRE R / (1) P () AP 4y, 5 [ 6001600 Co

v/l k=|l-U]

M\»—A

Yo, (1) + (l(l2:—21) _ % + VH(T)> qbul(r)qﬁul(r)) dr C,y+

This can be written as
Y FLCui=eY S,Cu
v v
1 lcore 1 l l 1
Fo=Hy " +G =T, +V,+Gu
where

TL,,=/O 3640(r)r) + () D ()

Vi, = /00 Gui(r) (—Z> b (r)dr
= [ S0ty
_Z’“fl \/Wklw / a0 P () YOI P (1),7)

n'l k=[l-1|
,U,l/ / ¢/ll ¢l/l

Vi(r) =202 + 1)%

n'l’

The indices n'l’ go over all occupied orbitals P,,/;.. Introducing density:

N/2

%) =23 W0 = 23 [ () =23 By, @ -

nlm nlm
2+l ()
nl
2§: = §: (21 + 1) n(r)

We introduce the density matrix P 5 (where as before c, 8 run over basis functions for the given [ only):

P(iﬁ =2 Z Canlmcﬁnlm = Z 2(2l + l)CanlCBnl

nm n
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where the C,,,,; coefficients are the same for all m corresponding to the given [. The index n runs over all occupied
states for the given [. We can write n(r) as

1) = Conida(r)
”(7”) - ﬁ Z 2(2l + 1)% = ﬁ ZQ(QZ + 1) Z Canlcﬂnlw =

nl

nl af
_ 1 ZZ ¢al(r)Pol¢ﬂ¢51(T)
4 r2
I aB
Finally we get:
YO(Py(r),r) _Y° (477” z VO (¢ai( )¢6l(7")a7°)
_22(2z+1) . = ZZ
¢ V d _ (d)al’( )¢ﬁl, 0 l l/ l l
ul (M) Vi (r)gui(r)dr = ZZ 3 ﬁbul 7)bui(r ZZ 5R,uﬂ vl al')
I ap U afB
and
k=141’
/21/+1 (P P
_Z Z klOl/ / (by,l ’l’ ) (¢l() l() )dT:
n'l k=|1—1'| "
k=141’ VE (o
(1) opr (1), 1)
= —Z Z 2l/+ 1 % (0 0 O) ZC(M’I’C,BVL’V/ (bul ¢al’ ) r dr =
/l/k |l ll
& kT
S (4 ) R
U af k=[1—1']
So we get:
k=141 Lk N2
0 / k / / _
=Y "N PLRO(ul AU vl al') = 1SR Y (0 0 0) R*(ul, B, ol vl) =
U ap U ap k l1—1/]
Rk 2
= 2)%: RO(ul, Bl vl o) — ;k—%:m (0 0 0> RE(ul, BU, ol 1)

The density matrix is zero if there are no occupied orbitals for the given I’.

The total energy is:

- Z J(HEO™® 4 B, =
2 Z Z HIILCVOI'C + F‘/lw) -
= ZZ v ( W - %Giw) =

I pv

k=1+U' N
=> > 202+1) (enlzz (20 +1) (RO (nl, 'l nl,nl) =5 > (é ’0“ i)> Rk(nl,n'l',n'l’,nl)>)
l n

k=[i—1'|
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where we used:
> > PLFL, =
l 2%
=333 22 + 1)CuiCom FL, =
I v n
=3 220+ 1)Crunient S, Comt =
l pryoon

=33 202+ 1)en
l n
and
3> PG =
I pv

k=141 (l e
|

2
:%212%:%,221356 RO(ul, B\ vl o) — Y 0 o) RF(ul, B, ol vl) | =

I ap k=|l—1"
= 3333 2@+ DCuiCont 3303 220 + 1) Cantr Conrr
I pv n U aB n'
k=141’ Ik I\2
0 ’ n_ 1 k ! ! —
RO(ul, BU, vl ') 2kzl:m(0 0 0) RE(ul, B, o', 1)
=322+ 1)) D (@ +1)
l n U n'
k=1+1' Ik N2
k
RO(nl, 0l ,nl,n/l') = 3 3 ( 0 0) RE(nl,n/l',n'l',nl)

k=|l—1/

7.10.15 4-Index Transformation

The 4-index transformation is a way to convert the two particle integrals over basis functions («5|yd) into two particle
integrals over atomic (or molecular) orbitals (ij|kl):

(ilkl) = ) CaiCpiCrrCa(aplyd)
afyé

7.10.16 Green’s Functions

The self energy up to a second order is given by:

3 ) ) e

ars abr

The a, b are occupied orbitals, 7, s are virtual orbitals. The Dyson equation is:

G(E)=Go(E) + Go(E)X(E)G(E) (7.50)
where
- -5
k

GE)=5—% ’zk: E— E,
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The €, and |k) are HF energies and eigenvectors, Fj, and |k;,;) are interacting energies and eigenvectors. The matrix
€ is a diagonal matrix of the e}, eigenvalues, E is a diagonal matrix of the E}, eigenvalues. Any Green’s function G(E)
(interacting or not) can be written using the spectral density function A(z) as follows:

i - o= T

— €k

_ = k) (K] _
_;/_OOEZ(S(Z—Gk)dZ—

:/OO EA(j)dz

A(z) =) Ik} (k[ 8(z —ex) =
k

IR D P ——

B =0T (2 =€) + 17

) 1 1
—Z|k><k|limz< _ .>—
- n=02T \z—€+1n 22— € —1in

where

= lim o~ (G(z +in) — G(z —in))

From (7.50) we get:

am — S(E) - E-e—X(E)

The poles E, of the Green’s function G(F) are then given by:
D(E)=det(E—€e—X(FE))=0
or equivalently:
(Z(Ek) + €) |[v) = Ej [v)
and from the theory of matrices:

45 (E—h
! =Tr ol ) :Trilog(E—h) = 8%Tr log(E —h) =

e n E—h OE

1 Odet(E — h)
det(E—h)  0F

0
= a—Elog\det(Ef h)| =

one obtains that

_(_1\iti 1810g—1)(E)
Giy(B) = (=17 O(Z(ER) + €);i

and

_ _ Olog |D(E)|
TrG(E) = zk:Gkk(E) =55
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The number of particles N can be calculated as follows (a are occupied orbitals, k are all orbitals):

N:Z\ (r|a) |

*Z (r|a) {a|r) =

:TrZ|a><a\:
/ZE EkdE—

- i_ Tr G(E) dE =

2mt Jo
1 01
_ L g |DE) 4 p
2mi Jo oE

The countour C only encloses poles F, corresponding to occupied orbitals a. Similarly for the total energy Fo::

Etot:ZEa|<r|a> 2=
:Z<r|a>E
:TrZ|a>E

_ 1 |k) (K| _
_2mTr/Czk:EEkEdE—

:L/ TrG(E)EdE =
2m Jo

1 [ dlog|D(E)|

= EdFE

For doubly filled orbitals we multiply the expressions by 2.

7.11 Projector Augmented-Wave Method (PAW)

We can use the Density Functional Theory (DFT) to reduce the many body problem to solve a single particle
Schrodinger equation:

The wavefunctions contain cusps (and are oscillatory around each nucleus), also one needs to solve this for all core
states.

Next step is to use the known behavior around each atom and take advantage of the known physics somehow. There
are two general approaches, either one can incorporate the known physic in the basis (for example the partition of
unity in the finite element method), or into the equations. PAW method uses the latter approach.

7.11.1 Projectors, Augmentation Spheres and Smooth Wavefunctions

We introduce smooth wavefunctions (we’ll use “~” for smooth functions) by a linear transformation operator 7":

|7/)n> =T |1;n>
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We construct augmentation spheres [r — R%| < r% around each atom « (one can imagine a muffin-tin), where ¢ is a
cut-off radius, a is the atom index, R® is the atom position.

We write T as:
T=1+) T°

where T'* only acts in the augmentation sphere. We choose a complete basis |¢¢) (also called partial waves) inside
the sphere. The smooth partial waves can be obtained using the 7" operator:

|0¢) = T6f) = (11 + ZT“ ) |6¢)
=1 +T1%) |¢?>
Because 7' only acts in the sphere, it follows that
68) =16¢)  forr >t

outside the sphere (i.e. (r|¢¢) = (r|¢?) for 7 > 7). We can now expand the smooth wavefunctions using the partial
waves basis:

) = Z o |69) (7.51)
inside the augmentation sphere. Multiplying both sides by 7":
T |ihn) = Z 2 |9) (7.52)

T [thn) = Z 5T 68)

So both smooth and non-smooth wavefunctions have the same expansion coefficients Py;. We choose smooth projector
Sfunctions |p¢) satisfying the following orthogonality and completeness relations inside the augmentation spheres (no
restrictions are imposed outside the spheres, so we just define (r|p?) = 0):

(B16%) = 645 (7.53)
o160 @ =1
then multiplying (7.51) by (p¢| and using (7.53):
B |on) = Z i (BE165) =Y Py = Pr;
J
we can rewrite (7.51) and (7.52):

[On) =D (5190} |65) (7.54)

)

|’¢n> = Z <Z~)3|1;n> |¢g>

i
Let’s write 7' using the projectors:

T*=T"1=1" Z |08) (B = Y _(T169)) (B3] = D _(16%) — |6¢)) (3¢

7 %
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Note that the right hand side is zero outside the augmentation sphere. Thus
T= 1+ZT“—]1+ZZ (165) = 16%)) (7]

In other words, the transformation operator 7' is completely defined using the smooth and non-smooth partial waves
and the projector functions. In terms of the wavefunction:

[¥n) = T ) = |wn+ZZ|¢“ 165)) (B |9m) =

=|%>+Z<Z|¢?><ﬁ?wn Z|¢ mw)

In words, the wavefunction can be decomposed as the sum of the smooth wavefunction and sum over atoms (centers),
at each atom we have “1-center all electron” minus “1-center pseudo”.

The projection functions can always be written as

w1 =3 {cman} sl

where | f) is any set of linearly independent functions.

Note: the n above means all states of interest — either all states, or only the valence states.

7.11.2 Frozen Core Approximation

One can either calculate all electrons in the eigenproblem, or only calculate the valence electrons and treat the core
states separately. The simplest option is to introduce a frozen core approximation, where

[¥n) = 165°"°)

for all core states n, here n runs over (a, «), where a is the atom index and « are the core states of an atom. This
approximation can also be relaxed in various ways.

7.11.3 Expectation Values of Local Operators

In the frozen core approximation:

val core

an (19| Olthn) +ZZ ($aC0Te| O] pacOrey — ... —

val core

= fn <1/3n\0|15n>+ZZ(<¢g|o|¢g> (8 |O|¢,a) *ZZ (4:COTe || gsa-COTey

n

where the tensor ij is:

D;Lj = an <1;n‘ﬁ?> <ﬁ?|/&n>
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Density

n(r) =3 faltn @ =3 fu ale) (rlin) = { 1) (6] ) =

val core

= anl@ﬁn(f)P + Z Z <¢g¢? — q}?é?) D?j + Z Z ‘¢Z,core|2
" a 4j a «a

,core
24

The functions are not strictly localized withing the augmentation sphere.

7.11.4 Kohn Sham Equations

We multiply the original equations by 7T from the left and introduce the smooth wavefunctions:

H |’(/}n> = €n |’(/}n>
TTH |/(/}n> = 6nTT |wn>
TTHT |¢~)n> = enTJrT |'l/~)n>

The orthogonality of wavefunctions is:

The overlap operator 717" can be written as:

TIT = =1+ > [ Qi (7]

a iy
where
Qij = (97165) — (97195)
The transformed Hamiltonian is
H=—1IV? 4+ Vg(r) + Vie(r) + v(r)
THHT = - = —5V2 4 Vg () + Vae(R) + > Y |5%) HE (5

a ij
where

HY = (¢¢] — 3V + vegelo§) — (071 — 3V + Degrl 07

7.11. Projector Augmented-Wave Method (PAW)
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