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Preface

These notes cover the material from the second half of a two-semester se-
quence of mathematical methods courses given to first year physics graduate
students at the University of Illinois. They consist of three loosely connected
parts: i) an introduction to modern “calculus on manifolds”, the exterior
differential calculus, and algebraic topology; ii) an introduction to group rep-
resentation theory and its physical applications; iii) a fairly standard course
on complex variables.
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Chapter 1

Vectors and Tensors

In this chapter we will explain how a vector space V gives rise to a family
of associated tensor product spaces. We will then show how objects such as
linear maps or quadratic forms can be understood as being elements of these
spaces. We will be making extensive use of notions and notations from the
appendix on linear algebra, so it may help to review that material before you
begin.

1.1 Covariant and Contravariant Vectors

Recall that if we have a vector space V over R and {e1, e2, . . . , en} and
{e′

1, e
′
2, . . . , e

′
n} are both bases for V , then we may expand each of the basis

vectors ei in terms of the e′i as

eν = Aµνe
′
µ. (1.1)

(We are, as usual, using the Einstein summation convention that repeated
indices are to be summed over.) Alternatively we could have expanded the
e′
i in terms of the ei as

e′
ν = (A−1)µνe

′
µ. (1.2)

As the notation implies, the matrices of coefficients Aµν and (A−1)µν will be
inverses of each other:

Aµν(A
−1)νσ = (A−1)µνA

ν
σ = δµσ . (1.3)

1



2 CHAPTER 1. VECTORS AND TENSORS

If we know the components xµ of a vector x in the eµ basis, then the com-
ponents x′µ of x in the primed basis are obtained from

x = x′µe′
µ = xνeν = (xνAµν ) e′

µ (1.4)

by comparing the coefficients of e′µ. We find that x′µ = Aµνx
ν . Observe how

the eµ and the xµ map in “opposite” directions. The components xµ are
therefore said to transform contravariantly .

Recall also that associated with the vector space V is its dual space, V ∗

whose elements are covectors, i.e. linear maps f : V → R. If f ∈ V ∗ and
x = xµeµ we can use the linearity to evaluate f(x) as

f(x) = f(xµeµ) = xµf(eµ) = xµ fµ. (1.5)

The set of numbers fµ = f(eµ) are the components of the covector f . If we
change basis so that eν = Aµνe

′
µ then

fν = f(eν) = f(Aµνe
′
µ) = Aµν f(e

′
µ) = Aµνf

′
µ. (1.6)

Thus fν = Aµνf
′
µ. We see that the fµ components transform in the same man-

ner as the basis. They are therefore said to transform covariantly . In physics
it is traditional to call the the set of numbers xµ with upstairs indices (the
components of) a contravariant vector . Similarly, the set of numbers fµ with
downstairs indices is called (the components of) a covariant vector . Thus
contravariant vectors are elements of V and covariant vectors are elements
of V ∗.

The relationship between V and V ∗ is one of mutual duality and to mathe-
maticians it is only a matter of convenience which space is V and which space
is V ∗. The evaluation of f ∈ V ∗ on x ∈ V is therefore often written as a
“pairing” (f ,x) which gives equal status to the objects being put togther to
get a number. An example of such a mutually dual pair is provided by the
spaces of displacements x and wave-numbers k. Because the units of x and
k are different (meters versus meters−1) there is no meaning to x+k, so they
are not elements of the same vector space. The “dot” in expressions such as

ψ(x) = eik·x (1.7)

is therefore not a true inner product (which requires the objects it links to
be in the same vector space) but is instead a pairing

(k,x) ≡ k(x) = kµx
µ. (1.8)
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In describing the physical world we usually give priority to the space in which
we live, breathe and move, and so treat it as being “V ”. The displacement
vector x will therefore normally be regarded as the contravariant vector,
while the Fourier-space wave-number k, being the more abstract quantity,
will be the covariant vector.

Often our vector space will come equipped with a metric, which is derived
from a non-degenerate inner product g : V × V → R. The length ‖x‖ of a

vector x is is then given by
√

g(x,x). The set of numbers

gµν = g(eµ, eν) (1.9)

are said to be the components of the metric tensor . The inner of product of
any pair of vectors x = xµeµ and y = yµeµ is then

g(x,y) = gµνx
µyν. (1.10)

Real-valued inner products are always symmetric, g(x,y) = g(y,x), so we
have gµν = gνµ. Since the product is non-degenerate, the matrix gµν has an
inverse which is traditionally written as gµν. Thus gµνg

νλ = δλµ.
The additional structure provided by the metric permits us to identify V

with V ∗. For any f ∈ V ∗ we can find a vector f̃ ∈ V such that

f(x) = g(f̃ ,x). (1.11)

We simply solve the equation

fµ = gµν f̃
ν (1.12)

to find f̃ ν = gνµfµ. We may now drop the tilde and simply identify f with
f̃ , and hence V with V ∗. We then say that the covariant components fµ are
related to the contravariant components fµ by raising

fµ = gµνfν , (1.13)

or lowering
fµ = gµνf

ν , (1.14)

the indices using the metric tensor. Bear in mind that this identification
depends crucially on the metric. A different metric will, in general, identify
an f ∈ V ∗ with a completely different f̃ ∈ V .
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We may play this game in Rn equipped with its Euclidean metric and
associated “dot” inner product. Given a vector x and a non-orthogonal basis
eµ with gµν = eµ · eν , we can define two sets of components for the same
vector. Firstly the coefficients xµ appearing in the basis expansion

x = xµeµ, (1.15)

and secondly the “components”

xµ = x · eµ = g(x, eµ) = gµνx
ν , (1.16)

of x along the basis vectors. These two set of numbers are then called the
contravariant and covariant components, respectively, of the vector x. If
the eµ constitute an orthonormal basis, then gµν = δµν , and the two sets of
components are numerically coincident. When using non-orthogonal bases
we must never to add contravariant components to covariant ones, and we
must always be careful with units.

1.2 Tensors

We now introduce tensors in two ways: Firstly as sets of numbers labelled by
indices and equipped with transformation laws that tell us how these numbers
change as we change basis, and secondly as basis-independent objects that
are elements of a vector space constructed by taking tensor products of the
spaces V and V ∗.

1.2.1 Transformation Rules

If we change bases eµ → e′
µ, where eν = Aµνe

′
µ, then the metric tensor will

be represented by a new set of components

g′µν = g(e′
µ, e

′
ν). (1.17)

These are be related to the old components as

gµν = g(eµ, eν) = g(Aρ
µe

′
ρ, A

σ
νe

′
σ) = AρµA

σ
νg(e′

ρ, e
′
σ) = AρµA

σ
ν g

′
ρσ. (1.18)

Equivalently
g′µν = (A−1)ρµ(A

−1)σνgρσ. (1.19)
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The transformation rule for gµν has both of its subscripts behaving like the
downstairs indices of a covariant vector. We therefore say that gµν transforms
as a doubly covariant tensor .

A set of numbers such as Qij
klm with transformation rule

Qij
klm = (A−1)ii′(A

−1)jj′A
k′

k A
l′

l A
m′

m Q
′i′j′

k′l′m′ (1.20)

or, equivalently

Q′ij
klm = Aii′A

j
j′(A

−1)k
′

k (A−1)l
′

l (A
−1)m

′

m Q
i′j′

k′l′m′ (1.21)

are the components of a doubly contravariant and triply covariant tensor.
More compactly, they are a the components of a tensor of type (2, 3). Tensors
of type (p, q) are defined analogously.

Notice how the indices are wired up: free (not summed over) upstairs
indices on the left hand side of the equation match to free upstairs indices
on the right hand side, similarly downstairs indices. Also upstairs indices are
summed only with downstairs ones.

Similar conditions apply to equations relating tensors in any particular
frame. If they are violated you do not have a valid tensor equation — meaning
that an equation valid in one basis will not be valid in another basis. Thus
an equation

Aµνλ = Bµτ
νλτ + Cµ

νλ (1.22)

is fine, but

Aµνλ
?
= Bν

µλ + Cµ
νλσσ +Dµ

νλτ (1.23)

has something wrong in each term.
Incidentally, although not illegal, it is a good idea not to write tensor

indices directly underneath one another — i.e. do not write Qij
kjl — because

if you raise or lower indices using the metric tensor, and some pages later in
a calculation try to put them back where they were, they might end up in
the wrong order.

Although often associated with general relativity, tensors occur in many
places in physics. Perhaps the most obvious, and the source of the name
“tensor”, is elasticity theory. The deformation of an object is described by
the strain tensor eij, which is a symmetric tensor of type (0,2). The forces
to which the strain gives rise are described by the stress tensor , σij, usually
also symmetric, and these are linked via a tensor of elastic constants cijkl as
σij = cijklekl. We will study stress and strain later in this chapter.
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Tensor algebra

The sum of two tensors of a given type is also a tensor of that type. The sum
of two tensors of different types is not a tensor. Thus each particular type of
tensor constitutes a distinct vector space, but one derived from the common
underlying vector space whose change-of-basis formula is being utilized.

Tensors can be combined by multiplication: if Aµνλ and Bµ
νλτ are tensors

of type (1, 2) and (1, 3) respectively, then

Cαβ
νλρστ = AανλB

β
ρστ (1.24)

is a tensor of type (2, 5).

An important operation is contraction, which consists of setting a con-
travariant index index equal to a covariant index and summing over them
This reduces the type of tensor, so

Dρστ = Cαβ
αβρστ (1.25)

is a tensor of type (0, 3). The reason for this is that setting an upper index
and a lower index to a common value µ, and summing over µ, leads to the
factor · · · (A−1)µαA

β
µ · · · appearing in the transformation rule, but

(A−1)µαA
β
µ = δβα, (1.26)

and the Kroneker delta effects a summation over the corresponding pair of
indices in the transformed tensor. For example, the combination xµfµ takes
the same value in all bases — as it should since it is equal to f(x), and both
f( ) and x are basis-independent objects.

Remember that upper indices can only be contracted with lower indices,
and vice-versa.

1.2.2 Tensor Product Spaces

We may regard the set of numbers Qij
klm as being the components of an an

object Q which is element of the vector space of type (2, 3) tensors. We will
denote this vector space by the symbol V ⊗ V ⊗ V ∗⊗ V ∗⊗ V ∗, the notation
indicating that it is derived from the original V and its dual V ∗ by taking
tensor products of these spaces. The tensor Q is to be thought of as existing
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as an element of V ⊗V ⊗V ∗⊗V ∗⊗V ∗ independently of any basis, but given
a basis {ei} for V , and the dual basis {e∗i} for V ∗, we expand it as

Q = Qij
klm ei ⊗ ej ⊗ e∗k ⊗ e∗l ⊗ e∗m. (1.27)

Here the tensor product symbol “⊗” is distributive,

a⊗ (b + c) = a⊗ b + a⊗ c,

(a + b)⊗ c = a⊗ c + b⊗ c, (1.28)

associative,
(a⊗ b)⊗ c = a⊗ (b⊗ c), (1.29)

but is not commutative,
a⊗ b 6= b⊗ a. (1.30)

Everthing commutes with the field however,

λ(a⊗ b) = (λa)⊗ b = a⊗ (λb), (1.31)

so, if
ei = Ajie

′
j, (1.32)

then
ei ⊗ ej = AkiA

l
j e

′
k ⊗ e′l. (1.33)

From the analogous formula for ei ⊗ ej ⊗ e∗k ⊗ e∗l ⊗ e∗m we can reproduce
the transformation rule for the components of Q

The meaning of the tensor product of a set of vector spaces should now be
clear: The space V ⊗ V is, for example, the space of all linear combinations1

of the abstract symbols eµ⊗eν , which we declare by fiat to constitute a basis
for this space. There is no geometric significance (as there is with a vector
product a× b) to the tensor product a⊗ b, so the eµ⊗ eν are simply useful
place-keepers. Remember that these are ordered pairs, eµ ⊗ eν 6= eν ⊗ eµ.

Although there is no geometric meaning, it is possible, however, to give
an algebraic meaning to a product like e∗λ ⊗ e∗µ ⊗ e∗ν by viewing it as a
multilinear form V × V × V :→ R. We define

e∗λ ⊗ e∗µ ⊗ e∗ν (eα, eβ, eγ) = δλα δ
µ
β δ

ν
γ . (1.34)

1Do not confuse the tensor product space V ⊗W with the Cartesian product V ×W . The
latter is the set of all ordered pairs (x,y), x ∈ V , y ∈ W . The Cartesian product of two
vector spaces can be given the structure of a vector space by defining λ(x1,y1)+µ(x2,y2) =
(λx1 +µx2, λy1 +µy2), but this construction does not lead to the tensor-product. Instead
it is the direct sum V ⊕W .
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We may also regard it as a linear map V ⊗ V ⊗ V :→ R by defining

e∗λ ⊗ e∗µ ⊗ e∗ν (eα ⊗ eβ ⊗ eγ) = δλα δ
µ
β δ

ν
γ , (1.35)

and extending the definition to general elements of V ⊗ V ⊗ V by linearity.
In this way we establish an isomorphism

V ∗ ⊗ V ∗ ⊗ V ∗ ' (V ⊗ V ⊗ V )∗. (1.36)

This multiple personality is typical of tensor spaces. We have already seen
that the metric tensor is simultaneously an element of V ∗ ⊗ V ∗ and a map
g : V → V ∗.

Tensor Products and Quantum Mechanics

If we have two quantum mechanical systems with Hilbert spaces H(1) and
H(2), the Hilbert space for the combined system is H(1) ⊗ H(1). Quantum
mechanics books usually denote the vectors in these spaces by the Dirac “bra-
ket” notation in which the basis vectors of the separate spaces are denoted
by2 |n1〉 and |n2〉, and that of the combined space by |n1, n2〉. In this notation,
a state in the combined system is therefore a linear combination

Ψ =
∑

n1,n2

ψn1,n2
|n1, n2〉, (1.37)

where
ψn1,n2

= 〈n1, n2|Ψ〉, (1.38)

regarded as a function of n1, n2, is the wavefunction. This is the tensor prod-
uct construction in disguise. To unmask it, we simply make the notational
translation

|n1〉 → e(1)
n1

|n2〉 → e(2)
n2

|n1, n2〉 → e(1)
n1
⊗ e(2)

n2
. (1.39)

Entanglement: Suppose that H(1) has basis e
(1)
1 , . . . , e(1)

m and H(2) has basis

e
(2)
1 , . . . , e(2)

n . The Hilbert spaceH(1)⊗H(2) is then nm dimensional. Consider
a state

Ψ = ψije
(1)
i ⊗ e

(2)
j ∈ H(1) ⊗H(2). (1.40)

2We assume for notational convenience that the Hilbert spaces are finite dimensional.
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If we can find vectors

Φ ≡ φie
(1)
i ∈ H(1),

X ≡ χje
(2)
j ∈ H(2), (1.41)

such that

Ψ = Φ⊗X ≡ φiχje
(1)
i ⊗ e

(2)
j (1.42)

then the tensor Ψ is said to be decomposable and the two quantum systems
are said to be unentangled . If there are no such vectors, then the two systems
are entangled in the sense of the Einstein-Podolski-Rosen (EPR) paradox.

Quantum states are really in one-to-one correspondence with rays in the
Hilbert space, rather than vectors. If we denote the n dimensional vector
space over the field of the complex numbers as Cn , the space of rays, in which
we do not distinguish between the vectors x and λx when λ 6= 0, is denoted
by CPn−1 and is called complex projective space. Complex projective space is
where algebraic geometry is studied. The set of decomposable states may be
thought of as a subset of the complex projective space CPnm−1, and, since,
as the following excercise shows, this subset is defined by a finite number of
homogeneous polynomial equations, it forms what algebraic geometers call a
variety . This particular subset is known as the Segre variety .

Exercise 1.1: The Segre conditions for a state to be decomposable:

i) By counting the number of independent components that are at our dis-
posal in Ψ and comparing that number with the number of free parametrs
in Φ⊗X, show that the coefficients ψij must satisfy (n− 1)(m− 1) re-
lations if the state is to be decomposable.

ii) If the state is decomposable, show that

0 =

∣∣∣∣
ψij ψil

ψkj ψkl

∣∣∣∣

for all sets of indices i, j, k, l.
iii) Using your result from part i) as a guide, find a subset of the relations

from part ii), that constitute a necessary and sufficient set of conditions
for the state Ψ to be decomposable. Include a proof that your set is
indeed sufficient.
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1.2.3 Symmetric and Skew-symmetric Tensors

By examining the transformation rule you may see that if a pair of upstairs
or downstairs indices is symmetric (say Qij

kjl = Qji
kjl) or skew-symmetric

(Qij
kjl = −Qji

kjl) in one basis, it remains so after the bases have been
changed. (This is not true of a pair composed of one upstairs and one
downstairs index!) It makes sense, therefore, to define symmetric and skew-
symmetric tensor product spaces. Thus skew-symmetric doubly-contravariant
tensors can be regarded as belonging to the space denoted by

∧2 V and ex-
panded as

A =
1

2
Aij ei ∧ ej, (1.43)

where the basis elements obey ei ∧ ej = −ej ∧ ei and the coefficients are
skew-symmetric, Aij = −Aji. The half (replaced by 1/p! when there are p
indices) is convenient in that independent components only appear once in
the sum.

Symmetric doubly-contravariant tensors can be regarded as belonging to
the space sym2V and expanded as

A = Aij ei � ej (1.44)

where ei � ej = ej � ei and Aij = Aji. (We do not include a “1/2” here
because including it leads to no particular simplification in any consequent
equations.)
We can treat these symmetric and skew-symmetric products as symmetric
or skew multilinear forms. Define, for example,

e∗i ∧ e∗j (eµ, eν) = δiµδ
j
ν − δiνδjµ (1.45)

and
e∗i ∧ e∗j (eµ ∧ eν) = δiµδ

j
ν − δiνδjµ. (1.46)

We need two terms here because the skew-symmetry of e∗i ∧ e∗j( , ) in its
slots does not allow us the luxury of demanding that the ei be inserted in
the exact order of the e∗i to get a non-zero answer. Because the p-th order
analogue of (1.45) form has p! terms on its right-hand side, some authors like
to divide the right-hand-side by p! in this definition. We prefer the one above,
though. With our definition, and with A = 1

2
Aije

∗i∧e∗j and B = 1
2
Bijei∧ej,

we have

A(B) =
1

2
AijB

ij , (1.47)
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and the sum is only over the independent terms in the sum.
The wedge (∧) product notation is standard in mathematics where skew-

symmetry is implied. The “sym” and � are not. Different authors use
different notations for spaces of symmetric tensors. This reflects the fact that
skew-symmetric tensors are extremely useful and appear in many different
parts of mathematics, while symmetric ones have fewer special properties
(although they are common in physics). Compare the relative usefulness of
determinants and permanents.

Exercise 1.2: Show that in d dimensions:

i) the dimension of the space of skew-symmetric covariant tensors with p
indices is d!/!p(d − p)!;

ii) the dimension of the space of symmetric covariant tensors with p indices
is (d+ p− 1)!/p!(d − 1)!.

Bosons and Fermions

Spaces of symmetric and antisymmetric tensors appear whenever we deal
with the quantum mechanics of many indistinguishable particles possessing
Bose or Fermi statistics. If we have a Hilbert space H of single-particles
states with basis ei, then the N -boson space is SymNH consisting of states

Φ = Φi1i2...iNei1 � ei2 � · · · � eiiN , (1.48)

and the N -fermion space is
∧NH with states

Ψ =
1

N !
Ψi1i2...iN ei1 ∧ ei2 ∧ · · · ∧ eiiN . (1.49)

The symmetry of the Bose wavefunction

Φi1i2...iN = Φi2i1...iN (1.50)

etc., and the antisymmetry of the Fermion wavefunction

Ψi1i2...iN = −Ψi2i1...iN , (1.51)

under the interchange of the particle labels is then natural.
Slater Determinants and the Plücker Relations: Some N -fermion states can
be decomposed into a product of single-particle states

Ψ = ψ(1) ∧ψ(2) ∧ · · · ∧ψ(N)

= ψ
(1)
i1 ψ

(2)
i2 · · ·ψ

(N)
i ei1 ∧ ei2 ∧ · · · ∧ eiN . (1.52)



12 CHAPTER 1. VECTORS AND TENSORS

Comparing the coefficients of ei1 ∧ ei2 ∧ · · · ∧ eiN in (1.49) and (1.52) shows
that the many-body wavefunction can then be written as

Ψi1i2...iN =

∣∣∣∣∣∣∣∣∣∣∣

ψ
(1)
i1 ψ

(1)
i2 · · · ψ

(1)
iN

ψ
(2)
i1 ψ

(2)
i2 · · · ψ

(2)
iN

...
...

. . .
...

ψ
(N)
i1 ψ

(N)
i2 · · · ψ

(N)
iN

∣∣∣∣∣∣∣∣∣∣∣

. (1.53)

The wavefunction is therefore given by a single Slater determinant . Such
wavefunctions correspond to a very special class of states. The general
many-fermion state is not decomposable, and its wavefunction can only be
expressed as a sum of many such determinants. The Hartree-Fock method
of quantum chemistry is a variational approximation that takes such a single
Slater determinant as its trial wavefunction and varies only the one-particle
wavefunctions ψ(a). It is a remarkably successful approximation, given the
very restricted class of wavefunctions it explores.

As with the Segre condition for two distinguishable quantum systems to
be unentangled, there is a set of necessary and sufficient conditions on the
Ψi1i2...iN for the state Ψ to be decomposable into single-particle states. These
are that

Ψi1i2...iN−1[j1Ψj1j2...jN+1] = 0 (1.54)

for any choice of indices i1, . . . iN−1 and j1, . . . , jN+1. Here the square brackets
[. . .] indicate that the expression in to be antisymmetrized over the indices
enclosed in the brackets. For example, a three-particle state is decomposable
if and only if

Ψi1i2j1Ψj2j3j4 − Ψi1i2j2Ψj1j3j4 + Ψi1i2j3Ψj1j2j4 − Ψi1i2j4Ψj1j2j3 = 0. (1.55)

These conditions are called the Plücker relations after Julius Plücker who
discovered them long before before the advent of quantum mechanics3. It is
easy to show that they are necessary conditions. It is harder to show that
they are sufficient, and we will defer proving this until we have more tools at
our disposal. As far as we are aware, the Plücker relations are not exploited
by quantum chemists, but, in disguise as the Hirota bilinear equations, they
constitute the geometric condition underpinning the many-soliton solutions
of the Korteweg-de-Vries and other soliton equations.

3As well as his extensive work in algebraic geometry, Plücker (1801-68) made important
discoveries in experimental physics. He was the first person to discover the deflection of
cathode rays — beams of electrons — by a magnetic field, and the first to point out that
each element had its characteristic spectrum.
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1.2.4 Tensor Character of Linear Maps and Quadratic

Forms

A linear map M : V → V is an object that exists independently of any
basis. Given a basis however it is represented by a matrix Mµ

ν obtained by
examining the action of the map on the basis elements:

M(eµ) = eνM
ν
µ. (1.56)

Acting on x we get a new vector y = M(x), where

yνeν = y = M(x) = M(xµeµ) = xµM(eµ) = xµMν
µeν = Mν

µx
µ eν . (1.57)

We therefore have
yν = Mν

µx
µ, (1.58)

which is the usual matrix multiplication y = Mx. If we change basis eν =
Aµνe

′
µ then

eνM
ν
µ = M(eµ) = M(Aρµe

′
ρ) = AρµM(e′ρ) = Aρµe

′
σM

′σ
ρ = Aρµ(A

−1)νσeνM
′σ
ρ

(1.59)
so, comparing coefficients of eν , we find

Mν
µ = Aρµ(A

−1)νσM
′σ
ρ, (1.60)

or, conversely,
M ′ν

µ = (A−1)ρµA
ν
σM

σ
ρ. (1.61)

Thus a matrix representing a linear map has the tensor character suggested
by the position of its indicices, i.e. it transforms as a type (1, 1) tensor. M
is therefore simultaneously an element of Map (V → V ) and an element of
V ⊗ V ∗.

Now consider a quadratic form Q : V → R that is obtained from a
symmetric bilinear form Q : V × V → R by setting Q(x) = Q(x,x).

We can write

Q(x) = Qijx
ixj = xiQij x

j = xTQx (1.62)

where Qij = Q(ei, ej) is a symmetric matrix, T denotes transposition, and
xTQx is standard matrix multiplication notation. Just as with the metric
tensor, the coefficients Qij transform as a doubly covariant, type (0, 2) tensor.
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Thus although both linear maps and quadratic forms can be represented by
matrices, these matrices correspond to different types of tensor and transform
quite differently under a change of basis. For example, a matrix representing
a linear map has a basis-independent determinant. One can certainly com-
pute the determinant of the matrix representing a quadratic form in some
particular basis, but when you change basis and calculate the determinant of
the resulting new matrix, you will get a different number. Notice also, that
the trace of a matrix representing a linear map

trM = Mµ
µ (1.63)

is a tensor of type (0, 0), i.e. a scalar, and therefore basis independent.
Basis independent quantities such as the determinant and trace of linear

map are called invariants.

Exercise 1.3: Use the distinction between the transformation law of a quadratic
form and that of a linear map to resolve the following “paradox”.

a) In quantum mechanics we are taught that the matrices representing two
operators can be simultaneously diagonalized only if they commute.

b) In classical mechanics we are taught how, given the Lagrangian

L =
∑

ij

(
1

2
q̇iMij q̇j −

1

2
qiVijqj

)
,

to construct normal coordinates Qi such that L becomes

L =
∑

i

(
1

2
Q̇2
i −

1

2
ω2
iQ

2
i

)
.

In b) we have apparantly managed to simultaneously diagonize the matrices
Mij → diag (1, . . . , 1) and Vij → diag (ω2

1, . . . , ω
2
n), even though there is no

reason for them to commute with each other.

1.2.5 Numerically Invariant Tensors

Suppose the tensor δij is defined, with respect to some basis, to be unity if
i = j and zero otherwise. In a new basis it will transform to

δ′ij = Aii′(A
−1)j

′

j δ
i′

j′ = Aik(A
−1)kj = δij . (1.64)
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In other words the Kroneker delta symbol of type (1, 1) has the same numer-
ical components in all co-ordinate systems. This is not true of the Kroneker
delta symbol of type (0, 2), i.e. of δij .

Now consider an n-dimensional space with a tensor ηi1i2...in whose com-
ponents, in some basis, coincides with the Levi-Civita symbol εi1i2...in . We
find that in a new frame the components are

η′i1i2...in = (A−1)j1i1 (A
−1)j2i2 · · · (A−1)jnin εj1j2...jn

= det (A−1) εi1i2...in
= det (A−1) ηi1i2...in . (1.65)

Thus, unlike the δij, the Levi-Civita symbol is not quite a tensor.
Consider also the quantity

√
g

def
=
√

det [gij]. (1.66)

Here we assume that the metric is positive-definite, so that the square root
is real, and that we have taken the positive square root. Since

det [g′ij ] = det [(A−1)i
′

i (A
−1)j

′

j gi′j′] = (detA)−2det [gij], (1.67)

we see that √
g′ = |detA|−1√g (1.68)

Thus
√
g is also not quite an invariant. This is only to be expected because

g( , ) is a quadratic form, and we know that there is no basis-independent
meaning to the determinant of such an object.

Now define
εi1i2...in =

√
g εi1i2...in, (1.69)

and assume that εi1i2...in has the type (0, n) tensor character implied by its
indices. When we look at how this transforms, and restrict ourselves to
orientation preserving changes of of bases for which detA is positive, we see
that factors of detA conspire to give

ε′i1i2...in =
√
g′ εi1i2...in . (1.70)

A similar exercise indictes that if we define εi1i2...in to be numerically equal
to εi1i2...in, then

εi1i2...in =
1√
g
εi1i2...in (1.71)
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also transforms as a tensor — in this case a type (n, 0) contravariant one
— provided that the factor of 1/

√
g is always calculated with respect to the

current basis.
If we are in an even-dimensional space and are given a skew-symetric

tensor Fij , we can therefore construct an invariant

εi1i2...inFi1i2 · · ·Fin−1in =
1√
g
εi1i2...inFi1i2 · · ·Fin−1in. (1.72)

Similarly, given an skew-symmetric covariant tensor Fi1...im with m < n in-
dices we can form its dual, F ∗, a (n−m)-contravariant tensor with compo-
nents

(F ∗)im−1...in =
1

m!
εi1i2...inFi1...im =

1√
g

1

m!
εi1i2...inFi1...im . (1.73)

We meet this “dual” tensor again, when we study differential forms.

1.3 Cartesian Tensors

If we restrict ourselves to Cartesian co-ordinate systems with orthonormal
basis vectors, so that gij = δij , then there are considerable simplifications.
In particular we do not have to make a distinction between co- and contra-
variant indices. If we further only allow orthogonal transformations Aij with
detA = 1 (the so-called proper orthogonal transformations), then both δij
and εi1i2...in are tensors whose components are numerically the same in all
bases. Objects which are tensors under the proper orthogonal group are
called Cartesian tensors. We shall usually write their indices as suffixes.

For many physics purposes Cartesian tensors are all we need. The rest of
this section is devoted to some examples.

1.3.1 Stress and Strain

Tensor calculus arose from the study of elasticity — hence the name.
Suppose that an elastic body is deformed so that the point that was at

Cartesian co-ordinate xi is moved to xi + ηi. We define the (infinitesimal)
strain tensor , eij, by

eij =
1

2

(
∂ηj
∂xi

+
∂ηi
∂xj

)
. (1.74)
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It is automatically symmetric in its indices. We will leave for later a discus-
sion of why this is the natural definition of strain, and also the modifications
necessary if we were to use a non-cartesian co-ordinate system.

To define the stress tensor , σij we consider a portion of the body Ω, and
an element of area dS = n d|S| on its boundary. Here n is the unit normal
vector pointing out of Ω. The force F exerted on this surface element by the
parts of the body exterior to Ω has components

Fi = σijnj d|S|. (1.75)

Ω

d

F

n
|S|

Stress forces.

That F is a linear function of n d|S| can be seen by considering the forces
on an small tetrahedron, three of whose sides coincide with the coordinate
planes, the fourth side having n as its normal. In the limit that the lengths
of the sides go to zero as ε, the mass of the body scales to zero as ε3, but
the forces are proprtional to the areas of the sides and go to zero only as ε2.
Only if the linear relation holds true can the acceleration of the tetrahedron
remain finite. A similar argument applied to torques and the moment of
intertia of a small cube shows4 that σij = σji.

The stress is related to the strain via the tensor of elastic constants, cijkl,
by

σij = cijklekl. (1.76)

The fourth rank tensor of eleastic constants has the symmetry properties,

cijkl = cklij = cjikl = cijlk. (1.77)

4If the material is subject to a torque per unit volume, as in the case of a magnetic
material in a magnetic field, then the stress tensor is no longer symmetric.
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In other words it is symmetric under the interchange of the first and second
pairs of indices, and also under the interchange of the indiviual indices in
either pair.

Exercise 1.4: Show that these symmetries imply that a general homogeneous
material has 21 independent elastic constants. (This result was originally
obtained by George Green, of Green function fame.)

For an isotropic material, that is a material whose properties are invariant
under the full rotation group, the tensor of elastic constants must be made
up of numerically invariant tensors, and the most general such combination
with the required symmetries is

cijkl = λδijδkl + µ(δikδjl + δilδjk), (1.78)

and so there are only two independent elastic constants. In terms of them

σij = λδijekk + 2µeij. (1.79)

The quantities λ and µ are called the Lamé constants. By considering partic-
ular deformations, we can express the more directly measurable bulk modulus,
shear modulus, Young’s modulus and Poisson’s ratio in terms of them.

The bulk modulus κ is defined by

dV

V
= −κdP (1.80)

where an infinitesimal isotropic external pressure, dP causes a change V →
V + dV in the volume of the material. This applied pressure means that
the surface stress is equal to σij = −δij dP . An isotropic expansion diplaces
point in the material so that

ηi =
1

3

dV

V
xi. (1.81)

The strains are therefore

eij =
1

3
δij
dV

V
. (1.82)

Plugging into the stress-strain relation gives

σij = δij(λ+
2

3
µ)
dV

V
= −δijdP. (1.83)
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Thus

κ = λ+
2

3
µ. (1.84)

To define the shear modulus, n, we assume a deformation η1 = θx2, so
e12 = e21 = θ/2, with all other eij vanishing.

σ21
σ21

σ12

σ12

θ

Shear strain.

The applied shear stress is σ12 = σ21, and the shear modulus, n, is defined
so that nθ = σ12. Plugging into the stress-strain relation gives

n = µ. (1.85)

We could therefore have written

σij = 2µ(eij −
1

3
δijekk) + κekkδij , (1.86)

which shows that shear is associated with the traceless part of the strain
tensor and the bulk modulus with the trace.

Young’s modulus, Y , is defined in terms of stretching a wire of initial
length L and square cross section of side W under an applied tension T =
σ33W

2 at the ends.

L

σ 33σ
33

W

Stretched wire.

We then have

σ33 = Y
dL

L
. (1.87)

At the same time as the wire stretches, its width changes W → W + dW .
Poisson’s ratio, σ, is defined by

σ = − dL/L

dW/W
, (1.88)
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so σ is positive if the wire gets thinner as it stretches. The displacements are

η3 = z

(
dL

L

)
,

η1 = x

(
dW

W

)
= −σx

(
dL

L

)
,

η2 = y

(
dW

W

)
= −σy

(
dL

L

)
, (1.89)

so the strain components are

e33 =
dL

L
, e11 = e22 =

dW

W
= −σe33. (1.90)

We therefore have

σ33 = (λ(1− 2σ) + 2µ)

(
dL

L

)
, (1.91)

leading to
Y = λ(1− 2σ) + 2µ. (1.92)

Now the side of the wire is a free surface with no forces acting on it, so

0 = σ22 = σ11 = (λ(1− 2σ)− 2σµ)

(
dL

L

)
. (1.93)

This tells us that

σ =
1

2

λ

λ+ µ
, (1.94)

and hence

Y = µ

(
3λ+ 2µ

λ+ µ

)
. (1.95)

Other relations, following from those above, are

Y = 3κ(1− 2σ),

= 2n(1 + σ). (1.96)

Exercise 1.5: A steel beam is forged so that its cross section has the shape of
a region Γ ∈ R2. The centroid, O, of each cross section is defined so that

∫

Γ
x dxdy =

∫

Γ
y dxdy = 0,
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where the co-ordinates x, y are defined with the centroid O as the origin. The
beam is slightly bent so that near a particular cross-section it has radius of
curvature R.

Γ
z

x

y

O

Bent beam.

Assume that the deformation is such that

ηx = − σ
R
xy

ηy =
1

2R

{
σ(x2 − y2)− z2

}

ηz =
1

R
yz

O

Γ

x

y

The original (dashed) and deformed (solid) cross-section.

Notice how, for positive Poisson ratio, the cross section is deformed anticlas-

tically — the sides bends up as the beam bends down. Show that

exx = − σ
R
y, eyy = − σ

R
y, ezz =

1

R
y.

Also show that the other three strain components are zero. Next show that

σzz =

(
Y

R

)
y,

and that all other components of the stress tensor vanish.
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Deduce from this that the assumed deformation satisfies the free surface
boundary condition, and so is indeed the way the beam deforms. The to-
tal elastic energy is given by

E =

∫∫∫

beam

1

2
eijcijklekl d

3x.

Show that for our bent rod, this reduces to

E =

∫
Y I

2

(
1

R2

)
ds ≈

∫
Y I

2
(y′′)2dz.

Here s is the arc-length taken along the line of centroids of the beam, and

I =

∫

Γ
y2 dxdy

is the moment of inertia of the region Γ about the y axis — i.e. an axis
through the centroid, and perpendicular both to the length of the beam and
to the plane into which it is bent. On the right hand side y′′ denotes the
second derivative of the deflection of the beam with respect to the arc-length.
This last formula for the strain energy appears in a number of our calculus of
variations problems.

y

z

The distribution of forces σzz exerted on the left-hand part of the bent rod by the
material to its right.

1.3.2 The Maxwell Stress Tensor

Consider a small cubical element of an elastic body. If the stress tensor were
position independent, the external forces on each pair of opposing faces of
the cube would be numerically equal, but pointing in opposite directions.
There would therefore be no net external force on the cube. When σij is not
constant then the net force acting on a element of volume dV is

Fi = ∂jσij dV. (1.97)
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Consequently, whenever the force per unit volume, fi, acting on a body can
be written in the form fi = ∂jσij , we refer to σij as a “stress tensor” by
analogy with stress in an elastic solid.

Let E and B be the electric and magnetic fields. For simplicity, initially
assume them to be static. The force per unit volume exerted by these fields
on a charge and current distribution is

f = ρE + j×B. (1.98)

Writing ρ = div D, with D = ε0E we find that the force per unit volume due
the electric field can be written as

ρEi = (∂jDj)E
i = ε0∂j

(
EiEj −

1

2
δij |E|2

)
. (1.99)

Here we have used the fact that curlE is zero for static fields. Similarly,
using j = curlH, together with B = µ0H and div B = 0, we find that the
force per unit volume due the magnetic field is

(j×B)i = µ0∂j

(
HiHj −

1

2
δij |H|2

)
. (1.100)

The quantity

σij = ε0

(
EiEj −

1

2
δij |E|2

)
+ µ0

(
HiHj −

1

2
δij |H|2

)
(1.101)

is called the Maxwell stress tensor .
Michael Faraday was the first to intuit this stress picture of electromag-

netic forces, which attributes both a longitudinal tension and a sideways
pressure to the field lines.

Exercise 1.6: Allow the fields in the preceding calculation to be time depen-
dent. Show that Maxwell’s equations lead to

(ρE + j×B)i +
∂

∂t

{
1

c2
(E×H)i

}
= ∂jσij.

The left hand side is the time rate of change of the mechanical (first term)
and electromagnetic (second term) momentum density, so the stress tensor
can also be thought of as a momentum flux tensor.
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Chapter 2

Calculus on Manifolds

In this section we will apply what we have learned about vectors and tensors
in a linear space to the case of vector and tensor fields in a general curvilinear
co-ordinate system, and ultimately to calculus on manifolds.

2.1 Vector Fields and Covector Fields

Physics is full of vector fields — electric, magnetic, velocity fields, and so on.
After struggling with it in introductory courses, we rather take the concept
for granted. There are some real subtleties, however. Consider an electric
field. It makes sense to add two field vectors at a single point, but there is
no physical meaning to the sum of the field vectors, E(x1) and E(x2), at two
points separated by several meters. We should therefore regard all possible
electric fields at a single point as living in a vector space, but each different
point in space comes with its own vector space. This point of view seems
even more reasonable when we consider velocity vectors on a curved surface.

A velocity vector lives in the tangent space to the surface at each point, and

25
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each of these spaces is differently oriented subspace of the higher dimensional
ambient space. Mathematicians call such a collection of vector spaces — one
for each of the points in the surface — a vector bundle over the surface. Thus
the tangent bundle over a surface is the totality of all these different vector
spaces tangent to the surface.

Although we spoke in the previous paragraph of vectors tangent to a
curved surface, it is useful to generalize this idea to vectors lying in the
tangent space of an n-dimensional manifold . An n-manifold M is essentially
a space that locally looks like a part of Rn. This means that some open
neighbourhood of each point can be parametrized by an n-dimensional co-
ordinate system. This parametrization is called a chart . Unless M is Rn

itself (or part of it), a chart will cover only part of M , so more than one will
be required for complete coverage. Where a pair of charts overlap we demand
that the transformation formula giving one set of co-ordinates as a function
of the other be a smooth (C∞) function, and to possess a smooth inverse. A
collection of smoothly related coordinate charts covering all of M is called
an atlas. (A rigorous definition of a manifold contains some further technical
restrictions that are designed to eliminate pathologies, but we won’t make
use of them.) The advantage of thinking in terms of manifolds is that we do
not have to understand their properties as arising from some embedding in
a higher dimensional space. Whatever structure they have, they possess in,
and of, themselves

Classical mechanics provides a good illustration of these ideas. The con-
figuration space M of a mechanical system is almost always a manifold.
When a mechanical system has n degrees of freedom we use generalized co-
ordinates qi, i = 1, . . . , n to parameterize M . The tangent bundle of M then
provides the setting for Lagrangian mechanics. The tangent bundle, denoted
by TM , is the 2n dimensional space whose points consist of a point p in M
paired with a tangent vector lying in the tangent space TMp at that point.
If we think of the tangent vector as a velocity, the natural co-ordinates on
TM become (q1, q2, . . . , qn ; q̇1, q̇2, . . . , q̇n), and these are the variables that
appear in the Lagrangian of the system.

If we consider a vector tangent to some curved surface, it will stick out
of it. If we have a vector tangent to a manifold, it is a straight arrow lying
atop bent co-ordinates. Should we restrict the length of the vector so that
it does not stick out too far? Are we restricted to only infinitesimal vectors?
It’s best to avoid all this by inventing a clever notion of what a vector in
a tangent space is. The idea is to focus on a well-defined object such as
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a derivative. Suppose our space has co-ordinates xµ (These are not the
contravariant components of some vector). A directional derivative is an
object such as

X · ∇ = Xµ∂µ (2.1)

where ∂µ is shorthand for ∂/∂xµ. When the numbers Xµ are functions of
the co-ordinates xσ, this object will be called a tangent-vector field, and we
shall write1

X = Xµ∂µ. (2.2)

We regard the ∂µ at a point x as a basis for TMx, the tangent vector space at
x, and the Xµ(x) as the (contravariant) components of the vector X at that
point. Although they are not little arrows, what the ∂µ are is mathematically
clear, and so we know perfectly well how to deal with them.

When we change co-ordinate system from xµ to zν by regarding the xµ’s
as invertable functions of the zν ’s, i.e.

x1 = x1(z1, z2, . . . , zn),

x2 = x2(z1, z2, . . . , zn),
...

xn = xn(z1, z2, . . . , zn), (2.3)

then the chain rule for partial differentiation gives

∂µ ≡
∂

∂xµ
=
∂zν

∂xµ
∂

∂zν
=

(
∂zν

∂xµ

)
∂′ν . (2.4)

By demanding that
X = Xµ∂µ = X ′ν∂′ν (2.5)

we find the components in the zν co-ordinate frame to be

X ′ν =

(
∂zν

∂xµ

)
Xµ. (2.6)

Conversely, using
∂xσ

∂zν
∂zν

∂xµ
=
∂xσ

∂xν
= δσµ , (2.7)

1We are going to stop using bold symbols to distinguish between intrinsic objects and
their components, because from now on almost everything will be something other than a
number, and too much black ink will just be confusing.
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we have

Xν =

(
∂xν

∂zµ

)
X ′µ. (2.8)

This, then, is the transformation law for a contravariant vector.
It is worth pointing out that the basis vectors ∂µ are not unit vectors. At

the moment we have no metric and therefore no notion of length anyway, so
we cannot try to normalize them. If you insist on drawing (small?) arrows,
think of ∂1 as starting at a point (x1, x2, . . . , xn) and with its head at (x1 +
1, x2, . . . , xn). Of course this is only a good picture if the co-ordinates are
not too “curvy”.

x =2 x =3 x =4

x =5

x =4

x =6

1 1 1

2

2

2

2

1

Approximate picture of the vectors ∂1 and ∂2 at the point (x1, x2) = (2, 4).

Example: The surface of the unit sphere is a manifold. It is usually denoted
by S2. We may label its points with spherical polar coordinates θ and φ, and
these will be useful everywhere except at the north and south poles, where
they become singular because at θ = 0 or π all values of φ correspond to
the same point. In this coordinate basis, the tangent vector representing the
velocity field due to a one radian per second rigid rotation about the z axis
is

Vz = ∂φ. (2.9)

Similarly

Vx = − sin φ ∂θ − cot θ cosφ ∂φ,

Vy = cosφ ∂θ − cot θ sin φ, ∂φ, (2.10)

represent rigid rotations about the x and y axes.
What about the dual spaces? For these a cute notational game, due to

Elié Cartan, is played. We write the basis objects dual to the ∂µ as dxµ( ).
Thus

dxµ(∂ν) = δµν . (2.11)
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Acting on vector field X = Xµ∂µ, the object dxµ returns its components

dxµ(X) = dxµ(Xν∂ν) = Xνdxµ(∂ν) = Xνδµν = Xµ. (2.12)

Actually, any function f(x) on our space (we will write f ∈ C∞(M) for
smooth functions on a manifold M) gives rise to a field of covectors in TM∗.
This is because our vector field X acts on the scalar function f as

Xf = Xµ∂µf (2.13)

and Xf is another scalar function. This new function gives a number — and
thus an element of the field R — at each point x ∈ M . But this is exactly
what a covector does: it takes in a vector at a point and returns a number.
We will call this covector field “df”. Thus

df(X)
def
= Xf = Xµ ∂f

∂xµ
. (2.14)

If we take f to be the co-ordinate xν , we have

dxν(X) = Xµ ∂x
ν

∂xµ
= Xµδνµ = Xν , (2.15)

so this viewpoint is consistent with our previous definition of dxν . Thus

df(X) =
∂f

∂xµ
Xµ =

∂f

∂xµ
dxµ(X) (2.16)

for any vector field X. In other words we can expand df as

df =
∂f

∂xµ
dxµ. (2.17)

This is not some approximation to a change in f , but is an exact expansion
of the covector field df in terms of the basis covectors dxµ.

We may retain something of the notion that dxµ represents the (con-
travariant) components of some small displacement in x provided that we
think of dxµ as a machine into which we insert the small displacement (a
vector) and have it spit out the numerical components δxµ. This is the same
distinction that we make between sin( ) as a function into which one can
plug x, and sin x, the number that results from inserting in this particular
value of x. Although seemingly innocent, we know that it is a distinction of
great power.
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The change of co-ordinates transformation law for a covector field fµ is
found from

fµ dx
µ = f ′

ν dz
ν , (2.18)

by using

dxµ =

(
∂xµ

∂zν

)
dzν . (2.19)

We find

f ′
ν =

(
∂xµ

∂zν

)
fµ. (2.20)

A general tensor such as Qλµ
ρστ will transform as

Q′λµ
ρστ (z) =

∂zλ

∂xα
∂zµ

∂xβ
∂xγ

∂zρ
∂xδ

∂zσ
∂xε

∂zτ
Qαβ

γδε(x). (2.21)

Observe how the indices are wired up: Those for the new tensor coefficients
in the new co-ordinates, z, are attached to the new z’s, and those for the old
coefficients are attached to the old x’s. Upstairs indices go in the numerator
of each partial derivative, and downstairs ones are in the denominator.

2.2 Differentiating Tensors

If f is a function then ∂µf are components of the covariant vector df . Suppose
that aµ is a contravariant vector. Are ∂νa

µ the components of a type (1, 1)
tensor? The answer is no! In general, differentiating the components of a
tensor does not give rise to another tensor. One can see why at two levels:

a) Consider the transformation laws. They contain expressions of the form
∂xµ/∂zν . If we differentiate both sides of the transformation law of a
tensor, these factors are also differentiated, but tensor transformation
laws never contain second derivatives, such as ∂2xµ/∂zν∂zσ.

b) Differentiation requires subtracting vectors or tensors at different points
— but vectors at different points are in different vector spaces, so their
difference is not defined.

These two reasons are really one and the same. We need to be cleverer to
get new tensors by differentiating old ones.
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2.2.1 Lie Bracket

One way to proceed is to note that the vector field X is an operator . It makes
sense, therefore, to try to compose two of them to make another. Look at
XY , for example:

XY = Xµ∂µ(Y
ν∂ν) = XµY ν∂2

µν +Xµ

(
∂Y ν

∂xµ

)
∂ν . (2.22)

What are we to make of this? Not much! There is no particular interpretation
for the second derivative, and as we saw above, it does not transform nicely.
But suppose we take a commutator :

[X, Y ] = XY − Y X = (Xµ(∂µY
ν)− Y µ(∂µX

ν)) ∂ν . (2.23)

The second derivatives have cancelled, and what remains is a directional
derivative and so a bona-fide vector field. The components

[X, Y ]ν ≡ Xµ(∂µY
ν)− Y µ(∂µX

ν) (2.24)

are the components of a new contravariant vector field made from the two
old vector fields. It is called the Lie bracket of the two fields, and has a
geometric interpretation.

To understand the geometry of the Lie bracket, we first define the flow
associated with a tangent-vector field X. This is the map that takes a point
x0 and maps it to x(t) by solving the family of equations

dxµ

dt
= Xµ(x1, x2, . . . , xd), (2.25)

with initial condition xµ(0) = xµ0 . In words, we regard X as the velocity field
of a flowing fluid, and let x ride along with the fluid.

Now envisage X and Y as two velocity fields. Suppose we flow along X
for a brief time t, then along Y for another brief interval s. Next we switch
back to X, but with a minus sign, for time t, and then to −Y for a final
interval of s. We have tried to retrace our path, but a short exercise with
Taylor’s theorem shows that we will fail to return to our exact starting point.
We will miss by δxµ = st[X, Y ]µ, plus corrections of cubic order in s and t.
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−sY
tX

sY

−tX

X,Y[      ]st

The Lie bracket.

Example: Let

Vx = − sin φ ∂θ − cot θ cosφ ∂φ,

Vy = cos φ ∂θ − cot θ sinφ ∂φ

be two vector fields in T (S2). We find that

[Vx, Vy] = −Vz,

where Vz = ∂φ.

Frobenius’ Theorem

Suppose that in some region of a d-dimensional manifold M we are given
n < d linearly independent vector fields Xi. Such a set is called a distribution
by differential geometers. (The concept has nothing to do with objects like
“δ(x)” which are also called “distributions”.) At each point x, the span
〈Xi(x)〉 of the field vectors vectors forms a subspace of the tangent space
TMx, and we can picture this subspace as a fragment of an n-dimensional
surface passing through x. It is possible that these surface fragments fit
together to make a stack of smooth surfaces — called a foliation — that fill
out the d dimensional space, and have the given Xi as their tangent vectors.
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X 1
X 2

x

N

A local foliation.

If this is the case then starting from x and taking steps only along the Xi

we find ourselves restricted to the n-surface, or n-submanifold , N passing
though the original point x.

Alternatively, the surface fragments may form such an incoherent jumble
that starting from x and moving only along the Xi we can find our way to any
point in the neighbourhood of x. It is also possible that some intermediate
case applies, so that moving along the Xi restricts us to an m-surface, where
d > m > n. The Lie bracket provides us with the appropriate tool with
which to investigate these possibilities.

First a definition: If there are functions c k
ij (x) such that

[Xi, Xj] = c k
ij (x)Xk, (2.26)

i.e. the Lie brackets close within the set {Xi} at each point x, then the
distribution is said to be involutive. When our given distribution is involutive,
then the first case holds, and, at least locally, there is a foliation by n-
submanifolds N . A formal statement of this is:
Theorem (Frobenius): A smooth (C∞) involutive distribution is completely
integrable: locally, there are co-ordinates xµ, µ = 1, . . . , d such that Xi =∑n
µ=1X

µ
i ∂µ, and the surfaces N through each point are in the form xµ =

const. for µ = n + 1, . . . , d. Conversely, if such co-ordinates exist then the
distribution is involutive.
Sketch of Proof : If such co-ordinates exist then it is obvious that the Lie
bracket of any pair of vectors in the form Xi =

∑n
µ=1X

µ
i ∂µ can also be ex-

panded in terms of the first n basis vectors. A logically equivalent statement
exploits the geometric interpretation of the Lie bracket: If the Lie brackets of
the Xi do not close within the span of the Xi, then a sequence of back-and-
forth manouvres along the Xi allows us to escape into a new direction, and
so the Xi cannot be tangent to an n-surface. Establishing the converse —
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that closure implies the existence of the foliation — is rather more technical,
and we will not attempt it.

The physicist’s version of Frobenius’ theorem is usually expressed in the
language of holonomic or anholonomic constraints.

If a particle moves in three dimensions and we are told that the velocity
vector is constrained to be perpendicular to the radius vector, i.e. v · r = 0,
we realize that the particle is being forced to move on a the sphere |r| = r0
passing through the initial point. In spherical co-ordinates the associated
distribution is the set {∂θ, ∂φ}, which is clearly involutive. The foliation is
the family of nested spheres whose centre is the origin. The foliation is not
global because it becomes singular at r = 0. Constraints like this, which
restrict the motion to a surface, are called holonomic.

Suppose, on the other hand, we have a ball rolling on a table. Here,
we have a five-dimensional configuration space parameterized by the centre
of mass (x, y) of the ball and the three Euler angles (θ, φ, ψ) defining its
orientation. The no-slip rolling condition links the rate of change of the
Euler angles to the velocity of the centre of mass. At each point in this five
dimensional space we are free to roll the ball in two directions, and so might
expect that the reachable configurations constitute a two dimensional surface
embedded in the full five dimensional space. The two vector fields describing
the rolling motion are not in involution, however. By calculating enough Lie
brackets we eventually obtain five linearly independent velocity vector fields,
and starting from one configuration we can reach any other. The no-slip
rolling condition is said to be non-integrable, or anholonomic. Such systems
are tricky to deal with in Lagrangian dynamics.

For a d dimension mechanical system, a set of m independent constraints
of the form ωiµ(q)q̇

µ = 0, i = 1, . . . , m determines a n = d −m dimensional
distribution. In terms of the vector q̇ ≡ q̇µ∂µ and the covectors

ωi =
d∑

µ=1

ωiµ(q)dq
µ, i = 1 ≤ i ≤ m (2.27)

we can write the these constraints as ωi(q̇) = 0. This is known a Pfaffian
system of equations. The Pfaffian system is said to be integrable if the
distribution it implicitly defines is in involution, and hence itself integrable.
In this case there is a set of m functions gi(q) and an invertible m×m matrix
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f ij(q) such that

ωi =
m∑

j=1

f ij(q)dg
j. (2.28)

The functions gi(q) can, for example, be taken to be the coordinate functions
xµ, with µ = n + 1, . . . , d that label the foliating surfaces N in the statement
of Frobenius’ theorem. The system of integrable constraints ωi(q̇) = 0 thus
restricts us to the surfaces gi(q) = constant. Integrable constraints are there-
fore holonomic.

The following exercise provides a familiar example of the utility of non-
holonomic constraints:

Exercise 2.1: Parallel Parking using Lie Brackets:

θ

(x,y)

drive

park

φ

The configuration space of a car is four dimensional, and parameterized by
coordinates (x, y, θ, φ) as shown in the figure.

Define the following vector fields:

a) (front wheel) drive = cosφ(cos θ ∂x + sin θ ∂y) + sinφ∂θ.
b) steer = ∂φ.
c) (front wheel) skid = − sinφ(cos θ ∂x + sin θ ∂y) + cosφ∂θ.
d) park = − sin θ ∂x + cos θ ∂y.

Explain why these are apt names for the vector fields, and compute the Lie
brackets:

[steer,drive], [steer, skid], [skid,drive],

[park,drive], [park,park], [park, skid].
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The driver can use only the operations (±)drive and (±)steer to manouvre
the car. Use the geometric interpretation of the Lie bracket to explain how a
suitable sequence of motions (forward, reverse, and turning the steering wheel)
can be used to manoeuvre a car sideways into a parking space.

2.2.2 Lie Derivative

Another derivative we can define is the Lie derivative along a vector field X.
It is defined by its action on a scalar function f as

LXf def
= Xf, (2.29)

on a vector field by

LXY def
= [X, Y ], (2.30)

and on anything else by requiring it to be a derivation, meaning that it obeys
Leibniz’ rule. For example, let us compute the Lie derivative of a covector
F . We first introduce an arbitrary vector field Y and plug it into F to get
the scalar function F (Y ). Leibniz’ rule is then the statement that

LXF (Y ) = (LXF )(Y ) + F (LXY ). (2.31)

Since F (Y ) is a function and Y a vector, both of whose derivatives we know
how to compute, we know two of the three terms in this equation. From
LXF (Y ) = XF (Y ) and F (LXY ) = F ([X, Y ]), we have

XF (Y ) = (LXF )(Y ) + F ([X, Y ]), (2.32)

and so

(LXF )(Y ) = XF (Y )− F ([X, Y ]). (2.33)

In components, this becomes

(LXF )(Y ) = Xν∂ν(FµY
µ)− Fν(Xµ∂µY

ν − Y µ∂µX
ν)

= (Xν∂νFµ + Fν∂µX
ν)Y µ. (2.34)

Note how all the derivatives of Y µ have cancelled, so LXF ( ) depends only
on the local value of Y . The Lie derivative of F is therefore still a covector
field. This is true in general: the Lie derivative does not change the tensor
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character of the objects on which it acts. Dropping the arbitrary spectator
Y ν , we have a formula for LXF in components:

(LXF )µ = Xν∂νFµ + Fν∂µX
ν . (2.35)

Another example is the Lie derivative of a type (0, 2) tensor, such as the
metric tensor, which is

(LXg)µν = Xα∂αgµν + gµα∂νX
α + gαν∂µX

α. (2.36)

This Lie derivative measures the extent to which a displacement xµ → xµ +
εηµ deforms the geometry.

Exercise 2.2: Suppose we have an unstrained block of material in real space.
A coordinate system ξ1, ξ2, ξ3, is attached to the atoms of the body. The
point with coordinate ξ is located at (x1(ξ), x2(ξ), x3(ξ)) where x1, x2, x3 are
the usual R3 Cartesian coordinates.

a) Show that the induced metric in the ξ coordinate system is

gµν(ξ) =
3∑

a=1

∂xa

∂ξµ
∂xa

∂ξν
.

b) The body is now deformed by a strain vector field η(ξ). The point ξµ

is moved to what was ξµ + εηµ(ξ), or equivalently, the atom initially at
xa(ξ) is moved to xa + εηµ∂xa/∂ξµ. Show that the new induced metric
is

gµν + δgµν = gµν + εLηgµν .
c) Define the strain tensor to be 1/2 of the Lie derivative of the metric with

respect to the deformation. If the original ξ coordinate system coincided
with the Cartesian one, show that this definition reduces to the familiar
form

eab =
1

2

(
∂ηa
∂xb

+
∂ηb
∂xa

)
,

all tensors being Cartesian.
d) Part c) gave us the geometric definitition of infinitesimal strain. If the

body is deformed substantially, the finite strain tensor is defined as

Eµν =
1

2

(
gµν − g(0)

µν

)
,

where g
(0)
µν is the metric in the undeformed body and gµν that of the

deformed body. Explain why this is a reasonable definition.



38 CHAPTER 2. CALCULUS ON MANIFOLDS

This exercise shows that a displacement field η that does not change distances
between points, i.e. one that gives rise to an isometry , must satisfy Lηg = 0.
Such an η is said to be a Killing field after Wilhelm Killing who introduced
them in his study of non-euclidean geometries.

Exercise 2.3: The metric on the unit sphere equipped with polar coordinates
is

g( , ) = dθ ⊗ dθ + sin2 θdφ⊗ dφ.

Consider

Vx = − sinφ∂θ − cot θ cosφ∂φ,

the vector field of a rigid rotation about the x axis. Compute the Lie derivative
LVxg, and show that it is zero.

The geometric interpretation of the Lie derivative is as follows: In order to
compute the X directional derivative of a vector field Y , we need to be able
to subtract the vector Y (x) from the vector Y (x+ εX), divide by ε, and take
the limit ε → 0. To do this we have somehow to get the vector Y (x) from
the point x, where it normally lives, to the new point x+ εX, so both vectors
are elements of the same vector space. The Lie derivative achieves this by
carrying the old vector to the new point along the field X.

Xε
x

Lε
Xε

YX

Y(x+εX)

Y(x)

Imagine the vector Y as drawn in ink in a flowing fluid whose velocity field
is X. Initially the tail of Y is at x and its head is at x + Y . After flowing
for a time ε, its tail is at x + εX — i.e exactly where the tail of Y (x + εX)
lies. Where the head of transported vector ends up depends how the flow has
stretched and rotated the ink, but it is this distorted vector that is subtracted
from Y (x + εX) to get εLXY = ε[X, Y ].
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2.3 Exterior Calculus

2.3.1 Differential Forms

The objects we introduced in section 2.1, the dxµ, are called one-forms, or
differential one-forms. They live in the cotangent bundle, T ∗M , of M . (In
more precise language, they are sections of the cotangent bundle, and vector
fields are sections of the tangent bundle.) If we consider the p-th skew-
symmetric tensor power

∧p(T ∗M) of the space of one-forms we get objects
called p-forms.

For example,

A = Aµdx
µ = A1dx

1 + A2dx
2 + A3dx

3, (2.37)

is a 1-form,

F =
1

2
Fµνdx

µ ∧ dxν = F12dx
1 ∧ dx2 + F23dx

2 ∧ dx3 + F31dx
3 ∧ dx1, (2.38)

is a 2-form, and

Ω =
1

3!
Ωµνσdx

µ ∧ dxν ∧ dxσ

= Ω123dx
1 ∧ dx2 ∧ dx3, (2.39)

is a 3-form. All the coefficients are skew-symmetric tensors, so, for example,

Ωµνσ = Ωνσµ = Ωσµν = −Ωνµσ = −Ωµσν = −Ωσνµ. (2.40)

In each example we have explicitly written out all the independent terms for
the case of three dimensions. Note how the p! disappears when we do this
and keep only distinct components. In d dimensions the space of p-forms is
d!/p!(d− p)! dimensional, and all p-forms with p > d vanish identically.

As with the wedge products in chapter one, we regard a p-form as a p-
linear skew-symetric function with p slots into which we can drop vectors to
get a number. For example the basis two-forms give

dxµ ∧ dxν(∂α, ∂β) = δµαδ
ν
β − δµβδνα. (2.41)

The analogous expression for a p-form would have p! terms. We can define
an algebra of differential forms by “wedging” them together in the obvious
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way, so that the product of a p form with a q form is a (p + q)-form. The
wedge product is associative and distributive but not, of course, commuta-
tive. Instead, if a is a p-form and b a q-form, then

a ∧ b = (−1)pq b ∧ a. (2.42)

Actually it is customary in this game to suppress the “∧” and simply write
F = 1

2
Fµν dx

µdxν , it being assumed that you know that dxµdxν = −dxνdxµ
— what else could it be?

2.3.2 The Exterior Derivative

These p-forms seem rather exotic, so it is perhaps surprising that all the
vector calculus (div, grad, curl, the divergence theorem and Stokes’ theorem,
etc.) that you have learned in the past reduce, in terms of these, to two sim-
ple formulæ! Indeed Cartan’s calculus of p-forms is slowly supplanting tradi-
tional vector calculus, much as Willard Gibbs’ vector calculus supplanted the
tedious component-by-component formulæ you find in Maxwell’s Treatise on
Electricity and Magnetism.

The basic tool is the exterior derivative “d”, which we now define ax-
iomatically:

i) If f is a function (0-form), then df coincides with the previous defini-
tion, i.e. df(X) = Xf for any vector field X.

ii) d is an anti-derivation: If a is a p-form and b a q-form then

d(a ∧ b) = da ∧ b + (−1)pa ∧ db. (2.43)

iii) Poincaré’s lemma: d2 = 0, meaning that d(da) = 0 for any p-form a.
iv) d is linear. That d(αa) = αda, for constant α follows already from i)

and ii), so the new fact is that d(a+ b) = da+ db.

It is not immediately obvious that axioms i), ii) and iii) are compatible
with one another. If we use axiom i), ii) and d(dxi) = 0 to compute the d of
Ω = 1

p!
Ωi1,...,ipdx

i1 · · ·dxip , we find

dΩ =
1

p!
d(Ωi1,...,ip)dx

i1 · · ·dxip

=
1

p!

(
∂kΩi1,...,ip

)
dxkdxi1 · · ·dxip. (2.44)
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Now compute

d(dΩ) =
1

p!

(
∂l∂kΩi1,...,ip

)
dxldxkdxi1 · · ·dxip . (2.45)

Fortunately this is zero because ∂l∂kΩ = ∂k∂lΩ, while dxldxk = −dxkdxl.
If A = A1dx

1 + A2dx
2 + A3dx

3 then

dA =

(
∂A2

∂x1
− ∂A1

∂x2

)
dx1dx2 +

(
∂A1

∂x3
− ∂A3

∂x1

)
dx3dx1 +

(
∂A3

∂x2
− ∂A2

∂x3

)
dx2dx3

=
1

2
Fµνdx

µdxν , (2.46)

where
Fµν ≡ ∂µAν − ∂νAµ. (2.47)

You will recognize the components of curlA hiding in here.
Similarly, if F = F12dx

1dx2 + F23dx
2dx3 + F31dx

3dx1 then

dF =

(
∂F23

∂x1
+
∂F31

∂x2
+
∂F12

∂x3

)
dx1dx2dx3. (2.48)

This looks like a divergence.
The axiom d2 = 0 encompasses both “curl grad = 0” and “div curl =

0”, together with an infinite number of higher-dimensional analogues. The
familiar “curl =∇×”, meanwhile, is only defined in three dimensional space.

The exterior derivative takes p-forms to (p+1)-forms i.e. skew-symmetric
type (0, p) tensors to skew-symmetric (0, p + 1) tensors. How does “d” get
around the fact that the derivative of a tensor is not a tensor? Well, if
you apply the transformation law for Aµ, and the chain rule to ∂

∂xµ to find
the transformation law for Fµν = ∂µAν − ∂νAµ, you will see why: all the
derivatives of the ∂zν

∂xµ cancel, and Fµν is a bona-fide tensor of type (0, 2). This
sort of cancellation is why skew-symmetric objects are useful, and symmetric
ones less so.

Exercise 2.4: Use axiom ii) to compute d(d(a∧ b)) and confirm that it is zero.

Cartan’s formulæ

It is sometimes useful to have expressions for the action of d coupled with
the evaluation of the subsequent (p+ 1) forms.
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If f, η, ω, are 0, 1, 2-forms, respectively, then df, dη, dω, are 1, 2, 3-forms.
When we plug in the appropriate number of vector fields X, Y, Z, then, after
some labour, we will find

df(X) = Xf. (2.49)

dη(X, Y ) = Xη(Y )− Y η(X)− η([X, Y ]). (2.50)

dω(X, Y, Z) = Xω(Y, Z) + Y ω(Z,X) + Zω(X, Y )

−ω([X, Y ], Z)− ω([Y, Z], X)− ω([Z,X], Y ). (2.51)

These formulæ, and their higher-p analogues, express d in terms of geometric
objects, and so make it clear that the exterior derivative is itself a geometric
object, independent of any particular co-ordinate choice.

Let us demonstate the correctness of the second formula. With η = ηµdx
µ,

the left-hand side, dη(X, Y ), is equal to

∂µην dx
µdxν(X, Y ) = ∂µην(X

µY ν −XνY µ). (2.52)

The right hand side is equal to

Xµ∂µ(ηνY
ν)− Y µ∂µ(ηνX

ν)− ην(Xµ∂µY
ν − Y µ∂µX

ν). (2.53)

On using the product rule for the derivatives in the first two terms, we find
that all derivatives of the components of X and Y cancel, and are left with
exactly those terms appearing on left.

Lie Derivative of Forms

Given a p-form ω and a vector field X, we can form a (p − 1)-form called
iXω by writing

iXω( . . . . . .︸ ︷︷ ︸
p−1 slots

) = ω(

p slots︷ ︸︸ ︷
X, . . . . . .︸ ︷︷ ︸

p−1 slots

). (2.54)

Acting on a 0-form, iX is defined to be 0. This procedure is called the interior
multiplication by X. It is simply a contraction

ωjij2...jp → ωkj2...jpX
k, (2.55)

but it is convenient to have a special symbol for this operation. Note that iX
is an anti-derivation, just as is d: if η and ω are p and q forms respectively,
then

iX(η ∧ ω) = (iXη) ∧ ω + (−1)pη ∧ (iXω), (2.56)
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even though iX involves no differentiation. For example, if X = Xµ∂µ, then

iX(dxµ ∧ dxν) = dxµ ∧ dxν(Xα∂α, ),

= Xµdxν − dxµXν ,

= (iXdx
µ) ∧ (dxν)− dxµ ∧ (iXdx

ν). (2.57)

One reason for introducing iX is that there is a nice (and profound)
formula for the Lie derivative of a p-form in terms of iX . The formula is
called the infinitesimal homotopy relation. It reads

LXω = (d iX + iXd)ω. (2.58)

This is proved by verifying that it is true for functions and one-forms, and
then showing that it is a derivation – in other words that it satisfies Leibniz’
rule. From the derivation property of the Lie derivative, we immediately
deduce that that the formula works for any p-form.

That the formula is true for functions should be obvious: Since iXf = 0
by definition, we have

(d iX + iXd)f = iXdf = df(X) = Xf = LXf. (2.59)

To show that the formula works for one forms, we evaluate

(d iX + iXd)(fν dx
ν) = d(fνX

ν) + iX(∂µfν dx
µdxν)

= ∂µ(fνX
ν)dxµ + ∂µfν(X

µdxν −Xνdxµ)

= (Xν∂νfµ + fν∂µX
ν)dxµ. (2.60)

In going from the second to the third line, we have interchanged the dummy
labels µ ↔ ν in the term containing dxν . We recognize that the 1-form in
the last line is indeed LXf .

To show that diX + iXd is a derivation we must apply d iX + iXd to a∧ b
and use the antiderivation property of ix and d. This is straightforward once
we recall that d takes a p-form to a (p + 1)-form while iX takes a p-form to
a (p− 1)-form.
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2.4 Physical Applications

2.4.1 Maxwell’s Equations

In relativistic2 four-dimensional tensor notation the two source-free Maxwell’s
equations

curlE = −∂B
∂t
,

divB = 0, (2.61)

reduce to the single equation

∂Fµν
∂xλ

+
∂Fνλ
∂xµ

+
∂Fλµ
∂xν

= 0. (2.62)

where

Fµν =




0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


 . (2.63)

The “F” is traditional, for Michael Faraday. In form language, the relativistic
equation becomes the even more compact expression dF = 0, where

F ≡ 1

2
Fµνdx

µdxν

= Bxdydz +Bydzdx +Bzdxdy + Exdxdt+ Eydydt+ Ezdzdt,

(2.64)

is a Minkowski space 2-form.

Exercise 2.5: Verify that the source-free Maxwell equations are indeed equiv-
alent to dF = 0.

The equation dF = 0 is automatically satisfied if we introduce a 4-vector
1-form potential A = −φdt+ Axdx+ Aydy + Azdz and set F = dA.

The two Maxwell equations with sources

divD = ρ,

curlH = j +
∂D

∂t
, (2.65)

2In this section we will use units in which c = ε0 = µ0 = 1. We take the Minkowski
metric to be gµν = diag (−1, 1, 1, 1) where x0 = t, x1 = x , etc.
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reduce in 4-tensor notation to the single equation

∂µF
µν = Jν . (2.66)

Here Jµ = (ρ, j) is the current 4-vector.
This source equation takes a little more work to express in form language,

but it can be done. We need a new concept: the Hodge “star” dual of a form.
In d dimensions this takes a p-form to a (d − p)-form. It depends on both
the metric and the orientation. The latter means a canonical choice of the
order in which to write our basis forms, with orderings that differ by an even
permutation being counted as the same. The full d-dimensional definition
involves the Levi-Civita duality operation of chapter 1, combined with the

use of the metric tensor to raise indices. Recall that
√
g =

√
det gµν. (In

Minkowski-signature metrics we should replace
√
g by

√−g.) We define “?”
to be a linear map

? :
p∧
(T ∗M)→

(d−p)∧
(T ∗M) (2.67)

such that

? dxi1 . . . dxip
def
=

1

(d− p)!
√
ggi1j1 . . . gipjpεj1···jpjp+1···jddx

jp+1 . . . dxjd. (2.68)

Although this definition looks a trifle involved, computations involving it are
not so intimidating. The trick is always to work with oriented orthonormal
frames. If we are in euclidean space and {e∗i1 , e∗i2 , . . . , e∗id} is an order-
ing of the orthonormal basis for (T ∗M)x whose orientation is equivalent to
{e∗1, e∗2, . . . , e∗d} then

? (e∗i1 ∧ e∗i2 ∧ · · · ∧ e∗ip) = e∗ip+1 ∧ e∗ip+2 ∧ · · · ∧ e∗id . (2.69)

For example, in three dimensions, and with x, y, z, our usual Cartesian co-
ordinates, we have

? dx = dydz,

? dy = dzdx,

? dz = dxdy. (2.70)

An analogous method works for Minkowski-signature (−,+,+,+) metrics,
except that now we must include a minus sign for each negatively normed
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dt factor in the form being “starred”. Taking {dt, dx, dy, dz} as our oriented
basis, we therefore find3

? dxdy = −dzdt,
? dydz = −dxdt,
? dzdx = −dydt,
? dxdt = dydz,

? dydt = dzdx,

? dzdt = dxdy. (2.71)

For example, the first of these equations is derived by observing that (dxdy)(−dzdt) =
dtdxdydz, and that there is no “dt” in the product dxdy. The fourth fol-
lows from observing that that (dxdt)(−dydx) = dtdxdydz, but there is a
negative-normed “dt” in the product dxdt.

The ? map is constructed so that if

α =
1

p!
αi1i2...ipdx

i1dxi2 · · ·dxip, (2.72)

and

β =
1

p!
βi1i2...ipdx

i1dxi2 · · ·dxip , (2.73)

then
α ∧ (?β) = β ∧ (?α) = 〈α, β〉σ, (2.74)

where the inner product 〈α, β〉 is defined to be the invariant

〈α, β〉 = 1

p!
gi1j1gi2j2 · · · gipjpαi1i2...ipβj1j2...jp, (2.75)

and σ is the volume form

σ =
√
g dx1dx2 · · ·dxd. (2.76)

In future we will write α ? β for α ∧ (?β). Bear in mind that the “?” in this
expression is acting β and is not some new kind of binary operation.

We now apply these ideas to Maxwell. From the field-strength 2-form

F = Bxdydz +Bydzdx +Bzdxdy + Exdxdt+ Eydydt+ Ezdzdt, (2.77)

3See for example: Misner, Thorn and Wheeler, Gravititation, (MTW) page 108.
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we get a dual 2-form

?F = −Bxdxdt− Bydydt− Bzdzdt+ Exdydz + Eydzdx + Ezdxdy. (2.78)

We can check that we have correctly computed the Hodge star of F by taking
the wedge product, for which we find

F ? F =
1

2
(FµνF

µν)σ = (B2
x +B2

y +B2
z − E2

x − E2
y − E2

z )dtdxdydz. (2.79)

Observe that the expression B2−E2 is a Lorentz scalar. Similarly, from the
current 1-form

J ≡ Jµdx
µ = −ρ dt + jxdx+ jydy + jzdz, (2.80)

we derive the dual current 3-form

?J = ρ dxdydz − jxdtdydz − jydtdzdx− jzdtdxdy, (2.81)

and check that

J ? J = (JµJ
µ)σ = (−ρ2 + j2

x + j2
y + j2

z )dtdxdydz. (2.82)

Observe that

d ? J =

(
∂ρ

∂t
+ div j

)
dtdxdydz = 0, (2.83)

expresses the charge conservation law.
Writing out the terms explicitly shows that the source-containing Maxwell

equations reduce to d?F = ?J. All four Maxwell equations are therefore very
compactly expressed as

dF = 0, d ? F = ?J.

Observe that current conservation d?J = 0 follows from the second Maxwell
equation as a consequence of d2 = 0. MTW has some enlightening pictures
giving the geometric interpretation of these equations.

Exercise 2.6: Show that for a p-form ω in d euclidean dimensions we have

? ? ω = (−1)p(d−p)ω.

Show, further, that for a Minkowski metric an additional minus sign has to be
inserted. (For example, ? ? F = −F , even though (−1)2(4−2) = +1.)
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2.4.2 Hamilton’s Equations

Hamiltonian dynamics takes place in phase space, a manifold with co-ordinates
(q1, . . . , qn, p1, . . . , pn). Since momentum is a naturally covariant vector4,
phase space is the cotangent bundle T ∗M of the configuration manifold M .
We are writing the indices on the p’s upstairs though, because we are con-
sidering them as co-ordinates in T ∗M .

We expect that you are familiar with Hamilton’s equation in their q, p
setting. Here, we shall describe them as they appear in a modern book on
Mechanics, such as Abrahams and Marsden’s Foundations of Mechanics, or
V. I. Arnold’s Mathematical Methods of Classical Mechanics.

Phase space is an example of a symplectic manifold, a manifold equiped
with a symplectic form — a closed, non-degenerate 2-form field

ω =
1

2
ωijdx

idxj. (2.84)

The word closed means that dω = 0. Non-degenerate means that for any
point x the statement that ω(X, Y ) = 0 for all vectors Y ∈ TMx implies that
X = 0 at that point (or equivalently that for all x the matrix ωij(x) has an
inverse ωij(x)).

Given a Hamiltonian function H on our symplectic manifold, we define
a velocity vector-field vH by solving

dH = −ivH
ω = −ω(vH , ) (2.85)

for vH . If the symplectic form is ω = dp1dq1 + dp2dq2 + · · ·+ dpndqn, this is
nothing but a fancy form of Hamilton’s equations. To see this, we write

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi (2.86)

and use the customary notation (q̇i, ṗi) for the velocity-in-phase-space com-
ponents, so that

vH = q̇i
∂

∂qi
+ ṗi

∂

∂pi
. (2.87)

Now we work out

ivH
ω = dpidqi(q̇j∂qj + ṗj∂pj , )

= ṗidqi − q̇idpi, (2.88)
4To convince yourself of this, remember that in quantum mechanics p̂µ = −ih̄ ∂

∂xµ , and
the gradient of a function is a covector.
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so, comparing coefficients of dpi and dqi on the two sides of dH = −ivH
ω, we

read off

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.89)

Darboux’ theorem, which we will not try to prove, says that for any point x
we can always find coordinates p, q, valid in some neigbourhood of x, such
that ω = dp1dq1 + dp2dq2 + · · ·dpndqn, so it is not unreasonable to think
that there is little to gained by using the abstract differential-form language.
In simple cases this is so, and the traditional methods are fine. It may be,
however, that the neigbourhood of x where the Darboux coordinates work is
not the entire phase space, and we need to cover the space with overlapping
p, q coordinate patches. Then, what is a p in one coordinate patch will usually
be a combination of p’s and q’s in another. In this case, the traditional form
of Hamilton’s equations loses its appeal in comparison to the coordinate-free
dH = −ivH

ω.
Given two functions H1, H2 we can define their Poisson bracket {H1, H2}.

Its importance lies in Dirac’s observation that the passage from classical
mechanics to quantum mechanics is accomplished by replacing the Poisson
bracket of two quantities, A and B, with the commutator of the correspond-
ing operators Â, and B̂:

[Â, B̂] ←→ −ih̄{A,B}+O
(
h̄2
)
. (2.90)

We define the Poisson bracket by

{H1, H2} def
=

dH2

dt

∣∣∣∣∣
H1

= vH1
H2. (2.91)

Now, vH1
H2 = dH2(vH1

), and Hamilton’s equations say that dH2(vH1
) =

ω(vH1
, vH2

). Thus,
{H1, H2} = ω(vH1

, vH2
). (2.92)

The skew symmetry of ω(vH1
, vH2

) shows that despite the asymmetrical ap-
pearance of the definition we have skew symmetry: {H1, H2} = −{H2, H1}.

Moreover, since

vH1
(H2H3) = (vH1

H2)H3 +H2(vH1
H3), (2.93)

the Poisson bracket is a derivation:

{H1, H2H3} = {H1, H2}H3 +H2{H1, H3}. (2.94)
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Neither the skew symmetry nor the derivation property require the con-
dition that dω = 0. What does need ω to be closed is the Jacobi identity :

{{H1, H2}, H3}+ {{H2, H3}, H1}+ {{H3, H1}, H2} = 0. (2.95)

We establish Jacobi by using Cartan’s formula in the form

dω(vH1
, vH2

, vH3
) = vH1

ω(vH2
, vH3

) + vH2
ω(vH3

, vH1
) + vH3

ω(vH1
, vH2

)

−ω([vH1
, vH2

], vH3
)− ω([vH2

, vH3
], vH1

)− ω([vH3
, vH1

], vH2
).

(2.96)

It is relatively straight-forward to interpret each term in the first of these
lines as Poisson brackets. For example,

vH1
ω(vH2

, vH3
) = vH1

{H2, H3} = {H1, {H2, H3}}. (2.97)

Relating the terms in the second line to Poisson brackets requires a little
more effort. We proceed as follows:

ω([vH1
, vH2

], vH3
) = −ω(vH3

, [vH1
, vH2

])

= dH3([vH1
, vH2

])

= [vH1
, vH2

]H3

= vH1
(vH2

H3)− vH2
(vH1

H3)

= {H1, {H2, H3}} − {H2, {H1, H3}}
= {H1, {H2, H3}}+ {H2, {H3, H1}}. (2.98)

Adding everything togther now shows that

0 = dω(vH1
, vH2

, vH3
)

= −{{H1, H2}, H3} − {{H2, H3}, H1} − {{H3, H1}, H2}. (2.99)

If we rearrange the Jacobi identity as

{H1, {H2, H3}} − {H2, {H1, H3}} = {{H1, H2}, H3}, (2.100)

we see that it is equivalent to

[vH1
, vH2

] = v{H1,H2}.

The algebra of Poisson brackets is therefore homomorphic to the algebra of
the Lie brackets. The map H → vH is not one-to-one, however. Constant
functions map to the zero vector-field.

Exercise 2.7: Use the infinitesimal homotopy relation, to show that LvH
ω = 0,

where vH is the vector field corresponding to H. This result is Liouville’s

theorem on the conservation of phase-space volume.
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The classical mechanics of spin

It is often said in books on quantum mechanics that the spin of an electron,
or other elementary particle, is a purely quantum concept and cannot be
described by classical mechanics. This statement is false, but spin is the
simplest system in which traditional physicist’s methods become ugly, and
it helps to use the modern symplectic language. A “spin” S can be regarded
as a fixed length vector that can point in any direction in R3. We will take
it to be of unit length so that its components are

Sx = sin θ cosφ,

Sy = sin θ sin φ,

Sz = cos θ, (2.101)

where θ and φ are polar co-ordinates on the two-sphere S2.
The surface of the sphere turns out to be both the configuration space

and the phase space. In particular the phase space for a spin is not the
cotangent bundle of the configuration space. This has to be so: we learned
from Niels Bohr that a 2n-dimensional phase space contains roughly one
quantum state for every h̄n of phase-space volume. A cotangent bundle
always has infinite volume, so its corresponding Hilbert space is necessarily
infinite dimensional. A quantum spin, however, has a finite-dimensional
Hilbert space so its classical phase space must have a finite total volume.
This finite-volume phase space seems un-natural in the traditional view of
mechanics, but it fits comfortably into the modern symplectic picture.

We want to treat all points on the sphere alike, and so the natural sym-
plectic 2-form to consider is the element of area ω = sin θdθdφ. We could
write ω = d cos θ dφ and regard φ as “q” and cos θ as “p’ (Darboux’ theorem
in action!), but this identification is singular at the north and south poles of
the sphere, and, besides, it obscures the spherical symmetry of the problem,
which is manifest when we think of ω as d(area).

Let us take our hamiltonian to be H = BSx, corresponding to an applied
magnetic field in the x direction, and see what Hamilton’s equations give for
the motion. First we take the exterior derivative

d(BSx) = B(cos θ cosφdθ − sin θ sinφdφ). (2.102)

This is to be set equal to

−ω(vBSx , ) = vθ(− sin θ)dφ+ vφ sin θdθ. (2.103)
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Comparing coefficients of dθ and dφ, we get

v(BSx) = vθ∂θ + vφ∂φ = B(sin φ∂θ + cosφ cot θ∂φ), (2.104)

i.e. B times the velocity vector for a rotation about the x axis. This velocity
field therefore describes a steady Larmor precession of the spin about the
applied field. This is exactly the motion predicted by quantum mechanics.
Similarly, setting B = 1, we find

vSy = − cosφ∂θ + sinφ cot θ∂φ,

vSz = −∂φ. (2.105)

From these velocity fields we can compute the Poisson brackets:

{Sx, Sy} = ω(vSx , vSy)

= sin θdθdφ(sinφ∂θ + cosφ cot θ∂φ,− cosφ∂θ + sin φ cot θ∂φ)

= sin θ(sin2 φ cot θ + cos2 φ cot θ)

= cos θ = Sz.

Repeating the exercise leads to

{Sx, Sy} = Sz,

{Sy, Sz} = Sx,

{Sz, Sx} = Sy. (2.106)

These Poisson brackets for our classical “spin” are to be compared with the
commutation relations [Ŝx, Ŝy] = ih̄Ŝz etc. for the quantum spin operators

Ŝi.

2.5 * Covariant Derivatives

Although covariant derivatives are an important topic in physics, this section
is outside the main stream of our development and may be omitted at first
reading.

2.5.1 Connections

The Lie and exterior derivatives require no structure beyond that which
comes for free with our manifold. Another type of derivative is the covariant
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derivative ∇X ≡ Xµ∇µ. This requires an additional mathematical object
called an affine connection.

The covariant derivative is defined by:
i) Its action on scalar functions as

∇Xf = Xf. (2.107)

ii) Its action a basis set of vector fields ea(x) (a local frame, or vielbein5)
by introducing a set of functions ωijk(x) and setting

∇ek
ej = eiω

i
jk. (2.108)

ii) Extending this definition to any other type of tensor by requiring ∇X
to be a derivation.

The set of functions ωijk(x) is called the connection. We can choose them
at will. Different choices define different covariant derivatives. Warning:
Despite having the appearance of one, ωijk is not a tensor. It transforms
inhomogeneously under a change of frame or co-ordinates.

If we may take as our basis vectors the co-ordinate vectors eµ ≡ ∂µ. Then
we usually use Γ instead of ω and set

∇µeν ≡ ∇eµeν = eλΓ
λ
µν . (2.109)

The numbers Γλµν are often called Christoffel symbols.
As an example consider the covariant derivative of a vector fνeν . Using

the derivation property we have

∇µf
νeν = (∂µf

ν)eν + f ν∇µeν

= (∂µf
ν)eν + f νeλΓ

λ
µν

= eν
{
∂µf

ν + fλΓνµλ
}
. (2.110)

In the first line we have used the defining property that ∇eµ acts on the
functions f ν as ∂µ, and in the last line we interchanged the dummy indices
ν and λ. We often abuse the notation by writing only the components, and
set

∇µf
ν = ∂µf

ν + fλΓνµλ. (2.111)

5In practice viel , “many”, is replaced by the appropriate German numeral: ein-, zwei-,

drei-, vier-, fünf- . . .. The word bein means “leg”.
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Similarly, acting on the components of a mixed tensor, we would write

∇µA
α
βγ = ∂µA

α
βγ + ΓαλµA

λ
βγ − ΓλβµA

α
λγ − ΓλγµA

α
βλ. (2.112)

When we use this notation, we are no longer regarding the tensor components
as “functions”.

Two important quantities which are tensors, are associated with ∇X :
i) The torsion

T (X, Y ) = ∇XY −∇YX − [X, Y ]. (2.113)

The quantity T (X, Y ) is a vector depending linearly on X, Y , so T at
the point x is a map TMx × TMx → TMx, and so a tensor of type
(1,2). In a co-ordinate frame it has components

T λµν = Γλµν − Γλνµ. (2.114)

ii) The Riemann curvature tensor

R(X, Y )Z = ∇X∇Y Z −∇Y∇ZZ −∇[X,Y ]Z. (2.115)

The quantity R(X, Y )Z is also a vector, so R(X, Y ) is a linear map
TMx → TMx, and thus R itself is a tensor of type (1,3). Written out
in a co-ordinate frame, we have

Rα
βµν = ∂µΓ

α
βν − ∂νΓαβµ + ΓαλµΓ

λ
βν − ΓαλνΓ

λ
βµ. (2.116)

If we require that T = 0 and ∇µ g = 0, the connection is uniquely
determined, and is called the Riemann connection. In a co-ordinate frame it
is given by

Γαµν =
1

2
gαλ (∂µgλν + ∂νgµλ − ∂λgµν) . (2.117)

This is the connection that appears in General relativity.

2.5.2 Cartan’s Viewpoint: Local Frames

Let e∗j(x) be the dual basis to the ei(x). Introduce the matrix-valued con-
nection one-forms ω with entries ωij = ωijµdx

µ. In terms of these

∇Xej = eiω
i
j(X). (2.118)
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We also regard T and R as vector and matrix valued 2-forms

T i =
1

2
T iµνdx

µdxν , (2.119)

Ri
k =

1

2
Ri

kµνdx
µdxν . (2.120)

Then we have Cartan’s structure equations:

de∗i + ωij ∧ e∗j = T i (2.121)

and
dωik + ωij ∧ ωjk = Ri

k. (2.122)

The last can be written more compactly as

dω + ω ∧ ω = R, (2.123)

where ω and R are matrices acting on the tangent space.
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Chapter 3

Integration on Manifolds

One usually thinks of integration as requiring measure – a notion of volume,
and hence of size, and length, and so a metric. A metric however is not
required for integrating differential forms. They come pre-equipped with
whatever notion of length, area, or volume is required.

3.1 Basic Notions

3.1.1 Line Integrals

Consider for example the form df . We want to try to give a meaning to the
symbol

I1 =
∫

Γ
df. (3.1)

Here Γ is a path in our space starting at some point P0 and ending at the point
P1. Any reasonable definition of I1 should end up with the answer we would
immediately write down if we saw an expression like I1 in an elementary
calculus class. That is,

I1 =
∫

Γ
df = f(P1)− f(P0). (3.2)

Notice that no notion of a metric is needed here. There is however a ge-
ometric picture of what we have done. We draw in our space the surfaces
. . . , f(x) = −1, f(x) = 0, f(x) = 1, . . ., and perhaps fill in intermediate val-
ues if necessary. We then start at P0 and travel from there to P1, keeping
track of how many of these surfaces we pass through (with sign -1, if we

57
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pass back through them). The integral of df is this number. In the figure∫
Γ df = 5.5− 1.5 = 4.

P1

f=1  2 3 4 5 6

Γ

P0

What we have defined is a signed integral. If we parameterise the path as
x(s), 0 ≤ s ≤ 1, and with x(0) = P0, x(1) = P1 we have

I1 =
∫ 1

0

(
df

ds

)
ds (3.3)

where the right hand side is an ordinary one-variable integral. It is important
to note that we did not write

∣∣∣ df
ds

∣∣∣ in this expression. The absence of the
modulus sign ensures that if we partially retrace our route, so that we pass
over some part of Γ three times—twice forward and once back—we obtain
the same answer as if we went only forward.

3.1.2 Skew-symmetry and Orientations

What about integrating 2 and 3-forms? Why the skew-symmetry? To answer
these questions, think about assigning some sort of “area” in R2 to the
parallelogram defined by the two vectors x,y. This is going to be some
function of the two vectors. Let us call it ω(x,y). What properties do we
demand of this function? There are at least three:

i) Scaling: If we double the length of one of the vectors, we expect the
area to double. Generalizing this, we demand ω(λx, µy) = (λµ)ω(x,y).
(Note that we are not putting modulus signs on the lengths, so we are
allowing negative “areas”, and for the sign to change when we reverse
the direction of a vector.)

ii) Additivity: The following drawing shows that we ought to have

ω(x1 + x2,y) = ω(x1,y) + ω(x2,y), (3.4)
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similarly for the second slots.

x

x

y

x+x21

2

1

iii) Degeneration: If the two sides coincide, the area should be zero. Thus
ω(x,x) = 0.

The first two properties, show that ω should be a multilinear form. The
third shows that it must be skew-symmetric!

0 = ω(x + y,x + y) = ω(x,x) + ω(x,y) + ω(y,x) + ω(y,y)

= ω(x,y) + ω(y,x). (3.5)

So

ω(x,y) = −ω(y,x). (3.6)

These are exactly the properties possessed by a 2-form. Similarly, a 3-form
outputs a volume element.

These volume elements are oriented . Remember that an orientation of a
set of vectors is a choice of order in which to write them. If we interchange
two vectors, the orientation changes sign. We do not distinguish orientations
related by an even number of interchanges. A p-form assigns a signed (±)
p-dimensional volume element to an orientated set of vectors. If we change
the orientation, we change the sign of the volume element.

Orientable Manifolds

A manifold or surface is orientable if we can choose a single orientation
for the entire manifold. The simplest way to do this would be to find a
smoothly varying set of basis-vector fields, eµ(x), on the surface and defining
the orientation by chosing an order, e1(x), e2(x), . . . , ed(x), in which to write
them. In general, however, a globally-defined smooth basis will not exist
(try to construct one for the two-sphere, S2!). In this case we construct a
continously varying orientated basis field e(i)

µ (x) for each member, labelled
by (i), of an atlas of coordinate patches. We should chose the patches so the
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intersection of any pair forms a connected set. Assuming that this has been
done, the orientation of pair of overlapping patches is said to coincide if the
determinant, detA, of the map e(i)

µ = Aνµe
(j)
ν relating the bases in the region

of overlap, is positive1. If bases can be chosen so that all overlap determinants
can be made positive, the manifold is orientable and the selected bases define
the orientation. If bases cannot be so chosen, the manifold or surface is non-
orientable. The Möbius strip is an example of a non-orientable surface.

3.2 Integrating p-Forms

A p-form is naturally integrated over an oriented p-dimensional surface.
Rather than start with an abstract definition, We will first explain this pic-
torially, and then translate the pictures into a mathematical recipe.

3.2.1 Counting Boxes

To visualize integrating 2-forms let us try to make sense of

∫

Ω
dfdg, (3.7)

where Ω is an oriented region embedded in three dimensions. The surfaces
f = const. and g = const. break the space up into a series of tubes. The
oriented surface Ω cuts these tubes in a two-dimensional mesh of (oriented)
parallelograms.

f=1
f=2

f=3

g=2

g=3

g=4

Ω

1The determinant will have the same sign in the entire overlap region. If it did not,
continuity and connectedness would force it to be zero somewhere, implying that one of
the putative bases was not linearly independent there
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We define an integral by counting how many parallelograms (including frac-
tions of a parallelogram) there are, taking the number to be positive if the
parallelogram given by the mesh is oriented in the same way as the surface,
and negative otherwise. To compute

∫

Ω
hdfdg (3.8)

we do the same, but weight each parallelogram, by the value of h at that
point. The integral

∫
Ω fdxdy, over a region in R2 thus ends up being the

number we would compute in a multivariate calculus class, but the integral∫
Ω fdydx, would be minus this. Similarly we compute

∫

Ξ
df dg dh (3.9)

of the 3-form df dg dh over the oriented volume Ξ, by counting how many
boxes defined by the surfaces f, g, h = constant, are included in Ξ.

An alternative route to defining the integral of a p-form uses its definition
as a skew-symmetric p-linear function. Accordingly we evaluate

I2 =
∫

Ω
ω, (3.10)

where ω is a 2-form, and Ω is an oriented 2-surface, by plugging vectors
into ω. We tile the surface Ω with collection of (small) parallelograms, each
defined by an oriented pair of basis vectors v1 and v2.

Ω
x

1v2 v

To evaluate
∫
Ω ω where ω is a 2-form and Ω a surface, we tile Ω with small

parallelograms.

At each base point x we insert these vectors into the 2-form to get ω(v1,v2),
and then total the resulting numbers to get I2. Similarly, we integrate p-
form over an oriented p-dimensional region by decomposing the region into
p-dimensional oriented parallelepipeds, inserting their defining vectors into
the form, and summing their contributions.
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3.2.2 General Case

The previous section explained how to think pictorially about the integral.
Here we explain how to use conventional multi-variable calculus to evaluate
one.

We begin by motivating our recipe by considering changes of variables.
If we set x1 = x(y1, y2), x2 = x2(y1, y2) in

I4 =
∫

Ω
f(x)dx1dx2 (3.11)

we already know that

dx1 =
∂x1

∂y1
dy1 +

∂x1

∂y2
dy2,

dx2 =
∂x2

∂y1
dy1 +

∂x2

∂y2
dy2, (3.12)

so

dx1dx2 =

(
∂x1

∂y1

∂x2

∂y2
− ∂x2

∂y1

∂x1

∂y2

)
dy1dy2. (3.13)

Thus ∫

Ω
f(x)dx1dx2 =

∫

Ω′

f(x(y))
∂(x1, x2)

∂(y1, y2)
dy1dy2 (3.14)

where ∂(x1,y1)
∂(y1,y2)

is the Jacobean determinant

∂(x1, y1)

∂(y1, y2)
≡
(
∂x1

∂y1

∂x2

∂y2
− ∂x2

∂y1

∂x1

∂y2

)
, (3.15)

and Ω′ the integration region in the new variables. There is therefore no need
to include an explicit Jacobean factor when changing variables in an integral
of a p-form over a p-dimensional space—it comes for free with the form.

This observation leads us to the general prescription: To evaluate
∫
Ω ω,

the integral of a p-form

ω =
1

p!
ωµ1µ2...µpdx

µ1 · · ·dxµp (3.16)

over the region Ω of a p dimensional surface in a d ≥ p dimensional space,
substitute a paramaterization

x1 = x1(ξ1, ξ2, . . . , ξp),
...

xd = xd(ξ1, ξ2, . . . , ξp), (3.17)
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of the surface into ω. Next, use

dxµ =
∂xµ

∂ξi
dξi, (3.18)

so that

ω → ω(x(ξ))i1i2...ip
∂xi1

∂ξ1
· · · ∂x

ip

∂ξp
dξ1 · · ·dξp, (3.19)

which we regard as a p-form on Ω. (The p! is absent here because we have
chosen a particular order for the dξ’s.) Then

∫

Ω
ω

def
=
∫
ω(x(ξ))i1i2...ip

∂xi1

∂ξ1
· · · ∂x

ip

∂ξp
dξ1 · · ·dξp, (3.20)

where the right hand side is an ordinary multiple integral. This recipe is a
generalization of the formula (3.3) which reduced the integral of a one-form
to an ordinary single-variable integral. Because the appropriate Jacobean
factor appears automatically, the numerical value of the integral does not
depend on the choice of parameterization of the surface.
Example: To integrate the 2-form xdydz over the surface of a two dimensional
sphere of radius R, we parameterize the surface with polar angles as

x = R sinφ sin θ,

y = R cosφ sin θ,

z = R cos θ. (3.21)

Then

dy = −R sinφ sin θdφ+R cosφ cos θdθ,

dz = −R sin θdθ, (3.22)

and so
xdydz = R3sin2φ sin3θ dφdθ. (3.23)

We therefore evaluate
∫

sphere
x dydz = R3

∫ 2π

0

∫ π

0
sin2φ sin3θ dφdθ

= R3
∫ 2π

0
sin2φ dφ

∫ π

0
sin3θ dθ

= R3π
∫ 1

−1
(1− cos2 θ) d cos θ

=
4

3
πR3. (3.24)
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The volume form

Although we do not need any notion of length to integrate a differential
form, a p-dimensional surface embedded or immersed in Rd does inherit a
distance scale from the Rd Euclidean metric, and this is used to define the
area or volume of the surface. When the Cartesian co-ordinates of a point
in the surface is given by xa(ξ1, . . . , ξp), a = 1, . . . , d, then the inherited, or
induced , metric is

“ds2 ” ≡ g( , ) ≡ gµν dξ
µ ⊗ dξν (3.25)

where

gµν =
d∑

a=1

∂xa

∂ξµ
∂xa

∂ξν
. (3.26)

The volume form associated with the induced metric is

d(Volume) =
√
g dξ1 · · ·dξp, (3.27)

where g = det (gµν). The integral of this p-form over the surface gives the
area, or p-dimensional volume, of the surface.

If we change the parameterization of the surface from ξµ to ζµ, neither
the dξ1 · · ·dξp nor the

√
g are separately invariant, but the Jacobean arising

from the change of the p-form, dξ1 · · ·dξp → dζ1 · · ·dζp cancels against the
factor coming from the transformation law of the metric tensor gµν → g′µν,
leading to √

g dξ1 · · ·dξp =
√
g′dζ1 · · ·dζp. (3.28)

The volume of the surface is therefore independent of the co-ordinate system
used to evaluate it.
Example: The induced metric on the surface of a unit-radius two-sphere
embedded in R3, is, expressed in polar angles,

“ds2 ” = g( , ) = dθ ⊗ dθ + sin2θ dφ⊗ dφ.

Thus

g =
∣∣∣∣
1 0
0 sin2 θ

∣∣∣∣ = sin2 θ,

and
d(Area) = sin θ dθdφ.
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3.3 Stokes’ Theorem

All the integral theorems of classical vector calculus are special cases of

Stokes’ Theorem: If ∂Ω denotes the (oriented) boundary of the (oriented)
region Ω, then

∫

Ω
dω =

∫

∂Ω
ω.

We will not provide a detailed proof. Apart from notation, it would paral-
lel the proof of Stokes’ or Green’s theorems in ordinary vector calculus: The
exterior derivative d is defined so that the theorem holds for an infinitesimal
square, cube, or hypercube. We therefore divide Ω into many such small re-
gions. We then observe that the contributions of the interior boundary faces
cancel because all interior faces are shared between two adjacent regions, and
so occur twice with opposite orientations. Only the contribution of the outer
boundary remains.

Example: If Ω is a region of R2, then from

d[
1

2
(x dy − y dx)] = dxdy,

we therefore have

Area (Ω) =
∫

Ω
dxdy =

1

2

∫

∂Ω
(x dy − y dx).

Example: Again, if Ω is a region of R2, then from d[r2dθ/2] = r drdθ we
have

Area (Ω) =
∫

Ω
r drdθ =

1

2

∫

∂Ω
r2dθ.

Example: If Ω is the interior of a sphere of radius R, then

∫

Ω
dxdydz =

∫

∂Ω
x dydx =

4

3
πR3.

Here we have used the example of the previous section to compute the surface
integral.

Example: (Archimedes’ tombstone.)
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1−cos 0

0θ

θ

Sphere and circumscribed cylinder.

Archimedes gave instructions that his tombstone should have displayed on it
a diagram consisting of a sphere and circumscribed cylinder. Cicero, while
serving as quæstor in Sicily, had the stone restored2. This has been said to
be the only significant contribution by a Roman to pure mathematics. The
carving on the stone was to commemorate Archimedes’ results about the
areas and volumes of spheres, including the one illustrated above, that the
area of the spherical cap cut off by slicing through the cylinder is equal to
the area cut off on the cylinder.

We can understand this result via Stokes’ theorem: If the two-sphere S2

is parameterized by spherical polar co-ordinates θ, φ, and Ω is a region on
the sphere, then

Area (Ω) =
∫

Ω
sin θdθdφ =

∫

∂Ω
(1− cos θ)dφ,

and applying this to the figure, where the cap is defined by θ < θ0 gives

Area (cap) = 2π(1− cos θ0)

which is indeed the area of the blue cylinder.

Exercise 3.1: The sphere Sn−1 can be thought of as the locus of points in Rn

obeying
∑n
i=1(x

i)2 = 1. Use its invariance under orthogonal transformations

2Marcus Tullius Cicero, Tusculan Disputations , Book V, Sections 64− 66
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to show that the element of surface “area” of the (n−1)-sphere can be written
as

“d(Area)” =
1

(n− 1)!
εα1α2...αnx

α1 dxα2 . . . dxαn .

Use Stokes’ theorem to relate the integral of this form over the surface of the
sphere to the volume of the solid unit sphere. Confirm that we get the correct
proportionality between the volume of the solid unit sphere and the “area” of
its surface.

3.4 Applications

We now know how to integrate forms. What sort of forms should we seek
to integrate? For a physicist working with a classical or quantum field, a
plentiful supply of intesting forms is obtained by using the field to pull back
geometric objects.

3.4.1 Pull-backs and Push-forwards

If we have a map φ from a manifold M to another manifold N , and we choose
a point x ∈ M , we can push forward a vector from TMx to TNφ(x), in the
obvious way (map head-to-head and tail-to-tail). This map is denoted by
φ∗ : TMx → TNφ(x).

x

x+X
X Xφ

*φ(x)

φ(x+X)

M N

φ

Pushing forward a vector X from TMx to TNφ(x).

If the vector X has components Xµ and the map takes the point with coor-
dinates xµ to one with coordinates ξµ(x), the vector φ∗X has components

(φ∗X)µ =
∂ξµ

∂xν
Xν . (3.29)
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This looks very like the transformation formula for contravariant vector com-
ponents under a change of coordinate system. What we are doing is con-
ceptually different, however. A change of co-ordinates produces a passive
transformation — i.e. a new description for an unchanging vector. What we
are doing here is a active transformation — we are changing a vector into
different one.

While we can push forward individual vectors, we cannot always push
forward a vector field X from TM to TN . If two distinct points x1 and x2,
chanced to map to the same point ξ ∈ N , and X(x1) 6= X(x2), we would
not know whether to chose φ∗[X(x1)] or φ∗[X(x2)] as [φ∗X](ξ). This problem
does not occur for differential forms. The map φ : M → N induces a natural,
and always well defined, pull-back map φ∗ :

∧p (T ∗N) → ∧p (T ∗M) which
works as follows: Given a form ω ∈ ∧p (T ∗N), we define φ∗ω as a form on M
by specifying what we get when we plug the vectors X1, X2, . . . , Xp ∈ TM
into it. We evaluate the form at x ∈M by pushing the vectors Xi(x) forward
from TMx to TNφ(x), plugging them into ω at φ(x) and declaring the result
to be the evaluation of φ∗ω on the Xi at x. Symbolically

[φ∗ω](X1, X2, . . . , Xp) = ω(φ∗X1, φ∗X2, . . . , φ∗Xp). (3.30)

This may seem rather abstract, but the idea is in practice quite simple:
If the map takes x ∈M → ξ(x) ∈ N , and

ω =
1

p!
ωi1...ip(ξ)dξ

i1 . . . dξip, (3.31)

then

φ∗ω =
1

p!
ωi1i2...ip[ξ(x)]dξ

i1(x)dξi2(x) · · ·dξip(x)

=
1

p!
ωi1i2...ip[ξ(x)]

∂ξi1

∂xµ1

∂ξi2

∂xµ2
· · · ∂ξ

ip

∂xµ1
dxµ1 · · ·dxµp . (3.32)

3.4.2 Spin textures

As an application of pull-backs we will consider some of the topological as-
pects of spin textures which are fields of unit vectors n, or “spins”, in two or
three dimensions.

Consider a smooth map n : R2 → S2 where n(x) is a unit vector. We can
think of n as the direction of the magnetization field of a two-dimensional
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ferromagnet. In terms of n, the area 2-form on the sphere can be written

Ω =
1

2
n · (dn× dn) ≡ 1

2
εijkn

idnjdnk. (3.33)

The n map pulls this area-form back to

F ≡ n∗Ω =
1

2
(εijkn

i∂µn
j∂νn

k)dxµdxν = (εijkn
i∂1n

j∂2n
k) dx1dx2 (3.34)

which is a differential form in R2. We will it the topological charge density .
It measures the area on the two-sphere swept out by the n vectors as we
explore a square of side dx1 by dx2.

Suppose now that the vector n tends some fixed direction at large dis-
tance. This allows us to think of “infinity” as a single point and the map
n(x) as a map from S2 to S2. Such maps are characterized topologically by
their topological charge, or winding number , N , which counts the number of
times the original x sphere wraps round the target n sphere. A mathemati-
cian would call it the Brouwer degree of the map n. It is intuitively plausible
that a continuous map from a sphere to itself will wrap a whole number of
times, and so we expect

N =
1

4π

∫

S2

{
εijkn

i∂1n
j∂2n

k
}
dx1dx2, (3.35)

to be an integer. We will soon show that this is indeed so, but first we will
demonstrate that N is a topological invariant .

In two dimensions the form F = n∗Ω is automatically closed because the
exterior derivative of any two-form is zero, there being no three-forms in two
dimensions. Even if we consider n field in higher dimensions, however, we
still have dF = 0. This is because

dF =
1

2
εijk∂σn

i∂µn
j∂νn

kdxσdxµdxν . (3.36)

If we insert infinitesimal vectors into the dxµ to get their components δxµ,
we have to evaluate the triple-product of three vectors δni = ∂µn

iδxµ, each
of which is tangent to the two-sphere. But the tangent space of S2 is two-
dimensional and any three such vectors are linearly dependent, so their triple-
product is zero.
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Although it is closed, F = n∗Ω will not generally be the d of a globally
defined one-form. Suppose, however, that we vary the map, n → n + δn.
The change in the topological charge density is

δF = n∗[n · (dδn× dn)], (3.37)

and this variation can be written as a total derivative

δF = d{n∗[n · (δn× dn)]} ≡ d{εijkniδnj∂µnkdxµ}. (3.38)

In these manipulations we have used δn · (dn×dn) = dn · (δn×dn) = 0, the
triple-products being zero for the same reason adduced earlier. From Stokes’
theorem, we have

δN =
∫

S2

δF =
∫

∂S2

εijkn
iδnj∂µn

kdxµ. (3.39)

Since ∂S2 = ∅, we conclude that δN = 0 under any smooth deformation of
the map n(x). This is what we mean when we say that N is a topological
invariant. On R2, with n constant at infinity, we have similarly

δN =
∫

2

δF =
∫

Γ
εijkn

iδnj∂µn
kdxµ, (3.40)

where Γ is a curve surrounding the origin at large distance. Again δN = 0,
this time because ∂µn

k = 0 everywhere on Γ.
In physical applications, the field n often winds in localized regions called

Skyrmions. The winding number counts how many Skyrmions (minus the
number of anti-Skyrmions, which wind with opposite orientation) there are.
An example of a smooth map with positive winding number N is

eφ tan
θ

2
=
P (z)

Q(z)
, (3.41)

where P and Q are co-prime polynomials of degree N in z = x1 + ix2, and
θ and φ are the polar co-ordinates specifying the direction n. We will later
show that this particular field configuration minimizes the energy integral

E =
1

2

∫
(∂µn

i)2d2x (3.42)

for the given winding number.
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3.4.3 The Hopf Map

The complex projective space CPn is defined to be the set of rays in a
complex n + 1 dimensional vector space. It consists of equivalence classes
of complex vectors [ζ1, ζ2, . . . , ζn+1], where we do not distinguish between
[ζ1, ζ2, . . . , ζn+1] and [λζ1, λζ2, . . . , λζn+1] for non-zero λ. This space is a 2n-
dimensional manifold. In a region where ζn+1 does not vanish, we can take
as co-ordinates the real numbers ξ1, . . . , ξn, η1, . . . , ηn where

ξ1 + iη1 =
ζ1
ζn+1

, ξ2 + iη2 =
ζ2
ζn+1

, . . . , ξn + iηn =
ζn
ζn+1

. (3.43)

Similar co-ordinate systems can be constructed in the regions where other
ζn are non-zero. Every point in CPn lies in at least one of these co-ordinate
patches.

The complex projective space CP1 is the real two-sphere S2 in disguise.
This rather non-obvious fact is revealed by the use of a stereographic map
to make the equivalence class [ζ1, ζ2] ∈ CP1 correspond to a point n on the
sphere. When ζ1 is non zero, the class [ζ1, ζ2] is uniquely determined by the
ratio ζ2/ζ1 = |ζ2/ζ1|eiφ, which we plot on the complex plane. We think of
this copy of C as being the x, y plane in R3. We then draw a straight line
connecting the plotted point to the south pole of a unit sphere circumscribed
in about the origin in R3. The point where this line (continued if necessary)
intersects the sphere is the tip of the unit vector n.

θ

θ/2

2 1
ζ  /ζ 

C

S
2

n

1

A slice through the unit sphere.

If ζ2, were zero, we would end up at the north pole where z = 1. If ζ1 goes to
zero with ζ2 fixed, we move smoothly to the south pole z = −1. We therefore
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extend the definition of our map to the case ζ1 = 0 by making the equivalence
class [0, ζ2] correspond to the south pole. To find an explicit formula for the
map, we observe from the figure that ζ2/ζ1 = eiφ tan θ/2, and this suggests
the use of the “t”-substitution formulae

sin θ =
2t

1 + t2
, cos θ =

1− t2
1 + t2

, (3.44)

where t = tan θ/2. Since

n1 = sin θ cosφ,

n2 = sin θ sinφ,

n3 = cos θ,

we then find that

n1 + in2 =
2(ζ2/ζ1)

1 + |ζ2/ζ1|2
, n3 =

1− |ζ2/ζ1|2
1 + |ζ2/ζ1|2

. (3.45)

We can multiply through by |ζ1|2 = ζ∗1ζ1, and so write this correspondence
in a more symmetrical manner:

n1 =
ζ∗1ζ2 + ζ∗2ζ1
|ζ1|2 + |ζ2|2

n2 =
1

i

(
ζ∗1ζ2 − ζ∗2ζ1
|ζ1|2 + |ζ2|2

)
,

n3 =
|ζ1|2 − |ζ2|2
|ζ1|2 + |ζ2|2

. (3.46)

This last form can be conveniently expressed in terms of the Pauli sigma
matrices:

n1 = (z∗1 , z
∗
2)
(

0 1
1 0

)(
z1
z2

)
,

n2 = (z∗1 , z
∗
2)
(

0 −i
i 0

)(
z1
z2

)
,

n3 = (z∗1 , z
∗
2)
(

1 0
0 −1

)(
z1
z2

)
, (3.47)

where (
z1
z2

)
=

1√
|ζ1|2 + |ζ2|2

(
ζ1
ζ2

)
(3.48)
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is a normalized 2-vector, which we can think of as a spinor .

We see that the CP1 ' S2 correspondence can be given a quantum
mechanical interpretation: Any unit vector n can be obtained as the expec-
tation value of the σ̂ matrices in a normalized spinor state. Conversly, any
normalized spinor ψ = (z1, z2)

T gives rise to a unit vector via

ni = ψ†σ̂iψ. (3.49)

Now, since

1 = |z1|2 + |z2|2, (3.50)

the normalized spinor can be thought of as defining a point in S3. This
means that the one-to-one correspondence [z1, z2] ↔ n also gives rise to a
map from S3 → S2. This is called the Hopf map:

Hopf : S3 → S2. (3.51)

Since the dimension reduces from three to two, the Hopf map cannot be one-
to-one. Even after we have normalized [ζ1, ζ2], we are still left with a choice
of overall phase. Both (z1, z2) and (z1e

iθ, z2e
iθ), although distinct points in

S3, correspond to the same point in CP1, and hence in S2. The inverse
image of a point in S2 is a great circle in S3. Later we will show that any
two such great circles are linked and this makes the Hopf map topologically
non-trivial in that it cannot be continuously deformed to the identity map.

Exercise 3.2:

We have seen that the stereographic map relates the point with spherical polar
co-ordinates θ, φ to the complex number

ζ = eiφ tan θ/2.

We can therefore take ζ = ξ+ iη as defining a stereographic co-ordinate system

on the sphere. Show that in these co-ordinates the metric is given by

ds2 ≡ dθ ⊗ dθ + sin2θ dφ⊗ dφ
=

2

(1 + |ζ|2)2 (dζ ⊗ dζ + dζ ⊗ dζ)

=
4

(1 + |ξ|2 + |η|2)2 (dξ ⊗ dξ + dη ⊗ dη),
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and the area 2-form becomes

Ω ≡ sin θ dθ ∧ dφ
=

2i

(1 + |ζ|2)2 dζ ∧ dζ

=
4

(1 + |ξ|2 + |η|2)2 dξ ∧ dη. (3.52)

3.4.4 The Hopf Linking Number

We can use the Hopf map to factor a field of unit vectors n(x) through the
three-sphere by specifying the spinor ψ at each point, instead of the vector
n, and so mapping indirectly x→ ψ ≡ (z1, z2)

T → n. It might seem that for
a given spin-field n(x) we can choose the overall phase of ψ(x) as we like, but
if we demand that the zi’s be continuous functions of x there is a rather non-
obvious topological restriction which has important physical consequences.
To see how this comes about we first express the winding number in terms
of the zi. We find (after a page or two of algebra)

(εijkn
i∂1n

j∂2n
k) dx1dx2 =

2

i

2∑

i=1

(∂1zi∂2zi − ∂2zi∂1zi) dx
1dx2, (3.53)

and so the topological charge N is given by

N =
1

2πi

∫ 2∑

i=1

(∂1zi∂2zi − ∂2zi∂1zi) dx
1dx2. (3.54)

Since n is fixed at large distance we have (z1, z2) = eiθ(c1, c2) near infinity,
where c1, c2 are constants with |c1|2 + |c2|2 = 1. Now, when written in terms
of the zi variables, the form F becomes a total derivative:

F =
2

i

2∑

i=1

(∂1zi∂2zi − ∂2zi∂1zi) dx
1dx2

= d

{
1

i

2∑

i=1

(zi∂µzi − (∂µzi)zi) dx
µ

}
. (3.55)

Using Stokes’ theorem and observing that, near infinity, we have

1

2i

2∑

i=1

(zi∂µzi − (∂µzi)zi) = (|c1|2 + |c2|2)dθ = dθ, (3.56)
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we find that

N =
1

2πi

∫

Γ

1

2

2∑

i=1

(zi∂µzi − (∂µzi)zi) dx
µ =

1

2π

∫

Γ
dθ, (3.57)

where, as in the previous section, Γ is a curve surrounding the origin at large
distance. Now

∫
dθ is the total change in θ as we circle the boundary. While

the phase eiθ has to return to its original value after a round trip, the angle θ
can increase by an integer multiple of 2π. The winding number

∮
dθ/2π can

therefore be non-zero, but must be an integer.
We have uncovered the rather surpring fact that the topological charge

of the map n : S2 → S2 is equal to the winding number of the phase angle
θ at infinity. This is the topological constraint refered to earlier. As a
byproduct, we have confirmed our conjecture that the topological charge N
is an integer. The existence of this integer invariant shows that the smooth
maps n : S2 → S2 fall into distinct homotopy classes labeled by N . Maps
with different values of N cannot be continuously deformed into one another,
and, while we have not shown that it is so, two maps with the same value of
N can be deformed into each other.

Maps that can be continuously deformed one into the other are said to
be homotopic. The set of homotopy classes of the maps of the n-sphere into
a manifold M is denoted by πn(M). In the present case M = S2. We are
therefore claiming that

π2(S
2) = Z. (3.58)

We will now show that maps n : S3 → S2 also have an associated topo-
logical number. Provided that n tends to a constant direction at infinity so
that we can think of R3 ∪∞ as being S3, this number will label the homo-
topy classes of fields of unit vectors n in three dimensions. If we think of the
third dimension as time, a natural set of n fields to consider are the n(x, t)
corresponding to the world-lines of moving Skyrmions. These will be tubes
outside of which n is constant, and such that on any slice through the tube,
n will cover the target n sphere once.

We begin with an amusing problem from magnetostatics. Suppose we
are given a cable originally made up of a bundle of many parallel wires. The
cable was then twisted N times about its axis and then bent into a closed
loop, the end of each individual wire being attached to its begining to make
a continuous circuit. A total current I flows in the cable in such a manner
that each individual wire carries only a small part δIi of the total. The sense
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of the current is such that as we flow with it around the cable each wire
wraps N times anticlockwise about all the others. The current produces a
magnetic field B. Can we determine the integer winding number N knowing
only this field?

I

A twisted cable with N = 5

The answer is yes. We use Ampere’s law in integral form,

∮

Γ
B · dr = (current encircled by Γ). (3.59)

We also observe that the current density ∇ × B = J at a point is directed
along the tangent to the wire passing through that point. We therefore
integrate along each individual wire as it encircles the others, and sum over
the wires to find

∑

wires i
δIi

∮
B · dri =

∫
B · J d3x =

∫
B · (∇×B) d3x = NI2. (3.60)

We now apply this to our three-dimensional field of unit vectors n(x). The
quantity playing the role of the current density J is the topological current

Jσ =
1

2
εσµνεijkn

i∂µn
j∂νn

k. (3.61)
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We note that ∇·J = 0. This is simply another way of saying that the 2-form
F = n∗Ω is closed.

The flux of J through a surface S is
∫

S
J · dS =

∫

S
F (3.62)

and this is the area of the spherical surface covered by the n’s. A Skyrmion,
for example, has total topological current I = 4π, the area of the 2-sphere.
The Skyrmion world-line will play the role of the cable, and the inverse images
of points on S2 correspond to the individual wires.

If form language, the field corresponding to B can be any one-form A
such that dA = F . Thus

NHopf =
1

I2

∫

S3

B · J d3x =
1

16π2

∫

S3

AF (3.63)

will be an integer. This integer is the Hopf linking number, and counts the
number of times the Skyrmion twists before it bites its tail to form a closed
loop world-line.

There is another way of obtaining this formula, and of understanding the
number 16π2. We observe that the two-form F and the one-form A are the
pull-back from S3 to R3 of the forms

F =
1

i

2∑

i=1

(dzidzi − dzidzi) ,

A =
1

i

2∑

i=1

(zidzi − zidzi) , (3.64)

respectively. If we substitute z1,2 = ξ1,2 + iη1,2, we find that

AF = 8(ξ1dη1dξ2dη2 − η1dη1dξ2dη2 + ξ2dη2dξ1dη1 − η2dξ2dξ1dη1). (3.65)

This expression is eight times the volume 3-form on the three sphere. Now
the total volume of the unit three-sphere is 2π2, and so, from our factored
map x→ ψ ≡ (z1, z2)

T → n we have that

NHopf =
1

16π2

∫

S3

AF =
1

2π2

∫

S3

ψ∗d(Volume on S3), (3.66)

is the number of times the normalized spinor covers S3. For the Hopf map
itself, this number is unity, and so the loop in S3 which is the inverse image
of a point in S2 will twist once around any other such inverse image loop.
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We have now established that

π3(S
2) = Z. (3.67)

This result, implying that there are many maps from the three-sphere to the
two-sphere that are not smoothly deformable to the constant map, was an
great surprise when Hopf discovered it.

One of the principal physics consequences of the existence of the Hopf
number is that “quantum lump” quasi-particles like the Skyrmion can be
fermions, even though they are described by commuting variables. To un-
derstand how this can be, we first explain that the homotopy classes πn(M)
are not just sets, they have the additional structure of being a group. We
can compose two homotopy classes to get a third, and each homotopy class
has an inverse. To define the group composition law, we think of Sn as an n
dimensional cube with the map f : Sn → M taking a fixed value m0 ∈ M
at all points on the boundary of the cube. The boundary can then be con-
sidered to be a single point on Sn. We then take one of the n dimensions as
being “time” and place two cubes and their maps f1, f2 into contact, with
f1 being “earlier” and f2 being “later.” We thus get a continuous map from
a bigger box into M . The homotopy class of this map, after we relax the
condition that the map takes the value m0 on the common boundary, defines
the composition [f2] ◦ [f1] of the two homotopy classes corresponding to f1

and f2. The composition may be shown to be independent of the choice of
representative functions in the two classes. The inverse of a homotopy class
[f ] is obtained by reversing the direction of “time” for each of the maps in
the class. While this group structure appears to depend on the fixed point
m0, but as long as M is arcwise connected, the groups obtained from dif-
ferent m0’s may be shown to be isomorphic, or equivalent. In the case of
π2(S

2) = Z and π3(S
2) = Z, the composition law is simply the addition of

the integers N ∈ Z that label the classes.

When we quantize using Feynman’s “sum over histories” path integral, we
may multiply the contributions of histories that are not deformable into one
another by different phase factors. These phases must must be compatable
with the composition of histories by concatenating one after the other –
essentially the same operation as composing homotopy classes. This means
that the product of the phases for two possible histories must be the phase
assigned to the composition of their homotopy classes. If our quantum system
consists of spins n in two space and one time dimension we can consistently



3.4. APPLICATIONS 79

assign a phase exp(iπNHopf) to a history. The rotation of a single Skyrmion
through 2π then leads to the wavefunction changing sign. Furthermore, a
history where two Skyrmions change places can be continuously deformed
into a history where they do not interchange, but instead one of them is
twisted through 2π. The wavefunction of two Skyrmions therefore changes
sign when they are interchanged. This means that the quantized Skyrmion
is a fermion.
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Chapter 4

Topology of Manifolds

In this chapter we will move from considering local properties and consider
global ones. Our aim is to understand and characterize the large-scale con-
nectedness of manifolds. In this chapter we will learn the language of homol-
ogy and cohomology , topics that form an important part of the discipline of
algebraic topology .

4.1 A Topological Miscellany

Try to construct a field of unit vectors tangent to the sphere S2. However
you try to do this you will end up in trouble somewhere: you cannot comb a
hairy ball. If you try this on the torus, T 2, you will have no problems: you
can comb a hairy doughnut!

One way of visualizing a torus without thinking of it as the surface of
a doughnut it to remember the old video game Asteroids. You could select
periodic boundary conditions so that your spaceship would, for example,
leave of the right-hand side of the screen and instantly re-appear on the
left. Suppose we modify the game code so that we now re-appears at the
point diametrically opposite the point we left. This does not seem like a
drastic change until you play a game with a left-hand-drive (US) spaceship.
If you take the spaceship off the screen and watch as each point in the ship
re-appears on the corresponding opposite point, you will observe the ship
transmogrify into a right-hand-drive (British) craft. If we ourselves made
such an excursion, we would end up starving to death because all our left-
handed amino acids would have been converted to right-handed ones. The

81
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manifold we have constructed is called the real projective plane, and denoted
by RP 2. The lack of a global notion of being left or right-handed means it
is non-orientable, as is a Möbius strip.

Now consider a three-dimensional region with diametrically opposite points
identified. What would happen to an aircraft flying through the surface of
the region? Would it change handedness, turn inside out, or simply turn
upside down?

The effects described in the previous paragraphs all relate to the overall
topology of our manifold. These global issues might seem a trifle recherché —
but they can have practical consequences even for condensed-matter physics.
The director field of a nematic liquid crystal lives in RP2, and the global
topology of this space influences both the visual appearance of the liquid as
well the character of the nematic-isotropic phase transition.

Homeomorphism and Diffeomorphism

The homology and cohomology groups we will study in this chapter are
examples of topological invariants, quantities that are unaffected by defor-
mations of a manifold that preserve its global topology. They therefore help
to distinguish topologically distinct manifolds. If two spaces have different
homology groups then they are certainly distinct. If, however, they have the
same homology goups, we cannot be sure that they are topologically iden-
tical. It is a holy grail of topology to find a complete set of invariants such
that having them all coincide would be enough to say that two manifolds
were topologically the same.

In the previous paragraph we were deliberately vague in our use of the
terms “distinct” and the “same”. Two topological spaces (spaces equipped
with a definition of what is to be considered an open set) are regarded as
being the “same”, or homeomorphic, if there is a one-to-one onto continuous
map between them whose inverse is also continuous. Manifolds come with the
additional structure of differentiability: we may therefore talk of “smooth”
maps, meaning that their expression in coordinates is infinitely (C∞) differ-
entiable. We regard two manifolds as being the “same”, or diffeomorphic, if
there is a one-to-one onto C∞ map between them whose inverse is also C∞.
The distinction between homeomorphism and diffeomorphism sounds like a
mere technical nicety, but it has consequences for physics. Edward Witten
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discovered1 that there are 992 distinct 11-spheres. These are manifolds that
are all homeomorphic to the 11-sphere, but diffeomorphically inequivalent.
This fact is crucial for the cancellation of global graviational anomalies in
the E8 × E8 or SO(32) symmetric superstring theories.

4.2 Cohomology

In this section we answer the questions “when can a vector field whose curl
vanishes be written as the gradient of something?”, and “when can a vector
field whose divergence vanishes be written as the curl of something?” We will
see that the answer depends on the global topology of the space the fields
inhabit.

4.2.1 Retractable Spaces: Converse of Poincaré Lemma

Poincaré’s lemma asserts that d2 = 0. In traditional vector calculus language
this reduces to the statements curl (gradφ) = 0 and div (curlw) = 0. We
often assume that the converse is true: If curlv = 0, we expect that we can
find a φ such that v = gradφ, and, if div v = 0, that we can find a w such
that v = curl w. You know a formula for the first case:

φ(x) =
∫ x

x0

v · dx, (4.1)

but probably do not know the corresponding formula for w. Using differ-
ential forms, and provided the space in which these forms live has suitable
topological properties, it is straightforward to find a solution for the general
problem: If ω is closed, meaning that dω = 0, find χ such that ω = dχ.

The “suitable topological properties” referred to in the previous para-
graph is that the space be retractable. Suppose that the closed form ω is
defined in a domain Ω. We say that Ω is retractable to the point O if there
exists a smooth map ϕt which depends continuously on a parameter t ∈ [0, 1]
and for which ϕ1(x) = x and ϕ0(x) = O. Applying this map to the form,
we will then have ϕ∗

1ω = ω and ϕ∗
0ω = 0. Let us set ϕt(x

µ) = xµ(t). Define
η(x, t) to be the velocity-vector field that corresponds to the co-ordinate flow:

dxµ

dt
= ηµ(x, t). (4.2)

1E. Witten, Global gravitational anomalies , Comm. Math. Phys. 117 (1986), 197.



84 CHAPTER 4. TOPOLOGY OF MANIFOLDS

An easy exercise shows that

d

dt
(ϕ∗

tω) = Lη(ϕ∗
tω). (4.3)

We now use the infinitesimal homotopy relation and our assumption that
dω = 0, and hence2 d(ϕ∗

tω) = 0, to write

Lη(ϕ∗
tω) = (iηd+ diη)(ϕ

∗
tω) = d[iη(ϕ

∗
tω)]. (4.4)

Using this we can integrate up with respect to t to find

ω = ϕ∗
1ω − ϕ∗

0ω = d
(∫ 1

0
iη(ϕ

∗
tω)dt

)
. (4.5)

Thus

χ =
∫ 1

0
iη(ϕ

∗
tω)dt, (4.6)

solves our problem.
This magic formula for χ makes use of the nearly all the “calculus on

manifolds” concepts that we have introduced so far. The notation is so pow-
erful that it has suppressed nearly everything that a traditionally-educated
physicist would find familiar. We will therefore unpack the symbols by means
of a concrete example. Let us take Ω to be the whole of R3. This can be
retracted to the origin via the map ϕt(x

µ) = xµ(t) = txµ. The velocity field
whose flow gives

xµ(t) = t xµ(0)

is ηµ(x, t) = xµ/t. To verify this, compute

dxµ(t)

dt
= xµ(0) =

1

t
xµ(t),

so xµ(t) is indeed the solution to

dxµ

dt
= ηµ(x(t), t).

Now let us apply this retraction to ω = Adydz +Bdzdx+ Cdxdy with

dω =

(
∂A

∂x
+
∂B

∂y
+
∂C

∂z

)
dxdydz = 0. (4.7)

2The map ϕ∗
t , being essentially a change of co-ordinates, commutes with invariant

operations such as “d” and “Lη”.
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The pull-back ϕ∗
t gives

ϕ∗
tω = A(tx, ty, tz)d(ty)d(tz) + (two similar terms). (4.8)

The interior product with

η =
1

t

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
(4.9)

then gives

iηϕ
∗
tω = tA(tx, ty, tz)(y dz − z dy) + (two similar terms). (4.10)

Finally we form the ordinary integral over t to get

χ =
∫ 1

0
iη(ϕ

∗
tω)dt

=
[∫ 1

0
A(tx, ty, tz)t dt

]
(ydz − zdy)

+
[∫ 1

0
B(tx, ty, tz)t dt

]
(zdx− xdz)

+
[∫ 1

0
C(tx, ty, tz)t dt

]
(xdy − ydx). (4.11)

In this expression the integrals in the square brackets are just numerical
coefficients, i.e., the “dt” is not part of the 1-form. It is instructive, be-
cause not entirely trivial, to let “d” act on χ and verify that the con-
struction works. If we focus first on the term involving A, we find that
d[
∫ 1
0 A(tx, ty, tz)t dt](ydz − zdy) can be grouped as

[∫ 1

0

{
2tA + t2

(
x
∂A

∂x
+ y

∂A

∂y
+ z

∂A

∂z

)}
dt

]
dydz

−
∫ 1

0
t2
∂A

∂x
dt (xdydz + ydzdx+ zdxdy). (4.12)

The first of these terms is equal to

[∫ 1

0

d

dt

{
t2A(tx, ty, tz)

}
dt

]
dydz = A(x, y, x) dydz, (4.13)
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which is part of ω. The second term will combine with the terms involving
B, C, to become

−
∫ 1

0
t2
(
∂A

∂x
+
∂B

∂y
+
∂C

∂z

)
dt (xdydz + ydzdx+ zdxdy), (4.14)

which is zero by our hypothesis. Putting togther the A, B, C, terms does
therefore reconstitute ω.

We cannot eradicate the condition that Ω be retractable. It is necessary
even for φ(x) =

∫ x v · dr. If we define v on an annulus Ω = {R0 < |r| < R1},
and

∮ 2π
0 v · dr 6= 0, for some closed path wrapping around the annulus, there

can be no single-valued φ such that v = ∇φ. If there were, then

∮

Γ
v · dr = φ(0)− φ(0) = 0. (4.15)

A non-zero value for
∮
Γ v · dr therefore consititutes an obstruction to the

existence of an φ such that v = ∇φ.

Example: The sphere S2 is not retractable. The area 2-form sin θdθdφ is
closed, but although we can write

sin θdθdφ = d[(1− cos θ)dφ] (4.16)

the 1-form (1− cos θ)dφ is singular at the south pole, θ = π. We could try

sin θdθdφ = d[(−1− cos θ)dφ], (4.17)

but this is singular at the north pole, θ = 0. There is no escape: We know
that ∫

S2

sin θdθdφ = 4π, (4.18)

but if sin θdθdφ = dη then Stokes says that

∫

S2

sin θdθdφ =
∫

∂S2

η = 0, (4.19)

since ∂S2 = 0. Again, a non-zero value for
∫
ω over some boundary-less

region provides an obstruction to finding an η such that ω = dη.
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4.2.2 De Rham Cohomology

The question of when dω = 0 implies that ω = dη is one example of a coho-
molgy theory. It is known as de Rham cohomology after the Swiss mathe-
matician Georges de Rham who did the most to create it.

Given a compact manifoldM without boundary, consider the space Ωp(M) =∧p(T ∗M) of p-form fields. This is a vector space: we can add p-form fields
and multiply them by real constants, but, like the vector space of functions
on M , it is infinite dimensional. The subspace Zp(M) of closed forms, those
with dω = 0, is also infinite dimensional, as is the space Bp(M) of exact
forms, those that can be written as ω = dη for some globally defined (p− 1)-
form η. Now consider the space Hp = Zp/Bp, which is the space of closed
forms modulo exact forms. In this space we identify3 two forms, ω1 and ω2,
whenever there an η, such that ω1 = ω2 + dη. We say that ω1 and ω2 are
cohomologous. Remarkably, for our compact manifold M the space Hp(M)
is finite dimensional. It is called the p-th (de Rham) cohomology space of the
manifold. It depends only on the global topology of M , not on any metric
properties. Sometimes we write Hp

DR(M,R) to make it clear that we are
treating it as a vector space over the real numbers. This is because there is
also a space Hp

DR(M,Z), where we only allow multiplications by integers.

Cohomology codifies all potential obstructions to solving the problem of
finding η such that dη = ω: we can find such an η if, and only if, ω is
cohomologous to zero.

4.3 Homology

How can we find the cohomolgy spaces of a manifold, and how do we tell if
a particular form we are interested in is cohomologous to zero? The most
intuitive method is to construct the vector spaces dual to the cohomology as
these spaces are easy to understand pictorially.

Given a region of space Ω we can find its boundary ∂Ω. Inspection of
a few simple cases will soon lead to the conclusion that the “boundary of a
boundary” consists of nothing. In symbols, ∂2 = 0. The statement “∂2 = 0”
is clearly analgous to “d2 = 0”, and, pursuing the analogy, we can construct
a vector space of geometric “regions” and define two “regions” as being ho-
mologous if they differ by the boundary of another “region.” We will first

3Regard as being the same.
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make these vague notions precise, and then we will explain how the result-
ing homology spaces become the vector-space duals of de Rham cohomology
spaces.

4.3.1 Chains, Cycles and Boundaries

The set of all curves and surfaces in a manifold M is infinite dimensional, but
the homology spaces we are seeking are finite dimensional. We can make our
computations easier if we work with finite dimensional spaces throughout.
To do this we triangulate M .

Simplicial Complexes

We dissect our space M into line segments (if one dimensional), triangles,
(if two dimensional), tetrahedra (if three dimensional) or higher dimensional
p-simplices (singular: simplex ). The rules for this dissection are:

a) Every point must belong to at least one simplex.
b) A point can belong to only a finite number of simplices.
c) Two different simplices either have no points in common, or

i) one is a face (or edge, or vertex) of the other,
ii) the set of points in common is the whole of a shared face (or edge,

or vertex) edge.

a) b)

Triangles, or 2-simplices, that are a) allowed, b) not allowed in a dissection.
In b) only parts of edges are in common.

The collection of simplices composing the dissected space is called a simplicial
complex . We will denote it by S.

Effectively we are replacing our continuous manifold by a discrete lattice
of (generalized) triangles, but doing so in such a way as to preserve the global
topological properties of the space. We often do not require many triangles
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to do this. For example, the torus can be decomposed into two 2-simplices
(triangles) bounded by three 1-simplices (edges) α, β, γ, and with only a
single 0-simplex (vertex) P .

ββ

P P

PP

α

α

γ

a) b)

2

1

γ
β

P

α

1

2

A triangulation of the 2-torus. Figure a) shows the torus as a rectangle with
periodic boundary conditions. The two edges labled α will be glued togther
point-by-point along the arrows when we reassemble the torus, and so are to
be regarded as a single edge. The two sides labeled β will be glued similarly.
Once we have done this, all four points labelled P are in the same place, and
correspond to the single point P in Fig. b).

Computations are easier to describe, however, if each simplex in the de-
composition is uniquely specified by its vertices. For this we need a finer
dissection. We may, for example, decompose the torus into 18 triangles each
of which is uniquely labeled by three points drawn from a set of nine vertices.
The resulting simplicial complex then has 27 edges:
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P1 P2

P

P

P 3 P1

4 P4P P

P P

P1 P P2 3 P1

5 6

7 8 9
P7

A second triangulation of the 2-torus.

Vertices with identical labels are to be regarded as the same vertex, as are the
corresponding sides of triangles. Thus, each of the edges P1P2, P2P3, P3P1,
at the top of the figure are to be glued point-by-point to the corresponding
edges on bottom of the figure. Similarly along the sides.

We may triangulate the sphere S2 as a tetrahedron with vertices P1, P2,
P3, P4. This dissection has six edges: P1P2, P1P3, P1P4, P2P3, P2P4, P3P4,
and four faces: P2P3P4, P1P3P4, P1P2P4 and P1P2P3.

1 2

3

4

P

P

P

P

A tetrahedral triangulation of the 2-sphere. The circulating arrows on the
faces indicate the choice of orientation P1P2P4 and P2P3P4.



4.3. HOMOLOGY 91

p-Chains

We assign to simplices an orientation defined by the order in which we write
their defining vertices. The interchange of of any pair of vertices reverses the
orientation, and we consider there to be a relative minus sign between oppo-
sitely oriented but otherwise identical simplices: P2P1P3P4 = −P1P2P3P4.

We now construct abstract vector spaces Cp(S,R) of p-chains which have
the oriented p-simplices as their basis vectors. The most general elements of
C2(S,R), with S being the tetrahedral triangulation of the sphere S2, would
be

a1P2P3P4 + a2P1P3P4 + a3P1P2P4 + a4P1P2P3, (4.20)

where a1, . . . , a4, are real numbers. We regard the distinct faces as being
linearly independent basis elements for C2(S,R). The space is therefore four
dimensional. If we had triangulated the sphere so that it had 16 triangular
faces, the space C2 would be 16 dimensional.

Similarly, the general element of C1(S,R) would be

b1P1P2 + b2P1P3 + b3P1P4 + b4P2P3 + b5P2P4 + b6P3P4, (4.21)

and so C1(S,R) is a six-dimensional space spanned by the edges of the tetra-
hedron. For C0(S,R) we have

c1P1 + c2P2 + c3P3 + c4P4, (4.22)

and so C0(S,R) is four dimensional, and spanned by the vertices.

Our manifold comprises only the surface of the two-sphere, so there is no
such thing as C3(S,R).

The reason for making the field R explicit in these definitions is that we
sometimes gain more information about the topology if we allow only integer
coefficients. The space of such p-chains is then denoted by Cp(S,Z). Be-
cause a vector space requires that coefficients be drawn from a field, these
objects are no longer vector spaces. They can be thought of as either mod-
ules—“vector spaces” whose coefficient are drawn from a ring—or as additive
groups.
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The Boundary Operator

We now introduce a linear map ∂p : Cp → Cp−1, called the boundary operator.
Its action on a p-simplex is

∂pPi1Pi2 · · ·Pip+1
=

p+1∑

j=1

(−1)j+1Pi1 . . . P̂ij . . . Pip+1
, (4.23)

where the “hat” indicates that Pij is to be omitted. The resulting (p − 1)-
chain is called the boundary of the simplex. For example

∂2(P2P3P4) = P3P4 − P2P4 + P2P3,

= P3P4 + P4P2 + P2P3 (4.24)

P2 P3

P4

The oriented triangle P2P3P4 has boundary P3P4 + P4P2 + P2P3.

The boundary of a line segment is the difference of its endpoints

∂1(P1P2) = P2 − P1. (4.25)

Finally, for any point,

∂Pi = 0. (4.26)

Because ∂ is defined to be a linear map, when it is applied to a p-chain
c = a1s1 + a2s2 + · · · + ansn, where the si are p-simplices, we have ∂pc =
a1∂ps1 + a2∂ps2 + · · ·+ an∂psn

For each of the examples we find that ∂p−1∂p s = 0. From the definition
(4.23) we can easily establish that this identity holds for any p-simplex s. As
chains are sums of simplices and ∂p is linear, it remains true for any c ∈ Cp.
Thus ∂p−1∂p = 0. We will usually abbreviate this statement as ∂2 = 0.
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P4

2PP1

P3

P5

Compatibly oriented simplices.

When we take the “∂” of a chain of compatibly oriented simplices that to-
gether make up some region, the internal boundaries cancel in pairs, and
the “boundary” of the chain really is the oriented geometric boundary of the
region. For example, in figure above, we find that

∂(P1P5P2+P2P5P4+P3P4P5+P1P3P5) = P1P3+P3P4+P4P2+P2P1, (4.27)

which is the counter-clockwise directed boundary of the square.

Cycles, Boundaries and Homology

A chain complex is a doubly infinite sequence of spaces (these can be vector
spaces, modules, abelian groups, or many other mathematical objects) such
as . . . , C−2, C−1, C0, C1, C2 . . ., together with structure-preserving maps

. . .
∂p+1→ Cp

∂p→ Cp−1
∂p−1→ Cp−2

∂p−1→ . . . , (4.28)

with the property that ∂p−1∂p = 0. The finite sequence of Cp’s we constructed
from our simplicial complex is an example of a chain complex where Cp is
zero-dimensional for p < 0 or p > d. Chain complexes are a useful tool in
mathematics, and the ideas we explain in this section have many applications.

Given any chain complex we can define two important linear subspaces
of each of the Cp’s. The first is the space Zp of p-cycles. This consists of
those z ∈ Cp such that ∂pz = 0. The second is the space Bp of p-boundaries,
and consists of those b ∈ Cp such that b = ∂p+1c for some c ∈ Cp+1. Because
∂2 = 0, the boundaries Bp constitute a subspace of Zp. From these spaces
we form the quotient space Hp = Zp/Bp, consisting of equivalence classes
of p-cycles, where we deem z1 and z2 to be equivalent, or homologous, if
they differ by a boundary: z2 = z1 + ∂c. The space Hp, or more accurately,
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Hp(R), is called the p-th (simplicial) homology space of the chain complex.
It becomes the p-th homology group if R is replaced by the integers.

We can construct these homology spaces for any chain complex. When
the chain complex is derived from a simplicial complex decomposition of a
manifold M a remarkable thing happens. The spaces Cp, Zp, and Bp, all
depend on the details of how the manifold M has been dissected to form
the simplicial complex S. The homology space Hp, however, is independent
the dissection. This is neither obvious nor easy to prove. We will rely on
examples to at least make it plausible. Granted this independence, we will
write Hp(M), or Hp(M,R), so as to make it clear that Hp is a property of M .
The dimension bp of Hp(M) is called the p-th Betti number of the manifold:

bp
def
= dimHp(M). (4.29)

Example: The Two-Sphere. For the tetrahedral dissection of the two-sphere,
any vertex is Pi homologous to any other, as Pi − Pj = ∂(PjPi) and all
PjPi belong to C2. Furthermore, ∂Pi = 0, so H0(S

2) is one dimensional.
In general, the dimension of H0(M) is the number of disconnected pieces
making up M . We will write H0(S

2) = R, regarding R as the archetype of
a one-dimensional vector space.

Now let us consider H1(S
2). We first find the space of 1-cycles Z1. An

element of C1 will be in Z1 only if each vertex that is the begining of an edge
is also the end of an edge, and that these edges have the same coefficient.
Thus

z1 = P2P3 + P3P4 + P4P2

is a cycle, as is

z2 = P1P4 + P4P2 + P2P1.

These are both boundaries of faces of the tetrahedron. It should be fairly
easy to convince yourself that Z1 is the space of linear combinations of these
together with boundaries of the other faces

z3 = P1P4 + P4P3 + P3P1,

z4 = P1P3 + P3P2 + P2P1.

Any three of these are linearly independent, and so Z1 is three dimensional.
Because all of the cycles are boundaries, every element of Z1 is homologous
to 0, and so H1(S

2) = {0}.



4.3. HOMOLOGY 95

We also see that H2(S
2) = R. Here the basis element is

P2P3P4 − P1P3P4 + P1P2P4 − P1P2P3 (4.30)

which is the 2-chain corresponding to the entire surface of the sphere. It
would be the boundary of the solid tedrahedron, but does not count as a
boundary as the interior of the tetrahedron is not part of the simplicial
complex.

Example: The Torus. Consider the 2-torus T 2.We will see that H0(T
2) = R,

H1(T
2) = R2 ≡ R ⊕ R, and H2(T

2) = R. The basis elements of the two-
dimensional H1(T

2) are the 1-cycles α, β running round the torus.

2
T

α
α

α

β ββ

The cycle γ is homologous to α+ β. In terms of the second triangulation of
the torus we would have

α = P1P2 + P2P3 + P3P1

β = P1P7 + P7P4 + P4P1 (4.31)

and

γ = P1P8 + P8P6 + P6P1

= α+ β + ∂(P1P8P2 + P8P9P2 + P2P9P3 + · · ·). (4.32)

Example: The Projective Plane. The projective plane RP2 can be regarded
as a rectangle with diametrically opposite points identified. Suppose we
decompose RP 2 into eight triangles as below:
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P1

P1

P

P

P2

P2

3

P4P4

3

P5

Triangulating the projective plane.

Consider the entire surface

σ = P1P2P5 + P1P5P4 + · · · ∈ C2(RP
2). (4.33)

Let α = P1P2 + P2P3 and β = P1P4 + P4P3 be the sides of the rectangle
running along the bottom horizontal and left vertical sides of the figure,
respectively. In each case they run from P1 to P3. Then

∂(σ) = P1P2 + P2P3 + P3P4 + P4P1 + P1P2 + P2P3 + P3P4 + P1P2

= 2(α− β) 6= 0. (4.34)

Although RP 2 has no actual edge that we can fall off, from the homological
viewpoint it does have a boundary! This represents the conflict between
local orientation of each of the 2-simplices and the global non-orientability of
RP 2. The surface σ of RP 2 is not a two-cycle, therefore. Indeed Z2(RP

2),
and a fortiori H2(RP

2), contain only the zero vector. The only one-cycle is
α − β which runs from P1 to P1 via P2, P3 and P4, but (4.34) shows that
this is the boundary of 1

2
σ. Thus H2(RP

2,R) and H1(RP
2,R) vanish, while

H0(RP
2,R) = R.

We can now see the advantge of restricting ourselves to integer coefficients.
When we are not allowed fractions the cycle γ = (α − β) is no longer a
boundary, although 2(α − β) is the boundary of σ. Thus, using the symbol
Z2 to denote the additive group of the integers modulo two, we can write
H1(RP

2,Z) = Z2. This homology space is a set with only two members
{0γ, 1γ}. The finite group H1(RP

2,Z) = Z2 is said to be the torsion part
of the homology — a confusing terminology because this torsion has nothing
to do with the torsion tensor of Riemannian geometry. The torsion becomes
invisible when we allow real numbers as a coefficients.
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We introduced real-number homology first, because the theory of vec-
tor spaces is simpler than that of modules, and more familiar to physicists.
We were, however, buying a simplification at the expense of throwing away
information.

The Euler Character

The sum

χ
def
=

d∑

p=0

(−1)p dimHp(M,R) (4.35)

is called the Euler character of the manifold M . For example, the 2-sphere
has χ = 2, and the n-torus has χ = 0. This number is manifestly a topological
invariant because the individual dimHp(M) are. We will show that that the
Euler character is also equal to V − E + F − · · · where V is the number
of vertices, E is the number of edges and F is the number of faces in the
simplicial dissection. The dots are for higher dimensional spaces, where the
alternating sum continues with (−1)p times the number of p-simplices. In
other words, we are claiming that

χ =
d∑

p=0

(−1)p dimCp(M). (4.36)

It is not so obvious that this new sum is a topological invariant. The indi-
vidual dimensions of the spaces of p-chains depend on the details of how we
dissect M into simplices. If our claim is to be correct, the dependence must
somehow drop out when we take the alternating sum.

The tool that we will use to relate the alternating sum of the Betti num-
bers to the alternating sum of the dimensions of the Cp is the exact sequence.
We say that a set of vector spaces Vp with maps fp : Vp → Vp+1 is an exact
sequence if Ker (fp) = Im (fp−1). For example, if all cycles were boundaries
then the set of spaces Cp with the map ∂p taking us from Cp to Cp−1 would
consitute an exact sequence—albeit with p decreasing rather than increasing,
but this is irrelevent. When the homology is non-zero, however, we only have
Im (fp−1) ⊂ Ker (fp), and the number dimHp = dim (Ker fp)−dim (Im fp−1)
provides a measure of how far this set inclusion falls short of being an equal-
ity.

Suppose that

{0} f0−→ V1
f1−→ V2

f2−→ . . .
fn−1−→ Vn

fn−→ {0} (4.37)
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is a finite-length exact sequence. Here, {0} is the vector space containing
only the zero vector. Being linear, f0 maps 0 to 0. Also fn maps everything
in Vn to 0. Since this last map takes everything to zero, and what is mapped
to zero is the image of the penultimate map, we have Vn = Im fn−1. Similarly,
the fact that Ker f1 = Im f0 = {0} shows that Im f1 ⊆ V2 is an isomorphic
image of V1. This situation is represented schematically in the following
figure:

}{ V1 V2 V3 V4 V5

fIm Im f Imf Imf

}{
f0 f f f f4 f5

0

0 0 0

21 3 4

0
1 2 3

0 0 0 0

A schematic representation of an exact sequence.

Now the range-nullspace theorem tells us that

dimVp = dim (Im fp) + dim (Ker fp)

= dim (Im fp) + dim (Im fp−1). (4.38)

When we take the alternating sum of the dimensions, and use dim (Im f0) = 0
and dim (Im fn) = 0, we find that the sum telescopes to give

n∑

p=0

(−1)p dimVp = 0. (4.39)

The vanishing of this alternating sum is one of the principal properties of an
exact sequence.

Now, for our sequence of spaces Cp with the maps ∂p : Cp → Cp−1, we have
dim (Ker ∂p) = dim (Im ∂p+1) + dimHp. Using this and the range-nullspace
theorem in the same manner as above, shows that

d∑

p=0

(−1)pdimCp(M) =
d∑

p=0

(−1)pdimHp(M). (4.40)

This confirms our claim.
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4.3.2 De Rham’s Theorem

We still have not related homology to cohomology. The link is provided by
integration.

The integral provides a natural pairing of a p-chain c and a p-form ω: if
c = a1s1 + a2s2 + · · ·+ ansn, where the si are simplices, we define

(c, ω) =
∑

i

ai

∫

si

ω. (4.41)

The perhaps mysterious notion of “adding” geometric simplices is thus given
a concrete interpretation in terms of adding real numbers.

Stokes’ theorem now reads

(∂c, ω) = (c, dω), (4.42)

suggesting that d and ∂ should be regarded as adjoints of each other. From
this observation follows the key fact that the pairing between chains and
forms projects to a pairing of homology classes and cohomology classes. In
other words,

(z + ∂c, ω + dχ) = (z, ω), (4.43)

so it does not matter which representative of the equivalence classes we take
when we compute the integral. Let us see why this is so:

Suppose z ∈ Zp and ω2 = ω1 + dη. Then

(z, ω2) =
∫

z
ω2 =

∫

z
ω1 +

∫

z
dη

=
∫

z
ω1 +

∫

∂z
η

=
∫

z
ω1

= (z, ω1) (4.44)

because ∂z = 0. Thus, all elements of the cohomology class of ω return the
same answer when integrated over a cycle.

Similarly, if ω ∈ Zp and c2 = c1 + ∂a then

(c2, ω) =
∫

c1
ω +

∫

∂a
ω

=
∫

c1
ω +

∫

a
dω

=
∫

c1
ω

= (c1, ω),
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since dω = 0.
All this means that we can consider the equivalence classes of closed

forms composing Hp
DR(M) to be elements of (Hp(M))∗, the dual space of

Hp(M) — hence the “co” in cohomology. The existence of the pairing does
not automatically mean that Hp

DR is the dual space to Hp(M), however,
because there might be elements of the dual space that are not in Hp

DR,
and there might be distinct elements of Hp

DR that give identical answers
when integrated over any cycle, and so correspond to the same element in
(Hp(M))∗. This does not happen, however, when the manifold is compact :
De Rham showed that, for compact manifolds, (Hp(M,R))∗ = Hp

DR(M,R).
We will not try to prove this, but be satisfied with some examples.

The statement (Hp(M))∗ = Hp
DR(M) neatly summarizes de Rham’s re-

sults, but, in practice, the more explicit statements below are more useful.

Theorem: (de Rham) Suppose that M is a compact manifold.
1) A closed p-form ω is exact iff

∫

zi

ω = 0 (4.45)

for all cycles zi ∈ Zp. It suffices to check this for one representative of
each homology class.

2) If zi ∈ Zp, i = 1, . . . , dimHp, is a basis for the p-th homology space,
and αi a set of numbers, one for each zi, then there exists a closed
p-form ω such that ∫

zi

ω = αi. (4.46)

If ωi constitute a basis of the vector space Hp(M) then the matrix of numbers

Ωi
j = (zi, ω

j) =
∫

zi

ωj (4.47)

is called the period matrix , and the Ωi
j themselves are the periods.

Example: H1(T
2) = R ⊕ R is two-dimensional. Since a finite-dimensional

vector space and its dual have the same dimension, de Rham tells us that
H1
DR(T 2) is also two-dimensional. If we take as coordinates on T 2 the angles

θ and φ, then the basis elements, or generators, of the cohomology spaces are
the forms “dθ” and “dφ”. We have inserted the quotes to stress that these
expressions are not the d of a function. The angles θ and φ are not functions
on the torus, since they are not single-valued. The homology basis 1-cycles
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can be taken as zθ running from θ = 0 to θ = 2π along φ = π, and zφ running
from φ = 0 to φ = 2π along θ = π. Clearly, ω = αθdθ/2π+αφdφ/2π returns∫
zθ
ω = αθ and

∫
zφ
ω = αφ for any αθ, απ, so {dθ/2π, dφ/2π} and {zθ, zφ} are

dual bases.
Example: As an illustration of de Rham part 1), observe that it is easy to
show that a closed 1-form φ can be written as df , provided that

∫
zi
φ = 0 for

all cycles. We simply define f =
∫ x
x0
φ, and observe that the proviso ensures

that f is not multivalued.
Example: A more subtle problem is to show that, given a 2-form ω on S2,
with

∫
S2 ω = 0, then there is a globally defined χ such that ω = dχ. We

begin by covering S2 by two open sets D+ and D− which have the form of
caps such that D+ includes all of S2 except for a neighbourhood of the south
pole, while D− includes everything except a neighbourhood of the north pole,
and the intersection, D+ ∩D−, has the topology of an annulus, or cingulum,
encircling the equator.

D

D

+

_

Γ

Since both D+ and D− are contractable, there are 1-forms χ+ and χ− such
that ω = dχ+ in D+ and ω = dχ− in D−. Thus,

d(χ+ − χ−) = 0, in D+ ∩D−. (4.48)

Dividing the sphere into two disjoint sets with a common (but oppositely
oriented) boundary Γ ∈ D+ ∩D− we have

0 =
∫

S2

ω =
∮

Γ
(χ+ − χ−), (4.49)

and this is true for any such curve Γ. Thus, by the previous example,

φ = (χ+ − χ−) = df (4.50)



102 CHAPTER 4. TOPOLOGY OF MANIFOLDS

for some smooth function defined in Γ ∈ D+ ∩ D−. We now introduce a
partition of unity subordinate to the cover of S2 by D+ and D−. This is a
pair of non-negative smooth functions, ρ±, such that ρ+ is non-zero only in
D+, ρ− is non-zero only in D−, and ρ+ + ρ− = 1. Now

f = ρ+f − (−ρ−)f, (4.51)

and f− = ρ+f is a function defined everywhere on D−. Similarly f+ =
(−ρ−)f is a function on D+. Notice the interchange of ± labels! This is not
a mistake. The function f is not defined outside D+∩D−, but we can define
ρ−f everywhere on D+ because f gets multiplied by zero wherever we have
no value to assign to it.

We now observe that

χ+ + df+ = χ− + df−, in D+ ∩D−. (4.52)

Thus ω = dχ, where χ is defined everywhere by the rule

χ =
{
χ+ + df+, in D+,
χ− + df−, in D−.

(4.53)

It does not matter which definition we take in the cingular region D+ ∩D−,
because the two definitions coincide there.

The methods of this example, a special case of the Mayer-Vietoris prin-
ciple, can be extended to give a proof of de Rham’s claims.
Example: Suppose that the cycles generating the homology group H1(T

2) of
the 2-torus are α and β, and that a and b are closed (da = db = 0), but not
necessarily exact, 1-forms. We will show that

∫

T 2

a ∧ b =
∫

α
a
∫

β
b−

∫

α
b
∫

β
a. (4.54)

To do this, we cut the torus along the cycles α and β and open it out into
a rectangle with sides of length Lx and Ly. The cycles α and β will form
the sides of the rectangle and we will take them as lying parallel to the x
and y axes, respectively. Functions on the torus now become functions on
the rectangle. Not all functions on the rectangle descend from functions on
the torus, however. Only those functions that satisfy the periodic bound-
ary conditions f(0, y) = f(Lx, y) and f(x, 0) = f(x, Ly) can be considered
(mathematicians would say “can be lifted”) to be functions on the torus.
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2
T

α
α

α

β ββ

Since the rectangle (but not the torus) is retractable, we can write a = df
where f is a function on the rectangle — but not necessarily a function on
the torus, i.e., f will not, in general, be periodic. Since a ∧ b = d(fb), we
can now use Stokes’ theorem to evaluate∫

T 2

a ∧ b =
∫

T 2

d(fb) =
∫

∂T 2

fb. (4.55)

The two integrals on the two vertical sides of the rectangle can be combined
to a single integral over the points of the 1-cycle β:

∫

vertical
fb =

∫

β
[f(Lx, y)− f(0, y)]b. (4.56)

We now observe that [f(Lx, y)− f(0, y)] is a constant, and so can be taken
out of the integral. It is a constant because all paths from the point (0, y) to
(Lx, y) are homologous to the 1-cycle α, so the difference f(Lx, y)− f(0, y)
is equal to

∫
α a. Thus

∫

β
[f(Lx, y)− f(0, y)]b =

∫

α
a
∫

β
b. (4.57)

Similarly, the contributions of the two horizontal sides is
∫

α
[f(x, 0)− f((x, Ly)]b = −

∫

β
a
∫

α
b. (4.58)

On putting the contributions of both pairs of sides together, the claimed
result follows.

4.4 Hodge Theory and the Morse Index

The Laplacian, when acting on a scalar function φ is simply div (gradφ), but
when acting on vectors it becomes

∇2v = grad (div v)− curl (curlv). (4.59)
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Is there a general construction that would have allowed us to write down this
second expression? What about the Laplacian on other types of fields?

The Laplacian acting on any vector or tensor field T is given, in general
curvilinear co-ordinates, by ∇2T = gµν∇µ∇νT where ∇µ is the flat-space
covariant derivative. This is the unique co-ordinate independent object that
reduces in Cartesian co-ordinates to the ordinary Laplacian acting on the in-
dividual components of T. The proof that the rather different-seeming (4.59)
holds for vectors is that it too is constructed out of co-ordinate independent
operations and in Cartesian co-ordinates reduces to the ordinary Laplacian
acting on the individual components of v. It must therefore coincide with the
covariant derivative definition. Why it should work out this way is not ex-
actly obvious. Now div, grad and curl can all be expressed in differential form
language, and therefore so can the scalar and vector Laplacian. Moreover,
when we let the Laplacian act on any p-form the general pattern becomes
clear. The differential form definition of the Laplacian, and the exploration
of its consequences, was the work of William Hodge in the 1930’s. His theory
has natural applications to the topology of manifolds.

4.4.1 The Laplacian on p-forms

Suppose that M is an oriented, compact, D-dimensional manifold without
boundary. We can make the space Ωp(M) of p-form fields on M into an L2

Hilbert space by introducing the positive-definite inner product

〈a, b〉p = 〈b, a〉p =
∫

M
a ? b =

1

p!

∫
dDx
√
g ai1i2...ipb

i1i2...ip. (4.60)

Here the subscript p denotes the order of the forms in the product, and should
not to be confused with the p we have elsewhere used to label the norm in
Lp Banach spaces. The presence of the

√
g and the Hodge ? operator tells

us that this inner product depends on both the metric on M and the global
orientation.

We can use our new product to define a “hermitian adjoint” δ ≡ d† of
the exterior differential operator d. The “. . .” are because this is not quite
an adjoint operator in the normal sense — d takes us from one vector space
to another — but it is constructed in an analogous manner. We define δ by
requiring that

〈da, b〉p+1 = 〈a, δb〉p, (4.61)
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where a is an arbitrary p-form and b and arbitrary (p+ 1)-form. Now recall
that ? takes p-forms to (D− p) forms, and so d ? b is a (D− p) form. Acting
twice on a (D− p)-form with ? gives us back the original form multiplied by
(−1)p(D−p). We use this to compute

d(a ? b) = da ? b + (−1)pa(d ? b)

= da ? b + (−1)p(−1)p(D−p)a ? (?d ? b)

= da ? b− (−1)Dp+1a ? (? d ? b). (4.62)

In obtaining the last line we have observed that p(p − 1) is an even integer
and so (−1)p(1−p) = 1. Now, using Stokes’ theorem, and the absence of a
boundary to discard the integrated-out part, we conclude that

∫

M
da ? b = (−1)Dp+1

∫

M
a ? (? d ? b), (4.63)

or
〈da, b〉p+1 = (−1)Dp+1〈a, (? d ?)b〉p (4.64)

and so δb = (−1)Dp+1(? d ?)b. This was for δ acting on a (p−1) form. Acting
on a p form we have

δ = (−1)Dp+D+1 ? d ? . (4.65)

Observe how the sequence of maps in ? d ? works:

Ωp(M)
?−→ ΩD−p(M)

d−→ ΩD−p+1(M)
?−→ Ωp−1(M). (4.66)

The net effect is that δ takes a p-form to a (p − 1)-form. Observe also that
δ2 ∝ ? d2 ? = 0.

We now define a second-order partial differential operator ∆p to be the
combination

∆p = δd+ dδ, (4.67)

acting on p-forms This maps a p-form to a p-form. A slightly tedious calcu-
lation in cartesian co-ordinates will show that, for flat space,

∆p = −∇2 (4.68)

on each component of a p-form. This ∆p is therefore the natural definition
for (minus) the Laplacian acting on differential forms. It is usually called the
Laplace-Beltrami operator.
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Using 〈a, db〉 = 〈δa, b〉 we have

〈(δd+ dδ)a, b〉p = 〈δa, δb〉p−1 + 〈da, db〉p+1 = 〈a, (δd+ dδ)b〉p, (4.69)

and so we deduce that ∆p is self-adjoint on Ωp(M). The middle terms in
(4.69) are both positive, so we also see that ∆p is a positive operator — i.e.
all its eigenvalues are positive or zero.

Suppose that ∆pa = 0, then (4.69) for a = b becomes that

0 = 〈δa, δa〉p−1 + 〈da, da〉p+1. (4.70)

Because both these inner products are positive or zero, the vanishing of
their sum requires them to be individually zero. Thus ∆pa = 0 implies that
da = δa = 0. By analogy with harmonic functions, we call a form that is
annihilated by ∆p a harmonic form. Recall that a form a is closed if da = 0.
We correspondingly say that a is co-closed if δa=0. A differential form is
therefore harmonic if and only if it is both closed and co-closed.

When a self-adjoint operator A is Fredholm (i.e the solutions of the equa-
tion Ax = y are governed by the Fredholm alternative) the vector space on
which it acts is decomposed into a direct sum of the kernel and range of the
operator

V = Ker (A)⊕ Im (A). (4.71)

It may be shown that our Laplace-Beltrami ∆p is a Fredholm operator, and
so for any p-form ω there is an η such that ω can be written

ω = (dδ + δd)η + γ

= dα + δβ + γ, (4.72)

where α = δη, β = dη, and γ is harmonic. This result is known as the Hodge
decomposition of ω. It is easy to see that α, β and γ are uniquely determined
by ω. If they were not then we could find some α, β and γ such that

0 = dα + δβ + γ (4.73)

with non-zero dα, δβ and γ. To see that this is not possible, take the d of
(4.73) and then the inner product of the result with β. Because d(dα) =
dγ = 0, we end up with

0 = 〈β, dδβ〉
= 〈δβ, δβ〉. (4.74)
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Thus δβ = 0. Now apply δ to the two remaining terms of (4.73) and take an
inner product with α. Because δγ = 0, we find 〈dα, dα〉 = 0, and so dα = 0.
What now remains of (4.73) asserts that γ = 0.

Suppose that ω is closed. Then our strategy of taking the d of the de-
composition

ω = dα+ δβ + γ, (4.75)

followed by an inner product with β leads to δβ = 0. A closed form can thus
be decomposed as

ω = dα + γ (4.76)

with α and γ unique. Each cohomology class in Hp(M) therefore contains
a unique harmonic representative. Since any harmonic function is closed,
and hence a representative of some cohomology class, we conclude that there
is a 1-1 correspondence between p-form solutions of Laplace’s equation and
elements of Hp(M). In particular

dim(Ker ∆p) = dim (Hp(M)) = bp. (4.77)

Here bp is the p-th Betti number. From this we immediately deduce that

χ =
D∑

p=0

(−1)pdim(Ker ∆p), (4.78)

where χ is the Euler character of M . There is therefore an intimate relation-
ship between the null-spaces of the second-order partial differential operators
∆p and the global topology of the manifold in which they live. This is an
example of an index theorem.

Just as for the ordinary Laplace operator, ∆p has a complete set of eigen-
functions with associated eigenvalues λ. Because the the manifold is compact
and hence has finite volume, the spectrum will be discrete. Remarkably, the
topological influence we uncovered above is restricted to the zero-eigenvalue
spaces. Suppose that we have a p-form eigenfunction uλ for ∆p:

∆puλ = λuλ. (4.79)

Then

λ duλ = d∆puλ

= d(dδ + δd)uλ
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= (dδ)duλ

= (δd+ dδ)duλ

= ∆p+1duλ. (4.80)

Thus, provided it is not identically zero, duλ is an (p+1)-form eigenfunction
of ∆(p+1) with eigenvalue λ. Similarly, δuλ is a (p − 1)-form eigenfunction
also with eigenvalue λ.

Can duλ be zero? Yes! It will certainly be zero if uλ itself is the d of
something. What is less obvious is that it will be zero only if it is the d of
something. To see this suppose that duλ = 0 and λ 6= 0. Then

λuλ = (δd+ dδ)uλ = d(δuλ). (4.81)

Thus duλ = 0 implies that uλ = dη, where η = δuλ/λ. We see that for λ
non-zero, the operators d and δ map the λ eigenspaces of ∆ into one another,
and the kernel of d acting on p-form eigenfunctions is precisely the image of
d acting on (p− 1)-form eigenfunctions. In other words, when restricted to
positive λ eigenspaces of ∆, the cohomology is trivial.

The set of spaces V λ
p together with the maps d : V λ

p → V λ
p+1 therefore

constitute an exact sequence when λ 6= 0, and so the alternating sum of their
dimension must be zero. We have therefore established that

∑

p

(−1)pdim V λ
p =

{
= χ, λ = 0,
= 0, λ 6= 0.

(4.82)

All the topology resides in the null-spaces, therefore.

Exercise 4.1: Show that if ω is closed and co-closed then so is ?ω. Deduce
that in a for a compact orientable D-manifold we have bp = bD−p . This fact
is known as Poincaré duality.

4.4.2 Morse Theory

Suppose, as in the previous section, M is a D-dimensional compact, oriented,
manifold without boundary and V : M → R a smooth function. The global
topology of M imposes some constraints on the possible maxima, minima
and saddle points of V . Suppose that P is a stationary point of V . Taking
co-ordinates such that P is at xµ = 0, we can expand

V (x) = V (0) +
1

2
Hµνx

µxν + . . . . (4.83)
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Here, the matrix Hµν is the Hessian

Hµν =
∂2V

∂xµ∂xν

∣∣∣∣∣
0

. (4.84)

We can change co-ordinates so as reduce the Hessian to a canonical form
with only ±1, 0 on the diagonal:

Hµν =



−Im

In
0D−m−n


 . (4.85)

If there are no zero’s on the diagonal then the stationary points is said to be
non-degenerate. The the number m of downward-bending directions is then
called the index of V at P. If P were a local maximum, then m = D, n = 0.
If it were a local minimum then m = 0, n = D. When all its stationary
points are non-degenerate, V is said to be a Morse function. This is the
generic case. Degenerate stationary points can be regarded as arising from
the merging of two or more non-degenerate points.

The Morse index theorem asserts that if V is a Morse function, and if
we define N0 to be the number of stationary points with index 0 (i.e. local
minima), and N1 to be the number of stationary points with index 1 etc.,
then

D∑

m=0

(−1)mNm = χ. (4.86)

Here χ is the Euler character of M . Thus, a function on the two-dimensional
torus, which has χ = 0, can have a local maximum, a local minimum and two
saddle points, but cannot have only one local maximum, one local minimum
and no saddle points. On a two-sphere (χ = 2), if V has one local maximum
and one local minimum it can have no saddle points.

Closely related to the Morse index theorem is the Poincaré-Hopf theorem.
It counts the isolated zeros of a tangent-vector field X on a D-manifold and,
among other things, explains why we cannot comb a hairy ball. An isolated
zero is a point zn at which X becomes zero, and that has a neighbourhood in
which there is no other zero. If there are only finitely many zeros then each of
them will be isolated. We can define a vector field index at zn by surrounding
it with a small (D− 1)-sphere on which X does not vanish. The direction of
X at each point on this sphere then provides a map from the sphere to itself.
The index i(zn) is defined to be the winding number (Brouwer degree) of this
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map. The index can be any integer, but in the special case that X is the
gradient of a Morse function we have i(zn) = (−1)mn where m is the Morse
index at zn. The Poincaré-Hopf theorem now states that, for a compact
orientable manifold and a vector field with only finitely many zeros,

∑

zeros n

i(zn) = χ. (4.87)

A tangent vector field must therefore always have at least one zero unless
χ = 0. Since the two-sphere has χ = 2, it cannot be combed.

Supersymmetric Quantum Mechanics

Ed Witten gave a beautiful proof of the Morse index theorem by re-interpreting
the Laplace-Beltrami operator as the Hamiltonian of supersymmetric quan-
tum mechanics on M . Witten’s idea had a profound impact, and led to
quantum physics serving as a rich source of inspiration and insight for math-
ematicians. We have seen most of the ingredients of this re-interpretation
in previous chapters. Indeed you should have experienced a sense of deja vu
when you saw d and δ mapping eigenfunctions of one differential operator
into eigenfunctions of a related operator.

We begin with an novel way to think of the calculus of differential forms.
We introduce a set of fermion annihilation and creation operators ψµ and
ψ†µ which we take to obey

{ψ†µ, ψν} ≡ ψ†µψν + ψνψ†µ = gµν. (4.88)

Here µ runs from 1 to D. As is usual when we are given such operators,
we also introduce a vacuum state |0〉 which is killed by all the annihilation
operators: ψµ|0〉 = 0. The states

(ψ†1)p1(ψ†2)p2 . . . (ψ†n)pn|0〉, (4.89)

with each of the pi taking the value one or zero, then constitute a basis for
2D-dimensional space. We call p =

∑
i pi the fermion number of the state.

We now assume that 〈0|0〉 = 1 and use the anti-commutation relations to
show that

〈0|ψµp . . . ψµ2ψµ1 . . . ψ†ν1ψ†ν2 . . . ψ†νq |0〉
is zero unless p = q, in which case it is equal to

gµ1ν1gµ2ν2 . . . gµpνp ± (permutations).
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We now make the correspondence

1

p!
fµ1µ2...µp(x)ψ

†µ1

ψ†µ2

. . . ψ†µp|0〉 ↔ 1

p!
fµ1µ2...µp(x)dx

µ1dxµ2 . . . dxµp , (4.90)

to identify p-fermion states with p-forms. We think of fµ1µ2...µp(x) as being
the wavefunction of a particle moving on M , with the subscripts informing
us there are fermions occupying the states µi. It is then natural to take the
inner product of

|a〉 =
1

p!
aµ1µ2...µp(x)ψ

†µ1

ψ†µ2

. . . ψ†µp |0〉 (4.91)

and

|b〉 =
1

q!
bµ1µ2...µq(x)ψ

†µ1

ψ†µ2

. . . ψ†µq |0〉 (4.92)

to be

〈a, b〉 =
∫

M
dDx
√
g

1

p!q!
a∗µ1µ2...µp

bν1ν2...νq〈0|ψµp . . . ψµ1ψ†ν1 . . . ψ†νq |0〉

= δpq

∫

M
dDx
√
g

1

p!
a∗µ1µ2...µp

bµ1µ2...µp. (4.93)

This coincides the Hodge inner product of the corresponding forms.
If we lower the index by setting ψµ to be gµνψ

µ then the action of Xµψµ
on a p-fermion state coincides with the action of the interior multiplication
iX on the corresponding p-form. All the other operations of the exterior
calculus can also be expressed in terms of the ψ’s. In particular, in Cartesian
co-ordinates where gµν = δµν , we can identify d with ψ†µ∂µ. To find the
operator that corresponds to the Hodge δ, we compute

δ = d† = (ψ†µ∂µ)
† = ∂†µψ

µ = −∂µψµ = −ψµ∂µ. (4.94)

The hermitian adjoint of ∂µ is here being taken with respect to the standard
L2(RD) inner product. This computation becomes more complicated when
when gµν becomes position dependent. The adjoint ∂†µ then involves the
derivative of

√
g, and ψ and ∂µ no longer commute. For this reason, and

because such complications are inessential for what follows, we will delay
discussing this general case until the end of this section.

Having found a simple formula for δ, it is now automatic to compute

dδ + δd = −{ψ†µ, ψν} ∂µ∂ν = −δµν∂µ∂ν = −∇2. (4.95)
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This much easier than deriving the same result by using δ = (−1)Dp+D+1?d?.
Witten’s fermionic formalism simplifies a number of compuations involv-

ing δ, but his real innovation was to consider a deformation of the exterior
calculus by introducing the operators

dt = e−tV (x)d etV (x), δt = etV (x)δ e−tV (x), (4.96)

and
∆t = dtδt + δtdt. (4.97)

Here V (x) is the Morse function whose stationary points we are seeking to
count.

The deformed derivative continues to obey d2
t = 0, and dω = 0 if and only

if dte
−tV ω = 0. Similarly, if ω = dη then e−tV ω = dte

−tV η. The cohomol-
ogy of d and dt are therefore transformed into each other by multiplication
by e−tV . Since the exponential function is never zero, this correspondence
is invertible and the mapping is an isomorphism. In particular, the Betti
numbers bp, the dimensions of Ker (dt)p/Im (dt)p−1, are t independent. Fur-
ther, the t-deformed Laplace-Beltrami operator remains Fredholm with only
positive or zero eigenvalues. We can make a Hodge decomposition

ω = dtα + δtβ + γ, (4.98)

where ∆tγ = 0, and concude that

dim (Ker (∆t)p) = bp (4.99)

as before. The non-zero eigenvalue spaces will also continue to form exact
sequences. Nothing seems to have changed! Why do we introduce dt then?
The motivation is that when t becomes large we can use our knowledge of
quantum mechanics to compute the Morse index.

To do this, we expand out

dt = ψ†µ(∂µ + t∂µV )

δt = ψµ(∂µ − t∂µV ) (4.100)

and find
dtδt + δtdt = −∇2 + t2|∇V |2 + t[ψ†µ, ψν ] ∂2

µνV. (4.101)

This can be thought of as a Schrödinger Hamiltonian on M containing a
potential and a fermionic term. When t is large and positive the potential
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t2|∇V |2 will be large everywhere except near those points where ∇V = 0.
The wavefunctions of all low-energy states, and in particular all zero-energy
states, will therefore be concentrated at precisely the stationary points we are
investigating. Let us focus on a particular stationary point, which we will
take as the origin of our co-ordinate system, and identify any zero-energy
state localized there. We first rotate the coordinate system about the origin
so that the Hessian matrix ∂2

µνV |0 becomes diagonal with eigenvalues λn.
The Schrödinger problem can then be approximated by a sum of harmonic
oscillator hamiltonians

∆p,t ≈
D∑

i=1

{
− ∂2

∂x2
i

+ t2λ2
ix

2
i + tλi[ψ

†i, ψi]

}
. (4.102)

The commutator [ψ†i, ψi] takes the value +1 if the i’th fermion state is oc-
cupied, and −1 if it is not. The spectrum of the approximate Hamiltonian
is therefore

t
D∑

i=1

{|λi|(1 + 2ni)± λi} . (4.103)

Here the ni label the harmonic oscillator states. The lowest energy states
will have all the ni = 0. To get a state with zero energy we must arrange
for the ± sign to be negative (no fermion in state i) whenever λi is positive,
and to be positive (fermion state i occupied) whenever λi is negative. The
fermion number of the zero-energy state is therefore equal to the the number
of negative λi — i.e. to the index of the critical point! We can, in this
manner, find one zero-energy state for each critical point. All other states
have energies proportional t, and therefore large. The harmonic oscillator
approximation thus suggests that bp = Np.

If we could trust our computation of the energy spectrum, we would have
established the Morse theorem

D∑

m=0

(−1)mNm =
D∑

p=0

(−1)mbp = χ, (4.104)

by having the two sums agree term by term. Our computation is only ap-
proximate, however. While there can be no more zero-energy states than
those we have found, some states that appear to be zero modes may instead
have small positive energy. This might arise from tunnelling between the
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different potential minima, or from the higher-order corrections to the har-
monic oscillator potentials, both effects we have neglected. We can therefore
only be confident that

Np ≥ bp. (4.105)

The remarkable thing is that, for the Morse index, this does not matter ! If
one of our putative zero modes gains a small positive energy, it is now in
the non-zero eigenvalue sector of the spectrum. The exact-sequence property
therefore tells us that one of the other putative zero modes must also be a
not-quite-zero mode state with exactly the same energy. This second state
will have a fermion number that differs from the first by plus or minus one.
Our error in counting the zero energy states therefore cancels out when we
take the alternating sum. Our unreliable estimate bp ≈ Np has thus provided
us with an exact computation of the Morse index.

We have described Witten’s argument as if the manifold M were flat.
When the manifold M is not flat, however, the curvature will not affect
our computations. Once the paramater t is large the low-energy eigenfunc-
tions will be so tightly localized about the critical points that they will be
hard-pressed to detect the curvature. Even if the curvature can effect an
infintesimal energy shift, the exact-sequence argument again shows that this
does not affect the alternating sum.

The Weitzenböck Formula

Although we we were able to evade them when proving the Morse index
theorem, it is interesting to uncover the workings of the nitty-gritty Riemann
tensor index machinary that are almost completely concealed by Hodge’s d,
δ calculus. We will find ourselves introducing the covariant derivative in an
unconventional, but powerful, manner.

We assume that our manifold M is equipped with a torsion-free connec-
tion Γµνλ = Γµλν , and we use it to define the action of an operator ∇̂µ by
specifying its commutators with c-number functions f , and with the ψµ and
ψ†µ’s:

[∇̂µ, f ] = ∂µf,

[∇̂µ, ψ
†ν ] = −Γνµλψ

†λ,

[∇̂µ, ψ
ν ] = −Γνµλψ

λ. (4.106)
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We also set ∇̂µ|0〉 = 0. These rules allow us to compute the action of ∇̂µ on
fµ1µ2...µp(x)ψ

†µ1 . . . ψ†µp |0〉. For example

∇̂µ

(
fνψ

†ν |0〉
)

=
(
[∇̂µ, fνψ

†ν ] + fνψ
†ν∇̂µ

)
|0〉

=
(
[∇̂µ, fν ]ψ

†ν + fα[∇̂µ, ψ
†α]
)
|0〉

= (∂µfν − fαΓαµν)ψ†ν |0〉
= (∇µfν)ψ

†ν |0〉, (4.107)

where
∇µfv = ∂µfν − Γαµνfα, (4.108)

is the usual covariant derivative acting on the componenents of a covariant
vector.

The metric gµν counts as a c-number function, and so [∇̂α, g
µµ] is not zero,

but is instead ∂αg
µν. This may see somewhat shocking to someone familiar

with covariant derivatives—being able pass the metric through a covariant
derivative is a basic compatibilty condition in Riemann geometry—but all is
not lost because ∇̂µ (with a caret) is not quite the same beast as ∇µ. We
proceed as follows:

∂αg
µν = [∇̂α, g

µµ]

= [∇̂α, {ψ†µ, ψν}]
= [∇̂α, ψ

†µψν ] + [∇̂α, ψ
νψ†µ, ]

= −{ψ†µ, ψλ}Γναλ − {ψ†ν , ψλ}Γµαλ
= −gµλ Γναλ − gνλ Γµαλ. (4.109)

We conclude that

∂αg
µν + gµλΓναλ + gλνΓµαλ ≡ ∇αg

µν = 0. (4.110)

Metric compatibility is therefore implicit in the formalism. The connection
will therefore be the standard Riemannian one

Γαµν =
1

2
gαλ (∂µgλν + ∂νgµλ − ∂λgµν) . (4.111)

Knowing this, we can compute the adjoint of ∇̂µ.
(
∇̂µ

)†
= − 1√

g
∇̂µ
√
g

= −
(
∇̂µ + ∂µ ln

√
g
)

= −(∇̂µ + Γνµν). (4.112)
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That Γνµν is the logarithmic derivative of
√
g is a standard identity for the

Riemann connection. The resultant formula for (∇̂µ)
† can be used to verify

that the second and third equations in (4.106) are compatible with each
other.

We can also compute [[∇̂µ, ∇̂ν ], ψ
α] and from it deduce that

[∇̂µ, ∇̂ν ] = Rσλµνψ
†σψλ, (4.113)

where

Rα
βµν = ∂µΓ

α
βν − ∂νΓαβµ + ΓαλµΓ

λ
βν − ΓαλνΓ

λ
βµ (4.114)

is the Riemann curvature tensor.
We now define d to be

d = ψ†µ∇̂µ. (4.115)

Its action coincides with the usual d because the symmetry of the Γαµν ’s
ensures that their contributions cancel. From this we find that δ is

δ ≡
(
ψ†µ∇̂µ

)†

= ∇̂†
µ ψ

µ

= −(∇̂µ + Γνµν)ψ
µ

= −ψµ(∇̂µ + Γνµν) + Γµµνψ
ν

= −ψµ∇̂µ. (4.116)

The Laplace-Beltrami operator can now be worked out as

dδ + δd = −
(
ψ†µ∇̂µψ

ν∇̂ν + ψν∇̂νψ
†µ∇̂µ

)

= −
(
{ψ†µ, ψν}(∇̂µ∇̂ν − Γσµν∇̂σ) + ψνψ†µ[∇̂ν , ∇̂µ]

)

= −
(
gµν(∇̂µ∇̂ν − Γαµν∇̂σ) + ψνψ†µψ†σψλRσλνµ

)
(4.117)

By making use of the symmetries Rσλνµ = Rνµσλ and Rσλνµ = −Rσλµν we
can tidy up the curvature term to get

dδ + δd = −gµν(∇̂µ∇̂ν − Γσµν∇̂σ)− ψ†αψβψ†µψνRαβµν . (4.118)

This result is called the Weitzenböck formula. An equivalent formula can be
derived directly from (4.65), but only with a great deal more effort. The part
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without the curvature tensor is called the Bochner Laplacian. It is normally
written as B = −gµν∇µ∇ν with ∇µ being understood to be acting on the
index ν, and therefore tacitly containing the extra Γσµν that must be made

explicit when we define the action of ∇̂µ via commutators. The Bochner
Laplacian can also be written as

B = ∇̂†
µ g

µν ∇̂ν (4.119)

which shows that it is a positive operator.
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Chapter 5

Groups and Representation
Theory

Groups appear in physics as symmetries of the system we are studying. Often
the symmetry operation involves a linear transformation, and this naturally
leads to the idea of finding sets of matrices with the same multiplication table
as the group. These sets are called representations of the group.

Given a group, we will endeavour to find and classify all possible repre-
sentations.

5.1 Basic Ideas

We will begin with a rapid review of basic group theory.

5.1.1 Group Axioms

A group G is a set with a binary operation that assigns to each ordered pair
(g1, g2) of elements a third element, g3, usually written with multiplicative
notation as g3 = g1g2. The binary operation, or product , obeys the following
rules

i) Associativity: g1(g2g3) = (g1g2)g3.
ii) Existence of identity: There is an element1 e ∈ G such that eg = g for

all g ∈ G.

1The symbol “e” is often used for the identity element, from the German einheit .

119
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iii) Existence of inverse: For each g ∈ G there is an element g−1 such that
g−1g = e.

From these axioms there follows some conclusions that are so basic that
they are often included in the axioms themselves, but since they are not
independent, we will state them as corollaries.

Corollary i): gg−1 = e.
Proof : Start from g−1g = e, and multiply on the right by g−1 to get
g−1gg−1 = eg−1 = g−1, where we have used the left identity property of
e at the last step. Now multiply on the left by (g−1)−1, and use associativity
to get gg−1 = e.

Corollary ii): ge = g.
Proof : Write ge = g(g−1g) = (gg−1)g = eg = g.

Corollary iii): The identity, e, is unique.
Proof : Suppose there is another element e1 such that e1g = eg = g. Multiply
on the right by g−1 to get e1e = e2 = e, but e1e = e1, so e1 = e.

Corollary iv): The inverse of a given element g is unique.
Proof : Let g1g = g2g = e. Use the result of corollary i), that any left inverse
is also a right inverse, to multiply on the right by g−1

1 and so find that g1 = g2.

Two elements g1 and g2 are said to commute if g1g2 = g2g1. If the group
has the property that g1g2 = g2g1 for all g1, g2 ∈ G, it is said to be Abelian,
otherwise it is non-Abelian.

If the set G contains only finitely many elements, the group G is said to
be finite. The number of elements in the group, |G|, is called the order of
the group.

Examples of Groups:

1) The integers Z under addition. The binary operation is (n,m)→ n+m.
This is not a finite group.

2) The integers modulo n under addition. (m,n) → m + n, modn. This
group is denoted by Zn.

3) The non-zero integers modulo p (a prime) under multiplication (m,n)→
mn, mod p. If the modulus is not a prime number, we do not get a
group (why not?).

4) The set of functions

f1(z) = z, f2(z) =
1

1− z , f3(z) =
z − 1

z
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f4(z) =
1

z
, f5(z) = 1− z, f6(z) =

z

z − 1

with (fi, fj)→ fi ◦ fj . Here the “◦” is a standard notation for compo-
sition of functions: (fi ◦ fj)(z) = fi(fj(z)).

5) The set of rotations in three dimensions, equivalently the set of 3× 3
real matrices O, obeying OTO = I, and detO = 1. This is the group
SO(3). Other groups SO(n) are defined analogously. If we relax the
condition on the determinant we get the groups O(n). These are exam-
ples of Lie groups, i.e. groups which are also a manifold M and whose
multiplication law is a smooth function M ×M →M .

6) Groups are often specified by giving a list of generators and relations.
For example the cyclic group of order n, Cn, is specified by giving the
generator a and relation an = e. Similarly, the dihedral group, Dn, has
two generators a, b with relations an = e, b2 = e, (ab)2 = e. This group
has order 2n.

5.1.2 Elementary Properties

Here are the basic properties of groups that we will need:

i) Subgroups: If a subset of elements of a group forms a group, it is
called a subgroup. For example, Z12 has a subgroup of consisting of
{0, 3, 6, 9}. All groups have at least two subgroups: the trivial sub-
groups, G itself, and {e}. Any other subgroups are called proper sub-
groups.

ii) Cosets: Given a subgroup H ⊆ G, with elements {h1, h2, . . .}, and an
element g ∈ G we form the (left) coset gH = {gh1, gh2, . . .}. If two
cosets intersect, they coincide (if g1h1 = g2h2, then g2 = g1(h1h

−1
2 ) and

g1H = g2H.). If H is a finite group, each coset has the same number
of distinct elements as H (If gh1 = gh2 then left multiplication by g−1

shows that h1 = h2.). If the order of G is also finite, the group G is
decomposed into an integer number of cosets,

G = g1H + g2H + · · · , (5.1)

where “+”denotes the union of disjoint sets. From this we see that the
order of H must divide the order of G. This result is called Lagrange’s
Theorem. The set whose elements are the cosets is denoted by G/H.
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iii) Normal subgroups and quotient groups: A subgroup is said to be nor-
mal , or invariant , if g−1Hg = H for all g ∈ G. Given a normal sub-
group H we can define a multiplication rule on the coset space cosets
G/H ≡ {g1H, g2H, . . .} by taking a representative element from each
of giH, and gjH, taking the product of these elements, and defining
(giH)(gjH) to be the coset in which this product lies. This coset is
independent of the representative elements chosen (this would not be
so if the subgroup was not normal). The resulting group is called the
quotient group, G/H. (Note that the symbol “G/H” is used to denote
both the set of cosets, and, when it exists, the group whose elements
are these cosets.)

iv) Simple groups: A group G with no normal subgroups is said to be
simple2.

iv) Conjugacy and Conjugacy Classes: Two group elements g1, g2 are said
to be conjugate in G if there is an element g ∈ G such that g2 =
g−1g1g. If g1 is conjugate to g2 we will write g1 ∼ g2. Conjugacy is
an equivalence relation3, and, for finite groups, the resulting conjugacy
classes have order that divide the order of G. To see this, consider
the conjugacy class containing an element g. Observe that the set H
of elements h ∈ G such that h−1gh = g form a subgroup. The set
elements of conjugate to g can be identified with the coset space G/H.
The order of G divided by the order of the conjugacy class is therefore
|H|.

Example: In the rotation group SO(3), the conjugacy classes are the sets of
rotations through the same angle, but about different axes.

Example: In the group U(n), of n×n unitary matrices, the conjugacy classes
are the set of matrices with the same eigenvalues.

2The finite simple groups have been classified. They fall into various infinite families
(Cyclic groups, Alternating groups, 16 families of Lie type.) together with 26 sporadic

groups , the largest of which, the Monster has order 808, 017, 424, 794, 512, 875, 886, 459,
904, 961, 710, 757, 005, 754, 368, 000, 000, 000. The monster is the automorphism group
of a certain algebra, called the Griess algebra. The mysterious “Monstrous moonshine”
links its representation theory to the elliptic modular function J(τ) and to string theory.

3An equivalence relation, ∼, is a binary relation which is
i) Reflexive: A ∼ A.
ii) Symmetric: A ∼ B ⇐⇒ B ∼ A.
iii) Transitive: A ∼ B, B ∼ C =⇒ A ∼ C

Such a relation breaks a set up into disjoint equivalence classes.
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Example: Permutations. The permutation group on n objects, Sn, has order
n!. Suppose we consider a permutation π in S8 that takes




1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 3 1 5 4 7 6 8




We can write this out in cycle notation

π = (123)(45)(67)(8).

In this notation each number is mapped to the one immediately to its right,
with the last number in each bracket, or cycle, wrapping round to map to the
first. Thus π(1) = 2, π(2) = 3, π(3) = 1. The “8”, being both first and last in
its cycle, maps to itself: π(8) = 8. Any permutation with this cycle pattern,
(∗ ∗ ∗)(∗∗)(∗∗)(∗), will be in the same conjugacy class as π. We say that
there is one 1-cycle, two 2-cycles, and one 3-cycle. The class (r1, r2, . . . rn)
having r1 1-cycles, r2 2-cycles etc., where r1 + 2r2 + · · ·+ nrn = n, contains

N(r1,r2,...) =
n!

1r1(r1!) 2r2 (r2!) · · ·nrn (rn!)

elements. The sign of the permutation,

sgn π = επ(1)π(2)π(3)...π(n)

is equal to
sgn π = (+1)r1(−1)r2(+1)r3(−1)r4 · · · .

We have
sgn (π1)sgn (π2) = sgn (π1π2),

so the even (sgn π = +1) permutations form an invariant subgroup called
the Alternating group, An. The alternating group, An, is simple for n ≥ 5,
and, as Galois showed, this simplicity prevents the solution of the general
quintic (or any higher degree) equation by radicals.

If we write out the group elements is some order {e, g1, g2, . . .}, and then
multiply on the left

g{e, g1, g2, . . .} = {g, gg1, gg2, . . .}

then the ordered list {g, gg1, gg2, . . .} is a permutation of the original list.
Any group is therefore a subgroup of S|G|. This is Cayley’s Theorem.
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Exercise 5.1: Let H1, H2 be two subgroups of a group G. Show that H1 ∩H2

is also a subgroup.

Exercise 5.2: The subset Z(G) of G consisting of those g ∈ G that commute
with all other elements of the group is called the center of the group. Show
that Z(G) is a subgroup of G.

Exercise 5.3: If g is an element of G, the set CG(g) of elements of G that
commute with g is called the centeralizer of g in G. Show that it is a subgroup
of G.

Exercise 5.4: If H is a subgroup, the set of elements of G that commute with
all elements of H is the centralizer CG(H) of H in G. Show that it is a
subgroup of G.

Exercise 5.5: If H is a subgroup, the set NG(H) ⊂ G consisting of those g
such that g−1Hg = H is called the normalizer of H in G. Show that NG(H)
is a subgroup of G, and that H is a normal subgroup of NG(H).

Exercise 5.6: Show that the set of powers an of an element a ∈ G form a
subgroup. Let p be prime. Show that the set {1, 2, . . . p − 1} forms a group
of order (p− 1) under multiplication modulo p, and, by the use of Lagrange’s
theorem, prove Fermat’s little theorem that, for any prime, p, and integer, a,
we have ap−1 = 1, mod p.

Exercise 5.7: Use Fermat’s theorem from the previous excercise to establish
the mathematical identity underlying the RSA algorithm for public-key cryp-
tography: Let p, q be prime and N = pq. First use Euclid’s algorithm for the
HCF of two numbers to show that if the integer e is co-prime to4 (p−1)(q−1),
then there is an integer d such that

de = 1, mod (p− 1)(q − 1).

Then show that if,

C = M e, modN, (encryption)

then
M = Cd, modN. (decryption).

The numbers e and N can be made known to the public, but it is hard to find
the secret decoding key, d, unless the factors p and q of N are known.

4Has no factors in common with.
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Exercise 5.8: Consider the group with multiplication table5

G I A B C D E

I I A B C D E

A A B I E C D

B B I A D E C

C C D E I A B

D D E C B I A

E E C D A B I

It has proper a subgroup H = {I,A,B}, and corresponding (left) cosets are
IH = {I,A,B} and CH = {C,D,E}.

(i) Construct the conjugacy classes of this group.
(ii) Show that {I,A,B} and {C,D,E} are indeed the left cosets of H.
(iii) Determine whether H is a normal subgroup.
(iv) If so, construct the group multiplication table for the corresponding quo-

tient group.

Exercise 5.9: Let H andK, be groups. Make the cartesian productG = H×K
into a group by introducing a multiplication rule for elements of the Cartesian
product by setting:

(h1, k1) ∗ (h2, k2) = (h1h2, k1k2).

Show that G, equipped with ∗ as its product, satsifies the group axioms. The
resultant group is called the direct product of H and K.

5.1.3 Group Actions on Sets

Groups usually appear in physics as symmetries: they act on some physical
object to change it in some way, perhaps while leaving some other property
invariant.

Suppose X is a set. We will call its elements “points”. A group action
on X is a map g ∈ G : X → X that takes a point x ∈ X to a new point that
we will call gx ∈ X, and such that g2(g1x) = (g1g2)x, and ex = x. There is
some controlled vocabulary for group actions:

5To find AB look in row A column B.
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i) Given a a point x ∈ X we define the orbit of x to be the set Gx ≡
{gx : g ∈ G} ⊆ X.

ii) The action of the group is transitive if any orbit is the whole of X.
iii) The action is effective, or faithful , if the map g : X → X being the

identity implies that g = e. Equivalently, if the map G → Map (X →
X) is 1-1. If the action is not faithful, the set of g corresponding to
to the identity map is an invariant subgroup H of G, and we can take
G/H as having a faithful action.

iv) The action is free if the existence of an x such that gx = x implies that
g = e. In this case, we also say that g acts without fixed points.

If the group acts freely and transitively, then having chosen a fiducial
point x0, we can uniquely label every point in X by the group element g
such that x = gx0. (If g1 and g2 both take x0 → x, then g−1

1 g2x0 = x0. By
the free action property we deduce that g−1

1 g2 = e, and g1 = g2.). In this
case we might, for some purposes, identify X with G,

Suppose the group acts transitively, but not freely. Let H be the set
of elements that leaves x0 fixed. This is clearly a subgroup of G, and if
g1x0 = g2x0 we have g−1

1 g2 ∈ H, or g1H = g2H. The space X can therefore
be identified with the space of cosets G/H. Such sets are called Homogeneous
spaces. Many spaces of significance in physics can be though of as cosets in
this way.

Example: The rotation group SO(3) acts transitively on the two-sphere S2.
The SO(2) subgroup of rotations about the z axis, leaves the north pole of
the sphere fixed. We can therefore identify S2 ' SO(3)/SO(2).

Many phase transitions are a result of spontaneous symmetry breaking .
For example the water → ice transition results in the continuous translation
invariance of the liquid water being broken down to the discrete translation
invariance of the crystal lattice of the solid ice. When a system with symme-
try group G spontaneously breaks the symmetry to a subgroup H, the set
of inequivalent ground states can be identified with the homogeneous space
G/H.

5.2 Representations

An n-dimensional representation of a group is homomorphism from G to a
subgroup of GL(n,C), the group of invertible n × n matrices with complex
entries. In other words it is a set of n × n matrices that obeys the group
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multiplication law
D(g1)D(g2) = D(g1g2). (5.2)

Given such a representation, we can form another one D′(g) by conjuga-
tion with any invertible matrix C

D′(g) = C−1D(g)C. (5.3)

If D′(g) is obtained from D(g) in this way, we will call them equivalent
representations and write D ∼ D′, since we can think of them as being
matrices representing the same linear map, but in different bases. Our task
in this chapter will be to find and classify representations up to equivalence.

Real and Pseudoreal representations

We can form a new representation from D(g) by setting

D′(g) = D∗(g),

where D∗(g) denotes the matrix whose entries are the complex conjugates
of those in D(g). Suppose D∗ ∼ D. It may then be possible to find a
basis in which the matrices have only real entries. In this case we say the
representation is real . It may be, however, be that D∗ ∼ D but we cannot
find such real matrices. In this case we say that D is pseudo-real .
Example: Consider the defining representation of SU(2) (the group of 2× 2
unitary matrices with unit determinant.) Such matrices are necessarily of
the form

U =
(
a −b∗
b a∗

)
, (5.4)

with |a|2 + |b|2 = 1. They are therefore specified by three real parameters
and so the group manifold is threee dimensional. Now

(
a −b∗
b a∗

)∗
=

(
a∗ −b
b∗ a

)
,

=
(

0 1
−1 0

)(
a −b∗
b a∗

)(
0 −1
1 0

)
,

=
(

0 −1
1 0

)−1 ( a −b∗
b a∗

)(
0 −1
1 0

)
, (5.5)

and so U ∼ U∗. It is impossible to find basis in which all SU(2) matrices
are simultaneously real, however: If such a basis existed we could specify the
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matrices by only two real parameters, while we have seen that we need three
dimensions to describe all possible SU(2) matrices.
Exercise: Show that if D(g) is a representation, then so is

D′(g) = (D−1)T , (5.6)

where the superscript T denotes the transposed matrix.

Direct Sum and Direct Product

Another way to get new representations from old is by combining them.
Given two representations D1(g), D2(g), we can form their direct sum

D1 ⊕D2 as the matrix (
D1(g) 0

0 D2(g)

)
. (5.7)

We will be particularly interested in taking a representation and breaking it
up as a direct sum of irreducible representations.

Given two representations D1(g), D2(g), we can combine them in a dif-
ferent way by taking their direct product , D1 ⊗ D2, to be the natural ac-
tion on the tensor product of the representation spaces. In other words, if
D1(g)e

{1}
j = e

{1}
i D1

ij(g) and D2(g)e
{2}
j = e

{2}
i D2

ij(g) we define

[D1 ⊗D2](g)(e
{1}
i ⊗ e

{2}
j ) = (e

{1}
k ⊗ e

{2}
l )D1

ik(g)D
2
lj(g). (5.8)

We think ofD1
ik(g)D

2
lj(g) being a matrixD1⊗2

il,jk(g) whose rows and columns are
indexed by pairs of numbers. The dimension of the product representation
is therefore the product of the dimensions of its factors.

5.2.1 Reducibility and Irreducibility

The “atoms” of representation theory are those representations that cannot,
by a clever choice of basis, be decomposed into, or reduced to, a direct sum
of smaller representations. We call such representations irreducible. You
cannot usually tell by just looking at a representation whether is is reducible
or not. We need to develop some tools. We will begin with a more powerful
definition of irreducibilty.

To define irreducibility we need the notion of an invariant subspace. Sup-
pose we have a set {Aα} of linear maps acting on a vector space V . A
subspace U ⊆ V is an invariant subspace for the set if x ∈ U ⇒ Aαx ∈ U
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for all Aα. The set {Aα} is irreducible if the only invariant subspaces are V
itself and {0}. If there is a non-trivial invariant subspace, then the set6 of
operators is reducible.

If the Aα’s posses a non-trivial invariant subspace, U , and we decompose
V = U⊕U ′, where U ′ is a complementary subspace, then, in a basis adapted
to this decomposition, the matrices Aα take the form

Aα =
( ∗ ∗

0 ∗
)
. (5.9)

If we can find a7 complementary subspace U ′ which is also invariant, then

Aα =
( ∗ 0

0 ∗
)
, (5.10)

and we say that the operators are completely reducible. When our linear
operators are unitary with respect to some inner product, we can take the
complementary subspace to be the orthogonal complement , which, by unitar-
ity, will automatically be invariant. In this case reducibility implies complete
reducibility.

Schur’s Lemma

The most useful results concerning irreducibility come from:

Schur’s Lemma: Suppose we have two sets of linear operators Aα : U → U ,
and Bα : V → V , that act irreducibly on their spaces, and an intertwining
operator Λ : U → V such that

ΛAα = BαΛ, (5.11)

for all α, then either

a) Λ = 0,
or

b) Λ is 1-1 and onto (and hence invertible), in which case U and V have
the same dimension and Aα = Λ−1BαΛ.

6Irreducibility is a property of the set as a whole. Any individual matrix always has a
non-trivial invariant subspace because it possesses at least one eigenvector.

7Complementary subspaces are not unique.
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The proof is straightforward: The relation (5.11 ) shows that Ker (Λ) ⊆ U
and Im(Λ) ⊆ V are invariant subspaces for the sets {Aα} and {Bα} respec-
tively. Consequently, either Λ = 0, or Ker (Λ) = {0} and Im(Λ) = V . In the
latter case Λ is 1-1 and onto, and hence invertible.
Corollary: If {Aα} acts irreducibly on an n-dimensional vector space, and
there is an operator Λ such that

ΛAα = AαΛ, (5.12)

then either Λ = 0 or Λ = λI. To see this observe that (5.12) remains true if
Λ is replaced by (Λ− xI). Now det (Λ− xI) is a polynomial in x of degree
n, and, by the fundamental theorem of algebra, has at least one root, x = λ.
Since its determinant is zero, (Λ− λI) is not invertible, and so must vanish
by Schur’s lemma.

5.2.2 Characters and Orthogonality

Unitary Representations of Finite Groups

Let G be a finite group and let D(g) : V → V be a representation. Let (x,y)
denote a positive-definite, conjugate-symmetric, sesquilinear inner product
of two vectors in V . From ( , ) we construct a new inner product 〈 , 〉 by
averaging over the group

〈x,y〉 =
∑

g∈G
(D(g)x, D(g)y). (5.13)

It is easy to see that this new inner product has the same properties as the
old one, and in addition

〈D(g)x, D(g)y〉 = 〈x,y〉. (5.14)

This means that the representation is automatically unitary with respect to
the new product. If we work with bases that are orthonormal with respect
to the new product, and we usually will, then the D(g) are unitary matrices,
D(g−1) = D−1(g) = [D(g)]†.

Thus representations of finite groups can always be taken to be unitary.
As a consequence, reducibility implies complete reducibility. Warning: In
this construction it is essential that the sum over the g ∈ G converge. This
is guaranteed for a finite group, but may not work for infinite groups. In
particular, non-compact Lie groups, such as the Lorentz group, have no finite
dimensional unitary representations.
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Orthogonality of the Matrix Elements

Now let DJ(g) : VJ → VJ denote an irreducible representation or irrep. Here
J is a label which distinguishes inequivalent irreps from one another. We will
use the symbol dim J to denote the dimension of the representation vector
space VJ .

Let DK be an irrep that is either identical to DJ or inequivalent, and let
Mij be an arbitrary matrix with the appropriate number of rows and columns
so that the matrix product DJMDK is defined. The sum

Λ =
∑

g∈G
DJ(g−1)MDK(g) (5.15)

obeys DJ(g)Λ = ΛDK(g) for any g. Consequently, Schur’s lemma tells us
that

Λil =
∑

g∈G
DJ
ij(g

−1)MjkD
K
kl(g) = λδilδ

JK . (5.16)

Now take Mij to be zero except for one entry, then we have

∑

g∈G
DJ
ij(g

−1)DK
kl(g) = λjkδil, δ

JK (5.17)

where we have taken note that the constant λ depends on the location of the
one non-zero entry in M . We can find the constant λjk by assuming that
K = J , setting i = l, and summing over i. We find

|G|δjk = λjk dim J. (5.18)

Putting these results together we find that

1

|G|
∑

g∈G
DJ
ij(g

−1)DK
kl(g) = (dim J)−1δjkδilδ

JK . (5.19)

If our matrices D(g) are unitary, we can write this as

1

|G|
∑

g∈G

(
DJ
ij(g)

)∗
DK
kl(g) = (dim J)−1δikδjlδ

JK . (5.20)

If we regard the complex-valued functions on the set G as forming a vector
space, then the entries in the representation matrices are orthogonal with
respect to the natural inner product on that space.
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There can be no more orthogonal functions on G than the dimension of
the function space itself, which is |G|. Thus

∑

J

(dim J)2 ≤ |G|. (5.21)

In fact, as you will show later, the equality holds. The matrix elements form
a complete orthonormal set of functions on G, and the sum of the squares of
the dimensions of the inequivalent irreducible representations is equal to the
order of G.

Class Functions and Characters

Since
tr (C−1DC) = trD, (5.22)

the trace of a representation matrix is the same for equivalent representations.
Further since

tr
(
D−1(g)D(g1)D(g)

)
= trD(g), (5.23)

the trace is the same for group elements in the same conjugacy class. The
character ,

χ(g) = trD(g), (5.24)

is therefore said to be a class function.
By taking the trace of the matrix element orthogonality relation we see

that the characters χJ = trDJ of the irreducible representations obey

1

|G|
∑

g∈G

(
χJ(g)

)∗
χK(g) =

1

|G|
∑

i

di
(
χJi
)∗
χKi = δJK , (5.25)

where di is the number of elements in the i-th conjugacy class.
The completeness of the matrix elements as functions on G implies that

the characters form a complete orthogonal set of functions on the conju-
gacy classes. Conseqently there are exactly as many inequivalent irreducible
representations as there are conjugacy classes in the group.

Given a reducible representation, D(g), we can find out exactly which
irreps, J , it can be decomposed into, and how many times, nJ , they occur.
We do this forming the compound character

χ(g) = trD(g) (5.26)
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and observing that if we can find a basis in which

D(g) = (D1(g)⊕D1(g)⊕ · · ·)︸ ︷︷ ︸
n1 terms

⊕ (D2(g)⊕D2(g)⊕ · · ·)︸ ︷︷ ︸
n2 terms

⊕ · · · , (5.27)

then
χ(g) = n1χ

1(g) + n2χ
2(g) + · · · (5.28)

From this we find

nJ =
1

|G|
∑

g∈G
(χ(g))∗ χJ(g) =

1

|G|
∑

i

di (χi)
∗ χJi . (5.29)

There are extensive tables of group characters. Here, in particular, is the
character table for the group S4 of permutations on 4 objects:

Typical element and class size
S4 (1) (12) (123) (1234) (12)(34)
Irrep 1 6 8 6 3
A1 1 1 1 1 1
A2 1 -1 1 -1 1
E 2 0 -1 0 2
T1 3 1 0 -1 -1
T2 3 -1 0 1 -1

Since χJ(e) = dim J we see that the irreps A1 and A2 are one dimensional,
that E is two dimensional, and that T1,2 are both three dimensional. Also
we confirm that the sum of the squares of the dimensions

1 + 1 + 22 + 32 + 32 = 24 = 4!

which is the order of the group.

5.2.3 The Group Algebra

Given a group G, we may take the elements of the group to be the basis
of a vector space. We will denote these basis elements by g to distinguish
them from the elements of the group. We retain the multiplication rule,
however, so g1 → g1, g2 → g2 =⇒ g3 = g1g2 → g1g2 = g3. The resulting
mathematical object is called the group algebra, or Frobenius algebra.
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The group algebra, considered as a vector space, is automatically a rep-
resentation. We define the action of g in the most natural way as

D(g)gi = g gi = gjDji(g). (5.30)

The matrices Dji(g) make up the regular representation. Their entries consist
of 1’s and 0’s, with exactly one non-zero entry in each row and each column.

Exercise 5.10: Show that the character of the regular representation has χ(e) =
|G|, and χ(g) = 0, for g 6= e.

Exercise 5.11: Use the previous exercise to show that the number of times
an n dimensional irrep occurs in the regular representation is n. Deduce that
|G| =

∑
J(dimJ)2, and from this construct the completeness proof for the

representations and characters.

Projection Operators

A representation of the group automatically gives us a representation of the
group algebra. Certain linear combinations of the group elements turn out
to be very useful becuase the corresponding matrices can be used to project
out vectors with desirable symmetry properties.

Consider the elements

eJαβ =
dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
g (5.31)

of the group algebra. These have the property that

g1e
J
αβ =

dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
(g1g)

=
dim J

|G|
∑

g∈G

[
DJ
αβ(g

−1
1 g)

]∗
g

=
[
DJ
αγ(g

−1
1 )

]∗ dim J

|G|
∑

g∈G

[
DJ
γβ(g)

]∗
g

= eJγβD
J
γα(g1). (5.32)

In going from the first to the second line we have changed summation vari-
ables from g → g−1

1 g, and going from the second to the third line we have
used the representation property to write DJ(g−1

1 g) = DJ(g−1
1 )DJ(g).
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From this it follows that

eJαβ eKγδ =
dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
g eKγδ

=
dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
DK
εγ(g)e

K
εδ

= δJKδαεδβγ eKεδ
= δJKδβγ eJαδ, (5.33)

which, for each J , is the multiplication rule for matrices having zero entries
everywhere except for the (i, j)-th, which has a “1”. There will be n2 of
these n×n matrices for each n-dimensional representation, so the Frobenius
algebra is isomorphic to a direct sum of simple matrix algebras.

Every element of G can be reconstructed as

g =
∑

J

DJ
ij(g)e

J
ij (5.34)

and once again we deduce that |G| = ∑
J(dim J)2.

We now define

PJ =
∑

i

eJii =
dim J

|G|
∑

g∈G

[
χJ(g)

]∗
g. (5.35)

We have
PJPK = δJKPK , (5.36)

so these are projection operators. The completeness of the characters shows
that ∑

J

PJ = I. (5.37)

It should be clear that, if D(g) is any representation, then replacing g
by D(g) in PJ gives a projection onto the representation space J . In other
words, if v is a vector in the represention space and we set

vi = eJipv (5.38)

for any fixed p, then

D(g)vi = D(g)eJipv = eJjpvD
J
ji(g) = vjD

J
ji(g). (5.39)

Of course, if the representation space J does not occur in the decomposition
of D(g), then all these terms are identically zero.
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5.3 Physics Applications

5.3.1 Vibrational spectrum of H2O

The small vibrations of a mechanical system with n degrees of freedom are
governed by a Lagrangian of the form

L =
1

2
ẋTM ẋ− 1

2
xTV x (5.40)

where M and V are symmetric n×n matrices with M being positive definite.
This gives rise to the equations of motion

M ẍ = V x (5.41)

We look for normal mode solutions x(t) ∝ eiωitxi, where the vectors xi obey

−ω2
iMxi = V xi. (5.42)

The normal-mode frequencies are solutions of the secular equation

det (V − ω2M) = 0, (5.43)

and modes with distinct frequencies are orthogonal with respect to the inner
product defined by M ,

〈x,y〉 = xTMy. (5.44)

We will be interested in solving this problem for vibrations about the
equilibrium configuration of a molecule. Suppose this equilibrium configu-
ration has a symmetry group G. This will give rise to an n dimensional
representation on the space of x’s

x→ D(g)x, (5.45)

which leaves both the intertia matrix M and the potential matrix V un-
changed.

[D(g)]TMD(g) = M, [D(g)]TV D(g) = V. (5.46)

Consequently, if we have an eigenvector xi with frequency ωi,

−ω2
iMxi = V xi (5.47)
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we see that D(g)xi also satisfies this equation. The frequency eigenspaces
are therefore left invariant by the action of D(g), and barring accidental
degeneracy, there will be a one-to-one correspondence between the frequency
eigenspaces and the irreducible representations comprised by D(g).

Consider, for example, the vibrational modes of the water molecule H2O.
This familiar molecule has symmetry group C2v which is generated by two
elements: a rotation a through π about an axis through the oxygen atom,
and a reflection b in the plane through the oxygen atom and bisecting the
angle between the two hydrogens. The product ab is a reflection in the plane
defined by the equilibrium position of the three atoms. The relations are
a2 = b2 = (ab)2 = e, and the character table is

class and size
C2v e a b ab
Irrep 1 1 1 1
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

The group is Abelian, so all the representations are one dimensional.

To find out what representations occur when C2v acts we need to find the
character of its action D(g) on the nine-dimensional vector

x = (xO, yO, zO, xH1
, yH1

, zH1
, xH2

, yH2
, zH2

). (5.48)

Here the coordinates xH2
, yH2

, zH2
etc. denote the displacements of the la-

belled atom from its equilibrium position.

We take the molecule as lying in the xy plane, with the z pointing towards
us.
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Water Molecule

The effect of the symmetry operations on the atomic displacements is

D(a)x = (−xO,+yO,−zO,−xH2
,+yH2

,−zH2
,−xH1

,+yH1
,−zH1

)

D(b)x = (−xO,+yO,+zO,−xH2
,+yH2

,+zH2
,−xH1

,+yH1
,+zH1

)

D(ab)x = (+xO,+yO,−zO,+xH1
,+yH1

,−zH1
,+xH2

,+yH2
,−zH2

).

Notice how the transformations D(a), D(b) have interchanged the displace-
ment co-ordinates of the two hydrogen atoms. In calculating the character
of a transformation we need look only at the effect on atoms that are left
fixed — those that are moved have matrix elements only in non-diagonal
positions. Thus, when computing the compound characters for a b, we can
focus on the oxygen atom. For ab we need to look at all three atoms. We
find

χD(e) = 9,

χD(a) = −1 + 1− 1 = −1,

χD(b) = −1 + 1 + 1 = 1,

χD(ab) = 1 + 1− 1 + 1 + 1− 1 + 1 + 1− 1 = 3.

By using the orthogonality relations, we find the decomposition



9
−1
1
3


 = 3




1
1
1
1


+




1
1
−1
−1


+ 2




1
−1
1
−1


+ 3




1
−1
−1
1


 (5.49)

or
χD = 3χA1 + χA2 + 2χB1 + 3χB2. (5.50)
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Thus the nine-dimensional representation decomposes as

D = 3A1 ⊕ A2 ⊕ 2B1 ⊕ 3B2. (5.51)

How do we exploit this? First we cut out the junk. Out of the nine
modes, six correspond to easily identified zero-frequency motions – three of
translation and three rotations. A translation in the x direction would have
xO = xH1

= xH2
= ξ, all other entries being zero. This displacement vector

changes sign under both a and b, but is left fixed by ab. This behaviour
is characteristic of the representation B2. Similarly we can identify A1 as
translation in y, and B1 as translation in z. A rotation about the y axis
makes zH1

= −zH2
= φ. This is left fixed by a, but changes sign under b and

ab, so the y rotation mode is A2. Similarly, rotations about the x and z axes
correspond to B1 and B2 respectively. All that is left for genuine vibrational
modes is 2A1 ⊕ B2.

We now apply the projection operator

PA1 =
1

4
[(χA1(e))∗D(e) + (χA1(a))∗D(b) + (χA1(b))∗D(b) + (χA1(ab))∗D(ab)]

(5.52)
to vH1,x, a small displacement of H1 in the x direction. We find

PA1vH1,x =
1

4
(vH1,x − vH2,x − vH2,x + vH1,x)

=
1

2
(vH1,x − vH2,x). (5.53)

This mode will be an eigenvector for the vibration problem.
If we apply PA1 to vH1,y and vO,y we find

PA1vH1,y =
1

2
(vH1,y + vH2,y),

PA1vO,y = vO,y, (5.54)

but we are not quite done. These modes are contaminated by the y trans-
lation direction zero mode, which is also in an A1 representation. After
we make our modes orthogonal to this, there is only one left, and this has
yH1

= yH2
= −yOmO/(2mH) = a1, all other components vanishing.

We can similarly find vectors corresponding to B2 as

PB2vH1,x =
1

2
(vH1,x + vH2,x)
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PB2vH1,y =
1

2
(vH1,y − vH2,y)

PB2vO,x = vO,x

and these need to be cleared of both translations in the x direction and
rotations about the z axis, both of which transform under B2. Again there
is only one mode left and it is

yH1
= −yH2

= αxH1
= αxH2

= βx0 = a2 (5.55)

where α is chosen to ensure that there is no angular momentum about O,
and β to make the total x linear momentum vanish. We have therefore
found three true vibration eigenmodes, two transforming under A1 and one
under B2 as advertised earlier. The eigenfrequencies, of course, depend on
the details of the spring constants, but now that we have the eigenvectors we
can just plug them in to find these.

5.3.2 Crystal Field Splittings

A quantum mechanical system has a symmetry G if the hamiltonian Ĥ obeys

D−1(g)ĤD(g) = Ĥ, (5.56)

for some group action D(g) : H → H on the Hilbert space. If follows that
the eigenspaces, Hλ, of states with a common eigenvalue, λ, are invariant
subspaces for the representation D(g).

A common problem is to understand how degeneracy is lifted by pertur-
bations that break G down to a smaller subgroup H. Now an n-dimensional
irreducible representation of G is automatically a representation of any sub-
group of G, but in general it will no longer be irreducible. Thus the n-fold
degenerate level will split into multiplets, one for each of the irreducible
representations of H contained in the original representation. A physically
important case is given by the breaking of the full SO(3) rotation symmetry
of an isolated atomic hamiltonian by a crystal field8.

Suppose the crystal has octohedral symmetry. The character table of the
octohedral group is

8The following discussion and tables are taken from chapter 9 of M. Hamermesh Group

Theory .
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Class(size)
O e C3(8) C2

4 (3) C2(6) C4(6)
A1 1 1 1 1 1
A2 1 1 1 -1 - 1
E 2 -1 2 0 0
F2 3 0 -1 1 -1
F1 3 0 -1 - 1 1

The classes are lableled by the rotation angles, C2 being a twofold rotation
axis (θ = π), C3 a threefold axis (θ = 2π/3), etc..

The chacter of the J = l representation of SO(3) is

χl(θ) =
sin(2l + 1)θ/2

sin θ/2
, (5.57)

and the first few χl’s evaluated on the rotation angles of the classes of O are

Class(size)
l e C3(8) C2

4 (3) C2(6) C4(6)
0 1 1 1 1 1
1 3 0 -1 -1 -1
2 5 -1 1 1 1
3 7 1 -1 - 1 -1
4 9 0 1 1 1

The 9-fold degenerate l = 4 multiplet thus decomposes as



9
0
1
1
1




=




1
1
1
1
1




+




2
−1
2
0
0




+




3
0
−1
−1
1




+




3
0
−1
1
−1



, (5.58)

or
χ4
SO(3) = χA1 + χE + χF1 + χF2. (5.59)

The octohedral crystal field splits the nine states into four multiplets with
symmetries A1, E, F1, F2 and degeneracies 1, 2, 3 and 3, respectively.

I have considered only the simplest case here, ignoring the complications
introduced by reflection symmetries, and by 2-valued spinor represenations
of the rotation group. If you need to understand these, read Hamermesh op
cit. some of
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Chapter 6

Lie Groups

A Lie group, named for the Norwegian mathematician Sophus Lie, is a man-
ifold G equipped with a group multiplication rule g1 × g2 → g3 which is an
smooth function of the g’s, as is the operation of taking the inverse of a group
element. The most commonly met Lie groups in physics are the infinite fam-
ilies of matrix groups GL(n), SL(n), O(n), SO(n), U(n), SU(n), and Sp(n).
There is also a family of five exceptional Lie groups: G2, F4, E6, E7, and E8,
which have applications in string theory.

One of the properties of a Lie group is that, considered as a manifold,
the neighbourhood of any point looks exactly like that of any other. The
dimension of the group and most of the group structure can be understood
by examining group elements in the immediate vicinity any chosen point,
which we may as well take to be the identity element. The vectors lying
in the tangent space at the identity element make up the Lie algebra of
the group. Computations in the Lie algebra are often easier than those in
the group, and provide much of the same information. This chapter will be
devoted to studying the interplay between the Lie group itself and this Lie
algebra of infinitesimal elements.

6.1 Matrix Groups

The Classical Groups are described in a book with this title by Hermann
Weyl. They are subgroups of the general linear group, GL(n,F), which
consists of invertible n× n matrices over the field F . We will only consider
the cases F = C or F = R.

143
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A near-identity matrix in GL(n,R) can be written g = I + εA where A
is an arbitrary n× n real matrix. This matrix contains n2 real entries, so we
can thus move away from the identity in n2 distinct directions. The tangent
space at the identity, and hence the group manifold itself, is therefore n2

dimensional. The manifold of GL(n,C) has n2 complex dimensions, and this
corresponds to 2n2 real dimensions.

If we restrict the determinant of a GL(n,F) matrix to be unity, we get
the special linear group, SL(n,F). An element near the identity in this group
can still be written as g = I + εA, but since

det (I + εA) = 1 + ε tr(A) +O(ε2) (6.1)

this requires tr(A) = 0. The restriction on the trace means that SL(n,R)
has dimension n2 − 1.

6.1.1 Unitary Groups and Orthogonal Groups

Perhaps the most important of the matrix groups are the unitary and or-
thogonal groups.

The Unitary group

The unitary group U(n) is the set of n × n complex matrices U such that
U † = U−1. If we consider matrices near the identity

U = I + εA, (6.2)

with ε real then unitarity requires

I +O(ε2) = (I + εA)(I + εA†)

= I + ε(A + A†) +O(ε2) (6.3)

and so Aij = −A∗
ji. The matrix A is therefore skew-hermitian and contains

n+ 2× 1

2
n(n− 1) = n2

real parameters. In this counting the first “n” is the number of entries on
the diagonal, each of which must be of the form i times a real number. The
n(n − 1)/2 term is the number of entries above the main diagonal, each of
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which can be an arbitrary complex number. The number of real dimensions
in the group manifold is therefore n2. The rows or columns in the matrix
U form an orthonormal set of vectors. Their entries are therefore bounded,
and this property leads to the group manifold of U(n) being a compact set.

When the group manifold is compact, we say that the group itself is a
compact group. There is a natural notion of volume on a group manifold
and compact Lie groups have finite total volume. This leads to them having
many properties in common with the finite groups we studied in the last
chapter.

The group U(n) is not simple. Its centre is an invariant U(1) subgroup
consisting of matrices of the form U = eiθ I. The special unitary group
SU(n), consists of n× n unimodular (having determinant +1 ) unitary ma-
trices. Although not strictly simple (its center, Z, is the discrete subgroup
of matrices Um = ωm I with ω an n-th root of unity, and this is obviously
an invariant subgroup) it is counted as being simple in Lie theory. With
U = I + εA, as above, the unimodularity imposes the additional constraint
on A that trA = 0, so the SU(n) group manifold is n2 − 1 dimensional.

The Orthogonal Group

The orthogonal group O(n), is the set of real matrices such that OT = O−1.
For an orthogonal matrix in the neighbourhood of the identity, O = I + εA,
this condition requires that Aij = −Aij . The the group is therefore n(n−1)/2
dimensional. The rows or columns are again orthonormal, and thus bounded.
This means that O(n) is compact.

Since 1 = det (OTO) = detOTdetO = (detO)2 we have detO = ±1. The
set of orthogonal matrices with detO = +1 compose the special orthogonal
group, SO(n). The unimodularity condition discards a disconnected part of
the group manifold, and so does not reduce the dimension of the space which
is still n(n− 1)/2.

6.1.2 Symplectic Groups

The symplectic (from the Greek word meaning to “fold together”) groups
are slightly more exotic, and merit a more extended discussion. This section
should probably be read after the rest of the chapter, because we will use
some notations that are defined later.
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Let ω be a non-degenerate skew-symmetric matrix. The symplectic group,
Sp(2n,F) is defined by

Sp(2n,F) = {S ∈ GL(2n,F) : STωS = ω}. (6.4)

Here F is a commutative field, such as R or C. Note that, even when F = C,
we still use the transpose “T”, not †, in this definition. Setting S = I2n+ εA,
and plugging into the definition shows that ATω + ωA = 0.

We can always reduce ω to its canonical form

ω =
(

0 −In
In 0

)
. (6.5)

Having done so, then A short computation shows that the most general form
for A is

A =
(
a b
c −aT

)
, (6.6)

where a is any n × n matrix, and bT = b, cT = c. If we assume that the
matrices are real, then counting the degrees of freedom gives the dimension
of the group as

dimSp(2n,R) = n2 + 2× n

2
(n+ 1) = n(2n+ 1). (6.7)

The entries in a, b, c can be arbitrarily large, so Sp(2n,R) is not compact.
The determinant of any symplectic matrix is +1. To see this take the

elements of ω be ωij , and let

ω(x, y) = ωijx
iyj (6.8)

be the associated skew bilinear form (not sesquilinear!). Then Weyl’s identity

Pf (ω) det |x1, x2, . . . x2n|
=

1

2nn!

∑

π∈S2n

sgn (π)ω(xπ(1), xπ(2)) . . . ω(xπ(2n−1), xπ(2n)), (6.9)

shows that

Pf (ω) (detM) det |x1, x2, . . . x2n|
=

1

2nn!

∑

π∈S2n

sgn (π)ω(Mxπ(1),Mxπ(2)) . . . ω(Mxπ(2n−1),Mxπ(2n)),

for any linear map M . If ω(x, y) = ω(Mx,My), we conclude that detM =
1 — but preserving ω is exactly the condition that M be an element of
the symplectic group. Since the matrices in Sp(2n,F) are automatically
unimodular there is no “special symplectic” group.
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Unitary Symplectic Group

The intersection of two groups is also a group. We can therefore define the
unitary symplectic group as

Sp(n) = Sp(2n,C) ∩ U(2n). (6.10)

This group is compact. We will soon see that its dimension is n(2n+ 1), the
same as the non-compact Sp(2n,R). The group Sp(n) may also be defined
as U(n,H) where H are the quaternions.
Warning: Physics papers often make no distinction between Sp(n), which
is a compact group, and Sp(2n,R) which is non-compact. To add to the
confusion the compact Sp(n) is also sometimes called Sp(2n). You have to
judge from the context which group the author means.
Physics Application: Kramers’ degeneracy. Let C = iσ̂2. Therefore

C−1σ̂nC = −σ̂∗
n (6.11)

A time-reversal invariant, single-electron Hamiltonian containing L · S spin-
orbit interactions obeys

C−1HC = H∗. (6.12)

If we regard H as being and n× n matrix of 2× 2 matrices

Hij = h0
ij + i

3∑

n=1

hnijσ̂n,

then this implies that the haij are real numbers. We say that H is real quater-
nionic. This is because the Pauli sigma matrices are algebraically isomorphic
to Hamilton’s quaternions under the identification

iσ̂1 ↔ i,
iσ̂2 ↔ j,
iσ̂3 ↔ k.

(6.13)

The hermiticity of H requires that Hji = H ij where the overbar denotes
quaternionic conjugation

q0 + iq1σ̂1 + iq2σ̂2 + iq3σ̂3 → q0 − iq1σ̂1 − iq2σ̂2 − iq3σ̂3. (6.14)

If Hψ = Eψ then HCψ∗ = Eψ∗. Since C is skew, ψ and Cψ∗ are orthogonal,
therefore all states are doubly degenerate. This is Kramers’ degeneracy.
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H may be diagonalized by an element of U(n,H), that is an element of
U(2n) obeying C−1UC = U∗. We may rewrite this condition as

C−1UC = U∗ ⇒ UCUT = C,

therefore U(n,H) is a unitary matrix which preserves the skew bilinear
matrix C and is an element of Sp(n). Further investigation shows that
U(n,H) = Sp(n).

We can exploit the quaternionic viewpoint to count the dimensions. Let
U = I+εB be in U(n,H), then Bij+Bji = 0. The diagonal elements of B are
thus pure “imaginary” quaternions having no part proportional to I. There
are therefore 3 parameters for each diagonal element. The upper triangle has
n(n− 1)/2 independent elements, each with 4 parameters. Counting up, we
find

dimU(n,H) = dimSp(n) = 3n + 4× n

2
(n− 1) = n(2n + 1). (6.15)

Thus, as promised, we see that the compact group Sp(n) and the non-
compact group Sp(2n,R) have the same dimension.

We can also count the dimension of Sp(n) by looking at our previous
matrices

A =
(
a b
c −aT

)

where a b and c are now allowed to be complex, but with the restriction that
S = I + εA be unitary. This requires A to be skew-hermitian, so a = −a†,
and c = −b†, while b (and hence c) remains symmetric. There are n2 free
real parameters in a, and n(n + 1) in b, so

dimSp(n) = (n2) + n(n+ 1) = n(2n + 1)

as before.

6.2 Geometry of SU(2)

To get a sense of Lie groups as geometric objects, we will study the simplest
non-trivial case of SU(2) in some detail.

A general 2× 2 unitary matrix can be written

U =
(
x0 + ix3 ix1 + x2

ix1 − x2 x0 − ix3

)
. (6.16)
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The determinant of this matrix is unity provided

(x0)2 + (x1)2 + (x2)2 + (x3)2 = 1. (6.17)

When this condition is met, and in addition the xi are real, we have U† = U−1.
The group manifold of SU(2) is therefore the three-sphere, S3. We will take
as local co-ordinates x1, x2, x3. When we desire to know x0 we will find it

from x0 =
√

1− (x1)2 − (x2)2 − (x3)2. This co-ordinate system is only good
for one-half of the three-sphere, but this is typical when we have a non-trivial
manifold. Other co-ordinate patches can be constructed as needed.

We can simplify our notation by introducing the Pauli sigma matrices

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
. (6.18)

These obey

[σ̂i, σ̂j] = 2iεijkσ̂k. (6.19)

In terms of them, we can write

g = U = x0I + ix1σ̂1 + ix2σ̂2 + ix3σ̂3. (6.20)

Elements of the group in the neighbourhood of the identity differ from e = I
by real linear combinations of the iσ̂i. The three-dimensional vector space
spanned by these matrices is therefore the tangent space TMe at the identity
element. For any Lie group this tangent space is called the Lie algebra,
G = LieG of the group. There will be a similar set of matrices iλ̂i for any
matrix group. They are called the generators of the Lie algebra, and satisfy
commutation relations of the form

[iλ̂i, iλ̂j] = −f k
ij (iλ̂k), (6.21)

or equivalently

[λ̂i, λ̂j] = if k
ij λ̂k (6.22)

The f k
ij are called the structure constants of the algebra. The “i”’s associ-

ated with the λ̂’s in this expression are conventional in physics texts because
we usually desire the λ̂i to be hermitian. They are usually absent in books
written for mathematicians.
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6.2.1 Invariant vector fields

Consider a group element, I + εL̂, in the neighbourhood of the identity, with
L̂ = ai(iσ̂i). We can map this infinitesimal element to the neighbourhood an
arbitrary group element g by multiplying on the left to get g(I + εL̂). For
example, with L̂3 = iσ̂3, we find

g(I + εL̂3) = (x0 + ix1σ̂1 + ix2σ̂2 + ix3σ̂3)(I + iεσ̂3)

= (x0 − εx3) + iσ̂1(x
1 − εx2) + iσ̂2(x

2 + εx1) + iσ̂3(x
3 + εx0)

(6.23)

Another way of looking at this process is that multiplication of any element
g on the right by (I + εL̂3) moves g, and so changes its co-ordinates by an
amount

δ




x0

x1

x2

x3


 = ε




−x3

−x2

x1

x0


 . (6.24)

This suggests the introduction of the left-invariant vector field

L3 = −x2∂1 + x1∂2 + x0∂3. (6.25)

Similarly we define

L1 = x0∂1 − x3∂2 + x2∂3

L2 = x3∂1 + x0∂2 − x1∂3. (6.26)

These are “left invariant” because the push-forward of the vector Li(g0) at
g0 by multiplication on the left by any g produces a vector g∗[Li(g0)] at gg0

that coincides with the Li(gg0) already at that point. We can express this
statement tersely as g∗Li = Li.

Using ∂ix
0 = −xi/x0, we can compute the Lie brackets and find

[L1, L2] = −2L3. (6.27)

In general
[Li, Lj] = −2εijkLk. (6.28)

This construction works for all matrix groups. For each basis element L̂i =
iλ̂i of the Lie algebra we multiply group elements on the right byI+ iεL̂i and
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so construct the corresponding left-invariant vector field Li. The Lie bracket
of these vector fields will be

[Li, Lj] = −f k
ij Lk, (6.29)

which coincides with the commutator of the matrices L̂i. The coefficients f k
ij

are guaranteed to be position independent because the operation of taking
the Lie bracket of two vector fields commutes with the operation of pushing-
forward the vector fields. Consequently the Lie bracket at any point is just
the image of the Lie Bracket calculated at the identity.

The Exponential Map

Given any vector field, X, we can define the flow along it by solving the
equation

dxµ

dt
= Xµ(x(t)). (6.30)

If we do this for the left-invariant vector field L, with x(0) = e, we get the
element denoted by g(x(t)) = Exp (tL). The symbol “Exp ” stands for the
exponential map which takes us from elements of the Lie algebra to elements
of the group. The reason for this name and notation is that for matrix
groups this operation corresponds to the usual exponentiation of matrices.
Elements of the matrix Lie group are therefore exponentials of elements of
the Lie algebra: if L̂ = iaiλ̂i, then

g(t) = exp(tL̂), (6.31)

is an element of the group and

d

dt
g(t) = L̂g(t). (6.32)

Right-invariant vector fields

We can repeat the exercise of the previous section, multiplying the infinites-
imal group element (I + εR̂) in from the left instead. For R̂ = iσ̂3, for
example,

(I + εR̂3)g = (I + iεσ̂3)(x
0 + ix1σ̂1 + ix2σ̂2 + ix3σ̂3)

= (x0 − εx3) + iσ̂1(x
1 + εx2) + iσ̂2(x

2 − εx1) + iσ̂3(x
3 + εx0)

(6.33)
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This motion corresponds to the right-invariant vector field

R3 = x2∂1 − x1∂2 + x0∂3. (6.34)

Again, we can also define

R1 = x3∂1 − x0∂2 + x1∂3

R2 = x0∂1 + x3∂2 − x2∂3. (6.35)

We find that

[R1, R2] = +2R3, (6.36)

or, in general,

[Ri, Rj ] = +2εijkRk. (6.37)

For a general Lie group, the Lie brackets of the right-invariant fields will be

[Ri, Rj ] = +fij
kRk. (6.38)

whenever

[Li, Lj] = −fij kLk, (6.39)

are the Lie brackets of the left-invariant fields. The relative minus sign be-
tween the bracket algebra of the left and right invariant vector fields has the
same origin as the relative sign between the commutators of space and body
fixed rotations in mechanics.

6.2.2 Maurer-Cartan Forms

If g ∈ G, then dgg−1 ∈ LieG. For example, starting from

g = x0 + ix1σ̂1 + ix2σ̂2 + ix3σ̂3

g−1 = x0 − ix1σ̂1 − ix2σ̂2 − ix3σ̂3 (6.40)

we have

dg = dx0 + idx1σ̂1 + idx2σ̂2 + idx3σ̂3

= (x0)−1(−x1dx1 − x2dx2 − x3dx3) + idx1σ̂1 + idx2σ̂2 + idx3σ̂3.

(6.41)
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From this we find

dgg−1 = iσ̂1

(
(x0 + (x1)2/x0)dx1 + (x3 + (x1x2)/x0)dx2 + (−x2 + (x1x3)/x0)dx3

)

+iσ̂2

(
(−x3 + (x2x1)/x0)dx1 + (x0 + (x2)2/x0)dx2 + (x1 + (x2x3)/x0)dx3

)

+iσ̂3

(
(x2 + (x3x1)/x0)dx1 + (−x1 + (x3x2)/x0)dx2 + (x0 + (x3)2/x0)dx3

)

(6.42)

and we see that the part proportional to the identity matrix has cancelled.
The result is therefore a Lie algebra-valued 1-form. We define the (right
invariant) Maurer-Cartan forms ωiR by

dgg−1 = ωR = (iσ̂i)ω
i
R. (6.43)

We evaluate

ω1
R(R1) = (x0 + (x1)2/x0)x0 + (x3 + (x1x2)/x0)x3 + (−x2 + (x1x3)/x0)(−x2)

= (x0)2 + (x1)2 + (x2)2 + (x3)2

= 1. (6.44)

Working similarly we find

ω1
R(R2) = (x0 + (x1)2/x0)(−x3) + (x3 + (x1x2)/x0)x0 + (−x2 + (x1x3)/x0)x1

= 0. (6.45)

In general we will discover that ωiR(Rj) = δij , and so these Maurer Cartan
forms constitute the dual basis to the right-invariant vector fields.

We may also define

g−1dg = ωL = (iσ̂i)ω
i
L, (6.46)

and discover that ωiL(Lj) = δij . The ωL are therfore the dual basis to the
left-invariant vector fields.

Now acting with the exterior derivative d on gg−1 = I tells us that
d(g−1) = −g−1dgg−1. Using this together with the anti-derivation property

d(a ∧ b) = da ∧ b+ (−1)pa ∧ db,

we may compute the exterior derivative of ωR

dωR = d(dgg−1) = (dgg−1) ∧ (dgg−1) = ωR ∧ ωR. (6.47)
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A matrix product is implicit here. If it were not, the product of the two
identical 1-forms on the right would automatically be zero. If we make this
matrix structure explicit we find that

ωR ∧ ωR = ωiR ∧ ωjR(iσ̂i)(iσ̂j)

=
1

2
ωiR ∧ ωjR [iσ̂i, iσ̂j ]

= −1

2
f k
ij (iσ̂k)ω

i
R ∧ ωjR, (6.48)

so

dωkR = −1

2
f k
ij ω

i
R ∧ ωjR. (6.49)

These equations are known as the Maurer-Cartan relations for the right-
invariant forms.

For the left-invariant forms we have

dωL = d(g−1dg) = −(g−1dg) ∧ (g−1dg) = −ωL ∧ ωL (6.50)

or

dωkL = +
1

2
f k
ij ω

i
L ∧ ωjL. (6.51)

These Maurer-Cartan relations appear when we quantize gauge theories.
They are one part of the BRST transformations of the Fadeev-Popov ghost
fields.

6.2.3 Euler Angles

Physicists often Use Euler angles to parameterize SU(2). We write an arbi-
trary SU(2) unitary matrix U as

U = exp{−iφσ̂3/2} exp{−iθσ̂2/2} exp{−iψσ̂3/2},

=
(
e−iφ/2 0

0 eiφ/2

)(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)(
e−iψ/2 0

0 eiψ/2

)
,

=
(
e−i(φ+ψ)/2 cos θ/2 −ei(ψ−φ)/2 sin θ/2
ei(φ−ψ)/2 sin θ/2 e+i(ψ+φ)/2 cos θ/2

)
. (6.52)

Comparing with the earlier expression for U in terms of the xµ, we obtain
the Euler-angle parameterization of the three-sphere

x0 = cos θ/2 cos(ψ + φ)/2,
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x1 = sin θ/2 sin(φ− ψ)/2,

x2 = − sin θ/2 cos(φ− ψ)/2,

x3 = − cos θ/2 sin(ψ + φ)/2. (6.53)

The ranges of the angles can be taken to be 0 ≤ φ < 2π, 0 ≤ θ < π,
0 ≤ ψ < 4π.

Exercise 6.1: Show that the Hopf map, defined in chapter 3, Hopf : S3 → S2

is the “forgetful” map (θ, φ, ψ) → (θ, φ), where θ and φ are spherical polar
co-ordinates on the two-sphere.

6.2.4 Volume and Metric

The manifold of any Lie group has a natural metric which is obtained by
transporting the Killing form (see later) from the tangent space at the iden-
tity to any other point g by either left or right multiplication by g. In the case
of a compact group, the resultant left and right invariant metrics coincide.
In the case of SU(2) this metric is the usual metric on the three-sphere.

Using the Euler angle expression for the xµ to compute the dxµ, we can
express the metric on the sphere as

ds2 = (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2,

=
1

4

(
dθ2 + cos2θ/2(dψ + dφ)2 + sin2θ/2(dψ − dφ)2

)
,

=
1

4

(
dθ2 + dψ2 + dφ2 + 2 cos θdφdψ

)
. (6.54)

Here I’ve used the traditional physics way of writing a metric. In the more
formal notation from chapter one, where we think of the metric as being a
bilinear function, we would write the last line as

g( , ) =
1

4
[dθ⊗ dθ+ dψ⊗ dψ+ dφ⊗ dφ+cos θ(dφ⊗ dψ+ dψ⊗ dφ)] (6.55)

From this we find

g = det (gµν) =
1

43

∣∣∣∣∣∣∣

1 0 0
0 1 cos θ
0 cos θ 1

∣∣∣∣∣∣∣

=
1

64
(1− cos2θ) =

1

64
sin2θ. (6.56)
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The volume element,
√
g dθdφdψ, is therefore

d(V olume) =
1

8
sin θdθdφdψ, (6.57)

and the total volume of the sphere is

V ol(S3) =
1

8

∫ π

0
sin θdθ

∫ 2π

0
dφ
∫ 4π

0
dψ = 2π2. (6.58)

This coincides with the standard expression for the volume of Sd−1, the
surface of the d-dimensional unit ball,

V ol(Sd−1) =
2πd/2

Γ(d
2
)
, (6.59)

when d = 4.

Exercise 6.2: Evaluate the Maurer-Cartan form ω3
L = tr (σ3g

−1dg) in terms of
the Euler angle parameterization and show that

ω3
L = i(−dψ − cos θdφ). (6.60)

Now recall that the Hopf map takes the point on the three-sphere with Euler
angle co-ordinates (θ, φ, ψ) to the point on the two-sphere with spherical polar
(θ, φ). Thus, if we set ω3

L = iη, then

dη = sin θ dθ dφ = iHopf∗(d[AreaS2]). (6.61)

Also observe that
η ∧ dη = − sin θ dθ dφ dψ. (6.62)

From this show that
1

16π2

∫

S3

η ∧ dη = −1. (6.63)

6.2.5 SO(3) ' SU(2)/Z2

The groups SU(2) and SO(3) are locally isomorphic. They have the same
Lie algebra, but differ in their global topology. Although rotations in space
are elements of SO(3), electrons respond to these rotations by transforming
under the two-dimensional defining representation of SU(2). This means
that after a rotation through 2π the electron wavefunction comes back to
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minus itself. The resulting topological entanglement is characteristic of the
spinor representation of rotations, and is intimately connected with the Fermi
statistics of the electron. The spin representations were discovered by Cartan
in 1913, long before they were needed in physics.

The simplest way to motivate the spinor/rotation connection is via the
Pauli matrices. The sigma matrices are hermitian, traceless, and obey

σ̂iσ̂j + σ̂jσ̂i = 2δij, (6.64)

If, for any U ∈ SU(2), we define

σ̂′
i = Uσ̂iU

−1 (6.65)

we see that the σ̂′
i have exactly the same properties. Since the original σ̂i

form a basis for the space of hermitian traceless matrices, we must have

σ̂′
i = σ̂jAji (6.66)

for some real 3× 3 matrix Aij . From (6.64) we find that

2δij = σ̂′
iσ̂

′
j + σ̂′

jσ̂
′
i

= (σ̂lAli)(σ̂mAmj) + (σ̂mAmj)(σ̂lAli)

= (σ̂lσ̂m + σ̂mσ̂l)AliAmj

= 2δlmAliAmj ,

so

AmiAmk = δik. (6.67)

In other words ATA = I, and A is an element of O(3). The determinant
of any orthogonal matrix is ±1, but SU(2) is simply connected, and A = I,
when U = I. Continuity therefore tells us that detA = 1. The A matrices
are therefore in SO(3).

By exploiting the principle of the sextant we may construct a U(R) for
any element R ∈ SO(3).
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hand half is transparant 
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Fixed, half silvered mirror

To Horizon

The sextant.

This familiar instrument is used to measure the altitude of the sun above the
horizon while standing on the pitching deck of a ship at sea. A theodolite or
similar device would be rendered useless by the ship’s motion. The sextant
exploits the fact that successive reflection in two mirrors inclined at an angle
θ to one another serves to rotate the image through an angle 2θ about the line
of intersection of the mirror planes. This is used to superimpose the image of
the sun onto the image of the horizon, where it stays even if the instrument
is rocked back and forth. Exactly the same trick is used in constructing the
spinor representations of the rotation group.

To do this, consider a vector x with components xi and form the object
x̂ = xiσ̂i. Now, if n is a unit vector, then

(−σ̂ini)(xjσ̂j)(σ̂knk) =
(
xj − 2(n · x)(nj)

)
σ̂j (6.68)

is the x vector reflected in the plane perpendicular to n. So, for example

−(σ̂1 cos θ/2 + σ̂2 sin θ/2)(−σ̂1)x̂(σ̂1)(σ̂1 cos θ/2 + σ̂2 sin θ/2) (6.69)
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performs two succesive reflections, first in the “1” plane, and then in a plane
at an angle θ/2 to it. Multiplying the factors, and using the σ̂i algebra, we
find

(cos θ/2− σ̂1σ̂2 sin θ/2)x̂(cos θ/2 + σ̂1σ̂2 sin θ/2)

= σ̂1(cos θ x1 − sin θ x2) + σ̂2(sin θ x
1 + cos θ x2) + σ̂3x

3,

and this is a rotation through θ as claimed. We can write this as

e−i
1

4i
[σ̂1,σ̂2]θ(xiσ̂i)e

i 1

4i
[σ̂1,σ̂2]θ = e−iσ̂3θ/2(xiσ̂i)e

iσ̂3θ/2 = σ̂jRjix
i, (6.70)

where R is the 3×3 rotation matrix for a rotation through angle θ in the 1-2
plane. It should be clear that this construction allows any rotation to be per-
formed. More on the use of mirrors for creating and combining rotations can
be found in the the appendix to Misner, Thorn, and Wheeler’s Gravitation.

The fruit of our labours is a two-dimensional unitary matrix , U(R), such
that

U(R)σ̂iU
−1(R) = σ̂jRji, (6.71)

for any R ∈ SO(3). This U(R) is the spinor represenation of the rotation
group.

Exercise 6.3: Verify that U(R2)U(R1) = U(R2R1) and observe that we must

write the R on the right, for this composition to work.

If U(R) ∈ SU(2), so is −U(R), and U(R) and −U(R) give exactly the same
rotation R. The mapping between SU(2) and SO(3) is 2→ 1, and the group
manifold of SO(3) is the three-sphere with antipodal points identified. Unlike
the two-sphere, where the identification of antipodal points gives the non-
orientable projective plane, this manifold is is orientable. It is not, however,
simply connected. A path on the three-sphere from a point to its antipode
forms a closed loop in SO(3), but is not contractable to a point. If we con-
tinue on from the antipode back to the original point, the combined path
is contractable. Expressing these facts mathematically, we say that the first
Homotopy group, the group of based paths with composition given by con-
catenation, is π1(SO(3)) = Z2. This is the topology behind the Phillipine
(or Balinese) Candle Dance, and how the electron knows whether a sequence
of rotations that eventually bring it back to its original orientation should be
counted as a 2π rotation (U = −I) or a 4π ≡ 0 rotation (U = +I).
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Spinor representations of SO(N)

The mirror trick can be extended to perform rotations in N dimensions. We
replace the three σ̂i matrices by a set of N Dirac gamma matrices, which
obey the Clifford algebra

γµγν + γνγµ = 2δµν . (6.72)

This is a generalization of the key algebraic property of the Pauli sigma
matrices.

If N (= 2n) is even, then we can find 2n× 2n matrices, γ̂µ, satisfying this
algebra. If N (= 2n + 1) is odd, we append to the matrices for N = 2n the
matrix γ̂2n+1 = −(i)nγ̂1γ̂2 · · · γ̂n. The γ̂ matrices therefore act on a 2[N/2]

dimensional space, where the square brackets denote the integer part of N/2.
The γ̂’s do not form a Lie algebra as they stand, but a rotation through

θ in the mn-plane is obtained from

e−i
1

4i
[γ̂m,γ̂n]θ(xiγ̂i)e

i 1

4i
[γ̂m,γ̂n]θ = γ̂jRjix

i, (6.73)

and we find that the matrices Γ̂mn = 1
4i

[γ̂m, γ̂n] obey the lie algebra of SO(N).
The 2[N/2] dimensional space on which they act is the spinor representation
of SO(N).

If N is even then we can still construct the matrix γ̂2n+1 and find that
it anticommutes with all the other γ̂’s. It cannot be the identity matrix,
therefore, but it still commutes with all the Γmn. By Schur’s lemma, this
means that the SO(2n) spinor representation space V is reducible. Now
γ2

2n+1 = I, and so γ2n+1 has eigenvalues ±1. The two eigenspaces are invariant
under the action of the group, and thus the (Dirac) spinor space decomposes
into two irreducible (Weyl spinor) representations

V = Vodd ⊕ Veven. (6.74)

Here Veven and Vodd, the plus and minus eigenspaces of γ2n+1, are called the
spaces of right and left chirality . When N is odd the spinor representation
is irreducible.

The Adjoint Representation

The idea of obtaining a representation by conjugation works for an arbitrary
Lie group. Given an infinitesimal element I + εL̂, the conjugate element
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g(I + εL̂)g−1 will also be an infinitesimal element. This means that gL̂ig
−1

must be expressible as a linear combination of the L̂i matrices. Consequently
we can define a linear map acting on the element X = XiL̂i of the Lie algebra
by setting

Ad(g)L̂i ≡ gL̂ig
−1 = L̂j(Ad (g))j i.

The matrices (Ad (g))ji form the adjoint representation of the group. The
dimension of the adjoint representation coincides with that of the group.

6.2.6 Peter-Weyl Theorem

The volume element constructed in section 6.2.4 has the feature that it is
invariant. In other words if we have a subset Ω of the group manifold with
volume V , then the image set gΩ under left multiplication has the exactly the
same volume. We can also construct a volume element that is invariant under
right multiplication by g, and in general these will be different. For a group
whose manifold is a compact set, however, both left- and right-invariant
volume elements coincide. The resulting measure on the group manifold is
called the Haar measure.

For a compact group, therefore, we can replace the sums over the group
elements that occur in the representation theory of finite groups, by con-
vergent integrals over the group elements using the invariant Haar measure,
which is usually denoted by d[g] . The invariance property is expressed by
d[g1g] = d[g] for any constant element g1. This allows us to make a change-
of-variables transformation, g → g1g, identical to that which played such an
important role in deriving the finite group theorems. Consequently, all the
results from finite groups, such as the existence of an invariant inner product
and the orthogonality theorems, can be taken over by the simple replacement
of a sum by an integral. In particular, if we normalize the measure so that
the volume of the group manifold is unity, we have the orthogonality relation

∫
d[g]

(
DJ
ij(g)

)∗
DK
lm(g) =

1

dim J
δJKδilδjm.

The Peter-Weyl theorem asserts that the representation matrices, DJ
mn(g),

form a complete set of orthogonal function on the group manifold. In the
case of SU(2) this tells us that the spin J representation matrices

DJ
mn(θ, φ, ψ) = 〈J,m|e−iJ3φe−iJ2θe−iJ3ψ|J, n〉,

= e−imφdJmn(θ)e
−inψ,
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which you will know from quantum mechanics courses1, are a complete set
of functions on the three-sphere with

1

16π2

∫ π

0
sin θdθ

∫ 2π

0
dφ
∫ 4π

0
dψ

(
DJ
mn(θ, φ, ψ)

)∗
DJ ′

m′n′(θ, φ, ψ)

=
1

2J + 1
δJJ

′

δmm′δnn′.

Since the DL
m0 (where L has to be an integer for n = 0 to be possible) are

independent of the third Euler angle, ψ, we can do the trivial integral over
ψ to get

1

4π

∫ π

0
sin θdθ

∫ 2π

0
dφ
(
DL
m0(θ, φ)

)∗
DL′

m′0(θ, φ) =
1

2L+ 1
δLL

′

δmm′ .

Comparing with the definition of the spherical harmonics, we see that we can
identify

Y L
m(θ, φ) =

√
2L+ 1

4π

(
DL
m0(θ, φ, ψ)

)∗
.

The complex conjugation is necessary here because DJ
mn(θ, φ, ψ) ∝ e−imφ,

while Y L
m (θ, φ) ∝ eimφ.

The character, χJ (g) = DJ
nn(g) will be a function only of the angle θ

we have rotated through, not the axis of rotation — all rotations through a
common angle being conjugate to one another. Because of this χJ(θ) can be
found most simply by looking at rotations about the z axis, since these give
rise to easily computed diagonal matrices. We have

χ(θ) = eiJθ + ei(J−1)θ + · · ·+ e−i(J−1)θ + e−iJθ,

=
sin(2J + 1)θ/2

sin θ/2
.

Warning: The angle θ in this formula is the not the Euler angle.
For integer J , corresponding to non-spinor rotations, a rotation through

an angle θ about an axis n and a rotation though an angle 2π− θ about −n
are the same operation. The maximum rotation angle is therefore π. For
spinor rotations this equivalence does not hold, and the rotation angle θ runs
from 0 to 2π. The character orthogonality must therefore be

1

π

∫ 2π

0
χJ(θ)χJ

′

(θ) sin2

(
θ

2

)
dθ = δJJ

′

,

1See, for example, G. Baym Lectures on Quantum Mechanics , Ch 17.
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implying that the volume fraction of the rotation group containing rotations
through angles between θ and θ + dθ is sin2(θ/2)dθ/π.

Exercise 6.4: Prove this last statement about the volume of the equivalence
classes by showing that the volume of the unit three-sphere that lies between
a rotation angle of θ and θ + dθ is 2π sin2(θ/2)dθ.

6.2.7 Lie Brackets vs. Commutators

There is an irritating minus sign problem that needs to be acknowledged.
The Lie bracket [X, Y ] of of two vector fields is defined by first running along
X, then Y and then back in the reverse order. If we do this for the action of
matrices, X̂ and Ŷ , on a vector space, however, then, reading from right to
left as we always do for matrix operations, we have

e−t2Ŷ e−t1X̂et2Ŷ et1X̂ = I − t1t2[X̂, Ŷ ] + · · · ,

which has the other sign. Consider for example rotations about the x, y, z
axes, and look at effect these have on the co-ordinates of a point:

Lx :
{
δy = −z δθx
δz = +y δθx

}
=⇒ Lx = y∂z − z∂y , L̂x =




0 0 0
0 0 −1
0 1 0


 ,

Ly :
{
δz = −x δθy
δx = +z δθy

}
=⇒ Ly = z∂x − x∂z , L̂y =




0 0 1
0 0 0
−1 0 0


 ,

Lz :
{
δx = −y δθz
δy = +x δθz

}
=⇒ Lz = x∂y − y∂x, L̂y =




0 −1 0
1 0 0
0 0 0


 .

From this we find
[Lx, Ly] = −Lz ,

as a Lie bracket of vector fields, but

[L̂x, L̂y] = +L̂z,

as a commutator of matrices. This is the reason why it is the left invariant
vector fields whose Lie bracket coincides with the commutator of the iλ̂i
matrices.
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Some insight into all this can be had by considering the action of the
invariant fields on the representation matrices, DJ

mn(g). For example

LiD
J
mn(g) = lim

ε→0

[
1

ε

(
DJ
mn(g(1 + iελ̂i))−DJ

mn(g)
)]

= lim
ε→0

[
1

ε

(
DJ
mn′(g)D

J
n′n(1 + iελ̂i)−DJ

mn(g)
)]

= lim
ε→0

[
1

ε

(
DJ
mn′(g)(δn′n + iε(Λ̂J

i )n′n)−DJ
mn(g)

)]

= DJ
mn′(g)(iΛ̂

J
i )n′n (6.75)

where Λ̂J
i is the matrix representing λ̂i in the representation J . Repeating

this exercise we find that

Li
(
LjD

J
mn(g)

)
= DJ

mn′′(g)(iΛ̂
J
i )n′′n′(iΛ̂J

j )n′n,

Thus

[Li, Lj]D
J
mn(g) = DJ

mn′(g)[iΛ̂
J
i , iΛ̂

J
j ]n′n,

and we get the commutator of the representation matrices in the right order
only if we multiply successively from the right.

There appears to be no escape from this sign problem. Many texts simply
ignore it, a few define the Lie bracket of vector fields with the opposite sign,
and a few simply point out the inconvenience and get on the with the job.
We will follow the last route.

6.3 Abstract Lie Algebras

A Lie algebra G is a (real or complex) vector space with a non-associative
binary operation G × G → G that assigns to each ordered pair of elements,
X1, X2, a third element called the Lie bracket, [X1, X2]. The bracket is:

a) Skew symmetric: [X, Y ] = −[Y,X],
b) Linear: [λX + µY, Z] = λ[X,Z] + µ[Y, Z].

and in place of associativity, obeys
c) The Jacobi identity: [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Example: Let M(n) denote the algebra of real n × n matrices. As a vector
space this is n2 dimensional. Setting [A,B] = AB−BA, makes M(n) into a
Lie Algebra.
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Example: Let b+ denote the subset of M(n) consisting of upper triangular
matrices with anything allowed on the diagonal. Then b+ with the above
bracket is a Lie algebra. (The “b” stands for Borel).

Example: Let n+ denote the subset of b+ consisting of strictly upper trian-
gular matrices — those with zero on the diagonal. Then n+ with the above
bracket is a Lie algebra. (The “n” stands for nilpotent.)

Example: Let G be a Lie group, and Li the left invariant vector fields. We
know that

[Li, Lj ] = f k
ij Lk

where [ , ] is the Lie bracket of vector fields. The resulting Lie algebra,
G = LieG is the Lie algebra of the group.

Observation: The set N+ of upper triangular matrices with 1’s on the di-
agonal forms a Lie group, with n+ as its Lie algebra. Similarly, the set B+

consisting of upper triangular matrices with anything allowed on the diago-
nal, is also a Lie group, and has b+ as its Lie algebra.

Ideals and Quotient algebras

As we saw in the examples, we can define subalgebras of a Lie algebra. If
we want to define quotient algebras by analogy to quotient groups, we need
a concept analogous to invariant subgroups. This is provided by the notion
of an ideal . A ideal is a subalgebra I ⊆ G with the property that

[I,G] ∈ I.

That is, taking the bracket of any element of G with any element of I
gives an element in I. With this definition we can form G −I by identifying
X ∼ X + I for any I ∈ I. Then

[X + I, Y + I] = [X, Y ] + I,

and the bracket of two equivalence classes is insensitive to the choice of
representatives. (This is the same definition that is used to define quotient
rings.)

If a Lie group G has an invariant subgroup H which is also a Lie group,
then the Lie algebra H of the subgroup is an ideal in G = LieG and the Lie
algebra of the quotient group G/H is the quotient algebra G − H.
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6.3.1 Adjoint Representation

Given an element X ∈ G let it act on the Lie algebra considered as a vector
space by a linear map ad (x) defined by

ad (X)Y = [X, Y ].

The Jacobi identity is then equivalent to the statement

(ad (X)ad (Y )− ad (Y )ad (X))Z = ad ([X, Y ])Z.

Thus
(ad (X)ad (Y )− ad (Y )ad (X)) = ad ([X, Y ]),

or
[ad (X), ad (Y )] = ad ([X, Y ]),

and the map X → ad (X) is a representation of the algebra called the adjoint
representation.

The linear map “ad (X)” exponentiates to give a map exp[ad (tX)] defined
by

exp[ad (tX)]Y = Y + t[X, Y ] +
1

2
t2[X, [X, Y ]] + · · · .

You probably know the matrix identity2

etABe−tA = B + t[A,B] +
1

2
t2[A, [A,B]] + · · · .

Now, earlier in the chapter, we defined the adjoint representation “Ad ” of
the group on the vector space of the Lie algebra. We did this setting gXg−1 =
Ad (g)X. Comparing the two previous equations we see that

Ad (Exp Y ) = exp(ad (Y )).

6.3.2 The Killing form

Using ad we can define an inner product 〈 , 〉 on the Lie algebra by

〈X, Y 〉 = tr (ad (X)ad (Y )).

2In case you do not, it is easily proved by setting F (t) = etABe−tA, noting that
d
dtF (t) = [A,F (t)], and observing that the RHS is the unique series solution to this
equation satisfying the boundary condition F (0) = B.
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This inner product is called the Killing form, after Wilhelm Killing. Using
the Jacobi identity, and the cyclic property of the trace, we find that

〈ad (X)Y, Z〉+ 〈Y, ad (X)Z〉 = 0

so “ad (X)” is skew-symmetric with respect to it. This means, in particular,
that

〈ead (X)Y, ead (X)Z〉 = 〈Y, Z〉,
and the Killing form remains invariant under the action of the adjoint rep-
resentation on the algebra. When our group is simple, any other invariant
inner product will be proportional to this Killing form product.
Definition: If the Killing form is non degenerate, the Lie Algebra is said to
be semi-simple.

This definition of semi-simplicity is equivalent (although not obviously so)
to the definition of a Lie algebra being semi-simple if it contains no Abelian
ideal. A semisimple algebra is (again not obviously) the direct sum of simple
algebras — those with no ideals except {0} and G itself. Simple and semi-
simple algebras are the easiest to study. The Lie algebras b+ and n+ are not
semi-simple.

Exercise 6.5: Show that if G is a semisimple Lie algebra and I an ideal, then
I⊥, the orthogonal complement with respect to the Killing form, is also an
ideal and

G = I ⊕ I⊥.

The symbol G1⊕G2 denotes a direct sum of the algebras. This implies both a
direct sum as vector spaces and the statement [G1,G2] = 0.

Definition: If the Killing form is negative definite, the Lie Algebra is said
to be compact , and is the Lie algebra of a compact group. (Physicists like
to put “i”’s in some of these definitions, so as to make “ad ” hermitian, and
the Killing form of compact groups positive definite.) The map Ad (ExpX) :
G → G is then orthogonal.

6.3.3 Roots and Weights

We now want to study the representation theory of Lie groups. It is, in fact,
easier to study the representations of the Lie algebra, and then exponentiate
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these to find the representations of the group. In other words we find matrices
L̂i obeying the Lie algebra

[L̂i, L̂j ] = ifij
kL̂k

and then the matrices

ĝ = exp

{
i
∑

i

aiL̂i

}

will form a representation of the group, or, to be more precise, a represen-
tation of that part of the group which is connected to the identity element.
In these equations we have inserted factors of “i” in the locations where
they are usually found in physics texts. With these factors, for example,
the Lie algebra of SU(n) consists of traceless hermitian matrices instead of
skew-hermitian matrices.

SU(2)

The quantum-mechanical angular momentum algebra consists of the com-
mutation relation

[J1, J2] = ih̄J3,

together with two similar equations related by cyclic permutations. This is,
with h̄ = 1, the Lie algebra of SU(2). The goal of representation theory is to
find all possible sets of matrices which have the same commutation relations
as these operators.

Remember how the problem is solved in quantum mechanics courses,
where we find a representation for each spin j = 1

2
, 1, 3

2
, etc. We begin by

constructing “ladder” operators

J+ = J1 + iJ2, J− = J1 − iJ2,

which are eigenvectors of ad (J3)

ad (J3)J± = [J3, J±] = ±J±.

From this we see that if |j,m〉 is an eigenstate of J3 with eigenvalue m, then
J±|j,m〉 is an eigenstate of J3 with eigenvalue m± 1.

We next assume the existence of a highest weight state, |j, j〉, such that
J3|j, j〉 = j|j, j〉 for some real number j, and such that J+|j, j〉 = 0. From this
we work down by successive applications of J− to find |j, j − 1〉, |j, j − 2〉...
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We can find the normalization factors of the states |j,m〉 ∝ (j−)j−m|j, j〉 by
repeated use of the identities

J+J− = (J2
1 + J2

2 + J2
3 )− (J2

3 − J3),

J−J+ = (J2
1 + J2

2 + J2
3 )− (J2

3 + J3).

The resulting set of normalized states |j,m〉 obey

J3|j,m〉 = m|j,m〉,
J−|j,m〉 =

√
j(j + 1)−m(m− 1)|j,m− 1〉,

J+|j,m〉 =
√
j(j + 1)−m(m+ 1)|j,m+ 1〉.

If we take j to be an integer, or a half, integer, we will find that J−|j,−j〉 = 0.
In this case we are able to construct a total of 2j + 1 states, one for each
integer-spaced m in the range −j ≤ m ≤ j. If we chose some other fractional
value for j, then the set of states will not terminate gracefully, and we will
find an infinity of states with m < −j. These will have negative-(norm)2

vectors, and the resultant representation cannot be unitary.
This strategy works for any (semi-simple) Lie algebra!

SU(3)

Consider, for example, SU(3). The matrix Lie algebra su(3) is spanned by
the Gell-Mann λ-matrices

λ̂1 =




0 1 0
1 0 0
0 0 0


 , λ̂2 =




0 −i 0
i 0 0
0 0 0


 , λ̂3 =




1 0 0
0 −1 0
0 0 0


 ,

λ̂4 =




0 0 1
0 0 0
1 0 0


 , λ̂5 =




0 0 −i
0 0 0
i 0 0


 , λ̂6 =




0 0 0
0 0 1
0 1 0


 ,

λ̂7 =




0 0 0
0 0 −i
0 i 0


 , λ̂8 =

1√
3




1 0 0
0 1 0
0 0 −2


 , (6.76)

which form a basis for the 3 × 3 traceless, hermitian matrices. They have
been chosen and normalized so that

tr (λ̂iλ̂j) = 2δij ,
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by analogy with the properties of the Pauli matrices. Notice that λ̂3 and λ̂8

commute with each other, and that this will be true in any representation.
The matrices

t± =
1

2
(λ̂1 ± iλ̂2),

v± =
1

2
(λ̂4 ± iλ̂5),

u± =
1

2
(λ̂6 ± iλ̂7).

have unit entries, rather like the step up and step down matrices σ± =
1
2
(σ̂1 ± iσ̂2).

Let us define Λi to be abstract operators with the same commutation
relations as λ̂i, and define

T± =
1

2
(Λ1 ± iΛ2),

V± =
1

2
(Λ4 ± iΛ5),

U± =
1

2
(Λ6 ± iΛ7).

These are simultaneous eigenvectors of the commuting pair of operators
ad (Λ3) and ad (Λ8):

ad (Λ3)T± = [Λ3, T±] = ±2T±,

ad (Λ3)V± = [Λ3, V±] = ±V±,
ad (Λ3)U± = [Λ3, U±] = ∓U±,

ad (Λ8)T± = [Λ8, T±] = 0

ad (Λ8)V± = [Λ8, V±] = ±
√

3V±,

ad (Λ8)U± = [Λ8, U±] = ±
√

3U±,

Thus in any representation the T±, U±, V±, act as ladder operators, changing
the simultaneous eigenvalues of the commuting pair Λ3, Λ8. Their eigenval-
ues, λ3, λ8, are called the weights, and there will be a set of such weights
for each possible representation. By using the ladder operators one can go
from any weight in a representation to any other, but you cannot get outside
this set. The amount by which the ladder operators change the weights are
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called the roots or root vectors, and the root diagram characterizes the Lie
algebra.

λ3

λ8

+

−

+

−

T+T−

U

U

V

V

The root vectors of su(3).

The weights in a representation of su(3) lie on a hexagonal lattice, and
the representations are labelled by pairs of integers (zero allowed) p, q which
give the length of the sides of the “crystal”. These representations have
dimension d = 1

2
(p+ 1)(q + 1)(p+ q + 2).

λ8=

λ8=

λ8=

λ8=

3
1/2

3
1/2

3
1/2

λ8= 3
1/2

3
1/2

−1/

2/

−4/

5/

−7/

The 24 dimensional irrep with p = 3, q = 1.

In the figure each circle represents a state with a given weight. A double
circle indicates that there are two independent states with this weight, so the
total number of weights, and hence the dimension of the representation is 24.
In general the degeneracy of the weights increases by one at each “layer”,
until we reach a triangular inner core all of whose weights have the same
degeneracy.
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The representations are often labeled by the dimension. The defining
representation of su(3) and its complex conjugate are denotes by 3 and 3̄,

The irreps with p = 1, q = 0, and p = 0, q = 1, also known as the 3 and the
3.

while the eight dimensional adjoint represention and the 10 have weights

The irreps 8 (the adjoint) and 10.

For a general simple Lie algebra we play the same game. We find a max-
imal set of commuting operators, hi, which make up the Cartan subalgebra,
H. The number of hi in this maximally commuting set is called the rank of
the Lie algbera. We now diagonalize the “ad” action of the hi on the rest of
the algebra. The simultaneous eigenvectors are denoted by eα where the α,
with components αi, are the roots, or root vectors.

ad (hi)eα = [hi, eα] = αieα.

The roots are therefore the weights of the adjoint representation. It is possible
to put factors of “i” in the appropriate places so that the αi are real, and we
will assume that this has been done. For example in su(3) we have already
seen that αT = (2, 0), αV = (1,

√
3), αU = (−1,

√
3).

Here are the basic properties and ideas that emerge from this process:

i) Since αi〈eα, hj〉 = 〈ad (hi)eα, hj〉 = −〈eα, [hi, hj]〉 = 0 we see that
〈hi, eα〉 = 0.
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ii) Similarly, we see that (αi + βi)〈eα, eβ〉 = 0, so the eα are orthogonal to
one another unless α+ β = 0. Since our Lie algebra is semisimple, and
consequently the Killing form non-degenerate, we deduce that if α is a
root, so is −α.

iii) Since the Killing form is non-degenerate, yet the hi are orthogonal to
all the eα, it must also be non-degenerate when restricted to the Cartan
algebra. Thus the metric tensor, gij = 〈hi, hj〉, must be invertible with
inverse gij. We will use the notation α · β to represent αiβjg

ij.
iv) If α, β are roots, then the Jacobi identity shows that

[hi, [eα, eβ]] = (αi + βi)[eα, eβ],

so if is [eα, eβ] is non-zero, it is also a root and [eα, eβ] ∝ eα+β .
v) It follows from iv), that [eα, e−α] commutes with all the hi, and since H

was assumed maximal, it must either be zero or a linear combination
of the hi. A short calculation shows that

〈hi, [eα, e−α]〉 = αi〈eα, e−α〉,

and, since 〈eα, e−α〉 does not vanish, [eα, e−α] is non-zero. Thus

[eα, e−α] ∝
2αi

α2
hi ≡ hα

where αi = gijαj, and hα obeys

[hα, e±α] = ±2e±α.

The hα are called the co-roots.
vi) The importance of the co-roots stems from the observation that the

triad hα, e±α obey the same commutation relations as σ̂3 and σ±, and
so form an su(2) subalgebra of G. In particular hα (being the analogue
of 2J3) has only integer eigenvalues. For example in su(3)

[T+, T−] = hT = Λ3,

[V+, V−] = hV =
1

2
Λ3 +

√
3

2
Λ8,

[U+, U−] = hU = −1

2
Λ3 +

√
3

2
Λ8,
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and in the defining representation

hT =




1 0 0
0 −1 0
0 0 0




hV =




1 0 0
0 0 0
0 0 −1




hU =




0 0 0
0 1 0
0 0 −1


 ,

have eigenvalues ±1.
vii) Since

ad (hα)eβ = [hα, eβ] =
2α · β
α2

eβ,

we conclude that 2α · β/α2 must be an integer for any pair of roots α,
β.

viii) Finally, there can only be one eα for each root α. If not, and there
were an independent e′α, we could take linear combinations so that e−α
and e′α are Killing orthogonal, and hence [e−α, e

′
α] = αihi〈e−α, e′α〉 = 0.

Thus ad (e−α)e
′
α = 0, and e′α is killed by the step-down operator. It

would therefore be the lowest weight in some su(2) representation. At
the same time, however, ad (hα)e

′
α = 2e′α, and we know that the lowest

weight in any spin J representation cannot have positive eigenvalue.
The conditions that

2α · β
α2

∈ Z

for any pair of roots tightly constrains the possible root systems, and is the
key to Cartan and Killing’s classification of the semisimple Lie algebras. For
example the angle θ between any pair of roots obeys cos2 θ = n/4 so θ can
take only the values 0, 30, 45, 60, 90, 120, 135, 150, or 180 degrees.

These constraints lead to a complete classification of possible Lie algebras
into the infinite families

An, n = 1, 2, · · · . sl(n + 1,C),

Bn, n = 2, 3, · · · . so(2n+ 1,C),

Cn, n = 3, 3, · · · . sp(2n,C),

Dn, n = 4, 5, · · · . so(2n,C),
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together with the exceptional algebras G2, F4, E6, E7, E8. These do not
correspond to any of the classical matrix algebras. For example G2 is the
algebra of the group G2 of automorphisms of the octonions. This group
is also the subgroup of SL(7) preserving the general totally antisymmetric
trilinear form.

The restrictions on n’s are to avoid repeats arising from “accidental”
isomorphisms. If we allow n = 1, 2, 3, in each series, then C1 = D1 = A1.
This corresponds to sp(2,C) ' so(3,C) ' sl(2,C). Similarly D2 = A1 +A1,
corresponding to isomorphism SO(4) ' SU(2) × SU(2)/Z2, while C2 = B2

implies that, locally, the compact Sp(2) ' SO(5). Finally D3 = A3 implies
that SU(4)/Z2 ' SO(6).

6.3.4 Product Representations

Given two representations Λ
(1)
i and Λ

(2)
i of G, we can form a new representa-

tion that exponentiates to the tensor product of the corresponding represen-
tations of the group G. We set

Λ
(1⊗2)
i = Λ

(1)
i ⊗ I + I ⊗ Λ

(2)
i .

This process is analogous to the addition of angular momentum in quantum
mechanics. Perhaps more precisely, the addition of angular momentum is
an example of this general construction. If representation Λ

(1)
i has weights

m
(1)
i , i.e. H

(1)
i |m(1)〉 = m

(1)
i |m(1)〉, and Λ

(2)
i has weights m

(2)
i , then, writing

|m(1), m(2)〉 for |m(1)〉 ⊗ |m(2)〉, we have

Λ
(1⊗2)
i |m(1), m(2)〉 = (Λ

(1)
i ⊗ 1 + 1⊗ Λ

(2)
i )|m(1), m(2)〉

= (m
(1)
i +m

(2)
i )|m(1), m(2)〉

so the weights appearing in the representation Λ
(1⊗2)
i are m

(1)
i +m

(2)
i .

The new representation is usually decomposible. We are familiar with
this decomposition for angular momentum where, if j > j′,

j ⊗ j′ = (j + j ′)⊕ (j + j′ − 1)⊕ · · · (j − j ′).

This can be understood from adding weights. For example consider adding
the weights of j = 1/2, which are m = ±1/2 to those of j = 1, which are
m = −1, 0, 1. We get m = −3/2, −1/2 (twice) +1/2 (twice) and m = 3/2.
These decompose
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= +
The weights for 1/2⊗ 1 = 3/2⊕ 1/2.

The rules for decomposing products in other groups are more complicated
than for SU(2), but can be obtained from weight diamgrams in the same
manner. In SU(3), we have, for example

3⊗ 3̄ = 1⊕ 8,

3⊗ 8 = 3⊕ 6̄⊕ 15,

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27.

To illustrate the first of these we consider adding the weights for the 3̄
(blue) to each of the weights in the 3 (red)

= +

The resultant weights decompose (uniquely) into the weight diagrams for the
8 together with a singlet.



Chapter 7

Complex Analysis I

Although this chapter is called complex analysis, we will try to develop the
subject as complex calculus — meaning that we will follow the calculus course
tradition of telling you how to do things, and explaining why theorems are
true with arguments that would not pass for rigorous proofs in a course on
real analysis. We try, however, to tell no lies.

This chapter will focus on the basic ideas that need to be understood
before we apply complex methods to evaluating integrals, analysing data,
and solving differential equations.

7.1 Cauchy-Riemann equations

We will focus on functions, f(z), of a single complex variable z, where z =
x+ iy. We can think of these as being complex valued functions of two real
variables, x and y. For example

sin z ≡ sin(x + iy) = sin x cos iy + cos x sin iy

= sin x cosh y + i cos x sinh y. (7.1)

Here we have used

sin x =
1

2i

(
eix − e−ix

)
, sinh x =

1

2

(
ex − e−x

)
,

cos x =
1

2

(
eix + e−ix

)
, cosh x =

1

2

(
ex + e−x

)
,

to make the connection between the circular and hyperbolic functions. We
will often write f(z) = u + iv, where u and v are real functions of x and y.

177
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In the present example u = sin x cosh y and v = cos x sinh y.
If all four partial derivatives

∂u

∂x
,

∂v

∂y
,

∂v

∂x
,

∂u

∂y
, (7.2)

exist and are continuous then f = u+ iv is differentiable as a complex-valued
function of two real variables. This means that we can linearly approximate
the variation in f as

δf =
∂f

∂x
δx+

∂f

∂y
δy + · · · (7.3)

where the dots represent a remainder that goes to zero faster than linearly
as δx, δy go to zero. We now regroup the terms, setting δz = δx + iδy,
δz = δx− iδy, so that

δf =
∂f

∂z
δz +

∂f

∂z
δz + · · · , (7.4)

where

∂f

∂z
≡ 1

2

(
∂f

∂x
− i∂f

∂y

)
,

∂f

∂z
≡ 1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (7.5)

Now our function f(z) is not supposed to depend on z, so it should satisfy

∂zf ≡
∂f

∂z
= 0. (7.6)

Thus, with f = u+ iv,

0 =
1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv), (7.7)

or (
∂u

∂x
− ∂v

∂y

)
+ i

(
∂v

∂x
+
∂u

∂y

)
= 0. (7.8)

Since the vanishing of a complex number requires the real and imaginary
parts to be separately zero, this implies that

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
. (7.9)
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These are known as the Cauchy-Riemann equations, although they were
probably discovered by Gauss. If our continuous partial derivatives satisfy
the Cauchy-Riemann equations at z0 = x0 + iy0 then the function is complex
differentiable (or just differentiable) at that point, and, taking δz = z − z0,
we have

δf ≡ f(z)− f(z0) =
∂f

∂z
(z − z0) + · · · , (7.10)

where the remainder, represented by the dots, tends to zero faster than |z−z0|
as z → z0. This linear approximation to the variation in f(z) is equivalent
to the statement that the ratio

f(z)− f(z0)

z − z0
(7.11)

tends to a definite limit as z → z0 from any direction. It is the direction-
independence of this limit that provides a proper meaning to the phrase “is
not supposed to depend on z”. Since we no longer need z̄, it is natural to
drop the partial derivative signs and write the limit as an ordinary derivative

df

dz
, or f ′(z). (7.12)

This complex derivative obeys exactly the same calculus rules as the ordinary
real derivatives:

d

dz
zn = nzn−1,

d

dz
sin z = cos z,

d

dz
(fg) =

df

dz
g + f

dg

dz
, etc. (7.13)

If the function is differentiable at all points in an arcwise-connected open
set, or domain, D, the function is said to be analytic there. The words
regular or holomorphic are also used.

7.1.1 Conjugate pairs

The functions u and v comprising the real and imaginary parts of an analytic
function are said to form a pair of harmonic conjugate functions. Such pairs
have many properties that are useful for solving physical problems.
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From the Cauchy-Riemann equations we deduce that
(
∂2

∂x2
+

∂2

∂y2

)
u = 0,

(
∂2

∂x2
+

∂2

∂y2

)
v = 0. (7.14)

and so both the real and imaginary parts of f(z) are automatically harmonic
functions of x, y.

Further, from Cauchy-Riemann again, we deduce that

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
= 0. (7.15)

This means that ∇u · ∇v = 0, and so any pair of curves u = const. and
v = const. intersect at right angles. If we regard u as the potential φ solving
some electrostatics problem, then the curves v = const. are the associated
field lines.

In fluid mechanics, if v is the velocity field of an irrotational (∇×v = 0)
flow, then we can wrote the flow field as a gradient

vx = ∂xφ,

vy = ∂yφ, (7.16)

where φ is a velocity potential . If the flow is incompressible (∇·v = 0), then
we can write it as a curl

vx = ∂yχ,

vy = −∂xχ, (7.17)

where χ is a stream function. The curves χ = const. are the flow streamlines.
If the flow is both irrotational and incompressible, then we may use either φ
or χ to represent the flow, and, since the two representations must agree, we
have

∂xφ = ∂yχ,

∂yφ = −∂xχ. (7.18)

Thus φ and χ are harmonic conjugates, and so the combination Φ = φ + iχ
is an analytic function called the complex stream function.
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A conjugate v exists for any harmonic function u. Here is an existence
proof: First, the motivation for the construction. Observe that if we assume
we have a u, v pair obeying Cauchy-Riemann in some domain D then we can
write

dv =
∂v

∂x
dx +

∂v

∂y
dy

= −∂u
∂y
dx+

∂u

∂x
dy. (7.19)

This observation suggests that if we are given only a harmonic function u we
can define a v by

v(z)− v(z0) =
∫ z

z0

(
−∂u
∂y
dx+

∂u

∂x
dy

)
. (7.20)

The integral is path independent, and hence well defined, because

∂

∂y

(
−∂u
∂y

)
− ∂

∂x

(
∂u

∂x

)
= −∇2u = 0. (7.21)

We now observe that we can make our final approach to z = x + iy along a
straight line segment lying on either the x or y axis. If we approach along
the x axis, we have

v(z) =
∫ x

(
−∂u
∂y

)
dx′ + rest of integral, (7.22)

and may use
d

dx

∫ x

f(x′, y) dx′ = f(x, y) (7.23)

to see that
∂v

∂x
= −∂u

∂y
, (7.24)

at (x, y). If we approach along the y axis we may similarly compute

∂v

∂y
=
∂u

∂x
. (7.25)

Thus our newly defined v does indeed obey the Cauchy-Riemann equations.
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Because of the utility the harmonic conjugate it is worth giving a practical
recipe for finding it. The method we give below is one we learned from John
d’Angelo. It is more efficient that those given in the regular textbooks. We
first observe that if f is a function of z only, then f depends only on z, so
we will write f(z) = f(z). Now

u(x, y) =
1

2

(
f(z) + f(z)

)
. (7.26)

Set

x =
1

2
(z + z), y =

1

2i
(z − z), (7.27)

so

u
(

1

2
(z + z),

1

2i
(z − z)

)
=

1

2

(
f(z) + f(z)

)
. (7.28)

Now set z = 0, while keeping z fixed! Thus

f(z) + f(0) = 2u
(
z

2
,
z

2i

)
. (7.29)

The function f is not completely determined of course, because we can always
add an imaginary constant to v, and the above is equivalent to

f(z) = 2u
(
z

2
,
z

2i

)
+ iC, C ∈ R. (7.30)

For example, let u = x2 − y2. We find

f(z) + f(0) = 2
(
z

2

)2

− 2
(
z

2i

)2

= z2, (7.31)

or

f(z) = z2 + iC, C ∈ R. (7.32)

The business of setting setting z = 0, while keeping z fixed, may feel like
a dirty trick, but it can be justified by the (as yet to be proved) fact that f
has a convergent expansion as a power series in z = x+ iy. In this expansion
it is meaningful to let x and y themselves be complex, and so allow z and
z to become two independent complex variables. Anyway, you can always
check ex post facto that your answer is correct.
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7.1.2 Conformal Mapping

An analytic function w = f(z) will map subsets of its domain of definition
in the “z” plane on to subsets in the “w” plane. These maps are often useful
for solving problems in electrostatics or two dimensional fluid flow. Their
simplest property is geometrical: such maps are conformal .

Z

Z

10

1−Z

Z
1

Z

1−Z
1

1−Z

Z−1
Z

The unshaded triangle marked z is mapped conformally into the other five
unshaded regions by the functions labeling them. Observe that the angles of
the triangle are preserved by the maps.

Suppose that the derivative of f(z) at a point z0 is non-zero. Then

f(z)− f(z0) ≈ A(z − z0), (7.33)

where

A =
df

dz

∣∣∣∣∣
z0

. (7.34)

If you think about the geometric interpretation of complex multiplication
(multiply the magnitudes, add the arguments) you will see that “f” image
of a small neighbourhood of z0 is stretched by a factor |A|, and rotated
through an angle argA — but relative angles are not altered. The map z →
f(z) = w is therefore isogonal . Our map also preserves orientation (the sense
of rotation of the relative angle) and these two properties, isogonality and
orientation-preservation, are what make the map conformal.1 The conformal

1If f were a function of z only, then the map would still be isogonal, but would reverse
the orientation. We might call these maps antiholomorphic and anti-conformal .
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property will fail at points where the derivative vanishes.

If we can find a conformal map z (≡ x + iy) → w (≡ u + iv) of some
domain D to another D′ then a function f(z) that solves a potential problem
(a Dirichlet boundary-value problem, for example) in D will lead to f(z(w))
solving an analogous problem in D′.

Example: The map z → w = z+ez maps the strip−π ≤ y ≤ π, −∞ < x <∞
into the entire complex plane with cuts from −∞+ iπ to −1 + iπ and from
−∞− iπ to −1− iπ. The cuts occur because the lines y = ±π get folded
back on themselves at w = −1± iπ, where the derivative of w(z) vanishes.

-4 -2 2 4 6

-6

-4

-2

2

4

6

Image of part of the strip −π ≤ y ≤ π, −∞ < x < ∞ under the map
z → w = z + ez.

In this case, the imaginary part of the function f(z) = x+ iy trivially solves
the Dirichlet problem ∇2

x,y y = 0 in the infinite strip, with y = π on the
upper boundary and y = −π on the lower boundary. The function y(u, v),
now quite non-trivially, solves ∇2

u,v y = 0 in the entire w plane, with y = π
on the half-line running from −∞+ iπ to −1 + iπ, and y = −π on the half-
line running from −∞− iπ to −1− iπ. We may regard the images of the
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lines y = const. (solid curves) as being the streamlines of an irrotational and
incompressible flow out of the end of a tube into an infinite region, or as
the equipotentials near the edge of a pair of capacitor plates. In the latter
case, the images of the lines x = const. (dotted curves) are the corresponding
field-lines
Example: The Joukowski map. This map is famous in the history of aero-
nautics because it can be used to map the exterior of a circle to the exterior
of an aerofoil-shaped region. We can use the Milne-Thomson circle theorem
(see later) to find the streamlines for the flow past a circle in the z plane,
and then use Joukowski’s transformation,

w = f(z) =
1

2

(
z +

1

z

)
, (7.35)

to map this simple flow to the flow past the aerofoil. The circle must go
through the point z = 1, where the derivative of f vanishes, and this point
becomes the sharp trailing edge of the aerofoil. To see this in action visit the
web site: http://www.math.psu.edu/glasner/Smp51/example1.html where
there is a java applet that lets you explore this map.

The Riemann Mapping Theorem

There are tables of conformal maps for D, D′ pairs, but an underlying prin-
ciple is provided by the Riemann mapping theorem:
Theorem: The interior of any simply connected domain D in C whose bound-
ary consists of more that one point can be mapped conformally 1-1 and onto
the interior of the unit circle. It is possible to chose an arbitrary interior
point w0 of D and map it to the origin, and to take an arbitrary direction
through w0 and make it the direction of the real axis. With these two choices
the mapping is unique.

fD
w0

w

O

z

The Riemann mapping theorem.



186 CHAPTER 7. COMPLEX ANALYSIS I

This theorem was “obvious” to Riemann, and for the reason we will give
as a physical “proof”. This argument is not rigorous, however, and it was
many years before a real proof was found.

For the physical proof, observe that in the function

− 1

2π
ln z = − 1

2π
{ln |z|+ iθ} , (7.36)

the real part, φ = − 1
2π

ln |z|, is the potential of a unit charge at the origin,
and with the additive constant chosen so that φ = 0 on the circle |z| = 1.
Now imagine that we have solved the problem of finding the potential for a
unit charge located at w0 ∈ D, also with the boundary of D being held at
zero potential. We have

∇2φ1 = −δ2(w − w0), φ1 = 0 on ∂D. (7.37)

Now find the φ2 that is harmonically conjugate to φ1. Set

φ1 + iφ2 = Φ(w) = − 1

2π
ln(zeiα); (7.38)

then we see that the transformation w → z, or

z = e−iαe−2πΦ(w), (7.39)

does the job of mapping the interior of D into the interior of the unit circle,
and the boundary of D to the boundary of the unit circle. Note how our
freedom to choose the constant α is what allows us to “take an arbitrary
direction through w0 and make it the direction of the real axis.”
Example: To find the map that takes the upper half-plane into the unit
circle, with the point z = i mapping to the origin, we use the method of
images to solve for the complex potential of a unit charge at w = i:

φ1 + iφ2 = − 1

2π
(ln(w − i)− ln(w + i))

= − 1

2π
ln(eiαz).

Therefore

z = e−iα
w − i
w + i

. (7.40)
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We immediately verify that that this works: we have |z| = 1 when w is real,
and z = 0 at w = i.

The trouble with the physical argument is that it is not clear that a so-
lution to the point-charge electrostatics problem exists. In three dimensions,
for example, there is no solution when the boundary has a sharp inward
directed spike. (We cannot physically realize such a situation either: the
electric field becomes unboundedly large near the tip of a spike, and bound-
ary charge will leak off and neutralize the point charge.) There might well be
analogous difficulties in two dimensions if the boundary of D is pathological.
However, the fact that there is a proof of the Riemann mapping theorem
shows that the two-dimensional electrostatics problem does always have a
solution, at least in the interior of D — even if the boundary is very jagged.
However, unless ∂D is smooth enough to be locally connected , the potential
φ1 cannot be continuously extended to the boundary.

7.2 Complex Integration: Cauchy and Stokes

In this section we will define the integral of an analytic function, and make
contact with the exterior calculus from the earlier part of the course. The
most obvious difference between the real and complex integral is that in
evaluating the definite integral of a function in the complex plane we must
specify the path over which we integrate. When this path of integration is the
boundary of a region, it is often called a contour (from the use of the word
in art to describe the outline of something), and the integrals themselves are
then called contour integrals.

7.2.1 The Complex Integral

The complex integral ∫

Γ
f(z)dz, (7.41)

over a path Γ may be defined by expanding out the real and imaginary parts

∫

Γ
f(z)dz ≡

∫

Γ
(u+ iv)(dx+ idy) =

∫

Γ
(udx− vdy)+ i

∫

Γ
(vdx+ udy). (7.42)

and treating the two integrals on the right hand side as standard vector-
calculus line-integrals of the form

∫
v · dr, with v→ (u,−v) and v → (v, u).
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0
z1

ξ1 ξ2 2z
z

N

N−1 ξ
N

Γ

zza= =b a b

A chain approximation to the curve Γ.

The complex integral can also be constructed as the limit of a Riemann sum
in a manner parallel to the definition of the real-variable Riemann integral of
elementary calculus. Replace the path Γ with a chain composed of of N line
segments z0-to-z1, z1-to-z2, all the way to zN−1-to-zN . Now let ξm lie on the
line segment joining zm−1 and zm. Then the integral

∫
Γ f(z)dz is the limit of

the (Riemann) sum
N∑

m=1

f(ξm)(zm − zm−1) (7.43)

as N gets large and max |zm − zm−1| → 0. For this definition to make
sense and be useful, the limit must be independent of both how we chop up
the curve and how we select the points ξm. This may be shown to be the
case when the integration path is smooth, and the function being integrated
continuous.

The Riemann sum definition of the integral leads to a useful inequality:
Combining the triangle inequality |a + b| ≤ |a| + |b| with |ab| = |a| |b| we
deduce that

∣∣∣∣∣

N∑

m=1

f(ξm)(zm − zm−1)

∣∣∣∣∣ ≤
N∑

m=1

|f(ξm)(zm − zm−1)|

=
N∑

m=1

|f(ξm)| |(zm − zm−1)|. (7.44)

For sufficiently smooth curves the last sum will converge to the real integral∫
Γ |f(z)| |dz|, and we deduce that

∣∣∣∣
∫

Γ
f(z) dz

∣∣∣∣ ≤
∫

Γ
|f(z)| |dz|. (7.45)

For curves Γ that are smooth enough to have a well-defined length |Γ|, we
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will have
∫
Γ |dz| = |Γ|. From this we conclude that if |f | ≤M on Γ, then

∣∣∣∣
∫

Γ
f(z) dz

∣∣∣∣ ≤M |Γ|. (7.46)

We will find many uses for this inequality.
The Riemann sum definition also makes it clear that if f(z) is the deriva-

tive of another analytic function,

f(z) =
dg

dz
, (7.47)

then, for Γ a smooth path from z = a to z = b, we have
∫

Γ
f(z)dz = g(b)− g(a). (7.48)

This follows by approximating f(ξm) ≈ (g(zm)− g(zm−1))/(zm − zm−1), and
observing that the sum resultant Riemann sum

N∑

m=1

(
g(zm)− g(zm−1)

)
(7.49)

telescopes. The approximation to the derivative will become exact in the
limit |zm−zm−1| → 0. Thus, when f(z) is the derivative of another function,
the integral is independent of the route that Γ takes from a to b.

We will see that any analytic function is (at least locally) the derivative
of another analytic function, and so this path independence holds generally
— provided that we do not try to move the integration contour over a place
where f ceases to be differentiable. This is the essence of what is known as
Cauchy’s Theorem — although, as with most of complex analysis, the result
was known to Gauss.

7.2.2 Cauchy’s theorem

Before we state and prove Cauchy’s theorem we must introduce an orientation
convention and some traditional notation. Recall that a p-chain is a formal
sum of p-dimensional oriented surfaces or curves, and that A p-cycle is a
p-chain Γ whose boundary vanishes: ∂Γ = 0. A 1-cycle that consists of
only one connected component is therefore a closed curve. We will mostly
consider integrals about simple closed curves — these being curves that do
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not self intersect — or 1-cycles consisting of formal sums of such curves. The
orientation of a simple closed curve can be described by the sense, clockwise
or anticlockwise, in which we traverse it. We will adopt the convention that
a positively oriented curve is one such that the integration is performed in a
anticlockwise direction. The integral over a chain Γ of oriented closed curves
will be denoted by the symbol

∮
Γ f dz.

We now establish Cauchy’s theorem by relating it to our previous work
with exterior derivatives: Suppose that Γ = ∂Ω with f analytic, so ∂zf = 0,
in Ω. We now exploit the fact that ∂zf = 0 in computing the exterior
derivative,

df = ∂zf dz + ∂zf dz = ∂zf dz, (7.50)

of f , and use Stokes’ theorem to deduce that
∮

Γ=∂Ω
f(z)dz =

∫

Ω
d(f(z)dz) =

∫

Ω
(∂zf) dz ∧ dz = 0. (7.51)

The last integral is zero because dz ∧ dz = 0. We may state our result as:
Theorem (Cauchy, in modern language): The integral of an analytic function
over a 1-cycle that is homologous to zero vanishes.

The zero result is only guaranteed if the function f is analytic throughout
the region Ω. For example, if Γ is the unit circle z = eiθ then

∮

Γ

(
1

z

)
dz =

∫ 2π

0
e−iθ d

(
eiθ
)

= i
∫ 2π

0
dθ = 2πi. (7.52)

Cauchy’s theorem is not applicable because 1/z is singular , i.e. not differen-
tiable, at z = 0. The formula (7.52) will hold for Γ any contour homologous
to the unit circle in C \ 0, the complex plane punctured by the removal of
the point z = 0. Thus ∮

Γ

(
1

z

)
dz = 2πi (7.53)

for any contour Γ that encloses the origin. We can deduce a rather remarkable
formula from (7.53): Writing Γ = ∂Ω with anticlockwise orientation, we have

∮

Γ

(
1

z

)
dz =

∫

Ω
∂z

(
1

z

)
dzdz =

{
2π, 0 ∈ Ω
0, 0 /∈ Ω

, (7.54)

Since dzdz = 2idxdy, we have established that

∂z

(
1

z

)
= πδ2(x, y), (7.55)
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a rather cryptic formula that encodes one of the most useful results in math-
ematics.

Perhaps perversely, functions that are more singular than 1/z have van-
ishing integrals about their singularities. With Γ again the unit circle, we
have ∮

Γ

(
1

z2

)
dz =

∫ 2π

0
e−2iθ d

(
eiθ
)

= i
∫ 2π

0
e−iθ dθ = 0. (7.56)

The same is true for all higher integer powers:

∮

Γ

(
1

zn

)
dz = 0, n ≥ 2. (7.57)

We can understand this vanishing in another way by evaluating the inte-
gral as

∮

Γ

(
1

zn

)
dz =

∮

Γ

d

dz

(
− 1

n− 1

1

zn−1

)
dz =

[
− 1

n− 1

1

zn−1

]

Γ
= 0, n 6= 1.

(7.58)
Here the notation [A]Γ means the difference in the value of A at two ends
of the integration path Γ. For a closed curve the difference is zero because
the two ends are at the same point. This approach reinforces the fact that
the complex integral can be computed from the “anti-derivative” in the same
way as the real-variable integral. We also see why 1/z is special. It is the
derivative of ln z = ln |z| + i arg z, and ln z is not really a function as it is
multivalued. In evaluating [ln z]Γ we must follow the continuous evolution of
arg z as we traverse the contour. Since the origin is within the contour, this
angle increases by 2π, and so

[ln z]Γ = [i arg z]Γ = i
(
arg e2πi − arg e0i

)
= 2πi. (7.59)

Exercise 7.1: Suppose f(z) is analytic in a simply connected domain D, and
z0 ∈ D. Set g(z) =

∫ z
z0
f(z) along some path in D from z0 to z. Use the

path-independence of the integral to compute the derivative of g(z) and show
that

f(z) =
dg

dz
.

This confirms our earlier claim that any analytic function is the derivative of
some other analytic function.
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Exercise 7.2: The “D-bar” problem: Suppose we are given a simply connected
domain Ω, and a function f(z, z) defined on it, and wish to find a function
F (z, z) such that

∂F (z, z)

∂z
= f(z, z), (z, z) ∈ Ω.

Use (7.55) to argue formally that the general solution is

F (ζ, ζ̄) = − 1

π

∫

Ω

f(z, z)

z − ζ dx dy + g(ζ),

where g(ζ) is an arbitrary analytic function. This result can be shown to be
correct by more rigorous reasoning.

7.2.3 The residue theorem

Theorem: Let f(z) be analytic within and on the boundary Γ = ∂D of a
simply connected domain D, with the exception of finite number of points
at which the function has poles. Then

∮

Γ
f(z) dz =

∑

poles ∈ D
2πi (residue at pole), (7.60)

the integral being traversed in a positive (anticlockwise) sense. The words
pole and residue referred to in the theorem mean the following: A pole is
place where the function blows up as some inverse power of z. If, near z0,
the function can be written

f(z) =

{
aN

(z − z0)N
+ · · ·+ a2

(z − z0)2
+

a1

(z − z0)

}
g(z), (7.61)

where g(z) is analytic and non-zero at z0, then f(z) has a pole of order
N at z0. If N = 1 we have a simple pole. If we normalize g(z) so that
g(z0) = 1 then the coefficient, a1, of 1/(z − z0) is the residue of the pole at
z0. The coefficients of the more singular terms do not influence the result of
the integral, but N must be finite.

The evaluation of contour integrals therefore boils down to identifying
where a complex function blows up, and looking at just how it does it.

We prove the residue theorem by drawing small circles Ci about each
singular point zi in D.
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We then assert that ∮

Γ
f(z) dz =

∑

i

∮

Ci

f(z) dz, (7.62)

because the 1-cycle
Γ−

∑

i

Ci = ∂Ω (7.63)

is the boundary of a region Ω in which f is analytic, and hence is homologous
to zero. If we take the radius Ri of the circle Ci small enough we may replace
g(z) by its limit g(zi), and so set

f(z) →
{

a1

(z − zi)
+

a2

(z − zi)2
+ · · · aN

(z − zi)N
}
g(zi),

=
a1

(z − zi)
+

a2

(z − zi)2
+ · · · aN

(z − zi)N
, (7.64)

on Ci. We the evaluate the integral over Ci by using our previous results.
The theorem then follows.

We need to restrict ourselves to contours containing only finitely many
poles for two reasons: Firstly, with infinitely many poles, the sum over imight
not converge; secondly there may be a point whose every neighbourhood
contains infinitely many of the poles, and there our construction of drawing
circles around each individual pole would not be possible.

Exercise 7.3: Bergman Kernel. The Hilbert space of analytic functions on a
domain D with inner product

〈f, g〉 =

∫

D
f̄g dxdy
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is called the Bergman2 space of D.

a) Suppose that ϕn(z), n = 1, 2, . . ., are a complete set of orthonormal
functions on the Bergman space. Show that

K(ζ, z) =
∞∑

m=1

ϕn(ζ)ϕn(z).

has the property that

g(ζ) =

∫∫

D
K(ζ, z)g(z) dxdy.

for any function g analytic in D. Thus K(ζ, z) plays the role of the delta
function on the space of analytic functions on D. This object is called
the reproducing or Bergman kernel . By taking g(z) = ϕn(z), show that
it is the unique integral kernel with the reproducing property.

b) Consider the case of D being the unit circle. Use the Gramm-Schmidt
procedure to construct an orthonormal set from the functions zn, n =
0, 1, 2, . . .. Use the result of the previous part to conjecture (because we
have not proved that the set is complete) that, for the unit circle,

K(ζ, z) =
1

π

1

(1− ζz̄)2 .

c) For any smooth, complex valued, function g defined on D and its bound-
ary, use Stokes’ theorem to show that

∫∫

D
∂zg(z, z)dxdy =

1

2i

∮

C
g(z, z)dz.

Use this to verify that this the K(ζ, z) you constructed in part b) is
indeed a (and hence “the”) reproducing kernel.

d) Now suppose that D is a simply connected domain whose boundary,
C = ∂D, consists of more than one point. We know from the Riemann
mapping theorem that there exists an analytic function f(z) = f(z; ζ)
that maps D onto the interior of the unit circle in such a way that

2This space is not to be confused with the Bargmann-Fock space of analytic functions
on the entirety of C with inner product

〈f, g〉 =
∫

C

e−|z|2 f̄ gd2z.

Bergman and Bargmann are two different people.
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f(ζ) = 0 and f ′(ζ) is real and non-zero. Show that if we set K(ζ, z) =
f ′(z)f ′(ζ)/π, then, by using part c) together with the residue theorem
to evaluate the integral over the boundary, we have

g(ζ) =

∫∫

D
K(ζ, z)g(z) dxdy.

This K(ζ, z) must therefore be the reproducing kernel. We see that if we
know K we can recover the map f from

f ′(z; ζ) =

√
π

K(ζ, ζ)
K(z, ζ).

e) Apply the formula from part d) to the unit circle, and so deduce that

f(z; ζ) =
z − ζ
1− ζ̄z

is the unique function that maps the unit circle onto itself with the point
ζ mapping to the origin and with the horizontal direction through ζ
remaining horizontal.

7.3 Applications

We now know enough about complex variables to work through some in-
teresting applications, including understanding the mechanism by which an
aeroplane flies.

7.3.1 Two-dimensional vector calculus

It is often convenient to use complex co-ordinates for vectors and tensors. In
these co-ordinates the standard metric on R2 becomes

“ds2” = dx⊗ dx + dy ⊗ dy
= dz ⊗ dz
= gzzdz ⊗ dz + gzzdz ⊗ dz + gzzdz ⊗ dz + gzzdz ⊗ dz, (7.65)

so the complex co-ordinate components of the metric tensor are gzz = gzz = 0,
gzz = gzz = 1

2
. The inverse metric tensor is gzz = gzz = 2, gzz = gzz = 0.

In these co-ordinates the Laplacian is

∇2 = gij∂2
ij = 2(∂z∂z + ∂z∂z). (7.66)
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It is not safe to assume that ∂z∂zf = ∂z∂zf when f has singularities. For
example, from

∂z

(
1

z

)
= πδ2(x, y), (7.67)

we deduce that

∂z∂z ln z = πδ2(x, y). (7.68)

When we evaluate the derivatives in the opposite order, however, we have

∂z∂z ln z = 0. (7.69)

To understand the source of the non-commutativity, take real and imaginary
parts of these last two equations. Write ln z = ln |z| + iθ, where θ = arg z,
and add and subtract. We find

∇2 ln |z| = 2πδ2(x, y),

(∂x∂y − ∂y∂x)θ = 2πδ2(x, y). (7.70)

The first of these shows that 1
2π

ln |z| is the Green function for the Laplace
operator, and the second reveals that the vector field ∇θ is singular, having
a delta function “curl” at the origin.

If we have a vector field v with contravariant components (vx, vy) and (nu-
merically equal) covariant components (vx, vy) then the covariant components
in the complex coordinate system are vz = 1

2
(vx − ivy) and vz = 1

2
(vx + ivy).

This can be obtained by a using the change of coordinates rule, but a quicker
route is to observe that

v · dr = vxdx + vydy = vzdz + vzdz. (7.71)

Now

∂zvz =
1

4
(∂xvx + ∂yvy) + i

1

4
(∂yvx − ∂xvy). (7.72)

Thus the statement that ∂zvz = 0 is equivalent to the vector field v being
both solenoidal (incompressible) and irrotational. This can also be expressed
in form language by setting η = vz dz and saying that dη = 0 means that the
corresponding vector field is both solenoidal and irrotational.
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7.3.2 Milne-Thomson Circle Theorem

As we mentioned earlier, we can describe an irrotational and incompressible
fluid motion either by a velocity potential

vx = ∂xφ, vy = ∂yφ, (7.73)

where v is automatically irrotational but incompressibilty requires ∇2φ = 0,
or by a stream function

vx = ∂yχ, vy = −∂xχ, (7.74)

where v is automatically incompressible but irrotationality requires ∇2χ = 0.
We can combine these into a single complex stream function Φ = φ + iχ
which, for an irrotational incompressible flow, satisfies Cauchy-Riemann and
is therefore an analytic function of z. We see that

2vz =
dΦ

dz
, (7.75)

φ and χ making equal contributions.
The Milne-Thomson theorem says that if Φ is the complex stream func-

tion for a flow in free space, then

Φ̃ = Φ(z) + Φ

(
a2

z

)
(7.76)

is the stream function after the cylinder |z| = a is inserted into the flow.
Here Φ(z) denotes the analytic function defined by Φ(z) = Φ(z). To see that
this works, observe that a2/z = z on the curve |z| = a, and so on this curve
Im Φ̃ = χ = 0. The surface of the cylinder has therefore become a streamline,
and so the flow does not penetrate into the cylinder. If the original flow is
created by souces and sinks exterior to |z| = a, which will be singularities
of Φ, the addional term has singularites that lie only within |z| = a. These
will be the “images” of the sources and sinks in the sense of the “method of
images”.
Example: A uniform flow with speed U in the x direction has Φ(z) = Uz.
Inserting a cylinder makes this

Φ̃(z) = U

(
z +

a2

z

)
.
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Since vz is the derivative of this, we see that the perturbing effect of the
obstacle on the velocity field falls off as the square of the distance from the
cylinder.

-2 -1 0 1 2
-2

-1

0

1

2

The real and imaginary parts of the function z+ z−1 provide the streamlines
and velocity potentials for irrotational incompressible flow past a unit radius
cylinder.

7.3.3 Blasius and Kutta-Joukowski Theorems

We now derive the celebrated result, discovered independently by Kutta
(1902) and Joukowski (1906), that the lift per unit span of an aircraft wing
is equal to the product of the density of the air ρ, the circulation κ =

∮
v ·dr

about the wing, and the forward velocity U of the wing through the air.
Their theory treats the air as being incompressible (a good approximation
unless the flow velocities approach the speed of sound), and assumes that
the wing is long enough that flow can be regarded as being two dimensional.

U

F

Flow past an aerofoil.
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Begin by recalling how the momentum flux tensor

Tij = ρvivj + gijP (7.77)

enters fluid mechanics. In cartesian co-ordinates, and in the presence of an
external body force fi acting on the fluid, the Euler equation of motion for
the fluid is

ρ(∂tvi + vj∂jvi) = −∂iP + fi. (7.78)

Here P is the pressure and we are distinguishing between co and contravariant
components, although at the moment gij ≡ δij . We can rewrite this using
mass conservation,

∂tρ+ ∂i(ρvi) = 0, (7.79)

as
∂t(ρvi) + ∂j(ρvjvi + δijP ) = fi. (7.80)

This shows that the external force acts as a source of momentum, and that
for steady flow fi is equal to the divergence of the momentum flux tensor:

fi = ∂lTli ≡ gkl∂kTli. (7.81)

Since we are interested in steady, irrotational motion with constant density
we may use Bernoulli’s theorem, P + 1

2
ρ|v|2 = const., to substitute −1

2
ρ|v|2

in place of P . (The constant will not affect the momentum flux.) With this
substitution Tij becomes a traceless symmetric tensor

Tij = ρ(vivj −
1

2
gij |v|2). (7.82)

Using vz = 1
2
(vx − ivy) and

Tzz =
∂xi

∂z

∂xj

∂z
Tij (7.83)

together with

x ≡ x1 =
1

2
(z + z), y ≡ x2 =

1

2i
(z − z) (7.84)

we find

T ≡ Tzz =
1

4
(Txx − Tyy − 2iTxy) = ρ(vz)

2. (7.85)
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This is the only component of Tij we will need to consider. Tzz is simply T
while Tzz = 0 = Tzz because Tij is traceless.

In our complex coordinates, the equation

fi = gkl∂kTli (7.86)

reads
fz = gzz∂zTzz + gzz∂zTzz = 2∂zT. (7.87)

We see that in steady flow the net momentum flux Ṗi out of a region Ω is
given by

Ṗz=
∫

Ω
fz dxdy =

1

2i

∫

Ω
fz dzdz =

1

i

∫

Ω
∂zT dzdz =

1

i

∮

∂Ω
T dz. (7.88)

We have used Stokes’ theorem at the last step. In regions where there is no
external force, T is analytic, ∂zT = 0, and the integral will be independent
of the choice of contour ∂Ω. We can subsititute T = ρv2

z to get

Ṗz = −iρ
∮

∂Ω
v2
z dz, (7.89)

To apply this result to our aerofoil we take can take ∂Ω to be its boundary.
Then Ṗz is the total force exerted on the fluid by the wing, and, by Newton’s
third law, this is minus the force exerted by the fluid on the wing. The total
force on the aerofoil is therefore

Fz = iρ
∮

∂Ω
v2
z dz. (7.90)

The result (7.90) is often called Blasius’ theorem.
Evaluating the integral in (7.90) is not immediately possible because the

velocity v on the boundary will be a complicated function of the shape of
the body. We can, however, exploit the contour independence of the integral
and evaluate it over a path encircling the aerofoil at large distance where the
flow field takes the asymptotic form

vz = Uz +
κ

4πi

1

z
+O(

1

z2
). (7.91)

The O(1/z2) term is the velocity perturbation due to the air having to flow
round the wing, as with the cylinder in a free flow. To confirm that this flow
has the correct circulation we compute

∮
v · dr =

∮
vzdz +

∮
vz dz = κ. (7.92)
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Substituting vz in (7.90) we find that the O(1/z2) term cannot contribute
as it cannot affect the residue of any pole. The only part that does contribute
is the cross term that arises from multiplying Uz with κ/(4πiz). This gives

Fz = iρ
(
Uzκ

2πi

) ∮ dz

z
= iρκUz (7.93)

or

1

2
(Fx − iFy) = iρκ

1

2
(Ux − iUy). (7.94)

Thus, in conventional coordinates, the reaction force on the body is

Fx = ρκUy,

Fy = −ρκUx. (7.95)

The fluid therefore provides a lift force proportional to the product of the
circulation with the asymptotic velocity. The force is at right angles to the
incident airstream, so there is no drag .

The circulation around the wing is determined by the Kutta condition
that the velocity of the flow at the sharp trailing edge of the wing be finite.
If the wing starts moving into the air and the requisite circulation is not yet
established, then the flow under the wing does not leave the trailing edge
smoothly but tries to whip round to the topside. The velocity gradients
become very large and viscous forces become important and prevent the air
from making the sharp turn. Instead, a starting vortex is shed from the
trailing edge. Kelvin’s theorem on the conservation of vorticity shows that
this causes a circulation of equal and opposite strength to be induced about
the wing.

For finite wings, the path independence of
∮
v · dr means that the wings

leave a pair of wingtip vortices of strength κ trailing behind them, and these
vortices cause the airstream incident on the aerofoil to come from a slighly
different direction than the asymptotic flow. Consequently, the lift is not
quite perpendicular to the motion of the wing. For finite-length wings there-
fore, lift comes at the expense of an inevitable induced drag force. The work
that has to be done against this drag force in driving the wing forwards
provides the kinetic energy in the trailing vortices.
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7.4 Applications of Cauchy’s Theorem

Cauchy’s theorem provides the Royal Road to complex analysis. It is possible
to develop the theory without it, but the path is harder going.

7.4.1 Cauchy’s Integral Formula

If f(z) is analytic within and on the boundary of a simply connected region Ω,
with ∂Ω = Γ, and if ζ is a point in Ω, then, noting that the the integrand has
a simple pole at z = ζ and applying the residue formula, we have Cauchy’s
integral formula

f(ζ) =
1

2πi

∮

Γ

f(z)

z − ζ dz, ζ ∈ Ω. (7.96)

Γ
ζ

Ω

This formula holds only if ζ lies within Ω. If it lies outside, then the integrand
is analytic everywhere inside Ω, and so the integral gives zero.

We may show that it is legitimate to differentiate under the integral sign
in Cauchy’s formula. If we do so n times, we have the useful corollary that

f (n)(ζ) =
n!

2πi

∮

Γ

f(z)

(z − ζ)n+1
dz. (7.97)

This shows that being once differentiable (analytic) in a region automatically
implies that f(z) is differentiable arbitrarily many times!

Exercise 7.4: The generalized Cauchy formula. Now suppose that we have
solved a D-bar problem, and so found an F (z, z) with ∂zF = f(z, z) in a
region Ω. Compute the exterior derivative of

F (z, z)

z − ζ
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using (7.55). Now, manipulating formally with delta functions, apply Stokes’
theorem to show that, for (ζ, ζ̄) in the interior of Ω, we have

F (ζ, ζ̄) =
1

2πi

∮

∂Ω

F (z, z)

z − ζ dz − 1

π

∫

Ω

f(z, z)

z − ζ dx dy.

This is called the generalized Cauchy formula. Note that the first term on the
right, unlike the second, is a function only of ζ, and so is analytic.

Liouville’s Theorem

A dramatic corollary of Cauchy’s integral formula is provided by Liouville’s
theorem: If f(z) is analytic in all of C, and is bounded there, meaning
that there is a positive real number K such that |f(z)| < K, then f(z) is
a constant. This result provides a powerful strategy for proving that two
formulæ f1(z) and f2(z) represent the same analytic function. If we can
show that the difference f1− f2 is analytic and tends to zero at infinity then
Liouville tells us that f1 = f2.

Because the result is perhaps unintuitive, and because the methods are
typical, we will spell out in detail how Liouville works. We select any two
points, z1 and z2, and use Cauchy to write

f(z1)− f(z2) =
1

2πi

∮

Γ

(
1

z − z1
− 1

z − z2

)
f(z) dz. (7.98)

We take the contour Γ to be circle of radius ρ centered on z1. We make
ρ > 2|z1 − z2|, so that when z is on Γ we are sure that |z − z2| > ρ/2.

>ρ/2

ρ

z2

z1

z

Contour for Liouville’ theorem.
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Then, using | ∫ f(z)dz| < ∫ |f(z)||dz|, we have

|f(z1)− f(z2)| =
1

2π

∣∣∣∣∣

∮

Γ

(z1 − z2)
(z − z1)(z − z2)

f(z) dz

∣∣∣∣∣

<
1

2π

∫ 2π

0

|z1 − z2|K
ρ/2

dθ =
2|z1 − z2|K

ρ
. (7.99)

The right hand side can be made arbitrarily small by taking ρ large enough,
so we we must have f(z1) = f(z2). Since z1 and z2 were any pair of points,
we deduce that f(z) takes the same value everywhere.

7.4.2 Taylor and Laurent Series

We have defined a function to be analytic in a domain D if it is (once)
complex differentiable at all points in D. It turned out that this apparently
mild requirement automatically implied that the function is differentiable
arbitrarily many times in D. In this section we will see that knowledge of all
derivatives of f(z) at any single point in D is enough to completely determine
the function at any other point in D. Compare this with functions of a real
variable, for which it is easy to construct examples that are once but not
twice differentiable, and where complete knowledge of function at a point,
or in even in a neighbourhood of a point, tells us absolutely nothing of the
behaviour of the function away from the point or neighbourhood.

The key ingredient in these almost magical properties of complex ana-
lytic functions is that any analytic function has a Taylor series expansion
that actually converges to the function. Indeed an alternative definition of
analyticity is that f(z) be representable by a convergent power series. For
real variables this is the definition of a real analytic function.

To appreciate the utility of power series representations we do need to
discuss some basic properties of power series. Most of these results are ex-
tensions to the complex plane of what we hope are familiar notions from real
analysis.

Consider the power series
∞∑

n=0

an(z − z0)n ≡ lim
N→∞

SN , (7.100)

where SN are the partial sums

Sn =
N∑

n=0

an(z − z0)n. (7.101)
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Suppose that this limit exists (i.e the series is convergent) for some z = ζ;
then the series is absolutely convergent3 for any |z − z0| < |ζ − z0|.

To establish the absolute convergence we may assume, without loss of
generality, that z0 = 0. Then, convergence of the sum requires that |anζn| →
0, and thus |anζn| is bounded. In other words, there is a B such that |anζn| <
B for any n. We now write

|anzn| = |anζn|
∣∣∣∣∣
z

ζ

∣∣∣∣∣

n

< B

∣∣∣∣∣
z

ζ

∣∣∣∣∣

n

. (7.102)

The sum
∑ |anζn| therefore converges for |z/ζ| < 1, by comparison with a

geometric progression.

This result, that if a power series in (z − z0) converges at a point then
it converges at all points closer to z0, shows that each power series series
possesses a radius of convergence R. The series converges for all |z−z0| < R,
and diverges for all |z − z0| > R. (What happens on the circle |z − z0| = R
is usually delicate, and harder to establish.) We will soon show that the
radius of convergence of a power series is the distance from z0 to the nearest
singularity of the function that it represents.

By comparison with a geometric progression, we may establish the fol-
lowing useful formulæ giving R for the series

∑
anz

n:

R = lim
n→∞

|an−1|
|an|

= lim
n→∞ |an|

1/n. (7.103)

The proof of these is identical the real-variable version.

When we differentiate the terms in a power series, and thus take anz
n →

nanz
n−1, this does not alter R. This suggests that it is legitimate to evaluate

the derivative of the function represented by the powers series by differen-
tiating term-by-term. As step on the way to justifying this, observe that if
the series converges at z = ζ and Dr is the domain |z| < r < |ζ| then, using

3Recall that absolute convergence of
∑
an means that

∑ |an| converges. Absolute
convergence implies convergence, and also allows us to rearrange the order of terms in the
series without changing the value of the sum. Compare this with conditional convergence,
where

∑
an converges, but

∑ |an| does not. You may remember that Riemann showed
that the terms of a conditionally convergent series can be rearranged so as to get any

answer whatsoever !
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the same bound as in the proof of absolute convergence, we have

|anzn| < B
|zn|
|ζ|n < B

rn

|ζ|n = Mn (7.104)

where
∑
Mn is convergent. As a consequence

∑
anz

n is uniformly conver-
gent in Dr by the Weierstrass “M” test. You probably know that uni-
form convergence allows the interchange the order of sums and integrals:∫
(
∑
fn(x))dx =

∑∫
fn(x)dx. For real variables uniform convergence is not

a strong enough a condition for us to to safely interchange order of sums
and derivatives: (

∑
fn(x))

′ is not necessarily equal to
∑
f ′
n(x). For complex

analytic functions, however, Cauchy’s integral formula reduces the operation
of differentiation to that of integration, and so this interchange is permitted.
In particular we have that if

f(z) =
∞∑

n=0

anz
n, (7.105)

and R is defined by R = ζ for any ζ for which the series converges, then f(z)
is analytic in |z| < R and

f ′(z) =
∞∑

n=0

nanz
n−1. (7.106)

Morera’s Theorem

This is a partial converse of Cauchy’s theorem: If f(z) is defined and contin-
uous in a domain D and

∮
Γ f(z) dz = 0 for all contours that are homologous

to zero, then f(z) is analytic in D. To prove this we set F (z) =
∫ z
P f(ζ) dζ,

so (this is the point where we need continuity) F ′(z) = f(z). Thus F (z)
is complex differentiable, and so analytic. Then, by Cauchy’s formula for
higher derivatives, F ′′(z) = f ′(z) exists, and so f(z) itself is analytic.

A corollary of Morera is that if fn(z)→ f(z) uniformly in D, with all the
fn analytic, then

i) f(z) is analytic in D.
ii) f ′

n(z)→ f ′(z) uniformly.
We use Morera, to prove i) (appealing to the uniform convergence to

justify the interchange the order of summation and integration), and use
Cauchy to prove ii).



7.4. APPLICATIONS OF CAUCHY’S THEOREM 207

Taylor’s Theorem

Theorem: Let Γ be a circle of radius ρ centered on the point a. Suppose that
f(z) is analytic within and on Γ, and and that the point z = ζ is within Γ.
Then f(ζ) can be expanded as a Taylor series

f(ζ) = f(a) +
∞∑

n=0

(ζ − a)n
n!

f (n)(a), (7.107)

meaning that this series converges to f(ζ) for all ζ such that |ζ − a| < ρ.
We use the identity

1

z − ζ =
1

z − a +
(ζ − a)
(z − a)2 + · · ·+ (ζ − a)N−1

(z − a)N +
(ζ − a)N
(z − a)N

1

z − ζ . (7.108)

and Cauchy’s integral, to write

f(ζ) =
1

2πi

∮

Γ

f(z)

(z − ζ) dz

=
N−1∑

n=0

(ζ − a)n
2πi

∮
f(z)

(z − a)n+1
dz +

(ζ − a)N
2πi

∮
f(z)

(z − a)N (z − ζ) dz

=
N−1∑

n=0

(ζ − a)n
n!

f (n)(a) +RN (7.109)

where

RN =
(ζ − a)N

2πi

∮

Γ

f(z)

(z − a)N(z − ζ) dz. (7.110)

This is Taylor’s theorem with remainder. For real variables this is as far as
we can go. Even if a real function is differentiable infinitely many times,
there is no reason for the remainder to become small. For analytic functions,
however, we can show that RN → 0 as N → ∞. This means that the
complex-variable Taylor series is convergent, and its limit is actually equal
to f(z). To show that RN → 0, recall that Γ is a circle of radius ρ centered
on z = a. Let r = |ζ − a| < ρ, and let M be an upper bound for f(z) on Γ.
(This exists because f is continuous and Γ is a compact subset of C.) Then,
estimating the integral using methods similar to those invoked in our proof
of Liouville’s Theorem, we find that

RN <
rN

2π

(
2πρM

ρN(ρ− r)

)
. (7.111)



208 CHAPTER 7. COMPLEX ANALYSIS I

Since r < ρ, this tends to zero as N →∞.
We can take ρ as large as we like provided there are no singularities of

f end up within, or on, the circle. This confirms the claim made earlier:
the radius of convergence of the powers series is the distance to the nearest
singularity.

Laurent Series

Theorem (Laurent): Let Γ1 and Γ2 be two anticlockwise circles with centre
a, radii ρ1 and ρ2, and with ρ2 < ρ1. If f(z) is analytic on the circles and
within the annulus between them, then, for ζ in the annulus:

f(ζ) =
∞∑

n=0

an(ζ − a)n +
∞∑

n=1

bn(ζ − a)−n. (7.112)

Γ1
Γ2 ζ a

Contours for Laurent’s theorem.

The coefficients are given by

an =
1

2πi

∮

Γ1

f(z)

(z − a)n+1
dz, bn =

1

2πi

∮

Γ2

f(z)(z − a)n−1 dz. (7.113)

This is proved by observing that

f(ζ) =
1

2πi

∮

Γ1

f(z)

(z − ζ) dz −
1

2πi

∮

Γ2

f(z)

(z − ζ) dz. (7.114)

and using the identities

1

z − ζ =
1

z − a +
(ζ − a)
(z − a)2 + · · ·+ (ζ − a)N−1

(z − a)N +
(ζ − a)N
(z − a)N

1

z − ζ . (7.115)
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and

− 1

z − ζ =
1

ζ − a +
(z − a)
(ζ − a)2

+ · · ·+ (z − a)N−1

(ζ − a)N +
(z − a)N
(ζ − a)N

1

ζ − z (7.116)

Once again we can show that the Remainder terms tend to zero.
Warning: Although the coefficients an are given by same integrals as in
Taylor’s theorem, they are not interpretable as derivatives of f unless f(z)
is analytic within the inner circle, when all the bn are zero.

7.4.3 Zeros and Singularities

This section is something of a nosology — a classification of diseases — but
you should study it carefully as there is some tight reasoning here, and the
conclusions are the essential foundations for the rest of subject.

First a review and some definitions:
a) If f(z) is analytic with a domain D, we have seen that f may be

expanded in a Taylor series about any point z0 ∈ D,

f(z) =
∞∑

n=0

an(z − z0)n. (7.117)

If a0 = a1 = · · · = an−1 = 0, and an 6= 0, so that the first non-zero
term in the series is an(z− z0)n, we say that f(z) has a zero of order n
at z0.

b) A singularity of f(z) is a point at which f(z) ceases to be differentiable.
If f(z) has no singularities at finite z (for example, f(z) = sin z) then
it is said to be an entire function.

c) If f(z) is analytic except at z = a, an isolated singularity , then we
may draw two concentric circles of centre a, both within D, and in the
annulus between them we have the Laurent expansion

f(z) =
∞∑

n=0

an(z − a)n +
∞∑

n=1

bn(z − a)−n. (7.118)

The second term, consisting of negative powers, is called principal part
of f(z) at z = a. It may happen that bm 6= 0 while bn = 0, n > m.
This singularity is called a pole of order m at z = a. The coefficient
b1, which may be 0, is called the residue of f at the pole z = a. If the
series does not terminate, the singularity is called an isolated essential
singularity
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Now some observations:
i) Suppose f(z) is analytic in a domain D containing the point z = a.

Then we can expand f(z) =
∑
an(z − a)n. If f(z) is zero at z = 0,

then there are exactly two possibilities: a) all the an vanish, and then
f(z) is identically zero; b) there is a first non-zero coefficient, am, and
so f(z) = zmϕ(z), where ϕ(a) 6= 0. In the second case f has a zero of
order m at z = a.

ii) If z = a is a zero of order m, of f(z) then the zero is isolated – i.e.
there is a neighbourhood of a which contains no other zero. To see this
observe that f(z) = (z− a)mϕ(z) where ϕ(z) is analytic and ϕ(a) 6= 0.
Analyticity implies continuity, and by continuity there is a neighbour-
hood of a in which ϕ(z) does not vanish.

iii) Limit points of zeros I: Suppose that we know that f(z) is analytic in D
and we know that it vanishes at a sequence of points a1, a2, a3, . . . ∈ D.
If these points have a limit point interior to D then f(z) must, by
continuity, be zero there. But this would be a non-isolated zero, in
contradiction to item ii) unless f(z) actually vanishes identically in D.
This then is the only option.

iv) From the definition of poles, they too are isolated.
v) If f(z) has a pole at z = a then f(z)→∞ as z → a in any manner.
vi) Limit points of zeros II: Suppose that we know that f is analytic in D,

except possibly at z = a which is limit point of zeros as in iii), but we
also know that f is not identically zero. Then z = a must be singularity
of f — but not a pole (or it f would tend to infinity and could not have
arbitrarily close zeros) — so a must be an isolated essential singularity.
For example sin 1/z has an isolated essential singularity at z = 0, this
being a limit point of the zeros at an = 1/nπ.

vii) A limit point of poles or other singularities would be a non-isolated
essential singularity .

7.4.4 Analytic Continuation

Suppose that f1(z) is analytic in the (open, arcwise-connected) domain D1,
and f2(z) is analytic in D2, with D1 ∩D2 6= ∅. Suppose further that f1(z) =
f2(z) in D1 ∩ D2. Then we say that f2 is an analytic continuation of f1 to
D2. Such analytic continuations are unique: if f3 is also analytic in D2, and
f3 = f1 in D1 ∩ D2, then f2 − f3 = 0 in D1 ∩ D2. Because the intersection
of two open sets is also open, f1− f2 vanishes on an open set and, so by iii),
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vanishes everywhere in D2.

D1
D2

We can use this result, coupled with the circular domains of convergence
of the Taylor series, to extend the range of analytic functions beyond the
domain of validity of their initial definition.

The distribution xα−1
+

An interesting and useful example of analytic continuation is provided by the
distribution xα−1

+ , which, for positive α, is defined by its evaluation on a test
function ϕ(x) as

(xα−1
+ , ϕ) =

∫ ∞

0
xα−1ϕ(x) dx. (7.119)

The pairing (xα−1
+ , ϕ) is an an analytic funtion of α provided the integral

converges. Test functions are required to decrease at infinity faster than any
power of x, and so the integral always converges at the upper limit. It will
converge at the lower limit provided Re (α) > 0. Assume that this is so, and
integrate by parts using

d

dx

(
xα

α
ϕ(x)

)
= xα−1ϕ(x) +

xα

α
ϕ′(x). (7.120)

We find that

[
xα

α
ϕ(x)

]∞

ε
=
∫ ∞

ε
xα−1ϕ(x) dx+

∫ ∞

ε

xα

α
ϕ′(x) dx.

The integrated-out part tends to zero as we take ε to zero and both of the
integrals converge in this limit as well. Consequently

I1(α) ≡ − 1

α

∫ ∞

0
xαϕ′(x) dx
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is equal to (xα−1
+ , ϕ) for 0 < Re (α) < ∞. However, the integral defining

I1(α) converges in the larger region −1 < Re (α) <∞. It therefore provides
an analytic continuation to this larger domain. The factor of 1/α reveals
that the continued function possesses a pole at α = 0, with residue

−
∫ ∞

0
ϕ′(x) dx = ϕ(0).

We can repeat the integration by parts, and find that

I2(α) ≡ 1

α(α + 1)

∫ ∞

0
xα+1ϕ′′(x) dx

provides an analytic continuation to the region −2 < Re (α) < ∞. By
proceeding in this manner, we can continue (xα−1

+ , ϕ) to a function analytic
in the entire complex α plane with the exception of zero and the negative
integers, at which it has simple poles. The residue of the pole at α = −n is
ϕ(n)(0)/(n)!.

There is another, and much more revealing, way of expressing these an-
alytic continuations. To obtain this, suppose that φ ∈ C∞[0,∞] and φ → 0
at infinity as least as fast as 1/x. (Our test function ϕ decreases much more
rapidly than this, but 1/x is all we need for what follows.) Now

I(α) ≡
∫ ∞

0
xα−1φ(x) dx

is convergent and analytic in the strip 0 < Re (α) < 1. By the same reasoning
as above, I(α) is there equal to

−
∫ ∞

0

xα

α
φ′(x) dx.

Again this new integral provides an analytic continuation to the larger strip
−1 < Re (α) < 1. But in the left-hand half of this strip, where −1 <
Re (α) < 0, we can write

−
∫ ∞

0

xα

α
φ′(x) dx = lim

ε→0

{∫ ∞

ε
xα−1φ(x) dx−

[
xα

α
φ(x)

]∞

ε

}

= lim
ε→0

{∫ ∞

ε
xα−1φ(x) dx+ φ(0)

εα

α

}

= lim
ε→0

{∫ ∞

ε
xα−1[cdφ(x)− φ(0)] dx

}
,

=
∫ ∞

0
xα−1[φ(x)− φ(0)] dx.
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Observe how the integrated out part, which tends to zero in 0 < Re (α) < 1,
becomes divergent in the strip −1 < Re (α) < 0. This divergence is there
craftily combined with the integral to cancel its divergence leaving a finite
remainder. As a consequence, for −1 < Re (α) < 0, the analytic continuation
is given by

I(α) =
∫ ∞

0
xα−1[φ(x)− φ(0)] dx.

Next we observe that χ(x) = [φ(x) − φ(0)]/x tends to zero as 1/x for
large x, and at x = 0 can be defined by its limit as χ(0) = φ′(0). This χ(x)
then satisfies the same hypotheses as φ(x). With I(α) denoting the analytic
continuation of the original I, we therefore have

I(α) =
∫ ∞

0
xα−1[φ(x)− φ(0)] dx, −1 < Re (α) < 0

=
∫ ∞

0
xβ−1

[
φ(x)− φ(0)

x

]
dx, where β = α + 1,

→
∫ ∞

0
xβ−1

[
φ(x)− φ(0)

x
− φ′(0)

]
dx, −1 < Re (β) < 0

=
∫ ∞

0
xα−1[φ(x)− φ(0)− xφ′(0)] dx, −2 < Re (α) < −1,

the arrow denoting the same analytic continuation process that we used with
φ.

We can now apply this machinary to our original ϕ(x) and so deduce that
the analytically continued distribution is given by

(xα−1
+ , ϕ) =





∫ ∞

0
xα−1ϕ(x) dx, 0 < Re (α) <∞

∫ ∞

0
xα−1[ϕ(x)− ϕ(0)] dx, −1 < Re (α) < 0

∫ ∞

0
xα−1[ϕ(x)− ϕ(0)− xϕ′(0)] dx, −2 < Re (α) < −1.

Sit perpetuum — the analytic continuation automatically subtracts more
and more terms of the Taylor series of ϕ(x) the deeper we penetrate into
the left-hand half-plane. This property, that analytic continuation covertly
subtracts the minimal number of Taylor series terms required ensure conver-
gence, lies behind a number of physics applications, most notably the method
of dimensional regularization in quantum field theory.
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7.4.5 Removable Singularities and the Weierstrass-Casorati

Theorem

Sometimes we are given a definition that makes a function analytic in a
region with the exception of a single point. Can we extend the definition to
make the function analytic in the entire region? The answer is yes, there is
a unique extension provided that the function is well enough behaved near
the point. Curiously, the proof that this is so gives us insight into the wild
behaviour of functions near essential singulaities.

Removable singularities

Suppose that f(z) is analytic in D\a, but that limz→a(z−a)f(z) = 0, then f
may be extended to a function analytic in all of D — i.e. z = a is a removable
singularity . To see this let ζ lie between two simple closed contours Γ1 and
Γ2, with a within the smaller, Γ2. We use Cauchy to write

f(ζ) =
1

2πi

∮

Γ1

f(z)

z − ζ dz −
1

2πi

∮

Γ2

f(z)

z − ζ dz. (7.121)

Now we can shrink Γ2 down to be very close to a, and because of the condition
on f(z) near z = a, we see that the second integral vanishes. We can also
arrange for Γ1 to enclose any chosen point in D. Thus, if we set

f̃(ζ) =
1

2πi

∮

Γ1

f(z)

z − ζ dz (7.122)

within Γ1, we see that f̃ = f in D \ a, and is analytic in all of D.

Weierstrass-Casorati

We apply the idea of removable singularities to show just how pathological
a beast is an isolated essential singularity:

Theorem (Weierstrass-Casorati): Let z = a be an isolated essential singular-
ity of f(z), then in any neighbourhood of a the function f(z) comes arbitrarily
close to any assigned valued in C.

To see this, define Nδ(a) = {z ∈ C : |z − a| < δ}, and Nε(ζ) = {z ∈
C : |z − ζ| < ε}. The claim is then that there is an z ∈ Nδ(a) such that
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f(z) ∈ Nε(ζ). Suppose that the claim is not true, then we have |f(z)−ζ| > ε
for all z ∈ Nδ(a). Therefore

∣∣∣∣∣
1

f(z)− ζ

∣∣∣∣∣ <
1

ε
(7.123)

in Nδ(a), while 1/(f(z) − ζ) is analytic in Nδ(a) \ a. Therefore z = a is a
removable singularity of 1/(f(z)− ζ), and there is an an analytic g(z) which
coincides with 1/(f(z)− ζ) at all points except a. Therefore

f(z) = ζ +
1

g(z)
(7.124)

except at a. Now g(z), being analytic, may have a zero at z = a giving a
pole in f , but it cannot give rise to an essential singularity. The claim is
true, therefore.

Picard’s Theorems

Weierstrass-Casorati is elementary. There are much stronger results:

Theorem (Picard’s little theorem): Every nonconstant entire function attains
every complex value with at most one exception.

Theorem (Picard’s big theorem): In any neighbourhood of an isolated essen-
tial singularity, f(z) takes every complex value with at most one exception.

The proofs of these theorems are hard.

As an illustration of Picard’s little theorem, observe that the function
exp z is entire, and takes all values except 0. For the big theorem observe
that function f(z) = exp(1/z). has an essential singularity at z = 0, and
takes all values, with the exception of 0, in any neighbourhood of z = 0.

7.5 Meromorphic functions and the Winding-

Number

A function whose only singularities in D are poles is said to be meromor-
phic there. These functions have a number of properties that are essentially
topological in character.
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7.5.1 Principle of the Argument

If f(z) is meromorphic in D with ∂D = Γ, and f(z) 6= 0 on Γ, then

1

2πi

∮

Γ

f ′(z)

f(z)
dz = N − P (7.125)

where N is the number of zero’s in D and P is the number of poles. To see
this we note that if f(z) = (z − a)mϕ(z) where ϕ is analytic and non-zero
near a, then

f ′(z)

f(z)
=

m

z − a +
ϕ′(z)

ϕ(z)
(7.126)

so f ′/f has a simple pole at a with residue m. Here m can be either positive
or negative. The term ϕ′(z)/ϕ(z) is analytic at z = a, so collecting all the
residues from each zero or pole gives the result.

Since f ′/f = d
dz

ln f the integral may be written

∮

Γ

f ′(z)

f(z)
dz = ∆Γ ln f(z) = i∆Γ arg f(z), (7.127)

the symbol ∆Γ denoting the total change in the quantity after we traverse Γ.
Thus

N − P =
1

2π
∆Γ arg f(z). (7.128)

This result is known as the principle of the argument.

Local mapping theorem

Suppose the function w = f(z) maps a region Ω holomorphicly onto a region
Ω′, and a simple closed curve γ ⊂ Ω onto another closed curve Γ ⊂ Ω′, which
will in general have self intersections. Given a point a ∈ Ω′, we can ask
ourselves how many points within the simple closed curve γ map to a. The
answer is given by the winding number of the image curve Γ about a.
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fγ Γ

The map is one-to-one where the winding number is one, but two-to-one at
points where the image curve winds twice.

To see this we appeal to the principal of the argument as

# of zeros of (f − a) within γ =
1

2πi

∮

γ

f ′(z)

f(z)− a dz,

=
1

2πi

∮

Γ

dw

w − a,
= n(Γ, a), (7.129)

where n(Γ, a) is called the winding number of the image curve Γ about a. It
is equal to

n(Γ, a) =
1

2π
∆γ arg (w − a), (7.130)

and is the number of times the image point w encircles a as z traverses the
original curve γ.

Since the number of pre-image points cannot be negative, these winding
numbers must be positive. This means that the holomorphic image of curve
winding in the anticlockwise direction is also a curve winding anticlockwise.

7.5.2 Rouché’s theorem

Here we provide an effective tool for locating zeros of functions.
Theorem (Rouché): Let f(z) and g(z) be analytic within and on a simple
closed contour γ. Suppose further that |g(z)| < |f(z)| everywhere on γ, then
f(z) and f(z) + g(z) have the same number of zeros within γ.

Before giving the proof, we illustrate Rouchés theorem by giving its most
important corollary: the algebraic completeness of the complex numbers, a
result otherwise known as the fundamental theorem of algebra. This asserts
that a polynomial P (z) = anz

n+an−1z
n−1+· · ·+a0 has exactly n zeros, when
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counted with their multiplicity, lying within the circle |z| = R, provided R is
sufficiently large. To prove this note that we can take R sufficiently big that

|anzn| = |an|Rn

> |an−1|Rn−1 + |an−2|Rn−2 · · ·+ |a0|
> |an−azn−1 + an−2z

n−2 · · ·+ a0|, (7.131)

on the circle |z| = R. We can therefore take f(z) = anz
n and g(z) =

an−az
n−1 + an−2z

n−2 · · ·+ a0 in Rouché. Since anz
n has exactly n zeros, all

lying at z = 0, within |z| = R, we conclude that so does P (z).

The proof of Rouché is a corollary of the principle of the argument. We
observe that

# of zeros of f + g = n(Γ, 0)

=
1

2π
∆γ arg (f + g)

=
1

2πi
∆γ ln(f + g)

=
1

2πi
∆γ ln f +

1

2πi
∆γ ln(1 + g/f)

=
1

2π
∆γ arg f +

1

2π
∆γ arg (1 + g/f). (7.132)

Now |g/f | < 1 on γ, so 1 + g/f cannot circle the origin as we traverse γ.
As a consequence ∆γ arg (1 + g/f) = 0. Thus the number of zeros of f + g
inside γ is the same as that of f alone. (Naturally, they are not usually in
the same places.)
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g
f+g

o

f

Γ

The curve Γ is the image of γ under the map f + g. If |g| < |f |, then, as z
traverses γ, f + g winds about the origin the same number of times that f
does.

7.6 Analytic Functions and Topology

7.6.1 The Point at Infinity

Some functions, f(z) = 1/z for example, tend to a fixed limit (here 0) as z
become large, independently of in which direction we set off towards infinity.
Others, such as f(z) = exp z, behave quite differently depending on what
direction we take as |z| becomes large.

To accommodate the former type of function, and to be able to legiti-
mately write f(∞) = 0 for f(z) = 1/z, it is convenient to add “∞” to the
set of complex numbers. Technically, what we are doing is to constructing
the one-point compactification of the locally compact space C. We often
portray this extended complex plane as a sphere S2 (the Riemann sphere),
using stereographic projection to locate infinity at the north pole, and 0 at
the south pole.
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N

z

P

S

Stereographic mapping of the complex plane to the 2-Sphere.

By the phrase a neighbourhood of z, we mean any open set containing z. We
use the stereographic map to define a neighbourhood of infinity as the stere-
ographic image of a neighbourhood of the north pole. With this definition,
the extended complex plane C ∪ ∞ becomes topologically a sphere, and in
particular, becomes a compact set.

If we wish to study the behaviour of a function “at infinity”, we use the
map z → ζ = 1/z to bring ∞ to the origin, and study the behaviour of the
function there. Thus the polynomial

f(z) = a0 + a1z + · · ·+ aNz
N (7.133)

becomes
f(ζ) = a0 + a1ζ

−1 + · · ·+ aNζ
−N , (7.134)

and so has a pole of orderN at infinity. Similarly, the function f(z) = z−3 has
a zero of order three at infinity, and sin z has an isolated essential singularity
there.

We must be a careful about defining residues at infinity. The residue is
more a property of the 1-form f(z) dz than of the function f(z) alone, and
to find the residue we need to transform the dz as well as f(z). For example,
if we set z = 1/ζ in dz/z we have

dz

z
= ζ d

(
1

ζ

)
= −dζ

ζ
, (7.135)

so the 1-form (1/z) dz has a pole at z = 0 with residue 1, and has a pole
with residue −1 at infinity—even though the function 1/z has no pole there.
This 1-form viewpoint is required for compatability with the residue theorem:
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The integral of 1/z around the positively oriented unit circle is simultane-
ously minus the integral of 1/z about the oppositely oriented unit circle, now
regarded as a a positively oriented circle enclosing the point at infinity. Thus
if f(z) has of pole of order N at infinity, and

f(z) = · · ·+ a−2z
−2 + a−1z

−1 + a0 + a1z + a2z
2 + · · ·+ ANz

N

= · · ·+ a−2ζ
2 + a−1ζ + a0 + a1ζ

−1 + a2ζ
−2 + · · ·+ ANζ

−N

(7.136)

near infinity, then the residue at infinity must be defined to be −a−1, and
not a1 as one might näıvely have thought.

Once we have allowed ∞ as a point in the set we map from, it is only
natural to add it to the set we map to — in other words to allow ∞ as a
possible value for f(z). We will set f(a) =∞, if |f(z)| becomes unboundedly
large as z → a in any manner. Thus, if f(z) = 1/z we have f(0) =∞.

The map

w =
(
z − z0
z − z∞

)(
z1 − z∞
z1 − z0

)
(7.137)

takes

z0 → 0,

z1 → 1,

z∞ → ∞, (7.138)

for example. Using this language, the Möbius maps

w =
az + b

cz + d
(7.139)

become one-to-one maps of S2 → S2. They are the only such globally con-
formal one-to-one maps. When the matrix

(
a b
c d

)

is an element of SU(2), the resulting one–to-one map is a rigid rotation of
the Riemann sphere. Stereographic projection is thus revealed to be the
geometric origin of the spinor representations of the rotation group.
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If an analytic function f(z) has no essential singularities anywhere on
the Riemann sphere then f is rational , meaning that it can be written as
f(z) = P (z)/Q(z) for some polynomials P , Q.

We begin the argument by observing that f(z) can have only a finite
number of poles. If, to the contrary, f had an infinite number of poles
then the compactness of S2 would ensure that the poles would have a limit
point somewhere. This would be a non-isolated singularity of f , and hence
an essential singularity. Now suppose we have poles at z1, z2, . . ., zN with
principal parts

mn∑

m=1

bn,m
(z − zn)m

.

If one of the zn is ∞, we first use a Möbius map to move it to some finite
point. Then

F (z) = f(z)−
N∑

n=1

mn∑

m=1

bn,m
(z − zn)m

(7.140)

is everywhere analytic, and therefore continuous, on S2. But S2 being com-
pact and F (z) being continuous implies that F is bounded. Therefore, by
Liouville’s theorem, it is a constant. Thus

f(z) =
N∑

n=1

mn∑

m=1

bn,m
(z − zn)m

+ C, (7.141)

and this is a rational function. If we made use of a Möbius map to move
a pole at infinity, we use the inverse map to restore the original variables.
This manoeuvre does not affect the claimed result because Möbius maps take
rational functions to rational functions.

The map z → f(z) given by the rational function

f(z) =
P (z)

Q(z)
=
anz

n + an−1z
n−1 + · · ·a0

bnzn + bn−1zn−1 + · · · b0
(7.142)

wraps the Riemann sphere n times around the target S2. In other words, it
is a n-to-one map.

7.6.2 Logarithms and Branch Cuts

The function y = ln z is defined to be the solution to z = exp y. Unfortu-
nately, since exp 2πi = 1, the solution is not unique: if y is a solution, so is
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y + 2πi. Another way of looking at this is that if z = ρ exp iθ, with ρ real,
then y = ln ρ + iθ, and the angle θ has the same 2πi ambiguity. Now there
is no such thing as a “many valued function”. By definition, a function is a
machine into which we plug something and get a unique output. To make
ln z into a legitimate function we must select a unique θ = arg z for each z.
This can be achieved by cutting the z plane along a curve extending from
the the branch point at z = 0 all the way to infinity. Exactly where we put
this branch cut is not important; what is important is that it serve as an
impenetrable fence preventing us from following the continuous evolution of
the function along a path that winds around the origin.

Similar branch cuts serve to make fractional powers single valued. We
define the power zα for for non-integral α by setting

zα = exp {α ln z} = |z|αeiαθ, (7.143)

where z = |z|eiθ. For the square root z1/2 we get

z1/2 =
√
|z|eiθ/2, (7.144)

where
√
|z| represents the positive square root of |z|. We can therefore make

this single-valued by a cut from 0 to ∞. To make
√

(z − a)(z − b) single

valued we only need to cut from a to b. (Why? — think this through!).
We can get away without cuts if we imagine the functions being maps from

some set other than the complex plane. The new set is called a Riemann
surface. It consists of a number of copies of the complex plane, one for each
possible value of our “multivalued function”. The map from this new surface
is then single-valued, because each possible value of the function is the value
of the function evaluated at a point on a different copy. The copies of the
complex plane are called sheets, and are connected to each other in a manner
dictated by the function. The cut plane may now be thought of as a drawing
of one level of the multilayered Riemann surface. Think of an architect’s floor
plan of a spiral-floored multi-story car park: If the architect starts drawing
at one parking spot and works her way round the central core, at some point
she will find that the floor has become the ceiling of the part already drawn.
The rest of the structure will therefore have to be plotted on the plan of the
next floor up — but exactly where she draws the division between one floor
and the one above is rather arbitrary.

The spiral car-park is a good model for the Riemann surface of the ln z
function:
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O

Part of the Riemann surface for ln z. Each time we circle the origin, we go
up one level.

To see what happens for a square root, follow z1/2 along a curve circling the
branch point singularity at z = 0. We come back to our starting point with
the function having changed sign; A second trip along the same path would
bring us back to the original value. The square root thus has only two sheets,
and they are cross-connected as shown:

O

Part of the Riemann surface for
√
z. Two copies of C are cross-connected.

Circling the origin once takes you to the lower level. A second cicuit brings
you back to the upper level.

In both this and the previous drawing, we have shown the cross-connections
being made rather abruptly along the cuts. This is not necessary —there is
no singularity in the function at the cut — but it is often a convenient way
to think about the structure of the surface. For example, the surface for√

(z − a)(z − b) also consists of two sheets. If we include the point at infin-
ity, this surface can be thought of as two spheres, one inside the other, and
cross connected along the cut from a to b.

Riemann surfaces often have interesting topology. As we have seen, the
complex numbers, with the point at infinity included, have the topology of

a sphere. The
√

(z − a)(z − b) surface is still topologically a sphere. To
see this imagine continuously deforming the Riemann sphere by pinching it
at the equator down to a narrow waist. Now squeeze the front and back
of the waist together and (imagining that the the surface can pass freely
through itself) fold the upper half of the sphere inside the lower. The result
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is the precisely the two-sheeted
√

(z − a)(z − b) surface described above. The

Riemann surface of the function
√

(z − a)(z − b)(z − c)(z − d), which can be
thought of a two spheres, one inside the other and connected along two cuts,
one from a to b and one from c to d, is, however, a torus. Think of the
torus as a bicycle inner tube. Imagine using the fingers of your left hand to
pinch the front and back of the tube together and the fingers of your right
hand to do the same on the diametrically opposite part of the tube. Now
fold the tube about the pinch lines through itself so that one half of the tube
is inside the other, and connected to the outer half through two square-root
cross-connects. If you have difficulty visualizing this process, the following
figures show how the two 1-cycles, α and β, that generate the homology group
H1(T

2) appear when drawn on the plane cut from a to b and c to d, and then
when drawn on the torus. Observe how the curves in the two-sheeted plane
manage to intersect in only one point, just as they do when drawn on the
torus.

α

b ca d

β

The 1-cycles α and β on the plane with two square-root branch cuts. The
dashed part of α lies hidden on the second sheet of the Riemann surface.

α

β

The 1-cycles α and β on the torus.

That the topology of the twice-cut plane is that of a torus has important
consequences. This is because the elliptic integral

w = I−1(z) =
∫ z

z0

dt√
(t− a)(t− b)(t− c)(t− d)

(7.145)
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maps the twice-cut z-plane 1-to-1 onto the torus, the latter being considered
as the complex w-plane with the points w and w+nω1 +mω2 identified. The
two numbers ω1,2 are given by

ω1 =
∮

α

dt√
(t− a)(t− b)(t− c)(t− d)

,

ω2 =
∮

β

dt√
(t− a)(t− b)(t− c)(t− d)

, (7.146)

and are called the periods of the elliptic function z = I(w). The object I(w)
is a genuine function because the original z is uniquely determined by w. It
is doubly periodic because

I(w + nω1 +mω2) = I(w), n,m ∈ Z. (7.147)

The inverse “function” w = I−1(z) is not a genuine function of z, however,
because w increases by ω1 or ω2 each time z goes around a curve deformable
into α or β, respectively. The periods are complicated functions of a, b, c, d.

If you recall our discussion of de Rham’s theorem from chapter 4, you
will see that the ωi are the results of pairing the closed holomorphic 1-form.

“dw” =
dz√

(z − a)(z − b)(z − c)(z − d)
∈ H1(T 2) (7.148)

with the two generators of H1(T
2). The quotation marks about dw are

there to remind us that dw is not an exact form, i.e. it is not the exterior
derivative of a single-valued function w. This cohomological interpretation
of the periods of the elliptic function is the origin of the use of the word
“period” in the context of de Rham’s theorem.

More general Riemann surfaces are oriented 2-manifolds that can be
thought of as the surfaces of doughnuts with g holes. The number g is called
the genus of the surface. The sphere has g = 0 and the torus has g = 1. The
Euler character of the Riemann surface of genus g is χ = 2(1− g).
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1α

β β β

α α

1

2

2

3

3

A surface M of genus 3. The non-bounding 1-cycles αi and βi form a basis
of H1(M). The entire surface forms the single 2-cycle that spans H2(M).

For example, the figure shows a surface of genus three. The surface is in one
piece, so dimH0(M) = 1. The other Betti numbers are dimH1(M) = 6 and
dimH2(M) = 1, so

χ =
2∑

p=0

(−1)pdimHp(M) = 1− 6 + 1 = −4, (7.149)

in agreement with χ = 2(1− 3) = −4. For complicated functions, the genus
may be infinite.

If we have two complex variables z and w then a polynomial relation
P (z, w) = 0 defines a complex algebraic curve. Except for degenerate cases,
this one (complex) dimensional curve is simultaneously a two (real) dimen-
sional Riemann surface. With

z3 + 3w2z + w + 3 = 0, (7.150)

for example, we can think of z being a three-sheeted function of w defined
by solving this cubic. Alternatively we can consider w to be the two-sheeted
function of z obtained by solving the quadratic equation

w2 +
1

3z
w +

(3 + z3)

3z
= 0. (7.151)

In each case the branch points will be located where two or more roots
coincide. The roots of (7.151), for example, coincide when

1− 12z(3 + z3) = 0. (7.152)

This quartic equation has four solutions, so there are four square-root branch
points. Although constructed differently, the Riemann surface for w(z) and
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the Riemann surface for z(w) will have the same genus (in this case g = 1)
because they are really are one and the same object — the algebraic curve
defined by the original polynomial equation. A generic (i.e. non-singular)
curve

∑

r,s

arsz
rws = 0 (7.153)

has genus

g =
1

2
(d− 1)(d− 2), (7.154)

where d = max (r + s) is the degree of the curve. This degree-genus relation
is due to Plücker. It is not, however, trivial to prove. Also not easy to
prove is that any finite genus Riemann surface is the complex algebraic curve
associated with some two-variable polynomial.

The “non-singular” condition above is important. A curve P (z, w) = 0 is
said to be singular at P = (z0, w0) if all three of

P (z, w),
∂P

∂z
,

∂P

∂w

vanish at P. If the curve has a singular point then then it degenerates and
ceases to be a manifold. For example, we have seen that the curve

w2 = (z − a)(z − b)(z − c)(z − d) (7.155)

describes a torus when a, b, c, d are all distinct. If we allow b to coincide
with c then the point P = (w0, z0) = (0, b) becomes a singular. If we look
back at the figure of the twice-cut plane, we see that as b approaches c we
can have an α cycle of zero total length. A zero length cycle means that
the circumference of the torus becomes zero at P, so that it looks like a bent
sausage with its two ends sharing the common point P. This set is equivalent
to a two-sphere with two points identified.
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P

P

P

α

β

α

β

A degenerate torus is topologically the same as a sphere with two points
identified.

Such a set is no longer a manifold because any neighbourhood of P will
contain bits of both ends of the sausage, and therefore cannot be given co-
ordinates that make it look like a region in R2. If we further let a coincide
with b = c, then the two identified points on the sphere collide, and what is
left is an surface that is homeomorphic to a sphere but with a singularity at
P that prevents it from being diffeomorphic to the Riemann sphere.

7.6.3 Conformal geometry

In this section we recall Hodge’s theory of Harmonic forms from section 4.4.1,
and see how it looks from a complex variable perspective. Suppose we have
a two-dimensional orientable Riemann manifold with metric

“ds2” = gij dx
i ⊗ dxj. (7.156)

In two dimensions gij has three independent components. When we make a
co-ordinate transformation we have two arbitrary functions at our disposal,
and so we can use this freedom to select co-ordinates in which only one
independent component remains. The most useful choice is isothermal (also
called conformal) coordinates x, y in which the metric tensor is diagonal,
gij = eσδij, and so

“ds2” = eσ(dx⊗ dx+ dy ⊗ dy). (7.157)

The eσ is called the scale factor or conformal factor .
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The use of isothermal co-ordinates simplifies many computations. Firstly,
observe that gij/

√
g = δij , the conformal factor having cancelled. If you look

back at its definition, you will see that this means that when the Hodge “?”
operator acts on one forms, the result is independent of the metric. If ω is a
one-form

ω = p dx+ q dy,

then
?ω = −q dx+ p dy.

Note that, on one-forms,
?? = −1.

On setting z = x+ iy, z = x− iy, we have

ω =
1

2
(p− iq) dz +

1

2
(p + iq) dz.

Let us focus on the dz part:

A =
1

2
(p− iq) dz =

1

2
(p− iq)(dx+ idy).

Then

?A =
1

2
(p− iq)(dy − idx) = −iA.

Similarly, with

B =
1

2
(p+ iq) dz

we have
?B = iB.

Thus the dz and dz parts of the original form are separately eigenvectors of
? with different eigenvalues. We use this observation to construct a decom-
position of the identity into the sum of two projection operators

I =
1

2
(1 + i?) +

1

2
(1− i?),

= P + P,

where P projects on the dz part and P onto the dz part of the form.
The original form is harmonic if it is both closed dω = 0, and co-closed

d ? ω = 0. Thus, in two dimensions, the notion of being harmonic (i.e. a
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solution of Laplace’s equation) is independent of what metric we are given.
If ω is a harmonic form, then (p− iq)dz and (p+ iq)dz are separately closed.
Observe that (p− iq)dz being closed means that ∂z(p− iq) = 0, and so p− iq
is a holomorphic (and hence harmonic) function. Since both (p− iq) and dz
depend only on z, we will call (p− iq)dz a holomorphic 1-form. The complex
conjugate form

(p− iq)dz = (p + iq)dz (7.158)

then depends only on z and is anti-holomorphic.

Riemann bilinear relations

Suppose that M is a Riemann surface of genus g with αi, βi ,i = 1, . . . , g,
representative generators of H1(M). Applying Hodge-de Rham to our genus-
g surface, we know that we can select a set of 2g independent, real, harmonic,
1-forms as a basis of H1(M,R). With the aid of the operator P we can
assemble these into g holomorphic closed 1-forms ωi, together with g anti-
holomorphic closed 1-forms ωi, the original 2g real forms being recovered
from these as ωi+ωi and ?(ωi+ωi) = i(ωi−ωi). A physical interpretation of
these forms is as the z and z components of irrotational and incompressible
fluid flows on the surface M . Such flows form a 2g real dimensional, or
g complex dimensional, vector space since we can independently specify the
circulation

∮
v·dr around each of the 2g generators of H1(M). If the flow field

has (covariant) components vx, vy, then ω = vzdz where vz = (vx − ivy)/2,
and ω = vzdz where vz = (vx + ivy)/2.

Suppose now that a and b are closed 1-forms on M . Then, by cutting
open the surface along the curves αi, βi and exploiting the same strategy
that gave us (4.54), we can show that

∫

M
a ∧ b =

g∑

i=1

{∫

αi

a
∫

βi

b−
∫

βi

a
∫

αi

b
}
. (7.159)

We use this formula to derive two bilinear relations associated with a closed
holomorphic 1-form ω. Firstly we compute its Hodge inner-product norm

‖ω‖2 ≡
∫

M
ω ? ω =

g∑

i=1

{∫

αi

ω
∫

βi

?ω −
∫

βi

ω
∫

αi

?ω
}

= i
g∑

i=1

{∫

αi

ω
∫

βi

ω −
∫

βi

ω
∫

αi

ω
}
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= i
g∑

i=1

{
AiBi −BiAi

}
, (7.160)

where Ai =
∫
αi
ω and Bi =

∫
βi
ω. We have used the fact that ω is an anti-

holomorphic 1 form and thus an eigenvector of ? with eigenvalue i. It follows,
therefore, that if all the Ai are zero then ‖ω‖ = 0 and so ω = 0.

Let Aij =
∫
αi
ωj. The determinant of the matrix Aij is non-zero: If it

were zero, then there would be numbers λi, not all zero, such that

0 = Aijλj =
∫

αi

(ωjλj), (7.161)

but, by (7.160), this implies that ‖ωjλj‖ = 0 and hence ωjλj = 0, contrary
to the linear independence of the ωi. We can therefore solve the equations

Aijλjk = δik (7.162)

for the numbers λjk and use these to replace each of the ωi by the linear
combination ωjλji. The new ωi then obey

∫
αi
ωj = δij . From now on we

suppose that this has be done.
Define τij =

∫
βi
ωj. Observe that dz ∧ dz = 0 forces ωi ∧ ωj = 0, and

therefore we have a second relation

0 =
∫

M
ωm ∧ ωn =

g∑

i=1

{∫

αi

ωm

∫

βi

ωn −
∫

βi

ωm

∫

αi

ωn

}

=
g∑

i=1

{δimτin − τimδin}

= τmn − τnm. (7.163)

The matrix τij is therefore symmetric. A similar compuation shows that

‖λiωi‖2 = 2λi(Im τij)λj (7.164)

so the matrix (Im τij) is positive definite. The set of such symmetric matrices
whose imaginary part is positive definite is called the Siegel upper half-plane.
Not every such matrix correponds to a Riemann surface, but when it does it
encodes information about the shape of the surface.



Chapter 8

Complex Analysis II

In this chapter we will apply what we have learned of complex variables.

8.1 Contour Integration Technology

The goal of contour integration technology is to evaluate ordinary, real-
variable, definite integrals. We have already met the basic tool, the residue
theorem:

Theorem: Let f(z) be analytic within and on the boundary Γ = ∂D of a
simply connected domain D, with the exception of finite number of points
at which the function has poles. Then

∮

Γ
f(z) dz =

∑

poles ∈ D
2πi (residue at pole).

8.1.1 Tricks of the Trade

The effective application of the residue theorem is something of an art , but
there are useful classes of integrals which you should recognize.

Rational Trigonometric Expressions

Integrals of the form ∫ 2π

0
F (cos θ, sin θ) dθ (8.1)

233
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are dealt with by writing cos θ = 1
2
(z + z), sin θ = 1

2i
(z − z) and integrating

around the unit circle. For example, let a, b be real and b < a, then

I =
∫ 2π

0

dθ

a + b cos θ
=

2

i

∮

|z|=1

dz

bz2 + 2az + b
=

2

ib

∮ dz

(z − α)(z − β)
. (8.2)

Since αβ = 1, only one pole is within the contour. This is at

α = (−a +
√
a2 − b2)/b. (8.3)

The residue is
2

ib

1

α− β =
1

i

1√
a2 − b2 . (8.4)

Therefore, the integral is given by

I =
2π√
a2 − b2

. (8.5)

These integrals are, of course, also do-able by the “t” substitution t =
tan(θ/2), whence

sin θ =
2t

1 + t2
, cos θ =

1− t2
1 + t2

, dθ =
2dt

1 + t2
, (8.6)

followed by a partial fraction decomposition. The labour is perhaps slightly
less using the contour method.

Rational Functions

Integrals of the form ∫ ∞

−∞
R(x) dx, (8.7)

where R(x) is a rational function of x with the degree of the denominator
exceeding the degree of the numerator by two or more, may be evaluated
by integrating around a rectangle from −A to +A, A to A + iB, A + iB to
−A + iB, and back down to −A. Because the integrand decreases at least
as fast as 1/|z|2 as z becomes large, we see that if we let A,B → ∞, the
contributions from the unwanted parts of the contour become negligeable.
Thus

I = 2πi
(∑

Residues of poles in upper half-plane
)
. (8.8)
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We could also use a rectangle in the lower half-plane with the result

I = −2πi
(∑

Residues of poles in lower half-plane
)
, (8.9)

This must give the same answer.
For example, let n be a positive integer and consider

I =
∫ ∞

−∞

dx

(1 + x2)n
. (8.10)

The integrand has an n-th order pole at z = ±i. Suppose we close the contour
in the upper half-plane. The new contour encloses the pole at z = +i and
we therefore need to compute its residue. We set z − i = ζ and expand

1

(1 + z2)n
=

1

[(i+ ζ)2 + 1]n
=

1

(2iζ)n

(
1− iζ

2

)−n

=
1

(2iζ)n


1 + n

(
iζ

2

)
+
n(n+ 1)

2!

(
iζ

2

)2

+ · · ·

 . (8.11)

The coefficient of ζ−1 is

1

(2i)n
n(n+ 1) · · · (2n− 2)

(n− 1)!

(
i

2

)n−1

=
1

22n−1i

(2n− 2)!

((n− 1)!)2
. (8.12)

The integral is therefore

I =
π

22n−2

(2n− 2)!

((n− 1)!)2
. (8.13)

These integrals can also be done by partial fractions.

8.1.2 Branch-cut integrals

Integrals of the form

I =
∫ ∞

0
xα−1R(x)dx, (8.14)

where R(x) is rational, can be evaluated by integration round a slotted circle
(or “key-hole”) contour.
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y

x−1

A slotted circle contour Γ of outer radius Λ and inner radius ε.

A little more work is required to extract the answer, though.
For example, consider

I =
∫ ∞

0

xα−1

1 + x
dx, 0 < Reα < 1. (8.15)

The restrictions on the range of α are necessary for the integral to converge
at its upper and lower limits.

We take Γ to be a circle of radius Λ centred at z = 0, with a slot indenta-
tion designed to exclude the positive real axis, which we take as the branch
cut of zα−1, and a small circle of radius ε about the origin. The branch of
the fractional power is defined by setting

zα−1 = exp[(α− 1)(ln |z|+ iθ)], (8.16)

where we will take θ to be zero immediately above the real axis, and 2π
immediately below it. With this definition the residue at the pole at z = −1
is eiπ(α−1). The residue theorem therefore tells us that

∮

Γ

zα−1

1 + z
dz = 2πieπi(α−1). (8.17)

The integral decomposes as
∮

Γ

zα−1

1 + z
dz =

∮

|z|=Λ

zα−1

1 + z
dz + (1− e2πi(α−1))

∫ Λ

ε

xα−1

1 + x
dx−

∮

|z|=ε

zα−1

1 + z
dz.

(8.18)
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As we send Λ off to infinity we can ignore the “1” in the denominator com-
pared to the z, and so estimate

∣∣∣∣∣

∮

|z|=Λ

zα−1

1 + z
dz

∣∣∣∣∣→
∣∣∣∣∣

∮

|z|=Λ
zα−2dz

∣∣∣∣∣ ≤ 2πΛ× ΛRe (α)−2. (8.19)

This tends to zero provided that Reα < 1. Similarly, provided 0 < Reα, the
integral around the small circle about the origin tends to zero with ε. Thus

−eπiα2πi =
(
1− e2πi(α−1)

)
I. (8.20)

We conclude that

I =
2πi

(eπiα − e−πiα) =
π

sin πα
. (8.21)

Exercise 8.1: Using the slotted circle contour, show that

I =

∫ ∞

0

xp−1

1 + x2
dx =

π

2 sin(πp/2)
=
π

2
cosec (πp/2), 0 < p < 2.

Exercise 8.2: Integrate za−1/(z − 1) around a contour Γ1 consisting of a semi-
circle in the upper half plane together with the real axis indented at z = 0
and z = 1

x

y

1

The contour Γ1.

to get

0 =

∮

Γ

za−1

z − 1
dz = P

∫ ∞

0

xa−1

x− 1
dx− iπ + (cos πa+ i sinπa)

∫ ∞

0

xa−1

x+ 1
dx.
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The symbol P in front of the integral sign denotes a principal part integral,
meaning that we must omit an infinitesimal segment of the contour symmetri-
cally disposed about the pole at z = 1. The term −iπ comes from integrating
around the small semicircle about this point. We get −1/2 of the residue be-
cause we have only a half circle, and that traversed in the “wrong” direction.
Warning: this fractional residue result is only true when we indent to avoid
a simple pole—i.e. one that is of order one.

Now take real and imaginary parts and deduce that

∫ ∞

0

xa−1

1 + x
dx =

π

sinπα
, 0 < Re a < 1,

and

P

∫ ∞

0

xa−1

1− xdx = π cot πa, 0 < Re a < 1.

8.1.3 Jordan’s Lemma

We often need to evaluate Fourier integrals

I(k) =
∫ ∞

−∞
eikxR(x) dx (8.22)

with R(x) a rational function. For example, the Green function for the
operator −∂2

x +m2 is given by

G(x) =
∫ ∞

−∞

dk

2π

eikx

k2 +m2
. (8.23)

Suppose x ∈ R and x > 0. Then, in contrast to the analogous integral
without the exponential function, we have no flexibility in closing the contour
in the upper or lower half-plane. The function eikx grows without limit as
we head south in the lower half-plane, but decays rapidly in the upper half-
plane. This means that we may close the contour without changing the value
of the integral by adding a large upper-half-plane semicircle.
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R

k

im

−im

Closing the contour in the upper half-plane.

The modified contour encloses a pole at k = im, and this has residue
i/(2m)e−mx. Thus

G(x) =
1

2m
e−mx, x > 0. (8.24)

For x < 0, the situation is reversed, and we must close in the lower half-plane.
The residue of the pole at k = −im is −i/(2m)emx, but the minus sign is
cancelled because the contour goes the “wrong way” (clockwise). Thus

G(x) =
1

2m
e+mx, x < 0. (8.25)

We can combine the two results as

G(x) =
1

2m
e−m|x|. (8.26)

The formal proof that the added semicircles make no contribution to the
integral when their radius becomes large is known as Jordan’s Lemma:

Lemma: Let Γ be a semicircle, centred at the origin, and of radius R. Sup-
pose

i) that f(z) is meromorphic in the upper half-plane;
ii) that f(z) tends uniformly to zero as |z| → ∞ for 0 < arg z < π;
iii) the number λ is real and positive.

Then ∫

Γ
eiλzf(z) dz → 0, as R→∞. (8.27)
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To establish this, we assume that R is large enough that |f | < ε on the
contour, and make a simple estimate

∣∣∣∣
∫

Γ
eiλzf(z) dz

∣∣∣∣ < 2Rε
∫ π/2

0
e−λR sin θ dθ

< 2Rε
∫ π/2

0
e−2λRθ/π dθ

=
πε

λ
(1− e−λR) <

πε

λ
. (8.28)

In the second inequality we have used the fact that (sin θ)/θ ≥ 2/π for angles
in the range 0 < θ < π/2. Since ε can be made as small as we like, the lemma
follows.
Example: Evaluate

I(α) =
∫ ∞

−∞

sin(αx)

x
dx.

We have

I(α) = Im
{∫ ∞

−∞

exp iαz

z
dz
}
.

If we take α > 0, we can close in the upper half-plane, but our contour must
exclude the pole at z = 0. Therefore

0 =
∫

|z|=R

exp iαz

z
dz −

∫

|z|=ε

exp iαz

z
dz +

∫ −ε

−R

exp iαx

x
dx+

∫ R

ε

exp iαx

x
dx.

As R → ∞, we can ignore the big semicircle, the rest, after letting ε → 0,
gives

0 = −iπ + P
∫ ∞

−∞

eiαx

x
dx.

Again, the symbol P denotes a principal part integral. The −iπ comes from
the small semicircle. We get −1/2 the residue because we have only a half
circle, and that traversed in the “wrong” direction. (Remember that this
fractional residue result is only true when we indent to avoid a simple pole—
i.e one that is of order one.)

Reading off the real and imaginary parts, we conclude that

∫ ∞

−∞

sinαx

x
dx = π, P

∫ ∞

−∞

cosαx

x
dx = 0, α > 0.

No “P” is needed in the sine integral, as the integrand is finite at x = 0.
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If we relax the condition that α > 0 and take into account that sine is an
odd function of its argument, we have

∫ ∞

−∞

sinαx

x
dx = π sgnα.

This identity is called Dirichlet’s discontinuous integral .
We can interpret this calculation as giving the Fourier transform of the

distribution P (1/x) as

P
∫ ∞

−∞

eiωx

x
dx = iπ sgnω.

This will be of use later in the chapter.
Example:

x

y

Quadrant contour.

Evaluate the integral ∮

C
eizza−1 dz

about the first-quadrant contour shown above. Observe that when 0 < a < 1
neither the large nor the small arc makes a contribution, and that there are
no poles. Hence, deduce that

0 =
∫ ∞

0
eixxa−1 dx− i

∫ ∞

0
e−yya−1e(a−1)π

2
i dy, 0 < a < 1.

Take real and imaginary parts to find
∫ ∞

0
xa−1 cos x dx = Γ(a) cos

(
π

2
a
)
, 0 < a < 1,

∫ ∞

0
xa−1 sin x dx = Γ(a) sin

(
π

2
a
)
, 0 < a < 1,
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where

Γ(a) =
∫ ∞

0
ya−1e−y dy

is the Euler Gamma function.

Example: Fresnel integrals. Integrals of the form

C(t) =
∫ t

0
cos(πx2/2) dx, (8.29)

S(t) =
∫ t

0
sin(πx2/2) dx, (8.30)

occur in the theory of diffraction and are called Fresnel integrals after Au-
gustin Fresnel. They are naturally combined as

C(t) + iS(t) =
∫ t

0
eiπx

2/2 dx. (8.31)

The limit as t→∞ exists and is finite. Even though the integrand does not
tend to zero at infinity, its rapid oscillation for large x is just sufficient to
ensure convergence1.

As t varies, the complex function C(t)+iS(t) traces out the Cornu Spiral ,
named after Marie Alfred Cornu, a 19th century French optical physicist.

1We can exhibit this convergence by setting x2 = s and then integrating by parts to
get

∫ t

0

eiπx2/2 dx =
1

2

∫ 1

0

eiπs/2
ds

s1/2
+

[
eiπs/2

πis1/2

]t2

1

+
1

2πi

∫ t2

1

eiπs/2
ds

s3/2
.

The right hand side is now manifestly convergent as t→∞.
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-0.75 -0.5 -0.25 0.25 0.5 0.75

-0.6

-0.4

-0.2

0.2

0.4

0.6

The Cornu spiral C(t) + iS(t) for t in the range −8 < t < 8. The spiral in
the first quadrant corresponds to positive values of t.

We can evaluate the limiting value

C(∞) + iS(∞) =
∫ ∞

0
eiπx

2/2 dx (8.32)

by deforming the contour off the real axis and onto a line of length L running
into the first quadrant at 45◦, this being the direction of most rapid decrease
of the integrand.

L

y

x

Fresnel contour.

A circular arc returns the contour to the axis whence it continues to ∞, but
an estimate similar to that in Jordan’s lemma shows that the arc and the
subsequent segment on the real axis make a negligeable contribution when L



244 CHAPTER 8. COMPLEX ANALYSIS II

is large. To evaluate the integral on the radial line we set z = eiπ/4s, and so

∫ eiπ/4∞

0
eiπz

2/2 dz = eiπ/4
∫ ∞

0
e−πs

2/2 ds =
1√
2
eiπ/4 =

1

2
(1 + i). (8.33)

The figure shows how C(t) + iS(t) orbits the limiting point 0.5 + 0.5i and
slowly spirals in towards it. Taking real and imaginary parts we have

∫ ∞

0
cos

(
πx2

2

)
dx =

∫ ∞

0
sin

(
πx2

2

)
dx =

1

2
. (8.34)

8.2 The Schwarz Reflection Principle

Theorem (Schwarz): Let f(z) be analytic in a domain D where ∂D includes
a segment of the real axis. Assume that f(z) is real when z is real. Then
there is a unique analytic continuation of f into the region D (the mirror
image of D in the real axis) given by

g(z) =





f(z), z ∈ D,
f(z), z ∈ D,
either, z ∈ R.

x

y

D

D

The proof invokes Morera’s theorem to show analyticity, and then appeals
to the uniqueness of analytic continuations. Begin by looking at a closed
contour lying only in D: ∮

C
f(z) dz,



8.2. THE SCHWARZ REFLECTION PRINCIPLE 245

where C = {η(t)} is the image of C = {η(t)} ⊂ D under reflection in the
real axis. We can rewrite this as

∮

C
f(z) dz =

∮
f(η)

dη̄

dt
dt =

∮
f(η)

dη

dt
dt =

∮

C
f(η) dz = 0.

At the last step we have used Cauchy and the analyticity of f in D. Morera’s
theorem therefore confirms that g(z) is analytic in D. By breaking a general
contour up into parts in D and parts in D, we can similarly show that g(z)
is analytic in D ∪D.

The important corollary is that if f(z) is analytic, and real on some
segment of the real axis, but has a cut along some other part of the real axis,
then f(x+ iε) = f(x− iε) as we go over the cut. The discontinuity disc f is
therefore 2Im f(x+ iε).

Suppose f(z) is real on the negative real axis, and goes to zero as |z| → ∞,
then applying Cauchy to the contour Γ depicted in the figure

y

x

ζ

The contour Γ for the dispersion relation. .

we find

f(ζ) =
1

π

∫ ∞

0

Im f(x+ iε)

x− ζ dx, (8.35)

for ζ within the contour. This is an example of a dispersion relation. The
name comes from the prototypical application of this technology to optical
dispersion, i.e. the variation of the refractive index with frequency.
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If f(z) does not tend to zero at infinity then we cannot ignore the con-
tribution to Cauchy’s formula from the large circle. We can, however, still
write

f(ζ) =
1

2πi

∮

Γ

f(z)

z − ζ dz, (8.36)

and

f(b) =
1

2πi

∮

Γ

f(z)

z − b dz, (8.37)

for some convenient point b within the contour. We then subtract to get

f(ζ) = f(b) +
(ζ − b)

2πi

∫

Γ

f(z)

(z − b)(z − ζ) dz. (8.38)

Because of the extra power of z downstairs in the integrand, we only need f
to be bounded at infinity for the contribution of the large circle to tend to
zero. If this is the case, we have

f(ζ) = f(b) +
(ζ − b)
π

∫ ∞

0

Im f(x+ iε)

(x− b)(x− ζ) dx. (8.39)

This is called a once-subtracted dispersion relation.

The dispersion relations derived above apply when ζ lies within the con-
tour. In physics applications we often need f(ζ) for ζ real and positive. What
happens as ζ approaches the axis, and we attempt to divide by zero in such
an integral, is summarized by the Plemelj formulæ: If f(ζ) is defined by

f(ζ) =
1

π

∫

Γ

ρ(z)

z − ζ dz,

where Γ has a segment lying on the real axis, then, if x lies in this segment,

1

2
(f(x+ iε)− f(x− iε)) = iρ(x)

1

2
(f(x+ iε) + f(x− iε)) =

P

π

∫

Γ

ρ(x′)

x′ − x dx
′.

As usual, the “P” means that we delete an infinitesimal segment of the
contour lying symmetrically about the pole.
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+ = 2

− = 

Origin of the Plemelj formulae.

The Plemelj formulæ hold under relatively mild conditions on the function
ρ(x). We won’t try to give a general proof, but in the case that ρ is analytic
the result is easy to understand: we can push the contour out of the way
and let ζ → x on the real axis from either above or below. In that case
the drawing above shows how the the sum of these two limits gives the the
principal-part integral and how their difference gives an integral round a
small circle, and hence the residue ρ(x).

The Plemelj equations usually appear in physics papers as the “iε” cabala

1

x′ − x± iε = P
(

1

x′ − x
)
∓ iπδ(x′ − x).

A limit ε→ 0 is always to be understood in this formula.

Im fRe f

x’−x

x’−x

Sketch of the real and imaginary parts of f(x′) = 1/(x′ − x− iε).
We can also appreciate the origin of the iε rule by examining the following
identity:

1

x′ − (x± iε) =
x− x′

(x′ − x)2 + ε2
± iε

(x′ − x)2 + ε2
.
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The first term is a symmetrically cut-off version of 1/(x′ − x) and provides
the principal-part integral. The second term sharpens and tends to the delta
function ±iπδ(x′ − x) as ε→ 0.

8.2.1 Kramers-Kronig Relations

Causality is the usual source of analyticity in physical applications. If G(t)
is a response function

φresponse(t) =
∫ ∞

−∞
G(t− t′)fcause(t

′) dt′ (8.40)

then for no effect to anticipate its cause we must have G(t) = 0 for t < 0.
The Fourier transform

G(ω) =
∫ ∞

−∞
eiωtG(t) dt, (8.41)

is then automatically analytic everywhere in the upper half plane. Suppose,
for example, we look at a forced, damped, harmonic oscillator whose dis-
placement x(t) obeys

ẍ + 2γẋ+ (Ω2 + γ2)x = F (t), (8.42)

where the friction coefficient γ is positive. As we saw earlier, the solution is
of the form

x(t) =
∫ ∞

−∞
G(t, t′)F (t′)dt′,

where the Green function G(t, t′) = 0 if t < t′. In this case

G(t, t′) =





Ω−1e−γ(t−t
′) sin Ω(t− t′) t > t′

0, t < t′
(8.43)

and so

x(t) =
1

Ω

∫ t

−∞
e−γ(t−t

′) sin Ω(t− t′)F (t′) dt′.

Because the integral extends only from 0 to +∞, the Fourier transform of
G(t, 0),

G̃(ω) ≡ 1

Ω

∫ ∞

0
eiωte−γt sin Ωt dt,
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is nicely convergent when Imω > 0, as evidenced by

G̃(ω) = − 1

(ω + iγ)2 − Ω2

having no singularities in the upper half-plane.2

Another example of such a causal function is provided by the complex,
frequency-dependent, refractive index of a material n(ω). This is defined so
that a travelling wave takes the form

ϕ(x, t) = ein(ω)k·x−iωt.

We can decompose n into its real and imaginary parts

n(ω) = nR(ω) + inI(ω)

= nR(ω) +
i

2|k|γ(ω)

where γ is the extinction coefficient, defined so that the intensity falls off
as I ∝ exp(−γn · x), where n = k/|k| is the direction of propapagation. A
non-zero γ can arise from either energy absorption or scattering out of the
forward direction3.

Being a causal response, the refractive index extends to a function ana-
lytic in the upper half plane and n(ω) for real ω is the boundary value

n(ω)physical = lim
ε→0

n(ω + iε)

of this analytic function. Because a real (E = E∗) incident wave must give
rise to a real wave in the material, and because the wave must decay in the
direction in which it is propagating, we have the reality conditions

γ(−ω + iε) = −γ(ω + iε),

nR(−ω + iε) = +nR(ω + iε) (8.44)

2If a pole in a response function manages to sneak into the upper half plane, then
the system will be unstable to exponentially growing oscillations. This may happen, for
example, when we design an electronic circuit containing a feedback loop. Such poles, and
the resultant instabilities, can be detected by applying the principle of the argument from
the last chapter. This method leads to the Nyquist stability criterion.

3For a dilute medium of incoherent scatterers, such as the air molecules responsible for
Rayleigh scattering, γ = Nσtot, where N is the density of scatterers and σtot is the total
scattering cross section of a single scatterer.
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with γ positive for positive frequency.
Many materials have a frequency range |ω| < |ωmin| where γ = 0, so

the material is transparent. For any such material n(ω) obeys the Schwarz
reflection principle and so there is an analytic continuation into the lower
half-plane. At frequencies ω where the material is not perfectly transparent,
the refractive index has an imaginary part even when ω is real. By Schwarz, n
must be discontinuous across the real axis at these frequencies: n(ω + iε) =
nR + inI 6= n(ω − iε) = nR − inI . These discontinuities of 2inI usually
correspond to branch cuts.

No substance is able to respond to infinitely high frequency disturbances,
so n → 1 as |ω| → ∞, and we can apply our dispersion relation technology
to the function n− 1. We will need the contour shown below, which has cuts
for both positive and negative frequencies.

Im

Re

ω

ωω min−ωmin

Contour for the n− 1 dispersion relation.

By applying the dispersion-relation strategy, we find

n(ω) = 1 +
1

π

∫ ωmin

−∞

nI(ω
′)

ω′ − ω dω
′ +

1

π

∫ ∞

ωmin

nI(ω
′)

ω′ − ω dω
′

for ω within the contour. Using Plemelj we can now take ω onto the real axis
to get

nR(ω) = 1 +
P

π

∫ ωmin

−∞

nI(ω
′)

ω′ − ω dω
′ +

P

π

∫ ∞

ωmin

nI(ω
′)

ω′ − ω dω
′

= 1 +
P

π

∫ ∞

ω2
min

nI(ω
′)

ω′2 − ω2
dω′2,
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= 1 +
c

π
P
∫ ∞

ωmin

γ(ω′)

ω′2 − ω2
dω′.

In the second line we have used the anti-symmetry of nI(ω) to combine the
positive and negative frequency range integrals. In the last line we have used
the relation ω/k = c to make connection with the way this equation is written
in R. G. Newton’s authoritative Scattering Theory of Waves and Particles.
This relation, between the real and absorptive parts of the refractive index,
is called a Kramers-Kronig dispersion relation, after the original authors4.

If n→ 1 fast enough that ω2(n− 1)→ 0 as |ω| → ∞, we can take the f
in the dispersion relation to be ω2(n− 1) and deduce that

nR = 1 +
c

π
P
∫ ∞

ω2
min

(
ω′2

ω2

)
γ(ω′)

ω′2 − ω2
dω′,

another popular form of Kramers-Kronig. This second relation implies the
first, but not vice-versa, because the second demands more restrictive be-
havior for n(ω).

Similar equations can be derived for other causal functions. A quantity
closely related to the refractive index is the frequency-dependent dielectric
“constant”

ε(ω) = ε1 + iε2.

Again ε→ 1 as |ω| → ∞, and, proceeding as before, we deduce that

ε1(ω) = 1 +
P

π

∫ ∞

ω2
min

ε2(ω
′)

ω′2 − ω2
dω′2.

8.2.2 Hilbert transforms

Suppose that f(x) is the boundary value on the real axis of a function every-
where analytic in the upper half-plane, and suppose further that f(z) → 0
as |z| → ∞ there. Then we have

f(z) =
1

2πi

∫ ∞

−∞

f(x)

x− z dx

for z in the upper half-plane. This is because may close the contour with an
upper semicircle without changing the value of the integral. For the same

4H. A. Kramers, Nature, 117 (1926) 775; R. de L. Kronig, J. Opt. Soc. Am. 12 (1926)
547
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reason the integral must give zero when z is taken in the lower half-plane.
Using Plemelj we deduce that on the real axis,

f(x) =
P

πi

∫ ∞

−∞

f(x′)

x′ − x dx
′,

and we can derive Kramers-Kronig in this way even if nI never vanishes so
we cannot use Schwarz.

This result motivates the definition of the Hilbert transform, Hψ, of a
function ψ(x), as

(Hψ)(x) =
P

π

∫ ∞

−∞

ψ(x′)

x− x′ dx
′.

Note the interchange of x, x′ in the denominator compared to the previous
formula. This is to make the Hilbert transform into a convolution integral.
The motivating result shows that a function that is the boundary value of a
function analytic and tending to zero in the upper half-plane is automatically
an eigenvector of H with eigenvalue −i. Similarly a function that is the
boundary value of a function analytic and tending to zero in the lower half-
plane will be an eigenvector with eigenvalue +i. The Hilbert transform of a
constant is zero5.

Returning now to our original f , which had eigenvalue −i, and decom-
posing it as f(x) = fR(x) + ifI(x) we find that

fI(x) = (HfR)(x),

fR(x) = (H−1fI)(x) = −(HfI)(x).

Hilbert transforms are useful in signal processing. Given a real signal
XR(t) we can take its Hilbert transform so as to find the corresponding
imaginary part, XI(t), which serves to make the sum

Z(t) = XR(t) + iXI(t) = A(t)eiφ(t)

analytic in the upper half-plane. This complex function is the analytic sig-
nal6. The real quantity A(t) is then known as the instantaneous amplitude,
or envelope, while φ(t) is the instantaneous phase and

ωIF(t) = φ̇(t)

5A function analytic in the entire complex plane and tending to zero at infinity must
vanish identically by Liouville’s theorem.

6D. Gabor, J. Inst. Elec. Eng. (Part 3), 93 (1946) 429-457.
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is called the instantaneous frequency (IF). These quantities are used, for
example, in narrow band FM radio, in NMR, in geophysics, and in image
processing.

Exercise: Use the formula given earlier in this chapter for the Fourier trans-
form of P (1/x), combined with the convolution theorem for Fourier trans-
forms, to show that analytic signal is derived from the original real signal by
suppressing all negative frequency components (those proportional to e−iωt

with ω > 0) and multiplying the remaining positive-frequency amplitudes
by two. Confirm, by investigating the convergence properties of the integral,
that the resulting Fourier representation of the analytic signal does indeed
give a function that is is analytic in the upper half plane.

8.3 Partial-Fraction and Product Expansions

In this section we will study other useful representations of functions which
devolve from their analyticity properties.

8.3.1 Mittag-Leffler Partial-Fraction Expansion

Let f(z) be a meromorphic function with poles (perhaps infinitely many)
at z = zj , (j = 1, 2, 3, . . .), where |z1| < |z2| < . . .. Let Γn be a contour
enclosing the first n poles. Suppose further (for ease of description) that the
poles are simple and have residue rn. Then, for z inside Γn, we have

1

2πi

∮

Γn

f(z′)

z′ − z dz
′ = f(z) +

n∑

j=1

rj
zj − z

.

We often want to to apply this formula to trigonometric functions whose
periodicity means that they do not tend to zero at infinity. We therefore
employ the same subtraction strategy that we used for dispersion relations.
We subtract

f(z)− f(0) =
z

2πi

∮

Γn

f(z′)

z′(z′ − z) dz
′ +

n∑

j=1

rj

(
1

z − zj
+

1

zj

)
.

If we now assume that f(z) is uniformly bounded on the Γn — this meaning
that |f(z)| < A on Γn, with the same constant A working for all n — then
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the integral tends to zero as n becomes large, yielding the partial fraction,
or Mittag-Leffler , decomposition

f(z) = f(0) +
∞∑

j=1

rj

(
1

z − zj
+

1

zj

)

Example 1): Look at cosec z. The residues of 1/(sin z) at its poles at z = nπ
are rn = (−1)n. We can take the Γn to be squares with corners (n+1/2)(±1±
i)π. A bit of effort shows that cosec is uniformly bounded on them. To use
the formula as given, we first need subtract the pole at z = 0, then

cosec z − 1

z
=

∞∑

n=−∞

′
(−1)n

(
1

z − nπ +
1

nπ

)
.

The prime on the summation symbol indicates that we are omit the n = 0
term. The positive and negative n series converge separately, so we can add
them, and write the more compact expression

cosec z =
1

z
+ 2z

∞∑

1

(−1)n
1

z2 − n2π2
.

Example 2): A similar method gives

cot z =
1

z
+

∞∑

n=−∞

′ (
1

z − nπ +
1

nπ

)
.

We can pair terms together to writen this as

cot z =
1

z
+

∞∑

n=1

(
1

z − nπ +
1

z + nπ

)
,

=
1

z
+

∞∑

n=1

2z

z2 − n2π2

or

cot z = lim
N→∞

N∑

n=−N

1

z − nπ .

In the last formula it is important that the upper and lower limits of summa-
tion be the same. Neither the sum over positive n nor the sum over negative
n converges separately. By taking asymmetric upper and lower limits we
could therefore obtain any desired number as the limit of the sum.
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Exercise 8.3: From the partial fraction expansion for cot z, deduce that

d

dz
ln[(sin z)/z] =

d

dz

∞∑

n=1

ln(z2 − n2π2).

Integrate this along a suitable path from z = 0, and so conclude that that

sin z = z
∞∏

n=1

(
1− z2

n2π2

)
.

Exercise 8.4: By differentiating the partial fraction expansion for cot z, show
that, for k an integer ≥ 1, and Im z > 0, we have

∞∑

n=−∞

1

(z + n)k+1
=

(−2πi)k+1

k!

∞∑

n=1

nke2πinz .

This is called Lipshitz’ formula.

Exercise 8.5: The Bernoulli numbers are defined by

x

ex − 1
= 1 +B1x+

∞∑

n=1

B2k
x2k

(2k)!
.

The first few are B1 = −1/2, B2 = 1/6, B4 = −1/30. Except for B1, the Bn
are zero for n odd. Show that

x cot x = ix+
2ix

e2ix − 1
= 1−

∞∑

n=1

(−1)k+1B2k
22kx2k

(2k)!
.

By expanding 1/(x2−n2π2) as a power series in x and comparing coefficients,
deduce that, for positive integer k,

∞∑

n=1

1

n2k
= (−1)k+1π2k 22k−1

(2k)!
B2k.

8.3.2 Infinite Product Expansions

We can play a variant of the Mittag-Leffler game with suitable entire func-
tions g(z) and derive for them a representation as an infinite product. Sup-
pose that g(z) has simple zeros at zi. Then (ln g)′ = g′(z)/g(z) is meromor-
phic with poles at zi, all with unit residues. Assuming that it satisfies the
uniform boundedness condition, we now use Mittag Leffler to write

d

dz
ln g(z) =

g′(z)

g(z)

∣∣∣∣∣
z=0

+
∞∑

j=1

(
1

z − zj
+

1

zj

)
.
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Integrating up we have

ln g(z) = ln g(0) + cz +
∞∑

j=1

(
ln(1− z/zj) +

z

zj

)
,

where c = g′(0)/g(0). We now re-exponentiate to get

g(z) = g(0)ecz
∞∏

j=1

(
1− z

zj

)
ez/zj .

Example: Let g(z) = sin z/z, then g(0) = 1, while the constant c, which is
the logarithmic derivative of g at z = 0, is zero, and

sin z

z
=

∞∏

n=1

(
1− z

nπ

)
ez/nπ

(
1 +

z

nπ

)
e−z/nπ.

Thus

sin z = z
∞∏

n=1

(
1− z2

n2π2

)
.

Convergence of Infinite Products

Although not directly relevant to the material above, it is worth pointing out
the following: Let

pN =
N∏

n=1

(1 + an), an > 0.

then

1 +
N∑

n=1

an < pN < exp

{
N∑

n=1

an

}
.

The infinite sum and product therefore converge or diverge together. If

P =
∞∏

n=1

(1 + |an|),

converges, we say that

p =
∞∏

n=1

(1 + an),

converges absolutely. As with sums, absolute convergence implies conver-
gence, but not vice-versa.
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Exercise 8.6: Show that

N∏

n=1

(
1 +

1

n

)
= N + 1,

N∏

n=2

(
1− 1

n

)
=

1

N
.

From these deduce that ∞∏

n=2

(
1− 1

n2

)
=

1

2
.

8.4 Wiener-Hopf Equations

The theory of Hilbert transforms has shown us some the consequences of
functions being analytic in the upper or lower half-plane. Another application
of these ideas is to Wiener-Hopf integral equations. It is, however, easier to
discuss Wiener-Hopf sum equations, which are their discrete analogue. In this
case analyticity in the upper or lower half-plane is replaced by analyticity
within or without the unit circle.

8.4.1 Wiener-Hopf Sum Equations

Consider the infinite system of equations

yn =
∞∑

m=−∞
an−mxm, −∞ < n <∞ (8.45)

where we are given the yn and are seeking the xn.
If the an, yn are the Fourier coefficients of smooth complex-valued func-

tions

A(θ) =
∞∑

n=−∞
ane

inθ,

Y (θ) =
∞∑

n=−∞
yne

inθ, (8.46)

then the systems of equations is, in principle at least, easy to solve. We
simply introduce the function

X(θ) =
∞∑

n=−∞
xne

inθ, (8.47)
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and (8.45) becomes
Y (θ) = A(θ)X(θ). (8.48)

From this, the desired xn may be read off as the Fourier expansion coefficients
of Y (θ)/A(θ). We see that A(θ) must be nowhere zero or else the operator
A represented by the semi-infinite matrix an−m will not be invertible. This
technique is a discrete version of the Fourier transform method for solving
the integral equation

y(s) =
∫ ∞

−∞
A(s− t)x(t) dt, −∞ < s <∞. (8.49)

The connection with complex analysis is made by regarding A(θ), X(θ), Y (θ)
as being functions on the unit circle in the z plane. If they are smooth enough
we can extend their definition to an annulus about the unit circle, so that

A(z) =
∞∑

n=−∞
anz

n,

X(z) =
∞∑

n=−∞
xnz

n,

Y (z) =
∞∑

n=−∞
ynz

n. (8.50)

The xn may now be read off as the Laurent expansion coefficients of Y (z)/A(z).
The discrete analogue of the Wiener-Hopf integral equation

y(s) =
∫ ∞

0
A(s− t)x(t) dt, 0 ≤ s <∞ (8.51)

is the Wiener-Hopf sum equation

yn =
∞∑

m=0

an−mxm, 0 ≤ n <∞. (8.52)

This requires a more sophisticated approach. If you look back at our earlier
discussion of why Wiener-Hopf integral equations are hard, you will see that
there we claim that the trick for solving them is to extend the definition y(s)
to negative s (analogously, the yn to negative n) and find these values at the
same time as we find x(s) for positive s (analogously, the xn for positive n.)
We now explain how this works.
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We proceed by introducing the same functions A(z), X(z), Y (z) as before,
but now keep careful track of whether their power-series expansions contain
positive or negative powers of z. In doing so, we will discover that the
Fredholm alternative governing the existence and uniqueness of the solutions
will depend on the winding number N = n(Γ, A) where Γ is the unit circle.
In other words, on how many times the function A(z) circles the origin as z
goes once round the unit circle.

Suppose that A(z) is smooth enough that it is analytic in an annulus
including the unit circle, and that we can factorize A(z) so that

A(z) = λf+(z)zN [f−(z)]−1, (8.53)

where

f+(z) = 1 +
∞∑

n=1

f (+)
n zn,

f−(z) = 1 +
∞∑

n=1

f
(−)
−n z

−n. (8.54)

Here we demand that f+(z) be analytic and non-zero for |z| < 1 + ε, and
that f−(1/z) be analytic and non-zero for |1/z| < 1 + ε. These no pole, no
zero, conditions ensure, via the principle of the argument, that the winding
numbers of f±(z) about the origin are zero, and so all the winding of A(z)
is accounted for by the N -fold winding of the zN factor.

We now introduce the notation [F (z)]+ and [F (z)]−, meaning that we
expand F as a Laurent series and retain only the positive powers of z (in-
cluding z0), or only the negative powers (starting from z−1), respectively.
Thus F (z) = [F (z)]+ + [F (z)]−. We will write Y±(z) = [Y (z)]±, and simi-
larly for X(z). We can therefore rewrite (8.52) in the form

[Y+(z) + Y−(z)]f−(z) = λzNf+(z)X+. (8.55)

If N ≥ 0, and we break this equation into its positive and negative powers,
we find

[Y+f−]+ = λzNf+(z)X+,

[Y+f−]− = −Y−f−(z). (8.56)

From the first of these equations we can read off the desired xn as the positive
power Laurent coefficients of

X+(z) = [Y+f−]+(λzNf+(z))−1. (8.57)
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As a byproduct, the second gives coefficient y−n of Y−(z). Observe that
there is a condition on Y+ for this to work: the power series expansion of
λzNf+(z)X+ starts with zN , and so for a solution to exist the first N terms
of (Y+f−)+ as a power series in z must be zero. In other words the given
vector yn must satisfy N consistency conditions. Another way of expressing
this is to observe that the range of the operator A represented by the matrix
an−m falls short of the being the entire space of possible yn by N dimensions.
This means that the null space of A† is N dimensional:

dim [KerA†] = N.

When N < 0, on the other hand, we have

[Y+(z)f−(z)]+ = [λz−|N |f+(z)X+(z)]+

[Y+(z)f−(z)]− = −Y−(z)f−(z) + [λz−|N |f+(z)X+(z)]−. (8.58)

Here the last term in the second equation contains no more thanN terms. Be-
cause of the z−|N |, we can add any to X+ any multiple of Z+(x) = zn[f+(z)]−1

for n = 0, . . . , N−1, and still have a solution. Thus the solution is not unique.
Instead, we have dim [Ker (A)] = |N |.

We have therefore shown that

Index (A)
def
= dim (KerA)− dim (KerA†) = −N

This connection between a topological quantity – in the present case the
winding number — and the difference of the dimension of the null-spaces of
an operator and its adjoint is an example of an Index Theorem.

We now need to show that we can indeed factorize A(z) in the desired
manner. When A(z) is a rational function, the factorization is straightfor-
ward: if

A(z) = C

∏
n(z − an)∏
m(z − bm)

, (8.59)

we simply take

f+(z) =

∏
|an|>0(1− z/an)∏
|bm|>0(1− z/bm)

, (8.60)

where the products are over the linear factors corresponding to poles and
zeros outside the unit circle, and

f−(z) =

∏
|bm|<0(1− bm/z)∏
|an|<0(1− an/z)

, (8.61)
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containing the linear factors corresponding to poles and zeros inside the unit
circle. The constant λ and the power zN in equation (8.53) are the fac-
tors that we have extracted from the right-hand sides of (8.60) and (8.61),
respectively, in order to leave 1’s as the first term in each linear factor.

More generally, we take the logarithm of

z−NA(z) = λf+(z)(f−(z))−1 (8.62)

to get

ln[z−NA(z)] = ln[λf+(z)]− ln[f−(z)], (8.63)

where we desire ln[λf+(z)] to be the boundary value of a function analytic
within the unit circle, and ln[f−(z)] the boundary value of function analytic
outside the unit circle and with f−(z) tending to unity as |z| → ∞. The
factor of z−N in the logarithm serves to undo the winding of the argument
of A(z), and results in a single-valued logarithm on the unit circle. Plemelj
now shows that

F (z) =
1

2πi

∮

|z|=1

ln[ζ−NA(ζ)]

ζ − z dζ (8.64)

provides us with the desired factorization. This function F (z) is everywhere
analytic except for a branch cut along the unit circle, and its branches, F+

within and F− without the circle, differ by ln[z−NA(z)]. We therefore have

λf+(z) = eF+(z),

f−(z) = eF−(z). (8.65)

The expression for F as an integral shows that F (z) ∼ const./z as |z|
goes to infinity and so guarantees that f−(z) has the desired limit of unity
there.

The task of finding this factorization is known as the scalar Riemann-
Hilbert problem. In effect, we are decomposing the infinite matrix

A =




. . .
...

...
...

· · · a0 a1 a2 · · ·
· · · a−1 a0 a1 · · ·
· · · a−2 a−1 a0 · · ·

...
...

...
. . .




(8.66)
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into the product of an upper triangular matrix

U = λ




. . .
...

...
...

· · · 1 f
(+)
1 f

(+)
2 · · ·

· · · 0 1 f
(+)
1 · · ·

· · · 0 0 1 · · ·
...

...
...

. . .



, (8.67)

a lower triangular matrix L, where

L−1 =




. . .
...

...
...

· · · 1 0 0 · · ·
· · · f

(−)
−1 1 0 · · ·

· · · f
(−)
−2 f

(−)
−1 1 · · ·

...
...

...
. . .



, (8.68)

has 1’s on the diagonal, and a matrix ΛN which which is zero everywhere
except for a line of 1’s located N steps above the main diagonal. The set
of triangular matrices with unit diagonal form a group, so the inversion
required to obtain L results in a matrix of the same form. The resulting
Birkhoff factorization

A = LΛNU, (8.69)

is an infinite-dimensional example of the Gauss-Bruhat (or generalized LU)
decomposition of a matrix. The finite dimensional Gauss-Bruhat decompo-
sition factorizes a matrix A ∈ GL(n) as

A = LΠU, (8.70)

where L is a lower triangular matrix with 1’s on the diagonal, U is an upper
triangular matrix with no zero’s on the diagonal, and Π is a permutation
matrix, i.e. a matrix that permutes the basis vectors by having one entry of
1 in each row and in each column, and all other entries zero. Our present
ΛN is playing the role of such a matrix.



Chapter 9

Special Functions II

In this chapter we will apply complex analytic methods to some of the special
functions of mathematical physics. The standard text in this field remains the
venerable Course of Modern Analysis of E. T. Whittaker and G. N. Watson.

9.1 The Gamma Function

As an illustration of much what has gone before we will discuss the properties
of Euler’s “Gamma Function”, Γ(z). You probably have some acquaintance
with this creature. The usual definition is

Γ(z) =
∫ ∞

0
tz−1e−t dt, Re z > 0, (definition A). (9.1)

An integration by parts, based on

d

dt

(
tze−t

)
= ztz−1e−t − tze−t, (9.2)

shows that [
tze−t

]∞
0

= z
∫ ∞

0
tz−1e−t dt−

∫ ∞

0
tze−t dt. (9.3)

The integrated out part vanishes at both limits, provided the real part of z
is greater than zero. Thus

Γ(z + 1) = zΓ(z). (9.4)

Since Γ(1) = 1, we deduce that

Γ(n) = (n− 1)!, n = 1, 2, 3, · · · . (9.5)

263
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We can use the recurrence relation to extend the definition of Γ(z) to the left
half plane, where the real part of z is negative. Choosing an integer n such
that the real part of z + n is positive, we write

Γ(z) =
Γ(z + n)

z(z + 1) · · · (z + n− 1)
. (9.6)

We see that Γ(z) has poles at zero, and at the negative integers. The residue
of the pole at z = −n is (−1)n/n!.

We can also view the analytic continuation as an example of Taylor series
subtraction. Let us recall how this works. Suppose that −1 < Re x < 0.
Then, from

d

dt
(txe−t) = xtx−1e−t − txe−t (9.7)

we have [
txe−t

]∞
ε

= x
∫ ∞

ε
dt tx−1e−t −

∫ ∞

ε
dt txe−t. (9.8)

Here we have cut off the integral at the lower limit so as to avoid the di-
vergence near t = 0. Evaluating the left-hand side and dividing by x we
find

−1

x
εx =

∫ ∞

ε
dt tx−1e−t − 1

x

∫ ∞

ε
dt txe−t. (9.9)

Since, for this range of x,

−1

x
εx =

∫ ∞

ε
dt tx−1, (9.10)

we can rewrite (9.9) as

1

x

∫ ∞

ε
dt txe−t =

∫ ∞

ε
dt tx−1

(
e−t − 1

)
. (9.11)

The integral on the right-hand side of this last expression is convergent as
ε→ 0, so we may safely take the limit and find

1

x
Γ(x + 1) =

∫ ∞

0
dt tx−1

(
e−t − 1

)
. (9.12)

Since the left-hand side is equal to Γ(x), we have shown that

Γ(x) =
∫ ∞

0
dt tx−1

(
e−t − 1

)
, −1 < Re x < 0. (9.13)
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Similarly, if −2 < Rex < −1, we can show that

Γ(x) =
∫ ∞

0
dt tx−1

(
e−t − 1 + t

)
. (9.14)

Thus the analytic continuation of the original integral is given by a new
integral in which we have subtracted exactly as many terms from the Taylor
expansion of e−t as are needed to just make the integral convergent.

Other useful identities, usually proved by elementary real variable meth-
ods, include Euler’s “Beta function” identity,

B(a, b)
def
=

Γ(a)Γ(b)

Γ(a + b)
=
∫ 1

0
(1− t)a−1tb−1 dt (9.15)

(which, as the Veneziano formula, was the original inspiration for string
theory) and

Γ(z)Γ(1− z) = πcosec πz. (9.16)

Let’s prove these. Set t = y2, x2 so

Γ(a)Γ(b) = 4
∫ ∞

0
y2a−1e−y

2

dy
∫ ∞

0
x2b−1e−x

2

dx

= 4
∫ ∞

0

∫ ∞

0
e−(x2+y2)x2b−1y2a−1 dxdy

= 2
∫ ∞

0
e−r

2

(r2)a+b−1 d(r2)
∫ π/2

0
sin2a−1 θ cos2b−1 θ dθ.

At this point we can put sin2 θ = t to get the Beta function identity. If, on
the other hand we put a = 1− z, b = z we get

Γ(z)Γ(1− z) = 2
∫ ∞

0
e−r

2

d(r2)
∫ π/2

0
cot2z−1 θ dθ = 2

∫ π/2

0
cot2z−1 θ dθ.

(9.17)
Now set cot θ = ζ when the last integral becomes one of our earlier examples:

2
∫ ∞

0

ζ2z−1

ζ2 + 1
dζ = πcosec πz, 0 < z < 1. (9.18)

Although this integral has a restriction on the range of z, the result

Γ(z)Γ(1− z) = πcosec πz (9.19)
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can be analytically continued to hold for all z . If we put z = 1/2 we find
that (Γ(1/2))2 = π. The positive square root is the correct one, and

Γ(1/2) =
√
π. (9.20)

The integral in definition A is only convergent for Re z > 0. A more
powerful definition, involving an integral which converges for all z, is

1

Γ(z)
=

1

2πi

∫

C

et

tz
dt. (definition B) (9.21)

C

Re(t)

Im(t)

Definition “B” contour.

Here C is a contour originating at z = −∞− iε, below the negative real axis
(on which a cut serves to make t−z single valued) rounding the origin, and
then heading back to z = −∞ + iε — this time staying above the cut. We
take arg t to be +π immediately above the cut, and −π immediately below
it. This new definition is due to Hankel.

For z an integer, the cut is ineffective and we can close the contour to
find

1

Γ(0)
= 0;

1

Γ(n)
=

1

(n− 1)!
, n > 0. (9.22)

Thus definitions A and B agree on the integers. It is less obvious that they
agree for all z. A hint that this is true stems integrating by parts

1

Γ(z)
=

1

2πi

[
et

(z − 1)tz−1

]−∞+iε

−∞−iε
+

1

(z − 1)2πi

∫

C

et

tz−1
dt =

1

(z − 1)Γ(z − 1)
.

(9.23)
The integrated out part vanishes because et is zero at −∞. Thus the “new”
gamma function obeys the same functional relation as the “old” one.
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To show the equivalence in general we will examine the definition B ex-
pression for Γ(1− z)

1

Γ(1− z) =
1

2πi

∫

C
ettz−1 dt. (9.24)

We will asume initially that Re z > 0, so that there is no contribution from
the small circle about the origin. We can therefore focus on contribution
from the discontinuity across the cut

1

Γ(1− z) =
1

2πi

∫

C
ettz−1 dt = − 1

2πi
(2i sin π(z − 1))

∫ ∞

0
tz−1e−t dt

=
1

π
sin πz

∫ ∞

0
tz−1e−t dt. (9.25)

The proof is then completed by using Γ(z)Γ(1 − z) = πcosec πz, which we
proved using definition A, to show that, under definition A, the right hand
side is indeed equal to 1/Γ(1 − z). We now use the uniqueness of analytic
continuation, noting that if two analytic functions agree on the region Re z >
0, then they agree everywhere.

Infinite Product for Γ(z)

The function Γ(z) has poles at z = 0,−1,−2, . . . therefore (zΓ(z))−1 =
(Γ(z + 1))−1 has zeros as z = −1,−2, . . .. Furthermore the integral in “defi-
nition B” converges for all z, and so 1/Γ(z) has no singularities in the finite
z plane i.e. it is an entire function. Thus means that we can use the infinite
product formula

g(z) = g(0)ecz
∞∏

1

{(
1− z

zj

)
ez/zj

}
(9.26)

for entire functions.

We need to recall the definition of Euler-Mascheroni constant γ = −Γ′(1) =
.5772157 . . ., and that Γ(1) = 1. Then

1

Γ(z)
= zeγz

∞∏

1

{(
1 +

z

n

)
e−z/n

}
. (9.27)
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We can use this formula to compute

1

Γ(z)Γ(1− z) =
1

(−z)Γ(z)Γ(−z) = z
∞∏

1

{(
1 +

z

n

)
e−z/n

(
1− z

n

)
ez/n

}

= z
∞∏

1

(
1− z2

n2

)

=
1

π
sin πz

and so obtain another demonstration that Γ(z)Γ(1− z) = πcosec πz.

Exercise 9.1: Starting from the infinite product formula for Γ(z), show that

d2

dz2
ln Γ(z) =

∞∑

n=0

1

(z + n)2
.

(Compare this “half series”, with the expansion

π2cosec2πz =
∞∑

n=−∞

1

(z + n)2
.)

9.2 Linear Differential Equations

9.2.1 Monodromy

Consider the linear differential equation

Ly ≡ y′′ + p(z)y′ + q(z)y = 0, (9.28)

where p and q are meromorphic. Recall that the point z = a is a regular
singular point of the equation iff p or q is singular there, but

(z − a)p(z), (z − a)2q(z) (9.29)

are both analytic at z = a. We know, from the explicit construction of power
series solutions, that near a regular singular point y is a sum of functions of
the form y = (z− a)αϕ(z) or y = (z− a)α(ln(z− a)ϕ(z) +χ(z)), where both
ϕ(z) and χ(z) are analytic near z = a. We now examine this fact is a more
topological way.
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Suppose that y1 and y2 are linearly independent solutions of Ly = 0. Start
from some ordinary (non-singular) point of the equation and analytically
continue the solutions round the singularity at z = a and back to the starting
point. The continued functions ỹ1 and ỹ2 will not in general coincide with
the original solutions, but being still solutions of the equation, must be linear
combinations of them. Therefore

(
ỹ1

ỹ2

)
=
(
a b
c d

)(
y1

y2

)
, (9.30)

for some constants a, b, c, d. By a suitable redefinition of the yi we may
either diagonalise the monodromy matrix to find

(
ỹ1

ỹ2

)
=
(
λ1 0
0 λ2

)(
y1

y2

)
(9.31)

or, if the eigenvalues coincide and the matrix is not diagonalizable, reduce it
to a Jordan form (

ỹ1

ỹ2

)
=
(
λ 1
0 λ

)(
y1

y2

)
. (9.32)

These equations are satisfied, in the diagonalizable case, by functions of the
form

y1 = (z − a)α1ϕ1(z), y2 = (z − a)α2ϕ2(z), (9.33)

where λk = e2πiαk , and ϕk(z) is single valued near z = a. In the Jordan-form
case we must have

y1 = (z − a)α
[
ϕ1(z) +

1

2πiλ
ln(z − a)ϕ2(z)

]
, y2 = (z − a)αϕ2(z), (9.34)

where again the ϕk(z) are single valued. Notice that coincidence of the
monodromy eigenvalues λ1 and λ2 does not require the exponents α1 and α2

to be the same, only that they differ by an integer. This is the same condition
that signals the presence of a logarithm in the traditional series solution.

The occurrence of fractional powers and logarithms in solutions near a
regular singular point is therefore quite natural.

9.2.2 Hypergeometric Functions

Most of the special functions of Mathematical Physics are special cases of
the Hypergeometric function F (a, b; c; z), which may be defined by the series

F (a, b; c; z) = 1 +
a.b

1.c
z +

a(a + 1)b(b+ 1)

2!c(c+ 1)
z2 +
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+
a(a+ 1)(a+ 2)b(b + 1)(b+ 2)

3!c(c+ 1)(c+ 2)
z3 + · · · .

=
Γ(c)

Γ(a)Γ(b)

∞∑

0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)Γ(1 + n)
zn. (9.35)

For general values of a, b, c, this converges for |z| < 1, the singularity restrict-
ing the convergence being a branch cut at z = 1.
Examples:

(1 + z)n = F (−n, b; b;−z), (9.36)

ln(1 + z) = zF (1, 1; 2;−z), (9.37)

z−1 sin−1 z = F
(

1

2
,
1

2
;
3

2
; z2

)
, (9.38)

ez = lim
b→∞

F (1, b; 1/b; z/b), (9.39)

Pn(z) = F
(
−n, n+ 1; 1;

1− z
2

)
, (9.40)

where in the last line Pn is the Legendre polynomial.
For future reference, we note that expanding the right hand side as a

powers series in z and integrating term by term, shows that

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)
∫ 1

0
(1− tz)−atb−1(1− t)c−b−1dt. (9.41)

We may set z = 1 in this to get

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) . (9.42)

The hypergeometric function is a solution of the second-order ODE

z(1− z)y′′ + [c− (a+ b + 1)z]y′ − aby = 0 (9.43)

which has regular singular points at z = 0, 1,∞. If 1 − c is not an integer,
the general solution is

y = AF (a, b; c; z) +Bz1−cF (b− c+ 1, a− c+ 1; 2− c; z). (9.44)

The hypergeometric equation is a particular case of the general Fuchsian
equation with three1 regular singularities at z = z1, z2, z3,

y′′ + P (z)y′ +Q(z)y = 0, (9.45)
1The equation with two regular singularities is

y′′ + p(z)y′ + q(z)y = 0
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where

P (z) =

(
1− α− α′

z − z1
+

1− β − β′

z − z2
+

1− γ − γ′
z − z3

)

Q(z) =
1

(z − z1)(z − z2)(z − z3)
×

(
(z1 − z2)(z1 − z3)αα′

z − z1
+

(z2 − z3)(z2 − z1)ββ ′

z − z2
+

(z3 − z1)(z3 − z2)γγ ′
z − z3

)
,

(9.46)

subject to the constraint α + β + γ + α′ + β ′ + γ′ = 1, which ensures that
z = ∞ is not a singular point of the equation. This equations is sometimes
called Riemann’s P -equation. The P probably stands for Papperitz, who
discovered it.

The indicial equation relative to the regular singular point at z1 is

r(r − 1) + (1− α− α′)r + αα′ = 0, (9.47)

which has roots r = α, α′, so Riemann’s equation has solutions which behave
like (z− z1)α and (z− z1)α′

near z1, like (z− z2)β and (z− z2)β′

near z2, and
similarly for z3. A solution of Riemann’s equations is traditionally denoted
by the Riemann “P” symbol

y = P





z1 z2 z3
α β γ z
α′ β ′ γ′





(9.48)

where the six quantities α, β, γ, α′, β ′, γ′, are called the exponents of the so-

with

p(z) =

(
1− α− α′

z − z1
+

1 + α+ α′

z − z2

)

q(z) =
αα′(z1 − z2)2

(z − z1)2(z − z2)2
.

Its general solution is

y = A

(
z − z1
z − z2

)α

+B

(
z − z1
z − z2

)α′

.
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lution. A particular solution is

y =
(
z − z1
z − z2

)α (z − z3
z − z2

)γ
F

(
α + β + γ, α+ β ′ + γ; 1 + α− α′;

(z − z1)(z3 − z2)
(z − z2)(z3 − z1)

)
.

(9.49)
By permuting the triples (z1, α, α

′), (z2, β, β
′), (z3, γ, γ

′), and within them
interchanging the pairs α ↔ α′, γ ↔ γ ′, we may find a total2 of 6× 4 = 24
solutions of this form. They are called the Kummer solutions. Clearly, only
two of these can be linearly independent, and a large part of the theory of
special functions is devoted to obtaining the linear relations between them.

It is straightforward, but a trifle tedious to show that

(z−z1)r(z−z2)s(z−z3)tP





z1 z2 z3
α β γ z
α′ β ′ γ′





= P





z1 z2 z3
α + r β + s γ + t z
α′ + r β ′ + s γ ′ + t





(9.50)
provided r+s+t = 0. Also Riemann’s equation retains its form under Möbius
maps, only the location of the singular points changing. We therefore deduce
that

P





z1 z2 z3
α β γ z
α′ β ′ γ′





= P





z′1 z′2 z′3
α β γ z′

α′ β ′ γ′





(9.51)

where

z′ =
az + b

cz + d
, z′1 =

az1 + b

cz1 + d
, z′2 =

az2 + b

cz2 + d
, z′3 =

az3 + b

cz3 + d
. (9.52)

By using the Möbius map which takes (z1, z2, z3) → (0, 1,∞), and by
extracting powers to shift the exponents, we can reduce the general eight-
parameter Riemann equation to the three-parameter hypergeometric equa-
tion.

The P symbol for the hypergeometric equation is

F (a, b; c; z) = P





0 ∞ 1
0 a 0 z

1− c b c− a− b




. (9.53)

Using this observation and a suitable Möbius map we see that

F (a, b; a+ b− c; 1− z)
2The interchange β ↔ β ′ leaves the hypergeometric function invariant, and so does not

give a new solution.
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and
(1− z)c−a−bF (c− b, c− a; c− a− b+ 1; 1− z)

are also solutions of the Hypergeometric equation, each having a pure (as
opposed to a linear combination of) power-law behaviors near z = 1. (The
previous solutions had pure power-law behaviours near z=0.) These new
solutions must be linear combinations of the old, and we may use

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) (9.54)

together with the trick of substituting z = 0 and z = 1, to determine the
coefficients and show that

F (a, b; c; x) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)F (a, b; a+ b− c; 1− z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−bF (c− b, c− a; c− a− b + 1; 1− z).

(9.55)

9.3 Solving ODE’s via Contour integrals

Our task in this section is to understand the origin of contour integral solu-
tions such as the expression

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)
∫ 1

0
(1− tz)−atb−1(1− t)c−b−1dt,

we have previously seen for the hypergeometric equation.
We are given a differential operator

Lz = ∂2
zz + p(z)∂z + q(z)

and seek a solution of Lzu = 0 as an integral

u(z) =
∫

Γ
F (z, t) dt.

If we can find an F such that

LzF =
∂Q

∂t
,
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for some function Q(z, t) then

Lzu =
∫

Γ
LzF (z, t) dt =

∫

Γ

(
∂Q

∂t

)
dt = [Q]Γ .

Thus if Q vanishes at both ends of the contour, if it takes the same value
at the two ends, or if the contour is closed and has no ends, then we have
succeeded.
Example: Consider Legendre’s equation

Lzu ≡ (1− z2)
d2u

dz2
− 2z

du

dz
+ ν(ν + 1)u = 0.

The identity

Lz

{
(t2 − 1)ν

(t− z)ν+1

}
= (ν + 1)

d

dt

{
(t2 − 1)ν+1

(t− z)ν+2

}

shows that

u(z) =
1

2πi

∫

Γ

{
(t2 − 1)ν

(t− z)ν+1

}
dt

will be a solution of Legendre’s equation provided that
[
(t2 − 1)ν+1

(t− z)ν+2

]

Γ

= 0.

We could, for example, take a contour that circles the points t = z and t = 1,
but excludes the point t = −1. On going round this contour, the numerator
aquires a phase of e2πi(ν+1), while the denominator aquires a phase of e2πi(ν+2).
The net phase is therefore e−2πi = 1. The function in the integrated-out part
is therefore single-valued, and so the integrated-out part vanishes. When ν
is an integer, Cauchy’s formula shows that

u(z) =
1

n!

dn

dzn
(z2 − 1)n,

which is (up to factor) Rodriguez’ formula for the Legendre polynomials.
It is hard to find a suitable F in one fell swoop. (The identity exploited

in the above example is not exactly obvious!) An easier strategy is to seek
solution in the form of an integral operator with kernel K acting on function
v(t). Thus we set

u(z) =
∫ b

a
K(z, t)v(t) dt.
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Suppose that LzK(z, t) = MtK(z, t), where Mt is differential operator in t
which does not involve z. The operator Mt will have have a formal adjoint
M †

t such that

∫ b

a
v(MtK) dt−

∫ b

a
K(M †

t v) dt = [Q(K, v)]ba .

(This is Lagrange’s identity from last semester.) Now

Lzu =
∫ b

a
LzK(z, t)v dt

=
∫ b

a
(MtK(z, t))v dt

=
∫ b

a
K(z, t)(M †

t v) dt+ [Q(K, v)]ba .

We can therefore solve the original equation, Lzu = 0, by finding a v such
that (M †

t v) = 0, and a contour with endpoints such that [Q(K, v)]ba = 0.
This may sound complicated, but an artful choice of K can make it much
simpler than solving the original problem.
Example: We will solve

Lzu =
d2u

dz2
− zdu

dz
+ νu = 0,

by using the kernel K(z, t) = e−zt. We have LzK(z, t) = MtK(z, t) where

Mt = t2 − t ∂
∂t

+ ν,

so

M †
t = t2 +

∂

∂t
t + ν = t2 + (ν + 1) + t

∂

∂t
.

The equation M†
t v = 0 has solution

v(t) = t−(ν+1)e−
1

2
t2 ,

and so

u =
∫

Γ
t−(1+ν)e−(zt+ 1

2
t2) dt,

for some suitable Γ.



276 CHAPTER 9. SPECIAL FUNCTIONS II

9.3.1 Bessel Functions

As an illustration of the general method we will explore the theory of Bessel
functions. Bessel functions are member of the family of confluent hypergeo-
metric functions, obtained by letting the two regular singular points z2, z3 of
the Riemann-Papperitz equation coalesce at infinity. The resulting singular
point is no longer regular, and confluent hypergeometric functions have an
essential singularity at infinity. The confluent hypergeometric equation is

zy′′ + (c− z)y′ − ay = 0,

with solution

Φ(a, c; z) =
Γ(c)

Γ(a)

∞∑

n=0

Γ(a+ n)

Γ(c+ n)Γ(n + 1)
zn.

The second solution, when c is not an integer, is

z1−cΦ(a− c+ 1, 2− c; z).

We see that
Φ(a, c; z) = lim

b→∞
F (a, b; c; z/b).

Other functions of this family are the parabolic cylinder functions, which
in special cases reduce to e−z

2/4 times the Hermite polynomials, the error
function

erf (z) =
∫ z

0
e−t

2

dt = zΦ
(

1

2
,
3

2
;−z2

)

and the Laguerre polynomials

Lmn =
Γ(n+m+ 1)

Γ(n+ 1)Γ(m+ 1)
Φ(−n,m + 1; z).

Bessel’s equation involves

Lz = ∂2
zz +

1

z
∂z +

(
1− ν2

z2

)
.

Experience shows that a useful kernel is

K(z, t) =
(
z

2

)ν
exp

(
t− z2

4t

)
.



9.3. SOLVING ODE’S VIA CONTOUR INTEGRALS 277

Then

LzK(z, t) =
(
∂t −

ν + 1

t

)
K(z, t)

so M is a first order operator, which is simpler to deal with than the original
second order Lz. In this case

M † =
(
−∂t −

ν + 1

t

)

and we need a v such that

M †v = −
(
∂t +

ν + 1

t

)
v = 0.

Clearly v = t−ν−1 will work. The integrated out part is

[Q(K, v)]ba =

[
t−ν−1 exp

(
t− z2

4t

)]b

a

.

We see that

Jν(z) =
1

2πi

(
z

2

)ν ∫

C
t−ν−1e

(
t− z2

4t

)

dt.

solves Bessel’s equation provided we use a suitable contour.
We can take for C a contour starting at −∞− iε and ending at −∞+ iε,

and surrounding the branch cut of t−ν−1, which we take as the negative t
axis.

C

Re(t)

Im(t)

This works because Q is zero at both ends of the contour.
A cosmetic rewrite t = uz/2 gives

Jν(z) =
1

2πi

∫

C
u−ν−1e

z
2(u−

1

u) du.
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For ν an integer, there is no discontinuity across the cut, so we can ignore it
and take C to be the unit circle. From

Jn(z) =
1

2πi

∫

C
u−n−1e

z
2(u−

1

u) du.

we get the usual generating function

e
z
2(u−

1

u) =
∞∑

−∞
Jn(z)u

n.

When ν is not an integer, we see why we need a branch cut integral.
If we set u = ew we get

Jν(z) =
1

2πi

∫

C′

dw ez sinhw−νw,

where C ′ starts goes from ∞− iπ to −iπ, to +iπ to ∞+ iπ.

π

π

+i

−i

Re(w)

Im(w)

If we set w = t ± iπ on the horizontals and w = iθ on the vertical part,
we can rewrite this as

Jν(z) =
1

π

∫ π

0
cos(νθ − z sin θ) dθ − sin νπ

π

∫ ∞

0
e−νt−z sinh t dt.

All these are standard formulae for the Bessel function whose origin would
be hard to understand without the contour solutions trick.

When ν becomes an integer, the functions Jν(z) and J−ν(z) are no longer
independent. In order to have a pair of functions that retain their indepen-
dence even as ν becomes a whole number, it is traditional to define

Nν(z)
def
=

Jν(z) cos νπ − J−ν(z)
sin νπ

=
cot νπ

π

∫ π

0
cos(νθ − z sin θ) dθ − cosec νππ

∫ π

0
cos(νθ + z sin θ) dθ

−cos νπ

π

∫ ∞

0
e−νt−z sinh t dt− 1

π

∫ ∞

0
eνt−z sinh t dt.
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These functions are real for positive real z and oscillate as slowly decaying
sines and cosines.

It is often convenient to decompose these real functions into functions
that behave as e±iz, and so we define the Hankel functions by

H(1)
ν (z) =

1

iπ

∫ ∞+iπ

−∞
ez sinhw−νw dw, |arg z| < π/2

H(2)
ν (z) = − 1

iπ

∫ ∞−iπ

−∞
ez sinhw−νw dw, |arg z| < π/2.

+iπ

π−i
H ν

H ν

(2)

(1)

Contours defining H(1)
ν (z) and H (2)

ν (z).

Then

1

2
(H (1)

ν (z) +H (2)
ν (z)) = Jν(z),

1

2
(H (1)

ν (z)−H(2)
ν (z)) = Nν(z). (9.56)

9.4 Asymptotic Expansions

We often need the understand the behaviour of solutions of differential equa-
tions and functions, such as Jν(x), when x takes values that are very large,
or very small. This is the subject of asymptotics.
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As an introduction to this art, consider the function

Z(λ) =
∫ ∞

−∞
e−x

2−λx4

dx.

Those of you who have taken a course quantum field theory based on path
integrals will recognize that this is a “toy”, 0-dimensional, version of the path
integral for the λϕ4 model of a self-interacting scalar field. Suppose we wish
to obtain the perturbation expansion for Z(λ) as a power series in λ. We
naturally proceed as follows

Z(λ) =
∫ ∞

−∞
e−x

2−λx4

dx

=
∫ ∞

−∞
e−x

2
∞∑

n=0

(−1)n
λnx4n

n!
dx

?
=

∞∑

n=0

(−1)n
λn

n!

∫ ∞

−∞
e−x

2

x4n dx

=
∞∑

n=0

(−1)n
λn

n!
Γ(2n+ 1/2).

Something has clearly gone wrong here, because Γ(2n + 1/2) ∼ (2n)! ∼
4n(n!)2, and so the radius of convergence of the power series is zero.

The invalid, but popular, manoeuvre is the interchange of the order of
performing the integral and the sum. This interchange cannot be justified be-
cause the sum inside the integral does not converge uniformly on the domain
of integration. Does this mean that the series is useless? It had better not!
All field theory, and most quantum mechanics, perturbation theory relies on
versions of this manoeuvre.

We are saved to some (often adequate) degree because, while the inter-
change of integral and sum does not lead to a convergent series, it does lead
to a valid asymptotic expansion. We write

Z(λ) ∼
∞∑

n=0

(−1)n
λn

n!
Γ(2n+ 1/2)

where

Z(λ) ∼
∞∑

n=0

anλ
n
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is shorthand for the more explicit

Z(λ) =
N∑

n=0

anλ
n +O

(
λN+1

)
, N = 1, 2, 3, . . . .

The “big O” notation

Z(λ)−
N∑

n=0

anλ
n = O(λN+1)

as λ→ 0, means that

lim
λ→0

{
|Z(λ)−∑N

0 anλ
n|

|λN+1|

}
= K <∞.

The basic idea is that, given a convergent power series
∑
n anλ

n for the
function f(λ), we fix the value of λ and take more and more terms. The sum
then gets closer to f(λ). Given an asymptotic expansion, on the other hand,
we select a fixed number of terms in the series and then make λ smaller and
smaller. The graph of f(λ) and the graph of our polynomial approximation
then approach each other. The more terms we take the sooner they get close,
but for any non-zero λ we can never get exacty f(λ)—no matter how many
terms we take.

We often consider asymptotic expansions where the independent variable
becomes large. Here we have expansions in inverse powers of x:

F (x) =
N∑

n=0

bnx
−n +O

(
x−N−1

)
, N = 1, 2, 3 . . . . (9.57)

In this case

F (x)−
N∑

n=0

bnx
−n = O

(
x−N−1

)
(9.58)

means that

lim
x→∞

{
|F (x)−∑N

0 bnx
−n|

|x−N−1|

}
= K <∞. (9.59)

Again we take a fixed number of terms, and as x becomes large the function
and its approximation get closer.

Observations:
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i) Knowledge of the asymptotic expansion gives us useful knowledge about
the function, but does not give us everything. In particular, two distinct
functions may have the same asymptotic expansion. For example, for
small positive λ, the functions F (λ) and F (λ)+ae−b/λ have exactly the
same asymptotic expansions as series in positive powers of λ. This is
because e−b/λ goes to zero faster than any power of λ, and so its asymp-
totic expansion

∑
n anλ

n has every coefficient an being zero. Physicists
commonly say that e−b/λ is a non-perturbative function, meaning that
it will not be visible to a perturbation expansion in powers of λ.

ii) An asymptotic expansion is usually valid only in a sector a < arg z < b.
Different sectors have different expansions. This is called the Stokes’
phenomenon.

The most useful methods for obtaining asymptotic expansions require
that the function to be expanded be given in terms of an integral. This
is the reason why we have stressed the contour integral method of solving
differential equations. If the integral can be approximated by a Gaussian, we
are lead to the method of steepest descents. This technique is best explained
by means of examples.

9.4.1 Stirling’s Approximation for n!

We start from the integral representation of the Gamma function

Γ(z + 1) =
∫ ∞

0
e−ttz dt

Set t = zζ, so

Γ(z + 1) = zz+1
∫ ∞

0
ezf(ζ) dζ,

where
f(ζ) = ln ζ − ζ.

We are going to be interested in evaluating this integral in the limit that
|z| → ∞ and finding the first term in the asymptotic expansion of Γ(z + 1)
in powers of 1/z. In this limit, the exponential will be dominated by the part
of the integration region near the absolute maximum of f(ζ) Now f(ζ) is a
maximum at ζ = 1 and

f(ζ) = −1− 1

2
(ζ − 1)2 + · · · .
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So

Γ(z + 1) = zz+1e−z
∫ ∞

0
e−

z
2
(ζ−1)2+··· dζ

≈ zz+1e−z
∫ ∞

−∞
e−

z
2
(ζ−1)2 dζ

= zz+1e−z
√

2π

z

=
√

2πzz+1/2e−z. (9.60)

By keeping more of the terms represented by the dots, and expanding
them as

e−
z
2
(ζ−1)2+··· = e−

z
2
(ζ−1)2

[
1 + a1(ζ − 1) + a2(ζ − 1)2 + · · ·

]
, (9.61)

we would find, on doing the integral, that

Γ(z+1) ≈
√

2πzz+1/2e−z
[
1 +

1

12z
+

1

288z2
− 139

51840z3
− 571

24888320z4
+O

(
1

z5

)]
.

(9.62)
Since Γ(n+ 1) = n! we also have

n! ≈
√

2πnn+1/2e−n
[
1 +

1

12n
+ · · ·

]
.

We make contact with our discusion of asymptotic series by rewriting the
expansion as

Γ(z + 1)√
2πzz+1/2e−z

∼ 1 +
1

12z
+

1

288z2
− 139

51840z3
− 571

24888320z4
+ . . . (9.63)

This typical. We usually have to pull out a leading factor from the function
whose asymptotic behaviour we are studying, before we are left with a plain
asymptotic power series.

9.4.2 Airy Functions

A more sophisticated treatment is needed for this problem, and we will meet
with Stokes’ phenomenon. Airy’s equation is

y′′ − zy = 0.
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On the real axis this becomes

−y′′ + xy = 0,

which we can think of as the Schrodinger equation for a particle running up a
linear potential. A classical particle incident from the left with total energy
E = 0 will have a turning point at x = 0. The corresponding quantum
wavefunction, Ai (x), contains a travelling wave incident from the left and
becoming evanescent as it tunnels into the classically forbidden region, x > 0,
together with a reflected wave returning to −∞. The sum of the incident
and reflected waves is a real-valued standing wave.

-10 -5 5 10

-0.4

-0.2

0.2

0.4

The Airy function, Ai (x).

We will look for contour integral solutions to Airy’s equation of the form

y(x) =
∫ b

a
extf(t) dt.

Denoting the Airy differential operator by Lx ≡ ∂2
x − x, we have

Lx y =
∫ b

a
(t2 − x)extf(t) dt =

∫ b

a
f(t)

{
t2 − d

dt

}
ext dt.

=
[
−extf(t)

]b
a
+
∫ b

a

({
t2 +

d

dt

}
f(t)

)
ext dt.

Thus f(t) = e−
1

3
t3 and

y(x) =
∫ b

a
ext−

1

3
t3 dt.

The contour must end at points where the integrated-out term,
[
ext−

1

3
t3
]b
a
,

vanishes. There are therefore three possible contours, which end at any two
of

+∞, ∞ e2πi/3, ∞ e−2πi/3.



9.4. ASYMPTOTIC EXPANSIONS 285

C1

C

C

2

3

Contours providing solutions of Airy’s equation.

Of course yC1
+ yC2

+ yC3
= 0, so only two are linearly independent. The

Airy function itself is defined by

Ai (z) =
1

2πi

∫

C1

ext−
1

3
t3 dt =

1

π

∫ ∞

0
cos

(
xs +

1

3
s3
)
ds

In obtaining last equality, we have deformed the contour of integration, C1,
that ran from ∞ e−2πi/3 to ∞ e2πi/3 so that it lies on the imaginary axis,
and there we have written t = is. You may check (à la Jordan) that this
deformation does not alter the value of the integral.

To study the asymptotics of this function we need to examine separately
two cases x� 0 and x� 0. For both ranges of x, the principal contribution
to the integral will come from the neighbourhood of the stationary points
of f(t) = xt − t3/3. These stationary points are never pure maxima or
minima of the real part of f (the real part alone determines the magnitude
of the integrand) but are always saddle points. We must deform the contour
so that on the integration path the stationary point is the highest point
in a mountain pass. We must also ensure that everywhere on the contour
the difference between f and its maximum value stays real . Because of the
orthogonality of the real and imaginary part contours, this means that we
must take a path of steepest descent from the pass — hence the name of
the method. If we stray from the steepest descent path, the phase of the
exponent will be changing. This means that the integrand will oscillate and
we can no longer be sure that the result is dominated by the contributions
near the saddle point.
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b)a)

u

v v

u

Steepest descent contours and location and orientation of the saddle passes
for a) x� 0, b) x� 0.

i) x� 0 : The stationary points are at t = ±√x. Writing t = ξ −√x have

f(ξ) = −2

3
x3/2 + ξ2

√
x− 1

3
ξ3

while near t = +
√
x we write t = ζ +

√
x and find

f(ζ) = −2

3
x3/2 − ζ2

√
x− 1

3
ζ3

We see that the saddle point near −√x is a local maximum when we
route the contour vertically, while the saddle point near +

√
x is a local

maximum as we go down the real axis. Since the contour in Ai (x) is
aimed vertically we can distort it to pass through the saddle point near
−√x, but cannot find a route through the point at +

√
x without the

integrand oscillating wildly. At the saddle point the exponent, xt−t3/3,
is real. If we write t = u+ iv we have

Im (xt− t3/3) = v(x− u2 + v3/3),

so the exact steepest descent path, on which the imaginary part remains
zero is given by the union of real axis (v = 0) and the curve

u2 − 1

3
v2 = x.

This is a hyperbola, and the branch passing through the saddle point
at −√x is plotted in a).
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Now setting ξ = is, we find

Ai (x) =
1

2π
e−

2

3
x3/2

∫ ∞

−∞
e−

√
xs2+··· ds ∼ 1

2
√
π
x−1/4e−

2

3
x3/2

.

ii) x� 0 : The stationary points are now at ±i
√
|x|. Setting t = ξ ± i

√
|x|

find that

f(x) = ∓i2
3
|x|3/2 ∓ iξ2

√
|x|.

The exponent is no longer real, but the imaginary part will be constant
and the integrand non-oscillatory provided we deform the contour so
that it becomes the disconnected pair of curves shown in b). The
new contour passes through both saddle points and we must sum their

contributions. Near t = i
√
|x| we set ξ = e3πi/4s and get

1

2πi
e3πi/4e−i

2

3
|x|3/2

∫ ∞

−∞
e−

√
xs2 ds =

1

2i
√
π
e3πi/4|x|−1/4e−i

2

3
|x|3/2

= − 1

2i
√
π
e−iπ/4|x|−1/4e−i

2

3
|x|3/2

(9.64)

Near t = −i
√
|x|we set ξ = e2πi/3s and get

1

2iπ
eπi/4ei

2

3
|x|3/2

∫ ∞

−∞
e−

√
xs2 ds =

1

2i
√
π
eπi/4|x|−1/4ei

2

3
|x|3/2

The sum of these two contributions is

Ai (x) ∼ 1√
π|x|1/4 sin

(
2

3
|x|3/2 +

π

4

)
.

The fruit of our labours is therefore

Ai (x) ∼ 1

2
√
π
x−1/4e−

2

3
x3/2

[
1 +O

(
1

x

)]
, x > 0,

∼ 1√
π|x|1/4 sin

(
2

3
|x|3/2 +

π

4

) [
1 +O

(
1

x

)]
, x < 0.
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-1

0

1

2

a) b)

c) d)
Evolution of the steepest-descent contour from passing through only one
saddle point to passing through both. The dashed and solid lines are contours
of the real and imaginary parts, repectively, of (zt − t3/3). θ = Arg z takes
the values a) 7π/12, b) 15π/24, c) 2π/3, d) 9π/12.

Suppose that we allow x to become complex x→ z = |z|eiθ, with −π < θ <
π. Then the figure above shows how the steepest contour evolves and leads
the two quite different expansion for positive and negative x. We see that
for 0 < θ < 2π/3 the steepest descent path continues to be routed through

the single stationary point at −
√
|z|eiθ/2. Once θ reaches 2π/3, though,
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it passes through both stationary points. The contribution to the integral
from the newly aquired stationary point is, however, exponentially smaller

as |z| → ∞ than that of t = −
√
|z|eiθ/2. The new term is therefore said to

be subdominant , and makes an insignificant contribution to the asymptotic
behaviour of Ai (z). The two saddle points only make contributions of the
same magnitude when θ reaches π. If we analytically continue beyond θ = π,
the new saddlepoint will now dominate over the old, and only its contribtion
is significant at large |z|. The Stokes line, at which we must change the form
of the asymptotic expansion is therefore at θ = π.

If we try to systematically keep higher order terms we will find, for the
oscillating Ai (−z), a double series

Ai (−z) ∼ π−1/2z−1/4

[
sin(ρ + π/4)

∞∑

n=0

(−1)nc2nρ
−2n

− cos(ρ+ π/4)
∞∑

n=0

(−1)nc2n+1ρ
−2n−1

]
(9.65)

where ρ = 2z3/2/3. In this case, therefore we need to extract two leading
coefficients before we have asymptotic power series.

The subject of asymptotics contains many subtleties, and the reader in
search of a more detailed discussion is recommened to read Bender and
Orszags Advanced Mathematical methods for Scientists and Engineers.

Exercise 9.2: Consider the behaviour of Bessel functions when x is large. By
applying the method of steepest descent to the Hankel function contours show
that

H(1)
ν (x) ∼

√
2

πx
ei(x−νπ/2−π/4)

[
1− 4ν2 − 1

8πx
+ · · ·

]

H(2)
ν (x) ∼

√
2

πx
e−i(x−νπ/2−π/4)

[
1 +

4ν2 − 1

8πx
+ · · ·

]
,

and hence

Jν(x) ∼
√

2

πx

[
cos

(
x− νπ

2
− π

4

)
− 4ν2 − 1

8x
sin

(
x− νπ

2
− π

4

)
+ · · ·

]
,

Nν(x) ∼
√

2

πx

[
sin

(
x− νπ

2
− π

4

)
+

4ν2 − 1

8x
cos

(
x− νπ

2
− π

4

)
+ · · ·

]
.
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9.5 Elliptic Functions

The subject of elliptic functions goes back to remarkable identities of Fagano
(1750) and Euler (1761). Euler’s formula is

∫ u

0

dx√
1− x4

+
∫ v

0

dy√
1− y4

=
∫ r

0

dz√
1− z4

,

where 0 ≤ u, v ≤ 1, and

r =
u
√

1− v4 + v
√

1− u4

1 + u2v2
.

This looks mysterious, but perhaps so does

∫ u

0

dx√
1− x2

+
∫ v

0

dy√
1− y2

=
∫ r

0

dz√
1− z2

,

where

r = u
√

1− v2 + v
√

1− u2,

until you realize that the latter formula is merely

sin(a+ b) = sin a cos b + cos a sin b

in disguise. To see this set

u = sin a, v = sin b

and remember the integral formula for the inverse trig function

a = sin−1 u =
∫ u

0

dx√
1− x2

.

The Fagano-Euler formula is a similarly disguised addition formula for an
elliptic function. Just as we use the substitution x = sin y in the 1/

√
1− x2

integral, we can use an elliptic function substitution to evaluate elliptic in-
tegrals such as

I4 =
∫ x

0

dt√
(t− a1)(t− a2)(t− a3)(t− a4)
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I3 =
∫ x

0

dt√
(t− a1)(t− a2)(t− a3)

.

The integral I3 is a special case of I4, where a4 has been sent to infinity by
use of a Möbius map

t→ t′ =
at + b

ct + d
, dt′ = (ad− bc) dt

(ct+ d)2
.

Indeed, we can use a suitable Möbius map to send any three of the four
points to 0, 1,∞. The idea of elliptic functions (as opposed to the integrals,
which are their functional inverse) was known to Gauss, but Abel and Jacobi
were the first to publish (1827).

For the general theory, the simplest elliptic function is the Weierstrass P.
This is defined by first selecting two linearly independent periods ω1, ω2, and
setting

P(z) =
1

z2
+

∑

m,n6=0

{
1

(z −mω1 − nω2)2
− 1

(mω1 + nω2)2

}
.

The sum is over all non-negative integers m,n, positive and negative. Helped
by the counterterm, the sum is absolutely convergent. We can therefore
rearrange the terms to prove double periodicity

P(z +mω1 + nω2) = P(z)

The function is therefore determined everywhere by its values in the period
parallelogram P = {λω1 + µω2 : 0 ≤ λ, µ < 1}. Double periodicity is the
defining characteristic of elliptic functions.

.

.

.

.

.

.

.

.

ω

ω2

x

y

1

.

.
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Unit cell and double-periodicity.

Any non-constant meromorphic function, f(z), which is doubly periodic has
four basic properties:

a) The function must have at least one pole in its unit cell. Otherwise
it would be holomorphic and bounded, and therefore a constant by
Liouville.

b) The sum of the residues at the poles must add to zero. This follows
from integrating f(z) around the boundary of the period parallelogram
and observing that the contributions from opposite edges cancel.

c) The number of poles in each unit cell must equal the number of zeros.
This follows from integrating f ′/f round the boundary of the period
parallelogram.

d) If f has zeros at the N points zi and poles at the N points pi then

N∑

i=1

zi −
N∑

i=1

pi = nω1 +mω2

where m,n are integers. This follows from integrating zf ′/f round the
boundary of the period parallelogram.

The Weierstass P has a second order pole at the origin. It also obeys

lim
|z|→0

(
P(z)− 1

z2

)
= 0

P(z) = P(−z)
P ′(z) = −P ′(−z)

The property that makes P useful for evaluating integrals is

(P ′(z))
2

= 4P3(z)− g2P(z)− g3

where

g2 = 60
∑

m,n6=0

1

(mω1 + nω2)4
, g3 = 140

∑

m,n6=0

1

(mω1 + nω2)6
.

This is proved by observing that the difference of the left hand and right
hand sides is zero at z = 0, has no poles or other singularities, and being
therefore continuous and periodic is automatically bounded. It is therefore
identically zero by Liouville’s theorem.
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From the symmetry and periodicity of P we see that P′(z) = 0 at e1 =
P(ω1/2), e2 = P(ω2/2), and e3 = P((ω1 +ω2)/2). Now P ′ must have exactly
three zeros since it has a pole of order three at the origin and, by property
c), the number of zeros in the unit cell is equal to the number of poles. We
therefore know the location of all three zeros and can factorize

4P3(z)− g2P(z)− g3 = 4(P − e1)(P − e2)(P − e3).
We note that the coefficient of P2 in the polynomial on the left side is zero,
implying that e1 + e2 + e3 = 0. This is consistent with property d).

The roots ei can never coincide. For example, (P(z) − e1) has a double
zero at ω1/2, but two zeros is all it is allowed because the number of poles
per unit cell equals the number of zeros, and (P(z)−e1) has a double pole at
0 as its only singularity. Thus (P − e1) cannot be zero at another point, but
it would be if e1 coincided with e2 or e3. As a consequence, the discriminant

∆ = 16(e1 − e2)2(e2 − e3)2(e1 − e3)2 = g3
2 − 27g2

3,

is never zero.
We use P to write

z = P−1(u) =
∫ u

∞

dt

2
√

(t− e1)(t− e2)(t− e3)
=
∫ u

∞

dt√
4t3 − g2t− g3

.

This maps the u plane cut from e1 to e2 and e3 to ∞ one-to-one onto the
2-torus, regarded the unit cell of the ωn,m = nω1 +mω2 lattice.

As z sweeps over the torus, the points x = P(z), y = P′(z) move on the
elliptic curve

y2 = 4x3 − g2x− g3

which should be thought of as a set in CP 2. These curves, and the finite fields
of rational points that lie on them, are exploited in modern cryptography.

The magic which leads to addition formula, such as the Euler-Fagano
relation with which we began this section, lies in the (not immediatley ob-
vious) fact that any elliptic function having the same periods as P(z) can
be expressed as a rational function of P(z) and P ′(z). From this it follows
(after some thought) that any two such elliptic functions, f1(z) and f2(z),
obey a relation F (f1, f2) = 0, where

F (x, y) =
∑

an,mx
nym

is a polynomial in x and y. We can eliminate P ′(z) in these relations at the
expense of introducing square roots.
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modular invariance

If ω1 and ω2 are periods and define a unit cell, so are

ω′
1 = aω1 + bω2

ω′
2 = cω1 + dω2

where a, b, c, d are integers with ad− bc = ±1. This is because the matrix in-
verse also has integer entries, and so the ωi can be expressed in terms of the ω′

i

with integer coefficients. Consequently the set of integer linear combinations
of the ω′

i generate the same lattice as the integer linear combinations of the
original ωi. This notion of redefining the unit cell should be familiar to your
from solid state physics. If we preserve the orientation of the basis vectors
then we must restrict ourselves to maps whose determinant ad− bc is unity.
The set of such transforms constitute the the group SL(2,Z). Clearly P is
invariant under this group, as are g2 and g3 and ∆. Now define ω2/ω1 = τ ,
and write

g2(ω1, ω2) =
1

ω4
1

, g̃2(τ), g3(ω1, ω2) =
1

ω6
1

, g̃3(τ). ∆(ω1, ω2) =
1

ω12
1

∆̃(τ),

and also

J(τ) =
g̃3

2

g̃3
2 − 27g̃2

3

=
g̃3

2

∆̃
.

Because the denominator is never zero when Im τ > 0, the function J(τ) is
holomorphic in the upper half-plane — but not on the real axis. The function
J(τ) is called the elliptic modular function.

Except for the prefactors ωn1 , the functions g̃i(τ), ∆̃(τ) and J(τ) are
invariant under the Möbius transformation

τ → aτ + b

cτ + d
.

with (
a b
c d

)
∈ SL(2,Z).

This Möbius transformation does not change if the entries in the matrix are
multiplied by a common factor of ±1, and so the transformation is an element
of the modular group PSL(2,Z) ≡ SL(2,Z)/{I,−I}.
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Taking into accound the change in the prefactors we have

g̃2

(
aτ + b

cτ + d

)
= (cτ + d)4g̃3(τ),

g̃3

(
aτ + b

cτ + d

)
= (cτ + d)6g̃3(τ),

∆̃

(
aτ + b

cτ + d

)
= (cτ + d)12∆̃(τ). (9.66)

Because c = 0 and d = 1 for the special case τ → τ +1, these three functions
obey f(τ +1)−f(τ) and so depend on τ only via the combination q2 = e2πiτ .
For example, it is not hard to prove that

∆̃(τ) = (2π)12q2
∞∏

n=1

(
1− q2n

)24
.

We can also expand them as power series in q2 — and here things get interest-
ing because the coefficients have number-theoretic properties. For example

g̃2(τ) = (2π)4

[
1

12
+ 20

∞∑

n=1

σ3(n)q2n

]
,

g̃3(τ) = (2π)6

[
1

216
− 7

3

∞∑

n=1

σ5(n)q2n

]
. (9.67)

The symbol σk(n) is defined by σk(n) =
∑
d k where d runs over all positive

divisors of the number n.
In the case of the function J(τ), the prefactors cancel and

J

(
aτ + b

cτ + d

)
= J(τ),

so J(τ) is a modular invariant . One can show that if J(τ1) = J(τ2), then

τ2 =
aτ1 + b

cτ1 + d

for some modular transformation with integer a, b, c, d, where ad − bc = 1,
and further, that any modular invariant function is a rational function of
J(τ). Thus J(τ) is a rather special object.
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This J(τ) is the function referred to in the footnote about the properties
of the Monster group. As with the g̃i, J(τ) depends on τ only through q2.
The first few terms in the power series expansion of J(τ) in terms of q2 turn
out to be

1728J(τ) = q−2 + 744 + 196884q2 + 21493760q4 + 864299970q6 + · · · .

Since AJ(τ) + B has all the same modular invariance properties as J(τ),
the numbers 1728 = 123 and 744 are just conventional normalizations. The
remaining integer coefficiants, however, are completely determined by these
properties. A number theory interpretation of these integers seemed lacking
until John McKay and others observed that that

1 = 1

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296786

864299970 = 2× 1 + 2× 196883 + 21296786 + 842609326,

where “1” and the large integers on the right-hand side are the dimen-
sions of the smallest irreducible representations of the Monster group. This
“Monstrous Moonshine” was originally mysterious and almost unbelievable,
(“moonshine” = “fanatstic nonsense”) but it was explained by Richard Borcherds
by the use of techniques borrowed from string theory3 Borcherds received the
1998 Fields Medal for this work.

3“I was in Kashmir. I had been traveling around northern India, and there was one
really long tiresome bus journey, which lasted about 24 hours. Then the bus had to stop
because there was a landslide and we couldn’t go any further. It was all pretty darn
unpleasant. Anyway, I was just toying with some calculations on this bus journey and
finally I found an idea which made everything work”- Richard Borcherds (Interview in
The Guardian August 1998).


