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Preface

For the first time in the history of chemical sciences, theoretical
predictions have achieved the level of reliability that allows them to ri-
val experimental measurements in accuracy on a routine basis. Only a
decade ago, such a statement would be valid only with severe qualifica-
tions as high-level quantum-chemical calculations were feasible only for
molecules composed of a few atoms. Improvements in both hardware
performance and the level of sophistication of electronic structure meth-
ods have contributed equally to this impressive progress that has taken
place only recently.

The contemporary chemist interested in predicting thermochemical
properties such as the standard enthalpy of formation has at his disposal
a wide selection of theoretical approaches, differing in the range of appli-
cability, computational cost, and the expected accuracy. Ranging from
high-level treatments of electron correlation used in conjunction with
extrapolative schemes to semiempirical methods, these approaches have
well-known advantages and shortcomings that determine their usefulness
in studies of particular types of chemical species. The growing number
of published computational schemes and their variants, testing sets, and
performance statistics often makes it difficult for a scientist not well
versed in the language of quantum theory to identify the method most
adequate for his research needs.

In this book, the experts who have developed and tested many of the
currently used electronic structure procedures present an authoritative
overview of the theoretical tools for the computation of thermochemi-
cal properties of atoms and molecules. The first two chapters describe
the highly accurate, computationally expensive approaches that com-
bine high-level calculations with sophisticated extrapolation schemes.
In chapters 3 and 4, the widely used G3 and CBS families of compos-
ite methods are discussed. The applications of the electron propagator
theory to the estimation of energy changes that accompany electron de-
tachment and attachment processes follow in chapter 5. The next two
sections of the book focus on practical applications of the aforedescribed

xi



xii

methods to free radicals and organometallic compounds. Finally, a brief
review of semiempirical methods is given in chapter 8.

Since the science presented here would never materialize without
productive interactions between theory and experiment, it is certainly
appropriate to dedicate this book to the practitioners of experimental
chemistry who do not hesitate to regard electronic structure calcula-
tions as an integral part of their investigations and to the vanguards
of molecular quantum mechanics who do not shy away from visiting re-
search laboratories where matter rather than its abstract representations
is studied.

Jerzy Cioslowski

Tallahassee, April 2001
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Chapter 1

Highly Accurate Ab Initio Computation
of Thermochemical Data

Trygve Helgaker
Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, N-0315 Oslo,
Norway

Wim Klopper and Asger Halkier
Theoretical Chemistry Group, Debye Institute, Utrecht University, P. O. Box 80052,

NL-3508 TB Utrecht, The Netherlands

Keld L. Bak
UNI-C, Olof Palmes Allé 38, DK-8200 Århus N, Denmark

Poul Jørgensen and Jeppe Olsen
Department of Chemistry, Århus University, DK-8000 Århus C, Denmark

1. INTRODUCTION

Heats of reaction are among the fundamental quantities of thermo-
chemistry. Since, to a first approximation, the heats of reaction are
energy differences between molecular systems, one would think that
their quantum-chemical evaluation should be a rather straightforward
matter. After all, ever since its inception in the late 1920s, quantum
chemistry has been concerned with the accurate calculation of total en-
ergies, building up a large body of expertise and experience on the accu-
rate and efficient calculation of total molecular electronic energies [1-10].

1

J. Cioslowski (ed.), Quantum-Mechanical Prediction of Thermochemical Data, 1–30.
© 2001  Kluwer Academic Publishers. Printed in the Netherlands.



2 Chapter 1

Nevertheless, in spite of all these efforts, it has proved exceedingly diffi-
cult to compute the necessary quantities (i.e., total electronic energies) to
a target accuracy of better than 1 kJ/mol, which is the typical accuracy
of experimental measurements of heats of formation. In this chapter, we
examine the ab initio calculation of atomization energies (AEs) of gas-
phase molecules, from which the heats of gas-phase reactions between
the same molecules can be easily obtained. Our purpose is not only to
illustrate the inherent difficulties associated with the accurate calcula-
tion of AEs, but also to describe the considerable progress that has been
achieved over the last few years and the perspectives for the near future.

2. HIERARCHIES OF AB INITIO THEORY

An important characteristic of ab initio computational methodology
is the ability to approach the exact description – that is, the focal point
[11] – of the molecular electronic structure in a systematic manner. In
the standard approach, approximate wavefunctions are constructed as
linear combinations of antisymmetrized products (determinants) of one-
electron functions, the molecular orbitals (MOs). The quality of the
description then depends on the basis of atomic orbitals (AOs) in terms
of which the MOs are expanded (the one-electron space), and on how
linear combinations of determinants of these MOs are formed (the n-
electron space). Within the one- and n-electron spaces, hierarchies exist
of increasing flexibility and accuracy. To understand the requirements
for accurate calculations of thermochemical data, we shall in this section
consider the one- and n-electron hierarchies in some detail [12].

2.1. The Coupled-Cluster Hierarchy of n-Electron Models

At the lowest level of the n-electron hierarchy, we have the Hartree-
Fock wavefunction, obtained by variationally optimizing a single deter-
minant with respect to the shape of the occupied MOs. As we shall see,
the quality of the single-determinant Hartree-Fock description is too low
to provide sufficiently accurate thermochemical data. The inadequacy
of the Hartree-Fock model arises from the fact that a single determinant
gives an uncorrelated description of the electronic motion, in which each
electron moves in the average (rather than instantaneous) field generated
by the other electrons. This model is therefore incapable of describing
the subtle changes that occur as electron pairs are broken or formed dur-
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ing chemical processes. For an accurate description of thermochemical
data, we must therefore go beyond the Hartree-Fock level of theory.

A standard method of improving on the Hartree-Fock description is
the coupled-cluster approach [12, 13]. In this approach, the wavefunction

is written as an exponential of a cluster operator working on the
Hartree-Fock state generating a linear combination of all possible
determinants that may be constructed in a given one-electron basis,

The cluster operator creates excitations out of the Hartree-Fock de-
terminant and may be written as

where creates single excitations, creates double excitations, and
so on. There is ample theoretical and numerical evidence that the con-
tributions from rapidly decrease after (double excitations), and
the coupled-cluster operator is therefore usually truncated either after

leading to the coupled-cluster singles-and-doubles (CCSD) model,
or after leading to the CCSDT method, including all singles, dou-
bles, and triples. The advantage of the exponential parameterization is
that the wavefunction becomes multiplicatively separable, thereby pro-
viding a uniform (size-extensive) description of systems of different size.
Other hierarchies of n-electron models exist, but the coupled-cluster hi-
erarchy has proved to be the most successful for highly accurate calcula-
tions of molecular electronic structure. In particular, the configuration-
interaction (CI) method suffers from a lack of size-extensivity and the
related slow convergence with respect to the level of excitation; the per-
turbative Møller-Plesset method is not sufficiently accurate to low orders
and converges slowly if at all [14].

To understand the structure of the coupled-cluster wavefunction,
let us Taylor expand the exponential in Eq. (2.1). Sorting the resulting
expansion according to the level of excitation, we obtain

At each excitation level beyond the single-excitation level, a number of
terms contribute. For example, double excitations are generated both
by means of the double-excitation operator (connected excitations)
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and by means of two independent single-excitation operators (discon-
nected excitations). At the CCSD level, we ignore all triple and higher
connected excitations. Nevertheless, because of the presence of discon-
nected contributions in Eq. (2.3), the resulting CCSD wavefunction con-
tains contributions from all levels of excitation – that is, it contains
contributions from all determinants that can be constructed in a given
AO basis. Since the higher excitations are dominated by disconnected
contributions, this separation into connected and disconnected contribu-
tions ensures both a rapid convergence of the coupled-cluster hierarchy
and size-extensivity of its energy.

2.2. The Correlation-Consistent Hierarchy
of One-Electron Basis Sets

The quality of quantum-chemical calculations depends not only on
the chosen n-electron model but also critically on the flexibility of the
one-electron basis set in terms of which the MOs are expanded. Ob-
viously, it is possible to choose basis sets in many different ways. For
highly accurate, systematic studies of molecular systems, it becomes im-
portant to have a well-defined procedure for generating a sequence of
basis sets of increasing flexibility. A popular hierarchy of basis functions
are the correlation-consistent basis sets of Dunning and coworkers [15-
17]. We shall use two varieties of these sets: the cc-pVXZ (correlation-
consistent polarized-valence X-tuple-zeta) and cc-pCVXZ (correlation-
consistent polarized core-valence X-tuple-zeta) basis sets; see Table 1.1.

As can be seen from the table, the number of AOs increases rapidly
with the cardinal number X. Thus, with each increment in the cardinal
number, a new shell of valence AOs is added to the cc-pVXZ set; since
the number of AOs added in each step is proportional to the total
number of AOs in a correlation-consistent basis set is proportional
to The core-valence sets cc-pCVXZ contain additional AOs for the
correlation of the core electrons. As we shall see later, the hierarchy of
correlation-consistent basis sets provides a very systematic description
of molecular electronic systems, enabling us to develop a useful extrap-
olation technique for molecular energies.



Highly Accurate Ab Initio Computation of Thermochemical Data 5

2.3. Computational Cost

The computational complexity of the coupled-cluster method trun-
cated after a given excitation level m – for example, for CCSD
– may be discussed in terms of the number of amplitudes in the
coupled-cluster operator and the number of operations required
for optimization of the wavefunction. Considering K atoms, each with

basis functions, we have the following scaling relations:

From these expressions, it is evident that the steep increase of the compu-
tational cost with X (the basis-set hierarchy) and m (the coupled-cluster
hierarchy) severely restricts the levels of theory that can be routinely
used for large systems or even explored for small systems. Nevertheless,
we shall see that, with current computers, it is possible to arrange the
calculations in such a manner that chemical accuracy (of the order of

) can be achieved – at least for molecules con-
taining not more than ten first-row atoms.

3. CONVERGENCE OF THE COUPLED-CLUSTER
HIERARCHY

3.1. Model Calculations on and HF

For small basis sets and molecules, it is possible to calculate the full
set of energies in the coupled-cluster hierarchy, from the Hartree-Fock
to the full configuration-interaction (FCI) energy [18]. Although such
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calculations employ basis sets that are too small to give quantitative esti-
mates of AEs, they still provide useful information about the convergence
of the coupled-cluster hierarchy – in particular, about the importance of
the quadruple and higher excitations. We here present two such series
of calculations.

In Table 1.2, we have listed the valence cc-pVDZ electronic energies
and AEs of and HF at different levels of coupled-cluster theory. The
energies are given as deviations from the FCI values. Comparing the
different levels of theory, we note that the error is reduced by one order
of magnitude at each level. In particular, at the CCSDT level, there is a
residual error of the order of a few kJ/mol in the calculated energies and
AEs, suggesting that the CCSDTQ model is usually needed to reproduce
experimental measurements to within the quoted errors bars (often less
than 1 kJ/mol).

Let us make two more observations about the convergence of the
coupled-cluster hierarchy. First, it converges faster for HF than for
reflecting the more complicated electronic structure of the multiple bond
in Second, the cancellation of errors in the calculated AEs becomes
less pronounced as we move up in the coupled-cluster hierarchy. The
cancellation diminishes since the coupled-cluster expansions of the atoms
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converge faster than those of the molecules, which contain more electron
pairs.

Although the calculations reported here have been carried out in a
small basis, there is no reason to believe that our conclusions regarding
the convergence of the coupled-cluster hierarchy would be different had
the calculations been carried out in larger basis. In particular, we con-
clude that the CCSDT model is incapable of predicting AEs to within
1 kJ/mol.

3.2. The CCSD(T) Model

As shown in the previous section, the coupled-cluster hierarchy con-
verges rapidly, the error in the total error being reduced by an order of
magnitude at each new level of theory. Unfortunately, from section 2.3,
we recall that the cost of the coupled-cluster calculations increases very
rapidly with the inclusion of higher-order connected excitations. In prac-
tice, while it is possible to carry out CCSD calculations for fairly large
systems and basis sets (more than 10 atoms at the cc-pCVQZ level),
the full CCSDT model is presently too expensive for routine calcula-
tions. However, since we are anyway forced to neglect the connected
quadruples (CCSDTQ) in our calculations, the overall quality of our
calculations will not be adversely affected if we make an approximation
in the treatment of the connected triples whose error is not larger than
that incurred by neglecting the quadruples. In practice, therefore, any
approximate treatment of the triples that gives an error of the order of
10 % or less would be welcome.

Among the various approximate methods for including the con-
nected triple excitations, the CCSD(T) method is the most popular [19].
In this approach, the CCSD calculation is followed by the calculation of
a perturbational estimate of the triple excitations. In addition to reduc-
ing the overall scaling with respect to the number of atoms K from in
CCSDT [see Eq. (2.5)] to in CCSD(T), the CCSD(T) method avoids
completely the storage of the triples amplitudes.

In Table 1.3, we have listed the contributions from the single and
connected double and triple excitations to the AEs of CO,
HF, and at the valence-electron CCSDT/cc-pV5Z and CCSD(T)/cc-
pV5Z levels [20]. The second column of Table 1.3 contains the CCSD
singles and doubles contributions to the correlation energy, the third
column the triples contributions as obtained in the CCSD(T) method,
and the last column the difference between the triples contributions in
CCSDT and CCSD(T) – that is, the energy contribution that originates
from the full relaxation of the triples. The error incurred by employing
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CCSD(T) instead of CCSDT amounts to no more than 10 % of the total
triples correction and 1 % of the total correlation energy, thus fulfilling
our requirement for an acceptable approximate triples theory.

However, the success of the CCSD(T) model stems not only from
the fact that it gives a good approximation to the full triples correction.
From Table 1.3, we note that the CCSD(T) model usually overestimates
the contributions from the triples, the only exception being This
overestimation is particularly significant for where the CCSD(T)
triples correction is 3 kJ/mol larger than the full triples correction. For
comparison, it is seen from Table 1.2 that, in the cc-pVDZ basis, the
connected quadruple excitations add 3.55 kJ/mol to the AE. The over-
estimation of the triples contribution by the CCSD(T) model will thus
partly cancel the error incurred by ignoring the connected quadruples.
In general, therefore, we may expect that the CCSD(T) AEs will not be
improved by going to the full CCSDT method [20]. In this sense, the
CCSD(T) model represents a very accurate method for the calculation
of AEs, which may only be improved upon by simultaneously including
more terms from the connected triples as well as contributions from the
connected quadruples [20-22].

4. AN ILLUSTRATIVE EXAMPLE:
THE ATOMIZATION ENERGY OF CO

To illustrate the difficulties associated with the accurate calculation
of thermochemical data, we here consider the calculation of the AE of
CO – that is, the difference in total energy between the CO molecule
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and the C and O atoms at 0 K. The experimental AE of CO is known
to be 1071.8(5) kJ/mol [23, 24]; in Table 1.4, we have collected the
various contributions to the theoretical AE of CO, as calculated at the
CCSD(T) level in the limit of a complete one-electron basis. Note that
the calculated AE of 1072.0 kJ/mol is within the experimental error
bars, even though it constitutes less than 0.5 % of the total energy of
the CO molecule.

4.1. Electronic and Nuclear Contributions

Let us discuss the various contributions to the calculated AE of CO.
The first row of Table 1.4 contains the energies obtained from separate
Hartree-Fock calculations on CO and its constituents. The large error of
32 % arises since the Hartree-Fock model is incapable of describing the
complicated changes in the electronic structure that occur as electron
pairs are broken. Although we might hope that the errors associated
with the breaking of electron pairs to some extent cancel in the enthalpies
of isogyric reactions (i.e., reactions that conserve the number of electron
pairs), we clearly need to go beyond the one-determinant Hartree-Fock
description for a satisfactory theoretical prediction of AEs.
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In the second row of Table 1.4, we have listed the corrections to
the Hartree-Fock energies that are obtained from CCSD calculations.
Clearly, we now have a better description of the atomization process,
the error in the calculated AE being only -19.6 kJ/mol (2 %). Still, we
are far away from the prescribed target accuracy of 1 kJ/mol.

To improve on the CCSD description, we go to the next level of
coupled-cluster theory, including corrections from triple excitations –
see the third row of Table 1.4, where we have listed the triples correc-
tions to the energies as obtained at the CCSD(T) level. The triples
corrections to the molecular and atomic energies are almost two orders
of magnitude smaller than the singles and doubles corrections. However,
for the triples, there is less cancellation between the corrections to the
molecule and its atoms than for the doubles. The total triples correc-
tion to the AE is therefore only one order of magnitude smaller than the
singles and doubles corrections.

With the triples correction added, the error relative to experiment
is still as large as 15 kJ/mol. More importantly, we are now above exper-
iment and it is reasonable to assume that the inclusion of higher-order
excitations (in particular quadruples) would increase this discrepancy
even further, perhaps by a few kJ/mol (judging from the differences
between the doubles and triples corrections). Extending the coupled-
cluster expansion to infinite order, we would eventually reach the ex-
act solution to the nonrelativistic clamped-nuclei electronic Schrödinger
equation, with an error of a little more than 15 kJ/mol. Clearly, for
agreement with experiment, we must also take into account the effects
of nuclear motion and relativity.

From Table 1.4, we note that the zero-point vibrational energy
(ZPVE) correction is large and negative, reducing the error at the
CCSD(T) level to only 2.2 kJ/mol. A further inclusion of the first-
order relativistic correction brings the error down to only 0.2 kJ/mol,
an excellent result. However, before we become too enthusiastic about
this result, it should be pointed out that the error in the perturbative
treatment of the triples correction in CCSD(T) is quite large (2 kJ/mol,
see Table 1.2), partly cancelling the error that arises from the neglect of
quadruple and higher excitations. In addition, there are unknown (but
probably small) non-Born-Oppenheimer corrections. In conclusion, it
seems possible to calculate AEs to an accuracy of 1 - 2 kJ/mol, but very
difficult to reduce it further. We shall later present a statistical analysis
(based on more molecules) that confirms this tentative conclusion.
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4.2. Dependence on the AO Basis Set

In our discussion so far, we have used electronic energies that are
assumed to represent calculations carried out in an infinite basis of one-
particle functions (the basis-set limit). In practice, finite basis sets are
used; as we shall see, the truncation of the one-electron basis is a serious
problem that may lead to large errors in the calculations.

As seen from Table 1.5, the convergence with respect to X is slow
for the correlation contributions to the AE. Even with the largest basis,
we have an error of -3.6 kJ/mol, originating almost exclusively from the
basis-set truncation of the doubles contribution to the CCSD energy.
The slow convergence arises from the orbital approximation (i.e., the
expansion of the wavefunction in determinants), leading to a poor de-
scription of the short-range correlated motion of the electrons. Noting
that as many as 460 AOs are needed for a small diatomic molecule to
achieve chemical accuracy, it is clear that this brute-force approach does
not represent a widely applicable tool for the calculation of thermochem-
ical data.

There are two possible solutions to this problem. We may either
modify our ansatz for the wavefunction, including terms that depend
explicitly on the interelectronic coordinates [26-30], or we may take ad-
vantage of the smooth convergence of the correlation-consistent basis
sets to extrapolate to the basis-set limit [6, 31-39]. In our work, we have
considered both approaches; as we shall see, they are fully consistent
with each other and with the available experimental data. With these
techniques, the accurate calculation of AEs is achieved at a much lower
cost than with the brute-force approach described in the present section.
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5. SHORT-RANGE CORRELATION AND
THE COULOMB HOLE

In the preceding section, we observed the slow basis-set convergence
of the doubles contributions to the AE of CO. In the present section, we
shall make an attempt at understanding the reasons for the slow conver-
gence and to see if this insight can help us design better computational
schemes.

5.1. Terms Linear in

The slow convergence of the doubles contributions to the AE is
a general problem related to the accurate description of electron pairs
in any electronic system. This problem has been studied carefully for
the simplest two-electron system, namely the ground-state He atom. In
nonrelativistic theory, its Hamiltonian reads

where (in atomic units) the first two and the last three terms represent
the kinetic energies of the two electrons and the Coulomb interactions
between the three particles, respectively. As two particles coalesce, the
potential part of the Hamiltonian becomes singular in the left-hand side
of the Schrödinger equation

For the right-hand side to remain finite, there must be a compensating
term arising from the kinetic energy part on the left-hand side. In par-
ticular, for the singlet ground state, Slater found that the wavefunction
must satisfy the following cusp conditions for coalescing particles [40, 41]:

(spherical averaging implied). These conditions are satisfied if, for ex-
ample, the wavefunction behaves in the following manner for small in-
terparticle distances:
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Whereas the one-electron exponential form Eq. (5.5) is easily imple-
mented for orbital-based wavefunctions, the explicit inclusion in the
wavefunction of the interelectronic distance Eq. (5.6) goes beyond the
orbital approximation (the determinant expansion) of standard quan-
tum chemistry since does not factorize into one-electron functions.
Still, the inclusion of a term in the wavefunction containing linearly
has a dramatic impact on the ability of the wavefunction to model the
electronic structure as two electrons approach each other closely.

To see the importance of the term, consider the standard FCI
expansion of the He ground-state wavefunction. The FCI wavefunction
is written as a linear expansion of determinants,

each of which contains a product of two Slater-type orbitals (STOs),

where is a spherical-harmonic function. The same (optimized)
exponent is used for all STOs, which differ only in the quantum num-
bers By including in the FCI wavefunction all STOs
up to a given principal quantum number a sequence of FCI
wavefunctions is established, which approaches the exact nonrelativis-
tic wavefunction as X tends to infinity. In the following, we shall refer
to this hierarchy of FCI wavefunctions as the principal expansion [12].
For the principal expansion contains only one determinant (the
Hartree-Fock determinant); for the FCI wavefunction is a multi-
determinant expansion.

To illustrate the convergence of the FCI principal expansion with
respect to short-range electron correlation, we have in Fig. 1.1 plotted
the ground-state He wavefunction with both electrons fixed at a distance
of from the nucleus, as a function of the angle between the
position vectors and of the two electrons. The thick grey lines
correspond to the exact nonrelativistic wavefunction, whereas the FCI
wavefunctions are plotted using black lines. Clearly, the description of
the Coulomb cusp and more generally the Coulomb hole is poor in the
orbital approximation. In particular, no matter how many terms we
include in the FCI wavefunction, we will not be able to describe the
nondifferentiability of the wavefunction at the point of coalescence.
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However, this deficiency of the FCI expansion is easily rectified
by including in the wavefunction a single extra term that is linear in
the interelectronic distance. The resulting wavefunction may be written
as  [42]

where the coefficients of the CI expansion and of the term are opti-
mized simultaneously with the orbital exponent . The corresponding
wavefunctions are plotted using a dotted line in Fig. 1.1. The improve-
ment in the description of the Coulomb hole is dramatic – already when
the  term is added only to the Hartree-Fock determinant. The im-
provement in the energy is just as impressive. Whereas the standard
FCI principal expansion has errors of 147, 37, 12, and 6.5 kJ/mol for

the corresponding errors with the term included are only
33, 2.3, 0.39, and 0.14 kJ/mol.
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The use of the linear term for many-electron systems is more
involved but has been successfully incorporated in the framework of
coupled-cluster theory by Kutzelnigg and coworkers [43-46]. In their
R12 theory, the difficult many-electron integrals that arise from the in-
clusion of the interelectronic distance in the wavefunction are avoided
by the resolution-of-identity approximation, yielding a highly efficient
scheme for the accurate calculation of atomic and molecular electronic
energies. For example, comparing with standard coupled-cluster calcu-
lations, the evaluation of the R12 two-electron integrals requires only
about four times more computation time; the remaining part of the cal-
culation requires essentially no additional computational effort.

5.2. Extrapolations from Principal Expansions

Although the convergence of the FCI principal expansion is slow,
it is systematic [12]. In fact, for a sufficiently large basis, it has been
found that each STO in the FCI principal expansion of He contributes
an amount of energy that, to a good approximation, is given by the
expression [47, 48]

Note that the energy contribution depends only on the principal quan-
tum number n. Therefore, each of the orbitals that constitute the
shell n contributes the same amount of energy, justifying the use of the
principal expansion. Summing the energy contributions from all orbitals,
we obtain

By summing the contributions from all neglected shells, it is now easy to
estimate the error that arises when the principal expansion is truncated
after

This empirical result is consistent with the theoretical analysis of the
partial-wave expansion (where the truncation of the FCI expansion is
based on the angular-momentum quantum number   rather than on the
principal quantum number n), for which it has been proved that the
truncation error is proportional to when all STOs up to are
included in the FCI wavefunction [49, 50].

Guided by Eq. (5.12), we assume that the calculated He energy is
well represented by the expression
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This equation contains two unknowns and we can thus extrapolate to
the basis-set limit from two separate calculations with different cardinal
numbers X and Y. This gives us the following simple expression for the
energy at the basis-set limit [32, 33]:

For example, if we carry out calculations with and using
optimized numerical orbitals (i.e., no longer simple STOs), we obtain
errors in the energy of 4.9 and 2.1 kJ/mol, respectively. The error in the
energy extrapolated from these two results using Eq. (5.14) is less than
0.1 kJ/mol, which would require a FCI principal expansion with
or more.

6. CALIBRATION OF THE EXTRAPOLATION
TECHNIQUE

6.1. Valence-Shell Correlation Energy

In section 4, we established that the orbital truncation error rep-
resents a serious obstacle to the accurate calculation of AEs. Next, in
section 5, we found that this problem may be solved in two different
ways: we may either employ wavefunctions that contain the interelec-
tronic distance explicitly (in particular the R12 model), or we may try
to extrapolate to the basis-set limit using energies obtained with finite
basis sets. In the present section, we shall apply both methods to a set of
small molecules, to establish whether or not these techniques are useful
also for systems of chemical interest.

It is important to realize that molecular electronic systems differ
from the He atom in the sense that the uncorrelated Hartree-Fock de-
scription cannot be expressed in terms of a single, doubly occupied  1s
orbital. In particular, in sequences of calculations using the correlation-
consistent orbitals, we observe not only changes related to the improved
description of electron correlation, but also changes in the uncorrelated
Hartree-Fock description. Within the Hartree-Fock model, effects such
as polarization of the atomic charge distributions upon molecular forma-
tion require the use of flexible basis sets, albeit convergence is usually
reached much more rapidly than for the description of electron corre-
lation. Therefore, in order to study the asymptotic convergence of the
short-range correlation problem, we must first subtract from the total
electronic energy the Hartree-Fock energy. In passing, we note that the
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Hartree-Fock convergence does not present an insurmountable difficulty;
there are clear indications that the molecular Hartree-Fock energy con-
verges as exp and thus rather rapidly [51-53].

Table 1.6 displays the CCSD valence correlation energies of six small
molecules and the Ne atom in units of The
first five rows contain the energies calculated in the standard manner in
the cc-pVXZ basis sets with As expected, the convergence
is slow, with errors relative to the R12 energies (contained in the last
row [54]) of about 10 kJ/mol or more, even for the largest basis sets.
This can also be seen from Fig. 1.2, which shows how the calculated
CCSD/cc-pVXZ energies converge slowly but smoothly towards the R12
valence-shell correlation energies.

This convergence is significantly accelerated by applying the extrap-
olation formula (5.14), the errors being reduced to 1 - 3 kJ/mol for all
extrapolations except for the cc-pV(DT)Z energies. (Here and elsewhere
we shall use the notation cc-pV(X - 1,X)Z for the energy obtained by ex-
trapolation from the cc-pV(X - 1)Z and cc-pVXZ correlation energies.)



Highly Accurate Ab Initio Computation of Thermochemical Data 19

Fig. 1.3 shows the normal distributions of the errors of the cc-pV(X -
1,X)Z extrapolations (note that the scale is different from Fig. 1.2). In
comparison with the cc-pV6Z results, which are included in Fig. 1.3 as
a broad distribution on its scale, the agreement between the R12 en-
ergies and the extrapolated energies is excellent, confirming our earlier
conclusions from the discussion of the He atom.

6.2. Total Electronic Energy

Having observed the agreement between R12 and extrapolation for
molecular systems, let us now compare directly with experiment. In
Table 1.7, we compare the all-electron CCSD(T)/cc-pCVXZ energies of
the seven systems with a set of empirically estimated nonrelativistic total
electronic energies, obtained by combining the atomic energies compiled
by Chakravorty and Davidson [55] with the experimental equilibrium
AEs of Bak et al. [9]. The sextuple-zeta results were obtained from the
valence-electron cc-pV6Z energies by adding the differences between the
all-electron cc-pCV5Z and valence-electron cc-pV5Z energies. The resul-
ting energies are denoted cc-pcV6Z and should be close to the true cc-
pCV6Z energies.

As expected from our previous discussion of the CCSD valence cor-
relation energies, the convergence towards the experimental energies is
slow, with mean absolute errors of 511, 163, 61, 28, and 17 kJ/mol as
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we go from cc-pCVDZ to cc-pcV6Z. In particular, even at the cc-pcV6Z
level, the mean absolute error of 17 kJ/mol is significantly larger than
the intrinsic error of the CCSD(T) model. Without the benefit of a sys-
tematic cancellation of errors, calculations carried out with these basis
sets would not be sufficiently accurate.

Let us now compare the R12 energies [54] and the extrapolated en-
ergies with the experimental energies for the same systems; see Table 1.8.
The R12 energies are between 2 and 4 kJ/mol above the experimental
estimates – a significant improvement over the cc-pcV6Z results in Table
1.7. Clearly, the precision of the R12 method is sufficiently high to make
the intrinsic error of the CCSD(T) model become an important consider-
ation. Moreover, heats of reaction can be calculated accurately without
having to rely on a large cancellation of errors among the products and
reactants.

Turning our attention to the extrapolated CCSD(T) energies, we
find that the accuracy of the R12 method is attained already at the cc-
pCV(TQ)Z level, although the standard deviation in the cc-pCV(TQ)Z
errors is somewhat larger than for the R12 errors. The cc-pCV(DT)Z
energies are considerably less accurate, but still as good as the cc-pVQZ
energies at a much reduced cost. Finally, with a mean absolute deviation
of 1 kJ/mol and a maximum deviation of 5 kJ/mol, the cc-pCV(Q5)Z
and cc-pcV(56)Z energies agree with their experimental counterparts,
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making these levels of theory well suited for computational thermochem-
istry.

Although the agreement between calculated and experimental cor-
relation and total energies is reassuring, as chemists we are more inter-
ested in relative quantities. Let us therefore turn our attention to AEs.
In Table 1.9, we compare the calculated all-electron CCSD(T) equilib-
rium AEs with the corresponding AEs derived from experimental data,
see Ref. 9.

Without extrapolation, the errors are reduced by a factor of two
to three compared with the errors in the total electronic energies, re-
flecting the systematic nature of the errors in the total energies. For
low cardinal numbers, the same is true for the extrapolated AEs. How-
ever, for the cc-pCV(Q5)Z and cc-pcV(56)Z data, the errors in the AEs
are similar to the errors in the corresponding total energies, indicating
the presence of statistical errors of the order of 1 kJ/mol in the exper-
imental and extrapolated energies. From a practical point of view, we
note that the cc-pCV(TQ)Z AEs agree with their experimental counter-
parts to within 2 kJ/mol, suggesting that chemical accuracy in calcu-
lated AEs and heats of reaction should be obtainable at the all-electron
CCSD(T)/cc-pCV(TQ)Z level of theory.
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6.3. Core Contributions to AEs

In the calculations presented so far, all electrons have been corre-
lated. However, chemical reactions involve mainly the valence electrons,
leaving the core electrons nearly unaffected. It is therefore tempting to
correlate only the valence electrons and to let the core orbitals remain
doubly occupied. In this way, we avoid the calculation of the nearly
constant core-correlation energy, concentrating on the valence correla-
tion energy. The freezing of the core electrons simplifies the calculations
as there are fewer electrons to correlate and since it enables us to use
the cc-pVXZ basis sets rather than the larger cc-pCVXZ sets.

Nevertheless, core-correlation contributions to AEs are often size-
able, with contributions of about 10 kJ/mol for some of the molecules
considered here ( and ). For an accuracy of 10 kJ/mol
or better, it is therefore necessary to make an estimate of core correla-
tion [9, 56]. It is, however, not necessary to calculate the core correlation
at the same level of theory as the valence correlation energy. We may,
for example, estimate the core-correlation energy by extrapolating the
difference between all-electron and valence-electron CCSD(T) calcula-
tions in the cc-pCVDZ and cc-pCVTZ basis sets. The core-correlation
energies obtained in this way reproduce the CCSD(T)/cc-pCV(Q5)Z
core-correlation contributions to the AEs well, with mean absolute and
maximum deviations of only 0.4 kJ/mol and 1.4 kJ/mol, respectively.
By contrast, the calculation of the valence contribution to the AEs by
cc-pCV(DT)Z extrapolation leads to errors as large as 30 kJ/mol.

7. MOLECULAR VIBRATIONAL CORRECTIONS

The total energy of a molecular system in its vibrational ground
state can be written as the sum of the electronic energy at the equilib-
rium geometry and the zero-point vibrational energy (ZPVE), denoted
as

The ZPVE may be partitioned into harmonic and anharmonic contribu-
tions
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where  is the degeneracy of the vibrational mode i , is the harmonic
frequency, and are the anharmonic constants.

The harmonic frequencies and the anharmonic constants may be
obtained from experimental vibrational spectra, although their determi-
nation becomes difficult as the size of the system increases. In Table 1.10,
we have listed experimental harmonic and anharmonic contributions to
the AEs. These contributions may also be obtained from electronic-
structure calculations of quadratic force fields (for harmonic frequencies)
and cubic and quartic force fields (for anharmonic constants). For some
of the larger molecules in Table 1.11, we have used ZPVEs calculated at
the CCSD(T)/cc-pVTZ level or higher, see Ref. 12. In some cases, both
experimental and theoretical ZPVEs are available and agree to within
0.3 kJ/mol [12, 57].

Although the harmonic ZPVE must always be taken into account
in the calculation of AEs, the anharmonic contribution is much smaller
(but oppositely directed) and may sometimes be neglected. However, for
molecules such as and the anharmonic corrections to
the AEs amount to 0.9, 1.5, and 2.3 kJ/mol and thus cannot be neglected
in high-precision calculations of thermochemical data. Comparing the
harmonic and anharmonic contributions, it is clear that a treatment that
goes beyond second order in perturbation theory is not necessary as it
would give contributions that are small compared with the errors in the
electronic-structure calculations.



24 Chapter 1

8. RELATIVISTIC CONTRIBUTIONS

Up to this point, we have considered the nonrelativistic Schrödinger
equation. However, to calculate AEs to an accuracy of a few kJ/mol, it is
necessary to account for relativistic effects, even for molecules containing
only hydrogen and first-row atoms. Fortunately, the major relativistic
contributions to the AEs of such molecules – the mass-velocity (MV),
one-electron Darwin (1D), and first-order spin-orbit (SO) terms – are
easily obtained [58].

Whereas the SO corrections are accurately known from atomic mea-
surements, the MV and 1D corrections must be calculated as the expec-
tation values of the operators

where the summations are over all electrons and nuclei and where
is the velocity of light. Since the MV operator is a cor-

rection to the kinetic-energy operator and the 1D operator a correction
to the nuclear-attraction operator involving Dirac delta functions at the
nuclei, it is evident that their expectation values depend primarily on
the core of the electronic wavefunction. As for the total nonrelativistic
energy (see Table 1.4), we therefore expect large cancellations of the
contributions from these terms to the AEs. As seen from Table 1.10,
the MV and 1D corrections to the AEs are of the order of 1 kJ/mol; the
corrections to the total electronic energies are three orders of magnitude
larger. The SO corrections to the total energies are much smaller than
the scalar corrections but do not cancel since they occur only for the
atoms. Therefore, the total relativistic corrections to the AEs amount
to a few kJ/mol and must be taken into account in calculations at the
CCSD(T) level.

Our relativistic treatment is incomplete in the sense that only first-
order corrections are considered. For systems containing only first-row
elements, the higher-order corrections are small and may be safely ne-
glected for a target accuracy of 1 kJ/mol. For higher accuracy, we would
also have to include a number of nonrelativistic corrections such as the
mass-polarization and diagonal adiabatic non-Born-Oppenheimer cor-
rections [59]. Since the underlying CCSD(T) model is anyway incapable
of such a high precision, we ignore such corrections here.
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9. CALCULATION OF ATOMIZATION ENERGIES

In Table 1.11, the AEs are listed for twenty small molecules. The
AEs are obtained by adding vibrational and relativistic corrections to
the nonrelativistic CCSD(T)/cc-pcV(56)Z equilibrium AEs. The ZPVEs
have been taken from the compilation of Helgaker, Jørgensen, and
Olsen [12]; the relativistic contributions contain the MV and 1D scalar
corrections calculated at the CCSD(T)/cc-pCVQZ level, in addition to
first-order SO corrections from atomic measurements [9]. Table 1.11 also
contains experimental AEs.

The calculated AEs are very accurate, with typical errors of about
1 kJ/mol and errors larger than 2.3 kJ/mol occurring only for (-10.7
kJ/mol) and HOF (-12.0 kJ/mol). For the difference probably arises
from an error in the calculation as the high accuracy of the CCSD(T)
model does not extend to systems that are poorly represented by a single
determinant. For the single-determinant HOF molecule, the discrepancy
is most likely caused by an error in the tabulated value derived from
experimental data.

The CCSD(T)/cc-pcV(56)Z calculations are computationally de-
manding and can be carried out only for small molecules. In Table 1.12,
we compile the statistical errors that have been obtained with smaller
basis sets. In compiling the statistics, we have excluded HOF (since the
experimental value is in doubt) and so as to obtain errors typical of
single-determinant molecules.

Our statistical analysis reveals a large improvement from cc-
pCV(DT)Z to cc-pCV(TQ)Z; see Fig. 1.4. In fact, the cc-pCV(TQ)Z
calculations are clearly more accurate than their much more expensive
cc-pcV6Z counterparts and nearly as accurate as the cc-pcV(56)Z ex-
trapolations.The cc-pCV(TQ)Z extrapolations yield mean and maxi-
mum absolute errors of 1.7 and 4.0 kJ/mol, respectively, compared with
those of 0.8 and 2.3 kJ/mol at the cc-pcV(56)Z level. Chemical accu-
racy is thus obtained at the cc-pCV(TQ)Z level, greatly expanding the
range of molecules for which ab initio electronic-structure calculations
will afford thermochemical data of chemical accuracy.

10. CONCLUSIONS AND PERSPECTIVES

Quantum chemistry has reached the stage where it is possible to
calculate gas-phase thermochemical data to a precision of a few kJ/mol.
Although computationally expensive, such calculations can be carried
out routinely for a broad range of molecules containing first-row atoms.
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The prerequisites for high accuracy are coupled-cluster calculations with
the inclusion of connected triples [e.g., CCSD(T)], either in conjunc-
tion with R12 theory or with correlation-consistent basis sets of at least
quadruple-zeta quality followed by extrapolation. In addition, harmonic
vibrational corrections must always be included. For small molecules,
such as those contained in Table 1.11, such calculations have errors of
the order of a few kJ/mol. To reduce the error below 1 kJ/mol, con-
nected quadruples must be taken into account, together with anhar-
monic vibrational and first-order relativistic corrections. In practice,
the approximate treatment of connected triples in the CCSD(T) model
introduces an error (relative to CCSDT) that often tends to cancel the
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error arising from the neglect of connected quadruples. Because of this
cancellation, CCSD(T) calculations benefit from anharmonic and rela-
tivistic corrections, yielding highly accurate results as demonstrated in
Table 1.11.

Our study has been restricted to molecules containing only first-row
atoms and with wavefunctions dominated by one determinant. Molecules
such as are less accurately described, with an error of about 10 kJ/mol
at the CCSD(T) level of theory. For such multiconfigurational systems,
more elaborate treatments are necessary and no programs are yet avail-
able for routine applications. As we go down the periodic table, rela-
tivistic effects become more important and the electronic structures more
complicated. Therefore, for such systems it is presently not possible to
calculate thermochemical data to the same accuracy as for closed-shell
molecules containing first-row atoms. Nevertheless, systems with wave-
functions dominated by single determinant are by far the most abundant
and it is promising that the accuracy of a few kJ/mol is obtainable for
them.
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Chapter 2

W1 and W2 Theories, and Their Variants:
Thermochemistry in the kJ/mol Accuracy Range

Jan M.L. Martin and S. Parthiban
Department of Organic Chemistry, Weizmann Institute of Science, Kimmelman
Building, IL-76100 Rehovot, Israel

1. INTRODUCTION AND BACKGROUND

The last fifteen years witnessed the development of a number of
”black-box” computational thermochemistry methods. Among them,
the G1/G2/G3 theories and their variants, and the CBS-Q family of
methods by Petersson and coworkers are worth mentioning in particu-
lar. In addition to these wavefunction-based approaches, density func-
tional methods – aside from their great popularity as a general tool
for practical computational chemistry – have gained some currency for
computational thermochemistry in the medium accuracy range, as have
group equivalent-based models. For very large systems, semiempirical
methods remain popular.

At the other extreme in terms of system size and accuracy stand
brute-force approaches such as those based on wavefunctions with ex-
plicit interelectronic distances.

Methods such as G3 and CBS-QB3 do reach the goal of ”chemical
accuracy” (generally defined as ) on average, but worst-case
errors for problematic molecules may exceed this criterion by almost an
order of magnitude. In addition, almost all of these approaches involve
some level of parameterization and/or empirical correction against ex-
perimental data. While this is by and large possible (albeit not without
pitfalls) in the kcal/mol accuracy range for first-and second-row com-
pounds, experimental data of sub-kcal/mol accuracy are thin on the
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ground, and the available data for transition metal compounds are sim-
ply too scarce for this to be a useful approach.

There would thus appear to be room for a more or less ”black box”
computational thermochemistry method that has the following proper-
ties:

1.

2.

3.

4.

it on average achieves ”benchmark accuracy”, which we shall ar-
bitrarily define as one unit of the most common tabulation unit in
thermochemical reference tables, i.e. 1 kJ/mol (0.24 kcal/mol);

the worst-case error should not exceed 1 kcal/mol (”chemical ac-
curacy”) except perhaps in intrinsically pathological cases;

it is still efficient enough for applications to systems with up to six
heavy atoms on modern workstations;

it is entirely devoid of parameters derived from experiment (and
hence from bias towards the systems used for parameterization).

These have been the design goals in our development of the W1 and W2
(Weizmann-1 and Weizmann-2) theories [1].

The usual design philosophy for this type of methods is bottom-up:
one starts with an approximate model, compares results with experi-
ments, analyzes the deviations, and uses them to determine empirical
corrections and/or additional terms to be added to the model, after
which the cycle is repeated if desired.

Our philosophy was instead ”top-down”. We decomposed the molec-
ular TAE (total atomization energy: at the bottom of the well,

at absolute zero) into all components that can reasonably affect it
at the kJ/mol level. Then we carried out exhaustive benchmark calcu-
lations on each component separately for a representative ”training set”
of molecules. Finally, for each component separately, we progressively
introduced approximations up to the point where reproduction of that
particular component started deteriorating to an unacceptable extent.
Thus, experimental data entered the picture only at the validation stage,
not at the design stage.

Another philosophical issue centers on whether a method should be
a ”protocol” specified down to the last detail (i.e. be truly ”black-box”),
or whether it should merely outline a general approach with minor de-
tails to be decided on a case-by-case basis. Obviously a method where
empirical parameterization is kept to the absolute minimum or is ab-
sent altogether will offer more ‘degrees of freedom’ in this regard than
the one where a minor change in the protocol would, for consistency,
require reparameterization against a large experimental data set. Yet
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our general guideline was that, while such choices should be possible for
an experienced computational chemist, they should not be an essential
part of the process itself.

2. STEPS IN THE W1 AND W2 THEORIES,
AND THEIR JUSTIFICATION

The more cost-effective W1 theory and the more rigorous W2 the-
ory have a lot of points in common. Aside from issues relating to the
reference geometry and the zero-point energy, the main difference con-
cerns the basis sets used in the extrapolation steps for the SCF and the
valence correlation contribution.

These basis sets belong to the ”correlation consistent” family of
Dunning and coworkers [2, 3]. The correlation consistent (cc) basis sets,
besides being arguably the most compact ones in their accuracy range [4],
have the important property that, by design, they treat radial and an-
gular correlation in a balanced way. In addition to the regular cc-pVnZ
(correlation consistent polarized valence n-tuple zeta, or VnZ for short)
basis sets, several variants have been published. In particular we note
the aug-cc-pVnZ or AVnZ basis sets [5] for anions (with the combina-
tion of regular cc-pVnZ on hydrogen and aug-cc-pVnZ on other elements
generally being denoted [6], or for short), the MT
(Martin-Taylor [7, 8]) and cc-pCVnZ [9] basis sets for inner-shell corre-
lation, and the cc-pVnZ+1 [10], cc-pVnZ+2d1f [11], and (most recently)
cc-pV(n+d)Z[12] basis sets for second-row atoms exhibiting ‘inner po-
larization’ [11] (vide infra).

We consider here the following sequence of correlation consistent
basis sets: and
which we shall denote ”small”, ”medium”, ”large”, and ”extra large”
(for first-and second-row compounds, these basis sets are of spd, spdf,
spdfg, and spdfgh quality, respectively). W1 theory, then, carries out all
extrapolations using ”small”, ”medium”, and ”large”, while W2 theory
employs ”medium”, ”large”, and ”extra-large” basis sets.

The W1 and W2 protocols for obtaining the total atomization en-
ergy (TAE) of a given molecule involve the following steps:

1.

2.

Geometry optimization at the B3LYP/VTZ+1 level for W1, and
at the CCSD(T)/VQZ+1 level for W2.

Extrapolation of the SCF component of TAE from the ”small”,
”medium”, and ”large” basis sets (W1) or ”medium”, ”large”, and
”extra-large” basis sets (W2), by means of either the geometric
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extrapolation formula  (old-style) or the two-
point formula (new-style).

3.

4.

5.

6.

7.

8.

Extrapolation of the CCSD valence correlation component of TAE
from the ”medium” and ”large” basis sets (W1) or from the ”large”
and ”extra-large” basis sets (W2) employing the two-point formula

where (W1) or 3 exactly (W2).

Extrapolation of the contribution to TAE of the connected triple
excitations, (T), from the valence orbitals using the same formulae
as for CCSD; but employing instead the ”small” and ”medium”
basis sets (W1) or the ”medium” and ”large” basis sets (W2).

The contribution of inner-shell correlation is taken as the difference
between the CCSD(T)/MTsmall TAE with and without constrain-
ing the inner-shell orbitals to be doubly occupied.

The scalar relativistic contribution is computed as the first-order
Darwin and mass-velocity corrections from the ACPF/MTsmall
wave function, including inner-shell correlation.

The contribution to TAE of spin-orbit splitting in the constituent
atoms is trivially obtained from a tabulation, while for molecules
in degenerate ground states, CISD/MTsmall spin-orbit splittings
are computed (allowing correlation from the 2s and 2p orbitals in
second-row atoms).

The zero-point vibrational energy is obtained from har-
monic B3LYP/VTZ+1 frequencies scaled by 0.985 in the case of
W1 theory. For W2 theory, anharmonic values of from quar-
tic force fields at the CCSD(T)/VQZ+1 (or comparable) level are
preferred; where this is not feasible, the same procedure as for W1
theory is followed as a ”fallback solution”.

We shall now proceed to explain in detail these steps and the rationale
behind them.

2.1. Reference Geometry

Near the equilibrium geometry, dependence of the energy on ge-
ometric displacements is approximately quadratic. As a result, small
errors in the reference geometry will insignificantly affect computed en-
ergies, but more substantial errors (say, several hundredths of an Å in
covalent bond lengths) will compromise the reliability of a thermochem-
ical calculation.
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For W1 theory, we chose B3LYP [13, 14] density functional theory
with the VTZ+1 basis set as the level of theory for the reference geom-
etry, where the +1 suffix denotes the addition to second-row atoms of
the highest-exponent d function from the V5Z basis set [10]. For first-
row molecules, B3LYP/VTZ bond lengths are generally within 0.003 Å
from experiment [15]; for second-row molecules, significant errors can be
seen [10, 16] unless a tight d function is added to the basis set to account
for inner polarization (see below).

For W2 theory, we opted for CCSD(T)/VQZ+1 as the level of the-
ory for reference geometries. For geometries, the VQZ basis set is known
to be close to the one-particle basis set limit [17, 18], while the addition
of the inner polarization functions again takes care of inner polarization
effects.

2.2. The SCF Component of TAE

For systems devoid of nondynamical correlation effects, this is the
largest individual contribution to the molecular binding energy. Its ba-
sis set convergence is relatively rapid, yet our discussion will be dispro-
portionately long because a number of the ”dramatis personae” that
reappear in the remainder of the story need to be introduced here.

For the SCF energy, we can – at least for small systems – obtain
an exact answer by means of numerical SCF calculations. There is sub-
stantial empirical evidence that its convergence behavior is exponential.
Jensen studied the SCF convergence behavior of the SCF energy in
[19] and and [20] and found clear evidence of geometric con-
vergence behavior in terms of both the maximum angular momentum
in the basis set and the number of primitives within a given angular
momentum.

Martin and Taylor [21] compared numerical SCF energies with ex-
trapolations from calculated and
energies using the formula

(which is equivalent to originally proposed by
Feller [22]) and, for a number of number of molecules, found discrepan-
cies of or less between the numerical and extrapolated values.

Petersson et al. had earlier proposed [23] an alternative expression
in the context of the CBS methods

developed in his group. The summation is carried out numerically in
that paper, but in fact an elegant analytical approximation exists for
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summations of this type:

where represents the order n polygamma function [24] of x. Its
asymptotic expansion has the leading terms

Hence

This suggests the simple extrapolation formula i.e.
where n is identified with the “n-tuple ze-

taness” of the Dunning correlation consistent VnZ basis sets. (For hy-
drogen and helium, n equals the maximum angular momentum plus one;
for the main group elements it is equal to the maximum angular momen-
tum). While an argumentation in favor of the Petersson-type formula
can be built on the convergence behavior of triplet-coupled pairs, neither
this formula nor the geometric one have a solid formal basis.

Fortunately, convergence on the SCF component of atomization en-
ergies is even more rapid than for the total energies; Martin and Taylor
found for 14 first-row molecules [25] that differences between unextrapo-
lated geometrical extrapolations from
and extrapolations from results are on the
order of 0.01 kcal/mol. For the method that we designated W2, which
uses this basis set sequence, the choice of SCF extrapolation method is
largely a non-issue. For the method that we designated W1, however,
the geometric formula entails the use of results from the comparatively
small basis set, which compromises the reliability of extrapolated
SCF limits in systems with slow basis set convergence. In some cases
(see Table 1 in Ref. 26), these can lead to errors of several kcal/mol.
In addition, the two-point formula has the elegant property
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that it becomes immaterial whether the extrapolation is carried out on
a reaction energy or on the individual absolute energies.

In the original W1/W2 paper [1], we opted for the geometric for-
mula in view of the observed geometric convergence behavior. In a
subsequent validation study [26] on a much wider variety of systems, we
however found the two-point formula to be much more reliable, and we
have adopted it henceforth.

Finally, an issue that arises with second-row systems should be ad-
dressed. It was first noted by Bauschlicher and Partridge [27] that the
atomization energy of is exceedingly sensitive to the presence of
high-exponent d and f functions in the basis set. This phenomenon was
ascribed to hypervalence; Martin and Uzan [10], however, found that the
same phenomenon exists in systems that cannot be considered hyperva-
lent by the wildest stretch of the imagination, like AlF. In addition, it
was found [11, 16] that properties other than the energy are affected as
well, with (e.g. in [11] and [16]) errors of up to in
harmonic frequencies and hundredths of Å in bond lengths unless high-
exponent d and f functions (termed ”inner polarization functions” in
Ref. 11 are added to the basis set.

We should note that inner polarization is strictly an SCF-level ef-
fect: while, for instance, switching from an to an
basis set affects the computed atomization energy of by as much as
40 kcal/mol (!), almost all of this effect is seen in the SCF component of
the TAE [28]. In fact, we have recently found [29] that the effect persists
if the (1s, 2s, 2p) orbitals on the second-row atom are all replaced by a
pseudopotential. What is really getting ”polarized” here is the inner
part of the valence orbitals, which requires polarizations functions that
are much ”tighter” (higher-exponent) than those required for the outer
part of the valence orbital. The fact that these inner polarization func-
tions are in the same exponent range as the d and f functions required
for correlation out of the (2s, 2p) orbitals is merely coincidental; the ”in-
ner polarization” effect has nothing to do with correlation, let alone with
inner-shell correlation.

After extensive numerical experimentation, we have decided [1] on
the sequence of basis sets noted above: ”small” ”medium”

”large”       and ”extra large”
As the present review was being finalized for publication, we re-

ceived a preprint by Dunning et al. [12] where new cc-pV(n+d)Z basis
sets are proposed for the second-row atoms. These basis sets do have just
an added tight d function (hence the acronym) and no tight f functions,
but the remaining d functions in the underlying cc-pVnZ basis set are in
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addition reoptimized. We are currently investigating their performance
in W1 and W2-type schemes.

2.3. The CCSD Valence Correlation Component of TAE

The valence correlation component of TAE is the only one that
can rival the SCF component in importance. As is well known by now
(and is a logical consequence of the structure of the exact nonrelativistic
Born-Oppenheimer Hamiltonian on one hand, and the use of a Hartree-
Fock reference wavefunction on the other hand), molecular correlation
energies tend to be dominated by double excitations and disconnected
products thereof. Single excitation energies become important only in
systems with appreciable nondynamical correlation. Nonetheless, since
the number of single-excitation amplitudes is so small compared to the
double-excitation amplitudes, there is no point in treating them sepa-
rately.

For all intents and purposes then, we are concerned here with the
CCSD (coupled cluster with all single and double substitutions [30])
correlation energy. Its convergence is excruciatingly slow: Schwartz [31]
showed as early as 1963 that the increments of successive angular mo-
menta l to the second-order correlation energy of helium-like atoms con-
verge as

His conclusions were generalized to other methods and general pair cor-
relation energies by Hill [32] and by Kutzelnigg and Morgan [33].

This clearly spells a rather bleak picture of basis set convergence.
Indeed, Martin [17] showed in 1994 that while convergence of bond
energies appeared in sight at the CCSD(T)/spdfg level, this did not
yet appear to be the case for bond energies. This earlier study was
extended in 1996 [34] to basis sets of spdfgh quality: somewhat depress-
ingly, residual errors in the binding energies as high as 2 kcal/mol were
still found for small systems.

However, rather than ”knuckling under” to Eq.(2.5) at this stage,
we might instead exploit it for an extrapolation formula. Martin [34]
suggested a three-point extrapolation of the form
(where n is identified with the cardinal number of the cc-pVnZ basis
set), and obtained dramatically improved computed total atomization
energies. A slight further improvement was achieved if the SCF and
valence correlation energies – which have fundamentally different con-
vergence behaviors – are extrapolated separately using the respective
appropriate formulae [25].
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The denominator shift of 1/2 was chosen as a compromise between
the situation for hydrogen and helium (where for the cc-pVnZ
basis set) and main-group elements (where ). As is immediately
obvious upon series expansion, there is considerable coupling between
the denominator shift and the exponent. As a result, the three-point
extrapolation generally leads to exponents well in excess of three [34].

Halkier et al. [35] found the simple expression
[i.e.  to work at least equally well. In view of its
simplicity and the fact that no results with the questionable basis
set are required, we have adopted this simple formula for extrapolation
of the CCSD valence correlation energy in W1 and W2 theories.

For the smaller basis sets used in W1 theory, the regime where the
leading term dominates convergence behavior has not yet
been reached, and using the formula in its unmodified form leads to
overestimated (in absolute value) CCSD limits. One unelegant solution
would be the use of three-term extrapolations like
but in light of the poor quality of the VDZ basis set this is a most
unsatisfactory alternative. Another alternative is the use of a two-point
extrapolation in which is a fixed empirical parameter.
By minimizing the deviation from the W2 CCSD limit for the so-called
W2-1 set of 28 molecules (vide infra), we determined which is
the value used in W1 theory and its variants.

2.4. Connected Triple Excitations: the (T) Valence
Correlation Component of TAE

It has been well known for some time (e.g. [36]) that the next com-
ponent in importance is that of connected triple excitations. By far
the most cost-effective way of estimating them has been the quasiper-
turbative approach known as CCSD(T) introduced by Raghavachari et
al. [37], in which the fourth-order and fifth-order perturbation theory
expressions for the most important terms are used with the converged
CCSD amplitudes for the first-order wavefunction. This account for
substantial fractions of the higher-order contributions; a very recent de-
tailed analysis by Cremer and He [38] suggests that 87, 80, and 72 %,
respectively, of the sixth-, seventh-, and eighth-order terms appearing in
the much more expensive CCSDT-1a method are included implicitly in
CCSD(T).

Nevertheless, the formidable (with n the number of electrons
and N the number of basis functions) cost scaling of the CCSD(T)
method creates a substantial barrier to applications of methods that
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require basis sets. However, two things should be kept in
mind. First of all, the (T) component of TAE is a small fraction of
the CGSD component, and hence a larger relative error can be toler-
ated. Secondly, evidence exists [39] that basis set convergence of the (T)
contribution is substantially more rapid than that of the CCSD energy.

As a result, one may justifiably extrapolate the (T) contribution
from smaller basis sets than its CCSD counterpart: in W1 theory, we
extrapolate from the ”small” and ”medium” basis sets, and in W2 theory
from the ”medium” and ”large” basis sets. This means that the most
extensive basis sets in the calculations, namely ”large” in W1 theory
and ”extra large” in W2 theory only require CCSD calculations, which
are both much less expensive than CCSD(T) and much more amenable
to direct algorithms such as those described in Refs. 40-41.

2.5. The Inner-Shell Correlation Component of TAE

Inner-shell correlation is a substantial part of the absolute corre-
lation energy even for late first-row systems; for second-row systems,
it in fact rivals the absolute valence correlation energy in importance.
However, its relative contribution to molecular TAEs is fairly small:
in benzene, for instance, it amounts to less than 0.7 % of the TAE.
Even so, at 7 kcal/mol, its contribution is important by any reasonable
thermochemical standard. By the same token, a 1 % relative error in a
7 kcal/mol contribution is tolerable even by benchmark thermochemistry
standards, while the same relative error in a 300 kcal/mol contribution
would be unacceptable even by the ”chemical accuracy” standards.

In addition, for thermochemical purposes we are primarily inter-
ested in the core-valence correlation, since we can reasonably expect the
core-core contributions to largely cancel between the molecule and its
constituent atoms. (The partitioning between core-core correlation –
involving excitations only from inner-shell orbitals – and core-valence
correlation – involving simultaneous excitations from valence and inner-
shell orbitals – was first proposed by Bauschlicher, Langhoff, and Taylor
[42]).

For these reasons, we feel justified in treating the inner-shell cor-
relation contribution to TAE as a separate contribution, rather than
together with the valence correlation. There are substantial cost advan-
tages to this: rather than having to carry out very elaborate all-electrons-
correlated CCSD(T) calculations in basis sets near saturation for both
valence and inner-shell correlation, we can limit these costly calculations
to a basis set that is primarily saturated for inner-shell correlation.
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Inner-shell correlation contributions for the W2-1 set were studied
in some detail in the original W1/W2 paper, while subsequently, Martin,
Sundermann, Fast, and Truhlar (MSFT) [43] studied inner-shell correla-
tion contributions to TAE for 125 molecules spanning the first two rows
of the periodic table. The following conclusions can be drawn from these
two studies: (a) the use of the CCSD(T) electron correlation method is
absolutely required for reliable contributions: the use of MP2 or CCSD
can lead to underestimates in the order of 50 %; (b) the smallest basis set
which gives acceptable agreement with near-basis set limit contributions
is the MTsmall basis set, which is a completely decontracted cc-pVTZ
basis set with (2d1f) additional high-exponent correlation functions; (c)
the effect of including even higher excitations in the correlation treat-
ment is insignificant.

A tentative explanation for the importance of connected triple exci-
tations for the inner-shell contribution to TAE can be found in the need
to account for simultaneously correlating a valence orbital and relax-
ing an inner-shell orbital, or conversely, requiring a double and a single
excitation simultaneously.

In principle, one could contract at least the few innermost s primi-
tives and reduce the basis set further. By leaving the basis set completely
uncontracted, however, we can recycle the integrals and SCF wavefunc-
tion for the next step of the calculation.

Finally, it is generally advised not to correlate the very deep-lying
(1s) orbitals on second-row elements, as the MTsmall basis set does
not have angular correlation functions in the required exponent range,
and in addition the orbitals concerned are in the same energy range as
the (2s, 2p) orbitals in third-row main group elements, for which being
able to take a [Ne] core out of the correlation problem does result in
appreciable CPU time savings.

2.6. Scalar Relativistic Correction

The importance of scalar relativistic effects for compounds of tran-
sition metals and/or heavy main group elements is well established by
now [44]. Somewhat surprisingly (at first sight), they may have non-
trivial contributions to the TAE of first-row and second-row systems as
well, in particular if several polar bonds to a group VI or VII element are
involved. For instance, in and scalar relativistic effects
reduce TAE by 0.7, 1.2, and 1.9 kcal/mol, respectively – quantities which
clearly matter even if only ”chemical accuracy” is sought. Likewise, in
a benchmark study on the electron affinities of the first-and second-row
atoms [45] – where we were able to reproduce the experimental values to
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within 0.001 eV on average – we saw that neglect of the scalar relativistic
contributions increased mean deviation from experiment by more than
an order of magnitude.

Perhaps the simplest and most cost-effective way of treating rela-
tivistic contributions in an all-electron framework is the first-order per-
turbation theory of the one-electron Darwin and mass-velocity opera-
tors [46, 47]. For variational wavefunctions, these contributions can be
evaluated very efficiently as expectation values of one-electron operators.

It has been found repeatedly [1, 43, 45] that scalar relativistic con-
tributions are overestimated by about 20 - 25 % in absolute value at
the SCF level. Hence inclusion of electron correlation is essential: we
found the ACPF method (which is both variational and approximately
size extensive) to be an excellent compromise between quality and cost.
It is reasonable to suppose that for a property that becomes more im-
portant as one approaches the nucleus, one wants maximum flexibility of
the wavefunction near the nucleus as well as correlation of all electrons;
thus we finally opted for ACPF/MTsmall as our approach of choice.
Typically the cost of the scalar relativistic step is a fairly small fraction
of that of the core correlation step, since only scaling is involved
in the ACPF calculations.

Bauschlicher [48] compared a number of approximate approaches
for scalar relativistic effects to Douglas-Kroll quasirelativistic CCSD(T)
calculations. He found that the ACPF/MTsmall level of theory faith-
fully reproduces his more rigorous calculations, while the use of non-size
extensive approaches like CISD leads to serious errors. For third-row
main group systems, studies by the same author [49] indicate that more
rigorous approaches may be in order.

2.7. Spin-Orbit Coupling

The other relativistic effect entirely neglected so far is the spin-orbit
coupling. For systems in nondegenerate states, the only first-order con-
tribution to TAE comes from the fine structures in the corresponding
atoms. Their effects can trivially be obtained from the observed elec-
tronic spectra, and hence the computational cost of this correction is
fundamentally  zero.

For systems in degenerate states, first-order corrections may need
to be computed. In our work [26] we found that this significantly re-
duced the mean absolute error for the G2-1 and G2-2 test sets for ion-
ization potentials and electron affinities, in no small part due to the
preponderance of atoms and linear molecules in these sets. We found
that CISD/MTsmall generally yields quite satisfactory spin-orbit correc-
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tions, but that it is advisable to correlate the (2s, 2p)-like electrons in the
second-row elements. For the halogen atoms, convergence of these con-
tributions with the level of theory was studied in some detail by Nicklass
et al. [50]. These authors came to fundamentally the same conclusions.

2.8. The Zero-Point Vibrational Energy

It has been noted repeatedly (e.g. [51, 52, 53]) that one-half the
sum of the harmonic frequencies, (with representing the
degeneracy of mode i) generally leads to an overestimate of the
and that one-half the sum of the fundamentals, generally leads
to an underestimate. In fact, it is easily shown that the average of these
two estimates is a fairly good approximation to the anharmonic

For the sake of convenience, we shall restrict ourselves to the case
of symmetric tops, asymmetric tops being a special case thereof with no
degenerate modes. Including only up to first-order anharmonicities
and excluding the small constant the vibrational energy is given as

in which S is the splitting term involving the angular momenta l of
the degenerate vibrations, and represents the vibrational quantum
number for mode i. It trivially follows that the zero-point energy
is given by

In addition we find that [introducing the shorthand

Now assume only is nonzero, then
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It then follows that

That is,

in which the are the diagonal l-coupling constants. The last term is
generally negligible. If so desired, the term involving the diagonal anhar-
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monicity constants can be estimated from anharmonicities in diatomic
molecules.

The common practice of scaling computed vibrational frequencies
for comparison with experimental fundamentals attempts at approxi-
mately addressing two issues: (a) the imperfections of the theoretical
model for the harmonic frequency (which for CCSD(T), or even B3LYP,
in sufficiently large basis sets is basically unnecessary); and (b) the an-
harmonic contribution to the fundamental. The above analysis suggests
that a scaling factor that is intermediate between those used for re-
producing harmonics and fundamentals would be the most appropriate
for anharmonicities. In the original W1 paper [1], we considered the
essentially exact anharmonic values of of the 28 W2-1 molecules
(determined from experiment or large basis set CCSD(T) quartic force
field calculations, e.g. [54] and the references therein) and found the ap-
propriate scaling factor for B3LYP/VTZ+1 harmonic frequencies to be
0.985. The largest individual deviation between the scaled harmonic and
exact anharmonic values of was only 0.3 kcal/mol (for ).

Some of the above remarks are probably best illustrated by an ex-
ample. For benzene, a B3LYP/TZ2P quartic force field was computed by
Handy and coworkers [55]. From the published anharmonicity constants
(specifically, the set deperturbed for Fermi resonances closer than

), we obtain an anharmonic of 62.04 kcal/mol. For compari-
son, one-half the sum of the harmonics comes out 0.9 kcal/mol too high
at 62.96 kcal/mol, and one-half the sum of the fundamentals comes out
1 kcal/mol too low at 60.98 kcal/mol. The average of both values, 61.97
kcal/mol, is in excellent agreement with the anharmonic value, while
the W1 estimate accidentally agrees to within two decimal places with
the B3LYP/TZ2P anharmonic value. From the best available computed
harmonic frequencies [56] and the best available experimental funda-
mentals [55], we obtain or, after correction for
the difference between this estimate and the true anharmonic at
the B3LYP/TZ2P level, equal to 0.07 kcal/mol, we find
kcal/mol as possibly the best estimate. (Note that HF/6-31G* harmonic
frequencies scaled by 0.8929, as used in G2 and G3 theories, yields only
60.33 kcal/mol. In this accuracy range, one certainly cannot indulge in
a 1.7 kcal/mol underestimate in the zero-point energy!)

In a recent benchmark study [57] on the molecule, we ex-
plicitly computed a CCSD(T)/VTZ quartic force field at great expense
(the low symmetry necessitated the computation of 2241 energy points
in symmetry and 460 additional points in symmetry). The result-
ing anharmonic 24.69 kcal/mol, is only 0.10 kcal/mol above the
scaled B3LYP/VTZ estimate, 24.59 kcal/mol. At least for fairly rigid
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molecules, it appears hard to justify the additional expense and effort
for the anharmonic force field unless it were required anyway for other
purposes.

If we use B3LYP/VTZ+1 harmonics scaled by 0.985 for the
rather than the actual anharmonic values, mean absolute error at the
W1 level deteriorates from 0.37 to 0.40 kcal/mol, which most users would
regard as insignificant. At the W2 level, however, we see a somewhat
more noticeable degradation from 0.23 to 0.30 kcal/mol – if kJ/mol
accuracy is required, literally ”every little bit counts”. If one is primar-
ily concerned with keeping the maximum absolute error down, rather
than getting sub-kJ/mol accuracy for individual molecules, the use of
B3LYP/VTZ+1 harmonic values of scaled by 0.985 is an accept-
able ”fallback solution”. The same would appear to be true for thermo-
chemical properties to which the contribution is smaller than for
the TAE (e.g. ionization potentials, electron affinities, proton affinities,
and the like).

3. PERFORMANCE OF  W1 AND W2 THEORIES

A reliable assessment of the performance of a method in the kJ/mol
accuracy range is, by its very nature, only possible where experimental
data are themselves known to this accuracy.

3.1. Atomization Energies (the W2-1 Set)

In the original W1/W2 paper [1], we selected a set of 28 first-and
second-row molecules (which we shall call the W2-1 set) containing at
most three nonhydrogen atoms for which (a) the experimental total at-
omization energies are available to the highest possible accuracy
(preferably 0.1 kcal/mol); (b) no strong nondynamical correlation effects
exist that would hinder the applicability of single-reference electron cor-
relation methods; (c) near-exact anharmonic values of are available
from either experimental anharmonicity constants or highly accurate ab
initio anharmonic force fields.

Results using W1 and W2 theories are shown in Table 2.1. For W2
theory we find a mean absolute deviation (MAD) of 0.23 kcal/mol, which
further drops to 0.18 kcal/mol when the NO, and molecules are
deleted (all of which have mild nondynamical correlation in common).
Our largest deviation is 0.70 kcal/mol. We can hence state that W2
meets our design goals.
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For W1 theory, MAD is increased to 0.37 kcal/mol (old SCF extrap-
olation) or 0.40 kcal/mol (new SCF extrapolation), with the maximum
error being 0.78 kcal/mol. This should be compared with MAD of 1.25
kcal/mol for G2 theory, 0.89 kcal/mol for G3 theory, 0.88 kcal/mol for
CBS-Q, and 0.61 kcal/mol for CBS-QB3, and the much higher max-
imum errors of these methods of 4.90 kcal/mol 3.80 kcal/mol

3.10 kcal/mol (OCS), and 1.90 kcal/mol respectively.
While we would prefer to use W2 theory for no-nonsense benchmarking
if at all possible, Wl theory still seems to offer great advantages over
the other techniques.

3.2. Electron Affinities (the G2/97 Set)

Some representative results can be found in Table 2.2. For the
G2-1 set of electron affinities, W1 theory has a mean absolute error of
0.016 eV [26]. Not unexpectedly – given the slow basis set convergence
of electron affinities – the extra effort invested in W2 theory pays off
with a further reduction of the mean absolute error to 0.012 eV. Accu-
racy appears to be limited principally by imperfections in the CCSD(T)
method: for the atoms B–F and A1–C1, using even larger basis sets we
achieve 0.009 eV at the CCSD(T) level, which decreases to 0.001 eV if
approximate full CI energies are used.

Normally W1 theory does not involve diffuse functions on H, Li, Na,
Be, and Mg; not surprisingly, this leads to very poor electron affinities
for Li and Na. Upon switching to W1aug (i.e. using augmented basis
sets on all elements), perfect agreement with experiment is obtained.
Within the G2-2 set, substantial discrepancies between W1 theory and
experiment are found for and both of which are systems that
have pronounced multireference character. (The same remark applies
to a lesser extent to FO.) Scalar relativistic effects almost invariably
decrease the electron affinity. Neglect of spin-orbit splitting leads to
significant deterioration in MAD.

3.3. Ionization Potentials (the G2/97 Set)

Some representative results can again be found in Table 2.2. At the
W1 level, the G2-1 ionization potentials are reproduced with a MAD of
only 0.013 eV [26]. No further improvement is seen at the W2 level
for this property. Note that if the B3LYP/VTZ geometry for is
employed, a serious error is seen for which disappears when a
CCSD(T)/VTZ reference geometry is used instead. (Only BH & HLYP
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[58] and mPWIK [59] correctly predict a structure for other
exchange-correlation functionals wrongly lead to a structure).

Inner-shell correlation contributions are found to be somewhat more
important for ionization potentials than for electron affinities, which is
understandable in terms of the creation of a valence ‘hole’ by ionization
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into which inner-shell electrons can be excited. Again, inclusion of spin-
orbit splitting is worthwhile.

3.4. Heats of Formation (the G2/97 Set)

A detailed discussion and a table can be found in Ref. 26. First
of all, we note that the mean uncertainty for the experimental values
in the G2-1 set is itself 0.6 kcal/mol. MAD values for W1 and W2
theory stand at 0.6 and 0.5 kcal/mol, respectively, suggesting that these
theoretical methods have a reliability comparable to the experimental
data themselves.

For a subset of 27 G2-2 molecules with fairly small experimental
uncertainties, Wl theory had MAD of 0.7 kcal/mol, compared to the
average experimental uncertainty of 0.4 kcal/mol. Some systems exhibit
deviations from experiment in excess of 1 kcal/mol: in the cases of
and very slow basis set convergence is responsible, and W2 calcula-
tions in fact remove nearly all remaining disagreement with experiment
for the latter system. (The best available value for is itself a the-
oretical one, so a comparison would involve circular reasoning.) Other
molecules ( and C1NO) suffer from severe multireference effects.

3.5. Proton Affinities

For proton affinities, Wl theory can basically be considered con-
verged [26]. The W2 computed values are barely different from their
Wl counterparts, and the latter’s MAD of 0.43 kcal/mol is well below
the about 1 kcal/mol uncertainty in the experimental values. Wl theory
would appear to be the tool of choice for the generation of benchmark
proton affinity data for calibration of more approximate approaches.

4. VARIANTS AND SIMPLIFICATIONS

4.1.              Theory

It was noted that the original Wl theory (old-style SCF extrapola-
tion) performed considerably more poorly for second-row than for first-
row species. This was ascribed to the lack of balance in the basis sets for
second-row atoms used in the SCF and valence correlation steps of Wl;
in particular, the basis set contains as many ”tight” d and
f functions as regular ones, which would appear to be a bit top-heavy.
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It was proposed to replace the basis set by a
conclusion borne out by calculations on the molecule [28], which
suffers from extreme inner polarization effects and as such provides a
good ”proving ground”.

Compared to its prototype, the modification (the so-called
theory) did appear to yield improved results for second-row molecules.
However, in the W1/W2 validation study [26] we found this to be an
artifact of the exaggerated sensitivity of the (old-style) 3-point geometric
SCF extrapolation. Use of the new-style extrapolation largely
eliminates both the problem and the difference between Wl and
theory.

4.2.      W1h and W2h Theories

While the need for diffuse-function augmented basis sets for highly
electronegative elements is well established (e.g. [34]), it could be ar-
gued that they are not really required on group III and IV elements.
For organic-type molecules in particular, this would result in significant
savings.

We define here Wlh and W2h theories, respectively, as the modifi-
cations of  Wl theory for which AVnZ basis sets are only used on elements
of groups V, VI, VII, and VIII, but regular VnZ basis sets on groups
I, II, III, and IV. (The ”h” stands for ”heteroatom”, as we originally
investigated this for organic molecules.) For the purpose of the present
paper, we have repeated the validation calculations described in the pre-
vious section for Wlh and W2h theories. (For about half of the systems,
Wl and Wlh are trivially equivalent.) Some representative results can
be found in Table 2.1 for atomization energies/heats of formation, and
in Table 2.2 for ionization potentials and electron affinities.

For the heats of formation in the G2-1 set, the largest difference
between Wl and Wlh theory is 0.3 kcal/mol for the average differ-
ence is less than 0.1 kcal/mol. For some of the systems in the G2-2 set,
however, differences are more pronounced, e.g. 0.6 kcal/mol for and
0.8 kcal/mol for benzene. (Note that the benzene calculation reported as
an example application in the original Wl paper [1] is in fact a Wlh cal-
culation: the remaining small difference between that reference and the
present work is due to the different SCF extrapolations used.) For the
G2-1 heats of formation, W2h and W2 are essentially indistinguishable
in quality, as could reasonably be expected.

For the G2-1 ionization potentials, the largest differences are 0.005
and 0.006 eV, respectively, for ethylene and acetylene. Differences in
the G2-2 set are likewise small, although (0.009 eV) and
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(0.024 eV) stand out. Clearly Wlh is of a quality comparable to Wl for
ionization potentials, and we recommend it as a moderately inexpensive
high-accuracy method for this property. (As noted before, W2 does not
represent an improvement over Wl for ionization potentials, and the
same goes for W2h theory.)

For electron affinities, the differences between Wlh and Wl are very
pronounced, and become (as expected) particularly large (e.g. 0.284 eV
in ) for species where none of the atoms carry diffuse functions in
Wlh theory. The differences between W2 and W2h theory are still quite
sizable, and in fact agreement with experiment for W2h is inferior to that
for the less expensive Wl method. In summary, we do not recommend
Wlh or W2h for electron affinities.

4.3. A Bond-Equivalent Model for Inner-Shell Correlation

In a pilot Wlh calculation on benzene [1], it was found that 85 % of
the CPU time was spent on the inner-shell correlation step. Given that
this contribution is about 0.5 % of the TAE of benzene, the CPU time
proportion appears to be lopsided to say the least. On the other hand, a
contribution of 7 kcal/mol clearly cannot be neglected by any reasonable
standard. However, inner-shell correlation is by its very nature a much
more local phenomenon than valence correlation, and a relative error
of a few percent in such a small contribution is more tolerable than a
corresponding error in the major contributions, Martin, Sundermann,
Fast and Truhlar (MSFT) [43] investigated the applicability of a bond
equivalent model.

We started by generating a data base of inner-shell correlation con-
tributions for some 130 molecules that cover the first two rows of the pe-
riodic table. In order to reduce the number of parameters in the model to
be fitted, we introduced a Mulliken-type approximation for the parame-
ters Furthermore we did retain different parameters
for single and multiple bonds, but assumed

The model (which requires essentially no CPU time) was found
to work very satisfactorily; its performance for the W2-1 set can be
seen in Table 2.3. Somewhat to our surprise, we found that the same
model performs reasonably well when applied to the scalar relativistic
contributions, albeit with larger individual deviations.

It was recently suggested by Nicklass and Peterson [60] that the
use of core polarization potentials (CPPs) [61] could be an inexpensive
and effective way to account, for the effects of inner shell correlation.
The great potential advantage of this indeed rather inexpensive method
over the MSFT bond-equivalent model is that it does not depend on
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any explicit connectivity information. The different approximate treat-
ments of inner-shell correlation are compared with large-scale CCSD(T)
results for the W2-1 set in Table 2.3. As seen there, while the CPP ap-
proach is indeed quite promising (clearly superior to MP2 calculations,
for instance), it clearly requires further refinement. The MSFT bond-
equivalent model in fact outperforms all other approximate methods,
with a computational cost that is essentially nil.

4.4. Reduced-Cost Approaches to the Scalar Relativistic
Correction

The fact that the additivity model for the scalar relativistic correc-
tion worked at all is a pleasant surprise: yet alternatives clearly merit
exploration. As noted above, the SCF-level scalar relativistic contri-
butions of Kedziora et al. [62] are systematically overestimated. One
possibility which suggests itself then would be applying a scaling factor
to the SCF values: we have considered this approach for the set of 120
molecules for which ACPF/MTsmall data were generated by MSFT for
the purposes of parameterizing their empirical model. However, rather
than following the more elaborate approach of Kedziora et al., we sim-
ply evaluated the first-order Darwin and mass velocity corrections by
perturbation theory. We considered variation of the basis set, and found
not surprisingly that typical contracted VnZ basis sets are insufficiently
flexible in the core region. We found VTZuc+1 (where VTZuc stands for
an uncontracted cc-pVTZ basis set) to be the best compromise between
cost and quality.

The best scale factor in the least-squares sense is 0.788; while the
mean absolute error of 0.04 kcal/mol is more than acceptable, the max-
imum absolute error of 0.20 kcal/mol (for ) is somewhat disappoint-
ing. Representative results (for the W2-1 set) can be found in Table
2.4.

This error can be considerably reduced, at very little cost, by em-
ploying B3LYP density functional theory instead of SCF. The scale fac-
tor, 0.896, is much closer to unity, and both mean and maximum abso-
lute errors are cut in half compared to the scaled SCF level corrections.
(The largest errors in the 120-molecule data set are 0.10 kcal/mol for
and 0.09 kcal/mol for BeO.) It could in fact be argued that the remain-
ing discrepancy between the scaled B3LYP/cc-pVTZuc+1 values is on
the same order of magnitude as the uncertainty in the ACPF/MTsmall
values themselves.
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4.5.    W1c Theory

Here we propose a new reduced-cost variant of W1 theory which we
shall denote W1c (for ”cheap”), with W1ch theory being derived anal-
ogously from W1h theory. Specifically, the core correlation and scalar
relativistic steps are replaced by the approximations outlined in the pre-
vious two sections, i.e. the MSFT bond additivity model for inner-shell
correlation and scaled B3LYP/cc-pVTZuc+1 Darwin and mass-velocity
corrections. Representative results (for the W2-1 set) can be seen in
Table 2.1; complete data for the molecules in the G2-1 and G2-2 sets are
available through the World Wide Web as supplementary material [63]
to the present paper.

As seen in Table 2.1, W1c is an acceptable ”fallback solution” for
systems for which W1 calculations are not feasible because of the number
of inner-shell orbitals; for heats of formation and certainly for ionization
potentials, W1ch offers a significant further cost reduction over W1h at
a negligible loss in accuracy.

4.6.    Detecting Problems

While CCSD and especially CCSD(T) are known [36] to be less
sensitive to nondynamical correlation effects than low-order perturba-
tion theoretical methods, some sensitivity remains, and deterioration of
W1 and W2 results is to be expected for systems that exhibit severe
nondynamical correlation character. A number of indicators exist for
this, such as the diagnostic of Lee and Taylor [64], the size of the
largest amplitudes in the converged CCSD wavefunction, and natural
orbital occupations of the frontier orbitals.

One pragmatic criterion which we have found to be very useful is
the percentage of the TAE that gets recovered at the SCF level. For
systems that are wholly dominated by dynamical correlation, like
and this proportion exceeds 80 %, while it drops to 50 % for the

 molecule, is only barely bound at the SCF level, and      is even
metastable. In the W1/W2 validation paper [26], we invariably found
that large deviations from what appeared to be reliable experimental
data tend to be associated with strong nondynamical correlation, and a
small SCF component of TAE (e.g. 27 % for 32 % for and
15 % for CIO).

Would the use of full CCSDT [65] energies, instead of their quasi-
perturbative-triples CCSD(T) counterparts, solve the problem? Our
experience has taught us that this generally leads to a deterioration of
the results; it has been shown (e.g. [66]) that the excellent performance
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of CCSD(T) for binding energies is at least in part due to error compen-
sation between partial neglect of higher-order effects and complete
neglect of effects. Unfortunately, explicit treatment of (connected
quadruple excitations) is at present not feasible for practical-sized sys-
tems.

For some very small systems (e.g. [67] and [68]), we
have considered what one might term W1CAS and W2CAS, in which
the CCSD(T) calculations were replaced by full valence (or larger) CAS-
ACPF calculations. The SCF extrapolation was then applied to the
CASSCF (i.e. Hartree-Fock plus static correlation) energy, and the
CCSD/CCSD(T) extrapolation to the dynamical correlation energy only.
Aside from limited applicability due to the explosive increase in the num-
ber of reference configurations with the number of atoms, the formal
objection of course applies that any separation between ”internal” and
”external” orbital spaces is to a large extent arbitrary.

Common sense also suggests that the larger the ”gap” being bridged
by the extrapolation from the actual computed number with the largest
basis set to the hypothetical basis set limit, the larger the uncertainty
in the latter will be. (See the example of benzene in section 5.3.)

Finally, the GIGO (”garbage in, garbage out”) theorem applies here
as well as in any other matter. For instance, if a B3LYP/cc-pVTZ+l
reference geometry is used for a system where the B3LYP geometry
is known to be qualitatively wrong (such as ), the computed W1
energetics will not be very reliable either.

5. EXAMPLE APPLICATIONS

5.1.     Heats of Vaporization of Boron and Silicon

First-principle computation of gas-phase molecular heats of forma-
tion by definition requires the gas-phase heats of formation of the ele-
ments:

Somewhat disappointingly, the values of of some first-
and second-row elements A (notably boron and silicon) are not pre-
cisely known because of a variety of experimental difficulties. However,
well-established precise heats of formation of [69] and [70] are
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available that do not involve the heats of vaporization of boron and sili-
con in their determination. Thus, if accurate computed values of

and were available, then, in combination with the established
value [71] of the quantities sought for could be derived from a
thermochemical cycle. These were obtained by means of W2 theory for

[72] and for [73]. The final recommended values are
and The

boron value is about 2 kcal/mol higher than the CODATA recommended
value and in between a recent evaluation by Hildenbrand [74] and a 1977
measurement by Storms and Mueller [75]. The silicon value is slightly
higher than the CODATA recommended value, and with a much smaller
uncertainty. We note; in passing that one of the first arguments for revi-
sion of and was given in [76] on computational
(CBS-Q) grounds.

5.2. Validating DFT Methods for Transition States:
the Walden Inversion

It is well known (e.g. [77, 78]) that the prediction of reaction barrier
heights is one of the main ”Achilles’ heels” of density functional theory.
For instance [79], for the prototype reaction,

B3LYP predicts a negative overall barrier if (i.e. a barrier
between the entry and exit ion-molecule complexes that lies below the
entrance channel). Adamo and Barone [79] demonstrated that their
new mPW1PW91 (modified Perdew-Wang) functional at least yields
the correct sign for this problem.

In Ref. 80 we carried out a W1 and W2 investigation for all six cases
with in order to assess the performance of a number
of DFT exchange-correlation functionals. W2 is in excellent agreement
with experiment where reliable experimental data are available; in some
other cases, the W1 calculations either suggest revisions or provide the
only reliable data available (see Ref. 80 for details).

Of the different exchange-correlation functionals considered, the
new mPW1K [59] functional of Truhlar and coworkers appears to yield
the best performance among ”hybrid” functionals (i.e. those including
a fraction of exact exchange), followed by BH&HLYP (a half-and-half
mixture [58] of Hartree-Fock and Becke 1988 exchange [81] with Lee-
Yang-Parr correlation). Among ”pure DFT” functionals, the best per-
formance is delivered by HCTH-120 [82] (the 120-molecule reparameter-
ization of the Hamprecht-Cohen-Tozer-Handy functional). (We note in
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passing that this latter functional was parameterized entirely against ab
initio data.) The G2 data of Pross et al. [83], despite some quantitative
discrepancies, is qualitatively in perfect agreement with W1 theory.

We also note that in one case (F, Br) it was impossible to obtain
all required stationary points at the B3LYP level, since the
minimum does not show up at all at this level. Only mPW1K and
BH&HLYP find this stationary point, as does CCSD(T).

5.3. Benzene as a ”Stress Test” of the Method

As an illustrative example of ”stress-testing” W1 and W2 theory,
we shall consider the benzene molecule. The most accurate calculation
we were able to carry out is at the W2h level: the rate-determining step
was the direct CCSD/cc-pV5Z calculation (30 electrons correlated, 876
basis functions, carried out in the subgroup of ) which took
nearly two weeks on an Alpha EV67/667 MHz CPU. Relevant results
are collected in Table 2.5.

At first sight, the disagreement between the computed W2h value of
and the experimental value of

seems disheartening. (Note that it ”errs” on the other side as the most
recent previous benchmark calculation [53], using
similar-sized basis sets as W1 theory.) However, the comparison with
experiment is not entirely ”fair” since it neglects the experimental un-
certainties in the atomic heats of formation required to convert an at-
omization energy into a heat of formation (or vice versa). Combining
these with the experimental leads to an experimentally derived

where the uncertainty is dominated by
six times that in the heat of vaporization of graphite. In other words,
our calculated is only 0.3 kcal/mol removed
from the upper end of the experimental uncertainty interval. (After all,
an error of 0.02 % seems to be a bit much to ask for.)

Secondly, let us consider the ”gaps” bridged by the extrapolations.
For the SCF component, that gap is a very reasonable 0.3 kcal/mol
(0.03 %), but for the CCSD valence correlation component this rises to
5 kcal/mol (1.7 %) while for the connected triple excitations contribution
it amounts to 1 kcal/mol (3.7 % - note however that a smaller basis set
is being used than for CCSD). It is clear that the extrapolations are
indispensable to obtain even a useful result, let alone an accurate one,
even with such large basis sets.

Inner-shell correlation, at 7 kcal/mol, is of quite nontrivial impor-
tance, but even scalar relativistic effects (at 1 kcal/mol) cannot be ig-



60 Chapter 2

nored. And manifestly, even a 2 % error in a 62 kcal/mol zero-point
vibrational energy would be unacceptable.

Let us now consider the more approximate results. While W1h
coincidentally agrees to better than 0.2 kcal/mol with the W2h result,
W1 deviates from the latter by 0.6 kcal/mol. Note, however, that in
W1h theory, the extrapolations bridge gaps of 0.8 (SCF), 10.1 (CCSD),
and 2.1 (T) kcal/mol, the corresponding amounts for W1 theory being
0.7, 9.1, and 1.9 kcal/mol, respectively. Common sense suggests that
if extrapolations account for 13.0 (W1h) and 11.7 (W1) kcal/mol, then
a discrepancy of 1 kcal/mol should not come as a surprise - in fact,
the relatively good agreement between the two sets of numbers and the
more rigorous W2h result (total extrapolation: 6.3 kcal/mol) testifies, if
anything, to the robustness of the method.
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As for the difference of about 0.4 kcal/mol between the old-style
and new-style SCF extrapolations in W1h and W1 theories, comparison
with the W2h SCF limits clearly suggests the new-style extrapolation
to be the more reliable one. (The two extrapolations yield basically the
same result in W2h.) This should not be seen as an indication that the

formula is somehow better founded theoretically, but rather
as an example of why reliance on (aug-)cc-pVDZ data should be avoided
if at all possible. Users who prefer the geometric extrapolation for the
SCF component could consider carrying out a direct SCF calculation
in the ”extra large” (i.e. V5Z) basis set and applying the
extrapolation to the ”medium”, ”large”, and ”extra large” SCF data.

6. CONCLUSIONS AND PROSPECTS

W1/W2 theory and their variants would appear to represent a valu-
able addition to the computational chemist’s toolbox, both for applica-
tions that require high-accuracy energetics for small molecules and as a
potential source of parameterization data for more approximate meth-
ods. The extra cost of W2 theory (compared to W1 theory) does appear
to translate into better results for heats of formation and electron affini-
ties, but does not appear to be justified for ionization potentials and
proton affinities, for which the W1 approach yields basically converged
results. Explicit calculation of anharmonic zero-point energies (as op-
posed to scaling of harmonic ones) does lead to a further improvement in
the quality of W2 heats of formation; at the W1 level, the improvement
is not sufficiently noticeable to justify the extra expense and difficulty.

Of the various reduced-cost variants introduced in this paper, W2h
performs basically as accurately as to W2 for heats of formation. Like-
wise, W1h is essentially as good as W1 theory for ionization potentials,
and almost as good for heats of formation. Neither method is recom-
mended for electron affinities.

In systems where a large number of inner-shell electrons makes the
inner-shell correlation (and, to a lesser extent, scalar relativistic) steps
in W1 and W2 theory unfeasible, the use of a bond equivalent model
for the inner-shell correlation and scaled B3LYP/cc-pVTZuc+1 scalar
relativistic corrections offers an alternative under the name of W1c and
W1ch theories.

One plan for the future is the extension to heavier element systems;
the first step in this direction has been made recently with the devel-
opment of the SDB-cc-pVnZ valence basis sets [84] (for use with the
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Stuttgart-Dresden-Bonn relativistic ECPs [85]) for third- and fourth-
row main group elements.

Further improvement of accuracy, as well as applicability to sys-
tems exhibiting nondynamical correlation, will almost certainly require
some level of treatment of connected quadruple excitations.
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1. INTRODUCTION

The first-principles evaluation of the binding energies of molecules
to chemical accuracy is one of the most challenging prob-
lems in computational quantum chemistry. Dramatic progress has been
made in this regard in the last two decades and the rigorous demands
placed on the theoretical methods to achieve this goal are now well un-
derstood. In principle it is now known how to compute the binding
energies and other thermochemical properties of most molecules to very
high accuracy [1-10]. This can be achieved by using very high levels of
correlation, such as that obtained with coupled cluster [CCSD(T)] [11]
or quadratic configuration interaction [QCISD(T)] [12] methods, and
very large basis sets containing high angular momentum functions. The
results of these calculations are then extrapolated to the complete ba-
sis set limit and corrected for some smaller effects such as core-valence
and relativistic effects. Unfortunately, this approach is limited to small
molecules because of the scaling (with respect to the number of
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basis functions N) of the correlation methods and the need for very large
basis sets.

An alternative approach applicable for larger molecules is to use a
series of high-level correlation calculations [e.g., QCISD(T), MP4 [13],
or CCSD(T)] with moderate sized basis sets to approximate the result of
a more expensive calculation. The Gaussian-n series [14-30] exploits this
idea to predict thermochemical data. In addition, molecule-independent
empirical parameters are used in these methods to estimate the remain-
ing deficiencies in the calculations. Such an approach using higher-level
corrections (additive parameters that depend on the number of paired
and unpaired electrons in the system) has been quite successful, and the
latest version, Gaussian-3 (G3) theory [21], achieves an overall accuracy
of 1 kcal/mol for the G2/97 test set [24, 25]. Petersson et al. [31] have
developed a related series of methods, referred to as complete basis set
(CBS) procedures, for the evaluation of accurate energies of molecular
systems. The central idea in the CBS methods is an extrapolation proce-
dure to determine the projected second-order (MP2) energy in the limit
of a complete basis set. Several empirical corrections, similar in spirit to
the higher-level correction used in the Gaussian-n series, are added to
the resulting energies in the CBS methods to remove systematic errors
in the calculations. Another approach to calculation of thermochemi-
cal data that has been proposed is scaling of the calculated correlation
energy using multiplicative parameters [32-36] determined by fitting to
experimental data. Finally, hybrid density functionals are being used in-
creasingly to predict the thermochemistry of molecules with reasonable
accuracy [24-26].

In this chapter, we review the elements of G3 theory and related
techniques of computational thermochemistry. This review is restricted
almost exclusively to the techniques that we have developed and the
reader is referred to the remaining chapters in this volume for other
complementary approaches. An important part of the development of
such quantum-chemical methods is their critical assessment on test sets
of accurate experimental data. Section 3.2 provides a brief description
of the comprehensive G3/99 test set [26] of experimental data that we
have collected. Section 3.3 discusses the components of G3 theory as
well as the approximate versions such as G3(MP3) [22] and G3(MP2)
[23], and their performance for the G3/99 test set. The G3S method [29]
that includes multiplicative scale factors is presented in section 3.4 along
with other related variants. Section 3.5 discusses the recently developed
G3X method [30] that corrects for most of the deficiencies of G3 theory
for larger molecules. The performance of these methods is compared to
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that of some of the popularly used density functionals in section 3.6.
Finally, conclusions are drawn in section 3.7.

2. THE G3/99 TEST SET

Critical documentation and assessment of quantum-chemical mod-
els is essential for such methods to become predictive tools for chemical
investigation. We have assembled a large test set of good, credible ex-
perimental data to perform such assessments [24-26]. The current test
set, referred to as G3/99 [26], contains 376 energies (222 enthalpies of
formation, 88 ionization energies, 58 electron affinities, and 8 proton
affinities) that are known experimentally [37-39] to an accuracy of bet-
ter than It includes three subsets of energies, G2-1, G2-2,
and G3-3. The G2-1 subset (original G2 test set) includes the enthalpies
of formation for only very small molecules containing 1 - 3 heavy atoms
(systems such as and ), whereas G2-2 includes
medium-sized molecules containing 3 - 6 heavy atoms (systems such as

etc.). It also includes ionization energies on some
larger molecules such as substituted benzenes. The two subsets, G2-1
and G2-2, are together referred to as G2/97 and contain 301 test en-
ergies [24, 25]. The G3-3 test set [26] comprises 75 new enthalpies of
formation for molecules that are, on average, larger (containing 3 - 10
heavy atoms). The largest molecule in the G3-3 test set contains ten
non-hydrogen atoms (e.g., naphthalene or azulene). It also includes some
larger hypervalent molecules such as or that provide a challenge
for many theoretical models.

The 222 enthalpies of formation included in the G3/99 test set con-
tain a wide variety of molecules with many different kinds of bonds. They
are conveniently classified into subgroups of molecules. They include 47
molecules containing non-hydrogen atoms, 38 hydrocarbons, 91 substi-
tuted hydrocarbons, 15 inorganic hydrides, and 31 open-shell radicals.
Together, they provide a comprehensive assessment of new theoretical
models in a wide variety of bonding environments.

The collection of such a large set of experimental data provides
many challenges. All the experimental values that are included have a
quoted uncertainty of less than 1 kcal/mol [37-39]. However, the evalu-
ation of the experimental uncertainties is difficult or impossible in many
cases. It is possible that some of the included values may turn out to be
incorrect. For example, the G2/97 test set originally comprised 302 en-
ergies, but the enthalpy of formation of has been deleted because a
new experimental upper limit [40] has been reported that casts doubt on
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the value used in the G2/97 test set. In addition, on the basis of theoret-
ical evidence, a few other enthalpies of formation (vinyl chloride,
and ) and one ionization energy may not be as accurate
as cited experimentally [41,42]. In our analysis, we have chosen not to
throw out experimental data unless there is new experimental evidence
that warrants it. Another important factor is that the calculation of the
enthalpies of formation for molecules requires the experimental atomic
enthalpies of formation. Two of these (B and Si) have significant uncer-
tainties and some authors have suggested the use of ”theoretical” atomic
enthalpies of formation for Si and B in the calculation of molecular en-
thalpies of formation [43-45]. We have consistently used experimental
values for all elements, despite the uncertainty in the Si and B values.
The reason that we do not use these ”theoretical” atomic enthalpies is
that they are derived in part from an experimental molecular enthalpy
that is part of the test set, which may bias the assessment process [46]. If
the accuracy of theory improves and becomes demonstrably better than
that of experiment, theoretical values may be included in the future to
assemble test sets of molecules for critical assessment.

3. GAUSSIAN-3 THEORY

Gaussian-3 theory, like its predecessor Gaussian-2 (G2) theory [17],
is a composite technique in which a sequence of well-defined ab initio
molecular orbital calculations [47] is performed to arrive at a total energy
of a given molecular species. It was designed to correct some of the defi-
ciencies of G2 theory for systems such as halogen-containing molecules,
unsaturated hydrocarbons, etc. It also contains important physical ef-
fects, such as core-valence correlation and spin-orbit contributions, that
were not included in G2 theory. G3 theory is computationally less de-
manding than G2 theory though it is significantly more accurate. The
detailed steps involved in G3 theory are as follows:

1. An initial equilibrium structure is obtained at the Hartree-Fock
(HF) level with the 6-31G(d) basis [47]. Spin-restricted (RHF)
theory is used for singlet states and spin-unrestricted Hartree-Fock
theory (UHF) for others. The HF/6-31G(d) equilibrium structure
is used to calculate harmonic frequencies, which are then scaled
by a factor of 0.8929 to take account of known deficiencies at this
level [48]. These frequencies are used to evaluate the zero-point
energy and thermal effects.
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2.

3.

The equilibrium geometry is refined at the MP2(fu)/6-31G(d) level,
using all electrons for the calculation of correlation energies. This
is the final equilibrium geometry in the theory and is used for all
single-point calculations at higher levels of theory in step 3. Except
where otherwise noted by the symbol (fu), these subsequent calcu-
lations include only valence electrons in the treatment of electron
correlation.

A series of single-point energy calculations is carried out at higher
levels of theory. The first higher-level calculation is the complete
fourth-order Møller-Plesset perturbation theory [13] with the 6-
31G(d) basis set, i.e. MP4/6-31G(d). For convenience of notation,
we represent this as MP4/d. This energy is then modified by a
series of corrections from additional calculations:

(a) A correction for correlation effects beyond fourth-order
perturbation theory using the quadratic configuration interaction
(QCI) method [12],

(b) A correction for diffuse functions,

where plus denotes the 6-31+G(d) basis set [47].

(c) A correction for higher polarization functions on non-
hydrogen atoms and p-functions on hydrogens,

where 2df,p denotes the polarized 6-31G(2df,p) basis set [47].

(d) A correction for larger basis set effects and for the
non-additivity caused by the assumption of separate basis set ex-
tensions for diffuse functions and higher polarization functions,

The largest basis set, denoted as G3Large [21] includes some core
polarization functions as well as multiple sets of valence polariza-
tion functions. It should be noted that MP2 calculation with the
largest basis set in Eq. (3.4) is carried out at the MP2(fu) level.
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4.

5.

6.

This is done to take account of core-related correlation contribu-
tions to total energies.

Spin-orbit correction is included for atomic species only. The
spin-orbit correction is taken from experiment [49] where available
and accurate theoretical calculations [50] in other cases. These
corrections are particularly important for halide-containing sys-
tems [24]. Molecular spin-orbit corrections are not included in G3
theory.

A ”higher-level correction” is added to take into account
remaining deficiencies in the energy calculations: is given by

for molecules and for atoms
(including atomic ions), where the and are the numbers of
and valence electrons, respectively, with The number of
valence electron pairs corresponds to Thus, A is the correction
for pairs of valence electrons in molecules, B is the correction for
unpaired electrons in molecules, C is the correction for pairs of
valence electrons in atoms, and D is the correction for unpaired
electrons in atoms. The use of different corrections for atoms and
molecules can be justified, in part, by noting that effects of basis
functions with higher angular momentum are likely to be of more
importance in molecules than in atoms. The A, B, C, D values
are chosen to give the smallest average absolute deviation from
experiment for the G2/97 test set. For G3 theory,

Finally, the total energy at 0 K (”G3 energy”) is obtained by
adding all the individual energy corrections in an additive man-
ner,

The G3 energy can also be represented more fully as

The final total energy is effectively at the QCISD(T,fu)/G3Large
level if the additivity approximations used work well. The validity of
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such approximations has been previously investigated for G2 theory on
the G2-1 subset of G2/97 and found to be satisfactory [19].

The correlation methods in G3 theory are still computationally de-
manding and it is of interest to find modifications to reduce the com-
putational requirements. Two approximate versions of G3 theory have
been proposed to make the methods more widely applicable. The first is
G3(MP3) [22] that eliminates the expensive MP4/2df,p calculation by
evaluating the larger basis set effects at the MP3 level. It also eliminates
the MP4/plus calculation,

The second is G3(MP2) theory [23] that evaluates the larger basis
set effects at the MP2 level, similar to the successful G2(MP2) theory,

In G3(MP2) theory, the MP2(fu)/G2Large calculation of G3 is replaced
with a frozen core calculation with the G3MP2Large basis set [23] that
does not contain the core polarization functions of the G3Large basis
set.

The enthalpies of formation for most molecules in the G2/97 and
G3/99 test sets have been measured at 298 K. In order to compare with
experiment, the heats of formation for molecules are calculated using a
procedure described in detail previously [24]. Briefly, thermal corrections
(298 K) are first evaluated using the calculated vibrational frequencies
and standard statistical-mechanical methods [51]. The calculated total
energies of the given molecule and its constituent atoms are used to
evaluate its atomization energy. This value is then used along with the
thermal corrections and the known experimental enthalpies of formation
for the atomic species [21, 38] to calculate the enthalpy of formation for
the molecule (298 K). The electron affinities are calculated as the differ-
ence in total energies at 0 K of the anion and the corresponding neutral
at their respective MP2(fu)/6-31G(d) optimized geometries. Likewise,
the ionization potentials are calculated as the difference in total energies
at 0 K of the cation and the corresponding neutral at their respective
MP2(fu)/6-31G(d) optimized geometries. The Gaussian 98 computer
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program is used for the calculations [52]. Many of the G3 techniques
have been implemented in this computer program.

The performance of G3, G3(MP3), and G3(MP2) theories for the
energies in the G2/97 and G3/99 test sets is summarized in Table 3.1.
Overall, the mean absolute deviations increase slightly for the G3/99
test set compared to that of the G2/97 test set. The mean absolute
deviation of G3 theory increases from 1.01 kcal/mol to 1.07 kcal, that
of G3(MP3) theory increases from 1.21 kcal/mol to 1.27 kcal/mol, and
that of G3(MP2) theory remains at 1.31 kcal/mol. This increase in
the mean absolute deviation is primarily due to large deviations in the
calculated enthalpies of formation of some of the non-hydrogen species
in the expanded test set. In particular, the mean absolute deviation of
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3.24 kcal/mol for the 13 non-hydrogens in the G3-3 subset is nearly twice
that of the 34 non-hydrogens in the G2/97 set (1.68 kcal/mol). Espe-
cially large deviations in the G3 data occur for (-6.22 kcal/mol),

(-7.05 kcal/mol), (-5.14 kcal/mol), (-4.15 kcal/mol), and
(-4.37 kcal/mol). Among these, is an unusually strained

molecule with a bond angle of 60°. The remaining systems are hyperva-
lent. Overall, the G3 deviations for nearly all of the new non-hydrogen
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species are negative, indicating underbinding. Part of the error for these
species is due to the use of MP2/6-31G(d) geometries. For example,
when experimental geometries are used, the deviation for decreases
from -6.22 to -3.42 kcal/mol, that for decreases from -7.05 to -4.93
kcal/mol, and that for falls from -5.14 to -2.53 kcal/mol. The re-
mainder of the discrepancies for non-hydrogen systems is mostly due to
basis set deficiencies. The mean absolute deviations for the other types
of molecules in the G3/99 test set are similar to those in the G2/97 test
set.

As mentioned earlier, G3 theory was designed to correct for some of
the deficiencies in G2 theory. The histograms in Fig. 3.1 show the range
of deviations of G2 and G3 theories from experiment for the G2/97
test set. Nearly 88 % of the G3 deviations fall within the range of
-2.0 to 2.0 kcal/mol. This is substantially better than G2 theory for
which about 74 % of the deviations fall in this range. In addition to
improving the accuracy, the use of the 6-31G(d)-based calculations in G3
theory substantially decreases the computer time as well as disk space
requirements relative to G2 theory [which uses the larger 6-311G(d,p)-
based calculations]. For example, the G3 calculation on benzene is nearly
twice as fast as the analogous G2 calculation.

As proposed originally, G3 theory is applicable only to molecules
containing atoms of the first (Li - F) and second (Na - Cl) rows of the
periodic chart. It has recently been extended [53] to molecules containing
the third-row non-transition elements K, Ca, and Ga - Kr. Basis sets
compatible to those used in G3 theory for molecules containing first- and
second-row atoms have been derived. The G3 mean absolute deviation
from experiment for a set of 47 test energies containing these elements is
0.94 kcal/mol. This is a substantial improvement over G2 theory for the
third row, which has a mean absolute deviation of 1.43 kcal/mol for the
same set [54, 55]. Variations of G3 theory based on reduced orders of
perturbation theory that are similar to those for G2 theory [56] have also
been reported [53]. G3(MP2) theory for third-row molecules has a mean
absolute deviation from experiment of 1.30 kcal/mol, and is significantly
more accurate than G2(MP2). The G3 method based on third-order
perturbation theory, G3(MP3), has an average absolute deviation of
1.24 kcal/mol. In addition, these methods have been assessed on a set of
molecules containing K and Ca for which the experimental data is not
accurate enough for them to be included in the test set [53]. Results for
this set indicate that G3 theory performs significantly better than G2
for molecules containing Ca.

Other variants of G3 theory have been proposed that use alternate
geometries, zero-point energies, or higher-order correlation methods. G3
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theory uses MP2(fu)/6-31G(d) geometries, and scaled HF/6-31G(d) fre-
quencies and zero-point energies. A method using B3LYP/6-31G(d)
geometries and scaled B3LYP/6-31G(d) zero-point energies (0.96) has
been considered to make it more uniform. Denoted as G3//B3LYP [27],
its performance is very similar to that of G3 theory though it may be
useful in cases where the MP2 theory is deficient for geometries. Another
variation involves the use of the CCSD(T)/6-31G(d) method instead of
QCISD(T)/6-31G(d) to evaluate the contribution of higher-order corre-
lation effects. The resulting G3(CCSD) method [28] has an accuracy
very similar to that of G3 theory and may be useful in cases where the
QCISD(T) method is not available or deficient.

In addition to these minor variants, two major variants (G3S and
G3X) [29, 30] have been proposed to address some of the main deficien-
cies of G3 theory. These are discussed in detail in the next two sections
of this chapter.

4. G3S THEORY

G3 theory and its variants discussed thus far include a higher-level
correction term (HLC) to correct for the remaining deficiencies that
result from basis set incompleteness, etc.. The HLC term in G3 theory
consists of four molecule-independent additive parameters that depend
only on the number of paired and unpaired electrons in the system. Such
an approach will work if such deficiencies are systematic and scale as
the number of electrons. The parameters in G3 theory were obtained by
minimizing the mean absolute deviation from experiment of the energies
in the G2/97 test set. This approach is indeed successful as indicated by
the overall accuracy of 1 kcal/mol for this test set. However, one of the
deficiencies of G3 theory is that the HLC parameters do not depend on
the geometry and thus do not vary on the potential energy surface. This
may cause deficiencies for regions near transition states that contain
partially broken bonds. Even more importantly, G3 theory cannot be
used to study potential energy surfaces for reactions where the reactants
and products have a different number of electron pairs.

An alternative approach to the calculation of accurate thermochem-
ical data is to scale the computed correlation energy with multiplicative
parameters determined by fitting to the experimental data. Pioneering
methods using such an approach include the scaling all correlation (SAC)
method of Gordon and Truhlar [32], the parameterized correlation (PCI-
X) method of Siegbahn et al. [33], and the multi-coefficient correlation
methods (MCCM) of Truhlar et al. [34-36]. Such methods can be used
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to yield continuous potential energy surfaces even for reactions where
the reactants and products contain different numbers of electron pairs.

A new family of methods, referred to as G3S (G3 Scaled), has been
developed recently [29], where the additive higher-level correction is re-
placed by a multiplicative scaling of the correlation and Hartree-Fock
components of the G3 energy. The scale factors have been obtained
by fitting to the G2/97 test set of energies. This test set is substan-
tially larger than that used in previous fits and can provide a reliable
assessment of the use of such a scaling approach to computational ther-
mochemistry.

Traditionally, the G3 energy is written in terms of corrections (ba-
sis set extensions and correlation energy contributions) to the MP4/d
energy. Alternatively, the G3 energy can be specified in terms of HF
and perturbation energy components. Denoting the second-, third-, and
fourth-order contributions from perturbation theory by and
respectively, and the contributions beyond fourth order in a QCISD(T)
calculation by the G3 energy can be expressed as

where the abbreviations for other energy components are the same as
in Eqs. (3.1) - (3.8). In the derivation of the scaled methods, the HLC
term is set to zero and parameters are introduced that scale the different
terms in the energy expression. A systematic study has been carried
out to investigate the performance of different scaled methods as the
number of parameters is increased. In each case, the parameters have
been optimized to give the smallest root mean square deviation from
experiment for the energies in the G2/97 test set.

The simplest scaled scheme can be obtained by using a single pa-
rameter to scale all the correlation energy terms in Eq. (4.1). Such a
single-parameter scaling of G3 theory is similar to the SAC method of
Truhlar et al. [32] and the PCI-X method of Siegbahn et al. [33]. Such a
method gives a mean absolute deviation of 1.43 kcal/mol for the energies
in the G2/97 test set (compared to 1.01 kcal/mol for G3 theory). On the
other extreme, scaling of all 11 terms in Eq. (4.1) yields a method with
a mean absolute deviation of only 0.97 kcal/mol. However, most of this
improvement is obtained on using only six parameters (mean absolute
deviation of 0.99 kcal/mol). Such a method is referred to as G3S theory.
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The G3S energy expression is given by

The scale factors for the basis set extension terms ( and
) are denoted by primes, the scale factor for the second-, third-,

and fourth-order perturbation terms at the 6-31G(d) level is denoted by
and the scale factor for the QCI correction beyond MP4 at the

6-31G(d) level is denoted by Optimization of all six parameters
in Eq. (4.2) gives a mean absolute deviation of 0.99 kcal/mol, which is
slightly better than standard G3 theory with the HLC correction (mean
absolute deviation of 1.01 kcal/mol). The optimized values for the pa-
rameters in the six-parameter fit are all of reasonable magnitude and
range from 0.95 to 1.38. The largest scale factor occurs for the basis
set extensions at the third order of perturbation theory. Only one scale
factor is less than unity – that for the basis set extensions at the fourth-
order perturbation theory (0.95). Thus, it is possible to obtain a very
accurate version of G3 theory with scaling of energies when the basis set
extensions are included in the fitting procedure.

In a similar manner, the approximate G3(MP3) method can be
modified to use multiplicative scale factors. The resulting G3S(MP3)
energy expression is

Eq. (4.3) contains five parameters and yields a mean absolute deviation
of 1.16 kcal/mol for the energies in the G2/97 test set [compared to the
corresponding G3(MP3) deviation of 1.22 kcal/mol].

Finally, the G3(MP2) method can also be modified to employ mul-
tiplicative scale factors. The resulting G3S(MP2) energy expression is
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However, the nature of the scaling parameters in this case is somewhat
different. In particular, the, addition of scale factors to the and

terms was found to be important to yield good results. The result-
ing six-parameter fit yields a mean absolute deviation of 1.35 kcal/mol
for the G2/97 test set, only slightly larger than the 1.30 kcal/mol for
G3(MP2).

A summary of the mean absolute deviations of the G3S, G3S(MP3),
and G3S(MP2) theories is given in Table 3.2 for the entire G3/99 test
set. As mentioned earlier, the scale factors in the methods were derived
from fits to the smaller G2/97 test set. For all three methods, the mean
absolute deviations increase slightly for the G3/99 test set compared to
its G2/97 counterpart. Upon going from the G2/97 to the G3/99 test
set, the mean absolute deviation increases from 0.99 to 1.08 kcal/mol,
from 1.15 to 1.21 kcal/mol, and from 1.36 kcal/mol to 1.38 kcal/mol, for
the G3S, G3S(MP3), and G3S(MP2) theories, respectively.
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The increase in the mean absolute deviation for all three methods
is primarily due to large errors in the calculated enthalpies of formation
of some of the non-hydrogen species in the expanded G3/99 test set.
This is similar to the results for the G3 methods based on the higher-
level correction per electron pair. The G3S mean absolute deviation
of 3.37 kcal/mol for the 13 non-hydrogen species in the G3-3 subset is
more than twice that of 1.60 kcal/mol for the 34 non-hydrogens in the
G2/97 set. Similar increases in the mean absolute deviations occur for
the G3S(MP3) and G3S(MP2) theories.

The mean absolute deviation of G3S for the G3-3 subset of larger
molecules is 1.43 kcal/mol compared to 1.30 kcal/mol for G3. The larger
increase for G3S method suggests that the scaling approach based on six
parameters may not work as well on molecules outside the parameteri-
zation test set as does an approach based on the four-parameter higher-
level correction. For example, the deviation of G3S standard enthalpy
of formation of a molecule with unusual bonding, amounts to 10
kcal/mol. If nine instead of six scaling parameters are used in G3S, the
mean absolute deviation is 1.29 kcal/mol for the new subset, about the
same as G3 theory. This suggests that a larger number of parameters
may be needed in the scaling approach to make it as accurate as its
HLC-based counterpart, although additional assessments are needed to
confirm this suspicion.

5. G3X THEORY

A new family of G3 methods, referred to as G3X (G3 eXtended)
has been developed recently [30] to improve the accuracy of the results
for some of the larger molecules included in the G3/99 test set. In the
assessment of G3 theory [21] on the G3/99 test set, the mean absolute
deviation from experiment (1.07 kcal/mol) was slightly larger than the
corresponding value of 1.01 kcal/mol found originally for the smaller
G2/97 test set. Significantly larger deviations were, however, found for
the larger non-hydrogen systems containing second-row atoms (Fig. 3.2).

The larger non-hydrogen systems have deviations (3.24 kcal/mol)
almost twice as large as those included in the smaller G2/97 test set (1.68
kcal/mol). In particular, hypervalent molecules such as and

have deviations ranging from 5 to 7 kcal/mol. Part of the source of
errors in the G3 results for the non-hydrogen species was traced to the
MP2/6-31G(d) geometries used in the single-point energy calculations.
Use of experimental geometries instead of the MP2/6-31G(d) ones in a
small subset of non-hydrogen molecules reduced the deviations in those
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species, but they still remained as large as 3 - 4 kcal/mol. The remainder
of the error was attributed to basis set deficiencies.

 Three modifications have been included in the G3X method to al-
leviate these deficiencies:

1.

2.

B3LYP/6-31G(2df,p) geometries are used in place of the MP2(fu)/
6-31G(d) geometries. These new geometries have significantly
smaller deviations from experiment than their original counter-
parts. For example, the deviation from experiment in the bond
lengths for a subset of seven representative molecules (

and ) decreased from 0.027 Å [MP2(fu)/6-
31G(d)] to 0.011 Å [B3LYP/6-31G(2df,p)].

B3LYP/6-31G(2df,p) zero-point energies (scaled by 0.9854) are
used in place of the HF/6-31G(d) zero-point energies (scaled by
0.8929). The former scale factor is derived from fitting the set of
zero-point energies compiled by Scott and Radom [57]. The small
correction suggests that the B3LYP/6-31G(2df,p) level of theory is



The G3 Theory and Its Variants 83

3.

accurate for zero-point energies as well as geometries. This choice
differs in two ways from that of the original G3 procedure. First
of all, in G3 theory the zero-point energies and geometries are
calculated at two different levels of theory, namely HF/6-31G(d)
and MP2(fu)/6-31G(d). Secondly, the HF/6-31G(d) scale factor
was based on fitting of experimental vibrational frequencies rather
than zero-point energies. Thus, the new procedure for calculat-
ing zero-point energies in G3X theory is more consistent than that
employed in G3 theory.

The G3Large basis set for second-row atoms is augmented at the
Hartree-Fock level with g valence polarization functions [31]. Sig-
nificant improvement in the calculated atomization energies were
found for some representative molecules. For example, the addi-
tion of a single set of g functions to the second-row atoms (Si - Cl)
increases the binding in and by 3.6, 5.1, and 5.5
kcal/mol, respectively, at the Hartree-Fock level. The increase is
much smaller for similar molecules containing chlorine. Addition
of more polarization functions (2g,2gh) on the second-row atoms
results in substantially smaller changes in the atomization energies
[31]. Thus, in G3X theory, a single set of g polarization functions
(7 pure functions) is added to the second-row G3Large basis set at
the HF level. The g exponents for Al - Cl are taken from Dunning’s
correlation consistent cc-pVQZ basis set [58] (Al: 0.357, Si: 0.461,
P: 0.597, S: 0.683, Cl: 0.827, and Ar: 1.007). No g functions are
used for Na or Mg. This new basis set is referred to as G3XLarge.
It should be noted that similar basis set deficiencies occur also
at correlated levels. Correcting such deficiencies at the correlated
level is more difficult due to their slow convergence, though the
HLC parameters offer partial remedy.

The total G3X energy incorporating these three features is given
by the equation

Eq. (5.1) is the same as for G3 theory except for the addition of the
Hartree-Fock term. This term extends the HF/G3Large energy, which
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is part of the MP2(fu)/G3Large energy, to the G3XLarge basis set. As
in G3 theory, all correlation calculations (except for MP2/G3Large) are
done with a frozen core.

As discussed earlier, the single-point energies in Eq. (5.1) are cal-
culated at B3LYP/6-31G(2df,p) geometries, and the zero-point energies
and thermal corrections are obtained from scaled frequencies computed
at the same level of theory. The higher-level correction (HLC) param-
eters were obtained by fitting to the full G3/99 test set. Fitting of the
HLC parameters to the smaller G2/97 test set gives nearly the same
values for the four parameters, indicating that there is little sensitivity
to the increase in the data set size. The G3X method takes about 10
- 15 % more time than G3 due to the B3LYP/6-3lG(2df,p) frequency
calculation.

G3X theory gives significantly better agreement with experiment for
the G3/99 test set of 376 energies. Overall, the mean absolute deviation
from experiment decreases from 1.07 kcal/mol (G3) to 0.95 kcal/mol
(G3X). The mean absolute deviation for the 222 enthalpies of forma-
tion decreases from 1.05 kcal/mol (G3) to 0.88 kcal/mol (G3X). The
improvement is largely due to the non-hydrogen systems for which the
mean absolute deviation decreases from 2.11 to 1.49 kcal/mol. The in-
creased accuracy of G3X is due to both the use of a new geometry and
the larger Hartree-Fock basis set. The latter is especially important for
hypervalent molecules.
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Unlike in the case of G3 theory, there is very little degradation in
G3X theory for larger molecules. The overall mean absolute deviation
from experiment is nearly the same for the larger G3/99 test set (0.95
kcal/mol) as it is for its smaller G2/97 counterpart (0.96 kcal/mol).
Similarly, the mean absolute deviation from experiment for enthalpies is
nearly the same for the larger G3/99 test set (0.88 kcal/mol) as it is for
the smaller G2/97 test set (0.86 kcal/mol). It is also important to note
that this result is not dependent on the data set used to obtain the HLC
parameters since both sets give essentially the same values.

Some examples of the changes observed upon going from G3 to
G3X theory for selected non-hydrogen systems are shown in Table 3.3.
Significant improvements are seen in most cases, though errors in the
range of 2 or 3 kcal/mol remain in some molecules. The reliability of the
G3X method is illustrated by the fact that only one molecule has
an error of more than 4 kcal/mol (note that the experimental enthalpy
of formation of has been recently called into question).

The three new features of G3X theory can also be easily included in
the G3(MP3) and G3(MP2) methods. The resulting theories are referred
to as G3X(MP3) and G3X(MP2), respectively. The G3X(MP3) energy
is given by

Eqs. (5.2) and (5.3) are the same as for G3(MP3) and G3(MP2)
theories, except for the addition of the Hartree-Fock (HF) term. As in
the case of G3X, this term extends the HF energy to the G3XLarge basis
set. Again, the single-point energies in Eqs. (5.2) and (5.3) are calculated
at the B3LYP/6-31G(2df,p) geometries and the zero-point energies are
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computed from scaled B3LYP/6-31G(2df,p) frequencies. The higher-
level correction (HLC) parameters were obtained by fitting to the G3/99
test set.

Summaries of G3X(MP3) and G3X(MP2) mean absolute devia-
tions from experiment for the G3/99 test set of 376 energies are given
in Table 3.4. The overall mean absolute deviations for G3X(MP3) and
G3X(MP2) theories are 1.13 and 1.19 kcal/mol, respectively. These are
improvements over G3(MP3) and G3(MP2), which have mean absolute
deviations of 1.27 and 1.31 kcal/mol, respectively, for the same set of
energies. For enthalpies of formation, the mean absolute deviations de-
crease from 1.29 to 1.07 kcal/mol [G3X(MP3)] and from 1.22 to 1.05
kcal/mol [G3X(MP2)]. Much of the improvement in enthalpies is due
to non-hydrogen molecules, although other types of species also improve
slightly or stay the same. The G3X(MP3) and G3X(MP2) methods save
considerable computational time and have a reasonable accuracy. The
ratio of the computational costs for G3X, G3X(MP3), and G3X(MP2)
theories is approximately 5:2:1 for a molecule such as benzene.

The three new features of G3X theory can also be included in the
G3S method. The resulting theory is referred to as G3SX and the energy
is given by
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Eq. (5.4) is identical to that of the corresponding G3S method, except
for the use of the G3XLarge basis set in the Hartree-Fock term instead
of the G3Large basis. Also, the single-point energies are calculated at
the B3LYP/6-31G(2df,p) geometries and the zero-point energies are ob-
tained from scaled B3LYP/6-31G(2df,p) frequencies. The scaling pa-
rameters were obtained by fitting to the G3/99 test set. G3SX has six
parameters, one for the Hartree-Fock energy extension and five for the
correlation terms. Note that ideally the parameters should be close to
one; however, the scale factor is 0.66, which may cause problems
in some cases (see below). In a similar manner, the methods based
on reduced perturbation orders, namely G3SX(MP3) and G3SX(MP2),
are derived by adding the three new features to the G3S(MP3) and
G3S(MP2) methods, respectively.

A summary of G3SX mean absolute deviations from experiment
for the G3/99 test set of 376 energies is given in Table 3.5. Overall,
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the mean absolute deviation for G3SX method is 0.95 kcal/mol. This
is a substantial improvement over G3S theory, which has a mean abso-
lute deviation of 1.08 for the same set of energies. The mean absolute
deviation for enthalpies of formation decreases substantially from 1.12
kcal/mol to 0.88 kcal/mol. The improvement is due to the non-hydrogen
species (2.09 to 1.60 kcal/mol) as well as substituted hydrocarbons (0.92
to 0.72 kcal/mol), hydrocarbons (0.79 to 0.64 kcal/mol), and radicals
(0.86 to 0.67 kcal/mol). However, consideration of the specific devia-
tions for non-hydrogen molecules indicates that G3SX theory does not
do as well for them as G3X theory does. Eight of the 222 enthalpies of
formation differ by more than 3 kcal/mol (
pyrazine, and ). The scaling approach is especially poor
for which has an error of 8.8 kcal/mol. This is probably due to the
small scaling factor for the MP4 term. Otherwise, the overall accuracy
of G3SX theory, as assessed on the G3/99 test set, is very similar in
terms of the mean absolute deviations to that attained by G3X theory,
suggesting that both types of parameterizations work equally well.

The G3SX method based on the third-order perturbation theory,
G3SX(MP3), is especially noteworthy in that it has a mean absolute
deviation of 1.04 kcal/mol for the 376 energies in the G3/99 test set and
0.90 kcal/mol for the 222 enthalpies of formation. In this respect, it
is as accurate as G3 theory and much less expensive. All of the G3SX
methods have the advantage of being suitable for studies of potential
energy surfaces.

6. DENSITY FUNCTIONAL THEORY

Density functional methods provide a cost-effective way of treat-
ing the electron correlation effects in larger molecules and are being
increasingly used for a variety of problems. New functionals are being
developed by many groups and the accuracy of the functionals is also
improving steadily. Interestingly, some of the popular functionals such
as B3LYP have been parameterized based on their performance for the
original G2 test set of molecules. It is clearly of interest to compare the
performance of the density functional methods with those of G3 theory
and its approximate versions for the same test set of molecules.

Three density functional theories (DFT), namely LDA, BLYP, and
B3LYP, are included in this section. The simplest is the local spin den-
sity functional LDA (in the SVWN implementation), which uses the
Slater exchange functional [59] and the Vosko, Wilk and Nusair [60] cor-
relation functional. The BLYP functional uses the Becke 1988 exchange
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functional [61], together with the correlation term of Lee, Yang and Parr
[62]. The B3LYP functional uses parameters fitted to the data in the
original G2 test set and is given by a linear combination of Hartree-Fock
exchange, 1988 Becke exchange, and various correlation parts [59, 60].
Functionals such as B3LYP that contain a portion of exact exchange are
generally referred to as hybrid density functionals. The 6-311+G(3df,2p)
basis set [47] is used in all of the density functional calculations reported
here.

The three DFT methods under assessment have a wide range of
mean absolute deviations (4.27 to 85.27 kcal/mol) for the energies in
the G3/99 test set. Table 3.6 compares the performance of the DFT
methods with the different variations of G3 theory for the subset of the
222 heats of formation.

The ordering of the reliability of the methods is similar to the re-
sults for the G2/97 test set seen previously. As expected from its known
tendency for substantial overbinding, the local density method (LDA)
performs poorest with a mean absolute deviation of 134 kcal/mol. The
BLYP functional has a mean absolute deviation of 9.3 kcal/mol, while
the B3LYP functional performs the best with a mean absolute deviation
of 4.8 kcal/mol. In our previous study on the G2/97 test set that in-
cluded seven functionals, the B3LYP function also had the lowest mean
absolute deviation.

There is a significant increase in deviations of the data obtained
with DFT methods for the heats of formation in the new G3-3 subset.
The B3LYP and BLYP mean absolute deviations for the G3-3 subset are
about two times larger than that in the G2/97 test set (8.21 kcal/mol
vs. 3.08 kcal/mol and 13.32 kcal/mol vs. 7.25 kcal/mol, respectively).
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The mean absolute deviations of LDA method are much larger (216.5
kcal/mol vs. 91.9 kcal/mol). The increase in the deviations is largest
for the hydrocarbons and their substituted derivatives. For B3LYP, the
mean absolute deviations increase from 2.92 kcal/mol (G2/97) to 9.64
kcal/mol (G3-3 subset) for the hydrocarbons, and from 2.22 kcal/mol
(G2/97) to 7.15 kcal/mol (G3-3 subset) for substituted hydrocarbons.
The B3LYP mean absolute deviation for the non-hydrogen species in-
creases from 5.15 kcal/mol to 10.99 kcal/mol. An example of the increase
in error with molecular size is evident from comparison of results for
propane and n-octane. The B3LYP enthalpy deviates from experiment
by -1.46 kcal/mol for propane and -14.04 kcal/mol for n-octane. The
G3 deviations for these cases are only 0.33 kcal/mol and 0.88 kcal/mol,
respectively. The error per bond in G3 theory is about 0.035 for both
propane and n-octane, whereas for B3LYP it is 0.146 and 0.51 kcal/mol,
respectively.



The G3 Theory and Its Variants 91

The reason for the larger deviations in the new G3-3 subset of en-
ergies is that the DFT errors tend to accumulate in the larger molecules
[26]. This is evident in Fig. 3.3 that shows a plot of the mean absolute
deviation for enthalpies of formation vs. the average number of electron
pairs in the species for the three subsets of the G3/99 test set. This is
an approximate way to gauge the dependence of the errors on the size of
the molecule. The G2-1 subset includes only small molecules (one and
two non-hydrogen atoms except for and ), while G2-2 includes
larger molecules (up to six non-hydrogen atoms), and the new G3-3
subset includes molecules with up to ten non-hydrogen atoms. The plot
indicates that the mean absolute deviation increases with the number of
pairs of electrons in the subspecies, thus confirming the accumulation of
error that occurs in the B3LYP method due to the size of the molecule.
Note that this accumulation of error does not occur for ionization ener-
gies and electron affinities since only one (or no) electron pair is being
broken.

Since application of a higher-level correction for electron pairs works
well in the G2 and G3 methods to reduce deficiencies per electron pair,
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it is of interest to apply it to improve the DFT methods. We have
derived higher-level corrections for the B3LYP and BLYP functionals in
a manner exactly analogous to those used for the G2 and G3 theories.
They were obtained by optimization of the parameters for the G2/97
test set and then applied to the whole G3/99 test set. In Fig. 3.4, the
results of applying the G2-like HLC (2 parameters) and G3-like HLC
(4 parameters) to B3LYP for the G3/99 test set are shown. Addition
of the G2-like HLC improves the mean absolute deviation from 4.27
to 3.87 kcal/mol, while addition of the G3-like HLC reduces the mean
absolute deviation to 3.31 kcal/mol. While the latter is a significant
improvement, it is much smaller than the improvement for G3 theory
shown in Fig. 3.4 (from 9.86 kcal/mol to 1.07 kcal/mol). This suggests
that the deficiencies in B3LYP are not systematic and cannot be removed
by a simple molecule-independent HLC. Similar results are found for the
BLYP method.

A comparison of the performance of G3 theory with DFT methods
for larger molecules has been performed for the case of n-alkanes [65].
Table 3.7 shows a comparison of the deviations from experiment in the
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calculated heats of formation for G3 and B3LYP methods. Values in
parentheses denote estimated results for larger n-alkanes based on the
corresponding energies of the smaller molecules in the series. The G3,
G3(MP3), and G3(MP2) enthalpies of formation of the n-alkanes deviate
from experiment by less than 2 kcal/mol. There is evidence of a small
accumulation of error (about 0.04 kcal/mol per bond) that increases the
overall deviation upon lengthening of the carbon chain. The B3LYP
method, however, does very poorly in the calculation of enthalpies of
formation for the larger n-alkanes. While the B3LYP enthalpy of forma-
tion for propane deviates from experiment by only -1.46 kcal/mol, the
deviation for n-hexadecane is -30.3 kcal/mol. This suggests that B3LYP
has a significant problem with accumulation of errors in large molecules.

The accumulation of errors in the B3LYP results can be illustrated
by the error per bond shown in Fig. 3.5. The error per bond (or electron
pair) for the to alkanes increases from 0.15 kcal/mol in
propane to 0.62 kcal/mol in n-hexadecane, approaching a limit at the
longer n-alkanes. From extrapolation to longer n-alkanes, this limit is
estimated at about 0.67 kcal/mol. A similar value is obtained by in-
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specting the group energy differences. In contrast, as shown in Fig.
3.5, the error per bond remains constant at about 0.04 kcal/mol for G3
theory. Isodesmic or homodesmotic schemes may be necessary for im-
proving the accuracy of B3LYP results for such large molecules [66, 67].

7. CONCLUDING REMARKS

G3 theory is a general predictive procedure for thermochemical cal-
culations of molecules containing first- and second-row atoms. It has
been recently extended to molecules containing third-row non-transition
elements. While being computationally more efficient, it constitutes a
significant improvement in accuracy over G2 theory. Overall, G3 theory
has a mean absolute deviation of 1.07 kcal/mol for the G3/99 test set
compared to 1.01 kcal/mol for the G2/97 test set. G3 theory does about
as well for the larger hydrocarbons and substituted hydrocarbons in the
expanded test set as it does for those in the G2/97 test. However, it
does poorly for some of the new and larger non-hydrogen systems in the
G3/99 test set such as and which have errors of 6 - 7 kcal/mol.
Part of the source of errors in the G3 results for the non-hydrogen species
is traced to the MP2(fu)/6-31G* geometries used in G3 theory. The use
of experimental geometries reduces the deviations in those molecules,
but they still remain around 3 - 4 kcal/mol. The G3 variants that are
based on reduced perturbation orders, G3(MP2) and G3(MP3), perform
in a similar manner.

. G3 theory based on multiplicative scaling of the energy terms (G3S)
instead of the additive higher-level correction has a mean absolute devi-
ation of 1.08 for the G3/99 test set, an increase from 0.99 for the G2/97
test set. As in the case of G3 theory, the increase is largely due to the
new non-hydrogen species in the test set. However, systems such as the
highly strained molecule perform poorly with the scaled methods.

. G3X theory corrects for most of the shortcomings of G3 theory for
larger molecules. It includes better geometries as well as g polariza-
tion functions on second-row atoms to correct for the deficiencies of G3
theory for hypervalent molecules. G3X theory gives significantly bet-
ter agreement with experiment for the G3/99 test set of 376 energies.
Overall, the mean absolute deviation from experiment decreases from
1.07 kcal/mol (G3) to 0.95 kcal/mol (G3X). The largest improvement
occurs for non-hydrogens for which the mean absolute deviation from
experiment decreases from 2.11 to 1.49 kcal/mol. G3X has a mean ab-
solute deviation of 0.88 kcal/mol for the 222 enthalpies of formation in
the G3/99 test set. Unlike G3 theory, G3X does not decrease in accu-
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racy for the larger molecules added to the G2/97 test set to form the
G3/99 test set. The related G3SX methods have the advantage of being
suitable for studies of potential energy surfaces.

The density functional methods assessed in this study (B3LYP,
BLYP, and LDA) all perform much worse for the enthalpies of formation
of the larger molecules in the G3/99 set. This is due to a cumulative
effect in the errors for the larger molecules in this test set. The errors are
found to be approximately proportional to the number of pairs of elec-
trons in the molecules but the methods are not improved significantly
when a higher-level correction such as that used in G2 or G3 theory
is added the DFT methods. Further correction schemes may be neces-
sary to improve the performance of density functional methods for large
molecules.
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Chapter 4

Complete Basis Set Models for Chemical Reactivity:
from the Helium Atom to Enzyme Kinetics

George A. Petersson
Hall-Atwater Laboratories of Chemistry, Wesleyan University, Middletown, Connecticut
06459-0180, U.S.A.

1. INTRODUCTION

The qualitative idea of chemical reactivity is quantitatively ex-
pressed in the rate and extent of chemical reactions. These rate and
equilibrium constants present a formidable challenge to theoretical pre-
dictions [1, 2]. The principal difficulty lies in the extreme sensitivity of
the specific rate constant and the equilibrium constant
to small errors in the calculated barrier height and enthalpy change

An error of only 1.4 kcal/mol in these energy changes leads
to an error of an order of magnitude in or at room
temperature. Thus, one needs methods for calculating molecular energy
changes with errors less than ca. 0.5 kcal/mol. This is a very demand-
ing standard, requiring convergence of both the one-particle expansion
(basis set) and the n-particle expansion (correlation energy) [2]. In the
absence of near-degeneracies, the coupled cluster method of Bartlett
[3] with Raghavachari’s perturbation treatment of triple excitations [4],
CCSD(T), is a sufficiently accurate treatment of the n-particle problem
[5]. The one-particle expansion is not so easily disposed of.

The slow convergence of the correlation energy with the one-
electron basis set expansion has provided the motivation for several
attempts to extrapolate to the complete basis set limit [6-13]. Such
extrapolations require a well defined sequence of basis sets and a model
for the convergence of the resulting sequence of approximations to the

99

J. Cioslowski (ed.), Quantum-Mechanical Prediction of Thermochemical Data, 99–130.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.



100 Chapter 4

correlation energy. The various extrapolation schemes that have been
proposed differ in both the method used to obtain a well defined sequence
of one-electron basis sets and in the extrapolation model. The complete
basis set (CBS) extrapolations described in this chapter employ the
asymptotic convergence of pair natural orbital (PNO) expansions [8-10,
14].

Early work on atoms [15, 16] employed increasing sets of s, p, d,
... etc. basis functions, explicitly seeking convergence to the complete
basis set limit. The power of such methods was greatly enhanced by
the classic papers of Schwartz establishing the asymptotic convergence
of the second-order Møller-Plessett (MP2) pair correlation energies [17]
with the angular momentum expansions [6, 7],

where the exponents -3 and -5 apply to opposite spin and equal spin
or pairs, respectively. Extrapolations to the complete basis set

limit using the asymptotic formulas of Schwartz were employed first by
Bunge and later by Jankowski, Malinowski, and Polasik to establish a
database of CBS-MP2 limits for closed-shell atoms [18, 19].

Several methods have been developed for establishing the MP2 limit
for small molecules. We shall compare three of the most important meth-
ods, and a recently proposed combination of two of them that achieves
a new level of efficiency in obtaining chemically accurate absolute MP2
energy limits. We conclude with a case study of the extension of these

catalyzed conversion of 17-dione to the        isomer.

2. PAIR NATURAL ORBITAL EXTRAPOLATIONS

Twenty years ago, we extended asymptotic extrapolations to poly-
atomic molecules by transformation of the Schwartz formulae to a
symmetry-independent form based on the total number N of pair natural
orbitals (PNOs) [8-10, 14],

approaches to enzyme kinetics, namely the isomerase-
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where the exponents -1 and -5/3 now apply to opposite spin and equal
spin or pairs, respectively. The exclusion parameter can be
determined as the solution of a quadratic equation [20]. Extrapolation
of infinite-order (e.g. CCSD) pair energies:

requires attenuation by an interference factor obtained from
the first-order wavefunction [20].

The algorithm employed for these PNO extrapolations selects the
value of N giving the largest (i.e. most negative) value for the CBS pair
energy with the constraint of Convergence to the exact CBS
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pair energy is ensured by systematically increasing as the basis set
is expanded (Fig. 4.1). For example, we generally set equal to 5
for spd basis sets and equal to 10 for spdf basis sets. These nonlinear
extrapolations are size-consistent only if the canonical SCF orbitals are
localized prior to extrapolation of each of the individual pair energies to
the CBS limit. We assume that N is large enough for the asymptotic form
to be applicable and that the low-lying natural orbitals are accurately
described with the basis set employed. Early implementations of these
extrapolations served as polyatomic benchmarks for their time [21], but
improvements in hardware and software now make more demanding
standards possible.

3. CURRENT CBS MODELS

The order-by-order contributions to chemical energies, and thus the
number of significant figures required, generally decrease with increasing
order of perturbation theory. The general approach for our CBS-n
models [20-25] is therefore to first determine the geometry and the
zero-point energy (ZPE) at a low level of theory, and then perform
a series of high-level single-point electronic energy calculations at this
geometry, using large basis sets for the SCF calculation, medium basis
sets for the MP2 calculation, and small basis sets for the higher-order
calculations through order n. The components of each model have been
selected to be balanced so that no single component dominates either the
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computer time or the error. The CBS-n models use the aforedescribed
asymptotic extrapolation to reduce the error from truncation of the basis
sets employed in calculation of the correlation energy. The compound
model single-point energy is evaluated at a geometry determined at a
lower level of theory (e.g. CBS-4M//UHF/3-21G) [24], which is again
selected to achieve an accuracy consistent with the single-point energy
(Table 4.1). Thus our fastest model, CBS-4M, employs HF/3-21G(*)
geometries and frequencies, our intermediate model, CBS-QB3, uses
B3LYP/6-311G(2d,d,p) geometries and frequencies, and our most accu-
rate current model, CBS-QCI/APNO, incorporates atomic pair natural
orbital (APNO) basis sets and employs QCISD/6-311G** geometries
and frequencies [26]. These methods require small empirical corrections
to achieve the desired accuracy for chemical energy differences (atom-
ization energies, ionization potentials, and electron affinities) [27]. This
sequence of models, namely CBS-4M, CBS-QB3, and CBS-QCI/APNO,
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(Table 4.2), provides a convenient hierarchy, each model reducing both
the errors and the maximum size of the molecule accessible by about a
factor of two. A user-friendly implementation of these models is readily
available within the Gaussian 98™ suite of programs [25].

4. TRANSITION STATES

The development of analytical gradient and Hessian methods [28-
36] has made possible the rigorous characterization of transition states
within a given level of correlation energy and basis set. The potential
energy surface (PES) for a typical bimolecular chemical reaction includes
valleys (leading to the reactants and products) connected at the transi-
tion state (TS), which is a first-order saddle point (i.e. a stationary point
with exactly one negative force constant). The reaction path or intrinsic
reaction coordinate (IRC) is defined [37, 38] as the path beginning in
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the direction of negative curvature away from the TS and following the
gradient of the PES to the reactants and products.

UHF calculations give notoriously poor results for transition states.
For example, the UHF/3-21G energy profile for the transfer of a hydro-
gen atom from to is endothermic rather than exothermic and
consequently places the transition state too close to the products (Fig.
4.2). One might erroneously conclude that such calculations provide no
useful information about the reaction path. Fortunately, this is not the
case. Although the variation of the energy along the reaction path is very
poorly described by the UHF/3-21G method, the variation of the energy
perpendicular to the reaction path is reproduced quite faithfully, just as
in stable molecules. Thus, the UHF/3-21G reaction path approximates
its MP2/6-31G* counterpart very closely (Fig. 4.3). However, the energy
variation along this path, and hence the position of the UHF/3-21G
transition state, is incorrect. Nevertheless, the UHF/3-21G reaction
path passes through (or near) the MP2/6-31G* transition state. Hence,
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if we calculate the MP2/6-31G* energy along the UHF/3-21G reaction
path, we obtain an energy profile that differs only marginally from its
MP2/6-31G* counterpart along the MP2/6-31G* reaction path (Fig.
4.4). This is really quite remarkable for the reaction, given
the very poor UHF/3-21G//UHF/3-21G energy profile (Fig. 4.2).

If we move in a direction perpendicular to the reaction path, we find
a potential energy curve (or surface) corresponding to a stable reactant
or product molecule if we are far from the TS. Even around the TS, the
variation of the PES perpendicular to the IRC is very similar to the PES
for a stable molecule. Transition states differ from stable molecules in
that they possess one negative force constant which defines the reaction
coordinate. Calculated energies along the coordinates with positive force
constants behave very much like their counterparts in stable molecules.
In stark contrast, the energy changes along the reaction coordinate are
much more difficult to predict. It is the variation of the energy along
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this coordinate that is very sensitive to (and thus requires the accurate
inclusion of) the correlation energy.

On the basis of the above observations, we have developed [39,
40] the IRCMax{[Method(1)]:[Method(2)]} transition state method, in
which we select the maximum of the high-level Method(1) (MP2/6-
31G* in Figs. 4.2 - 4.4) along the low-level IRC obtained from Geom
[Method(2)] (UHF/3-21G in our example) calculations. The IRCMax
transition state extension of the CBS-n models takes advantage of
the enormous improvement (from one to two orders of magnitude)
in computational speed [41] that is achieved by using the low-level
Geom[Method(2)] (e.g. UHF/3-21G in the case of CBS-4 or CBS-
q) IRC calculations. We then perform several single point higher-
level Energy[Method(1)] (as described in Table 4.2) calculations along
the Geom[Method(2)] reaction path to locate the Energy[Method(1)]
transition state, i.e. the maximum of Energy[Method(1)] along the
Geom[Method(2)] IRC. Calculations at three points bracketing the
transition state are sufficient to permit a parabolic fit to determine the
transition state and the activation energy.

Since we determine the maximum of Energy[Method(1)] along a
path from reactants to products, the IRCMax method gives a rigorous
upper bound to the high-level Method(1) transition state energy. In
addition, when applied to the CBS-n models, the IRCMax method
reduces to the normal treatment of bimolecular reactants and products,
Energy[Method(1)]//Geom[Method(2)]. Thus the IRCMax method can
be viewed as an extension of these composite models to transition states.

Changes in ZPEs along the reaction path can either increase (by
0.6 kcal/mol for ) or decrease (by 0.4 kcal/mol for

) the barrier height, depending on the stiffness of the bending force
constant. Accurate rate constants can only be obtained if we include
the ZPE in our determination of the IRCMax transition state geometry
and energy. Our TS algorithm is thus an adaptation of Truhlar’s zero-
curvature variational transition state theory (ZC-VTST) [42, 43] to our
CBS-n models through the use of the IRCMax technique [2, 40].

We selected five hydrogen abstraction reactions for the initial test
of our methodology (Fig. 4.5). The barrier heights for these reactions
range from 1.3 kcal/mol to 20.6 kcal/mol We
included temperatures from 250 K to 2500 K. The rate constants range

curves and open symbols for and represent
the least-squares fits of smooth curves to large experimental data sets

from  to All absolute rate constants
yielded by our IRCMax{CBS-QCI/APNO:QCISD/6-311G(d,p)} model
are within the uncertainty of the experiments [44] (Fig. 4.5). The dashed
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in an attempt to reduce the noise level [44]. The close agreement with
theory suggests that this attempt was successful.

Having verified the accuracy of the composite IRCMax{CBS-QCI/
APNO:QCISD/6-311G(d,p)} method through comparison with experi-
ment, we then employed these calculations as benchmarks to determine
the accuracy of the less demanding CBS-4M and CBS-QB3 models. We
employed six reactions [40],

and



Complete Basis Set Models 109

in addition to those displayed in Fig. 4.5. The enthalpies of reaction
were compared with experiment [40], while the TS geometries and

the barrier heights were compared with the IRCMax{CBS-QCI/APNO:
QCISD/6-311G(d,p)} values (Table 4.3). The barrier heights calculated
with the CBS-4 and CBS-Q models are comparable in accuracy to the
enthalpies of reaction obtained with these methods if we use the IRCMax
extension for the transition states [2, 40].

5. EXPLICIT FUNCTIONS OF THE INTERELECTRON
DISTANCE

The singularity in the interelectron Coulomb potential creates
a cusp in the exact solution of the Schrödinger equation,

This is the reason for the expansions in one-electron basis sets being
so slowly convergent [8]. An ingenious method for explicitly including
this electron coalescence cusp through the resolution of the identity
has been developed by Kutzelnigg and Klopper [45]. The details are
given in several recent reviews [46, 47], and a recent comparison with
one-electron basis set methods is particularly recommended [48]. The
cusp is explicitly built into these wavefunctions, but large one-electron
basis sets are still required both to accurately describe the remainder of
the wavefunction and to converge the resolution of the identity. Thus,
Klopper et al. employ [13s8p6d5f/7s5p4d] one-electron basis sets to
determine both the MP2 and CCSD(T) limits [48].



110 Chapter 4

The development of these methods has yielded a database
of benchmark results for small polyatomic molecules. These calculations
are listed as MP2-R12 and CCSD(T)-R12 in our tables. We have selected
the version called MP2-R12/A as a benchmark reference for our study
of the convergence to the MP2 limit. This is the version that Klopper et
al. found to agree best with our interference effect. The close agreement
with extrapolations of one-electron basis set expansions justifies this
choice.

6. THE cc-pVnZ BASIS SETS

The Dunning sequences of correlation-consistent basis sets [12, 49]
provide a well defined sequence of convergent approximations through
the systematic construction of basis sets rather than the projection of
pair natural orbitals after completion of the MP2 calculation. Atomic
pair natural orbitals (APNOs) form shells, each member of which makes
a similar contribution to the correlation energy [8]. Linear combinations
of these APNOs produce the corresponding molecular pair natural
orbitals [21], making the APNOs a sensible choice for calculations
of molecular correlation energies. Adding each new shell of APNOs
forms a new member of a consistent sequence of basis sets for electron
correlation. Dunning has provided just such a systematic sequence of
”correlation-consistent” basis sets ranging from the simple [3s2p1d/2s1p]
cc-pVDZ valence double-zeta plus polarization basis sets to the very
large [7s6p5d4f3g2h1i/6s5p4d3f2g1h] cc-pV6Z basis sets [12, 49]. Each
successive member of the sequence is fully optimized for the neutral
atom, and includes one more function of each angular momentum type
present in the previous member plus one higher angular momentum
function.

The RMS error in the MP2 second-order energy (relative to the
MP2-R12 limit determined by Klopper et al. [48]) obtained with the
Dunning cc-pVnZ basis sets for a test set of 12 closed-shell
molecules [50] is displayed in Fig. 4.6. This RMS error is reduced by
about a factor of two with each increment in the size of the basis set,
but even with the largest cc-pV6Z basis sets the RMS error is still an
unacceptable This clearly demonstrates the slow convergence
of the correlation energy with the basis set size, but ignores the reason
for which Dunning developed these systematic sequences of basis sets,
i.e. to facilitate well defined extrapolations to the complete basis set
limit[12].
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A variety of extrapolation algorithms have been applied to the
sequences generated by the correlation-consistent cc-pVnZ basis sets [12,
51-55]. Dunning and his colleagues had initially suggested fitting their
calculations to an exponentially decaying function [12, 51, 52],

However, as definitive values for (CBS) became available from the
MP2-R12 calculations of Klopper [48], it became clear that Eq. (6.1)
seriously underestimates the magnitude of the basis set truncation
error. Wilson and Dunning therefore examined [53] a wide variety
of extrapolations (24 variations) based on generalizations of Eq. (1.1).
They obtained RMS deviations from Klopper’s results of less than
using several different extrapolation schemes. We arrived at comparable
results (Table 4.4) using just two points, and so
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that our single term extrapolation is linear [50],

and thus rigorously size-consistent. In addition, Eq. (6.2) provides a
basis for easily obtaining analytical derivatives of the extrapolated MP2
CBS energies.

7. NEW DEVELOPMENTS

The Dunning cc-pVnZ basis sets can be used with our PNO
extrapolations to form a potent new combination. We shall consider the
SCF energy first, then the MP2 correlation energy, and finally higher-
order correlation energy through CCSD(T).
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7.1. The SCF Limit

One might expect a three-point extrapolation based on Eq. (6.1)
to apply to the SCF energy, since the exponential convergence of the
SCF energy with the number of Gaussian primitives is well documented
[54]. Unfortunately, although the number of contracted basis functions
increases in a completely smooth and systematic fashion, the number
of primitive Gaussian functions does not increase in a uniform pattern
for the cc-pVnZ basis sets (Fig. 4.7). The DZ and TZ basis sets include
(9s, 4p) and (10s, 5p) sets of Gaussian primitives, respectively. The QZ
basis set then increments the s primitives by 2 but continues the pattern
of single increments to the p primitives, yielding (12s, 6p). The 5Z and
6Z basis sets increment both the s and the p by 2, providing (14s, 8p)
and (16s, 10p) sets of primitives. Thus, Eq. (6.1) applies to the (QZ, 5Z,
6Z) sequence of basis sets (for first-row atoms, the second-row pattern
is different), but not to the (DZ, TZ, QZ) or the (TZ, QZ, 5Z) sequence.
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A linear extrapolation circumvents this problem. If we assume that
the exponent a in Eq. (6.1) is universal, we need only two consecutive
points to extrapolate,

which would make extrapolations based on the relatively inexpensive
DZ and TZ calculations possible. Empirically, we find that setting a

the raw second-order energies, but were inferior to the
extrapolations listed in Table 4.4. The residual underestimation of

equal to in Eq. (7.1) and using (i.e. employing the cc-pVDZ
and cc-pVTZ SCF energies to extrapolate to the SCF limit) reduces the
error in the cc-pVTZ SCF energies by more than an order of magnitude
(Table 4.5). Thus, SCF energies with absolute errors of less than 0.5
kcal/mol are available from relatively inexpensive calculations.

7.2. The CBS Limit for the MP2 Correlation Energy

We have recently employed the Dunning correlation-consistent basis
sets for our pair natural orbital CBS extrapolation algorithm, Eqs. (2.1)
and (2.2) [50]. The results produced a substantial improvement over
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the magnitude of the second-order energy component after pair natural
orbital extrapolations has two possible origins. Either the number of
PNOs employed for the extrapolation was too small for the asymptotic
formulae in Eqs. (2.1) and (2.2) to be applicable, or the correlation-
consistent basis sets did not describe these PNOs to a sufficient accuracy.
The former was less likely since the relative performance of the PNO
extrapolations did not improve with increasing In either case, we
expected (and actually found) a correlation of this residual error with

as indicated in Fig. 4.8 for the example of the formaldehyde
molecule. One extrapolation was good, but two were better. The
agreement in Fig. 4.8 between the two types of extrapolation and the
MP2-R12 limit is striking.



Table 4.6. The improvement is dramatic for the extrapola-
tion of the cc-pVDZ and cc-pVTZ PNO extrapolated results, giving an
absolute accuracy of better than 1 kcal/mol with the largest calculation
again using just a [4s3p2df/3s2pd] basis set. These calculations are quite
routine for molecules as large as naphthalene! Application to several

species required one to two days each (depending on the specific
example) on an SGI Origin 2000 with 8 193 MHz R10000 processors
running Gaussian 98 [50].

The PNO extrapolations in Fig. 4.8 and Table 4.6 require localiza-
tion of the occupied SCF orbitals to ensure size-consistency. In order to
preserve this size-consistency for the CBS PNO extrapolations, we have

Note that the nonlinear N-parameter extrapolations using
least-squares fits to more than N cc-pVnZ energies are not size-consistent
[53, 55].

Without any extrapolation, energies computed with even the very
large [7s6p5d4f3g2h1i/6s5p4d3f2g1h] cc-pV6Z basis sets are still 5.3
kcal/mol from the MP2-R12 limit for our test set of 12 small molecules.

restricted these extrapolations to a linear form, Eq. (6.2).
The new double extrapolation employs this linear extrapolation of pairs
of CBS2/cc-pVnZ calculations and thus is rigorously size-consistent.
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The numerical results of this double extrapolation are presented in
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In contrast, a linear size-consistent extrapolation of just
the MP2/cc-pVTZ and MP2/cc-pVQZ energies is accurate to

(Table 4.4). If we try to further reduce the basis sets to cc-
pVDZ and cc-pVTZ, the error in the extrapolation increases to

However, the new double extrapolation provides the complete
basis set MP2 limit with an absolute accuracy of without
recourse to basis sets larger than cc-pVTZ [4s3p2dlf/3s2pld] (Table 4.6).

7.3.  The Higher-Order Correlation Energy

The higher-order contributions to the correlation energy [such as
CCSD(T)-MP2] are more than an order of magnitude smaller than their
second-order counterparts. However, the basis set convergence to the
CCSD(T)-R12 limit does not follow the simple linear behavior found
for the second-order correlation energy. This is a consequence of the
interference effect described in Eq. (2.2). The full CI or CCSD(T) basis
set truncation error is attenuated by the interference factor (Fig. 4.9).
The CBS correction to the higher-order components of the correlation
energy is thus the difference between the left-hand sides of Eqs. (2.2) and
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(2.1). This CBS extrapolation reduces the errors in the cc-pVQZ and cc-
pV5Z higher-order correlation energy by an order of magnitude (Table
4.7), but seriously over-corrects the cc-pVDZ and cc-pVTZ higher-order
energies [50]. A simple scaling to reduce the CBS correction to the cc-
pVDZ and cc-pVTZ energies reduces the RMS errors below 1 kcal/mol
for both (Table 4.7). This single adjustable CBS higher-order parameter
might be compared to the use of a single adjustable parameter in the
W1 theory [55].

7.4. Total Energies

Having established that size-consistent extrapolations of energies
obtained with the cc-pVDZ and cc-pVTZ basis sets are capable of
producing sub-kcal/mol absolute accuracy for SCF energies (Table 4.5),
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MP2 correlation energies (Table 4.6), and the higher-order contributions
to the correlation energy (Table 4.7), we can now combine these com-
ponents to obtain total electronic energies. There are many plausible
combinations of basis sets and extrapolation procedures that must ul-
timately be explored. Efficient methods should use smaller basis sets
for the CCSD(T) component than for the SCF and MP2 ones. The use
of intermediate basis sets for the MP4(SDQ) component should also be
explored, since we found this effective for the CBS-QB3 model (Table
4.2).

As a first try, we have elected to follow our treatment of the SCF
and second-order correlation energies described above, and employ Eq.
(6.2) to provide a linear extrapolation of the cc-pVDZ and cc-pVTZ
total CBS-CCSD(T) energies obtained with Eq. (2.2), including the
interference correction. These total energies reproduce the CCSD(T)
limits estimated by Martin [55] via an extrapolation of
the CCSD(T)/cc-pVDZ, TZ, QZ, 5Z, and 6Z basis sets to within 0.96
kcal/mol RMS error. The agreement with Martin’s energies for a small
set of chemical reactions is even better (Table 4.8). The use of the cc-
pVnZ basis sets for double extrapolations is indeed
promising.
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8. ENZYME KINETICS AND MECHANISM

Application of CBS extrapolations to the isomerase-
catalyzed conversion of to the isomer (Fig.
4.10) provides a test case for extensions to enzyme kinetics. This
task requires integration of CBS extrapolations into multilayer ONIOM
calculations [56, 57] of the steroid and the active site combined with a
polarizable continuum model (PCM) treatment of bulk dielectric effects
[58-60]. The goal is to reliably predict absolute rates of enzyme-catalyzed
reactions within an order of magnitude, in order to verify or disprove a
proposed mechanism.

Deuterium substitution for the migrating proton demonstrates
that the enzyme transfers it by a stereospecific intramolecular path
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to the position without solvent exchange [61-63]. The structure of
the active site (Fig. 4.11) provides a ready explanation for the observed
stereochemistry. The (aspartate residue 38) is well situated to
escort the migrating proton, while (aspartic residue 99) and the

(tyrosine residue 14) stabilize the dienolate intermediate through
hydrogen bonding [64].

The accepted mechanism is rather complicated [64]. First the
proton of the substrate transfers to then the (now protonated)
carboxyl group of rotates about the bond to position
the migrating proton over carbon 6 of the substrate, and finally the
migrating proton transfers to the position on the

product. The seven stationary points on the potential energy
surface are therefore the reactant, two intermediates, the product, and
three transition states (Fig. 4.12). Before we can calculate energies and
reaction rates, we must first locate these structures on the potential
energy surface, and then determine by a frequency calculation whether
each stationary point is a local minimum, a first-order saddle point,
or a structure that is not relevant to the reaction mechanism. These
preliminary structure calculations verify whether the proposed mecha-
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nism is qualitatively consistent with the potential energy surface for our
quantum-mechanical model problem.

The key functional groups for the active site are widely separated
in the amino acid sequence (14, 38, and 99), as is frequently the
case. We therefore elected to omit the intervening residues from our
calculations entirely, and instead rely on optimization of the transition
state structures to position these functional groups.

The three levels of theory selected for the preliminary ONIOM
calculation [57] were: CBS-4M, HF/3-21G(*), and MM/UFF [65, 66].
Note that HF/3-21G(*) is the level of theory employed in the geometry
and frequency calculations for the CBS-4M//HF/3-21G(*) compound
model. Thus, the first task was the optimization of the structures
for the seven stationary points on the potential energy surface using
a two-level ONIOM calculation employing HF/3-21G(*) for both the
high-level and the medium-level regions from the planned CBS ONIOM
single-point calculations. The partition of the enzyme-substrate complex
into high-, medium-, and low-level regions is indicated in Fig. 4.13.
The first transition state structure was easily found with the QST2
procedure of Schlegel and co-workers [67]. However, the others proved
more problematic.

The optimum structure for the first transition state placed the
residue (i.e. our formic acid) reasonably close to the position in

which it is found in the enzyme-inhibitor crystal structure [64]. However,
this functional group is not at all rigid in our model problem. It
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shifts toward the 3-carbonyl in the fully optimized reactant and shifts
in the opposite direction as we proceed to the product. We therefore
constrained the CH hydrogen of this formic acid to be equidistant from
carbons 4 and 6 of the androstene at the optimum distance for the first
transition state. This emulated a rigid enzyme active site equally adept
at catalyzing both proton transfer reactions. No other constraints were
used in the optimization of the seven stationary points of the potential
energy surface (Fig. 4.12). The and residues, and the
substrate were completely free to move and adjust their geometries as
the reaction proceeded.

The optimized structures for the reactant, the first transition state,
and the first enolate intermediate (Fig. 4.14) illustrate the progress along
the reaction path and the nature of the intermediate (Table 4.9). The
bond between the hydrogen and carbon 4 lengthens from 1.122 Å to
1.903 Å as the bond order decreases from 0.853 to 0.065. Meanwhile,
the distance from this hydrogen to the oxygen of decreases from
1.794 Å to 0.991 Å and the bond order increases from 0.370 to 0.935
as the O–H bond of the intermediate is formed. The O–H bond length
of the carboxylic acid from increases from 0.999 Å to 1.082 Å as
the bond order decreases from 0.847 to 0.636. At the same time the
distance from this hydrogen to the C-3 carbonyl oxygen decreases from
1.617 Å to 1.364 Å as this bond order increases from 0.292 to 0.489. The
intermediate would seem to be best described as a partially protonated
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enolate ion. The negative charge that was localized on the carboxylate of
in the reactant has been delocalized over the dienolate and

in the intermediate.
We performed CBS-4M single point energy calculations at these

stationary points. The barrier height for the first proton transfer and
the relative energy of the first dienolate are quite sensitive to the
level of theory and basis set employed (Table 4.10 and Fig. 4.14).
The initial (i.e. formate ion) carries the full negative charge in
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our model and is thus more sensitive to the Hartree-Fock basis set.
Hence, the calculated Hartree-Fock barrier increases as the basis set
is improved. The correlation energy favors the transition state, as is
generally the case. The effects on the enolate are intermediate. The
modest changes from the CBS extrapolations suggest convergence to
within 1 or 2 kcal/mol. Note that the total barrier height is the sum of
the Hartree-Fock and correlation energy contributions, e.g. the MP2/6-
31+G(d’,p’) barrier height is the sum of 14.05 kcal/mol from the Hartree-
Fock component and -10.23 kcal/mol from the second-order component,
giving a total of 3.82 kcal/mol for the MP2 barrier.

Refinements of these calculations would include a CBS-QB3 study
of the dienolate and portion of our model. Since we have only
used a two-layer ONIOM calculation for the geometry optimizations, a
refined geometry optimization with a B3LYP/6-311G(d,p) treatment of
this region would be straightforward. We should also use the IRCMax
procedure [40] to determine the CBS transition state geometry and
energy. Such refinements should be a part of any quantitative CBS
study of enzyme kinetics. Nevertheless, the preliminary results listed
in Table 4.10 clearly demonstrate the importance of achieving basis set
convergence for both the SCF and the correlation energies. Even when
the electronic structure is as simple as in these proton transfer reactions
that maintain a closed-shell structure throughout the reaction path, low
levels of theory can be quite misleading.

Calculations of bulk dielectric effects using the polarizable contin-
uum model of Tomasi and co-workers [58-60] gave an increase in the
barrier height to 12.5 kcal/mol with the recommended [68] dielectric
constant equal to 18. This is the direction of change one would
expect. The dielectric medium stabilizes the charge of the residue
(which is completely exposed on the surface of our model) more than
the charge of the enolate (which is enclosed in the interior of our model).
The calculated barrier height is now in a good agreement with the
experimental rate constant, [64, 69], which implies
a Gibbs free energy of activation
However, such a large effect raises questions about the accuracy of these
PCM corrections. Within the context of high-accuracy methods such as
the CBS models, it would be prudent to interpret bulk dielectric effects
larger than 1 or 2 kcal/mol as an indication that our model does not
include sufficient detail in the region of the residue. We conclude
that a definitive computational study of the isomerase
should include the entire residue and probably some explicit water
molecules in this region as well.
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To close on a more positive note, we observe that the computed
geometry of the enzyme-dienolate complex in the vicinity of the 3-
carbonyl is insensitive to the assumed dielectric constant and is in close
agreement with X-ray structures of enzyme-inhibitor complexes (see
Table 4.11 and Fig. 4.15). It is really quite remarkable that 4 billion
years of random walk by mother nature and a few hours of optimization
with a quantum chemistry program such as Gaussian™ (starting with
the correct functional groups) lead to the same structure for the active
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site of this enzyme. It is hard to imagine a more striking vindication
of our assumption that enzymes function by reducing the energies of
transition states. The mysterious ways of nature are truly beautiful
[70].

9. SUMMARY

Pair natural orbital extrapolations to the complete basis set limit
provide the foundation for a sequence of cost-effective CBS models. The
current models: CBS-QCI/APNO, CBS-QB3, and CBS-4M, are applica-
ble to species with 5, 10, and 20 non-hydrogen atoms, and are reliable to
ca. 0.5, 1.0, and 2.0 kcal/mol respectively. These methods are applicable
to transition states for chemical reactions with the IRCMax procedure.
The ZC-VTST CBS-QCI/APNO model is capable of quantitative predic-
tions of absolute rate constants. A double extrapolation promises a new
generation of significantly more accurate and reliable models that will
no longer require empirical corrections. The isomerase-
catalyzed conversion of to provided a case
study for the extension of such high-accuracy methods to enzyme kinet-
ics. The impact that high-accuracy computational quantum chemistry
is currently having on combustion chemistry will soon be extended to
biology. This is an exciting time for computational science.
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1. INTRODUCTION

Ionization energies and electron affinities are among the most often
sought thermochemical data. The importance of electron binding ener-
gies is reflected by their presence in a variety of thermodynamic argu-
ments, including thermochemical cycles of acidity and basicity, complex-
ation energies, and oxidation-reduction reactions. Many spectroscopic
methods founded on the photoelectric effect, mass spectrometry, electron
scattering, and other techniques measure ionization energies and electron
affinities. The precision of these experiments in measuring transition en-
ergies often contrasts with the paucity of information they generate on
accompanying molecular and ionic structures. Computational means of
estimating ionization energies and electron affinities therefore provide
indispensable corroborative information on structures, especially as the
scope of thermochemical and spectroscopic measurements expands.

Given the ubiquitous character of molecular orbital concepts in
contemporary discourse on electronic structure, ionization energies and
electron affinities provide valuable parameters for one-electron models
of chemical bonding and spectra. Electron binding energies may be as-
signed to delocalized molecular orbitals and thereby provide measures of
chemical reactivity. Notions of hardness and softness, electronegativity,
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and other qualitative concepts often appeal to molecular orbitals and
their corresponding energies.

While many experimental techniques and the majority of computa-
tional strategies focus on the generation of increasingly precise ionization
energies and electron affinities, fewer methods emphasize the connection
between these electron binding energies and the changes in electronic
structure they represent. Because one-electron concepts have a history
of generating powerful ordering principles for the formulation of hypothe-
ses about electronic structure, it is desirable to use theoretical techniques
that show how to connect electron binding energies to orbitals.

2. ELECTRON PROPAGATOR CONCEPTS

Electron propagator theory [1-11] provides a conceptual and com-
putational foundation for this path of inquiry. First, this theory, which
is also known as one-electron Green’s function theory or as the equation-
of-motion method, provides a rigorous framework for calculations of ion-
ization energies and electron affinities. Second, to each electron binding
energy electron propagator theory associates a function of the coor-
dinates of a single electron Both of these objects are results of
solving a pseudoeigenvalue problem,

A special case of this approach is represented by the Hartree-Fock
equations, where the effective operator contains the usual kinetic

nuclear attraction (Û), Coulomb and exchange components
such that

Since the and operators depend on the occupied orbitals, the pseu-
doeigenvalue problem must be solved iteratively until consistency is
achieved between orbitals that determine and and those that emerge
as eigenfunctions of which in this approximation is known as the
Fock operator

Electron propagator formalism allows for generalizations that in-
clude the effects of correlation. Here the pseudoeigenvalue problem has
the following structure

Now the Fock operator is supplemented by the self-energy operator
This operator depends on an energy parameter E and is nonlocal. All
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orbital relaxation effects between initial and final states may be included
in the self-energy operator, as well as all differences in the correlation
energies of these states. As in the Hartree-Fock case, matrix elements of
the Fock operator still depend on the charge-bond order density matrix
D (also known as the one-electron density matrix) according to

but D may pertain to a correlated reference state. The energy depen-
dence of the correlated effective operator where

indicates that the correlated pseudoeigenvalue problem must also con-
tain iterations with respect to E. A search for electron binding energies
requires that a guess energy be inserted into leading to new
eigenvalues which may be reinserted into in a cyclic manner
until consistency is obtained between the operator and its eigenvalues.
Approximations to may be systematically extended until, in prin-
ciple, exact ionization energies and electron affinities emerge as
values.

Eigenfunctions that accompany these eigenvalues have a clear phys-
ical meaning that corresponds to electron attachment or detachment.
These functions are known as Dyson orbitals, Feynman-Dyson ampli-
tudes, or generalized overlap amplitudes. For ionization energies, they
are given by

where is the space-spin coordinate of electron i. The Dyson orbital
corresponding to the energy difference between the N-electron state
and the p-th electron-detached state may be used to calculate
cross sections for various types of photoionization and electron scat-
tering processes. For example, photoionization intensities may be
determined via

where is a description of the ejected photoelectron. For electron affini-
ties, the formula for the Dyson orbital reads
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In the Hartree-Fock, frozen-orbital case, the reference state con-
sists of a single determinant of spinorbitals and the final states differ
by the addition or subtraction of an electron in a canonical spinorbital.
The overlaps between states of unequal numbers of electrons represented
by the Dyson orbital formulae reduce to occupied or virtual orbitals
which are solutions of the canonical Hartree-Fock equations. Dyson
orbitals may also be obtained from configuration interaction wavefunc-
tions. Electron propagator calculations, however, avoid the evaluation
of complicated many-electron wavefunctions (and their energies) in fa-
vor of direct evaluation of electron binding energies and their associated
Dyson orbitals. Note that for correlated calculations, the Dyson orbitals
are not necessarily normalized. The pole strength P is given by

In the Hartree-Fock, frozen-orbital case, acquires its maximum
value, unity. Final states with large correlation effects are characterized
by low pole strengths. Transition intensities, such as those in Eq. (2.7),
are proportional to

3. AN ECONOMICAL APPROXIMATION: P3

Canonical Hartree-Fock orbital energies are a convenient and pow-
erful foundation for estimating the smallest vertical electron binding
energies of closed-shell molecules. This approximation, which is based
on Koopmans’s theorem, is the most often used method for assigning the
lowest peaks in photoelectron spectra. However, there are many classes
of important molecules for which the Koopmans approximation fails to
predict the correct order of final states. Average errors made by this
frozen-orbital, uncorrelated method are between 1 and 2 eV for valence
ionization energies. More confident assignments require that these errors
be reduced.

Perturbative expressions for the self-energy operator can achieve
this goal for large, closed-shell molecules. In this review, we will con-
centrate on an approximation developed for this purpose, the partial
third-order, or P3, approximation. P3 calculations have been carried
out for a variety of molecules. A tabulation of these calculations is given
in Table 5.1.

The original derivation of the P3 method was accompanied by test
calculations on challenging, but small, closed-shell molecules with vari-
ous basis sets [12]. The average absolute error was approximately 0.2 eV
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for vertical ionization energies below 20 eV. Since 1996, the P3 method
has been applied chiefly to the ionization energies of organic molecules.
For nitrogen-containing heterocycles, P3 corrections to Koopmans re-
sults are essential in making assignments of photoelectron spectra. Cor-
relation corrections generally are much larger for hole states with large
contributions from nonbonding, nitrogen-centered functions than for de-
localized levels. Therefore, P3 results often produce a different or-
dering of the cationic states. The accuracy of P3 predictions generally
suffices to make reliable assignments. Several reviews on electron propa-
gator theory have discussed relationships between P3 and other methods
[9-11].

The P3 method is generally implemented in the diagonal self-energy
approximation. Here, off-diagonal elements of the self-energy matrix
in the canonical, Hartree-Fock orbital basis are set to zero. In the P3
approximation, correlation contributions to the Fock matrix (also known
as the energy-independent, or constant, part of the self-energy matrix)
are ignored. The pseudoeigenvalue problem therefore reduces to separate
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equations for each canonical, Hartree-Fock orbital:

or

Only energy iterations are needed in the diagonal self-energy approxima-
tion. For example, may be evaluated at to obtain a new
guess for E. The latter value is reinserted into and the process
continues until consecutive energy guesses agree to within of
each other. Alternatively, one may use Newton’s method for solving the
roots of a complicated function such that

This procedure requires analytical expressions for and its deriva-
tive with respect to E; it usually converges in three iterations. Neglect
of off-diagonal elements of the self-energy matrix also implies that the
corresponding Dyson orbital is given by

where the pole strength is determined by

In the latter expression, the derivative is evaluated at the converged
energy. Diagonal self-energy approximations therefore subject a frozen
Hartree-Fock orbital to an energy-dependent correlation poten-
tial

Diagonal matrix elements of the P3 self-energy approximation may
be expressed in terms of canonical Hartree-Fock orbital energies and
electron repulsion integrals in this basis. For ionization energies, where
the index p pertains to an occupied spinorbital in the Hartree-Fock de-
terminant,
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where

and

Indices i, j, k, ... (a, b, c, ...) refer to occupied (virtual) spinorbitals.
Each of the terms in Eq. (3.6) may be interpreted in terms of simple
concepts. The first term pertains to pair correlation energies in the
reference state that are missing in the final state due to removal of an
electron from the occupied spinorbital p. Summing these terms over all
occupied p and setting for each term would recover the second-
order, perturbative correction to the Hartree-Fock total energy of the
reference state. The remaining terms account for orbital relaxation and
electron correlation in the final state. When either the i or j indices are
equal to p, orbital relaxation is described by excitations of electrons into
the now vacant, but previously (that is, in the reference determinant)
occupied spinorbital p. To describe electron correlation in the final state
in terms of spinorbitals optimized for the reference state, it is crucial
to include the second and third terms of Eq. (3.7) as well the terms
involving the U intermediates of Eq. (3.8). Note that these terms are
second-order in electron interaction and therefore generate third-order
terms in the self-energy matrix.

For each ionization energy of index p, evaluation of W elements
requires arithmetic operations with an scaling factor, where O
is the number of occupied spinorbitals and V is the number of virtual
spinorbitals. For each value of E, the U elements must be reevaluated,
but the scaling factor here is only Since V is generally much larger
than O, the latter steps proceed relatively quickly. A complete set of
transformed two-electron integrals is not needed, for the set where all
four indices are virtual does not appear in these equations. The largest
set of integrals, with one occupied and three virtual indices, is needed
only in the first summation of Eq. (3.7). Efficient programs may avoid
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the evaluation and storage of these transformed integrals by performing
this summation with semidirect algorithms [30].

For electron affinities, where the index p pertains to a virtual spinor-
bital,

where

and

These formulae are similar to those for the ionization energy case, but
with the roles of occupied and virtual indices being reversed. Interpreta-
tion of the terms proceeds in an analogous manner. The first summation
in Eq. (3.11) now dominates the arithmetic and storage requirements of
the calculation. Its scaling factor is and it requires electron repul-
sion integrals with four virtual indices. Practical calculations generally
require a semidirect algorithm for this step.

4. OTHER DIAGONAL APPROXIMATIONS

All second-order terms are retained in the P3 self-energy formulae
for ionization energies and electron affinities. There are no differences
between the expressions used for ionization energies and electron affini-
ties in the second-order self-energy, which reads
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for all p. Diagonal, second-order calculations generally overestimate the
exact correlation correction to the Hartree-Fock orbital energy. The
absolute values of the ensuing errors are often as large as those of Koop-
mans’s theorem [31].

More satisfactory results are obtained from full third-order calcu-
lations [32, 33]. Diagonal elements of the full third-order, self-energy
matrix are given by

Terms containing the W intermediates no longer contain a factor of
The energy-independent, third-order term, is a Coulomb-

exchange matrix element determined by second-order corrections to the
density matrix, where

Third-order results for closed-shell molecules have average absolute er-
rors of 0.6 - 0.7 eV [31]. Transformed integrals with four virtual indices
and contractions for each value of E are required for the U interme-
diate, which is needed for ionization energy as well as electron affinity
calculations.

Second-order and third-order results often bracket the true correc-
tion to Three schemes that scale the third-order terms in various
ways are known as the Outer Valence Green’s Function (OVGF) [8]. In
OVGF calculations, one of these three recipes is chosen as the recom-
mended one according to rules based on numerical criteria. These crite-
ria involve quantities that are derived from ratios of various constituent
terms of the self-energy matrix elements. Average absolute errors for
closed-shell molecules are somewhat larger than for P3 [31].
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5. NONDIAGONAL APPROXIMATIONS

For many ionization energies and electron affinities, diagonal self-
energy approximations are inappropriate. Methods with nondiagonal
self-energies allow Dyson orbitals to be written as linear combinations of
reference-state orbitals. In most of these approximations, combinations
of canonical, Hartree-Fock orbitals are used for this purpose, i.e.

For normalized Hartree-Fock orbitals, the pole strength reads

Nondiagonal self-energy approximations are usually renormalized in the
sense that they contains terms in all orders of electron interaction. For
example, the 2p-h Tamm-Dancoff approximation (2ph-TDA) is suit-
able for qualitative descriptions of correlation (shake-up) final states in
inner-valence photoelectron spectra [34]. An extension of this method,
known as the third-order algebraic diagrammatic construction [ADC(3)]
includes all third-order terms in the self-energy matrix. While it re-
tains the ability of 2ph-TDA to generate a simple description of correla-
tion states, ADC(3) is competitive with OVGF in describing final states
where the Koopmans picture is qualitatively valid [8]. A nondiagonal,
renormalized extension of the P3 method that retains all second-order,
self-energy terms is known as NR2 [35]. For valence ionization energies
of closed-shell molecules, NR2 is somewhat more accurate than P3, but
it is also applicable to final states with large correlation effects [26, 36].
One pays for the enhanced versatility of these methods with increased
arithmetic and storage requirements. The relatively modest demands
of NR2 calculations make this approximation an attractive target for
algorithmic improvements.

It is also possible to employ highly correlated reference states as an
alternative to methods that employ Hartree-Fock orbitals. Multiconfigu-
rational, spin-tensor, electron propagator theory adopts multiconfigura-
tional, self-consistent-field reference states [37]. Perturbative corrections
to these reference states have been introduced recently [38].

Another approach of this kind uses the approximate Brueckner or-
bitals from a so-called Brueckner doubles, coupled-cluster calculation
[39, 40]. Methods of this kind are distinguished by their versatility and
have been applied to valence ionization energies of closed-shell molecules,
electron detachment energies of highly correlated anions, core ionization
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energies, and photoelectron spectra of molecules with biradical character
[39-43].

6. AN EXAMPLE OF APPLICATION OF P3:
9-METHYLGUANINE

Closed-shell organic molecules are ideal candidates for study with
the P3 method for ionization energies. Because of their central position
in genetic material as constituents of base pairs, purines and pyrimidines
are especially important. The photoelectron spectrum of the purine 9-
methylguanine is calculated here as an example of the capabilities of P3
methodology.

Tables 5.2 and 5.3 display vertical ionization energies of the two
tautomers (keto and enol) with the lowest energies. The keto form is
shown in Fig. 5.1. In the enol form, a proton is transferred from ni-
trogen 1 to the oxygen atom. P3 ionization energies for both isomers
are close to the lowest peak in the photoelectron spectrum (PES) [44].
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Dyson orbitals in Figs. 5.2 and 5.3 are distributed similarly in the two
tautomers.

A more intense peak at 9.6 eV has several constituent ionization
energies corresponding to and holes. Large redistributions of the cor-
responding Dyson orbitals preserve phase relationships and nodal struc-
ture in the case. The structure of the lowest Dyson orbital is
preserved between the two tautomers, except for the suppression of the
nonbonding lobes on nitrogen 1 or on the oxygen, the positions where
the shifting proton may reside. For the feature at 10.3 eV, which has
an intensity comparable to the one at 9.6 eV, combinations of and
holes also pertain. The order of the and the second hole states
changes between the two isomers. There are substantial changes in the
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Dyson orbitals from one isomer to the other. A higher peak at 10.86 eV,
with intensity closer to that of the first one, is assigned to the hole;
the Dyson orbital is approximately conserved after the proton transfer.
Note that Koopmans’s theorem (KT) results predict the wrong order of
states for the enol form. A third hole for both isomers is in reasonable
agreement with the experimental peak at 11.32 eV. Finally, the feature
at 13.3 eV is assigned to the hole.

The quality of results obtained with the P3/6-311G** model is gen-
erally sufficient to assign outer valence photoelectron spectra of typical
organic molecules. Only 1s core orbitals are omitted from the self-energy
summations of Eq. (3.6). Pole strengths between 0.85 and 0.89 for all
states listed here confirm the perturbative arguments on which P3 is
based. This kind of calculation can be executed with the standard ver-
sion of Gaussian 98 [45] by activating certain input keywords [46].

In general, correlation corrections are larger for holes than for
holes. It is not unusual for these differential correlation effects to change
the predicted order of final states. Heterocyclic organic molecules with
nitrogen-centered, nonbonding electrons are not alone in this respect.
Organometallics, transition metal complexes, and clusters of metal ox-
ides and metal halides also require this kind of theoretical interpretation.

7. P3 TEST RESULTS

The P3 approximation to the self-energy was applied to the atoms
Li through Kr and to neutral and ionic molecular species from the G2
set [47]. For the atoms, a set of 22 representative basis sets was tested.
Results for the molecular set were obtained using standard Pople basis
sets as described below.

Calculations of ionization energies and electron affinities were per-
formed with a modified development version of Gaussian 99 [48]. Pople
and Effective Core Potential (ECP) basis sets are provided in this soft-
ware [49]. Dunning and Atomic Natural Orbital (ANO) basis sets were
obtained from the EMSL Gaussian Basis Set Library [50].

7.1. Atomic Ionization Energies

Atomic calculations are an excellent way to investigate the strengths
and weaknesses of a computational procedure’s ability to account for
electron correlation. Because of the small size of the systems, calcula-
tions are sensitive to the theoretical treatment, especially the basis set.
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Fortuitous cancellation of errors is less likely and inherent tendencies of
the method under examination may be revealed.

We have performed calculations on the atoms Li through Kr with
many basis sets using the P3 method. The results are presented in three
groups: alkali and alkaline earth elements, transition metal elements,
and p group elements. Electron configurations of transition metal atoms
are listed in Table 5.4. For the purposes of this discussion, we have
grouped the basis sets into four categories: Pople, Dunning, ECP, and
ANO. Data are reported in Tables 5.5, 5.6, and 5.7 for the basis sets
that give the best results from each of the four groups. No orbitals were
dropped from the summations in the P3 formulae of Eqs. (3.6) and (3.9).

A summary of all calculations is given in Table 5.8. Dunning ba-
sis sets are available for p group elements only. Basis set comparisons
for other atoms therefore omit this category. Pople bases appear first,
followed by the Dunning, ANO, and ECP bases. The mean absolute
deviations (MADs) are listed.

P group elements. Molecules with p group elements already have
been studied with the P3 approximation and they probably will remain
inviting objects of study with this method. Errors obtained for the p
group elements (Table 5.5) are somewhat larger than those found for
organic molecules. Groups VI and VII are especially problematic.

Results for the other open-shell atoms are encouraging. One would
expect the P3 method to be considerably less accurate when an unre-
stricted Hartree-Fock reference state is used. The lowest MAD for B -
Ar obtains with the largest of the Dunning sets examined here, i.e. cc-
pVQZ. The 6-311++G(3df,3pd) and well-tempered basis sets (WTBS)
are roughly equivalent, with MADs of 0.50 eV and 0.57 eV, respectively.



P3 Electron Propagator Approximations 147

ECP basis sets performed as expected for these atomic systems, with
the Los Alamos (LANL2DZ) working best. Its MAD is only
0.82 eV. However, the 31 split-valence ECP of Stevens et al. (CEP-31G)
and the Stuttgart-Dresden ECP (SDD) each generated a similar error
of 0.87 eV.

It is reasonable to expect P3 calculations with open-shell reference
states to be less accurate than their closed-shell counterparts. Unfortu-
nately, there is no obvious correlation between errors and multiplicity.

Errors remain relatively constant for groups III through V, with a
sharp increase at group VI. Removal of electrons from spinorbitals in
unrestricted Hartree-Fock reference states is relatively poorly described.
Absolute errors for the noble gas elements are significantly lower than
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those for groups VI and VII. Multireference character in O and F mili-
tates against the P3 approximation,

Alkali and alkaline earth metals. Results obtained for the group I
and group II atoms are encouraging. As Table 5.6 shows, calculations
for the alkali atoms are slightly more reliable than those for the alkaline
earths. The largest error obtains for the quasidegenerate Be atom. ECP
bases provide a convenient alternative to all-electron treatments.

First-row transition metals. These metals present formidable chal-
lenges for quantum chemistry. With the energies of the d orbitals being
so close to those of the s orbitals for these atoms, the possibility of fi-
nal states with low pole strengths cannot be ignored. In addition, the
middle transition metals are generally difficult to describe with single-
determinant methods and require a more advanced approach for a proper
description.

In Table 5.7 data are omitted for the Sc and Ti atoms, where pole
strengths were well below the acceptable level of 0.80. The remaining
results are encouraging. The Roos and the ECP SDD sets
perform well for Sc through Cr and Ni through Zn. If one ignores the
results for Mn through Co, the average absolute error falls sharply to
0.41 eV for the Roos basis and to 0.44 eV for the ECP SDD
set.

Summary. Despite some noticeable flaws, the performance of the
P3 method for atomic calculations is satisfactory. Results for the chalco-
gens and halogens are somewhat disappointing. In view of the difficulties
in describing these atoms with far more complicated methods, this out-
come is not surprising. Troublesome results for Mn, Fe, and Co are not
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unexpected. It is perhaps more surprising that the P3 method performs
so well for the remainder of the first-row transition metals.

Aside from the results for the individual atoms, some trends in basis
set performance may be observed. Pople basis sets produced results
that were fairly accurate, especially for alkali and alkaline earth metals.
Although the results are much less accurate for the p group elements,
they are certainly within acceptable error for this simple approximation.
The steady decrease in errors observed in the progression from the P3/6-
31G to the P3/6-311++G(3df,3pd) level for nontransition elements also
attests to the sound design of these basis sets.

The Pople basis sets are perhaps the most efficacious for general
applications. Since the integral package in the Gaussian suite of pro-
grams is especially efficient with these basis sets, large systems may be
tackled routinely in this manner. The Roos basis set provides
excellent results for all of the elements studied here, including the tran-
sition metals. As the Roos basis requires a significant increase
in computational cost, this choice is best for smaller systems.

Dunning basis sets have been optimized with atomic configuration
interaction calculations and show steady improvement as the basis set
quality is increased. The cc-pVQZ set is the most accurate in this cate-
gory, but its size probably will preclude its use in the larger calculations
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for which the P3 method is most suited. A steady decline in MAD occurs
with increasing size of Dunning basis sets.

Among the ANO basis sets, the Roos basis set is clearly
preferable. Convergence problems were encountered with Roos
basis sets, especially during the pole search in the propagator calculation.
Preliminary results are encouraging.

The performance of the P3 method used in conjunction with ECPs
is also encouraging. Among the p group metals, the CEP-4G set is the
most accurate (MAD of 0.67 eV), with the SHC potential of Goddard
and Smedley performing best for the alkalis and alkaline earths (MAD
of 0.34 eV). The SDD sets succeed in all three cases and produce errors
that are competitive with all of the other ECPs.

The overall performance of the P3 method for the atomic systems
(see Table 5.8) is encouraging. Transition metals are difficult to describe
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and the average absolute error for these atoms is generally several times
larger than that obtained for the other atoms in the study. However, an
unexpected result is the ability of the ECP basis sets to generate errors
of less than 1.0 eV for most atoms. Although the errors are relatively
large, we anticipate that a combination of ECP and all-electron basis
sets will provide an acceptable description of molecules containing these
atoms.

7.2. Molecular Species

The G2 set. Calculations of ionization energies and electron affini-
ties for molecules and ions from the G2 set [47] were performed with
P3 methods. The diversity of bonding in this set presents a convenient
standard for testing the new methodology introduced here, such as elec-
tron affinity formulae and procedures for electron binding energies of
open-shell systems.

Our implementation computes only vertical ionization energies and
electron affinities, but experimental results for the G2 species are adi-
abatic. To facilitate a direct comparison between the theoretical and
experimental results, it is necessary that either the theoretical results be
corrected to adiabatic values or that the adiabatic values be related to
vertical ones. We have chosen the latter approach and have corrected
the experimental results with computational data.

Electron binding energies were calculated in three ways, each in-
volving four steps. The complete procedure is outlined below.

A. Neutral Geometry:

1.

2.

3.

HF/6-31G(d) geometry optimization for neutral species with
vibrational frequencies to determine zero-point energy.

MP2/6-31G(d) geometry optimization for neutral species.

Electron propagator calculations

a)

b)

Calculation of electron affinity of the neutral species using
the P3 method with 6-311++G(2df,2p) basis set.
Calculation of ionization energy of the neutral species
using the P3 method with 6-311G(2df,2p) basis set.

4. Single point energies

a)

b)

Single-point MP2/6-31G(d) calculation for the anionic
species at the neutral geometry.
Single-point MP2/6-31G(d) calculation for the cationic
species at the neutral geometry.
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B. Anion Geometry:

1.

2.
3.

4.

HF/6-31G(d) geometry optimization for anionic species with
vibrational frequencies to determine the zero-point energy.
MP2/6-31G(d) geometry optimization for anionic species.
Calculation of ionization energy (electron detachment energy)
of the anionic species using P3 method with 6-311++G(2df,2p)
basis set.

Single-point MP2/6-31G(d) calculation for the neutral species
at the anion geometry.

C. Cation Geometry:

1.

2.

3.

4.

HF/6-31G(d) geometry optimization for cationic species with
vibrational frequencies to determine the zero-point energy.
MP2/6-31G(d) geometry optimization for cationic species.

Calculation of electron affinities of the cationic species using
P3 method with 6-311G(2df,2p) basis set.
Single-point MP2/6-31G(d) calculation for the neutral species
at the cation geometry.

In cases where experimental data were missing for ionization energies or
electron affinities, some steps were omitted. The initial geometries were
obtained from the authors of the original G2 study [52].

Transition energies between cations and neutral species were calcu-
lated by two procedures. In the first one, the vertical ionization energy
of the neutral molecule was determined with the P3 method. These
values were compared with experimental adiabatic ionization energies of
the neutral molecules, which were adjusted according to

where is the experimental (adiabatic) ionization energy, is the
zero-point energy (ZPE) of the neutral molecule calculated at the HF/6-
31G(d) level, is the ZPE of the cation, and is the relaxation
energy of the cation between the neutral and cation equilibrium geome-
tries. In other words, each standard of comparison is an experimen-
tal datum adjusted by calculated zero-point and relaxation energies. In
the second procedure, the vertical electron affinity of the cation formed
in the first case was computed with the P3 method. These values were
compared with experimental, adiabatic electron affinities of the cation
(i.e. ), which were adjusted according to
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where is the value to which the P3 result is compared.
Transitions between anions and neutral species were also calculated

with two procedures. In the first, we calculated the vertical P3 electron
affinities of neutral species. The experimental adiabatic electron affini-
ties of the neutral molecules were shifted according to

where is the experimental (adiabatic) electron affinity, is the
ZPE of the neutral molecule, is the ZPE of the anion, and is
the relaxation energy of the anion between the neutral and anion equi-
librium geometries. In the second procedure, the P3 ionization energy
of the anion (that is, the anion’s electron detachment energy) was calcu-
lated at the anion’s geometry. Vertical ionization energies of the anions

were obtained from experimental adiabatic values, where

This sequence of calculations was applied to neutral and ionic molec-
ular species from the G2 test set. Experimental adiabatic electron affini-
ties and ionization energies were taken from Refs. 53 - 74.

Neutral singlets. This class of systems comprises singlet molecules
with transitions to doublet cations or anions. Most applications of the
P3 method will pertain to such systems.

Electron affinities were calculated as described above with the ver-
tical corrections applied to the experimental results. For molecules with
electron affinity data, the overall results are good, with a MAD of just
0.20 eV. The F atom was difficult to describe and this failure is proba-
bly related to the low accuracy of the calculation, where the error
exceeded 1.0 eV.

Similar accuracy obtains when considering the ionization energy
(i.e. the electron detachment energy) of the associated doublet anions.
Here, MAD is 0.33 eV. For anionic ozone, the error is significantly larger.
It is well known that ozone has a great deal of multireference character
in its ground state. Ozone therefore is a poor candidate for the P3
method, which relies on the qualitative validity of the single-reference
description.

Next we consider ionization energies of neutral singlet states and
electron affinities of the associated doublet cations. Here we find that
the overall error is slightly larger (MAD of 0.36 eV) than was the case
for the electron affinities. Electron affinities of the doublet cations are
not treated as well by the P3 method. Here MAD is 0.52 eV.

Neutral doublet states. Electron affinities of neutral doublets where
the corresponding anions are singlets, not triplets, are poorly calculated
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with the P3 method. For these systems, MAD is 1.11 eV. Evaluation of
the vertical electron detachment energies of the singlet anions, however,
is a more effective approach, for MAD is only 0.20 eV.

For the case of doublet neutrals and associated singlet cations, the
ionization energy results are good. Here, the average absolute error is
only 0.26 eV. Electron affinities for the singlet cations are also rather
accurate. MAD is even less, i.e. 0.21 eV. For energy differences between
doublets and triplets, there are not enough systems to establish patterns.
These results are highly variable in quality.

Doublet reference states. Some patterns emerge from the calcula-
tions with doublet reference states. Table 5.9 presents a summary of
all cases involving transitions between singlets and doublets. Ionization
energy calculations perform well when a doublet reference state is used.
However, electron affinity calculations are advisable only when the dou-
blet reference state is cationic. Even here, it is preferable to reverse the
roles of initial and final states by choosing the closed-shell neutral as the
reference state in an ionization energy calculation. The P3 method is
not suitable for attachment of an electron to a neutral doublet reference
state to form a closed-shell anion. It is preferable to choose the anion as
the reference state for a P3 calculation of an electron detachment energy.
Results for triplets are unpredictable at best.
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8. CONCLUSIONS AND PROSPECTUS

P3 calculations with unrestricted Hartree-Fock reference states have
been reported here for the first time. In addition, a P3 procedure for
electron affinities of closed-shell and open-shell systems has been pre-
sented.

Some general trends may be discerned in the P3 results on atoms.
Ionization energies involving high-spin states are described well with
Pople, Dunning, ANO, and ECP basis sets. Average errors for the p
block elements are between 0.25 eV for Dunning’s basis
and 0.82 eV for the LANL set. For the alkali and alkaline earth
metals, the average errors are smaller. Transition metals in the fourth
period require use of ANO or SDD sets; the average errors are 0.7 - 0.8
eV. Despite the complex character of electron correlation in 2p and 3d
elements, reasonable results obtain for this simple electron propagator
approximation based on an unrestricted Hartree-Fock reference state.
For transition metal complexes with high oxidation states and highly
electronegative ligands, one may expect the errors for metal-centered
holes to be smaller. Results of test calculations using SDD ECPs are
especially encouraging for this class of molecules, especially if a closed-
shell reference state may be used. Larger errors may be expected for
late transition metals, low oxidation states, and relatively electroposi-
tive ligands. The P3 method may be used to aid state assignments in
photoelectron spectra of organometallics.

Results on molecules and molecular ions display some instructive
tendencies. Electron detachment energies from closed-shell reference
states (neutral or anionic) are treated well if there is little multiconfig-
urational character in the initial singlet. Average errors for these cases
are about 0.2 - 0.4 eV. The quality of electron attachment energies to
closed-shell species is better, especially if the singlet is cationic. Another
new class of P3 calculations makes use of unrestricted Hartree-Fock ref-
erence states. If the reference state is a doublet, electron detachment
energies are treated well, with average errors of 0.2 - 0.3 eV. Electron
attachment energies to doublets are satisfactory if the reference state
is cationic; caution must be exercised if the doublet reference state is
neutral.

Although P3 procedures perform well for a variety of atomic and
molecular species, caution is necessary when applying this method to
open-shell reference states. Systems with broken symmetry in unre-
stricted Hartree-Fock orbitals should be avoided. Systems with high
multireference character are unlikely to be described well by the P3 or
any other diagonal approximation. In such cases, a renormalized elec-
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tron propagator should be used. In general, P3 will fail when Hartree-
Fock theory does not provide a qualitatively acceptable description of
the reference state.

The pole strength is a useful diagnostic criterion of problematic
cases. Close agreement with experiment in the presence of a pole strength
that is less than 0.80 is likely to be the result of a fortuitous cancellation
of errors.

The P3 methods for ionization energies and electron affinities pro-
vide useful, correlated corrections to canonical Hartree-Fock orbital en-
ergies. Their computational demands are modest, especially for electron
detachment energies. It is often possible to avoid difficult cases by revers-
ing the labels of initial and final states. Fifth-power arithmetic scaling
factors characterize the bottleneck contractions in P3 calculations. Full
integral transformations to the Hartree-Fock basis and storage of the
largest blocks of integrals may be avoided. In general, P3 calculations
may be executed for any molecule where a second-order total energy cal-
culation is feasible. Information on excited final states may be obtained
easily. Interpretation of the results in terms of orbitals is facilitated
by the diagonal self-energy approximation, where each Dyson orbital is
equal to a canonical Hartree-Fock orbital times a scaling factor which is
equal to the square root of the corresponding pole strength.
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1.   INTRODUCTION

In general, radicals are highly reactive species and can therefore
often be difficult to study experimentally [1]. Nevertheless, there is a
number of experimental procedures that can be used to determine radi-
cal thermochemistry, either directly or indirectly (e.g. through thermo-
chemical cycles) [2]. Berkowitz, Ellison and Gutman [3] have reviewed
several of these methods and noted their strengths and limitations. De-
velopments in computer technology mean that ab initio molecular orbital
theory [4] now provides a viable alternative source of quantitative gas-
phase thermochemical information [5]. However, the theoretical treat-
ment of open-shell systems such as radicals presents its own difficulties
[6]. Therefore, the accurate prediction of radical thermochemistry with
theoretical procedures poses an interesting challenge.

In this chapter, we look closely at the performance of several ab
initio techniques in the prediction of radical thermochemistry with the
aim of demonstrating which procedures are best suited in representa-
tive situations. We restrict our attention to several areas in which we
have had a recent active interest, namely, the determination of radical
heats of formation bond dissociation energies (BDEs), radical
stabilization energies (RSEs), and selected radical reaction barriers and
reaction enthalpies. We focus particularly on the results of our recent
studies.
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2. THEORETICAL PROCEDURES

There is a wide variety of ab initio techniques available for the study
of radical thermochemistry, ranging from quite cheap and approximate
methods to much more expensive and accurate approaches. The quality
of results yielded by these procedures depends on the size of the basis
set used and on the degree of electron correlation included. In practice,
it is necessary to strike a balance between the required accuracy and the
computational cost that can be afforded.

Commonly-used basis sets include those of Pople and coworkers [4]
and Dunning and coworkers [7]. The Pople sets range from small basis
sets such as 3-21G, to medium-sized basis sets such as 6-31G(d), to large
basis sets such as 6-311+G(3df,2p) or G3large. There are several series of
Dunning basis sets including cc-pVnZ, aug-cc-pVnZ (containing diffuse
functions), and cc-pCVnZ (containing core-correlation functions). These
basis sets increase in size as n goes from D to T, to Q, to 5, to 6, etc..

There is also a hierarchy of electron correlation procedures. The
Hartree-Fock (HF) approximation neglects correlation of electrons with
antiparallel spins. Increasing levels of accuracy of electron correlation
treatment are achieved by Møller-Plesset perturbation theory truncated
at the second (MP2), third (MP3), or fourth (MP4) order. Further in-
clusion of electron correlation is achieved by methods such as quadratic
configuration interaction with single, double, and (perturbatively cal-
culated) triple excitations [QCISD(T)], and by the analogous coupled
cluster theory [CCSD(T)] [8].

Density functional theory (DFT) [9] is becoming increasingly im-
portant in determining chemical properties. Typical methods involve
the BLYP functional and the hybrid B3LYP procedure. DFT methods
are attractive in that they are often highly cost effective and therefore
offer the possibility of application to quite large systems, provided that
they are suitably reliable.

Apart from the selection of basis set and correlation procedure,
an additional consideration arises in open-shell systems because of the
presence of one or more unpaired electrons. This leads to treatments
that are referred to as spin-restricted (R), spin-unrestricted (U), and
spin-projected (P).

Spin-restricted procedures, signified by an R prefix (e.g. RHF,
RMP), constrain the and orbitals to be the same. As such, the
resulting wavefunctions are eigenfunctions of the spin-squared operator

that correspond to pure spin states (doublets, triplets, etc). The
disadvantage of this approach is that it restricts the flexibility in the
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electronic description and may result in unrealistic spin localization in
radicals.

Spin-unrestricted procedures, designated by the prefix U (e.g. UHF,
UMP), treat the and electrons independently. This allows more
flexibility in accommodating the unpaired electron(s) and, in the case of
the Hartree-Fock wavefunction, often leads to a lower-energy description
of the electronic structure. However, treating the and electrons
separately permits the introduction of spin contamination (i.e. mixing
of higher spin states) since the wavefunction is no longer an eigenfunction
of The degree of spin contamination is reflected in the deviation of
the expectation value from that of a pure spin state (i.e. 0.75 for a
doublet, 2.0 for a triplet, etc).

A further alternative is to remove the higher-spin states from the
unrestricted wavefunction by means of a spin-projection operator. Spin-
projected energies are designated by a P prefix (e.g. PHF, PMP).

It is not clear beforehand which of these alternatives is to be pre-
ferred. At the HF and MP levels of theory, the differences between
them can be substantial. However, at the QCISD(T) and CCSD(T) lev-
els, it has been found that the differences between the restricted and
unrestricted energies are generally small [10, 11].

It has been argued [12] that DFT calculations on open-shell systems
should always be performed with spin-unrestricted methods. However,
it is still of practical interest to compare the performance of procedures
such as UB3LYP and RB3LYP in thermochemical predictions [13].

The ideal calculation would use an infinite basis set and encom-
pass complete incorporation of electron correlation (full configuration
interaction). Since this is not feasible in practice, a number of com-
pound methods have been introduced which attempt to approach this
limit through additivity and/or extrapolation procedures. Such methods
(e.g. G3 [14], CBS-Q [15] and [16]) make it possible to approximate
results with a more complete incorporation of electron correlation and a
larger basis set than might be accessible from direct calculations. Table
6.1 presents the principal features of a selection of these methods.

The Gaussian-n (Gn) methods (e.g. G2 [17], G2(MP2, SVP) [18],
G3 [14], and G3(MP2) [19]) attempt to approximate the results of a
large basis set UQCISD(T) calculation. A defined series of calculations
is performed at the UMP2, UMP4, and UQCISD(T) levels of theory
with specific basis sets. Additivity approximations are then used to
obtain a molecular energy which, when combined with a scaled zero-
point vibrational energy (ZPVE) and molecule-independent empirical
higher-level correction (HLC), gives the Gn total energy at 0 K for the
molecule.
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The main feature of the CBS (complete basis set) methods (e.g.
CBS-Q [15] and CBS-QB3 [20]) is extrapolation to the complete basis
set limit at the UMP2 level. Additional calculations [UMP4 and UQ-
CISD(T) or UCCSD(T)] are performed to estimate higher-order effects.
A scaled ZPVE, together with a size-consistent empirical correction and
a spin-contamination correction, are added to yield the total CBS energy
of the molecule.

Several variations of the Gn and CBS methods have been designed
specifically for radicals, and, are therefore labeled with the suffix RAD.
The Gaussian-n variants include G2-RAD(QCISD) [21], G2(MP2, SVP)-
RAD [21], G3-RAD [22], and G3(MP2)-RAD [23]. These procedures
are characterized by the use of alternative geometries and scaled zero-
point energies, replacement of unrestricted open-shell calculations with
restricted open-shell methods, and calculation at the highest correlation
level with the URCCSD(T) method instead of UQCISD(T) [24]. CBS-
RAD [25] is a variation of the CBS-Q procedure and makes use of a
UB3LYP/6-31G(d) geometry and scaled ZPVE while also replacing the
UQCISD(T) calculation with UCCSD(T). The principal features of these
variants are also included in Table 6.1.
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A third class of compound methods are the extrapolation-based
procedures due to Martin [5], which attempt to approximate infinite-
basis-set URCCSD(T) calculations. In the method [16] calculations
are performed at the URCCSD and URCCSD(T) levels of theory with
basis sets of systematically increasing size. Separate extrapolations are
then performed to determine the SCF, URCCSD valence-correlation,
and triple-excitation components of the total atomization energy at
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the basis-set limit. Also included are contributions from core corre-
lation, scaled ZPVE, scalar relativistic effects, and spin-orbit coupling
(for atoms only).
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3. GEOMETRIES

The accurate determination of thermochemical properties can de-
pend greatly on the quality of the optimized geometry. It is therefore
necessary to assess the performance of various procedures for obtaining
reliable radical geometries. Tables 6.2 and 6.3 present bond lengths for
a selection of radicals [22] optimized at several commonly-used levels of
theory and compared with experiment [26, 27]. Also included are mean
absolute deviations (MADs), mean deviations (MDs), and largest devia-
tions (LDs) from experiment. A positive sign for an MD or LD indicates
an overestimation by a given level of theory.

As can be seen from the mean absolute deviations from experiment,
all levels of theory give good overall performance for bond lengths. The
poorest result for most of the theoretical procedures is observed for the
O–Cl bond length in which is overestimated (by 0.023 - 0.061 Å)
by all the methods listed in Tables 6.2 and 6.3. This appears to be a
consequence of basis set deficiencies, with improved geometries being
obtained at all levels of theory with larger basis sets [28]. The
radical has therefore been excluded from the statistical analysis of the
results.

The URCCSD(T)/cc-pVTZ level of theory performs the best (Table
6.2), with an MAD of 0.006 Å and an LD of only The positive
mean deviation from experiment (+0.004 Å) indicates that this method
slightly overestimates most bond lengths. This has also been previously
noted by Martin [29].

The DFT-based, computationally inexpensive UB3LYP/6-31G(d)
and UB3LYP/cc-pVTZ methods also perform quite well, with MADs
of 0.008 Å and 0.007 Å, respectively (Table 6.3). The LDs (-0.024
and -0.031 Å, respectively) for these methods are larger in magnitude
than that of URCCSD(T). Martin et al. [30] found for a small set of
closed-shell molecules a significant improvement in bond lengths at the
UB3LYP level of theory upon going from the cc-pVDZ to the cc-pVTZ
basis set. However, for the radicals of Table 6.3, there is very little dif-
ference in the performance of the UB3LYP/6-31G(d) and UB3LYP/cc-
pVTZ approaches. Bond lengths are slightly overestimated with the
6-31G(d) basis set (MD of +0.005 Å) and slightly underestimated with
the cc-pVTZ set (MD of -0.003 Å).

The UQCISD/6-31G(d) level of theory performs marginally less
well than its UB3LYP counterpart, with an MAD of 0.012 Å and an LD
of +0.030 Å, while slightly overestimating (MD of +0.012 Å) most bond
lengths.
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As expected, the UMP2(fu) and RMP2 methods (overall MADs of
0.016 Å and 0.015 Å, respectively) give very similar results for species
with minimal spin-contamination. For species displaying significant spin-
contamination ( and ),
the UMP2 approach generally yields significantly shorter bond lengths
than experiment while the RMP2 method often significantly overesti-
mates them, in agreement with previous observations [31]. Large devia-
tions from experiment (> 0.030 Å) are also observed at the UMP2 and
RMP2 levels of theory for and . In these two cases, the spin-
contamination is small and the UMP2 and RMP2 geometries, although
differing significantly from experiment, are quite similar.

As the data in Tables 6.4 and 6.5 indicate, all theoretical levels
generally perform well in predicting bond angles at the radical center.
MADs range from 0.3° to 0.9° while LDs range from -1.5° to +1.3°.

Overall, among the selected methods, the URCCSD(T)/cc-pVTZ
procedure gives the best geometries for the radicals in Tables 6.2 - 6.5.
The UB3LYP/6-31G(d) and UB3LYP/cc-pVTZ levels of theory also per-
form well, and are reasonably economical. The UMP2(fu)/6-31G(d) and
RMP2/6-31G(d) approaches generally give acceptable geometries but
are not reliable for radicals that display significant spin contamination.
This may lead to occasional problems in the calculation of heats of for-
mation for methods that use UMP2 geometries.
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4. HEATS OF FORMATION

The accurate prediction of the heats of formation of molecules has
long been one of the main objectives of ab initio molecular orbital proce-
dures [5, 32]. This is particularly important in radical chemistry, where
it can be difficult to obtain accurate experimental results. A number
of procedures have been used to obtain heats of formation at 0 K
from calculated total energies E [33]. We will illustrate them here using
the ethyl radical as an example.

In the atomization approach, the heat of formation of the radical is
obtained by combining the calculated energy of the atomization reaction,

with the well-established heats of formation of the gaseous atoms to give
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In the formation approach, the heat of formation of the radical is
obtained from the calculated energy of the formation reaction,

as

where the energy of the solid state carbon has been replaced by the
difference
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It has been found, for G2 calculations on organic molecules in par-
ticular, that the atomization method performs somewhat better than
the formation method [33].

In the isodesmic approach, the heat of formation of the radical is
obtained by combining the calculated energy of an appropriate isodesmic
reaction involving the radical, e.g.

with accurate experimental heats of formation of the other species in-
volved in the reaction,
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Because of cancellation of errors in reactions such as (4.5), rea-
sonable results are often obtained, even at quite simple levels of theory.
However, it has been found [21, 34] that larger errors may occur with un-
restricted methods if there is a significant difference between the degrees
of spin contamination for the two radicals in the reaction.
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Tables 6.6 - 6.8 present calculated [22] and experimental [3, 26,
35] heats of formation for a selection of small radicals, determined with
the atomization approach. As these data show, all theoretical levels
give good overall performance (MADs of 2.1 - 4.5 kJ/mol). is the
highest level of theory represented in these tables and indeed performs
very well, with an MAD of 3.2 kJ/mol and an LD of +6.8 kJ/mol. The
G2-RAD(QCISD) method gives the best statistical performance with an
MAD of 2.1 kJ/mol and an LD of +5.6 kJ/mol. However, because of the
modest number of comparisons, such differences are only of marginal sig-
nificance. The G3-RAD approach also performs particularly well with
an MAD of 2.5 kJ/mol and an LD of -5.5 kJ/mol. Overall, the G2-
RAD(QCISD) method tends to slightly overestimate the heats of for-
mation of the selected radicals (MD of +0.8 kJ/mol) while its G3-RAD
counterpart tends to underestimate them (MD of -2.0 kJ/mol). Both of
these modified Gn methods offer improved performance over the stan-
dard G2 and G3 procedures. However, the G3(MP2)-RAD approach
performs less well (MAD of 4.5 kJ/mol) than G3(MP2) (MAD of 3.6
kJ/mol).

The CBS methods all give similar performance, with MADs of 3.2
- 3.6 kJ/mol. The CBS-Q and CBS-RAD variants tend to overestimate
the selected radical heats of formation (MDs of +0.3 and +1.0 kJ/mol,
respectively), while the CBS-QB3 procedure tends to slightly underesti-
mate them (MD of -0.2 kJ/mol).

With the exception of one G2 case, all levels of theory predict
the heats of formation of the selected radicals to within chemical ac-
curacy (i.e. ). The exceptional case is the ethynyl radi-
cal, which shows a deviation from experiment of 15.5 kJ/mol at the
G2 level of theory. At the G2-RAD(QCISD) level this is reduced to
4.5 kJ/mol. The ethynyl radical exhibits significant spin contamination
at the UMP2(fu)/6-31G(d) level and, as noted in the previous section,
this leads to a poor geometry (Table 6.2). This is the major cause of
the difference between the G2 and G2-RAD(QCISD) values. Similar
lowerings of energies (and hence heats of formation) are observed upon
going from G3 and G3(MP2) to G3-RAD and G3(MP2)-RAD, respec-
tively. A similar situation is observed for the radical, for which the
UMP2(fu)/6-31G(d) geometry is markedly inferior to those computed
with the UB3LYP/6-31G(d) and UQCISD/6-31G(d) approaches.

It was also noted in the previous section that the UMP2(fu)/6-
31G(d) level of theory performs badly in predicting the geometry of the

radical cation while the UB3LYP/6-31G(d) procedure performs
quite well. This geometry difference makes a significant contribution to
the difference between the G3 and G3-RAD heats of formation for
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In summary, all of the methods shown in Tables 6.6 - 6.8 give
good overall performance for the prediction of radical heats of forma-
tion (MADs of 2.1 - 4.5 kJ/mol). For species displaying significant spin
contamination, methods based on a UMP2 reference geometry may give
heats of formation for radicals that show larger-than-normal deviations
from experiment. The RAD procedures give improved performance in
such circumstances.

5. BOND DISSOCIATION ENERGIES

Bond dissociation energies (BDEs) provide a measure of both the
reactivity of a compound (with respect to homolytic bond rupture) and
the stability of the corresponding radical. There have been many the-
oretical investigations of BDEs for a wide variety of species [36]. In
particular, the C–H BDE for a substituted methane is given by the en-
thalpy change for the reaction:

Bond dissociation energies for a selection of substituted methanes,
calculated at a range of levels [23], are compared with experimental
values [37] in Tables 6.9 and 6.10. Also listed are mean absolute devi-
ations (MADs) and mean deviations (MDs) from experimental values
[e.g. MAD(Exp.)] and from CBS-RAD [e.g. MD(CBS-RAD)].

The results in Table 6.9 show that the high-level procedure
generally produces close agreement with experiment, particularly for
species with small error bars (< 5 kJ/mol). Several radicals (

and ) show slightly larger deviations (5.2 - 7.3
kJ/mol), but there is still agreement between theory and experiment
to within the given experimental uncertainties. Cyanomethyl and car-
boxymethyl radicals show the largest deviations between theory and
experiment (8.6 and 15.1 kJ/mol, respectively). The mean absolute de-
viation between and experiment is only 2.9 kJ/mol for the species
with error bars of less than 10 kJ/mol. The level of theory is there-
fore considered to be a reliable benchmark level for these systems.

Unfortunately, is a computationally expensive procedure and
therefore not easily accessible for the larger systems listed in Tables 6.9
and 6.10. The CBS-RAD procedure, however, demonstrates close agree-
ment with For example, the mean absolute deviation between the

and CBS-RAD BDEs is 1.6 kJ/mol while the largest absolute de-
viation is only 3.3 kJ/mol. Therefore, the CBS-RAD method represents
a suitable secondary benchmark level for the assessment of the perfor-
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mance of other levels of theory in the prediction of BDEs of substituted
methanes. The largest deviations between CBS-RAD and experiment
occur for (14.9 kJ/mol) and (23.9 kJ/mol).
It has been suggested [23] that experimental re-examination is warranted
in these two instances.

Interestingly, with the exception of all the other levels of the-
ory in Tables 6.9 and 6.10 give BDEs that are smaller than CBS-RAD
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values, with the result that the magnitudes of MD(CBS-RAD) and
MAD(CBS-RAD) are identical in all these cases.

The G3(MP2)-RAD approach most closely approximates its CBS-
RAD counterpart with an MAD of 4.3 kJ/mol. Significantly larger dif-
ferences (MADs of 8.4 - 16.9 kJ/mol) are observed between CBS-RAD
and the RB3LYP, UB3LYP and RMP2 approaches.

Clearly, the and CBS-RAD methods give quite accurate BDEs
for substituted methanes while the G3(MP2)-RAD and RB3LYP meth-
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ods give acceptable performance. The absolute values of bond dissoci-
ation energies obtained from UB3LYP and RMP2 single-point energies
are somewhat less satisfactory.

6. RADICAL STABILIZATION ENERGIES

Understanding the stabilizing or destabilizing influence of differ-
ent substituents on radicals can be particularly important in controlling
chemical processes that involve such radicals. Such effects have been
studied extensively with electronic structure methods [36].

The radical stabilization energy (RSE) of a substituted methyl rad-
ical is generally defined as the difference between the C–H bond
dissociation energy in methane and the C–H BDE in the substituted
methane

This quantity is equivalent to the enthalpy change for the isodesmic
reaction:

Radicals with a positive RSE can therefore be considered stabilized rel-
ative to

It is often assumed that there will be substantial cancellation of
errors associated with the calculation of stabilization energies via reac-
tions such as (6.2). However, this is not always the case. In particular,
it has recently been shown [21, 34] that stabilization energies calculated
for the cyanomethyl and cyanovinyl radicals show large variation with
level of theory. For these situations, methods such as UMP2 perform
very poorly because errors associated with spin contamination in the
reactant and product radicals are very different and do not cancel.

Representative radical stabilization energies for the cyanomethyl
radical [23, 34, 38] are displayed in Table 6.11. It can be seen that the
high-level compound methods all predict RSEs within the narrow range
of 31.9 - 37.9 kJ/mol. These values are reasonably close to but slightly
lower than the value derived from recent experimental data of 41.7 4.8
kJ/mol (suggesting that the experimental value may be slightly over-
estimated). On the other hand, the UMP2/6-311+G(3df,2p) approach
gives the wrong sign for the RSE (-5.7 kJ/mol), i.e. it wrongly predicts a
slight destabilizing effect for the cyano substituent. This problem arises
because of the artificially high energy calculated within the UMP2 ap-
proximation for cyanomethyl radical due to spin contamination. Similar
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shortcomings are observed (but to a lesser extent) at the UMP4 (8.8
kJ/mol) and PMP2 (22.2 kJ/mol) levels of theory. Methods such as
RMP2, UQCISD, UQCISD(T), UCCSD(T) and URCCSD(T) all per-
form reasonably well for the RSE of cyanomethyl radical.

RSEs for a broader selection of substituted methyl radicals, as well
as MADs and MDs from experiment and CBS-RAD values, are pre-
sented in Tables 6.12 and 6.13. We noted in the previous section that
our highest-level procedure, namely gives accurate BDEs, and this
observation carries over to the RSEs calculated at this level. The MAD
from experiment for the method is 3.1 kJ/mol. The RSEs
tend to be slightly lower than those determined from experimental data
[MD(Exp.) of -2.2 kJ/mol].

At the CBS-RAD level of theory, the MAD from experiment is
only 2.4 kJ/mol. Here once again, the CBS-RAD procedure tends to
give slightly lower RSEs than experiment [MD(Exp.) of -1.9 kJ/mol].
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The G3(MP2)-RAD level of theory is found to compare well in accu-
racy with its CBS-RAD counterpart [MAD(CBS-RAD) of 3.0 kJ/mol].
It can be seen from Table 6.12 that the G3(MP2)-RAD procedure sys-
tematically underestimates CBS-RAD stabilization energies [MD(CBS-
RAD) of -2.5 kJ/mol]. This appears to be due to the slightly larger
deviation in the BDE for methane (6.6 kJ/mol) than for its substituted
analogues (ca. 4.1 kJ/mol).

Due to a systematic cancellation of (the quite large) absolute er-
rors in the BDEs, RMP2/6-311+G(2df,p) single-point calculations also
perform quite acceptably in predicting RSEs [MAD(CBS-RAD) of 3.8
kJ/mol]. The slightly greater underestimation of the BDE for methane
(20.0 kJ/mol) than for the substituted methanes (ca. 16.7 kJ/mol) leads
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to systematical underestimation of RSEs [MD(CBS-RAD) of -3.4 kJ/mol].
The RB3LYP/6-311+G(3df,2p) level of theory performs slightly less well
[MAD(CBS-RAD) of 4.5 kJ/mol] than the RMP2 method for stabi-
lization energies, while the UB3LYP/6-311+G(3df,2p) level shows the
largest MAD (6.0 kJ/mol) from CBS-RAD. Interestingly, both RB3LYP
and UB3LYP procedures tend to overestimate the CBS-RAD RSEs
(MD(CBS-RAD) of +4.5 and +6.0 kJ/mol, respectively). This can be
attributed to the fact that both levels underestimate the BDEs for the
substituted methanes (ca. 8.7 and 14.4 kJ/mol) to a greater extent than
for methane (4.2 and 8.4 kJ/mol, respectively).
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7. REACTION BARRIERS

There has been a number of theoretical studies which demonstrate
that the accurate prediction of barriers for radical addition reactions is
not straightforward [39, 40].

As an illustration of the performance of various levels of theory in
determining such barriers, we examine the addition of radicals to alkenes,
beginning with methyl radical addition to ethylene,

Barriers for reaction (7.1), calculated at a wide variety of levels, are
presented in Table 6.14. The theoretical results [41] are compared with
the experimental barriers obtained from condensed phase (21.3 kJ/mol)
[40, 42] and gas-phase (25.7 kJ/mol) [43] studies, back-corrected for
temperature and zero-point energy effects [41, 44].

The first point to note is the extremely large variation in calcu-
lated barriers with level of theory that range from 7 kJ/mol (AM1) to
90 kJ/mol (RHF). The UMP2 level of theory gives a barrier of 60 kJ/mol.
Higher levels of theory [G2(MP2,SVP), G3, G3(MP2), CBS-RAD, CBS-
QB3, and ] all give values in the range of 20.5 - 28.6 kJ/mol, which
compare favorably with both experimental values. The UB3LYP proce-
dure also performs quite well, giving barriers of 18.3, 25.0, and 25.6
kJ/mol with the 6-31G(d), 6-311+G(d,p), and 6-311+G(3df,2p) ba-
sis sets, respectively. Somewhat higher barriers are obtained at the
RB3LYP level of theory (23.4, 30.3, and 30.8 kJ/mol, respectively).

The results in Table 6.14 indicate that basis set effects are small,
generally less than 7 kJ/mol, but are greater for the DFT-based than
for conventional procedures. The barriers tend to increase with basis set
size for the B3LYP functional but to decrease with basis set size for the
wavefunction-based ab initio methods. The barriers demonstrate much
greater sensitivity to the theoretical procedure used.

It is interesting to note that the CBS-RAD and CBS-QB3 lev-
els of theory give barriers (20.5 and 20.7 kJ/mol, respectively) close
to the value derived from the condensed-phase experimental measure-
ments, whereas the G2(MP2,SVP), G3(MP2)//B3LYP, G3(MP2)-RAD,
G3//B3LYP, and procedures give results (28.6, 28.3, 27.2, 26.6, and
27.0 kJ/mol, respectively) in accord with the value derived from the gas-
phase experimental measurements. It is therefore difficult to provide a
definitive assessment of their accuracy at the present time. However,
despite these differences, it is important to note that all of the higher-
level methods give barriers for the addition of methyl radical to ethylene
within approximately a 9 kJ/mol range.
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The data compiled in Tables 6.15 and 6.16 indicate how a selection
of methods perform in determining reaction barriers for methyl radical
additions to a series of substituted alkenes. The experimental values with
which comparisons are made in Tables 6.15 - 6.20 come from experiments
in solution [40, 42, 45, 46] so there is the possibility of non-negligible
solvent effects in some instances.
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The UB3LYP/6-31G(d), RB3LYP/6-31G(d) and CBS-RAD proce-
dures perform quite well, with mean absolute deviations from experi-
ment of 2.0, 2.8, and 1.7 kJ/mol, respectively. On the other hand, the
UB3LYP/6-311+G(3df,2p), RB3LYP/6-311+G(3df,2p), and G3(MP2)-
RAD procedures give larger MADs of 5.2, 9.8, and 5.6 kJ/mol, respec-
tively. All levels of theory display an excellent correlation with experi-
ment The UB3LYP/6-31G(d) and CBS-RAD meth-
ods tend to give slightly lower barriers than experiment (MD of -1.6 and
-1.7 kJ/mol, respectively) while the remaining levels of theory in Tables
6.15 and 6.16 generally give higher barriers than experiment (MD of
+2.7 to +9.8 kJ/mol).

Investigation of the addition of substituted methyl radicals to sub-
stituted alkenes allows for a broader assessment of the performance of
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the various theoretical procedures, particularly in situations for which
there may be significant polar effects. Tables 6.17 and 6.18 list barriers
for hydroxymethyl radical additions at a selection of levels of theory.

At the UB3LYP/6-31G(d) and CBS-RAD levels of theory, barriers
for the limited number of hydroxymethyl radical additions exhibit larger
MADs from experiment (8.5 and 7.3 kJ/mol) than those observed for
the methyl radical additions (Tables 6.15 and 6.16). In contrast, barriers
obtained at the UB3LYP/6-311+G(3df,2p) and G3(MP2)-RAD levels
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of theory display good performance, with MADs of 1.5 and 2.0 kJ/mol,
respectively. Once again, the UB3LYP/6-31G(d) and CBS-RAD proce-
dures give barriers lower than experiment, while at the G3(MP2)-RAD
level barriers are generally higher. Interestingly, the RB3LYP/6-31G(d)
method underestimates the barriers for these hydroxymethyl radical ad-
ditions to a similar extent its RB3LYP/6-311+G(3df,2p) counterpart
overestimates them. All levels of theory display a very good correlation
with experiment, with ranging from 0.96 to 0.98.

Calculated barriers for a selection of cyanomethyl radical additions
are presented in Tables 6.19 and 6.20. The CBS-RAD method performs
particularly well (MAD of 1.3 kJ/mol) for the selected cyanomethyl radi-
cal additions. However, the other levels of theory show somewhat larger
mean absolute deviations (5.9 - 14.8 kJ/mol). With the exception of
CBS-RAD (MD of -0.9 kJ/mol), all levels give higher barriers than those
observed experimentally (MD of +5.9 to +14.8 kJ/mol). The correlation
with experiment is somewhat poorer than that for
the methyl and hydroxymethyl radical additions (Tables 6.15 - 6.18).

The overall performance of each of the six levels used to estimate the
barriers for radical additions to substituted alkenes (Tables 6.15 - 6.20)
is summarized in Table 6.21. The CBS-RAD procedure gives the best
overall performance (MAD of 3.2 kJ/mol) and generally underestimates
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the radical addition barriers (MD of -2.9 kJ/mol). The G3(MP2)-RAD
method performs less well than its CBS-RAD counterpart (MAD of 5.4
kJ/mol) and tends to overestimate the barriers (MD of +5.3 kJ/mol).
The UB3LYP/6-31G(d) and RB3LYP/6-31G(d) results demonstrate the
same mean absolute deviation from experiment (4.3 kJ/mol) but whereas
the UB3LYP procedure used in conjunction with the small basis set
tends to underestimate the radical addition barriers (MD of -1.5 kJ/mol),
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the RB3LYP procedure overestimates them (MD of +2.1 kJ/mol). A
basis-set effect of ca. 7.5 kJ/mol is observed for both the UB3LYP and
RB3LYP procedures.

The results presented in Table 6.21 show that the good correlation
between calculated and experimental barriers observed for the addition
of the individual radicals (Tables 6.15 - 6.20) deteriorates significantly
when the radicals are examined together. Further work is in progress to
try to understand this variation in performance. The largest deviations
from experiment are rather larger than desirable (LD ranging from -11.0
to +16.6 kJ/mol).

The ring opening of the cyclopropylcarbinyl radical,

has been described as ”the most precisely calibrated radical reaction”
[47] which makes it ideal for evaluating the performance of theoretical
methods. This is one of the fastest unimolecular reactions known [48].

The barriers for this reaction calculated for a range of higher-level
procedures (Table 6.22) [49] show that the CBS methods agree well
with experiment while their G2 counterparts generally overestimate the
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barrier. The better performance of the CBS methods over the stan-
dard G2 approaches has been attributed [49] to the spin-contamination
correction that in this instance lowers the barrier by approximately 5
kJ/mol. Of the non-standard methods, the G2(MP2)-RAD procedure
offers a slight improvement over its standard G2(MP2) counterpart,
while the G2(MP2,SVP)-RAD, G3(MP2)-RAD and G3(MP2)-RAD(p)
approaches give results close to the experimental barrier.

The UB3LYP barriers calculated with larger basis sets, namely
6-311+G(d,p) and 6-311+G(3df,2p), are in close agreement with ex-
periment. The RB3LYP barriers are ca. 5.0 kJ/mol higher than their
UB3LYP counterparts. The UMP2 approximation performs poorly in
estimating the barrier to ring opening. This may be attributed to the
significant spin contamination observed in the transition
structure for this process. The PMP2 and RMP2 methods, while still
over-estimating the barrier, offer a significant improvement over UMP2.

Table 6.23 presents calculated barriers for the cyclization of the
but-3-enyl radical [i.e. the reverse of reaction (7.2)]. This reaction is an
example of an intramolecular radical addition. A number of the features
observed in the barriers for the intermolecular radical additions (e.g.
methyl radical addition to ethylene, Table 6.14) are also seen here.
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For example, the UMP2 level of theory performs poorly, the RB3LYP
approach predicts higher (by ca. 5 - 6 kJ/mol) barriers than its UB3LYP
counterpart, and the G3(MP2)-RAD level of theory gives a higher barrier
than the CBS-RAD method. One noticeable difference is the absence of a
significant basis-set effect in the DFT calculations on the intramolecular
addition.
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8. REACTION ENTHALPIES

The addition of radicals to alkenes is used to assess the perfor-
mance of various levels of theory in the prediction of radical reaction
enthalpies. Results for the addition of methyl radical to ethylene (Table
6.24) [41] show that the higher-level methods perform well in predicting
the reaction enthalpy; values range from -105.6 to -111.5 kJ/mol com-
pared with the corrected experimental value of -113.1 kJ/mol. The AM1
method greatly overestimates the exothermicity while the UB3LYP/6-
311+G(3df,2p) level of theory, which performs well for the reaction bar-
rier, significantly underestimates the exothermicity. The RB3LYP values
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are very similar to their UB3LYP counterparts for each of the selected
basis sets.

Very few directly measured experimental enthalpies are available
for methyl radical additions to substituted ethylenes. Reaction en-
thalpies are therefore normally estimated from other known thermo-
chemical quantities (e.g. C–H BDEs), which often have considerable un-
certainties [3], and the derivation generally involves the use of additivity
approximations [42, 45]. Therefore, theory may be able to provide more
accurate values for these enthalpies. Tables 6.25 and 6.26 present reac-
tion enthalpies determined at several levels of theory and compared with
the experimental estimates.

At the UB3LYP level of theory, the MADs range from 8.8 kJ/mol
for the 6-31G(d) basis set to 11.7 kJ/mol for the 6-311+G(3df,2p) basis
set. Interestingly, the UB3LYP/6-31G(d) level of theory generally over-
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estimates the exothermicity (MD of -8.8 kJ/mol) while the UB3LYP
functional used in conjunction with larger basis sets underestimates the
experimental exothermicities. The CBS-RAD method gives the best
performance with an MAD of 4.7 kJ/mol. The G3(MP2)-RAD method
(MAD of 6.1 kJ/mol) performs somewhat better than the UB3LYP func-
tional but also tends to underestimate the exothermicity (MD of 5.7
kJ/mol). In all cases the correlation with experiment is quite good (
spanning the range of 0.87 - 0.91).

9. CONCLUDING REMARKS

The amount of experimental information available regarding the
thermochemistry of radicals is limited because of the inherent instabil-
ity of such species. Therefore, theory has a potentially useful comple-
mentary role to play. However, the theoretical determination of radical
thermochemistry is not without its own difficulties, and thus a careful
assessment of accuracy needs to be carried out before theoretical pro-
cedures can be used routinely in this area. Steps in this direction are
described in this chapter.

An important general conclusion is that unrestricted procedures
such as UMP2 may perform poorly in the case of radicals for which there
is significant spin contamination in the underlying UHF wavefunction.
Under such circumstances, it is safest to avoid the use of the UHF and
UMP2 approximations entirely. The B3LYP procedure appears to be
much less sensitive to spin contamination. It is recommended in place
of the UHF and UMP2 methods for geometry and frequency predictions
in cases where the still more reliable CCSD(T) procedure is not feasible.

High-level compound methods such as Gn, CBS, and gener-
ally perform well in describing radical thermochemistry. However, the
reliability of the standard Gn and CBS procedures for radical thermo-
chemistry may generally be improved through modifications (designated
RAD) that involve UB3LYP instead of UHF or UMP2 geometries and/or
frequencies, RMP2 in place of UMP2 in the additivity steps (of Gn), and
CCSD(T) in place of QCISD(T) as the ultimate correlation level. The
modified procedures generally perform well in the test cases examined,
which include the calculation of heats of formation, bond dissociation en-
ergies, radical stabilization energies, and barriers and reaction enthalpies
for radical addition reactions.

The B3LYP procedure, while not as reliable for thermochemistry
as its higher-level counterparts, is much less expensive computationally
and is generally a reasonable cost-effective alternative.
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Chapter 7

Theoretical Prediction of Bond Dissociation Energies
for Transition Metal Compounds
and Main Group Complexes
with Standard Quantum-Chemical Methods

Nikolaus Fröhlich and Gernot Frenking
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Strasse,
D-35032, Marburg, Germany

1. INTRODUCTION

In the last decade, quantum-chemical investigations have become
an integral part of modern chemical research. The appearance of chem-
istry as a purely experimental discipline has been changed by the de-
velopment of electronic structure methods that are now widely used.
This change became possible because contemporary quantum-chemical
programs provide reliable data and important information about struc-
tures and reactivities of molecules and solids that complement results of
experimental studies. Theoretical methods are now available for com-
pounds of all elements of the periodic table, including heavy metals, as
reliable procedures for the calculation of relativistic effects and efficient
treatments of many-electron systems have been developed [1, 2] For
transition metal (TM) compounds, accurate calculations of thermody-
namic properties are of particularly great usefulness due to the sparsity
of experimental data.

For many years, our group has been using quantum-chemical meth-
ods to calculate properties of TM compounds. During the last decade,
we focused on theoretical analysis of chemical bonds in TM compounds
[3-7] and on elucidation of mechanisms of TM-mediated reactions [8].
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Initially, the level of theory that provides accurate geometries and bond
energies of TM compounds, yet allows calculations on medium-sized
molecules to be performed with reasonable time and CPU resources,
had to be determined. Systematic investigations of effective core po-
tentials (ECPs) with different valence basis sets led us to propose a
standard level of theory for calculations on TM elements, namely ECPs
with valence basis sets of a DZP quality [9, 10]. The small-core ECPs
by Hay and Wadt [11] has been chosen, where the original valence ba-
sis sets (55/5/N) were decontracted to (441/2111/N- l l ) with
and 3, for the first-, second-, and third-row TM elements, respectively.
The ECPs of the second and third TM rows include scalar relativistic
effects while the first-row ECPs are nonrelativistic [11]. For main-group
elements, either 6-31G(d) [12-16] all electron basis set or, for the heavier
elements, ECPs with equivalent (31/31/1) valence basis sets [17] have
been employed. This combination has become our standard basis set II,
which is used in a majority of our calculations [18].

Early theoretical work in our group was based on ab initio methods
at the Hartree-Fock and correlated levels of theory. Geometries were
optimized at the HF/II and MP2/II levels of theory while energies were
calculated at the MP2/II and CCSD(T)/II levels. Systematic investiga-
tions showed that the HF/II level of theory yields accurate geometries for
TM compounds in high oxidation states, whereas its MP2/II counterpart
provides reliable geometries of donor-acceptor complexes with metals in
low oxidation states [18]. Bond energies calculated at the CCSD(T)/II
// HF/II and CCSD(T)/II // MP2/II levels of theory were found to
be in excellent agreement with experiment. Bond energies predicted at
the MP2/II level are systematically too high but the trends are usu-
ally correct. It was shown that the MP2/II level of theory can produce
accurate energies when isostructural reactions are employed, leading to
error cancellation in the intrinsic deviations of the MP2 results from the
CCSD(T) ones [19]. However, it was also found that MP2 calculations
on compounds of the first TM row elements, which have partially filled
3d shells, frequently yield erroneous results [18].

In the mid-1990s we began to use DFT methods for the calculation
of TM compounds. BP86 [20] and B3LYP [21] functionals proved to
yield the most accurate results in terms of both geometries and ener-
gies. A systematic comparison with our previous ab initio work showed
that in many cases BP86 and B3LYP provide bond energies and ge-
ometries that are at least as good as those obtained with the MP2 ap-
proximation. Compared to the MP2 approach, the DFT methods are
significantly more robust for calculations on compounds containing first
TM row elements and require much less computer time. This finding
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allowed us to replace MP2/II with BP86/II and B3LYP/II as our stan-
dard levels of theory for calculations on TM compounds. Fortunately,
our standard basis set II proved to yield accurate results in conjunction
with the DFT methods as well. However, we do not recommend an in-
discriminate use of DFT methods, in particular when bond energies are
to be calculated without a critical examination of the reliability of the
predictions. Like any approximate theoretical method, DFT can pro-
duce erroneous results. The drawback of DFT is that it is difficult to
predict for which species excessive errors might be anticipated. Unlike
ab initio methods, for which the reason of failure can be analyzed in
terms of basis set insufficiency and/or inadequate correlation treatment,
and where systematic improvement of the theoretical level is possible,
DFT methods are much more a black-box tool. The results which are
given in this chapter show that sometimes even the trends predicted by
the DFT are wrong. For this reason, calculations on a few reference
compounds have been carried out at the CCSD(T) level of theory in
order to provide reliable data for calibrating the DFT results in cases
where no experimental data are available.

In the last decade, more than one hundred theoretical studies of TM
compounds have been carried out, addressing questions concerning the
geometries, stabilities, reaction mechanisms, chemical and physical prop-
erties, and the bonding situations in a wide variety of molecules [1-7, 18,
22]. Many publications reported bond dissociation energies (BDEs) of
TM–ligand bonds. As mentioned above, very few reliable experimental
BDEs of TM compounds are available in the literature [18, 22]. Because
the theoretical predictions for BDEs at the CCSD(T)/II level of theory
were found to be very accurate, they have been used to calibrate the data
obtained at the MP2/II, BP86/II and B3LYP/II levels. Therefore, these
BDEs can be regarded as a valuable source of thermodynamic data on
TM compounds. Since the theoretically predicted BDEs have not been
previously summarized, in this chapter we provide a compilation of the
calculated data which should be helpful as a reference. Although the
majority of our work focused on TM compounds, we also calculated
BDEs of main group complexes of the group-13 Lewis acids

and BeO with various Lewis bases. A list of these
theoretically predicted values is included in this work.

As mentioned above, most calculations were carried out with our
standard basis set II. The compilation of results in the present form
makes it possible to compare a great variety of fairly large compounds
studied at the same level of theory. We are well aware of the fact that
the apparently high accuracy of the theoretical values is partly due to a
fortuitous error cancellation. Thus, when it was necessary to obtain more
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accurate data for a given project, we employed the Stuttgart ECPs that
are associated with larger basis sets and include scalar relativistic effects
also for first TM row elements [17, 23]. This is particularly important
for copper, because relativistic effects have a significant impact on the
calculated geometries and BDEs of its compounds [24-28].

We want to emphasize that other groups have also published accu-
rate quantum-chemical calculations of TM–ligand bond energies. The
fact that we do not include their results in the present compilation does
not imply that we consider them less accurate than ours. Theoretical
studies that predict BDEs of TM compounds at a much higher level
of theory than those employed in our work have been published but
the molecules studied have been smaller than the species listed in this
chapter. Here we intend to compare data calculated at a level of the-
ory that can be applied to larger molecules and that has been used for
a large number of different classes of compounds. A uniform level of
theory makes it possible to directly compare the strengths of bonds be-
tween different ligands and different metals. We are planning to create a
data bank which contains all of the calculated BDEs. This continuously
updated data bank will be available online.

 The presentation of the theoretical BDEs is organized as follows.
We list the calculated values and their zero-point energy corrected
counterparts (denoted by ) for TM compounds that belong to different
classes of molecules. This leads in some cases to double presentation, as
some species belong to more than one class. However, we believe that
the ordering chosen here facilitates comparison between compounds as
well as between methods in a balanced way.

Most calculations were carried out with the Gaussian 94 [29], Gaus-
sian 98 [30], Turbomole [31], ACES II [32] and MOLPRO [33] program
packages. We also used the DFT program ADF [34], which is different
from the other electronic structure software as it uses Slater-type orbitals
rather than Gaussian functions. The calculations of the TM compounds
with ADF were carried out at the BP86 level of theory with a numerical
TZP-quality basis set. Relativistic effects were calculated either with
the Pauli Hamiltonian [35] or, recently, with the more reliable ZORA
approximation [36]. Details about the computational procedures can be
found in the original publications.
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2. HOMOLEPTIC CARBONYL COMPLEXES

The number of TM carbonyl complexes for which experimental
BDEs are known is relatively large. Theoretical studies of neutral 18-
valence electron carbonyl complexes of groups 6, 8 and 10 have been
reported [37-42]. Table 7.1 lists the calculated and experimental values
of and

In most cases, the computed values of are in a very good agree-
ment with experiment. Although the calculated BDEs of and

are higher than their experimental counterparts, a closer study
of the latter suggests that the reported values may be too low. Inspec-
tion of Table 7.1 leads to the conclusion that the performance of the
BP86/II and B3LYP/II levels of theory is very good as the DFT BDEs
are close to their CCSD(T) counterparts. The MP2/II data are always
too high but the trends in the calculated BDEs are correct. Note that
the MP2/II level of theory yields particularly high BDEs for
and . These erroneously high values are representative of the
problems that are often encountered when first TM row compounds are
treated at the MP2 level of theory.
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Table 7.2 lists the calculated and experimental BDEs of two series
of charged carbonyl complexes [39, 40, 47]. The first series comprises
positively and negatively charged hexacarbonyls that are iso-
electronic with There are no experimental bond energies avail-
able for The B3LYP/II and BP86/II results are very similar to
their CCSD(T)/II counterparts while the MP2/II level of theory always
yields values of BDEs that are too high. The second set of data consists
of theoretical and experimental results for the positively charged group-

negligible while backdonation is important in
the hexacarbonyls. This different bonding situation leads to an altered
performance of theoretical methods. As expected, the CCSD(T) values
are in good agreement with experiment. The MP2 values are also quite

a completely filled    shell. The bonding in these compounds has only a

11 carbonyls ( Ag, Au; ). The valence basis
sets used for the latter metals were much larger than those employed for
the hexacarbonyls. Another difference is that the group-11 cations have
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accurate. The BP86 and B3LYP functionals yield bond energies for
the monocarbonyls that are much higher than their MP2 and
CCSD(T) counterparts. Even more troublesome is the fact that the
DFT methods sometimes predict a wrong trend for the BDEs of mono-
and dicarbonyls. The BP86 and B3LYP functionals predict the BDE of

to be lower than that of while MP2 and CCSD(T)
levels of theory yield the opposite result, in agreement with experiment.
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BP86 also fails to predict the relative BDEs of and
The B3LYP approach produces a higher bond energy of as
compared with but this difference is much smaller than that
predicted within the CCSD(T) approximation.

3. GROUP-6 CARBONYL COMPLEXES
(M = Cr, Mo, W)

Singly substituted species have been investigated [49-
51, 54, 55]. Table 7.3 lists the calculated BDEs of the group-6 complexes
of the type with various ligands L, whereas
Table 7.4 contains the BDEs for the W–L and the W–CO bonds in

complexes. The latter values are given for the least bonded
carbonyl ligand. Note that BDEs for other complexes with
certain particular classes of ligands are discussed in other sections of this
chapter.

Table 7.3 lists only few experimental data that can be used to es-
timate the accuracy of the theoretical results. The CCSD(T)/II values
agree quite well with experiment (note, however, rather large error bars
for the measured BDEs of the thiocarbonyl complexes). The MP2/II
values are always larger than their CCSD(T)/II counterparts. The lat-
ter values show that the tungsten complexes always have the strongest
M–L bond while, in most cases, the molybdenum species have the lowest
BDEs.

Table 7.4 lists BDEs calculated with both ab initio and DFT meth-
ods. The B3LYP/II values for the and bond ener-
gies are in very good agreement with their CCSD(T)/II counterparts.
However, the results yielded by the two methods differ in the relative
bond strengths of acetylene and ethylene in the complexes.
The B3LYP/II level of theory predicts ethylene to be less bonded than
acetylene while CCSD(T)/II and MP2/II levels yield the opposite re-
sult. The unstable and species have
been detected experimentally by IR spectroscopy [56]. The decrease in
the C–O stretching frequency of the trans CO ligand was found to be
significantly larger for the former complex. This observation indicates
that the tungsten–acetylene interactions are stronger than the tungsten–
ethylene ones, which is in agreement with the larger BDE of
predicted at the ab initio levels of theory. The only experimental BDE
given in Table 7.4 is for the weakly bonded complex . It
agrees well with the CCSD(T)/II result.
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4. IRON CARBONYL COMPLEXES

A large number of iron carbonyl complexes with differ-
ent ligands L in the axial or equatorial positions has been investigated
[58]. Table 7.5 lists the theoretically predicted relative energies of the
isomers and the Fe–L BDEs at the B3LYP/II and CCSD(T)/II levels of
theory. Experimental values of these bond energies are not known. The

complexes, where L is a group-13 diyl ligand, are presented
separately.

The data compiled in Table 7.5 show that the relative energies of
the axial and equatorial isomers yielded by the B3LYP/II level of theory
are very similar to their CCSD(T) counterparts. The B3LYP/II BDEs
are always larger than the CCSD(T)/II results, but the trends predicted
by the two methods for different ligands are the same. It is worth noting
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that the B3LYP/II and CCSD(T)/II levels of theory agree on ethylene
in being more strongly bonded than acetylene.
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5. GROUP-10 CARBONYL COMPLEXES

Table 7.6 lists the theoretical BDEs of the M–L bonds in the group-
and complexes calculated at the

MP2/II and CCSD(T)/II levels of theory [49, 50]. The only experimen-
tal value known for those compounds is an estimate of ca. 10 kcal/mol
obtained for the bond energy at 298 K [59]. This esti-
mate is based on kinetic measurements of nitrogen extrusion from the
complex. Thermal corrections to the CCSD(T)/II value of
kcal/mol yield a theoretical prediction of 6.7 kcal/mol, which is in a
reasonable agreement with experiment [49]. The MP2/II BDEs listed in
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Table 7.6 are significantly larger than their CCSD(T)/II counterparts.
is much more strongly bonded at the MP2/II level of the-

ory ( kcal/mol) than at the CCSD(T)/II level. The stronger
metal–ligand bonds at the MP2/II level of theory lead to energy min-
ima for the complexes that are predicted by the CCSD(T)/II
calculations to be unstable with respect to the M–L dissociation. For
example, both and are minima on the
MP2/II potential energy hypersurfaces, while the calculations at the
CCSD(T)/II level of theory produce negative dissociation energies [42].
The M–L BDEs of the group-10 carbonyl complexes are clearly
lower than those of their group-6 analogues They are also
lower than the Fe–L BDEs of

6. GROUP-6 CARBONYL COMPLEXES WITH
PHOSPHANE LIGANDS

The structure and bonding of group-6 TM carbonyl complexes
with phosphane ligands and have

been the subjects of another theoretical study [60]. Table 7.7 lists the
BDEs calculated at the BP86 level of theory in conjunction with

our standard basis set II and the larger TZ(2)P Slater basis set, which
has one set of f-type polarization functions on the transition metals and
two sets of polarization functions on the other atoms.

 Except for the complexes, the BP86/II and BP86/TZ(2)P
BDEs values are very similar. The BP86/II BDE estimates for these
complexes are 4 - 6 kcal/mol higher than their BP86/TZ(2)P counter-
parts. Both levels of theory predict the trend in the BDEs for
the different phosphane ligands being

7. NOBLE GAS COMPLEXES

A special type of TM ligands are the noble gas atoms argon, kryp-
ton, and xenon [61]. Although they are weak Lewis bases, TM complexes

with and and Xe have been ex-
perimentally investigated in the gas phase as well as in the liquid phase
and in supercritical The M–Ng BDEs were estimated with
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different techniques. Thus it has become possible to investigate the
performance of various theoretical methods in calculations of BDEs for
weakly bonded ligands. The experimental and calculated BDEs are com-
piled in Table 7.8. The calculated values at both the BP86/TZP and
CCSD(T)/II levels of theory agree reasonably well with the experimen-
tal results. The basis set superposition error (BSSE) corrections to the
CCSD(T) values are much smaller than those to BP86. Theory and
experiment agree that the BDEs exhibit the trend Ar < Kr < Xe that
should be expected on the ground of the electric polarizabilities of these
elements.

8. TRANSITION METAL CARBENE AND CARBYNE
COMPLEXES

TM complexes with carbene ligands : are particularly inter-
esting from a theoretical standpoint. Two classes of such species, for
which different bonding models have been suggested, namely the Fischer
and Schrock complexes, are known [3, 64]. The bonding situation in the
members of the former class can be described in terms of donor-acceptor
interactions between the metal fragment and a singlet carbene analogous
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to those involved by the familiar Dewar-Chatt-Duncanson (DCD) model
of olefin complexes. Metal–carbene bonding in Schrock complexes is bet-
ter understood by electron-sharing covalent bonding between unpaired
electrons of the metal and a triplet carbene. Quantum-chemical studies
of the bonding interactions in TM carbene complexes have been reported
[3, 65].

Table 7.9 lists the calculated BDEs of tungsten carbene complexes
that belong to either class of compounds [65, 66]. The
complexes are of the Fischer type while the species are of the
Schrock type. Analysis of the bonding interactions in the
molecules indicates that they possess donor-acceptor bonds, i.e.
they are Fischer complexes [65]. The complexes of MCl (M = Cu, Ag,
Au) with Arduengo-type carbenes and their heavier homologues exhibit
yet another type of bonding. These species have mainly
donation and negligible backdonation [66]. This distin-
guishes them from Fischer carbene complexes, where the

backdonation constitutes an important part of the bonding.



BDEs of Transition Metal Compounds and Main Group Complexes 213

Inspection of Table 7.9 leads to the conclusion that the bonds in
these three classes of compounds are very strong. The bond energy can
be significantly altered by the nature of the substituent R in the
ligand. This is an important piece of information as there are no exper-
imental data available for the BDEs of stable carbene complexes. The
MP2/II BDEs are always higher than their CCSD(T)/II counterparts,
although not by much. The trends predicted by the two methods for
different ligands and different coinage metals are essentially the same.

The same dichotomy of bonding models is also found for carbyne
complexes that have a formal triple bond There are metal–
carbyne bonds that belong to the donor-acceptor type (the Fischer car-
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bynes) the others can be more conveniently analyzed in terms of electron-
sharing triple bonds between open-shell fragments (the Schrock car-
bynes) [3]. The M–CR BDEs of the Fischer-type carbyne complexes

and the Schrock-type species and
have been calculated [67], and are compiled in Table 7.10. These bond
energies are much higher than those computed for analogous carbene
complexes. It is also worth noting that the M–CR BDEs become signif-
icantly smaller for R being good donors.

9. TRANSITION METAL COMPLEXES WITH
LIGANDS

The dichotomy of donor-acceptor versus electron-sharing bonding
models also gives rise to an important classification scheme for TM com-
plexes with bonded ligands. The bonding between a TM and an olefin
can be understood either in terms of the DCD model or as bonding in
a metallacyclopropane. Compounds with alkyne ligands can likewise be
described as alkyne complexes or metallacyclopropenes. Therefore, in
general, ligands with high-lying occupied orbitals can be divided into
donor-acceptor complexes and metallacyclic compounds, respectively.

Table 7.11 lists the predicted BDEs of TM compounds with
ligands [4, 54, 55, 68-71]. The complexes of with acetylene,
ethylene, and formaldehyde belong to the donor-acceptor class. The
compounds of with the same ligands are metallacyclic molecules.
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The CCSD(T)/II calculations provide similar values for the
and BDEs. The species is predicted

to have higher BDE than whereas is clearly
less bonded than This change in trend can be explained by
the different bonding situations in metallacyclic compounds and donor-
acceptor complexes [4]. At the MP2/II level of theory, in
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is found to bind to tungsten in a fashion. However, the
CCSD(T)/II calculations predict the compound to be thermodynami-
cally unstable relative to its components in their electronic ground states.
The and complexes possess ligands
(see Table 7.4), whereas and are
species.

The BDEs of the platinum complexes, where the ligand
L is an olefin, have also been calculated [69]. Table 7.11 lists these BDEs
computed at the CCSD(T)/II level of theory. The least bonded ligand
is ethylene. The other ligands are strained tricyclic olefines
with pyramidal carbon skeletons that raise their HOMOs and lower their
LUMOs. The strain angle increases from to enhancing
the metal–olefin interactions in this direction. Table 7.11 shows that the
BDE increases when the olefin becomes more strongly pyramidalized
and therefore due to the ring strain more prone to bond formation.

Table 7.11 also contains the BDEs of naked Cu and with acety-
lene and ethylene as ligands [68]. The bond energy of the positively
charged copper cation is, as expected, much higher than that of the
neutral atom. It is worth pointing out here that the higher BDE of

is not reflected by the calculated C–C bond lengths, which
are nearly the same in both cases [68]. This can be explained on the
grounds of the metal–ligand bonding situation that in the
cations is mainly ionic. The bond path provided by the topological
analysis of the electron density is T-shaped rather than cyclic [68].

10. TRANSITION METAL COMPLEXES WITH
GROUP-13 DIYL LIGANDS ER
(E = B, Al, Ga, In, Tl)

Apart from carbonyl complexes, another very extensively investi-
gated class of TM compounds is that of complexes attached to group-13
diyl ligands ER (E = B - Tl) with various substituents R [6, 72-79]. The
aim of these investigations was to gain understanding of the metal–ligand
interactions in the compounds that have only recently been synthesized
and characterized by X-ray structure analysis [72]. As a side-product
of the bonding analysis a large number of M–ER BDEs was calculated.
These BDEs are presented in Tables 7.12 and 7.13.

Table 7.12 lists the theoretical BDEs of the bonds
calculated at the BP86/II and BP86/TZP levels of theory. The calcu-
lations predict the following trend of the bond strengths of the ligands:

The BP86/TZP values suggest for
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the different ligand atoms E the following trend in the BDEs: BR >
AlR > GaR > InR >T1. The BP86/II data predict the same trend
except that the calculated BDEs of the GaR and InR ligands are nearly
the same. It is worth noting that the BP86/II and BP86/TZP results for
boron and aluminum complexes are very similar, while for the gallium,
indium and thallium complexes, the BP86/II level of theory predicts
much higher bond energies than does BP86/TZP. This is probably due
to the difference in the II basis sets that are used for B and Al and those
that are used for Ga, In and Tl. The former group of elements is treated
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with the all-electron 6-31G(d) basis sets, whereas ECPs associated with
(31/31/1) valence basis sets are employed for the heavier group-13 atoms.
Because of the above procedure, we believe that, being obtained with
the same type of basis sets for all atoms, the BP86/TZP values are more
reliable.

Inspection of Table 7.13 leads to the conclusion that the Fe–EMe
BDEs of the homoleptic complexes are higher than their coun-
terparts predicted for the Fe–EMe bonds. The homoleptic group-
13 complexes are also predicted to have high bond energies,
except for the Pt–AlCp and Pt–GaCp BDEs in Pt(dhpe) that
are rather low.

A number of tungsten group-13 diyl complexes W–ER (R =
H, Cl) and have also been investigated. Thanks to
the stabilizing effect of the ammonia ligands, the latter complexes can be
isolated and their structures can be determined with X-ray analysis [73].
The ammonia-free W–ER species has not been isolated yet. It is
worth emphasizing that, as can be seen from Table 7.14, the addition of
ammonia to the diyl ligands strongly enhances the W–E bond energy.
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11. TRANSITION METAL COMPOUNDS WITH
BORYL LIGANDS AND GALLYL LIGANDS

In addition to the complexes with group-13 diyl ligands ER, where
the element E is in the formal oxidation state I, TM compounds with
electron-sharing bonds, where the element E is in the formal
oxidation state III, have been investigated [81, 82]. Table 7.15 lists
the calculated BDEs of osmium complexes that are 16-valence
electron species with the general formula The
BDEs of the and bonds of the 18-valence electron

complexes have been investigated as well. The
above compounds are regarded as models for the stable 16- and 18-
valence electron species with bulky ligands [83].
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The calculations indicate that the BDEs of the latter com-
plexes are 10 - 12 kcal/mol lower than those of the former ones. The
second carbonyl ligand that is in the trans position with respect to the
boryl group in has a rather low BDE. This re-
sult may be expected since both classes of complexes coexist and can
be interconverted by changing the CO pressure [83]. Table 7.15 also
lists the calculated BDEs. These bond energies are sig-
nificantly higher that those of the osmium compounds, although boron
generally forms stronger bonds with transition metals than gallium. The
high bond energy may partly be explained by the effect of the ammonia
ligand that has been already shown to enhance the bond strength of the
M–E bond, when M is a group-13 element.

12. TRANSITION METAL METHYL AND PHENYL
COMPOUNDS

Another class of M–ligand bonds for which BDEs have been cal-
culated are methyl and phenyl bonds of the group-11 metals Cu, Ag,
Au and the group-12 metals Zn, Cd and Hg [28]. Table 7.16 compiles
the predicted BDEs calculated at the MP2/II and CCSD(T)/II levels of
theory as well as the relevant experimental data.

The most interesting conclusion from the results shown in Table
7.16 is that, except for the MP2/II BDEs are in excellent
agreement with the experimental data. Although the good agreement
between the MP2/II calculations and experiment is due to a fortuitous
error cancellation, the question remains why the theoretical value for

is too high when all the other values are correct. The cal-
culations predict that the metal–phenyl bonds have higher BDEs than
the metal–methyl bonds, while the only experimental value available for
a phenyl compound of a group-12 element predicts the opposite. Since

bonds of carbon are normally stronger than their
counterparts, we tend to believe that the theoretical value

is correct. Unfortunately, CCSD(T)/II calculations of could
not be carried out because the molecule was too big. The BDEs pre-
dicted at the CCSD(T)/II level of theory are slightly lower than both
their MP2/II and experimental counterparts but the trend is the same.
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13. TRANSITION METAL NITRIDO AND PHOSPHIDO
COMPLEXES

The nitrido and phosphido complexes of TMs have been the sub-
jects of intensive experimental studies in the recent years. Of particular
interest has been the issue of Lewis basicity of the nitrogen and phos-
phorus atoms in the and groups. Table 7.17 lists the
BDEs calculated at the MP2/II, B3LYP/II and CCSD(T)/II levels of
theory for and where X is a group-13 Lewis acid or
a chalcogen atom [86, 87].

These results demonstrate that it is difficult to make a general state-
ment about the accuracy of the MP2 or B3LYP approaches vis-a-vis
that of CCSD(T). For example, the BDEs of the donor-acceptor
bonds (E = B, Al, Ga) are very similar at the MP2/II and B3LYP/II
levels of theory. They also agree with the CCSD(T)/II value for the N–

bond. However, for the and bonds, the B3LYP/II
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level of theory produces significantly lower BDEs than the MP2/II one.
Since the CCSD (T) /II values for the and BDEs coincide
with the MP2/II estimates, we believe that for the bonds the
latter are more reliable than their B3LYP/II counterparts. On the other
hand, the two methods yield nearly identical BDEs for the N–X bonds,
where X is a chalcogen.

The results for the P–S BDEs in the phosphido complexes are even
more confusing. The B3LYP/II predictions are significantly larger than
the MP2/II ones, while the CCSD(T)/II level of theory produces inter-
mediate values of BDEs. Moreover, it has been found that the MP2/II
BDEs for the molybdenum complexes are lower than those for the tung-
sten complexes, while the predictions of the B3LYP/II and CCSD(T)/II
levels of theory are that the BDEs of the MoP–S bonds are significantly
higher than those of the WP–S bonds. The MP2/II BDEs of the Mo–
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and donor-acceptor bonds appear to be more reliable as
they agree quite well with the CCSD(T)/II estimates.

14. MAIN GROUP COMPLEXES OF GROUP-13 LEWIS
ACIDS

The nature of the donor-acceptor interactions in main group com-
plexes has also been studied theoretically [88-91]. The calculated BDEs
of main-group complexes predicted at the MP2/II level of theory are in
very good agreement with experimental results [88]. This is an impor-
tant difference from the performance of the MP2/II level of theory for
TM complexes, where the computed BDEs are always too high. Table
7.18 lists the calculated BDEs for complexes of group-13 Lewis acids

with various Lewis bases.
A comparison of the calculated and experimental data indicates

that the MP2 values obtained with the basis sets II do not differ signif-
icantly from those afforded by the larger basis set TZP. The theoretical
values agree very well with the experimental data. The only larger de-
viation from experimental data has been found for (Table
7.18). However, a critical examination of the experimental value of 30.5
kcal/mol led us to suggest that it is probably too low [88].

On the basis of the calculated BDEs, it possible to estimate the
strength of the Lewis acidity of the compounds. The heavier group-
13 trifluorides and trichlorides of Al, Ga, and In exhibit similar Lewis
acidities and they are generally stronger Lewis acids than
and However, the bond strengths of donor-acceptor complexes
depend also on the nature of the Lewis base. For example, the MP2/TZP
BDE of is only 2.3 kcal/mol, that is markedly less than the

BDE of 15.1 kcal/mol, while the BDE of 59.7
kcal/mol is slightly higher than that of namely 58.0
kcal/mol. However, the Lewis acid strengths of boron compounds are
generally lower than those of their heavier analogues. The calculations
indicate that the Lewis acidity of the former species exhibits the trend
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15. MAIN GROUP COMPLEXES OF BeO

To investigate complexes of the Lewis acid BeO may seem strange
from the experimental point of view. BeO is a polymeric solid with a
high melting point and it is very difficult to obtain monomeric BeO.
Moreover, beryllium is very poisonous and its compounds are difficult
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to handle. Indeed, the research on chemistry of the BeO complexes
was prompted by purely theoretical investigations. During the search
for stable compounds of light noble gas elements, it has been found
that BeO should be an unusually strong Lewis acid forming relatively
strong bonds with the very weak Lewis bases He, Ne and Ar [94, 95].
The complexes of BeO with other Lewis bases L have been subsequently
examined [96-101]. The analysis of the bonding interactions and the cal-
culated BDEs of the OBe–L bonds have shown that BeO could be the
strongest neutral Lewis acid of all main-group compounds [96]. Experi-
mental support of this theoretical prediction came later when Andrews
and coworkers reported on pulsed laser ablation experiments on beryl-
lium in the presence of noble gases and other weak Lewis bases [102-104].
These workers identified the noble gas complexes NgBeO

the carbonyl complexes OC–BeO, and the oxygen-bonded isomer
CO–BeO that had been predicted theoretically [95, 96]. Although the
chemistry of BeO complexes may be considered of little interest from a
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synthetic standpoint, it is relevant to the understanding of the strength
and nature of main-group donor-acceptor complexes.

Table 7.19 lists the BDEs for BeO complexes predicted at the
MP2/6-31G(d,p) level of theory, which is equivalent to MP2/II, and at
the MP4(SDTQ) level with the large TZ2P-quality 6-311G(2dp,2df) va-
lence basis set. The latter calculations were performed in order to obtain
quantitatively reliable BDEs. For some of the less strongly bonded com-
plexes, the size of the BSSE has been estimated via the counterpoise
correction. The calculated bond energies given in Table 7.19 clearly
indicate that BeO is indeed a stronger Lewis acid than the group-13
compounds (Table 7.18). BeO binds to helium with a BDE of ca.
2 - 3 kcal/mol. This is a much stronger bond than those occurring in
normal van der Waals complexes of helium that have typically a bond
energy of (< 0.06 kcal/mol). The complex has
a theoretically predicted BDE of 69.5 kcal/mol. It is the most strongly
bonded main-group complex examined theoretically so far. This theo-
retical prediction still awaits experimental verification!

16. CONCLUSION

The compilation of calculated bond dissociation energies of transi-
tion metal compounds and main group complexes, obtained at a stan-
dard level of theory that is not very expensive computationally, shows
that quantum chemistry can provide important thermodynamic data for
a wide range of compounds. The theoretical results are quite reliable and
can be obtained with much less effort than it is incurred in the course of
experimental work. Nevertheless, it is very important to emphasize that
an indiscriminate and uncritical use of theoretical methods to calculate
BDEs and other properties of molecules should be strongly discouraged.
Although the theoretical approaches and software are equally sophis-
ticated, quantum-chemical programs are unfortunately not as sensitive
as experimental techniques to unqualified usage. It requires experience
and insight to interpret the calculated data in a critical and correct way.
Thus, although we encourage experimentalists to employ modern quan-
tum chemical tools to complement their research, we strongly suggest
that an experienced theoretician should be consulted before any conclu-
sions about the meaning of the theoretical results are drawn.
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Chapter 8

Semiempirical Thermochemistry: A Brief Survey

Walter Thiel
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim,

Germany

1. INTRODUCTION

The semiempirical molecular orbital (MO) methods of quantum
chemistry [1-12] are widely used in computational studies of large molecu-
les. A number of such methods are available for calculating thermo-
chemical properties of ground state molecules in the gas phase, includ-
ing MNDO [13], MNDOC [14], MNDO/d [15-18], AM1 [19], PM3 [20],
SAM1 [21, 22], OM1 [23], OM2 [24, 25] MINDO/3 [26], SINDO1 [27, 28],
and MSINDO [29-31]. MNDO, AM1, and PM3 are widely distributed
in a number of software packages, and they are probably the most pop-
ular semiempirical methods for thermochemical calculations. We shall
therefore concentrate on these methods, but shall also address other
NDDO-based approaches with orthogonalization corrections [23-25].

The semiempirical calculation of thermochemical properties has
been reviewed recently [32]. The present chapter is a condensed and
updated version of this previous review. It outlines the theoretical back-
ground of semiempirical methods, defines specific conventions, provides
statistical evaluations, and discusses the performance with regard to
thermochemical properties.
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2. THEORETICAL BACKGROUND

Most current general-purpose semiempirical methods are based on
molecular orbital (MO) theory and employ a minimal basis set for the
valence electrons; electron correlation is treated explicitly only if this is
necessary for the appropriate zeroth-order description. Compared with
the ab initio MO formalism, many of the less important (many-center)
integrals are neglected to speed up the calculations; traditionally there
are three levels of integral approximation called CNDO, INDO, and
NDDO [2, 33], the latter being the least severe one. In an attempt
to compensate for the errors introduced by these simplifications, the re-
maining integrals are represented by suitable parametric expressions and
calibrated against reliable experimental or accurate theoretical reference
data. The quality of semiempirical results will thus depend on both the
chosen theoretical model and the parameterization.

MNDO, AM1, and PM3 are based on the same semiempirical model
[12, 13], and differ only in minor details of the implementation of the
core-core repulsions. Their parameterization has focused mainly on
heats of formation and geometries, with the use of ionization poten-
tials and dipole moments as additional reference data. Given the larger
number of adjustable parameters and the greater effort spent on their
development, AM1 and PM3 may be regarded as methods which at-
tempt to explore the limits of the MNDO model through careful and
extensive parameterization.

MNDO, AM1, and PM3 employ an sp basis without d orbitals
[13, 19, 20]. Hence, they cannot be applied to most transition metal
compounds, and difficulties are expected for hypervalent compounds of
main-group elements where the importance of d orbitals for quantitative
accuracy is well documented at the ab initio level [34]. To overcome these
limitations, the MNDO formalism has been extended to d orbitals. The
resulting MNDO/d approach [15-18] retains all the essential features of
the MNDO model.

Due to the integral approximations used in the MNDO model,
closed-shell Pauli exchange repulsions are not represented in the Hamil-
tonian, but are only included indirectly, e.g., through the effective atom-
pair correction terms to the core-core repulsions [12]. To account for
Pauli repulsions more properly, the NDDO-based OM1 and OM2 meth-
ods [23-25] incorporate orthogonalization terms into the one-center or
the one- and two-center one-electron matrix elements, respectively. Sim-
ilar correction terms have also been used at the INDO level [27-31] and
probably contribute to the success of methods such as MSINDO [29-31].
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In ab initio theory, inclusion of electron correlation is essential to
reliable prediction of thermochemical properties such as atomization en-
ergies [34-36]. On the other hand, density functional theory (DFT) is
also rather successful in this regard [35] due to the incorporation of dy-
namic electron correlation effects during orbital optimization through
the use of a suitable exchange-correlation functional. Conceptually, dy-
namic electron correlation is also built into the semiempirical SCF-MO
methods in an average manner, by using effective two-electron interac-
tions that are damped at small and intermediate distances [12]. Closer
analysis shows [8, 14] that dynamic correlation effects are relatively small
in MNDO-type methods (due to the representation of the two-electron
integrals) and also rather uniform (in related molecules). It is therefore
not surprising that these effects can be taken into account in an average
manner by a parameterization at the SCF level. Hence, MNDO [13] and
the explicitly correlated MNDOC approach [14] yield results of similar
accuracy for standard closed-shell ground state molecules, and MNDOC
offers advantages only in systems with specific correlation effects [8].

These considerations suggest a general answer to the question of
what to expect from semiempirical calculations of thermochemical prop-
erties. The results can be reliable only to the extent that the relevant
physical interactions are included in the semiempirical model and that
the formally neglected features can be absorbed by the semiempirical
parameterization in an average sense. Whether a given semiempirical
method will be useful for quantitative thermochemical predictions can
only be established by careful validation against experimental data or
high-level ab initio results.

3. SPECIFIC CONVENTIONS

In quantum-chemical calculations, the equilibrium atomization en-
ergy of a given molecule is available from its total energy and the
electronic energies of the constituent atoms. Inclusion of zero-point vi-
brational terms provides the ground state atomization energy Sub-
tracting from the sum of the experimental enthalpies of formation of
the constituent atoms at 0 K then yields the heat of formation at 0 K

which can be converted to the corresponding heat of formation
at 298 K by incorporating suitable thermal corrections.

This procedure is normally followed in ab initio studies and could
equally well be applied in semiempirical work. However, in MNDO-type
methods, heats of formation at 298 K are traditionally derived in a sim-
pler manner [1, 13]. By formally neglecting the zero-point vibrational
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energies and the thermal corrections between 0 K and 298 K, the heats
of formation at 298 K are obtained from the calculated total energies
by subtracting the calculated electronic energies of the atoms in the
molecule and by adding their experimental heats of formation at 298 K.
This procedure implicitly assumes that the zero-point vibrational ener-
gies and the thermal corrections are composed of additive increments,
which can be absorbed by the semiempirical parameterization. There is
some evidence for the approximate validity of this assumption [32].

According to these conventions, the computed total energies for a
given molecule differ from the corresponding heats of formation at 298 K
by a constant amount which is geometry-independent. In practice, the
potential surface from an MNDO-type calculation is normally discussed
like a surface from any other quantum-chemical calculation, except that
the energies at the minima are translated into heats of formation without
explicitly considering zero-point vibrational energies or thermal correc-
tions.

4. STATISTICAL EVALUATIONS

Comparison with experiment constitutes the ultimate test of theo-
retical calculations. It is of course essential that the evaluation of the-
oretical methods is done with regard to reliable experimental reference
data. Such a reference set has recently been assembled for the valida-
tion of Gaussian-2 (G2) theory [35], containing 148 molecules for which
reliable experimental heats of formation at 298 K are available (with a
target accuracy of at least 1 kcal/mol). This “G2 neutral test set” pro-
vides a means for assessing theoretical methods, and detailed evaluations
are already available [35] for the G2 method and its variants, for several
DFT approaches (e.g. LDA (SVWN), BLYP, BP86 in the usual nota-
tion), and for various HF/DFT hybrid methods (e.g. B3LYP, B3P86).
Table 8.1 compares the published results for some of these methods [35]
and the more recent Gaussian-3 (G3) theory [36] with those for the
semiempirical methods [32].

Among the methods considered in Table 8.1, the G3 approach is
most accurate, followed by G2 and B3LYP. The semiempirical methods
(especially PM3 and MNDO/d) show similar errors as BLYP, whereas
BP86 and particularly LDA(SVWN) overbind strongly [35]. To put
these results into perspective, it should be noted that the complete ge-
ometry optimization for all test molecules combined takes less than 3
seconds of cpu time for MNDO, AM1, or PM3 when using our current
program [37] on a Compaq XP1000 workstation. In view of this very
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low computational effort, the performance of the semiempirical methods
appears quite acceptable.

The deviations between theory and experiment normally tend to be
somewhat smaller for first-row than for second-row compounds. Among
the established semiempirical methods, PM3 seems to be the best for the
first-row compounds, but the OM1 and OM2 approaches with orthogo-
nalization corrections [23-25] perform even better, with mean absolute
deviations being around 3-5 kcal/mol. For the second-row compounds,
MNDO/d is currently the most accurate among the semiempirical meth-
ods considered. This performance has been attributed [16-18] to the use
of an spd basis which allows a balanced description of normalvalent and
hypervalent molecules. OM1 and OM2 have not yet been parameterized
for second-row elements.
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In an overall assessment, the established semiempirical methods
perform reasonably for the molecules in the G2 neutral test set. With an
almost negligible computational effort, they provide heats of formation
with typical errors around 7 kcal/mol. The semiempirical OM1 and
OM2 approaches that go beyond the MNDO model and are still under
development promise an improved accuracy (see Table 8.1).

Even though the G2 neutral test set is very valuable, it is biased
towards small molecules and does not cover all bonding situations that
may arise for a given element. The validation of semiempirical methods
has traditionally been done using larger test sets which, however, have
the drawback that the experimental reference data are often less accurate
than those in the G2 set.

In our own validation sets, experimental heats of formation are pref-
erentially taken from recognized standard compilations [38-40]. If there
are enough experimental data for a given element, we normally only use
reference values that are accurate to 2 kcal/mol. If there is a lack of
reliable data, we may accept experimental heats of formation with a
quoted experimental error of up to 5 kcal/mol. This choice is motivated
by the target accuracy of the established semiempirical methods. If ex-
perimental data are missing for a small molecule of interest, we consider
it legitimate [18] to employ computed heats of formation from high-level
ab initio methods as substitutes.

Our primary validation set for first-row compounds is derived from
the original MNDO development [13, 41], but has been updated to in-
clude new experimental data for the reference molecules. Table 8.2 shows
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statistical evaluations for this set which are consistent with those com-
piled in Table 8.1. In both cases, the mean absolute deviations decrease
in the sequence MNDO > AM1 > PM3 > OM1 > OM2. Generally, the
errors are smaller here than in Table 8.1 which is probably due to the
fact that our larger set contains a larger portion of ”normal” organic
molecules without ”difficult” bonding characteristics.

The data in Table 8.2 refer almost exclusively to closed-shell molecu-
les. A second validation set for first-row compounds [42] contains 38 rad-
icals and radical cations. The mean absolute errors for these species are
higher than those in Table 8.2. They amount to 11.08, 9.73, 9.41, 6.70,
and 4.79 kcal/mol for MNDO, AM1, PM3, OM1, and OM2, respectively.

In the course of the MNDO/d development [15-18] we have gener-
ated new validation sets for second-row and heavier elements. Those for
Na, Mg, Al, Si, P, S, Cl, Br, I, Zn, Cd, and Hg have been published
[16-18]. The corresponding statistical evaluations for heats of forma-
tion [18] are summarized in Table 8.3. It is obvious that MNDO/d
shows by far the smallest errors followed by PM3 and AM1. All four
semiempirical methods perform reasonably well for normalvalent com-
pounds, especially when considering that more effort has traditionally
been spent on the parameterization of the first-row elements. For hy-
pervalent compounds, however, the errors are huge in MNDO and AM1,
and still substantial in PM3, in spite of the determined attempt to re-
duce these errors in the PM3 parameterization [20]. Therefore it seems
likely that the improvements in MNDO/d are due to the use of an spd
basis set [16-18].

Many other statistical evaluations are available in the literature
[1-31] that document the thermochemical results obtained from various
semiempirical methods. For a convenient reference, Table 8.4 quotes a
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small selection of the published mean absolute deviations (MADs) be-
tween computed and experimental heats of formation. Of course, the
corresponding values cannot be compared directly, since they are based
on different sets of reference molecules and reference data, but they
should provide some indication of the errors that can be expected in
such calculations. The reader should consult the original literature for
further information [1-31].

5. DISCUSSION

The statistical evaluations of the preceding section indicate that the
semiempirical MO methods can predict heats of formation with useful
accuracy and at very low computational costs. When comparing with
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ab initio or DFT methods, the following points [32] should be kept in
mind, however:

1.

2.

3.

4.

In general, errors tend to be more systematic at a given ab ini-
tio or DFT level and may therefore often be taken into account
by suitable corrections. Errors in semiempirical calculations are
normally less uniform and thus harder to correct.

The accuracy of the semiempirical results may be different for dif-
ferent classes of compounds, and there are elements that are more
”difficult” than others. Such variations in the accuracy are again
less pronounced in high-level ab initio and DFT calculations.

Semiempirical methods can only be applied to molecules contain-
ing elements that have been parameterized, while ab initio and
DFT methods are generally applicable.

Semiempirical parameterizations require reliable experimental or
theoretical reference data and are impeded by the lack, of such
data. Such problems do not occur in ab initio or DFT approaches.

In spite of these limitations, there are many areas where the estab-
lished MNDO-type semiempirical methods can be applied successfully in
calculations of thermochemical properties. This suggests that the under-
lying MNDO model includes the physically relevant interactions so that
the parameterization can absorb the errors due to the MNDO approxi-
mations in an average sense. However, further improvements are clearly
needed, and the inclusion of orthogonalization corrections that account
for Pauli exchange repulsion indeed seems to enhance the accuracy of the
calculated thermochemical properties (see the OM1 and OM2 results).
This supports our belief [12] that a theoretically guided search for bet-
ter models offers the most promising perspective for general-purpose
semiempirical methods with better overall performance.
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