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Preface to the Third Edition

 

This new edition has been enlarged to contain all the
material in the second edition, an expanded chapter
on statistics that now includes sample size estimations
for means and proportions, and a totally new chapter
on financial mathematics. In adding this new chapter
we have also included a number of tables that aid in
performing the calculations on annuities, true interest,
amortization schedules, compound interest, systematic
withdrawals from interest accounts, etc. The treatment
and style of this material reflect the rest of the book,
i.e., clear explanations of concepts, relevant formulas,
and worked examples. The new financial material
includes analyses not readily found in other sources,
such as the effect of lump sum payments on amorti-
zation schedules and a novel “in-out formula” that
calculates current regular deposits to savings in order
to allow the start of systematic withdrawals of a spec-
ified amount at a later date. While many engineers,
mathematicians, and scientists have found much use
for this handy pocket book, this new edition extends
its usage to them and to the many business persons
and individuals who make financial calculations.

 

R.J.T
Philadelphia
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Preface to the Second
Edition
This second edition has been enlarged by the
addition of several new topics while preserving its
convenient pocket size. New in this edition are
the following topics: z-transforms, orthogonal
polynomials, Bessel functions, probability and
Bayes’ rule, a summary of the most common
probability distributions (Binomial, Poisson,
normal, t, Chi square and F), the error function,
and several topics in multivariable calculus that
include surface area and volume, the ideal gas
laws, and a table of centroids of common plane
shapes. A list of physical constants has also been
added to this edition.

I am grateful for many valuable suggestions from
users of the first edition, especially Lt. Col. W. E.
Skeith and his colleagues at the U.S. Air Force
Academy.

R.J.T.
Philadelphia, 1992
© 1999 by CRC Press LLC
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Preface to the First Edition
The material of this book has been compiled so
that it may serve the needs of students and
teachers as well as professional workers who use
mathematics. The contents and size make it
especially convenient and portable. The
widespread availability and low price of scientific
calculators have greatly reduced the need for
many numerical tables (e.g., logari thms,
trigonometric functions, powers, etc.) that make
most handbooks bulky. However, most calculators
do not give integrals, derivatives, series, and other
mathematical formulas and figures that are often
needed. Accordingly, this book contains that
information in addition to a comprehensive table
of integrals. A section on statistics and the
accompanying tables, also not readily provided by
calculators, have also been included.

The size of the book is comparable to that of
many calculators and it is really very much a
companion to the calculator and the computer as
a source of information for writing one’s own
programs. To facilitate such use, the author and
the publisher have worked together to make the
format attractive and clear. Yet, an important
requirement in a book of this kind is accuracy.
Toward that end we have checked each item
against at least two independent sources.

Students and professionals alike will find this
book a valuable supplement to standard textbooks,
a source for review, and a handy reference for
many years.
© 1999 by CRC Press LLC

Ronald J. TaHarida
Philadelphia
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Greek Letters

α A Alpha
β B Beta
γ Γ Gamma
δ ∆ Delta
ε Ε Epsilon
ζ Ζ Zeta
η Η Eta
� Θ Theta
ι Ι Iota
κ Κ Kappa
λ Λ Lambda
µ Μ Mu
ν Ν Nu
ξ � Xi
ο Ο Omicron
π Π Pi
ρ Ρ Rho
σ Σ Sigma
� � Tau
υ � Upsilon
� � Phi
χ Χ Chi
ψ Ψ Psi
ω Ω Omega

The Numbers π and e

π = 3.14159 26535 89793
e = 2.71828 18284 59045
log10e = 0.43429 44819 03252
loge10 = 2.30258 50929 94046
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Prime Numbers

2 3 5  7  11  13 17  19 23 29
31  37 41 43 47 53  59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211  223 227 229
233 239 241 251 257 263  269 271 277 281
… … …

Important Numbers in Science 
(Physical Constants)

Avogadro constant (NA) 6.02 × 1026 kmole−1

Boltzmann constant (k) 1.38 × 10−23 J°K−1

Electron charge (e)  1.602 × 10−19 C
Electron, charge/mass,
(e/me)  1.760 × 1011 C⋅kg−1

Electron rest mass
(me) 9.11 × 10−31 kg

(0.511 MeV)
Faraday constant (F) 9.65 × 104 C⋅mole−1

Gas constant (R)   8.31 × 103 J⋅°K−1

  kmole−1

Gas (Ideal) normal
volume (Vo)  22.4 m3⋅kmole−1

Gravitational constant
(G) 6.67 × 10−11

 N⋅m2⋅kg−2

Hydrogen atom
(rest mass) (mH) 1.673 × 10−27 kg

(938.8 Mev)
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Neutron (rest mass)
(mn)  1.675 × 10−27 kg
 (939.6 MeV)

Planck constant (h)  6.63 × 10−34 J⋅s
Proton (rest mass) (mp)  1.673 × 10−27 kg

(938.3 MeV)
Speed of light (c) 3.00 × 108 m⋅s−1

Contents
1 Elementary Algebra and Geometry

1. Fundamental Properties
(Real Numbers)

2. Exponents
3. Fractional Exponents
4. Irrational Exponents
5. Logarithms
6. Factorials
7. Binomial Theorem
8. Factors and Expansion
9. Progression

10. Complex Numbers
11. Polar Form
12. Permutations
13. Combinations
14. Algebraic Equations
15. Geometry

2 Determinants, Matrices, and 
Linear Systems of Equations
1. Determinants
2. Evaluation by Cofactors
3. Properties of Determinants
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4. Matrices
5.
6.

Operations
Properties

7. Transpose
8.
9.

Identity Matrix
Adjoint

10.  Inverse Matrix
11.  Systems of Linear Equations
12.  Matrix Solution

3 Trigonometry
1.
2.

3.
4.

Triangles
Trigonometric Functions of an
Angle
Trigonometric Identities
 Inverse Trigonometric Functions

4 Analytic Geometry

1.
2.

3.
4.
5.
6.
7.
8.
9.

10.

11.

Rectangular Coordinates
Distance between Two Points;
Slope
Equations of Straight Lines
Distance from a Point to a Line
Circle
Parabola
Ellipse
Hyperbola
Change of Axes
General Equation of Degree
Two
Polar Coordinates
(Figure 4.16)
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5 Series
1.  Bernoulli and Euler Numbers 
2 . Series of Functions 
3 . Error Function 

6 Differential Calculus
1.
2.
3.

4.
5.
6.
7.
8.
9.

10.
11.

Notation
Slope of a Curve
Angle of Intersection of Two
Curves
Radius of Curvature
Relative Maxima and Minima
Points of Inflection of a Curve
Taylor’s Formula
Indeterminant Forms
Numerical Methods
Functions of Two Variables
Partial Derivatives

7 Integral Calculus
1.
2.
3.
4.

5.

6.
7.

Indefinite Integral
Definite Integral
Properties
Common Applications of the
Definite Integral
Cylindrical and Spherical
Coordinates
Double Integration
Surface Area and Volume by
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8 Vector Analysis
1.
2.
3.
4.
5.

Vectors
Vector Differentiation
Divergence Theorem
Stokes’ Theorem
Planar Motion in Polar
Coordinates

9 Special Functions
1.
2 .

3.
4.
5.
6 .

7.
8.
9.

10.
11.

Hyperbolic Functions
Gamma Function (Generalized
Factorial Function)
Laplace Transforms
Z-Transform
Fourier Series
Functions with Period Other
than 2π
Bessel Functions
Legendre Polynomials
Laguerre Polynomials
Hermite Polynomials
Orthogonality

10 Differential Equations
1.

2.

First Order-First Degree
Equations 
Second Order Linear Equations
(With Constant Coefficients) 

11 Statistics
1. Arithmetic Mean
2. Median
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4. Geometric Mean 
5. Harmonic Mean 
6. Variance 
7. Standard Deviation 
8. Coefficient of Variation 
9. Probability 

10. Binomial Distribution 
11. Mean of Binomially Distributed 

Variable 
12. Normal Distribution 
13. Poisson Distribution 
14. Empirical Distributions 
15. Estimation 
16. Hypotheses Testing 
17. t-Distribution 
18. Hypothesis Testing with t- and 

Normal Distributions 
19. Chi-Square Distribution 
20. Least Squares Regression 
21. The F-Distribution 

(Analysis of Variance) 
22. Summary of Probability 

Distributions 
23. Sample Size Determinations 

12 Financial Mathematics

1. Simple Interest 
2. True Interest Formula 

(Loan Payments) 
3. Loan Payment Schedules 
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4. Loan Balance Calculation 
5. Accelerated Loan Payment 
6. Lump Sum Payment 
7. Compound Interest 
8. Time to Double (Your Money) 
9. Present Value of a Single 

Future Payment 
10. Regular Saving to Accumulate 

a Specified Amount 
11. Monthly Payments to Achieve 

a Specified Amount 
12. Periodic Withdrawals From an 

Interest-Bearing Account 
13. Periodic Withdrawals That 

Maintain the Principal 
14. Time to Deplete an 

Interest-Bearing Account 
with Periodic Withdrawals 

15. Amounts to Withdraw for a 
Specified Number of 
Withdrawals I 

16. Amounts to Withdraw for a 
Specified Number of 
Withdrawals II 

17. Present Value of Regular 
Payments 

18. Annuities 
19. The In-Out Formula 
20. Stocks and Stock Quotations 
21. Bonds 
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22. Tax-Free Yield 
23. Stock Options (Puts and Calls) 
24. Market Averages 
25. Mutual Fund Quotations 
26. Dollar Cost Averaging 
27. Moving Average 

Table of Derivatives

Table of Integrals

Appendix 

Table A.1: Areas Under the Standard 
Normal Curve 

Table A.2: Poisson Distribution 
Table A.3: t -Distribution 
Table A.4: χ2  Distribution 
Table A.5: Variance Ratio 
Table A.6: Monthly Payments per $1000 

of Loan Value 
Table A.7: The Growth of $1 at Various 

Annual Interest Rates and Specified 
Number of Years 

Table A.8: Doubling Time for Various Annual 
Interest Rates 

Table A.9: Monthly Savings to Produce $1000 
in the Specified Number of Years 
at the Given Annual Interest Rate 
(Compounded Monthly) 
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Table A.10: Monthly Savings to Produce $1000 
in Specified Number of Years at the Given 
Annual Interest Rate 
(Compounded Annually) 

Table A.11: Percentage of Funds That May 
Be Withdrawn Each Year at the Beginning 
of the Year at Different Annual 
Interest Rates 

Table A.12: Growth of Annual Deposits 
of $1,000 at the End of the Year at 
Specified Annual Interest Rates 

Table A.13: Growth of Annual Deposits 
of $1,000 at the Beginning of the Year 
at Specified Annual Interest Rates 

Table A.14: Monthly Amount That Must 
Be Saved for the Years Indicated 
in Order to Collect $1,000 Per Month 
Thereafter at 4% Annual Interest 
Compounded Monthly 

Table A.15: Monthly Amount That Must 
Be Saved for the Years Indicated 
in Order to Collect $1,000 Per Month 
Thereafter at 6% Annual Interest 
Compounded Monthly 

Table A.16: Monthly Amount That Must 
Be Saved for the Years Indicated 
in Order to Collect $1,000 Per Month 
Thereafter at 8% Annual Interest 
Compounded Monthly 
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Table A.17: Monthly Amount That Must 
Be Saved for the Years Indicated 
in Order to Collect $1,000 Per Month 
Thereafter at 10% Annual Interest 
Compounded Monthly
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Elementary Algebra 1 and Geometry 

Algebra 

1. Fundamental Properties (Real Numbers) 

a + b = b + n  

( a  +b)+c = a  + ( b + c )  

a+O=O+a 

a + ( - a ) = ( - a ) + a  = o  
a(bc)=(ab)c 

nb=bu 

n(b +c)  =ab+ac 

Commutative Law for 
Addition 

Associative Law for 
Addition 

Identity Law for Addition 

Inverse Law for Addition 

Associative Law for 
Multiplication 

Inverse Law for 
Multiplication 

Identity Law for 
Multiplication 

Commutative Law for 
Multiplication 

Distributive Law 

DIVISION BY ZERO IS NOT DEFINED 
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2. Exponents 

For integers m and n 

anam = an + in 

(ab)" =ambm 

(a/b)"'  =a" ' /bm 

3. Fractional Exponents 

where a ' / 9  is the positive qth root of a if a > 0 and the 
negative qth root of a if a is negative and q is odd. 
Accordingly, the five rules of exponents given above 
(for integers) are also valid if rn and n are fractions, 
provided a and b are positive. 

4. Irrational Exponents 

If an exponent is irrational, e.g., a, the quantity, such 
as a fi is the limit of the sequence, a ' ,4 ,  .. . 

Operations with Zero 
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Stirling's Approximation 

(See also 9.2.) 

5. Logatithms 

If x, y, and b are positive and b+ 1 

‘Ogh(v) = log, x+ log, y 

l”gh(x/Y) = log, x-1ogh Y  

log, xp = p log, x 

log,(l/x) = -log,x 

log, b = 1 

log,1 = 0 Note: b”gh’=x. 

l Change of Base (a # 1) 

log, x = log, x log, a 

6. Factorials 

The factorial of a positive integer n is the product of 
all the positive integers less than or equal to the 
integer n and is denoted n!. Thus, 

Factorial 0 is defined: O! = 1. 

l Stirling’s Approximation 

lim (n/e)“&G=ft! 
n-1= 

(See also 9.2.) 
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7. Binomial Theorem 

For positive integer n 

n ( n - l ) ( n - 2 )  

3! 
+ x n - 3 y 3 +  ... 

+my"- ' +y" 

8. Factors and Expansion 

(a+b)'  = a2+2ab+b2 

(a-b) '  = a2-2ab+b2 

( ~ + b ) ~  = a3+3a2b+3abz+b3 

( a  - b)' = a3 - 3a2b + 3ab2 - b3 

( a 2 - b 2 )  = ( a - b ) ( a + b )  

( a 3  - b 3 )  = ( 0  -b)(a' +ab+b2) 

( a 3 + b 3 )  = ( a + b ) ( a 2 - a b + b 2 )  

9. Progression 

An arithmetic progression is a sequence in which the 
difference between any term and the preceding term is 
a constant (d) :  

a , a  +d ,a  + 2 d  ,..., a + ( n  - 1)d. 
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I f  the last term is denoted I [ = a + ( n  - I)d]. then the 
sum is 

n 

2 
S = - ( U + l ) .  

A geometric progression is a sequence in which the ratio 
of any term to the preceding term is a constant r .  Thus, 
for n terms 

a,  ar,  a r 2 , .  . . , ar"- ' 
The sum is 

a - ar" s=- 
1 - r  

10. Complex Numbers 

A complex number is an ordered pair of real numbers 
(a ,  b) .  
Equality: (a ,  b )  = ( c ,  d )  if and only if a = c and b = d  
Addition: ( a , b ) + ( c , d ) = ( a + c , b + d )  
Multiplication: 
The first element ( a , b )  is called the real part; the 
second the imaginary part. An alternate notation for 
( a , b )  is a + b i ,  where i 2 = ( - 1 , 0 ) ,  and i = ( O , I )  or 
0 + l i  is written for this complex number as a conven- 
ience. With this understanding, i behaves as a number, 
i.e., (2  - 3i)(4 + i )  = 8 - 12i + 2i - 3i2 = 11 - 10;. The 
conjugate of a+bi is a - b i  and the product of a 
complex number and its conjugate is a Z + b 2 .  Thus, 
quotients are computed by multiplying numerator and 
denominator by the conjugate of the denominator, as 

( a ,  bXc, d )  =(ac  - bd,ad + bc) 
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illustrated below: 

2 + 3 i  ( 4 - 2 i ) ( 2 + 3 i )  14+Hi 7 + 4 i  
- ~- - --=- 

4 + 2i  (4  - 2i)(4 + 2 i )  20 10 

11. Polar Form 

The complex number x + iy may he represented by a 
plane vector with components x and y 

x + i y = r ( c o s B + i s i n  0 )  

(see ). Then, given two complex numhers 
z , = r l ( c o s O , + i s i n  8 , ) a n d  z2=r2(cos t12+is in02) ,  the 
product and quotient are 

product: z I z 2  =r,r2[cos(BI + O2)+isin(OI + 0 2 ) ]  

quotient: z,/z,=(rl/r2)[cos(f?, - 0,) 

+isin(B, - O,)] 

= [ r(cos e + i sin e )I“ 
=r”[cos nO+isin n o ]  

powers: z” 

FIGURE 1.1. Polar form of complex number. 

Figure  1.1
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12. Permutations 

A permutation is an ordered arrangement (sequence) 
of all or part of a set of objects. The number of 
permutations of n objects taken r at a time is 

p ( n , r )  = n ( n  - l ) ( n  - 2) .. . ( n  - r +  1) 

n !  
( n - r ) !  

- -~ 

A permutation of positive integers is “even” or “odd” if 
the total number of inversions is an even integer or an 
odd integer, respectively. Inversions are counted rela- 
tive to each integer j in the permutation by counting 
the number of integers that follow j and are less than 
j .  These are summed to give the total number of 
inversions. For example, the permutation 4132 has four 
inversions: three relative to 4 and one relative to 3. 
This permutation is therefore even. 

13. Combinations 

A combination is a selection of one or more objects 
from among a set of objects regardless of order. The 
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number of combinations of n different objects taken r 
at a time is 

P ( n , r )  n !  
C ( n , r )  = - = ___ 

r !  r ! ( n - r ) !  

14. Algebraic Equations 

Quadratic 

I f  ux2 + bx + c = 0, and a f 0, then roots are 

- b  db’ - 4ac 

2 a  
x =  

Cubic 

To solve x’ + bx’ + cx + d  = 0, let x = y  - b / 3 .  Then the 
reduced cubic is obtained: 

y.’ + p y + q  = 0 

where p = c - ( 1 / 3 ) b 2  and q = d - ( 1 / 3 ) b c + ( 2 / 2 7 ) b 3 .  
Solutions of the original cubic are then in terms of the 
reduced cubic roots y I . y 2 , y 3 :  

xI  = y ,  - ( 1 / 3 ) b  ~ 2 = ~ , - ( 1 / 3 ) b  

x3 =Y’ - ( 1 / 3 ) b  

The three roots of the reduced cubic are 

y ,  = ( A)”’ + ( B ) ” ’  

y z  = W (  A)”’ + W2( B)”’ 
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where 

A=-p+ (1/27)p.+;9 , l f----T 

B=-;q- (1/27)p-+;q d---T 

-1+i& w=- 
2 

( W2- -l-ifi. 
2 

When (1/27)p’ + (l/4)9’ is negative, A is complex; in 
this case A should be expressed in trigonometric form: 
A = rkos 0 + i sin 0) where 0 is a first or second quad- 
rant angle, as 9 is negative or positive. The three roots 
of the reduced cubic are 

y, = 2( r)“J cos( e/3) 

y,=2(r) 

15. Geomefly 

The following is a collection of common geometric 
figures. Area (A), volume (V), and other measurable 
features are indicated. 
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b 
FIGURE 1.2. Rectangle. A = bh. 

b 
FIGURE 13. Parallelogram. A = bh. 

1 

2 
FIGURE 1.4. Triangle. A = -bh. 
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1 

2 
FIGURE 1.5. Trapezoid. A = -(a + b)h. 

FIGURE 1.6. Circle. A = TR’;  circumference = 27rR; 
arc length S = R B  ( 0  in radians). 

1 
2 

FIGURE 1.7. Sector of circle. A,,,,, = -R2B; 

A ~ ~ ~ ~ ~ ,  = - P ( e - s i n  e). 
1 
2 
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FIGURE 1.8. Regular polygon of n sides. 
?r b r r  

A = Zb’ctn -; R =  -csc -. 
4 n 2 n  

FIGURE 1.9. Right circular cylinder. V =  rrR*h; 
lateral surface area = 2 7 ~ R h .  
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FIGURE 1.10. Cylinder (or prism) with parallel bases. 
V = A h .  

1 

3 
FIGURE 1.11. Right circular cone. V = - nR2h; 

lateral surface area = T R / =  T R @ T ~ .  
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4 

3 
FIGURE 1.12. Sphere. V =  --.nR3; surface area = 

4?rR2. 
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Determinants, Matrices, 
and Linear Systems of 2 Equations 

1. Determinants 

Definition. The square array (matrix) A, with n rows 
and n columns. has associated with it the determinant 

a number equal to 

where i , j , k ,  ..., I is a permutation of the n integers 
1,2,3 ,..., n in some order. The sign is plus if the 
permutation is even and is minus if the permutation is 
odd (see 1.12). The 2 X 2 determinant 

has the value a 1 1 u 2 2 - a 1 2 u 2 1  since the permutation 
U,2)  is even and (2 , l )  is odd. For 3 X 3 determinants, 
permutations are as follows: 
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17 2, 3 even 
1, 3, 2 odd 
2, 1, 3 odd 
2, 3, 1 even 
3, 1, 2 even 
3, 2, 1 odd 

ThUS, 

[+=I1 . a22 . a33 

alI aI2 aI3 
-alI . a23 . 032 

a21 a22 a23 = ’ ‘1 92 . =2l . a33 

a3 a32 a33 
+=I2 . 023 . a31 
+a13 . =2l . =32 
--a13 . a22 . 031 

A determinant of order n is seen to be the sum of n! 
signed products. 

2. Evaluation by Cofactors 

Each element ajj has a determinant of order (n - 1) 
called a minor (Mjj) obtained by suppressing all ele- 
merits in row i and column j. For example, the minor 
of element a22 in the 3 X 3 determinant above is 

The cofactor of element aii, denoted Aij, is defined as 

kM,j, where the sign is determined from i and j: 

Aij = (- l)i+jqj. 
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The value of the n X n  determinant equals the sum of 
products of elements of any row (or column) and their 
respective cofactors. Thus, for the 3 X 3 determinant 

d e t A = a , , A , , + a , 2 A , 2 + a , l A , ~  (first row) 

or 

= a , , A , ,  + a , , A , ,  + a , , A l l  (first column) 

etc. 

3. Properties of Determinants 

a. If the corresponding columns and rows of A are 
interchanged, det A is unchanged. 

b. If any two rows (or columns) are interchanged, the 
sign of det A changes. 

If any two rows (or columns) are identical, det 
A=O. 

If A is triangular (all elements above the main 
diagonal equal to zero), A = a l ,  .a22 ' .  . . *ann:  

c. 

d. 

a , ,  0 0 '.. 0 
a,, a,, 0 0 . . . . . . . . . . . . . . . 
an, a n 2  a n 3  "' a n n  

e. If to each element of a row or column there is 
added C times the corresponding element in an- 
other row (or column), the value of the determi- 
nant is unchanged. 
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4. Matrices 

Definition. A matrix is a rectangular array of numbers 
and is represented by a symbol A or [ a i j ] :  

The numbers are termed elements of the matrk, 
subscripts i and j identify the element as the number 
in row i and column j .  The order of the matrix is m X n  

("m by n"). When m = n ,  the matrix is square and is 
said to be of order n. For a square matrix of order n 
the elements a , , ,  a,* ,... ,ann constitute the main diag- 
onal. 

5. Operations 

Addition. Matrices A and €3 of the same order may be 
added by adding corresponding elements, i.e., 
A + B = [(a,, + b,,)l. 

Scalar multiplication. If A = [a, , ]  and c is a constant 
(scalar), then cA = [ca,,],  that is, every element of 
A is multiplied by c. In particular, ( -  l ) A  = -A  = 

[ -a, , ]  and A + ( - A )  =0, a matrix with all 
elements equal to zero. 

Multiplication of matrices. Matrices A and B may be 
multiplied only when they are conformable, 
which means that the number of columns of A 
equals the number of rows of B .  Thus, if A is 
m x k  and B is k x n ,  then the product C=AB 
exists as an m X n  matrix with elements c,, 
equal to the sum of products of elements in row 
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i of A and corresponding elements of column j of 
B:  

For example, if 

bll b12 ". bl ,  
b2, b22 ". b2n . . . . . . . . . . . . 
bk l  b k 2  "' b k o  

then element c21  is the sum of products a , , b , ,  + 
a22b21  + ... + a z k b k , .  

6. Properties 

A + B = B + A  
A + ( B +  C) = ( A + B )  + C  
(cI + c 2 ) A = c 1 A + c , A  

c( A + B ) = CA + CB 
CI(C2A) = ( C I C 2 ) A  

( A B ) ( C )  = A (  B C )  
( A  + B ) ( C )  =AC+BC 
AB # BA (in general) 
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7. Transpose 

If A is an n X r n  matrix, the matrix of order m X n  
obtained by interchanging the rows and columns of A 
is called the transpose and is denoted Ar. The follow- 
ing are properties of A, E ,  and their respective trans- 
poses: 

(AT)' = A 

( A + B ) '  = A ~ + B ~  

( d ) T  = C A T  

A symmetric matrix is a square matrix A with the 
property A =Ar. 

8. Identity Matrix 

A square matrix in which each element of the main 
diagonal is the same constant a and all other elements 
zero is called a scalar matrix. 

a 0 0 ... 0 
0 a 0 .*. 0 
0 0 a *.. 0 

0 0 0 ... a 

... ... ... ... 

When a scalar matrix multiplies a conformable second 
matrix A, the product is aA; that is, the same as 
multiplying A by a scalar a. A scalar matrix with 
diagonal elements 1 is called the identity, or unit matrix 
and is denoted I. Thus, for any nth order matrix A, 
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the identity matrix of order n has the property 

AI=IA =A 

9. Adjoint 

If A is an n-order square matrix and Aij the cofactor 
of element ajj, the transpose of [A,j] is called the 
adjoint of A: 

adjA = [A,,]’ 

IO. herse Matrix 

Given a square matrix A of order n, if there exists a 
matrix B such that AB = BA = I, then B is called the 

inverse of A. The inverse is denoted A-‘. A necessary 

and sufficient condition that the square matrix A have 
an inverse is det A # 0. Such a matrix is called nonsin- 
gular; its inverse is unique and it is given by 

adjA A-1 =- 
det A 

Thus, to form the inverse of the nonsingular matrix A, 
form the adjoint of A and divide each element of the 
adjoint by det A. For example, 

has matrix of cofactors 
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adjoint= - 14 [ -:: 
Therefore. 

and determinant 21. 

-11 10 2 

27 27 27 
-14  - 2  5 
21 21 21 
19 - 5  - 1  

21 27 27 

- _ -  

- - -  

- - -  

11. Systems of Linear Equations 

Given the system 

a l l x ,  + a 1 2 x Z  + ... + a, ,x ,  = b ,  
a 2 , x l  + a2:x2 +... + aZnxn = b, 

a , , x ,  + a n 2 x 2  +... + annx,, = b, 

a unique solution exists if det A+O, where A is the 
n ~n matrix of coefficients [a , , ] .  

Solution by Determinants (Garner's Rule) 

t d e t  A 
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det A ,  
X k  = - 

d e t A  ' 

where A ,  is the matrix obtained from A by replacing 
the k th  column of A by the column of b's. 

12. Matrix Solution 

The linear system may be written in matrix form AX= 
B where A is the matrix of coefficients [a;,] and X and 
B are 

If a unique solution exists, det A # O ;  hence A - l  exists 
and 

x = A - ~ B .  
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3 Trigonometry 

1. Triangles 

In any triangle (in a plane) with sides a, b, and c and 
corresponding opposite angles A, B, C, 

a b C  
- z - = -  

sin A sin B sin C. 

a’=b2+c2-2cbcosA. 

a+b tmi(A+B) 
-= 
a-b tani(A-B)’ 

taniA=/F. 

U..aw of Sines) 

(Law of Cosines) 

(Law of Tangents) 

where s = $a + b + c). 

1 
Area = 2 bc sin A 

= ds(x-a)(s-b)(s-c). 
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If the vertices have coordinates (I!, y , ) ,  ( x 2 ,  yz),  
( x 3 ,  y 3 ) ,  the area is the absolute value of the expression 

2. Trigonometric Functions of an Angle 

With reference to P ( x , y )  is a point in 
either one of the four quadrants and A is an angle 
whose initial side is coincident with the positive x-axis 
and whose terminal side contains the point P ( x , y ) .  
The distance from the origin P ( x , y )  is denoted by r 
and is positive. The trigonometric functions of the 

Y 

(111) 

FIGURE 3.1. The trigonometric point. Angle A is 
taken to be positive when the rotation is counterclock- 
wise and negative when the rotation is clockwise. The 
plane is divided into quadrants as shown. 

Figure  3.1,
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angle A are defined as: 

sin A = sine A = Y / r  
cos A = cosine A = x / r  

tan A = tangent A = y / x  

ctn A = cotangent A = x / y  

sec A = secant A = r / x  

csc A = cosecant A = r / y  

Angles are measured in degrees or radians; 180" = 7 

radians; 1 radian = 180"/r degrees. 

The trigonometric functions of O", 30", 45", and integer 
multiples of these are directly computed. 

0" 30" 45" 60" 90" 120" 135" 150" 180" 

f i f i  1 
1 - -  - 0  

1 f i 6  
sin 0 - - - 

2 2 2  2 2  2 

1 6 m -6 - 1  -- O O  fi 
tan 0 - 

3 3 

6 
0 -- - 1  -6 " 6 

ctn = 6 1 - 

sec 1 - fi 2 m -2 -C -- - 

2 6  2 6  

3 3 

2 6  
3 

2 
2 6  

3 

C S C "  2 f i T  1 - 
3 
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3. Trigonometric Identities 

1 
sin A = ~ 

csc A 

1 

sec A 
cos A = - 

1 sin A 

ctn A cos A 
tan A = - = - 

1 

sin A 
csc A = - 

1 
sec A = - 

cos A 

sin2 A + cos2 A = 1 

1 +tan2 A = sec2 A 

1 +ctn2 A =csc2 A 

sin( A *B) =sin A cos B * cos Asin B 

cos( A *B) = cos Acos B f sin Asin B 

tanA+tanB 

1 T tan Atan B 
tan(A + B )  = 

sin3A=3sin A-4sin3 A 
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sin nA = 2sin( n - l ) A  cos A - sin( n - 2)A 

cos2A=2cos2A-1=1-2s in2A 

cos3A = 4cos3 A - 3cos A 

cos nA = 2cos(n - 1)A cos A -cos(n - 2)A 

1 1 
2 2 

1 1 
2 2 

1 1 
2 2 

1 1 
2 2 

sin A + sin B = 2sin-( A + B)cos-( A -B) 

sin A - sin B = 2cos- ( A +B)sin - ( A  - B )  

COSA + c o s B = ~ c o s - ( A  +B)cos-(A -B) 

cos A - cos B = - 2sin - ( A  +B)sin-( A - B) 

sin( A f B) 
cos A cos B 

tan A f tan B = 

sin(A f B )  
sin A sin B 

ctn A ctn B = f 

1 1 
sin A sin B = -cos( A -B) - -UJS( A + B) 

2 2 

1 1 
2 2 

1 1 
2 2 

cos A COS B =  -COS(A - B )  + -COS( A + B )  

sin A cos B = -sin( A + B) + -sin( A - B) 
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A 1 -cosA sin A 1 -KIS A tan-=-=-= 
2 sin A 1+cos A 1 +cos A 

1 
2 

sin' A = - (1 - C O S ~ A )  

1 

2 

1 

4 

1 
4 

COS' A = - (1 + cos 2 A )  

sin3 A=-(3sin A-sin3A) 

COS' A = -(cos3A + ~ C O S  A )  

1 

2 
sin k = -i( e x  - e - x )  = I ' sinh ' x 

1 
2 

cos i r=- (e"+e-")=coshx  

i(e'-e-' 
eX+e- '  

t a n k =  = i t a n h x  

, x + i y -  - e  x (cosy+is iny)  

(cos x +isin x ) "  = cos m * i sin nr 

4. Inverse Trigonometric Functions 

The inverse trigonometric functions are multiple val- 
ued, and this should be taken into account in the use of 
the following formulas. 
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sin-’ x=cos-‘jl-x* 

E -sin-‘( -x) 

cos-’ x=sin-Id-7 

= tan-’ 
41 -x2 
-=ctn-’ & 

x 

1 
=sec-‘- 

x =cX-1 &J 

= Tr-cos-‘( -x) 

tan-’ 
1 

x=ctn-‘- 
X 

= -tan-‘( -X) 
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4 Analytic Geometry 

I .  Rectangular Coordinates 

The points in a plane may be placed in one-to-one 
correspondence with pairs of real numbers. A common 
method is to use perpendicular lines that are horizontal 
and vertical and intersect at a point called the origin. 
These two lines constitute the coordinate axes; the 
horizontal line is the x-axis and the vertical line is the 
y-axis. The positive direction of the x-axis is to the right 
whereas the positive direction of the y-axis is up. If P 
is a point in the plane one may draw lines through it 
that are perpendicular to the x- and y-axes (such as the 
broken lines of 1. The lines intersect the 
x-axis at a point with coordinate x ,  and the y-axis at a 

Y 

FIGURE 4.1. Rectangular coordinates. 

Figure  4.1
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point with coordinate y , .  We call x ,  the x-coordinate 
or abscissa and y ,  is termed the y-coordinate or or& 
nafe of the point P. Thus, point P is associated with 
the pair of real numbers ( x , , y , )  and is denoted 
P ( x , , y , ) .  The coordinate axes divide the plane into 
quadrants I, 11, III, and IV. 

2, Distance between Two Points; Slope 

The distance d between the two points P , ( x , , y , )  and 
P z ( x , , y 2 )  is 

In the special case when PI and Pz are both on one of 
the coordinate axes, for instance, the x-axis, 

d =  \ / < x , - x , ) *  = I x 2 - x I I ,  

or on the y-axis, 

The midpoint of the line segment P I P z  is 

( X I  -- ;*2, Y ,  +YZ ) 
2 

The slope of the line segment PIPz, provided it is not 
vertical, is denoted by m and is given by 
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The slope is related to the angle of inclination a 
by 

m = t a n a  

Two lines (or line segments) with slopes m,  and m 2  
are perpendicular if 

m,  = - I/m2 

and are parallel if m,  = m 2 .  

Y 

FIGURE 4.2. The angle of inclination is the smallest 
angle measured counterclockwise from the positive x- 
axis to the line that contains P I P 2 .  

3. Equations of Straight Lines 

A vertical line has an equation of the form 

x = c  

where (c,O) is its intersection with the x-axis. A line of 
slope m through point ( x , ,  y , )  is given by 

Y - Y ,  = m ( x - x , >  

(Figure 4.2)
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Thus, a horizontalline (slope = 0) through point ( x , , y , )  
is given by 

Y = Y , .  

A nonvertical line through the two points P , ( x , , y , )  
and P 2 ( x 2 , y 2 )  is given by either 

y - y , =  (-)(x-xJ Y2 -Yi 
x2 - X I  

or 

y - y 2 =  ( - ) ( x - d .  Y2 -Yl 
x2 - X I  

A line with x-intercept a and y-intercept b is given by 

( a  # 0,  b # 0). 
X Y  - + - = I  
a 6  

The general equation of a line is 

k + B y  + c =o  

The normal form of the straight line equation is 

x cos 8 + y  sin 8 = p  

where p is the distance along the normal from the 
origin and 8 is the angle that the normal makes with 
the x-axis 

The general equation of the fine Rr + By -k C = 0 may 
be written in normal form by dividing by t m,
where the plus sign is used when C is negative and the 

(Figure 4.3)
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FIGURE 4.3. Construction for normal form of 
straight line equation. 

minus sign is used when C is positive: 

Ar+By+C 

* d Z F  =O7 

so that 

A B 
cos e= sin e= *dA1+B2’ * d m  

and 

ICI 
P=- 

4. Distance from a Point to a Line 

d r n ’  

The perpendicular distance from a point P ( x , , y , )  to 
the line A x  + By + C = 0 is given by d 

Ax ,+By ,+C 
d =  * 4 m  ’ 
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5. Circle 

The general equation of a circle of radius r and center 
at P ( x , , y , )  is 

( x - x , ) Z +  ( y  -y , )2  =?. 

6. Parabola 

A parabola is the set of all points ( x , y )  in the plane 
that are equidistant from a given line called the direc- 
frir and a given point called the focus. The parabola is 
symmetric about a line that contains the focus and is 
perpendicular to the directrix. The line of symmetry 
intersects the parabola at its uerter . The 
eccentricity e = 1. 

The distance between the focus and the vertex, or 
vertex and directrix, is denoted by p(  > 0) and leads to 
one of the following equations of a parabola with 
vertex at the origin and : 

Y 

FIGURE 4.4. Parabola with vertex at ( h , k ) .  F identi- 
fies the focus. 

(Figure  4.4)

(Figures  4.5 4.6)
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i 

FIGURE 4.5. Parabolas with y-axis as the axis of sym- 

metry and vertex at the origin. (Upper) y = -; (lower) 
2 
4P 

y = - - .  
4P 

X2 

4P 
Y = -  (opens upward) 

2 
y = - - 

4P 
(opens downward) 

(opens to right) 
Y 2  
4P 

x =  - 

x =  -- y 2  (opens to left) 
4P 
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x - - p  

Y 

FIGURE 4.6. Parabolas with x-axis as the axis of sym- 

metry and vertex at the origin. (Upper) x =  -; (lower) Y 2  

4P 
Y 2  

4P. 
x =  - - 
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For each of the four orientations shown in 
and the coresponding parabola with vertex ( h , k )  is 
obtained by replacing x by x -h  and y by y - k .  Thus, 
the parabola in has the equation 

Y 

I 
FIGURE 4.7. Parabola with vertex at ( h , k )  and axis 
parallel to the x-axis. 

7. Ellipse 

An ellipse is the set of all points in the plane such that 
the sum of their distances from two fixed points, called 
foci, is a given constant 2 a .  The distance between the 
foci is denoted 2c; the length of the major axis is 2a ,  
whereas the length of the minor axis is 26  
and 

Figures  4.5
4.6,

Figure  4.7

(Figure 4.8)
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Y 

I 

FIGURE 4.8. Ellipse; since point P is equidistant 
from foci F ,  and F2 the segments F , P  and F 2 P = a ;  
hence a = d m .  
The eccentricity of an ellipse, e, is < 1. An ellipse with 
center at point ( h , k )  and major axis parallel fo [he 
X-aris is given by the equation 

( X - h y  ( y - k ) *  
+-= I .  

l l 2  b2 

I' 

FIGURE 4.9. Ellipse with major axis parallel to the 
x-axis. F, and F2 are the foci, each a distance c from 
center ( h , k ) .  

(Figure 4.9)
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An ellipse with center at ( h , k )  and major axis parallel 
to the y-axis is given by the equation 

Y 

FIGURE 4.10. Ellipse with major axis parallel to the 
y-axis. Each focus is a distance c from center ( h ,  k ) .  

8. Hyperbola fe > 1) 

A hyperbola is the set of all points in the plane such 
that the difference of its distances from two fuced 
points (foci) is a given positive constant denoted 2a. 
The distance between the two foci is 2c and that 
between the two vertices is 2a. The quantity b is 
defined by the equation 

(Figure 4.10)
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and is illustrated in 
struction of a hyperbola given by the equation 

, which shows the con- 

When the focal axis is parallel to the y-axis the equa- 
tion of the hyperbola with center ( h , k )  
and is 

( y  - k ) 2  ( x  -h)2 
1. ---= 

a' b' 

FIGURE 4.11. Hyperbola; V, ,  V2 =vertices; F , ,  F2 = 
foci. A circle at center 0 with radius c contains the 
vertices and illustrates the relation among a, b, and c. 
Asymptotes have slopes b /a  and -b/a for the orien- 
tation shown. 

Figure 4.11

(Figures 4.12
4.13)
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x-h f 

FIGURE 4.12. Hyperbola with center at ( h , k ) :  
( x - h ) 2  
- -___= ( y - k ) 2  1; slopes of asymptotes f b / a .  

a 2  b2 

FIGURE 4.13. Hyperbola with center at ( h , k ) :  
( y - k ) 2  ( ~ - h ) ~  
--___= 1; slopes of asymptotes + a / b .  

a2 6’ 
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If the focal axis is parallel to the x-axis and center 
(h ,  k ) ,  then 

( x  -h)2 ( y  - k ) 2  
-1  

a’ b2 

9. Change of Axes 

A change in the position of the coordinate axes will 
generally change the coordinates of the points in the 
plane. The equation of a particular curve will also 
generally change. 

Translation 

When the new axes remain parallel to the original, the 
transformation is called a translation . The 
new axes, denoted x ’  and y ‘ ,  have origin 0’ at ( h , k )  
with reference to the x and y axes. 

FIGURE 4.14. Translation of axes. 

(Figure 4.14)
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FIGURE 4.15. Rotation of axes. 

A point P with coordinates ( x , y )  with respect to the 
original has coordinates (x',  y ' )  with respect to the new 
axes. These are related by 

x = x ' + h  

y = y ' + k  

For example, the ellipse of has the follow- 
ing simpler equation with respect to axes x '  and y' 
with the center at ( h , k ) :  

Y ' 2  Y2 
--+-=I. 
a' 6' 

9 Rotation 

When the new axes are drawn through the same origin, 
remaining mutually perpendicular, but tilted with re- 
spect to the original, the transformation is one of 
rotation. For angle of rotation d, , the 
coordinates (x,y) and ( x ' , y ' )  of a point P are related 
bY 

x=x'cos Q-y'sin Q 

Figure 4.10

(Figure 4.15)
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y  =x’sin C#I+~‘CCJS C) 

10. General Equation of Degree Two 

Ax*+Bxy+Cy’+Dx+Ey+F=O 

Every equatiori of the above form defines a conic 
section or one of the limiting forms of a conic. By 
rotating the axes through a particular angle #, the 
v-term vanishes, yielding 

with respect to the axes x’ and y’. The required angle 
4 (see > is calculated from 

B 
tan2$= - 

A-C’ 
(4 < 903. 

11. Polar Coordinates ( 1 

The fixed point 0 is the origin or pole and a line OA 

drawn through it is the polar axis. A point P in the 
plane is determined from its distance r, measured from 

FIGURE 4.16. Polar coordinates. 

Figure 4.15

Figure 4.16
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0, and the angle 8 between U P  and UA. Distances 
measured on the terminal line of 8 from the pole are 
positive, whereas those measured in the opposite direc- 
tion are negative. 

Rectangular coordinates (x, y) and polar coordinates 
(r ,  8 )  are related according to 

x = r  cos 8, y=r s in  8 

r 2 = x 2 + y 2 ,  tanB=y/x. 

Several well-known polar curves are shown in 
to . 

The polar equation of a conic section with focus at the 
pole and distance 2 p  from directrix to focus is either 

FIGURE 4.17. Polar curve r = e n s .  

FIGURE 4.18. Polar curve r = a cos2d. 

Figures
4.17 4.21
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FIGURE 4.19. Polar curve r = 2n cos 0 + b. 

FIGURE 4.20. Polar curve r = a sin 36'. 

FIGURE 4.21. Polar curve r = a(1 - cos 0). 

(directrix to left of pole) 
2 eP r =  ~ 

1 -ecos 0 

or 

(directrix to right of pole) 2 eP 
1 + e  cos e 

r =  - 
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The corresponding equations for the directrix below or 
above the pole are as above, except that sin B appears 
instead of cos 0. 

12. Curues and Equations 

O b  
ax 

FIGURE 4.22. y =  - 
x + b  

Y 

t 
I t 

FIGURE 4.23. y = log X .  
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FIGURE 4.24. y = e X .  

FIGURE 4.25. y = a e - ' .  
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Y 

FIGURE 4.26. y = x  log x .  

Y 

I 
I 

0 1 2 3 4 

FIGURE 4.27. y =xe-' .  

r' I 

0 I , 
I* ... 100 

- 1  

FIGURE 4.28. y = e-" - e - b x ,  0 < a  < b (drawn for 
a =0.02, b =0.1, and showing maximum and inflection). 
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- 1  

FIGURE 4.29. y = sin x.  

Y 

t 1.- I  

FIGURE 4.30. y = cos x.  

Y 

t 

FIGURE 431. y = tan x.  
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Y 

I 
FIGURE 4.32. 

Y 
4 

y = arcsin x .  

FIGURE 4.33. y = arccos x .  
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Y 

t 

FIGURE 4.34. y = arctan x .  

FIGURE 4.35. 
(logistic equation). 

y = eh"/a(l  + e'"), x 2 0 
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5 Series 

I. Bernoulli and Euler Numbers 

A set of numbers, El ,  B ,,..., B2"-  I (Bernoulli num- 
bers) and B,, B,, . . . , B,, (Euler numbers) appear in 
the series expansions of many functions. A partial 
listing follows; these are computed from the following 
equations: 

2n(2n - 1) 
B2" - 2! B 2 n - 2  

2n(2n - 1)(2n - 2)(2n - 3) 
4! 

+ BZn-4- ... 

+ ( -  1)" =0,  

and 

22"(22" - 1 )  
B2, - l= (2n-1 )B2n-2  

2n 

(2n - 1)(2n - 2)(2n - 3) 

3! 
- B2"- + . . . + ( - 1)"- I .  

B,  =1/6 B2 = I  
B, =1/30 B, = 5  
B, =1/42 B, =61 
B, = 1/30 
B, =5/66 B,, = 50521 

B, = 1385 
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B , ,  =691/2730 B, ,  = 2702765 

B, ,  = 7/6 B , ,  = 199360981 

2. Series of Functions 

In the following, rhe interval of convergence is indi- 
cated, otherwise it is all x .  Logarithms are to the base 
e.  Bernoutli and EuIer numbers (B2" -, and B2nf ap- 
pear in certain expressions. 

4, - l > ( n  -2& 3 + x + ... 
3! 

n! 
( n  - j ) ! j !  

+ F a n - l  x J +... [ X * < U ? ]  

1 
[b2x' < a 2 ]  

n(n  - 1) 

2! 
(1 + X I "  = 1 &m+ ~ X 2  

n ( n  - l ) (n - 2 ) x 3  +...  [ X * < l ]  
3! * 

n ( n i - 1 )  

2! 
(1  + x ) - "  = 1 Tm+- XZ 

n ( n + l ) ( n + 3 )  

3! 
T x 3 +  ... [ A l l  
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1 1  1.3 

2 2.4 - 2 . 4 4  
(1 i - x ) f =  1 +_ -x- -x2 + -2 

1.3.5 
2.4.6.8 

_ _ _  x 4 *  ... [ x 2 < 1 ]  

I 1 1.3 1.3.5 

2 2.4 2.4.6 
(1  + x ) - ' =  1 T - x +  - x 2 T  -x3 

1.3.5.7 

2.4.6.8 
+- X 4 T  ... [ x 2 < 1 ]  

I 1 x4 1.3 
(1 *x2)1= 1 f - x 2  - - f - X b  

2 2.4 2.4.6 

(1 * x ) - '  = 1 T x + x 2 f x 3 + x 4 T x 5 +  ... 

[ x2 < 11 

(1 + x ) - ~  = 1 T 2 x +  3 x 2  T 4 x 3  + 5x4 T .. . 

x2 x 3  x4 

2! 3! 4! 
ex = 1 + x  + - + - + - + . . 

( x  log (X  log a)3 
ax= 1 + X  log a + ~ + - + 1 . .  

2! 3! 
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. 
1 1 

2 3 
logx= (x -  1) - -(x- 1)2+ - (x -  1)3-  .. 

1-1 1 x - 1  1 x - 1  
logx=-+- x 

2 (  - x )+3(x)+-

log x =  2[ (G ) + 7 1 (x+l x - 1  + 3 1 (x+l x - 1  y + ...I 
1 1 1  

2 3 4  
log(1 +x) =x - -x2 + -x3 - -x4 + . . . 

[ X I  < 11 

1 (K) [ 3 5 7 
1 1 1  

log - =2 x+-x3+-xS+-x7+ ... 

[ x2 < 11 

log( 5)  =2[; + f (; r+ f (; y + . . .I 
[ X * > l ]  

x3 xs x7 

3! 5 !  7! 

x2 x4 x6 

2! 4! 6 !  

sin x =x - - + - - - + . . . 

cos x = 1 - - + - - - + . . . 
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x3 2x5 17x' 
tan x =x + - + - + - 

3 15 315 

22"(22R - 1)B2n-lX2n-' + ... + 
(2n)! 

.. 

[x2<;] 

[ X *  < 7 2 1  

x2 5x4 61xh 

2! 4! 6 !  
secx= 1 + - + - + -+ ... 

BZnxZn 

(2n)! 
+- + ... 

1 x 7x3 31x' 
cscx= - + - + - + - 

x 3! 3.5! 3.7! 

B2,,+,xZn+l+ ... 1) 2(22"+ I - 
+ ... + 

(2n + 2)! 

x 3  (1.3)~ '  (1.3.5)~' 

6 (2.4)5 (2.4.6)7 
sin-'x=x+-+-+- + ... 
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1 1 1  
3 5 7  

tan-'x = x  - - x 3  + - x s  - - x 7  + . . 

x 3  x 5  x 7  

3! 5! 7! 
sinh x = x +  - + - + - + ... 

x 2  x 4  X h  x a  

2! 4!  6!  8! 
cash X =  1 + - + - + - + - + . . 

X 3  
- (24 - Ip4E3-  

2! 4! 
tanh x =  (2'- 1)2*8, 

+(2h- 1)26BB,- - ... [ 2 < 4 6 !  

4! 

2'B5x6 
6! 

+ - - ...) 
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B,x' B 4 x 4  B,xh  
2! 4! 6 !  

sech x =  1 - - + - - - + ... 

1 X 
C S C ~  X =  - - (2- 1)2B, - 

X 2! 

X.1 

4! 
+( 2 3 - 1 1 ) 2 ~ ~ - -  ... 

[ x2 < d] 

1 x 3  1.3 x S  1.3.5 x 7  
= x  - - - + - - - - - 

2 3 2.4 5 2.4.6 7 
+ ... sinh - 1 

x3 X S  x7 
tanh-' x = x +  - + - + -+ ... 

3 5 7  

1 1  1 
ctnh-' X =  - + - + - + ... 

x 3x3 5x5 

[ x 2 < 1 ]  

[ x 2 < 1 ]  

[ x ' >  11 

1.3.5 

2.4.6. 7x7 
+... [ x 2 > 1 ]  -~ 

1 xs x7 
i x e - '  dt = x  - - x 3  + - - - + . . . 
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3. Error Function 

The following function, known as the error function, 
erf x, arises frequently in applications: 

The integral cannot be represented in terms of a finite 
number of elementary functions, therefore values of 
erfx have been compiled in tables. The following is the 
series for erf x: 

1 

1 5 x’ 
erfx=- x--x-+x--+... 

; 3 .5.2! 7.3! I 

There is a close relation between this function and the 
area under the standard normal curve . For 
evaluation it is convenient to use z instead of x; then 
erf z may be evaluated from the area F(Z) given in 

by use of the relation 

erfz=2F(fiz) 

Example 

erf(O.5)=2F[(1.414)(0.5)] =2F(0.707) 

By interpolation from 
erf(0.5) = 0.520. 

F(0.707) = 0.260; thus, 

(Table A.1)

(Table A.1)

(Table A.1),

(Table A.1)
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6 Differential Calculus 

I .  Notation 

For the following equations, the symbols f ( x ) ,  g ( x ) ,  
etc., represent functions of x .  The value of a function 
f ( x )  at x = a  is denoted f ( a ) .  For the function y = f ( x )  
the derivative of y with respect to x is denoted by one 
of the following: 

Higher derivatives are as follows: 

and values of these at x = a are denoted f ” ( a ) ,  f”’(a), 
etc. (see Table of Derivatives). 

2. Slope of a Curve 

The tangent line at a point P ( x , y )  of the cuwe y = f ( x )  
has a slope f ‘ ( x )  provided that f ’ ( x )  exists at P .  The 
slope at P is defined to be that of the tangent line at 
P .  The tangent line at P ( x , , y , )  is given by 
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The normal line to the curve at P ( x , , y , )  has slope 
- l/f’(.r,) and thus obeys the equation 

(The slope of a vertical line is not defined.) 

3. Angle of Intersection of Two Curves 

Two curves, y = f , ( x )  and y = f , ( x ) ,  that intersect at a 
point P ( X , Y )  where derivatives f & X ) ,  f ; ( X )  exist, 
have an angle (a) of intersection given by 

If tan a > 0, then a is the acute angle; if tan a < 0, then 
a is the obtuse angle. 

4. Radius of Curvature 

The radius of curvature R of the curve y = f ( x )  at 
point P ( x , y )  is 
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In polar coordinates (0 ,  r )  the corresponding formula is 

R =  

The curuature K is 1/R. 

5. Relative Maxima and Minima 

The function f has a relative maximum at x = a  if 
f ( a ) r f ( u  +c) for all values of c (positive or negative) 
that are sufficiently near zero. The function f has a 
relative minimum at x = b  if f ( b ) s f ( b  +c)  for all 
values of c that are sufficiently close to zero. If the 
function f is defined on the closed interval x ,  sx s x 2 ,  
and has a relative maximum or minimum at x = a ,  
where x ,  < a  < x 2 ,  and if the derivative f’(x) exists at 
x = u ,  then f ’ ( a ) = O .  It is noteworthy that a relative 
maximum or minimum may occur at a point where the 
derivative does not exist. Further, the derivative may 
vanish at a point that is neither a maximum or a 
minimum for the function. Values of x for which 
f ‘ ( x )  = 0 are called “critical values.” To determine 
whether a critical value of x ,  say x,,  is a relative 
maximum or minimum for the function at x c ,  one may 
use the second derivative test 

1. If f ” ( x , )  is positive, f ( x J  is.a minimum 

2. If f ” ( x c )  is negative, f ( x , )  is a maximum 

3. If f ” ( x , )  is zero, no conclusion may be made 
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The sign of the derivative as x advances through x ,  
may also be used as a test. If f ’ ( x )  changes from 
positive to zero to negative, then a maximum occurs at 
x,,  whereas a change in f ‘ ( x )  from negative to zero to 
positive indicates a minimum. If f ’ ( x )  does not change 
sign as x advances through x c ,  then the point is nei- 
ther a maximum nor a minimum. 

6. Points of Inflection of a Curve 

The sign of the second derivative of f indicates whether 
the graph of y = f ( x )  is concave upward or concave 
downward: 

f” ( x )  > 0: concave upward 

f” ( x )  < 0: concave downward 

A point of the curve at which the direction of concavity 
changes is called a point of inflection . Such 
a point may occur where f ” ( x  ) = 0  or where f”(x) 
becomes infinite. More precisely, if the function y =  
f ( x )  and its first derivative y’  = f ‘ ( x )  are continuous in 
the interval a 5 x 5  b, and if y ”  = f ” ( x )  exists in u < x  
<b, then the graph of y = f ( x )  for u < x  <b is concave 

FIGURE 6.1. Point of inflection. 

(Figure 6.1)
© 1999 by CRC Press LLC



 

upward if f " ( x )  is positive and concave downward if 
f " ( x )  is negative. 

7. Taylor's Formula 

If f is a function that is continuous on an interval that 
contains a and x ,  and if its first (n + 1) derivatives are 
continuous on this interval, then 

f " ( n )  f( x )  =f(u) + f ' ( u ) (  x - a )  + -( x -u)2  
2! 

+- f " ' ( a )  ( x  - u)3 + . . . 
3 !  

where R is called the remainder. There are various 
common forms of the remainder: 

Lugrange's form: 

Cauchy's form: 

P between a and x .  
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Integral form: 

x ( x - r ) “  
R = - f ( “ +  ‘ ) ( I )  dt 

a n !  

8. Indeterminant Forms 

If f ( x )  and g ( x )  are continuous in an interval that 
includes x = u  and if f ( a ) = O  and g(a)=O, the limit 
lim, (I ( f ( x ) / g ( x ) )  takes the form “O/O”, called an 
indeterminant form. L’HGpital’s rule is 

f ’ ( x )  - lirn -. lirn -- f ( x )  
x - a  g ( X )  1 - 1 1  g ‘ ( x )  

Similarly, it may be shown that if f ( x )  + m and g ( x )  + m 

as x + a ,  then 

(The above holds for x + m.1 

Examples 

sin x cos x 
lirn -= lirn -- -1  

x - 0  x x - 0  I 

9. Numerical Methods 

a. Newton’s method for approximating roots of the 
equation f ( x ) = O  A first estimate x ,  of the root is 
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made; then provided that f ' ( x , ) # O ,  a better ap- 
proximation is x 2  

The process may be repeated to yield a third ap- 
proximation x ,  to the root: 

provided f ' ( x , )  exists. The process may be re- 
peated. (In certain rare cases the process will not 
converge.) 

b. Trapezoidal rule for areas : For the func- 
tion y = f ( x )  defined on the interval ( n ,  b )  and posi- 
tive there, take n equal subintervals of width A x =  
( b  - a ) / n .  The area bounded by the curve between 

Y 

FIGURE 6.2. Trapezoidal rule for area. 

(Figure 6.2)
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x = u  and x = b  (or definite integral of f ( x ) )  is 
approximately the sum of trapezoidal areas, o r  

Estimation of the error ( E l  is possible if the second 
derivative can be obtained: 

where c is some number between a and b. 

10. Functions of Two Variables 

For the function of two variables, denoted z = f ( x , y ) ,  if 
y is held constant, say at y = y , ,  then the resulting 
function is a function of x only. Similarly, x may be 
held constant at x I ,  to give the resulting function of y. 

The Gas Laws 

A familiar example is afforded by the ideal gas law that 
relates the pressure p .  the volume V and the absolute 
temperature T of an ideal gas: 

pV= nRT 

where n is the number of moles and R is the gas 
constant per mole, 8.31 (J."K-' .mole- ' ) .  By rear- 
rangement, any one of the three variables may be 
expressed as  a function of the other two. Further, 
either one of these two may be held constant. If T is 
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held constant, then we get the form known as Boyle's 
law: 

p = k V - '  (Boyle's law) 

where we have denoted nRT by the constant k and, of 
course, V >  0. If the pressure remains constant, we have 
Charles' law: 

V=hT (Charles' law) 

where the constant h denotes nR/p .  Similarly, volume 
may be kept constant: 

p = a T  

where now the constant, denoted a,  is nR/V .  

11. Partial Deriuatii-es 

The physical example afforded by the ideal gas law 
permits clear interpretations of processes in which one 
of the variables is held constant. More generally, we 
may consider a function z = f ( x ,  y )  defined over some 
region of the x-y-plane in which we hold one of the two 
coordinates, say y ,  constant. If the resulting function of 
x is differentiable at a point ( x , y )  wc denote this 
derivative by one of the notations 

fx, S. f /6 * ,  6 z / 6 x  

called the partial derii*atiLv with respect to x .  Similarly, if 
x is held constant and the resulting function of y is 
differentiable, we get the partial den'iwtirv with respect 
lo y ,  denoted by one of th: following: 
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Example 

Given z = x 4 y 3  -ysin x i  4y ,  rhen 

62/61 = 4(Xyy -y cosx; 

& / 6 ~  =3x4y2-s inx+4 .  
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7 Integral Calculus 

1. Indefinite Integral 

If F ( x )  is differentiable for all values of x in the 
interval (a,  b)  and satisfies the equation dy /dr=f (x ) ,  
then F ( x )  is an integral of f ( x )  with respect to x .  The 
notation is F ( x )  = / f ( x ) d u  or, in differential form, 
dF(x)  = f ( x )  du. 

For any function F ( x )  that is an integral of f ( x )  i t  
follows that F ( x )  + C is also an integral. We thus write 

lf( x )  dr = F( x )  + C .  

(See Table of Integrals.) 

2. Definite Integral 

Let f ( x )  be defined on the interval [ a , b ]  which is 
partitioned by points xl, x2 , . .  . , x i , .  .., x,  - I between 
a=xo and b=x , .  The jth interval has length A x j = x j  
-xi- ,, which may vary with j. The sum Ey= I f ( u j ) A x j ,  
where uj is arbitrarily chosen in the j th  subinterval, 
depends on the numbers xO,  ... , x n  and the choicy of 
the u as well as f; but if such sums approach a 
common value as all A x  approach zero, then this value 
is the definite integral of f over the interval (a, b )  and 
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is denoted /," f ( x ) d r .  The fundamental theorem of 
integral calculus states that 

where F is any continuous indefinite integral of f in 
the interval (a ,  b). 

3. Properties 

4. Common Applications of the Definite Integral 

Area (Rectangular Coordinates) 

Given the function y = f ( x )  such that y > 0 for all x 
between a and b, the area bounded by the curve 
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y=f(x), the x-axis, and the vertical lines x = a  and 
x = b  is 

A = 16f(x) dx. 
U 

Length of Arc (Rectangular Coordinates) 

Given the smooth curve f(x,y)=O from point ( x , , ~ , )
to point ( x 2 , y 2 ) ,  the length between these points is 

Mean Value of a Function 

The mean value of a functionf(x) continuous on [ a ,  b] is 

Area (Poiar Coordinates) 

Given the curve r=f(6), continuous and non-negative 
for 6 ,  I 6 s  e2, the area enclosed by this curve and the 
radial lines 6= 6, and 8= O2 is given by 
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Length of Arc (Polar Coordinates) 

Given the curve r =f (O)  with continuous derivative 
f'(6) on 6 ,  s 6s 0 2 ,  the length of arc from 6 =  6 ,  to 
6 = 6 ,  is 

Volume of Revolution 

Given a function y = f ( x )  continuous and non-negative 
on the interval ( a ,  b),  when the region bounded by f ( x )  
between a and b is revolved about the x-axis the 
volume of revolution is 

Suflace Area of Revolution 
(revolution about the x-axis, between a and b )  

If the portion of the curve y = f ( x )  between x = a  and 
x = b  is revolved about the x-axis, the area A of the 
surface generated is given by the following: 

A = Ib27Tf( x ) (  1 + [ f '( x)]2)1'2 dr 
a 

Work 

If a variable force f ( x )  is applied to an object in the 
direction of motion along the x-axis between x = a and 
x = b, the work done is 
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5. Cylindrical and Spherical Coordinates 

a. Cylindrical coordinates ( ) 

x=rcosB 

y  = r sin f3 

element of volume dV= rdrd0 dz. 

b. Spherical coordinates ( ) 

x=psin &cosB 

y=psindsin 0 

z=pcos4 

element of volume dV= p* sin 4 dp, 

2 

,ddd& 

FIGURE 7.1. Cylindrical coordinates. 

Figure 7.1

Figure 7.2
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t 

X 

FIGURE 7.2. Spherical coordinates. 

6. Double Integration 

The evaluation of a double integral of f ( x , y )  over a 
plane region R 

is practically accomplished by iterated (repeated) inte- 
gration. For example, suppose that a vertical straight 
line meets the boundary of R in at most two points so 
that there is an upper boundary, y =y,(x) ,  and a lower 
boundary, y = y , ( x ) .  Also, it is assumed that these 
functions are continuous from a to b. (See 1. 
Then 

Fig. 7.3
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Y 
I 

7. 

I I 
a b X  

FIGURE 7.3. Region R bounded by y , ( x )  and y , ( x ) .  

If R has left-hand boundary, r = x , ( y ) ,  and a right-hand 
boundary, x = x , ( y ) ,  which are continuous from c to d 
(the extreme values of y in R )  then 

Such integrations are sometimes more convenient in 
polar coordinates, x = r  cos 9, y = r sin 8; 02 = rdrdf l .  

Surface Area and Volume by Double Integration 

For the surface given by z = f ( x ,  y ) ,  which projects onto 
the closed region R of the x-y-plane, one may calcu- 
late the volume V bounded above by the surface and 
below by R, and the surface area S by the following: 

S = /jR[1 + (Sz/6x)* + ( 6 1 / 6 y ) ~ ] ” ~  drdy 
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[In polar coordinates, ( r ,  0).  we replace dA by rdrdel .  

8. Centroid 

The centroid of a region R of the x-y-plane is a point 
( x ' , y ' )  where 

1 1 

A R  A R  
X I  = - // X d A  ; y ' = - // y dA 

and A is the area of the region. 

Example 
For the circular sector of angle 2a and radius R, the 
area A is a R 2 ;  the integral needed for x ' ,  expressed in 
polar coordinates is 

//xdA =/:,(UR(rcos 0)rdrde 

2 

- a  

and thus. 
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Centroids of some common regions are shown below: 
Ccnrroidn 

y (rcctx~glc) hh b/Z 

Lx b 

y (isas. Irirngle)’ bW2 

I 

y (scrnicirclc) 

h R 

nu212 

i (circular sertnr) RIA 

bl2 

R 

4ROn 

Y ’  

hlZ 

h/3 

4R13n 

4R13n 

2R sin A /3A 0 

’ y’ = hr3 lor any trianglc oi.hitudc h. 

FIGURE 7.4. 
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Magnitude of F 
I 

IF] = (u2  + b 2  + C2) '  

8 Vector Analysis 

1. Vectors 

Given the set of mutually perpendicular unit vectors i, 
j, and k then any vector in the space may 
be represented as F = a i + b j + c k ,  where a, b, and c 
are components. 

Magnitude of F 
I 

IFI=(a2+b2+c2) '  

Product by scalar p 
p F = p a i + p b j  tpck.  

Sum of F ,  and F, 

F, + F 2 = ( a ,  + a , ) i +  (b,  +b, ) j+  ( c ,  +c,)k 

FIGURE 8.1. The unit vectors i, j, and k. 

(Figure 8.1),
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Scalar Product 

Vector Product 

(Thus, i x i = j  Xj = k X k =  0, i x j = k, j X k=  i, and k X 

i = j.) 
Also, 

F, XF2= -F2XF: 

(F, + F2) X F3 =Fl X F3 + F2 X F, 

Fl X(F,+F,)=FI XF,+FIXF, 

F, (F2 X F3) = (F, X F2) F3 

2. Vector Difierentiation 

If V is a vector function of a scalar variable f, then 

V = a ( t ) i  + b(f)j + c(f)k 
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and 

(curl) c u r l V = V x V =  

dV da db dc 
dt dt dt dt 

i + -j + - k. _ = _  

6 6 6  - - - 
6x 6 y  6z 

For several vector functions V ,  ,Vz , .  . . ,V, 

d d V ,  dVz d V" 
- ( V ,  +v,+ ... + V n ) = -  + - + ... + -, 
dt dr dr dt 

d d V ,  d v2 ,(V, V,) = - v, + v, * -, 
dt dt 

d dV,  dV2 - (V, x V , )  = - x v, + v, x - 
dt dt dt 

For a scalar valued function g ( x ,  y ,  z )  

6g sg 6g 
6 x  6y 6z 

(gradient) gradg= Vg= -i+ -j+-k. 

For a vector valued function V ( a ,  b, c), where a, b, c 
are each a function of x ,  y ,  and z ,  

6a 6 b  6c 
divV = V V = - + - + - (divergence) 

6 x  6y 6z  

l a  b c 
© 1999 by CRC Press LLC



 

Also, 

62g 62g 62g 

6 x  6y 62 
divgradg=V2g= 7 + 7 + 7 

and 

curl grad g = 0; divcurlV = 0; 

curl curl V = grad divV - (iV2a + jV2b + kV2c).  

3. Diuergence Theorem (Gauss) 

Given a vector function F with continuous partial 
derivatives in a region R bounded by a closed surface 
S,  then 

where n is the (sectionally continuous) unit normal to S. 

4. Stokes’ Theorem 

Given a vector function with continuous gradient over 
a surface S that consists of portions that are piecewise 
smooth and bounded by regular closed curves such as 
C,  then 

/k curl FdS =$ F dr 
c 

5. Planar Motion in Polar Coordinates 

Motion in a plane may be expressed with regard to 
polar coordinates ( r ,  0). Denoting the position vector 
by r a n d  its magnitude by r ,  we have r=rR(B),  where 
R is the unit vector. Also, dR/dO=P, a unit vector 
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perpendicular to R. The velocity and acceleration are 
then 

dr d8 
v =  -R+r-P; 

dt dt 

Note that the component of acceleration in the P 
direction (transverse component) may also be written 

so that in purely radial motion it is zero and 

d8 

dt 
r 2 -  = c (constant) 

which means that the position vector sweeps out area 
at a constant rate (see Area in Polar Coordinates, 
Section 7.4). 
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9 Special Functions 

1. Hyperbolic Functions 

- e - x  
sinhx=- 

2 

- e - x  
tanhx=- 

e’+e-* 

sinh( - x )  = - sinh x 

tanh( - x )  = - tanh x 

sinh x 
tanhx=- 

cosh x 

cosh‘ x - sinh’ x = 1 

1 

2 
sinh2x= -(cosh2x- 1) 

csch’ x - sech‘ x = 

csch’ x sech’ x 

1 
sinh x 

1 
sech x =  - 

cosh x 

csch x = - 

1 
ctnhx=- 

tanh x 

ctnh( -x) = - ctnh x 

sech( - x )  = sech x 

cosh x 
ctnhx=- 

sinh x 

1 

2 
cash' x = - ( C O S ~  2~ + 1) 

ctnh2 x - csch2 x = 1 

tanh2 x + sech’ x = 1 
© 1999 by CRC Press LLC



 

sinh(x+y) = sinh x cosh y + cosh x sinh y 

cosh(x +y)  = cosh x cosh y + sinh x sinh y 

sinh(x -y) = sinh x cosh y - cosh x sinh y 

cosh(x -y) = cosh x cosh y - sinh x sinh y 

tanh x + tanh y 
1 + tanh x tanh y 

tanh(x+y) = 

tanh x - tanh y 
1 - tanh x tanh y 

tanh(x -y) = 

2. Gamma Function (Generalized Factorial 
Function) 

The gamma function, denoted U x ) ,  is defined by 

x > o  

(n = 1,2,3, ... ) 
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3. Laplace Transforms 

The Laplace transform of the function f ( f ) ,  denoted by 
F ( s )  or L ( f ( f ) ) ,  is defined 

provided that the integration may be validly performed. 
A sufficient condition for the existence of F ( s )  is that 
f ( f )  be of exponential order as t - m  and that it is 
sectionally continuous over every finite interval in the 
range f 2 0. The Laplace transform of g ( f )  is denoted 
by L(g(r)}  or C(s). 

Operations 
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j$W 
f(r -cm -cl 

where 

6(f-c)=OifO$f<c 

=liffzc 

f(r) =f(r + w) 

(periodic) 

F(sbG(s) 

UFh) 

;G(s) 

e-C’F(s), c > 0 

l Tab/e of tap/ace Transfoms 

f(f) F(s) 

1 l/S 

I l/s2 

,n- I 

(n-l)! 
1 /s” (n = 1,2,3,...) 

J; 
1 77 2s s r 
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1 - 
4i 

eur 

te" 

( " - 1  01 

(n - l)! 

t x  

r(x+ 1) 

sin at 

cos a( 

sinh at 

cosh at 

- eb: 

ae"' - bebr 

t sin at 

1 
s - a  

1 

- 

(s -a)' 

1 

( n =  1,2,3, ... ) 
( s - a ) "  

1 - x >  -1 s*+ I ' 

a 

s 2 + a 2  
S 

s 2 + a 2  

a 
s2-a2 

S 

s 2 - a 2  

a - b  
(s - a ) ( s  - 6) ' 

s ( a - 6 )  
(s - a)(s - b )  ' 

( a  Z b )  

( a  $. b )  

2 as 

(s2+a*)2  

s2 -a2  
f cos at 
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b 

( s  + b2 

s - a  

( s  - a ) * + b 2  

,"'sin bt 

ear cos bt 

sin at U 
Arc tan - 

I S 

- 

sinh af - 
I 

4. 2- Transform 

For the real-valued sequence {f(k)} and complex vari- 
able z, the z-transform, F ( z )  = Z { f ( k ) }  is defined by 

For example, the sequence f ( k )  = 1, k = 0,1,2,. . . , has 
the z-transform 

F ( z )  = 1 + z - '  +z-' + z - ~  ... + z - ~  + .... 

r-Transform and the Laplace Transform 

For function U ( f )  the output of the ideal sampler 
U * ( f )  is a set of values U(kT) ,  k = 0,1,2,. . . , that is, 

.a 

U * ( r ) =  c U ( t )  S ( I  - k T )  
k=O 
© 1999 by CRC Press LLC



 

The Laplace transform of the output is 

Defining z = erT gives 

9{U’(1)} = 2 U(k7yk 
k-0 

which is the r-transform of the sampled signal U(kT). 

l Properties 

~ineatity: z{uf,(k) + bf,(kN = aZIf,(~N + b-W,(k)1 
=aF,(z) + bF,(z) 

Righf-shiffingpropedy: Z(f(k -n)) =z-“F(z) 

Lefi-shijGsg property: Z(f(k + n)) =znF(.Z) n-s 
- kFo f(Wt” - ’ 

Time scaling: 
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Multiplication by k: Z{kf(kl) = -rdF(z)/dz 

~nitiul value: f(O)= lim (1 -z-‘)F(z)=F(m) 
I--‘” 

Final value: d9mf(k)= ,‘F, (1 -z-‘IF(z) 

Convofufion: Z(f,(k)*f2(k)) =F,(z)F,(z) 

l z-Transforms of Sampled Functions 

f(k) Z{f(kT)) =F(z) 

1 at k; else 0 Z--k 

1 

kT 

(kT)* 

2 

2-l 

Tz 

(z- 1y 

T*z(z+ 1) 

(I- 1)’ 

sin wkT 
z sin wT 

z*-2zcoswT+l 

cos wT 
z(z-cos wT) 

z2-2zcosoT+1 

pkT 

kTemokT 

z 

Z-e-‘T 

ZTe-07 

(Z-e-q* 
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e - a k T  . sin wkT 

e-akrcos wkT 

T2 e-“’z( z + e -aT  ) 

Z e - ~ T  sin wT 
~ ~ - 2 z e * ~ c o s w T + e -  2oT 

z ( z  -e-”TcoswT) 
z2-2ze- cos w T+e-’ 

azsin wT 
a‘sin wkT 

Z * - ~ U Z C O S  wT+a2 

~ ( Z - U C O S U T )  
ak cos wkT 

z2-2azcos w T + a 2  

5. Fourier Series 

The periodic function f(f), with period 2 n  may be 
represented by the trigonometric series 

m 

uo + C ( a ,  cosnr +b,  sin n t )  
1 

where the coefficients are determined from 

1 
6, = - /“ f ( f  )sin n f d f  ( n  = 1,2,3, .  . . ) 

.TT - 7 7  
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Such a trigonometric series is called the Fourier series 
corresponding to f(f and the coefficients are termed 
Fourier coefficients of f(t). If the function is piecewise 
continuous in the internal - 7rs t 5 T ,  and has left- 
and right-hand derivatives at each point in that inter- 
val, then the series is convergent with sum f ( r )  except 
at points t i  at which f(t) is discontinuous. At such 
points of discontinuity, the sum of the series is the 
arithmetic mean of the right- and left-hand limits of 
f(t) at t i .  The integrals in the formulas for the Fourier 
coefficients can have limits of integration that span a 
length of 27r, for example, 0 to 27r (because of the 
periodicity of the integrands). 

6. Functions with Period Other Than 2rr 

If f(r) has period P the Fourier series is 

1 

where 

Again, the interval of integration in these formulas may 
be replaced by an interval of length P ,  for example, 0 
to P. 
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t 

- f P  - f P  0 f P  f P  

Figure 9.1. Square wave: 

P 
a 2 a  27rt 67rt 
2 P  P P 

f ( r ) -  - + - (co, - -ices - + fCOS - 

FIGURE 9.2. Sawtooth wave: 

P 
4 ~ 1  

fCr) - - 2a (sin? -+sin- P 
T 
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FIGURE 9.3. Half-wave rectifier: 

A A  
T 2  

f ( t ) -  - + - sin w t -  

1 
cos 2 w t +  - 

(3)(5) 

7. Bessel Functions 

Bessel functions, also called cylindrical functions, arise 
in many physical problems as solutions of the differen- 
tial equation 

which is known as Bessel’s equation. Certain solutions 
of the above, known as Bessel functions of the first kind 
of order n, are given by 

+ 2 k  ( - l ) k  J-n(x)=z,, k ! I ‘ ( - n + k + l )  2 
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In the above it is noteworthy that the gamma function 
must be defined for the negative argument q: IYq)= 
T(q+ l)/q, provided that q is not a negative integer. 
When q is a negative integer, l/T(q) is defined to be 
zero; The functions J - , , ( x )  and J J x )  are solutions of 
Bessel's equation for all real n.  It is seen, for n =  
1,2,3,. . . that 

J- , (x)=(- l )"J , (x)  

and, therefore, these are not independent; hence, a 
linear combination of these is not a general solution. 
When, however, n is not a positive integer, a negative 
integer, nor zero, the linear combination with arbitrary 
constants c, and c2 

is the general solution of the Bessel differential equa- 
tion. 

The zero order function is especially important as it  
arises in the solution of the heat equation (for a ''long'' 
cylinder): 

while the following relations show a connection to the 
trigonometric functions: 
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The following recursion formula gives Jn + , ( x )  for any 
order in terms of lower order functions: 

8. Legendre Polynomials 

If Laplace’s equation, V 2 V =  0, is expressed in spherical 
coordinates, it is 

62V 6V 62V 6 V  

6 r  6r  68 6e 
r 2  sin B7 + 2r sin 8- +sin B T  + cos 0- 

1 62V +--=o 
sine 6 4 2  

and any of its solutions, V ( r ,  8,4), are known as spheri- 
cal harmonics. The solution as a product 

U r 7 e , 4 ) = R ( r ) @ ( B )  

which is independent of 4, leads to 

sin’eo” +sinecos$O‘+[n(n+ l)sin’6]O=O 

Rearrangement and substitution of x=cos 0 leads to 

known as Legendre’s equalion. Important special cases 
are those in which n is zero or a positive integer, and, 
for such cases, Legendre’s equation is satisfied by poly- 
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nomials called Legendre polynomials, P,,(x). A short 
list of Legendre polynomials, expressed in terms of x 
and cos 0, is given below. These are given by the 
following general formula: 

P,(x)= t 
(-1)‘(2n--2j)! xn-2j 

j=i, 2”j!(n-j)!(n-2j)! 

where L =n/2 if n is even and L =(n - 1)/2 if n is 
odd. Some are given below: 

P,,(x) = 1 

P,(x) =x 

P*(x)= ;c3x2- 1) 

P,(x) = $5,, - 3x1 

P,(x) = $(35x4 - 30x2 + 3) 

P&x) = i(63xS - 70x3 + 15x) 

P&OS 8 ) = 1 

P,(cos 8 ) = cos e 

P,(cos e1= ;(3cos20+ 1) 

P&OS e)= $(5cos30+3cos 0) 
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1 
64 

PJCOS e = - (35 cos 48 + ~ O C O S  2 e + 9) 

Additional Legendre polynomials may be determined 
from the recursion formuln 

( n + l ) P n +  1 ( ~ ) - ( 2 n + l ) x P n ( x )  

+nP,,- I(x)=O (n=1 ,2 ,  ...) 

or the Rodrigues formula 

1 d" 
2"n! dr" P , ( x ) = - - ( x 2 - 1 ) "  

9. Laguem Polynomials 

Laguerre polynomials, denoted Ln(x), are solutions of 
the differential equation 

*y" + (1 - x ) y ' + n y  = 0 

and are given by 

Thus, 
L o ( n )  = 1 

L , ( x )  = 1 --x 

1 

2 
Lz( x )  = 1 - 2 x  + -2 

3 1  
2 6  

L 3 ( - x ) = 1 - 3 x + - * 2 - - x 3  
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Additional Laguerre polynomials may be obtained from 
the recursion formula 

( n + l ) L , + , ( x ) - ( 2 n + l - x ) L , ( x )  

+nL,- , ( x )  = 0 

10. Hermite Po[ynornials 

The Hermite polynomials, denoted H,,(x),  are given by 

( n =  1,2, ...) 

and are solutions of the differential equation 

y" - 2,ty ' + 2ny = 0 ( n = 0.1.2,. . . ) 

The first few Hermite polynomials are 

H o =  1 

H , ( x ) =  16x4 - 48x2 + 12 
H , ( x )  = 4x2 - 2 

H , ( x )  = 2x 
H&X) = 8 x 3  - 12x 

Additional Hermite polynomials may be obtained from 
the relation 

where prime denotes differentiation with respect to x .  
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11. Orthogonality 

A set of functions { f , (x) )  (n = 1,2,. . . ) is orthogonal in 
an interval (u ,b )  with respect to a given weight func- 
tion w ( x )  if 

i b w (  x)f,,,( x ) f , (  x )  dr = 0 when rn + n 

The following polynomials are orthogonal on the given 
interval for the given w(x):  

Legendre polynomials: P,,(x) w ( x ) =  1 
U =  - 1, b= 1 

Laguerre polynomials: L,(x)  w ( x )  = exp (-XI 
a = 0 ,  b = m  

Hermite polynomials: H J x )  w ( x ) =  exp ( - x 2 )  
a =  -co,b=co 

The Bessel functions of order n, J , (h ,x ) ,  J , (A2x)  ,..., 
are orthogonal with respect to w ( x )  = x  over the inter- 
val (0,c) provided that the hi are the positive roots of 
J,(hc) = 0: 

GJm( hjx)J,(  A r x )  d r = O  ( j  # k )  

where n is fived and n 2 0. 
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10 Differential Equations 

I .  First Order-First Degree Equations 

M ( x ,  y ) dr + N ( x ,  y >  dy = 0 

a. If the equation can be put in the form A ( x ) d r  
+ B ( y ) d y = O ,  it is separable and the solution 
follows by integration: l A ( x ) d r +  j B ( y ) d y =  C ;  
thus, x(1 + y 2 ) d r + y d y = 0  is separable since it 
is equivalent to x d r + y d y / ( l  + y 2 )  = 0 ,  and inte- 
gration yields x 2 / 2  + f log (1 + y 2 )  + C = 0. 

b. If M ( x , y )  and N ( x , y )  are homogeneous and of 
the same degree in x and y ,  then substitution of 
ux for y (thus, dy = u dr + x  du) will yield a 
separable equation in the variables x and y .  [A 
function such as M ( x , y )  is homogeneous of 
degree n in x and y if M ( c r , c y ) = c " M ( x , y ) . ]  
For example, ( y  - 2 x ) h  + ( 2 y  +x)dy has M and 
N each homogeneous and of degree one so that 
substitution of y = ux yields the separable equa- 
tion 

2 2 v +  1 
-&+- du=O. 
x v Z + u - l  

c. If M ( x , y ) d r + N ( x , y ) d y  is the differential of 
some function F ( x , y ) ,  then the given equation 
is said to be a u c f .  A necessaly and sufficient 
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condition for exactness is d M / d y  = dN/dx .  
When the equation is exact, F is found from the 
relations dF/dx  = M and dF/dy  = N ,  and the 
solution is F(x ,  y )  = C (constant). For example, 
( x 2  + y )  dy + (2xy - 3 x 2 )  dx is exact since 
d M / d y  = 2 x  and d N / d x  = 2x. F is found from 
dF/dx  = 2xy - 3x2 and dF/dy  =x2  +y. From 
the first of these, F = x 2 y  -x3  + c#J(Y); from the 
second, F =x2y  + y 2 / 2  + W x ) .  It follows that 
F =x2y  - x3  +y2 /2 ,  and F = C is the solution. 

d. Linear, order one in y :  Such an equation has 
the form dy+P(x )ydr=  Q(x )dr .  Multiplication 
by exp[lP(x)dr] yields 

For example, dy+(2/x)y&=x2& is linear in 
y .  P ( x )  = 2/x ,  so l P d r  = 2111 x = In x 2 ,  and 
exp(lPdr) = x 2 .  Multiplication by x z  yields 
d ( x 2 y )  =x4 dr, and integration gives the solu- 
tion x 2 y  = x 5 / 5  + C. 

2. Second Order Linear Equations (With Constant 
Coefficients) 

d 
D = - 

dr' (b@ +b ,D + b 2 ) y  = f ( x ) ,  

a. Right-hand side = 0 (homogeneous case) 

(bol lZ  + b , D  +b,)y  = O .  
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The aui l iay  equation associated with the above is 

b,m2 + b , m  + b,  = 0. 

If the roots of the auxiliary equation are real and 
distinct, say m ,  and m 2 ,  then the solution is 

y =  ClemlX + C2em2' 

where the C's are arbitrary constants. 

If the roots of the auxiliary equation are real and 
repeated, say m ,  = m 2 = p ,  then the solution is 

If the roots of the auxiliary equation are compler 
a +ib  and a -ib, then the solution is 

y=CleuKcosbx+Cze"s in  bx. 

b. Right-hand side # 0 (nonhomogeneous case) 

The general solution is y = C, y , ( x )  + C 2 y 2 ( x )  + 
y,,(x) where y ,  and y 2  are solutions of the corre- 
sponding homogeneous equation and y,, is a solu- 
tion of the given nonhomogeneous differential 
equation. y,, has the form y,,(x) = A ( x ) y , ( x )  + 
B ( x ) y , ( x )  and A and B are found from simultane- 
ous solution of A'y ,  +B'y ,  = 0 and A'y ;  +B'y;  = 

f ( x ) / b , , .  A solution exists if the determinant 
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Y l  Y 2  

( Y i  Y i l  

does not equal zero. T h e  simultaneous equations 
yield A' and B' from which A and B follow by 
integration. For example, 

( D 2 + D - 2 ) y  =e -3X.  

The auxiliary equation has the distinct roots 1 and 
-2; hence y I  =ex  and y 2 = e - 2 x ,  so that y,=Ae" 
+ Be-2X. The simultaneous equations are 

AteX-2Bfe-2X- - e  - 3 X  

A'ex+B'e -2"=0  

and give A'=(1/3)e-4x and B'=(-1/3)e-". 
Thus, A=(- l /12)e-4" and B=(1/3)e-" so that 

y,, = ( -  l /12)e-3"+ (1/3)eF3' 
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1 1 Statistics 

1. Arithmetic Mean 

where X, is a measurement in the population and N is 
the total number of X ,  in the population. For a snmple 
of size n the sample mean, denoted x, is 

2. Median 

The median is the middle measurement when an odd 
number (n) measurements is arranged in order; if n is 
even, it is the midpoint between the two middle meas- 
urements. 

3. Mode 

It is the most frequently occurring measurement in a 
set. 

4. Geometric Mean 

geometric mean = ')= 
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5. Harmonic Mean 

The Harmonic mean H of n numbers X , ,  X ,  ,..., X , ,  
is 

n H=- 
X ( l / X i )  

6. Variance 

The mean of the sum of squares of deviations from the 
mean ( p) is the population variance, denoted u2  

(T* = Z( Xi  - p ) ' / N .  

The sample variance, s2, for sample size n is 

A simpler computational form is 

7. Standard Deuiation 

The positive square root of the population variance is 
the standard deviation. For a population 
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for a sample 

8. Coeficient of Variation 

v=s/z. 
9. Probability 

For the sample space U, with subsets A of U (called 
“events”), we consider the probability measure of an 
event A to be a real-valued function p defined over all 
subsets of U such that: 

Clip( A )  i 1 
p ( U ) = l  andp(@)=O 
If A ,  and A,  are subsets of U 
P ( A ,  UA,)=P(A,)+P(A,)-P(~lnA,) 

Two events A ,  and A ,  are called mutually exclusive if 
and only if A ,  n A ,  = 4 (null set). These events are 
said to be independent if and only if p ( A , A A , ) =  
p (  A ,  )p(A,). 

Conditional Probability and Bayed Rule 

The probability of an event A,  given that an event B 
has occurred, is called the conditional probability and 
is denoted p (  A/B).  Further 
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Bayes’ rule permits a calculation of a posieriori proba- 
bility from given a priori probabilities and is stated 
below: 

If A , ,  A ,  ,..., A, are n mutually exclusive events, and 
p ( A , ) + p ( A , ) +  ... + p ( A n ) = l ,  and B is any event 
such that p ( B )  is not 0, then the conditional probabil- 
ity p ( A , / B )  for any one of the events A , ,  giuen thai B 
has occurred is 

Example 
Among 5 different laboratory tests for detecting a 
certain disease, one is effective with probability 0.75, 
whereas each of the others is effective with probability 
0.40. A medical student, unfamiliar with the advantage 
of the best test, selects one of them and is successful in 
detecting the disease in a patient. What is the probabil- 
ity that the most effective test was used? 

Let B denote (the event) of detecting the disease, A ,  
the selection of the best test, and A ,  the selection of 
one of the other 4 tests; thus, p ( A , ) =  1/5, p ( A , ) =  
4/5, p ( B / A , )  = 0.75 and p ( B / A , ) =  0.40. Therefore 

1 
- (0.75) 
5 

-(0.75) + -(0.40) 
5 5 

= 0.319 p ( A , / B ) =  1 4 

Note, the a pn’ori probability is 0.20; the outcome 
raises this probability to 0.319. 
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10. Binomial Distribution 

In an experiment consisting of n independent trials in 
which an event has probability p in a single trial, the 
probability Px of obtaining X successes is given by 

where 

The probability of between a and b successes (both a 
and b included) is P, +Pa + , + . . . +Phr so if a = 0 and 
b = n ,  this sum is 

i C(", x , P X 4 "  = 4 " + C(", 1,4" - 'P 
x- 0 

11. Mean of Binomially Distributed Variable 

The mean number of successes in n independent trials 
is rn =np with standard deviation u= 6. 

12. Normal Distribution 

In the binomial distribution, as n increases the his- 
togram of heights is approximated by the bell-shaped 
curve (normal curve) 
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where m = the mean of the binomial distribution =np,  
and u= \lnpq is the standard deviation. For any nor- 
mally distributed random variable X with mean m and 
standard deviation u the probability function (density) 
is given by the above. 

The standard normal probability curve is given by 

and has mean = 0 and standard deviation = 1. The total 
area under the standard normal curve is 1. Any normal 
variable X can be put into standard form by defining 
Z = ( X - m ) / u ;  thus the probability of X between a 
given X ,  and X, is the area under the standard 
normal curve between the corresponding 2, and 2, 
( , Appendix). The standard normal curve is 
often used instead of the binomial distribution in ex- 
periments with discrete outcomes. For example, to de- 
termine the probability of obtaining 60 to 70 heads in a 
toss of 100 coins, we take X = 5 9 . 5  to X=70.5 and 
compute corresponding values of Z from mean np= 
100 + =  50, and the standard deviation u = 

4(100)(1/2)(1/2) = 5 .  Thus, 2=(59.5-50) /5= 1.9 
and Z = (70.5 - 50)/5 = 4.1. From , area be- 
tween Z = 0 and Z = 4.1 is 0.5000 and between 2 = 0 
and Z =  1.9 is 0.4713; hence, the desired probability is 
0.0287. The binomial distribution requires a more 
lengthy computation 

Table A.1

Table A.1
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Note that the normal curve is symmetric, whereas the 
histogram of the binomial distribution is symmetric 
only if p = q  = 1/2. Accordingly, when p (hence 9 )  
differ appreciably from 1/2, the difference between 
probabilities computed by each increases. It is usually 
recommended that the normal approximation not be 
used i fp  (or 9 )  is so small that np (or n9) is less than 5.  

13. Poisson Distribution 

e-"'m' p =  - 
r !  

is an approximation to the binomial probability for r 
successes in n trials when m = np is small (< 5) and the 
normal curve is not recommended to approximate bi- 
nomial probabilities . The variance u 2  in 
the Poisson distribution is np, the same value as the 
mean. Example: A school's expulsion rate is 5 students 
per 1ooO. If class size is 400, what is the probability that 
3 or more will be expelled? Since p = 0.005 and n = 400, 
m = n p = 2 ,  and r=3 .  From we obtain for 
m = 2 and r( = x )  = 3 the probability p = 0.323. 

14. Empirical Distributions 

A distribution that is skewed to the right (positive 
skewness) has a median to the right of the mode and a 
mean to the right of the median. One that is negatively 
skewed has a median to the left of the mode and a 
mean to the left of the median. An approximate rela- 

Table A.2

(Table A.2)
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tionship among the three parameters is given by 

Median =2/3 (mean) + 1/3 (mode) 

Skewness may be measured by either of the formulas: 

Skewness = (mean - mode)/s 

Skewness = 3(mean - median)/s 

15. Estimation 

Conclusions about a population parameter such as 
mean p may be expressed in an interval estimation 
containing the sample estimate in such a way that the 
interval includes the unknown p with probability (1 - 
a). A value 2, is obtained from the table for the 
normal distribution. For example, Z,= 1.96 for a= 
0.05. Sample values X , ,  X, ,  . . . , X ,  permit computation 
of the variance s2, which is an estimate of a’. A 
confidence interval for p is 

( X - Z , s / J ; ; ,  X + Z , S / J ; ; )  

For a = 0.05 this interval is 

( x - 1 . 9 6 ~ / 6 ,  x+ 1.96~/&) 

The ratio s/& is the standard error of the mean (see 
Section 17). 

16. Hypotheses Testing 

Two groups may have different sample means and it is 
desired to know if the apparent difference arises from 
© 1999 by CRC Press LLC



 

random or significant deviation in the items of the 
samples. The null hypothesis (If,) is that both samples 
belong to the same population, i.e., the differences are 
random. The alternate hypothesis (If,) is these are two 
different populations. Test procedures are designed so 
one may accept or reject the null hypothesis. The 
decision to accept is made with probability a of error. 
The values of a are usually 0.05, 0.01, or 0.001. If the 
null hypothesis is rejected, though correct, the error is 
called an error ofthefirst kind. The error of acceptance 
of the null hypothesis, when false, is an error of the 
second kind. 

17. t-Distribution 

In many situations, p and u are unknown and must be 
estimated from x and s in a sample of small size n,  so 
use of the normal distribution is not recommended. In 
such situations the Student t-distribution is used and is 
given by the probability density function 

-(f+ 1)/2 y = ~ ( l + r ~ / f )  

where f stands for degrees of freedom and A is a 
constant 

so that the total area (probability) under the curve of y 
vs. t is 1. In a normally distributed population with 
mean p, if all possible samples of size n and mean x 
are taken, the quantity (x- p ) f i / s  satisfies the t-dis- 
tribution with f= n - 1, or 
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Thus, confidence limits for p are 

where : is obtained from 
of freedom and confidence level (1 - a). 

for (n - 1) degrees 

18. Hypothesis Testing with t- and Normal 
Distributions 

When two normal, independent populations with means 
p x  and pY and standard deviations ux and uY are 
considered and all possible pairs of samples are taken, 
the distribution of the difference between sample means 
x- is also normally distributed. This distribution has 
mean p x  - pY and standard deviation 

where n, is the sample size of Xi variates and n 2  is 
the sample size of Y, variates. The quantity Z com- 
puted as 

Table A.3
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satisfies a standard normal probability curve (Section 
11). 

Accordingly, to test whether two sample means differ 
significantly, i.e., whether they are drawn from the 
same or different populations, the null hypothesis ( H , )  
is px-py=O, and 

x-Y 
Z =  

is computed. For sufficiently large samples ( n ,  > 30 and 
n2>30) ,  sample standard deviations sx and s y  are 
used as estimates of ox and oy,  respectively. The 
difference is significant if the value of 2 indicates a 

). small probability, say, < 0.05 (or IZI > 1.96; 

For small samples where the standard deviation of the 
population is unknown and estimated from the sample, 
the f-distribution is used instead of the standard nor- 
mal curve. 

where s the the “pooled estimate of the standard 
deviation” computed from 

( n ,  - l)Si+ ( n 2 -  1)s: 
s2 = 

n ,  + n z  - 2 

Table A.1
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Erample: Mean exam scores for2 groups of students on a 
standard exam were 75 and 68, with other pertinent 
values: 

x- 75 
5, = 4 
n ,  =20 

Thus, 

v =  68 

n2- 18 
s,=3 

and 

75 - 68 
112.7 12.7 

t =  = 6.05. 

\/2o+Ig 
From , r,-.ol, for 36 degrees of freedom, is 

between 2.756 and 2.576; hence, these means are 
significantly different at the 0.01 level. 

The computed r is compared to the tabular value 
for degrees of freedom f = n ,  + n 2  - 2 at 

the appropriate confidence level (such as a=0.05 or 
0.01). When the computed t exceeds in magnitude the 
value from the table, the null hypothesis is rejected and 
the difference is said to be significant. In cases that 
involve p i i n g  of the variates, such as heart rate 
before and after exercise, the difference D =X- Y is 
analyzed. The mean (sample) difference D is computed 
and the null hypothesis is tested from 

(Table A.3)

Table A.3
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where sD is the standard deviation of the set of differ- 
ences: 

1 / 2  
sD = [ Z ( D  - B ) 2 / (  n - I ) ]  

In this case, f= n - 1. 

19. Chi-square Distribution 

In an experiment with two outcomes (e.g., “heads” or 
“tails”), the observed frequencies can be compared to 
the expected frequencies by applying the normal distri- 
bution. For more than two outcomes, say n, the ob- 
served frequencies 0,, 02, . . . ,On and the expected 
frequencies, e l ,  e, ,  . .. , en,  are compared with the 
chi-square statistic ( x 2 ) :  

The x 2  is well approximated by a theoretical distribu- 
tion expressed in . The probability that x 2  is 
between two numbers x:  and x: is the area under the 
curve between xf and xf for degrees of freedom f. 
The probability density function is 

Table A.4
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In a contingency ruble of j rows and k columns, f= 
( j  - 1Xk - 1). In such a matrix arrangement the ob- 
served and expected frequencies are determined for 
each of the j X k = n “cells” or positions and entered in 
the above equation. 

Example-Contingency table: Men and women were sam- 
pled for preference of three different brands of 
breakfast cereal. The number of each gender that 
liked the brand is shown in the contingency table. 
The expected number for each cell is given in 
parentheses and is calculated as row total X column 
total/grand total. Degrees of freedom = (2 - 1) X 
(3 - 1) = 2 and x 2  is calculated as: 

(50 - 59.7)2 (60 - 75.7)2 
x 2  = + ... + = 11.4 

59.7 75.7 

Brands 
A B C Totals 

Men 50(59.7) 40(45.9) 80(64.3) 170 
Women 80(70.3) 60(54.1) 60(75.7) 200 

Totals 130 100 140 370 

Since the tabular value at the 5% level for f= 2 is 
5.99, the result is significant for a relationship 
between gender and brand preference. 

When f= 1 the “adjusted” x 2  formula (Yates’ correc- 
tion) is recommended 
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x 2  is frequently used to determine whether a popula- 
tion satisfies a normal distribution. A large sample of 
the population is taken and divided into C classes in 
each of which the observed frequency is noted and the 
expected frequency calculated. The latter is calculated 
from the assumption of a normal distribution. The class 
intervals should contain an expected frequency of 5 or 
more. Thus, for the interval ( X , ,  X , ,  ,I calculations of 
Z , = ( X , - x ) / s  and Z , + , = ( X , + , - X ) / s  are made 
and the probability is determined from the area under 
the standard normal curve. This probability ( P , )  X N 
gives the expected frequency for the class interval. 
Degrees of freedom = C - 3 in this application of the 
x 2  test. 

20. Least Squares Regression 

A set of n values ( X i , y )  that display a linear trend is 
described by the linear equation t = a + p X i .  Vari- 
ables a and 0 are constants (population parameters) 
and are the intercept and slope, respectively. The rule 
for determining the line is one minimizing the sum of 
the squared deviations 

n 

i -  1 

and with this cn’terion the parameters Q and p are best 
estimated from u and b calculated as 
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and 

where x and 7 are mean values, assuming that for any 
value of X the distribution of Y values is normal with 
variances that are equal for all X and the latter ( X )  
are obtained with negligible error. The null hypothesis, 
H,:P=O, is tested with analysis of variance: 

MS Source ss DF 

Total ( Y ;  - 7 )  Z(Y,  - 8 1 2  n - 1 

Regression (q  - 9 )  Z(f - Y ) 2  1 

Residual ( Y ;  - f) Z ( x  - f )2  n - 2 - - - S2y.x SSresid 

( n  -2) 

Computing forms for SS terms are
© 1999 by CRC Press LLC



 

Example: Given points: (0, I), (2,3), (4,9), (5,161. Analysis 
proceeds with the following calculations. Z X =  11; 
ZY=29; ZX2=45; ZXY=122; x=2.75; 7=7.25; 
b=2.86; Z ( X ; - x ) 2 =  14.7:.f= -0.627+2.86X. 

SS DF MS 
121 
7.85 

(significant) * 

Total 136.7 3 F =  - = 15.4 

Regr. 121 1 121 
Resid. 15.7 2 7.85=S:., r2=0.885; 

sb = 0.73 

*(See F-distribution, Section 21.) 

F =  MSregr,/MSrcrid, is calculated and compared with 
the critical value of F for the desired confidence level 
for degrees of freedom 1 and n - 2  . The 
coefficient of determination, denoted r2 ,  is 

r2  = ss*,g,./ss,,,a, 

r is the correlation coejjicient. The standard error of 
estimate is \/sx and is used to calculate confidence 
intervals for CI and p. For the confidence limits of p 
and CY 

b * isy., /T 8( X;  -X) 

(Table A.5)
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where t has n - 2 degrees of freedom and is obtained 
from for the required probability. 

The null hypothesis H,:P=O, can also be tested with 
the f statistic: 

b 
t =  - 

sb 

where s,, is the standard error of b 

SY. Y . ,. 
Sb = 

[ Z ( X ,  -X)'] "2 

Standard Error of p 
An estimate of the mean value of Y for a given value 
of X, say X,,, is given by the regression equation 

fo = a  +bXo. 

The standard error of this predicted value is given by 

and is a minimum when X,=X and increases as X,, 
moves away from X in either direction. 

21. The F-Distribution (Analysis of Variance) 

Given a normally distributed population from which 
two independent samples are drawn, these provide 
estimates, sf and si, of the variance 0'. Quotient 

Table A.3
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F = sf/si has this probability density function for f I 
and f 2  degrees of freedom of sI and s2: 

In testing among k groups (with sample size n )  and 
sample means XI, x2,. . . , xk, the F-distribution tests 
the null hypothesis: pI = p2 = . . . = pk for the means 
of populations from which the sample is drawn. Indi- 
vidual values from the j th  sample ( j =  1 to k )  are 
denoted A;, ( i  = 1 to n) .  The “between means” sums 
of squares (S.S.T.) is computed 

S.S.T.=n(& -x)2+n(x2-x)2+ ... 

where 
“within-samples’’ sum of squares (S.S.E.), where 

is the mean of all group means, as well as the 

n n 

S.S.E.= x(A,l-xl)2+ C ( A i 2 - & ) 2 + . . .  
i- 1 i =  I 

Then 

S.S.T. 
s2 - - , 

I -  k-1 
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and 

S.S.E. 
2-- 

s2-  k ( n - 1 )  

are calculated and the ratio F is obtained 

with numerator degrees of freedom k - 1 and denomi- 
nator degrees of freedom k ( n  - 1). If the calculated F 
exceeds the tabular value of F at the desired probabil- 
ity (say, 0.05) we reject the null hypothesis that the 
samples came from populations with equal means (see 

and gamma function, Section 9.2). 

22. Summary of Probability Distributions 

Continuous Distributions 

Distribution 

Normal 

i 
Y = -  exp[ - ( x  - rn12/2u 2 I  & 
Mean = rn 

Variance = u ’ 
Standard normal 

1 
y =  -expi-z2/2) 6 

Table A.5
© 1999 by CRC Press LLC



 

Mean = 0 

Variance = 1 

F-distribution 

where A = 

f 2  

f 2 - 2  
Mean = - 

2f22(fl  + f 2 - 2 )  

f d f 2  - 2 I 2 ( f 2  - 4) 
Variance = 

Chi-square 

Mean = f 

Variance = 2 f 

Students 1 
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Mean = 0 

Variance= - f (for j> 2) 
f -2  . Discrete Distribution 

Binomial distribution 

Mean = np 

Variance = np (1 - p )  

Poisson distribution 

e-'"m' y=- 
X !  

Mean = m 

Variance = m 

23. Sample Size Determinations 

. Single Proportion 

The sample size required to detect a difference between a 
test proportion, p , ,  and a standard proportion value, po. is 
calculated from 
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where z, is the two-tailed z-value from the standard normal 
curve for the desired level of significance and zais the lower 
one-tailed z-value selected for the power required (probabil- 
ity of rejecting the null hypothesis when it should be 
rejected). For a < 0.05, z, is 1.96 while za is one of the 
following: -1.28 (90% power); -0.84 (80% power); 4.525 
(70% power). 

Example 

It is well established that 30% of the residents of a certain 
community experience allergy symptoms each year. It is 
desired to show that newly developed preventive inocula- 
tions can reduce this proportion to 10%. We have p o  = 0.30 
and p1 = 0.10, and thus, at the 5% level of significance and 
power 80%. n is given by 

n = b.964-+ 0 . 8 4 d m Y / ( O . * O -  0.30)2 

= 33.07 

meaning that 34 patients should be tested. 

Two Proportions 

When control and treatment groups are sampled, and the 
respective proportions expected are pc and p,, the needed 
sample size of each group to show a difference between 
these is calculated from 
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Example 
Suppose shock is known to occur in 15% of the patients 
who get a certain infection and we wish to show that a new 
preventive treatment can reduce this proportion to 5%; thus, 
p c =  0.15 and p ,  = 0.05. Using z ,  = 1.96 and zg = -0.84 (for 
80% power), the sample size needed in each group is cal- 
culated from 

{ 1.964-+ 0.84,,/(0.05)(0.95) + (0.15)(0.85)]* 
n =  

(0.15- 0.05)’ 

= 179.9 

Thus, 180 patients are needed in each group. 

Sample Mean 

When the mean of a sample (pl) is to be compared to a 
standard value &)the number to be sampled in order to 
show a significant difference is calculated from 

where o i s  an estimate of the population standard deviation. 

Example 
A certain kind of light bulb is known to have a mean lifetime 
of 1.000 hours, with standard deviation = 100 hrs. A new 
manufacturing process is installed by the manufacturer and 
it is desired to know whether the mean lifetime changes by, 
© 1999 by CRC Press LLC

say, 25 hours; thus, p, - & = 25. The sample size required 



 

© 1999 by CRC Press LLC

for testing the new bulbs, based on the 0.05 level of signif- 
icance and 90% power, is calculated from 

n ={(1.96+1.28)(100)/25}2 = 167.96 

so that 168 bulbs should be tested 

Two Means 

When two groups are sampled with the aim of detecting a 
difference in their means, p, - A, the sample size of each 
group is calculated from 

Example 

Examination scores of students from two different school 
districts are being compared in certain standardized exami- 
nations (scale 200-800) where the standard deviation is 100. 
A difference in mean scores of 20 would be regarded as 
important. Using the 5% level of significance and 80% 
power, the number of student scores from each school dis- 
trict that should be included is 

n =2{(1.96+0.84)(100)/20}2 = 392 



 

1 2 Financial Mathematics 

I. Simple Interest 

An item or service costs an amount C and is to be paid off 
over time in equal installment payments. The difference 
between the cost C and the total amount paid in installments 
is the interest I .  The interest rate r is the mount  of interest 
divided by the cost and the time of the loan T (usually 
expressed in years): 

r = I/CT 

Example 

An item purchased and costing $4,000 is to be paid off in 
18 equal monthly payments of $249. 

The total amount paid is 18 x $249 = $4,482, so that I = 
$482. The time of the loan is 1.5 years; hence, the rate is r 
= 482/(4000 x 1.5) = 0.0803 or 8.03%. 

Note: While the above computation is correct, the computed 
rate, 8.03%. is misleading. This would be the true rate only 
if the $4,482 were repaid in one payment at the end of 18 
months. But since you are reducing the unpaid balance with 
each payment you are paying a rate higher than 8.03%. True 
interest rates are figured on the unpaid balance. The monthly 
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2. True Interest Formula (Loan Payments) 

The interest rate is usually expressed per year; thus, the 
monthly rate r is 1/12th of the annual interest rate. The 
monthly payment P is computed from the amount borrowed, 
A ,  and the number of monthly payments, n, according to the 
formula: 

Example 

A mortgage of $80,000 ( A )  is to be paid over 20 years (240 
months) at a rate of 9% per year. The monthly payment is 
computed from the above formula with n = 240 months and 
r = 0.09/12 = 0.0075 per month. 

It is necessary to calculate (1 + .0075)240 for use in the 
formula. This is accomplished with the calculator key [y"]; 
that is, enter 1.0075, press the [y"] key, then 240 = to give 
6.00915. The above formula yields, 

P = 8 0 0 0 0 ~  0.0075~6.00915/(6.00915- 1) 

= $719.78 

Example 

An automobile costing $20,000 is to be financed at the 
annual rate of 8% and paid in equal monthly payments over 
60 months. Thus, n = 60, A = 20000, and r = 0.08/12 = 
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First compute (1 + .006667)60 (by entering 1.006667 then 
pressing the key [y"], followed by 60) = 1.48987. Thus, the 
monthly payment is 

P = 20000 x ,006667 x 1.48987/(1.48987 - 1) 

= $405.53 

gives the monthly payment for each $1000 of the 
loan at several different interest rates. 

Example 
Use 
example. 

to get the monthly payment for the previous 

Note that the table entry for 8% and 5 years is $20.28 per 
thousand. Since the loan is $20,000, you must multiply 
$20.28 by 20 which gives $405.60. (This differs by a few 
cents from the above due to rounding in the tables.) 

3. Loan Payment Schedules 

Once the monthly loan payment is determined, it usually 
remains constant throughout the duration of the loan. The 
amount that goes to interest and principal changes with each 
payment as illustrated below. 

Example 
Show the payment schedule for a loan of $10.000 at the 
annual interest rate of 12% which is to be paid in equal 
monthly payments over 5 months. 

The monthly payment P is computed using the monthly 

Table A.6

Table A.6
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The value (1 .O1)s is calculated by entering 1.01 then pressing 
[y"] followed by 5 to give 1.0510101 so that the above 
becomes 

0.01 x 1.05 10101 = 2060,40 P=1oOoOx 
1.0510101 - 1 

Thus monthly payments are $2,060.40. The first month's 
interest is 1% of $10.000, or $100. Since the monthly pay- 
ment is constant, the following table shows the application 
of the monthly payment to both principal and interest as well 
as the balance. 

Payment Schedule 

Payment To Interest To Principal Balance 

1 100 1960.40 8039.60 
2 80.40 1980.00 6059.60 
3 60.60 1999.80 4059.80 
4 40.60 2019.80 2040 
5 20.40 2040.00 - 

4. Loan Balance Calculation 

The balance after some number of payments, illustrated in 
section 3 above, may be calculated directly from a formula 
that is given below. In this calculation it is assumed that the 
monthly payments in amount P are made every month. The 
amount of these payments was determined from the original 
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loan (e.g., 120 months for a 10-year loan) and the monthly 
interest rate r as given in section 3. We now wish to deter- 
mine what the balance is after a specific number of pay- 
ments, denoted by k, have been made. The balance is given 
by 

Balk =(l+r)‘  A - -  f- ( r>O)  (3: 
Example 
A 15-year loan of $lOO,OOO at 7% annual interest rate was 
made and requires a monthly payment of $899. This monthly 
payment was determined from the formula in section 3. It 
is desired to know what the balance is after 5 years (60 
payments). 

The calculation requires the use of r at the monthly rate; 
thus, r = 0.07/12 = 0.0058333, and substitution yields 

899 Balm =(1+0.0058333)w 

= (1.41762)[1OOOOO-154115.17]+154115.17 

= $77,400.43 

5. Accelerated Loan Payment 

The monthly payment P on a loan depends on the amount 
borrowed A, the monthly interest rate r and the number of 
payments n (the length of the loan). If the monthly payment 
is increased to a new amount P’then the number of monthly 
payments will be reduced to some lesser number n’ which 
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First calculate ferm 1 from the formula 

P' ferm 1 =- 
P' -Ar  

and term 2 

term 2 = (1 + r )  

From term 1 and ferm 2 the number of months n'is calcu- 
lated as 

Iog(term 1) 
Iog(term 2) 

n' = 

Example 
A mortgage of $50,000 for 30 years (360 months) at an 
annual rate of 8% requires monthly payments of $7.34 per 
thousand; thus, 50 thousand requires a monthly payment of 
50 x $7.34 = $367. ( S e e  ). If the borrower decides 
to pay more than the required monthly payment, say $450, 
how long would it take to pay off the loan? 

The monthly interest rate is 0.08/12 and is used in the cal- 
culations of term l and term 2: 

= 3.8571 450 
450 -(50000)(0.08/12) 

term 1 = 

term 2 = (1 + 0.08/12) = 1.00667 

Thus, 

Table A.6
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The loan time is reduced to 203.1 months (16.9 years). 

6. Lump Sum Payment 

A way to reduce the length of a loan is to make a lump 
payment that immediately reduces the amount owed to some 
lower amount which we denote by Bal. The original monthly 
payment remains at the amount P which was previously 
determined from the original terms of the loan, but now the 
number of future payments M will be fewer because of the 
reduction in the amount owed. This number M is calculated 
from quantities X and Y defined as follows: 

P 
P - (Eal)(r)  

X =  

and 

Example 
In a previous example (section 4) we considered a situation 
at the end of 5 years of a loan of $1OO,ooO for 15 years at 
the annual interest rate of 7% (0.0058333/month). The bal- 
ance after 5 years was $77,400.43 and the monthly payment 
is $899.00 and scheduled to remain at that amount for the 
remaining 120 months. Suppose a lump payment of $20,000 
is made, thereby reducing the amount owed to $57,400.43, 
denoted here by Bal. The monthly payments remain at $899. 
The number of future payments M is calculated from the 
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= 1.59350 899 X =  
899 - (57400.43)(0.0058333) 

Y = (1 + 0.0058333) = 1.0058333 

The quantity M is then calculated 

log(l.59350) 
log(l.0058333) 

M =  = 80.1 months 

7. Compound Interest 

An amount of money (A)  deposited in an interest-bearing 
account will earn interest that is added to the deposited 
amount at specified time intervals. Rates are usually quoted 
on an annual basis, as a percent. The interest is added at 
some fixed time interval or interest period such as a year, a 
month, or a day. The annual rate is divided by this interval 
for the purpose of calculation; e.g., if the annual rate is 9% 
and the interest period is 1 month, then the periodic rate r 
is 0.09/12 = ,0075; if the period is 3 months (quarter of a 
year) then r = 0.09/4 = .0225. After n time intervals (com- 
pounding periods) the money grows to an amount S given by 

S= A(1+ r)ll 

where 

A = original amount 

n = number of interest periods 
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Example 
$500 is deposited with an annual interest rate of 10% com- 
pounded quarterly. What is the amount after 2 years? 

A =$SO0 

r = 0.10/4 = 0.025 

n = 2/(1/4) = 8 

(the periodic rate = 12-month rate/4) 

(no. of interest periods) 

and 

S = 5 0 0 ~ ( 1 . 0 2 5 ) ~  

S = 500 x 1.2184 = $609.20 

If this annual rate were compounded monthly, then r = 
0.10/12 = 0.008333 and n = 2/(1/12) = 24, so that S becomes 

S = 500 x (1.008333)” 

= 500 x 1.22038 = $610.19 

Effective Rate of Interest 

When annual interest of, say 8%. is compounded at an inter- 
val such as 4 times per year (quarterly) the effective yield 
is calculated by using the annual rate divided by four, thus 
2% or 0.02, and the number of compounding periods, in this 
case 4. Thus, 

(1.02)4 = 1.0824 

and the effective annual rate is 0.0824 or 8.24%. In contrast, 
8% is the nominal rate. shows the growth of $1 
for different effective annual interest rates and numbers of 

Table A.7
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8. Time to Double (Your Money) 

The time (in years) to double an amount deposited depends 
on the annual interest rate ( r )  and is calculated from the 
following formula: 

log2 0.3010 Time (yrs) = ~ - ~ 

log(l+r) - log(l+r) 

Example 
For interest rate 6% ( r  = 0.06), the time in years is 

0.3010 ,3010 - 1,89 yrs 
log(] .06) - 0.253 1 

gives the doubling time for various annual interest 
rates 

9. Present Value of a Single Future Payment 

If one is to receive a specified amount ( A )  of money at some 
future time, say n years from now, this benefit has a present 
value (V) that is based on the current interest rate (r)  and 
calculated according to the formula. 

Example 
You are to receive $lo00 ten years from now and the current 
annual interest rate is 8% ( r  = 0.08) and constant. The present 
value of this benefit is 

Table A.8
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10. Regular Saving to Accumulate a Speci3ed Amount 

Payments at the Beginning of the Year 

We wish to determine an amount P that should be saved 
each year in order to accumulate S dollars in n years, given 
that the annual interest rate is r. The payment P, calculated 
from the formula below, is made on a certain date and on 
that same date each year, so that after n years (and n pay- 
ments) the desired amount S is available. 

To make this schedule more clear, say that the payment is 
at the beginning of the year, then at the beginning of the 
next year, and so on for ten payments, the last being made 
at the beginning of the tenth year. At the end of this tenth 
year (and no further payments) we have the amount S. The 
payment amounts P are computed from the above formula. 

Example 
It is desired to accumulate $20,000 for college expenses 
needed 10 years hence in a savings account that pays the 
constant rate of 6% annually. 

S = 20000, r = 0.06, and n = 10 

The quantity (1.06)" = 1.8983. Thus, 

P =  0'06 2oooo = 143 1.47 
1.8983-1.06 
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Payments at the End of the Year 

Payments of amount P are deposited in an interest bearing 
account at the end of each year for n years so that n such 
payments are made. The annual interest is r. It is desired to 
have S dollars immediately after the last payment. The 
annual payment P to attain this is given by the formula 

Example 

It is desired to accumulate $100,000 by making annual 
deposits in amount P at the end of each year for 40 years 
(say from age 25 to 65 in a retirement plan) on the assump- 
tion that the interest rate is 10% per year and remains con- 
stant over the entire period. P is then 

P =  O' 'OOooo = $225.94 
(1 .10)~-1  

Example 

It is desired to accumulate $lOO,ooO in 10 years by making 
semiannual payments in an account paying 4% annually, but 
compounded semiannually, i.e., at the end of each 6-month 
period, for 20 periods. In this case we use the interest rate 
0.04/2 = 0.02 for the compounding period, and insert n = 
20 into the above formula. 

0.02x10oooo =4,116 P =  
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(1.02)20 -1 
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so that deposits of $4,116 are required every 6 months. 
(Result rounded to nearest dollar.) 

11. Monthly Payments to Achieve a Specified Amount 

It is convenient to have tables of monthly payments for 
several different annual interest rates and compounding peri- 
ods and these are given in and . 

12. Periodic Withdrawals From an 
Interest-Bearing Account 

(i) Balance Calculation 
An account with an initial amount A is earning interest at 
the rate r. If a fixed amount P is withdrawn at regular inter- 
vals, then the balance B after n withdrawals is given by 

In a common application the withdrawals are made monthly 
so that the annual interest rate r used in the formula is the 
annual rate divided by 12 (with monthly compounding). In this 
application the withdrawal is made at the end of the month. 
(Note: Balance decreases only if P > Ar). 

Example 
An account earning interest at 10% per year and com- 
pounded monthly contains $25,000 and monthly withdraw- 
als of $300 are made at the end of each month. How much 
remains after 6 withdrawals? after 12 withdrawals? 

Since the rate is 10% and withdrawals are monthly we use 
the rate r = .10/12 = ,008333, with A = 25000 and P = 300. 
First, for n = 6: 

Tables A.9 A.10.
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(1.008333)6 -1 [ 0.008333 ] B=25000~(1.008333)~ - 3 0 0 ~  

Nore: (1.008333)6 = 1.05105 Thus, 

1.05 105 - 1 B = 25000~ 1.05105 -300 x 
10.008333 I 

=$24,438 (rounded) 

After 12 withdrawals, 

(1.008333)'2 - 1  [ 0.008333 ] B=25000~(1.008333)'~ - 3 0 0 ~  

B = $23,848 (rounded) 

shows the result of depositing $10,000 at 8% 
annually (0.6667% monthly) and withdrawing a specified 
amount each month, while gives the results for 
$20,000 and annual interest 12%. 

(ii) Amounr on Deposit 
The amount of money A, earning annual interest c that must 
be on deposit in order to withdraw amount P at the end of 
each year for n years is given by 

Figure 12.1

Figure 12.2
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FIGURE 12.1. 
withdrawal. Interest rate is 8% per year. 

Balance of $lO,oOO for specified monthly 

Example 
For annual interest rate of 6% withdrawals of $1000 at the 
end of each of 20 years requires an amount A on deposit 
that is calculated as 

[ 1 -&] = $1 1,469.92 

Noie: rfthe withdrawals are monthly then the interest rate 
is r/12 (assumed monthly compounding) and n is the number 
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13. Periodic Withdrawals That Maintain the Principal 

The amount of monthly withdrawals that will neither 
increase nor decrease the principal, called the critical 
amount, is given by 

~' 8 I , , 

-...-: 
. . . m a  

. . . o - -  : 
. o . -  : . . . . a .  .......................... 

- .  - - . . *  
.. .. .. I - . . . ,  

- .  . *... 
1 

- 

: 

~ ~ ~ " ~ , " 1 , , " 1 " " " " , ' , ' ~ '  

P = rA 

where A is the principal and r is the interest rate. 
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Example 
Suppose an amount A = $25,000 is deposited and 
r = ,0083333 (monthly); then 

P = 0.008333 x 25000 

= $208.32 

so that $208.32 may be withdrawn monthly while maintain- 
ing the original $25,000. 

shows the change in principal ($20.000) follow- 
ing a number of withdrawals for several different monthly 
amounts in an account earning 12% per year and compounded 
monthly ( r  = 0.01). It is noteworthy that withdrawing less than 
$200 per month (critical amount) does not decrease, but 
actually increases the principal. 

14. Time to Deplete an Interest-Bearing Account with 
Periodic Withdrawals 

If withdrawals at regular time intervals are in amounts 
greater than the critical amount (See section 13) the balance 
decreases. The number of withdrawals to depletion may be 
calculated as follows: 

where 

P = monthly amount 

A = amount of the principal 

r =interest rate 

Figure 12.2
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n = number of withdrawals to depletion 



 

Example 
An account with principal $10,000 is earning interest at the 
annual rate of 10% and monthly withdrawals of $200 are 
made. 

To determine the number of withdrawals to depletion we use 
the monthly interest rate, r = 0.1/12 = .008333, with P = 
200 and A = $10,000. The bracketed quantity is 

[(-200/0.008333)/(10OOO -200/0.008333)] = 1.7142 

and its logarithm is 0.23406. The quantity in parentheses is 
1.008333 and its logarithm is 0.003604; hence, 

Effectively this means 65 payments (months). 

15. Amounts to Withdraw for a Specified Number of 
Withdrawals I: Payments at the End of Each Year 

Suppose an amount A has accumulated in a savings account 
or pension plan and continues to earn annual interest at the 
rate r. How much can one withdraw each year, at the end 
of each year, for n years? We denote the annual withdrawal 
amount by P and it is computed from the formula below: 
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Example 
The amount in savings is $100,000 and regular payments 
are desired for 20 years over which it assumed that the 
annual rate of interest is 6% and payable once a year. Using 
r = 0.06, n = 20 and A = 100,000 in the above gives 

100000~0.06 
1 1- 

(1 +0.06)20 

P =  

Note that (1.06)20 = 3.20713 and its reciprocal is 0.31180. 

Thus P = 6000/(1 - 0.31180) = $8,718.40. 

Payments of $8,718.40 per year at the end of each year for 
20 years are possible from this $100,000. Of course, if 10 
times this, or $1,00O,OOO, were on hand, then 10 times this, 
or $87,184 would be paid for 20 years. 

Example 
If the same amounts above earn 8% annually instead of 6% 
the calculation is 

100000 x 0.08 
1 1- 

(1 +0.08)20 

P =  

Note that (1.08)20 = 4.66096 and its reciprocal is 0.214548. 
Thus, 

P=8000/(1 -0.214548) = $  10,185.22 

Payments of $10,185.22 are possible for 20 years from the 
%l00,oOa fund; from a $1,000,000 fund the annual payments 
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are 10 times this, or $101,852.20. 



 

16. Amounts to Withdraw for a Specified Number 
of Withdrawals II: Payments at the Beginning 
of Each Year 

An amount A has accumulated in a savings account or pen- 
sion plan and continues to earn annual interest at the annual 
rate r and is payable yearly. How much can you withdraw 
each year, at the beginning of each of n years? We denote 
the annual withdrawal amount by P, and it is computed from 
the formula below: 

Example 
There is $100,000 in an account that earns 8% annually. It 
is desired to determine how much can be withdrawn (P) ,  at 
the beginning of each year, for 25 years. In this application, 
r = 0.08, n = 25 years and A = 100,OOO. Thus, P is given by 

lOoo00 x 0.08 

1.08-- 
1 P =  

(1 .08)24 

Note that 1.OSz4 = 6.341 18 and the reciprocal of this is 
0.15770 so that P is given by 

8OOO 
1.08-0.15770 

P =  

which is $8,673.97. 

Example 
Suppose that there is $l00,OOO in an account earning 8% 
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annually and you desire to withdraw it at the beginning of 



 

each year for only 10 years. The amount per year P is now 
computed as 

1OooOO x 0.08 
I 

(1.08)’ 

P -  
1.08-- 

We calculate that 1.0g9 = 1.9990 and its reciprocal is 
0.50025, so that P is given by 

P =  = 13,799.05 
1.08-0.50025 

Since the original amount is $100,000 this annual with- 
drawal amount is 13.799% of the original. It is convenient 
to have a table of the percent that may be withdrawn for a 
specified number of years at various interest rates, and this 
is given in . Note that the amount just calculated 
can be obtained from the table by going down to 10 years 
in the 8% column. 

Example 
Find the percent of a portfolio that may be withdrawn at the 
beginning of each year for 15 years if the annual average 
rate of interest is 12%. 

From , in the 12% column, the entry at 15 years 
is 13.109%. Thus, a portfolio of $100,000 allows annual 
withdrawals of $13,109. 

17. Present Value of Regular Payments 

Suppose you are to receive yearly payments of a certain 

Table A.11

Table A.11
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amount over a number of years. This occurs, for example, 



 

when one wins a state lottery. The current value of this 
stream of payments depends on the number of years (n) ,  the 
interest rate (r) that money earns (assumed constant), and 
the amount (P) of the yearly payment. The current value (V) 
is computed from the formula 

Example 
The current interest rate is 7% and annual payments of $100 
are to be paid for 25 years. The current value of these 
payments is 

Note: ( 1.07)25 = 5.42743; using this in the above formula we 
compute 

V =  $1 165.36 

18. Annuities 

Deposits at the End of the Year 

The same amount, denoted by P, is deposited in an interest- 
bearing account at the end of each year. The annual interest 
rate is r. At the end of n years these deposits grow to an 
amount S given by 
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If the deposits are made every month the above formula 
holds for the accumulated amount after n months. In this 
case the interest rate r is the annual rate divided by 12 and 
compounded monthly. 

Example 
The sum of $500 is deposited at the end of every year in an 
account that earn 6% annually. What is the total at the end 
of 12 years? 

P =  500, r =  0.06, and n = 12 

Thus, 

(1 + 0.06)'* - 1 s=500x 
0.06 

We must calculate (1.06)'* which equals 2.012196. Thus, 
the above becomes 

S = 500 x 1.012196/0.06 = 500 x 16.8699 = $8434.97. 

Example 
Monthly payments of $500 are made into a retirement plan 
that has an average annual interest rate of 12% with monthly 
compounding. How much does this grow to in 25 years? 

Because payments are made monthly the rate rand the value 
of n must be based on monthly payments. Thus, the rate r 
is (0.12/12 = .Ol), and n = 25 x 12 = 300 months. Thus, the 
value of S is 

( t + o . ~ i ) ~ ~ - i  
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s=500x 
0.01 



 

Note: (l.01)3m = 19.7885; thus, 

S = 500 X 18.7885/.01 = $939,425 

shows the result of depositing $1,000 at the end 
of each year in an account that earns annual interest at 
several different rates (payable yearly). 

Deposits at the Beginning of the Year 

Amount P is deposited each time and the annual interest rate 
is r; after n years the accumulated amount is S given by 

Example 

$loo0 is deposited at the beginning of each year in a savings 
account that yields 8% annually and paid annually. At the 
end of 15 years the amount is S given by 

S = -X[(l.O8)'6 1000 - 1.081 
0.08 

Thus, the amount grows to $29,325. illustrates 
the accumulation of funds when $l,ooO is deposited at the 
beginning of each year in an account that eams a specified 
annual rate. Noie: If interesi is paid more ofien ihan once a 
year then the effective annual interest should be used in the 

Table A.12

Table A.13
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applicaiion of these annuiiy formulas. 



 

19. The In-Out Formula 

We wish to determine the amount of money (A) to be saved 
each month for a specified number of months (M) in order 
that withdrawals of $1000 monthly for another specified 
time (N) may begin. It is assumed that the interest rate (r)  
remains constant throughout the saving and collecting peri- 
ods and that compounding occurs monthly. Thus, the interest 
rate r is the annual interest rate divided by 12, and Nand M 
are in months. The monthly amount A which must be saved 
is given by the formula 

Example 
The amount to be saved monthly for 15 years (M = 15 x 
12 = 180 months) is to be determined in order that one can 
receive $1000 per month for the next 10 years (N = 10 x 12 
= 120 months). The annual interest rate is 6%, thus, r = 
0.06/12 = 0.005 per month. From the above formula, 

1 (1.005)'20 - 1 1 
(1.005)'20 (1.005)'80 - 1  

A = 1000 

A = (1000)[(0.450367) . (0.6877139)] 

A = 309.72 

Thus, $309.72 must be saved each month for 15 years in 
order to receive $1,000 per month for the next 10 years. 

, for annual interest 6%, gives the results of this 
calculation by reading down to 15 years and across to 10 
Table A.15
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years, as well as a number of different combinations of 



 

savings years and collection years. to apply 
to annual interest rates of 4%, 6%. 8%, and 10%. The use 

of these tables is illustrated in the next example. 

Example 

For an annual interest rate of 4% how much should be saved 

monthly for 25 years in order to collect $1,000 monthly for 

the next 20 years? 

From , reading down to 25 years and across to 

20 years, the table shows $320.97. Thus, $320.97 must be 

saved for each $1,000 monthly collected for 20 years. If, 

say, $3,000 per month is to be collected, we multiply 

$320.97 by 3 to give $962.9 I as the amount to be saved each 

month for 25 years. 

20. Slacks and Stock Quotations 

The stocks of various corporations require familiarity with 

the terms used and the underlying calculations. Besides the 

high, low, and closing price, and the change from the pre- 

vious trading day, the stock quotations, as listed in newspa- 

pers, contain additional terms that are calculated. 

Yield : the dividend or other cash distribution that is paid on 

the security and usually expressed as a percentage of the 

closing price. The dollar amount of the distribution divided 

by the closing price, when multiplied by 100, gives the yield. 

Thus, a dividend of $3.50 for a stock selling for $40.75 has 

a yield of 

Tables A.14

Tables A.14 17
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100 x (3.50/40.75) = 8.6% (rounded) 



 

Price-earnings ratio (P/E) : The closing price divided by 
the earnings per share (for the most recent four quarters); 
for example, if annual earnings = $2.25 for the above stock, 
priced at $40.75, then P/E = 40.7Y2.25 = 18.1. 

Volume: The volume traded, usually on a daily basis, is 
quoted in units of 100. For example, a volume figure of 190 
means 190 x 100 = 19,000 shares traded. 

A listing might look as follows: 

Stock Div Yield Vol Hi Lo Close Change 

XYZ 3.50 8.6 190 42% 40% 40% iIh 

which means that this stock attained daily highs and lows 
of 42% and 40%. respectively, and closed at 93 above the 
previous day’s closing price of 40%. 

21. Bon& 

Bonds are issued by many corporations (and governments), 
usually with a par value or face value of $1000, and mature 
at a specified time that is part of the quotation information 
found in newspapers. The corporation (or government) thus 
promises to pay the face value of $l,oOO at maturity and 
also pays interest to the bond holder. The quotation also 
includes this annual interest expressed in percent. Although 
the face value of the bond may be $1000. the price which 
purchases it is based on units of $100; for example. the 
quoted purchase price, such as $95, means that the bond 
costs 10 times this, or $950 whereas a purchase listing of 
$1 10 would mean that it costs $1 100. Thus, XYZ corpora- 
tion bonds that pay interest at 8.5% and mature in 1998, 
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would be listed as 



 

XYZ 8% 98 

If the purchase price is $110, then the cost (without com- 
mission) is 10 x $1 10 = $1100 but pays interest of 8.5% of 
the face value of $1OOO, or $85. This is the amount paid 
annually regardless of the purchase price. Thus, the effective 
yield is computed from this earned interest and the purchase 
price: 

The listing, as published in newspapers, might look as follows: 

Bond Current Yield Close Net Change 

XYZ 81h 98 7.7 110 -k 'h 

The last column, net change, means that the closing price 
on the previous trading day was 109%. The quotation might 
also include the sales volume (usually in units of SlOOO) as 
well as the high and low prices of the bond during the trading 
day. 

Bond Value 

The value of a bond is determined from the number of years 
to maturity and the amount of the annual coupon payments 
paid each year until the bond matures. The face value (par 
value) of most bonds is $1000.00. The current value uses 
the current interest rate, e g ,  7%. to compute the current 
value of $1000 at 7% for the number of years to maturity, 
such as 30. This is given by, 1000/(1 + .07)'O = $131.37. 
This is the first part of the computation. The next part uses 
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the amount of the coupon payment, e g ,  $70 per year for 
30 years. This is calculated from the product of $70 and the 



 

factor [ l  - 1/(1.07)30]/0.07. This factor is 12.4090 and when 
multiplied by $70 gives $868.63. This is the second part of 
the calculation. When these parts are added, $131.37 + 
$863.63, the sum is $loOO. Accordingly, this bond is pres- 
ently worth $1000. i.e., a bond with face value of $1000 that 
pays $70 per year for 30 years should have a current selling 
price of $1000 (assuming safety) based on the current inter- 
est rate of 7%. 

The two parts of the calculation are based on the formulas 
below, in which r is the annual interest rate and N is the 
number of years: 

z = (face value)/(l+r)N 

The second part uses these values and the annual payment C: 

Example 
The previously illustrated 30-year bond pays $70 per year, 
but the current interest rate is now only 6%. For this calcu- 
lation we need (1.06)’O which is 5.7435. Thus Z = 

Adding the two parts, $174.11 + $963.54, gives $1,137.65. 
Note that the bond value has increased as  a result of this 
interest drop. 

$1,000/5.7435 and T =  (70/0.06) x (1 - 115.7435) = $963.54. 

22. Tar-Free Yield 

Certain securities such as municipal bonds may be purchased 
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tax free. The relationship between the tax-free yield (F) and 



 

the tax-equivalent yield (7) depends on one’s tax rate (R)  
according to the formula 

F =  ~ ( i  - R)  

Example 
If one is in the 28% tax bracket, i.e., R = 0.28, then the tax- 
free equivalent of a corporate bond paying 6.5% is 

F = 0.065 x (1 - 0.28) = 0.0468 or 4.68% 

(The tax rate is taken to be the total of the federal and 
effective state rates.) 

23. Stock Options (Puts and Calls) 

Various stock exchanges permit the purchase of stock 
options such as ‘‘puts’’ and “calls.” Each of these has an 
exercise price and an expiration date. The call option is the 
right to buy shares at the exercise price at any time on or 
before the expiration date. The put option is the right to sell 
shares at the exercise price. Thus, if the stock of XYZ cor- 
poration is currently trading at 52% ($52.50) and the exercise 
price is $50 with an expiration date 3 weeks hence, the call 
provides a guarantee of $2.50 if sold now (less commis- 
sions). Thus, the call has a value of at least that amount and 
would sell for even more since the stock price might increase 
even further. The price of the call might thus be $3.25. In 
contrast, the put, if exercised now, would lose $2.50, a negative 
value. But because the exercise date is still weeks away, the 
put still has worth since the stock price could fall below $50 
(the exercise price) giving the option some value. such as W 
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(37% cents). As the time of expiration gets nearer this value 



 

would dwindle to zero. The listing of these options (in early 
March 1997) would appear as follows: 

XY z C 52% 

Date Strike Call Put 
March 97 50 3% W 

(C is a code for the exchange) 

If the expiration is a month later, April 1997, the call and 
put prices would be greater, say 4 and l%,  respectively, 
because of the time to expiration (the third Friday of the 
month). 

24. Market Averages 

The simple average of a set of n numbers, also called the 
arithmetic mean, is computed by summing the numbers and 
dividing by n. The closing prices of groups of stocks, such 
as the stocks of 30 large companies that comprise the well- 
known Dow Jones Indusrrials provide an average. Because 
corporations often split shares, thereby changing their price 
per share, and because some of the corporations on the list 
of 30 may change over time, the simple formula for getting 
these averages is modified. For example, in the summer of 
1997 the total of the 30 prices was divided by 0.26908277 
to get the average (or average change). For example, if each 
gained 1 point, the sum 30 divided by 0.26908277 is 
$1 11.49, a gain in the average. Thus, even over several years, 
with stock splits (and even some different corporations), a 
change in the average is a useful indicator of performance. 

Other popular averages such as Standard & Poor’s and the 
New York Stock Exchange are comprised of different groups 
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of stocks in segments such as transportation, utilities, etc., 



 

25. 

as well as broad, composite averages. Each group has its 
own divisor. 

Mutual Fund Quotations 

Mutual funds are usually listed in newspapers with values 
of the net asset value (NAV) of a share, the buy price of a 
share and the change in net asset value from the previous 
day’s closing price. The net asset value is computed as the 
total of securities and cash in the fund divided by the number 
of shares. When the buy price is greater than the NAV the 
difference is known as the load or cost (commission) of 
buying the fund. The percent as commission is computed as 
100 x 1oadRVAV 

Example 
The XYZ fund is listed as follows: 

Fund NAV Buy Change 

XYZ 18.40 19.52 -.03 

The load is 100 x (19.52 - 18.40)/(18.40) = 6.087%. 

The listing also indicates that on the previous trading day 
the NAV was $18.43. If the fund is sold without a load, the 
symbol “NL” (no load) appears in the buy column. Total 
return may be computed from the difference between your 
cost (buy price) and the NAV when you sell and will also 
include dividend and distributions which the fund may pay. 

Example 
The fund above which was purchased at $19.52 per share 
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attains a net asset value of $22 eight months later. It also 



 

declares a dividend (D) of 25 cents and a capital gain dis- 
tribution (CG) of 40 cents during that time. These are added 
to the difference between the net asset value and the buy 
price, and this quantity is divided by the buy price to give 
the proportional return (PR);  percent return is 100 x PR: 

D + CG+ (NAV - BUY) 
PR = 

BUY 

0.25+0.40+(22-19.52) =-- 3.13 -o,1603 PR = 
19.52 19.52 

Thus, the percent return is 16.03%. Because this was attained 
in only 8 months it is equivalent to a 12-month return 
obtained by multiplying by I%, or 1.5. Thus, the annual % 
return is 1.5 x 16.03% or 24.04%. 

26. Dollar Cost Averaging 

The share price of a stock or mutual fund varies so that 
regular investment of a fixed amount of money will buy more 
shares when the price is low and fewer shares when the price 
is high. The table below illustrates the results of investing 
$100 each month for 9 months in a stock whose price is 
initially $15.00 and which fluctuates over the 9-month period 
but returns to $15.00 per share. The same $100 divided by 
the share price gives the number of shares purchased each 
month. The total number of shares accumulated is 62.742 
and has a price of $15 at the end of 9 months so that the 
total is worth $941.13. This is a gain of $41.13, even though 
the share price is the same at the beginning and end of the 
time period. 
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Month PricdShare No. of Shares 

15.00 
14.50 
14.00 
14.00 
13.50 
14.00 
14.50 
14.75 
15.00 

6.6667 
6.8966 
7.1429 
7.1429 
7.4074 
7.1429 
6.8966 
6.7791 
6.6667 

Total Shares 62.7424 

Value = $15.00 x 62.7424 = $941.14 

27. Moving Average 

Stocks, bonds, mutual funds and other instruments whose 
prices change are sometimes plotted along with their moving 
average over some specified time interval. For example, 
suppose the closing prices of a mutual fund for a sequence 
of days were as shown below: 

14.00, 14.25, 14.35, 15.02, 14.76, 14.81, 14.92, 

14.99, 15.32, 15.45, 15.32, 15.05, ..., 17.45. 

Illustrated here is the 10-day moving average. The average 
of the first 10 prices is the sum (14.00 + 14.25 + ... + 15.45) 
divided by 10, which is 14.79. The next average is obtained 
from day 2 to day 11, that is, drop 14.00 which is day one’s 
price, and average by summing to day 11: (14.25 + 14.35 + ... 
+ 15.32) and dividing by 10 which gives 14.92. These numbers, 
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computed on day 10, 11, etc. are the Io-day moving average 



 

10-day moving average 

0 1 0  20 30 4 0  50 6 0  
day 

FIGURE 12.3. The moving average. 

values. They are plotted, along with the daily prices, in the 
graph in 

While the daily prices fluctuate considerably, the moving 
average has much lower fluctuation as seen by the smoother 
curve. The usefulness of a moving avenge is that it indicates 
the main trend in prices. Whereas this example uses the 10- 
day moving average, other time intervals may be used such 
as 30-day, or 200-day, etc. Some mutual funds use a 39- 
week moving average. 

Figure 12.3
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Table of Derivatives 
In the following table, u and n are constants, e is the 
base of the natural logarithms, and u and u denote 
functions of x .  

d 

dr 
1. - (u)=O 

d 
dr 

2. - ( x ) = l  

d du 
3. -(uu)=u- 

ak dr 

d du du 
4. - - ( u + v ) = - + -  

dr d r d r  

d dv du 
5. - (uu)=u-  f v -  

dr d r d r  

du dv 
u--u- 

d d r d x  
dx v* 

6. -(u/u)= 

d du 
7. - (u")=nu"- ' -  

dr dr 

d du 
dr dr 

9. -uu =(log, u w -  
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d du 
dr dr 10. -log, u =(l/u)- 

d du 
11. -log, u =(log, eXl/u)- dr dx 

d du dv 

dr dr dr 12. -uu=  vu”- I -  + uU(log, 24)- 

d du 
13. -sinu=cosu- dr dr 

d du 
14. -cosu= -sinu- dr dr 

d du 
-tan u = sec’ u - 
dr dr 

d du 
16. -ctnu= - C S C ’ U -  dr dr 

15. 

17. 
d du - sec u = sec u tan u - 
dr dr 

d du 
18. - C S C U =  -csuctnu- dx dr 

d -1 du 
20. -cos-’ u = - - ,(O I cos-’ u I P) 

dr mk 
d 1 du 

-tan-’ u = - - 
dr l + u ’  dr 

21. 
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d -1 du 
-ctn-' u = - - 
dr 1+u2 dr 

d 1 du 

22. 

23. -sec-' u = ~ - dr , ( - n s s e c - '  u < -+a; 
dr U \ / u 2 - l  

0 s sec - l  u < +TI  

d -1 du 
24. -CSC-' u = ~ - , (- 7r < csc- I u 5 - f7r ;  

dr u J u 1 - l  dr 

0 ccsc-1 u I 

d du 
-sinh u = cosh u- dr dr 

d du 
- cosh u = sinh u - 
dr dr 

d du 
- tanh u = sech' u - 
dr dr 

d du 
-ctnh u = -csch2 u- 
dr dr 

d du 
29. -sech u = - sech u tanh u - dr dr 

d du 
30. -cschu= -cschuctnhu- dr dr 

d 1 du 
-sinh-' u = - - 

25. 

26. 

27. 

28. 

31. 
dr K d '  
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32. 

33. 

34. 

35. 

36. 

Additional Relations with Deriuatiues 

If x = f ( y ) ,  then 

If y = f ( u )  and u then 

dy dy du _ = _ . _  (chain rule) 
dr du dr 

If x = f ( t )  and y = g ( r ) ,  then 
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4 g’(t) -=- 
dr f’(r) ’ 

and 

d2y f’(t)&‘(f)-g’(t)f”(r) -= 
ok2 [f’(l)l’ 

bVote: exponent in denominator is 3.) 
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Indefinite Integrals 
Definite Integrals 

Table
of
Integrals
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Table of Indefinite Integrals 

Basic Forms (all logarithms are to base e) 

1. J &=x+C 
2. J x”dr=+, (WI) 
3. J $=logx+C 
4. J e”ak=e’+c 
5. J ddx=&+C 
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6. J sinxdx = -cosx + C 

7. J cosxdr=sinx+C 

8. J tanxak=-logcosx+C 

9. J se2xdc= tanx+ C 

10. J cs2xdr=-ctnx+C 
11. J secxtanx&=secx+c 

12. J sidx&=I-x- I-sinxcosx+C 
2 2 
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13. J c o ~ ,  d~ = -x  I 1  + -sin x cos x + c 2 2  

14. F o g x d r = x l o g x - x + C  

Ji log a dx = a" + c , (a > 0) 
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19. Jm- dx - log [ x+ J 2d) + c  
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In the following list, a constant of integration C should be added to the result of each integration. 

Form ax + b 

( m #  -1) 

(m # -1, -2) 
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31. 

32. . f z W  + a)" & 

m + 2  m + l  
+ 

(m # -1, -2, -3) 
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Forms ax + b and cx + d 

1 a + d  =- d X  

41' J(az + b )  (a + d )  bc - ad log (q) 

1 a d 



Forms with Jrrr+b 
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50. 

51. 

52. 

53. 

54. 

55. 

b > O ,  &>ad) 



(3ad - 2bc + ax)- 

s dx 2 

57. (a+d)m=di- 

61. 
s 

cbdxp 243 - 2cb arctan 
X 

s 
\ax+b 

62. 
L&Z a9 

© 1999 by CRC Press LLC
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63. 1jr=-- 443dz
(m--l)b

cm+ 1)

64. jeb ? ‘F

2(az  - 2b)w
-=

30’

(b > ‘3

(6  < 0)



© 1999 by CRC Press LLC

4*n 

73, J z ( a  + b)*F dz = - 2 [ (az + - b(az  + b ) * T  
a' 4 f m  2 * m  

Form a.9 i c 

(a > 0, c > 0) 
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z” dz zm-l c e’-* dz 
79. s - = - - - cz’i-c a(m - 1) u s- u.za + c 

cm # 1) 

81. 
dx 1 a dz ~=__-- - 

z’(uz’ + c) c.z c s cz* + c 

82* .f& = - c(m -ll)zm-l - yz.-*,; + c) (m # 1) 
83- S&=2, 

1 2 2m-3 dz 
. m - 1 ) c ( az’+e)--‘+2(m--l)e s (&+c)=-’ 

h# 1) 
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84. s zdz=- 1 

(a’ + 4” !2a(m - l)(az’+ C)“’ cm # 1) 

z’ dz z 1 & 
85. s 

-=- 
(az’+c) ” za(m-l)(azr+c)-l+za(m-l) (az’+c)“-~ s 

(m# 1) 

1 

2&I - 1) (a? + cp-' 
cm z 1) 

s 

(see 82 and 83) 

Form&+bx+c 

88. 
/ 

dz ~ = &clos 2aI+ll-- 
ar’fbcfc zu++b+~&-4ac (F > ‘kg 

89. s 
dz 

UIZ + bI + c = & tm$-j (F < 4ac) 
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dz 2 
90. J a z z  + bz + = - 2az+b (bz = 4ac.l 

2az+ b - - dx 
91. S ( a $  + bz + c)"fl n ( h c  - bz)(azz  + bz  + c)" 

2(2n - 1)a / d~ 
-I- n ( k c  - b*) (az' + bz + c)' 

94. J z"dz - 2"-1 CJ Y-ldz 
axz + bz + c ( n  - l ) a  a azZ + bz + c 

-!/- 2"-'& 
a a $ + b z + c  
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95. J” - - (ZC + 6 ~ )  
(az’ + 61: + c)“+‘ - n(4ac - b*)(azl + 61  + c)” 

- b(2n - 1) J” 
n(4 ac - b2) 

dz 
(a? + bz + c)” 

Forms with 

6 
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dK1li.z (2az - zl)* m-3 dzGc2 dz 
102. J p + = - a(2m - 3)2- -s a(2m - 3) z-4 
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Forms with 

108. $-& = 4 (w f alarcain- 3 
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116. - 

117. - 
s g= 

- : dK-2 + f arcsin i 



© 1999 by CRC Press LLC

Forms with d m  
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126. 
.I‘ 

127. 

128. 
s 

md.2 vzzl a 
z’ 

- --+-mccos- 
2x’ za z 

129. s 
-P log 12 + -1 
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1 a 
= - arccos - z 

-1 1 
=- + - arccog - dz 

135. f m  2azZ ka 

Forms with II;I'sT;z 
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141. S T ”  = -- y + log (2 + m) 
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147. j- & = - - log I a + 71 
2 V Z F 7  

Forms with 

150. j dz - - 1 - A l o g ( 2 a x + 6 + 2 ~ ~ / a a x 2 + b z + c ) ,  a > 0. 
v'az' + 62 + c 

a < 0. 1 -2az - b , j dz  - =sin-' 7 151. daz? + 62 + c b2 - 4ac 
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153. / Y d z  I' d a 9  + br + c d a 9  + b t  + c n 
b(2n - 1)s z"-'dx c(n - I) /  F ' d t  

2an d a z 2  + 6z + c an d a t z  + bz + c 

154. / d a x z  + 6z + c dz = - '"'2 d a z ?  + bz + c 

dx 
d a x z  + bz + c 
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157. 

158. dt 
da/ul! + 6x + c c < 0. 

159. J- 
h 2 

zd/az’ + bx = - E \/a~’ + bz, c = 0. 

da9 + bt + e 
rdaz’ + bzt + c = - c(n - I)Z+ 

b/3 - 
+2&l - 

2n) dz a(2 - n) dz 
1) s fldm’ + bz + c f- 

c(n - 1) s z”-‘d/at’ + bz + ; 

.I- 
dz 1 =- 

162. (aP + bz +c): 
* v = 4% 

2V3.z + b/2+ 



Miscellaneous Algebraic Forms 

(d  + z > 0 and b + z > 0) 
7 

164. j $ E d z =  - d ( a + z ) ( b - z ) -  (a+b) arcsin G 
J% 165. j& dz=d/(a-z)(b+z)+ (a+ b )  arcsin 

z - a  
= 2 arcsin ,/ra 167. s, 

168. j"- = - [A arctan - + log 
a z a + b  3b kd3 

(z - a )  (b  - z) 

k 2~ - k 

(b z 0, k = 6) 
© 1999 by CRC Press LLC
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169. j-s* - & 2.z-k 
dZaarchn ~ - - log 

k+x 

z’ - kz + k’ II 
$b#O,k=$) 

172. z&z s, = (2.m - 2’)’ = as 
-= log 12 + a + -1 

174. /s& = -;- 
+ (ud - bc) 

s 
dz 

2a m.daYT 



orms 

d x  
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'higonometric F

1 
a 

(sin a x )  dx = - - cos ax 

1 1 1  1 .  
20 2 2 4 a  176. j ( s i n ' a x ) d x  = - -cosaxs inax+-x=-x- -s in2ax 

1 
177. 

3x sin2ax sin4ax 178. I ( s i n 4  a x )  dx = - - - + - 
8 4 a  32a 

(sin3 a x )  dx = - -(cos ax)(sin' ax + 2 )  I 3a 

s i n " - l a x c o s a x  n - 1 
179. (sin" a x )  dx = - + -J(sin'-' a x ) d x  I no 

dx 1 
180. /Ex = ~ ( C S C '  a x ) d x  = - -cot ax 

d x  1 
181. = / ( c s E  a*) d x  = - -. - 
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182. 
I 

sin(o + bx)dx = - ~cos(o + bx) 

U-4. I sinox &= +X+!,a” 3T’x 
( I I fsinox - 0 4 2 

185. 
I 

(sin nx)(rk sin (1x) = i tan f * tf + $ log tan y 
1 I 

188. 
sin ox 

(I + sinox)* 
dx= -ktan(f-s) +&tan3(a-y) 



ger] 

ger] 
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lg9. / sin,ax dx = I 
(1 - sin ax)* 

a + bsinx b b a + bsinx 
190. / sinxdx x a /  dx  

dx  I 
19‘* /(sin x)(u + b sin x) a 

- = - _ _  ~ 

b cos x dx  192. dx - I (a + b sin x)’ - (a2 - bz)(a + b sin x) + 

u cos x h dx - sin x dx  
193* J(a  + b sin x)’ - (b’ - u’)(a + b sin x) + 1- 

[use + if (8k - 1): < x I (8k + 3):. otherwise - : k an inte
2 2 

J JGE 
195. 

dx = k2 sin- + ( i  cos;) 3 

[use + if (8k  - 3)E < x I (8k + I)!, otherwise - ; k an inte
2 2 
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196. 

s 
1 

(cos ax) dx = - sm ax 
a 

197. 
I 

(cos* ax) dx = &sin ax cos ax + ix = ix + &sin 2ax 

198. 
I 

(COS' ax) dx = i(sin ax)(cos’ ax + 2) 

199. 3x sin2ax sin4ax 
(cos4ax)dx=T+-+- 

40 32a 

20. /(cof ax) dx = t cos”- ’ ax sin ax +y I(cos’-~ ax) dx 

201. 
(cos*” ax) dx = 

202. 



dx  
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1 203. --& = (sccz ax) dx = - tan ax 

dx l sinax 204. lx = l(sec"ax)dx = - . ~

1 .  
b 

205. Icos(a + bx) dx = - sin(o + bx) 

dx I ax 

I ax 207. - - - -cot-  
I - cosax a 2 

J n t a n ;  + a  + b 
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I ax 
dx = x - - tan-  

1 + cosax a 2  

1 ax 
a 2  

dx 3 - X  - - c o I -  

dx I (: 7) -;tany I ax 
=-logtan - + -  

dx I 1 ax 
= -log tan(: + 7) - ;cot 

I ax I ax 
1 ( 1 +  cos ax)2 - 2a tan - 2 6 a  + - tanJ - 2 

dx _ _  

dx - _ _  - COI- - -COP- 

213. 

I ax 1 ax 
( I  - c o ~ a x ) ~  20 2 6a 2 

214. I 



x 
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216. 

217. 

218. 

219. 

d x  

dx dx I (cos x) (a  + b cos x) a 

6 sin x d- dx 
! ( a  + hcos x)’ - (h’ - a ’ ) b  + b cos x )  

220- [ ( a  + h cos x)’ dx = (a’ - h’)(a + h cos 
cos x a sin x 

2 sin ax 221- / , / z d x  = - = - aces (.y) aJI-cos0.r a 



ger] 

’) 

n’) 

# n2)  
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[use + if 4kn < x < (4k + 2)n. otherwise - : k an integer] 

[use + if  (4k - I)n < x < (4k + 1)n. otherwise - : k an inte

sin(m - n)x 225. (sin mx)(sin nx)  d x  = - (m’ P n
2(m - n )  

sin(m - n)x + (m’ z 
2(m - n) 

sin(m + n)x 
2(m + n )  ’ 

sin(m + n)x 
2(m + n)  ’ 

I 

227. (sin ax)(cos a x )  d x  = sin* ax J 2a 

cos(m - n)x 228. (sin rnx)(cos n x )  dx  = - - (m’ 
cos(m + n)x I 2(m - n)  2(m + n )  ’ 
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1 .  229. (sin' ax)(cos* ax)  dx = - -sin 4ax + I 32a 8 

C O P +  ' ax 
230. I(sin ax)(cos" ax)  dx = - ~ 

(m + 1)o 

I SCcax 
232 1-dx = = 7 

I 
233. 1- dx = - -sin ax + 

1 csc ax dx = - - = -- cos ax 
a sin ax a 

I 
dx  = -log tan ax 

dx  =A(secax + logtan- 

235. I (sin ax)(cos ax) a 

236. I (sin ax)(cos' ax) a 
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(sin ax)(cos’ ax) = a(n - 1) cOs’- ’ (1x 

i 

dx 2 
239. 

(sin* Ox)(cOs’ Qx) 
= - -cot2ax 

0 

240. sindx = T $1 k COSOX) 
I f cosax 

241. 

242. 

243. 

z dx = f 5 log (I * sin OX) 
I f sinax 

dx 

(sin ax)(l * cos ax) = 
f 

dx 

(cos ax)(l f sin ux) 
=T 
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sin ax I 
a 

244. j dx = - log (sec ax * 1) 
(cos ax)(l f cos ax) 

cos ax I 
dx = - -log (csc ax I )  

0 

sin ax I 
dx = 

cos ax I I ax
f -log tan -

2 
dx = - 

2a( I f cos ax) 20 

dx 



._ ’ (hsinnx) 
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251. dx b tan cx + a 

a’ cosz cx - b’ sin’ cx =&log 
b tan cx - a 

252. s 
cos ax 

1 + b’ sin’ ax 
dx = A log (b sin ax + ,/ 1 + b’ sin’ax) 

cos ax 

253. IJ 1 - b’ sin’ ax 
dx = i sin- ’ (b sin ax) 

254. I 
(cosax) 1 + b’sin’axdx = yJ1 + b’sin’ax 

1 
+ G log (b sin ax + I + t? sin* 0-r) 

255. (cos ax) ,/l - b’ sin’ ax dx = ‘5 
1 1 - bzsin’ox + -ssln 

2ab 

256. (tan ax) dx = - i log cos ax = k log SW ax 
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1 1 
257. I(cot ax)  dx = -log sin a x  = - - logcsc ax 

1 1 258. I(sec a x )  dx = - log (sec ax + tan a x )  = -log tan 

1 1 a x  
259* ~ ( C S C  a x )  d x  = -log (csc ax - cot ax)  = - log tan - 

2 

260. J(tan’ a x )  dx = - t a n  ax - x 
1 

1 I 261. J(ta.3 ux) dx = - tan2 ax + -log cos ax 
2a 
tan’ax 1 

262. 30 a (tan‘ a x )  d x  = - - - tan x + x 

tana- ’ ax 
a(n - 1 )  

263. I ( t a n ’ a x ) d x  = ~ - I ( t a n ” - ’ a x ) d x  



ometric Functions 
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1 
j(C0t'UX)dX = - -COtQX - X 

1 I 
2fl fl 

(cot' a x )  dx = - -cot' ax - - log sin ax 

1 I 
3a 266. I (cot4 a x )  dx  = - - cot3 ax + -cot ax + x 

Forms with Inverse Trigon

JLxi 
268. ((sin-lax)dx = xsin-1 ax + - 

Jn 
269. ~ ( c ~ s - ~ a x ) d x  = X E O S - ' ~ ~  - - 
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270. 
I 

(tan - I ax)dx = xtan-’ ax - ; log (I + c&2) 

1 
271. s 

(cot - ’ ax) dx = x cot - ’ ax + - log (1 + 0*x2) 
20 

272. 
I 

(set - I ax) d.r = x set- ’ ax - ; log (ax + JzTi, 

273. ccsc s 
-‘ox)dx = xcsc-’ ax + ; log (ax + J77q 

274. 
I 

.v[sinm’(a.u)]dx = &[(2o’x’ - I)sin-‘(ox) + o.xJm] 

275. .x[cos - ’ (a.~)] dx = $[(2.‘.r’ - 1) cos- ’ (ax) - axdm] 



nometric Forms 
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Mixed Algebraic and Wgo

1 276. Jx(sin a x )  d.r = I sin ax - cos ax  

2.r , a z x 2  - 2 
a’ a’ 

277. /x‘(sin o.x)d.r = -sin ax  - - cos ax  

30’x’ - 6 . 

1 x .  

a’x’ - 6x 
a4 ’ I n a x  -- a3 cosax  

278. /x3(sin ax) dx = - 

279. I . r ( c o s  a s )  d x  = 7 cos ax  + - sin ax  
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x2 x s i n h x  cosZax 282. jx(sin' ax)dx = - - - - - 
4 4a 80' 

x3 x cos ?ax 
283. lx'(sin'ax)dx = - - (il - - - 8:,) sin2ax - - 

40' 

x cos 3ax sin 3ax 3x cos ax 3 sin ax 
284. Ix(s in3 ax)dx = - - - - - + - 

120 36a' 4a 4a1 
x1 x s i n ~ a x  cos~ax 
4 4a +T 285. /x(cos' ax) dx = - + - 

XJ x cos ?ax 2g6. /x'(cos' ax) dx = - + - - - sin 2ax + - 
6 (z 8;') 40' 

x sin 3ax cos 3ax 37 sin ax 3 cos ax 
120 3611' +- 4a ' 40' 287. /x(cos3 ox) dx = - + - 

sin ax 
( rn  - l)x"-' 

a +- 
m - 1  



x c o s a x  1 
a(l  f sin a x )  a dx = T + TIog(1 s inax)  

x a x  7 ox 
dx = - - c o t -  + I l o g s i n -  

a 2 a’ - 

x - sin x 
294. / - d x =  1 - c o s x  - x c o t X  2 

x c o t a x  1 
a a  

~ ( C S C ’  a x )  dx = - - + log sin ax 

© 1999 by CRC Press LLC
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296. x cos (Ix 
a(n - I) sin”- ’ OX 

1 

o’(n - I)(n - 2) sin”-’ (IX 

291. & dx = x(sec’ ax) dx = ix tan ax + f log cos ax 

x sin ox 
298. x dx = 

cos” ax 
x6-=” 4 dx = o(n _ , ) cos” _ , oI 

I 

a2(n - I)(n - z)cos”-’ (Ix 

LogarithmicForms 

299. 
I 

(logx)dx = xlogx -x 

X2 X= 

300. 
x(logx)dx = $ogx - T 
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301. x' x' 
x’(log x) dx = T  log x - T  

302. I 
x^(log ox) dx = 

x”+ t x”+l 
-1ogox - - 
n+l (n + l)l 

303. (log x)’ dx = x(log x)* - 2x log x + 2x 

(log x)’ 
305. j  ex = log (log x) + log x + - 

(log x)’ 

2.2! +K+“. 

I 

(n - l)(logxr-’ 

308. 1 [logbx + LOI dx = Flog(ox + b) - x 



 a + bx + cx’ 
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310. [log z] dx = ( x  + a )  log ( x  + (I) - (x - a) log ( x  - a)  
x - a  

n + l  

where X =

312. [ log(x’  + a’)] dx = x log (x’ + a’) - 2x + Za tan-’ I 
x + a  

[ log(x’  - a’)] dx = x log(x’ - a’)  - Zx + a log- I x - a  3l3. 

314. I x[log (x’ & a’)] dx = j ( x ’  + a’) log (x’ & a’) - j x ’  



X J W  ) - 
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316* I x[log ( x  + Jm)] d x  = log (x + Jm
p+ I 

m + l  
317. ~ x " [ l o g ( x  + J m ) ] d x  = - log(x + ,/=) 



orms 
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Exponential F

320. c."dx = e' I 

fS 
322. ( P d x  = T  

e.' 
323. I x e" dx = +ax - 1) 
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d x  = tan-' ( A ) .  PX ( a > O , b > O )
a P  + be-"' 

ax + a-' 
329. / ( d  - a- ' )dx  = - 

log a 

e- 1 
330. I G d x  = ;log(b + ct?) 

332. x e-=' dx = - 1 e  --I' 



b - c)x] 

h - c ) .~ ]  

'bx 
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P [ n  sin (bx) - b C 0 5  (bx)] 
n' + b' 

e"'[(b - c) sin (b - c)x + n cos (

333* I e"[sin (bx)] dx  = 

334. 
2[a2 + (b - c)'] t? [sin (bx)][sin (cx)] dx = I 

P [ ( b  + c) sin (b + c)x . n cos (b + c)x] 

2[n2 + (b + c)'] 

335. ~ " [ C O S  (bx)] dx = - @' [a cos (bx) + b sin (bx)] 
n' + b' 

@'[(b - c) sin (h - c)x + n cos (
2[n2  + (h  - c)'] 

336. e"'[cos (bx)] [cos (cx)] dx  = 

@'[(h + c) sin (h  + r)x + n cos ( h  + c)x] 
2[0' + (h  + r)'] + 

33,. e"[sin" b r ]  dx = ~ [(nsinhx - nbcosbs)e""sin"-
a' + ii'h' 

+ n(n - I)h2 @'[sin"-' hx] dx] 



 ' bx 

 bx - 2ab cos bx] 

bx + 2ab sin bx]  

rms 
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( a  cos bx + nh sin hx)  Po' cos"-
a' + n'b' 

1 +n(n - l ) b ' ~ r " ' [ c o s " - ' h . ~ ] d ~  

x e"' 

a' + b' 339. I x e"'(sin bx)  dx = - (a sin bx - b cos bx)  

ens 

(a' + b ) 
-~ [(a' - b z )  sin

X 8' 

a' + b' 340. I x @'(cos b x ) d x  = - ( a  cos bx + b sin bx)  

e"= 
(a' + b ) 

-~ [(a' - b') cos 

Hyperbolic Fo

341. 1 (sinh x )  dx  = cosh x 
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342* I (cosh x) dx = sinh x 

343. J (tanh x) dx = log cosh x 

344- I (coth x) dx = log sinh x 

MS. I (sech x) dx = tan-' (sinh x) 

346' I csch x dx = log tanh - 

347. I x(sinh x) dx = x cosh x - sinh x 

(3) 

348. I x"(sinh x) dx  = x" cosh x - n x"-'(cosh x) dx I 



) 
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349- I x(cosh x)dx = x sinh x - cosh x 

350. J p(cosh x) dx = x" sinh x - n x"-'(sinh x) dx I 
351. (sech x)(tanh x) dx = - scch x 

(csch x)(coth x) dx - - csch x 

I 
352. 

sinh2x x 353- I(sinh'x)dx = - - - 
4 2  

354. I (tanh' x) d x  = x - lanh x 

355. j(tanh"x)dx = - - t (tanha-*x)dx, ( n  # 1tanh"-'x n - 1  I 



1 )  
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356- 

35,. / (coshz x) dx = - 

(sech' x) dx = tanh x 

sinh2x x 
4 + T  

358* / (coth' r)dx = x - coth x 

n - 1  
coth"-'xdx. (n  # 
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Table of Definite Integrals 

1, d x  - ncscpn,  [ p  < 11 

rn d x  
- -ncotpn.  [ p  < I ]  

362* I, - - 

d x  n , [ O < m < n ]  
mn 

n sin - 
n 

rn d x  365. ~ - I, ( I  + x)J; - 



P 
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a d x  II r .  366. lom- = j, if a > 0; 0, if a = 0; --, if a < 0 
2 

369. l o m x " e - " d x  =( 

1 367- lom e-" dx = -, (a > 0) 

Un ( p + 1  + l )  ' (n > - 1 , a  > 0) 

or 

(a > 0, n positive integer) 
n !  

a.+L' 

370. l m x " e x p ( - a x p ) d x  = n > - 1,p > 0, a > 0, k = 
pa' ' 
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J;; 373. jOm x z  e - x l  dx = - 
4 

n! 375. jOm x2"+' e-'"dx = Za"+', (a > 0) 



, *  - I - - l , a > O )  
© 1999 by CRC Press LLC

2ab 
382. lom x e-"[sin (bx)] dx = ~ + b1)Z" (a > 0) 

n![ (o  + ib)"" - ( a  - ib)"+*] 
Zi(a' + b')"+ ' 

~384. JOm X' e-"[sin (bx)] dx  = , 



' = -1 .0  >o)  
© 1999 by CRC Press LLC

n! [ (a  - ib)"" + (a  + ib)""] 
Z(0' + b')"+l 

385* JOm x" e-=[cos  (bx)] dx = 

sin x 
386. i, 7 dx = c o t - '  a. (a > 0) 

387. JOm e-'lX2 cos bx dx = - A exp [ -- 12), 

, (i

" D e - . x  . 

(ob f 0) 2a 

388. Jome-'cM+rb-' s i n ( r s i n 4 ) d t  = [ T ( b ) ] s i n ( b @ ) ,  

389. [" e-IC"+ tb- ' [cos  ( I  sin 4)] dr = [T(b) ]  cos (bb), 
" 0  

390* jomrb-' cosrdr  = [ T ( b ) ] c o s  

391. lom P - '  (sin 1)dr = [T(b) ]  sin 
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393. Jo' (log !-) * dx  = J;; 

394. jot (log !-) -' dx  = f i  

395. lot (log i)" d x  = n !  

396. lo1 x log (1 - x )  dx  = -? 

397. Jol x l o g ( 1  + x ) d x  = f 

( -  lyn!  
398. I' ?(log x)" dx = ~ 

m >  - 1 , n = 0 , 1 , 2 . . .  
0 (m + l ) " + t '  

If n # 0 , l .  2 , .  . . replace n !  by T(n + 1). 



© 1999 by CRC Press LLC

" I  - c o s p x  np 
dx = - 

X I  2 
401. I, ~ 

404. JOm cos (x') dx = lom sin (x')dx = 

I 405. lom sin ax" dx = - r ( l / n )  sin 1, 
na"" 2n 

n > I 
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410. JOm dx = 3 



nteger, n # 0) 

ger, n # 1) 
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2n -- (a1 < 1 )  
413* I=- - m' 

cos a x  - cos bx b 
a 

414. lom d x  = log- 

ll - _ -  dx 
415. 1'" 

o .'sin2 x + b1 cosl x 2ab 

416. 1''' (sin" x )  dx = 
0 

Jon'' (cos' x) dx 

or 
1 . 3 . 5 . 7  . . .(  n - 1 ) ~  

(n  an even i
2 . 4 . 6 . 8  ...( n) 7' 

or 
2 . 4 . 6 . 8 . . . ( n  - 1) 

(n  an odd inte1 . 3 . 5 . 7  . . . (  n)  ' 



, b integers) 

- b is even 

 
* < 1  
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" s i n m x d x  n I I .  
~ = - i f m  > 0 ; 0 , i f m  = 0; --, i f m  < 0 

417* I 0 x 2' 2 

" c o s x d x .  
418. I0 7 - -a 

420. 6 sin o x .  sin bx dx = cos ux . cos bx dx = 0, (u # 6 ;  aSoR 
421. I"' [sin (ax)][cos (ox)] dx = [sin (ax)][cos (ax)]  dx = 0 

0 6 
2u 

aa - b 
422. So" [sin (ux)][cos (bx)] dx = I, if a - b is odd, or 0 if u 

" sin x cos mx dx 
423. I, x 

n .
= = ~ , i ~ m <  - 1 o r m >  1 ; ! , i f m = 1 t 1 ; - , i f m

4 2 
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sin ox sin bx xu 
424. I, x 2  d x = - ,  (4 5 b) 

425. Ion sin2 mx dx = Ion cos2 mx dx = !! 
2 

'log(1 + x) x' 
d x  = - 

429. .(, 7 12 

dx = 



431.
431. I L (logx)[log(l + x)] dx = 2 - 2 log 2 - 
0 

; 

432. 
I 

I 
(logx)[log(l - x)]dx = 2 - o 5 

433. 
I 

’ logx -& = -g 
ol-x2 

434. ,dlog(~).!pg 

43.5. ; x -flog2 
I 

-= 

x46- Jo’x’[log(~)]“dx =*, ifm+l>O,n+l>O 

I 

’ (XP - x’)dx 
431. o log x 

=log 5, 
1 I 

(p + I > 0,q + I > 0) 

© 1999 by CRC Press LLC
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4 

/o“” (log sin x ) d x  = /:’ log cos x d x  = -! log 2 
440. 2 

I0*” (log sec x) d x  = 

R’ 

442. r ~ o g  sin x)dx = -i log2 

443. r’’ (sin x)(log sin x) d x  = log 2 - 1 

444. 1’’’ (log tan x) dx = 0 

0 

0 
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445. [ log (a  k b cos x) dx = n log (" -+ F), (a 2 b) 

a 2 b > 0 
b 2 a > 0 

446. I,' log (a2 - 2ab cos x + b') dx = 
2nloga,  
2nlogb.  

(0 sinax n an [ -dx=-tanh- 447. ,, sinhbx 26 2b 

cosax  n an 448. -dx = - sech-  
0 coshbx 2b 2b 

jmPr =11 
coshax 2a 
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" s i n h a x  n an I 
8 x + l d x = - ~ ~ ~ - - -  

453. 1, - 2b b 2a 
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458. 1- e-r2 log x dx = --(y J;; + 2 log 2) 
4 



 

Appendix 
TABLE A.l: Areas Under 
the Standard Normal Curve 

......... ....... :. .... .: >..:.>, 

:..3:.::+:::;,: .: :9:lj:iii 

.. ../ ........ .... ....... :.: ...... ........... .... :.. 
.,.,. .:,. . . .. . . . . . . . 

O r  
I OW 001 0 0 2  003 OM 005 006 007 008 009 

00 O w 0 0  0 . W  0.0080 00120 0.01Kl 0.0199 0.0239 0.0279 0.0319 0.0359 
0 I 00398 0.0418 00478 0.0517 0.0557 O.OS% 0.0636 0.0675 0.0714 0.0751 
0.2 0.0791 0.0832 0.0871 0.0910 0.0948 0.0981 0.1026 0.1064 0 1103 0.1141 
0.3 0.1179 0.1217 01255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 
0.4 0.1554 0.1591 0 1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 
0.5 0.1915 0.1950 01985 0.2019 0.2054 02088 0.2123 0.21S7 0.2190 0.2224 

0.6 0.2257 0.2291 0.2324 0.2357 0.2189 0.2422 02454 02486 0.2517 0.2549 
0 7  0.2580 0.2611 0.2642 0.2673 0.2704 02734 0.2764 0.2794 02823 0.2852 
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 
0.9 0.3159 0.3186 0 3212 0.3238 0.1264 0.3289 0.3315 0.1340 0.3365 03389 
1.0 0.3413 0.1438 0.3461 0.1485 0.3508 0.351I 0.3554 0.3577 0 3599 0.3621 

1 . 1  0.3643 0.1665 U36116 0.1708 0 1729 03749 03770 0.3790 038lO 03830 
I I 0 3849 0.1869 0.3888 0.3907 0 1925 0 3944 03962 0.3980 01997 04015 
I 3  0.4032 0.4049 0,4066 0.4082 04099 04115 04131 0.4147 04162 04177 
1.4 04192 04207 0.4222 04236 0.4251 04265 04279 0.4292 04306 0.4319 
1.5 0.4332 04345 0.4357 0.4370 0.4382 04394 04406 04418 04429 04441 

I 6  U.4452 04461 0,4474 04484 04495 0.4505 0.4515 04125 0.4535 0.4545 
1.7 0.4554 04564 04573 0.4582 04591 04599 0.4608 0.4616 0.4625 0.4613 
1.8 0.4641 04649 04656 0.4644 04671 04678 04686 0 4691 04699 0.4706 
1.9 0.4713 0.4719 04726 04732 04718 04744 04750 04756 04761 0.4767 
2 0  04772 04778 04781 04781 04791 04798 04803 O.48llU 04812 0.4817 

2 I 04821 0.4826 04830 0.4834 04818 0.4842 0.4846 04850 04854 0.4857 
2 .2  0.4861 0.4864 04868 04871 04875 04878 04881 0.4884 04887 0.4890 
2 3  04891 04896 04898 04901 04904 04% 04909 0.4911 04913 0.4916 
2.4 04918 04920 04922 0.4925 0.4927 04929 04931 0.4912 0.4934 0.4936 
2.5 04938 04940 0.4941 04941 04945 04946 04948 0.4949 04951 0.4952 

2 6  04953 04955 04956 04957 04959 04960 04961 04962 04963 04964 
2 7 04%) 0 4 9 ~  0 4 w 7  o 4961 04969 04970 04971 0.4972 04973 0.4974 
2 s  04974 04975 0 4 ~ 7 s  0 4 ~ 7 7  04977 04978 04979 04979 04u80 0.4981 
2 9  049x1 04981 049x2 040x3 049114 04984 04985 04985 04986 04986 
3.0 04987 0.4987 04987 049RS 04988 04989 04989 04989 04990 0.4990 

Reprinted from Tallarida, R. J. and Murray, R .  B.,  Manual of 
Pharmacologic Calculations with Computer Programs, 2nd ed., 
© 1999 by CRC Press LLC

1987. With permission of Springer-Verlag. New York. 
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ABLE A.2: Poisson Distribution 
ach number in this table represents the probability of obtaining at least X

 at X. 
r the area under the histogram to the right of and including the rectangle 

- 
rn 

.10 

.20 
30 
.40 
.50 
.60 
.70 
30 
.90 

1 .oo 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1 .8 
1.9 
2.0 
2.2 

- 

1.000 ,181 
1.000 ,259 
1.000 330 
1.000 ,393 
1.000 ,451 
1.000 503 
1.000 ,551 
1.000 ,593 
1.000 ,632 
1.000 ,667 
1.000 ,699 
1.000 ,727 
1.000 .?53 
1.000 ,777 
1.000 ,798 
1.000 ,817 
1.000 ,835 
1.000 ,850 
1.000 ,865 
1.000 ,889 

,018 
,037 
,062 
,090 
,122 
.156 
,191 
,228 
,264 
301  
237 
,373 
,408 
.442 
,475 
,507 
,537 
.566 
,594 
,645 

,001 
,004 
.008 ,001 
,014 .002 
,023 ,003 
,034 ,006 
,047 ,009 
,063 ,013 
.080 ,019 
,100 ,026 
,120 ,034 
,143 .043 
.167 ,054 
.191 ,066 
,217 ,079 
.243 ,093 
269 .lo9 
296 ,125 
,323 ,143 
377  ,181 

,001 
,001 
.002 
,004 .001 
.005 ,001 
.008 ,002 
,011 ,002 
,014 ,003 ,001 
.019 .004 .001 
.024 ,006 ,001 
,030 .008 ,002 
,036 .010 ,003 
,044 ,013 ,003 
,053 .017 .005 
.072 ,025 .007 

,001 
,001 
.001 
.002 
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TAB

3.2
3.4
3.6 
3.8
4.0 

2.4

::
3.0

001 
001 
002 
003 ,001 

a .2
4.4
4.6
4.8

OW .001 
006 ,002 ,001 
008 ,003 ,001 

010 ,004 .001 
5.0 .014 ,005 ,002 ,001 

Repri ndStatisfics, 6th ed.. 1977. With permission 
of W.

© 1999
LE A.2 (continued): Poisson Distribution 

 
 

 

 1,000 309 ,692 .430 ,221 ,096 ,036 ,012 ,003 ,001 
1.000 .926 ,733 ,482 ,264 ,123 .049 ,017 ,005 ,001 : I 1,000 339 ,769 ,531 ,308 ,152 .065 ,024 ,008 ,002 ,001 

 1,000 ,950 ,801 ,577 353 .185 ,084 ,034 ,012 ,004 ,001 
1 .ooO ,959 .a29 ,620 ,397 ,219 ,105 ,045 ,017 ,006 .002 
1,000 ,967 ,853 ,660 .442 .256 ,129 ,058 ,023 ,008 .003 ,
1,000 ,973 ,874 ,697 .485 .294 .156 ,073 ,031 ,012 ,004 .
1 .OW ,978 ,893 ,731 ,527 3 3 2  .184 ,091 ,040 ,016 .a06 .
1.000 ,982 ,908 ,762 .567 371 21  5 ,111 ,051 .021 .008 .

 
 
 
 

1.000 ,985 ,922 ,790 505 ,410 ,247 .133 .064 .028 ,011 .
1.000 ,988 ,934 ,815 .641 .449 ,280 ,156 ,079 ,036 .015 ,
1,000 ,990 ,944 ,837 A74 A87 ,314 ,182 ,095 ,045 ,020 ,
1.000 ,992 ,952 ,857 .706 ,524 ,349 .209 ,113 .056 ,025 .

 I 1.000 ,993 ,960 ,875 .735 .560 ,384 ,238 ,133 0.68 ,032 

nted from Alder, H. L. and Roessler, E. B., Introducfion 10 Probability a
 H. Freeman. New York. 
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TABLE A.3: t-Distribution 

90% 95 % 99% 
deg. freedom. f (P = 0.1) (P = 0.05) (P = 0.01) 

10 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

inf. 

6.314 12.706 
2.920 4.303 
2.353 3.182 
2.132 2.776 
2.015 2.571 
I .943 2.447 
1.895 2.365 
1.860 2.306 
1 A33 2.262 
1.812 2.228 
1.796 2.201 
1.782 2.179 
1.771 2.160 
1.761 2.145 
1.753 2.131 
1.746 2. I20 
I .740 2.110 
1.734 2.101 
1.729 2.093 
1.725 2.086 
1.721 2.080 
1.717 2.074 
1.714 2.069 
1.71 I 2.060 
1.708 2.060 
I .706 2.056 
1.703 2.052 
1.701 2.048 
1.699 2.045 
1.615 1.960 

63.657 
9.925 
5.841 
4.604 
4.032 
3.707 
3.499 
3.355 
3.250 
3.169 
3.106 
3.055 
2.012 
2.977 
2.947 
2.921 
2.898 
2.878 
2.861 
2.845 
2.831 
2.819 
2.807 
2.797 
2.787 
2.779 
2.771 
2.763 
2.756 
2.576 

Reprinted from Tallarida, R. J. and Murray, R. B.. Manual of 
Pharmacologic Calculations with Computer Programs, 2nd ed., 
1987. With permission of Springer-Verlag, New York. 
© 1999 by CRC Press LLC



 

TABLE A.4: X2-Distribution 

X2 
0 

II 005 0025 001 0 005 

I 
2 
I 
4 
5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
I5 
16 
17 
I8 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

3.841 
5.591 
7.815 
9.488 

Il.070 
12.592 
14.067 
15.507 
16.919 
18.M7 
19.675 
21.026 
22.362 
23.685 
24.996 
26.296 
27.587 
28.869 
M.144 
31.410 
32.671 
33.924 
35.172 
36.4 I5 
37.652 
38.885 
40.113 
41.337 
42.557 
43.773 

5.024 
7.378 
9.348 

11.143 
12.832 
14.449 
16.013 
17.533 
19.023 
20.483 
21.920 
23.337 
24.736 
26.119 
27.488 
28 845 
30.191 
31.526 
32.852 
34. I70 
35.479 
36.781 
38.076 
39 364 
40.646 
41.923 
43.194 
44461 
45.722 
46.979 

6.635 
9.210 

11.145 
13.277 
15.086 
16.812 
18.475 
20.090 
21.666 
23.209 
24.725 
26.2 I7 
21.688 
29.141 
30.578 
32.000 
33.409 
34.805 
36.191 
37.566 
38.932 
40.289 
41.638 
42.980 
44.314 
45.642 
46.963 
48.278 
49.588 
50.892 

7.879 
10.597 
12.838 
14.864 
16.750 
18.548 
20.278 
21.955 
23.589 
25.188 
26.757 
28.300 
29.819 
31.119 
32.801 
34.267 
35.718 
37.156 
38.582 
39.997 
41.401 
42.796 
44.181 
45.558 
46.928 
48.290 
49.645 
50.993 
52.336 
53.672 

Reprinted from Freund. J. E. and Williams, F.J., Elementary 
Business Statistics: The Modern Approach, 2nd ed., 1972. With 
permission of Prentice-Hall, Englewood Cliffs, NJ. 
© 1999 by CRC Press LLC



 

TABLE A S :  Variance Ratio 

~ 

a ,  

I 
2 
1 
4 
5 

6 
7 
8 
9 

10 

I1 
I2 
I 1  
I 4  
I5 

16 
I J  
I 8  
19 
20 

I 
22 
2 1  
24 
2 5  

2b 
7 
8 

29 
3a 

40 
(D 

Im 
y: 

F(957.J 

~ 

I 

161 4 
I 8  51 
I011 
7 7 1  
6 6 1  

5 9 9  
5 59 
5 12 
5 I2  
4 %  

4 84 
4 75 
4 67 
4M 
4 54 

4 49 
4 4 5  
4 4 1  
4 18 
4 35 

4 I ?  
4M 
4 28 
4 26 
4 24 

4 22 
4 21 

4 I 8  
4 I 7  

4 0 8  
4 0 0  
192 
184 

4m 

2 1  

1995  2 1 5 7  
! P o l  
9 55 
6 p I  
5l9 

5 I 4  
4 74 
446 
4 26 
4 10 

3 98 
1 8 8  
3 8 0  
3 I4 
164 

1 6 1  
1 5 9  
3 5 5  
3 52 
1 49 

3 47 
144 
1 4 1  
3 4 0  
118 

1 1 7  
1 1 5  
334 
1 1 3  
3 12 

121 
1 I 5  
101 
2 9 9  

19 16 
9 28 
6 59 
5 4 1  

4 76 
4 35 
4 0 7  
1 8 6  
171 

3 59 
1 4 9  
1 4 1  
1 3 4  
129 

1 2 4  
I 2 0  
1 1 6  
3 I 1  
1 I 0  

3 OJ 
105 
1 0 1  
101 
2 9 9  

2 98 
2 %  
2 95 
2 9 1  
2 92 

2 8 4  
2 76 
2 6 4  
2 M  

~ 

4 

224 6 
1925 
9.12 
6.39 
5 19 

4.51 
4 I2 
384 
1.61 
348  

1.36 
1 2 6  
3 I8 
1.11 
1M 

1 0 1  
1.96 
2 91 
2w 
2 81  

2 84 
2 82 
1.80 
2.78 
2.16 

2 74 
2.73 
2.71 
2 7 0  
2 b9 

2.61 
2.52 
2 4 5  
2.17 

~ 

5 

2m 2 
I9 3a 
9 01 
6 26 
5 05 

4 19 
1 9 7  
I 6 9  
3 48 
1 3 1  

1 2 0  
3 I 1  
102 
2 9b 
190 

2 8 5  
2 8 1  
2 7 1  
1 7 4  
211  

264 
1 W  
2 6 4  
1 6 2  
2 M  

2 59 
2 51 
2 %  
2 5 4  
2 5 1  

2 4 5  
2 17 
2 29 
2 2 1  

~ 

6 

2YO 
I9 31 
8 9 4  
6 I 6  
4 95 

4 28 
1 8 7  
J 58 
3 17 
3 22 

309  
300  
2 92 
2 8 5  
2 19 

2 74 
2 70  
265 
2 63 
2fQ 

2 57 
2 55 
2 51 
2 5 1  
2 49 

2 47 
2 4 6  
?(4 

2 4 1  
2 42 

2 34 
2 LS 
2 I1 
2 10 

~ 

8 

218 9 
l 9 3 J  
8 8 4  
6 0 4  
4 82 

4 15 
1 7 3  
3 4 4  
J 23 
3 07  

2 95 
2 85 
111 
2 70 
264 

2 59 
2 J5 
2 5 1  
: 48 
2 45 

1 4 2  
2 4 0  
2 38 
2 36 
2M 

2 I: 
2 10 
2 29 
2 ? 8  
2 2 1  

2 I8 
2 10 
2 02 
I 9 4  

~ 

I2 

24J9 
1941 
8 74 
5 9 1  
4 6 8  

4 0 0  
3 5 1  
1 2 8  
301 
2 91 

2 79 
2 6 9  
2M 
2 5 1  
2 48 

2 4: 
2 38 
2 34 
231  
2 28 

2 2 5  
2 21 
2m 
2 I8 
2 16 

2 I 5  
? I 3  
1 I 2  
2 10 
209 

200 
I 9 2  
I 8 3  
I 1 5  

1945  
8 6 4  
5 17 
4 51 

184 
141 
1 I 2  
2 9 0  
2 74 

261 
25.3 
2 4 2  
2 15 
2 29 

2 24 
2 I 9  
2 I5 
2 I I  
2 0 8  

205 
2 03 

I98  
I% 

I95  
I93  
I 9 1  
1 9 3  
I89 

I 1 9  
I JO 
I bI 
I 5 ?  

2m 

8 51 
5 61 
4 ) 6  

1 6 1  
1 2 1  
2 9 1  
211 
2 %  

ZM 
1yI 
221 
2 1 1  
LO7 

201 
I% 
I 9 1  
1 8 8  
I I 4  

I 81 
171 
I16 
I I1 
I l l  

169 
I 6 7  
I65 
I M  
I 62 

I 51 
I19 
I 2 5  
i m  
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TABLE A S  (continued): Variance Ratio 

I ,  I 1 1  4 5 6 I 1 2  14 m 

I 

1 
4 
5 

6 
7 
8 
9 

10 

I h  
I: 
11 
14 
15 

16 
11 

I 8  
19 
’0 

1 
1 

2 1  
4 

11 

26 
21 
2 8  
29 
Y) 

(0 

60 
I !a 
m 

4052 

W I2 
11 20 
1616 

I l l 4  
I 2 2 3  
1126 
IOJ6 
1004 

9 65 
9 11 
907 
8 86 
8 68 

8 13 
8 4 0  
8 28 
8 I 8  
8 10 

8 O? 
7 9 4  
1 8 8  
7 8 1  
11J 

111 
168 
JM 
J M  
1 5 6  

J J l  
l o 8  
6 81 
6 6 4  

91 n 
499p  
W r n  
M 82 
I 8 r n  
1127 

10 92 
9 J1  
8 65 
8 02 
7 %  

7 m  
6 91 
6 70 
6 11 
6 %  

6 23 
6 I I  
601 
J 91 
J 85 

J J 8  
J 12 
5 6 6  
5 61 
J 11 

J 53 
J 49 
J 4 5  
J 42 
J JP 

J 18 
4 98 
4 79 
4M 

J.yI1 
9917 
2946 
1669 
1106 

P 1% 

1 J9 
6 9 9  
bJ1 

6 12 
s 95 
574 
5 %  
J 41 

JX 
J I 8  
5 0 9  
J 01 
4 %  

4 8 )  
4 82 
1 7 6  
4 11 
464 

4 M  
4 6 0  
4 J l  
4 5 1  
4 J I  

411 
4 1 J  
I95 
J 78 

a 41 

5.625 
5911 
28 J I  
1598 
1119 

9 I 5  
1 8 5  
7 01 
6 41 
5W 

5 6’ 
541 

5 01 
4 89 

4 77 
4 6. 
4 $8 

4 4 1  

4 17 
4 1 1  
4 16 
4 12 
4 I8 

4 I 4  
4 1 1  
4 07 
4 0 4  
4 01 

J 1 J  
165 
14a 
1 1 2  

5m 

4x1 

1.764 
W I C  
28 24 
I 5  32 
lO9J 

8 7 5  
146 
6 61 
6 M  
164 

5 32 
5M 
4 86 
4 69 
4 %  

4 4 4  
4 l 4  
4 2 5  
4 17 
4 10 

4 0 4  
199 
J 9 4  
190 
1 1 6  

1 8 1  
1 7 8  
J ‘I 
1 7 1  
I 70 

J 5 1  
J W  
1 I1 
101 

J a59 
w I1 
2791 
1 5 2 1  
10 67 

I 4 7  
7 I9 
6 17 
5 8 0  
1 19 

1 07 
4 81 
4 62 
4 4 6  
4 11 

4 m  
4 10 
4 01 
194 
1 a i  

J 81 
J 16 
171 
1 6 1  
J 61 

J 19 
1 %  
I I1 
J x )  
J 47 

im 
1 I 2  
1% 
180 

5 981 
W 17 
1 1 4 9  
I 4 W  
10 m 

I10 
684 
6 01 
J 47 
5M 

4 74 
4 5 0  
4 M  
4 14 
4cE 

I 8 9  
J 79 
J J I  
1 6 3  
J %  

I 11 
145 
3 4 1  
J %  
111 

J 2 9  
116 
1 2 1  

1 1 1  

1w 
2 a 2  
166 
L5I 

110 

6.104 
W 4 2  
27 05 
I4 11 
9 a9 

1 7 2  
6 47 
167 
J I I  
4 .I 

4 . 0  
4 16 
1% 
JBO 
J 6 1  

J J5 
1 4 5  
J 17 
J M  
121 

111 
1 I2 
1 0 1  
J 01 
1w 

1% 
2 9 )  
2 9 0  
2 81 
2 84 

166 

2l4 
1 l a  

2 5 3  

6.124 
W46 
16 M 
l J 9 l  
P 41 

1 1 1  
6 0 1  
528 
4 11 
4 11 

4 02 
J 7 8  
J 59 
1 4 1  
129 

J IB 
108 
I r n  
2 92 
1 8 6  

180 
2 75 
270 
166 
2 61 

2 58 
1 JJ 
2 12 
1 4 9  
2 41 

119 
1 I1 
1 9 3  
I 1 9  

6 166 

16 I2 
1 3  46 
9 02 

6M 
5 65 
4 16 
4 31 
J 9 1  

1 0  
3 16 
1 1 6  
la! 
2 87 

2 73 
213 
2 57 
2 49 
2 42 

2% 
211 
2 2 6  
221 
1 1 7  

2 I 1  
110 
2 M  
2 01 
201 

180 
I M  
I 1 8  
I m  

w n  

Repnnred from Fisher, R A and Yateg. F , Statisricd 7ahier f o r  
Bioloqlcal, Agricultural and ,Medicul Research. The Longman 
Group, Ltd , London. with permission 
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TABLE A.6: 
of Loan Value 

Monthly Payments per $1000 

Annual Payment ($) Annual Payment ($) 
Rate (%) Monthly Rate (%) Monthly 

4.00 
4.25 
4.50 
4.75 
5.00 
5.25 
5.50 
5.75 
6.00 
6.25 
6.50 
6.75 
7.00 
7.25 
7.50 
7.75 
8.00 
8.25 
8.50 
8.75 
9.00 
9.25 

4.00 
4.25 
4.50 
4.75 
5.00 
5.25 
5.50 
5.75 

%Year Loan 
29.52 9.500 
29.64 9.750 
29.75 10.00 
29.86 10.25 
29.97 10.50 
30.08 10.75 
30.20 11.00 
30.31 I I .25 
30.42 11.50 
30.54 11.75 
30.65 12.00 
30.76 12.25 
30.88 12.50 
30.99 12.75 
31.11 13.00 
31.22 13.25 
31.34 13.50 
3 1.45 13.75 
31.57 14.00 
31.68 14.25 
31.80 14.50 
31.92 14.75 

15.00 

5-Year Loan 
18.42 9.500 

18.64 10.00 
18.76 10.25 
18.87 10.50 
18.99 10.75 
19.10 11.00 
19.22 11.25 

18.53 9.750 

32.03 
32.15 
32.27 
32.38 
32.50 
32.62 
32.74 
32.86 
32.98 
33.10 
33.21 
33.33 
33.45 
33.57 
33.69 
33.81 
33.94 
34.06 
34.18 
34.30 
34.42 
34.54 
34.67 

21.00 
21.12 
21.25 
21.37 
2 I .4Y 
21.62 
2 I .74 
21.87 

6.W 19.33 11.50 21.99 
6.25 19.45 11.75 22.12 
6.50 19.57 12.00 22.24 
6.75 19.68 12.25 22.37 
7.00 19.80 12.50 22.50 
7.25 19.92 12.75 22.63 
7.50 20.04 13.00 22.75 
7.75 20.16 13.25 22.88 
8.00 20.28 13.50 23.01 
8.25 20.40 13.75 23.14 
8.50 
8.75 
9.00 

20.52 
20.64 
20.76 

14.00 
14.25 
14.50 

23.27 

23.53 
23.40 

9 25 20 88 I4 75 23 66 
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TABLE A.6: 
of Loan Value (continued) 

Monthly Payments per $1000 

4.00 
4.25 
4.50 
4.75 
5.00 
5.25 
5.50 
5.75 
6.00 
6.25 
6.50 
6.75 
7.00 
7.25 
7.50 
7.75 
8.00 
8.25 
8.50 
8.75 
9.00 
9.25 

4.00 
4.25 
4.50 
4.75 
5.00 
5.25 
5.50 
5.75 
6.00 
6.25 
6.50 
6.75 
7.00 
7.50 
7.75 
8.00 
8.25 
8.50 
8.75 
9.00 
9.25 

10-Year Loan 
10.12 9.500 
10.24 9.750 
10.36 10.00 
10.48 10.25 
10.61 
10.73 
10.85 

10.50 
10.75 
11.00 

12.27 13.75 
12.40 14.00 
12.53 14.25 
12.67 14.50 
12.80 14.75 

15.00 

15-Year Loan 

7.39 9.500 
7.52 9.750 
7.65 10.00 
7.78 10.25 
7.91 10.50 
8.04 10.75 
8.17 Il .00 
8.30 11.25 
8.44 11.50 

9.4 I 13.25 
9.56 13.50 
9.70 13.75 
9.85 14.00 
9.99 14.25 
10.14 
10.29 

14.50 
14.75 
15.00 

12.94 
13.08 
13.22 
13.35 
13.49 
13.63 
13.78 
13.92 
14.06 
I 0  20 
14.35 
14.49 
14.64 
14.78 
14.93 
15.08 
15.23 
15.38 
15.53 
15.68 
15.83 
15.98 
16.13 

10.44 
10.59 
10.75 
10.w 
11.05 
11.21 
11.37 
I I .52 
11.68 
11.84 
12.00 
12.16 
12.49 
12.65 
12.82 
12.98 
13.15 
13.32 
13.49 
13.66 
13.83 
14.00 
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TABLE A.6: 
of Loan Value (continued) 

Monthly Payments per $1000 

4.00 
4.25 
4.50 
4.75 
5.00 
5.25 

5.75 
6.00 
6.25 
6.50 
6.75 
7.00 
7.25 
7.50 
7.75 
8.25 
8.50 
8.75 
9.00 
9.25 

5.50 

4.00 
4.25 
4.50 
4.75 
5.00 
5.25 
5.50 
5.75 
6.00 
6.25 
6.50 
6.75 
7.00 
7.25 
7.50 
7.7s 
8.00 
8.25 
8.50 
8.75 
9.00 
9.25 

20-Year Loan 
6.06 9.50 
6.19 9.75 
6.33 10.00 
6.46 10.25 
6.60 10.50 
6.74 10.75 
6.88 1I.00 
7.02 11.25 
7.16 11.50 
7.31 11.75 
7.46 12.00 
7.60 12.25 

7.90 12.75 
8.06 13.00 

7.75 12.50 

8.21 13.50 
8.52 13.75 

25-Year Loan 
5.28 9.500 
5.42 9.750 
5.56 
5.70 
5.85 

10.00 
10.25 
10.50 

5.99 10.75 
6.14 11.00 
6.29 11.25 
6.44 11.50 
6.60 11.75 
6.75 12.00 
6.91 12.25 
7.07 
7.23 
7.39 

12.50 
12.75 
13.00 

7.55 13.25 
7.72 13.50 
7.88 13.75 
8.05 14.00 
8.22 14.25 

7.55 13.25 
7.72 13.50 
7.88 13.75 
8.05 14.00 
8.22 14.25 
8.39 14.50 
8.56 14.75 

15.00 

9.32 
9.49 
9.65 
9.82 
9.98 

10.32 
1n.15 

10.49 
10.66 
10.84 
11.01 
11.19 
11.36 
11.54 
11.72 
12.07 
12.25 
12.44 
12.62 
12.80 
12.98 
13.17 

8.74 
8.91 
9.09 
9.26 
9.44 
9.62 
9.80 
9.98 

10.16 
10.35 
10.53 
10.72 
10.w 
11.09 
11.28 
11.47 
11.66 

12.04 
12.23 
12.42 
12.61 
I2 81 

11.85 
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TABLE A.6: 
of Loan Value (continued) 

Monthly Payments per $1000 

4.00 
4.25 
4.50 
4.75 
5.00 
5.25 
5.50 
5.75 
6.00 
6.25 
6.50 
6.75 
7.00 
7.25 
7.50 
7.75 
8.00 
8.25 
8.50 
8.75 
9.00 
9.25 

30-Year Loan 
4.77 9.500 
4.92 9.750 
5.07 10.00 
5.22 10.25 
5.37 10.50 
5.52 10.75 
5.68 11.00 
5.84 11.25 
6.00 11.50 
6.16 11.75 
6.32 12.00 
6.49 12.25 
6.65 12.50 
6.82 12.75 
6.99 13.00 
7.16 13.25 
7.34 13.50 
7.5 I 13.75 
7.69 14.00 
7.87 14.25 
8.05 14.50 
8.23 14.75 

15.00 

8.41 
8.59 
8.78 
8.96 
9.15 
9.34 
9.52 
9.71 
9.90 

10.09 
10.29 
10.48 
10.67 
10.87 
11.06 
11.26 
11.45 
11.65 
11.85 
12.05 
12.25 
12.44 
12.64 

The number of thousands borrowed is multiplied by the listed 
monthly payment for the indicated annual interest rate. The product 
is the total monthly payment. Due to rounding this may be off by 
© 1999 by CRC Press LLC

a few cents from the actual. 



 

TABLE A.7: 
Interest Rates and Specified Number of Years 

The Growth of $1 at Various Annual 

Years 3% 4% 5 %  6% 7% 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 
15 
20 
25 
30 
35 
40 
45 
50 

1.0300 
1.0609 
1.0927 
1.1255 
1.1593 
1.1941 
1.2299 
1.2668 
1.3048 
1.3439 
1.3842 
1.4258 
1.4685 
1.5126 
1.5580 

2.0938 
2.4273 
2.8139 
3.2620 
3.7816 
4.3839 

1.8061 

1.0400 
1.0816 
1.1249 
1.1699 
1.2167 
1.2653 
1.3159 
1.3686 
1.4233 
1.4802 
1.5395 
1.6010 
1.6651 
1.7317 
1.8009 
2.1911 
2.6658 
3.2434 
3.9461 
4.8010 
5.8412 
7.1067 

1.0500 
1.1025 
1.1576 
1.2155 
1.2763 
1.3401 
1.4071 
1.4775 
1.5513 
1.6289 
1.7103 
1.7959 
1.8856 
1.9799 
2.0789 
2.6533 
3.3864 
4.3219 
5.5160 
7.0400 
8.9850 

I 1.467 

1.06oO 
1.1236 
I.1910 
1.2625 
1.3382 
1.4185 
1.5036 
1,5438 
1.6895 
1.7908 
1.8983 
2.0122 
2.1329 
2.2609 
2.3966 
3.2071 
4.2919 
5.7435 
7.6861 

10.286 
13.765 
18.420 

1.0700 
1.1449 
1.2250 
1.3108 
1.4026 
1.5W 
1.6058 
1.7182 
1.8385 
1.9672 
2.1049 
2.2522 
2.4098 
2.5785 
2.7590 
3.8697 
5.4274 
7.6123 

10.677 
14.974 
21.002 
29.457 

Years 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 
15 
20 
25 
30 
35 
40 
45 
50 

8% 

I .ox00 
1.1664 
1.2597 
1.3605 
1.4693 
1.5869 
1.7138 
1.8509 
I .m 
2.1589 
2.3316 
2 5182 
2.7196 
2.9372 
3.1722 
4.6610 
6.8485 

10.063 
14.785 
21.725 
31.920 
46.902 

9% 

1.0900 
1.1881 
1.2954 
1.4116 
1.5386 
1.6771 
1.8280 
1.9926 
2.1719 
2.3674 
2.5804 
2.8127 
3.0658 
3.3417 
3.6425 
5.6064 
8.6231 

13.268 
20.414 
31.409 
48.327 
74.358 

10% 

1.1OOo 
1.2100 
1.3310 
1.464 I 
1.6105 
1.7716 
1.9487 
2.1436 
2.3579 
2.5937 
2.8531 
3.1384 
3.4523 
3.7975 
4.1772 
6.7275 

10.835 
17.449 
28.302 
45.259 
72.890 

117.39 

11% 

1.1100 
1.2321 
1.3676 
1.5181 
1.6851 
1.8704 
2.0762 
2.W5 
2.5580 
2.8394 
3.1518 
3.4985 
3.8833 
4.3104 
4.7846 
8.0623 

13.585 
22.892 
38.575 
65.001 

109.53 
184.56 

12% 

1.1200 
1.2544 
1.4049 
1.5735 
1.7623 
1.9738 
2.2107 
2.4760 
2.7731 
3.1058 
3.4785 
3.8960 
4.3635 
4.8871 
5.4736 
9.6463 

17.000 
29.960 
52.800 
93.051 

163.99 
289.00 
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TABLE A.8: 
Interest Rates 

Doubling Time for Various Annual 

Rate (W) Years 

I 69.1 
2 35.0 
3 23.4 
4 17.7 
5 14.2 
6 11.9 
7 10.2 
8 9.01 
9 8.04 

10 1.27 
11 6.64 
12 6.12 
13 5.61 
14 5.29 
15 4.96 
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TABLE A.9: Monthly Savings to Produce $1000 in the 
Specified Number of Years at the Given Annual Interest 
Rate (Compounded Monthly) 

Years 3% 4% 5% 6% 7% 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 
30 
35 
40 

Years 

82.19 
40.48 
26.58 
19.63 
15.47 
12.69 
10.71 
9.23 
8.08 
7.16 
4.41 
3.05 
2.24 
1.72 
1.35 
1.08 

8% 

81.82 
40.09 
26.19 
19.25 
15.08 
12.31 
10.34 
8.85 
7.7 1 
6.79 
4.06 
2.73 
1.94 
1.44 
1.09 
0.85 

9% 

81.44 
39.70 
25.80 
18.86 
14.70 
11.94 
9.97 
8.49 
7.35 
6.44 
3.74 
2.43 
1.68 
I .20 
0.88 
0.66 

10% 

81.07 
39.32 
25.42 
18.49 
14.33 
11.57 
9.61 
8.14 
7.01 
6.10 
3.44 
2.16 
1.44 
0.99 
0.7 1 
0.50 

11% 

80.69 
38.94 
25.04 
18.11 
13.97 
11.22 
9.26 
7.80 
6.67 
5.78 
3.16 
1.92 
1.23 
0.82 
0.56 
0.38 

12% 
~ 

4 
5 
6 
7 
8 
9 

10 
I5 
20 
25 
30 
35 
40 

80.32 
38.56 
24.67 
17.75 
13.61 
10.87 
8.92 
7.47 
6.35 
5.47 
2.89 
1.70 
1 .05 
0.67 
0.44 
0.29 

79.95 
38.18 
24.30 
17.39 
13.26 
10.53 
8.59 
7.15 
6.04 
5.17 
2.64 
1.50 
0.89 
0.55 
0.34 
0.21 

79.58 
37.81 
23.93 
17.03 
12.91 
10.19 
8.27 
6.84 
5.74 
4.88 
2.41 
1.32 
0.75 
0.44 
0.26 
0.16 

79.21 
37.44 
23.57 
16.68 
12.58 
9.87 
7.96 
6.54 
5.46 
4.61 
2.20 
1.16 
0.63 
0.36 
0.20 
0.12 

78.85 
37.07 
23.21 
16.33 
12.24 
9.55 
7.65 
6.25 
5.18 
4.35 
2.00 
1.01 
0.53 
0.29 
0.16 
0.08 
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TABLE A.lO: Monthly Savings to Produce $1000 
in Specified Number of Years at the Given Annual 
Interest Rate (Compounded Annually) 

YGUS 3% 4% 5% 6% 7% 

1 83.33 83.33 83.33 83.33 83.33 
2 41.05 40.85 40.65 40.45 40.26 
3 26.96 26.70 26.43 26.18 25.92 
4 19.92 19.62 19.33 19.05 18.77 
5 15.70 15.39 IS.08 14.78 14.49 
6 12.88 12.56 12.25 II.95 11.65 
7 10.88 10.55 10.23 9.93 9.63 
8 9.37 9.04 8.73 8.42 8.12 
9 8.20 7.87 7.56 7.25 6.96 

IO 7.21 6.94 6.62 6.32 6.03 
15 4.48 4.16 3.86 3.58 3.32 
20 3.10 2.80 2.52 2.26 2.03 
25 2.29 2.00 1.75 1.52 1.32 
30 1.75 I .49 1.25 1.05 0.88 
35 1.38 1.13 0.92 0.75 0.60 
40 1.10 0.88 0.69 0.54 0.42 

YearS 8% 9% 10% 11% 12% 

3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 
30 

I 83.33 
2 40.06 

25.67 
18.49 
14.20 
11.36 
9.34 
7.83 
6.67 

35 
40 

5.75 
3.07 

83.33 
39.87 
25.42 
18.22 
13.92 
11.08 
9.06 
7.56 
6.40 
5.48 
2.84 
1.63 
0.98 
0.61 
0.39 

1.82 
1.14 
0.74 
0.48 
0.32 0.25 0.19 0.14 

1.45 I .30 
0.88 0.73 
0.51 0.42 
0.31 0.24 

83.33 83.33 
39.68 39.49 
25.18 24.93 
17.96 17.69 
13.65 13.38 
10.80 10.53 

8.78 8.52 
7.29 7.03 
6.14 5.88 
5.23 4.98 
2.62 2.42 

83.33 
39.31 
24.70 
17.44 
13.12 
10.27 
8.26 
6.78 
5.64 
4.75 
2.23 
1.16 
0.63 
0.35 
0.19 
0.1 I 
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TABLE A.11: 
Withdrawn Each Year at the Beginning of the Year 
at Different Annual Interest Rates 

Percentage of Funds That May Be 

Years 4% 5% 6% 7% 8% 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
I5 
20 
25 
30 
35 
40 
45 
50 

1oO.ooO 
50.980 
34.649 
26.489 
21.599 
18.343 
16.020 
14.282 
12.932 
11.855 
8.6482 
7.0752 
6.1550 
5.5606 
5.1517 
4.8580 
4.646 
4.4760 

1oO.ooO 
51.220 
34.972 
26.858 
21.998 
18.764 
16.459 
14.735 
13.399 
12.334 
9. I755 
7.6422 
6.7574 
6. I954 
5.8164 
5.5503 
5.3583 
5.2168 

1oO.m 
51.456 
35.293 
27.226 
22.396 
19.185 
16.900 
15.192 
13.870 
12.818 
9.7135 
8.2250 
7.3799 
6.8537 
6.5070 
6.2700 
6.1038 
5.9853 

I w.ooO 
51.691 
35.612 
27.591 
22.794 
19.607 
17.341 
15.651 
14.345 
13.306 
10.261 
8.8218 
8.0197 
7.5314 
7.2181 
7.0102 
6.8691 
6.7719 

100.ooO 
51.923 
35.929 
27.956 
23.190 
20.029 
17.784 
16.112 
14.822 
13.799 
10.818 
9.4308 
8.6740 
8.2248 
7.9447 
7.7648 
7.6470 
7.5688 

Years 9% 10% I I %  12% 13% 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 
30 
35 
40 
45 
50 

100.ooO 
52.153 
36.244 
28.318 
23.586 
20.451 
18.228 
16.576 
15.303 
14.295 
11.382 
10.050 
9.3400 
8.9299 
8.6822 
8.5284 
8.4313 
8.3694 

l00.ooO 
52.381 
36.556 
28.679 
23.982 
20.873 
18.673 
17.040 
15.786 
14.795 
11.952 
10.678 
10.015 
9.6436 
9.4263 
9.2963 
9.2174 
9.1690 

1oO.ooO 
52.607 
36.866 
29.038 
24.376 
21.295 
19.118 
17.506 
16.270 
15.297 
12.528 
11.313 
10.697 
10.363 
10.174 
10.065 
10.001 
9.9639 

1oO.ooO 
52.830 
37.174 
29.396 
24.769 
21.717 
19.564 
17.973 
16.757 
15.802 
13.109 
11.953 
11.384 
1 1.084 
10.921 
10.831 
10.780 
10.751 

100.ooO 
53.052 
37.480 
29.752 
25.161 
22.137 
20.010 
18.441 
17.245 
16.309 
13.694 
12.598 
12.073 
11.806 
11.666 
11.592 
11.552 
11.530 
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TABLE A.12: Growth of Annual Deposits of $1,000 at 
the End of the Year at Specified Annual Interest Rates 

Years 6% 8% 10% 

1 
2 
3 
4 
5 
6 
7 
8 
9 
LO 
I I  
12 
13 
I4 
I5 
20 
25 
30 
35 
40 

loo0 
2060 

4374.62 
5637.09 
6975.32 

3183.60 

8393.84 
9897.47 

13180.79 
11491.32 

14971.64 
16869.94 
18882.14 
21015.07 
23275.97 
36785.59 
54864.51 
79058.19 

154761.97 
111434.78 

loo0 
2080 
3246.4 
4506.1 1 
5866.60 
7335.93 

10636.63 
12487.56 

16645.49 
18977.13 
21495.30 
242 14.92 
27152. I 1  
4576 I .96 
73105.94 

113283.21 
172316.8 
259056.52 

8922.80 

14486.56 

1000 
2100 
3310 
464 I 
6105. I I 
7715.61 
9487.17 

11435.89 

15937.42 
18531.17 

24522.71 
27974.98 
31772.48 
57275.00 
98347.06 

164494.02 
271024.38 
442592.56 

13579.48 

21384.28 



 

TABLE A.13: Growth of Annual Deposits of $1,000 at the 
Beginning of the Year at Specified Annual Interest Rates 

YGUS 6% 8% 10% 

2 
3 
d 

10 
II 
12 
13 
14 
15 
20 
25 
30 
35 
40 

loboc4 
2183.60 
3374.62 
4637.09 
5975.32 
7393.84 
8897.47 

10491.32 
12180.79 
13971.64 
15869.94 
17882.14 
20015.07 
22275.97 
24672.53 
38992.73 
58156.38 
83801.68 

118120.87 
164047.69 

1080.00 1100.00 
2246.40 2310.00 
3506.1 I 3b41.00 
4866.60 5105.10 
6335.93 6715.61 
7922.80 8487.17 
9636.63 10435.89 

11487.56 12579.48 
13486.56 14937.42 
15645.49 17531.17 
17977.13 20384.28 
20495.30 23522.71 
23214.92 26974.98 
26152.11 30772.48 
29324.28 34949.73 
49422.92 63002.50 
78954.41 108181.77 

122345.87 180943.42 
186102.14 298126.81 
279781.03 486851.81 
© 1999 by CRC Press LLC
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TABLE A.14: Monthly Amount That Must Be Saved 
for theyears Indicated (down) in Order to Collect $1,000 
Per Month Thereafter (across) at 4% Annual Interest 
Compounded Monthly 

Years Years Collecting 
Saving 5 10 15 20 25 

5 819.00 1489.80 
10 368.75 670.77 
15 220.65 401.36 
20 148.04 269.29 
25 105.61 192.11 
30 78.24 142.31 
35 59.43 108.10 
40 45.94 83.56 

2039.10 2489.10 2857.50 
918.11 1120.69 1286.61 

368.60 449.93 516.54 
262.95 320.97 368.49 
194.79 237.77 272.97 
147.96 180.60 207.34 
114.38 139.62 160.29 

549.36 670.57 169.85 

TABLE A.15: Monthly Amount That Must Be Saved 
for theyears Indicated (down) in Order to Collect $1,000 
Per Month Thereafter (across) at 6% Annual Interest 
Compounded Monthly 

Years Ycars Collecting 
Saving 5 10 15 20 25 

5 741.37 
10 315.63 
I5 177.86 
20 111.95 
25 74.64 
30 51.49 
35 36.31 
40 25.97 

1291.00 
549.63 
309.72 
194.95 
129.98 
89.67 
63.22 
45.23 

1698.50 2000.M) 
723. I I 851.73 
401.48 419.96 
256.48 302.10 
171.00 201.42 
117.97 138.95 
83.18 97.97 
59.50 70.09 

2224.55 
947.08 
533.69 
335.92 
223.97 
154.51 
108.94 
71.94 
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TABLE A.16: Monthly Amount That Must Be Saved 
for theyears Indicated (down) in Order to Collect $1,000 
Per Month Thereafter (across) at  8% Annual Interest 
Compounded Monthly 

Years Years Collecting 
Saving 5 I0 15 20 25 

5 671.21 1121.73 1424.13 1627.10 1763.34 
10 269.58 450.52 571.98 653.49 708.21 
15 142.52 238.19 302.40 345.49 374.42 
20 83.73 139.93 177.65 202.97 219.97 
25 51.86 86.67 110.03 125.71 136.24 
30 33.09 55.30 70.21 80.22 86.94 
35 21.50 35.93 45.62 52.12 56.48 
40 14.13 23.61 29.97 34.25 37.11 

TABLE A.17: 
for the Years Indicated (down) in Order to Collect $1,000 
Per Month Thereafter (across) at 10% Annual Interest 
Compounded Monthly 

Monthly Amount That Must Be Saved 

Years 
Saving 

5 
LO 
15 
20 
25 

~ 

30 
35 
40 

Years Collecting 
5 10 15 20 25 

607.79 
229.76 
113.56 
61.98 
35.47 
20.82 
12.40 
7.44 

977.20 1201.72 1338.18 1421.12 
369.41 454.28 505.87 537.22 
182.57 224.52 250.02 265.51 
99.65 122.55 136.46 144.92 
57.03 70.13 78.10 82.94 
33.48 41.17 45.84 48.68 
19.93 24.51 27.29 28.99 
11.97 14.71 6.39 17.40 
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