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Preface

This book grew out of my lecture notes for graduate courses on the the-
ory of plasticity and nonlinear continuum mechanics that I taught at sev-
eral universities in the USA and former Yugoslavia during the past two
decades. The book consists of three parts. The first part is an introduction
to nonlinear continuum mechanics. After tensor preliminaries in Chapter
1, selected topics of kinematics and kinetics of deformation are presented
in Chapters 2 and 3. Hill’s theory of conjugate stress and strain measures
is used. Chapter 4 is a brief treatment of the thermodynamics of defor-
mation, with an accent given to formulation with internal state variables.
Part 2 of the book is devoted to nonlinear elasticity. Constitutive theory
of finite strain elasticity is presented in Chapter 5, and its rate-type for-
mulation in Chapter 6. An analysis of elastic stability at finite strain is
given in Chapter 7. Nonlinear elasticity is included in the book because
it illustrates an application of many general concepts from Part 1, and be-
cause it is combined in Part 3 with finite deformation plasticity to derive
general constitutive structure of finite deformation elastoplasticity. Part 3
is the largest part of the book, consisting of seven chapters on plasticity.
Chapter 8 is an analysis of the constitutive framework for rate-independent
and rate-dependent plasticity. The postulates of Drucker and Ilyushin are
discussed in the context of finite strain. Derivation of elastoplastic consti-
tutive equations for various phenomenological models of material response
is presented in Chapter 9. Formulations in stress and strain space, using
the yield surfaces with and without vertices, are given. Isotropic, kinematic,
combined isotropic–kinematic and multisurface hardening models are intro-
duced. Pressure-dependent plasticity and non-associative flow rules are then
discussed. Fundamental aspects of thermoplasticity, rate-dependent plastic-
ity and deformation theory of plasticity are also included. Hill’s theory of
uniqueness and plastic stability is presented in Chapter 10, together with an
analysis of eigenmodal deformations and acceleration waves in elastoplastic
solids. Rice’s treatment of plastic flow localization in pressure-insensitive
and pressure-sensitive materials is then given. Chapter 11 is devoted to
formulation of the constitutive theory of elastoplasticity in the framework
of Lee’s multiplicative decomposition of deformation gradient into its elas-
tic and plastic parts. Isotropic and orthotropic materials are considered,
with an introductory treatment of damage-elastoplasticity. The theory of
monocrystalline plasticity is presented in Chapter 12. Crystallographic slip
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is assumed to be the only mechanism of plastic deformation. Hardening
rules and uniqueness of slip rates are examined. Specific forms of constitu-
tive equations for rate-independent and rate-dependent crystals are derived.
Chapter 13 covers some fundamental topics of micro-to-macro transition in
the constitutive description. The analysis is aimed toward the derivation of
constitutive equations for a polycrystalline aggregate from known constitu-
tive equations of single crystals. The fourteenth, and final chapter of the
book is devoted to approximate models of polycrystalline plasticity. The
classical model of Taylor and the analysis of Bishop and Hill are presented.
The main theme is the self-consistent method, introduced in polycrystalline
plasticity by Kröner, Budiansky and Wu. Hill’s formulation of the method
is used in the finite deformation presentation. Calculations of the polycrys-
talline stress-strain curve and polycrystalline yield surface, development of
the crystallographic texture, and effects of the grain-size on the aggregate
response are discussed.

This book is an advanced treatment of finite deformation elastoplasticity
and is intended for graduate students and other interested readers who are
familiar with an introductory treatment of plasticity. Such treatment is
usually given in an infinitesimal strain context and with a focus on the
geometry of admissible yield surfaces, von Mises and Tresca yield conditions,
derivation of the Levy-Mises and Prandtl-Reuss equations, and the analysis
of some elementary elastoplastic problems. Familiarity with basic concepts
of crystallography and the dislocation theory from an undergraduate course
in materials science is also assumed. Important topics of the slip-line theory
and limit analysis are not discussed, since they have been repeatedly well
covered in a number of existing plasticity books. Numerical treatments
of boundary value problems and experimental techniques are not included
either, as they require books on their own. A recent text by Simo and Hughes
can be consulted as a reference to computational plasticity.

I began to study plasticity as a graduate student of Professor Erastus
Lee at Stanford University in the late seventies. His research work and teach-
ing of plasticity was a great inspiration to all his students. I am indebted to
him for his guidance during our research on the rate-type constitutive theory
of elastoplasticity based on the multiplicative decomposition of deformation
gradient. The influence of Rodney Hill’s development of the theory of plas-
ticity on my writing is evident from the contents of this book. Large parts
of all chapters are based on his research papers from 1948 to 1993. Com-
munications with Professor Hill in 1994 were most inspirational. Two years
spent in the solid mechanics group at Brown University in the late eighties
and collaborations with Alan Needleman and Fong Shih were rewarding to
my understanding of plasticity. Much of the first two parts of this book
I wrote in the mid-nineties while teaching and conducting research in the
Mechanical and Aerospace Engineering Department of Arizona State Uni-
versity. Collaboration with Dusan Krajcinovic on damage-elastoplasticity
was a beneficial experience. A major part of the book was written while I
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was an Adjunct Professor in the Department of Applied Mechanics and En-
gineering Sciences of the University of California in San Diego. Professors
Xanthippi Markenscoff and Marc Meyers repeatedly encouraged me to write
a book on plasticity, and I express my gratitude to them for their support.
Collaboration with David Benson on viscoplasticity and dynamic plasticity
is also acknowledged. The books by Ray Ogden and Kerry Havner were
in many aspects exemplary to my writing in chapters devoted to nonlinear
elasticity and crystalline plasticity. I am indebted to Dr. Owen Richmond
from Alcoa Laboratories for his continuing support of my research work at
Brown, ASU and UCSD. The research support from NSF and the US Army
is also acknowledged. Several chapters of this book were written while I
was visiting the University of Montenegro during summers of the last two
years. Docent Borko Vujičić from the Physics Department was always avail-
able to help with Latex related issues in the preparation of the manuscript. I
thank him for that. Computer specialists Todd Porteous and Andres Burgos
from UCSD were also of help. My appreciation finally extends to Cindy Re-
nee Carelli, acquisitions editor, and Bill Heyward, project editor from CRC
Press, for their assistance in publishing this book.

Vlado A. Lubarda
San Diego, April 2001
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CHAPTER 1

TENSOR PRELIMINARIES

1.1. Vectors

An orthonormal basis for the three-dimensional Euclidean vector space is a
set of three orthogonal unit vectors. The scalar product of any two of these
vectors is

ei · ej = δij =

{
1, if i = j,

0, if i �= j,
(1.1.1)

δij being the Kronecker delta symbol. An arbitrary vector a can be decom-
posed in the introduced basis as

a = aiei, ai = a · ei. (1.1.2)

The summation convention is assumed over the repeated indices. The scalar
product of the vectors a and b is

a · b = aibi. (1.1.3)

The vector product of two base vectors is defined by

ei × ej = εijkek, (1.1.4)

where εijk is the permutation symbol

εijk =

⎧⎪⎨
⎪⎩

1, if ijk is an even permutation of 123,
−1, if ijk is an odd permutation of 123,

0, otherwise.
(1.1.5)

The vector product of the vectors a and b can consequently be written as

a × b = εijkaibjek. (1.1.6)

The triple scalar product of the base vectors is

(ei × ej) · ek = εijk, (1.1.7)

so that

(a × b) · c = εijkaibjck =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ . (1.1.8)

In view of the vector relationship

(ei × ej) · (ek × el) = (ei · ek)(ej · el) − (ei · el)(ej · ek), (1.1.9)
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there is an ε− δ identity

εijmεklm = δikδjl − δilδjk. (1.1.10)

In particular,

εiklεjkl = 2δij , εijkεijk = 6. (1.1.11)

The triple vector product of the base vectors is

(ei × ej) × ek = εijmεklmel = δikej − δjkei. (1.1.12)

Thus,

(a × b) × c = aibj(ciej − cjei), (1.1.13)

which confirms the vector identity

(a × b) × c = (a · c)b − (b · c)a. (1.1.14)

1.2. Second-Order Tensors

A dyadic product of two base vectors is the second-order tensor ei⊗ej , such
that

(ei ⊗ ej) · ek = ek · (ej ⊗ ei) = δjkei. (1.2.1)

For arbitrary vectors a, b and c, it follows that

(a ⊗ b) · ek = bka, (a ⊗ b) · c = (b · c)a. (1.2.2)

The tensors ei ⊗ ej serve as base tensors for the representation of an
arbitrary second-order tensor,

A = Aijei ⊗ ej , Aij = ei · A · ej . (1.2.3)

A dot product of the second-order tensor A and the vector a is the vector

b = A · a = biei, bi = Aijaj . (1.2.4)

Similarly, a dot product of two second-order tensors A and B is the second-
order tensor

C = A · B = Cijei ⊗ ej , Cij = AikBkj . (1.2.5)

The unit (identity) second-order tensor is

I = δijei ⊗ ej , (1.2.6)

which satisfies

A · I = I · A = A, I · a = a. (1.2.7)

The transpose of the tensor A is the tensor AT , which, for any vectors a
and b, meets

A · a = a · AT , b · A · a = a · AT · b. (1.2.8)

Thus, if A = Aijei ⊗ ej , then

AT = Ajiei ⊗ ej . (1.2.9)
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The tensor A is symmetric if AT = A; it is antisymmetric (or skew-
symmetric) if AT = −A. If A is nonsingular (detA �= 0), there is a unique
inverse tensor A−1 such that

A · A−1 = A−1 · A = I. (1.2.10)

In this case, b = A · a implies a = A−1 · b. For an orthogonal tensor
AT = A−1, so that detA = ±1. The plus sign corresponds to proper and
minus to improper orthogonal tensors.

The trace of the tensor A is a scalar obtained by the contraction (i = j)
operation

trA = Aii. (1.2.11)

For a three-dimensional identity tensor, tr I = 3. Two inner (scalar or
double-dot) products of two second-order tensors are defined by

A · ·B = tr (A · B) = AijBji, (1.2.12)

A : B = tr
(
A · BT

)
= tr

(
AT · B)

= AijBij . (1.2.13)

The connections are

A · ·B = AT : B = A : BT . (1.2.14)

If either A or B is symmetric, A · ·B = A : B. Also,

trA = A : I, tr (a ⊗ b) = a · b. (1.2.15)

Since the trace product is unaltered by any cyclic rearrangement of the
factors, we have

A · · (B · C) = (A · B) · ·C = (C · A) · ·B, (1.2.16)

A : (B · C) =
(
BT · A)

: C =
(
A · CT

)
: B. (1.2.17)

A deviatoric part of A is defined by

A′ = A − 1
3
(trA)I, (1.2.18)

with the property trA′ = 0. It is easily verified that A′ : A = A′ : A′ and
A′ · ·A = A′ · ·A′. A nonsymmetric tensor A can be decomposed into its
symmetric and antisymmetric parts, A = As + Aa, such that

As =
1
2

(
A + AT

)
, Aa =

1
2

(
A − AT

)
. (1.2.19)

If A is symmetric and W is antisymmetric, the trace of their dot product is
equal to zero, tr (A ·W) = 0. The axial vector ω of an antisymmetric tensor
W is defined by

W · a = ω × a, (1.2.20)

for every vector a. This gives the component relationships

Wij = −εijkωk, ωi = −1
2
εijkWjk. (1.2.21)
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Since A · ei = Ajiej , the determinant of A can be calculated from Eq.
(1.1.8) as

detA = [(A · e1) × (A · e2)] · (A · e3) = εijkAi1Aj2Ak3. (1.2.22)

Thus,

εαβγ(detA) = εijkAiαAjβAkγ , (1.2.23)

and by second of Eq. (1.1.11)

detA =
1
6
εijkεαβγAiαAjβAkγ . (1.2.24)

For further details, standard texts such as Brillouin (1964) can be consulted.

1.3. Eigenvalues and Eigenvectors

The vector n is an eigenvector of the second-order tensor A if there is a
scalar λ such that A · n = λn, i.e.,

(A − λI) · n = 0. (1.3.1)

A scalar λ is called an eigenvalue of A corresponding to the eigenvector
n. Nontrivial solutions for n exist if det(A − λI) = 0, which gives the
characteristic equation for A,

λ3 − J1λ
2 − J2λ− J3 = 0. (1.3.2)

The scalars J1, J2 and J3 are the principal invariants of A, which remain
unchanged under any orthogonal transformation of the orthonormal basis of
A. These are

J1 = trA, (1.3.3)

J2 =
1
2

[
tr

(
A2

) − (trA)2
]
, (1.3.4)

J3 = detA =
1
6

[
2 tr

(
A3

) − 3 (trA) tr
(
A2

)
+ (trA)3

]
. (1.3.5)

If λ1 �= λ2 �= λ3 �= λ1, there are three mutually orthogonal eigenvectors n1,
n2, n3, so that A has a spectral representation

A =
3∑

i=1

λini ⊗ ni. (1.3.6)

If λ1 �= λ2 = λ3,

A = (λ1 − λ2)n1 ⊗ n1 + λ2I, (1.3.7)

while A = λI, if λ1 = λ2 = λ3 = λ.
A symmetric real tensor has all real eigenvalues. An antisymmetric

tensor has only one real eigenvalue, which is equal to zero. The corresponding
eigendirection is parallel to the axial vector of the antisymmetric tensor. A
proper orthogonal (rotation) tensor has also one real eigenvalue, which is
equal to one. The corresponding eigendirection is parallel to the axis of
rotation.
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1.4. Cayley–Hamilton Theorem

A second-order tensor satisfies its own characteristic equation

A3 − J1A2 − J2A − J3I = 0. (1.4.1)

This is a Cayley–Hamilton theorem. Thus, if A−1 exists, it can be expressed
as

J3A−1 = A2 − J1A − J2I, (1.4.2)

which shows that eigendirections of A−1 are parallel to those of A. A number
of useful results can be extracted from the Cayley–Hamilton theorem. An
expression for (detF) in terms of traces of A, A2, A3, given in Eq. (1.3.5),
is obtained by taking the trace of Eq. (1.4.1). Similarly,

det(I + A) − detA = 1 + J1 − J2. (1.4.3)

If X2 = A, an application of Eq. (1.4.1) to X gives

A · X − I1A − I2X − I3I = 0, (1.4.4)

where Ii are the principal invariants of X. Multiplying this with I1 and X,
and summing up the resulting two equations yields

X =
1

I1I2 + I3

[
A2 − (

I2
1 + I2

)
A − I1I3I

]
. (1.4.5)

The invariants Ii can be calculated from the principal invariants of A, or from
the eigenvalues of A. Alternative route to solve X2 = A is via eigendirections
and spectral representation (diagonalization) of A.

1.5. Change of Basis

Under a rotational change of basis, the new base vectors are e∗i = Q·ei, where
Q is a proper orthogonal tensor. An arbitrary vector a can be decomposed
in the two bases as

a = aiei = a∗i e
∗
i , a∗i = Qjiaj . (1.5.1)

If the vector a∗ is introduced, with components a∗i in the original basis
(a∗ = a∗i ei), then a∗ = QT · a.

Under an arbitrary orthogonal transformation Q (Q · QT = QT · Q =
I, detQ = ±1), the components of so-called axial vectors transform accord-
ing to ω∗

i = (detQ)Qjiωj . On the other hand, the components of absolute
vectors transform as a∗i = Qjiaj . If attention is confined to proper orthog-
onal transformations, i.e., the rotations of the basis only (detQ = 1), no
distinction is made between axial and absolute vectors.

An invariant of a is a · a. A scalar product of two vectors a and b is an
even invariant of vectors a and b, since it remains unchanged under both
proper and improper orthogonal transformation of the basis (rotation and
reflection). A triple scalar product of three vectors is an odd invariant of
those vectors, since it remains unchanged under all proper orthogonal trans-
formations (detQ = 1), but changes the sign under improper orthogonal
transformations (detQ = −1).
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A second-order tensor A can be decomposed in the considered bases as

A = Aijei ⊗ ej = A∗
ije

∗
i ⊗ e∗j , A∗

ij = QkiAklQlj . (1.5.2)

If the tensor A∗ = A∗
ijei ⊗ ej is introduced, it is related to A by A∗ =

QT · A · Q. The two tensors share the same eigenvalues, which are thus
invariants of A under rotation of the basis. Invariants are also symmetric
functions of the eigenvalues, such as

trA = λ1 + λ2 + λ3, tr
(
A2

)
= λ2

1 + λ2
2 + λ2

3, tr
(
A3

)
= λ3

1 + λ3
2 + λ3

3,
(1.5.3)

or the principal invariants of Eqs. (1.3.3)–(1.3.5),

J1 = λ1 + λ2 + λ3, J2 = − (λ1λ2 + λ2λ3 + λ3λ1) , J3 = λ1λ2λ3. (1.5.4)

All invariants of the second-order tensors under orthogonal transformations
are even invariants.

1.6. Higher-Order Tensors

Triadic and tetradic products of the base vectors are

ei ⊗ ej ⊗ ek, ei ⊗ ej ⊗ ek ⊗ el, (1.6.1)

with obvious extension to higher-order polyadic products. These tensors
serve as base tensors for the representation of higher-order tensors. For
example, the permutation tensor is

ε = εijkei ⊗ ej ⊗ ek, (1.6.2)

where εijk is defined by Eq. (1.1.5). If A is a symmetric second-order tensor,

ε : A = εijkAjkei = 0. (1.6.3)

The fourth-order tensor LLL can be expressed as

LLL = Lijklei ⊗ ej ⊗ ek ⊗ el. (1.6.4)

A dot product of LLL with a vector a is

LLL · a = Lijklalei ⊗ ej ⊗ ek. (1.6.5)

Two inner products of the fourth- and second-order tensors can be defined
by

LLL · ·A = LijklAlkei ⊗ ej , LLL : A = LijklAklei ⊗ ej . (1.6.6)

If W is antisymmetric and LLL has the symmetry in its last two indices,

LLL : W = 0. (1.6.7)

The symmetries of the form Lijkl = Ljikl = Lijlk will frequently, but not
always, hold for the fourth-order tensors considered in this book. We also
introduce the scalar products

LLL :: (A ⊗ B) = B : LLL : A = BijLijklAkl, (1.6.8)

and

LLL · · · · (A ⊗ B) = B · ·LLL · ·A = BjiLijklAlk. (1.6.9)
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The transpose of LLL satisfies

LLL : A = A : LLLT , B : LLL : A = A : LLLT : B, (1.6.10)

hence, LT
ijkl = Lklij . The tensor LLL is symmetric if LLLT = LLL, i.e., Lijkl = Lklij

(reciprocal symmetry).
The symmetric fourth-order unit tensor III is

III = Iijklei ⊗ ej ⊗ ek ⊗ el , Iijkl =
1
2

(δikδjl + δilδjk ) . (1.6.11)

If LLL possesses the symmetry in its leading and terminal pair of indices
(Lijkl = Ljikl and Lijkl = Lijlk) and if A is symmetric (Aij = Aji), then

LLL : III = III : LLL = LLL, III : A = A : III = A. (1.6.12)

For an arbitrary nonsymmetric second-order tensor A,

III : A = As =
1
2
(A + AT ). (1.6.13)

The fourth-order tensor with rectangular components

Îijkl =
1
2

(δikδjl − δilδjk) (1.6.14)

can also be introduced, such that

ÎII : A = Aa =
1
2
(A − AT ). (1.6.15)

Note the symmetry properties

Îijkl = Îklij , Îjikl = Îijlk = −Îijkl. (1.6.16)

A fourth-order tensor LLL is invertible if there exists another such tensor
LLL−1 which obeys

LLL : LLL−1 = LLL−1 : LLL = III . (1.6.17)

In this case, B = LLL : A implies A = LLL−1 : B, and vice versa. The inner
product of two fourth-order tensors LLL and MMM is defined by

LLL : MMM = LijmnMmnklei ⊗ ej ⊗ ek ⊗ el. (1.6.18)

The trace of the fourth-order tensor LLL is

trLLL = LLL :: III = Lijij . (1.6.19)

In particular, tr III = 6. A fourth-order tensor defined by

LLLd = LLL − 1
6
(trLLL)III , (1.6.20)

satisfies

trLLL d = 0, LLL d :: LLL = LLL d :: LLL d. (1.6.21)

The tensor

L̂LL d = LLL − 1
3
(trLLL)I ⊗ I (1.6.22)

also has the property tr L̂LL d = 0.
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Under rotational change of the basis specified by a proper orthogonal
tensor Q, the components of the fourth-order tensor change according to

L∗
ijkl = QαiQβjLαβγδQγkQδl. (1.6.23)

The trace of the fourth-order tensor is one of its invariants under rotational
change of basis. Other invariants are discussed in the paper by Betten (1987).

1.6.1. Traceless Tensors

A traceless part of the symmetric second-order tensor A has the rectangular
components

A′
ij = Aij − 1

3
Akkδij , (1.6.24)

such that A′
ii = 0. For a symmetric third-order tensor Z (Zijk = Zjik =

Zjki), the traceless part is

Z ′
ijk = Zijk − 1

5
(Zmmiδjk + Zmmjδki + Zmmkδij) , (1.6.25)

which is defined so that the contraction of any two of its indices gives a zero
vector, e.g.,

Z ′
iij = Z ′

jii = Z ′
iji = 0. (1.6.26)

A traceless part of the symmetric fourth-order tensor (Lijkl = Ljikl =
Lijlk = Lklij) is defined by

L′
ijkl = Lijkl − 1

7
(Lmmijδkl + Lmmklδij + Lmmjkδil + Lmmilδjk

+Lmmikδjl + Lmmjlδik) +
1
35

Lmmnn (δijδkl + δikδjl + δilδjk) .

(1.6.27)

A contraction of any two of its indices also yields a zero tensor, e.g.,

L′
iikl = L′

kiil = L′
ikli = 0. (1.6.28)

For further details see the papers by Spencer (1970), Kanatani (1984), and
Lubarda and Krajcinovic (1993).

1.7. Covariant and Contravariant Components

1.7.1. Vectors

A pair of vector bases, e1, e2, e3 and e1, e2, e3, are said to be reciprocal if

ei · ej = δ j
i , (1.7.1)

where δ j
i is the Kronecker delta symbol (Fig. 1.1). The base vectors of each

basis are neither unit nor mutually orthogonal vectors, so that

2D ei = εijk(ej × ek), D = e1 · (e2 × e3). (1.7.2)

Any vector a can be decomposed in the primary basis as

a = aiei, ai = a · ei, (1.7.3)
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Figure 1.1. Primary and reciprocal bases in two dimen-
sions (e1 · e2 = e2 · e1 = 0).

and in the reciprocal basis as

a = aiei, ai = a · ei. (1.7.4)

The components ai are called contravariant, and ai covariant components of
the vector a.

1.7.2. Second-Order Tensors

Denoting the scalar products of the base vectors by

gij = ei · ej = gji, gij = ei · ej = gji, (1.7.5)

there follows

ai = gijaj , ai = gija
j , (1.7.6)

ei = gikek, ei = gikek. (1.7.7)

This shows that the matrices of gij and gij are mutual inverses. The compo-
nents gij and gij are contravariant and covariant components of the second-
order unit (metric) tensor

I = gijei ⊗ ej = gijei ⊗ ej = ej ⊗ ej = ej ⊗ ej . (1.7.8)

Note that gij = δij and g j
i = δ j

i , both being the Kronecker delta. The
scalar product of two vectors a and b can be calculated from

a · b = gijaibj = gija
ibj = aibi = aib

i. (1.7.9)

The second-order tensor has four types of decompositions

A = Aijei ⊗ ej = Aijei ⊗ ej = Ai
jei ⊗ ej = A j

i ei ⊗ ej . (1.7.10)

�

�

�

�

��

�

�

�
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These are, respectively, contravariant, covariant, and two kinds of mixed
components of A, such that

Aij = ei · A · ej , Aij = ei · A · ej , Ai
j = ei · A · ej , A j

i = ei · A · ej .
(1.7.11)

The relationships between different components are easily established by
using Eq. (1.7.7). For example,

Aij = gikA
k
j = A k

i gkj = gikA
klglj . (1.7.12)

The transpose of A can be decomposed as

AT = Ajiei ⊗ ej = Ajiei ⊗ ej = A i
j ei ⊗ ej = Aj

ie
i ⊗ ej . (1.7.13)

If A is symmetric (A · a = a · A), one has

Aij = Aji, Aij = Aji, Ai
j = A i

j , (1.7.14)

although Ai
j �= A j

i .

A dot product of a second-order tensor A and a vector a is the vector

b = A · a = biei = biei. (1.7.15)

The contravariant and covariant components of b are

bi = Aijaj = Ai
ja

j , bi = Aija
j = A j

i aj . (1.7.16)

A dot product of two second-order tensors A and B is the second-order
tensor C, such that

C · a = A · (B · a), (1.7.17)

for any vector a. Each type of components of C has two possible represen-
tations. For example,

Cij = AikB j
k = Ai

kB
kj , Ci

j = AikBkj = Ai
kB

k
j . (1.7.18)

The trace of a tensor A is the scalar obtained by contraction of the subscript
and superscript in the mixed component tensor representation. Thus,

trA = Ai
i = A i

i = gijA
ij = gijAij . (1.7.19)

Two kinds of inner products are defined by

A · ·B = tr (A · B) = AijBji = AijB
ji = Ai

jB
j
i = A j

i B i
j , (1.7.20)

A : B = tr
(
A · BT

)
= AijBij = AijB

ij = Ai
jB

j
i = A j

i Bi
j . (1.7.21)

If either A or B is symmetric, A · ·B = A : B. The trace of A in Eq.
(1.7.19) can be written as trA = A : I, where I is defined by (1.7.8).
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1.7.3. Higher-Order Tensors

An n-th order tensor has one completely contravariant, one completely co-
variant, and (2n − 2) kinds of mixed component representations. For a
third-order tensor Γ, for example, these are respectively Γijk, Γijk, and

Γij
k, Γi k

j , Γ jk
i , Γi

jk, Γ j
i k, Γ k

ij . (1.7.22)

As an illustration,

Γ = Γijkei ⊗ ej ⊗ ek = Γij
kei ⊗ ej ⊗ ek. (1.7.23)

The relationships between various components are analogous to those in Eq.
(1.7.12), e.g.,

Γi
jk = Γi m

j gmk = Γ n
m kg

mignj = Γ np
m gmignjgpk. (1.7.24)

Four types of components of the inner product of the fourth- and second-
order tensors, C = LLL : A, can all be expressed in terms of the components
of LLL and A. For example, contravariant and mixed (right-covariant) com-
ponents are

Cij = LijklAkl = Lij
klA

kl = Lijk
lA

l
k = Lij l

k Ak
l, (1.7.25)

Ci
j = Li kl

j Akl = Li
jklA

kl = Li k
j lA

l
k = Li l

jk A
k
l. (1.7.26)

1.8. Induced Tensors

Let {ei} and {ei} be a pair of reciprocal bases, and let F be a nonsingular
mapping that transforms the base vectors ei into

êi = F · ei = F j
iej , (1.8.1)

and the vectors ei into

êi = ei · F−1 = (F−1)ije
j , (1.8.2)

such that êi · êj = δ j
i (Fig. 1.2). Then, in view of Eqs. (1.7.10) and (1.7.13)

applied to F and FT , we have

FT · F = ĝijei ⊗ ej , F−1 · F−T = ĝijei ⊗ ej , (1.8.3)

where ĝij = êi · êj and ĝij = êi · êj . Thus, covariant components of FT · F
and contravariant components of F−1 · F−T in the original bases are equal
to covariant and contravariant components of the metric tensor in the trans-
formed bases (I = ĝij êi ⊗ êj = ĝij êi ⊗ êj).

An arbitrary vector a can be decomposed in the original and transformed
bases as

a = aiei = aiei = âiêi = âiêi. (1.8.4)

Evidently,

âi = (F−1)ija
j , âi = F j

iaj . (1.8.5)

Introducing the vectors

a∗ = âiei, a∗ = âiei, (1.8.6)

© 2002 by CRC Press LLC 



Figure 1.2. Upon mapping F the pair of reciprocal bases
ei and ej transform into reciprocal bases êi and êj .

it follows that

â∗ = F−1 · a, â∗ = FT · a. (1.8.7)

The vectors a∗ and a∗ are induced from a by the transformation of bases.
The contravariant components of F−1 ·a in the original basis are numerically
equal to contravariant components of a in the transformed basis. Analogous
statement applies to covariant components.

Let A be a second-order tensor with components in the original basis
given by Eq. (1.7.10), and in the transformed basis by

A = Âij êi ⊗ êj = Âij êi ⊗ êj = Âi
j êi ⊗ êj = Â j

i êi ⊗ êj . (1.8.8)

The components are related through

Âij = (F−1)ikA
kl(F−1)jl, Âij = F k

iAklF
l
j , (1.8.9)

Âi
j = (F−1)ikA

k
lF

l
j , Â j

i = F k
iA

l
k (F−1)jl. (1.8.10)

Introducing the tensors

A∗ = Âijei ⊗ ej , A∗ = Âijei ⊗ ej , (1.8.11)

A� = Âi
jei ⊗ ej , A� = Â j

i ei ⊗ ej , (1.8.12)

we recognize from Eqs. (1.8.9) and (1.8.10) that

A∗ = F−1 · A · F−T , A∗ = FT · A · F, (1.8.13)

A� = F−1 · A · F, A� = FT · A · F−T . (1.8.14)

These four tensors are said to be induced from A by transformation of the
bases (Hill, 1978). The contravariant components of the tensor F−1 ·A ·F−T

in the original basis are numerically equal to the contravariant components
of the tensor A in the transformed basis. Analogous statements apply to
covariant and mixed components.

�
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1.9. Gradient of Tensor Functions

Let f = f(A) be a scalar function of the second-order tensor argument
A. The change of f associated with an infinitesimal change of A can be
determined from

df = tr
(
∂f

∂A
· dA

)
. (1.9.1)

If dA is decomposed on the fixed primary and reciprocal bases as

dA = dAijei ⊗ ej = dAijei ⊗ ej = dAi
jei ⊗ ej = dA j

i ei ⊗ ej , (1.9.2)

the gradient of f with respect to A is the second-order tensor with decom-
positions
∂f

∂A
=

∂f

∂Aji
ei ⊗ ej =

∂f

∂Aji
ei ⊗ ej =

∂f

∂Aj
i

ei ⊗ ej =
∂f

∂A i
j

ei ⊗ ej ,

(1.9.3)

since then (Ogden, 1984)

df =
∂f

∂Aij
dAij =

∂f

∂Aij
dAij =

∂f

∂Ai
j

dAi
j =

∂f

∂A j
i

dA j
i . (1.9.4)

Let F = F(A) be a second-order tensor function of the second-order
tensor argument A. The change of F associated with an infinitesimal change
of A can be determined from

dF =
∂F
∂A

· ·dA. (1.9.5)

If dA is decomposed on the fixed primary and reciprocal bases as in Eq.
(1.9.2), the gradient of F with respect to A is the fourth-order tensor, such
that
∂F
∂A

=
∂F
∂Aji

ei ⊗ ej =
∂F
∂Aji

ei ⊗ ej =
∂F

∂Aj
i

ei ⊗ ej =
∂F
∂A i

j

ei ⊗ ej ,

(1.9.6)

for then

dF =
∂F
∂Aij

dAij =
∂F
∂Aij

dAij =
∂F
∂Ai

j

dAi
j =

∂F

∂A j
i

dA j
i . (1.9.7)

For example,
∂F
∂A

=
∂Fij

∂Alk
ei ⊗ ej ⊗ ek ⊗ el. (1.9.8)

As an illustration, if A is symmetric and invertible second-order tensor,
by taking a gradient of A ·A−1 = I with respect to A, it readily follows that

∂A−1
ij

∂Akl
= −1

2

(
A−1

ik A−1
jl + A−1

il A−1
jk

)
. (1.9.9)

The gradients of the three invariants of A in Eqs. (1.3.3)–(1.3.5) are
∂J1

∂A
= I,

∂J2

∂A
= A − J1I,

∂J3

∂A
= A2 − J1A − J2I. (1.9.10)

© 2002 by CRC Press LLC 



Since A2 has the same principal directions as A, the gradients in Eq. (1.9.10)
also have the same principal directions as A. It is also noted that by the
Cayley–Hamilton theorem (1.4.1), the last of Eq. (1.9.10) can be rewritten
as

∂J3

∂A
= J3A−1, i.e.,

∂(detA)
∂A

= (detA)A−1. (1.9.11)

Furthermore, if F = A · AT , then with respect to an orthonormal basis

∂Aij

∂Akl
= δikδjl,

∂Fij

∂Akl
= δikAjl + δjkAil. (1.9.12)

The gradients of the principal invariants J̄i of A ·AT with respect to A are
consequently

∂J̄1

∂A
= 2AT ,

∂J̄2

∂A
= 2

(
AT · A · AT − J̄1AT

)
,

∂J̄3

∂A
= 2J̄3A−1.

(1.9.13)

1.10. Isotropic Tensors

An isotropic tensor is one whose components in an orthonormal basis remain
unchanged by any proper orthogonal transformation (rotation) of the basis.
All scalars are isotropic zero-order tensors. There are no isotropic first-order
tensors (vectors), except the zero-vector. The only isotropic second-order
tensors are scalar multiples of the second-order unit tensor δij . The scalar
multiples of the permutation tensor εijk are the only isotropic third-order
tensors. The most general isotropic fourth-order tensor has the components

Lijkl = a δijδkl + b δikδjl + c δilδjk, (1.10.1)

where a, b, c are scalars. If LLL is symmetric, b = c and

Lijkl = a δijδkl + 2b Iijkl . (1.10.2)

Isotropic tensors of even order can be expressed as a linear combination of
outer products of the Kronecker deltas only; those of odd order can be ex-
pressed as a linear combination of outer products of the Kronecker deltas and
permutation tensors. Since the outer product of two permutation tensors,

εijkεαβγ =

∣∣∣∣∣∣
δiα δiβ δiγ
δjα δjβ δjγ
δkα δkβ δkγ

∣∣∣∣∣∣ , (1.10.3)

is expressed solely in terms of the Kronecker deltas, each term of an isotropic
tensor of odd order contains at most one permutation tensor. Such tensors
change sign under improper orthogonal transformation. Isotropic tensors
of even order are unchanged under both proper and improper orthogonal
transformations. For example, the components of an isotropic symmetric
sixth-order tensor are

Sijklmn = a δijδklδmn + b δ(ijIklmn) + c δ(ikδlmδnj ), (1.10.4)
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where the notation such as δ(ijIklmn) designates the symmetrization with
respect to i and j, k and l, m and n, and ij, kl and mn (Eringen, 1971).
Specifically,

δ(ijIklmn) =
1
3

(δij Iklmn + δklImnij + δmnIijkl) ,

δ(ikδlmδnj) =
1
4

(δikIjlmn + δilIjkmn + δimIklnj + δinIklmj ) .
(1.10.5)

In some applications it may be convenient to introduce the fourth-order
base tensors (Hill, 1965; Walpole, 1981)

KKK =
1
3

I ⊗ I, JJJ = III −KKK . (1.10.6)

These tensors are such that trKKK = Kijij = 1, trJJJ = Jijij = 5, and

JJJ : JJJ = JJJ , KKK : KKK = KKK , JJJ : KKK = KKK : JJJ = 0. (1.10.7)

Consequently,

(a1 JJJ + b1 KKK ) : (a2 JJJ + b2 KKK ) = a1a2 JJJ + b1b2 KKK , (1.10.8)

(a1 JJJ + b1 KKK )−1 = a−1
1 JJJ + b−1

1 KKK . (1.10.9)

An isotropic fourth-order tensor LLL can be decomposed in this basis as

LLL = LJ JJJ + LK KKK , (1.10.10)

where

LK = tr (LLL : KKK ), LK + 5LJ = trLLL. (1.10.11)

Product of any pair of isotropic fourth-order tensors is isotropic and com-
mutative. The base tensors KKK and JJJ partition the second-order tensor A
into its spherical and deviatoric parts, such that

Asph = KKK : A =
1
3

(trA) I, Adev = JJJ : A = A − Asph. (1.10.12)

1.11. Isotropic Functions

1.11.1. Isotropic Scalar Functions

A scalar function of the second-order symmetric tensor argument is said to
be an isotropic function if

f
(
Q · A · QT

)
= f(A), (1.11.1)

where Q is an arbitrary proper orthogonal (rotation) tensor. Such a function
depends on A only through its three invariants, f = f(J1, J2, J3). For
isotropic f(A), the principal directions of the gradient ∂f/∂A are parallel
to those of A. This follows because the gradients ∂Ji/∂A are all parallel to
A, by Eq. (1.9.10).

A scalar function of two symmetric second-order tensors A and B is said
to be an isotropic function of both A and B, if

f
(
Q · A · QT ,Q · B · QT

)
= f(A,B). (1.11.2)
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Such a function can be represented as a polynomial of its irreducible integrity
basis consisting of the individual and joint invariants of A and B. The
independent joint invariants are the traces of the following products

(A · B),
(
A · B2

)∗
,

(
A2 · B2

)
. (1.11.3)

The joint invariants of three symmetric second-order tensors are the
traces of

(A · B · C),
(
A2 · B · C)∗

,
(
A2 · B2 · C)∗

. (1.11.4)

A superposed asterisk (∗) indicates that the integrity basis also includes in-
variants formed by cyclic permutation of symmetric tensors involved. The in-
tegrity basis can be written for any finite set of second-order tensors. Spencer
(1971) provides a list of invariants and integrity bases for a polynomial scalar
function dependent on one up to six second-order symmetric tensors. An in-
tegrity basis for an arbitrary number of tensors is obtained by taking the
bases for the tensors six at a time, in all possible combinations. For invari-
ants of second-order tensors alone, it is not necessary to distinguish between
the full and the proper orthogonal groups.

The trace of an antisymmetric tensor, or any power of it, is equal to
zero, so that the integrity basis for the antisymmetric tensor X is tr (X2).
A joint invariant of two antisymmetric tensors X and Y is tr (X · Y). The
independent joint invariants of a symmetric tensor A and an antisymmetric
tensor X are the traces of the products(

X2 · A)
,

(
X2 · A2

)
,

(
X2 · A2 · X · A2

)
. (1.11.5)

In the case of two symmetric and one antisymmetric tensor, the joint invari-
ants include the traces of

(X · A · B), (X · A2 · B)∗, (X · A2 · B2),
(X · A2 · B · A)∗, (X · A2 · B2 · A)∗, (X2 · A · B),
(X2 · A2 · B)∗, (X2 · A · X · B), (X2 · A · X · B2)∗.

(1.11.6)

1.11.2. Isotropic Tensor Functions

A second-order tensor function is said to be an isotropic function of its
second-order tensor argument if

F
(
Q · A · QT

)
= Q · F(A) · QT . (1.11.7)

An isotropic symmetric function of a symmetric tensor A can be expressed
as

F(A) = a0I + a1A + a2A2, (1.11.8)

where ai are scalar functions of the principal invariants of A.
A second-order tensor function is said to be an isotropic function of its

two second-order tensor arguments if

F
(
Q · A · QT ,Q · B · QT

)
= Q · F(A,B) · QT . (1.11.9)

An isotropic symmetric tensor function which is a polynomial of two sym-
metric tensorsA and B can be expressed in terms of nine tensors, such that
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F(A,B) = a1I + a2A + a3A2 + a4B + a5B2

+ a6 (A · B + B · A) + a7

(
A2 · B + B · A2

)
+ a8

(
A · B2 + B2 · A)

+ a9

(
A2 · B2 + B2 · A2

)
.

(1.11.10)

The scalars ai are scalar functions of ten individual and joint invariants of
A and B. An antisymmetric tensor polynomial function of two symmetric
tensors allows a representation

F(A,B) = a1(A · B − B · A) + a2

(
A2 · B − B · A2

)
+ a3

(
B2 · A − A · B2

)
+ a4

(
A2 · B2 − B2 · A2

)
+ a5

(
A2 · B · A − A · B · A2

)
+ a6

(
B2 · A · B − B · A · B2

)
+ a7

(
A2 · B2 · A − A · B2 · A2

)
+ a8

(
B2 · A2 · B − B · A2 · B2

)
.

(1.11.11)

A derivation of Eq. (1.11.11) is instructive. The most general scalar invariant
of two symmetric and one antisymmetric tensor X, linear in X, can be
written from Eq. (1.11.6) as

g(A,B,X) = a1 tr [(A · B − B · A) · X] + a2 tr
[(

A2 · B − B · A2
) · X]

+ a3 tr
[(

B2 · A − A · B2
) · X]

+ a4 tr
[(

A2 · B2 − B2 · A2
) · X]

+ a5 tr
[(

A2 · B · A − A · B · A2
) · X]

+ a6 tr
[(

B2 · A · B
− B · A · B2

) · X]
+ a7 tr

[(
A2 · B2 · A − A · B2 · A2

) · X]
+ a8 tr

[(
B2 · A2 · B − B · A2 · B2

) · X]
.

(1.11.12)

The coefficients ai depend on the invariants of A and B. Recall that the
trace of the product of symmetric and antisymmetric matrix, such as (A·B+
B ·A) ·X, is equal to zero. The antisymmetric function F(A,B) is obtained
from Eq. (1.11.12) as the gradient ∂g/∂X, which yields Eq. (1.11.11).

1.12. Rivlin’s Identities

Applying the Cayley–Hamilton theorem to a second-order tensor aA + bB,
where a and b are arbitrary scalars, and equating to zero the coefficient of
a2b, gives

A2 · B + B · A2 + A · B · A − IA(A · B + B · A) − IBA2 − IIAB

− [tr (A · B) − IAIB ]A − [
IIIA tr

(
A−1 · B)]

I = 0.
(1.12.1)

The principal invariants of A and B are denoted by IA, IB , etc. Identity
(1.12.1) is known as the Rivlin’s identity (Rivlin, 1955). If B = A, the
original Cayley–Hamilton theorem of Eq. (1.4.1) is recovered. In addition,
from the Cayley–Hamilton theorem we have

IIIA tr
(
A−1 · B)

= tr
(
A2 · B) − IA tr (A · B) − IBIIA. (1.12.2)
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An identity among three tensors is obtained by applying the Cayley–
Hamilton theorem to a second-order tensor aA + bB + cC, and by equating
to zero the coefficient of abc.

Suppose that A is symmetric, and B is antisymmetric. Equations
(1.12.1) and (1.12.2) can then be rewritten as

A · (A · B + B · A) + (A · B + B · A) · A − IA(A · B + B · A)
− IIAB − A · B · A = 0.

(1.12.3)

Postmultiplying Eq. (1.12.3) with A and using the Cayley–Hamilton theo-
rem yields another identity

A · (A · B + B · A) · A + IIIAB − A · B · A = 0. (1.12.4)

If A is invertible, Eq. (1.12.4) is equivalent to

IIIAA−1 · B · A−1 = IAB − (A · B + B · A). (1.12.5)

1.12.1. Matrix Equation A · X + X · A = B

The matrix equation

A · X + X · A = B (1.12.6)

can be solved by using Rivlin’s identities. Suppose A is symmetric and B
is antisymmetric. The solution X of Eq. (1.12.6) is then an antisymmetric
matrix, and the Rivlin identities (1.12.3) and (1.12.4) become

A · B + B · A − IAB − IIAX − A · X · A = 0, (1.12.7)

A · B · A + IIIAX − IAA · X · A = 0. (1.12.8)

Upon eliminating A · X · A, we obtain the solution for X

(IAIIA + IIIA)X = IA(A · B + B · A) − I2
AB − A · B · A, (1.12.9)

which can be rewritten as

(IAIIA + IIIA)X = −(IAI − A) · B · (IAI − A). (1.12.10)

Since

IAIIA + IIIA = −det(IAI − A), (1.12.11)

and having in mind Eq. (1.12.5), the solution for X in Eq. (1.12.10) can be
expressed in an alternative form

X = [tr (IAI − A)−1]B − (IAI − A)−1 · B − B · (IAI − A)−1, (1.12.12)

provided that IAI − A is not a singular matrix.
Consider now the solution of Eq. (1.12.6) when both A and B are

symmetric, and so is X. If Eq. (1.12.6) is premultiplied by A, it can be
recast in the form

A ·
(
A · X − 1

2
B

)
+

(
A · X − 1

2
B

)
· A =

1
2

(A · B − B · A). (1.12.13)
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Since the right-hand side of this equation is an antisymmetric matrix, it
follows that

Y
2

= A · X − 1
2

B =
1
2

B − X · A (1.12.14)

is also antisymmetric, and Eq. (1.12.13) has the solution for Y according to
Eq. (1.12.10) or (1.12.12), e.g.,

(IAIIA + IIIA)Y = −(IAI − A) · (A · B − B · A) · (IAI − A). (1.12.15)

Thus, from Eq. (1.12.14), the solution for X is

X =
1
4

[
A−1(B + Y) + (B − Y) · A−1

]
. (1.12.16)

For further analysis the papers by Sidoroff (1978), Guo (1984), and Scheidler
(1994) can be consulted.

1.13. Tensor Fields

Tensors fields are comprised by tensors whose values depend on the position
in space. For simplicity, consider the rectangular Cartesian coordinates. The
position vector of an arbitrary point of three-dimensional space is x = xiei,
where ei are the unit vectors in the coordinate directions. The tensor field
is denoted by T(x). This can represent a scalar field f(x), a vector field
a(x), a second-order tensor field A(x), or any higher-order tensor field. It is
assumed that T(x) is differentiable at a point x of the considered domain.

1.13.1. Differential Operators

The gradient of a scalar field f = f(x) is the operator which gives a direc-
tional derivative of f , such that

df = ∇f · dx. (1.13.1)

Thus, with respect to rectangular Cartesian coordinates,

∇f =
∂f

∂xi
ei, ∇ =

∂

∂xi
ei. (1.13.2)

In particular, if dx is taken to be parallel to the level surface f(x) = const.,
it follows that ∇f is normal to the level surface at the considered point
(Fig. 1.3).

The gradient of a vector field a = a(x), and its transpose, are the second-
order tensors

∇a = ∇ ⊗ a =
∂aj
∂xi

ei ⊗ ej , a∇ = a ⊗ ∇ =
∂ai
∂xj

ei ⊗ ej . (1.13.3)

They are introduced such that

da = (a∇) · dx = dx · (∇a). (1.13.4)
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Figure 1.3. The gradient ∇f is perpendicular to the level
surface f(x) = const.

The gradient of a second-order tensor field A = A(x) is similarly

∇A = ∇ ⊗ A =
∂Aij

∂xk
ek ⊗ ei ⊗ ej , A∇ = A ⊗ ∇ =

∂Aij

∂xk
ei ⊗ ej ⊗ ek,

(1.13.5)

so that

dA = (A∇) · dx = dx · (∇A). (1.13.6)

The divergence of a vector field is the scalar

∇ · a = tr (∇a) =
∂ai
∂xi

. (1.13.7)

The divergence of the gradient of a scalar field is

∇ · (∇f) = ∇2f =
∂2f

∂xi∂xi
, ∇2 =

∂2

∂xi∂xi
. (1.13.8)

The operator ∇2 is the Laplacian operator. The divergence of the gradient
of a vector field can be written as

∇ · (∇a) = ∇2a =
∂2ai

∂xj∂xj
ei. (1.13.9)

The divergence of a second-order tensor field is defined by

∇ · A =
∂Aij

∂xi
ej , A · ∇ =

∂Aij

∂xj
ei. (1.13.10)

The curl of a vector field is the vector

∇ × a = εijk
∂aj
∂xi

ek. (1.13.11)

It can be shown that the vector field ∇ × a is an axial vector field of the
antisymmetric tensor field (a∇ − ∇a). The curl of a second-order tensor
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Figure 1.4. Three-dimensional domain V bounded by a
closed surface S with unit outward normal n.

field is similarly

∇ × A = εijk
∂Ajl

∂xi
ek ⊗ el. (1.13.12)

It is noted that A × ∇ = − (∇ × AT
)T , while a × ∇ = −∇ × a.

We list bellow three formulas used later in the book. If a is an arbitrary
vector, x is a position vector, and if A and B are two second-order tensors,
then

∇ · (A · a) = (∇ · A) · a + A : (∇ ⊗ a), (1.13.13)

∇ · (A · B) = (∇ · A) · B +
(
AT · ∇) · B, (1.13.14)

∇ · (A × x) = (∇ · A) × x − ε : A. (1.13.15)

The permutation tensor is ε, and : designates the inner product, defined
by Eq. (1.2.13). The nabla operator in Eqs. (1.13.13)–(1.13.15) acts on
the quantity to the right of it. The formulas can be easily proven by using
the component tensor representations. A comprehensive treatment of tensor
fields can be found in Truesdell and Toupin (1960), and Ericksen (1960).

1.13.2. Integral Transformation Theorems

Let V be a three dimensional domain bounded by a closed surface S with
unit outward normal n (Fig. 1.4). For a tensor field T = T(x), continuously

� �
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Figure 1.5. An open surface S with unit outward normal
n and a bounding edge C.

differentiable in V and continuous on S, the generalized Gauss theorem
asserts that ∫

V

(∇ ∗ T) dV =
∫
S

n ∗ TdS. (1.13.16)

The asterisk (∗) product can be either a dot (·) or cross (×) product, and
T represents a scalar, vector, second- or higher-order tensor field (Malvern,
1969). For example, for a second-order tensor field A, expressed in rectan-
gular Cartesian coordinates,∫

V

∂Aij

∂xi
dV =

∫
S

niAij dS. (1.13.17)

Let S be a portion of an oriented surface with unit outward normal n.
The bounding edge of the surface is a closed curve C (Fig. 1.5). For tensors
fields that are continuously differentiable in S and continuous on C, the
generalized Stokes theorem asserts that∫

S

(n × ∇) ∗ TdS =
∫
C

dC ∗ T. (1.13.18)

For example, for a second-order tensor A this becomes, in the rectangular
Cartesian coordinates,

∫
S

εijkni
∂Akl

∂xj
dS =

∫
C

Akl dCk. (1.13.19)
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CHAPTER 2

KINEMATICS OF DEFORMATION

2.1. Material and Spatial Description of Motion

The locations of material points of a three-dimensional body in its initial,

undeformed configuration are specified by vectors X. Their locations in

deformed configuration at time t are specified by vectors x, such that

x = x(X, t). (2.1.1)

The one-to-one deformation mapping from X to x is assumed to be twice

continuously differentiable. The components of X are the material coordi-

nates of the particle, while those of x are the spatial coordinates. They can

be referred to the same or different bases. For example, if the orthonormal

base vectors in the undeformed configuration are e0
J , and those in the de-

formed configuration are ei, then X = XJe0
J and x = xiei. Often, the same

basis is used for both configurations (common frame).

If a tensor field T is expressed as a function of the material coordinates,

T = T(X, t), (2.1.2)

the description is referred to as the material or Lagrangian description. If

the changes of T are observed at fixed points in space,

T = T(x, t), (2.1.3)

the description is spatial or Eulerian. The time derivative of T can be

calculated as

Ṫ =
∂T(X, t)

∂t
=

∂T(x, t)
∂t

+ v · (∇ ⊗ T). (2.1.4)

The ∇ operator in Eq. (2.1.4) is defined with respect to spatial coordinates

x, and

v =
∂x(X, t)

∂t
(2.1.5)
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Figure 2.1. An infinitesimal material element dX from the
initial configuration becomes dx = F · dX in the deformed
configuration, where F is the deformation gradient. The
orthonormal base vectors in the undeformed and deformed
configurations are e0

J and ei.

is the velocity of a considered material particle at time t. The first term on

the right-hand side of Eq. (2.1.4) is the local rate of change of T, while the

second term represents the convective rate of change (e.g., Eringen, 1967;

Chadwick, 1976).

2.2. Deformation Gradient

An infinitesimal material element dX from the initial configuration becomes

dx = F · dX, F = x ⊗ ∇0 =
∂x
∂X

(2.2.1)

in the deformed configuration at time t (Fig. 2.1). The gradient operator ∇0

is defined with respect to material coordinates. The tensor F is called the

deformation gradient. If the orthonormal base vectors in the undeformed

and deformed configurations are e0
J and ei, then

F = FiJei ⊗ e0
J , FiJ =

∂xi

∂XJ
. (2.2.2)
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This represents a two-point tensor: when the base vectors in the deformed

configuration are rotated by Q, and those in the undeformed configuration

by Q0, the components FiJ change into QkiFkLQ
0
LJ . If Q0 is the unit tensor,

the components of F transform like those of a vector. Physically possible

deformation mappings have the positive Jacobian determinant,

detF > 0. (2.2.3)

Hence, F is an invertible tensor and dX can be recovered from dx by the

inverse operation

dX = F−1 · dx. (2.2.4)

The transpose and the inverse of F have the rectangular representations

FT = FiJe0
J ⊗ ei, F−1 = F−1

Ji e0
J ⊗ ei. (2.2.5)

2.2.1. Polar Decomposition

By the polar decomposition theorem, F can be decomposed into the product

of a proper orthogonal tensor and a positive-definite symmetric tensor, such

that (Truesdell and Noll, 1965; Malvern, 1969)

F = R · U = V · R. (2.2.6)

The symmetric tensor U is the right stretch tensor, V is the left stretch

tensor, and R is the rotation tensor (Fig. 2.2). Evidently,

V = R · U · RT , (2.2.7)

so that V and U share the same eigenvalues (principal stretches λi), while

their eigenvectors are related by

ni = R · Ni. (2.2.8)

The right and left Cauchy–Green deformation tensors are

C = FT · F = U2, B = F · FT = V2. (2.2.9)

The inverse of the left Cauchy–Green deformation tensor, B−1, is often

referred to as the Finger deformation tensor. If there are three distinct

principal stretches, C and B have the spectral representations

C =
3∑

i=1

λ2
i Ni ⊗ Ni, B =

3∑
i=1

λ2
i ni ⊗ ni. (2.2.10)
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Figure 2.2. Schematic representation of the polar decom-
position of deformation gradient. Material element is first
stretched by U and then rotated by R, or first rotated by
R and then stretched by V. The principal directions of U
are Ni, and those of V are ni = R · Ni.

Furthermore,

U =
3∑

i=1

λi Ni ⊗ Ni, V =
3∑

i=1

λi ni ⊗ ni, R =
3∑

i=1

ni ⊗ Ni, (2.2.11)

and

F =
3∑

i=1

λi ni ⊗ Ni. (2.2.12)

If

j1 = λ1 + λ2 + λ3, j2 = −(λ1λ2 + λ2λ3 + λ3λ1), j3 = λ1λ2λ3 (2.2.13)

are the principal invariants of U, then (Hoger and Carlson, 1984; Simo and

Hughes, 1998)

U =
1

j1j2 + j3

[
C2 − (j2

1 + j2)C − j3j1I0
]
, U−1 =

1
j3

(
C − j1U − j2I0

)
.

(2.2.14)
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The unit second-order tensors I0 is defined by

I0 =
3∑

i=1

Ni ⊗ Ni. (2.2.15)

2.2.2. Nanson’s Relation

An infinitesimal volume element dV 0 from the undeformed configuration

becomes

dV = (detF)dV 0 (2.2.16)

in the deformed configuration. An infinitesimal area dS0 with unit normal

n0 in the undeformed configuration becomes the area dS with unit normal

n in the deformed configuration, such that (Nanson’s relation)

ndS = (detF)F−T · n0 dS0. (2.2.17)

The following is a proof of (2.2.17). Consider a triad of vectors in the unde-

formed configuration e0
J , and its reciprocal triad eJ0 . Then, the vector area

dS0 = e0
1 × e0

2 = D0 e3
0, D0 = (e0

1 × e0
2) · e0

3, (2.2.18)

by definition of the reciprocal vectors (Hill, 1978). If the primary vectors

are embedded in the material, they become in the deformed configuration

ei = F · e0
i . Their reciprocal vectors are ei = F−T · ei0 (Fig. 2.3). Thus, the

vector area corresponding to (2.2.18) is in the deformed configuration

dS = e1 × e2 = D e3 = (detF)F−T · dS0, (2.2.19)

because

e3 = F−T · e3
0, D = (e1 × e2) · e3 = (detF)D0. (2.2.20)

Equation (2.2.19) is the Nanson’s relation.

By Eq. (1.13.16) the integral of ndS over any closed surface S is equal

to zero. Therefore, by applying the Gauss theorem to the integral of the

right-hand side of Eq. (2.2.17) over the corresponding surface S0 in the

undeformed configuration gives

∇0 · [(detF)F−1
]

= 0. (2.2.21)
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Figure 2.3. Deformed primary base vectors define an in-
finitesimal volume element dV in the deformed configu-
ration. The reciprocal vector e3 = D−1(e1 × e2), where
D = dV = (e1 × e2) · e3.

2.2.3. Simple Shear

This is an isochoric plane deformation in which the planes with unit normal

N slide relative to each other in the direction M (Fig. 2.4), such that

x = X + γ [N · (X − X0)] m. (2.2.22)

The point X0 is fixed during the deformation, as are all other points within

the plane for which X − X0 is perpendicular to N. The amount of shear is

specified by γ = tanϕ, where ϕ is the shear angle. The vectors embedded in

the planes of shearing preserve their length and orientation, so that m = M.

The deformation gradient corresponding to Eq. (2.2.22), and its inverse are

F = I + γ(m ⊗ N), F−1 = I − γ(m ⊗ N). (2.2.23)

It is assumed that the same basis is used in both undeformed and deformed

configurations. Clearly,

m = F · M = M, n = N · F−1 = N, (2.2.24)

where n is the unit normal to shear plane in the deformed configuration.

If different orthogonal bases are used in the undeformed and deformed

configurations, we have

F = giJ
(
ei ⊗ e0

J

)
+ γ(m ⊗ N), F−1 = gJi

(
e0
J ⊗ eI

) − γ(M ⊗ n),
(2.2.25)

where

giJ = ei · e0
J . (2.2.26)
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Figure 2.4. Simple shear of a rectangular block in the di-
rection M, parallel to the plane with normal N. The shear
angle is ϕ.

These are components of orthogonal matrices such that gIjgjK = δIK and

giJgJk = δik represent the components of unit tensors in the undeformed

and deformed configurations, respectively, i.e.,

I0 = δIKe0
I ⊗ e0

K , I = δikei ⊗ ek. (2.2.27)

The corresponding right and left Cauchy–Green deformation tensors are ac-

cordingly

C = I0 + γ(M ⊗ N + N ⊗ M) + γ2(N ⊗ N), (2.2.28)

B = I + γ(m ⊗ n + n ⊗ m) + γ2(m ⊗ m). (2.2.29)

2.3. Strain Tensors

2.3.1. Material Strain Tensors

Various tensor measures of strain can be defined. A fairly general definition

of material strain measures, reckoned relative to the initial configuration,

was introduced by Seth (1964,1966) and Hill (1968,1978). This is

E(n) =
1
2n

(
U2n − I0

)
=

3∑
i=1

1
2n

(
λ2n
i − 1

)
Ni ⊗ Ni, (2.3.1)

where 2n is a positive or negative integer, and λi and Ni are the principal

values and directions of the right stretch tensor U. The unit tensor in the

initial configuration is I0. For n = 1, Eq. (2.3.1) gives the Lagrangian or

�

�

�
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Green strain

E(1) =
1
2
(U2 − I0), (2.3.2)

for n = −1 the Almansi strain

E(−1) =
1
2
(I0 − U−2), (2.3.3)

and for n = 1/2 the Biot strain

E(1/2) = (U − I0). (2.3.4)

There is a general connection

E(−n) = U−n · E(n) · U−n. (2.3.5)

The logarithmic or Hencky strain is obtained from (2.3.1) in the limit

n → 0, and is given by

E(0) = lnU =
3∑

i=1

lnλi Ni ⊗ Ni. (2.3.6)

For isochoric deformation (λ1λ2λ3 = 1), E(0) is a traceless tensor.

Since,

lnλ = (λ− 1) − 1
2
(λ− 1)2 +

1
3
(λ− 1)3 − · · · , 0 < λ ≤ 2, (2.3.7)

1
2n

(
λ2n − 1

)
= (λ− 1) +

1
2
(2n− 1)(λ− 1)2

+
1
3
(n− 1)(2n− 1)(λ− 1)3 + · · · , λ > 0,

(2.3.8)

there follows

E(0) = E(1/2) − 1
2
E2

(1/2) +
1
3
E3

(1/2) + O
(
E4

(1/2)

)
, (2.3.9)

E(n) = E(1/2) +
1
2
(2n− 1)E2

(1/2) +
1
3
(n− 1)(2n− 1)E3

(1/2) + O
(
E4

(1/2)

)
.

(2.3.10)

From this we can deduce the following useful connections

E(0) = E(n) − nE2
(n) +

4
3
n2E3

(n) + O
(
E4

(n)

)
, (2.3.11)

E(n) = E(0) + nE2
(0) +

2
3
n2E3

(0) + O
(
E4

(0)

)
. (2.3.12)

For the later purposes it is also noted that

E2
(0) = E2

(n) + O
(
E3

(n)

)
. (2.3.13)
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2.3.2. Spatial Strain Tensors

A family of spatial strain measures, reckoned relative to the deformed con-

figuration and corresponding to material strain measures of Eqs. (2.3.1) and

(2.3.6), is defined by

EEE(n) =
1
2n

(
V2n − I

)
=

3∑
i=1

1
2n

(
λ2n
i − 1

)
ni ⊗ ni, (2.3.14)

EEE(0) = lnV =
3∑

i=1

lnλi ni ⊗ ni. (2.3.15)

The unit tensor in the deformed configuration is I, and ni are the principal

directions of the left stretch tensor V. For example,

EEE(1) =
1
2
(V2 − I), (2.3.16)

and

EEE(−1) =
1
2
(I − V−2), (2.3.17)

the latter being known as the Eulerian strain tensor. Since

U2n = RT · V2n · R, (2.3.18)

and ni = R · Ni, the material and spatial strain measures are related by

E(n) = RT · EEE(n) · R, E(0) = RT · EEE(0) · R, (2.3.19)

i.e., the former are induced from the latter by the rotation R. Also, for any

integer m, Em
(n) is induced from EEEm

(n) by the rotation R.

If dX and δX are two material line elements in the undeformed con-

figuration, and dx and δx are the corresponding elements in the deformed

configuration, it follows that

dx · δx − dX · δX = 2 dX · E(1) · δX = 2 dx · EEE(−1) · δx. (2.3.20)

Evidently, the Lagrangian and Eulerian strains are related by

E(1) = FT · EEE(−1) · F, (2.3.21)

so that E(1) is one of the induced tensors from EEE(−1) by the deformation F

(Section 1.8). In the component form, the material and spatial strain tensors

can be expressed as

E(n) = EIJ
(n)e

0
I ⊗ e0

J , EEE(n) = E ij
(n)ei ⊗ ej , (2.3.22)
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relative to primary bases in the undeformed and deformed configuration,

respectively. Covariant and two mixed representations are similarly written.

2.3.3. Infinitesimal Strain and Rotation Tensors

Introducing the displacement vector u = u(X, t) such that

x = X + u, (2.3.23)

the deformation gradient can be written as

F = x ⊗ ∇0 = I + u ⊗ ∇0. (2.3.24)

The tensor u ⊗ ∇0 is called the displacement gradient tensor. The right

Cauchy–Green deformation tensor is expressed in terms of the displacement

gradient tensor as

C = U2 = FT · F = I + u ⊗ ∇0 + ∇0 ⊗ u + (∇0 ⊗ u) · (u ⊗ ∇0).
(2.3.25)

If each component of the displacement gradient tensor is small compared

with unity, Eq. (2.3.25) becomes

U2 ≈ I + u ⊗ ∇0 + ∇0 ⊗ u, (2.3.26)

upon neglecting quadratic terms in the displacement gradient. Consequently,

U ≈ I + ε, U2n ≈ I + 2nε, (2.3.27)

where

ε =
1
2

(
u ⊗ ∇0 + ∇0 ⊗ u

)
. (2.3.28)

The material strain tensors are, therefore,

E(n) =
1
2n

(
U2n − I

) ≈ ε, E(0) = lnU ≈ ε, (2.3.29)

all being approximately equal to ε. The tensor ε defined by (2.3.28) is called

the infinitesimal strain tensor. This tensor can also be expressed as (Hunter,

1976)

ε =
1
2

(
F + FT

) − I. (2.3.30)

If the displacement gradient is decomposed into its symmetric and anti-

symmetric parts,

u ⊗ ∇0 = ε + ω, (2.3.31)

we have

ω =
1
2

(
u ⊗ ∇0 − ∇0 ⊗ u

)
=

1
2

(
F − FT

)
. (2.3.32)
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The tensor ω is the infinitesimal rotation tensor. Its corresponding axial

vector is (1/2)(∇0 × u). When the deformation gradient is decomposed by

polar decomposition as F = V · R = R · U, it follows that

V ≈ U ≈ I + ε, R ≈ I + ω, (2.3.33)

again neglecting quadratic terms in the displacement gradient. Note also

that, within the same order of approximation,

detF ≈ 1 + tr ε. (2.3.34)

If an infinitesimal strain tensor is defined by

ε̂ =
1
2

(u ⊗ ∇ + ∇ ⊗ u) , (2.3.35)

then

ε̂ = I − 1
2

(
F−1 + F−T

)
. (2.3.36)

Since,

F−1 = [I + (F − I)]−1 = I − (F − I) + (F − I)2 − · · · , (2.3.37)

it follows that ε̂ = ε, provided that quadratic and higher-order terms in

(F − I) are neglected. Indeed, in infinitesimal deformation (displacement

gradient) theory, no distinction is made between the Lagrangian and Euler-

ian coordinates. For further details, the texts by Jaunzemis (1967), Spencer

(1971), and Chung (1996) can be reviewed.

2.4. Velocity Gradient, Velocity Strain, and Spin Tensors

Consider a material line element dx in the deformed configuration at time

t. If the velocity field is

v = v(x, t), (2.4.1)

the velocities of the end points of dx differ by

dv = (v ⊗ ∇) · dx = L · dx, (2.4.2)

where ∇ represents the gradient operator with respect to spatial coordinates

(Fig. 2.5). The tensor

L = v ⊗ ∇ (2.4.3)

is called the velocity gradient. Its rectangular Cartesian components are

Lij =
∂vi
∂xj

. (2.4.4)
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Figure 2.5. The velocity vectors of two nearby material
points in deformed configuration at time t. The velocity
gradient L is defined such that dv = L · dx.

The gradient operators with respect to material and spatial coordinates

are related by
↼

∇ =
↼

∇0 · F−1,
⇀

∇ = F−T ·
⇀

∇0. (2.4.5)

For clarity, the arrows above the nabla operators are attached to indicate

the direction in which the operators apply. Since from Eq. (2.2.1), the rate

of deformation gradient is

Ḟ = v ⊗
↼

∇0, (2.4.6)

the substitution into Eq. (2.4.3) gives the relationship

L = Ḟ · F−1. (2.4.7)

The symmetric and antisymmetric parts of L are the velocity strain or rate

of deformation tensor, and the spin tensor, i.e.,

D =
1
2

(
L + LT

)
, W =

1
2

(
L − LT

)
. (2.4.8)

For example, the rate of change of the length ds of the material element dx

can be calculated from
d
dt

(ds)2 = 2 dx · D · dx, d
dt

(ds) = (m · D · m) ds, (2.4.9)

where m = dx/ds. By differentiating dx/ds it also follows that the rate of

unit vector m along the material direction dx is
dm
dt

= L · m − (m · D · m)m. (2.4.10)

If m is an eigenvector of D, then
dm
dt

= W · m. (2.4.11)
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Thus, we can interpret W as the spin of the triad of line elements directed,

at the considered instant of deformation, along the principal axes of the rate

of deformation D.

The rate of the inverse F−1 and the rate of the Jacobian determinant

are (
F−1

)·
= −F−1 · Ḟ · F−1,

d
dt

(detF) = (detF) trD. (2.4.12)

The first expression follows by differentiating F · F−1 = I, and the second

from

d
dt

(detF) = tr
[
∂(detF)

∂F
· Ḟ

]
= tr

[
(detF)F−1 · Ḟ

]
= (detF) trD,

(2.4.13)

because trW = 0. Furthermore, since dV = (detF)dV 0, the rate of volume

change is

d
dt

(dV ) = (trD)dV. (2.4.14)

By differentiating Nanson’s relation (2.2.17), we have

d
dt

(dS) =
d
dt

(dSn) = [(trD)n − (n · L)] dS. (2.4.15)

Since ṅ · n = 0, n being the unit vector normal to dS, and having in mind

that

d
dt

(dS) =
d
dt

(dSn) =
d
dt

(dS)n + dS
d
dt

(n), (2.4.16)

there follows

d
dt

(dS) = (trD − n · D · n) dS. (2.4.17)

d
dt

(n) = (n · D · n) · n − n · L. (2.4.18)

In the case of simple shearing deformation considered in Subsection 2.2.2,

the velocity gradient can be written as

L = γ̇(m ⊗ n). (2.4.19)

2.5. Convected Derivatives

Consider the primary and reciprocal bases in the undeformed configuration,

e0
I and eI0. If the primary basis is embedded in the material, its base vectors

in the deformed configuration become ei = F · e0
I . The associated reciprocal
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(non-embedded) base vectors are ei = eI0 · F−1. Thus, by differentiation it

follows that

ėi = L · ei, ėi = −LT · ei. (2.5.1)

In view of Eq. (1.7.8), the velocity gradient can be expressed as

L = ėi ⊗ ei. (2.5.2)

The rate of change of an arbitrary vector in the deformed configuration,

a = aiei = aiei, is

ȧ = ȧiei + L · a = ȧiei − LT · a. (2.5.3)

The two derivatives,

�
a = ȧiei = ȧ − L · a, ∇

a = ȧiei = ȧ + LT · a, (2.5.4)

are the two convected-type derivatives of the vector a. The first gives the

rate of change observed in the embedded basis ei, which is convected with

the deforming material. The second is the rate of change observed in the

basis ei, reciprocal to the embedded basis ei.

The corotational or Jaumann derivative of a is
◦
a = ȧ − W · a, (2.5.5)

which represents the rate of change observed in the basis that momentarily

rotates with the material spin W. Two types of convected, and the Jaumann

derivative of a two-point deformation gradient tensor are likewise
�
F = Ḟ − L · F = 0,

∇
F = Ḟ + LT · F,

◦
F = Ḟ − W · F. (2.5.6)

Therefore,
�
F · F−1 = 0,

∇
F · F−1 = 2D,

◦
F · F−1 = D. (2.5.7)

Four kinds of convected derivatives of a second-order tensor A in the

deformed configuration can be similarly introduced. They are given by the

following formulas
�
A = Ȧijei ⊗ ej = Ȧ − L · A − A · LT , (2.5.8)
∇
A = Ȧijei ⊗ ej = Ȧ + LT · A + A · L, (2.5.9)
�

A = Ȧi
jei ⊗ ej = Ȧ − L · A + A · L, (2.5.10)

�

A = Ȧ j
i ei ⊗ ej = Ȧ + LT · A − A · LT . (2.5.11)
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The rate
�
A is often referred to as the Oldroyd, and

∇
A as the Cotter–Rivlin

convected rate. Additional discussion can be found in Prager (1961), Trues-

dell and Noll (1965), Sedov (1966), and Hill (1978). Convected derivatives

of the second-order tensors can also be interpreted as the Lie derivatives

(Marsden and Hughes, 1983). Note that convected derivatives of the unit

tensor in the deformed configuration are
∇
I = −

�
I = 2D,

�

I =
�

I = 0. (2.5.12)

The Jaumann (or Jaumann–Zaremba) derivative of a second-order ten-

sor A is
◦
A = Ȧ − W · A + A · W. (2.5.13)

The relationships hold
◦
A =

1
2

(�
A +

∇
A

)
=

1
2

(
�

A +
�

A
)
. (2.5.14)

It is easily verified that

(
F−1

)�
= −F−1 ·

∇
F · F−1 = −2F−1 · D,

(
F−1

)∇
= −F−1 ·

�
F · F−1 = 0.

(2.5.15)

Convected derivatives of the higher-order tensors can be introduced analo-

gously.

2.5.1. Convected Derivatives of Tensor Products

Let F be a two-point tensor such that

F = F iJei ⊗ e0
J , (2.5.16)

and similarly for the other three decompositions. Its convected and corota-

tional derivatives are
�
F =

�

F = Ḟ − L · F,
∇
F =

�

F = Ḟ + LT · F,
◦
F = Ḟ − W · F. (2.5.17)

Introduce a two-point tensor G such that

G = GJie0
J ⊗ ei, (2.5.18)

and similarly for the other three decompositions. Its convected and corota-

tional derivatives are
�
G =

�

G = Ġ − G · LT ,
∇
G =

�

G = Ġ + G · L,
◦
G = Ġ + G · W. (2.5.19)
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The tensor B = F · G is a spatial tensor, whose convected derivatives are

defined by Eqs. (2.5.8)–(2.5.11). The following connections hold

�
B =

�
F · G + F ·

�
G,

∇
B =

∇
F · G + F ·

∇
G,

◦
B =

◦
F · G + F ·

◦
G. (2.5.20)

The same type of chain rule applies to
�

B and
�

B. Two additional identities

exist, which are

�

B =
�
F · G + F ·

∇
G,

�

B =
∇
F · G + F ·

�
G. (2.5.21)

On the other hand, the tensor C = G ·F is a material tensor, unaffected

by convected operations in the deformed configuration, so that

�
C =

∇
C =

◦
C = Ċ. (2.5.22)

The following identities are easily verified

Ċ =
�

G · F + G ·
�

F =
�

G · F + G ·
�

F =
◦
G · F + G ·

◦
F. (2.5.23)

Furthermore,

Ċ =
�
G · F + G ·

�
F + 2G · D · F =

∇
G · F + G ·

∇
F − 2G · D · F, (2.5.24)

and

Ċ =
�
G · F + G ·

∇
F =

∇
G · F + G ·

�
F. (2.5.25)

If both A and B are spatial tensors, then K = A · B is as well. Its

convected derivatives are defined by Eqs. (2.5.8)–(2.5.11). It can be shown

that
�

K =
�

A · B + A ·
�

B,
�

K =
�

A · B + A ·
�

B, (2.5.26)

◦
K =

◦
A · B + A ·

◦
B, (2.5.27)

�
K =

�
A · B + A ·

�
B + 2A · D · B, (2.5.28)

∇
K =

∇
A · B + A ·

∇
B − 2A · D · B, (2.5.29)

�

K =
�
A · B + A ·

∇
B,

�

K =
∇
A · B + A ·

�
B. (2.5.30)
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2.6. Rates of Strain

2.6.1. Rates of Material Strains

The rate of the Lagrangian strain is expressed in terms of the rate of defor-

mation tensor as

Ė(1) = FT · D · F = U · D̂ · U, (2.6.1)

where

D̂ = RT · D · R. (2.6.2)

The rate of the Almansi strain is similarly

Ė(−1) = F−1 · D · F−T = U−1 · D̂ · U−1. (2.6.3)

Evidently, the two strain rates are related by

Ė(−1) = U−2 · Ė(1) · U−2. (2.6.4)

This is a particular case of the general relationship (Ogden, 1984)

Ė(−n) = U−2n · Ė(n) · U−2n, n �= 0, (2.6.5)

which holds because (
U−n

)· = −U−n · (Un)· · U−n. (2.6.6)

An expression for the rate of the logarithmic strain can be derived as

follows. From Eq. (2.3.11), we have

Ė(0) = Ė(n) − n
(
E(n) · Ė(n) + Ė(n) · E(n)

)
+ O

(
E2

(n) · Ė(n)

)
. (2.6.7)

To evaluate Ė(0), any E(n) can be used. For example, if E(1) is used, from

Eq. (2.6.1) we have

Ė(1) = D̂ + E(1) · D̂ + D̂ · E(1) + O
(
E2

(1) · D̂
)
. (2.6.8)

Substitution of Eq. (2.6.8) into Eq. (2.6.7), therefore, gives

Ė(0) = D̂ + O
(
E2

(n) · D̂
)
. (2.6.9)

Recall from Eqs. (2.3.11) and (2.3.12) that E2
(1) = E2

(n), neglecting cubic

are higher-order terms in strain. If principal directions of U remain fixed

(Ṅi = 0), we have

Ė(0) = D̂, (2.6.10)

exactly. Further analysis can be found in the papers by Fitzgerald (1980),

Hoger (1986), and Dui, Ren, and Shen (1999).
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2.6.2. Rates of Spatial Strains

The following relationships hold for convected rates of the strains EEE(1) and

EEE(−1),

�
EEE (1) = D,

∇
EEE (1) = D + 2

(EEE(1) · D + D · EEE(1)

)
, (2.6.11)

∇
EEE (−1) = D,

�
EEE (−1) = D − 2

(EEE(−1) · D + D · EEE(−1)

)
. (2.6.12)

The rate of the deformation tensor B = F · FT is

Ḃ = L · B + B · LT , (2.6.13)

so that

�
B = 0,

∇
B = 2(B · D + D · B),

�

B = 2B · D,
�

B = 2D · B, (2.6.14)

and

(
B−1

)�
= −B−1 ·

∇
B · B−1,

(
B−1

)∇
= −B−1 ·

�
B · B−1, (2.6.15)

(
B−1

)�
= −B−1 ·

�

B · B−1,
(
B−1

)�
= −B−1 ·

�

B · B−1. (2.6.16)

Furthermore,
◦
B = B · D + D · B,

•
B = 2V · D · V, (2.6.17)

where
◦
B = Ḃ − W · B + B · W,

•
B = Ḃ − ω · B + B · ω. (2.6.18)

The corotational rate with respect to ω = Ṙ · R−1 is sometimes referred to

as the Green–Naghdi–McInnis corotational rate.

The expressions for the rates of other strain measures in terms of D are

more involved. Since EEE(n) = R · E(n) · RT , there is a general connection

•
EEE(n) = R · Ė(n) · RT ,

•
EEE(n) = ĖEE(n) − ω · EEE(n) + EEE(n) · ω. (2.6.19)

Higher rates of strain can be investigated along similar lines. For exam-

ple, it can be shown that

Ë(1) = FT ·
∇
D · F,

∇
D = Ḋ + LT · D + D · L. (2.6.20)
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2.7. Relationship between Spins W and ω

The velocity gradient L can be written, in terms of the constituents of the

polar decomposition of deformation gradient F = V · R, as

L = V̇ · V−1 + V · ω · V−1 = ω +
•
V · V−1, (2.7.1)

where
•
V = V̇ − ω · V + V · ω, ω = Ṙ · R−1. (2.7.2)

By taking symmetric and antisymmetric parts of Eq. (2.7.1), there follows

D =
( •
V · V−1

)
s

, W = ω +
( •
V · V−1

)
a

. (2.7.3)

Similarly, if the decomposition F = R · U is used, we obtain

L = ω + R ·
(
U̇ · U−1

)
· RT . (2.7.4)

This can be rewritten as

L̂ = ω̂ + U̇ · U−1, (2.7.5)

where

L̂ = RT · L · R, ω̂ = RT · ω · R (2.7.6)

are the tensors induced from L and ω by the rotation R. Upon taking

symmetric and antisymmetric parts of Eq. (2.7.5),

D̂ =
(
U̇ · U−1

)
s
, Ŵ = ω̂ +

(
U̇ · U−1

)
a
. (2.7.7)

Since V = R · U · RT , we also have
•
V = R · U̇ · RT . (2.7.8)

In particular, if U̇ = 0, then
•
V = 0 and

V̇ = ω · V − V · ω, ω = Ṙ · R−1. (2.7.9)

With these preliminaries, we now derive a relationship between W and

ω (or Ŵ and ω̂). First, observe the identity

V−1 ·
( •
V · V−1

)
=

( •
V · V−1

)T

· V−1, (2.7.10)

which can be rewritten as

V−1 ·
( •
V · V−1

)
a

+
( •
V · V−1

)
a

· V−1 = D · V−1 − V−1 · D. (2.7.11)
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This can be solved for
( •
V · V−1

)
a

by using the procedure described in

Subsection 1.12.1. The result is( •
V · V−1

)
a

= K1

(
D · V−1 − V−1 · D)

−
[(
J1I − V−1

)−1 · (D · V−1 − V−1 · D)
+

(
D · V−1 − V−1 · D) · (J1I − V−1

)−1
]
,

(2.7.12)

where

J1 = trV−1, K1 = tr
(
J1I − V−1

)−1
. (2.7.13)

Substitution of Eq. (2.7.12) into the second of Eq. (2.7.3) gives

ω = W −K1

(
D · V−1 − V−1 · D)

+
[(
J1I − V−1

)−1 · (D · V−1 − V−1 · D)
+

(
D · V−1 − V−1 · D) · (J1I − V−1

)−1
]
,

(2.7.14)

which shows that the spin ω can be determined at each stage of deformation

solely in terms of V, D, and W.

Analogous derivation proceeds to find(
U̇ · U−1

)
a

= K1

(
D̂ · U−1 − U−1 · D̂

)
−

[(
J1I − U−1

)−1 ·
(
D̂ · U−1 − U−1 · D̂

)
+

(
D̂ · U−1 − U−1 · D̂

)
· (J1I − U−1

)−1
]
.

(2.7.15)

Substitution into second of Eq. (2.7.7) gives

ω̂ = Ŵ −K1

(
D̂ · U−1 − U−1 · D̂

)
+

[(
J1I − U−1

)−1 ·
(
D̂ · U−1 − U−1 · D̂

)
+

(
D̂ · U−1 − U−1 · D̂

)
· (J1I − U−1

)−1
]
,

(2.7.16)

as anticipated at the outset from its duality with Eq. (2.7.14). Additional

kinematic analysis is provided by Mehrabadi and Nemat-Nasser (1987), and

Reinhardt and Dubey (1996).

2.8. Rate of F in Terms of Principal Stretches

From Eq. (2.2.11) the right stretch tensor can be expressed in terms of

its eigenvalues – principal stretches λi (assumed here to be different), and
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corresponding eigendirections Ni as

U =
3∑

i=1

λi Ni ⊗ Ni. (2.8.1)

The rate of U is then

U̇ =
3∑

i=1

[
λ̇i Ni ⊗ Ni + λi

(
Ṅi ⊗ Ni + Ni ⊗ Ṅi

)]
. (2.8.2)

If e0
i (i = 1, 2, 3) are the fixed reference unit vectors, the unit vectors Ni of

the principal directions of U can be expressed as

Ni = RRR0 · e0
i , (2.8.3)

where RRR0 is the rotation that carries the orthogonal triad {e0
i } into the

Lagrangian triad {Ni}. Defining the spin of the Lagrangian triad by

Ω0 = ṘRR0 · RRR−1
0 , (2.8.4)

it follows that

Ṅi = ṘRR0 · e0
i = Ω0 · Ni = −Ni · Ω0, (2.8.5)

and the substitution into Eq. (2.8.2) gives

U̇ =
3∑

i=1

λ̇i Ni ⊗ Ni + Ω0 · U − U · Ω0. (2.8.6)

If the spin tensor Ω0 is expressed on the axes of the Lagrangian triad as

Ω0 =
∑
i �=j

Ω0
ij Ni ⊗ Nj , (2.8.7)

it is readily found that

Ω0 · U = Ω0
12(λ2 − λ1)N1 ⊗ N2 + Ω0

23(λ3 − λ2)N2 ⊗ N3

+ Ω0
31(λ1 − λ3)N3 ⊗ N1.

(2.8.8)

Consequently,

Ω0 · U − U · Ω0 = Ω0 · U + (Ω0 · U)T =
∑
i �=j

Ω0
ij (λj − λi)Ni ⊗ Nj .

(2.8.9)

The substitution into Eq. (2.8.6) yields

U̇ =
3∑

i=1

λ̇i Ni ⊗ Ni +
∑
i �=j

Ω0
ij (λj − λi)Ni ⊗ Nj . (2.8.10)
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Similarly, the rate of the material strain tensor of Eq. (2.3.1) is

Ė(n) =
3∑

i=1

λ2n−1
i λ̇i Ni ⊗ Ni +

∑
i �=j

Ω0
ij

λ2n
j − λ2n

i

2n
Ni ⊗ Nj . (2.8.11)

The principal directions of the left stretch tensor V, appearing in the

spectral representation

V =
3∑

i=1

λi ni ⊗ ni, (2.8.12)

are related to principal directions Ni of the right stretch tensor U by

ni = R · Ni = RRR · e0
i , RRR = R · RRR0. (2.8.13)

The rotation tensor R is from the polar decomposition of the the deformation

gradient F = V · R = R · U. By differentiating Eq. (2.8.13) there follows

ṅi = Ω · ni, (2.8.14)

where the spin of the Eulerian triad {ni} is defined by

Ω = ṘRR ·RRR−1 = ω + R · Ω0 · RT , ω = Ṙ · R−1. (2.8.15)

On the axes ni, the spin Ω can be decomposed as

Ω =
∑
i �=j

Ωij ni ⊗ nj . (2.8.16)

By an analogous derivation as used to obtain the rate U̇ it follows that

V̇ =
3∑

i=1

λ̇i ni ⊗ ni +
∑
i �=j

Ωij (λj − λi)ni ⊗ nj . (2.8.17)

The rate of the rotation tensor

R =
3∑

i=1

ni ⊗ Ni (2.8.18)

is

Ṙ =
3∑

i=1

(
ṅi ⊗ Ni + ni ⊗ Ṅi

)
= Ω · R − R · Ω0, (2.8.19)

or

Ṙ =
∑
i �=j

(
Ωij − Ω0

ij

)
ni ⊗ Nj . (2.8.20)

Finally, the rate of the deformation gradient

F =
3∑

i=1

λi ni ⊗ Ni (2.8.21)
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is

Ḟ =
3∑

i=1

[
λ̇i ni ⊗ Ni + λi

(
ṅi ⊗ Ni + ni ⊗ Ṅi

)]
. (2.8.22)

Since ṅi = Ω · ni and Ṅi = Ω0 · Ni, it follows that

Ḟ =
3∑

i=1

λ̇i ni ⊗ Ni + Ω · F − F · Ω0, (2.8.23)

and

Ḟ =
3∑

i=1

λ̇i ni ⊗ Ni +
∑
i �=j

(
λjΩij − λiΩ0

ij

)
ni ⊗ Nj . (2.8.24)

2.8.1. Spins of Lagrangian and Eulerian Triads

The inverse of the deformation gradient can be written in terms of the prin-

cipal stretches as

F−1 =
3∑

i=1

1
λi

Ni ⊗ ni. (2.8.25)

Using this and Eq. (2.8.24) we obtain an expression for the velocity gradient

L = Ḟ · F−1 =
3∑

i=1

λ̇i

λi
ni ⊗ ni +

∑
i �=j

(
Ωij − λi

λj
Ω0

ij

)
ni ⊗ nj . (2.8.26)

The symmetric part of this is the rate of deformation tensor,

D =
3∑

i=1

λ̇i

λi
ni ⊗ ni +

∑
i �=j

λ2
j − λ2

i

2λiλj
Ω0

ij ni ⊗ nj , (2.8.27)

while the antisymmetric part is the spin tensor

W =
∑
i �=j

(
Ωij −

λ2
i + λ2

j

2λiλj
Ω0

ij

)
ni ⊗ nj . (2.8.28)

Evidently, for i �= j from Eq. (2.8.27) we have

Ω0
ij =

2λiλj

λ2
j − λ2

i

Dij , λi �= λj , (2.8.29)

which is an expression for the components of the Lagrangian spin Ω0 in

terms of the stretch ratios and the components of the rate of deformation

tensor. Substituting (2.8.29) into (2.8.28) we obtain an expression for the

components of the Eulerian spin Ω in terms of the stretch ratios and the

components of the rate of deformation and spin tensors, i.e.,

Ωij = Wij +
λ2
i + λ2

j

λ2
j − λ2

i

Dij , λi �= λj . (2.8.30)
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Lastly, we note that the inverse of the rotation tensor R is

R−1 =
3∑

i=1

Ni ⊗ ni, (2.8.31)

so that, by virtue of Eq. (2.8.20), the spin ω can be expressed as

ω = Ṙ · R−1 =
∑
i �=j

(
Ωij − Ω0

ij

)
ni ⊗ nj . (2.8.32)

Thus,

ωij = Ωij − Ω0
ij , (2.8.33)

where Ω0
ij are the components of Ω0 on the Lagrangian triad {Ni}, while

Ωij are the components of Ω on the Eulerian triad {ni}. When Eqs. (2.8.29)

and (2.8.30) are substituted into Eq. (2.8.33), we obtain an expression for

the spin components ωij in terms of the stretch ratios and the components

of the rate of deformation and spin tensors, which is

ωij = Wij +
λj − λi

λi + λj
Dij . (2.8.34)

This complements the previously derived expression for the spin ω in terms

of V, D, and W, given by Eq. (2.7.14). Further analysis can be found in

Biot (1965) and Hill (1970,1978).

2.9. Behavior under Superimposed Rotation

If a time-dependent rotation Q is superimposed to the deformed configura-

tion at time t, an infinitesimal material line element dx becomes (Fig. 2.6)
dx∗ = Q · dx, (2.9.1)

while in the undeformed configuration

dX∗ = dX. (2.9.2)

Consequently, since dx = F · dX, we have

F∗ = Q · F. (2.9.3)

This implies that

U∗ = U, C∗ = C, E∗
(n) = E(n), (2.9.4)

and

V∗ = Q · V · QT , B∗ = Q · B · QT , EEE∗
(n) = Q · EEE(n) · QT . (2.9.5)
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Figure 2.6. The material element dX from the unde-
formed configuration B0 becomes dx = F · dX in the de-
formed configuration B, and dx∗ = Q · dx in the rotated
deformed configuration B∗.

The objective rates of the spatial vector a transform according to
�
a∗ = Q · �a, ∇

a∗ = Q · ∇a, ◦
a∗ = Q · ◦

a, (2.9.6)

as do the objective rates of the deformation gradient F. The rotation R

becomes

R∗ = Q · R. (2.9.7)

The spin ω = Ṙ · R−1 changes to

ω∗ = Ω + Q · ω · QT , Ω = Q̇ · Q−1. (2.9.8)

The velocity gradient transforms as

L∗ = Ω + Q · L · QT , (2.9.9)

while the velocity strain and the spin tensors become

D∗ = Q · D · QT , (2.9.10)

W∗ = Ω + Q · W · QT . (2.9.11)
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The rates of the material and spatial strain tensors change according to

Ė ∗
(n) = Ė(n), (2.9.12)

ĖEE ∗
(n) = Q ·

(
ĖEE(n) + Ω̂ · EEE(n) −EEE(n) · Ω̂

)
· QT , (2.9.13)

where

Ω̂ = QT · Ω · Q, Ω = Q̇ · Q−1. (2.9.14)

The transformation formulas for the convected rates of spatial strain tensors

are
�
EEE ∗

(1) = Q ·
�
EEE (1) · QT ,

∇
EEE ∗

(−1) = Q ·
∇
EEE (−1) · QT . (2.9.15)

Since
�
EEE (1) =

∇
EEE (−1) by Eqs. (2.6.11) and (2.6.12), it follows that

�
EEE ∗

(1) =
∇
EEE ∗

(−1), (2.9.16)

as expected. The same transformation, as in Eq. (2.9.15), applies to other

objective rates of spatial tensors, such as
∇
EEE (1) and

�
EEE (−1), or

◦
B and

•
B. Fur-

thermore,
•
EEE ∗

(n) = Q ·
•
EEE(n) · QT , (2.9.17)

where
•
EEE(n) is defined in Eq. (2.6.19).

In summary, while objective material tensors remain unchanged by the

rotation of the deformed configuration, e.g., Eqs. (2.9.4) and (2.9.12), the

objective spatial tensors change according to transformation rules specified

by equations such as (2.9.5) and (2.9.10).
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CHAPTER 3

KINETICS OF DEFORMATION

3.1. Cauchy Stress

Consider an internal surface S within a loaded deformable body. If the

resultant force across an infinitesimal surface element dS with unit normal

n is dfn, the corresponding traction vector is (Fig. 3.1)

tn =
dfn
dS

. (3.1.1)

The Cauchy or true stress is the second-order tensor σ related to the traction

vector tn by

tn = n · σ. (3.1.2)

When σ is decomposed on an orthonormal basis in the deformed configura-

tion as

σ = σijei ⊗ ej , (3.1.3)

the traction vector over the area with the normal in the coordinate direction

ei can be written as

ti = ei · σ = σijej . (3.1.4)

From Eqs. (3.1.2) and (3.1.4) we conclude that the traction vector over the

surface element with unit normal n = niei can be expressed in terms of the

traction vectors ti as

tn = niti. (3.1.5)

Equation (3.1.5), known as the Cauchy relation, can also be derived directly

by applying the balance law of linear momentum to an infinitesimal tetrahe-

dron around a point of the stressed body (e.g., Prager, 1961; Fung, 1965). In

Section 3.3 it will be shown that the Cauchy stress σ is a symmetric tensor,

provided that there are no distributed surface or body couples acting within

the body.
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Figure 3.1. The traction vector tn over the surface ele-
ment with outward normal n. The total force over dS is
dfn = tndS.

A spherical part of the Cauchy stress is equal to (trσ)I/3. The remain-

der is the deviatoric part,

σ ′ = σ− 1
3
(trσ)I. (3.1.6)

Since σ ′ is a traceless tensor (trσ ′ = 0), there are in general only two

nonvanishing invariants of σ′. These are, from Eqs. (1.3.4) and (1.3.5),

J2 =
1
2

tr (σ ′ 2), J3 =
1
3

tr (σ ′ 3). (3.1.7)

If I1, I2 and I3 are the invariants of σ, we have the relationships

J2 = I2 +
1
3
I2
1 , J3 = I3 +

1
3
I1I2 +

2
27

I3
1 . (3.1.8)

Physically, J2 can be related to shear stress on the octahedral plane (ni =

±1/
√

3 with respect to principal stress directions), since J2 = (3/2)τ2
oct. The

octahedral planes are shown in Fig. 3.2. The normal stress on the octahedral

plane is σoct = I1/3. In two-dimensional plane stress problems, the third

invariant of the stress tensor I3 = 0, so that in three-dimensional problems

I3 can be viewed as a measure of the stress state triaxiality. For later use,

it is also noted that

∂J2

∂σ
= σ ′,

∂J3

∂σ
= σ ′ 2 − 2

3
J2 I,

∂σ ′

∂σ
= III − 1

3
I ⊗ I, (3.1.9)

where I is the second-order, and III is the fourth-order unit tensor.
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Figure 3.2. Octahedral planes in the coordinate system of
principal stresses.

3.2. Continuity Equation

If ρ = ρ(x, t) is a continuous mass density function, the conservation of mass

requires that dm = ρdV is constant during the deformation process. Since

dV = (detF) dV 0, this implies that

ρ (detF) = const. (3.2.1)

By differentiating we obtain the continuity equation
dρ
dt

+ ρ (∇ · v) = 0, (3.2.2)

where v is the velocity of the particle in the position x at time t. Recall

from Eq. (2.4.12) that the time rate

(detF)· = (detF)(∇ · v). (3.2.3)

In view of Eq. (2.1.4) for the total time rate of a spatial field, Eq. (3.2.2)

can be rewritten as
∂ρ

∂t
+ ∇ · (ρv) = 0. (3.2.4)

If the deformation process is volume preserving (isochoric), so that detF = 1

and ρ = const., the continuity equation reduces to

∇ · v = 0, (3.2.5)
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i.e., the velocity field is a divergence free vector field.

The Reynolds transport theorem states that for any continuously differ-

entiable tensor field T = T(x, t) within the volume V bounded by surface

S,

d
dt

∫
V

ρTdV =
∫
V

∂

∂t
(ρT) dV +

∫
S

ρT(v · n) dS, (3.2.6)

where ρ is the mass density, and n is the unit normal to S (e.g., Malvern,

1969; Gurtin, 1981). By applying the Gauss theorem, Eq. (1.13.16), to

convert the surface integral in Eq. (3.2.6) to volume integral, and having in

mind the continuity equation (3.2.4), there follows

d
dt

∫
V

ρTdV =
∫
V

ρ
dT
dt

dV. (3.2.7)

This important formula of continuum mechanics will be frequently utilized

in subsequent derivations. For example, by taking T to be ρ−1, and by using

(3.2.2), Eq. (3.2.7) gives

d
dt

∫
V

dV =
∫
V

(∇ · v) dV. (3.2.8)

3.3. Equations of Motion

Consider an arbitrary portion of a continuous body in the deformed config-

uration. Denote its volume by V and its bounding surface by S (Fig. 3.3).

The rate of change of the linear mass momentum within V is equal to the

sum of all surface forces acting on S and all body forces acting in V (first

Euler’s law of motion), i.e.,∫
S

tn dS +
∫
V

ρbdV =
d
dt

∫
V

ρv dV. (3.3.1)

The body force per unit mass is

b =
dfb
dm

, (3.3.2)

and v = v(x, t) is the velocity field. Applying the Gauss theorem to convert

the surface into volume integral, and incorporating Eq. (3.2.7) in the right-

hand side of Eq. (3.3.1), we obtain∫
V

(
∇ · σ + ρb − ρ

dv
dt

)
dV = 0. (3.3.3)
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Figure 3.3. The volume V of the body bounded by closed
surface S. The body force per unit mass is b and the surface
traction over S is tn.

Since this holds for an arbitrary volume V , the integrand must vanish at

each point of the deforming body,

∇ · σ + ρb = ρ
dv
dt

. (3.3.4)

These are the Cauchy equations of motion for continuous media that apply

at any point x in the deformed configuration. Equilibrium equations are

obtained by setting the acceleration dv/dt equal to zero.

The transition to corresponding equations at points X in the undeformed

configuration is straightforward. We only need to multiply Eq. (3.3.4) with

(detF). Since

ρ(detF) = ρ0 (3.3.5)

is the density in the undeformed configuration, ρ0 = ρ0(X), and since

(detF)∇ · σ = ∇0 · (F−1 · τ) , (3.3.6)

where

τ = (detF)σ (3.3.7)

is the Kirchhoff stress, Eq. (3.3.4) becomes

∇0 · (F−1 · τ) + ρ0 b = ρ0 dv
dt

. (3.3.8)
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The stress tensor

P = F−1 · τ (3.3.9)

is a nonsymmetric nominal stress, and will be considered in more detail later

in Section 3.7.

It is left to prove the identity in Eq. (3.3.6). First, by Eq. (1.13.14),

∇0 · [(detF)F−1 · σ]
=

{∇0 · [(detF)F−1
]} · σ +

[
(detF)F−T · ∇0

] · σ.
(3.3.10)

The first term on the right-hand side is equal to zero, in view of Eq. (2.2.21).

Equation (3.3.8) follows because F−T · ∇0 = ∇, by Eq. (2.4.5).

3.4. Symmetry of Cauchy Stress

The balance law of angular momentum requires that the Cauchy stress is

symmetric, if there are no distributed surface or body couples acting on the

body (nonpolar case). This is now proven. The rate of change of angular

momentum of the mass within V is equal to the sum of the moments of all

forces acting on V and S (second Euler’s law of motion), i.e.,∫
S

(x × tn) dS +
∫
V

(x × ρb) dV =
d
dt

∫
V

(x × ρv) dV. (3.4.1)

Applying the Gauss theorem to convert the surface integral into the volume

integral, we obtain∫
S

(x × tn) dS = −
∫
V

∇ · (σ× x) dV. (3.4.2)

The integrand on the right-hand side can be expanded as

∇ · (σ× x) = (∇ · σ) × x − ε : σ, (3.4.3)

where ε is the permutation tensor, and : designates the trace product; see

Eq. (1.13.15). Thus, Eq. (3.4.1) becomes∫
V

x ×
(

∇ · σ + ρb − ρ
dv
dt

)
dV +

∫
V

(ε : σ) dV = 0. (3.4.4)

The integrand of the first integral in Eq. (3.4.4) vanishes by equations of

motion (3.3.4). The second integral has to vanish for all choices of V (the

whole body or any part of it), hence

ε : σ = 0 (3.4.5)
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at each point of the body. Since the permutation tensor ε is antisymmetric

with respect to its last two indices, Eq. (3.4.5) requires the Cauchy stress σ

to be symmetric,

σ = σT . (3.4.6)

3.5. Stress Power

The rate at which external surface and body forces are doing work on the

mass instantaneously occupying the volume V bounded by S is the power

input

P =
∫
S

tn · v dS +
∫
V

ρb · v dV. (3.5.1)

Converting the surface integral into the volume integral, this becomes

P =
∫
V

[(∇ · σ + ρb) · v + σ : D] dV. (3.5.2)

The formula (1.13.13) was used, giving

∇ · (σ · v) = (∇ · σ) · v + σ : LT . (3.5.3)

The symmetry of the Cauchy stress makes

σ : LT = σ : D. (3.5.4)

The deformation gradient is

L = v ⊗ ∇, (3.5.5)

and its symmetric part D is the rate of deformation tensor. Using the Cauchy

equations of motion (3.3.4) and Eq. (3.2.7), the rate at which external forces

do work is, from Eq. (3.5.2),

P =
d
dt

∫
V

1
2
ρv · v dV +

∫
V

σ : DdV. (3.5.6)

The first term represents the rate of macroscopic kinetic energy of the total

mass. The second term is the total stress power expended at the considered

instant to deform the material. This contributes to internal energy of the

material, and, depending on the nature of deformation, part of it may be

dissipated in the form of heat. The scalar quantity σ : D is called the stress

power per unit current volume. If it is reckoned with respect to unit initial

volume, it becomes τ : D.
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3.6. Conjugate Stress Tensors

3.6.1. Material Stress Tensors

A systematic construction of stress tensors as work conjugates to strain

tensors was introduced by Hill (1968). For any material strain E(n) of Eq.

(2.3.1), its work conjugate stress T(n) is defined such that the stress power

per unit reference volume is

T(n) : Ė(n) = τ : D, (3.6.1)

where τ = (detF)σ is the Kirchhoff stress. For n = 1, Eq. (3.6.1) gives

T(1) = F−1 · τ · F−T = U−1 · τ̂ · U−1 ⇔ E(1) =
1
2

(
U2 − I0

)
. (3.6.2)

For n = 1/2 it follows that

T(1/2) =
1
2

(
U−1 · τ̂ + τ̂ · U−1

) ⇔ E(1/2) = U − I0. (3.6.3)

The symbol ⇔ stands for “conjugate to” and the stress

τ̂ = RT · τ · R (3.6.4)

is induced from τ by the rotation R. Similarly,

T(−1) = FT · τ · F = U · τ̂ · U ⇔ E(−1) =
1
2

(
I0 − U−2

)
, (3.6.5)

T(−1/2) =
1
2

(U · τ̂ + τ̂ · U) ⇔ E(−1/2) = I0 − U−1. (3.6.6)

In view of Eq. (2.6.5), there is a general relationship

T(−n) = U2n · T(n) · U2n. (3.6.7)

Furthermore, for positive n we have

Ė(n) =
1
2n

(
U̇ · U2n−1 + U · U̇ · U2n−2 + · · ·

+ U2n−2 · U̇ · U + U2n−1 · U̇
)
.

(3.6.8)

Thus, since

T(n) : Ė(n) = T(1/2) : Ė(1/2), (3.6.9)

it follows that (Ogden, 1984)

T(1/2) =
1
2n

(
U2n−1 · T(n) + U2n−2 · T(n) · U + · · ·

+ U · T(n) · U2n−2 + T(n) · U2n−1
)
, n > 0.

(3.6.10)
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Similarly,

T(−1/2) =
1
2n

(
U1−2n · T(−n) + U2−2n · T(−n) · U−1+ · · ·

+ U−1 · T(−n) · U2−2n + T(−n) · U1−2n
)
, n > 0.

(3.6.11)

If T(n) and U are commutative,

T(1/2) = U2n−1 · T(n), T(−1/2) = U1−2n · T(−n). (3.6.12)

A derivation of an explicit expression for the stress tensor conjugate to

logarithmic strain E(0) is more involved. The approximate expression can

be obtained as follows. From Eq. (2.3.12), by differentiation,

Ė(n) = Ė(0) + 2n
(
E(0) · Ė(0) + Ė(0) · E(0)

)
+

2
3
n2

(
E2

(0) · Ė(0) + Ė(0) · E2
(0) + E(0) · Ė(0) · E(0)

)
+ O

(
E3

(0) · Ė(0)

)
.

(3.6.13)

Substitution of this into

T(n) : Ė(n) = T(0) : Ė(0) (3.6.14)

gives

T(0) = T(n) + n
(
E(n) · T(n) + T(n) · E(n)

)
− 1

3
n2

(
E2

(n) · T(n) + T(n) · E2
(n) − 2E(n) · T(n) · E(n)

)
+ O

(
E3

(n) · T(n)

)
.

(3.6.15)

Furthermore, from any of Eqs. (3.6.2)–(3.6.6) for the stress T(n), it can be

shown that

T(n) = τ̂− n
(
E(n) · τ̂ + τ̂ · E(n)

)
+ O

(
E2

(n) · τ̂
)
. (3.6.16)

The substitution into Eq. (3.6.15) then yields

T(0) = τ̂ + O
(
E2

(n) · τ̂
)

⇔ E(0) = lnU. (3.6.17)

The approximation T(0) ≈ τ̂ may be acceptable at moderate strains (Hill,

1978). If deformation is such that the principal directions of V and τ are

parallel (as in the deformation of isotropic elastic materials), the matrices

E(n) and T(n) commute, and the term proportional to n2 in Eq. (3.6.15)

vanishes, as well as all other higher-order terms. In that case, therefore,
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T(0) = τ̂ exactly. Also, if principal directions of U remain fixed during

deformation,

Ė(0) = U̇ · U−1 = D̂, T(0) = τ̂. (3.6.18)

Additional analysis can be found in the articles by Hoger (1987), Guo and

Man (1992), Lehmann and Liang (1993), Heiduschke (1995), and Xiao (1995).

3.6.2. Spatial Stress Tensors

The spatial strain tensors EEE(n) in general do not have their conjugate stress

tensors TTT (n) such that T(n) : Ė(n) = TTT (n) : ĖEE(n). This is clear at the outset,

because a spatial stress tensor should be objective (TTT ∗
(n) = Q · TTT (n) · QT ).

Since ĖEE(n) is not objective, as seen from Eq. (2.9.13), their trace product

cannot in general be equal to an invariant quantity T(n) : Ė(n) (which is

independent of the rotation Q superimposed to the deformed configuration).

However, the spatial stress tensors conjugate to strain tensors EEE(n) can be

introduced by requiring that

T(n) : Ė(n) = TTT (n) :
•
EEE(n), (3.6.19)

where the objective, corotational rate of strain
•
EEE(n) is defined by Eq. (2.6.19),

i.e.,
•
EEE(n) = ĖEE(n) − ω · EEE(n) + EEE(n) · ω, ω = Ṙ · R−1. (3.6.20)

In view of the relationship
•
EEE(n) = R · Ė(n) · RT , (3.6.21)

it follows that

TTT (n) = R · T(n) · RT . (3.6.22)

This is the conjugate stress to spatial strains EEE(n) according to Eq. (3.6.19).

Therefore, in this sense we consider

TTT (1) = F−T · τ̂ · F−1 = V−1 · τ · V−1 ⇔ EEE(1) =
1
2

(
V2 − I

)
, (3.6.23)

TTT (−1) = F · τ̂ · FT = V · τ · V ⇔ EEE(−1) =
1
2

(
I − V−2

)
, (3.6.24)

TTT (1/2) =
1
2

(
V−1 · τ + τ · V−1

) ⇔ EEE(1/2) = V − I, (3.6.25)
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TTT (−1/2) =
1
2
(V · τ + τ · V) ⇔ EEE(−1/2) = I − V−1. (3.6.26)

It is easy to derive equations dual to Eqs. (3.6.8)–(3.6.12). For example, if

TTT and V are coaxial tensors,

TTT (1/2) = V2n−1 · TTT (n), TTT (−1/2) = V1−2n · TTT (−n). (3.6.27)

If the principal directions of T(n) and E(n) are parallel (as in the defor-

mation of elastically isotropic materials), so are the principal directions of

TTT (n) and EEE(n). In this case

TTT (n) :
•
EEE(n) = TTT (n) : ĖEE(n), (3.6.28)

because the tensor
(
Ω · EEE(n) −EEE(n) · Ω

)
is orthogonal to EEE(n) and thus to

TTT (n), so that

TTT (n) :
(
ω · EEE(n) −EEE(n) · ω

)
= 0. (3.6.29)

Note that R · τ · RT is not the work conjugate to any strain measure,

since the material stress tensor T(n) in Eq. (3.6.22) cannot be equal to

spatial stress tensor τ. Likewise, although τ̂ : D̂ = τ : D, the stress tensor

τ̂ = RT · τ · R is not the work conjugate to any strain measure, because

D̂ = RT · D · R is not the rate of any strain. Of course, τ itself is not the

work conjugate to any strain, because D is not the rate of any strain, either.

If deformation is uniform extension or compression (F = λI), it can be

shown that

Ė(n) = λ2nD, Ė(0) = D =
λ̇

λ
I, (3.6.30)

and in this case

T(n) = λ−2nτ, T(0) = τ. (3.6.31)

3.7. Nominal Stress

If the element of area dS = dSn in the deformed configuration carries the

force dfn, the corresponding traction vector is tn = dfn/dS. It is related to

Cauchy stress by tn = n · σ. Let dS0 = dS0 n0 be the element of area in

the undeformed configuration, corresponding to dS in the deformed config-

uration. The nominal traction vector is defined as the actual force in the
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Figure 3.4. An infinitesimal surface element dS with unit
normal n in deformed configuration carries the force dfn.
The nominal traction vector with respect to undeformed
configuration is dfn/dS0. A pseudo-force vector is df0

n.

deformed configuration divided by the area in the undeformed configuration,

i.e.,

pn =
dfn
dS0

, (3.7.1)

so that (Fig. 3.4)

pn dS0 = tn dS. (3.7.2)

The nominal stress tensor P is introduced by

pn = n0 · P. (3.7.3)

In view of Nanson’s relation (2.2.17), it follows that

P = F−1 · τ. (3.7.4)

The nominal stress is a nonsymmetric two-point tensor. Its transpose

PT = τ · F−T (3.7.5)

is often referred to as the first or nonsymmetric Piola–Kirchhoff stress tensor,

n0 · P = PT · n0; Truesdell and Noll (1965).
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Observe that the rate of work can be expressed in terms of the nominal

stress as

P · · Ḟ = τ : D. (3.7.6)

This, in turn, can serve as a starting point to define P, since

P · · Ḟ = (F · P) · ·
(
Ḟ · F−1

)
, F · P = τ. (3.7.7)

The balance law of linear momentum can be written with respect to

undeformed geometry as∫
S0

pn dS0 +
∫
V 0

ρ0 bdV 0 =
d
dt

∫
V 0

ρ0 v dV 0, (3.7.8)

which, in view of Eq. (3.7.3) and the Gauss theorem, reproduces the equa-

tions of motion (3.3.8), written at points of the undeformed configuration.

3.7.1. Piola–Kirchhoff Stress

The second or symmetric Piola–Kirchhoff stress tensor is the stress tensor

T(1), introduced previously as the work conjugate to the Lagrangian strain

E(1). An alternative construction of this stress tensor is as follows. A pseudo-

force vector df0
n in the undeformed configuration is introduced such that

dfn = F · df0
n. (3.7.9)

The associated pseudo-traction is (Fig. 3.4)

t0
n =

df0
n

dS0
. (3.7.10)

The second Piola–Kirchhoff stress tensor satisfies

t0
n = n0 · T(1). (3.7.11)

This gives

T(1) = F−1 · τ · F−T , (3.7.12)

which is symmetric whenever τ is symmetric (nonpolar case). The connec-

tion with the nominal stress is

P = T(1) · FT , (3.7.13)

so that F · P is symmetric. It is also noted that

T(1/2) = (P · R)s, (3.7.14)

which is referred to as the Biot stress (Biot, 1965; Hill, 1968; Ogden, 1984).
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Returning to expression (3.7.6) for the rate of work, it is noted that in

the case when there is momentarily no rate of stretching tensor U (from the

polar decomposition of deformation gradient F = R · U), i.e., when U̇ = 0,

we have

P · · Ḟ = P · · Ṙ · U = T(1) · FT · · Ṙ · U = (F · T(1) · FT ) : (Ṙ · R−1) = 0.
(3.7.15)

The last trace product vanishes because F · T(1) · FT is symmetric, while

Ṙ ·R−1 is antisymmetric tensor. The result was expected because there can

not be any rate of work associated with instantaneous rigid-body spin of an

already stretched body.

3.8. Stress Rates

The material stress tensors T(n) can be decomposed in four different ways

on the primary and reciprocal bases in the undeformed configuration. Like-

wise, the spatial stress tensors TTT (n) can be decomposed on the bases in the

deformed configuration. For example, the contravariant decompositions are
T(n) = T IJ

(n)e
0
I ⊗ e0

J , TTT (n) = T ij
(n)ei ⊗ ej . (3.8.1)

Since

ėi = L · ei, ėi = −LT · ei, (3.8.2)

by Eq. (2.5.1), there are four types of the convected derivatives of the spatial

stress tensors. They are given by Eqs. (2.5.8)–(2.5.11), if A is there replaced

by TTT (n). In view of Eq. (3.6.22), there is a connection between the rates of

material and spatial stress tensors,

•
TTT (n) = R · Ṫ(n) · RT ,

•
TTT (n) = ṪTT (n) − ω · TTT (n) + TTT (n) · ω. (3.8.3)

Here, ω = Ṙ · R−1 is the spin due to R.

The rates of material stress tensors T(1) and T(−1) are related to con-

vected rates of the Kirchhoff stress by

Ṫ(1) = F−1 · �τ · F−T ,
�
τ = τ̇− L · τ− τ · LT , (3.8.4)

Ṫ(−1) = FT · ∇τ · F,
∇
τ = τ̇ + LT · τ + τ · L. (3.8.5)
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The rate of stress conjugate to logarithmic strain is obtained from Eq.

(3.6.15) by differentiation, and is given by

Ṫ(0) = Ṫ(n) + n
(
Ė(n) · T(n) + T(n) · Ė(n)

)
+ O (

E(n)

)
. (3.8.6)

3.8.1. Rate of Nominal Stress

The nominal stress tensor, being a two-point tensor, has four kinds of de-

compositions

P = P Jie0
J ⊗ ei = PJieJ0 ⊗ ei = P J

ie
0
J ⊗ ei = P i

J eJ0 ⊗ ei, (3.8.7)

but only two different convected derivatives result. They are
�
P =

�

P = Ṗ − P · LT ,
∇
P =

�

P = Ṗ + P · L. (3.8.8)

The Jaumann derivative of the nominal stress is
◦
P = Ṗ + P · W. (3.8.9)

Observe the difference in the structure of the expressions (3.8.8) and (3.8.9)

for the convected and Jaumann derivatives of a two-point nominal stress

tensor, and the corresponding expressions (2.5.6) for objective derivatives of

a two-point deformation gradient tensor. This is because, for example,

P = P Jie0
J ⊗ ei, while F = F iJei ⊗ e0

J . (3.8.10)

The transpose tensor PT has the convected and the Jaumann derivatives

defined according to Eqs. (2.5.6).

The rate of the nominal stress is

Ṗ = F−1 · (τ̇− L · τ) . (3.8.11)

The following relationships are easily established between the objective rates

of the nominal and Kirchhoff stress
�
P = F−1 · �τ ,

∇
P = F−1 · �τ, (3.8.12)

and
◦
P = F−1 ·

(◦
τ− D · τ

)
,

◦
τ = τ̇− W · τ + τ · W. (3.8.13)

Furthermore, the rates of the material stress tensors can be expressed as

Ṫ(1) =
�
P · F−T , Ṫ(1/2) =

( •
P · R

)
s

, (3.8.14)
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where
•
P = Ṗ + P · ω. (3.8.15)

Finally, the rates of nominal and true tractions are related by

ṗn dS0 =
[
ṫn + (trD − n · D · n) tn

]
dS. (3.8.16)

This follows by differentiation of pn dS0 = tn dS, having in mind the con-

nection (2.4.17).

Higher rates of stress can be investigated similarly, but will not be needed

in this book. They are used in modeling certain viscoelastic-type materials.

A paper by Prager (1962) and a treatise by Truesdell and Noll (1965) can

be consulted in this respect.

3.9. Stress Rates with Current Configuration as Reference

If the current configuration is chosen as the reference configuration (F = I),

all strain measures vanish, and all corresponding stresses are equal to Cauchy

stress. All material strain rates are equal to the rate of deformation tensor,

Ė(n) = D. (3.9.1)

Since

D = U̇, W = Ṙ = ω, (3.9.2)

from Eq. (2.6.19) it follows that
◦
EEE(n) =

•
EEE(n) = Ė(n) = D. (3.9.3)

The underline indicates that the current configuration is used as the reference

configuration.

The rate of stress T(0) is, from Eq. (8.5),

Ṫ(0) = Ṫ(n) + n(D · σ + σ · D). (3.9.4)

Any T(n) can be used in Eq. (3.9.4) to evaluate Ṫ(0). For example, for n = 1

we have from Eq. (3.8.4)

Ṫ(1) =
�
σ + σ trD,

�
σ = σ̇− L · σ− σ · LT . (3.9.5)

Substitution into Eq. (3.9.4) gives

Ṫ(0) =
◦
σ + σ trD,

◦
σ = σ̇− W · σ + σ · W. (3.9.6)
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The rate of stress Ṫ(n) for an arbitrary n can be deduced from Eq.

(3.9.4) by inserting Ṫ(0) from Eq. (3.9.6). The result is

Ṫ(n) =
◦
σ + σ trD − n(D · σ + σ · D). (3.9.7)

This is also equal to the Jaumann rate of the spatial stress
◦
TTT (n) = Ṫ(n), (3.9.8)

again, of course, with the current configuration taken as the reference con-

figuration. Recall that
•
TTT (n) =

◦
TTT (n), (3.9.9)

since ω = W. Finally, the rate of nominal stress, momentarily equal to σ,

is

Ṗ = σ̇ + σ trD − L · σ, (3.9.10)

which can be rewritten as either of
�
P =

�
σ + σ trD,

◦
P =

◦
σ + σ trD − D · σ. (3.9.11)

The stress rate

◦
τ =

◦
σ + σ trD (3.9.12)

repeatedly appears in the above equations. It is the rate of Kirchhoff stress

when the current configuration is taken for the reference configuration. Sim-

ilarly,
�
τ =

�
σ + σ trD,

∇
τ =

∇
σ + σ trD, (3.9.13)

with the connections

◦
τ = (detF)

◦
τ,

�
τ = (detF)

�
τ ,

∇
τ = (detF)

∇
τ. (3.9.14)

The stress rate
�
τ is also known as the Truesdell rate of the Cauchy stress σ

(the Oldroyd rate of the Cauchy stress plus σ trD). Evidently,

Ṫ(0) =
◦
τ, Ṫ(1) =

�
τ , Ṫ(−1) =

∇
τ, Ṗ = τ̇− L · σ, (3.9.15)

and

Ṫ(1) = (detF)F−1 · Ṫ(1) · F−T , Ṫ(−1) = (detF)FT · Ṫ(−1) · F, (3.9.16)

Ṗ = (detF)F−1 · Ṗ. (3.9.17)
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Lastly, it is noted that at the current state as reference, the rates of

nominal and true tractions are related by

ṗ
n

= ṫn + (trD − n · D · n) tn. (3.9.18)

This follows directly from Eq. (3.8.16), since dS0 = dS at the current state

as reference.

3.10. Behavior under Superimposed Rotation

If a time-dependent rotation Q is superimposed to the deformed configura-

tion at time t, the material stress tensors T(n) do not change,

T∗
(n) = T(n), (3.10.1)

because the strain rates Ė(n) remain unchanged (E∗
(n) = E(n)), and

ẇ = T∗
(n) : Ė∗

(n) = T(n) : Ė(n). (3.10.2)

In view of Eq. (3.6.22), the spatial stress tensors change into

TTT ∗
(n) = Q · TTT (n) · QT . (3.10.3)

The same transformation rule applies to Cauchy and Kirchhoff stress. Since

the nominal stress is defined by P = F−1 · τ, it becomes

P∗ = P · QT . (3.10.4)

The transformation rule for the Cauchy stress can be independently

deduced from the basic relation tn = n·σ. Under rotation Q of the deformed

configuration, the traction vector changes into

t∗n = Q · tn, (3.10.5)

and the unit normal becomes n∗ = Q · n. Hence, the transformation

σ∗ = Q · σ · QT . (3.10.6)

Likewise,

τ∗ = Q · τ · QT . (3.10.7)

On the other hand,

τ̂∗ = τ̂, τ̂ = RT · τ · R. (3.10.8)
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The following transformation rules apply for the rates of material and

spatial stress tensors

Ṫ∗
(n) = Ṫ(n), ṪTT ∗

(n) = Q ·
(
ṪTT (n) + Ω̂ · TTT (n) −TTT (n) · Ω̂

)
· QT , (3.10.9)

where Ω̂ = QT ·Ω ·Q and Ω = Q̇ ·Q−1. The rate of nominal stress becomes

Ṗ∗ =
(
Ṗ − P · Ω̂

)
· QT . (3.10.10)

The objective spatial stress rates change according to
•
TTT ∗

(n) = Q ·
•
TTT (n) · QT ,

�
τ ∗ = Q · �τ · QT ,

◦
τ ∗ = Q · ◦τ · QT , (3.10.11)

while objective rates of the nominal stress transform as
�
P∗ =

�
P · QT ,

◦
P∗ =

◦
P · QT . (3.10.12)

3.11. Principle of Virtual Velocities

Kinematically admissible velocity field is one possessing continuous first par-

tial derivatives in the interior of the body (analytically admissible), and

satisfying prescribed kinematic (velocity) boundary conditions. Kinetically

admissible stress and acceleration fields satisfy equations of motion and pre-

scribed kinetic (traction) boundary conditions. Statically admissible stress

field satisfies equations of equilibrium and prescribed traction boundary con-

ditions.

Principle of virtual velocities : If the stress and acceleration fields are

kinetically admissible, the rate of work of external and inertial forces on any

kinematically admissible virtual velocity field is equal to∫
V

σ : δDdV. (3.11.1)

Conversely, if the rate of work of external and inertial forces is equal to

(3.11.1), for the assumed stress and acceleration fields and for every kine-

matically admissible virtual velocity field, then the stress and acceleration

fields are kinetically admissible.

Proof : The rate of work of the surface traction tn on an analytically

admissible virtual velocity field δv vanishing on Sv is∫
S

tn · δv dS =
∫
V

∇ · (σ · δv) dV. (3.11.2)
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If the traction is applied only on the St part of S, while velocity is prescribed

on the remainder Sv of the boundary, then δv = 0 on Sv by definition of

the kinematically admissible virtual velocity field. Thus, the integral on the

left-hand side of Eq. (3.11.2) can always be taken over the total S. Applying

Eq. (1.13.13) to the integrand on the right-hand side of Eq. (3.11.2), and

by the symmetry of σ, we obtain∫
S

tn · δv dS −
∫
V

(∇ · σ) · δv dV =
∫
V

σ : δDdV. (3.11.3)

If σ and dv/dt are kinetically admissible, from equations of motion (3.3.4)

it follows that

∇ · σ = ρ

(
dv
dt

− b
)
. (3.11.4)

Substitution into Eq. (3.11.3) gives the desired expression∫
S

tn · δv dS +
∫
V

ρ

(
b − dv

dt

)
· δv dV =

∫
V

σ : δDdV. (3.11.5)

Conversely, assume that Eq. (3.11.5) holds for a prescribed traction on

St, given body forces in V , and for assumed stress and acceleration fields.

Subtracting from both sides of Eq. (3.11.5) the integral of (n · σ) · δv over

the surface S, we have∫
S

(tn − n · σ) · δv dS +
∫
V

[
∇ · σ + ρ

(
b − dv

dt

)]
· δv dV = 0. (3.11.6)

This is identically satisfied if σ and dv/dt are kinetically admissible, satis-

fying equations of motion (3.3.4) and the boundary conditions n ·σ = tn on

St.

If integrals are written with respect to undeformed geometry, Eq. (3.11.5)

is replaced with∫
S0

pn · δv dS0 +
∫
V 0

ρ0

(
b − dv

dt

)
· δv dV 0 =

∫
V 0

P · · δḞdV 0, (3.11.7)

where δḞ = δv ⊗ ∇0. If Eq. (3.11.7) holds, the nominal stress P and

the acceleration field satisfy equations of motion (3.3.8), and the boundary

conditions n0 · P = pn on S0
t .

A straightforward extension of the previous result is obtained by using

the rates of nominal stress and traction. Indeed, if∫
S0

ṗn · δv dS0 +
∫
V 0

ρ0

(
ḃ − d2v

dt2

)
· δv dV 0 =

∫
V 0

Ṗ · · δḞdV 0, (3.11.8)
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for all analytically admissible δv vanishing on S0
v , the rates of nominal stress

Ṗ and the rate of acceleration field satisfy the rate-type equations

∇0 · Ṗ + ρ0 ḃ = ρ0 d2v
dt2

, (3.11.9)

and the rate-type boundary conditions

n0 · Ṗ = ṗn on S0
t . (3.11.10)

The rate-type equations (3.11.9) also follow from equations of motion (3.3.8)

by differentiation.

For static problems, dv/dt and d2v/dt2 are equal to zero in Eqs. (3.11.4)–

(3.11.9), so that

∇0 · Ṗ + ρ0 ḃ = 0. (3.11.11)

If Ṗ satisfies Eq. (3.11.11), by Gauss divergence theorem it also follows that∫
V 0

Ṗ · · Ḟ′ dV 0 =
∫
V 0

ρ0 ḃ · v′ dV 0 +
∫
S0

n0 · Ṗ · v′ dS0, (3.11.12)

for any analytically admissible velocity field v′. A direct consequence is a

Kirchhoff type identity∫
V 0

(Ṗ − Ṗ′) · · (Ḟ − Ḟ′) dV 0 =
∫
V 0

ρ0(ḃ − ḃ′) · (v − v′) dV 0

+
∫
S0

n0 · (Ṗ − Ṗ′) · (v − v′) dS0,

(3.11.13)

where Ṗ′ and ḃ′ are related by Eq. (3.11.11).

If v′ = v, the surface integral in Eq. (3.11.12) is∫
S0

n0 · Ṗ · v dS0 =
∫
S0
t

ṗn · v dS0
t +

∫
S0
v

n0 · Ṗ · v dS0
v , (3.11.14)

with v prescribed on S0
v , and n0 · Ṗ = ṗn prescribed on S0

t . If v �= v′ in Eq.

(3.11.13), but both correspond to the same data (ḃ in V 0, ṗn on S0
t , and

v = v′ on S0
v), the right-hand side of Eq. (3.11.13) vanishes.

3.12. Principle of Virtual Work

If displacement rather than velocity field is used, we arrive at the principle of

virtual displacement (or virtual work). Displacement field is u = x−X (with

the same coordinate origin for both x and X). Geometrically admissible

displacement field is one possessing continuous first partial derivatives in

the interior of the body, and satisfying prescribed geometric (displacement)
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boundary conditions. Statically admissible stress field satisfies equations of

equilibrium and prescribed static (traction) boundary conditions. Thus, if∫
S0

pn · δudS0 +
∫
V 0

ρ0 b · δudV 0 =
∫
V 0

P · · δFdV 0, (3.12.1)

for all analytically admissible virtual displacements δu vanishing on S0
u, the

nominal stress P satisfies the equilibrium equations

∇0 · P + ρ0 b = 0, (3.12.2)

and the traction boundary conditions

n0 · P = pn on S0
t . (3.12.3)

In general, the nominal traction pn applied at X depends on the defor-

mation x and its gradient F. A particular type of loading for which pn de-

pends only on X is known as dead loading. During dead loading an increase

in load deforms the body, but the resulting changes in surface geometry do

not modify the load.

If P satisfies Eq. (3.12.2), by Gauss divergence theorem it follows that∫
V 0

P · ·F′ dV 0 =
∫
V 0

ρ0 b · x′ dV 0 +
∫
S0

n0 · P · x′ dS0, (3.12.4)

for any analytically admissible deformation field x′. A direct consequence is

the Kirchhoff identity∫
V 0

(P − P′) · · (F − F′) dV 0 =
∫
V 0

ρ0(b − b′) · (x − x′) dV 0

+
∫
S0

n0 · (P − P′) · (x − x′) dS0,

(3.12.5)

where P′ and b′ are related by Eq. (3.12.2).

If x′ = x, the surface integral in Eq. (3.12.4) becomes∫
S0

n0 · P · xdS0 =
∫
S0
t

pn · xdS0
t +

∫
S0
u

n0 · P · xdS0
u, (3.12.6)

with x prescribed on S0
u, and n0 · P = pn prescribed on S0

t .
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CHAPTER 4

THERMODYNAMICS OF DEFORMATION

4.1. Energy Equation

A deforming body, or a given portion of it, can be considered to be a thermo-

dynamic system in continuum mechanics. The first law of thermodynamics

relates the mechanical work done on the system and the heat transferred

into the system to the change in total energy of the system. The rate at

which external surface and body forces are doing work on a body currently

occupying the volume V bounded by the surface S is given by Eq. (3.5.6),

i.e.,

P =
d
dt

∫
V

1
2
ρv · v dV +

∫
V

σ : DdV. (4.1.1)

Let q be a vector whose magnitude gives the rate of heat flow by conduction

across a unit area normal to q. The direction of q is the direction of heat

flow, so that in time dt the heat amount qdt would flow through a unit

area normal to q. If the area dS is oriented so that its normal n is not

in the direction of q, the rate of outward heat flow through dS is q · ndS

(Fig. 4.1). Let a scalar r be the rate of heat input per unit mass due to

distributed internal heat sources. The total heat input rate into the system

is then

Q = −
∫
S

q · ndS +
∫
V

ρ r dV =
∫
V

(−∇ · q + ρ r) dV. (4.1.2)

According to the first law of thermodynamics there exists a state function

of a thermodynamic system, called the total energy of the system Etot, such

that its rate of change is

Ėtot = P + Q. (4.1.3)

Neither P nor Q is in general the rate of any state function, but their sum

is. The total energy of the system consists of the macroscopic kinetic energy
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Figure 4.1. The heat flow vector q through the surface
element dS with a unit normal n.

and the internal energy of the system,

Etot =
d
dt

∫
V

1
2
ρv · v dV +

∫
V

ρ u dV. (4.1.4)

The specific internal energy (internal energy per unit mass) is denoted by u.

It includes the elastic strain energy and all other forms of energy that do not

contribute to macroscopic kinetic energy (e.g., latent strain energy around

dislocations, phase-transition energy, energy of random thermal motion of

atoms, etc.).

Substituting Eqs. (4.1.1), (4.1.2), and (4.1.4) into Eq. (4.1.3), and

having in mind Eq. (3.2.7), gives∫
V

(ρ u̇− σ : D + ∇ · q − ρ r) dV = 0. (4.1.5)

This holds for the whole body and for any part of it, so that locally, at each

point, we can write

ρ u̇ = σ : D − ∇ · q + ρ r. (4.1.6)

This is the energy equation in the deformed configuration (spatial form of

the energy equation).

4.1.1. Material Form of Energy Equation

The corresponding equation written relative to the undeformed configuration

is obtained by multiplying Eq. (4.1.6) with (detF). Since ρ(detF) = ρ0,

��

�

�
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Figure 4.2. The nominal rate of the heat flow vector q0

is related to the heat flow vector q in the deformed config-
uration by q0 = (detF)F−1 · q.

and since

(detF)∇ · q = ∇0 · [(detF)F−1 · q]
, (4.1.7)

by an equation such as (3.3.10), Eq. (4.1.6) becomes

ρ0 u̇ = P · · Ḟ − ∇0 · q0 + ρ0 r. (4.1.8)

The nominal stress P is defined by Eq. (3.7.4) (P · · Ḟ = τ : D), and

q0 = (detF)F−1 · q (4.1.9)

is the nominal rate of the heat flow vector
(
q0 · n0 dS0 = q · ndS

)
; see

Fig. 4.2. Equation (4.1.8) is a material form of the energy equation.

The rate of specific internal energy can consequently be written as either

of

u̇ =
1
ρ
σ : D − 1

ρ
∇ · q + r =

1
ρ0

P · · Ḟ − 1
ρ0

∇0 · q0 + r. (4.1.10)

The stress dependent term,
1
ρ
σ : D =

1
ρ0

P · · Ḟ =
1
ρ0

T(n) : Ė(n) (4.1.11)

� ��

�
�

� �

�
���

�

�

� ��
�

�������	
���������

�

�
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is the contribution to the change of internal energy due to the rate of me-

chanical work, while the remaining terms in Eq. (4.1.10) represent the rate

of heat input per unit mass. The stress T(n) is conjugate to strain E(n) in

the spirit of Eq. (4.1.11), as discussed in Section 3.6.

4.2. Clausius–Duhem Inequality

The first law of thermodynamics is a statement of the energy balance, which

applies regardless of the direction in which the energy conversion between

work and heat is assumed to occur. The second law of thermodynamics

imposes restrictions on possible directions of thermodynamic processes. A

state function, called the entropy of the system, is introduced as a measure

of microstructural disorder of the system. The entropy can change by inter-

action of the system with its surroundings through the heat transfer, and by

irreversible changes that take place inside the system due to local rearrange-

ments of microstructure caused by deformation. The entropy input rate due

to heat transfer is (Truesdell and Noll, 1965; Malvern, 1969)

−
∫
S

q · n
θ

dS +
∫
V

ρ
r

θ
dV =

∫
V

[
−1
ρ

∇ ·
(q
θ

)
+

r

θ

]
ρdV, (4.2.1)

where θ > 0 is the absolute temperature. The temperature is defined as a

measure of the coldness or hotness. It appears in the denominators of the

above integrands, because a given heat input causes more disorder (higher

entropy change) at lower than at higher temperature (state at lower temper-

ature being less disordered and thus more sensitive to the heat input).

An explicit expression for the rate of entropy change caused by irre-

versible microstructural changes inside the system depends on the type of

deformation and constitution of the material. Denote this part of the rate

of entropy change (per unit mass) by γ. The total rate of entropy change of

the whole system is then∫
V

ρ
dη
dt

dV =
∫
V

[
−1
ρ

∇ ·
(q
θ

)
+

r

θ
+ γ

]
ρdV. (4.2.2)

Locally, at each point of a deformed body, the rate of specific entropy is

η̇ = −1
ρ

∇ ·
(q
θ

)
+

r

θ
+ γ. (4.2.3)

Since irreversible microstructural changes increase a disorder, they always

contribute to an increase of the entropy. Thus, γ is always positive, and is
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referred to as the entropy production rate. The inequality

γ > 0 (4.2.4)

is a statement of the second law of thermodynamics for irreversible processes.

Therefore, from Eq. (4.2.3) we can write

η̇ ≥ − 1
ρ

∇ ·
(q
θ

)
+

r

θ
. (4.2.5)

The equality sign applies only to reversible processes (γ = 0). Inequality

(4.2.5) is known as the Clausius–Duhem inequality (e.g., Müller, 1985; Er-

icksen, 1991).

Since

∇ ·
(q
θ

)
=

1
θ

∇ · q − 1
θ2

q · ∇θ, (4.2.6)

the inequality (4.2.5) can be rewritten as

η̇ ≥ − 1
ρ θ

∇ · q +
r

θ
+

1
ρ θ2

q · ∇θ. (4.2.7)

The heat spontaneously flows in the direction from the hot to cold part of

the body, so that q · ∇θ ≤ 0. Since θ > 0, it follows that
1

ρ θ2
q · ∇θ ≤ 0. (4.2.8)

Thus, a stronger (more restrictive) form of the Clausius–Duhem inequality

is

η̇ ≥ − 1
ρ θ

∇ · q +
r

θ
. (4.2.9)

Inequality (4.2.9) can alternatively be adopted if the temperature gradients

are negligible or equal to zero.

The material forms of the inequalities (4.2.8) and (4.2.9) are

η̇ ≥ − 1
ρ0 θ

∇0 · q0 +
r

θ
, (4.2.10)

and
1

ρ0 θ2
q0 · ∇0θ ≤ 0. (4.2.11)

4.3. Reversible Thermodynamics

If deformation is such that there are no permanent microstructural rear-

rangements within the material (e.g., thermoelastic deformation), the en-

tropy production rate γ is equal to zero. The rate of entropy change is due
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to heat transfer only, and

θη̇ = − 1
ρ

∇ · q + r. (4.3.1)

The energy equation (4.1.10) in this case becomes

u̇ =
1
ρ0

T(n) : Ė(n) + θ η̇. (4.3.2)

Equation (4.3.2) shows that the internal energy is a thermodynamic po-

tential for determining T(n) and θ, when E(n) and η are considered to be

independent state variables. Indeed, by partial differentiation of

u = u
(
E(n), η

)
, (4.3.3)

we have

u̇ =
∂u

∂E(n)
: Ė(n) +

∂u

∂η
η̇, (4.3.4)

and comparison with Eq. (4.3.2) gives

T(n) = ρ0 ∂u

∂E(n)
, θ =

∂u

∂η
. (4.3.5)

4.3.1. Thermodynamic Potentials

The Helmholtz free energy is related to internal energy by

ψ = u− θ η. (4.3.6)

By differentiating and incorporating Eq. (4.3.2), the rate of the Helmholtz

free energy is

ψ̇ =
1
ρ0

T(n) : Ė(n) − η θ̇. (4.3.7)

This indicates that ψ is the portion of internal energy u available for doing

work at constant temperature (θ̇ = 0). The Helmholtz free energy is a

thermodynamic potential for T(n) and η, when E(n) and θ are considered to

be independent state variables. Indeed, by partial differentiation of

ψ = ψ
(
E(n), θ

)
, (4.3.8)

we have

ψ̇ =
∂ψ

∂E(n)
: Ė(n) +

∂ψ

∂θ
θ̇, (4.3.9)

and comparison with Eq. (4.3.7) gives

T(n) = ρ0 ∂ψ

∂E(n)
, η = −∂ψ

∂θ
. (4.3.10)
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The Gibbs energy can be defined as a Legendre transform of the Helmholtz

free energy, i.e.,

Φ(n)

(
T(n), θ

)
=

1
ρ0

T(n) : E(n) − ψ
(
E(n), θ

)
. (4.3.11)

Note that Φ(n) is not measure invariant, although ψ is, because for a given

geometry change, the quantity T(n) : E(n) in general depends on the selected

strain and stress measures E(n) and T(n). Recall that these are conjugate

in the sense that T(n) : dE(n) is measure invariant.

By differentiating Eq. (4.3.11) and using (4.3.7), it follows that

φ̇(n) =
∂Φ(n)

∂T(n)
: Ṫ(n) +

∂Φ(n)

∂θ
θ̇ =

1
ρ0

E(n) : Ṫ(n) + η θ̇, (4.3.12)

so that

E(n) = ρ0 ∂Φ(n)

∂T(n)
, η =

∂Φ(n)

∂θ
. (4.3.13)

Finally, the enthalpy function is introduced by

h(n)

(
T(n), η

)
=

1
ρ0

T(n) : E(n) − u(n)

(
E(n), η

)
= Φ(n)

(
T(n), θ

) − θ η.

(4.3.14)

By either Eq. (4.3.2) or Eq. (4.3.12), the rate of enthalpy is

ḣ(n) =
∂h(n)

∂T(n)
: Ṫ(n) +

∂h(n)

∂η
η̇ =

1
ρ0

E(n) : Ṫ(n) − θ η̇. (4.3.15)

This demonstrates that the enthalpy is a portion of the internal energy that

can be released as heat when stress T(n) is held constant. Furthermore, Eq.

(4.3.15) yields

E(n) = ρ0 ∂h(n)

∂T(n)
, θ = −∂h(n)

∂η
. (4.3.16)

The fourth-order tensors

Λ(n) =
∂T(n)

∂E(n)
=

∂2
(
ρ0 ψ

)
∂E(n) ⊗ ∂E(n)

, (4.3.17)

M(n) =
∂E(n)

∂T(n)
=

∂2
(
ρ0 Φ(n)

)
∂T(n) ⊗ ∂T(n)

(4.3.18)

are the isothermal elastic stiffness and compliance tensors corresponding to

the selected pair
(
E(n), T(n)

)
of conjugate stress and strain tensors. The

two fourth-order tensors are the inverse of each other
(
M(n) = Λ−1

(n)

)
, since

∂T(n)

∂E(n)
:
∂E(n)

∂T(n)
= III 0. (4.3.19)
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Being defined as the Hessians of ρ0 ψ and ρ0 Φ(n) with respect to E(n) and

T(n), respectively, the tensors Λ(n) and M(n) possess reciprocal symmetries

Λ(n)
ijkl = Λ(n)

klij , M
(n)
ijkl = M

(n)
klij . (4.3.20)

The adiabatic elastic stiffness and compliance tensors are defined as the

Hessians of ρ0u and ρ0h(n) with respect to E(n) and T(n), respectively. The

relationship with their isothermal counterparts has been discussed by Trues-

dell and Toupin (1960), McLellan (1980), and Hill (1981).

4.3.2. Specific and Latent Heats

Specific heats at constant strain and stress are defined by

CEn
= θ

∂η̄

∂θ
, CTn

= θ
∂η̂

∂θ
, (4.3.21)

where

η = η̄
(
E(n), θ

)
= η̂

(
T(n), θ

)
. (4.3.22)

The latent heats of change of strain and stress are the second-order tensors

(e.g., Callen, 1960; Fung, 1965; Kestin, 1979)

�En
= θ

∂η̄

∂E(n)
, �Tn

= θ
∂η̂

∂T(n)
. (4.3.23)

In view of the reciprocal relations

ρ0 ∂η̄

∂E(n)
= −∂T(n)

∂θ
, ρ0 ∂η̂

∂T(n)
= −∂E(n)

∂θ
, (4.3.24)

the latent heats can also be expressed as

�En
= − 1

ρ0
θ
∂T(n)

∂θ
, �Tn

=
1
ρ0

θ
∂E(n)

∂θ
. (4.3.25)

The physical interpretation of the specific and latent heats follows from

dη =
∂η̄

∂E(n)
: dE(n) +

∂η̄

∂θ
dθ =

1
θ

(
�En

: dE(n) + CEn
dθ

)
, (4.3.26)

dη =
∂η̂

∂T(n)
: dT(n) +

∂η̄

∂θ
dθ =

1
θ

(
�Tn : dT(n) + CTndθ

)
. (4.3.27)

Thus, the specific heat at constant strain CEn
(often denoted by CV ) is the

heat amount (θ dη) required to increase the temperature of a unit mass for

the amount dθ at constant strain (dE(n) = 0). Similar interpretation holds

for CTn
(often denoted by CP ). The latent heat �En

is the second-order

tensor whose ij component represents the heat amount associated with a
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change of the corresponding strain component by dE(n)
ij , at fixed tempera-

ture and fixed values of the remaining five strain components. Analogous

interpretation applies to �Tn
.

By partial differentiation, we have from Eq. (4.3.22)

∂η̂

∂θ
=

∂η̄

∂θ
+

∂η̄

∂E(n)
:
∂E(n)

∂θ
. (4.3.28)

The multiplication by θ and incorporation of Eqs. (4.3.21)–(4.3.25) gives

the relationship

CTn
− CEn

=
ρ0

θ
�Tn

: �En
. (4.3.29)

Furthermore, since
∂η̂

∂T(n)
=

∂η̄

∂E(n)
: M(n), (4.3.30)

it follows that

�Tn = M(n) : �En . (4.3.31)

When this is inserted into Eq. (4.3.29), we obtain

CTn
− CEn

=
ρ0

θ
M(n) : (�En

⊗ �En
). (4.3.32)

For positive definite elastic compliance M(n), it follows that

CTn
> CEn

. (4.3.33)

The change in temperature caused by adiabatic straining dE(n), or adi-

abatic stressing dT(n), is obtained by setting dη = 0 in Eqs. (4.3.26) and

(4.3.27). This gives

dθ = − 1
CEn

�En
: dE(n), dθ = − 1

CTn

�Tn
: dT(n). (4.3.34)

4.4. Irreversible Thermodynamics

For irreversible thermodynamic processes (e.g., processes involving plastic

deformation) we shall adopt a thermodynamics with internal state variables

(Coleman and Gurtin, 1967; Shapery, 1968; Kestin and Rice, 1970; Rice,

1971,1975). A set of internal (structural) variables is introduced to describe,

in some average sense, the essential features of microstructural changes that

occurred at the considered place during the deformation process. These vari-

ables are denoted by ξj (j = 1, 2, . . . , n). For simplicity, they are assumed

to be scalars (extension to include tensorial internal variables is straightfor-

ward). Inelastic deformation is considered to be a sequence of constrained
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equilibrium states. These states are created by a conceptual constraining of

internal variables at their current values through imposed thermodynamic

forces fj . The thermodynamic forces or constraints are defined such that

the power dissipation (temperature times the entropy production rate) due

to structural rearrangements can be expressed as

θ γ = fj ξ̇j . (4.4.1)

The rates of internal variables ξ̇j are called the fluxes, and the forces fj are

their affinities.

If various equilibrium states are considered, each corresponding to the

same set of values of internal variables ξj , the neighboring states are related

by the usual laws of reversible thermodynamics (thermoelasticity), such as

Eqs. (4.3.1) and (4.3.2). If neighboring constrained equilibrium states cor-

respond to different values of internal variables, then

θ η̇ = −1
ρ

∇ · q + r + fj ξ̇j . (4.4.2)

Combining this with the energy equation (4.1.10) gives

u̇ =
1
ρ0

T(n) : Ė(n) + θ η̇ − fj ξ̇j . (4.4.3)

Thus, the internal energy is a thermodynamic potential for determining T(n),

θ and fj , when E(n), η and ξj are considered to be independent state vari-

ables. Indeed, after partial differentiation of

u = u
(
E(n), η, ξ

)
, (4.4.4)

the comparison with Eq. (4.4.3) gives

T(n) = ρ0 ∂u

∂E(n)
, θ =

∂u

∂η
, fj =

∂u

∂ξj
. (4.4.5)

The internal variables are collectively denoted by ξ. The Helmholtz free

energy

ψ = ψ
(
E(n), θ, ξ

)
(4.4.6)

is a thermodynamic potential for determining T(n), η and fj , such that

T(n) = ρ0 ∂ψ

∂E(n)
, η = −∂ψ

∂θ
, fj = − ∂ψ

∂ξj
. (4.4.7)

If the Gibbs energy

φ(n) = φ(n)

(
T(n), θ, ξ

)
(4.4.8)
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is used, we have

E(n) = ρ0 ∂Φ(n)

∂T(n)
, η =

∂Φ(n)

∂θ
, fj =

∂Φ(n)

∂ξj
. (4.4.9)

Note that in Eq. (4.4.7),

fj = f̄j
(
E(n), θ, ξ

)
, (4.4.10)

while in Eq. (4.4.9),

fj = f̂j
(
T(n), θ, ξ

)
, (4.4.11)

indicating different functional dependences of the respective arguments. Fi-

nally, with the enthalpy

h(n) = h(n)

(
T(n), η, ξ

)
(4.4.12)

used as a thermodynamic potential, one has

E(n) = ρ0 ∂h(n)

∂T(n)
, θ = −∂h(n)

∂η
, fj =

∂h(n)

∂ξj
. (4.4.13)

By taking appropriate cross-derivatives of the previous expressions, we

obtain the Maxwell relations. For example,

∂E(n)

(
T(n), θ, ξ

)
∂θ

= ρ0 ∂η̂
(
T(n), θ, ξ

)
∂T(n)

,

∂T(n)

(
E(n), θ, ξ

)
∂θ

= −ρ0 ∂η̄
(
E(n), θ, ξ

)
∂E(n)

,

(4.4.14)

and

∂E(n)

(
T(n), θ, ξ

)
∂ξj

= ρ0 ∂f̂j
(
T(n), θ, ξ

)
∂T(n)

,

∂T(n)

(
E(n), θ, ξ

)
∂ξj

= −ρ0 ∂f̄j
(
E(n), θ, ξ

)
∂E(n)

.

(4.4.15)

4.4.1. Evolution of Internal Variables

The selection of appropriate internal variables is a difficult task, which de-

pends on the material constitution and the type of deformation. Once in-

ternal variables are selected, it is necessary to construct evolution equations

that govern their change during the deformation. For example, if the fluxes

are assumed to be linearly dependent on the affinities, we may write

ξ̇j = Λij fj . (4.4.16)
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The coefficients obey the Onsager reciprocity relations if Λij = Λji (e.g.,

Ziegler, 1983; Germain, Nguyen, and Suquet, 1983).

For some materials and the range of deformation, it may be appropri-

ate to assume that at a given temperature θ and the pattern of internal

rearrangements ξ, each flux depends only on its own affinity, i.e.,

ξ̇j = function (fj , θ, ξ) . (4.4.17)

The flux dependence on the stress T(n) comes only through the fact that

fj = f̂j
(
T(n), θ, ξ

)
. This type of evolution equation is often adopted in

metal plasticity, where it is assumed that the crystallographic slip on each

slip system is governed by the resolved shear stress on that system (or, at

the dislocation level, the motion of each dislocation segment is governed by

the Peach–Koehler force on that segment; Rice, 1971).

4.4.2. Gibbs Conditions of Thermodynamic Equilibrium

The system is in a thermodynamic equilibrium if its state variables do not

spontaneously change with time. Thus, among all neighboring states with

the same internal energy (in the sense of variational calculus), the equilib-

rium state is one with the highest entropy. This follows from the laws of

thermodynamics. If no external work was done on the system nor heat was

transferred to the system, so that its internal energy is constant, any spon-

taneous change from equilibrium would be accompanied by an increase in

the entropy (by the second law). Since there is no spontaneous change from

the equilibrium, among all neighboring states with the same internal energy,

entropy is at maximum in the state of thermodynamic equilibrium (Fung,

1965).

Alternatively, among all neighboring states with the same entropy, the

equilibrium state is one with the lowest internal energy. This again follows

from the laws of thermodynamics. With no external work done, the system

can change its internal energy only by the heat exchange, and from Eq.

(4.4.3) and the second law, du = −fj dξj < 0, where dξj designates a virtual

change of ξj between the two considered neighboring states at the same

entropy. Thus, any disturbance from the thermodynamic equilibrium by a

spontaneous heat transfer would decrease the internal energy. Since there is
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no spontaneous heat exchange from the equilibrium, among all neighboring

states with the same entropy, internal energy is at minimum in the state

of thermodynamic equilibrium. It also follows that among all neighboring

states with the same temperature, the Helmholtz free energy ψ = u− θ η is

at minimum in the state of thermodynamic equilibrium.

4.5. Internal Rearrangements without Explicit State Variables

For some inelastic deformation processes it may be more appropriate to as-

sume that there is a set of variables ξj that describe internal rearrangements

of the material, but that these are not state variables (in the sense that ther-

modynamic potentials are not point functions of ξj), but instead depend on

their path history (Rice, 1971). Denoting symbolically by H the pattern of

internal rearrangements, i.e., the set of internal variables ξj including the

path history by which they were achieved, the Helmholtz free energy can be

written as

ψ = ψ
(
E(n), θ, H

)
. (4.5.1)

At any given state of deformation, an infinitesimal change of H is assumed to

be fully described by a set of scalar infinitesimals dξj , such that the change

in ψ due to dE(n), dθ and dξj is, to first order,

dψ =
∂ψ

∂E(n)
: dE(n) +

∂ψ

∂θ
dθ − fj dξj . (4.5.2)

It is not necessary that any variable ξj exists such that dξj represents an

infinitesimal change of ξj (the use of an italic d in dξj is meant to indicate

this). The stress response and the entropy are

T(n) = ρ0 ∂ψ

∂E(n)
, η = −∂ψ

∂θ
, (4.5.3)

evaluated from ψ at fixed values of H. The thermodynamic forces fj are

associated with infinitesimals dξj , so that irreversible (inelastic) change of

the free energy, due to change in H alone, is given by

diψ = ψ
(
E(n), θ, H + dH) − ψ

(
E(n), θ, H

)
= −fj dξj = −f̄j

(
E(n), θ, H

)
dξj .

(4.5.4)

Higher-order terms, such as (1/2)dfj dξj , associated with an infinitesimal

change of fj during the variations dξj , are neglected.
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From Eqs. (4.5.3) and (4.5.4), the inelastic part of the stress increment

can be defined by (Hill and Rice, 1973)

diT(n) = T(n)

(
E(n), θ, H + dH) − T(n)

(
E(n), θ, H

)
= ρ0 ∂

∂E(n)

(
diψ

)
= −ρ0 ∂f̄j

(
E(n), θ, H

)
∂E(n)

dξj .
(4.5.5)

The gradient of diψ with respect to E(n) is evaluated at fixed values of θ,

H and dH. The entropy change due to infinitesimal change of H alone is

determined from

d̄iη = − ∂

∂θ

(
diψ

)
=

∂f̄j
(
E(n), θ, H

)
∂θ

dξj . (4.5.6)

Considering the functions T(n)

(
E(n), θ, H

)
and η̄

(
E(n), θ, H

)
, we can also

write

diT(n) = dT(n) −
∂T(n)

∂E(n)
: dE(n) −

∂T(n)

∂θ
dθ, (4.5.7)

d̄iη = dη − ∂η̄

∂E(n)
: dE(n) − ∂η̄

∂θ
dθ. (4.5.8)

Dually, the change of Gibbs energy due to dT(n), dθ and dξj is

dΦ(n) =
∂Φ(n)

∂T(n)
: dT(n) +

∂Φ(n)

∂θ
dθ + fj dξj . (4.5.9)

The strain response and the entropy are

E(n) = ρ0 ∂Φ(n)

∂T(n)
, η =

∂Φ(n)

∂θ
, (4.5.10)

evaluated from Φ(n) at fixed values of H. The inelastic change of Gibbs

energy, due to change in H alone, is

diΦ(n) = Φ(n)

(
T(n), θ, H + dH) − Φ(n)

(
T(n), θ, H

)
= fj dξj = f̂j

(
T(n), θ,H

)
dξj .

(4.5.11)

Equations (4.5.4) and (4.5.11) show that

diψ + diΦ(n) = 0, (4.5.12)

within the order of accuracy used in Eqs. (4.5.4) and (4.5.11). The inelastic

part of strain increment is

diE(n) = E(n)

(
T(n), θ, H + dH) − E(n)

(
T(n), θ, H

)
= ρ0 ∂

∂T(n)

(
diΦ(n)

)
= ρ0 ∂f̂j

(
T(n), θ, H

)
∂T(n)

dξj .
(4.5.13)
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The change of entropy associated with dH alone is

d̂iη =
∂

∂θ

(
diΦ(n)

)
=

∂f̂j
(
T(n), θ,H

)
∂θ

dξj , (4.5.14)

which is different from the entropy change in Eq. (4.5.6). The difference

is discussed in the next section. If the functions E(n)

(
T(n), θ, H

)
and

η̂
(
E(n), θ,H

)
are considered, we can also write

diE(n) = dE(n) −
∂E(n)

∂T(n)
: dT(n) −

∂E(n)

∂θ
dθ, (4.5.15)

d̂iη = dη − ∂η̂

∂T(n)
: dT(n) − ∂η̂

∂θ
dθ. (4.5.16)

4.6. Relationship between Inelastic Increments

The relationship between the inelastic increments of stress diT(n) and strain

diE(n) is easily established from Eqs. (4.5.5) and (4.5.13). Since

diT(n) = −ρ0 ∂f̄j
(
E(n), θ, H

)
∂E(n)

dξj = −ρ0

[
∂f̂j

(
T(n), θ, H

)
∂T(n)

:
∂T(n)

∂E(n)

]
dξj ,

(4.6.1)

we have

diT(n) = −∂T(n)

∂E(n)
: diE(n). (4.6.2)

Therefore,

diT(n) = −Λ(n) : diE(n), diE(n) = −M(n) : diT(n), (4.6.3)

where

Λ(n) =
∂T(n)

∂E(n)
= ρ0 ∂2ψ

(
E(n), θ, H

)
∂E(n) ⊗ ∂E(n)

, (4.6.4)

M(n) =
∂E(n)

∂T(n)
= ρ0 ∂2Φ(n)

(
T(n), θ, H

)
∂T(n) ⊗ ∂T(n)

(4.6.5)

are the instantaneous elastic stiffness and compliance tensors of the material

at a given state of deformation and internal structure.

An alternative proof of Eq. (4.6.3) is instructive. In view of the recipro-

cal relations such as given by Eqs. (4.4.14), we can rewrite Eqs. (4.5.7) and

(4.5.15) as

diT(n) = dT(n) −
(
Λ(n) : dE(n) − ρ0 ∂η̄

∂E(n)
dθ

)
, (4.6.6)
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Figure 4.3. Schematic representation of an infinitesimal
cycle of strain and temperature that involves a change of
the pattern of internal rearrangements due to plastic defor-
mation along the segment AB.

diE(n) = dE(n) −
(
M(n) : dT(n) + ρ0 ∂η̂

∂T(n)
dθ

)
. (4.6.7)

Taking the inner product of diE(n) in Eq. (4.6.7) with Λ(n), and having in

mind that

Λ(n) :
∂η̂

∂T(n)
=

∂η̄

∂E(n)
, (4.6.8)

yields Eq. (4.6.3).

The relationship between d̂iη and d̄iη can also be established. Since by

partial differentiation

∂f̂j
∂θ

=
∂f̄j
∂θ

+
∂f̄j

∂E(n)
:
∂E(n)

∂θ
,

∂f̄j
∂θ

=
∂f̂j
∂θ

+
∂f̂j

∂T(n)
:
∂T(n)

∂θ
, (4.6.9)

and in view of reciprocal relations, Eqs. (4.5.6) and (4.5.14) give

d̂iη = d̄iη +
∂η̄

∂E(n)
diE(n), d̄iη = d̂iη +

∂η̂

∂T(n)
diT(n). (4.6.10)

Alternatively, one can use Eqs. (4.5.8) and (4.5.16), and the connections

∂η̂

∂θ
=

∂η̄

∂θ
+

∂η̄

∂E(n)
:
∂E(n)

∂θ
,

∂η̄

∂θ
=

∂η̂

∂θ
+

∂η̂

∂T(n)
:
∂T(n)

∂θ
. (4.6.11)

In a rate-independent elastoplastic material, the only way to vary H but

not E(n) and θ is to perform a cycle of E(n) and θ that includes dH. Con-

sider a cycle that starts at the state A
(
E(n), θ, H

)
, goes through the state

B
(
E(n) + dE(n), θ + dθ,H + dH)

, and ends at the state C
(
E(n), θ,H + dH)

.
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Figure 4.4. Schematic representation of an infinitesimal
cycle of stress and temperature that involves a change of
the pattern of internal rearrangements due to plastic defor-
mation along the segment AB.

The cycle is shown in Fig. 4.3. If the stress and entropy at A were T(n) and

η, in the state B they are T(n) + dT(n) and η + dη. The change of entropy

during the loading from A to B caused by dH is such that

θ(dη)i = fj dξj , (4.6.12)

by Eq. (4.4.1) for the entropy production rate. After strain and temperature

are returned to their values at the beginning of the cycle by elastic unloading,

the state C is reached. The stress there is T(n) + diT(n), and the entropy

is η + d̄iη. The stress difference diT(n) is the stress decrement after the

cycle of strain and temperature that includes dH. The entropy difference

d̄iη is different from (dη)i in Eq. (4.6.12), because the heat input during

the unloading from B to C, required to return the temperature to its value

before the cycle, is in general different than the heat input during the loading

path from A to B.

Alternatively, consider a stress/temperature cycle A→B→D (Fig. 4.4).

In the state D the stress and temperature are returned to their values be-

fore the cycle, so that A
(
T(n), θ,H

)
, B

(
T(n) + dT(n), θ + dθ,H + dH)

, and

D
(
T(n), θ,H + dH)

. The strain and entropy in the state A are E(n) and η.

In the state B they are E(n) + dE(n) and η + dη. The entropy change from

A to B caused by dH is as in Eq. (4.6.12). After stress and temperature

are returned to their values before the cycle by elastic unloading, the state
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D is reached, where the strain is E(n) + diE(n), and the entropy η + d̂iη.

The strain difference diE(n) is the strain increment after the cycle of stress

and temperature that includes dH. The entropy difference d̂iη is different

from (dη)i, because the heat input along the unloading path from B to D is

in general different than along the loading path from A to B. The entropy

differences d̂iη and d̄iη are also different because there is a heat exchange

along the unloading portion of the path between D and C, which makes the

entropies in the states C and D in general different.
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CHAPTER 5

FINITE STRAIN ELASTICITY

5.1. Green-Elasticity

Elastic deformation does not cause irreversible rearrangement of internal

structure, and the corresponding Helmholtz free energy is a function of stress

and temperature only. Restricting consideration to isothermal elastic defor-

mation (θ̇ = 0), Eqs. (4.3.7) and (4.3.9) give

ψ̇ =
∂ψ

∂E(n)
: Ė(n) =

1
ρ0

T(n) : Ė(n), (5.1.1)

i.e.,

T(n) =
∂Ψ

∂E(n)
, Ψ = ρ0 ψ

(
E(n)

)
. (5.1.2)

Alternatively, Eq. (5.1.2) can be deduced by adopting an experimentally

observed property that there is no net work left in a body upon any closed

cycle of elastic strain, i.e., ∮
T(n) : dE(n) = 0. (5.1.3)

This implies that

T(n) : dE(n) = dΨ (5.1.4)

is a total differential, which leads to Eq. (5.1.2). The function Ψ = Ψ
(
E(n)

)
is the strain energy function per unit initial volume. It represents the work

done to isothermally deform a unit of initial volume to the state of strain

E(n). The explicit representation of the function Ψ
(
E(n)

)
depends on the

selected strain measure E(n) and the material properties.

Since the material and spatial strain tensors (see Section 2.3) are related

by

E(n) = ÊEE(n) = RT · EEE(n) · R, (5.1.5)

the strain energy per unit mass can be written as

ψ = ψ
(
E(n)

)
= ψ

(
ÊEE(n)

)
. (5.1.6)
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It can be easily verified that

∂ψ

∂EEE(n)
= R · ∂ψ

∂E(n)
· RT ,

˙̂EEE(n) = RT ·
•
EEE(n) · R, (5.1.7)

and the rate of ψ becomes

ψ̇ =
∂ψ

∂E(n)
: Ė(n) =

∂ψ

∂EEE(n)
:
•
EEE(n). (5.1.8)

The stress tensor TTT (n) conjugate to spatial strain tensor EEE(n) is defined in

Section 3.6 by

T(n) : Ė(n) = TTT (n) :
•
EEE(n), TTT (n) = R · T(n) · RT . (5.1.9)

Consequently, in addition to (5.1.2), from Eq. (5.1.7) we deduce that

TTT (n) =
∂Ψ

∂EEE(n)
, Ψ = ρ0 ψ

(
ÊEE(n)

)
. (5.1.10)

In view of the expressions for the conjugate stress and strain tensors

corresponding to n = ±1, given in Section 3.6, the following expressions for

the Kirchhoff stress τ = (detF)σ are obtained from Eqs. (5.1.2) and (5.1.10)

τ = F · ∂Ψ
∂E(1)

· FT = F−T · ∂Ψ
∂E(−1)

· F−1, (5.1.11)

τ = V · ∂Ψ
∂EEE(1)

· V = V−1 · ∂Ψ
∂EEE(−1)

· V−1. (5.1.12)

If the conjugate pair associated with n = 1/2 is used, from Eq. (3.6.3)

and Eq. (5.1.2) there follows

τ̂ =
1
2

(
U · ∂Ψ

∂E(1/2)
+

∂Ψ
∂E(1/2)

· U
)
− 1

2

(
U · K̂ − K̂ · U

)
. (5.1.13)

Here, τ̂ = RT · τ · R and

K̂ =
1

J1J2 + J3

(
J1I0 − U−1

) · (U−1 · ∂Ψ
∂E(1/2)

− ∂Ψ
∂E(1/2)

· U−1

)
· (J1I0 − U−1

)
.

(5.1.14)

The invariants of U−1 are denoted by Ji. In the derivation, the results

from Subsection 1.12.1 were used to solve the matrix equation of the type

A · X + X · A = B.

If Eq. (3.6.25) is used, Eq. (5.1.10) gives

τ =
1
2

(
V · ∂Ψ

∂EEE(1/2)
+

∂Ψ
∂EEE(1/2)

· V
)
− 1

2
(V · K − K · V) , (5.1.15)
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where

K =
1

J1J2 + J3

(
J1I − V−1

) · (V−1 · ∂Ψ
∂EEE(1/2)

− ∂Ψ
∂EEE(1/2)

· V−1

)
· (J1I − V−1

)
.

(5.1.16)

The invariants of V−1 are equal to those of U−1 and are again denoted by

Ji. The transition from Eq. (5.1.13) to (5.1.15) is straightforward by noting

that

K̂ = RT · K · R. (5.1.17)

For elastically isotropic materials, considered in the next section, the tensors

V−1 and ∂Ψ/∂EEE(1/2) are coaxial, hence commutative, and K = 0. Similar

expressions are obtained when Eqs. (3.6.6) and (3.6.26) are used to specify

the conjugate stress and strain measures corresponding to n = −1/2.

With a properly specified strain energy function Ψ
(
E(n)

)
for a given

material, Eqs. (5.1.11) and (5.1.12), or (5.1.13) and (5.1.15), define the

stress response at any state of finite elastic deformation. Since stress is

derived from the strain energy function, the equations are referred to as

the constitutive equations of hyperelasticity or Green-elasticity (Doyle and

Ericksen, 1956; Truesdell and Noll, 1965).

The nominal stress is

P =
∂Ψ
∂F

, (5.1.18)

which follows from

Ψ̇ = P · · Ḟ, (5.1.19)

and Ψ = Ψ(F). Since Ψ is unaffected by rotation of the deformed configu-

ration,

Ψ(F) = Ψ(Q · F). (5.1.20)

By choosing Q = RT , it follows that Ψ depends on F only through U, or

C = U2, i.e.,

Ψ = Ψ(C), C = FT · F. (5.1.21)

The functional dependences of Ψ on different tensor arguments such as F,

U or C are, of course, different.
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5.2. Cauchy-Elasticity

Constitutive equations of finite elasticity can be derived without assuming

the existence of the strain energy function. Suppose that at any state of

elastic deformation, the stress is a single-valued function of strain, regardless

of the history or deformation path along which the state has been reached.

Since no strain energy is assumed to exist, the work done by the stress

could in general be different for different deformation paths. This type of

elasticity is known as Cauchy-elasticity, although experimental evidence does

not indicate existence of any Cauchy-elastic material that is also not Green-

elastic. In any case, we write

T(n) = f
(
E(n)

)
, (5.2.1)

where f is a second-order tensor function, whose representation depends on

the selected strain measure E(n) (relative to an undeformed configuration

and its orientation), and on elastic properties of the material. In terms of

the spatial stress and strain measures, Eq. (5.2.1) can be rewritten as

T̂TT (n) = f(ÊEE(n)), T̂TT (n) = RT · TTT (n) · R. (5.2.2)

The rotated Kirchhoff stress can be expressed from these equations by using

any of the conjugate stress and strain measures. For example,

τ̂ = g
(
E(1)

)
,

g
(
E(1)

)
=

(
I0 + 2E(1)

)1/2 · f (
E(1)

) · (I0 + 2E(1)

)1/2
,

(5.2.3)

or

τ̂ = g
(
E(−1)

)
,

g
(
E(−1)

)
=

(
I0 − 2E(−1)

)1/2 · f (
E(−1)

) · (I0 − 2E(−1)

)1/2
.

(5.2.4)

Note that (detF) can be cast in terms of the invariants of E(n), since

(detF)2n = 1 + 2nIE − 4n2IIE + 8n3IIIE . (5.2.5)

Thus, Eqs. (5.2.3) and (5.2.4) also define σ̂ = RT · σ · R in terms of E(1)

and E(−1).

All constitutive equations given in this section are objective under rigid-

body rotation of the deformed configuration. The material tensors are un-

affected by the transformation F∗ = Q · F, since E∗
(n) = E(n) and T∗

(n) =

T(n). The spatial tensors transform according to EEE∗
(n) = Q · EEE(n) · QT and
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TTT ∗
(n) = Q · TTT (n) · QT , preserving the physical structure of the constitutive

equations such as Eq. (5.2.2).

5.3. Isotropic Green-Elasticity

If the strain energy does not depend along which material directions the

principal strains are applied, so that

Ψ
(
Q0 · E(n) · QT

0

)
= Ψ

(
E(n)

)
(5.3.1)

for any rotation tensor Q0, the material is elastically isotropic. A scalar

function which satisfies Eq. (5.3.1) is said to be an isotropic function of its

second-order tensor argument. Such a function can be expressed in terms of

the principal invariants of the strain tensor E(n), defined according to Eqs.

(1.3.3)–(1.3.5), i.e.,

Ψ = Ψ (IE , IIE , IIIE) . (5.3.2)

Since
∂IE
∂E(n)

= I0,
∂IIE
∂E(n)

= E(n) − IEI0,

∂IIIE
∂E(n)

= E2
(n) − IEE(n) − IIEI0,

(5.3.3)

Equation (5.1.2) yields, by partial differentiation,

T(n) = c0I0 + c1E(n) + c2E2
(n). (5.3.4)

The parameters are

c0 =
∂Ψ
∂IE

− IE
∂Ψ
∂IIE

− IIE
∂Ψ

∂IIIE
, c1 =

∂Ψ
∂IIE

− IE
∂Ψ

∂IIIE
,

c2 =
∂Ψ

∂IIIE
.

(5.3.5)

For example, if it is assumed that (Saint-Venant–Kirchhoff assumption)

Ψ =
1
2
(λ + 2μ)I2

E + 2μIIE , (5.3.6)

a generalized Hooke’s law for finite strain is obtained as

T(n) = λIEI0 + 2μE(n). (5.3.7)

The Lamé material constants λ and μ should be specified for each selected

strain measure E(n). If a cubic representation of Ψ is assumed (Murnaghan,
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1951), i.e.,

Ψ =
1
2

(λ + 2μ)I2
E + 2μIIE +

l + 2m
3

I3
E + 2mIEIIE + nIIIE , (5.3.8)

the stress response is

T(n) = [λIE + lI2
E + (2m− n)IIE ]I0

+ [2μ + (2m− n)IE ]E(n) + nE2
(n).

(5.3.9)

The constants l, m, and n are the Murnaghan’s constants.

By choosing Q0 = R, Eq. (5.3.1) gives

Ψ
(EEE(n)

)
= Ψ

(
E(n)

)
, (5.3.10)

so that Ψ is also an isotropic function of EEE(n). Since EEE(n) and E(n) = ÊEE(n)

share the same invariants, from Eqs. (5.1.10) and (5.3.10) it follows that

TTT (n) = c0I + c1EEE(n) + c2EEE2
(n). (5.3.11)

The parameters ci are defined by Eq. (5.3.5), with IE = IE , IIE = IIE ,

and IIIE = IIIE . Equation (5.3.11) shows that, for elastic deformation

of isotropic materials, the tensors TTT (n) and EEE(n) have principal directions

parallel. Likewise, T(n) and E(n) have parallel their principal directions.

The conjugate stress to logarithmic strain E(0) for an elastically isotropic

material is T(0) = τ̂. The corresponding constitutive structures are

τ̂ =
∂Ψ

∂E(0)
= c0I0 + c1E(0) + c2E2

(0),

τ =
∂Ψ
∂EEE(0)

= c0I + c1EEE(0) + c2EEE2
(0),

(5.3.12)

where ci are given by Eq. (5.3.5), in which the invariants of the logarithmic

strain are appropriately used. Recall that the invariants of EEE(0) = lnV are

equal to those of E(0) = lnU.

5.4. Further Expressions for Isotropic Green-Elasticity

Using Eq. (3.6.12) to express T(n) in terms of T(1/2), we have

T(n) = U1−2n · T(1/2) = U−2n · τ̂. (5.4.1)

Substituting this into Eq. (5.1.2), carrying in mind that U2n = I0 +2nE(n),

gives

τ̂ =
∂Ψ

∂E(n)
+ n

(
E(n) · ∂Ψ

∂E(n)
+

∂Ψ
∂E(n)

· E(n)

)
, (5.4.2)
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written in a symmetrized form. Equation (5.4.2) applies for either positive

or negative n. A dual representation, employing the spatial stress and strain

tensors, is

τ =
∂Ψ

∂EEE(n)
+ n

(
EEE(n) · ∂Ψ

∂EEE(n)
+

∂Ψ
∂EEE(n)

· EEE(n)

)
. (5.4.3)

Since Ψ is an isotropic function, it follows that all material strain tensors

E(n) are coaxial with τ̂, and all spatial strain tensors EEE(n) are coaxial with

τ.

When the strain energy Ψ is represented in terms of the strain invariants,

Eqs. (5.4.2) and (5.4.3) give, upon partial differentiation,

τ̂ = b0I0 + b1E(n) + b2E2
(n), (5.4.4)

τ = b0I + b1EEE(n) + b2EEE2
(n), (5.4.5)

with the parameters

b0 = c0 + 2nc2IIIE , b1 = c1 + 2n (c0 + c2IIE) ,

b2 = c2 + 2n (c1 + c2IE) .
(5.4.6)

More specifically, these are

b0 =
∂Ψ
∂IE

− IE
∂Ψ
∂IIE

− (IIE − 2nIIIE)
∂Ψ

∂IIIE
, (5.4.7)

b1 = 2n
∂Ψ
∂IE

+ (1 − 2nIE)
∂Ψ
∂IIE

− IE
∂Ψ

∂IIIE
, (5.4.8)

b2 = 2n
∂Ψ
∂IIE

+
∂Ψ

∂IIIE
. (5.4.9)

5.5. Constitutive Equations in Terms of B

The finite strain constitutive equations of isotropic elasticity are often ex-

pressed in terms of the left Cauchy–Green deformation tensor B = V2. Since

EEE(1) = (B − I)/2, from Eq. (5.4.3) it follows that

τ = B · ∂Ψ
∂B

+
∂Ψ
∂B

· B, (5.5.1)

written in a symmetrized form. Alternatively, this follows directly from

Ψ̇ =
∂Ψ
∂B

:
◦
B = τ : D, (5.5.2)
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and the connection
◦
B = B · D + D · B. (5.5.3)

The function Ψ(B) is an isotropic function of B. Introducing the strain

energy representation

Ψ = Ψ (IB , IIB , IIIB) , (5.5.4)

Equation (5.5.1) gives (Rivlin, 1960)

τ = 2
[(

IIIB
∂Ψ

∂IIIB

)
I +

(
∂Ψ
∂IB

− IB
∂Ψ
∂IIB

)
B +

(
∂Ψ
∂IIB

)
B2

]
. (5.5.5)

If B2 is eliminated by using the Cayley–Hamilton theorem, Eq. (5.5.5) can

be restructured as

τ = 2
[(

IIIB
∂Ψ

∂IIIB
+ IIB

∂Ψ
∂IIB

)
I +

(
∂Ψ
∂IB

)
B +

(
IIIB

∂Ψ
∂IIB

)
B−1

]
.

(5.5.6)

These are in accord with Eq. (5.4.5), which can be verified by inspection.

In the transition, the following relationships between the invariants of E(1)

or EEE(1), and B are noted

IE =
1
2

(IB − 3) , IIE =
1
4
IIB +

1
2
IB − 3

4
,

IIIE =
1
8

(IIIB + IIB + IB − 1) ,
(5.5.7)

IB =2IE + 3, IIB = 4IIE − 4IE − 3,

IIIB = 8IIIE − 4IIE + 2IE + 1.
(5.5.8)

The constitutive equation of isotropic elastic material in terms of the

nominal stress is

P = F−1 · τ = FT ·
(
∂Ψ
∂B

+ B−1 · ∂Ψ
∂B

· B
)
. (5.5.9)

By using the strain energy representation of Eq. (5.5.4), this becomes

P = 2FT ·
[(

∂Ψ
∂IB

− IB
∂Ψ
∂IIB

)
I +

(
∂Ψ
∂IIB

)
B +

(
IIIB

∂Ψ
∂IIIB

)
B−1

]
.

(5.5.10)

Different specific forms of the strain energy function were used in the

literature. For example, Ogden (1984) constructed a strain energy function

Ψ =
a

2
(IB − 3 − ln IIIB) + c

(
III

1/2
B − 1

)2

, (5.5.11)
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where a and c are the material parameters. Based on their theoretical anal-

ysis and experimental data Blatz and Ko (1962) proposed an expression for

the strain energy for compressible foamed elastomers. Other representations

can be found in Blatz, Sharda, and Tschoegl (1974), Morman (1986), Ciarlet

(1988), Beatty (1996), and Holzapfel (2000).

5.6. Constitutive Equations in Terms of Principal Stretches

The strain energy of an isotropic material can be often conveniently ex-

pressed in terms of the principal stretches λi (the eigenvalues of U and V,

which are invariant quantities), i.e.,

Ψ = Ψ(λ1, λ2, λ3). (5.6.1)

Suppose that all principal stretches are different, and that Ni and ni are the

principal directions of the right and left stretch tensors U and V, respec-

tively, so that

U =
3∑

i=1

λi Ni ⊗ Ni, E(n) =
3∑

i=1

1
2n

(
λ2n
i − 1

)
Ni ⊗ Ni, (5.6.2)

and

V =
3∑

i=1

λi ni ⊗ ni, F =
3∑

i=1

λi ni ⊗ Ni. (5.6.3)

For an isotropic elastic material, the principal directions of the strain tensor

E(n) are parallel to those of its conjugate stress tensor T(n), and we can

write

T(n) =
3∑

i=1

T
(n)
i Ni ⊗ Ni. (5.6.4)

The principal stresses are here

T
(n)
i =

∂Ψ

∂E
(n)
i

= λ1−2n
i

∂Ψ
∂λi

, (5.6.5)

with no sum on i. Recall that λ2n
i = 1 + 2nE(n)

i . For example, for n = 1 we

obtain the principal components of the symmetric Piola–Kirchhoff stress,

T
(1)
i =

∂Ψ

∂E
(1)
i

=
1
λi

∂Ψ
∂λi

. (5.6.6)
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The principal directions of the Kirchhoff stress τ of an isotropic elastic

material are parallel to those of V, so that

τ =
3∑

i=1

τi ni ⊗ ni. (5.6.7)

The corresponding principal components are

τi = λ2
iT

(1)
i = λi

∂Ψ
∂λi

. (5.6.8)

Finally, decomposing the nominal stress as

P =
3∑

i=1

Pi ni ⊗ Ni, (5.6.9)

we have

Pi = λiT
(1)
i =

∂Ψ
∂λi

. (5.6.10)

5.7. Incompressible Isotropic Elastic Materials

For an incompressible material the deformation is necessarily isochoric, so

that detF = 1. Only two invariants of E(n) are independent, since

IIIE = − 1
4n2

(IE − 2nIIE) . (5.7.1)

Thus, the strain energy can be expressed as

Ψ = Ψ (IE , IIE) , (5.7.2)

and we obtain

σ = (b0 − p)I + b1EEE(n) + b2EEE2
(n). (5.7.3)

Here, p is an arbitrary pressure, and bi are defined by Eqs. (5.4.7)–(5.4.9),

without terms proportional to ∂Ψ/∂IIIE . Alternatively, if Eqs. (5.5.5) and

(5.5.6) are specialized to incompressible materials, there follows

σ = −pI + 2
[(

∂Ψ
∂IB

− IB
∂Ψ
∂IIB

)
B +

(
∂Ψ
∂IIB

)
B2

]
, (5.7.4)

and

σ = −p0I + 2
[(

∂Ψ
∂IB

)
B +

(
∂Ψ
∂IIB

)
B−1

]
. (5.7.5)

In Eq. (5.7.5), all terms proportional to I are absorbed in p0.

Equation (5.7.4) can also be derived by viewing an incompressible ma-

terial as a material with internal constraint

IIIB − 1 = 0. (5.7.6)
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A Lagrangian multiplier −p/2 can then be introduced, such that

Ψ = Ψ (IB , IIB) − p

2
(IIIB − 1) , (5.7.7)

and Eq. (5.5.1) directly leads to Eq. (5.7.4).

For the Mooney–Rivlin material (rubber model; see Treloar, 1975), the

strain energy is

Ψ = aIE + bIIE =
a + b

2
(IB − 3) +

b

4
(IIB + 3) , (5.7.8)

and for the neo-Hookean material

Ψ = aIE =
a

2
(IB − 3) . (5.7.9)

The strain energy representation, suggested by Ogden (1972,1982),

Ψ =
N∑

n=1

antrE(n) =
N∑

n=1

an
αn

(λαn
1 + λαn

2 + λαn
3 − 3) (5.7.10)

may be used in some applications, where N is positive integer, but αn need

not be integers (the tensors E(n) are here defined by Eq. (2.3.1) with αn

replacing 2n; Hill, 1978). The material parameters are an and αn. In-

compressibility constraint is λ1λ2λ3 = 1. Other representations in terms of

principal stretches λi have also been explored (Valanis and Landel, 1967;

Rivlin and Sawyers, 1976; Anand, 1986; Arruda and Boyce, 1993).

5.8. Isotropic Cauchy-Elasticity

For isotropic elastic material the tensor function f in Eq. (5.2.1) is an

isotropic function of strain,

f
(
Q0 · E(n) · QT

0

)
= Q0 · f

(
E(n)

) · QT
0 , (5.8.1)

and, by the representation theorem from Section 1.11, the stress response

can be written as

T(n) = c0I0 + c1E(n) + c2E2
(n). (5.8.2)

The parameters ci are scalar functions of the invariants of E(n). Similarly,

from Eq. (5.2.2) it follows that

TTT (n) = c0I + c1EEE(n) + c2EEE2
(n). (5.8.3)

In view of the isotropic elasticity relationships

τ̂ = U2n · T(n), τ = V2n · TTT (n), (5.8.4)
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equations (5.8.2) and (5.8.3) can be rephrased as

τ̂ = b0I0 + b1E(n) + b2E2
(n), τ = b0I + b1EEE(n) + b2EEE2

(n), (5.8.5)

where bi are given by Eq. (5.4.6). The constitutive equations of Green-

elasticity are recovered if the strain energy function exists, so that the con-

stants ci in Eq. (5.4.6) are specified by Eq. (5.3.5).

Finally, it is noted that Eqs. (5.8.5) can be recast in terms of C = U2

and B = V2, with the results

τ̂ = a0I0 + a1C + a2C2, τ = a0I + a1B + a2B2. (5.8.6)

The scalar parameters ai depend on the invariants of C or B. The last

expression can also be deduced directly from T(1) = f
(
E(1)

)
by the repre-

sentation theorem for the isotropic function f , dependent on the Lagrangian

strain E(1) =
(
C − I0

)
/2. Furthermore, since (detF) = III

1/2
C , Eqs. (5.8.6)

define the stress tensors σ̂ and σ, as well (σ being the Cauchy stress). For

incompressible materials

σ = −p1I + b1EEE(n) + b2EEE2
(n) = −p2I + a1B + a2B2, (5.8.7)

where p1 and p2 are arbitrary pressures. Additional discussion can be found

in the books by Leigh (1968) and Malvern (1969).

5.9. Transversely Isotropic Materials

For an elastically isotropic material, elastic properties are equal in all direc-

tions. Any rotation of the undeformed reference configuration before the ap-

plication of a given stress has no effect on the subsequent stress-deformation

response. The material symmetry group is the full orthogonal group. If the

symmetry group of the material is less than the full orthogonal group, the

material is anisotropic (aelotropic). For the most general anisotropy, the

isotropy group consists only of identity transformation 1 and the central in-

version transformation 1̄. Any rotation of the reference configuration prior

to application of stress will change the elastic response of such a material.

The material is said to have a plane of elastic symmetry if the reference

configuration obtained from the undeformed configuration by reflection in

the plane of symmetry is indistinguishable from the undeformed configura-

tion (in the sense of elastic response).
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Transversely isotropic material has a single preferred direction (axis of

isotropy). Its symmetry group consists of arbitrary rotations about the axis

of isotropy, say m0, and rotations that carry m0 into −m0. Every plane

containing m0 is a plane of elastic symmetry, so that reflections in these

planes also belong to the symmetry group. The elastic strain energy function

can be consequently written as

Ψ = Ψ
(
IE , IIE , IIIE , E33, E

2
31 + E2

32

)
, (5.9.1)

provided that the coordinate axes are selected so that m0 is in the coor-

dinate direction e3. The arguments in Eq. (5.9.1) are invariant under the

transformations from the symmetry group of transverse isotropy. This can

be derived as follows. For transversely isotropic material, the strain energy

is a scalar function of the strain tensor E(n) and the unit vector m0,

Ψ = Ψ
(
E(n), m0

)
. (5.9.2)

The function Ψ is invariant under all orthogonal transformations of the ref-

erence configuration that carry both E(n) and m0, i.e.,

Ψ
(
Q0 · E(n) · QT

0 , Q0 · m0
)

= Ψ
(
E(n), m0

)
. (5.9.3)

Such a function Ψ is said to be an isotropic function of both E(n) and m0,

simultaneously. Physically, the rotated strain Q0 ·E(n) ·QT
0 , applied relative

to the rotated axis of isotropy Q0 · m0, gives the same strain energy as the

strain E(n) applied relative to the original axis of isotropy m0. Of course, Ψ

is not an isotropic function of the strain alone, i.e.,

Ψ
(
Q0 · E(n) · QT

0 , m
0
) �= Ψ

(
E(n), m0

)
(5.9.4)

in general, although the equality sign holds for those Q0 that belong to the

symmetry group of transverse isotropy.

Representation of isotropic scalar functions of second-order tensors and

vectors is well-known (e.g., Boehler, 1987). The function Ψ
(
E(n),m0

)
can

be expressed in terms of individual and joint invariants of E(n) and m0, i.e.,

Ψ = Ψ
(
IE , IIE , IIIE , m0 · E(n) · m0, m0 · E2

(n) · m0
)
. (5.9.5)

It is convenient to introduce the second-order tensor

M0 = m0 ⊗ m0. (5.9.6)
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This is an idempotent tensor, for which

M0 · M0 = M0, IM = 1, IIM = IIIM = 0. (5.9.7)

When applied to an arbitrary vector a0, the tensor M0 projects it on m0,

M0 · a0 = (m0 · a0)m0. (5.9.8)

The joint invariants of E(n) and m0 in Eq. (5.9.5) can thus be written as

K1 = m0 · E(n) · m0 = tr
(
M0 · E(n)

)
,

K2 = m0 · E2
(n) · m0 = tr

(
M0 · E2

(n)

)
,

(5.9.9)

and the strain energy becomes

Ψ = Ψ (IE , IIE , IIIE , K1, K2) . (5.9.10)

The stress response is accordingly

T(n) = c0I0 + c1E(n) + c2E2
(n) + c3M0 + c4

(
M0 · E(n) + E(n) · M0

)
.

(5.9.11)

The parameters c0, c1 and c3 are defined by Eqs. (5.3.5), and

c3 =
∂Ψ
∂K1

, c4 =
1
2

∂Ψ
∂K2

. (5.9.12)

If we choose Q0 = R (rotation tensor from the polar decomposition of

deformation gradient), from Eq. (5.9.3) it follows that

Ψ
(EEE(n), m

)
= Ψ

(
E(n), m0

)
, (5.9.13)

where

m = R · m0. (5.9.14)

Thus, Ψ is also an isotropic function of the spatial strain EEE(n) and the vector

m. A dual equation to Eq. (5.9.11), expressed relative to the deformed

configuration, is consequently

TTT (n) = c0I + c1EEE(n) + c2EEE2
(n) + c3M + c4

(
M · EEE(n) + EEE(n) · M

)
. (5.9.15)

The tensor M is defined by

M = m ⊗ m = R · M0 · RT . (5.9.16)

For example, if n = 1, Eq. (5.9.15) gives the Kirchhoff stress

τ = b0I + b1EEE(1) + b2EEE2
(1) + c3M + c4

(
M · EEE(1) + EEE(1) · M

)
. (5.9.17)

The coefficients bi are written in terms of ci by Eqs. (5.4.6), and

M = m ⊗ m = F · M0 · FT , m = V · m = F · m0. (5.9.18)
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The vector m in the deformed configuration is obtained by deformation

F from the vector m0 in the undeformed configuration. However, while

m0 and m are the unit vectors, the (embedded) vector m is not. The

tensor M0 = F−1 · M · F−T is induced from M by a transformation of the

contravariant type.

If transversely isotropic material is inextensible in the direction of the

axis of isotropy, so that there exists a deformation constraint

m0 · C · m0 = m · B · m = 1, or m0 · E(1) · m0 = m · EEE(1) · m = 0,
(5.9.19)

the strain energy can be written by using the Lagrangian multiplier as

Ψ = Ψ (IE , IIE , IIIE , K1, K2) + (detF)σm m0 · E(1) · m0. (5.9.20)

Thus, we add to the right-hand side of Eq. (5.9.11) the term (detF)σmM0,

and to the right-hand side of Eq. (5.9.17) the term (detF)σmM, where the

Lagrangian multiplier σm is an arbitrary tension in the direction m.

5.9.1. Transversely Isotropic Cauchy-Elasticity

In this case, the stress is assumed to be a function of E(n) and M0 at the

outset,

T(n) = f
(
E(n), M0

)
. (5.9.21)

This must be an isotropic tensor function of both E(n) and M0, so that

Q0 · T(n) · QT
0 = f

(
Q0 · E(n) · QT

0 , Q0 · M0 · QT
0

)
. (5.9.22)

Representation of isotropic second-order tensor functions of two symmetric

second-order tensor arguments is well-known. The set of generating tensors is

given in Eq. (1.11.10). Indeed, consider the most general isotropic invariant

of E(n), M0 and a symmetric tensor H, which is linear in H. Since M0 is

idempotent, this invariant is

g = c0 trH + c1 tr
(
E(n) · H

)
+ c2 tr

(
E2

(n) · H
)

+ c3 tr
(
M0 · H)

+ c4 tr
[(

M0 · E(n) + E(n) · M0
) · H]

+ c5 tr
[(

M0 · E2
(n) + E2

(n) · M0
)
· H

]
.

(5.9.23)
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The parameters ci are scalar invariants of E(n) and M0. The stress tensor

is derived as the gradient of g with respect to H, which gives

T(n) = c0I0 + c1E(n) + c2E2
(n) + c3M0 + c4

(
M0 · E(n) + E(n) · M0

)
+ c5

(
M0 · E2

(n) + E2
(n) · M0

)
.

(5.9.24)

The term proportional to c5 in Eq. (5.9.24) for transversely isotropic Cauchy-

elasticity is absent in the case of transversely isotropic Green-elasticity, cf.

Eq. (5.9.11). Also, it is noted that in the transition to linearized theory (re-

taining linear terms in strain E(n) only), the Cauchy-elasticity of transversely

isotropic materials involves six independent material parameters, while the

Green-elasticity involves only five of them.

5.10. Orthotropic Materials

Elastic material is orthotropic in its reference configuration if it possesses

three mutually orthogonal planes of elastic symmetry. Its symmetry group

consists of reflections in these planes. Therefore, we introduce two second

-order tensors

M0 = m0 ⊗ m0, N0 = n0 ⊗ n0, (5.10.1)

which are associated with the unit vectors m0 and n0, normal to two of

the planes of elastic symmetry in the undeformed configuration. The tensor

associated with the third plane of symmetry is I0 −M0 −N0, and need not

be considered. The strain energy is then

Ψ = Ψ
(
E(n), M0, N0

)
. (5.10.2)

This must be an isotropic function of all three tensor arguments,

Ψ
(
Q0 · E(n) · QT

0 , Q0 · M0 · QT
0 , Q0 · N0 · QT

0

)
= Ψ

(
E(n), M0, N0

)
,

(5.10.3)

and thus dependent on individual and joint invariants of its tensor argu-

ments. Since M0 · N0 = 0, by the orthogonality of m0 and n0, it follows

that

Ψ = Ψ (IE , IIE , IIIE , K1, K2, K3, K4) . (5.10.4)

The invariants K1 and K2 are defined by Eq. (5.9.9), and K3 and K4 by

the corresponding expressions in which M0 is replaced with N0. The stress
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response is

T(n) = c0I0 + c1E(n) + c2E2
(n) + c3M0 + c4

(
M0 · E(n) + E(n) · M0

)
+ c5N0 + c6

(
N0 · E(n) + E(n) · N0

)
.

(5.10.5)

The coefficients c0 to c4 are specified by Eqs. (5.3.5) and (5.9.12), and c5

and c6 by equations (5.9.12) in which the derivatives are taken with respect

to K3 and K4.

Equation (5.10.5) has a dual equation in the deformed configuration

TTT (n) = c0I + c1EEE(n) + c2EEE2
(n) + c3M + c4

(
M · EEE(n) + EEE(n) · M

)
+ c5N + c6

(
N · EEE(n) + EEE(n) · N

)
,

(5.10.6)

where

M = m ⊗ m, N = n ⊗ n, (5.10.7)

and

m = R · m0, n = R · n0. (5.10.8)

In particular, for n = 1, Eq. (5.10.6) gives

τ = b0I + b1EEE(1) + b2EEE2
(1) + c3M + c4

(
M · EEE(1) + EEE(1) · M

)
+ c5N + c6

(
N · EEE(1) + EEE(1) · N

)
.

(5.10.9)

The coefficients bi are expressed in terms of ci by Eqs. (5.4.6), and

M = m ⊗ m, N = n ⊗ n. (5.10.10)

The vectors m and n are

m = V · m = F · m0, n = V · n = F · n0. (5.10.11)

5.10.1. Orthotropic Cauchy-Elasticity

The stress is here assumed to be a function of three tensor arguments, such

that

T(n) = f
(
E(n), M0, N0

)
. (5.10.12)

If the undeformed configuration is rotated by Q0, we have

Q0 · T(n) · QT
0 = f

(
Q0 · E(n) · QT

0 , Q0 · M0 · QT
0 , Q0 · N0 · QT

0

)
,

(5.10.13)
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which implies that f must be an isotropic tensor function of all three of its

tensor arguments. The most general form of this function is

T(n) = c0I0 + c1E(n) + c2E2
(n) + c3M0 + c6N0

+ c4
(
M0 · E(n) + E(n) · M0

)
+ c5

(
M0 · E2

(n) + E2
(n) · M0

)
+ c7

(
N0 · E(n) + E(n) · N0

)
+ c8

(
N0 · E2

(n) + E2
(n) · N0

)
.

(5.10.14)

The terms proportional to c5 and c8 in Eq. (5.10.14) are absent in the case of

orthotropic Green-elasticity, cf. Eq. (5.10.5). In the transition to linearized

theory (retaining linear terms in strain E(n) only), the Cauchy-elasticity

of orthotropic materials involves twelve independent material parameters,

while the Green-elasticity involves only nine of them.

5.11. Crystal Elasticity

5.11.1. Crystal Classes

Anisotropic materials known as crystal classes possess three preferred direc-

tions, defined by unit vectors a1, a2, and a3. There are thirty two crystal

classes (point groups). Each class is characterized by a group of orthog-

onal transformations which carry the reference undeformed configuration

into an equivalent configuration, indistinguishable from the original config-

uration. Since elastic properties of crystals are centrosymmetric, the eleven

Laue groups can be identified. All point groups belonging to the same Laue

group have common polynomial representation of the strain energy function

in terms of the corresponding polynomial strain invariants. Crystal classes

are grouped into seven crystal systems. In describing them, the following

convention will be used. By n
m is meant the rotation by an angle 2π/n,

followed by a reflection in the plane normal to the axis of rotation. By n̄ is

meant the rotation by an angle 2π/n, followed by an inversion.

i) Triclinic System (Laue group N). For this crystal system there is no

restriction on the orientation of the vectors ai. Two point groups of this

system are (1, 1̄). Since components of the strain tensor E(n) are unaltered

by identity and central inversion transformations, no restriction is placed on

the form of the polynomial representation of the strain energy in terms of
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the six strain components, i.e.,

Ψ = Ψ (E11, E22, E33, E12, E31, E32) . (5.11.1)

Any rectangular Cartesian coordinate system may be chosen as a reference

system.

ii) Monoclinic System (Laue group M). The preferred directions a1 and

a2 are not orthogonal, and the direction a3 is perpendicular to the plane

(a1,a2). There are three point groups of the monoclinic system. They are(
2, m, 2

m

)
. The symmetry transformation of the first point group is the

rotation Q3 about X3 axis through 180◦, for the second it is reflection R3 in

the plane normal to X3 axis, and for the third it is the rotation Q3 followed

by the reflection R3. For each point group, the strain energy is a polynomial

of the seven polynomial strain invariants of this system, i.e.,

Ψ = Ψ
(
E11, E22, E33, E12, E

2
31, E

2
32, E31E32

)
. (5.11.2)

The rectangular Cartesian system is used with the axis X3 parallel to a3, and

with the axes X1 and X2 in any two orthogonal directions within (a1,a2)

plane.

iii) Orthorombic System (Laue group O). The preferred directions ai

are mutually perpendicular. There are three point groups of this system.

They are
(
222, mm2, 2

m
2
m

2
m

)
. For each point group, the strain energy is a

polynomial of the seven polynomial strain invariants,

Ψ = Ψ
(
E11, E22, E33, E

2
12, E

2
31, E

2
32, E12E31E32

)
. (5.11.3)

The axes of the reference coordinate system are parallel to ai.

iv) Tetragonal System (Laue groups TII and TI). The vectors ai are

mutually perpendicular, but the direction a3 has a special significance and

is called the principal axis of symmetry. The Laue group TII contains three

point groups
(
4, 4̄, 4

m

)
. The corresponding strain energy is expressible as a

polynomial in the twelve polynomial strain invariants. These are

E11 + E22, E33, E2
31 + E2

32, E2
12, E11E22,

E12(E11 − E22), E31E32(E11 − E22), E12E31E32,

E12

(
E2

31 − E2
32

)
, E11E

2
32 + E22E

2
31, E2

31E
2
32,

E31E32

(
E2

31 − E2
32

)
.

(5.11.4)
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The Laue group TI contains four point groups
(
422, 4mm, 4̄2m, 4

m
2
m

2
m

)
.

The corresponding strain energy can be expressed as a polynomial in the

eight polynomial strain invariants,

E11 + E22, E33, E2
31 + E2

32, E2
12, E11E22,

E12E31E32, E11E
2
32 + E22E

2
31, E2

31E
2
32.

(5.11.5)

The axes of the reference coordinate system are parallel to ai.

v) Cubic System (Laue groups CII and CI). The vectors ai are mutually

perpendicular. The Laue group CII contains two point groups
(
23, 2

m 3̄
)
.

The corresponding strain energy is a polynomial in the fourteen polynomial

strain invariants. They are listed by Green and Adkins (1960), Eq. (1.11.2).

The Laue group CI contains three point groups
(
432, 4̄3m, 4

m 3̄ 2
m

)
. The

corresponding strain energy is a polynomial in the nine polynomial strain

invariants, which are listed in op. cit., Eq. (1.11.4).

vi) Rhombohedral System (Laue groups RII and RI). The vector a3 is

perpendicular to the basal plane defined by vectors a1 and a2, where a2

is at 120◦ from a1. The Laue group RII contains two point groups (3, 3̄).

The corresponding strain energy is a polynomial in the fourteen polynomial

strain invariants. They are listed in op. cit., Eq. (1.12.5). The Laue group

RI contains three point groups
(
32, 3m, 3̄ 2

m

)
. The corresponding strain

energy is a polynomial in the nine polynomial strain invariants, listed by

Green and Adkins (1960) in Eq. (1.12.8) (rhombohedral system is there

considered to be hexagonal).

vii) Hexagonal System (Laue groups HII and HI). The vector a3 is per-

pendicular to the basal plane defined by vectors a1 and a2, where a2 is at

120◦ from a1. The Laue group HII contains three point groups
(
6, 6̄, 6

m

)
.

The corresponding strain energy is a polynomial in the fourteen polynomial

strain invariants; Eq. (1.12.11) of op. cit. The Laue group HI contains four

point groups
(
622, 6mm, 6̄m2, 6

m
2
m

2
m

)
. The corresponding strain energy is

a polynomial in the nine polynomial strain invariants. These are given by

Eq. (1.12.13) of op. cit.

In the remaining two subsections we consider the general strain energy

representation, with a particular attention given to cubic crystals and their

elastic constants.
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5.11.2. Strain Energy Representation

For each Laue group, the strain energy can be expanded in a Taylor series

about the state of zero strain and stress as

Ψ =
1
2!

CijklEijEkl +
1
3!

CijklmnEijEklEmn + · · · . (5.11.6)

The Eij are the rectangular Cartesian components of the strain tensor E(n),

and Cijklmn... are the corresponding elastic stiffness constants or elastic mod-

uli. For simplicity, we omit the label (n). The components of the conjugate

stress are

Tij =
∂Ψ
∂Eij

= CijklEkl +
1
2
CijklmnEklEmn + · · · . (5.11.7)

Elastic constants of the kth order are the components of the tensor of the

order 2k. Since they are the strain gradients of Ψ evaluated at zero strain,

Cijkl =
(

∂2Ψ
∂Eij∂Ekl

)
0

, Cijklmn =
(

∂3Ψ
∂Eij∂Ekl∂Emn

)
0

, . . . , (5.11.8)

they possess the obvious basic symmetries. For example, the third-order

elastic constants satisfy

Cijklmn = Cjiklmn, Cijklmn = Cklijmn = Cmnklij . (5.11.9)

Following the Voigt notation

11 ∼ 1, 22 ∼ 2, 33 ∼ 3, 23 ∼ 4, 13 ∼ 5, 12 ∼ 6, (5.11.10)

and the recipe

Eij =
1
2
(1 + δij)ηϑ, ϑ = 1, 2, ..., 6, (5.11.11)

Equation (5.11.6) can be rewritten as (Brugger, 1964)

Ψ =
1
2

∑
i

ciiη
2
i +

∑
i<j

cijηiηj +
1
6

∑
i

ciiiη
3
i

+
1
2

∑
i �=j

ciijη
2
i ηj +

∑
i<j<k

cijkηiηjηk + · · · .
(5.11.12)

For triclinic crystals, whose symmetry group consists solely of the iden-

tity transformation, there are
(
5+k
k

)
independent kth order elastic constants

(Toupin and Bernstein, 1961), i.e., there are at most 21 independent second-

order elastic constants cij , and at most 56 independent third-order elastic

constants cijk. For other crystal systems, fewer independent constants are

involved, since they must be invariant under the group of transformations
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defining the material symmetry. This requires certain constants to vanish

and supplies relations among some of the remaining ones. The tables for the

second- and third-order independent elastic constants in crystals for all crys-

tallographic groups can be found in Brugger (1965) and Thurston (1984).

An analysis of eigenvalues and eigentensors of the elastic constants Cijkl

of an anisotropic material is given by Ting (1987), Mehrabadi and Cowin

(1990), and Sutcliffe (1992).

5.11.3. Elastic Constants of Cubic Crystals

For cubic crystals belonging to the Laue group CI, there are at most three

independent second-order and six independent third-order elastic constants.

Written with respect to principal cubic axes, the strain energy can be ex-

pressed as (Birch, 1947)

Ψ =
1
2
c11

(
η2
1 + η2

2 + η2
3

)
+

1
2
c44

(
η2
4 + η2

5 + η2
6

)
+ c12 (η1η2 + η2η3 + η3η1) +

1
6
c111

(
η3
1 + η3

2 + η3
3

)
+

1
2
c112

[
η2
1

(
η2 + η3) + η2

2(η3 + η1

)
+ η2

3 (η1 + η2)
]

+
1
2
c144

(
η2
4η1 + η2

5η2 + η2
6η3

)
+

1
2
c244

[
η2
4 (η2 + η3)

+ η2
5 (η3 + η1) + η2

6 (η1 + η2)
]
+ c123 η1η2η3 + c456 η4η5η6,

(5.11.13)

to third-order terms in strain. The corresponding components of the fourth-

order tensor of the second-order elastic moduli, written with respect to an

arbitrary rectangular Cartesian basis, are

Cijkl = c12δijδkl + 2c44Iijkl + (c11 − c12 − 2c44)Aijkl . (5.11.14)

The components of the symmetric fourth-order unit tensor are again denoted

by Iijkl , and

Aijkl = aiajakal + bibjbkbl + cicjckcl. (5.11.15)

The vectors a, b, and c are the orthogonal unit vectors along the principal

cubic axes (previously denoted by a1, a2, and a3).

Two independent linear invariants of the elastic moduli tensor Cijkl are

Ciijj = 3 (c11 + 2c12) , Cijij = 3 (c11 + 2c44) . (5.11.16)

In the case when c11 − c12 = 2c44, the components Cijkl are the components

of an isotropic fourth-order tensor,
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Cijkl = c12δijδkl + 2c44Iijkl . (5.11.17)

If the Cauchy symmetry

Cijkl = Cikjl (5.11.18)

applies, then c12 = c44. For example, in atomistic calculations the Cauchy

symmetry is an inevitable consequence whenever the atomic interactions are

modeled by pairwise central forces.

The sixth-order tensor of the third-order elastic moduli has the Cartesian

components

Cijklmn = c1δijδklδmn + c2δ(ijIklmn) + c3δ(ikδlmδnj )

+ c4δ(ijAklmn) + c5a(iajbkblcmcn) + c6a(ibjckalbmcn).
(5.11.19)

The following constants are conveniently introduced

c1 = −1
2

(c111 − 3c112 + 4c144 − 4c244) ,

c2 = 6c144, c3 = 4 (c244 − c144) ,

c4 = −3
2

(c112 − c111 + 4c244) , c5 = 6 (c123 − c1) ,

c6 = 24 (c144 − c244 + 2c456) .

(5.11.20)

The notation such as δ(ijAklmn) designates the symmetrization. For exam-

ple, we have

δ(ijIklmn) =
1
3

(δij Iklmn + δklImnij + δmnIijkl) ,

δ(ikδlmδnj) =
1
4

(δikIjlmn + δilIjkmn + δimIklnj + δinIklmj ) .
(5.11.21)

The tensors δijδklδmn, δ(ijIklmn), and δ(ikδlmδnj) constitute an integrity basis

for the sixth-order isotropic tensors (Spencer, 1982). The tensors appearing

on the right-hand side of Eq. (5.11.19) are the base tensors for the sixth-order

elastic stiffness tensor with cubic symmetry. Other base tensors could also

be constructed. The tensor representations of the second- and third-order

elastic compliances are given by Lubarda (1997,1999).

Three independent linear invariants of the sixth-order tensor in Eq.

(5.11.19) are

Ciijjkk = 3 (c111 + 6c112 + 2c123) ,

Ciiklkl = 3 (c111 + 2c112 + 2c144 + 4c244) ,

Cijjkki = 3 (c111 + 6c244 + 2c456) .

(5.11.22)
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For isotropic materials

c111 = c123 + 6c144 + 8c456,

c112 = c123 + 2c144,

c244 = c144 + 2c456,

(5.11.23)

so that Cijklmn becomes an isotropic sixth-order tensor

Cijklmn = c123δijδklδmn + 6c144δ(ijIklmn) + 8c456δ(ikδlmδnj ). (5.11.24)

If the Milder symmetry

Cijklmn = Cikjlmn (5.11.25)

applies, then c123 = c144 = c456.

The three independent third-order elastic constants of an isotropic ma-

terial (c123, c144, and c456) are related to Murnaghan’s constants l, m, and

n, which appear in the strain energy representation (5.3.8), by

l = c144 +
1
2
c123, m = c144 + 2c456, n = 4c456. (5.11.26)

Toupin and Bernstein (1961) used the notation ν1 = c123, ν2 = c144, and

ν3 = c456, referring to them as the third-order Lamé constants.
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CHAPTER 6

RATE-TYPE ELASTICITY

6.1. Elastic Moduli Tensors

The rate-type constitutive equation for finite deformation elasticity is ob-

tained by differentiating Eq. (5.1.2) with respect to a time-like monotoni-

cally increasing parameter t. This gives

Ṫ(n) = Λ(n) : Ė(n), Λ(n) =
∂2Ψ

(
E(n)

)
∂E(n) ⊗ ∂E(n)

. (6.1.1)

The fourth-order tensor Λ(n) is the tensor of elastic moduli (or tensor of

elasticities) associated with a conjugate pair of material tensors
(
E(n),T(n)

)
.

Its representation in an orthonormal basis in the undeformed configuration

is

Λ(n) = Λ(n)
IJKLe0

I ⊗ e0
J ⊗ e0

K ⊗ e0
L. (6.1.2)

Similarly, by applying to Eq. (5.1.10) the Jaumann derivative with respect

to spin ω = Ṙ · R−1 , we obtain the rate-type constitutive equation

•
TTT (n) = Λ̄(n) :

•
EEE(n), Λ̄(n) =

∂2Ψ
(
ÊEE(n)

)
∂EEE(n) ⊗ ∂EEE(n)

. (6.1.3)

The fourth-order tensor Λ̄(n) is the tensor of elastic moduli associated with

a conjugate pair of spatial tensors
(EEE(n),TTT (n)

)
. This can be represented in

an orthonormal basis in the deformed configuration as

Λ̄(n) = Λ̄(n)
ijklei ⊗ ej ⊗ ek ⊗ el. (6.1.4)

The relationship between the tensors Λ(n) and Λ̄(n) follows by recalling that

ÊEE(n) = E(n), Ṫ(n) = RT ·
•
TTT (n) · R, Ė(n) = RT ·

•
EEE(n) · R, (6.1.5)

which gives

Λ̄(n) = RRΛ(n) RT RT . (6.1.6)
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The tensor products in Eq. (6.1.6) are defined so that the Cartesian com-

ponents are related by

Λ̄(n)
ijkl = RiMRjNΛ(n)

MNPQR
T
PkR

T
Ql. (6.1.7)

In performing the Jaumann derivation of Eq. (5.1.10) it should be kept

in mind that
•
ÊEE(n) = ˙̂EEE(n) = Ė(n), (6.1.8)

since corotational (and convected) derivatives of the material tensors are

equal to ordinary material derivatives (material tensors not being affected

by the transformation of the base tensors in the deformed configuration).

It is instructive to discuss this point a little further. To be more specific,

consider a transversely isotropic material from Section 5.9, for which the

strain energy is

Ψ = Ψ
(
E(n), M0

)
= Ψ

(EEE(n), M
)
, (6.1.9)

with the spatial stress tensor

TTT (n) =
∂Ψ

∂EEE(n)
. (6.1.10)

The application of the Jaumann derivative with respect to spin ω to Eq.

(6.1.10) gives

•
TTT (n) =

∂2Ψ
∂EEE(n) ⊗ ∂EEE(n)

:
•
EEE(n) +

∂2Ψ
∂EEE(n) ⊗ ∂M

:
•
M

=
∂2Ψ

∂EEE(n) ⊗ ∂EEE(n)
:
•
EEE(n),

(6.1.11)

because
•
M = 0. Recall that M = R · M0 · RT , so that

Ṁ = ω · M − M · ω. (6.1.12)

If the ordinary material derivative of Eq. (6.1.10) is taken, we have

ṪTT (n) =
∂2Ψ

∂EEE(n) ⊗ ∂EEE(n)
: ĖEE(n) +

∂2Ψ
∂EEE(n) ⊗ ∂M

: Ṁ. (6.1.13)

This is in accord with Eq. (6.1.11) because the identity holds

∂2Ψ
∂EEE(n) ⊗ ∂EEE(n)

:
(EEE(n) · ω − ω · EEE(n)

)
+

∂2Ψ
∂EEE(n) ⊗ ∂M

:
(
M · ω − ω · M)

= TTT (n) · ω − ω · TTT (n).

(6.1.14)
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To verify Eq. (6.1.14), we can differentiate both sides of Eq. (6.1.9) to obtain

∂Ψ
∂E(n)

: Ė(n) =
∂Ψ

∂EEE(n)
:
•
EEE(n) =

∂Ψ
∂EEE(n)

: ĖEE(n) +
∂Ψ
∂M

: Ṁ, (6.1.15)

which establishes the identity

∂Ψ
∂EEE(n)

:
(EEE(n) · ω − ω · EEE(n)

)
=

∂Ψ
∂M

:
(
ω · M − M · ω)

. (6.1.16)

Differentiation of Eq. (6.1.16) with respect to EEE(n) gives Eq. (6.1.14).

6.2. Elastic Moduli for Conjugate Measures with n = ±1

The rates of the conjugate tensors E(1) and T(1) are, from Eqs. (2.6.1) and

(3.8.4),

Ė(1) = FT · D · F, Ṫ(1) = F−1 · �τ · F−T . (6.2.1)

Substitution into Eq. (6.1.1) gives the Oldroyd rate of the Kirchhoff stress

τ in terms of the rate of deformation D,
�
τ = LLL(1) : D. (6.2.2)

The corresponding elastic moduli tensor is

LLL(1) = FFΛ(1) FT FT . (6.2.3)

The products in Eq. (6.2.3) are such that the Cartesian components of the

two tensors of elasticities are related by

L(1)
ijkl = FiMFjNΛ(1)

MNPQF
T
PkF

T
Ql. (6.2.4)

Equation (6.2.2) can also be derived from the first of Eq. (5.1.11) by applying

to it, for example, the convected derivative
�
( ), and by recalling that

�
F = 0,

�
E(1) = Ė(1). (6.2.5)

See also Truesdell and Noll (1965), and Marsden and Hughes (1983).

Similarly, from Eqs. (2.6.3) and (3.8.5), the rates of the conjugate mea-

sures E(−1) and T(−1) are

Ė(−1) = F−1 · D · F−T , Ṫ(−1) = FT · ∇τ · F. (6.2.6)

Substitution into Eq. (6.1.1) gives

∇
τ = LLL(−1) : D, (6.2.7)
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where

LLL(−1) = F−T F−T Λ(−1) F−1 F−1. (6.2.8)

This can be alternatively derived by applying the convected derivative
∇
( ) to

the second of Eq. (5.1.11), and by recalling that

(F−1)∇ = 0,
∇
E(−1) = Ė(−1). (6.2.9)

In view of the connection (6.1.6) between the moduli Λ(n) and Λ̄(n),

Eqs. (6.2.3) and (6.2.8) can be rewritten as

LLL(1) = VVΛ̄(1) VV, LLL(−1) = V−1 V−1 Λ̄(−1) V−1 V−1. (6.2.10)

Another route to derive Eq. (6.2.2) is by differentiation of Eqs. (5.1.12).

For example, by applying the Jaumann derivative
•

( ) to the first of Eqs.

(5.1.12) gives

•
τ =

( •
V · V−1

)
· τ + τ ·

(
V−1 ·

•
V

)

+ V

(
∂2Ψ

∂EEE(1) ⊗ ∂ÊEE(1)

: ˙̂EEE(1)

)
V.

(6.2.11)

Since
•
V · V−1 = L − ω,

˙̂EEE(1) = RT ·
•
EEE(1) · R,

•
EEE(1) = V · D · V, (6.2.12)

Equation (6.2.11) becomes

�
τ =

(
VV

∂2Ψ
∂EEE(1) ⊗ ∂EEE(1)

VV
)

: D = LLL(1) : D. (6.2.13)

The rate-type constitutive Eqs. (6.2.2) and (6.2.7) can be rewritten in

terms of the Jaumann rate
◦
τ as

◦
τ = LLL(0) : D, (6.2.14)

where

LLL(0) = LLL(1) + 2SSS = LLL(−1) − 2SSS . (6.2.15)

This follows because of the relationships (see Section 3.8)

◦
τ =

�
τ + D · τ + τ · D =

∇
τ − D · τ− τ · D. (6.2.16)

The Cartesian components of the fourth-order tensor SSS are

Sijkl = τ(ikδjl) =
1
4

(τikδjl + τjkδil + τilδjk + τjlδik) . (6.2.17)
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The elastic moduli tensors Λ(n), Λ̄(n) and LLL(n) all possess the basic and

reciprocal (major) symmetries, e.g.,

L(n)
ijkl = L(n)

jikl = L(n)
ijlk, L(n)

ijkl = L(n)
klij . (6.2.18)

Further analysis of elastic moduli tensors can be found in Truesdell and

Toupin (1960), Ogden (1984), and Holzapfel (2000).

6.3. Instantaneous Elastic Moduli

The instantaneous elastic moduli relate the rates of conjugate stress and

strain tensors, when these are evaluated at the current configuration as the

reference. Thus, since Ė(n) = D, we write

Ṫ(n) = Λ(n) : Ė(n) = Λ(n) : D. (6.3.1)

The tensor of instantaneous elastic moduli Λ(n) can be related to the cor-

responding tensor of elastic moduli Λ(n) by using the relationship between

Ė(n) and Ė(n). For example, for n = 1, from Eq. (3.9.16) we obtain

Ṫ(1) = (detF)F−1 · Ṫ(1) · F−T , Ė(1) = FT · D · F. (6.3.2)

The substitution into Eq. (6.1.1) gives

Ṫ(1) = Λ(1) : D,

Λ(1) = (detF)−1 FFΛ(1) FT FT = (detF)−1LLL(1).
(6.3.3)

Recalling from Eq. (3.9.15) that Ṫ(1) =
�
τ , Eq. (6.3.3) becomes

�
τ = LLL(1) : D, LLL(1) = Λ(1). (6.3.4)

Similarly,

∇
τ = LLL(−1) : D, LLL(−1) = (detF)−1LLL(−1). (6.3.5)

Furthermore, from Eq. (3.9.7) we have

Ṫ(n) =
◦
τ− n(D · σ + σ · D) =

�
τ − (n− 1)(D · σ + σ · D). (6.3.6)

Thus, Eq. (6.3.1) can be recast in the form

�
τ − (n− 1)(D · σ + σ · D) = LLL(n) : D, (6.3.7)

since, in general,

LLL(n) = Λ(n) = Λ̄(n). (6.3.8)
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Substituting the expression (6.3.4) for
�
τ into Eq. (6.3.7) gives

LLL(1) : D − (n− 1)(D · σ + σ · D) = LLL(n) : D. (6.3.9)

This establishes the relationship between the instantaneous elastic moduli

LLL(n) and LLL(1),

LLL(n) = LLL(1) − 2(n− 1)SSS . (6.3.10)

The Cartesian components of the tensor SSS are

Sijkl = σ(ikδjl) =
1
4

(σikδjl + σjkδil + σilδjk + σjlδik) . (6.3.11)

Thus, the difference between the various instantaneous elastic moduli in Eq.

(6.3.10) is of the order of the Cauchy stress.

If the logarithmic strain is used, we have

Ṫ(0) =
◦
τ = LLL(0) : D, (6.3.12)

and comparison with Eq. (6.3.7) gives

LLL(n) = LLL(0) − 2nSSS . (6.3.13)

In particular,

LLL(0) = LLL(1) + 2SSS = LLL(−1) − 2SSS , (6.3.14)

as expected from Eq. (6.2.15). Further details are available in Hill (1978)

and Ogden (1984).

6.4. Elastic Pseudomoduli

The nonsymmetric nominal stress P is derived from the strain energy func-

tion as its gradient with respect to deformation gradient F, such that

P =
∂Ψ
∂F

, PJi =
∂Ψ
∂FiJ

. (6.4.1)

The rate of the nominal stress is, therefore,

Ṗ = Λ · · Ḟ = Λ · · (L · F), Λ =
∂2Ψ

∂F ⊗ ∂F
. (6.4.2)

A two-point tensor of elastic pseudomoduli is denoted by Λ. The Cartesian

component representation of Eq. (6.4.2) is

ṖJi = ΛJiLkḞkL, ΛJiLk =
∂2Ψ

∂FiJ∂FkL
. (6.4.3)
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The elastic pseudomoduli ΛJiLk are not true moduli since they are partly

associated with the material spin. They clearly possess the reciprocal sym-

metry

ΛJiLk = ΛLkJi. (6.4.4)

In view of the connection

P = T(1) · FT , (6.4.5)

the differentiation gives

Λ · · Ḟ =
(
Λ(1) : Ė(1)

)
· FT + T(1) · ḞT . (6.4.6)

Upon using

Ė(1) =
1
2

(
ḞT · F + FT · Ḟ

)
, (6.4.7)

Equation (6.4.6) yields the connection between the elastic moduli Λ and

Λ(1). Their Cartesian components are related by

ΛJiLk = Λ(1)
JMLNFiMFkN + T

(1)
JL δik. (6.4.8)

Since F · P is a symmetric tensor, i.e.,

FiKPKj = FjKPKi, (6.4.9)

by differentiation and incorporation of Eq. (6.4.3) it follows that

FjMΛMiLk − FiMΛMjLk = δikPLj − δjkPLi. (6.4.10)

This corresponds to the symmetry in the leading pair of indices of the true

elastic moduli

Λ(1)
IJKL = Λ(1)

JIKL. (6.4.11)

The tensor of elastic pseudomoduli Λ can be related to the tensor of

instantaneous elastic moduli, appearing in the expression

Ṗ = Λ · ·L, (6.4.12)

by recalling the relationship

Ṗ = (detF)F−1 · Ṗ, (6.4.13)

from Section 3.9. This gives

Λ = (detF)−1FΛFT , (6.4.14)

with the Cartesian component representation

Λijkl = (detF)−1FiMΛMjNkF
T
Nl. (6.4.15)
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In addition, from Eq. (6.4.8), we have

Λjilk = Λ(1)
jilk + σjlδik. (6.4.16)

6.5. Elastic Moduli of Isotropic Elasticity

For isotropic elasticity, the strain energy function is an isotropic function of

strain, so that

Ψ = Ψ
(
ÊEE(n)

)
= Ψ

(EEE(n)

)
, (6.5.1)

and

TTT (n) =
∂Ψ

(EEE(n)

)
∂EEE(n)

= c0I + c1EEE(n) + c2EEE2
(n). (6.5.2)

By definition of the Jaumann derivative, we have(
∂Ψ

∂EEE(n)

)◦
=

(
∂Ψ

∂EEE(n)

)·
− W · ∂Ψ

∂EEE(n)
+

∂Ψ
∂EEE(n)

· W. (6.5.3)

Since Ψ is an isotropic function of EEE(n), there is an identity

∂2Ψ
∂EEE(n) ⊗ ∂EEE(n)

:
(
W · EEE(n) −EEE(n) · W

)
= W · ∂Ψ

∂EEE(n)
− ∂Ψ

∂EEE(n)
· W, (6.5.4)

which is easily verified by using Eq. (6.5.2). Thus, we can write

◦
TTT (n) =

∂2Ψ
∂EEE(n) ⊗ ∂EEE(n)

:
◦
EEE(n). (6.5.5)

This is one of the constitutive structures of the rate-type isotropic elasticity.

It is pointed out that Eq. (6.5.5) also applies if
◦

( ) is replaced by the material

derivative, or the Jaumann derivative with respect to spin ω, or any other

spin associated with the deformed configuration.

An appealing rate-type constitutive structure of isotropic elasticity is

obtained by using Eq. (5.5.5) to express the Kirchhoff stress in terms of the

left Cauchy–Green deformation tensor B. The application of the Jaumann

derivative
◦

( ) gives (e.g., Lubarda, 1986)

◦
τ =

1
2

(D · τ + τ · D) +
1
2

[
B · (D · τ) · B−1 + B−1 · (τ · D) · B]

+ 4
(
B

∂2Ψ
∂B ⊗ ∂B

B
)

: D = LLL(0) : D.
(6.5.6)

Recall that
◦
B = B · D + D · B, (6.5.7)
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and that Ψ is an isotropic function of B, which allows us to write(
∂Ψ
∂B

)◦
=

∂2Ψ
∂B ⊗ ∂B

:
◦
B. (6.5.8)

The Cartesian components of the elastic moduli tensor LLL(0) are

L(0)
ijkl = τ(ikδjl) + B(ikτlmB−1

mj) + B(imΛ̄(1)
mjknBnl), (6.5.9)

where

Λ̄(1)
mjkn =

∂2Ψ

∂E(1)
mj∂E(1)

kn

= 4
∂2Ψ

∂Bmj∂Bkn
. (6.5.10)

The symmetry in i and j, k and l, and ij and kl is ensured by Eq. (6.2.17),

and by the symmetrization

B(ikτlmB−1
mj) =

1
4

(
BikτlmB−1

mj + BjkτlmB−1
mi

+ BilτkmB−1
mj + BjlτkmB−1

mi

)
,

(6.5.11)

and

B(imΛ̄(1)
mjknBnl) =

1
4

(
BimΛ̄(1)

mjknBnl + BjmΛ̄(1)
miknBnl

+ BimΛ̄(1)
mjlnBnk + BjmΛ̄(1)

milnBnk

)
.

(6.5.12)

Equation (6.5.6) can be recast in terms of the convected derivatives of

the Kirchhoff stress as
�
τ = LLL(0) : D − D · τ− τ · D = LLL(1) : D,

∇
τ = LLL(0) : D + D · τ + τ · D = LLL(−1) : D.

(6.5.13)

By using the instantaneous elastic moduli, these become
�
τ = (LLL(0) − 2SSS ) : D = LLL(1) : D,

∇
τ = (LLL(0) + 2SSS ) : D = LLL(−1) : D.

(6.5.14)

The tensor SSS is defined by Eq. (6.3.11), and

LLL(0) = (detF)−1LLL(0), LLL(±1) = (detF)−1LLL(±1). (6.5.15)

To obtain the elastic pseudomoduli we can proceed from the general

expressions given in Section 3.4, or alternatively use Eq. (3.8.12) to express

the rate of nominal stress as

Ṗ =
�
P + P · LT = F−1 · �τ + P · LT . (6.5.16)

Since, from Eq. (6.5.13),
�
τ = LLL(1) : D = LLL(1) : L, (6.5.17)
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by the reciprocal symmetry of LLL(1), the substitution into Eq. (6.5.16) gives

ṖJi = ΛJiLkḞkL, ΛJiLk = F−1
JmL(1)

miknF
−T
nL + PJmF−T

mL δik. (6.5.18)

The instantaneous elastic pseudomoduli Λjilk follow from Eq. (6.5.18) by

setting F = I,

Λjilk = L(1)
jilk + σjlδik. (6.5.19)

This is in agreement with Eq. (6.4.16), because LLL(1) = Λ(1).

6.5.1. Components of Elastic Moduli in Terms of C

When the Lagrangian strain and its conjugate Piola–Kirchhoff stress are

used, the rate-type constitutive structure of isotropic elasticity is

T(1) =
∂Ψ

∂E(1)
= 2

∂Ψ
∂C

= 2
[(

∂Ψ
∂IC

− IC
∂Ψ
∂IIC

)
I0 +

(
∂Ψ
∂IIC

)
C

+
(
IIIC

∂Ψ
∂IIIC

)
C−1

]
.

(6.5.20)

The strain energy function Ψ = Ψ (IC , IIC , IIIC) is here expressed in terms

of the principal invariants of the right Cauchy–Green deformation tensor

C = FT · F = I0 + 2E(1). The corresponding elastic moduli tensor is

Λ(1) =
∂T(1)

∂E(1)
=

∂2Ψ
∂E(1) ⊗ ∂E(1)

= 4
∂2Ψ

∂C ⊗ ∂C
, (6.5.21)

which is thus defined by the fully symmetric tensor ∂2Ψ/(∂C ⊗ ∂C). Since

∂IC
∂C

= I0,
∂IIC
∂C

= C − ICI0,

∂IIIC
∂C

= C2 − ICC − IICI0 = IIICC−1,

(6.5.22)

and in view of the symmetry Cij = Cji, we obtain

∂2Ψ
∂Cij∂Ckl

= c1δijδkl + c2 (δijCkl + Cijδkl) + c3CijCkl

+ c4
(
δijC

−1
kl + C−1

ij δkl
)

+ c5
(
CijC

−1
kl + C−1

ij Ckl

)
+ c6C

−1
ij C−1

kl + c7

(
C−1

ik C−1
jl + C−1

il C−1
jk

)
+ c8 (δikδjl + δilδjk) .

(6.5.23)

The parameters ci (i = 1, 2, . . . , 8) are (e.g., Lubarda and Lee, 1981)

c1 =
∂2Ψ
∂I2

C

− 2IC
∂2Ψ

∂IC∂IIC
+ I2

C

∂2Ψ
∂II2

C

− ∂Ψ
∂IIC

, (6.5.24)
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c2 =
∂2Ψ

∂IC∂IIC
− IC

∂2Ψ
∂II2

C

, (6.5.25)

c3 =
∂2Ψ
∂II2

C

, c5 = IIIC
∂2Ψ

∂IIC∂IIIC
, (6.5.26)

c4 = IIIC
∂2Ψ

∂IIIC∂IC
− IIICIC

∂2Ψ
∂IIC∂IIIC

, (6.5.27)

c6 = III2
C

∂2Ψ
∂III2

C

+ IIIC
∂Ψ

∂IIIC
, (6.5.28)

c7 = −1
2
IIIC

∂Ψ
∂IIIC

, c8 =
1
2

∂Ψ
∂IIC

. (6.5.29)

6.5.2. Elastic Moduli in Terms of Principal Stretches

For isotropic elastic material the principal directions Ni of the right Cauchy–

Green deformation tensor

C =
3∑

i=1

λ2
i Ni ⊗ Ni, Ci = λ2

i , (6.5.30)

where λi are the principal stretches, are parallel to those of the symmetric

Piola–Kirchhoff stress T(1). Thus, the spectral representation of T(1) is

T(1) =
3∑

i=1

T
(1)
i Ni ⊗ Ni. (6.5.31)

From the analysis presented in Section 2.8 it readily follows that

Ċ =
3∑

i=1

2λiλ̇i Ni ⊗ Ni +
∑
i �=j

Ω0
ij

(
λ2
j − λ2

i

)
Ni ⊗ Nj , (6.5.32)

and

Ṫ(1) =
3∑

i=1

Ṫ
(1)
i Ni ⊗ Ni +

∑
i �=j

Ω0
ij

(
T

(1)
j − T

(1)
i

)
Ni ⊗ Nj . (6.5.33)

The components of the spin tensor Ω0 = ṘRR0 ·RRR−1
0 on the axes Ni are denoted

by Ω0
ij . The rotation tensor RRR0 maps the reference triad of unit vectors ei

into the Lagrangian triad Ni = RRR0 · e0
i . For elastically isotropic material

the strain energy can be expressed as a function of the principal stretches,

Ψ = Ψ(λ1, λ2, λ3), so that

T
(1)
i =

∂Ψ

∂E
(1)
i

=
1
λi

∂Ψ
∂λi

. (6.5.34)
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Ṫ
(1)
i =

3∑
j=1

∂T
(1)
i

∂λj
λ̇j ,

∂T
(1)
i

∂λj
= −δij

1
λ2
i

∂Ψ
∂λi

+
1
λi

∂2Ψ
∂λi∂λj

. (6.5.35)

Thus, Eq. (6.5.33) can be rewritten as

Ṫ(1) =
3∑

i,j=1

∂T
(1)
i

∂λj
λ̇j Ni ⊗ Ni +

∑
i �=j

Ω0
ij

(
λ2
j − λ2

i

) T
(1)
j − T

(1)
i

λ2
j − λ2

i

Ni ⊗ Nj .

(6.5.36)

Since

Ṫ(1) = Λ(1) : Ė(1) =
1
2

Λ(1) : Ċ, (6.5.37)

we recognize from Eqs. (6.5.32) and (6.5.36) by inspection (Chadwick and

Ogden, 1971; Ogden, 1984) that

Λ(1) =
3∑

i,j=1

1
λj

∂T
(1)
i

∂λj
Ni ⊗ Ni ⊗ Nj ⊗ Nj

+
∑
i �=j

T
(1)
j − T

(1)
i

λ2
j − λ2

i

Ni ⊗ Nj ⊗ (Ni ⊗ Nj + Nj ⊗ Ni) .

(6.5.38)

Note also

∂T
(1)
i

∂E
(1)
j

=
1
λj

∂T
(1)
i

∂λj
,

T
(1)
j − T

(1)
i

E
(1)
j − E

(1)
i

= 2
T

(1)
j − T

(1)
i

λ2
j − λ2

i

. (6.5.39)

If λj → λi, i.e., E(1)
j → E

(1)
i , then by the l’Hopital rule

lim
Ej→Ei

T
(1)
j − T

(1)
i

E
(1)
j − E

(1)
i

=
∂(T (1)

j − T
(1)
i )

∂E
(1)
j

, (6.5.40)

so that the representation of the elastic moduli tensor in Eq. (6.5.38) holds

regardless of the relative magnitude of the principal stretches.

6.6. Hypoelasticity

The material is hypoelastic if its rate-type constitutive equation can be ex-

pressed in the form (Truesdell, 1955; Truesdell and Noll, 1965)

◦
σ = f(σ, D). (6.6.1)

Under rigid-body rotation Q of the deformed configuration, Eq. (6.6.1)

transforms according to

Q · ◦
σ · QT = f

(
Q · σ · QT , Q · D · QT

)
, (6.6.2)
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which requires the second-order tensor function f to be an isotropic function

of both of its arguments. Such a function can be expressed by Eq. (1.11.10)

as
◦
σ = a1I + a2σ + a3σ

2 + a4D + a5D2

+ a6(σ · D + D · σ) + a7

(
σ2 · D + D · σ2

)
+ a8

(
σ · D2 + D2 · σ)

+ a9

(
σ2 · D2 + D2 · σ2

)
.

(6.6.3)

The coefficients ai are the scalar functions of ten individual and joint invari-

ants of σ and D. These are
tr (σ), tr

(
σ2

)
, tr

(
σ3

)
, tr (D), tr

(
D2

)
, tr

(
D3

)
,

tr (σ · D), tr
(
σ · D2

)
, tr

(
σ2 · D)

, tr
(
σ2 · D2

)
.

(6.6.4)

Suppose that the material behavior is time independent, in the sense that

any monotonically increasing parameter can serve as a time scale (materials

without a natural time; Hill, 1959). The function f is then a homogeneous

function of degree one in the rate of deformation tensor D. Indeed, if two

different time scales are used (t and t′ = kt, k = const.), we have
◦
σt = k

◦
σt′ , Dt = kDt′ , (6.6.5)

and

f (σ, kDt′) = kf (σ, Dt′) . (6.6.6)

Consequently, in this case, the constitutive structure of Eq. (6.6.3) does not

contain quadratic and higher order terms in D, so that
◦
σ = a1I + a2σ + a3σ

2 + a4D + a6(σ · D + D · σ) + a7

(
σ2 · D + D · σ2

)
,

(6.6.7)

where
a1 = c1tr (D) + c2tr (σ · D) + c3tr

(
σ2 · D)

,

a2 = c4tr (D) + c5tr (σ · D) + c6tr
(
σ2 · D)

,

a3 = c7tr (D) + c8tr (σ · D) + c9tr
(
σ2 · D)

,

(6.6.8)

and

a4 = c10, a6 = c11, a7 = c12. (6.6.9)

The coefficients ci (i = 1, 2, . . . , 12) are the scalar functions of the invariants

of σ (e.g., Iσ, IIσ, IIIσ). The structure of the expressions for ai in Eq.

(6.6.8) ensures that
◦
σ in Eq. (6.6.7) is linearly dependent on D, i.e.,

◦
σ = LLL : D. (6.6.10)
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The fourth-order tensor LLL has the Cartesian components

Lijkl = c1δijδkl + c2δijσkl + c3δijσ
2
kl + c4σijδkl

+ c5σijσkl + c6σijσ
2
kl + c7σ

2
ijδkl + c8σ

2
ijσkl

+ c9σ
2
ijσ

2
kl + c10δ(ikδjl) + c11σ(ikδjl) + c12σ

2
(ikδjl).

(6.6.11)

If c2 = c4, c3 = c7 and c6 = c8, the tensor LLL obeys the reciprocal symmetry

Lijkl = Lklij .

A hypoelastic material is of degree N if f is a polynomial of degree N in

the components of σ. For example, for hypoelastic material of degree one,

c1 = α1 + α2 tr (σ), c10 = α3 + α4 tr (σ),

c2 = α5, c4 = α6, c11 = α7,

c3 = c5 = c6 = c7 = c8 = c9 = c12 = 0,

(6.6.12)

where αi (i = 1, 2, . . . , 7) are seven constants available as material parame-

ters.

In general, elasticity and hypoelasticity are different concepts, although

under infinitesimal deformation from an arbitrary stressed configuration,

Eq. (6.6.10), with anisotropic tensor LLL given by Eq. (6.6.11), corresponds

to some type of anisotropic elastic response. However, a hypoelastic consti-

tutive equation cannot describe an anisotropic elastic material in infinites-

imal deformation from the unstressed configuration, because the tensor LLL
becomes an isotropic fourth-order tensor in the unstressed state (σ = 0).

Furthermore, a general rate-type constitutive equation of anisotropic

elasticity, e.g., Eq. (6.2.14), is not of the hypoelastic type, because the

anisotropic elastic moduli LLL(0) depend on the nine components of the defor-

mation gradient F, which cannot be expressed in terms of the six components

of the stress tensor σ, as required by the hypoelastic constitutive structure.

However, a rate-type constitutive equation of finite strain isotropic elasticity

(with invertible stress-strain relation) is of hypoelastic type. This follows

because LLL(0) in Eq. (6.5.9) depends on V, and for isotropic elasticity the

six components of V can be expressed in terms of the six components of σ,

from an invertible type of Eq. (5.5.1). For additional discussion and com-

parison between elasticity and hypoelasticity, the papers by Pinsky, Ortiz,

and Pister (1983), Simo and Pister (1984), and Simo and Ortiz (1985) can

be consulted. A majority of hypoelastic solids are inelastic, in the sense that
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the stress state is generally not recovered upon an arbitrary closed cycle of

strain (Hill, 1959). Illustrative examples can be found in Kojić and Bathe

(1987), Weber and Anand (1990), Christoffersen (1991), and Bruhns, Xiao,

and Meyers (1999). For instance, there is no truly hyperelastic material

corresponding to hypoelastic constitutive equation

◦
σ = (λI ⊗ I + 2μIII ) : D, (6.6.13)

where λ and μ are the Lamé type elasticity constants. Integration of Eq.

(6.6.13) over a closed cycle of strain gives rise to a small net work left upon

a cycle and the hysteresis effects. This is a consequence of the fact that

Eq. (6.6.13) is not exactly an integrable equation. As pointed out by Simo

and Ortiz (1985), a hypoelastic response with constant components of the

fourth-order tensor in Eq. (6.6.13) cannot integrate into a truly hyperelastic

response. Further discussion of hypoelastic constitutive equations, particu-

larly regarding the use of different objective stress rates, is given by Dienes

(1979), Atluri (1984), Johnson and Bammann (1984), Sowerby and Chu

(1984), Metzger and Dubey (1987), and Szabó and Balla (1989).

References

Atluri, S. N. (1984), On constitutive relations at finite strain: Hypoelastic-

ity and elastoplasticity with isotropic or kinematic hardening, Comput.

Meth. Appl. Mech. Engrg., Vol. 43, pp. 137–171.

Bruhns, O. T., Xiao, H., and Meyers, A. (1999), Self-consistent Eulerian rate

type elasto-plasticity models based upon the logarithmic stress rate, Int.

J. Plasticity, Vol. 15, pp. 479–520.

Chadwick, P. and Ogden, R. W. (1971), On the definition of elastic moduli,

Arch. Rat. Mech. Anal., Vol. 44, pp. 41–53.

Christoffersen, J. (1991), Hyperelastic relations with isotropic rate forms

appropriate for elastoplasticity, Eur. J. Mech., A/Solids, Vol. 10, pp.

91–99.

Dienes, J. K. (1979), On the analysis of rotation and stress rate in deforming

bodies, Acta Mech., Vol. 32, pp. 217–232.

Hill, R. (1959), Some basic principles in the mechanics of solids without

natural time, J. Mech. Phys. Solids, Vol. 7, pp. 209–225.

© 2002 by CRC Press LLC 



Hill, R. (1978), Aspects of invariance in solid mechanics, Adv. Appl. Mech.,

Vol. 18, pp. 1–75.

Holzapfel, G. A. (2000), Nonlinear Solid Mechanics, John Wiley & Sons,

Ltd, Chichester, England.

Johnson, G. C. and Bammann, D. J. (1984), A discussion of stress rates in

finite deformation problems, Int. J. Solids Struct., Vol. 20, pp. 725–

737.
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CHAPTER 7

ELASTIC STABILITY

7.1. Principle of Stationary Potential Energy

Denote by δF the variation of the deformation gradient F. Since for Green

elasticity P = ∂Ψ/∂F, where Ψ = Ψ(F) is the strain energy per unit initial

volume, we can write

P · · δF =
∂Ψ
∂F

· · δF = δΨ, (7.1.1)

and the principle of virtual work of Eq. (3.12.1) becomes∫
V 0

δΨ dV 0 =
∫
V 0

ρ0 b · δudV 0 +
∫
S0
t

pn · δudS0
t . (7.1.2)

In general, for arbitrary loading there is no true variational principle associ-

ated with Eq. (7.1.2), because the variation δ affects the applied body force

b and the surface traction p(n). However, if the loading is conservative, as

in the case of dead loading, then

b · δu = δ(b · u), pn · δu = δ(pn · u), (7.1.3)

and Eq. (7.1.2) can be recast in the variational form

δP = 0, (7.1.4)

where

P =
∫
V 0

Ψ dV 0 −
∫
V 0

ρ0 b · udV 0 −
∫
S0
t

pn · udS0
t . (7.1.5)

Among all geometrically admissible displacement fields, the actual displace-

ment field (whether unique or not) of the considered boundary-value problem

makes stationary the potential energy functional P(u) given by Eq. (7.1.5).

See also Nemat-Nasser (1974) and Washizu (1982).
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7.2. Uniqueness of Solution

Consider a finite elasticity problem described by the equilibrium equations

∇0 · P + ρ0 b = 0, (7.2.1)

and the mixed boundary conditions

u = u(X) on S0
u, n0 · P = pn(X) on S0

t . (7.2.2)

For simplicity, restrict attention to dead loading on S0
t , and dead body forces

b = b(X) in V 0. Suppose that there are two different solutions of Eqs.

(7.2.1) and (7.2.2), u and u∗ (i.e., x and x∗). The corresponding deformation

gradients are F and F∗, and the nominal stresses P and P∗. The equilibrium

fields (P,F) and (P∗,F∗) necessarily satisfy the condition∫
V 0

(P∗ − P) · · (F∗ − F) dV 0 = 0, (7.2.3)

which follows from Eq. (3.12.5). Consequently, the solution x = x(X) is

unique if ∫
V 0

(P∗ − P) · · (F∗ − F) dV 0 �= 0, (7.2.4)

for all geometrically admissible x∗ giving rise to

F∗ =
∂x∗

∂X
, P∗ =

∂Ψ
∂F∗ . (7.2.5)

The stress field P∗ in (7.2.4) need not be statically admissible, so even if

equality sign applies in (7.2.4) for some x∗, the uniqueness is not lost un-

less that x∗ gives rise to statically admissible stress field P∗. Therefore, a

sufficient condition for x to be unique solution is that for all geometrically

admissible deformation fields x∗,∫
V 0

(P∗ − P) · · (F∗ − F) dV 0 > 0. (7.2.6)

The reversed inequality could also serve as a sufficient condition for unique-

ness. The solution x which obeys such inequality for all geometrically ad-

missible x∗ would define unique, but unstable equilibrium configuration, as

will be discussed in Section 7.3.

A stronger (more restrictive) condition for uniqueness is

(P∗ − P) · · (F∗ − F) > 0, (7.2.7)

which clearly implies (7.2.6). However, unique solution in finite elasticity is

not expected in general (particularly under dead loading), so that inequalities
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such as (7.2.6) and (7.2.7) are too strong restrictions on elastic constitutive

relation. In fact, a nonuniqueness in finite elasticity is certainly anticipated

whenever the stress-deformation relation P = ∂Ψ/∂F is not uniquely in-

vertible. For example, Ogden (1984) provides examples in which two, four

or more possible states of deformation correspond to a given state of nomi-

nal stress. See also Antman (1995). A study of the existence of solutions to

boundary-value problems in finite strain elasticity is more difficult, with only

few results presently available (e.g., Ball, 1977; Hanyga, 1985; Ciarlet, 1988).

A comprehensive account of the uniqueness theorems in linear elasticity is

given by Knops and Payne (1971).

7.3. Stability of Equilibrium

Consider the inequality

Ψ (F∗) − Ψ (F) − P · · (F∗ − F) > 0, (7.3.1)

where (P,F) correspond to equilibrium configuration x, and (P∗,F∗) to any

geometrically admissible configuration x∗ (Coleman and Noll, 1959). This

inequality implies (7.2.7), so that (7.3.1) also represents a sufficient condition

for uniqueness. (To see that (7.3.1) implies (7.2.7), write another inequality

by reversing the role of F and F∗ in (7.3.1), and add the results; Ogden, op.

cit.). Inequality (7.3.1) is particularly appealing because it directly leads to

stability criterion. To that goal, integrate (7.3.1) to obtain∫
V 0

[Ψ (F∗) − Ψ(F)] dV 0 >

∫
V 0

P · · (F∗ − F) dV 0. (7.3.2)

Using Eq. (3.12.4) to express the integral on the right-hand side gives∫
V 0

[Ψ (F∗) − Ψ(F)] dV 0 >

∫
V 0

ρ0 b · (x∗ − x) dV 0

+
∫
S0
t

pn · (x∗ − x) dS0
t .

(7.3.3)

This means that the increase of the strain energy in moving from the con-

figuration x to x∗ exceeds the work done by the prescribed dead loading

on that transition. According to the classical energy criterion of stability

this means that x is a stable equilibrium configuration (Hill, 1957; Pearson,

1959).
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Recalling the expression for the potential energy from Eq. (7.1.5), and

the identity

x∗ − x = u∗ − u, (7.3.4)

the inequality (7.3.3) can be rewritten as

P(u∗) > P(u). (7.3.5)

Consequently, among all geometrically admissible configurations the poten-

tial energy is minimized in the configuration of stable equilibrium.

In a broader sense, stability of equilibrium at x is stable if for some geo-

metrically admissible x∗, P(u∗) = P(u), while for all others P(u∗) > P(u).

In this situation, however, equilibrium configuration x is not necessarily

unique, because x∗ for which P(u∗) = P(u) may give rise to statically ad-

missible stress field (in which case x∗ is also an equilibrium configuration).

Therefore, stability in the sense P(u∗) ≥ P(u) does not in general imply

uniqueness. Conversely, unique configuration need not be stable. It is un-

stable if P(u∗) < P(u) for at least one u∗, and P(u∗) > P(u) for all other

geometrically admissible x∗.

In summary, the inequality

P(u∗) ≥ P(u) (7.3.6)

is a global sufficient condition for stability of equilibrium configuration x. It

is, however, too restrictive criterion, because it is formulated relative to all

geometrically admissible configurations around x.

7.4. Incremental Uniqueness and Stability

Physically more appealing stability criterion is obtained if x∗ is confined

to adjacent configurations, in the neighborhood of x. In that case we talk

about local or incremental (infinitesimal) stability (Truesdell and Noll, 1965).

We start from the inequality (7.3.1). If F∗ is near F (corresponding to an

equilibrium configuration), so that

F∗ = F + δF, (7.4.1)

the Taylor expansion gives

Ψ(F + δF) = Ψ(F) + P · · δF +
1
2

Λ · · · · (δF ⊗ δF) + · · · . (7.4.2)

© 2002 by CRC Press LLC 



Consequently, to second-order terms, the inequality (7.3.1) becomes

1
2

Λ · · · · (δF ⊗ δF) > 0. (7.4.3)

This is a sufficient condition for incremental (infinitesimal) uniqueness, or

uniqueness in the small neighborhood of F. An integration over the volume

V 0 yields

1
2

∫
V 0

Λ · · · · (δF ⊗ δF) dV 0 > 0. (7.4.4)

Using (7.4.2), Eq. (7.1.5) gives in the case of dead loading

P(u + δu) − P(u) =
1
2

∫
V 0

Λ · · · · (δF ⊗ δF) dV 0

+
∫
V 0

P · · δFdV 0 −
∫
V 0

ρ0 b · δudV 0 −
∫
S0
t

pn · δudS0,
(7.4.5)

where δu = δx. The last three integrals on the right-hand side of Eq.

(7.4.5) cancel each other by Gauss theorem, equilibrium equations, and the

condition δu = 0 on S0
u; see Eq. (3.12.1). Thus,

P(u + δu) − P(u) =
1
2

∫
V 0

Λ · · · · (δF ⊗ δF) dV 0. (7.4.6)

If equilibrium configuration x is incrementally unique, so that (7.4.3) applies,

then from (7.4.6) it follows that

P(u + δu) > P(u), (7.4.7)

which means that equilibrium configuration x is locally or incrementally sta-

ble. If for some δu, P(u+δu) = P(u), while for other δu, P(u+δu) > P(u),

the configuration x is a state of neutral incremental stability, although the

configuration may not be incrementally unique. The strict inequality (7.4.7)

is sometimes referred to as the criterion of local (incremental) superstability.

See also Knops and Wilkes (1973), and Gurtin (1982).

7.5. Rate-Potentials and Variational Principle

In this section we examine the existence of the variational principle, and

the uniqueness and stability of the boundary-value problem of the rate-type

elasticity considered in Chapter 6. First, we recall that from Eq. (6.4.2) the

rate of nominal stress is

Ṗ = Λ · · Ḟ, Λ =
∂2Ψ

∂F ⊗ ∂F
. (7.5.1)
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Since the tensor of elastic pseudomoduli Λ obeys the reciprocal symmetry,

Eq. (7.5.1) can be rephrased by introducing the rate-potential function χ as

Ṗ =
∂χ

∂Ḟ
, χ =

1
2

Λ · · · · (Ḟ ⊗ Ḟ). (7.5.2)

Its Cartesian component representation is

ṖJi =
∂χ

∂ḞiJ

, χ =
1
2

ΛJiLkḞiJ ḞkL. (7.5.3)

Consequently, we have

Ṗ · · δḞ =
∂χ

∂Ḟ
· · δḞ = δχ, (7.5.4)

and the principle of virtual velocity from Eq. (3.11.8) becomes, for static

problems,∫
V 0

δχdV 0 =
∫
V 0

ρ0 ḃ · δv dV 0 +
∫
S0
t

ṗn · δv dS0
t , (7.5.5)

for any analytically admissible virtual velocity field δv vanishing on S0
v .

For general, nonconservative loading there is no true variational principle

associated with Eq. (7.5.5), because the variation δ affects ḃ and ṗ(n).

However, if the rates of loading are deformation insensitive (remain unaltered

during the variation δv), there is a variational principle

δΞ = 0, (7.5.6)

with

Ξ =
∫
V 0

χdV 0 −
∫
V 0

ρ0 ḃ · v dV 0 −
∫
S0
t

ṗn · v dS0
t . (7.5.7)

Among all kinematically admissible velocity fields, the actual velocity field

(whether unique or not) of the considered rate boundary-value problem ren-

ders stationary the functional Ξ(v).

There is also a variational principle associated with Eq. (7.5.5) if the

rates of prescribed tractions and body forces are self-adjoint in the sense

that (Hill, 1978) ∫
S0
t

(ṗn · δv − v · δṗn) dS0
t = 0, (7.5.8)
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and similarly for the body forces, since then

δ

∫
S0
t

(ṗn · v) dS0
t = 2

∫
S0
t

(ṗn · δv) dS0
t ,

δ

∫
V 0

(
ḃ · v

)
dV 0 = 2

∫
V 0

(
ḃ · δv

)
dV 0.

(7.5.9)

In this case the variational integral is

Ξ =
∫
V 0

χdV 0 − 1
2

∫
V 0

ρ0 ḃ · v dV 0 − 1
2

∫
S0
t

ṗn · v dS0
t . (7.5.10)

A loading that is partly controllable (independent of v), and partly deforma-

tion sensitive but self-adjoint in the above sense also allows the variational

principle. Detailed analysis is available in Hill (op. cit.).

7.5.1. Betti’s Theorem and Clapeyron’s Formula

Let

v = ẋ, Ḟ =
∂v
∂X

, Ṗ = Λ : Ḟ (7.5.11)

be a solution of the boundary-value problem associated with the prescribed

rates of body forces ḃ in V 0, surface tractions ṗn on S0
t , and velocities v on

S0
v . Similarly, let

v∗ = ẋ∗, Ḟ∗ =
∂v∗

∂X
, Ṗ∗ = Λ : Ḟ∗ (7.5.12)

be a solution of the boundary-value problem associated with the prescribed

rates of body forces ḃ∗ in V 0, surface tractions ṗ∗
n on S0

t , and velocities v∗

on S0
v . By reciprocal symmetry of pseudomoduli Λ we have the reciprocal

relation

Ṗ · · Ḟ∗ = Ṗ∗ · · Ḟ. (7.5.13)

Upon integration over the volume V 0, and by using Eq. (3.11.12), it follows

that ∫
V 0

ρ0 ḃ · v∗ dV 0 +
∫
S0

n0 · Ṗ · v∗ dS0

=
∫
V 0

ρ0 ḃ∗ · v dV 0 +
∫
S0

n0 · Ṗ∗ · v dS0.

(7.5.14)

This is analogous to Betti’s reciprocal theorem of classical elasticity. Also,

by incorporating Ṗ = Λ : Ḟ in the integral on the left-hand side of Eq.

(3.11.12), there follows∫
V 0

χdV 0 =
1
2

∫
V 0

ρ0ḃ · v dV 0 +
1
2

∫
S0

n0 · Ṗ · v dS0, (7.5.15)
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which is analogous to Clapeyron’s formula from linear elasticity (Hill, 1978).

7.5.2. Other Rate-Potentials

The rate potential χ was introduced in Eq. (7.5.2) for the rate of nominal

stress Ṗ. We can also introduce the rate-potentials for the rates of material

and spatial stress tensors, such that

Ṫ(n) =
∂χ(n)

∂Ė(n)

, χ(n) =
1
2

Λ(n) ::
(
Ė(n) ⊗ Ė(n)

)
, (7.5.16)

•
TTT (n) =

∂χ̄(n)

∂
•
EEE(n)

, χ̄(n) =
1
2

Λ̄(n) ::
(•
EEE(n) ⊗

•
EEE(n)

)
. (7.5.17)

7.5.3. Current Configuration as Reference

If the current configuration is taken as the reference configuration, we have

Ṗ =
∂χ

∂L
, χ =

1
2

Λ · · · · (L ⊗ L), (7.5.18)

since Ḟ = L (see Section 6.4). Substituting Eq. (6.4.16) for Λ, there follows

χ =
1
2
LLL(1) :: (D ⊗ D) +

1
2
σ :

(
LT · L)

. (7.5.19)

Alternatively, in view of Eq. (6.3.14),

χ =
1
2
LLL(0) :: (D ⊗ D) +

1
2
σ :

(
LT · L − 2D2

)
. (7.5.20)

The symmetry of the instantaneous elastic moduli LLL(1) was used in arriv-

ing at Eq. (7.5.19). With the current configuration as the reference, the

variational integral of Eq. (7.5.7) becomes

Ξ =
∫
V

χdV −
∫
V

ρ ḃ · v dV −
∫
St

ṗ
n
· δv dSt, (7.5.21)

where n ·Ṗ = ṗ
n

on St. The traction rate ṗ
n

is related to the rate of Cauchy

traction ṫn by Eq. (3.9.18).

The rate potentials χ
(n)

are introduced such that

Ṫ(n) =
∂χ

(n)

∂D
, χ

(n)
=

1
2
LLL(n) :: (D ⊗ D). (7.5.22)

In view of Eqs. (6.3.10) and (6.3.13), the various rate potentials are related

by

χ
(n)

= χ
(0)

− nσ : D2 = χ
(1)

+ (1 − n)σ : D2, (7.5.23)
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and

χ = χ
(n)

+
1
2
σ :

[
LT · L − 2(1 − n)D2

]
. (7.5.24)

Using the results from Section 3.9 for the rates Ṫ(n), Eq. (7.5.22) gives, for

n = 0 and n = ±1,

◦
τ =

∂χ
(0)

∂D
,

�
τ =

∂χ
(1)

∂D
,

∇
τ =

∂χ
(−1)

∂D
. (7.5.25)

7.6. Uniqueness of Solution to Rate Problem

We examine now the uniqueness of solution to the boundary-value problem

described by the rate equilibrium equations

∇0 · Ṗ + ρ0 ḃ = 0, (7.6.1)

and the boundary conditions

v = v0 on S0
v , n0 · Ṗ = ṗn on S0

t . (7.6.2)

It is assumed that incremental loading is deformation insensitive, so that ḃ

in V 0 and ṗn on S0
t do not depend on the velocity.

Suppose that there are two different solutions of Eqs. (7.6.1) and (7.6.2),

v and v∗. The corresponding rates of deformation gradients are Ḟ and Ḟ∗,

with the rates of nominal stresses Ṗ and Ṗ∗. The equilibrium fields
(
Ṗ, Ḟ

)
and

(
Ṗ∗, Ḟ∗

)
necessarily satisfy the condition∫

V 0
(Ṗ∗ − Ṗ) · · (Ḟ∗ − Ḟ) dV 0 = 0, (7.6.3)

which follows from Eq. (3.11.13). Consequently, from Eq. (7.6.3), the

velocity field v is unique if∫
V 0

(
Ṗ∗ − Ṗ

)
· ·

(
Ḟ∗ − Ḟ

)
dV 0

=
∫
V 0

Λ · · · ·
(
Ḟ∗ − Ḟ

)
⊗

(
Ḟ∗ − Ḟ

)
dV 0 �= 0,

(7.6.4)

for all kinematically admissible v∗ giving rise to

Ḟ∗ =
∂v∗

∂X
, Ṗ∗ = Λ : Ḟ∗. (7.6.5)

The stress rate Ṗ∗ in (7.6.4) need not be statically admissible, so even if the

equality sign applies in (7.6.4) for some v∗, the uniqueness is lost only if v∗

gives rise to statically admissible stress-rate field Ṗ∗. Therefore, a sufficient
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condition for v to be unique solution is that for all kinematically admissible

velocity fields v∗,∫
V 0

Λ · · · ·
(
Ḟ∗ − Ḟ

)
⊗

(
Ḟ∗ − Ḟ

)
dV 0 > 0. (7.6.6)

The reversed inequality could also serve as a sufficient condition for unique-

ness. The solution v which obeys such inequality for all kinematically ad-

missible v∗ would define unique, but unstable equilibrium configuration,

analogous to the consideration in Section 7.3.

A more restrictive condition for uniqueness is evidently

Λ · · · ·
(
Ḟ − Ḟ∗

)
⊗

(
Ḟ − Ḟ∗

)
> 0, (7.6.7)

which implies (7.6.6), and which states that Λ is positive definite. However,

since unique solution to a finite elasticity rate problem cannot be expected

in general, the inequality (7.6.7) may fail at certain states of deformation.

A nonuniqueness of the rate problem is certainly a possibility if the state of

deformation is reached when Λ becomes singular, so that Λ · · Ḟ = 0 has

nontrivial solutions for Ḟ. Details of the calculations for isotropic materials

can be found in Ogden (1984).

If a sufficient condition for uniqueness (7.6.6) applies, then

Ξ(v∗) > Ξ(v), (7.6.8)

and the variational principle is strengthened to a minimum principle: among

all kinematically admissible velocity fields, the actual field renders Ξ the

minimum. Indeed, from Eq. (7.5.7) it follows that

Ξ(v∗) − Ξ(v) =
1
2

∫
V 0

(
Ṗ∗ − Ṗ

)
· ·

(
Ḟ∗ − Ḟ

)
dV 0. (7.6.9)

In the derivation, Eq. (3.11.12) was used, and the reciprocity relation

Ṗ · · Ḟ∗ = Ṗ∗ · · Ḟ. (7.6.10)

A useful identity, resulting from the reciprocity of Λ, is

Ṗ∗ · · Ḟ∗ − Ṗ · · Ḟ =
(
Ṗ∗ − Ṗ

)
· ·

(
Ḟ∗ − Ḟ

)
+ 2 Ṗ · ·

(
Ḟ∗ − Ḟ

)
. (7.6.11)

7.7. Bifurcation Analysis

It was shown in the previous section, if displacement fields v and v∗ are both

solutions of incrementally linear inhomogeneous rate problem described by
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Eqs. (7.6.1) and (7.6.2), then
1
2

∫
V 0

(
ΔṖ · ·ΔḞ

)
dV 0 =

1
2

∫
V 0

Λ · · · ·
(
ΔḞ ⊗ ΔḞ

)
dV 0 = 0, (7.7.1)

with

ΔḞ = Ḟ − Ḟ∗, ΔṖ = Ṗ − Ṗ∗. (7.7.2)

Consider the associated homogeneous rate problem, described by

∇0 · ṖPP = 0, (7.7.3)

and the boundary conditions

w = 0 on S0
v , n0 · ṖPP = 0 on S0

t , (7.7.4)

where

ḞFF =
∂w
∂X

, ṖPP = Λ · · ḞFF . (7.7.5)

The bold face italic notation is used for the fields associated with the dis-

placement field w. The rate problem described by (7.7.3) and (7.7.4) has

always a nul solution w = 0. If the homogeneous problem also has a non-

trivial solution

w �= 0, (7.7.6)

then by Eq. (7.7.1)
1
2

∫
V 0

(
ṖPP · · ḞFF

)
dV 0 =

1
2

∫
V 0

Λ · · · ·
(
ḞFF ⊗ ḞFF

)
dV 0 = 0. (7.7.7)

This condition places the same restrictions on the moduli Λ as does (7.7.1),

as expected, since (7.7.7) follows directly from (7.7.1) by taking

w = v − v∗. (7.7.8)

The examination of the uniqueness of solution to incrementally linear in-

homogeneous rate problem (7.6.1) and (7.6.2) is thus equivalent to the ex-

amination of the uniqueness of solution to the associated homogeneous rate

problem (7.7.3) and (7.7.4).

7.7.1. Exclusion Functional

If for all kinematically admissible w giving rise to ḞFF = ∂w/∂X,∫
V 0

χ(w) dV 0 =
1
2

∫
V 0

Λ · · · ·
(
ḞFF ⊗ ḞFF

)
dV 0 > 0, (7.7.9)

from Eq. (7.6.6) it follows that w = 0 is the only solution of the homogeneous

rate problem. Furthermore, by Eq. (7.4.4) it follows that the underlying
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equilibrium configuration x is incrementally stable (and thus incrementally

unique), under a considered dead loading. At some states of deformation,

however, there may exist a nontrivial solution w �= 0 to the homogeneous

rate problem. This w then satisfies Eq. (7.7.7), implying nonuniqueness

of the homogeneous rate problem, and from Section 7.4 nonuniqueness and

neutral incremental stability of the underlying equilibrium configuration x.

The deformation state at which this happens is called an eigenstate. A

nontrivial solution to the homogeneous rate problem is called an eigenmode

(Hill, 1978). Therefore, since inhomogeneous rate problem with an incre-

mentally linear stress-deformation response is linear, its solution is unique if

and only if the current configuration is not an eigenstate for the associated

homogeneous rate problem. If the current configuration is an eigenstate,

than any multiple of an eigenmode (kw) could be added to one solution

of inhomogeneous rate problem (v) to generate others (v + kw). Thus, to

guarantee uniqueness it is enough to exclude the possibility of eigenmodes.

Consequently, following Hill (1978), introduce the exclusion functional

F =
∫
V 0

χ(w) dV 0, χ(w) =
1
2

Λ · · · ·
(
ḞFF ⊗ ḞFF

)
, (7.7.10)

for any kinematically admissible w giving rise to ḞFF = ∂w/∂X. Starting the

deformation from a stable reference configuration, a state is reached where

the exclusion functional becomes positive semidefinite (F ≥ 0), vanishing

for some kinematically admissible w. The state at which

F = 0 (7.7.11)

is first reached for some w is called a primary eigenstate. In this state the

uniqueness fails, and the deformation path branches (usually by infinitely

many eigenmodes). The phenomenon is referred to as bifurcation. (Beyond

the region F ≥ 0, the exclusion functional is indefinite. If a kinematically

admissible w makes F = 0 for some configuration in this region, the config-

uration is an eigenstate, but w is not an eigenmode unless it gives rise to

statically admissible stress rate field ḞFF . Since this region is unstable, it will

not be considered further).

In any eigenstate at the boundary F ≥ 0, an eigenmode w makes the

exclusion functional stationary within the class of kinematically admissible
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variations δw. Indeed, for homogeneous data

1
2

∫
V 0

Λ · · · ·
(
ḞFF ⊗ δḞFF

)
dV 0 =

1
2

∫
V 0

ṖPP · · δḞFF dV 0 = 0, (7.7.12)

by Eq. (3.11.12), since the stress rate ṖPP , associated with an eigenmode w,

is statically admissible field for the homogeneous rate problem. Since Λ

possesses reciprocal symmetry, Eq. (7.7.12) implies

δF = 0. (7.7.13)

Conversely, any kinematically admissible velocity field w that makes F
stationary is an eigenmode. This is so because for homogeneous problem

the variational integral of Eq. (7.5.7) is equal to the exclusion functional

(Ξ = F).

As previously indicated, from Eq (7.4.6) it follows that

P(u + δu) = P(u) (7.7.14)

for any eigenmode w giving rise to displacement increment δu = w δt. Thus,

the potential energies are equal in any two adjacent equilibrium states differ-

ing under dead load by an eigenmode deformation. These states are neutrally

stable, within the second-order approximations used in deriving Eq. (7.4.6).

To assess stability of an eigenmode more accurately, higher order terms in

the expansion (7.4.2), leading to (7.4.6), would have to be retained.

The criticality of the exclusion functional is independent of the incepient

loading rates (inhomogeneous data) in the current configuration. However,

inhomogeneous data cannot be prescribed freely in an eigenstate, if the inho-

mogeneous rate problem is to admit a solution. Indeed, when the reciprocal

theorem (7.5.14) is applied to the fields
(
v, Ṗ

)
and (w,0), it follows that

∫
V 0

ρ0 ḃ · w dV 0 +
∫
S0
t

ṗn · w dS0
t = 0, (7.7.15)

for every distinct eigenmode. This may be regarded as a generalized orthog-

onality between the rates of loading (inhomogeneous data) and the eigen-

modes (Hill, 1978; Ogden, 1984).

In the case of homogeneous material and homogeneous deformation,

Eq. (7.7.9) implies that Λ is positive definite. A primary eigenstate is
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characterized by positive semidefinite Λ, i.e.,

χ(w) =
1
2

Λ · · · · (ḞFF ⊗ ḞFF ) ≥ 0, (7.7.16)

with equality sign for some ḞFF (uniform throughout the body). The corre-

sponding eigenmode is subject to stationary condition δF = 0, which gives

ṖPP · · δḞFF = 0 for all δḞFF from kinematically admissible δw. Thus,

ṖPP = Λ · · ḞFF = 0 (7.7.17)

in a primary (uniformly deformed) eigenstate, as anticipated since Λ be-

comes singular in this state.

In the case of deformation sensitive loading rates, the exclusion condition

is

F > 0 (7.7.18)

for all kinematically admissible fields w, where

F =
∫
V 0

χ(w) dV 0 − 1
2

∫
V 0

ρ0 ḃ · w dV 0 − 1
2

∫
S0
t

ṗn · w dS0
t . (7.7.19)

If the loading rates are self-adjoint in the sense of Eq. (7.5.8), both the

exclusion functional and its first variation vanish for an eigenmode. Detailed

analysis is given by Hill (1978).

7.8. Localization Bifurcation

Consider a homogeneous elastic body in the state of uniform deformation.

For prescribed velocities on the boundary which give rise to uniform Ḟ

throughout the body, conditions are sought under which bifurcation by lo-

calization of deformation within a planar band can occur. This is associated

with a primary eigenmode

w = f(N · X)η, ḞFF = f ′ η ⊗ N. (7.8.1)

For ḞFF to be discontinuous across the band, the gradient f ′ is piecewise con-

stant across the band, whose unit normal in the undeformed configuration

is N. The localization vector is η. For example, in the case of shear band,

n·η = 0, where n = N·FFF−1 is the band normal in the deformed configuration

(Fig. 7.1). (Although shear and necking instabilities are usually associated
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Figure 7.1. A shear band with normal n and localiza-
tion vector η in a homogeneously deformed specimen under
plane strain tension.

with plastic response, they can also occur in certain nonlinearly elastic ma-

terials; Silling, 1988; Antman, 1974,1995). The stress rate associated with

Eq. (7.8.1) is

ṖPP = f ′ Λ · · (η ⊗ N) = f ′ Λ : (N ⊗ η). (7.8.2)

Substituting this into equilibrium equation (7.7.3) gives

f ′′ N · Λ : (N ⊗ η) = 0. (7.8.3)

Thus,

N · Λ : (N ⊗ η) = A(N) · η = 0. (7.8.4)

The second-order tensor

A(N) = Λ : (N ⊗ N), Aij(N) = ΛKiLjNKNL (7.8.5)

is a symmetric tensor, obeying the symmetry ΛKiLj = ΛLjKi. For a non-

trivial η to be determined from the condition

A(N) · η = 0, (7.8.6)

the matrix A(N) has to be singular, i.e.,

detA(N) = 0. (7.8.7)

Note that Eq. (7.8.4) implies

ṗppn = N · ṖPP = 0, (7.8.8)

which is obtained by multiplying Eq. (7.8.2) with N. This means that the

rate of nominal traction across the localization band vanishes.

Constitutive law and equilibrium equations are said to be elliptic in any

state where

detA(N) �= 0, for all N. (7.8.9)

�

�
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Thus, if uniform deformation bifurcates by a band localization eigenmode,

the constitutive law and governing equilibrium equations loose their elliptic-

ity. Since there is a correspondence between the conditions for a localization

bifurcation and the occurrence of stationary body waves (waves with van-

ishing wave speeds), the latter is briefly discussed in the next section.

7.9. Acoustic Tensor

Consider a homogeneous elastic body in a state of homogeneous deformation.

Its response to small amplitude wave disturbances is examined. Solutions to

the rate equations

∇0 · Ṗ = ρ0 d2v
dt2

(7.9.1)

are sought in the form of a plane wave propagating with a speed c in the

direction N,

v = ηf(N · X − ct). (7.9.2)

The unit vector η defines the polarization of the wave. On substituting

(7.9.2) into (7.9.1), the propagation condition is found to be

A(N) · η = ρ0 c2 η. (7.9.3)

The second-order tensor A(N) is referred to as the acoustic tensor. It is

explicitly defined by Eq. (7.8.5). From Eq. (7.9.3) we conclude that ρ0c2

is an eigenvalue and η is an eigenvector of the acoustic tensor A(N). Since

A(N) is real and symmetric, c2 must be real. If c2 > 0, there is a stability

with respect to propagation of small disturbances. For stationary waves

(stationary discontinuity) c = 0, which signifies the transition from stability

to instability. The instability is associated with c2 < 0, and a divergent

growth of an initial disturbance.

Taking a scalar product of Eq. (7.9.3) with η gives

η · A(N) · η = ρ0 c2. (7.9.4)

Therefore, if A(N) is positive definite,

η · A(N) · η > 0 (7.9.5)

for all η, we have c2 > 0, and Eq. (7.9.1) admits three linearly independent

plane progressive waves for each direction of propagation N. In this case,

small amplitude elastic plane waves can propagate along a given direction
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in three distinct, mutually orthogonal modes. These modes are generally

neither longitudinal nor transverse. We say that the wave is longitudinal

if η and n = N · F−1 are parallel, and transverse if η and n are perpen-

dicular. Brugger (1965) calculated directions of propagation of pure mode,

longitudinal and transverse waves for most anisotropic crystal classes in their

undeformed state. See also Hill (1975) and Milstein (1982).

7.9.1. Strong Ellipticity Condition

If the condition holds

η · A(N) · η = Λ :: [(N ⊗ η) ⊗ (N ⊗ η)] > 0 (7.9.6)

for each N⊗η, the system of equations (7.9.1) with zero acceleration is said

to be strongly elliptic. Clearly, strong ellipticity implies ellipticity, since for

positive definite acoustic tensor

detA(N) > 0. (7.9.7)

Not every strain energy function will yield an acoustic tensor satisfying the

conditions of strong ellipticity in every configuration. For example, in the

case of undeformed isotropic elastic material, the strong ellipticity requires

that the Lamé constants satisfy

λ + 2μ > 0, μ > 0. (7.9.8)

This does not imply that the corresponding Ψ is positive definite. The

conditions for the latter are

λ +
2
3
μ > 0, μ > 0. (7.9.9)

Thus, while the strong ellipticity condition is strong enough to preclude

occurrence of shear band localization, it is not strong enough to ensure the

physically observed behavior with necessarily positive value of the elastic

bulk modulus (κ = λ + 2μ/3).

A weaker inequality

η · A(N) · η = Λ :: [(N ⊗ η) ⊗ (N ⊗ η)] ≥ 0 (7.9.10)

for all N ⊗ η, is known as the Hadamard condition of stability. This condi-

tion does not exclude nonpropagating or stationary waves (discontinuities,
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singular surfaces). The condition is further discussed by Truesdell and Noll

(1965), and Marsden and Hughes (1983).

If the current configuration is taken as the reference, Eq. (7.9.1) becomes

∇ · Ṗ = ρ
d2v
dt2

, (7.9.11)

where

Ṗ = Λ · ·L, Λjilk = L(1)
jilk + σjlδik. (7.9.12)

The propagation condition is

A(n) · η = ρ c2 η, Aij(n) = Λkiljnknl, (7.9.13)

while the strong ellipticity requires that

η · A(n) · η = Λ :: [(n ⊗ η) ⊗ (n ⊗ η)] > 0. (7.9.14)

Since the moduli Λ and Λ are related by Eq. (6.4.14), and since n = N·F−1,

there is a connection

A(N) = (detF)A(n). (7.9.15)

7.10. Constitutive Inequalities

A significant amount of research was devoted to find a constitutive inequality

for elastic materials under finite deformation that would hold irrespective of

the geometry of the boundary value problem, or prescribed displacement

and traction boundary conditions. For example, in the range of infinitesimal

deformation such an inequality is σ : ε > 0, where ε is an infinitesimal strain.

This is a consequence of positive definiteness of the strain energy function

Ψ = (1/2)σ : ε. For finite elastic deformation, Caprioli (1955) proposed

that the elastic work is non-negative on any path, open or closed, from the

ground state. This implies the existence of Ψ, which must have an absolute

minimum in the ground (unstressed) state.

Constitutive inequalities must be objective, i.e., independent of a super-

imposed rotation to the deformed configuration. For example, the inequality

Ṗ · · Ḟ = Λ · · · ·
(
Ḟ ⊗ Ḟ

)
> 0, (7.10.1)

derived from the considerations of uniqueness and stability of the rate bound-

ary value problem, is not objective, since under the rotation Q,

Ṗ∗ · · Ḟ∗ =
(
Ṗ − P · Ω̂

)
· ·

(
Ḟ + Ω̂ · F

)
�= Ṗ · · Ḟ. (7.10.2)
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There is no universal constitutive inequality applicable to all types of finite

elastic deformation. Instead, various inequalities have been proposed to

hold in certain domains of deformation around the reference state, and for

particular types of elastic materials (e.g., Truesdell and Noll, 1965; Hill,

1968,1970; Ogden, 1970). Such an inequality is

(
T∗

(n) − T(n)

)
:
(
E∗

(n) − E(n)

)
=

(
∂Ψ

∂E∗
(n)

− ∂Ψ
∂E(n)

)
:
(
E∗

(n) − E(n)

)
> 0,

(7.10.3)

for all E(n) �= E∗
(n). If the strain domain in which (7.10.3) holds is convex,

the inequality implies that Ψ(E(n)) is globally strictly convex in that domain.

It also implies that ∂Ψ/∂E(n) is one-to-one in that domain. For different n,

(7.10.3) represents different physical requirements, so that inequality may

hold for some n, and fail for others.

Another inequality is obtained by requiring that

Ṫ(n) : Ė(n) = Λ(n) :: (Ė(n) ⊗ Ė(n)) > 0, Λ(n) =
∂2Ψ

∂E(n) ⊗ ∂E(n)
. (7.10.4)

This means that Λ(n), the Hessian of Ψ with respect to E(n), is positive

definite, i.e., that the strain energy Ψ is locally strictly convex in a consid-

ered strain domain. It can be shown that in a convex strain domain local

convexity implies global convexity, and vice versa. To demonstrate former,

for instance, we can choose the strain rate in (7.10.4) to be directed along

the line from E(n) to E∗
(n); integration from E(n) to E∗

(n) leads (7.10.3). As

in the case of (7.10.3), the inequality (7.10.4) represents different physical

requirements for different choices of n. Convexity of Ψ is not an invariant

property, so that convexity in the space of one strain measure may be lost

in the space of another strain measure.

If the current configuration is taken as the reference, (7.10.4) becomes

Ṫ(n) : D = LLL(n) :: (D ⊗ D) = 2χ
(n)

> 0. (7.10.5)

This in general imposes different restrictions on the constitutive law than

(7.10.4) does. In view of Eqs. (6.3.12) and (6.3.13), we can rewrite (7.10.5)

as

◦
τ : D > 2n

(
σ : D2

)
,

◦
τ =

◦
σ + σ trD. (7.10.6)

© 2002 by CRC Press LLC 



Hill (1968) proposed that the most appealing inequality is obtained from

(7.10.6) for n = 0, so that

◦
τ : D > 0. (7.10.7)

This inequality is found to be in best agreement with the anticipated features

of elastic response. See also Leblond (1992).

Alternative representation of the inequalities (7.10.3) and (7.10.4) is ob-

tained by using spatial tensor measures. They are

(
TTT ∗

(n) −TTT (n)

)
:
(
EEE∗

(n) −EEE(n)

)
=

(
∂Ψ

∂EEE∗
(n)

− ∂Ψ
∂EEE(n)

)
:
(
EEE∗

(n) −EEE(n)

)
> 0,

(7.10.8)

•
TTT (n) :

•
EEE(n) = Λ̄(n) ::

(•
EEE(n) ⊗

•
EEE(n)

)
> 0, Λ̄(n) =

∂2Ψ
∂EEE(n) ⊗ ∂EEE(n)

. (7.10.9)

Inequality (7.10.5) remains the same, because
•
TTT (n) = Ṫ(n) and Λ̄(n) = LLL(n).

If E∗
(n) is nearby E(n), so that

E∗
(n) = E(n) + δE(n), (7.10.10)

by Taylor expansion of ∂Ψ/∂E∗
(n) we obtain

δT(n) = Λ(n) : δE(n) +
1
2
∂Λ(n)

∂E(n)
::

(
δE(n) ⊗ δE(n)

)
+ · · · . (7.10.11)

Thus,

δT(n) : δE(n) = Λ(n) ::
(
δE(n) ⊗ δE(n)

)
+

1
2
∂Λ(n)

∂E(n)
:::

(
δE(n) ⊗ δE(n) ⊗ δE(n)

)
+ · · · . (7.10.12)

The sixth-order tensor

∂Λ(n)

∂E(n)
=

∂2T(n)

∂E(n) ⊗ ∂E(n)
=

∂3Ψ
∂E(n) ⊗ ∂E(n) ⊗ ∂E(n)

(7.10.13)

is a tensor of the third-order elastic moduli, previously encountered in Sec-

tion 5.11 within the context of higher-order elastic constants of cubic crys-

tals. The third-order pseudomoduli are similarly defined as ∂Λ/∂F. These

tensors play an important role in assessing the true nature of stability of

equilibrium in the cases when the second-order expansions, such as those

used in Section 7.4, lead to an assessment of neutral stability. Details are

available in Hill (1982) and Ogden (1984).
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Part 3

THEORY OF PLASTICITY
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CHAPTER 8

ELASTOPLASTIC CONSTITUTIVE
FRAMEWORK

This chapter provides a basic framework for the constitutive analysis of

elastoplastic materials. Such materials are capable of exhibiting, under cer-

tain loadings, purely elastic response at any stage of deformation. The de-

velopment is originally due to Hill and Rice (1973). Rate-independent and

rate-dependent plastic materials are both encompassed by this framework.

For rate-independent materials, purely elastic response results when stress

variations are directed within the current yield surface, which is introduced

for such materials. For rate-dependent materials, the response may be purely

elastic only in the limit, when stress variations are sufficiently rapid com-

pared to fastest rates at which inelastic processes can take place. We start

the analysis by defining elastic and plastic increments of stress and strain

tensors. Normality properties are then discussed for rate-independent plas-

tic materials which admit the yield surface. Formulations in both stress

and strain space are given. Plasticity postulates of Ilyushin and Drucker

are studied in detail. Conditions for the existence of flow potential for rate-

dependent materials are also examined.

8.1. Elastic and Plastic Increments

An introductory thermodynamic analysis of inelastic deformation process

within the framework of thermodynamics with internal state variables was

presented in Sections 4.4–4.6. We proceed in this chapter with the analysis

of elastoplastic deformation under isothermal conditions only. Basic physi-

cal mechanisms of such deformation are described in standard texts, such as

Cottrell (1961,1964) and Honeycombe (1984). We shall assume that there

is a set of variables ξj that, in some approximate sense, represent internal
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rearrangements of the material due to plastic deformation. These variables

are not necessarily state variables in the sense that the free or complemen-

tary energy is not a point function of ξj but, instead, depends on their path

history (Rice, 1971). Denoting the pattern of internal rearrangements sym-

bolically by H (the set of internal variables ξj together with the path history

by which they were achieved), the free energy per unit reference volume can

be expressed as

Ψ = Ψ
(
E(n), H

)
. (8.1.1)

At any given state of deformation, an infinitesimal change of H is assumed to

be fully described by a set of scalar infinitesimals dξj , such that the change

in Ψ due to dE(n) and dξj is, to first order,

dΨ =
∂Ψ

∂E(n)
: dE(n) − ρ0 fj dξj = T(n) : dE(n) − ρ0 fj dξj . (8.1.2)

The reference density is ρ0, and fj dξj is an increment of dissipative work

per unit mass. It is not necessary that any variable ξj exists such that dξj

represents an infinitesimal change of ξj . The use of an italic d in dξj is

intended to indicate this. The stress response is

T(n) =
∂Ψ

∂E(n)
, (8.1.3)

evaluated from Ψ at fixed values of H. The energetic forces fj are associated

with the infinitesimals dξj , so that plastic change of the free energy, due to

change of H alone,

dpΨ = Ψ
(
E(n), H + dH) − Ψ

(
E(n), H

)
, (8.1.4)

is equal to

dpΨ = −ρ0 fj dξj = −ρ0 f̄j
(
E(n), H

)
dξj . (8.1.5)

Higher-order terms, such as (1/2)dfj dξj , associated with infinitesimal changes

of fj during the variations dξj , are neglected.

8.1.1. Plastic Stress Increment

The plastic part of stress increment is defined by Hill and Rice (1973) as

dpT(n) = T(n)

(
E(n), H + dH) − T(n)

(
E(n), H

)
. (8.1.6)
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In view of Eqs. (8.1.3) and (8.1.4), this gives

dpT(n) =
∂

∂E(n)
(dpΨ) . (8.1.7)

Thus, the plastic increment of free energy dpΨ can be viewed as a potential

for the plastic part of stress increment dpT(n). From Eqs. (8.1.5) and (8.1.7),

we also have

dpT(n) = −ρ0 ∂f̄j
∂E(n)

dξj . (8.1.8)

Furthermore, by considering the function

T(n) = T(n)

(
E(n), H

)
, (8.1.9)

we deduce from Eq. (8.1.6) that

dpT(n) = dT(n) −
∂T(n)

∂E(n)
: dE(n) = dT(n) − Λ(n) : dE(n). (8.1.10)

The fourth-order tensor

Λ(n) =
∂T(n)

∂E(n)
=

∂2Ψ
∂E(n) ⊗ ∂E(n)

(8.1.11)

is the tensor of elastic moduli corresponding to the selected strain measure

E(n).

In a rate-independent elastoplastic material, the only way to vary H
but not E(n) is to consider a cycle of strain E(n) that involves dH. Sup-

pose that the cycle emanates from the state A
(
E(n),H

)
, it goes through

B
(
E(n) + dE(n),H + dH)

, and ends at the state C
(
E(n),H + dH)

, as shown

in Fig. 8.1. If the stress at A was T(n), in the state B it is T(n) + dT(n).

After the strain is returned to its value at the beginning of the cycle by

elastic unloading, the state C is reached. The stress there is T(n) + dpT(n).

The stress difference dpT(n) is then the stress decrement left after the cycle

of strain that involves dH.

8.1.2. Plastic Strain Increment

Dually, consider a complementary energy defined by the Legendre transform

of the free energy as

Φ(n)

(
T(n), H

)
= T(n) : E(n) − Ψ

(
E(n), H

)
. (8.1.12)
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Figure 8.1. Strain cycle ABC involving plastic deforma-
tion along an infinitesimal segment AB.

The change of complementary energy due to dT(n) and dξj is

dΦ(n) =
∂Φ(n)

∂T(n)
: dT(n) + ρ0 fj dξj = E(n) : dT(n) + ρ0 fj dξj . (8.1.13)

The strain response is accordingly

E(n) =
∂Φ(n)

∂T(n)
, (8.1.14)

evaluated from Φ(n) at fixed values of H. The plastic change of complemen-

tary energy, due to change of H alone,

dpΦ(n) = Φ(n)

(
T(n), H + dH) − Φ(n)

(
T(n), H

)
, (8.1.15)

is equal to

dpΦ(n) = ρ0 fj dξj = ρ0 f̂j
(
T(n), H

)
dξj . (8.1.16)

The plastic part of strain increment is defined by

dpE(n) = E(n)

(
T(n), H + dH) − E(n)

(
T(n), H

)
. (8.1.17)

In view of Eqs. (8.1.14) and (8.1.15), this gives

dpE(n) =
∂

∂T(n)

(
dpΦ(n)

)
. (8.1.18)

Thus, the plastic increment of complementary energy dpΦ(n) can be viewed

as a potential for the plastic part of strain increment dpE(n). From Eqs.
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(8.1.16) and (8.1.18), we also have

dpE(n) = ρ0 ∂f̂j
∂T(n)

dξj . (8.1.19)

Furthermore, by taking a differential of the function

E(n) = E(n)

(
T(n), H

)
, (8.1.20)

and by employing Eq. (8.1.17), we have

dpE(n) = dE(n) −
∂E(n)

∂T(n)
: dT(n) = dE(n) − M(n) : dT(n). (8.1.21)

The fourth-order tensor

M(n) =
∂E(n)

∂T(n)
=

∂2Φ
∂T(n) ⊗ ∂T(n)

(8.1.22)

is the tensor of elastic compliances corresponding to selected stress measure

T(n).

In a rate-independent elastoplastic material, the only way to vary H
but not T(n) is to consider a cycle of stress T(n) that involves dH. Con-

sider a cycle A→B→D; see Fig. 8.2. In state D the stress is returned

to its value before the cycle, i.e., A
(
T(n),H

)
, B

(
T(n) + dT(n),H + dH)

and D
(
T(n),H + dH)

. The strains in the states A and B are E(n) and

E(n)+dE(n), respectively. After stress is returned to its value before the cycle

by elastic unloading, the state D is reached, where the strain is E(n)+dpE(n).

The strain difference dpE(n) is the strain increment left after the cycle of

stress that involves dH.

For a rate-dependent material, dpE(n) is the difference between the

strains when T(n) is instantaneously applied after inelastic histories H and

H + dH, respectively.

8.1.3. Relationship between Plastic Increments

Equations (8.1.4) and (8.1.16) show that

dpΨ + dpΦ(n) = 0, (8.1.23)

within the order of accuracy used in Eqs. (8.1.4) and (8.1.16). The relation-

ship between the plastic increments dpE(n) and dpT(n) is easily established

© 2002 by CRC Press LLC 



Figure 8.2. Stress cycle ABD involving plastic deforma-
tion along an infinitesimal segment AB.

from Eqs. (8.1.8) and (8.1.19). This is

dpT(n) = −ρ0 ∂f̄j
∂E(n)

dξj = −ρ0

(
∂f̂j

∂T(n)
:
∂T(n)

∂E(n)

)
dξj = −∂T(n)

∂E(n)
: dpE(n).

(8.1.24)

Similarly,

dpE(n) = ρ0 ∂f̂j
∂T(n)

dξj = ρ0

(
∂f̄j

∂E(n)
:
∂E(n)

∂T(n)

)
dξj = −∂E(n)

∂T(n)
: dpT(n).

(8.1.25)

Therefore, the plastic increments are related by

dpT(n) = −Λ(n) : dpE(n), dpE(n) = −M(n) : dpT(n). (8.1.26)

These expressions also follow directly from Eqs. (8.1.10) and (8.1.21), since

Λ(n) and M(n) are mutual inverses.

Note that purely elastic increment of strain is related to the correspond-

ing increment of stress by

δT(n) = Λ(n) : δE(n), δE(n) = M(n) : δT(n). (8.1.27)

The variation of the free energy associated with δE(n) is

δΨ =
∂Ψ

∂E(n)
: δE(n) = T(n) : δE(n). (8.1.28)
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8.2. Yield Surface for Rate-Independent Materials

Rate-independent plastic materials have an elastic range within which they

respond in a purely elastic manner. The boundary of this range, in either

stress or strain space, is called the yield surface. The shape of the yield sur-

face depends on the entire history of deformation from the reference state.

During plastic deformation the states of stress or strain remain on the subse-

quent yield surfaces. The yield surfaces for actual materials are experimen-

tally found to be mainly smooth, although they may develop pyramidal or

conical vertices, or regions of high curvature (Hill, 1978). If elasticity within

the yield surface is linear and unaffected by plastic flow, the yield surfaces for

metals are convex in the Cauchy stress space. General discussion regarding

the geometry and experimental determination of the yield surfaces can be

found in Drucker (1960), Naghdi (1960), and Hecker (1976).

8.2.1. Yield Surface in Strain Space

Consider the yield surface in strain space defined by

g(n)

(
E(n), H

)
= 0, (8.2.1)

where H represents the pattern of internal rearrangements due to plastic

deformation. The strain E(n) is defined relative to an arbitrary reference

state. The shape of the yield surface at each stage of deformation is different

for different choices of E(n), so that different functions g(n) correspond to

different n. It is assumed that elastic response within the yield surface is

Green-elastic, associated with the strain energy

Ψ = Ψ
(
E(n), H

)
(8.2.2)

per unit reference volume, such that

T(n) =
∂Ψ

∂E(n)
. (8.2.3)

Let the state of strain E(n) be on the current yield surface. An increment of

strain dE(n) directed inside the yield surface constitutes an elastic unloading.

The corresponding incremental elastic response is governed by the rate-type

equation

Ṫ(n) = Λ(n) : Ė(n), Λ(n) =
∂2Ψ

∂E(n) ⊗ ∂E(n)
, (8.2.4)
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Figure 8.3. Strain increment associated with plastic load-
ing dE(n) is directed outside the current yield surface in
strain space. Strain increment of elastic unloading δE(n) is
directed inside the current yield surface.

where Λ(n) = Λ(n)

(
E(n), H

)
is the tensor of instantaneous elastic moduli of

the material at the considered state of strain and internal structure.

An increment of strain directed outside the current yield surface con-

stitutes plastic loading. The resulting increment of stress consists of elastic

and plastic parts, such that

Ṫ(n) = Ṫe
(n) + Ṫp

(n) = Λ(n) : Ė(n) + Ṫp
(n). (8.2.5)

During plastic loading increment, the yield surface locally expands, while the

strain state remains on the yield surface. The consistency condition assuring

this is

g(n)

(
E(n) + dE(n),H + dH)

= 0. (8.2.6)

The elastic stress decrement deT(n) is associated with the elastic removal

of the strain increment dE(n) from the state of strain E(n)+dE(n), where the

elastic moduli are Λ(n) + dΛ(n). This is deT(n) =
(
Λ(n) + dΛ(n)

)
: dE(n),

which is, to first order, equal to Λ(n) : dE(n). Thus, in the limit

Ṫe
(n) = Λ(n) : Ė(n). (8.2.7)

The plastic part of the stress rate Ṫp
(n) corresponds to residual stress decre-

ment dpT(n) in the considered infinitesimal strain cycle (Fig. 8.3). A tran-

sition between elastic unloading and plastic loading is a neutral loading. In

this case an infinitesimal strain increment is tangential to the yield surface
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and represents purely elastic deformation. Therefore,

∂g(n)

∂E(n)
: Ė(n)

⎧⎪⎨
⎪⎩
> 0, for plastic loading,
= 0, for neutral loading,
< 0, for elastic unloading.

(8.2.8)

The gradient ∂g(n)/∂E(n) is codirectional with the outward normal to a

locally smooth yield surface g(n) = 0 at the state of strain E(n). For in-

crementally linear response, all infinitesimal increments dE(n), which have

equal projections on the normal ∂g(n)/∂E(n) (thus forming a cone around

∂g(n)/∂E(n)), produce the same plastic increment of stress dpT(n). The com-

ponents obtained by projecting dE(n) on the plane tangential to the yield

surface represent elastic deformation only (Fig. 8.4).

8.2.2. Yield Surface in Stress Space

If the yield surface is introduced in stress space, it can be generally expressed

as

f(n)

(
T(n), H

)
= 0. (8.2.9)

The stress T(n) is conjugate to strain E(n), and the function f(n) corresponds

to g(n) such that

f(n)

[
T(n)

(
E(n), H

)
, H]

= g(n)

(
E(n), H

)
= 0. (8.2.10)

This implies that physically identical yield conditions are imposed in both

stress and strain spaces. The shape of the yield surface is at each stage of

deformation different for different choices of T(n), so that different functions

f(n) correspond to different n. It will be assumed that elastic response within

the yield surface is Green-elastic, associated with the complementary strain

energy

Φ(n) = Φ(n)

(
T(n), H

)
(8.2.11)

per unit reference volume. Since Φ(n) is not measure invariant (see Section

4.3), the index (n) is attached to Φ. We assume here that at any given H
there is a one-to-one relationship between T(n) and E(n), such that

E(n) =
∂Φ(n)

∂T(n)
. (8.2.12)

Let the stress state T(n) be on the current yield surface. If material is

in the hardening range relative to the pair E(n) and T(n) (precise definition
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Figure 8.4. All strain increments dE(n) within a cone
around the yield surface normal in strain space, which have
the same projection on the axis of the cone, give rise to the
same plastic stress increment dpT(n).

of hardening is given in Sections 8.8 and 9.2), an increment of stress dT(n)

directed inside the yield surface will cause purely elastic deformation (dH =

0). This constitutes an elastic unloading from the current yield surface.

The corresponding incremental elastic response is governed by the rate-type

equation

Ė(n) = M(n) : Ṫ(n), M(n) =
∂2Φ(n)

∂T(n) ⊗ ∂T(n)
. (8.2.13)

The tensor M(n) = M(n)

(
T(n), H

)
is the tensor of instantaneous elastic

compliance of the material at the considered state of stress and internal

structure.

An increment of stress directed outside the current yield surface consti-

tutes plastic loading in the hardening range of the material response. The

resulting increment of strain consists of elastic and plastic parts, such that

Ė(n) = Ėe
(n) + Ėp

(n) = M(n) : Ṫ(n) + Ėp
(n). (8.2.14)

During plastic loading, the yield surface of a hardening material locally ex-

pands, while the stress state remains on it. The consistency condition that

assures this is

f
(
T(n) + dT(n), H + dH)

= 0. (8.2.15)

The elastic increment of strain deE(n) is recovered upon elastic unloading

of the stress increment dT(n). Since elastic unloading takes place from the

state of stress T(n) + dT(n), where the elastic compliance is M(n) + dM(n),
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Figure 8.5. Stress increment associated with plastic load-
ing dT(n) is directed outside the current yield surface in
stress space. Stress increment of elastic unloading δT(n) is
directed inside the current yield surface.

the removal of the stress increment dT(n) recovers the elastic deformation

deE(n) =
(
M(n) + dM(n)

)
: dT(n). To first order this is equal to M(n) :

dT(n), and in the limit we have

Ėe
(n) = M(n) : Ṫ(n), (8.2.16)

as used in Eq. (8.2.14). The plastic part of the strain rate Ėp
(n) corresponds

to residual increment of strain dpE(n), left upon removal of the stress incre-

ment dT(n) (Fig. 8.5).

A transition between elastic unloading and plastic loading is a neutral

loading. Here, an infinitesimal stress increment is tangential to the yield sur-

face and produces only elastic deformation. Thus, we have in the hardening

range

∂f(n)

∂T(n)
: Ṫ(n)

⎧⎪⎨
⎪⎩
> 0, for plastic loading,
= 0, for neutral loading,
< 0, for elastic unloading.

(8.2.17)

The gradient ∂f(n)/∂T(n) is codirectional with the outward normal to a

locally smooth yield surface f(n) = 0 at the state of stress T(n). Assum-

ing incrementally linear response, it follows that all infinitesimal increments

dT(n), which have equal projection on ∂f(n)/∂T(n), thus forming a cone

around ∂f(n)/∂T(n), produce the same plastic increment of deformation

dpE(n). The components obtained by projecting dT(n) on the plane tan-

gential to the yield surface give rise to elastic deformation only. This is

schematically depicted in Fig. 8.6.
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Figure 8.6. All stress increments dT(n) within a cone
around the yield surface normal in stress space, which have
the same projection on the axis of the cone, give rise to the
same plastic strain increment dpE(n).

In the softening range of material response, Eq. (8.2.14) still holds, al-

though elastic and plastic parts of the strain rate have purely formal signifi-

cance, because in the softening range it is not physically possible to perform

an infinitesimal cycle of stress starting from the stress point on the yield

surface. It should be noted, however, that the hardening is a relative term:

the material may be in the hardening range relative to one pair of stress and

strain measures, and in the softening range relative to another pair (Hill,

1978).

There are theories of plasticity proposed for rate-independent response

which do not use the concept of the yield surface, such as the endochronic

theory of Valanis (1971,1975), and a generalized theory of plasticity by

Lubliner (1974,1984,1991). They are not discussed in this book, but we

refer to original papers, and to Bažant (1978), Murakami and Read (1987),

and Hüttel and Matzenmiller (1999). Gurtin (1983) developed a hypoelastic

formulation of plasticity in which the existence of the yield surface is a con-

sequence rather than an initial assumption of the theory. Pipkin and Rivlin

(1965) earlier proposed a functional-type theory for rate-independent plas-

ticity in which the strain history was defined as a function of the arc length

along the strain path. See also Ilyushin (1954) for his geometric theory of

plasticity, and Mróz (1966) for his nonlinear formulation of the rate-type

theory. The so-called deformation theory of plasticity for proportional or

nearly proportional loading paths is presented separately in Section 9.11.

��

�	


�	


�	


�	


�
�

��������

© 2002 by CRC Press LLC 



8.3. Normality Rules

Let dpE(n) be the plastic increment of strain produced by the stress incre-

ment dT(n) applied from the state of stress T(n) on the current yield surface.

Denote by δT(n) an arbitrary stress variation emanating from the same T(n)

and directed inside the yield surface. If

δT(n) : dpE(n) < 0, (8.3.1)

for every such δT(n), the material obeys the normality rule: the plastic

strain increment must be codirectional with the outward normal to a locally

smooth yield surface in stress space (Fig. 8.7), whereas at the vertex it must

lie within or on the cone of limiting outward normals (Hill and Rice, 1973).

Since

δT(n) : dpE(n) = −δE(n) : dpT(n), (8.3.2)

Equation (8.3.1) implies

δE(n) : dpT(n) > 0, (8.3.3)

for all strain variations δE(n) emanating from the same E(n) on the yield

surface in strain space and directed inside the yield surface. This expresses a

dual normality, requiring that dpT(n) must be codirectional with the inward

normal to a locally smooth yield surface in strain space (Fig. 8.8), with an

appropriate generalization at a vertex. Further discussion of normality rules

for rate-independent plastic materials is presented in Sections 8.5 and 8.6.

8.3.1. Invariance of Normality Rules

The normality rules (8.3.1) and (8.3.3) are invariant to reference config-

uration and strain measure, i.e., they apply for every choice of reference

configuration and strain measure, or for none. In proof, we first observe

that from Eqs. (8.1.7) and (8.1.18),

δE(n) : dpT(n) = δE(n) :
∂

∂E(n)
(dpΨ) = δ(dpΨ), (8.3.4)

δT(n) : dpE(n) = δT(n) :
∂

∂T(n)
(dpΦ) = δ(dpΦ). (8.3.5)

For example, δ(dpΨ) represents the difference between the values of dpΨ

evaluated at E(n) + δE(n) and E(n), for the same H and H + dH. Thus,
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Figure 8.7. Normality rule in stress space. The plastic
strain increment dpE(n) is codirectional with the outward
normal to a locally smooth yield surface, so that δT(n) :
dpE(n) < 0, where δT(n) is a stress increment associated
with elastic unloading.

either from (8.3.2) or (8.1.23), we have

δ(dpΨ) = −δ(dpΦ). (8.3.6)

On the other hand,

δ(dpΨ) = (dpΨ)E(n)+dE(n)
− (dpΨ)E(n)

= (δΨ)H+dH − (δΨ)H = dp(δΨ).
(8.3.7)

Since elastic work per unit mass (at fixed H),

1
ρ
δΨ =

1
ρ

T(n) : δE(n), (8.3.8)

is invariant to choice of reference state and strain measure (provided that

all strains define the same geometry change), it follows that

1
ρ

dp(δΨ) =
1
ρ
δE(n) : dpT(n) (8.3.9)

is also the reference and strain measure invariant. Therefore, since the mass

density of the reference state is positive (ρ > 0), we conclude that both

normality rules (8.3.1) and (8.3.3) are invariant to choice of reference con-

figuration and strain measure.

It is noted that
1
ρ

(
δT(n) : dpE(n)

)
=

1
ρ
δT(n) :

(
dE − M(n) : dT(n)

)
=

1
ρ

(
δT(n) : dE(n) − δE(n) : dT(n)

)
,

(8.3.10)

�	


�	


�	


�	
��

�

�

��������

�����	

� �

© 2002 by CRC Press LLC 



Figure 8.8. Normality rule in strain space. The plas-
tic stress increment dpT(n) is codirectional with the in-
ward normal to a locally smooth yield surface, so that
δE(n) : dpT(n) > 0, where δE(n) is a strain increment asso-
ciated with elastic unloading.

which demonstrates that the combination on the far right-hand side is in-

variant. This is a particular type of Hill’s (1972) invariant bilinear form.

Normality rules can be expressed in terms of internal variables and con-

jugate energetic forces by recalling that, from Eq. (8.1.5),

1
ρ

dpΨ = −fj dξj . (8.3.11)

This implies that

−1
ρ
δT(n) : dpE(n) =

1
ρ
δ(dpΨ) = −δfj dξj . (8.3.12)

Thus, the normality rule (8.3.1) is obeyed if

δfj dξj < 0. (8.3.13)

The inequality is, for example, guaranteed if each increment dξj is, at given

H, governed only by its own energetic force fj . Indeed, the yield criterion

for the j-th variable is solely expressed in terms of fj as

fL
j < fj < fU

j . (8.3.14)

The yield emanating from the lower bound fL
j involves dξj < 0, while any

elastic variation δfj must be positive. The yield emanating from the upper

bound fU
j involves dξj > 0, while any elastic variation δfj must be negative.

Thus, for each j the product δfj dξj is negative, and so is the sum over all

j (Rice, 1971).
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8.4. Flow Potential for Rate-Dependent Materials

The constitutive framework of Sections 8.2 and 8.3 applies to rate-dependent

plastic materials which exhibit elastic response to sufficiently rapid loading

or straining (instantaneous elasticity). For the plastic part of strain rate we

take
dpE(n)

dt
=

dE(n)

dt
− M(n) :

dT(n)

dt
, (8.4.1)

where t is the physical time. The plastic part of strain rate is a function of

the current stress and accumulated inelastic history H,
dpE(n)

dt
=

dpE(n)

dt
(
T(n), H

)
. (8.4.2)

Therefore, an instantaneous change of stress δT(n) causes an instantaneous

change of the plastic part of strain rate, but not the change of H or the plastic

strain itself. We can thus examine the functional dependence of dpE(n)/dt

on T(n) at any fixed H. If this is such that δT(n) : dpE(n)/dt is a perfect

differential at fixed H, i.e., if

δT(n) :
dpE(n)

dt
= δΩ̂

(
T(n), H

)
, (8.4.3)

then (Hill and Rice, 1973)

dpE(n)

dt
=

∂Ω̂
(
T(n), H

)
∂T(n)

. (8.4.4)

This establishes the existence of a scalar flow potential for the plastic part

of strain rate in rate-dependent materials,

Ω = Ω̂
(
T(n), H

)
. (8.4.5)

Since

δT(n) :
dpE(n)

dt
= −δE(n) :

dpT(n)

dt
, (8.4.6)

there follows
dpT(n)

dt
= −∂Ω̄

(
E(n), H

)
∂E(n)

. (8.4.7)

This shows that Ω, when expressed in terms of strain and inelastic history,

Ω = Ω̄
(
E(n), H

)
, (8.4.8)

is also a flow potential for the plastic part of stress rate.

The normality rules (8.4.4) and (8.4.7) are clearly invariant to choice

of reference configuration and strain measure. Deduction of the normality
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rules for rate-independent materials as singular limits of the normality rules

for rate-dependent materials has been demonstrated by Rice (1970, 1971).

If it is assumed that, at a given H, each dξj/dt depends only on its own

energetic force,
dξj
dt

= function(fj , H), (8.4.9)

then

δT(n) :
dpE(n)

dt
= δfj

dξj
dt

(8.4.10)

is a perfect differential, because each term in the sum on the right-hand side

is a perfect differential. This, for example, establishes the existence of flow

potential in rate-dependent crystal plasticity, in which it is assumed that the

crystallographic slip on each slip system is governed by the resolved shear

stress on that system. A study of crystal plasticity is presented in Chapter

12.

8.5. Ilyushin’s Postulate

The remaining sections in this chapter deal with the so-called plasticity pos-

tulates of rate-independent plasticity. These postulates are in the form of

constitutive inequalities, proposed for certain types of materials undergoing

plastic deformation. The two most well-known are by Drucker (1951) and

Ilyushin (1961). They are discussed here within the framework of conjugate

stress and strain measures, following the presentations by Hill (1968), and

Hill and Rice (1973). Particular attention is given to the relationship be-

tween these postulates and the plastic normality rules. We begin with the

Ilyushin postulate, and consider the Drucker postulate in Section 8.6. Other

postulates are discussed in Section 8.9.

Ilyushin (1961) proposed that the net work in an isothermal cycle of

strain must be positive, ∮
E

T(n) : dE(n) > 0, (8.5.1)

if a cycle involves plastic deformation at some stage. The integral in (8.5.1)

over an elastic strain cycle is equal to zero, which implies the existence of

elastic potential, such that T(n) = ∂Ψ/∂E(n). Since the cycle of strain

that includes plastic deformation in general does not return the material to

its state at the beginning of the cycle, the inequality (8.5.1) is not a law of

© 2002 by CRC Press LLC 



Figure 8.9. A strain cycle A0ABCC0 involving plastic de-
formation along an infinitesimal segment AB.

thermodynamics. For example, it does not apply to materials which dissipate

energy by friction (Drucker, 1964; Rice, 1971; Dafalias, 1977; Chandler,

1985).

The inequality (8.5.1) is invariant to change of the reference configura-

tion and strain measure, because it is based on an invariant work quantity.

The value of the integral over a strain cycle that involves plastic deformation,

and that begins and ends at the state of identical geometry, is independent

of n and the reference state used to define E(n). This has been examined in

detail by Hill (1968).

The Ilyushin postulate imposes constitutive restrictions on the materials

to which it applies. To elaborate, let A0
(
E0

(n),H
)

be an arbitrary state

within the yield surface in strain space. Consider a strain cycle that starts

from A0, includes an elastic segment from A0 to the state A
(
E(n),H

)
on the

current yield surface, followed by an infinitesimal elastoplastic segment from

A to B
(
E(n) + dE(n),H + dH)

, and elastic unloading segments from B to

C(E(n),H+dH), and from C to C0
(
E0

(n),H + dH
)
, as shown in Fig. 8.9. By

using Eq. (8.1.3), the work done along the segment A0A is readily evaluated

to be

∫ A

A0
T(n) : dE(n) =

∫ A

A0

∂Ψ
∂E(n)

: dE(n)

= Ψ
(
E(n), H

) − Ψ
(
E0

(n), H
)
,

(8.5.2)
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while along the segment CC0,∫ C0

C

T(n) : dE(n) =
∫ C0

C

∂Ψ
∂E(n)

: dE(n)

= Ψ
(
E0

(n), H + dH
)
− Ψ

(
E(n), H + dH)

.

(8.5.3)

The work done along the segments AB and BC is, by the trapezoidal rule

of quadrature,∫ B

A

T(n) : dE(n) = T(n) : dE(n) +
1
2

dT(n) : dE(n), (8.5.4)

∫ C

B

T(n) : dE(n) = −T(n) : dE(n) − 1
2

(
dT(n) + dpT(n)

)
: dE(n), (8.5.5)

accurate to second-order terms. The plastic stress increment dpT(n) is in-

troduced following Eq. (8.2.7), and is indicated schematically in Fig. 8.1.

Consequently, the net work in the considered strain cycle is∮
E

T(n) : dE(n) = −1
2

dpT(n) : dE(n) + (dpΨ)0 − dpΨ, (8.5.6)

where

dpΨ = Ψ
(
E(n), H + dH) − Ψ

(
E(n), H

)
, (8.5.7)

(dpΨ)0 = Ψ
(
E0

(n), H + dH
)
− Ψ

(
E0

(n), H
)
. (8.5.8)

8.5.1. Normality Rule in Strain Space

If the strain cycle emanates from the state on the yield surface, i.e., if A0 = A

and E0
(n) = E(n), Eq. (8.5.6) reduces to∮

E

T(n) : dE(n) = −1
2

dpT(n) : dE(n). (8.5.9)

By Ilyushin’s postulate this must be positive, so that

dpT(n) : dE(n) < 0. (8.5.10)

Since during plastic loading the strain increment dE(n) is directed outward

from the yield surface, and since the same dpT(n) is associated with a fan of

infinitely many dE(n) around the normal ∂g(n)/∂E(n), all having the same

projection on that normal, the inequality (8.5.10) requires that dpT(n) is
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codirectional with the inward normal to a locally smooth yield surface in

strain E(n) space, i.e.,

dpT(n) = −dγ(n)

∂g(n)

∂E(n)
. (8.5.11)

The scalar multiplier

dγ(n) > 0 (8.5.12)

is referred to as the loading index. At the vertex of the yield surface, dpT(n)

must lie within the cone of limiting inward normals.

The inequality (8.5.10) and the normality rule (8.5.11) hold for all pairs

of conjugate stress and strain measures, irrespective of the nature of elas-

tic changes caused by plastic deformation, or possible elastic nonlinearities

within the yield surface. Also, (8.5.11) applies regardless of whether the

material is in the hardening or softening range.

8.5.2. Convexity of the Yield Surface in Strain Space

If elastic response is nonlinear, we can not conclude from (8.5.6) that the

yield surface is necessarily convex. Consider, instead, a linear elastic re-

sponse within the yield surface, for which the strain energy can be expressed

as

Ψ(E(n), H) =
1
2

Λ(n)(H) ::
[(

E(n) − Ep
(n)(H)

)
⊗

(
E(n) − Ep

(n)(H)
)]

,

(8.5.13)

so that

T(n) =
∂Ψ

∂E(n)
= Λ(n)(H) :

(
E(n) − Ep

(n)(H)
)
. (8.5.14)

The tensor Ep
(n)(H) represents a residual or plastic strain that is left upon

(actual or conceptual) unloading to zero stress, at fixed values of the internal

structure H. Incorporating (8.5.13) and (8.5.14) into (8.5.6) gives∮
E

T(n) : dE(n) = −1
2

dpT(n) : dE(n) +
(
E0

(n) − E(n)

)
: dpT(n)

+
1
2

dΛ(n) ::
[(

E(n) − E0
(n)

)
⊗

(
E(n) − E0

(n)

)]
,

(8.5.15)

where

dΛ(n) = Λ(n)(E(n), H + dH) − Λ(n)(E(n), H). (8.5.16)
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In the derivation, the following relationship was used

Λ(n)(H + dH) : Ep
(n)(H + dH) − Λ(n)(H) : Ep

(n)(H)

= dΛ(n) : E(n) − dpT(n).
(8.5.17)

By taking the strain cycle with a sufficiently small dE(n) comparing to

E(n) − E0
(n), the first term in Eq. (8.5.15) can be neglected, and for such

cycles∮
E

T(n) : dE(n) =
(
E0

(n) − E(n)

)
: dpT(n)

+
1
2

dΛ(n) ::
[(

E(n) − E0
(n)

)
⊗

(
E(n) − E0

(n)

)]
> 0,

(8.5.18)

i.e.,(
E0

(n) − E(n)

)
: dpT(n) > −1

2
dΛ(n) ::

[(
E(n) − E0

(n)

)
⊗

(
E(n) − E0

(n)

)]
.

(8.5.19)

Thus, if the change of elastic stiffness caused by plastic deformation is such

that dΛ(n) is negative semi-definite, or if there is no change in elastic stiff-

ness, from (8.5.19) it follows that (Fig. 8.10)(
E0

(n) − E(n)

)
: dpT(n) > 0. (8.5.20)

Since dpT(n) is codirectional with the inward normal to a locally smooth

yield surface in strain E(n) space, (8.5.20) implies that the yield surface is

convex. It should be observed, however, that for some E(n) and T(n) the

stiffness change dΛ(n) can be negative definite, but not for others, so that

convexity of the yield surface is not invariant to change of stress and strain

measures.

Returning to Eq. (8.5.15), we can write∮
E

T(n) : dE(n) = −1
2

dpT(n) : dE(n)

+
1
2

(
E0

(n) − E(n)

)
:
[
dpT(n) +

(
dpT(n)

)0
]
,

(8.5.21)

where

dpT(n) = T(n)

(
E(n), H + dH) − T(n)

(
E(n), H

)
, (8.5.22)

(
dpT(n)

)0 = T(n)

(
E0

(n), H + dH
)
− T(n)

(
E0

(n), H
)
. (8.5.23)

If there is no change in elastic stiffness,(
dpT(n)

)0 = dpT(n). (8.5.24)
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Figure 8.10. The plastic stress increment dpT(n) is codi-
rectional with the inward normal to locally smooth yield
surface in strain space, so that (E0

(n) − E(n)) : dpT(n) > 0,
where E(n) is the strain state on the current yield surface
and E0

(n) is the strain state within the yield surface.

8.5.3. Normality Rule in Stress Space

By taking a trace product of Eq. (8.2.14) with Λ(n) = M−1
(n), we obtain

Λ(n) : Ė(n) = Ṫ(n) + Λ(n) : Ėp
(n), (8.5.25)

and comparison with Eq. (8.2.13) establishes

Ṫp
(n) = −Λ(n) : Ėp

(n). (8.5.26)

Thus, to first order,

dpT(n) = −Λ(n) : dpE(n). (8.5.27)

Since for any elastic strain increment δE(n), emanating from a point on the

yield surface in strain space and directed inside of it,

dpT(n) : δE(n) > 0, (8.5.28)

the substitution of (8.5.27) into (8.5.28) gives

dpE(n) : Λ(n) : δE(n) = dpE(n) : δT(n) < 0. (8.5.29)

Here,

δT(n) = Λ(n) : δE(n) (8.5.30)

is the stress increment from a point on the yield surface in stress space,

directed inside of the yield surface (elastic unloading increment associated

with elastic strain increment δE(n)). Inequality (8.5.29) holds for any such
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δT(n) and, consequently, dpE(n) must be codirectional with the outward

normal to a locally smooth yield surface in stress T(n) space, i.e.,

dpE(n) = dγ(n)

∂f(n)

∂T(n)
, dγ(n) > 0. (8.5.31)

At a vertex of the yield surface, dpE(n) must lie within the cone of limiting

outward normals. Inequality (8.5.29) and the normality rule (8.5.31) hold

for all pairs of conjugate stress and strain measures.

If material is in the hardening range relative to E(n) and T(n), the stress

increment dT(n) producing plastic deformation dpE(n) is directed outside the

yield surface, and satisfies the condition

dpE(n) : dT(n) > 0. (8.5.32)

If material is in the softening range, the stress increment dT(n) producing

plastic deformation dpE(n) is directed inside the yield surface, and satisfies

the reversed inequality in (8.5.32). The normality rule (8.5.31) applies to

both hardening and softening. Inequality (8.5.32) is not measure invariant,

since the material may be in the hardening range relative to one pair of

conjugate stress and strain measures, but in the softening range relative to

another pair.

In view of (8.5.11), (8.5.27), and (8.5.31), the yield surface normals in

stress and strain space are related by

∂g(n)

∂E(n)
= Λ(n) :

∂f(n)

∂T(n)
. (8.5.33)

This also follows directly from Eq. (8.2.10) by partial differentiation.

8.5.4. Additional Inequalities for Strain Cycles

Additional inequalities can be derived as follows. First, by partial differen-

tiation we have

T(n) : dE(n) = d
(
T(n) : E(n)

) − E(n) : dT(n). (8.5.34)

The substitution of Eq. (8.5.34) into the integral of (8.5.1) gives, for the

strain cycle A0ABCC0,∮
E

T(n) : dE(n) =
[
T(n)

(
E0

(n),H + dH
)
− T(n)

(
E0

(n),H
)]

: E0
(n)

−
∮

E(n) : dT(n).

(8.5.35)
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This must be positive by Ilyushin’s postulate, so that∮
E

E(n) : dT(n) <
[
T(n)

(
E0

(n),H + dH
)
− T(n)

(
E0

(n),H
)]

: E0
(n).

(8.5.36)

Alternatively, the inequality (8.5.36) can be written as∮
E

(
E(n) − E0

(n)

)
: dT(n) < 0, (8.5.37)

for all strain cycles that at some stage involve plastic deformation (not nec-

essarily infinitesimal). Since (8.5.1) is invariant, the inequality (8.5.37) holds

irrespective of the reference state and strain measure. In particular, if we

choose a reference state for strain measure E(n) to be the state A0, the strain

E0
(n) vanishes and (8.5.37) gives∮

E

E(n) : dT(n) < 0. (8.5.38)

This applies for all strain measures defined relative to A0, and for all strain

cycles that involve plastic deformation at some stage. Further discussion can

be found in Hill (1968, 1978) and Nemat-Nasser (1983).

8.6. Drucker’s Postulate

Drucker (1951) introduced a postulate by considering the work done in stress

cycles. His original formulation was in the context of infinitesimal strain

and is presented in Subsection 8.6.3. We consider here a (noninvariant) dual

inequality to (8.5.1), which is∮
T

E(n) : dT(n) < 0. (8.6.1)

This means that a net complementary work (relative to measures E(n) and

T(n)) in an isothermal cycle of stress is negative, if a cycle involves plastic

deformation at some stage. Inequality (8.6.1) is noninvariant because the

value of the integral in (8.6.1) depends on the selected measures E(n) and

T(n), and the reference state with respect to which they are defined. This

is so because T(n) is introduced as a conjugate stress to E(n) such that, for

the same geometry change, T(n) : dE(n), and not E(n) : dT(n), is measure

invariant. Physically, cycling one stress measure does not necessarily imply

cycling of another stress measure. Thus, for different n the integral in (8.6.1)

corresponds to different physical cycles, and has different values.
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Figure 8.11. A stress cycle A0ABDD0 involving plastic
deformation along an infinitesimal segment AB.

Constitutive inequalities which depend on the choice of reference config-

uration are not well suited for plastically deforming materials, for which no

preferred state can be single out (Hill, 1968). Nevertheless, we proceed with

the analysis of (8.6.1) and examine its consequences for different choices of

strain measure and reference state.

First, since the cycle of stress that involves plastic deformation in gen-

eral does not return the material to its state at the beginning of the cy-

cle, the inequality (8.6.1) does not represent a law of thermodynamics for

any n. If the integral in (8.6.1) vanishes for stress cycles that give rise to

elastic deformation only (for a selected pair E(n) and T(n)), the material

admits a complementary strain energy Φ(n) = Φ(n)

(
T(n), H

)
, such that

E(n) = ∂Φ(n)/∂T(n). In contrast to measure invariant strain energy Ψ, the

complementary energy is in general not measure invariant. However, if the

integral in (8.6.1) over an elastic cycle vanishes for some n, it vanishes for

other n, as well.

Consider a yield surface in stress T(n) space. Assume that within the

yield surface there is one-to-one relationship between the stress T(n) and

strain E(n), at a given state of internal structure H. Let A0
(
T0

(n),H
)

be

an arbitrary state within the yield surface. Consider a stress cycle that

starts from A0, includes an elastic segment from A0 to A
(
T(n),H

)
on the
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current yield surface, followed by an infinitesimal elastoplastic segment from

A to B
(
T(n) + dT(n),H + dH)

, and elastic unloading segments from B to

D
(
T(n),H + dH)

, and from D to D0
(
T0

(n),H + dH
)
; see Fig. 8.11. The

complementary work along the segment A0A is∫ A

A0
E(n) : dT(n) =

∫ A

A0

∂Φ(n)

∂T(n)
: dT(n)

= Φ(n)

(
T(n), H

) − Φ(n)

(
T0

(n), H
)
,

(8.6.2)

while along the segment DD0,∫ D0

D

E(n) : dT(n) =
∫ D0

D

∂Φ(n)

∂T(n)
: dT(n)

= Φ(n)

(
T0

(n), H + dH
)
− Φ(n)

(
T(n), H + dH)

.

(8.6.3)

The complementary work along the segments AB and BD is, by the trape-

zoidal rule of quadrature,∫ B

A

E(n) : dT(n) = E(n) : dT(n) +
1
2

dE(n) : dT(n), (8.6.4)

∫ C

B

E(n) : dT(n) = −E(n) : dT(n) − 1
2

(
dE(n) + dpE(n)

)
: dT(n), (8.6.5)

accurate to second-order terms. The plastic strain increment dpE(n) is de-

fined following Eq. (8.2.13), and is indicated schematically in Fig. 8.2. Con-

sequently,∮
T

E(n) : dT(n) = −1
2

dpE(n) : dT(n) +
(
dpΦ(n)

)0 − dpΦ(n), (8.6.6)

where

dpΦ(n) = Φ(n)

(
T(n), H + dH) − Φ(n)

(
T(n), H

)
, (8.6.7)

(
dpΦ(n)

)0 = Ψ
(
T0

(n), H + dH
)
− Φ(n)

(
T0

(n), H
)
. (8.6.8)

8.6.1. Normality Rule in Stress Space

Assume that material is in the hardening range relative to E(n) and T(n).

An infinitesimal stress cycle can be performed starting from the point on the

yield surface. Thus, taking A0 = A and T0
(n) = T(n), Eq. (8.6.6) reduces to∮

T

E(n) : dT(n) = −1
2

dpE(n) : dT(n). (8.6.9)
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If the inequality (8.6.1) applies to conjugate pair E(n), T(n), the integral in

(8.6.9) must be negative, so that

dpE(n) : dT(n) > 0. (8.6.10)

During plastic loading in the hardening range relative to E(n) and T(n), the

stress increment dT(n) is directed outward from the yield surface. Since one

dpE(n) is associated with a fan of infinitely many dT(n) around the normal

∂f(n)/∂T(n) (all having the same projection on the normal), the inequality

(8.6.10) requires that dpE(n) is codirectional with the outward normal to a

locally smooth yield surface in stress T(n) space, i.e.,

dpE(n) = dγ(n)

∂f(n)

∂T(n)
, dγ(n) > 0. (8.6.11)

At the vertex of the yield surface, dpE(n) must lie within the cone of limiting

outward normals.

The inequality (8.6.10) and the normality rule (8.6.11) apply to a con-

jugate pair of stress and strain which obey (8.6.1), irrespective of the nature

of elastic changes caused by plastic deformation, or possible elastic nonlin-

earities within the yield surface. If inequality (8.6.1) holds for all pairs of

conjugate stress and strain measures, then (8.6.10) and (8.6.11) also hold

with respect to all conjugate stress and strain measures.

When material is in the softening range, relative to a considered pair of

stress and strain measures, it is physically impossible to perform a cycle of

stress starting from a point on the yield surface. In this case, however, we

can choose an infinitesimal stress cycle A0AB, where A0
(
T(n) + dT(n),H

)
is inside the yield surface, while A

(
T(n),H

)
and B

(
T(n) + dT(n),H + dH)

are on the current and subsequent yield surfaces. Then,∮
T

E(n) : dT(n) =
1
2

dpE(n) : dT(n) < 0. (8.6.12)

Since in the softening range dT(n) is directed inside the current yield surface,

(8.6.12) requires that dpE(n) is codirectional with the outward normal to a

locally smooth yield surface in stress T(n) space.

8.6.2. Convexity of the Yield Surface in Stress Space

Returning to (8.6.6), if elastic response is nonlinear we can not conclude

from it that the yield surface in stress space is necessarily convex. In fact, a
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concavity of the yield surface in the Cauchy stress space in the presence of

nonlinear elasticity has been demonstrated for a particular material model

by Palmer, Maier, and Drucker (1967). Consider, instead, a linear elastic

response within the yield surface, for which the complementary energy can

be expressed as

Φ(n)

(
T(n), H

)
= E(n)(0, H) : T(n) +

1
2

M(n)(H) ::
(
T(n) ⊗ T(n)

)
,

(8.6.13)

so that

E(n) =
∂Φ(n)

∂T(n)
= E(n)(0, H) + M(n)(H) : T(n). (8.6.14)

The tensor E(n)(0, H), which is equal to Ep
(n)(H) in the notation of Section

8.5, represents a residual or plastic strain, left upon elastic unloading to zero

stress at the fixed values of internal structure H. Incorporating (8.6.13) and

(8.6.14) into (8.6.6) gives∮
T

E(n) : dT(n) = −1
2

dpE(n) : dT(n) −
(
T(n) − T0

(n)

)
: dpE(n)

+
1
2

dM(n) ::
[(

T(n) − T0
(n)

)
⊗

(
T(n) − T0

(n)

)]
,

(8.6.15)

where

dM(n) = M(n)(T(n), H + dH) − M(n)(T(n), H). (8.6.16)

In the derivation, the following expression was used

E(n)(0, H + dH) − E(n)(0, H) = −dM(n) : T(n) + dpE(n). (8.6.17)

By taking the stress cycle with a sufficiently small dT(n) comparing to

T(n) − T0
(n), the first term in Eq. (8.6.15) can be neglected, and for such

cycles∮
T

E(n) : dT(n) = −
(
T(n) − T0

(n)

)
: dpE(n)

+
1
2

dM(n) ::
[(

T(n) − T0
(n)

)
⊗

(
T(n) − T0

(n)

)]
< 0.

(8.6.18)

This gives(
T(n) − T0

(n)

)
: dpE(n) >

1
2

dM(n) ::
[(

T(n) − T0
(n)

)
⊗

(
T(n) − T0

(n)

)]
.

(8.6.19)
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Figure 8.12. The plastic strain increment dpE(n) is codi-
rectional with the outward normal to locally smooth yield
surface in stress space, so that (T0

(n) − T(n)) : dpE(n) < 0,
where T(n) is the stress state on the current yield surface
and T0

(n) is the stress state within the yield surface.

Thus, if the change of elastic stiffness caused by plastic deformation is such

that dM(n) is positive semi-definite, or if there is no change in M(n), from

(8.6.19) it follows that (Fig. 8.12)(
T(n) − T0

(n)

)
: dpE(n) > 0. (8.6.20)

Since dpE(n) is codirectional with the outward normal to a locally smooth

yield surface in stress T(n) space, (8.6.20) implies that the yield surface is

convex in the considered stress space.

Returning to (8.6.15), it is noted that it can be rewritten as∮
T

E(n) : dT(n) = −1
2

dpE(n) : dT(n)

− 1
2

(
T(n) − T0

(n)

)
:
[
dpE(n) +

(
dpE(n)

)0
]
,

(8.6.21)

where

dpE(n) = E(n)(T(n), H + dH) − E(n)(T(n), H), (8.6.22)

(
dpE(n)

)0 = E(n)

(
T0

(n), H + dH
)
− E(n)

(
T0

(n), H
)
. (8.6.23)

8.6.3. Normality Rule in Strain Space

The normality rule for the yield surface in strain space can be deduced from

the results based on the inequality (8.6.1) in stress space. By taking a trace
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��������

���� �	

�

�	
�	
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�	
�
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product of Eq. (8.2.5) with M(n) = Λ−1
(n), we obtain

M(n) : Ṫ(n) = Ė(n) + M(n) : Ṫp
(n), (8.6.24)

and comparison with Eq. (8.2.14) yields

Ėp
(n) = −M(n) : Ṫp

(n), (8.6.25)

in accord with Eq. (8.5.26). Thus, to first order,

dpE(n) = −M(n) : dpT(n). (8.6.26)

Since for any elastic strain increment δT(n), emanating from a point on the

yield surface in stress space and directed inside of it,

dpE(n) : δT(n) < 0, (8.6.27)

substitution of (8.6.26) into (8.6.27) gives

dpT(n) : M(n) : δT(n) = dpT(n) : δE(n) > 0. (8.6.28)

Here,

δE(n) = M(n) : δT(n) (8.6.29)

is the elastic strain increment from a point on the yield surface in strain

space, associated with the stress increment δT(n), and directed inside the

yield surface. Inequality (8.6.28) holds for any such δE(n) and, therefore,

dpT(n) must be codirectional with the inward normal to a locally smooth

yield surface in strain E(n) space,

dpT(n) = −dγ(n)

∂g(n)

∂E(n)
, dγ(n) > 0. (8.6.30)

At the vertex of the yield surface, dpT(n) must lie within the cone of limiting

inward normals.

In view of (8.6.11), (8.5.28), and (8.6.30), the yield surface normals in

stress and strain space are related by

∂f(n)

∂T(n)
= M(n) :

∂f(n)

∂E(n)
, (8.6.31)

in agreement with Eq. (8.5.33).
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8.6.4. Additional Inequalities for Stress Cycles

Dually to the analysis from Subsection 8.5.2, we can write

E(n) : dT(n) = d
(
E(n) : T(n)

) − T(n) : dE(n), (8.6.32)

and substitution into (8.6.1) gives, for the stress cycle A0ABDD0,∮
T

E(n) : dT(n) =
[
E(n)

(
T0

(n),H + dH
)
− E(n)

(
T0

(n),H
)]

: T0
(n)

−
∮
T

T(n) : dE(n).

(8.6.33)

If this is assumed to be negative by (8.6.1), there follows∮
T

T(n) : dE(n) >
[
E(n)

(
T0

(n), H + dH
)
− E(n)

(
T0

(n), H
)]

: T0
(n).

(8.6.34)

Alternatively, (8.6.34) can be written as∮
T

(
T(n) − T0

(n)

)
: dE(n) > 0. (8.6.35)

Since (8.6.1) is not invariant, neither is (8.6.35). For example, if we choose

a reference state for the strain measure E(n) to be the state A0, we have

E(n)

(
T0

(n), H
)

= 0, T0
(n) = σ0, (8.6.36)

where σ0 is the Cauchy stress at A0. Thus, (8.6.35) gives∮
T

T(n) : dE(n) > σ0 : E(n)

(
σ0, H + dH)

. (8.6.37)

This shows that the bound on the work done in a stress cycle that involves

plastic deformation (the right-hand side of the above inequality) depends

on the selected strain measure. This was expected on physical grounds,

because cycling one stress measure does not necessarily cycle another stress

measure, and different amounts of work are done in cycles of different stress

measures. These cycles are different cycles; they involve the same plastic,

but not elastic deformation of the material.

8.6.5. Infinitesimal Strain Formulation

In the infinitesimal strain theory all stress measures reduce to the Cauchy

stress σ, and (8.6.35) becomes∮
σ

(
σ− σ0

)
: dε > 0. (8.6.38)
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This is the original postulate of Drucker (1951, 1959). The net work of added

stresses in all physically possible stress cycles originating and terminating

at some initial stress state σ0 within the yield surface is positive, if plastic

deformation occurred at some stage of the cycle. In the hardening range σ0

can be inside or on the current yield surface, while in the softening range σ0

must be inside the current yield surface. If Drucker’s postulate is restricted to

stress cycles that involve only infinitesimal increment of plastic deformation,

(8.6.38) becomes

1
2

dσ : dpε + (σ− σ0) : dpε > 0, (8.6.39)

to terms of second order (assuming that there is no change in elastic prop-

erties due to plastic deformation). If the stress state σ0 is well inside the

current yield surface, or on the yield surface far from the state of stress σ,

the first term in (8.6.39) can be neglected, and

(σ− σ0) : dpε > 0. (8.6.40)

The inequality is referred to as the principle of maximum plastic work. It

was introduced in continuum plasticity by Hill (1948), and in crystalline

plasticity by Bishop and Hill (1951) (see Chapter 12). Detailed discussion

of the inequality can be found in Hill (1950), Johnson and Mellor (1973),

Martin (1975), and Lubliner (1990). It assures both normality and convexity.

Its other implications in mathematical theory of plasticity are examined by

Duvaut and Lions (1976), Temam (1985), and Han and Reddy (1998).

In the hardening range, the initial state can be chosen to be on the yield

surface, so that σ0 = σ and (8.6.39) gives

dσ : dpε > 0. (8.6.41)

In the softening range, the initial state

σ0 = σ + dσ (8.6.42)

is chosen to be inside the yield surface, and (8.6.39) gives

dσ : dpε < 0. (8.6.43)

Both, (8.6.41) and (8.6.43), imply that dpε is codirectional with the outward

normal to a locally smooth yield surface in the Cauchy stress space. Further

discussion is given in the paper by Palgen and Drucker (1983).
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8.7. Relationship between Work in Stress and Strain Cycles

The Ilyushin work in the cycle of strain A0ABD0C0 can be written as

WI =
∮
E

T(n) : dE(n) =
∮
T

T(n) : dE(n) +
∫ C0

D0
T(n) : dE(n). (8.7.1)

Denoting the work of added stresses in the cycle of stress A0ABD0 as

WD =
∮
T

(
T(n) − T0

(n)

)
: dE(n), (8.7.2)

and recalling that T(n) = ∂Ψ/∂E(n), we rewrite Eq. (8.7.1) as

WI −WD = T0
(n) :

(
dpE(n)

)0

+ Ψ
(
E0

(n), H + dH
)
− Ψ

[
E0

(n) +
(
dpE(n)

)0
, H + dH

]
.

(8.7.3)

Furthermore,

Ψ
[
E0

(n) +
(
dpE(n)

)0
,H + dH

]
− Ψ

(
E0

(n), H + dH
)

=
(

∂Ψ
∂E(n)

)
C0

:
(
dpE(n)

)0

+
1
2

(
∂2Ψ

∂E(n) ⊗ ∂E(n)

)
C0

:
[(

dpE(n)

)0 ⊗ (
dpE(n)

)0
]

=
[
T0

(n) +
1
2

(
dpT(n)

)0
]

:
(
dpE(n)

)0
,

(8.7.4)

neglecting the higher-order infinitesimals. The subscript C0 in Eq. (8.7.4)

indicates that partial derivatives are evaluated in the state C0, where the

stress is T(n) +
(
dpT(n)

)0. Substitution of (8.7.4) into (8.7.3) gives

WI −WD = −1
2

(
dpT(n)

)0 :
(
dpE(n)

)0
. (8.7.5)

Here, (
dpT(n)

)0 = −Λ(n) :
(
dpE(n)

)0 (8.7.6)

is the stress decrement from A0 to C0 caused by infinitesimal plastic defor-

mation along AB (Fig. 8.13). Therefore, if elastic stiffness tensor Λ(n) is

positive definite, (8.7.5) implies that

WI > WD. (8.7.7)

It is recalled that WI is independent of the reference state and strain mea-

sure, while WD is not. Thus, the right-hand side of (8.7.5) is dependent on

the reference state and measure. However, if Λ(n) is positive definite in each
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Figure 8.13. The dotted area represents the difference be-
tween the work done in the Ilyushin and Drucker closed
cycles of strain and stress, indicating that WI > WD.

case, the inequality (8.7.7) holds for all pairs of conjugate stress and strain

measures, and for any reference state.

Since WI > WD, the class of materials obeying inequality (8.5.1) is

broader than that obeying (8.6.1). For example, it may happen that material

behavior is such that over some stress cycles WD < 0, while WI > 0 for every

strain cycle. Since Ilyushin’s postulate (8.5.1) is a sufficient condition for the

normality rule, it follows that plastic part of strain increment can be normal

to a locally smooth yield surface in stress space, although the material does

not satisfy (8.6.1) for some stress cycles. Thus, although sufficient, (8.6.1) is

not a necessary condition for the normality. This was anticipated, because

(8.6.1) places strong restrictions on material behavior, when imposed on all

cycles of stress, involving infinitesimal or large plastic deformation. Weaker

restrictions on material response are placed by requiring (8.6.1) to hold for

stress cycles that involve only infinitesimal plastic deformation, such as cycle

A0ABD0 considered in Section 8.6.

Returning to Ilyushin’s postulate (8.5.1), although it imposes less re-

strictions than (8.6.1), it is not a necessary condition for the normality rule,

either. For example, Palmer, Maier, and Drucker (1967) provide an example

of negative work in certain strain cycles for materials that have experienced

� �

� �	
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�
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enormous cyclic work-softening. Yet, normality rule can be used to describe

behavior of such materials in a satisfactory manner. For an analysis of plas-

ticity postulates and nonassociative flow rules, considered in Chapter 9, the

papers by Nicholson (1987), Lade, Bopp, and Peters (1993), and Lubarda,

Mastilovic, and Knap (1996) can be consulted. See also Dougill (1975) and

Lee (1994).

8.8. Further Inequalities

If the material obeys Ilyushin’s postulate, we have from (8.5.10) a measure-

invariant inequality

Ṫp
(n) : Ė(n) < 0. (8.8.1)

Since

Ṫp
(n) = −Λ(n) : Ėp

(n), Ṫe
(n) = Λ(n) : Ė(n), (8.8.2)

the inequality (8.8.1) is equivalent to

Ṫe
(n) : Ėp

(n) > 0. (8.8.3)

By taking a trace product of the first of (8.8.2) with Ėp
(n), and of the second

with Ė(n), it follows that

Ṫp
(n) : Ėp

(n) < 0, Ṫe
(n) : Ė(n) > 0, (8.8.4)

provided that Λ(n) is positive definite. Both inequalities in (8.8.4) are

measure-invariant. Furthermore, since

Ėe
(n) = M(n) : Ṫ(n), (8.8.5)

a trace product with Ṫ(n) yields another measure-invariant inequality

Ṫ(n) : Ėe
(n) > 0. (8.8.6)

In view of (8.8.2) and (8.8.3), there is an identity

Ṫp
(n) : Ėe

(n) = −Ṫ(n) : Ėp
(n). (8.8.7)

If material is in the hardening range, relative to a particular pair of stress

and strain measures, then for that pair

Ṫ(n) : Ėp
(n) > 0, Ṫp

(n) : Ėe
(n) < 0. (8.8.8)

These are not measure-invariant inequalities, so that hardening with respect

to one pair of measures may appear as softening relative to another pair.
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If (8.8.8) holds for a particular pair of stress and strain measures, we

have for that pair

Ṫe
(n) : Ėe

(n) = Ṫ(n) : Ėe
(n) − Ṫp

(n) : Ėe
(n) > 0, (8.8.9)

in view of (8.8.6) and (8.8.8). Since, by (8.8.2) and (8.8.5),

Ṫe
(n) : Ėe

(n) = Ṫ(n) : Ė(n), (8.8.10)

the inequality (8.8.9) gives

Ṫ(n) : Ė(n) > 0, (8.8.11)

for the same conjugate pair. Neither (8.8.9) nor (8.8.11) is measure-invariant.

In the softening range the directions of inequalities in (8.8.8) are re-

versed. Since the first term on the right-hand side of the equality sign in

(8.8.9) is always positive, by measure-invariant (8.8.6), the direction of in-

equalities in (8.8.9) and (8.8.11) is uncertain. Thus, in the softening range,

corresponding to given n, Ṫ(n) : Ė(n) can be either positive or negative. As

a result, (8.8.11) is not a criterion of hardening. A necessary and sufficient

condition for hardening, relative to selected stress and strain measures, is

given by (8.8.8).

8.8.1. Inequalities with Current State as Reference

If current state is taken as the reference, we have from Section 3.9

Ė(n) = D, Ṫ(n) =
◦
τ− n (D · σ + σ · D). (8.8.12)

Equation (8.2.5) consequently becomes

Ṫ(n) = Ṫ
e

(n) + Ṫ
p

(n), Ṫ
e

(n) = Λ(n) : D, (8.8.13)

while Eq. (8.2.13) gives

D = De
(n) + Dp

(n), De
(n) = M(n) : Ṫ(n). (8.8.14)

Inequalities (8.8.1) and (8.8.6) yield

Ṫ
p

(n) : D < 0, Ṫ(n) : De
(n) > 0. (8.8.15)

In addition, the inequalities in (8.8.4) reduce to

Ṫ
p

(n) : Dp
(n) < 0, Ṫ

e

(n) : D > 0. (8.8.16)
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For example, for n = 0,±1, the inequalities in (8.8.15) give
◦
τ p : D < 0,

�
τ p : D < 0,

∇
τ p : D < 0, (8.8.17)

◦
τ : De

(0) > 0,
�
τ : De

(1) < 0,
∇
τ : De

(−1) < 0. (8.8.18)

Similarly, from (8.8.16), we obtain
◦
τ p : Dp

(0) < 0,
�
τ p : Dp

(1) < 0,
∇
τ p : Dp

(−1) < 0, (8.8.19)

◦
τ e : D > 0,

�
τ e : D > 0,

∇
τ e : D > 0. (8.8.20)

It is observed that

Ṫ
e

(n) = Λ(n) : D = (Λ(0) − 2nS) : D, (8.8.21)

and

Ṫ
p

(n) = Ṫ(n) − Ṫ
e

(n) =
◦
τ− ◦

τ e =
◦
τ p, (8.8.22)

for all n. In particular,
◦
τ p =

�
τ p =

∇
τ p. (8.8.23)

Furthermore,

Ṫ(n) : Ė(n) = Ṫ(n) : D =
◦
τ : D − 2n (σ : D2). (8.8.24)

To illustrate that Ṫ(n) : Ė(n) can have a different sign for different n,

consider a tensile test under superposed hydrostatic pressure. The corre-

sponding stress and rate of deformation tensors are

σ = σ e3 ⊗ e3 − pI, D =
3
2
l̇

l
e3 ⊗ e3 − 1

2
l̇

l
I, (8.8.25)

where l is a current length of the specimen under tensile stress σ (in the

direction e3), and under constant superposed pressure p. Substitution into

Eq. (8.8.24) yields

Ṫ(n) : D =
σ̇

σ

l̇

l

[
σ − 2n

(
1 − 3

2
p

σ

)
l̇

l

]
. (8.8.26)

For n = 0 this gives

Ṫ(0) : D = σ̇
l̇

l
. (8.8.27)

If this is positive, from (8.8.26) it follows that for other n the trace product

Ṫ(n) : D can be either positive or negative, depending on the magnitude of

the superposed pressure p (Hill, 1968).
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8.9. Related Postulates

Consider again the measure-invariant inequality (8.8.1), i.e.,

Ė(n) : Ṫp
(n) < 0. (8.9.1)

Since plastic parts of the stress and strain rates are related by

Ṫp
(n) = −Λ(n) : Ėp

(n), (8.9.2)

there follows

Ė(n) : Λ(n) : Ėp
(n) > 0. (8.9.3)

Thus, recalling that

Ė(n) = Ṫ(n) : M(n) + Ėp
(n), (8.9.4)

the substitution into (8.9.3) gives

Ṫ(n) : Ėp
(n) > −Ėp

(n) : Λ(n) : Ėp
(n). (8.9.5)

An inequality of this type was originally proposed by Nguyen and Bui (1974).

See also Lubliner (1986). In particular, with the current state as the refer-

ence, and with the logarithmic strain measure, we obtain

◦
τ : Dp

(0) > −Dp
(0) : Λ(0) : Dp

(0). (8.9.6)

Naghdi and Trapp (1975a,b) proposed that the external work done on

the body by surface tractions and body forces in any smooth spatially ho-

mogeneous closed cycle is non-negative, i.e.,∫ t2

t1

P dt ≥ 0, (8.9.7)

where

P =
∫
S0

pn · v dS0 +
∫
V 0

ρ0 b · v dV 0. (8.9.8)

A smooth closed cycle is defined as a closed cycle of deformation which also

restores the velocity and thus the kinetic energy,

E(n)(t2) = E(n)(t1), v(t2) = v(t1). (8.9.9)

By rewriting Eq. (8.9.8) as (see Section 3.5)

P =
d
dt

∫
V 0

1
2
ρ0 v · v dV 0 +

∫
V 0

T(n) : Ė(n) dV 0, (8.9.10)
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substitution into (8.9.7) gives∫ t2

t1

(∫
V 0

T(n) : Ė(n) dV 0

)
dt ≥ 0. (8.9.11)

Since deformation is assumed to be spatially uniform, this reduces to∫ t2

t1

T(n) : Ė(n) dt ≥ 0, (8.9.12)

or ∮
E

T(n) : Ė(n) dt ≥ 0. (8.9.13)

This, in fact, is Ilyushin’s postulate in the form presented by Hill (1968).

Additional discussion can be found in Carroll (1987), Hill and Rice (1987),

and Rajagopal and Srinivasa (1998). The work inequalities in plastic frac-

turing materials were discussed by Bažant (1980), among others, and for

elastic-viscoplastic materials by Naghdi (1984).
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CHAPTER 9

PHENOMENOLOGICAL PLASTICITY

This chapter contains a detailed analysis of phenomenological constitutive

equations for large deformation elastoplasticity. First eight sections are de-

voted to rate-independent models of isothermal elastoplastic behavior. For-

mulations in stress and strain space are both given. Different hardening

models of metal plasticity are discussed, including isotropic, kinematic, com-

bined and multisurface hardening models. Constitutive equations accounting

for the yield vertices are also included. Pressure-dependent and nonassocia-

tive flow rules are then analyzed, with an application to rock mechanics.

Constitutive theories of thermoplasticity, rate-dependent plasticity and vis-

coplasticity are considered in Sections 9.9 and 9.10. The final section of the

chapter deals with the deformation theory of plasticity.

9.1. Formulation in Strain Space

In the rate-independent elastoplastic theory with the yield surface in strain

space, the stress rate is decomposed into elastic and plastic parts, such that

Ṫ(n) = Ṫe
(n) + Ṫp

(n) = Λ(n) : Ė(n) − γ̇(n)

∂g(n)

∂E(n)
. (9.1.1)

The function g(n)

(
E(n), H

)
is the yield function, and

γ̇(n) > 0 (9.1.2)

is the loading index, both corresponding to selected strain measure and ref-

erence state. The yield surface is defined by

g(n)

(
E(n), H

)
= 0. (9.1.3)

Assuming an incrementally linear response and a continuity of the response

between loading and unloading, defined by Eq. (8.2.8), the loading index
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can be written as

γ̇(n) =
1

h(n)

(
∂g(n)

∂E(n)
: Ė(n)

)
,

∂g(n)

∂E(n)
: Ė(n) > 0. (9.1.4)

The parameter

h(n) > 0 (9.1.5)

is a scalar function of the plastic state on the yield surface, to be deter-

mined from the consistency condition and a given representation of the yield

function. If the strain rate is such that
∂g(n)

∂E(n)
: Ė(n) ≤ 0, (9.1.6)

only elastic deformation takes place, and

γ̇(n) = 0. (9.1.7)

An alternative derivation of (9.1.4) is based on the consistency condition

for continuing plastic deformation. This can be expressed as

dg(n) =
∂g(n)

∂E(n)
: dE(n) + dpg(n) = 0, (9.1.8)

where

dpg(n) = g(n)

(
E(n), H + dH) − g(n)

(
E(n), H

)
(9.1.9)

is the plastic part of the increment of dpg(n), due to change of the internal

structure. Writing

dpg(n) = −h(n) dγ(n), (9.1.10)

Equation (9.1.8) yields Eq. (9.1.4).

When Eq. (9.1.4) is substituted into Eq. (9.1.1), the constitutive equa-

tion for elastoplastic loading becomes (Hill, 1967a,1978)

Ṫ(n) =
[
Λ(n) − 1

h(n)

(
∂g(n)

∂E(n)
⊗ ∂g(n)

∂E(n)

)]
: Ė(n). (9.1.11)

The fourth-order tensor within the square brackets is the elastoplastic stiff-

ness tensor, associated with the considered stress and strain measures and

the reference state. Within the employed framework based on the Green-

elasticity and normality rule, the elastoplastic stiffness tensor obeys the re-

ciprocal or self-adjoint symmetry (with respect to first and second pair of

indices), in addition to symmetries in the first two and last two indices

(minor symmetry), associated with the symmetry of the stress and strain
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tensors. The formulation of elastoplasticity theory based on the yield sur-

face in strain space was also studied by Naghdi and Trapp (1975), Casey and

Naghdi (1981,1983), Yoder and Iwan (1981), Klisinski, Mróz, and Runesson

(1992), and Negahban (1995). A review by Naghdi (1990) contains addi-

tional related references.

It is of interest to invert the constitutive structure (9.1.11), and express

the strain rate in terms of the stress rate. By taking a trace product of Eq.

(9.1.11) with M(n) = Λ−1
(n), there follows

M(n) : Ṫ(n) = Ė(n) − 1
h(n)

M(n) :
∂g(n)

∂E(n)

(
∂g(n)

∂E(n)
: Ė(n)

)
. (9.1.12)

A trace product of (9.1.12) with ∂g(n)/∂E(n) gives

∂g(n)

∂E(n)
: Ė(n) =

h(n)

H(n)

∂g(n)

∂E(n)
: M(n) : Ṫ(n), (9.1.13)

where

H(n) = h(n) −
∂g(n)

∂E(n)
: M(n) :

∂g(n)

∂E(n)
. (9.1.14)

For plastic loading the quantity in Eq. (9.1.13) must be positive. The

substitution of Eq. (9.1.13) into Eq. (9.1.12) yields a desired inverted form

Ė(n) =
[
M(n) +

1
H(n)

(
M(n) :

∂g(n)

∂E(n)

)
⊗

(
∂g(n)

∂E(n)
: M(n)

)]
: Ṫ(n).

(9.1.15)

If current state is taken as the reference state, Eq. (9.1.11) becomes

Ṫ(n) =

[
Λ(n) −

1
h(n)

(
∂g

(n)

∂E(n)

⊗
∂g

(n)

∂E(n)

)]
: D. (9.1.16)

Incorporating Eq. (6.3.6) for Ṫ(n), and Eq. (6.3.13) for Λ(n) = LLL(n), gives

◦
τ =

[
LLL(0) −

1
h(n)

(
∂g

(n)

∂E(n)

⊗
∂g

(n)

∂E(n)

)]
: D. (9.1.17)

It is noted that

Ṫ
p

(n) = − 1
h(n)

(
∂g

(n)

∂E(n)

⊗
∂g

(n)

∂E(n)

)
: D =

◦
τ p, (9.1.18)

for all n. In particular, the gradient ∂g
(n)

/∂E(n) at the yield point is in the

same direction for all n.
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Let the yield surface in strain space be defined by

g(n)

(
E(n) − Ep

(n), k(n)

)
= 0, (9.1.19)

where g(n) is an isotropic function of its tensor argument, and Ep
(n) repre-

sents the center of the current yield surface (Fig. 9.1). This yield surface

translates and expands in strain space, although it physically corresponds to

isotropic hardening in stress space. The current center of the yield surface is

determined by integration from an appropriate evolution equation, along a

given deformation path. For instance, the evolution of Ep
(n) can be described

by

Ėp
(n) = −M(n) : Ṫp

(n) = γ̇(n) M(n) :
∂g(n)

∂E(n)
. (9.1.20)

The scalar function

k(n) = k(n)

(
ϕ(n)

)
(9.1.21)

in Eq. (9.1.19) specifies the size of the current yield surface. The parameter

ϕ(n) accounts for the history of plastic deformation, and can be taken as

ϕ(n) = −
∫ t

0

(
1
2

Ṫp
(n) : Ṫp

(n)

)1/2

dt. (9.1.22)

The consistency condition for continuing plastic deformation is

∂g(n)

∂E(n)
:
(
Ė(n) − Ėp

(n)

)
+

∂g(n)

∂k(n)

dk(n)

dϕ(n)
ϕ̇(n) = 0. (9.1.23)

Substitution of Eqs. (9.1.20) and (9.1.22) into Eq. (9.1.23) gives the loading

index as in Eq. (9.1.4), with

h(n) =
∂g(n)

∂E(n)
: M(n) :

∂g(n)

∂E(n)
+

∂g(n)

∂k(n)

dk(n)

dϕ(n)

(
1
2

∂g(n)

∂E(n)
:
∂g(n)

∂E(n)

)1/2

.

(9.1.24)

Suppose that current state on the yield surface is taken as the reference

state for the strain measure, so that E(n) = 0. Then,

−Ep
(n) = EEEe

(−n), (9.1.25)

where EEEe
(−n) is a spatial measure of elastic strain at the current yield state,

relative to the state at the center of the yield surface. To recognize this,
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Figure 9.1. (a) Uniaxial stress-strain curve. (b) Yield sur-
face in strain space corresponding to isotropic hardening.
The center of the yield surface is at the plastic state of
strain Ep

(n), corresponding to zero state of stress.

denote by Fe = Ve ·Re the deformation gradient from the state at the center

of the yield surface to the current state on the yield surface. It follows that

Fp = (Fe)−1
, Up = (Ve)−1

, (9.1.26)

and

Ep
(n) =

1
2n

[
(Up)2n − I

]
= −EEEe

(−n). (9.1.27)

Thus, Eqs. (9.1.4) and (9.1.24) give

γ̇
(n)

=
1

h(n)

(
∂g

(n)

∂EEEe
(−n)

: D

)
, (9.1.28)

where

h(n) =
∂g

(n)

∂EEEe
(−n)

: M(n) :
∂g

(n)

∂EEEe
(−n)

+
∂g(n)

∂k(n)

dk(n)

dϕ
(n)

(
1
2

∂g
(n)

∂EEEe
(−n)

:
∂g

(n)

∂EEEe
(−n)

)1/2

.

(9.1.29)

It is recalled from Eq. (9.1.18) that all stress rates Ṫ
p

(n) are equal to each

other, and thus all the history parameters ϕ
(n)

are also equal (independent

of n); see Eq. (9.1.22). These general expressions are next specialized by

assuming that the elastic component of strain is infinitesimally small.
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Infinitesimal Elasticity

If elastic deformation within the yield surface is infinitesimal, all strain mea-

sures EEEe
(−n) reduce to infinitesimal elastic strain εe, whose deviatoric part is

related to Cauchy stress by

εe ′ =
1
2μ

σ ′. (9.1.30)

For example, let the yield surface be specified by

g = 4μ2

[
1
2
εe ′ : εe ′ − k2(ϕ)

]
= 0 . (9.1.31)

The factor 4μ2 is introduced for the sake of comparison with the correspond-

ing yield surface in stress space, considered later in Subsection 9.2.1. From

Eqs. (9.1.18) and (9.1.31), we have

∂g

∂εe
= 4μ2εe ′,

◦
τ p = −4μ2γ̇ εe ′, (9.1.32)

while Eqs. (9.1.22), (9.1.24), and (9.1.29) give

ϕ̇ = −4μ2k γ̇, γ̇ =
4μ2

h
(εe ′ : D) , h = 16μ3k2

(
1 − 2μ

dk
dϕ

)
. (9.1.33)

Consequently,

◦
τ =

(
LLL(0) −

2μ
1 − 2μdk/dϕ

εe ′ ⊗ εe ′

εe ′ : εe ′

)
: D. (9.1.34)

The elastic stiffness or moduli tensor is taken as

LLL(0) = λ I ⊗ I + 2μ III . (9.1.35)

A similar approach to derive elastoplastic constitutive equations with the

yield surface in strain space was used, within infinitesimal strain context, by

Yoder and Iwan (1981).

It is convenient to express the elastic stiffness tensor (9.1.35) in an al-

ternative form as

LLL(0) = 2μJJJ + 3κKKK , (9.1.36)

where

κ = λ +
2
3
μ (9.1.37)

is the elastic bulk modulus. The base tensors JJJ and KKK sum to give the

fourth-order unit tensor, JJJ + KKK = III . The rectangular components of III and
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KKK are

Iijkl =
1
2

(δik δjl + δil δjk), Kijkl =
1
3
δij δkl . (9.1.38)

These are convenient base tensors, because JJJ : JJJ = JJJ and KKK : KKK = KKK , as

well as JJJ : KKK = KKK : JJJ = 0 (Hill, 1965; Walpole, 1981). In the trace operation

with any second-order tensor A, the tensor JJJ extracts its deviatoric part,

while the tensor KKK extracts its spherical part (JJJ : A = A′ and KKK : A =

A − A′). It is then easily verified that the inverse of (9.1.36) is simply

LLL−1
(0) =

1
2μ

JJJ +
1
3κ

KKK . (9.1.39)

9.2. Formulation in Stress Space

In the rate-independent elastoplastic theory with the yield surface in stress

space, the strain rate is decomposed as the sum of elastic and plastic parts,

such that

Ė(n) = Ėe
(n) + Ėp

(n) = M(n) : Ṫ(n) + γ̇(n)

∂f(n)

∂T(n)
. (9.2.1)

The function f(n)

(
T(n), H

)
is the yield function, and γ̇(n) > 0 is the loading

index, both corresponding to selected measure and reference state. The yield

surface is

f(n)

(
T(n), H

)
= 0. (9.2.2)

Assuming an incrementally linear response and a continuity of the response,

the loading index can be expressed as

γ̇(n) =
1

H(n)

(
∂f(n)

∂T(n)
: Ṫ(n)

)
. (9.2.3)

The scalar function H(n) is determined from the consistency condition and

a given representation of the yield function. Substitution of Eq. (9.2.3) into

Eq. (9.2.1) gives

Ė(n) =
[
M(n) +

1
H(n)

(
∂f(n)

∂T(n)
⊗ ∂f(n)

∂T(n)

)]
: Ṫ(n). (9.2.4)

The fourth-order tensor within the square brackets is the elastoplastic com-

pliance tensor associated with the considered stress and strain measures and

the reference state.

© 2002 by CRC Press LLC 



The relationship between h(n) in Eq. (9.1.11) and H(n) in Eq. (9.2.4)

can be obtained by equating Eqs. (9.1.4) and (9.2.3), i.e.,

1
h(n)

(
∂g(n)

∂E(n)
: Ė(n)

)
=

1
H(n)

(
∂f(n)

∂T(n)
: Ṫ(n)

)
. (9.2.5)

Substituting Eq. (9.2.4) for Ė(n) and by using the relationship between the

yield surface normals in stress and strain space,

∂f(n)

∂T(n)
= M(n) :

∂g(n)

∂E(n)
, (9.2.6)

there follows

H(n) = h(n) −
∂g(n)

∂E(n)
:
∂f(n)

∂T(n)
, (9.2.7)

in agreement with Eq. (9.1.14). Consequently, Eq. (9.2.4) is equivalent to

Eq. (9.1.15).

The scalar parameter H(n) can be positive, negative or equal to zero.

Three types of response are thus possible within this constitutive framework.

They are

H(n) > 0,
∂f(n)

∂T(n)
: Ṫ(n) > 0 hardening,

H(n) < 0,
∂f(n)

∂T(n)
: Ṫ(n) < 0 softening,

H(n) = 0,
∂f(n)

∂T(n)
: Ṫ(n) = 0 ideally plastic.

(9.2.8)

Starting from the current yield surface in stress space, the stress point moves

outward in the case of hardening, inward in the case of softening, and tan-

gentially to the yield surface in the case of ideally plastic response. In the

case of softening, Ė(n) is not uniquely determined by the prescribed stress

rate Ṫ(n), since either Eq. (9.2.4) applies, or the elastic unloading expression

Ė(n) = M(n) : Ṫ(n). (9.2.9)

In the case of ideally plastic response, the plastic part of the strain rate is

indeterminate to the extent of an arbitrary positive multiple, since γ̇(n) in

Eq. (9.2.3) is indeterminate.

Inverted form of Eq. (9.2.4) can be obtained along similar lines as used

to invert Eq. (9.1.11). The result is

Ṫ(n) =
[
Λ(n) − 1

h(n)

(
Λ(n) :

∂f(n)

∂T(n)

)
⊗

(
∂f(n)

∂T(n)
: Λ(n)

)]
: Ė(n), (9.2.10)
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where

h(n) = H(n) +
∂f(n)

∂T(n)
: Λ(n) :

∂f(n)

∂T(n)
, (9.2.11)

which is in agreement with Eq. (9.1.14). If current state is taken as the

reference state, Eq. (9.2.4) becomes

D =

[
M(n) +

1
H(n)

(
∂f

(n)

∂T(n)

⊗
∂f

(n)

∂T(n)

)]
: Ṫ(n). (9.2.12)

9.2.1. Yield Surface in Cauchy Stress Space

It is most convenient to apply Eq. (9.2.12) for n = 0. In the near neigh-

borhood of the current stress state on the yield surface, the conjugate stress

to logarithmic strain (relative to the state on the yield surface) is, from Eq.

(3.6.17),

T(0) = R · τ · RT + O(τ · E2
(n)), (9.2.13)

where τ = (detF)σ is the Kirchhoff stress. On the other hand, for n �= 0,

T(n) = R · τ · RT + O(τ · E(n)), (9.2.14)

by Eq. (3.6.16). In the last two equations, the deformation gradient F and

the rotation R are measured from the current, deformed configuration as

the reference. Thus,

f(0)(T(0), H) ≈ f(σ, H) (9.2.15)

in the near neighborhood of the current yield state, where

f(σ, H) = 0 (9.2.16)

represents the yield surface in the Cauchy stress space. Equation (9.2.12)

consequently becomes

D =
[
MMM(0) +

1
H

(
∂f

∂σ
⊗ ∂f

∂σ

)]
:
◦
τ. (9.2.17)

The tensor

M(0) = MMM(0) = LLL−1
(0) (9.2.18)

is the corresponding instantaneous compliance tensor, and H is an appro-

priate scalar function of the deformation history.
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The elastic and plastic parts of the rate of deformation tensor D, corre-

sponding to
◦
τ, are

De
(0) = MMM(0) :

◦
τ, Dp

(0) =
1
H

(
∂f

∂σ
⊗ ∂f

∂σ

)
:
◦
τ. (9.2.19)

If elastic component of strain is neglected, a model of rigid-plasticity is

obtained. The rate of deformation is due to plastic deformation only, so that

D =
1
H

(
∂f

∂σ
⊗ ∂f

∂σ

)
:
◦
τ. (9.2.20)

9.3. Nonuniqueness of the Rate of Deformation Partition

Within the considered framework of conjugate stress and strain tensors, there

are infinitely many partitions of the rate of deformation tensor, one associ-

ated with each n. Thus, we can write (Lubarda, 1994)

D = De
(0) + Dp

(0) = De
(n) + Dp

(n). (9.3.1)

The elastic parts of D are defined by

De
(0) = MMM(0) :

◦
τ, De

(n) = MMM(n) : Ṫ(n), (9.3.2)

where

Ṫ(n) =
◦
τ− 2nSSS : D, LLL(n) = LLL(0) − 2nSSS . (9.3.3)

The fourth-order tensor SSS is defined in Eq. (6.3.11) as

Sijkl =
1
4

(σikδjl + σjkδil + σilδjk + σjlδik) . (9.3.4)

Since, from Eq. (8.8.22),

Ṫ
p

(0) = Ṫ
p

(n), (9.3.5)

and since

Ṫ
p

(n) = −LLL(n) : Dp
(n) = −

(
LLL(0) − 2nSSS

)
: Dp

(n), (9.3.6)

the following relationships hold

Dp
(0) = Dp

(n) − 2nMMM(0) : SSS : Dp
(n), (9.3.7)

De
(0) = De

(n) + 2nMMM(0) : S : Dp
(n). (9.3.8)

Alternatively, these can be expressed as

Dp
(n) = Dp

(0) + 2nMMM(n) : SSS : Dp
(0), (9.3.9)
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De
(n) = De

(0) − 2nMMM(n) : SSS : Dp
(0). (9.3.10)

The relative difference between the components of elastic (and plastic) rate

of deformation tensors for various n are thus of the order of Cauchy stress

over elastic modulus. In the sequel, the elastic and plastic parts of the rate

of deformation tensor corresponding to
◦
τ will be designated simply by De

and Dp, i.e.,

De
(0) = De, Dp

(0) = Dp. (9.3.11)

9.4. Hardening Models in Stress Space

9.4.1. Isotropic Hardening

The experimental determination of the yield surface is commonly done with

respect to Cauchy stress. Suppose that this is given by

f(σ, K) = 0, (9.4.1)

where f is an isotropic function of σ, and

K = K(ϑ) (9.4.2)

is a scalar function which defines the size of the yield surface. The hard-

ening model in which the yield surface expands during plastic deformation,

preserving its shape, is known as the isotropic hardening model. Since f

is taken to be an isotropic function of stress, the material is assumed to

be isotropic. The history parameter ϑ is the effective (generalized) plastic

strain, defined by

ϑ =
∫ t

0

(2Dp : Dp)1/2 dt. (9.4.3)

In view of the isotropy of the function f , we may write

f(σ, K) = f
(
RT · σ · R, K

) ≈ f(T(0), K). (9.4.4)

The approximation holds in the near neighborhood of the current state,

relative to which R and T(0) are measured. The consistency condition for

continuing plastic deformation,

ḟ = 0, (9.4.5)
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Figure 9.2. Von Mises and Tresca yield surfaces in prin-
cipal stress space. The yield cylinder and the yield prism
have their axis parallel to the hydrostatic axis, which is per-
pendicular to the π plane (σ1 + σ2 + σ3 = 0).

gives

∂f

∂T(0)

: Ṫ(0) =
∂f

∂σ
:
◦
τ = − ∂f

∂K

dK
dϑ

ϑ̇. (9.4.6)

Upon substitution of Eqs. (9.4.3), the loading index becomes

γ̇ =
1
H

(
∂f

∂σ
:
◦
τ

)
, H = − ∂f

∂K

dK
dϑ

(
2
∂f

∂σ
:
∂f

∂σ

)1/2

. (9.4.7)

J2 Flow Theory of Plasticity

For nonporous metals the onset of plastic deformation and plastic yielding

is unaffected by a moderate superimposed pressure. The yield condition for

such materials can consequently be written as an isotropic function of the

deviatoric part of Cauchy stress, i.e., as a function of its second and third

invariant,

f(J2, J3, K) = 0. (9.4.8)
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Figure 9.3. The trace of the von Mises and Tresca yield
surfaces in the π plane. The states of simple tension and
pure shear are indicated.

The classical examples are the Tresca maximum shear stress criterion and

the von Mises yield criterion (Fig. 9.2). In the latter case,

f = J2 −K2(ϑ) = 0, J2 =
1
2
σ ′ : σ ′. (9.4.9)

The corresponding plasticity theory is known as the J2 flow theory of plas-

ticity. If the yield stress in uniaxial tension is σY , and in shear loading τY ,

we have (Fig. 9.3)

K =
1√
3
σY = τY . (9.4.10)

For the J2 plasticity,

∂f

∂σ
= σ ′, Dp = γ̇ σ ′, (9.4.11)

and

ϑ̇ = 2K γ̇, H = 4K2hp
t , γ̇ =

1
4K2hp

t

(
σ ′ :

◦
τ
)
. (9.4.12)

The plastic tangent modulus in shear test is

hp
t =

dK
dϑ

. (9.4.13)

Equation (9.4.11) implies that plastic deformation is isochoric

trDp = 0. (9.4.14)
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The total rate of deformation is

D =
[
MMM(0) +

1
4K2hp

t

(σ ′ ⊗ σ ′)
]

:
◦
τ. (9.4.15)

For infinitesimal elasticity the elastic compliance tensor can be taken as

MMM(0) =
1
2μ

(
III − λ

2μ + 3λ
I ⊗ I

)
=

1
2μ

JJJ +
1
3κ

KKK . (9.4.16)

By using Eq. (9.4.9) to express K in terms of stress, Eq. (9.4.15) is

rewritten as

D =
(
MMM(0) +

1
2hp

t

σ ′ ⊗ σ ′

σ ′ : σ ′

)
:
◦
τ. (9.4.17)

The plastic loading condition in the hardening range is

σ ′ :
◦
τ > 0. (9.4.18)

The inverse equation is

◦
τ =

(
LLL(0) −

2μ
1 + hp

t /μ

σ ′ ⊗ σ ′

σ ′ : σ ′

)
: D, (9.4.19)

which applies for

σ ′ : D > 0. (9.4.20)

Note that

LLL(0) : σ ′ = 2μσ ′. (9.4.21)

In retrospect, the plastic rate of deformation can be expressed either in terms

of stress rate or total rate of deformation as

Dp =
1

2hp
t

σ ′ ⊗ σ ′

σ ′ : σ ′ :
◦
τ =

1
1 + hp

t /μ

σ ′ ⊗ σ ′

σ ′ : σ ′ : D. (9.4.22)

An often utilized expression for K = K(ϑ) corresponds to nonlinear hard-

ening that saturates to linear hardening at large ϑ (Fig. 9.4), i.e.,

K = K0 + h1ϑ + (K1 −K0)
[
1 − exp

(
− h0 − h1

K1 −K0
ϑ

)]
. (9.4.23)

The corresponding plastic tangent modulus is

hp
t = h1 + (h0 − h1) exp

(
− h0 − h1

K1 −K0
ϑ

)
. (9.4.24)

In the case of linear hardening, K = K0 + hp
t ϑ, where hp

t is a constant. For

ideal (perfect) plasticity, hp
t = 0 can be substituted in the expression on the

far right-hand side of Eq. (9.4.22), since σ ′ : σ ′ = 2K2
0 , where K0 is the

constant radius of the yield surface.
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Figure 9.4. Nonlinear hardening that saturates to linear
hardening with the rate h1 at large ϑ, according to Eq.
(9.4.17). The initial yield stress is K0 and the initial harden-
ing rate is h0. The plastic tangent modulus at an arbitrary
ϑ is hp

t .

Constitutive structures (9.4.17) and (9.4.19) have been used in analyti-

cal and numerical treatments of various plastic deformation problems (e.g.,

Hutchinson, 1973; McMeeking and Rice, 1975; Neale, 1981; Needleman,

1982). More generally, when f is defined by Eq. (9.4.8), we can write

D =
(
MMM(0) +

1
2hp

M ⊗ M

)
:
◦
τ, (9.4.25)

◦
τ =

(
LLL(0) −

2μ
1 + hp/μ

M ⊗ M

)
: D. (9.4.26)

The normalized tensor M is in the direction of outward normal to the yield

surface, and hp is the hardening parameter. They are defined by

M =
∂f
∂σ(

∂f
∂σ : ∂f

∂σ

)1/2
, hp = −

∂f
∂K hp

t(
2 ∂f

∂σ : ∂f
∂σ

)1/2
. (9.4.27)

If f is given by Eq. (9.4.9), then

hp = hp
t =

dK
dϑ

. (9.4.28)

Derived equations are in accord with the constitutive structure (9.1.34),

obtained within formulation based on the yield surface in strain space. This

can be easily verified by observing that

K = 2μk,
dK
dϑ

= 2μ
dk
dϕ

ϕ̇

ϑ̇
,

ϕ̇

ϑ̇
= −μ, (9.4.29)
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Figure 9.5. Illustration of the Bauschinger effect (|σ−
y | <

σ+
y ) in uniaxial tension. The Cauchy stress is σ and the

logarithmic strain is ε.

and

H − h = −4μK2. (9.4.30)

The formulation of the constitutive equations for isotropic hardening

plasticity within the framework of infinitesimal strain is presented in stan-

dard texts or review papers, such as Hill (1950), Drucker (1960), and Naghdi

(1960). Derivation of classical Prandtl–Reuss equations for elastic-ideally

plastic, and Levy–Mises equations for rigid-ideally plastic material models

is also there given. The effects of the third invariant of the stress deviator

on plastic deformation are discussed by Novozhilov (1952), Ohashi, Tokuda,

and Yamashita (1975), and Gupta and Meyers (1992, 1994). The book

by Zyczkowski (1981) contains a comprehensive list of references to various

other topics of classical plasticity.

9.4.2. Kinematic Hardening

To account for the Bauschinger effect (Fig. 9.5) and anisotropic hardening,

and thus provide better description of material response under cyclic loading,

a simple model of kinematic hardening was introduced by Melan (1938) and
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Prager (1955,1956). According to this model, the initial yield surface does

not change its size and shape during plastic deformation, but translates in

the stress space according to some prescribed rule. If the yield condition is

pressure-independent, it is assumed that

f (σ ′ −α, K0) = 0, K0 = const., (9.4.31)

where α represents the current center of the yield locus in the deviatoric

plane trσ = 0 (back stress), and f is an isotropic function of the stress

difference σ ′ − α. The back stress in the plane trσ = const. would be

α+(trσ/3)I. The size of the yield locus is specified by the constant K0. By

an analysis similar to that used in the previous subsection, the consistency

condition for continuing plastic deformation can be written as
∂f

∂σ
:
(◦
τ− ◦

α
)

= 0, (9.4.32)

where ∂f/∂σ = ∂f/∂σ ′. Suppose that the yield surface instantaneously

translates so that the evolution of back stress is governed by
◦
α = c(α, ϑ)Dp + C(α, ϑ) (Dp : Dp)1/2 , (9.4.33)

where c and C are the appropriate scalar and tensor functions of α and ϑ.

This representation is in accord with assumed time-independence of plastic

deformation, which requires Eq. (9.4.33) to be homogeneous function of

degree one in the components of plastic rate of deformation. Since the plastic

rate of deformation is

Dp = γ̇
∂f

∂σ
, (9.4.34)

the substitution of Eq. (9.4.33) into Eq. (9.4.32) gives the loading index

γ̇ =
1
H

(
∂f

∂σ
:
◦
τ

)
, H = c

(
∂f

∂σ
:
∂f

∂σ

)
+

(
∂f

∂σ
:
∂f

∂σ

)1/2 (
C :

∂f

∂σ

)
.

(9.4.35)

If the yield condition is specified by

f =
1
2

(σ ′ −α) : (σ ′ −α) −K2
0 = 0, (9.4.36)

then
∂f

∂σ
= σ ′ −α, Dp = γ̇ (σ ′ −α), (9.4.37)

and

γ̇ =
1
H

(σ ′ −α) :
◦
τ, H = 2K0

[
cK0 +

1√
2

C : (σ ′ −α)
]
. (9.4.38)
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Consequently,

D =
[
MMM(0) +

1
H

(σ ′ −α) ⊗ (σ ′ −α)
]

:
◦
τ. (9.4.39)

Linear and Nonlinear Kinematic Hardening

When C = 0 and c is taken to be a constant, the model with evolution

equation (9.4.33) reduces to Prager’s linear kinematic hardening (Fig. 9.6).

The plastic tangent modulus hp
t from the shear test is constant, and related

to c by

c = 2hp
t . (9.4.40)

In this case, Eq. (9.4.39) becomes

D =
[
MMM(0) +

1
2hp

t

(σ ′ −α) ⊗ (σ ′ −α)
(σ ′ −α) : (σ ′ −α)

]
:
◦
τ, (9.4.41)

with plastic loading condition in the hardening range

(σ ′ −α) :
◦
τ > 0. (9.4.42)

The inverse equation is

◦
τ =

[
LLL(0) −

2μ
1 + hp

t /μ

(σ ′ −α) ⊗ (σ ′ −α)
(σ ′ −α) : (σ ′ −α)

]
: D, (9.4.43)

provided that

(σ ′ −α) : D > 0. (9.4.44)

In retrospect, the evolution equation for the back stress
◦
α = 2hp

t Dp (9.4.45)

can be expressed in terms of the stress rate or the rate of deformation as

◦
α =

(σ ′ −α) ⊗ (σ ′ −α)
(σ ′ −α) : (σ ′ −α)

:
◦
τ, (σ ′ −α) :

◦
τ > 0, (9.4.46)

◦
α =

2hp
t

1 + hp
t /μ

(σ ′ −α) ⊗ (σ ′ −α)
(σ ′ −α) : (σ ′ −α)

: D, (σ ′ −α) : D > 0. (9.4.47)

A nonlinear kinematic hardening model of Armstrong and Frederick

(1966) is obtained if C in Eq. (9.4.33) is taken to be proportional to α,
C = −c0 α, (9.4.48)

where c0 is a constant material parameter. In this case
◦
α = 2hDp − c0 α (Dp : Dp)1/2 , (9.4.49)
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Figure 9.6. One-dimensional stress-strain response ac-
cording to linear kinematic hardening model.

with h as another material parameter. The added nonlinear term in Eq.

(9.4.49), referred to as a recall term, gives rise to hardening moduli for

reversed plastic loading that are in better agreement with experimental data.

It follows that

Dp =
1

2h(1 −m)
(σ ′ −α) ⊗ (σ ′ −α)
(σ ′ −α) : (σ ′ −α)

:
◦
τ, (9.4.50)

where

m =
c0
2h

(σ ′ −α) : α
[(σ ′ −α) : (σ ′ −α)]1/2

. (9.4.51)

In modeling cyclic plasticity it may be convenient to additively decom-

pose the back stress α into two or more constituents, and construct separate

evolution equation for each of these. For details, see Moosbrugger and Mc-

Dowell (1989), Ohno and Wang (1993), and Jiang and Kurath (1996).

Ziegler (1959) used an evolution equation for back stress in the form
◦
α = β̇ (σ ′ −α). (9.4.52)

The proportionality factor β̇ can be determined from the consistency con-

dition in terms of σ and α (Fig. 9.7). Detailed analysis is available in

the book by Chakrabarty (1987). Duszek and Perzyna (1991) suggested an
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Figure 9.7. Translation of the yield surface according to
kinematic hardening model. The center of the yield surface
is the back stress α. Its evolution is governed by dα ∼
Dp according to Prager’s model, and by dα ∼ (σ ′ − α)
according to Ziegler’s model.

evolution equation that is a linear combination of the Prager and Ziegler

hardening rules. See also Ishlinsky (1954), Backhaus (1968,1972), Eisenberg

and Phillips (1968), and Lehmann (1972).

9.4.3. Combined Isotropic–Kinematic Hardening

In this hardening model the yield surface expands and translates during

plastic deformation (Fig. 9.8), so that

f (σ ′ −α, Kα) = 0, Kα = Kα(ϑ). (9.4.53)

The scalar function Kα(ϑ), with ϑ defined by Eq. (9.4.3), specifies expansion

of the yield surface, while (9.4.33) specifies its translation. The resulting

constitutive equation for the plastic part of rate of deformation is

Dp = γ̇
∂f

∂σ
, γ̇ =

1
H

(
∂f

∂σ
:
◦
τ

)
, (9.4.54)

with

H = c

(
∂f

∂σ
:
∂f

∂σ

)
+

(
∂f

∂σ
:
∂f

∂σ

)1/2 (
C :

∂f

∂σ
−

√
2hp

α

∂f

∂Kα

)
. (9.4.55)

The rate of the yield surface expansion is

hp
α =

dKα

dϑ
. (9.4.56)
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Figure 9.8. Geometric illustration of isotropic, kinematic
and combined hardening. The initial yield surface (f0) ex-
pands in the case of isotropic, translates in the case of kine-
matic (fk), and expands and translates in the case of com-
bined or mixed hardening (fc).

If the yield surface is

1
2

(σ ′ −α) : (σ ′ −α) = K2
α(ϑ), (9.4.57)

where α represents its current center, and Kα(ϑ) its current radius, and if

the evolution equation for back stress α is given by Eq. (9.4.49), we obtain

Dp =
1

2hp
α + 2h(1 −m)

(σ ′ −α) ⊗ (σ ′ −α)
(σ ′ −α) : (σ ′ −α)

:
◦
τ. (9.4.58)

The parameter m is again specified by Eq. (9.4.51). This clearly encompasses

the previously considered purely isotropic and kinematic hardening models.

For purely kinematic hardening hp
α = 0, and for purely isotropic hardening

hp
α = hp

t (plastic tangent modulus in simple shear).

For example, when m = c0 = 0, and when the hardening is linear with

the yield stress K = K0 + hp
t ϑ, where hp

t = const., we can write

h = (1 − r)hp
t , Kα = K0 + rhp

t ϑ, (9.4.59)

and hp
α = rhp

t . The parameter 0 ≤ r ≤ 1 defines the amount of combined

hardening. The value r = 1 corresponds to purely isotropic, and r = 0 to

purely kinematic hardening. Equation (9.4.59) can be extended to the case

of nonlinear hardening K = K(ϑ) by defining

h = (1 − r)
dK
dϑ

, Kα = K0 + r(K −K0). (9.4.60)
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Moreton, Moffat, and Parkinson (1981) observed large translations to-

gether with moderately small isotropic expansion and distortion of the yield

surface in experiments with pressure vessel steels. Detailed description of

the measured yield loci can be found in Naghdi, Essenburg, and Koff (1958),

Bertsch and Findley (1962), Hecker (1976), Phillips and Lee (1979), Shira-

tori, Ikegami, and Yoshida (1979), Phillips and Das (1985), Stout, Martin,

Helling, and Canova (1985), Wu, Lu, and Pan (1995), and Barlat et al.

(1997).

9.4.4. Mróz Multisurface Model

More involved hardening models were suggested to better treat nonlinearities

in stress-strain loops, cyclic hardening or softening, cyclic creep and stress

relaxation. In order to describe nonlinear hardening and provide gradual

transition from elastic to plastic deformation, Mróz (1967,1976) introduced a

multiyield surface model in which there is a field of hardening moduli, one for

each yield surface. Initially the yield surfaces are assumed to be concentric

(Fig. 9.9). When the stress point reaches the innermost surface f<1> = 0, the

plastic deformation develops according to linear hardening model with the

plastic tangent modulus hp
t <1>, until the activated yield surface reaches the

next surface f<2> = 0. Subsequent plastic deformation develops according

to linear hardening model with the plastic tangent modulus hp
t <2>, until

the next surface is reached, etc. Suppose that pressure-independent yield

surfaces are defined by

f<i> =
1
2

(σ ′ −α<i>) : (σ ′ −α<i>) −K2
<i> = 0, i = 1, 2, · · ·N.

(9.4.61)

The centers of the individual surfaces are α<i>, and their sizes are specified

by the constants K<i> (determined by fitting the nonlinear stress-strain

curve in pure shear test). For simplicity, only translation of the yield surfaces

is considered. To ascertain that two surfaces in contact have coincident

outward normals, the active yield surface

f<i> = 0 (9.4.62)

translates in the direction of the stress difference σ′
<i+1> − σ ′, where σ ′ is

the current stress state on the yield surface f<i> = 0, and σ′
<i+1> is the
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Figure 9.9. Illustration of the Mróz multisurface harden-
ing model with the help of three initially concentric sur-
faces. Sequential translation of the surfaces are indicated
corresponding to uniaxial monotonic loading in (b) and (c),
and reversed loading in (d) and (e).

stress state on the subsequent yield surface

f<i+1> = 0. (9.4.63)

This stress state is defined by the requirement that the yield surface normals

at σ ′ and σ′
<i+1> are parallel (Fig. 9.10). Thus, the evolution law for back

stress is

◦
α<i> = β̇<i>

(
σ′
<i+1> − σ ′) , (9.4.64)

where

1
K<i+1>

(
σ′
<i+1> −α<i+1>

)
=

1
K<i>

(σ ′ −α<i>) . (9.4.65)

Inserting Eq. (9.4.65) into Eq. (9.4.64),
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Figure 9.10. Translation of the surface f<i> = 0 in Mróz’s
model is specified by dα<i> ∼ (σ′

<i+1>−σ′), where σ′
<i+1>

is the stress state on the surface f<i+1> = 0, with the nor-
mal n<i+1> parallel to n<i> at the state of stress σ ′ on the
yield surface f<i> = 0.

◦
α<i> = β̇<i>

[
K<i+1>

K<i>
(σ ′ −α<i>) − (σ ′ −α<i+1>)

]
. (9.4.66)

The consistency condition

ḟ<i> = 0 (9.4.67)

gives

(σ ′ −α<i>) :
◦
τ = (σ ′ −α<i>) :

◦
αi. (9.4.68)

Combined with Eq. (9.4.66), this defines

β̇<i> =
1

2B<i>
(σ ′ −α<i>) :

◦
τ, (9.4.69)

where

B<i> = K<i>K<i+1> − 1
2

(σ ′ −α<i>) : (σ ′ −α<i+1>) . (9.4.70)

The plastic part of the rate of deformation tensor, during the loading be-

tween the active yield surface f<i> = 0 and the nearby surface f<i+1> = 0,

is defined by the linear kinematic hardening law with the plastic tangent

modulus hp
t <i>. This gives, from Eq. (9.4.41),

Dp =
1

2hp
t <i>

[
(σ ′ −α<i>) ⊗ (σ ′ −α<i>)
(σ ′ −α<i>) : (σ ′ −α<i>)

]
:
◦
τ. (9.4.71)

Further details, including the incorporation of isotropic component of hard-

ening and determination of material parameters, can be found in cited Mróz’s
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Figure 9.11. Schematic representation of the loading and
bounding surface in the two-surface hardening model. The
loading surface translates toward the bounding surface in
the direction σ̂ ′ − σ ′.

papers. See also Iwan (1967), Desai and Siriwardane (1984), Khan and

Huang (1995), and Jiang and Sehitoglu (1996a,b).

9.4.5. Two-Surface Model

Dafalias and Popov (1975,1976), and Krieg (1975) suggested the hardening

model which uses the yield (loading) surface and the limit (bounding) surface

(Fig. 9.11). A smooth transition from elastic to plastic regions on loading is

assured by introducing a continuous variation of the plastic tangent modulus

between the two surfaces, i.e.,

hp
t = hp

t (η, ϑ). (9.4.72)

The scalar

η = [(σ̂ ′ − σ ′) : (σ̂ ′ − σ ′)]1/2 (9.4.73)

is a measure of the distance between the current stress state σ ′ on the loading

surface, and the corresponding, appropriately defined state of stress σ̂ ′ on

the bounding surface. Only deviatoric parts of stress are used for pressure-

independent plasticity. Suppose that the loading surface can translate and

expand, such that

f =
1
2

(σ ′ −α) : (σ ′ −α) −K2
α(ϑ) = 0, ϑ =

∫ t

0

(2Dp : Dp)1/2 dt.

(9.4.74)
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The bounding surface is assumed to only translate, i.e.,

f̂ =
1
2

(σ̂ ′ − α̂) : (σ̂ ′ − α̂) − K̂2 = 0, K̂ = const. (9.4.75)

Translation of the loading surface is defined as in the Mróz’s model, and it is

in the direction of the stress difference σ̂ ′ − σ ′. The current stress state on

the loading surface f = 0 is σ ′, while σ̂ ′ is the stress state on the bounding

surface f̂ = 0, where the surface normal is parallel to the loading surface

normal at σ ′. Thus, the evolution law for back stress α is

◦
α = β̇ (σ̂ ′ − σ ′) = β̇

[
K̂

Kα
(σ ′ −α) − (σ ′ − α̂)

]
. (9.4.76)

The translation of the bounding surface is governed by a linear kinematic

hardening rule
◦
α̂ = 2ĥp

t Dp, (9.4.77)

where ĥp
t is the corresponding, constant plastic tangent modulus. The plastic

part of the rate of deformation tensor is taken to be

Dp =
1

2hp
t

[
(σ ′ −α) ⊗ (σ ′ −α)
(σ ′ −α) : (σ ′ −α)

]
:
◦
τ. (9.4.78)

The consistency condition for the loading surface gives

(σ ′ −α) : (
◦
τ− ◦

α) − 2hp
α Kα (2Dp : Dp)1/2 = 0, (9.4.79)

with hp
α = dKα/dϑ. In view of Eq. (9.4.76) and (9.4.78), Eq. (9.4.79)

defines

β̇ =
1

2B

(
1 − hp

α

hp
t

)
(σ ′ −α) :

◦
τ, (9.4.80)

where

B = KαK̂ − 1
2

(σ ′ −α) : (σ ′ − α̂). (9.4.81)

Finally, the consistency condition for the bounding surface,

(σ̂ ′ − α̂) : (
◦
τ̂−

◦
α̂) = 0, (9.4.82)

specifies the stress rate
◦
τ̂ on the bounding surface that corresponds to a

prescribed stress rate
◦
τ on the loading surface. Upon substitution of Eqs.

(9.4.77) and (9.4.78) into Eq. (9.4.82), there follows

(σ̂ ′ − α̂) :
◦
τ̂ =

K̂

Kα

ĥp
t

hp
t

(σ ′ −α) :
◦
τ. (9.4.83)

© 2002 by CRC Press LLC 



The Mróz’s assumption (9.4.65) was utilized, so that

σ̂ ′ − α̂ =
K̂

Kα
(σ ′ −α). (9.4.84)

Further analysis, including the incorporation of isotropic component of hard-

ening for the bounding surface, and the specification of material parameters,

can be found in the cited papers. See also McDowell (1985,1987), Chaboche

(1986), Hashiguchi (1981, 1988), and Ellyin (1989) for the generalization of

the model and discussion of its performance. There has also been a study of

cyclic hardening and softening using continuously evolving parameters and

only one yield surface, presented by Haupt and Kamlah (1995), and Ristin-

maa (1995). The papers by Caulk and Naghdi (1978), Drucker and Palgen

(1981), and Naghdi and Nikkel (1986) address the modeling of saturation

hardening under cyclic loading, and related problems.

9.5. Yield Surface with Vertex in Strain Space

Suppose that the yield surface in strain space (Fig. 9.12) has a pyramidal

vertex, formed by k0 intersecting segments (hyperplanes) such that, near the

vertex,

k0∏
i=1

g<i>
(n)

(
E(n), H

)
= 0, k0 ≥ 2. (9.5.1)

If the material obeys Ilyushin’s postulate, from (8.5.10) it follows that dpT(n)

lies within the cone of limiting inward normals to active segments of the yield

vertex, i.e.,

dpT(n) = −
k∑

i=1

dγ<i>
(n)

∂g<i>
(n)

∂E(n)
, dγ<i>

(n) > 0. (9.5.2)

Thus,

dT(n) = Λ(n) : dE(n) −
k∑

i=1

dγ<i>
(n)

∂g<i>
(n)

∂E(n)
, (9.5.3)

where k is the number of active vertex segments (dγ<i>
(n) = 0 for k < i ≤ k0).

If the strain rate is in a fully active range, so that plastic loading takes

place with respect to all vertex segments, we have k = k0. The scalars

dγ<i>
(n) depend on the current values of E(n), H, and their increments. The
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Figure 9.12. Yield surface vertex in strain space. Elastic
strain increment δE(n) is directed along or inside the vertex
segments.

consistency condition for each active vertex segment is

∂g<i>
(n)

∂E(n)
: dE(n) + dpg<i>

(n) = 0, dγ<i>
(n) > 0, (9.5.4)

where

dpg<i>
(n) = g<i>

(n)

(
E(n), H + dH) − g<i>

(n)

(
E(n), H

)
. (9.5.5)

In the case when the vertex segment is not active,

∂g<i>
(n)

∂E(n)
: dE(n) + dpg<i>

(n) ≤ 0, dγ<i>
(n) = 0. (9.5.6)

It is assumed that the vertex segment can harden even if it is inactive, due to

cross or latent hardening produced by the ongoing plastic deformation from

the neighboring active vertex segments. Equality sign in (9.5.6) applies if the

yield state remains on the intersection of active and inactive vertex segments.

Suppose that

dpg<i>
(n) = −

k∑
j=1

h<ij>
(n) dγ<j>

(n) < 0, (9.5.7)

where h<ij>
(n) are plastic moduli, in general nonsymmetric and dependent

on the current plastic state. The quantity in (9.5.7) is negative because

of (9.5.4), and because the scalar product of the increment of elastoplastic

strain and the outer normal to any active yield segment at the vertex is
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positive,

∂g<i>
(n)

∂E(n)
: dE(n) > 0, i = 1, 2, . . . , k. (9.5.8)

Substitution into (9.5.4) and (9.5.6) gives

∂g<i>
(n)

∂E(n)
: dE(n) =

k∑
j=1

h<ij>
(n) dγ<j>

(n) , dγ<i>
(n) > 0, (9.5.9)

∂g<i>
(n)

∂E(n)
: dE(n) ≤

k∑
j=1

h<ij>
(n) dγ<j>

(n) , dγ<i>
(n) = 0. (9.5.10)

If the matrix of plastic moduli h<ij>
(n) is positive definite (thus, nonsin-

gular), (9.5.9) gives a unique set of values

dγ<i>
(n) =

k∑
j=1

h<ij>−1
(n)

∂g<j>
(n)

∂E(n)
: dE(n), (9.5.11)

for a prescribed strain increment dE(n). Elements of the matrix inverse to

plastic moduli matrix h<ij>
(n) are denoted by h<ij>−1

(n) . The substitution of

Eq. (9.5.11) into Eq. (9.5.3) then gives

Ṫ(n) =

⎛
⎝Λ(n) −

k∑
i=1

k∑
j=1

h<ij>−1
(n)

∂g<i>
(n)

∂E(n)
⊗

∂g<j>
(n)

∂E(n)

⎞
⎠ : Ė(n). (9.5.12)

This extends the constitutive structure (9.1.11) with a smooth yield surface

in strain space to the case when the yield surface has a vertex.

The trace product of (9.5.2) with dE(n) yields, upon substitution of

(9.5.9),

Ṫp
(n) : Ė(n) = −

k∑
i=1

k∑
j=1

h<ij>
(n) γ̇<i>

(n) γ̇<j>
(n) . (9.5.13)

For positive definite matrix of plastic moduli this is clearly negative, in

accord with (8.5.10) and Ilyushin’s postulate. On the other hand, elastic

increments from the yield state at the vertex are directed inside the yield

surface and, thus, satisfy a set of k0 inequalities

∂g<i>
(n)

∂E(n)
: Ė(n) ≤ 0, i = 1, 2, . . . , k0. (9.5.14)
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Figure 9.13. Development of the vertex at the loading
point of the subsequent yield surface.

9.6. Yield Surface with Vertex in Stress Space

Physical theories of plasticity (Batdorf and Budiansky, 1949,1954; Sanders,

1954; Hill, 1966,1967b; Hutchinson, 1970) imply formation of the corner or

vertex at the loading point of the yield surface (Fig. 9.13). Although sharp

corners are seldom seen experimentally, the yield surfaces with relatively

high curvature at the loading point are often observed (Hecker, 1972,1976;

Naghdi, 1990). Suppose then that the yield surface in stress space has a

pyramidal vertex (Fig. 9.14), formed by k0 intersecting segments such that,

near the vertex,
k0∏
i=1

f<i>
(n)

(
T(n), H

)
= 0, k0 ≥ 2. (9.6.1)

If the material obeys Ilyushin’s postulate, from the analysis in Subsection

8.5.1 it follows that dpE(n) lies within the cone of limiting outward normals

to active segments of the yield vertex, so that

dpE(n) =
k∑

i=1

dγ<i>
(n)

∂f<i>
(n)

∂T(n)
, dγ<i>

(n) > 0, (9.6.2)

and

dE(n) = M(n) : dT(n) +
k∑

i=1

dγ<i>
(n)

∂f<i>
(n)

∂T(n)
. (9.6.3)

It is assumed that plastic loading is taking place through k active vertex

segments. If the stress rate is in a fully active range, so that plastic load-

ing takes place with respect to all vertex segments, k = k0. (Specification

���������
��

�

���"�	


�
��
�

����
'�
����
��
���"�	


���
������

© 2002 by CRC Press LLC 



Figure 9.14. Yield surface vertex in stress space. Elastic
stress increment δT(n) is directed along or inside the vertex
segments.

of fully active range and dissection of the stress rate space into pyramidal

regions of partially active range is discussed, in the context of crystal plas-

ticity, in Section 12.13). The scalars dγ<i>
(n) depend on the current values

of T(n), H, and their increments. The consistency condition for each active

vertex segment is

∂f<i>
(n)

∂T(n)
: dT(n) + dpf<i>

(n) = 0, dγ<i>
(n) > 0, (9.6.4)

where

dpf<i>
(n) = f<i>

(n)

(
T(n), H + dH) − f<i>

(n)

(
T(n), H

)
. (9.6.5)

If the vertex segment is not active,

∂f<i>
(n)

∂T(n)
: dT(n) + dpf<i>

(n) ≤ 0, dγ<i>
(n) = 0. (9.6.6)

Consistent with the analysis of the yield vertex in strain space, it is assumed

that the vertex segment can harden even if it is inactive, due to cross or

latent hardening produced by ongoing plastic deformation associated with

the neighboring active vertex segments. Equality sign in (9.6.6) applies if the

yield state remains on the intersection of active and inactive vertex segments.

Suppose that

dpf<i>
(n) = −

k∑
j=1

H<ij>
(n) dγ<j>

(n) < 0, (9.6.7)
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where H<ij>
(n) are plastic moduli, in general nonsymmetric and dependent on

the current plastic state. Substitution into (9.6.4) and (9.6.6) gives

∂f<i>
(n)

∂T(n)
: dT(n) =

k∑
j=1

H<ij>
(n) dγ<j>

(n) , dγ<i>
(n) > 0, (9.6.8)

∂f<i>
(n)

∂T(n)
: dT(n) ≤

k∑
j=1

H<ij>
(n) dγ<j>

(n) , dγ<i>
(n) = 0. (9.6.9)

The relationship between the moduli H<ij>
(n) and h<ij>

(n) can be derived

by recalling that

f<i>
(n)

(
T(n), H

)
= f<i>

(n)

[
T(n)

(
E(n), H

)
, H]

= g<i>
(n)

(
E(n), H

)
. (9.6.10)

Thus,

dpg<i>
(n) = g<i>

(n)

(
E(n), H + dH) − g<i>

(n)

(
E(n), H

)
= f<i>

(n)

[
T(n)

(
E(n), H + dH)

,H + dH]
− f<i>

(n)

[
T(n)

(
E(n), H

)
, H]

= f<i>
(n)

[
T(n)

(
E(n), H

)
+ dpT(n), H + dH]

− f<i>
(n)

[
T(n)

(
E(n), H

)
, H]

,

(9.6.11)

which gives

dpg<i>
(n) = dpf<i>

(n) +
∂f<i>

(n)

∂T(n)
: dpT(n). (9.6.12)

Upon substitution of (9.5.2), (9.5.7), and (9.6.7) into Eq. (9.6.12), there

follows

H<ij>
(n) = h<ij>

(n) −
∂f<i>

(n)

∂T(n)
:
∂g<j>

(n)

∂E(n)
. (9.6.13)

Since

∂f<i>
(n)

∂T(n)
= M(n) :

∂g<j>
(n)

∂E(n)
, (9.6.14)

the differences of plastic moduli H<ij>
(n) − h<ij>

(n) form a symmetric matrix,

provided that the elastic moduli tensor M(n) obeys the reciprocal symmetry.

If the matrix of plastic moduli H<ij>
(n) is nonsingular, inversion of (9.6.8)

gives

dγ<i>
(n) =

k∑
j=1

H<ij>−1
(n)

∂f<j>
(n)

∂T(n)
: dT(n), (9.6.15)
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for a prescribed stress increment dT(n). Elements of the matrix inverse to

plastic moduli matrix H<ij>
(n) are denoted by H<ij>−1

(n) . The substitution of

Eq. (9.6.15) into Eq. (9.6.3) gives

Ė(n) =

⎛
⎝M(n) +

k∑
i=1

k∑
j=1

H<ij>−1
(n)

∂f<i>
(n)

∂T(n)
⊗

∂f<j>
(n)

∂T(n)

⎞
⎠ : Ṫ(n). (9.6.16)

This extends the constitutive structure (9.2.4) with a smooth yield surface

in stress space to the case when the yield surface has a vertex.

Upon substitution of (9.6.8), the trace product of (9.6.2) with dT(n)

yields

Ṫ(n) : Ėp
(n) =

k∑
i=1

k∑
j=1

H<ij>
(n) γ̇<i>

(n) γ̇<j>
(n) . (9.6.17)

In the hardening range the plastic moduli H<ij>
(n) form a positive definite ma-

trix, so that the quantity in (9.6.17) is positive. In this case, for a prescribed

rate of stress Ṫ(n), the plastic response is unique and given by (9.6.16). In

the softening range the quantity in (9.6.17) is negative. For a prescribed rate

of stress, either plastic response given by (9.6.16) applies, or elastic response

Ė(n) = M(n) : Ṫ(n) takes place. In the case of ideal plasticity (vanishing self

and latent hardening rates), γ̇<i>
(n) in Eq. (9.6.2) are indeterminate by the

constitutive analysis.

Elastic increments from the yield state at the vertex are always directed

inside the yield surface and thus satisfy a set of k0 inequalities

∂f<i>
(n)

∂T(n)
: Ṫ(n) ≤ 0, i = 1, 2, . . . , k0, (9.6.18)

which are dual to (9.5.14).

The papers by Koiter (1953), Mandel (1965), Sewell (1974), Hill (1978),

and Ottosen and Ristinmaa (1996) offer further analysis of the plasticity

theory with yield corners or vertices.

9.7. Pressure-Dependent Plasticity

For porous metals, concrete and geomaterials like soils and rocks, plastic

deformation has its origin in pressure dependent microscopic processes. The

corresponding yield condition depends on both deviatoric and hydrostatic
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Figure 9.15. The Drucker–Prager yield condition shown
in the coordinates of stress invariants I1 and J2. The yield
stress in pure shear is K, and the frictional parameter is μ∗.
The horizontal projection of the plastic rate of deformation
indicates plastic dilatation according to normality and as-
sociative flow rule. At high pressure a cap is used to close
the cone.

parts of the stress tensor. Constitutive modeling of such materials is the

concern of this section.

9.7.1. Drucker–Prager Condition for Geomaterials

Drucker and Prager (1952) suggested that the yielding in soils occurs when

the shear stress on octahedral planes overcomes cohesive and frictional re-

sistance to sliding on these planes, i.e., when

τoct = τfrict +

√
2
3
K, (9.7.1)

where

τoct =
(

2
3
J2

)1/2

, τfrict = −μ∗σoct = −1
3
μ∗I1. (9.7.2)

The coefficient of internal friction (material parameter) is μ∗. The first

invariant of the Cauchy stress tensor is I1, and J2 is the second invariant of

deviatoric part of the Cauchy stress,

I1 = trσ, J2 =
1
2
σ ′ : σ ′. (9.7.3)
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Figure 9.16. The Drucker–Prager cone and the Mohr–
Coulomb pyramid matched along the compressive meridian,
shown in (a) principal stress space, and (b) deviatoric plane.

The yield condition is consequently

f = J
1/2
2 +

1
3
μ∗I1 −K = 0, (9.7.4)

where the parameter

μ∗ =

√
3
2
μ∗ (9.7.5)

is conveniently introduced (Fig. 9.15). This geometrically represents a cone

in the principal stress space with its axis parallel to the hydrostatic axis

(Fig. 9.16). The radius of the circle in the deviatoric (π) plane is
√

2K, where

K is the yield stress in simple shear. The angle of the cone is tan−1(
√

2μ∗/3).

The yield stresses in uniaxial tension and compression are, according to Eq.

(9.7.4),

Y + =
√

3K
1 + μ∗/

√
3
, Y − =

√
3K

1 − μ∗/
√

3
. (9.7.6)

For the yield condition to be physically meaningful, the restriction must hold

μ∗ <
√

3. (9.7.7)

If the compressive states of stress are considered positive (as commonly done

in geomechanics, e.g., Jaeger and Cook, 1976; Salençon, 1977), a minus sign

appears in front of the second term of f in Eq. (9.7.4). For the effects of the

third stress invariant on plastic deformation of pressure sensitive materials,

see Bardet (1990) and the references therein. The second and third devi-

atoric stress invariants define the Lode angle θ by (e.g., Chen and Han, 1988)
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cos(3θ) =
(

27J2
3

4J3
2

)1/2

. (9.7.8)

When the Drucker–Prager cone is applied to porous rocks, it overesti-

mates the yield stress at higher pressures, and inadequately predicts inelastic

volume changes. To circumvent the former, DiMaggio and Sandler (1971)

introduced an ellipsoidal cap to close the cone at certain level of pressure.

Other shapes of the cap were also used. Details can be found in Chen and

Han (1988), and Lubarda, Mastilovic, and Knap (1996).

Constitutive analysis of inelastic response of concrete has been studied

extensively. Representative references include Ortiz and Popov (1982), Ortiz

(1985), Pietruszczak, Jiang, and Mirza (1988), Faruque and Chang (1990),

Voyiadjis and Abu-Lebdeh (1994), Lubarda, Krajcinovic, and Mastilovic

(1994), and Lade and Kim (1995). Pressure-dependent response of granu-

lar materials was modeled by Mehrabadi and Cowin (1981), Christoffersen,

Mehrabadi, and Nemat-Nasser (1981), Dorris and Nemat-Nasser (1982),

Anand (1983), Chandler (1985), Harris (1992), and others.

9.7.2. Gurson Yield Condition for Porous Metals

Based on a rigid-perfectly plastic analysis of spherically symmetric deforma-

tion around a spherical cavity, Gurson (1977) suggested a yield condition for

porous metals in the form

f = J2 +
2
3
υY 2

0 cosh
(

I1
2Y0

)
− (1 + υ2)

Y 2
0

3
= 0, (9.7.9)

where υ is the porosity (void/volume fraction), and Y0 = const. is the tensile

yield stress of the matrix material (Fig. 9.17). Generalization to include

hardening matrix material is also possible. The change in porosity during

plastic deformation is given by the evolution equation

υ̇ = (1 − υ) trDp. (9.7.10)

Other evolution equations, which take into account nucleation and growth

of voids, have been considered (e.g., Tvergaard and Needleman, 1984). To

improve its predictions and agreement with experimental data, Tvergaard

(1982) introduced two additional material parameters in the structure of

the Gurson yield criterion. Mear and Hutchinson (1985) incorporated the

effects of anisotropic (kinematic) hardening by replacing J2 in Eq. (9.7.9)
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Figure 9.17. Gurson yield condition for porous metals
with the void/volume fraction υ. The tensile yield stress
of the matrix material is Y0.

with (1/2)(σ ′ − α) : (σ ′ − α), where α defines the intersection of the cur-

rent axis of the yield surface, parallel to hydrostatic axis, with the deviatoric

plane. Yield functions and flow rules for porous pressure-dependent poly-

meric materials were analyzed by Lee and Oung (2000).

9.7.3. Constitutive Equations

The pressure-dependent yield conditions considered in two previous subsec-

tions are of the type

f(J2, I1, H) = 0, (9.7.11)

where H designates the appropriate history parameters. If it is assumed

that the considered materials obey Ilyushin’s postulate, the plastic part of

the rate of deformation tensor is normal to the yield surface, and

Dp = γ̇
∂f

∂σ
,

∂f

∂σ
=

∂f

∂J2
σ ′ +

∂f

∂I1
I. (9.7.12)

The loading index can be expressed as

γ̇ =
1
H

(
∂f

∂J2
σ ′ +

∂f

∂I1
I
)

:
◦
τ, (9.7.13)

where H is an appropriate hardening modulus. The plastic part of the rate

of deformation, corresponding to
◦
τ, is again denoted by Dp. Substitution of

Eq. (9.7.13) into Eq. (9.7.12), therefore, gives

Dp =
1
H

[(
∂f

∂J2
σ ′ +

∂f

∂I1
I
)
⊗

(
∂f

∂J2
σ ′ +

∂f

∂I1
I
)]

:
◦
τ. (9.7.14)
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The volumetric part of the plastic rate of deformation is

trDp =
3
H

∂f

∂I1

(
∂f

∂J2
σ ′ +

∂f

∂I1
I
)

:
◦
τ. (9.7.15)

Geomaterials

For the Drucker–Prager yield condition,
∂f

∂J2
=

1
2
J

−1/2
2 ,

∂f

∂I1
=

1
3
μ∗, (9.7.16)

and

H = hp
t =

dK
dϑ

, ϑ =
∫ t

0

(2Dp′ : Dp′)1/2 dt. (9.7.17)

The relationship K = K(ϑ) between the shear yield stress K, under given

superimposed pressure, and the generalized shear plastic strain ϑ is assumed

to be known. Note that ϑ̇ = γ̇.

Alternatively, the hardening modulus can be expressed as

H =
1
3

(
1 − μ∗√

3

)2 dY −

dϑ
, (9.7.18)

where Y − is the yield stress in uniaxial compression. The generalized plastic

strain is in this case defined by

ϑ =
1 − μ∗/

√
3

(1 + 2μ2∗/3)1/2

∫ t

0

(
2
3

Dp : Dp

)1/2

dt, (9.7.19)

which coincides with the longitudinal strain in uniaxial compression test.

The relationship between ϑ and γ is
dϑ
dγ

=
1√
3

(
1 − μ∗√

3

)
. (9.7.20)

Porous Metals

For the Gurson yield condition we have
∂f

∂J2
= 1,

∂f

∂I1
=

1
3
υ Y0 sinh

(
I1
2Y0

)
, (9.7.21)

and

H =
2
3
υ(1 − υ)Y 3

0 sinh
(

I1
2Y0

) [
υ − cosh

(
I1
2Y0

)]
. (9.7.22)

From Eqs. (9.7.10) and (9.7.12) it follows that the porosity evolves according

to

υ̇ = γ̇ υ(1 − υ)Y0 sinh
(

I1
2Y0

)
. (9.7.23)
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Further analysis of inelastic deformation of porous materials can be found

in Lee (1988), Cocks (1989), Qiu and Weng (1993), and Sun (1995).

9.8. Nonassociative Plasticity

Constitutive equations in which plastic part of the rate of strain is normal

to a locally smooth yield surface f(n) = 0 in the conjugate stress space,

Ėp
(n) = γ̇(n)

∂f(n)

∂T(n)
, (9.8.1)

are referred to as the associative flow rules. As discussed in Section 8.5, a

sufficient condition for this constitutive structure is that the material obeys

Ilyushin’s postulate. However, many pressure-dependent dilatant materi-

als, with internal frictional effects, are not well described by associative

flow rules. For example, associative flow rules largely overestimate inelas-

tic volume changes in geomaterials like rocks and soils (Rudnicki and Rice,

1975; Rice, 1977), and in certain high-strength steels exhibiting the strength-

differential effect by which the yield strength is higher in compression than

in tension (Spitzig, Sober, and Richmond, 1975; Casey and Sullivan, 1985;

Lee, 1988). For such materials, plastic part of the rate of strain is taken to

be normal to the plastic potential surface

π(n) = 0, (9.8.2)

which is distinct from the yield surface

f(n) = 0. (9.8.3)

The resulting constitutive structure,

Ėp
(n) = γ̇(n)

∂π(n)

∂T(n)
, (9.8.4)

is known as the nonassociative flow rule (e.g., Mróz, 1963; Nemat-Nasser,

1983; Runesson and Mróz, 1989).

The consistency condition ḟ(n) = 0 gives

γ̇(n) =
1

H(n)

∂f(n)

∂T(n)
: Ṫ(n), (9.8.5)

where H(n) is an appropriate hardening modulus. Thus,

Ėp
(n) =

1
H(n)

(
∂π(n)

∂T(n)
⊗ ∂f(n)

∂T(n)

)
: Ṫ(n). (9.8.6)
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The overall constitutive structure is

Ė(n) =
[
M(n) +

1
H(n)

(
∂π(n)

∂T(n)
⊗ ∂f(n)

∂T(n)

)]
: Ṫ(n). (9.8.7)

Since

π(n) �= f(n), (9.8.8)

the elastoplastic compliance tensor in Eq. (9.8.7) does not possess a re-

ciprocal symmetry. In an inverted form, the constitutive equation (9.8.7)

becomes

Ṫ(n) =
[
Λ(n) − 1

h(n)

(
Λ(n) :

∂π(n)

∂T(n)

)
⊗

(
∂f(n)

∂T(n)
: Λ(n)

)]
: Ė(n), (9.8.9)

where

h(n) = H(n) +
∂f(n)

∂T(n)
: Λ(n) :

∂π(n)

∂T(n)
. (9.8.10)

9.8.1. Plastic Potential for Geomaterials

To better describe inelastic behavior of geomaterials whose yield is governed

by the Drucker–Prager yield condition of Eq. (9.7.4), a nonassociative flow

rule can be used with the plastic potential (Fig. 9.18)

π = J
1/2
2 +

1
3
β I1 −K = 0. (9.8.11)

The material parameter β is in general different from the friction parameter

μ∗ of Eq. (9.7.4). Thus,

Dp = γ̇
∂π

∂σ
= γ̇

(
1
2
J

−1/2
2 σ ′ +

1
3
β I

)
. (9.8.12)

The loading index γ̇ is determined from the consistency condition. Assuming

known the relationship

K = K(ϑ) (9.8.13)

between the shear yield stress and the generalized shear plastic strain ϑ,

defined by Eq. (9.7.17), the condition ḟ = 0 gives

γ̇ =
1
H

(
1
2
J

−1/2
2 σ ′ +

1
3
μ∗ I

)
:
◦
τ, H = hp

t =
dK
dϑ

. (9.8.14)

Alternatively, assuming known the relationship

Y − = Y −(ϑ) (9.8.15)
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Figure 9.18. Illustration of a nonassociative flow rule.
The plastic rate of deformation Dp is normal to the flow
potential π = 0, which is distinct from the yield surface
f = 0.

between the yield stress in uniaxial compression and the generalized plastic

strain

ϑ =
1 − β/

√
3

(1 + 2β2/3)1/2

∫ t

0

(
2
3

Dp : Dp

)1/2

dt, (9.8.16)

the hardening modulus is

H =
1
3

(
1 − μ∗√

3

) (
1 − β√

3

)
dY −

dϑ
. (9.8.17)

The substitution of Eq. (9.8.14) into Eq. (9.8.12) gives

Dp =
1
H

[(
1
2
J

−1/2
2 σ ′ +

1
3
β I

)
⊗

(
1
2
J

−1/2
2 σ ′ +

1
3
μ∗ I

)]
:
◦
τ. (9.8.18)

The deviatoric and spherical parts are

Dp′ =
1

2H
σ ′

J
1/2
2

(
σ ′ :

◦
τ

2 J1/2
2

+
1
3
μ∗ tr

◦
τ

)
, (9.8.19)

trDp =
β

H

(
σ ′ :

◦
τ

2 J1/2
2

+
1
3
μ∗ tr

◦
τ

)
. (9.8.20)

To physically interpret the parameter β, we observe from Eq. (9.8.12)

that

(2Dp′ : Dp′)1/2 = γ̇, trDp = β γ̇, (9.8.21)
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i.e.,

β =
trDp

(2Dp′ : Dp′)1/2
. (9.8.22)

Thus, β is the ratio of the volumetric and shear part of the plastic rate of

deformation, which is often called the dilatancy factor (Rudnicki and Rice,

1975). Representative values of the friction coefficient and the dilatancy

factor for fissured rocks, listed by Rudnicki and Rice (op. cit.), indicate that

μ∗ = 0.3 ÷ 1, β = 0.1 ÷ 0.5. (9.8.23)

The frictional parameter and inelastic dilatancy of the material actually

change with the progression of inelastic deformation, but are here treated as

constants. For a more elaborate analysis, which accounts for their variation,

the paper by Nemat-Nasser and Shokooh (1980) can be consulted. Note also

that

γ̇ =
σ : Dp′

J
1/2
2

. (9.8.24)

The deviatoric and spherical parts of the total rate of deformation are, re-

spectively,

D′ =
◦
τ ′

2μ
+

1
2H

σ ′

J
1/2
2

(
σ ′ :

◦
τ

2 J1/2
2

+
1
3
μ∗ tr

◦
τ

)
, (9.8.25)

trD =
1
3κ

tr
◦
τ +

β

H

(
σ ′ :

◦
τ

2 J1/2
2

+
1
3
μ∗ tr

◦
τ

)
. (9.8.26)

These can be inverted to give the deviatoric and spherical parts of the stress

rate as

◦
τ ′ = 2μ

[
D′ − 1

c

σ ′

J
1/2
2

(
σ ′ : D

2 J1/2
2

+ μ∗
κ

2μ
trD

)]
, (9.8.27)

tr
◦
τ =

3κ
c

[(
1 +

H

μ

)
trD − β

σ ′ : D

J
1/2
2

]
, (9.8.28)

where

c = 1 +
H

μ
+ μ∗β

κ

μ
. (9.8.29)

If the friction coefficient μ∗ is equal to zero, Eqs. (9.8.27) and (9.8.28) reduce

to
◦
τ ′ = 2μ

[
D′ − 1

1 + H/μ

(σ ′ ⊗ σ ′) : D
2 J2

]
, (9.8.30)
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tr
◦
τ = 3κ

(
trD − β

1 + H/μ

σ ′ : D

J
1/2
2

)
. (9.8.31)

With a vanishing dilatancy factor (β = 0), Eqs. (9.8.30) and (9.8.31) coincide

with the constitutive equations of isotropic hardening pressure-independent

metal plasticity (Subsection 9.4.1). Other nonassociative models for geolog-

ical materials are discussed by Desai and Hasmini (1989).

Constitutive Inequalities

Returning to Eq. (9.8.18), a trace product with
◦
τ gives

◦
τ : Dp =

1
H

[(
1
2
J

−1/2
2 σ ′ +

1
3
β I

)
:
◦
τ

] [(
1
2
J

−1/2
2 σ ′ +

1
3
μ∗ I

)
:
◦
τ

]
.

(9.8.32)

In the hardening range (H > 0), from Eq. (9.8.14) it follows that

(
1
2
J

−1/2
2 σ ′ +

1
3
μ∗ I

)
:
◦
τ > 0, (9.8.33)

since γ̇ > 0. Thus, from Eq. (9.8.32) the sign of
◦
τ : Dp is determined by the

sign of (
1
2
J

−1/2
2 σ ′ +

1
3
β I

)
:
◦
τ. (9.8.34)

Depending on the state of stress and the type of incipient loading, this can

be either positive or negative. Therefore, in the framework of nonassociative

plasticity, the quantity
◦
τ : Dp can be negative even in the hardening range.

This is in contrast to associative plasticity, where
◦
τ : Dp is always positive

in the hardening range, by Eq. (8.8.8). Similarly,
◦
τ : Dp can be positive

in the softening range. Illustrative examples can be found in the article by

Lubarda, Mastilovic, and Knap (1996).

The fact that
◦
τ : Dp can be negative in the hardening range does not

necessarily imply that material becomes unstable. Whether an instability

actually occurs at a given state of stress and material constitution is an-

swered by a bifurcation-type analysis, such as used by Rudnicki and Rice

(op. cit.). For example, they found that for certain states of stress, local-

ization is possible even in the hardening range, for materials described by a
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Figure 9.19. Macroscopic yield surface formed as an en-
velope of individual fissure yield surfaces. The yield vertex
forms at the loading point due to sliding on favorably ori-
ented fissure surfaces.

nonassociative flow rule. This is never the case for materials with an asso-

ciative flow rule. Plastic instability and bifurcation analysis are considered

in Chapter 10.

9.8.2. Yield Vertex Model for Fissured Rocks

In a brittle rock, modeled to contain a collection of randomly oriented fis-

sures, inelastic deformation results from frictional sliding on the fissure sur-

faces. Inelastic dilatancy under overall compressive loads is a consequence of

opening the fissures at asperities and local tensile fractures at some angle at

the edges of fissures. Individual yield surface may be associated with each

fissure. Expressed in terms of the resolved shear stress in the plane of fissure

with normal n, this is

n · σ · m + μ∗ n · σ · n = const., (9.8.35)

where μ∗ is the friction coefficient between the surfaces of the fissure, and m

is the sliding direction (direction of the maximum shear stress in the plane

of fissure). The macroscopic yield surface is the envelope of individual yield

surfaces (Fig. 9.19) for fissures of all orientations (Rudnicki and Rice, 1975).

This is similar to slip model of metal plasticity (Batdorf and Budiansky,

1949,1954; Sanders, 1954; Hill, 1967b).

Continued stressing in the same direction will cause continuing sliding

on favorably oriented (already activated) fissures, and will initiate sliding

���������
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���"�	
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for a progressively greater number of orientations. After certain amount

of inelastic deformation, the macroscopic yield envelope develops a vertex

at the loading point. The stress increment normal to the original stress

direction will initiate or continue sliding of fissure surfaces for some fissure

orientations. In isotropic hardening idealization with a smooth yield surface,

however, a stress increment tangential to the yield surface will cause only

elastic deformation, overestimating the stiffness of the response. In order

to take into account the effect of the yield vertex in an approximate way,

Rudnicki and Rice (op. cit.) introduced a second plastic modulus H1, which

governs the response to part of the stress increment directed tangentially to

what is taken to be the smooth yield surface through the same stress point

(Fig. 9.20). Since no vertex formation is associated with hydrostatic stress

increments, tangential stress increments are taken to be deviatoric, and Eq.

(9.8.19) is replaced with

Dp′ =
1

2H
σ′

J
1/2
2

(
σ′ :

◦
τ

2 J1/2
2

+
1
3
μ∗ tr

◦
τ

)
+

1
2H1

(
◦
τ ′ − σ′ :

◦
τ

2 J2
σ′

)
. (9.8.36)

The dilation induced by the small tangential stress increment is assumed to

be negligible, so that Eq. (9.8.20) still applies for trDp. The constitutive

structure in Eq. (9.8.36) is intended to model the response at a yield surface

vertex for small deviations from proportional (“straight ahead”) loading
◦
τ ∼

σ ′.

The expressions for the rate of stress in terms of the rate of deforma-

tion are obtained by inversion of the expression for the rate of deformation

corresponding to Eqs. (9.8.20) and (9.8.36). The results are

◦
τ ′ = 2μ

[
1
b
D′ − a

bc

(σ ′ ⊗ σ ′) : D
2 J2

− 1
c
μ∗

κ

2μ
σ ′

J
1/2
2

trD

]
, (9.8.37)

tr
◦
τ =

3κ
c

[(
1 +

H

μ

)
trD − β

σ ′ : D

J
1/2
2

]
. (9.8.38)

The parameters a and b are given by

a = 1 − H

H1
− μ∗β

κ

H1
, b = 1 +

μ

H1
, (9.8.39)

and c is defined by Eq. (9.8.29).
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Figure 9.20. A stress increment from a yield vertex de-
composed in the normal and tangential direction relative to
an isotropic hardening smooth yield surface passing through
the vertex. The tangential component dtσ does not cause
plastic flow for smooth yield idealization, but it does for the
yield vertex.

Another model in which the plastic rate of deformation depends on the

component of stress rate tangential to smooth yield surface was proposed by

Hashiguchi (1993).

9.9. Thermoplasticity

Nonisothermal plasticity is considered in this section assuming that the tem-

perature is not too high, so that creep deformation can be neglected. The

analysis may also be adequate for certain applications under high stresses of

short duration, where the temperature increase is more pronounced but the

viscous (creep) strains have no time to develop (Prager, 1958; Kachanov,

1971). Thus, infinitesimal changes of stress and temperature applied to the

material at a given state produce a unique infinitesimal change of strain,

independently of the speed with which these changes are made. Rate-

dependent plasticity will be considered in Section 9.10.

The formulation of thermoplastic analysis under described conditions

can proceed by introducing a nonisothermal yield condition in either stress

or strain space. For example, the yield function in stress space is defined by

f(n)

(
T(n), θ, H

)
= 0, (9.9.1)

where θ is the temperature, and H is the pattern of internal rearrangements.

The response within the yield surface is thermoelastic. If the Gibbs energy

��
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per unit reference volume, relative to selected stress and strain measures, is

Φ(n) = Φ(n)

(
T(n), θ, H

)
, (9.9.2)

the strain is

E(n) =
∂Φ(n)

∂T(n)
. (9.9.3)

Consider the stress state T(n) on the current yield surface. The rates

of stress and temperature associated with thermoplastic loading satisfy the

consistency condition ḟ(n) = 0, which gives

∂f(n)

∂T(n)
: Ṫ(n) +

∂f(n)

∂θ
: θ̇ −H(n) γ̇(n) = 0. (9.9.4)

The hardening parameter is

H(n) = H(n)

(
T(n), θ, H

)
, (9.9.5)

and the loading index

γ̇(n) > 0. (9.9.6)

Three types of thermoplastic response are possible,

H(n) > 0,
∂f(n)

∂T(n)
: Ṫ(n) +

∂f(n)

∂θ
: θ̇ > 0 thermoplastic hardening,

H(n) < 0,
∂f(n)

∂T(n)
: Ṫ(n) +

∂f(n)

∂θ
: θ̇ < 0 thermoplastic softening,

H(n) = 0,
∂f(n)

∂T(n)
: Ṫ(n) +

∂f(n)

∂θ
: θ̇ = 0 ideally thermoplastic.

(9.9.7)

This parallels the isothermal classification of Eq. (9.2.8).

Since rate-independence is assumed, the constitutive relationship of ther-

moplasticity must be homogeneous of degree one in the rates of stress, strain

and temperature. For thermoplastic part of the rate of strain this is satisfied

by the normality structure

Ėp
(n) = γ̇(n)

∂f(n)

∂T(n)
. (9.9.8)

In view of Eq. (9.9.4), this becomes

Ėp
(n) =

1
H(n)

(
∂f(n)

∂T(n)
: Ṫ(n) +

∂f(n)

∂θ
: θ̇

)
∂f(n)

∂T(n)
. (9.9.9)

The strain rate is the sum of thermoelastic and thermoplastic parts,

Ė(n) = Ėe
(n) + Ėp

(n). (9.9.10)
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The thermoelastic part is governed by

Ėe
(n) =

∂2Φ(n)

∂T(n) ⊗ ∂T(n)
: Ṫ(n) +

∂2Φ(n)

∂T(n)∂θ
θ̇. (9.9.11)

For example, if the Gibbs energy is taken to be

Φ(n) =
1

4μ(n)

(
trT2

(n) −
λ(n)

3λ(n) + 2μ(n)
tr2 T(n)

)
+ α(n)(θ) trT(n) + β(n)(θ, H),

(9.9.12)

we obtain

Ėe
(n) =

1
2μ(n)

(
III − λ(n)

2μ(n) + 3λ(n)
I ⊗ I

)
: Ṫ(n) + α′

(n)(θ) θ̇ I. (9.9.13)

The Lamé type elastic constants corresponding to selected stress and strain

measures are λ(n) and μ(n). The scalar function α(n) is an appropriate

function of the temperature. Its temperature gradient is α′
(n) = dα(n)/dθ.

9.9.1. Isotropic and Kinematic Hardening

Suppose that a nonisothermal yield condition in the Cauchy stress space is

a temperature-dependent von Mises condition

f =
1
2
σ ′ : σ ′ − [ϕ(θ)K(ϑ)]2 = 0. (9.9.14)

The thermoplastic part of the deformation rate is then

Dp =
1

2ϕhp
t

(
σ ′ ⊗ σ ′

σ ′ : σ ′ :
◦
τ− σ ′ ϕ

′

ϕ
θ̇

)
, (9.9.15)

where

hp
t =

dK
dϑ

, ϕ′ =
dϕ
dθ

. (9.9.16)

Combining Eqs. (9.9.13) and (9.9.15), the total rate of deformation becomes

D =
[

1
2μ

(
III − λ

2μ + 3λ
I ⊗ I

)
+

1
2ϕhp

t

σ ′ ⊗ σ ′

σ ′ : σ ′

]
:
◦
τ

+
[
α′(θ) I − ϕ′

2ϕ2hp
t

σ ′
]
θ̇.

(9.9.17)

The inverse constitutive equation for the stress rate is

◦
τ =

(
λ I ⊗ I + 2μ III − 2μ

1 + ϕhp
t /μ

σ ′ ⊗ σ ′

σ ′ : σ ′

)
: D

−
[
(3λ + 2μ)α′ I − 1

1 + ϕhp
t /μ

ϕ′

ϕ
σ ′

]
θ̇.

(9.9.18)
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This can be viewed as a generalization of an infinitesimal strain formulation

for a rigid-thermoplastic material, given by Prager (1958). See also Boley

and Weiner (1960), Drucker (1960), Lee and Wierzbicki (1967), Lee (1969),

Lubarda (1986,1989), and Naghdi (1960,1990).

In the case of thermoplasticity with linear kinematic hardening (c =

2hp
t ), and the temperature-dependent yield surface

f =
1
2

(σ ′ −α) : (σ ′ −α) − [ϕ(θ)K]2 = 0, K = const., (9.9.19)

the thermoplastic rate of deformation is

Dp =
1

2hp
t

[
(σ ′ −α) ⊗ (σ ′ −α)
(σ ′ −α) : (σ ′ −α)

:
◦
τ− ϕ′

ϕ
(σ ′ −α) θ̇

]
. (9.9.20)

Thermoelastic portion of the rate of deformation is as in Eq. (9.9.17), so

that inversion of the expression for the total rate of deformation gives

◦
τ =

[
λ I ⊗ I + 2μ III − 2μ

1 + hp
t /μ

(σ ′ −α) ⊗ (σ ′ −α)
(σ ′ −α) : (σ ′ −α)

]
: D

−
[
(3λ + 2μ)α′ I − 1

1 + hp
t /μ

ϕ′

ϕ
(σ ′ −α)

]
θ̇.

(9.9.21)

Additional analysis of the rate-type constitutive equations of thermoplastic-

ity was presented by Green and Naghdi (1965), De Boer (1977), Lehmann

(1985), Zdebel and Lehmann (1987), Wang and Ohno (1991), McDowell

(1992), Lucchesi and Šilhavý (1993), and Casey (1998). Experimental in-

vestigations of nonisothermal yield surfaces were reported by Phillips (1974,

1982), and others.

9.10. Rate-Dependent Plasticity

There are two types of constitutive equations used in modeling the rate-

dependent plastic response of metals and alloys. In one approach, there is

no yield surface in the model and plastic deformation commences from the

onset of loading, although it may be exceedingly small below certain levels of

applied stress. This type of modeling is particularly advocated by researchers

in materials science, who view inelastic deformation process as inherently

time-dependent. For example, this view is supported by the dislocation

dynamics study of crystallographic slip in metals, as reported by Johnston

and Gilman (1959). Since there is no separation of time-independent and

creep effects, the modeling is often referred to as a unified creep–plasticity
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theory (Hart, 1970; Bodner and Partom, 1975; Miller, 1976,1987; Krieg,

1977; Estrin and Mecking, 1986). The second approach uses the notion of

the static yield surface and dynamic loading surface, and is referred to as a

viscoplastic modeling.

In his analysis of rate-dependent behavior of metals, Rice (1970,1971)

showed that the plastic rate of strain can be derived from a scalar flow

potential Ω(n), as its gradient

Ėp
(n) =

∂Ω(n)

(
T(n), θ, H

)
∂T(n)

, (9.10.1)

provided that the rate of shearing on any given slip system within a crys-

talline grain depends on local stresses only through the resolved shear stress.

The history of deformation is represented by the pattern of internal rear-

rangements H, and the absolute temperature is θ (Section 4.5). Geometri-

cally, the plastic part of the strain rate is normal to surfaces of constant flow

potential in stress space (see also Section 8.4). There is no yield surface in

the model, and plastic deformation commences from the onset of loading.

Time-independent behavior can be recovered, under certain idealizations –

neglecting creep and rate effects, as an appropriate limit. In this limit, at

each instant of deformation there is a range of stress space over which the

flow potential is constant. The current yield surface is then a boundary of

this range, a singular clustering of all surfaces of constant flow potential.

9.10.1. Power-Law and Johnson–Cook Models

The power-law representation of the flow potential in the Cauchy stress space

is

Ω =
2γ̇0

m + 1

(
J

1/2
2

K

)m

J
1/2
2 , J2 =

1
2
σ ′ : σ ′, (9.10.2)

where K = K(θ, H) is the reference shear stress, γ̇0 is the reference shear

strain rate to be selected for each material, and m is the material parameter

(of the order of 100 for metals at room temperature and strain rates below

104 s−1; Nemat-Nasser, 1992). The corresponding plastic part of the rate of

deformation is

Dp = γ̇0

(
J

1/2
2

K

)m
σ ′

J
1/2
2

. (9.10.3)
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The equivalent plastic strain ϑ, defined by Eq. (9.4.3), is usually used as the

only history parameter, and the reference shear stress depends on ϑ and θ

according to

K = K0

(
1 +

ϑ

ϑ 0

)α

exp
(
−β

θ − θ0

θm − θ0

)
. (9.10.4)

Here, K0 and ϑ0 are the normalizing stress and strain, θ0 and θm are the

room and melting temperatures, and α and β are the material parameters.

The total rate of deformation is

D = M :
◦
τ + γ̇0

(
J

1/2
2

K

)m
σ ′

J
1/2
2

. (9.10.5)

The instantaneous elastic compliance tensor M is defined, for infinitesimal

elasticity, by Eq. (9.4.16). From the onset of loading the deformation rate

consists of elastic and plastic constituents, although for large m the plastic

contribution may be small if J2 is less than K. The inverted form of (9.10.5),

expressing
◦
τ in terms of D, is

◦
τ = Λ : D − 2μγ̇0

(
J

1/2
2

K

)m
σ ′

J
1/2
2

, (9.10.6)

where Λ = M−1. The elastic shear modulus is μ.

Another representation of the flow potential, constructed according to

Johnson–Cook (1983) model, is

Ω =
2γ̇0

a
K exp

[
a

(
J

1/2
2

K
− 1

)]
. (9.10.7)

The reference shear stress is

K = K0

[
1 + b

(
ϑ

ϑ 0

)c][
1 −

(
θ − θ0

θm − θ0

)d
]
, (9.10.8)

where a, b, c, d are the material parameters. The corresponding plastic part

of the rate of deformation becomes

Dp = γ̇0 exp

[
a

(
J

1/2
2

K
− 1

)]
σ ′

J
1/2
2

. (9.10.9)

Similar expressions can be obtained for other models and the choices of

the flow potential (e.g., Zerilli and Armstrong, 1987; see also a section on

the physically based constitutive equations in the review by Meyers, 1999).

Since there is no yield surface and loading/unloading criteria, some authors

refer to these constitutive models as nonlinearly viscoelastic models (e.g.,

© 2002 by CRC Press LLC 



Figure 9.21. One-dimensional rheological model of
elastic-viscoplastic response. The elastic modulus is E, the
viscosity coefficient is ζ, and the yield stress of plastic ele-
ment is Y .

Bardenhagen, Stout, and Gray, 1997). By selecting an appropriate large

value of the parameter m, however, these rate-dependent models are able

to reproduce almost rate-independent behavior. The function xm in that

sense can be considered to be a regularizing function (x stands for J1/2
2 /K).

Other examples of regularizing functions are tanh(x/m), and [exp(x)− 1]m.

9.10.2. Viscoplasticity Models

For high strain rate applications in dynamic plasticity (e.g., Cristescu, 1967;

Cristescu and Suliciu, 1982; Clifton, 1983,1985) viscoplastic models are often

used. One dimensional rheological model of viscoplastic response is shown

in Fig. 9.21. There are two surfaces in viscoplastic modeling, a static yield

surface and a dynamic loading surface. Consider a simple model of J2 vis-

coplasticity. The flow potential can be taken as

Ω =
1
ζ
〈 J1/2

2 −Ks(ϑ) 〉2, (9.10.10)

where ζ is the viscosity coefficient, and Ks(ϑ) represents the shear stress –

plastic strain relationship from the (quasi) static shear test. The Macauley

brackets are used, such that

〈ψ〉 =

{
ψ, if ψ ≥ 0,
0, if ψ < 0,

(9.10.11)

i.e., 〈ψ〉 = (ψ + |ψ|)/2. The positive difference

J
1/2
2 −Ks(ϑ) (9.10.12)

0

�

/

��
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Figure 9.22. Stress-strain curves for quasi-static and dy-
namic loading conditions. The overstress measure is the dif-
ference between dynamic and static stress at a given amount
of strain.

between the measures of the current dynamic stress and corresponding static

stress (at a given level of equivalent plastic strain ϑ) is known as the over-

stress measure (Sokolovskii, 1948; Malvern, 1951). This is illustrated for

uniaxial loading in Fig. 9.22. The plastic part of the rate of deformation is

Dp =
1
ζ

[
J

1/2
2 −Ks(ϑ)

] σ ′

J
1/2
2

, J
1/2
2 −Ks(ϑ) > 0. (9.10.13)

In the case of uniaxial loading σ with static yield stress σY > 0, above gives

Dp =

√
2
3

1
ζ

(σ − Pσ), Pσ = σY sign(σ). (9.10.14)

This encompasses both tensile and compressive loading. When the operator

P is applied to axial stress, it maps a tensile stress σ > 0 to σY , and

a compressive stress σ < 0 to −σY (Duvaut and Lions, 1976; Simo and

Hughes, 1998).

The inverted form of Eq. (9.10.13) is

σ ′ = ζ Dp + 2Ks(ϑ)
Dp

(2Dp : Dp)1/2
, (9.10.15)

which shows that the rate-dependence in the model comes from the first

term on the right-hand side only. In quasi-static tests, viscosity ζ is taken to

be equal to zero, and Eq. (9.10.15) reduces to time-independent, von Mises

isotropic hardening plasticity. In this case, the flow potential Ω is constant

within the elastic range bounded by the yield surface J
1/2
2 = Ks(ϑ). The

total rate of deformation is obtained by adding to (9.10.13) the elastic part

�

� 	

	
	 �

	
1

1

	
	 �



1

1

��
����
��
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of rate of deformation, such that

D = M :
◦
τ +

1
ζ

[
J

1/2
2 −Ks(ϑ)

] σ ′

J
1/2
2

. (9.10.16)

The inverted form of (9.10.16), in the case of infinitesimal elastic strain, is

◦
τ = Λ : D − 2μ

ζ

[
J

1/2
2 −Ks(ϑ)

] σ ′

J
1/2
2

, (9.10.17)

where μ is the elastic shear modulus.

Perzyna Model

More general representation for Ω is obtained by using the Perzyna (1963,

1966) viscoplastic model. For example, by taking

Ω =
C

m + 1
〈 f(σ) −Ks(ϑ) 〉m+1, (9.10.18)

we obtain

Dp = C [f(σ) −Ks(ϑ)]m
∂f

∂σ
, f(σ) −Ks(ϑ) > 0. (9.10.19)

If

f = J
1/2
2 , C =

2
ζ
, Ks(ϑ) = K0 = const., (9.10.20)

Equation (9.10.19) gives

Dp =
1
ζ

(
J

1/2
2 −K0

)m σ ′

J
1/2
2

. (9.10.21)

This is is a generalization of the nonlinear Bingham model (e.g., Shames and

Cozzarelli, 1992). In the case when

Ks(ϑ) = 0, f = J
1/2
2 , C =

2γ̇0

Km
, (9.10.22)

Equation (9.10.19) reproduces the power-law J2 creep of Eq. (9.10.3). See

also Eisenberg and Yen (1981), and Bammann and Krieg (1987). The rate-

dependent inelastic deformation of porous materials was studied by Duva

and Hutchinson (1984), Haghi and Anand (1992), and Leblond, Perrin, and

Suquet (1994).

Viscoplasticity with Isotropic–Kinematic Hardening

Other generalizations of Eq. (9.10.13) are possible. For example, suppose

that the static yield condition is of a combined, isotropic–kinematic harden-

ing type. The center of the yield surface is the back stress α and the current
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radius of the yield surface is Kα(ϑ). The dynamic loading condition is then

f̂ =
1
2

(σ ′ −α) : (σ ′ −α) − K̂2 = 0, (9.10.23)

where K̂ is the current radius of the loading surface. Consequently, the

plastic rate of deformation becomes

Dp =
1
ζ
〈 ‖σ ′ −α‖ −

√
2Kα〉 σ ′ −α

‖σ ′ −α‖ . (9.10.24)

For convenience, we introduced the norm

‖σ ′ −α‖ = [(σ ′ −α) : (σ ′ −α)]1/2 =
√

2 K̂. (9.10.25)

An accompanying evolution equation for the back stress α is usually of the

type given by Eq. (9.4.49). The viscosity parameter ζ can be a function

of the introduced state variables. The potential function Ω, associated with

Eq. (9.10.24), is

Ω =
1
2ζ

〈 ‖σ ′ −α‖ −
√

2Kα〉2, (9.10.26)

such that Dp = ∂Ω/∂σ. Since

Dp = ‖Dp‖ σ ′ −α

‖σ ′ −α‖ , (9.10.27)

comparison with (9.10.24) identifies

‖Dp‖ =
1
ζ
〈 ‖σ ′ −α‖ −

√
2Kα〉. (9.10.28)

Thus, the connection

Ω =
ζ

2
‖Dp‖2 . (9.10.29)

The deviatoric symmetric tensor

dp =
Dp

‖Dp‖ (9.10.30)

has, in general, four independent components (since ‖dp‖ = 1). The rep-

resentation Dp = ‖Dp‖dp is referred to as the polar representation of Dp

(Van Houtte, 1994).

More general expressions for the plastic rate of deformation have also

been employed in the studies of viscoplastic response. Representative ref-

erences include Chaboche (1989,1993,1996), Bammann (1990), McDowell

(1992), and Freed and Walker (1991,1993). Nonassociative viscoplastic flow

rules were considered by Marin and McDowell (1996), and for geomaterials

by Cristescu (1994), who also gives the reference to other related work.
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Generalized Duvaut–Lions Formulation

According to this model, the viscoplastic rate of deformation is postulated

to be

Dp =
1
td

MMM : (σ ′ − β), f(σ ′) ≥ 0, (9.10.31)

where td is the relaxation time, and MMM is the elastic compliance tensor. For

an isotropic material,

MMM =
1
2μ

JJJ +
1
3κ

KKK , (9.10.32)

where μ and κ are the elastic shear and bulk moduli. The base tensors JJJ

and KKK sum to give the fourth-order unit tensor, JJJ + KKK = III , as discussed

following Eq. (9.1.36). The deviatoric rest stress β in Eq. (9.10.31) is the

stress corresponding to the inviscid solution, which satisfies the static yield

condition f(β) = 0. The rest stress is determined from the actual stress σ

by the closest-point projection

β = PPP : σ. (9.10.33)

For example, if the operator PPP is defined by

PPP =

√
2
3
σY

JJJ
‖σ ′‖ , ‖σ ′‖ = (σ ′ : σ ′)1/2 , (9.10.34)

there follows

β =

√
2
3
σY

σ ′

‖σ ′‖ . (9.10.35)

This corresponds to the static yield condition of the J2 perfect plasticity,

which is

f(β) = ‖β‖ −
√

2
3
σY = 0, σY = const. (9.10.36)

The substitution of Eq. (9.10.32) into Eq. (9.10.31) gives the constitutive

structure

Dp =
1
ζd

(σ ′ − β), (9.10.37)

where

ζd = 2μtd > 0 (9.10.38)

is the viscosity coefficient. Further analysis of the generalized Duvaut–Lions

model and its numerical implementation can be found in the book by Simo

and Hughes (1998). See also Krempl (1996), and Lubarda and Benson

(2001).
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Viscosity Tensor

The second-order viscosity tensor can be introduced as

ZZZ = ζd JJJ + ζv KKK , (9.10.39)

where ζd and ζv are the shear and bulk viscosities. The plastic rate of

deformation of the generalized Duvaut–Lions model is then

Dp = ZZZ−1 : (σ ′ − β). (9.10.40)

Introducing further the relaxation time tensor,

TTT = td JJJ + tv KKK , (9.10.41)

we have the connection

ZZZ−1 = TTT−1 : MMM. (9.10.42)

In particular, the relaxation time and viscosity coefficients are related by

ζd = 2μtd, ζv = 3κtv. (9.10.43)

9.11. Deformation Theory of Plasticity

Simple plasticity theory has been suggested for proportional loading and

small deformation by Hencky (1924) and Ilyushin (1947,1963). A large de-

formation version of this theory is here presented. It is convenient to cast

the formulation by using the logarithmic strain

E(0) = lnU, (9.11.1)

and its conjugate stress T(0). The left stretch tensor is U. Assume that the

loading is such that all stress components increase proportionally, i.e.,

T(0) = c(t)T∗
(0), (9.11.2)

where T∗
(0) is the stress tensor at an instant t∗, and c(t) is a monotonically

increasing function of t, with c(t∗) = 1. Evidently, Eq. (9.11.2) implies that

the principal directions of T(0) remain fixed during the deformation process,

and parallel to those of T∗
(0).

Since the stress components proportionally increase, and no elastic un-

loading takes place, it is reasonable to assume that elastoplastic response

can be described macroscopically by the constitutive structure of nonlinear
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elasticity, in which the total strain is a function of the total stress. Thus, we

decompose the total strain tensor into elastic and plastic parts,

E(0) = Ee
(0) + Ep

(0), (9.11.3)

and assume that

Ee
(0) = M(0) : T(0), M(0) =

1
2μ

JJJ +
1
3κ

KKK , (9.11.4)

Ep
(0) = ϕT′

(0). (9.11.5)

The shear and bulk moduli are μ and κ, the fourth-order tensors JJJ and KKK

are defined following Eq. (9.1.36), and ϕ is an appropriate scalar function

to be determined in accord with experimental data. The prime designates

a deviatoric part, so that plastic strain tensor is assumed to be traceless.

More generally, a gradient of an isotropic function of T(0) could be used in

Eq. (9.11.5), in place of T′
(0) (Lubarda, 2000). This ensures that principal

directions of plastic strain are parallel to those of T(0). Since M(0) in Eq.

(9.11.4) corresponds to elastically isotropic material, principal directions of

total strain E(0) are also parallel to those of T(0). Consequently, the stretch

tensor U has its principal directions fixed during the deformation process,

the matrix U̇ commutes with U and, by Eq. (3.6.18),

Ė(0) = U̇ · U−1, T(0) = RT · τ · R. (9.11.6)

The Kirchhoff stress is τ = (detF)σ, and R is the rotation tensor from the

polar decomposition of deformation gradient F = R · U.

The requirement for the fixed principal directions of U severely restricts

the class of admissible deformations. This is not surprising, because the

premise of the deformation theory, the proportional stressing, imposes from

outset the strong restrictions on the applicability of the analysis.

Introducing the spatial strain (see Subsection 2.3.2),

EEE(0) = RT · E(0) · R, (9.11.7)

Equations (9.11.3)–(9.11.5) can be rewritten as

EEE(0) = EEEe
(0) + EEEp

(0), (9.11.8)

EEEe
(0) = M(0) : τ, (9.11.9)
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Figure 9.23. Nonlinear stress-strain response in pure
shear. Indicated are the initial elastic modulus E, the secant
modulus hs, and the tangent modulus ht.

EEEp
(0) = ϕ τ ′. (9.11.10)

It is noted that

T′
(0) = RT · τ ′ · R. (9.11.11)

Suppose that a nonlinear relationship

τ = τ (γ) (9.11.12)

between the Kirchhoff stress and the logarithmic strain is available from the

elastoplastic pure shear test (E11
(0) = ln υ, E22

(0) = − ln υ, all other Eij
(0) com-

ponents being equal to zero; υ is the amount of extension and compression

in the two fixed principal directions 1 and 2). Let the secant and tangent

moduli be defined by (Fig. 9.23)

hs =
τ

γ
, ht =

dτ
dγ

, (9.11.13)

and let

τ =
(

1
2
τ ′ : τ ′

)1/2

=
(

1
2

T′
(0) : T′

(0)

)1/2

, (9.11.14)

γ =
(
2EEE ′

(0) : EEE ′
(0)

)1/2

=
(
2E′

(0) : E′
(0)

)1/2

. (9.11.15)

Since, from Eqs. (9.11.9) and (9.11.10),

EEE ′
(0) =

(
1
2μ

+ ϕ

)
τ ′, (9.11.16)

�

�
�

�

��

�

0

© 2002 by CRC Press LLC 



the substitution into Eq. (9.11.15) gives

ϕ =
1

2hs
− 1

2μ
. (9.11.17)

Rate-Type Formulation of Deformation Theory

Although the deformation theory of plasticity is a total strain theory, the

deformation theory can be cast in the rate-type form. This is important for

later comparison with the flow theory of plasticity, and for extending the

application of the resulting constitutive equations beyond the proportional

loading. The rate-type formulation is also needed whenever the considered

boundary value problem is being solved in an incremental manner.

Since U̇ · U−1 is symmetric, from the results in Section 2.6 we have

D = R · Ė(0) · RT , W = Ṙ · R−1. (9.11.18)

Thus,

Ṫ(0) = RT · ◦τ · R,
◦
EEE(0) = D. (9.11.19)

By differentiating Eqs. (9.11.3)–(9.11.5), or by applying the Jaumann de-

rivative to Eqs. (9.11.8)–(9.11.10), there follows

D = De + Dp, (9.11.20)

De = M(0) :
◦
τ, (9.11.21)

Dp = ϕ̇ τ ′ + ϕ
◦
τ ′. (9.11.22)

The deviatoric and spherical parts of the total rate of deformation tensor

are accordingly

D′ = ϕ̇ τ ′ +
(

1
2μ

+ ϕ

)
◦
τ ′, (9.11.23)

trD =
1
3κ

tr
◦
τ. (9.11.24)

In order to derive an expression for the rate ϕ̇, we differentiate Eqs.

(9.11.14) and (9.11.15) to obtain

τ τ̇ =
1
2
τ ′ :

◦
τ, γ γ̇ = 2EEE ′

(0) : D. (9.11.25)

In view of Eqs. (9.11.13), (9.11.16), and (9.11.17), this gives
1
2
τ ′ :

◦
τ = 2hsht EEE ′

(0) : D′ = ht τ
′ : D′. (9.11.26)
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Figure 9.24. Shear stress vs. plastic shear strain. The
plastic secant modulus is hp

s , and the plastic tangent mod-
ulus is hp

t .

When Eq. (9.11.23) is incorporated into Eq. (9.11.26), there follows

ϕ̇ =
1
2

(
1
ht

− 1
hs

)
τ ′ :

◦
τ

τ ′ : τ ′ . (9.11.27)

Substituting Eq. (9.11.27) into Eq. (9.11.23), the deviatoric part of the total

rate of deformation becomes

D′ =
1

2hs

[
◦
τ ′ +

(
hs

ht
− 1

)
(τ ′ ⊗ τ ′) :

◦
τ

τ ′ : τ ′

]
. (9.11.28)

Equation (9.11.28) can be inverted to express the deviatoric part of
◦
τ as

◦
τ ′ = 2hs

[
D′ −

(
1 − ht

hs

)
(τ ′ ⊗ τ ′) : D

τ ′ : τ ′

]
. (9.11.29)

During initial, purely elastic stage of deformation, ht = hs = μ. The onset

of plasticity, beyond which Eqs. (9.11.28) and (9.11.29) apply, occurs when

τ , defined by the second invariant of the deviatoric stress in Eq. (9.11.14),

reaches the initial yield stress in shear. The resulting theory is often referred

to as the J2 deformation theory of plasticity.

If plastic secant and tangent moduli are used (Fig. 9.24), related to

secant and tangent moduli with respect to total strain by

1
ht

− 1
hp

t

=
1
hs

− 1
hp

s
=

1
μ
, (9.11.30)

the plastic part of the rate of deformation can be rewritten as

Dp =
1

2hp
s

◦
τ ′ +

(
1

2hp
t

− 1
2hp

s

)
(τ ′ ⊗ τ ′) :

◦
τ

τ ′ : τ ′ . (9.11.31)

�

�
�

�
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9.11.1. Deformation vs. Flow Theory of Plasticity

For proportional loading, defined by Eq. (9.11.2), the stress rates are

Ṫ(0) =
ċ

c
T(0),

◦
τ =

ċ

c
τ. (9.11.32)

Consequently,

τ ′ :
◦
τ

τ ′ : τ ′ =
ċ

c
, (9.11.33)

and from Eq. (9.11.27) we have

ϕ̇ =
1
2

(
1
ht

− 1
hs

)
ċ

c
=

1
2

(
1
hp

t

− 1
hp

s

)
ċ

c
. (9.11.34)

The plastic part of the rate of deformation reduces to

Dp =
1

2hp
t

ċ

c
τ ′. (9.11.35)

On the other hand, in the case of the flow theory of plasticity,

Ė(0) = Ėe
(0) + Ėp

(0), (9.11.36)

Ėe
(0) = M(0) : Ṫ(0), Ėp

(0) = γ̇ T′
(0). (9.11.37)

The yield surface is defined by

1
2

T′
(0) : T′

(0) − k̂2(ϑ) = 0, ϑ =
∫ t

0

(
2 Ėp

(0) : Ėp
(0)

)1/2

dt, (9.11.38)

so that the consistency condition gives

γ̇ =
1

2hp
t

τ ′ :
◦
τ

τ ′ : τ ′ . (9.11.39)

The plastic tangent modulus is hp
t = dk̂/dϑ. The parameter k̂ is related to

k of Subsection 9.4.1 by k̂ = (detF) k. Since

T(0) = RT · τ · R, Ė(0) = RT · D · R, (9.11.40)

the plastic part of the rate of deformation becomes

Dp =
1

2hp
t

(τ ′ ⊗ τ ′) :
◦
τ

τ ′ : τ ′ . (9.11.41)

In the case of proportional loading, Eq. (9.11.41) reduces to Eq. (9.11.35).

Illustrative examples can be found in Kachanov (1971), and Neale and Shri-

vastava (1990). Also, note the connection

γ̇ − ϕ̇ = ϕ
ċ

c
. (9.11.42)
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A study of variational principles within the framework of deformation theory

of plasticity is presented by Martin (1975), Temam (1985), Gao and Strang

(1989), Ponte Castañeda (1992), and Han and Reddy (1999).

9.11.2. Application beyond Proportional Loading

Deformation theory agrees with flow theory of plasticity only under propor-

tional loading, since then specification of the final state of stress also specifies

the stress history. For general (nonproportional) loading, more accurate and

physically appropriate is the flow theory of plasticity, particularly with an

accurate modeling of the yield surface and the hardening characteristics.

Budiansky (1959), however, indicated that deformation theory can be suc-

cessfully used for certain nearly proportional loading paths, as well. The

stress rate
◦
τ ′ in Eq. (9.11.31) then does not have to be codirectional with

τ ′. The first and third term (both proportional to 1/2hp
s ) in Eq. (9.11.31)

do not cancel each other in this case (as they do for proportional loading),

and the plastic part of the rate of deformation depends on both components

of the stress rate
◦
τ ′, one in the direction of τ ′ and the other normal to it.

In contrast, according to flow theory with the von Mises smooth yield sur-

face, the component of the stress rate
◦
τ ′ normal to τ ′ (thus tangential to

the yield surface) does not affect the plastic part of the rate of deformation.

Physical theories of plasticity (Batdorf and Budiansky, 1954; Sanders, 1954;

Hill, 1967b) indicate that the yield surface of a polycrystalline aggregate

develops a vertex at its loading stress point, so that infinitesimal increments

of stress in the direction normal to τ ′ indeed cause further plastic flow (“ver-

tex softening”). Since the structure of the deformation theory of plasticity

under proportional loading does not use any notion of the yield surface, Bu-

diansky (op. cit.) suggested that Eq. (9.11.31) can be adopted to describe

the response when the yield surface develops a vertex. If Eq. (9.11.31) is

rewritten in the form

Dp =
1

2hp
s

[
◦
τ ′ − (τ ′ ⊗ τ ′) :

◦
τ

τ ′ : τ ′

]
+

1
2hp

t

(τ ′ ⊗ τ ′) :
◦
τ

τ ′ : τ ′ , (9.11.43)

the first term on the right-hand side gives the response to component of the

stress increment normal to τ ′. The associated plastic modulus is hp
s . The

plastic modulus associated with the component of the stress increment in
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the direction of τ ′ is hp
t . Therefore, for continued plastic flow with small

deviations from proportional loading (so that all yield segments which in-

tersect at the vertex are active – fully active loading), Eq. (9.11.43) can

be used as a model of a pointed vertex (Stören and Rice, 1975). The idea

was used by Rudnicki and Rice (1975) in modeling the inelastic behavior of

fissured rocks, as discussed in Subsection 9.8.2. See also Gotoh (1985), and

Goya and Ito (1991).

For the full range of directions of the stress increment, the relationship

between the rates of stress and plastic deformation is not necessarily linear,

although it is homogeneous in these rates, in the absence of time-dependent

(creep) effects. A corner theory that predicts continuous variation of the

stiffness and allows increasingly nonproportional increments of stress was

formulated by Christoffersen and Hutchinson (1979). This is discussed in the

next subsection. When applied to the analysis of necking in thin sheets under

biaxial stretching, the results were in better agreement with experiments

than those obtained from the theory with a smooth yield characterization.

Similar observations were long known in the field of elastoplastic buckling.

Deformation theory predicts the buckling loads better than flow theory with

a smooth yield surface (Hutchinson, 1974).

9.11.3. J2 Corner Theory

In phenomenological J2 corner theory of plasticity, proposed by Christof-

fersen and Hutchinson (1979), the instantaneous elastoplastic moduli for

nearly proportional loading are chosen equal to the J2 deformation theory

moduli, while for increasing deviation from proportional loading the moduli

increase smoothly until they coincide with elastic moduli for stress incre-

ments directed along or within the corner of the yield surface. The yield

surface in the neighborhood of the loading point in deviatoric stress space

(Fig. 9.25) is a cone around the axis

lll =
τ ′

(τ ′ : Mp
def : τ ′)1/2

, (9.11.44)

where Mp
def is the plastic compliance tensor of the deformation theory. The

angular measure θ of the stress rate direction, relative to the cone axis, is

defined by
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Figure 9.25. Near proportional or total loading range at
the yield vertex of J2 corner theory is a cone with the angle
θ0 around the axis l ∼ τ ′. The vertex cone is defined by the
angle θc, and θn = θc − π/2.

cos θ =
lll : Mp

def :
◦
τ

(
◦
τ : Mp

def :
◦
τ)1/2

. (9.11.45)

The conical surface separating elastic unloading and plastic loading is θ = θc,

so that plastic rate of deformation falls within the range 0 ≤ θ ≤ θn, where

θn = θc − π/2. The range of near proportional loading is 0 ≤ θ ≤ θ0. The

angle θ0 is a suitable fraction of θn. The range of near proportional loading is

the range of stress-rate directions for which no elastic unloading takes place

on any of the yield vertex segments. This range is also called fully active or

total loading range.

The stress-rate potential at the corner is defined by

Π = Πe + Πp, Πp = f(θ)Πp
def . (9.11.46)

The elastic contribution to the stress-rate potential is

Πe =
1
2

◦
τ : Me :

◦
τ, Me =

1
2μ

JJJ +
1
3κ

KKK . (9.11.47)

The plastic stress-rate potential of the J2 deformation theory can be written,

from Eq. (9.11.28), as

Πp
def =

1
2

◦
τ : Mp

def :
◦
τ, Mp

def =
1

2hs

[(
1 − hs

μ

)
JJJ +

(
hs

ht
− 1

)
τ ′ ⊗ τ ′

τ ′ : τ ′

]
.

(9.11.48)
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The plastic stress-rate potential Πp
def is weighted by the cone transition func-

tion f(θ) to obtain the plastic stress-rate potential Πp of the J2 corner theory.

In the range of near proportional loading

0 ≤ θ ≤ θ0, f(θ) = 1, (9.11.49)

while in the elastic unloading range

θc ≤ θ ≤ π, f(θ) = 0. (9.11.50)

In the transition region θ0 ≤ θ ≤ θc, the function f(θ) decreases monotoni-

cally and smoothly from one to zero in a way which ensures convexity of the

plastic-rate potential,

Πp(
◦
τ2) − Πp(

◦
τ1) ≥ ∂Πp

∂
◦
τ1

: (
◦
τ2 − ◦

τ1). (9.11.51)

A simple choice of f(θ) meeting these requirements is

f(θ) = cos2
(
π

2
θ − θ0

θc − θ0

)
, θ0 ≤ θ ≤ θc. (9.11.52)

The specification of the angles θc and θ0 in terms of the current stress mea-

sure is discussed by Christoffersen and Hutchinson (1979).

The rate-independence of the material response requires

Dp =
∂Πp

∂
◦
τ

=
∂2Πp

∂
◦
τ⊗ ∂

◦
τ

:
◦
τ = Mp :

◦
τ (9.11.53)

to be a homogeneous function of degree one, and Πp to be a homogeneous

function of degree two in the stress rate
◦
τ. The function Πp(

◦
τ) is quadratic

in the region of nearly proportional loading, but highly nonlinear in the tran-

sition region, due to nonlinearity associated with f(θ). The plastic rate of

deformation is accordingly a linear function of
◦
τ in the region of nearly pro-

portional loading, but a nonlinear function in the transition region. Further

details on the structure of J2 corner theory, with its application to the study

of sheet necking, are given in the Christoffersen and Hutchinson’s paper. See

also Needleman and Tvergaard (1982).

9.11.4. Pressure-Dependent Deformation Theory

To include pressure dependence and allow inelastic volume changes in defor-

mation theory of plasticity, assume that, in place of Eq. (9.11.5), the plastic
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strain is related to stress by

Ep
(0) = ϕ

[
T′

(0) +
2
3
β

(
1
2

T′
(0) : T′

(0)

)1/2

I0

]
, (9.11.54)

where β is a material parameter, and I0 is the second-order unit tensor. It

follows that the deviatoric and spherical parts of the plastic rate of defor-

mation are

Dp′ = ϕ̇ τ ′ + ϕ
◦
τ ′, (9.11.55)

trDp = 2β J
1/2
2

(
ϕ̇ + ϕ

τ ′ :
◦
τ

2 J2

)
. (9.11.56)

The invariant

J2 =
1
2
τ ′ : τ ′ (9.11.57)

here represents the second invariant of the deviatoric part of the Kirchhoff

stress.

Suppose that a nonlinear relationship τ = τ (γp) between the Kirchhoff

stress and the plastic part of the logarithmic strain is available from the

elastoplastic shear test. Let the plastic secant and tangent moduli be defined

by

hp
s =

τ

γp , hp
t =

dτ
dγp , (9.11.58)

and let, in three-dimensional problems of overall compressive states of stress,

τ = J
1/2
2 +

1
3
μ∗ tr τ, (9.11.59)

γp =
(
2EEEp

(0)
′ : EEEp

(0)
′
)1/2

= 2ϕJ
1/2
2 . (9.11.60)

Observe, from Eq. (9.11.54), that

EEEp
(0)

′ = ϕ τ ′. (9.11.61)

The friction-type coefficient in Eq. (9.11.59) is denoted by μ∗. By using the

first of Eq. (9.11.58), therefore,

ϕ =
1

2hp
s

τ

J
1/2
2

. (9.11.62)

In order to derive an expression for the rate ϕ̇, differentiate Eqs. (9.11.59)

and (9.11.60) to obtain

τ̇ =
1
2
J

−1/2
2 (τ ′ :

◦
τ) +

1
3

tr
◦
τ, (9.11.63)
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γ̇
p

= 2
[
ϕ̇ J

1/2
2 +

1
2
ϕJ

−1/2
2 (τ ′ :

◦
τ)

]
. (9.11.64)

Combining this with the second of Eq. (9.11.58) gives

ϕ̇ =
1
2

(
1
hp

t

− 1
hp

s

τ

J
1/2
2

)
τ ′ :

◦
τ

2 J2
+

1
2hp

t

1
3
μ∗

tr
◦
τ

J
1/2
2

. (9.11.65)

Consequently, by substituting Eqs. (9.11.62) and (9.11.65) into Eqs. (9.11.55)

and (9.11.56), there follows

Dp′ =
1

2hp
s

τ

J
1/2
2

◦
τ ′ +

1
2

(
1
hp

t

− 1
hp

s

τ

J
1/2
2

)
(τ ′ ⊗ τ ′) :

◦
τ

2 J2

+
1

2hp
t

1
3
μ∗

tr
◦
τ

J
1/2
2

τ ′,

(9.11.66)

trDp =
β

hp
t

(
τ ′ :

◦
τ

2 J1/2
2

+
1
3
μ∗ tr

◦
τ

)
. (9.11.67)

In the case when

μ∗ = 0, τ = J
1/2
2 , (9.11.68)

Equation (9.11.66) simplifies and the deviatoric part of the plastic rate of

deformation becomes

Dp′ =
1

2hp
s

[
◦
τ ′ +

(
hp

s

hp
t

− 1
)

(τ ′ ⊗ τ ′) :
◦
τ

2 J2

]
, (9.11.69)

while from Eq. (9.11.67) the volumetric part of the plastic rate of deforma-

tion is

trDp =
β

2hp
t

τ ′ :
◦
τ

J
1/2
2

. (9.11.70)

Noncoaxiality Factor

Equation (9.11.66) can be rewritten in an alternative form as

Dp′ =
1

2hp
t

τ ′

J
1/2
2

(
τ ′ :

◦
τ

2 J1/2
2

+
1
3
μ∗ tr

◦
τ

)
+

1
2hp

s

τ

J
1/2
2

[
◦
τ ′ − (τ ′ ⊗ τ ′) :

◦
τ

2 J2

]
.

(9.11.71)

The first part of Dp ′ is coaxial with τ ′. The second part is in the direction

of the component of stress rate
◦
τ ′ that is normal to τ ′. There is no work
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associated with this part of the plastic rate of deformation, so that

τ : Dp′ =
1

2hp
t

(
τ ′ :

◦
τ +

2
3
μ∗ J

1/2
2 tr

◦
τ

)
. (9.11.72)

Observe from Eqs. (9.11.67) and (9.11.72) that

trDp = β
τ : Dp ′

J
1/2
2

, (9.11.73)

which offers a simple physical interpretation of the parameter β.

The coefficient

ς =
1

2hp
s

τ

J
1/2
2

=
1

2hp
s

(
1 +

1
3
μ∗

tr τ

J
1/2
2

)
(9.11.74)

in Eq. (9.11.71) is a stress-dependent noncoaxiality factor. Other definitions

of this factor have also been used in the literature (e.g., Nemat-Nasser, 1983).

Inverse Constitutive Equations

The deviatoric and volumetric part of the total rate of deformation are

D′ =

(
1
2μ

+
1

2hp
s

τ

J
1/2
2

)
◦
τ ′ +

1
2

(
1
hp

t

− 1
hp

s

τ

J
1/2
2

)
(τ ′ ⊗ τ ′) :

◦
τ

2 J2

+
1

2hp
t

1
3
μ∗

tr
◦
τ

J
1/2
2

τ ′,

(9.11.75)

trD =
1
3

(
1
κ

+
μ∗β
hp

t

)
tr

◦
τ +

β

2hp
t

τ ′ :
◦
τ

J
1/2
2

. (9.11.76)

The inverse relations are

◦
τ ′ = 2μ

[
1
b
D′ − a

bc

(τ ′ ⊗ τ ′) : D
2 J2

− 1
c
μ∗

κ

2μ
τ ′

J
1/2
2

trD

]
, (9.11.77)

tr
◦
τ =

3κ
c

[(
1 +

hp
t

μ

)
trD − β

τ ′ : D

J
1/2
2

]
, (9.11.78)

where

a = 1 − hp
t

hp
s

τ

J
1/2
2

(
1 + μ∗β

κ

hp
t

)
, b = 1 +

μ

hp
s

τ

J
1/2
2

, (9.11.79)

and

c = 1 +
hp

t

μ
+ μ∗β

κ

μ
. (9.11.80)
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Comparing Eq. (9.8.36) of the modified flow theory with Eq. (9.11.71)

of the pressure-dependent deformation theory of plasticity, it can be recog-

nized that the two constitutive structures are equivalent, provided that the

identification is made

H = hp
t , H1 = hp

s

J
1/2
2

τ
=

1
2ς

. (9.11.81)

With these connections, Eqs. (9.8.37) and (9.8.38) are also equivalent to

Eqs. (9.11.77) and (9.11.78). The relationship between the two theories

have been further discussed by Rudnicki (1982) and Nemat-Nasser (1982).
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CHAPTER 10

PLASTIC STABILITY

Hill’s theory of uniqueness and plastic stability is presented in this chapter.

Exclusion functional and incrementally linear comparison material are first

introduced. Eigenmodal deformations and acceleration waves in elastoplastic

solids are then discussed. Fundamentals of Rice’s localization analysis for

various constitutive models are presented. Elastoplastic materials described

by associative and nonassociative flow rules, as well as rigid-plastic materials

are considered. The effects of yield vertices on localization predictions are

examined.

10.1. Elastoplastic Rate-Potentials

The analysis is restricted to isothermal and rate-independent elastoplastic

behavior. It was shown in Section 9.2 that the corresponding constitutive

structure, for materials with a smooth yield surface, is bilinear and given by
Ṫ(n) = Λep

(n) : Ė(n). (10.1.1)

One branch of the stiffness tensor Λep
(n) is associated with plastic loading,

and the other with elastic unloading or neutral loading, such that

Λep
(n) =

⎧⎪⎪⎨
⎪⎪⎩

Λp
(n), if ∂f(n)

∂T(n)
: Λ(n) : Ė(n) > 0,

Λ(n), if ∂f(n)

∂T(n)
: Λ(n) : Ė(n) ≤ 0.

(10.1.2)

The stiffness tensor for plastic loading branch is defined by Eq. (9.2.10), i.e.,

Λp
(n) = Λ(n) − 1

h(n)

(
Λ(n) :

∂f(n)

∂T(n)

)
⊗
(

∂f(n)

∂T(n)
: Λ(n)

)
. (10.1.3)

The elastic stiffness tensor is Λ(n). More involved piecewise linear relations,

with several or many branches, could be used to represent the behavior at the

yield surface vertex (for example, for single crystals of metals deforming by
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multiple slip). Since Λep
(n) obeys the reciprocal symmetry, we can introduce

the elastoplastic rate-potential function χ(n), such that

Ṫ(n) =
∂χ(n)

∂Ė(n)

, χ(n) =
1
2

Λep
(n) ::

(
Ė(n) ⊗ Ė(n)

)
. (10.1.4)

Alternatively, the elastoplastic constitutive structure can be expressed

in terms of the rate of nominal stress and the rate of deformation tensor. By

conveniently selecting n = 1 in Eq. (10.1.1), and by using the relationships

Ė(1) =
1
2

(
FT · Ḟ + ḞT · F

)
, Ṫ(1) =

(
Ṗ − P · LT

)
· F−T , (10.1.5)

from Eqs. (3.8.8) and (3.8.14), it follows that

Ṗ = Λep · · Ḟ. (10.1.6)

The Cartesian components of elastoplastic moduli and pseudomoduli are

related by

Λep
JiLk = Λep (1)

JMLNFiMFkN + T
(1)
JL δik, (10.1.7)

as previously derived in Eq. (6.4.8). Since the pseudomoduli obey reciprocal

symmetry (Λep
JiLk = Λep

LkJi), we can introduce the rate-potential function χ,

such that

Ṗ =
∂χ

∂Ḟ
, χ =

1
2

Λep · · · · (Ḟ ⊗ Ḟ). (10.1.8)

The response over entire Ḟ space is bilinear, since in the range of elastic

unloading or neutral loading Λep = Λ (tensor of elastic pseudomoduli),

while in the range of plastic loading Λep = Λp.

More generally, if inelastic rate response is thoroughly nonlinear (as in

the description of actual behavior of polycrystals at yield vertices), we have

Ṗ =
∂χ

∂Ḟ
, χ =

1
2

Ṗ · · Ḟ. (10.1.9)

In the absence of time-dependent viscous effects, the rate-potential χ is nec-

essarily homogeneous of degree two in Ḟ.

10.1.1. Current Configuration as Reference

When the current configuration is taken as the reference configuration, Eq.

(10.1.8) becomes

Ṗ =
∂χ

∂L
, χ =

1
2

Λep · · · · (L ⊗ L), (10.1.10)
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since

Ḟ = L. (10.1.11)

From Eqs. (6.3.4) and (6.4.16), or directly from Eq. (10.1.7), we have

Λep
jilk = Lep (1)

jilk + σjlδik, (10.1.12)

so that

χ =
1
2
LLLep

(1) :: (D ⊗ D) +
1
2
σ :

(
LT · L) . (10.1.13)

Alternatively, in view of

LLLep
(0) = LLLep

(1) + 2SSS , (10.1.14)

where SSS is defined by Eq. (6.3.11), there follows

χ =
1
2
LLLep

(0) :: (D ⊗ D) +
1
2
σ :

(
LT · L − 2D2

)
. (10.1.15)

The rate potentials χ
(n)

can be introduced such that

Ṫ(n) =
∂χ

(n)

∂D
, χ

(n)
=

1
2
LLLep

(n) :: (D ⊗ D). (10.1.16)

As in Section 7.6, the following relationships hold

χ
(n)

= χ
(0)

− nσ : D2 = χ
(1)

+ (1 − n)σ : D2, (10.1.17)

and

χ = χ
(n)

+
1
2
σ :

[
LT · L − 2(1 − n)D2

]
. (10.1.18)

In particular,

◦
τ = LLLep

(0) : D =
∂χ

(0)

∂D
, χ

(0)
=

1
2
LLLep

(0) :: (D ⊗ D). (10.1.19)

The tensor LLLep
(0) was explicitly given for various constitutive models in Chap-

ter 9. In the range of elastic unloading or neutral loading it is equal to LLL(0),

and in the range of plastic loading it is equal to LLLp
(0). For example, in the

case of isotropic hardening LLLp
(0) is defined by Eq. (9.4.43), and in the case

of linear kinematic hardening by Eq. (9.4.19).

If the response is thoroughly nonlinear,

Ṗ =
∂χ

∂L
, χ =

1
2

Ṗ · ·L, (10.1.20)

where χ is a homogeneous function of degree two in components of the

velocity gradient L.
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10.2. Reciprocal Relations

For nonlinear incremental response (either thoroughly nonlinear or nonlinear

on account of different behavior in loading and unloading), we can write

Ṗ · · Ḟ = 2χ, (10.2.1)

where χ is homogeneous of degree two in Ḟ. Taking the variation of Eq.

(10.2.1), associated with an infinitesimal variation δḞ, gives

δṖ · · Ḟ + Ṗ · · δḞ = 2δχ. (10.2.2)

Since

Ṗ · · δḞ =
∂χ

∂Ḟ
· · δḞ = δχ, (10.2.3)

we deduce from Eq. (10.2.2) the reciprocal relation

δṖ · · Ḟ = Ṗ · · δḞ. (10.2.4)

This expression will be used in the derivation of the following reciprocal

theorem. Consider a divergence expression

∇0 ·
(
Ṗ · δv − δṖ · v

)
. (10.2.5)

Since by Eq. (1.13.13),

∇0 ·
(
Ṗ · δv

)
=
(
∇0 · Ṗ

)
· δv + Ṗ · · δḞ, (10.2.6)

and similarly for the second term in (10.2.5), the divergence expression be-

comes

∇0 ·
(
Ṗ · δv − δṖ · v

)
=
(
∇0 · Ṗ

)
· δv −

(
∇0 · δṖ

)
· v. (10.2.7)

The reciprocal relation (10.2.4) was utilized in the last step. Integrating Eq.

(10.2.7) over the reference volume V 0, employing the equations of continuing

equilibrium

∇0 · Ṗ = −ρ0 ḃ, ∇0 · δṖ = −ρ0 δḃ, (10.2.8)

and the Gauss theorem, gives∫
V 0

ρ0 ḃ · δv dV 0 +
∫
S0

n0 · Ṗ · δv dS0

=
∫
V 0

ρ0 δḃ · v dV 0 +
∫
S0

n0 · δṖ · v dS0.

(10.2.9)

This is a reciprocal theorem for the considered incrementally nonlinear re-

sponse (Hill, 1978).
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For incrementally linear response, the variations δv and δṖ can be re-

placed by (finite) differences v− v∗ and Ṗ− Ṗ∗ of any two (not necessarily

nearby) equilibrium fields, and reciprocal relations of Eqs. (10.2.4) and

(10.2.9) reduce to

Ṗ · · Ḟ∗ = Ṗ∗ · · Ḟ, (10.2.10)

and ∫
V 0

ρ0 ḃ · v∗ dV 0 +
∫
S0

n0 · Ṗ · v∗ dS0

=
∫
V 0

ρ0 ḃ∗ · v dV 0 +
∫
S0

n0 · Ṗ∗ · v dS0.

(10.2.11)

The latter is analogous to Betti’s reciprocal theorem of classical elasticity,

as discussed for incrementally linear elastic response in Subsection 7.5.1.

10.2.1. Clapeyron’s Formula

Suppose that the stress rate field Ṗ satisfies the equations of continuing

equilibrium,

∇0 · Ṗ + ρ0 ḃ = 0. (10.2.12)

Then, for any analytically admissible velocity field v, we have∫
V 0

Ṗ · · ḞdV 0 =
∫
V 0

ρ0 ḃ · v dV 0 +
∫
S0

n0 · Ṗ · v dS0, (10.2.13)

by the Gauss theorem. For incrementally nonlinear response with Ṗ defined

by Eq. (10.1.9), χ being homogeneous of degree two in Ḟ, Eq. (10.2.13)

becomes

2
∫
V 0

χdV 0 =
∫
V 0

ρ0 ḃ · v dV 0 +
∫
S0

n0 · Ṗ · v dS0. (10.2.14)

The result is analogous to Clapeyron’s formula of linear elasticity, and can

be referred to as Clapeyron’s formula of incrementally nonlinear response.

10.3. Variational Principle

If the stress rate field Ṗ satisfies the equations of continuing equilibrium

(10.2.12), then for any analytically admissible (not necessarily infinitesimal)

velocity field δv, it follows that∫
V 0

Ṗ · · δḞdV 0 =
∫
V 0

ρ0 ḃ · δv dV 0 +
∫
S0

n0 · Ṗ · δv dS0, (10.3.1)
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again by the Gauss theorem. Recall that

δḞ = δv ⊗ ∇0. (10.3.2)

For incrementally nonlinear response with Ṗ defined by Eq. (10.1.9), Eq.

(10.3.1) becomes∫
V 0

δχdV 0 =
∫
V 0

ρ0 ḃ · δv dV 0 +
∫
S0

n0 · Ṗ · δv dS0. (10.3.3)

Assuming that the rate of body forces is independent of the material response

(deformation insensitive, dead body loading), Eq. (10.3.3) can be rewritten

as

δ

(∫
V 0

χdV 0 −
∫
V 0

ρ0 ḃ · v dV 0

)
=
∫
S0
t

ṗn · δv dS0
t , (10.3.4)

provided that δv vanishes on S0
v = S0 − S0

t . If the current configuration is

taken as the reference,

δ

(∫
V

χdV −
∫
V

ρ ḃ · v dV
)

=
∫
St

ṗ
n
· δv dSt, (10.3.5)

since

ṗ
n

dSt = ṗn dS0
t . (10.3.6)

The traction rate ṗ
n

is related to the rate of Cauchy traction ṫn by Eq.

(3.9.18).

Suppose that the surface data over St consists of two parts,

ṗ
n

= ṗc

n
+ ṗs

n
, (10.3.7)

where ṗc

n
is the controllable part of the incremental loading (independent of

material response), and ṗs

n
is the deformation-sensitive part allowing for the

deformability of both material and tool (linear homogeneous expression in

v and L), Hill (1978). For instance, in the case of fluid pressure, tn = −pn,

it follows that

ṫn = −ṗn − p ṅ, (10.3.8)

where, from Eq. (2.4.18),

ṅ = (n · D · n)n − n · L. (10.3.9)

Thus, Eq. (3.9.18) gives

ṗ
n

= −ṗn + p (n · L − n trD). (10.3.10)
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The first term is deformation insensitive,

ṗc

n
= −ṗn, (10.3.11)

while the remaining part is deformation sensitive,

ṗs

n
= p (n · L − n trD). (10.3.12)

A deformation-sensitive part of the incremental loading is self-adjoint if∫
St

(
ṗs

n
· v∗ − ṗ∗ s

n
· v
)

dSt = 0, (10.3.13)

for any two analytically admissible velocity fields v and v∗ whose difference

vanishes on Sv. Since ṗs

n
is linear homogeneous, equivalent definitions are∫

St

(
ṗs

n
· δv − δṗs

n
· v
)

dSt = 0, i.e.,
∫
St

ṗs

n
· δv dSt =

1
2
δ

∫
St

ṗs

n
· v dSt,

(10.3.14)

where δv is an analytically admissible infinitesimal variation of v that van-

ishes on Sv (Hill, op. cit.).

A true variational principle can be deduced from Eq. (10.3.5) when the

surface data over St is self-adjoint in the sense of (10.3.14), since then

δΞ = 0, (10.3.15)

with the variational integral

Ξ =
∫
V

χdV −
∫
V

ρ ḃ · v dV −
∫
St

(
ṗc

n
+

1
2

ṗs

n

)
· v dSt. (10.3.16)

Among all kinematically admissible velocity fields, the actual velocity field

(whether unique or not) of the considered rate boundary-value problem ren-

ders stationary the functional Ξ(v). In Section 10.5 it will be shown that,

under the uniqueness condition formulated in Section 10.4, the variational

principle (10.3.15) with (10.3.16) can be strengthened to a minimum princi-

ple. Formulation of variational principles in the framework of infinitesimal

strain is presented by Hill (1950), Drucker (1958,1960), and Koiter (1960).

See also Ponter (1969), Neale (1972), and Sewell (1987).

10.3.1. Homogeneous Data

The incremental data is homogeneous at an instant of deformation process

if

ḃ = 0 in V, v = 0 on Sv, ṗc

n
= 0 on St, (10.3.17)
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at that instant. The corresponding homogeneous boundary value problem

is governed by the variational principle

δΞ = 0, Ξ =
∫
V

χdV − 1
2

∫
St

ṗs

n
· v dSt. (10.3.18)

In addition, the Clapeyron formula (10.2.14) reduces to∫
V

χdV =
1
2

∫
St

ṗs

(n)
· v dSt. (10.3.19)

A possible nontrivial solution is characterized by both

δΞ = 0 and Ξ = 0. (10.3.20)

For example, if χ is given by Eq. (10.1.15), we have

Ξ =
1
2

∫
V

[
LLLep

(0) :: (D ⊗ D) + σ :
(
LT · L − 2D2

)]
dV − 1

2

∫
St

ṗs

n
· v dSt.

(10.3.21)

Recall that the traction rate ṗs

n
is related to the rate of Cauchy traction by

an equation such as (3.9.18). When the geometry of the body is such that

an admissible velocity field gives rise to large spins and small strain rates

(as in slender beams), the terms proportional to stress within the volume

integral in (10.3.21) can be of the same order as the terms proportional to

elastoplastic moduli, even when the stress components are small compared

to instantaneous moduli.

10.4. Uniqueness of Solution

In this section we consider the uniqueness of solution to incrementally non-

linear boundary-value problem, described by the equations of continuing

equilibrium,

∇ · Ṗ + ρ ḃ = 0, (10.4.1)

and the boundary conditions

v = v0 on Sv, n · Ṗ = ṗ
n

on St. (10.4.2)

Material response is incrementally nonlinear and governed by Eq. (10.1.9).

The incremental body loading is assumed to be deformation-insensitive,

while deformation-sensitive part of incremental surface loading is self-adjoint

in the spirit of Eq. (10.3.13).
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Following Hill (1958,1961a,1978), suppose that there are two different

solutions of Eqs. (10.4.1) and (10.4.2), v and v∗. The corresponding velocity

gradients are L and L∗, and the rates of nominal stress are

Ṗ =
∂χ

∂L
, Ṗ

∗
=

∂χ

∂L∗ . (10.4.3)

Then, since

∇ ·
(
Ṗ − Ṗ

∗)
= 0, (10.4.4)

by the equations of equilibrium, the fields
(
Ṗ,L

)
and

(
Ṗ

∗
,L∗

)
necessarily

satisfy the condition∫
V

(
Ṗ

∗ − Ṗ
)
· · (L∗ − L) dV =

∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt. (10.4.5)

This follows upon application of the Gauss divergence theorem. Conse-

quently, from Eq. (10.4.5) the velocity field v is unique if∫
V

(
Ṗ

∗ − Ṗ
)
· · (L∗ − L) dV �=

∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt, (10.4.6)

for all kinematically admissible v∗ giving rise to

L∗ =
∂v∗

∂x
, Ṗ

∗
=

∂χ

∂L∗ . (10.4.7)

The stress rate Ṗ
∗

in (10.4.6) need not be statically admissible, so even if

equality sign applies in (10.4.6) for some v∗, the uniqueness is lost only if v∗

gives rise to statically admissible stress-rate field Ṗ
∗
. Therefore, a sufficient

condition for uniqueness is∫
V

(
Ṗ

∗ − Ṗ
)
· · (L∗ − L) dV >

∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt, (10.4.8)

i.e., ∫
V

(
∂χ

∂L∗ − ∂χ

∂L

)
· · (L∗ − L) dV >

∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt,

(10.4.9)

for the differences of all distinct kinematically admissible velocity fields v

and v∗.

For a piecewise linear response, the uniqueness condition (10.4.8) be-

comes∫
V

(Λ∗ ep · ·L∗ − Λep · ·L) · · (L∗ − L) dV >

∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt.

(10.4.10)
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The superimposed asterisk to one of the elastoplastic pseudomoduli tensors

indicates that different loading branches (elastic or plastic) can correspond

to different velocity fields v and v∗ at each point of the continuum.

The condition (10.4.9), or (10.4.10), does not depend on prescribed ṗc

n
,

nor does it depend on prescribed velocities on Sv, and is thus likely to be

over-sufficient (i.e., not necessary).

The uniqueness condition (10.4.8) can be rewritten in terms of other

stress measures. For example, it can be easily shown that

Ṗ · ·L∗ =
◦
τ : D∗ − σ :

(
2D · D∗ − LT · L∗) , (10.4.11)

so that in (10.4.8) we have(
Ṗ

∗ − Ṗ
)
· · (L∗ − L) = (

◦
τ ∗ − ◦

τ) : (D∗ − D)

− σ :
[
2(D∗ − D)2 − (

L∗T − LT
) · (L∗ − L)

]
.

(10.4.12)

10.4.1. Homogeneous Boundary Value Problem

A homogeneous boundary value problem for incrementally nonlinear mate-

rial is described by

∇ · ṖPP = 0, (10.4.13)

and the boundary conditions

w = 0 on Sv, n · ṖPP = ṗpps

n
on St, (10.4.14)

where

LLL =
∂w
∂x

, ṖPP =
∂χ

∂LLL
. (10.4.15)

This has always a null solution w = 0. If the homogeneous problem also has

a nontrivial solution w �= 0, then from (10.4.5)∫
V

χdV =
1
2

∫
St

ṗpps

n
· w dSt, 2χ = ṖPP · ·LLL. (10.4.16)

Thus, if the exclusion functional is positive,

F(w) =
∫
V

χ(w) dV − 1
2

∫
St

ṗpps

n
(w) · w dSt > 0, (10.4.17)

for any kinematically admissible w giving rise to LLL = ∂w/∂x, the current

state of material is incrementally unique (i.e., eigenstates under homogeneous

data are excluded). In an eigenstate

F(w) = 0, (10.4.18)
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for some kinematically admissible w. Such an eigenmode w makes the exclu-

sion functional stationary within the class of kinematically admissible vari-

ations δw. Conversely, any kinematically admissible velocity field w that

makes F stationary is an eigenmode. This follows because for homogeneous

problem the variational integral of Eq. (10.3.18) is equal to the exclusion

functional,

Ξ = F . (10.4.19)

10.4.2. Incrementally Linear Comparison Material

In contrast to incrementally linear response, for incrementally nonlinear and

piecewise linear response the difference Ṗ−Ṗ
∗

is not a single-valued function

of v−v∗, but of v and v∗ individually. This makes direct application of the

uniqueness criterion (10.4.8) and (10.4.10) for these materials more difficult.

An indirect approach was introduced by Hill (1958,1959,1967). It is based

on the notion of an incrementally linear comparison material, that is in a

sense less stiff than the original material. Denote its rate potential by

χl =
1
2

Λl · · · · (L ⊗ L). (10.4.20)

If v and v∗ are both solutions of the inhomogeneous boundary value prob-

lem corresponding to incrementally linear comparison material, then from

(10.4.5)∫
V

Λl · · · · [(L∗ − L) ⊗ (L∗ − L)] dV =
∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt.

(10.4.21)

A sufficient condition for uniqueness is therefore∫
V

Λl · · · · [(L∗ − L) ⊗ (L∗ − L)] dV >

∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt,

(10.4.22)

for the difference of all distinct kinematically admissible velocity fields v and

v∗.

Following the development of Section 7.8 for incrementally linear elas-

tic material, consider a homogeneous problem described by (10.4.13) and

(10.4.14), where

LLL =
∂w
∂x

, ṖPP = Λl · ·LLL. (10.4.23)
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There is always a null solution w = 0 to this problem. If the homogeneous

problem also has a nontrivial solution w �= 0, then from (10.4.21)

1
2

∫
V

Λl · · · · (LLL ⊗LLL) dV =
∫
St

ṗpps

n
· w dSt. (10.4.24)

The examination of the uniqueness of solution to inhomogeneous problem for

incrementally linear comparison material is thus equivalent to examination

of the uniqueness of solution to the associated homogeneous problem. Con-

sequently, the uniqueness is assured, i.e., the inequality (10.4.22) is satisfied,

if

F =
∫
V

χl(w) dV − 1
2

∫
St

ṗpps

n
(w) · w dSt > 0, χl(w) =

1
2

Λl · · · · (LLL ⊗LLL),

(10.4.25)

for any kinematically admissible w giving rise to LLL = ∂w/∂x.

Suppose that, at the given state of deformation, the exclusion condition

(10.4.25) is satisfied for incrementally linear material with the rate potential

χl. Then, if

χl ≤ χ (10.4.26)

at each point (linear comparison material in this sense being less stiff), the

exclusion functional (10.4.17) for incrementally nonlinear material with the

rate potential χ is also satisfied, precluding eigenstates under homogeneous

data.

More strongly, if (10.4.25) is satisfied and the function χ− χl is convex

at each point, bifurcation is ruled out for any associated inhomogeneous data

(Hill, 1978). Indeed, for convex function χ − χl, by definition of convexity

we can write

χ(L∗) − χl(L∗) − [χ(L) − χl(L)] ≥ ∂(χ− χl)
∂L

· · (L∗ − L), (10.4.27)

and likewise

χ(L) − χl(L) − [χ(L∗) − χl(L∗)] ≥ ∂(χ− χl)
∂L∗ · · (L − L∗). (10.4.28)

The convexity condition (10.4.27) is schematically depicted in (Fig. 10.1).

By summing up the above two inequalities, we obtain[
∂(χ− χl)

∂L∗ − ∂(χ− χl)
∂L

]
· · (L∗ − L) ≥ 0. (10.4.29)
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Figure 10.1. Schematic illustration of the convexity con-
dition (10.4.27).

In view of Eq. (10.4.3) for the rates of nominal stress, and Eq. (10.4.20)

for the rate potential, the inequality (10.4.29) can be recast in the following

form

(
Ṗ

∗ − Ṗ
)
· · (L∗ − L) ≥

(
Ṗ

∗ − Ṗ
)l

· · (L∗ − L)

= Λl · · · · [(L∗ − L) ⊗ (L∗ − L)].
(10.4.30)

Therefore, if the inequality (10.4.25), implying (10.4.22), is satisfied for

incrementally linear comparison material (i.e., if there is no bifurcation for in-

crementally linear comparison material), the convexity of the function χ−χl ,

leading to (10.4.30), assures that the inequality (10.4.8) is also satisfied, rul-

ing out any bifurcation of incrementally nonlinear material at the considered

state. On the other hand, if the current configuration is a primary eigenstate

for χl material, i.e., F = 0 in (10.4.25), the bifurcation may still be excluded

for χ material, if χ − χl is strictly convex in LLL (strict inequality applies in

(10.4.29)).

For an analysis of uniqueness in the case of an incrementally nonlinear

material model without a rate potential function, see the paper by Chambon

and Caillerie (1999).
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10.4.3. Comparison Material for Elastoplastic Response

For elastoplastic response with a piecewise linear relation defined by

Ṗ = Λep · ·L, Λep =

⎧⎪⎨
⎪⎩

Λp, for plastic loading,

Λ, for elastic unloading or neutral loading,
(10.4.31)

an incrementally linear comparison material can be taken to be the material

whose stiffness is equal to Λp at plastically stressed points of the continuum.

Elsewhere in the continuum, i.e., at elastically stressed points, the compar-

ison material has the stiffness equal to Λ. The following is a proof of the

required condition,

(Λ∗ ep · ·L∗ − Λep · ·L) · · (L∗ − L) ≥ Λp · · · · [(L∗ − L) ⊗ (L∗ − L)]
(10.4.32)

for the identification of selected incrementally linear comparison material,

with the stiffness Λp.

From Eqs. (9.1.1) and (9.1.4), a piecewise linear elastoplastic response

is governed by

Ṫ(n) = Λp
(n) : Ė(n) −

[
γ̇(n) − 1

h(n)

(
∂g(n)

∂E(n)
: Ė(n)

)]
∂g(n)

∂E(n)
, (10.4.33)

where, by Eq. (9.1.13),

Λp
(n) = Λ(n) − 1

h(n)

(
∂g(n)

∂E(n)
⊗ ∂g(n)

∂E(n)

)
. (10.4.34)

The loading index is

γ̇(n) =
1

h(n)

(
∂g(n)

∂E(n)
: Ė(n)

)
> 0 (10.4.35)

for plastic loading, and γ̇(n) = 0 for elastic unloading or neutral loading.

Consequently,

( Ṫ∗
(n) − Ṫ(n)

)
:
(
Ė∗

(n) − Ė(n)

)
= Λp

(n) ::
[(

Ė∗
(n) − Ė(n)

)
⊗
(
Ė∗

(n) − Ė(n)

)]
−
[
γ̇∗
(n) − γ̇(n) − 1

h(n)

∂g(n)

∂E(n)
:
(
Ė∗

(n) − Ė(n)

)] ∂g(n)

∂E(n)
:
(
Ė∗

(n) − Ė(n)

)
.

(10.4.36)

If both Ė(n) and Ė∗
(n) correspond to plastic loading from the current state,

the terms within square brackets in the second line of Eq. (10.4.36) cancel

each other. If one strain rate corresponds to plastic loading and the other to

elastic unloading, or if both strain rates correspond to elastic unloading, or
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if one strain rate corresponds to elastic unloading and the other to neutral

loading, the whole expression[
γ̇∗
(n) − γ̇(n) − 1

h(n)

∂g(n)

∂E(n)
:
(
Ė∗

(n) − Ė(n)

)] ∂g(n)

∂E(n)
:
(
Ė∗

(n) − Ė(n)

)
(10.4.37)

is negative. If both strain rates correspond to neutral loading, or one to neu-

tral loading and the other to plastic loading, the above expression vanishes.

Thus, from Eq. (10.4.36) it follows that(
Ṫ∗

(n) − Ṫ(n)

)
:
(
Ė∗

(n) − Ė(n)

)
≥ Λp

(n) ::
[(

Ė∗
(n) − Ė(n)

)
⊗
(
Ė∗

(n) − Ė(n)

)]
.

(10.4.38)

This means that actual piecewise linear response is more convex than a

hypothetical linear response with the stiffness moduli Λp
(n) over the entire

Ė(n) space.

If the current configuration is taken as the reference, (10.4.38) becomes(
Ṫ

∗
(n) − Ṫ(n)

)
: (D∗ − D) ≥ Λp

(n) :: [(D∗ − D) ⊗ (D∗ − D)] , (10.4.39)

or, since Ṫ(n) and Λ(n) are fully symmetric tensors,(
Ṫ

∗
(n) − Ṫ(n)

)
· · (L∗ − L) ≥ Λp

(n) · · · · [(L∗ − L) ⊗ (L∗ − L)] . (10.4.40)

To express this condition in terms of Ṗ and Λp, the choice n = 1 is conve-

niently made in Eq. (10.4.40). Since

Ṫ(1) = Ṗ − σ · LT , (10.4.41)

from the second of Eq. (10.1.5), and recalling the relationship between the

components of elastoplastic moduli and pseudomoduli given by Eq. (10.1.7),

the substitution into Eq. (10.4.40) gives(
Ṗ

∗ − Ṗ
)
· · (L∗ − L) ≥ Λp · · · · [(L∗ − L) ⊗ (L∗ − L)] . (10.4.42)

This is precisely the condition (10.4.32).

In conclusion, the bifurcation problem for a piecewise linear elastoplastic

material with the stiffness Λep is reduced to determining primary eigenstate

of incrementally linear comparison material with the stiffness Λp. Among

infinitely many deformation modes that are all solutions of given inhomo-

geneous problem for Λp material at that state (these being the sums of the

increment of the fundamental solution and any multiple of the eigenmode

solution), there may be those for which the strain rate at every plastically
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stressed point is in the plastic loading range of the Λep material itself. Such

deformation modes are then also solutions of the given inhomogeneous rate

problem of the Λep material, which means that a primary bifurcation for

this material has been identified (Hill, 1978).

For incrementally linear comparison material bifurcation can occur in an

eigenstate for any prescribed traction rates on St, and velocities on Sv. In an

actual elastoplastic material bifurcation occurs only for those traction rates

and prescribed velocities for which there is no elastic unloading in the current

plastic region of the body. See also Nguyen (1987,1994), Triantafyllidis

(1983), and Petryk (1989).

For solids with corners on their yield surfaces, comparison material is

defined as a hypothetical material whose every yield system is active. For

example, with a pyramidal vertex formed by k0 intersecting segments, from

Section 9.5 it follows that

Λp = Λ(n) −
k0∑
i=1

k0∑
j=1

h<ij>−1
(n)

(
Λ(n) :

∂f<i>
(n)

∂T(n)

)
⊗
(
∂f<j>

(n)

∂T(n)
: Λ(n)

)
.

(10.4.43)

The range of strain rate space in which no elastic unloading occurs on any

yield segment is called fully active or total loading range (Sewell, 1972;

Hutchinson, 1974). In the context of crystal plasticity, this is further dis-

cussed in Chapter 12.

10.5. Minimum Principle

If the uniqueness condition (10.4.8) applies, the variational principle (10.3.15)

with (10.3.16) can be strengthened to a minimum principle. Let v be the

actual unique solution of the considered problem, and v∗ any kinematically

admissible velocity field. First, it is observed that

Ξ(v∗) − Ξ(v) =
∫
V

(χ∗ − χ) dV −
∫
V

ρ ḃ · (v∗ − v) dV

−
∫
St

ṗc

n
· (v∗ − v) dSt − 1

2

∫
St

(
ṗ∗ s

n
+ ṗs

n

)
· (v∗ − v) dSt,

(10.5.1)

and

1
2

(
ṗ∗ s

n
+ ṗs

n

)
=

1
2

(
ṗ∗ s

n
− ṗs

n

)
+ ṗs

n
. (10.5.2)
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Thus,

Ξ(v∗) − Ξ(v) =
∫
V

(χ∗ − χ) dV − 1
2

∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt

−
∫
V

ρ ḃ · (v∗ − v) dV −
∫
St

ṗ
n
· (v∗ − v) dSt.

(10.5.3)

The two surface integrals can be expressed by the Gauss theorem as the

volume integrals, see (10.2.13), with the result

Ξ(v∗) − Ξ(v) =
∫
V

(χ∗ − χ) dV −
∫
V

Ṗ · · (L∗ − L) dV

− 1
2

∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt.

(10.5.4)

For the minimum principle to hold, it is required to prove that the right hand

side of Eq. (10.5.4) is positive. Following Hill (1978), introduce a continuous

sequence of kinematically admissible fields

v+(α) = v + α(v+ − v), 0 ≤ α ≤ 1, (10.5.5)

the parameter α being uniform throughout the body. Then, by Eq. (10.5.4),

Ξ(v+) − Ξ(v) =
∫
V

(χ+ − χ) dV −
∫
V

Ṗ · · (L+ − L) dV

− 1
2

∫
St

(
ṗ+ s

n
− ṗs

n

)
· (v+ − v) dSt.

(10.5.6)

Here,

L+ = L + α(L∗ − L), (10.5.7)

and, since ṗs

n
is linear homogeneous in velocity gradient,

ṗ+ s

n
= ṗs

n
+ α

(
ṗ∗ s

n
− ṗs

n

)
. (10.5.8)

Consequently,

α
d
dα

[
Ξ(v+) − Ξ(v)

]
=
∫
V

(
Ṗ

+ − Ṗ
)
· · (L+ − L) dV

−
∫
St

(
ṗ+ s

n
− ṗs

n

)
· (v+ − v) dSt > 0,

(10.5.9)

which is positive by the uniqueness condition (10.4.8), applied to fields v

and v+. In the derivation it is recalled that χ is a homogeneous function of

degree two, so that

α
dχ+

dα
=

∂χ+

∂L+
· · (L+ − L) = 2χ+ − Ṗ

+ · ·L = Ṗ
+ · · (L+ − L). (10.5.10)
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Therefore, in the range 0 < α ≤ 1 the function Ξ(v+) − Ξ(v) has a positive

gradient,
d
dα

[
Ξ(v+) − Ξ(v)

]
> 0. (10.5.11)

Since Ξ(v+) − Ξ(v) is equal to zero for α = 0, it follows that

Ξ(v+) − Ξ(v) > 0, 0 < α ≤ 1, (10.5.12)

which is a desired result. Thus,

Ξ(v∗) > Ξ(v) (10.5.13)

for all kinematically admissible velocity fields v∗, which implies a minimum

principle.

10.6. Stability of Equilibrium

Consider an equilibrium state of the body whose response is incrementally

nonlinear with the rate potential χ. Let the current equilibrium stress field

be P, associated with the body force b within V 0, the traction pn over S0
t ,

and prescribed displacement on the remaining part of the boundary S0−S0
t .

Assume that an infinitesimal virtual displacement field δu is imposed on the

body (δu = 0 on S0−S0
t ), under dead body force and unchanged controllable

part of the surface loading. The work done by applied forces on this virtual

displacement is∫
V 0

ρ0 b · δudV 0 +
∫
S0
t

(
pn +

1
2
δps

n

)
· δudS0

t , (10.6.1)

since deformation-sensitive change δps
n, induced by δu, is linear in δu. The

stress field P changes to P + δP, where δP is constitutively associated with

the displacement increment δu through

δP =
∂χ

∂(δF)
, δF =

∂(δu)
∂X

. (10.6.2)

Kinematically admissible neighboring configurations need not be equilibrium

configurations, i.e., the stress field P + δP need not be an equilibrium field.

The increment of internal energy associated with virtual change δu is, to

second order, ∫
V 0

(
P +

1
2
δP
)
· · δFdV 0. (10.6.3)

According to the energy criterion of stability, the underlying equilibrium

configuration is stable if the increase of internal energy due to δu is greater
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than the work done by already applied forces in the virtual transition. Upon

using (10.6.1), (10.6.3) and the formula (3.12.1), the stability condition be-

comes (Hill, 1958,1978)∫
V 0

δP · · δFdV 0 >

∫
S0
t

δps
n · δudS0

t , (10.6.4)

or ∫
V 0

Ṗ · · ḞdV 0 >

∫
S0
t

ṗs
n · v dS0

t , (10.6.5)

for all admissible velocity fields v vanishing on S0
v = S0 − S0

t . Since χ is a

homogeneous function of Ḟ of degree two, and Ṗ = ∂χ/∂Ḟ, (10.6.5) can be

rewritten as ∫
V 0

χdV 0 >
1
2

∫
S0
t

ṗs
n · v dS0

t . (10.6.6)

If the current configuration is taken as the reference, the stability criterion

becomes ∫
V

χdV =
1
2

∫
V

Ṗ · ·LdV >
1
2

∫
St

ṗs

n
· v dSt. (10.6.7)

10.7. Relationship between Uniqueness and Stability Criteria

In this section we compare the uniqueness criterion from Section 10.4,∫
V

(
Ṗ

∗ − Ṗ
)
· · (L∗ − L) dV >

∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt, (10.7.1)

with the stability condition∫
V

Ṗ · ·LdV >

∫
St

ṗs

n
· v dSt. (10.7.2)

For kinematically admissible fields v and v∗ vanishing on Sv = S − St,

the field v − v∗ also vanishes on Sv and can be used as an admissible field

in (10.7.2). The condition (10.7.2) is then equivalent to (10.7.1) only if

the response is incrementally linear, so that Ṗ
∗ − Ṗ is a linear function of

v − v∗. For nonlinear and piecewise linear response this is not the case and

two conditions are not equivalent.

Suppose the uniqueness condition (10.7.1) is satisfied when Sv is rigidly

constrained or absent. Since the field v∗ = 0 is an admissible field for this

boundary condition, it can be combined in (10.7.1) with any other nonzero

admissible field v, reproducing (10.7.2). Thus, when the sufficient condition

for uniqueness of the rate boundary value problem at given state is satis-

fied for rigidly constrained or absent Sv, the underlying equilibrium state is
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also stable. The converse is not necessarily true for incrementally nonlinear

material. The boundary value problem need not have unique solution in a

stable state, i.e., (10.7.2) may be satisfied but not (10.7.1). A stable bifur-

cation could occur, although not under dead loading (ḃ = 0 and ṗc

n
= 0),

since this would imply that∫
V

Ṗ · ·LdV =
∫
St

ṗs

n
· v dSt, (10.7.3)

for the actual velocity field (by the divergence theorem). The loading would

have to change such that∫
V

ρ ḃ · v dV +
∫
St

ṗc
n · v dSt

=
∫
V

Ṗ · ·LdV −
∫
St

ṗs

n
· v dSt > 0,

(10.7.4)

for any actual field at the bifurcation.

Denote by V e the elastically stressed part of the body, and by V p the re-

maining plastically stressed part (i.e., the part that is at the state of incipient

yield), and assume that ṗs

n
= 0 on St for any kinematically admissible veloc-

ity. For rigidly constrained or absent Sv, the uniqueness condition becomes

∫
V

Ṗ · ·LdV =
∫
V e

Ṗ · ·LdV e +
∫
V p

Ṗ · ·LdV p > 0. (10.7.5)

In the elastic region V e the response is incrementally linear, Ṗ = Λ · ·L. For

incrementally linear comparison material in the plastic region V p, we have

Ṗ = Λp · L. Thus, (10.7.5) is replaced with∫
V e

Λ · · · · (L ⊗ L) dV e +
∫
V p

Λp · · · · (L ⊗ L) dV p > 0, (10.7.6)

or, in view of (10.1.10) and (10.1.15),∫
V e

LLL(0) :: (D ⊗ D) dV e +
∫
V p

LLLp
(0) :: (D ⊗ D)dV p

>

∫
V

σ :
(
2D2 − LT · L) dV.

(10.7.7)

For example, consider pressure-independent isotropic hardening plastic-

ity for which, by Eq. (9.4.26),

LLLp
(0) = LLL(0) −

2μ
1 + hp/μ

(M ⊗ M), (10.7.8)
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where M is a deviatoric normalized tensor in the direction of the yield surface

normal,

M =
∂f/∂σ∣∣∣∣∂f/∂σ∣∣∣∣ ,

∣∣∣∣∣∣ ∂f
∂σ

∣∣∣∣∣∣ =
(
∂f

∂σ
:
∂f

∂σ

)1/2

. (10.7.9)

The uniqueness condition (10.7.7) then becomes

H > Σ, (10.7.10)

for all kinematically admissible velocity fields, where (Hill, 1958)

H =
∫
V

LLL(0) :: (D ⊗ D) dV −
∫
V p

2μ
1 + hp/μ

(M : D)2 dV p, (10.7.11)

Σ =
∫
V

σ :
(
2D2 − LT · L) dV. (10.7.12)

If the rate of hardening hp → ∞, we have

H∞ =
∫
V

LLL(0) :: (D ⊗ D) dV =
∫
V

[
λ (trD)2 + 2μ (D : D)

]
dV > 0.

(10.7.13)

In the ideally plastic limit, hp → 0 and

H0 = H∞ − 2μ
∫
V p

(M : D)2 dV p < H∞. (10.7.14)

For any positive rate of hardening hp, then,

H0 ≤ H ≤ H∞. (10.7.15)

When hp is the same throughout the volume V p, the uniqueness condition

H > Σ becomes

H∞ − 2μ
1 + hp/μ

∫
V p

(n : D)2 dV p > Σ. (10.7.16)

Using (10.7.14) to eliminate the integral over V p, this gives

H∞ − Σ >
1

1 + hp/μ

(
H∞ −H0

)
, (10.7.17)

i.e.,

hp

μ
>

Σ −H0

H∞ − Σ
. (10.7.18)

Thus, the solution is certainly unique if, for all kinematically admissible v,

hp

μ
> β, β = max

v

(
Σ −H0

H∞ − Σ

)
. (10.7.19)
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Consider next stability of the underlying equilibrium configuration. The

stability criterion is also given by (10.7.5). This further becomes∫
V e

Λ · · · · (L ⊗ L) dV e +
∫
V p

u

Λ · · · · (L ⊗ L) dV p
u

+
∫
V p

l

Λp · · · · (L ⊗ L) dV p
l > 0,

(10.7.20)

or, in view of (10.1.10) and (10.1.15),∫
V e

LLL(0) :: (D ⊗ D) dV e +
∫
V p

u

LLL(0) :: (D ⊗ D)dV p
u

+
∫
V p

l

LLLp
(0) :: (D ⊗ D) dV p

l >

∫
V

σ :
(
2D2 − LT · L) dV.

(10.7.21)

Here, V p
l is the part of V p where plastic loading takes place, while V p

u is the

part of V p where elastic unloading or neutral loading takes place, for the

prescribed v. When Eq. (10.7.8) is incorporated, this becomes

Hl > Σ, (10.7.22)

for all kinematically admissible velocity fields, where

Hl =
∫
V

LLL(0) :: (D ⊗ D) dV −
∫
V p

l

2μ
1 + hp/μ

(M : D)2 dV p
l . (10.7.23)

The plastic loading condition in V p
l is

M : D > 0. (10.7.24)

If we define

H0
l = H∞ − 2μ

∫
V p

l

(M : D)2 dV p
l , (10.7.25)

the equilibrium is stable when

hp

μ
> βl , βl = max

v

(
Σ −H0

l

H∞ − Σ

)
, (10.7.26)

for all kinematically admissible v.

Evidently, since V p
l ≤ V p, we have

H0 ≤ H0
l , βl ≤ β. (10.7.27)

Thus, for certain problems and deformation paths, a state of bifurcation can

be reached at an earlier stage than a failure of stability. This could occur at

the hardening rate hp = β μ, when (10.7.1) fails and uniqueness is no longer

certain. If such stable bifurcation occurs, the loading must change with

further deformation according to (10.7.4). Assuming that the hardening rate
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gradually decreases as the deformation proceeds, the stability of equilibrium

configuration would be lost at the lower hardening rate hp = βl μ.

10.8. Uniqueness and Stability for Rigid-Plastic Materials

If elastic moduli are assigned infinitely large values, only plastic strain can

take place and the model of rigid-plastic behavior is obtained. For example,

in the case of isotropic hardening, the rate of deformation is

D =
1
2h

(M :
◦
σ) M , (10.8.1)

provided that M :
◦
σ > 0. The hardening modulus is h (with the von Mises

yield criterion, h = ht, the tangent modulus in shear test). The response is

incompressible and bilinear, since in the hardening range

D = 0, when M :
◦
σ ≤ 0. (10.8.2)

Also note that

◦
τ =

◦
σ, (10.8.3)

since trD = 0. By taking the inner product of D with
◦
σ and with itself, it

follows that

◦
σ : D =

1
2h

(M :
◦
σ)2, D : D =

1
4h2

(M :
◦
σ)2, (10.8.4)

so that

◦
σ : D = 2h (D : D). (10.8.5)

It can be readily shown, when both rates of deformation vanish, or when

both rates are different from zero (D = 0 and D∗ = 0, or D �= 0 and

D∗ �= 0),

(
◦
σ ∗ − ◦

σ) : (D∗ − D) = 2h (D∗ − D) : (D∗ : D). (10.8.6)

If one rate of deformation vanishes and the other does not (e.g., D∗ = 0 and

D �= 0),

(
◦
σ ∗ − ◦

σ) : (D∗ − D) =
◦
σ : D − ◦

σ ∗ : D

> 2h (D : D) = 2h (D∗ − D) : (D∗ : D),
(10.8.7)

since
◦
σ ∗ : D ≤ 0. Thus, for all pairs D and D∗, we have

(
◦
σ ∗ − ◦

σ) : (D∗ − D) ≥ 2h (D∗ − D) : (D∗ : D). (10.8.8)
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The uniqueness condition (10.4.8) for an elastoplastic material can be

written, in view of Eq. (10.4.12), as∫
V

{
(
◦
τ ∗ − ◦

τ) : (D∗ − D) − σ :
[
2 (D∗ − D)2

− (
L∗T − LT

) · (L∗ − L) ] } dV >

∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt.

(10.8.9)

Having regard to inequality (10.8.8), and
◦
τ =

◦
σ, a sufficient condition for

uniqueness of the boundary value problem for rigid-plastic material is∫
V

{2h (D∗ − D) : (D∗ − D) − σ :
[
2 (D∗ − D)2

− (
L∗T − LT

) · (L∗ − L) ] } dV >

∫
St

(
ṗ∗ s

n
− ṗs

n

)
· (v∗ − v) dSt.

(10.8.10)

This also directly follows from the notion of an incrementally linear com-

parison material that reacts at every plastically stressed point according to

plastic loading branch (10.8.1). Although σ is undetermined in rigid regions,

the integrals in (10.8.10) can be taken over the whole volume, since there

is no contribution from rigid regions (v there being equal to v∗). Further-

more, since for isotropic behavior the principal directions of σ and (D∗−D)

coincide, the tensor σ · (D∗ − D) is symmetric, and

σ :
[
2 (D∗ − D)2 − (

L∗T − LT
) · (L∗ − L)

]
= σ : (L∗ − L)2. (10.8.11)

Consequently, the uniqueness is assured if the exclusion functional is positive

F(w) =
∫
V

[
2h (DDD : DDD) − σ : LLL2] dV −

∫
St

ṗpps

n
(w) · w dSt > 0, (10.8.12)

for any incompressible kinematically admissible velocity field w, which gives

rise to rate of deformation DDD (symmetric part of LLL = ∂w/∂x) that is codi-

rectional with M in the plastic region (though not necessarily in the same

sense, since D∗ − D in (10.8.10) can be in either M or −M direction), and

equal to zero in the rigid region.

If h is constant throughout plastically stressed region V p, and if ṗpps

n
= 0

on St, the uniqueness is certain when

2h > max
w

∫
V

(σ : LLL2) dV∫
V

(DDD : DDD) dV
. (10.8.13)
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The underlying equilibrium configuration is stable if (10.8.13) holds, but the

class of admissible velocity fields is further restricted by the requirement that

M : DDD is non-negative in the plastic region (M : DDD can be either positive,

negative or zero in the plastic region for admissible velocity fields in the

uniqueness condition, so that this class is wider than the class of admissible

velocity fields in the stability condition).

10.8.1. Uniaxial Tension

In the tension test of a specimen with uniform cross-section, the state of

stress at an incipient bifurcation is uniform tension σ11 = σ, other stress

components being equal to zero. An admissible velocity field for the unique-

ness condition must be incompressible and give rise to the rate of deformation

tensor DDD parallel to σ ′ (the yield surface normal). This is satisfied when

D22 = D33 = −1
2

D11, D12 = D23 = D31 = 0. (10.8.14)

Thus,

σ : LLL2 = σ (D2
11 − L2

12 − L2
13), DDD : DDD =

3
2

D2
11, (10.8.15)

and the condition (10.8.13) gives

3
h

σ
> max

w

∫
V

(
D2

11 − L2
12 − L2

13

)
dV∫

V
D2

11 dV
. (10.8.16)

The right-hand side is always smaller than one (irrespective of the bound-

ary conditions at the ends and specific representation of admissible functions

w), so that fundamental mode of deformation (uniform straining) is certainly

unique (and underlying equilibrium configuration stable) for h > σ/3. With

the von Mises yield criterion, h = ht, and since ht = (1/3) dσ/de, where e

denotes longitudinal logarithmic strain in uniaxial tension, the deformation

mode is unique when the slope of the true stress-strain curve exceeds the

current yield stress. As is well-known, at the critical value dσ/de = σ, the

applied load attains its maximum value and either further uniform straining

or localized necking is possible in principle. Hutchinson and Miles (1974)

have demonstrated that in the case of circular cylinder of incompressible

elastic-plastic material, an axially symmetric bifurcation of a necking type

exists when the true stress reaches a critical value slightly greater than the
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stress corresponding to the maximum load. The shear free ends of the cylin-

der with traction-free lateral surface were subject to uniform longitudinal

relative displacement. A numerical study of necking in elastoplastic circular

cylinders under uniaxial tension with different boundary conditions at the

ends was performed by Needleman (1972). Hill and Hutchinson (1975) gave

a comprehensive analysis of bifurcation modes from a state of homogeneous

in-plane tension of an incompressible rectangular block under plane defor-

mation. The sides of the block were traction-free and the shear-free ends

were subject to uniform longitudinal relative displacement. See also Burke

and Nix (1979), and Bardet (1991). For the effects of plastic non-normality

on bifurcation prediction, see Needleman (1979) and Kleiber (1986). Bu-

furcation of an incompressible plate under pure bending in plane strain was

studied by Triantafyllidis (1980).

10.8.2. Compression of Column

Consider a column of uniform cross-sectional area A, built at one end and

loaded at the other by an increasing axial load N . The state of stress is

uniaxial compression of amount σ11 = −N/A, except possibly near the

ends. For sufficiently long, slender columns possible nonuniformities near

the ends can be neglected and the uniqueness condition (10.8.13) gives (Hill,

1957)

3
Ah

N
> max

w

∫
V

(
L2

12 + L2
13 − D2

11

)
dV∫

V
D2

11 dV
. (10.8.17)

The admissible velocity field w again satisfies the conditions D22 = D33 =

−D11/2, and D12 = D23 = D31 = 0, i.e.,

∂w2

∂x2
=

∂w3

∂x3
= −1

2
∂w1

∂x1
,

∂w1

∂x2
+

∂w2

∂x1
= 0,

∂w2

∂x3
+

∂w3

∂x2
= 0,

∂w3

∂x1
+

∂w1

∂x3
= 0.

(10.8.18)

These have the general solution

w1 = a x1x2 + b x1x3 + c (2x2
1 + x2

2 + x2
3) + d x1,

w2 = −1
2
b x2x3 − 2 c x1x2 − 1

4
a (2x2

1 + x2
2 − x2

3) −
1
2
d x2,

w3 = −1
2
a x2x3 − 2 c x1x3 − 1

4
b (2x2

1 − x2
2 + x2

3) −
1
2
d x3.

(10.8.19)
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By taking the origin of the coordinate system at the centroid of the fixed

end, above functions satisfy the end conditions

w1 = w2 = w3 = 0,
∂w2

∂x1
=

∂w3

∂x1
= 0 (10.8.20)

at the origin. Selecting the axes x2 and x3 to be the principal centroidal axes

of the cross section, the substitution of the expression for w1 from (10.8.19)

into (10.8.17) gives

3
h

Nl2
> max

w

a2
(

1
3 − I3

Al2

)
+ b2

(
1
3 − I2

Al2

)
+ 4c2 I2+I3

Al2 −
[

4
3 c

2 +
(
2c + d

l

)2]
a2 I3 + b2 I2 +

[
4
3 c

2 +
(
2c + d

l

)2]
Al2

.

(10.8.21)

The second moments of the cross sectional area about the x2 and x3 axes

are I2 and I3. The right-hand side in (10.8.21) has a maximum value when

the square bracketed term vanishes, which occurs for c = d = 0 (for slender

columns, I2 + I3 << Al2). Thus,

3
h

Nl2
>

1
3

max
w

(
a2 + b2

a2 I3 + b2 I2

)
− 1

Al2
. (10.8.22)

The term (Al2)−1 can be neglected for slender columns, and

h

Nl2
>

1
9 Imin

. (10.8.23)

If I3 > I2, the maximum occurs for a = 0; if I2 > I3, the maximum occurs

for b = 0; if I2 = I3, any ratio a/b can be used. In each case the w field

reduces to pure bending. For example, for circular cross-section of radius R,

we obtain

h >
4
9
N

A

(
l

R

)2

. (10.8.24)

In the consideration of stability the constants a, b, c, d are not entirely

arbitrary in the expressions for admissible functions (10.8.19), but are sub-

ject to condition

σ ′ : DDD ≥ 0, i.e., D11 ≤ 0. (10.8.25)

This gives (Hill, 1957)

a x2 + b x3 + 4 c x1 + d ≤ 0, (10.8.26)
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everywhere in the body. The expression (10.8.21) attains its maximum for

c = 0, so that

3
h

Nl2
> max

w

a2
(

1
3 − I3

Al2

)
+ b2

(
1
3 − I2

Al2

)− d2

l2

a2 I3 + b2 I2 + Ad2
. (10.8.27)

Suppose that the cross-section is a circle of radius R. The value of d which

makes the right-hand side of (10.8.27) maximum and fulfills the condition

(10.8.26) with c = 0 is readily found to be

d = −R(a2 + b2)1/2. (10.8.28)

The condition (10.8.27) consequently becomes

h

Nl2
>

4
45AR2

− 1
3Al2

. (10.8.29)

Upon neglecting (Al2)−1 term,

h >
4
45

N

A

(
l

R

)2

. (10.8.30)

The obtained critical hardening rate for stability of column is 1/5 of that

obtained from the condition of uniqueness, which is given by (10.8.24).

More general elastoplastic analysis of column failure is presented by Hill

and Sewell (1960,1962). A comprehensive treatment of plastic buckling and

post-buckling behavior of columns and other structures is given by Hutchin-

son (1973,1974), and Bažant and Cedolin (1991). See also Stor̊akers (1971,

1977), Sewell (1973), Young (1976), Needleman and Tvergaard (1982), and

Nguyen (1994).

10.9. Eigenmodal Deformations

From the analysis in preceding sections it is recognized that there may be

particular configurations of the body where nominal tractions are momen-

tarily constant as the body is incrementally deformed in certain ways. The

corresponding instantaneous velocity fields are then nontrivial solutions of

a homogeneous boundary-value problem. These velocity fields are referred

to as eigenmodes. The underlying configurations are the eigenstates. An

uniaxial tension specimen of a ductile metal at maximum load is an example

of an eigenstate configuration. The presented theory is originally due to Hill

(1967).
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10.9.1. Eigenstates and Eigenmodes

Consider a solid body whose entire bounding surface is unconstrained (St =

S). The exclusion functional of Eq. (10.4.17) is then

F(w) =
∫
V

χ(w) dV − 1
2

∫
S

ṗpps

n
(w) · w dS. (10.9.1)

If equilibrium configuration of an incrementally linear material is stable un-

der all-around dead loads, the strain path cannot bifurcate from that state

for any loading rates applied to the state. A sufficient condition for stability

and uniqueness is that F(w) > 0 for all admissible velocity fields w. Bifur-

cation can occur only when a primary eigenstate is reached (first eigenstate

reached on a given deformation path), where

F(w) ≥ 0, (10.9.2)

with the equality sign for some velocity field (eigenmode velocity field).

For a piecewise linear or thoroughly nonlinear material response with

the rate potential χ, a deformation path could bifurcate under varying load

before the primary eigenstate is reached and stability lost. As discussed in

Subsection 10.4.2, to prevent bifurcation before an eigenstate is reached, it

is sufficient that configuration is stable for incrementally linear comparison

material χl , and that χ− χl is a convex function of LLL. The bifurcation may

be excluded for χ material even if the configuration is an eigenstate for χl

material, but χ− χl is strictly convex function in that configuration. If the

current configuration is a primary eigenstate for χl material, and χ − χl is

merely convex, the configuration may be a primary eigenstate for χ material,

provided there is an eigenmode of χl material that is also an eigenmode of χ

material (giving rise to plastic loading throughout plastically stressed region

of χ material).

Suppose that for, either incrementally linear or incrementally nonlinear

material, F(w) is positive definite along a loading path from the undeformed

state, until a primary eigenstate is reached where F(w) ≥ 0 (with equality

sign for an eigenmodal field). Since F(w) is non-negative in an eigenstate,

vanishing only in an eigenmode, its first variation δF must be zero in an

eigenmode,

δ

[∫
V

χ(w) dV − 1
2

∫
S

ṗpps

n
(w) · w dS

]
= 0. (10.9.3)
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Thus, in an eigenmode field w,∫
V

ṖPP · · δLLL dV −
∫
S

ṗpps

n
· δw dS = 0, (10.9.4)

for all admissible variations δw. In addition, the functional itself vanishes

in an eigenmode, ∫
V

χ(w) dV − 1
2

∫
S

ṗpps

n
(w) · w dS = 0. (10.9.5)

Under all-around deformation-insensitive dead loading, the above two con-

ditions reduce to ∫
V

ṖPP · · δLLL dV = 0,
∫
V

χ(w) dV = 0. (10.9.6)

An eigenmode is in this case a nontrivial solution of homogeneous boundary

value problem described by

∇ · ṖPP = 0 in V, and n · ṖPP = 0 on S. (10.9.7)

10.9.2. Eigenmodal Spin

Suppose that a homogeneous body is uniformly strained from its undeformed

configuration to a primary eigenstate configuration. The state of stress and

material properties are then uniform at each instant of deformation, and χ

is the same function of velocity gradient at every point of the body in the

considered configuration. By choosing velocity fields with arbitrary uniform

gradient LLL, it follows that F > 0 if and only if χ > 0 along stable segment of

deformation path, and that χ ≥ 0 in a primary eigenstate. Equality χ = 0

applies for an eigenmode velocity field, which also makes χ stationary. Since

δχ = ṖPP · · δLLL = 0 (10.9.8)

in an eigenmode for all δLLL, we conclude that

ṖPP =
∂χ

∂LLL
= 0. (10.9.9)

This means that the nominal stress is stationary in an eigenmode (momen-

tarily constant as the body is incrementally deformed along an eigenmode

field).

Since from Section 3.9,

ṪTT (1) = ṖPP − σ ·LLLT , (10.9.10)
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and since local rotational balance requires ṪTT (1) to be symmetric, from (10.9.9)

it follows that in an eigenmode

LLL · σ = σ ·LLLT , (10.9.11)

so that

σ ·WWW + WWW · σ = σ ·DDD −DDD · σ. (10.9.12)

This can be solved for WWW in terms of σ and DDD by using (1.12.12). The

solution is an expression for the eigenmodal spin in terms of stress and

eigenmodal rate of deformation,

WWW = (trS)(σ ·DDD −DDD · σ) − S · (σ ·DDD −DDD · σ) − (σ ·DDD −DDD · σ) · S,
(10.9.13)

where

S = [(trσ) I − σ]−1
. (10.9.14)

It is assumed that S exists. When written in terms of components on the

principal axes of stress σ, the required condition for the inverse in Eq.

(10.9.14) to exist is

det[(trσ) I − σ] = (σ1 + σ2)(σ2 + σ3)(σ3 + σ1) �= 0. (10.9.15)

The eigenmodal spin components on the principal stress axes are

W12 =
σ1 − σ2

σ1 + σ2
D12, W23 =

σ2 − σ3

σ2 + σ3
D23, W31 =

σ3 − σ1

σ3 + σ1
D31.

(10.9.16)

Evidently, if the principal axes of DDD happen to coincide with those of σ (as in

the case of rigid-plastic von Mises plasticity), the spin of an eigenmode field

entirely vanishes. If the stress field has an axis of equilibrium, for example

axis 1 in the case when σ2 + σ3 = 0, W23 is undetermined and D23 must

vanish. On the other hand, when the stress state is uniaxial, σ2 = σ3 = 0,

there is no restriction on D23 but W23 is still undetermined.

It can be readily verified that among all velocity gradients with the

fixed strain rates, χ attains its minimum when σ1 + σ2 > 0, σ2 + σ3 > 0,

σ3 + σ1 > 0, and when the spin components are determined by (10.9.16).
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Indeed, for an elastoplastic material, χ can be written from (10.1.15) as

χ =
1
2
LLLp

(0) :: (DDD ⊗DDD) − 1
2
σ : D2

+
1
2
[
(σ1 + σ2)W 2

12 + (σ2 + σ3)W 2
23 + (σ3 + σ1)W 2

31

]

− (σ1 − σ2)D12 W12 − (σ2 − σ3)D23 W23 − (σ3 − σ1)D31 W31.

(10.9.17)

The stationary conditions

∂χ

∂Wij
= 0 (10.9.18)

clearly reproduce (10.9.16). The corresponding minimum of χ is

χ0 =
1
2
LLLp

(0) :: (DDD ⊗DDD) − 1
2
σ : D2

− 1
2

[
(σ1 − σ2)2

σ1 + σ2
D2

12 +
(σ2 − σ3)2

σ2 + σ3
D2

23 +
(σ3 − σ1)2

σ3 + σ1
D2

31

]
.

(10.9.19)

For isotropic hardening plasticity, from (9.8.14) we obtain

1
2
LLLp

(0) :: (DDD ⊗DDD) =
1
2
λ (trDDD)2 + μDDD : DDD − μ

1 + hp/μ
(M : DDD)2. (10.9.20)

Since, for isotropic smooth yield surface, M has the principal directions

parallel to those of stress, Mij = 0 for i �= j on the coordinate axes parallel

to the principal stress axes.

If DDD is the rate of deformation in an eigenmode, then

χ0(DDD) = 0. (10.9.21)

For all other rates of deformation in an eigenstate, χ0 > 0. The uniqueness

and stability are assured in any configuration before primary eigenstate is

reached if χ0, defined by (10.9.19), is positive definite in that configuration,

since then χ is also positive definite in that configuration.

In order that the configuration can qualify as stable by the criterion

χ > 0 for all LLL, the stress state has to be such that

σ1 + σ2 > 0, σ2 + σ3 > 0, σ3 + σ1 > 0, (10.9.22)

which means that tension acts on the planes of maximum shear stress. This

follows from (10.9.17) by choosing LLL to be an arbitrary antisymmetric (spin)

© 2002 by CRC Press LLC 



tensor, so that

χ =
1
2
[
(σ1 + σ2)W 2

12 + (σ2 + σ3)W 2
23 + (σ3 + σ1)W 2

31

]
. (10.9.23)

Physically, (10.9.22) is imposed, because the opposite inequalities would al-

low dead loads to do positive work in certain virtual rotations of the body.

Note, however, that pure spin cannot by itself be an eigenmode field under

triaxial state of stress, since equations of continuing rotational equilibrium

(10.9.12) would require that

(σ1 + σ2)W12 = 0, (σ2 + σ3)W23 = 0, (σ3 + σ1)W31 = 0. (10.9.24)

Thus, unless the stress state has an axis of equilibrium, each spin component

must vanish. This is also clear from (10.9.16); if the rate of deformation

components are zero in an eigenmode, the eigenmode spin also vanishes. If

σ1 + σ2 = 0, the spin W23 could be nonzero (but would be permissible as

an actual mode only if it does not alter the applied tractions, keeping them

dead in magnitude and direction, as in the case of uniaxial tension and a

spin around the axis of loading).

10.9.3. Eigenmodal Rate of Deformation

The components of rate of deformation Dij of an eigenmode velocity field

are nontrivial solutions of the homogeneous system of equations resulting

from (10.9.9). Since

ṖPP =
◦
τ−DDD · σ− σ ·WWW , (10.9.25)

the system of equations is

LLLp
(0) : DDD −DDD · σ− σ ·WWW = 0, (10.9.26)

where WWW is defined in terms of σ and DDD by (10.9.16). Specifically,

DDD · σ + σ ·WWW =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1 D11
σ2
1+σ2

2
σ1+σ2

D12
σ2
1+σ2

3
σ1+σ3

D13

σ2
1+σ2

2
σ1+σ2

D12 σ2 D22
σ2
2+σ2

3
σ2+σ3

D23

σ2
1+σ2

3
σ1+σ3

D13
σ2
2+σ2

3
σ2+σ3

D23 σ3 D33

⎤
⎥⎥⎥⎥⎥⎥⎦
. (10.9.27)

For a nontrivial solution of the system of six equations for six unknown com-

ponents of the rate of deformation to exist, the determinant of the system
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(10.9.26) must vanish. This provides a relationship between the instanta-

neous moduli and applied stress, which characterizes the primary eigenstate.

10.9.4. Uniaxial Tension of Elastic-Plastic Material

If the stress state has an axis of equilibrium, say corresponding to σ2 +σ3 =

0, there is only one term proportional to W23 that remains in (10.9.17),

and for σ2 �= σ3 this term can be made arbitrarily large and negative by

appropriately adjusting the sign and magnitude of W23. This means that

χ can be negative for some velocity gradients, implying that configuration

under stress state with an axis of equilibrium could not qualify as stable.

However, if σ2 = σ3 = 0, and σ1 > 0, χ in (10.9.17) does not depend on

W23, having a minimum

χ0 =
1
2
LLLp

(0) :: (DDD ⊗DDD) − σ1

(
1
2

D2
11 + D2

12 + D2
13

)
(10.9.28)

in an eigenmode with the spin components

W12 = D12, W31 = −D13. (10.9.29)

The configuration under uniaxial tension is thus stable if

χ0 =
1
2
λ (D11 + D22 + D33)2 + μ(D2

11 + D2
22 + D2

33 + 2D2
12 + 2D2

23 + 2D2
31)

− 2μ/3
1 + hp/μ

(
D11 − 1

2
D22 − 1

2
D33

)2

− σ1

(
1
2
D2

11 + D2
12 + D2

13

)
> 0.

(10.9.30)

Note that in uniaxial tension

M22 = M33 = −1
2

M11, (10.9.31)

since deviatoric components of uniaxial stress are so related. Thus, M11 =√
2/3. The function χ0 can be split into two parts. The first part,

(2μ− σ1)(D2
12 + D2

31) + 2μD2
23, (10.9.32)

is positive for σ1 < 2μ. The function χ0 will be certainly positive if the

remaining term is also positive. We then require

1
2
λ (D11 + D22 + D33)2 + μ(D2

11 + D2
22 + D2

33)

− 2μ/3
1 + hp/μ

(
D11 − 1

2
D22 − 1

2
D33

)2

− 1
2
σ1 D2

11 > 0.
(10.9.33)
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This quadratic form in D11, D22, D33 is positive definite if the principal

minors of associated matrix are positive definite. The first one is

1
2
λ + μ− 2μ/3

1 + hp/μ
− 1

2
σ1 > 0, (10.9.34)

which is fulfilled for realistic stress levels. The second one is fulfilled, as well.

It remains to examine the determinant

Δ =

∣∣∣∣∣∣∣∣∣∣

1
2λ + μ− 2

3 αμ− 1
2σ1

1
2λ + 1

3αμ 1
2λ + 1

3αμ

1
2λ + 1

3αμ 1
2λ + μ− 1

6αμ 1
2λ− 1

6αμ

1
2λ + 1

3αμ 1
2λ− 1

6αμ 1
2λ + μ− 1

6αμ

∣∣∣∣∣∣∣∣∣∣
, (10.9.35)

where

α =
(

1 +
hp

μ

)−1

. (10.9.36)

Upon expansion,

Δ =
1
2
μ2

[
(3λ + 2μ) (1 − α) − σ1

(
1 +

λ

μ
− 1

3
α

)]
, (10.9.37)

which is positive when

hp >
σ1/3

1 − σ1/E
. (10.9.38)

Here, E stands for the Young’s modulus, related to Lamé constants by

E =
3λ + 2μ
1 + λ/μ

. (10.9.39)

Since physically attainable values of stress are much smaller that the elastic

modulus, stability and uniqueness are both practically assured for σ1 < 3hp.

The results for triaxial tension of compressible elastic-plastic materials were

obtained by Miles (1975). In the next subsection we proceed with a less

involved analysis for incompressible materials.

10.9.5. Triaxial Tension of Incompressible Material

For incompressible elastic-plastic material χ0 is the sum of two parts,

μ
(
D2

11 + D2
22 + D2

33

)− αμ (M11D11 + M22D22 + M33D33)2

− 1
2
(
σ1 D2

11 + σ2 D2
2 + σ3 D2

33

)
,

(10.9.40)
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where D33 = −(D11 + D22), and(
2μ− σ2

1 + σ2
2

σ1 + σ2

)
D2

12 +
(

2μ− σ2
2 + σ2

3

σ2 + σ3

)
D2

23 +
(

2μ− σ2
3 + σ2

1

σ3 + σ1

)
D2

31.

(10.9.41)

The second part is certainly positive for

σ2
1 + σ2

2

σ1 + σ2
< 2μ,

σ2
2 + σ2

3

σ2 + σ3
< 2μ,

σ2
3 + σ2

1

σ3 + σ1
< 2μ, (10.9.42)

which is expected to be always the case within attainable range of applied

stress. For positive definiteness of χ0 it is then sufficient to prove the positive

definiteness of (10.9.40) for all volume preserving rate of deformation com-

ponents. The elements of 2 × 2 determinant of the corresponding quadratic

form are

Δ11 = 2μ− αμ (M11 − M33)2 − 1
2

(σ1 + σ3), (10.9.43)

Δ22 = 2μ− αμ (M22 − M33)2 − 1
2

(σ2 + σ3), (10.9.44)

Δ12 = Δ21 = μ− αμ (M11 − M33)(M22 − M33) − 1
2
σ3. (10.9.45)

The determinant Δ is accordingly

Δ
μ2

= 3 − 1
μ

(σ1 + σ2 + σ3) +
1

4μ2
(σ1σ2 + σ2σ3 + σ3σ1)

− α

{
3 − 1

2μ
[
(M22 − M33)2 σ1 + (M33 − M11)2 σ2 + (M11 − M22)2 σ3

]}
.

(10.9.46)

This is positive when

hp >

1
2 (M2

11σ1 + M2
22σ2 + M2

33σ3) − 1
12μ (σ1σ2 + σ2σ3 + σ3σ1)

1 − 1
3μ (σ1 + σ2 + σ3) + 1

12μ2 (σ1σ2 + σ2σ3 + σ3σ1)
. (10.9.47)

It is recalled that M is deviatoric and normalized, so that

M11 + M22 + M33 = 0, M2
11 + M2

22 + M2
33 = 1. (10.9.48)

The critical hardening rate therefore depends on the state of stress, elastic

shear modulus μ, and the components of the tensor M which is normal to

the yield surface.
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For biaxial tension with σ3 = 0, the uniqueness and stability are certain

for

hp >

1
2

(
M2

11σ1 + M2
22σ2

)− 1
12μ σ1σ2

1 − 1
3μ (σ1 + σ2) + 1

12μ2 σ1σ2

. (10.9.49)

For example, for the von Mises yield criterion,

M11 =
2σ1 − σ2

[6(σ2
1 − σ1σ2 + σ2

2)]1/2
, M22 =

2σ2 − σ1

[6(σ2
1 − σ1σ2 + σ2

2)]1/2
,

(10.9.50)

and the condition (10.9.49) becomes

hp = hp
t >

4σ3
1 − 3σ2

1σ2 − 3σ1σ
2
2 + 4σ3

2

12 (σ2
1 − σ1σ2 + σ2

2)
, (10.9.51)

neglecting terms of the order σ/μ and smaller. For equal biaxial tension

σ1 = σ2 = σ, we have by symmetry

M11 = M22 =
1√
6
, (10.9.52)

for any isotropic smooth yield surface, and

hp >
σ/6

1 − σ/6μ
. (10.9.53)

For uniaxial tension with σ2 = σ3 = 0, M11 =
√

2/3 and the condition

(10.9.49) reduces to

hp >
σ1/3

1 − σ1/3μ
. (10.9.54)

Since for incompressible elasticity E = 3μ, the condition (10.9.54) is in

accord with the condition (10.9.38).

10.9.6. Triaxial Tension of Rigid-Plastic Material

For a rigid-plastic material model with isotropic smooth yield surface, the

principal directions of the rate of deformation tensor are parallel to those of

stress, and eigenmodal spin components are identically equal to zero. The

bifurcation and instability are thus both excluded if

χ = h (DDD : DDD) − 1
2
σ : DDD2 > 0. (10.9.55)

Since constitutively admissible DDD (and thus any eigenmodal rate of defor-

mation) must be codirectional with the stress, the condition (10.9.55) is met

when the modulus h satisfies

h >
1
2
σ : M2 =

1
2

(M2
11σ1 + M2

22σ2 + M2
33σ3). (10.9.56)

© 2002 by CRC Press LLC 



The tensor M is normal to the smooth yield surface f = 0, having principal

directions parallel to those of stress. Equivalently, we can write

h >
1
2

(σ + σ′ : M2), σ =
1
3

trσ . (10.9.57)

Expressed in terms of the principal stress components, and with the von

Mises yield condition, this gives for biaxial tension

h >
4σ3

1 − 3σ2
1σ2 − 3σ1σ

2
2 + 4σ3

2

12(σ2
1 − σ1σ2 + σ2

2)
, (10.9.58)

as originally derived by Swift (1952)1, and for triaxial tension

h >
1
2

[
σ +

(σ1 − σ)3 + (σ2 − σ)3 + (σ3 − σ)3

(σ1 − σ)2 + (σ2 − σ)2 + (σ3 − σ)2

]
, (10.9.59)

as derived by Hill (1967). For equal biaxial tension σ1 = σ2 = σ, h > σ/6,

while for uniaxial tension with σ2 = σ3, h > σ1/3, for any isotropic smooth

yield surface, in accord with the results from previous subsections.

10.10. Acceleration Waves in Elastoplastic Solids

During wave propagation in a medium, certain field variables can be dis-

continuous across the wave front. If displacement discontinuity is precluded

by assumption that the failure does not occur, the strongest possible dis-

continuity is in the velocity of the particle. This is called a shock wave. If

the velocity is continuous, but acceleration is discontinuous across the wave

front, the wave is called an acceleration wave. Weaker waves are character-

ized by discontinuities in higher time derivatives of the velocity field (e.g.,

Janssen, Datta, and Jahsman, 1972; Clifton, 1974; Ting, 1976).

Consider a portion of the deforming body momentarily bounded in part

by the surface S, embedded in the material and deforming with it, and

in part by the surface Σ which propagates relative to the material. If the

enclosed volume at the considered instant is V , then, for any continuous

differentiable field T = T(x, t),

d
dt

∫
V

ρTdV =
∫
V

∂

∂t
(ρT) dV +

∫
S

ρTv · dS +
∫

Σ

ρT cdΣ. (10.10.1)

The particle velocity is v, and c is the propagation speed of the surface Σ

in the direction of its outward normal, both relative to a fixed observer.

1Published as the first paper in the first volume of the Journal of the Mechanics and

Physics of Solids.
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Figure 10.2. A surface of discontinuity Σ(t) propagates
relative to material with the speed c in the direction of its
outward normal. The mass densities ahead and behind Σ
are ρ+ and ρ−.

The above formula, which can be viewed as a modified Reynolds transport

theorem of Eq. (3.2.6), will be used to derive the jump conditions across the

wave front.

10.10.1. Jump Conditions for Shock Waves

Suppose that a mass density is discontinuous across Σ. Then, take

T = 1, (10.10.2)

and apply Eq. (10.10.1) to a thin slice of material immediately ahead and

behind Σ. Summing up the resulting expressions, and implementing the

conservation of mass condition, gives in the limit

c[[ρ]] − [[ρv]] · n = 0, (10.10.3)

where n is the unit normal to Σ in the direction of propagation of Σ (Thomas,

1961). The brackets [[ ]] designate the jump of the enclosed quantity across

the surface Σ, e.g.,

[[ ρ ]] = ρ+ − ρ−. (10.10.4)

The superposed plus indicates the value at the point just ahead of Σ, and

minus just behind the Σ (Fig. 10.2).

By taking

T = v (10.10.5)

�
�

�
�

�

	

�
�
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in Eq. (10.10.1), and by implementing Eq. (3.3.1), we similarly obtain

n · [[σ ]] + ρ− (c− v− · n) [[v ]] = 0, (10.10.6)

which relates the discontinuities in stress and velocity across the surface

Σ. For further analysis of shock waves in elastic-plastic solids, see Wilkins

(1964), Germain and Lee (1973), Ting (1976), and Drugan and Shen (1987).

10.10.2. Jump Conditions for Acceleration Waves

In an acceleration wave, the velocity and stress fields are continuous across

Σ, but the acceleration v̇ = dv/dt is not. To derive the corresponding jump

condition across Σ, substitute

T = v̇ (10.10.7)

in Eq. (10.10.1). In view of equations of motion and the relationship between

the true and nominal tractions, we first have

d
dt

∫
V

ρ v̇ dV =
d
dt

∫
S

tn dS +
∫
V

ρ ḃdV

=
d
dt

∫
S0

pn dS0 +
∫
V

ρ ḃdV =
∫
S0

ṖT · n0 dS0 +
∫
V

ρ ḃdV.

(10.10.8)

Further, the Nanson’s relation (2.2.17) and Eq. (3.9.17) give∫
S0

ṖT · n0 dS0 =
∫
S

Ṗ
T · ndS, (10.10.9)

so that Eq. (10.10.1) becomes∫
S

n · Ṗ dS +
∫
V

ρ ḃdV

=
∫
V

∂

∂t
(ρ v̇) dV +

∫
S

ρ v̇ v · dS +
∫

Σ

ρ v̇ cdΣ.

(10.10.10)

Applying this to a thin slice of material just ahead and behind of Σ, the

volume integrals vanish in the limit, and the summation yields

n · [[ Ṗ ]] + ρ cr [[ v̇ ]] = 0. (10.10.11)

Here,

cr = c− v · n (10.10.12)

is the speed of Σ relative to the material. Equation (10.10.11) relates the

jumps in the acceleration and stress rate across the surface Σ.
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A characteristic segment of the wave is defined as the discontinuity in

the gradient of the particle velocity across the wave front,

η =
[
[
∂v
∂n

]
]. (10.10.13)

The geometric and kinematic conditions of compatibility for the velocity

field (Thomas, 1961; Hill, 1961b) give

[[L ]] =
[
[
∂v
∂x

]
] = η ⊗ n,

[
[
∂v
∂t

]
] = −cη, (10.10.14)

provided that v is continuous across Σ. Since

v̇ =
∂v
∂t

+ L · v, (10.10.15)

a discontinuity in the acceleration is related to discontinuity in the velocity

gradient by

[[ v̇ ]] = −cr η. (10.10.16)

10.10.3. Propagation Condition

Substitution of Eq. (10.10.16) into Eq. (10.10.11) gives

n · [[ Ṗ ]] = ρ c2r η. (10.10.17)

Suppose that on both sides of Σ the plastic loading takes place. Since the

stress and pseudomoduli are continuous across Σ in an acceleration wave,

we have

[[ Ṗ ]] = [[Λp · ·L ]] = Λp · · [[L ]] = Λp · · (η ⊗ n). (10.10.18)

Combining Eqs. (10.10.17) and (10.10.18), therefore,

n · Λp : (n ⊗ η) = ρ c2r η, (10.10.19)

i.e.,

Ap · η = ρ c2r η. (10.10.20)

The rectangular components of the real matrix Ap are

Ap
ij = Λp

kiljnknl. (10.10.21)

They depend on the current state of stress and material properties (em-

bedded in Λp), and the direction of propagation n. In view of reciprocal

symmetry (Λp
kilj = Λp

ljki), it follows that, in addition to be real, Ap is also

symmetric (Ap
ij = Ap

ji). Thus, the eigenvalues ρ c2r in Eq. (10.10.20) are all

real. There is a wave propagating in the direction n, carrying a discontinuity
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Figure 10.3. Plane wave propagating in the direction n.
The vector η is the polarization of the wave, which defines
direction of the particle velocity.

η, if the corresponding c2r is positive. This is assured in the states where Ap

is positive definite, since

η · Ap · η = ρ c2r (η · η). (10.10.22)

The condition for nontrivial η to exist in the eigenvalue problem (10.10.20)

is

det(Ap − ρ c2r I) = 0. (10.10.23)

A wave that carries a discontinuity in the velocity gradient also carries

a discontinuity in the stress gradient. This is (Hill, 1961b)[
[
∂σij

∂xm

]
] =

1
cr

(
σijδkl − σjkδil − Λp

ijkl

)
nknm ηl. (10.10.24)

In view of the relationship between the moduli in Eq. (10.1.15), we also have(
Lp (1)
kilj nknl

)
ηj = (ρ c2r − σn)ηi, (10.10.25)

where σn = σijninj is the normal stress over Σ.

Propagation of Plane Waves

There is an analogy between governing equations for acceleration waves and

plane waves. Indeed, consider the rate equations of motion,

∇ · Ṗ = ρ
d2v
dt2

, Ṗ = Λ · ·L, (10.10.26)

whose solutions are sought in the form of a plane wave propagating with a

speed c in the direction n,

v = ηf(n · x − ct). (10.10.27)

� �

�����
���
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The vector η is the polarization of the wave (Fig. 10.3). On substituting

(10.10.27) into (10.10.26), we obtain the propagation condition

Ap · η = ρ c2 η, Ap
ij = Λp

kiljnknl. (10.10.28)

The second-order tensor Ap is referred to as the acoustic tensor. Thus, ρc2 is

an eigenvalue and η is an eigenvector of Ap. Since Ap is real and symmetric,

c2 must be real. If c2 > 0 (assured by positive definiteness of Ap), there

is a stability with respect to propagation of small disturbances, superposed

to finitely deformed current state. Equation (10.10.28) then admits three

linearly independent plane progressive waves for each direction of propaga-

tion n. Small amplitude plane waves can propagate along a given direction

in three distinct, mutually orthogonal modes. These modes are generally

neither longitudinal nor transverse (i.e., η is neither parallel nor normal to

n). For c2 = 0, there is a transition from stability to instability. The lat-

ter is associated with c2 < 0, and a divergent growth of initial disturbance.

These fundamental results were established by Hadamar (1903) in the con-

text of elastic stability, and for inelasticity by Thomas (1961), Hill (1962),

and Mandel (1966).

If Λp does not possess reciprocal symmetry (nonassociative plasticity),

Ap is not symmetric, and it may happen that at some states of deforma-

tion and material parameters two eigenvalues in Eq. (10.10.28) are complex

conjugates (one is always real), which means that a flutter type instability

may occur (Rice, 1977; Bigoni, 1995). Uniqueness and stability criteria for

elastoplastic materials with nonassociative flow rules were studied by Maier

(1970), Raniecki (1979), Needleman (1979), Raniecki and Bruhns (1981),

Bruhns (1984), Bigoni and Hueckel (1991), Ottosen and Runesson (1991),

Bigoni and Zaccaria (1992,1993), Neilsen and Schreyer (1993), and others.

10.10.4. Stationary Discontinuity

When the matrix Ap has a zero eigenvalue (cr = 0), there is a discontinuity

surface that does not travel relative to the material (stationary discontinuity,

in Hadamar’s terminology). This happens if and only if a discontinuity

surface normal n satisfies

det (Ap) = det
(
Λp
ijklnink

)
= 0. (10.10.29)
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The corresponding eigenvector η is a nontrivial solution of the homogeneous

system of equations

Ap · η = 0. (10.10.30)

Equation (10.10.24) does not determine discontinuity in the stress gradient

across stationary discontinuity (since cr = 0), but it does impose a condition

on the current moduli and stress components there. This is

(η · n δik − ηink)σkj = Λp
ijkl nkηl, (10.10.31)

if discontinuity in the velocity gradient actually occurs. Since material par-

ticles remain on the surface of stationary discontinuity, there is no jump in

acceleration or nominal traction rate across Σ, so that

[[ v̇ ]] = 0, n · [[ Ṗ ]] = 0. (10.10.32)

Note that

n · [[ Ṗ ]] = Ap · η. (10.10.33)

Furthermore, since

Ṗ = σ̇ + σ trD − L · σ, (10.10.34)

it follows that

n · [[ Ṗ ]] = n · [[ σ̇ ]]. (10.10.35)

In proof, let

η = b + gn, (10.10.36)

where b ·n = 0 and g is a scalar function. Then, since [[L ]] = η⊗n, we have

tr [[D ]] = g, n · [[L ]] = gn, (10.10.37)

thus the result.

10.11. Analysis of Plastic Flow Localization

Consider an equilibrium configuration of uniformly strained homogeneous

body. Suppose that increments of deformation (velocity) are prescribed

on the boundary of the body, giving rise to uniform velocity gradient L0

throughout the body. The question is if there could be another statically and

constitutively admissible velocity gradient field, associated with the same ve-

locity boundary conditions. All-around displacement conditions are imposed

to rule out geometric instabilities, such as buckling or necking, which could
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precede localization. We wish to examine if the bifurcation field can be char-

acterized by localization of deformation within a planar band with normal

n, such that

L = L0 + η ⊗ n, i.e., [[L ]] = η ⊗ n, (10.11.1)

across the band. As discussed in the previous subsection, this could happen

in the band whose normal n satisfies the condition (10.10.29), assuring that

there is a nontrivial solution for η in equations

Λp
ijklninkηl = 0. (10.11.2)

Here,

Λp
ijkl = Lp (1)

ijkl + σikδjl = Lp (0)
ijkl + Rijkl, (10.11.3)

and

Rijkl =
1
2

(σikδjl − σjkδil − σilδjk − σjlδik) . (10.11.4)

It is noted that Eq. (10.11.2) can also be deduced through an eigenmodal

analysis of the type used in Section 7.9.

10.11.1. Elastic-Plastic Materials

Following Rice (1977), suppose that elastoplastic response is described by a

nonassociative flow rule, with the instantaneous elastoplastic stiffness

LLLp
(0) = LLL(0) −

1
Q̂ : P + H

P̂ ⊗ Q̂ , (10.11.5)

where

P =
∂π

∂σ
, Q =

∂f

∂σ
. (10.11.6)

The potential function and the yield function are denoted by π and f , and

Q̂ = LLL(0) : Q , P̂ = LLL(0) : P , Q̂ : P = Q : LLL(0) : P . (10.11.7)

Equation (10.11.5) can be derived from the general expression (9.8.9), with

the current state used as the reference, and with elastic and plastic parts of

the rate of deformation defined with respect to stress rate
◦
τ. Note that P

and Q are not normalized. In particular, with isotropic elastic stiffness,

LLL(0) = λ I ⊗ I + 2μ III , (10.11.8)

we have

Q̂ ⊗ P̂ = (λ tr Q I + 2μQ) ⊗ (λ tr P I + 2μP), (10.11.9)
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and

Q̂ : P = λ (tr Q)(tr P) + 2μQ : P. (10.11.10)

A nontrivial solution for η is sought in equations(
L(0)
ijkl −

1
Q̂ : P + H

P̂ijQ̂kl + Rijkl

)
ninkηl = 0. (10.11.11)

They can be rewritten in direct notation as

C · η − 1
Q̂ : P + H

P̂ · n (n · Q̂ · η) + R · η = 0. (10.11.12)

The second-order tensors C and R are introduced by

Cjl = L(0)
ijklnink, Rjl = Rijklnink. (10.11.13)

In view of the representation for LLL(0), the tensor C and its inverse are ex-

plicitly given by

C = μ

(
I +

1
1 − 2ν

n ⊗ n
)
, C−1 =

1
μ

[
I − 1

2(1 − ν)
n ⊗ n

]
,

(10.11.14)

where ν is the Poisson ratio. Multiplying (10.11.12) by C−1 gives

(I + B) · η =
1

Q̂ : P + H
C−1 · P̂ · n (n · Q̂ · η), (10.11.15)

i.e.,

η =
1

Q̂ : P + H
(I + B)−1 · C−1 · P̂ · n (n · Q̂ · η), (10.11.16)

where

B = C−1 · R. (10.11.17)

Since the components of the matrix R are of the order of stress, which is

ordinarily much smaller than the elastic modulus, the components of matrix

B are small comparing to one. Thus the inverse matrix (I + B)−1 can be

determined accurately by retaining few leading terms in the expansion

(I + B)−1 = I − B + B · B − · · · . (10.11.18)

Equation (10.11.16) enables an easy identification of the critical harden-

ing rate for the localization. Upon multiplication by n·Q̂ and the cancellation

of n · Q̂ · η, there follows

H = n · Q̂ · (I + B)−1 · C−1 · P̂ · n − Q̂ : P. (10.11.19)
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Figure 10.4. Localization plane (stationary discontinuity)
with normal n. The localization vector η defines velocity
discontinuity across the plane. The component b in the
plane of localization corresponds to shear band localization.

Furthermore, Eq. (10.11.16) by inspection gives the characteristic segment

(localization vector)

η ∝ (I + B)−1 · C−1 · P̂ · n, (10.11.20)

to within a scalar multiple.

If the B components are neglected (which is equivalent to approximating
◦
τ with σ̇ in the elastoplastic constitutive structure), Eq. (10.11.19) becomes

H

μ
= 4n · Q · P · n − 2

1 − ν
Qn Pn − 2 Q : P

+
2ν

1 − ν
[ (tr Q)Pn + (tr P)Qn − (tr Q)(tr P)] ,

(10.11.21)

where

Qn = n · Q · n, Pn = n · P · n. (10.11.22)

The localization vector is

η ∝ P · n − 1
2(1 − ν)

(Pn − 2ν tr P)n. (10.11.23)

Observe that

n · η ∝ 1
2(1 − ν)

[(1 − 2ν)Pn + 2ν tr P] , (10.11.24)

so that the component of η in the plane of localization (Fig. 10.4) is

b = η − (n · η)n ∝ P · n − Pn n. (10.11.25)

If

μPn + λ tr P = 0, (10.11.26)

� �
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Figure 10.5. Localization plane with normal n in the co-
ordinate direction e3. The other two coordinate directions
e1 and e2 are in the plane of localization.

the shear band localization occurs (η = b).

Particularly simple representation of the expression for the critical hard-

ening rate is obtained when the coordinate system is used with one axis in

the direction n (ni = δi3). This is (Rice, 1977)

H

μ
= −2 QαβPαβ − 2ν

1 − ν
Qαα Pββ , (10.11.27)

where α, β = 1, 2 denote the components on orthogonal axes in the plane of

localization (Fig. 10.5). In the case of associative plasticity (Q = P), Eq.

(10.11.27) shows that H at localization cannot be positive (i.e., softening is

required for localization), at least when B terms are neglected, as assumed

in (10.11.27).

A study of bifurcation in the form of shear bands from the nonhomoge-

neous stress state in the necked region of a tensile specimen is given by

Iwakuma and Nemat-Nasser (1982). See also Ortiz, Leroy, and Needle-

man (1987), and Ramakrishnan and Atluri (1994). For the effects of elastic

anisotropy on strain localization, the paper by Rizzi and Loret (1997) can

be consulted.

10.11.2. Localization in Pressure-Sensitive Materials

For pressure-sensitive dilatant materials considered in Subsection 9.8.1, the

yield and potential functions are such that

Q =
σ ′

2J1/2
2

+
1
3
μ∗ I, P =

σ ′

2J1/2
2

+
1
3
β I, (10.11.28)
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where μ∗ is the frictional parameter, and β the dilatancy factor. Thus,

Qn =
σ′
n

2J1/2
2

+
1
3
μ∗, Pn =

σ′
n

2J1/2
2

+
1
3
β, (10.11.29)

n · Q · P · n =
n · σ ′ · σ ′ · n

4J2
+

σ′
n

6J1/2
2

(β + μ∗) +
1
9
βμ∗, (10.11.30)

Q : Pn =
1
2

+
1
3
βμ∗, tr Q = μ∗, tr P = β. (10.11.31)

The deviatoric normal stress in the localization plane is σ′
n = n · σ ′ · n.

Substitution into Eq. (10.11.21), therefore, gives

H

μ
=

n · σ ′ · σ ′ · n
J2

− 1
2(1 − ν)

σ′
n

2

J2
+

1 + ν

3(1 − ν)
σ′
n

J
1/2
2

(β + μ∗)

− 4(1 + ν)
9(1 − ν)

βμ∗ − 1.

(10.11.32)

If localization occurs, it will take place in the plane whose normal n max-

imizes the hardening rate H in Eq. (10.11.32) (H being a nonincreasing

function of the amount of deformation imposed on the material). The prob-

lem was originally formulated and solved by Rudnicki and Rice (1975). To

find the localization plane and the corresponding critical hardening rate, it

is convenient to choose the coordinate axes parallel to principal stress axes.

With respect to these axes,

σ′
n = (2σ′

2 + σ′
3)n

2
2 + (2σ′

3 + σ′
2)n

2
3 − (σ′

2 + σ′
3), (10.11.33)

and

n · σ ′ · σ ′ · n = (σ′
2 + σ′

3)
2 − σ′

3(2σ
′
2 + σ′

3)n
2
2 − σ′

2(2σ
′
3 + σ′

2)n
2
3, (10.11.34)

since

n2
1 + n2

2 + n2
3 = 1, σ′

1 + σ′
2 + σ′

3 = 0. (10.11.35)

Consequently, Eq. (10.11.32) becomes
H

μ
=

1
J2

{
σ′

2σ
′
3 − σ′

3(2σ
′
2 + σ′

3)n
2
2 − σ′

2(2σ
′
3 + σ′

2)n
2
3

− 1
2(1 − ν)

[
(2σ′

2 + σ′
3)n

2
2 + (2σ′

3 + σ′
2)n

2
3 − (σ′

2 + σ′
3)
]2

+
1 + ν

3(1 − ν)
J

1/2
2 (β + μ∗)

[
(2σ′

2 + σ′
3)n

2
2 + (2σ′

3 + σ′
2)n

2
3 − (σ′

2 + σ′
3)
]

− 4(1 + ν)
9(1 − ν)

J2βμ
∗}.

(10.11.36)
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The stationary conditions

∂H

∂n2
= 0,

∂H

∂n3
= 0 (10.11.37)

then yield

(2σ′
2 + σ′

3)n2 [σ′
2 + νσ′

3 +
1 + ν

3
J

1/2
2 (β + μ∗)

− (2σ′
2 + σ′

3)n
2
2 − (2σ′

3 + σ′
2)n

2
3

]
= 0,

(10.11.38)

(2σ′
3 + σ′

2)n3 [σ′
3 + νσ′

2 +
1 + ν

3
J

1/2
2 (β + μ∗)

− (2σ′
2 + σ′

3)n
2
2 − (2σ′

3 + σ′
2)n

2
3

]
= 0.

(10.11.39)

Note that

2σ′
2 + σ′

3 = σ2 − σ1 ≤ 0, 2σ′
3 + σ′

2 = σ3 − σ1 ≤ 0. (10.11.40)

If all principal stresses are distinct, there are three possibilities to satisfy

Eqs. (10.11.38) and (10.11.39). These are

n2 = 0, n3 �= 0,

n2 �= 0, n3 = 0,

n2 = n3 = 0.

(10.11.41)

If n2 = 0, Eq. (10.11.39) gives

(2σ′
3 + σ′

2)n
2
3 − (σ′

3 + νσ′
2) =

1 + ν

3
J

1/2
2 (β + μ∗), (10.11.42)

i.e.,

n2
3 =

σ2 − σ3

σ1 − σ3
− (1 + ν)

J
1/2
2

σ1 − σ3

(
σ′

2

J
1/2
2

+
β + μ∗

3

)
. (10.11.43)

The value of n2
3 must be between zero and one, 0 ≤ n2

3 ≤ 1. For positive β

and μ∗, this is assured if

β + μ∗ ≤
√

3. (10.11.44)

In proof, one can use the connections

σ′
1

J
1/2
2

=
(

1 − 3
4
σ′

2
2

J2

)1/2

− 1
2

σ′
2

J
1/2
2

,
σ′

3

J
1/2
2

= −
(

1 − 3
4
σ′

2
2

J2

)1/2

− 1
2

σ′
2

J
1/2
2

,

(10.11.45)

which follow, for example, by solving

σ′
2

2 + σ′
3

2 + σ′
2σ

′
3 = J2 (10.11.46)
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as a quadratic equation for σ′
3 in terms of σ′

2 and J2. It is observed that

− 1√
3
≤ σ′

2

J
1/2
2

≤ 1√
3
. (10.11.47)

The lower bound is associated with axially-symmetric tension (σ1 > σ2 =

σ3), and the upper bound with axially-symmetric compression (σ1 = σ2 >

σ3). Substituting n2 = 0 and Eq. (10.11.42) into Eq. (10.11.36) gives the

critical hardening rate associated with the choice n2 = 0,

H(2)

μ
= −σ′

2
2

J2
+

1 − ν

2

(
1 + ν

1 − ν

β + μ∗

3
− σ′

2

J
1/2
2

)2

− 4(1 + ν)
9(1 − ν)

βμ∗.

(10.11.48)

This can be rearranged as

H(2)

μ
=

1 + ν

9(1 − ν)
(β − μ∗)2 − 1 + ν

2

(
σ′

2

J
1/2
2

+
β + μ∗

3

)2

, (10.11.49)

which was originally derived by Rudnicki and Rice (1975). See also Perrin

and Leblond (1993).

The second solution of Eqs. (10.11.38) and (10.11.39) is associated with

n3 = 0. In this case

n2
2 = −σ2 − σ3

σ1 − σ2
− (1 + ν)

J
1/2
2

σ1 − σ2

(
σ′

3

J
1/2
2

+
β + μ∗

3

)
, (10.11.50)

which must meet the condition 0 ≤ n2
2 ≤ 1. The critical hardening rate is

consequently

H(3)

μ
=

1 + ν

9(1 − ν)
(β − μ∗)2 − 1 + ν

2

(
σ′

3

J
1/2
2

+
β + μ∗

3

)2

. (10.11.51)

The remaining solution of Eqs. (10.11.38) and (10.11.39) is associated with

n2 = n3 = 0. The corresponding critical hardening rate H(2,3) can be

calculated from Eq. (10.11.36).

Among the three values H(2), H(3) and H(2,3), the truly critical hard-

ening rate is the largest of them. For realistic values of material properties

β and μ∗, H(2,3) is always smaller than H(2) and H(3). This is expected on

physical grounds because there is no shear stress in the localization plane

associated with H(2,3) (localization plane being the principal stress plane),

which greatly diminishes a tendency toward localization. We thus examine

the inequality H(2) > H(3). From (10.11.49) and (10.11.51), this is satisfied
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Figure 10.6. The localization plane according to consid-
ered pressure sensitive material model has its normal n per-
pendicular to the intermediate principal stress σ2, so that in
the coordinate system of principal stresses n = {n1, 0, (1 −
n2

1)
1/2}.

if (
σ′

2

J
1/2
2

+
β + μ∗

3

)2

<

(
σ′

3

J
1/2
2

+
β + μ∗

3

)2

, (10.11.52)

i.e.,
σ′

1

J
1/2
2

>
2
3

(β + μ∗). (10.11.53)

The result can be expressed by using the first of expressions (10.11.45) as(
1 − 3

4
σ′

2
2

J2

)1/2

− 1
2

σ′
2

J
1/2
2

>
2
3

(β + μ∗). (10.11.54)

In view of (10.11.47), a conservative bound assuring that H(2) > H(3) is

β + μ∗ <

√
3

2
, (10.11.55)

whereas the condition

β + μ∗ >
√

3 (10.11.56)

assures that H(3) > H(2). For the range of β and μ∗ values used in consti-

tutive modeling of fissured rocks, the latter case appears to be exceptional

(Rudnicki and Rice, op. cit.). Thus, the localization will most likely occur

in the plane whose normal is perpendicular to σ2 direction (n2 = 0), and the

critical hardening rate is defined by Eq. (10.11.49); see Fig. 10.6.
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It remains to examine a possibility for localization in the plane whose

normal is perpendicular to σ1 direction (n1 = 0). The corresponding critical

hardening rate would be

H(1)

μ
=

1 + ν

9(1 − ν)
(β − μ∗)2 − 1 + ν

2

(
σ′

1

J
1/2
2

+
β + μ∗

3

)2

. (10.11.57)

This is greater than H(2) if

σ′
3

J
1/2
2

>
2
3

(β + μ∗). (10.11.58)

However, from the second of expressions (10.11.45) it can be observed that

σ′
3/J

1/2
2 is always negative in the range defined by (10.11.47). For frictional

materials showing positive dilatancy, β+μ∗ > 0, the condition (10.11.58) is,

therefore, never met. It could, however, be of interest in the study of loose

granular materials which compact during shear, and thus exhibit negative

dilatancy.

The expression for the critical hardening rate (10.11.49) reveals that

localization in considered pressure-dependent dilatant materials is possible

with positive hardening rate, depending on the value of σ′
3/J

1/2
2 . The most

critical (prompt to localization) is the state of stress

σ′
2

J
1/2
2

= −β + μ∗

3
, (10.11.59)

for which the critical hardening rate is

H(2)

μ
=

1 + ν

9(1 − ν)
(β − μ∗)2. (10.11.60)

The localization occurs in the plane whose normal is defined by

n2
1 =

σ1 − σ2

σ1 − σ3
, n2 = 0, n2

3 =
σ2 − σ3

σ1 − σ3
. (10.11.61)

Returning to Eqs. (10.11.38) and (10.11.39), if σ1 = σ2 > σ3, n2 remains

unspecified by Eq. (10.11.38), which is satisfied by 2σ′
2 + σ′

3 = 0, while Eq.

(10.11.39) determines n3. The critical hardening rate is still defined by Eq.

(10.11.49), with σ′
2 = (σ2 − σ3)/3.

The presented analysis in this subsection is based on the expression

(10.11.21), which does not account for B terms, of the order of stress di-

vided by elastic modulus. Inclusion of these terms and examination of their

effects on the critical hardening rate and localization is given in the paper by
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Rudnicki and Rice (1975). Further analysis of stability in the absence of plas-

tic normality is available in Rice and Rudnicki (1980), Chau and Rudnicki

(1990), and Li and Drucker (1994). Shear band formation in concrete was

studied by Ortiz (1987). The book by Bažant and Cedolin (1991) provides

additional references.

10.11.3. Rigid-Plastic Materials

For rigid-plastic materials the stress rate cannot be expressed in terms of

the rate of deformation, so that localization condition cannot be put in the

form (10.11.2). Instead, we impose conditions

[[L ]] = η ⊗ n, n · [[ σ̇ ]] = 0 (10.11.62)

directly, following the procedure by Rice (1977). The constitutive structure

for nonassociative rigid-plastic response is

D =
1
H

P ⊗ Q :
◦
σ, (10.11.63)

so that

[[D ]] =
1
H

P ⊗ Q : [[
◦
σ ]], [[

◦
σ ]] = [[ σ̇ ]] − [[W ]] · σ + σ · [[W ]]. (10.11.64)

Consequently,

1
2

(η ⊗ n + n ⊗ η) =
1
H

P ⊗ Q :
[
[[ σ̇ ]] − 1

2
(η ⊗ n − n ⊗ η) · σ

+
1
2
σ · (η ⊗ n − n ⊗ η)

]
.

(10.11.65)

This is evidently satisfied if P has the representation

P =
1
2

(ν ⊗ n + n ⊗ ν), (10.11.66)

for some vector ν, and if the localization vector is codirectional with ν,

η = k ν. (10.11.67)

Therefore, the localization can occur on the plane with normal n only if the

state of stress is such that P has a special, rather restrictive representation

given by (10.11.66). If the coordinate axes are selected with one axis parallel

to n (ni = δi3), we have

Pαβ = 0, α, β = 1, 2. (10.11.68)
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The intermediate principal value of such tensor is equal to zero (P2 = 0), so

that P is a biaxial tensor with a spectral representation

P = P1e1 ⊗ e1 + P3e3 ⊗ e3, (10.11.69)

where P1 ≥ 0, P3 ≤ 0, and e1, e2, e3 are the principal directions of P. It

follows that

n =
1√

P1 − P3

(√
P1 e1 +

√
−P3 e3

)
, (10.11.70)

ν =
√

P1 − P3

(√
P1 e1 −

√
−P3 e3

)
. (10.11.71)

For example, it can be readily verified that this complies with

P = P1e1 ⊗ e1 + P3e3 ⊗ e3 =
1
2

(ν ⊗ n + n ⊗ ν). (10.11.72)

If neither P1 nor P3 vanishes, there are two possible localization planes, one

with normal n defined by (10.11.70) and localization vector proportional to

(10.11.71), and the other with

n =
1√

P1 − P3

(√
P1 e1 −

√
−P3 e3

)
, (10.11.73)

ν =
√

P1 − P3

(√
P1 e1 +

√
−P3 e3

)
, (10.11.74)

since η and n appear symmetrically in (10.11.66). If either P1 or P3 vanishes,

there is one possible plane of localization. For instance, if P3 = 0, the

localization plane has the normal n = e1, and the corresponding ν = P1n.

Observe that, in general,

n · P · n = n · ν = P1 + P3, ν · ν = (P1 − P3)2, (10.11.75)

ν · P · ν = (ν · ν)n · P · n = (ν · ν)(n · ν). (10.11.76)

The component of the localization vector in the plane of localization is

b = η − (n · η)n = 2k
√ −P1P3

P1 − P3

(√
−P3 e1 −

√
P1 e3

)
. (10.11.77)

In the case of incompressible plastic flow, tr P = P1 + P3 = 0, and

n · ν = 0, (10.11.78)
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so that bifurcation vector η is in the plane of localization. The plane of

localization is in this case the plane of maximum shear stress, since from Eq.

(10.11.73),

n =
1√
2

(e1 − e3). (10.11.79)

Returning to Eq. (10.11.65), the substitution of (10.11.66) and (10.11.67)

yields

k

{
H +

1
2

Q : [(ν ⊗ n − n ⊗ ν) · σ− σ · (ν ⊗ n − n ⊗ ν)]
}

= Q : [[ σ̇ ]].

(10.11.80)

We impose now the remaining discontinuity condition n · [[ σ̇ ]] = 0. With

the orthogonal axes 1, 2 in the plane of localization, and the axis 3 in the

direction of n, it follows that

[[ σ̇3j ]] = 0, (j = 1, 2, 3) (10.11.81)

and

Q : [[ σ̇ ]] = Qαβ [[ σ̇αβ ]], α, β = 1, 2. (10.11.82)

The condition (10.11.80) is accordingly

k

{
H +

1
2

Q : [(ν ⊗ n − n ⊗ ν) · σ− σ · (ν ⊗ n − n ⊗ ν)]
}

= Qαβ [[ σ̇αβ ]].

(10.11.83)

Suppose that plastic normality is obeyed, so that P = Q (associative

plasticity). The right-hand side of (10.11.83) is then equal to zero, because

Pαβ = 0 by Eq. (10.11.68). Thus, if localization occurs (k �= 0), the brack-

eted term on the left-hand side of (10.11.83) must vanish. This gives the

critical hardening rate

H =
1
2

[ν · σ · ν − (ν · ν)n · σ · n] . (10.11.84)

If the principal directions of stress tensor σ are parallel to those of D

and thus P, its spectral decomposition is

σ = σ1e1 ⊗ e1 + σ2e2 ⊗ e2 + σ3e3 ⊗ e3. (10.11.85)

In view of (10.11.70) and (10.11.71), then,

n · σ · n =
1

P1 − P3
(P1σ1 − P3σ3), ν · σ · ν = (P1 − P3) (P1σ1 − P3σ3).

(10.11.86)

© 2002 by CRC Press LLC 



Since

ν · ν = (P1 − P3)2, (10.11.87)

Equation (10.11.86) shows that

ν · σ · ν = (ν · ν)n · σ · n, (10.11.88)

and from Eq. (10.11.84) the critical hardening rate is

H = 0. (10.11.89)

If principal directions of σ are not parallel to those of D (as in the case

of anisotropic hardening rigid-plastic response), the critical hardening rate

is not necessarily equal to zero. Furthermore, in the case of nonassocia-

tive plastic response (plastic non-normality) it is possible that some of the

components Qαβ are nonzero. In that case, since the components [[σ̇αβ ]] are

unrestricted, the condition (10.11.83) permits k �= 0, and thus localization

for any value of the hardening rate H. Rice (1977) indicates that the inclu-

sion of elastic effects mitigates this strong tendency for localization in the

absence of normality, but the tendency remains.

Since P and D are coaxial tensors by (10.11.63), from Eq. (10.11.68) it

follows that

Dαβ = 0, (α, β = 1, 2) (10.11.90)

in the plane of localization. Therefore, if the deformation field is such that a

nondeforming plane does not exist, the localization cannot occur within the

considered constitutive and localization framework. For example, it has been

long known that rigid-plastic model with a smooth yield surface predicts an

unlimited ductility in thin sheets under positive in-plane principal stretch

rates (e.g., with von Mises yield condition and associative flow rule, 2σ2 > σ1

for positive stretch rate D2, contrary to the requirement 2σ2 = σ1 for the

existence of nondeforming plane of localization). Since localization actually

occurs in these experiments, constitutive models simulating the yield-vertex

have been employed to explain the experimental observations (Stören and

Rice, 1975). Alternatively, imperfection studies were used in which, rather

than being perfectly homogeneous, the sheet was assumed to contain an

imperfection in the form of a long thin slice of material with slightly differ-

ent properties from the material outside (Marciniak and Kuczynski, 1967;
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Anand and Spitzig, 1980). Detailed summary and results for various material

models can be found in the papers by Needleman (1976), and Needleman

and Tvergaard (1983,1992). See also Petryk and Thermann (1996). We

discuss below the yield vertex effects on localization in rigid-plastic, and

incompressible elastic-plastic materials.

10.11.4. Yield Vertex Effects on Localization

A constitutive model simulating formation and effects of the vertex at the

loading point of the yield surface was presented in Subsections 9.8.2 and

9.11.2. In the case of rigid-plasticity with pressure-independent associative

flow rule, the rate of deformation is defined by

D =
1
h

(M ⊗ M) :
◦
σ +

1
h1

[ ◦
σ ′ − (M ⊗ M) :

◦
σ)
]
. (10.11.91)

The normalized tensor

M =
∂f
∂σ(

∂f
∂σ : ∂f

∂σ

)1/2
, (10.11.92)

is a deviatoric second-order tensor, f being a pressure-independent yield

function. For example,

M =
σ ′

(2J2)1/2
, if f = J

1/2
2 =

(
1
2
σ ′ : σ ′

)1/2

. (10.11.93)

The hardening modulus of the vertex response

h1 > h (10.11.94)

governs the response to part of the stress increment directed tangentially

to what is taken to be a smooth yield surface through the considered stress

point. Since

M : D =
1
h

(M :
◦
σ), (10.11.95)

the inverse constitutive expression is
◦
σ ′ = h1D − (h1 − h)(M ⊗ M) : D, (10.11.96)

i.e.,
◦
σ = σ̇ I + h1D − (h1 − h)(M ⊗ M) : D. (10.11.97)

Here,

σ =
1
3

trσ, trD = tr M = 0. (10.11.98)
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The jump condition n · [[ σ̇ ]] = 0 is consequently

[[ σ̇ ]]n + n · [[W ]] · σ− n · σ · [[W ]] + h1n · [[D ]]

− (h1 − h)(n · M)(M : [[D ]]) = 0.
(10.11.99)

Since [[L ]] = η ⊗ n, and trL = 0 for incompressible material, η must be

perpendicular to n. Hence,

η = gm, m · n = 0, (10.11.100)

where g is a scalar function (bifurcation amplitude), and m is a unit vector

in the plane of localization. Therefore,

[[L ]] = g(m ⊗ n), (10.11.101)

and (10.11.99) becomes

[[ σ̇ ]]n − 1
2
g
[
m · σ + σmn n − (h1 + σn)m + 2(h1 − h)Mmn(n · M)

]
= 0,

(10.11.102)

where

σmn = m · σ · n, σn = n · σ · n, Mmn = m · M · n. (10.11.103)

Performing a scalar product of Eq. (10.11.102) with unit vectors n, m and

p = m × n (m and p thus both being in the plane of localization), yields

g
[
σmn + (h1 − h)Mmn Mn

]
= [[ σ̇ ]], (10.11.104)

σm − σn − h1 + 2(h1 − h)M2
mn = 0, (10.11.105)

σmp + 2(h1 − h)Mmn Mnp = 0, (10.11.106)

with no summation over repeated index n.

If h1 is considered to be a constant vertex hardening modulus, localiza-

tion will occur in the plane for which h is maximum. By taking a variation

of (10.11.105) corresponding to δn ∝ p (so that m remains perpendicular to

n + δn, i.e., δm = 0), and by setting δh = 0, it follows that

σnp − 2(h1 − h)Mmn Mmp = 0, (10.11.107)

with no sum on m. Equations (10.11.106) and (10.11.107) are both satisfied

if the axis p is along one of the principal stress axes, provided that M and

σ are coaxial tensors (isotropic hardening), for then

σmp = σnp = 0, Mmp = Mnp = 0. (10.11.108)
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In the case of von Mises yield condition, M is given by Eq. (10.11.93), and

Eqs. (10.11.106) and (10.11.107) are satisfied only if

σmp = σnp = 0, (10.11.109)

so that the axis p must be codirectional with one of the principal stress

axes (Rice, 1977). In the case of a plasticity model without a vertex, we

have found in the previous subsection that the axis of intermediate principal

stress is in the plane of localization. Since the vertex model reduces to

a nonvertex model in the limit h1 → ∞, we conclude that p = e2, and

therefore

n = n1 e1 + (1 − n2
1)

1/2 e3, m = −(1 − n2
1)

1/2 e1 + n1 e3. (10.11.110)

Consequently,

σm − σn = (σ1 − σ3)(1 − 2n2
1), M2

mn = (M1 − M3)2n2
1(1 − n2

1),
(10.11.111)

so that Eq. (10.11.105) becomes

2(h1 − h)(M1 − M3)2n2
1(1 − n2

1) + (σ1 − σ3)(1 − 2n2
1) − h1 = 0.

(10.11.112)

Performing the variation corresponding to δn1 and setting δh = 0 gives

n2
1 =

1
2

[
1 − σ1 − σ3

(h1 − h)(M1 − M3)2

]
. (10.11.113)

For this to be acceptable, 0 ≤ n2
1 ≤ 1. The condition n2

1 ≤ 1 is satisfied for

h1 > h, while n2
1 ≥ 0 gives

h1 − h ≥ σ1 − σ3

(M1 − M3)2
. (10.11.114)

If vertex effects are neglected (h1 → ∞), Eq. (10.11.113) reproduces the

result n2
1 = 1/2 from the previous subsection. Substituting (10.11.113) back

into (10.11.112) gives a quadratic equation for the critical hardening rate h,

(h1 − h)2 − 2h1

(M1 − M3)2
(h1 − h) +

(σ1 − σ3)2

(M1 − M3)4
= 0. (10.11.115)

With the von Mises yield condition, we have

M1 − M3 =
σ′

1 − σ′
3

(2J2)1/2
, (10.11.116)

and since, by Eqs. (10.11.45),

σ′
1 − σ′

3

J
1/2
2

= 2
(

1 − 3
4
σ′

2
2

J2

)1/2

, (10.11.117)
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we obtain

n2
1 =

1
2

⎡
⎢⎣1 − 1

h1 − h

J
1/2
2(

1 − 3
4

σ′
2

2

J2

)1/2

⎤
⎥⎦ , (10.11.118)

and (
1 − 3

4
σ′

2
2

J2

)
(h1 − h)2 − h1(h1 − h) + J2 = 0. (10.11.119)

Alternatively, Eq. (10.11.119) can be written as (Rice, 1977)

3
4
σ′

2
2

J2
(h1 − h)2 + h(h1 − h) − J2 = 0. (10.11.120)

In order that n2
1 ≥ 0, from Eq. (10.11.118) it follows that the hardening rate

at localization must satisfy the condition

h

h1
≤ 1 − 2

J2

h2
1

. (10.11.121)

Under this condition, the critical hardening rate is, from Eq. (10.11.119),

h

h1
= 1 − 1 ±

√
1 − 4(1 − u)J2/h2

1

2(1 − u)
, (10.11.122)

where

u =
3σ′

2
2

4J2
. (10.11.123)

Plus sign should be used if localization occurs at negative h, and minus sign

if it occurs at positive h, provided that h meets the condition (10.11.121).

If the ratio J2/h
2
1 is sufficiently small, the condition (10.11.122) gives

h

h1
= − u

1 − u
+

J2

h2
1

+ · · · . (10.11.124)

In this case, unless plane stain conditions prevail (u → 0), strain softening

is required for localization (h < 0).

An analysis of localization for elastic-plastic materials with yield vertex

effects is more involved, but for an incompressible elastic-plastic material

the results can be easily deduced from the rigid-plastic analysis. Addition

of elastic part of the rate of deformation (De =
◦
σ ′/2μ) to plastic part gives

D =
(

1
h
− 1

h1

)
(M ⊗ M) :

◦
σ +

(
1
h1

+
1
2μ

)
◦
σ ′. (10.11.125)

Evidently, the corresponding localization results can be directly obtained

from previously derived results for rigid-plastic material, if the replacements
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Figure 10.7. The neck development obtained by finite ele-
ment calculations and J2 corner theory. An initial thickness
inhomogeneity grows into the necking mode. At high local
strain levels the bands of intense shear deformation develop
in the necked region (from Tvergaard, Needleman, and Lo,
1981; with permission from Elsevier Science).

are made

1
h
→ 1

h
+

1
2μ

,
1
h1

→ 1
h1

+
1
2μ

. (10.11.126)

Numerical evaluations reveal that the critical h for localization at states other

than plane strain is considerably less negative than the critical h predicted

by an analysis without the yield vertex effects (Rudnicki and Rice, 1975;

Rice, 1977).
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There has been a number of localization studies based on the more in-

volved corner theories of plasticity. The phenomenological J2 corner theory

of Christoffersen and Hutchinson (1979) has been frequently utilized (e.g.,

Hutchinson and Tvergaard, 1981; Tvergaard, Needleman, and Lo, 1981).

Details of the localization predictions can be found in the original papers

and reviews (Tvergaard, 1992; Needleman and Tvergaard, 1992). For ex-

ample, Fig. 10.7 from Tvergaard, Needleman, and Lo (1981) shows the neck

development obtained by finite element calculations and J2 corner theory.

An initial imperfection in the form of a long wave-length thickness inhomo-

geneity grows into the necking mode. Subsequently, at sufficiently high local

strain levels, the bands of intense shear deformation develop in the necked

region. The localization in rate-dependent solids and under dynamic load-

ing conditions was studied by Anand, Kim, and Shawki (1987), Needleman

(1988,1989), Batra and Kim (1990), Xu and Needleman (1992), and others.
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CHAPTER 11

MULTIPLICATIVE DECOMPOSITION

This chapter deals with the formulation of the constitutive theory for large

elastoplastic deformations within the framework of Lee’s multiplicative de-

composition of the deformation gradient. Kinematic and kinetic aspects of

the theory are presented, with a particular accent given to the partition of

the rate of deformation tensor into its elastic and plastic parts. The signifi-

cance of plastic spin in the phenomenological theory is discussed. Isotropic

and orthotropic materials are considered, and an introductory treatment of

the damage-elastoplasticity is given.

11.1. Multiplicative Decomposition F = Fe · Fp

Consider the current elastoplastically deformed configuration of the material

sample B, whose initial undeformed configuration was B0. Let F be the

deformation gradient that maps an infinitesimal material element dX from

B0 to dx in B, such that

dx = F · dX. (11.1.1)

The initial and current location of the material particle are both referred

to the same, fixed set of Cartesian coordinate axes. Introduce an interme-

diate configuration Bp by elastically destressing the current configuration B
to zero stress (Fig. 11.1). Such configuration differs from the initial configu-

ration by residual (plastic) deformation, and from the current configuration

by reversible (elastic) deformation. If dxp is the material element in Bp,

corresponding to dx in B, then

dx = Fe · dxp, (11.1.2)

where Fe represents the deformation gradient associated with the elastic

loading from Bp to B. If the deformation gradient of the transformation

© 2002 by CRC Press LLC 



B0 → Bp is Fp, such that

dxp = Fp · dX, (11.1.3)

the multiplicative decomposition of the total deformation gradient into its

elastic and plastic parts follows

F = Fe · Fp. (11.1.4)

The decomposition was introduced in the phenomenological theory of plastic-

ity by Lee and Liu (1967), and Lee (1969). Early contributions also include

Fox (1968), Willis (1969), Mandel (1971,1973), and Kröner and Teodosiu

(1973). For inhomogeneous deformations only F is a true deformation gra-

dient, whose components are the partial derivatives ∂x/∂X. The mappings

Bp → B and B0 → Bp are not, in general, continuous one-to-one mappings,

so that Fe and Fp are not defined as the gradients of the respective map-

pings (which may not exist), but as the point functions (local deformation

gradients). In the case when elastic destressing to zero stress (B → Bp) is

not physically achievable due to possible onset of reverse inelastic deforma-

tion before the state of zero stress is reached (which could occur at advanced

stages of deformation due to anisotropic hardening and strong Bauschinger

effect), the intermediate configuration can be conceptually introduced by

virtual destressing to zero stress, locking all inelastic structural changes that

would take place during the actual destressing.

There is a similar decomposition of the deformation gradient in thermoe-

lasticity, where the total deformation gradient is expressed as the product of

the elastic and thermal part. This has been studied by many, with a recent

contribution given by Imam and Johnson (1998).

11.1.1. Nonuniqueness of Decomposition

The deformation gradients Fe and Fp are not uniquely defined because the

intermediate unstressed configuration is not unique. Arbitrary local material

rotations can be superposed to the intermediate configuration, preserving it

unstressed. Thus, we can write

F = Fe · Fp = F̂e · F̂p, (11.1.5)
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Figure 11.1. Schematic representation of the multiplica-
tive decomposition of deformation gradient into its elastic
and plastic parts. The intermediate configuration Bp is ob-
tained from the current configuration B by elastic destress-
ing to zero stress.

where

F̂e = Fe · Q̂T , F̂p = Q̂ · Fp. (11.1.6)

A local rotation is represented by an orthogonal tensor Q̂. If polar decom-

positions of deformation gradients are used,

Fe = Ve · Re, Fp = Rp · Up, (11.1.7)

it follows that only Re and Rp, not Ve and Up, are affected by the rotation

of the intermediate state, i.e.,

R̂e = Re · Q̂T , R̂p = Q̂ · Rp, (11.1.8)

while

V̂e = Ve, Ûp = Up. (11.1.9)

Further discussion of the nonuniqueness of the decomposition can be found

in the articles by Green and Naghdi (1971), Casey and Naghdi (1980), and
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Naghdi (1990). Note that there is a unique decomposition

F = Ve · Rep · Up, (11.1.10)

since the rotation tensor

Rep = Re · Rp = R̂e · R̂p (11.1.11)

is a unique tensor (R̂ep = Rep).

In applications, the decomposition (11.1.4) can be made unique by addi-

tional requirements or specifications, dictated by the nature of the considered

material model. For example, for elastically isotropic materials the stress re-

sponse from Bp to B depends only on the elastic stretch Ve, and not on the

rotation Re. Consequently, the intermediate configuration can be specified

uniquely by requiring that the elastic unloading takes place without rotation,
Fe = Ve. (11.1.12)

On the other hand, in single crystal plasticity (see Chapter 12), the orien-

tation of the intermediate configuration is specified by a fixed orientation of

the crystalline lattice, through which the material flows by crystallographic

slip in the mapping from B0 to Bp. In Mandel’s (1973,1983) model, if the

triad of orthogonal (director) vectors is attached to the initial configuration,

and if this triad remains unaltered by plastic deformation, the intermedi-

ate configuration is referred to as isoclinic. Such configuration is unique at

a given stage of elastoplastic deformation, because a superposed rotation

Q̂ �= I would change the orientation of the director vectors, and the inter-

mediate configuration would not remain isoclinic. For additional discussion,

see the papers by Sidoroff (1975), and Kleiber and Raniecki (1985).

11.2. Decomposition of Strain Tensors

The left and right Cauchy–Green deformation tensors,

B = F · FT , C = FT · F, (11.2.1)

can be decomposed as

B = Fe · Bp · FeT , C = FpT · Ce · Fp. (11.2.2)
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If the Lagrangian strains corresponding to deformation gradients Fe and Fp

are defined by

Ee =
1
2

(Ce − I) , Ep =
1
2

(Cp − I) , (11.2.3)

where

Ce = FeT · Fe, Cp = FpT · Fp, (11.2.4)

the total Lagrangian strain (the strain measure from the family of material

strain tensors (2.3.1) corresponding to n = 1) can be expressed as

E =
1
2

(C − I) = Ep + FpT · Ee · Fp. (11.2.5)

The elastic and plastic strains Ee and Ep do not sum to give the total strain

E, because E and Ep are defined relative to the initial configuration B0 as

the reference configuration, while Ee is defined relative to the intermediate

configuration Bp as the reference configuration. Consequently, it is the strain

FpT ·Ee ·Fp, induced from the elastic strain Ee by plastic deformation Fp,

that sums up with the plastic strain Ep to give the total strain E.

If Eulerian strains corresponding to deformation gradients Fe and Fp

are introduced as

EEEe =
1
2

(
I − Be−1

)
, EEEp =

1
2

(
I − Bp−1

)
, (11.2.6)

where

Be = Fe · FeT , Bp = Fp · FpT , (11.2.7)

the total Eulerian strain (the strain measure from the family of spatial strain

tensors (2.3.14) corresponding to n = −1) can be written as

EEE =
1
2

(
I − B−1

)
= EEEe + Fe−T · EEEp · Fe−1. (11.2.8)

The additive decomposition does not hold for the Eulerian strains either,

because the elastic and total strain measures, EEEe and EEE , are defined relative

to the current configuration B, while plastic strain EEEp is defined relative to

the intermediate configuration Bp. Since

E = FT · EEE · F, (11.2.9)

there is a useful relationship

E − Ep = FT · EEEe · F, (11.2.10)
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which shows that the difference between the total and plastic Lagrangian

strain tensors is equal to the strain tensor induced from the Eulerian elastic

strain EEEe by the deformation F. Dually, we have

EEE − EEEe = F−T · Ep · F−1. (11.2.11)

11.3. Velocity Gradient and Strain Rates

Consider the velocity gradient in the current configuration at time t, defined

by

L = Ḟ · F−1. (11.3.1)

The superposed dot designates the material time derivative. By introduc-

ing the multiplicative decomposition of deformation gradient (11.1.4), the

velocity gradient becomes

L = Ḟe · Fe−1 + Fe ·
(
Ḟp · Fp−1

)
· Fe−1. (11.3.2)

The rate of deformation D and the spin W are, respectively, the symmetric

and antisymmetric part of L,

D =
(
Ḟe · Fe−1

)
s
+

[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
s
, (11.3.3)

W =
(
Ḟe · Fe−1

)
a

+
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
a
. (11.3.4)

For later purposes, it is convenient to identify the spin

ωp =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
a
. (11.3.5)

Since

Ė = FT · D · F, (11.3.6)

the following expressions hold for the rates of the introduced Lagrangian

strains

Ėe = Fp−T · Ė · Fp−1 −
[
Ce ·

(
Ḟp · Fp−1

)]
s
, (11.3.7)

Ėp = FpT ·
(
Ḟp · Fp−1

)
s
· Fp. (11.3.8)

These are here cast in terms of the strain rate Ė and the velocity gradient

Ḟp · Fp−1.
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In Section 11.13 it will be shown that the elastic part of the rate of

Lagrangian strain,

(Ė)e = Λ−1
(1) : Ṫ, (11.3.9)

where T is the symmetric Piola–Kirchhoff stress tensor, is in general different

from the rate of strain Ėe. Similarly,

(Ė)p = Ė − (Ė)e �= Ėp. (11.3.10)

While (Ė)e and (Ė)p sum up to give Ė, in general

Ėe + Ėp �= Ė. (11.3.11)

For the rates of Eulerian strains we have

ĖEEe
=

[
Be−1 ·

(
Ḟe · Fe−1

)]
s
, (11.3.12)

ĖEEp
= FeT · ĖEE · Fe −

[
B−1 ·

(
Ḟe · Fe−1

)]
s
, (11.3.13)

expressed in terms of the strain rate ĖEE and the velocity gradient Ḟe · Fe−1.

11.4. Objectivity Requirements

Upon superimposing a time-dependent rigid-body rotation Q to the current

configuration B, the deformation gradient F becomes

F∗ = Q · F, (11.4.1)

while the elastic and plastic parts Fe and Fp change to

Fe∗ = Q · Fe · Q̂T , Fp∗ = Q̂ · Fp. (11.4.2)

The rotation tensor Q̂ is imposed on the intermediate configuration Bp. This

rotation depends on the rotation Q of the current configuration, and on the

definition of the intermediate configuration used in the particular constitu-

tive model (Lubarda, 1991a). For example, if the intermediate configuration

is defined to be isoclinic, then necessarily

Q̂ = I. (11.4.3)

If the intermediate configuration is obtained from the current configuration

by destressing without rotation Fe = Ve, then

Q̂ = Q, (11.4.4)
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in order that Fe remains symmetric. Thus, with Q̂ appropriately specified

in any particular case, the following transformation rules apply

Ve∗ = Q · Ve · QT , Vp∗ = Q̂ · Vp · Q̂T , (11.4.5)

Re∗ = Q · Re · Q̂T , Rp∗ = Q̂ · Rp, (11.4.6)

Ue∗ = Q̂ · Ue · Q̂T , Up∗ = Up, (11.4.7)

Be∗ = Q · Be · QT , Bp∗ = Q̂ · Bp · Q̂T , (11.4.8)

Ce∗ = Q̂ · Ce · Q̂T , Cp∗ = Cp, (11.4.9)

Ee∗ = Q̂ · Ee · Q̂T , Ep∗ = Ep, (11.4.10)

EEEe∗ = Q · EEEe · QT , EEEp∗ = Q̂ · EEEp · Q̂T . (11.4.11)

The transformation rules for the velocity gradients associated with Fe and

Fp are

Ḟe∗ · Fe∗−1 = Q̇ · Q−1 + Q ·
(
Ḟe · Fe−1

)
· QT − Fe∗ ·

( ˙̂Q · Q̂−1
)
· Fe∗−1,

(11.4.12)

Ḟp∗ · Fp∗−1 = ˙̂Q · Q̂−1 + Q̂ ·
(
Ḟp · Fp−1

)
· Q̂T . (11.4.13)

The corresponding Lagrangian and Eulerian strain rates transform according

to

Ėe∗ = Q̂ · Ėe · Q̂T +
( ˙̂Q · Q̂−1

)
· Ee∗ − Ee∗ ·

( ˙̂Q · Q̂−1
)
, (11.4.14)

Ėp∗ = Ėp, (11.4.15)

ĖEEe∗
= Q · ĖEEe · QT +

(
Q̇ · Q−1

)
· EEEe∗ −EEEe∗ ·

(
Q̇ · Q−1

)
, (11.4.16)

ĖEEp∗
= Q̂ · ĖEEp · Q̂T +

( ˙̂Q · Q̂−1
)
· EEEp∗ −EEEp∗ ·

( ˙̂Q · Q̂−1
)
. (11.4.17)

Finally, the transformation rules for the total velocity gradient, and the total

strain rates are

L∗ = Q̇ · Q−1 + Q · L · QT , (11.4.18)
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Ė∗ = Ė, (11.4.19)

ĖEE∗ = Q · ĖEE · QT +
(
Q̇ · Q−1

)
· EEE∗ −EEE∗ ·

(
Q̇ · Q−1

)
, (11.4.20)

as previously discussed in Section 2.9.

The objectivity requirements that need to be imposed in the theory of

elastoplasticity based on the multiplicative decomposition of deformation

gradient have been extensively discussed in the literature. Some of the rep-

resentative references include Naghdi and Trapp (1974), Lubarda and Lee

(1981), Casey and Naghdi (1981), Dashner (1986a,b), Casey (1987), Dafalias

(1987,1988), Naghdi (1990), and Xiao, Bruhns, and Meyers (2000).

11.5. Jaumann Derivative of Elastic Deformation Gradient

In the context of the multiplicative decomposition of deformation gradient

based on the intermediate configuration, it is convenient to introduce a par-

ticular type of the Jaumann derivative of elastic deformation gradient Fe.

This is defined as the time derivative observed in two rotating coordinate

systems, one rotating with the spin Ω in the current configuration B and the

other rotating with the spin Ωp in the intermediate configuration Bp, such

that (Lubarda, 1991a; Lubarda and Shih, 1994)
•
Fe = Ḟe − Ω · Fe + Fe · Ωp. (11.5.1)

The spin tensors Ω and Ωp are at this point unspecified. They can be

different or equal to each other, depending on the selected intermediate

configuration and the intended application (see also Section 2.8). In any

case, they transform under rigid-body rotations Q and Q̂ of the current and

intermediate configurations according to

Ω∗ = Q̇ · Q−1 + Q · Ω · QT , Ωp∗ = ˙̂Q · Q̂−1 + Q̂ · Ωp · Q̂T . (11.5.2)

The Jaumann derivatives of Ve and Re, corresponding to Eq. (11.5.1), are
•
Ve = V̇e − Ω · Ve + Ve · Ω,

•
Re = Ṙe − Ω · Re + Re · Ωp, (11.5.3)

while those of Be and Ce are
•
Be = Ḃe − Ω · Be + Be · Ω,

•
Ce = Ċe − Ωp · Ce + Ce · Ωp. (11.5.4)
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It is easily verified that
•
Fe · Fe−1 = Ḟe · Fe−1 + Fe · Ωp · Fe−1 − Ω, (11.5.5)

•
Ve · Ve−1 = V̇e · Ve−1 + Ve · Ω · Ve−1 − Ω. (11.5.6)

Under rigid-body rotations Q and Q̂, the introduced Jaumann deriva-

tives transform as
•
Fe∗ = Q·

•
Fe · Q̂T ,

•
Ve∗ = Q·

•
Ve · QT ,

•
Re∗ = Q·

•
Re · Q̂T , (11.5.7)

•
Be∗ = Q·

•
Be · QT ,

•
Ce∗ = Q̂·

•
Ce · Q̂T . (11.5.8)

Consequently,
•
Fe∗ · Fe∗−1 = Q ·

( •
Fe · Fe−1

)
· QT , (11.5.9)

and likewise for the corresponding quantities associated with the Jaumann

derivatives of Ve and Re.

11.6. Partition of Elastoplastic Rate of Deformation

In this section it is assumed that the material is elastically isotropic in its

initial undeformed state, and that plastic deformation does not affect its

elastic properties. The elastic response from Bp to B is then independent of

the rotation superposed to the intermediate configuration, and is given by

τ = Fe · ∂Ψe(Ee)
∂Ee

· FeT . (11.6.1)

The elastic strain energy per unit unstressed volume, Ψe, is an isotropic

function of the Lagrangian strain Ee =
(
FeT · Fe − I

)
/2. Plastic deforma-

tion is assumed to be incompressible (detFe = detF), so that τ = (detF)σ

is the Kirchhoff stress (the Cauchy stress σ weighted by detF).

By differentiating Eq. (11.6.1), we obtain

τ̇−
(
Ḟe · Fe−1

)
· τ− τ ·

(
Ḟe · Fe−1

)T
= LLL(1) :

(
Ḟe · Fe−1

)
s
. (11.6.2)

The subscript (1) is attached to the elastic moduli tensor LLL(1) to make

the contact with the notation used in Section 6.2, e.g., Eq. (6.2.4). The

rectangular components of LLL(1) are

L(1)
ijkl = F e

iMF e
jN

∂2Ψe

∂Ee
MN∂Ee

PQ

F e
kPF

e
lQ. (11.6.3)
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Equation (11.6.2) can be equivalently written, in terms of the Jaumann

derivative of τ with respect to spin
(
Ḟe · Fe−1

)
a
, as

τ̇−
(
Ḟe · Fe−1

)
a
· τ + τ ·

(
Ḟe · Fe−1

)
a

= LLL(0) :
(
Ḟe · Fe−1

)
s
. (11.6.4)

The elastic moduli tensor LLL(0) has the components

L(0)
ijkl = L(1)

ijkl +
1
2

(τikδjl + τjkδil + τilδjk + τjlδik), (11.6.5)

as in Eq. (6.2.15).

The elastic deformation gradient Fe is defined relative to the intermedi-

ate configuration, which is changing during the ongoing elastoplastic defor-

mation. This causes two difficulties in the identification of the elastic rate

of deformation De. First, since Fe and Fp are specified only to within an

arbitrary rotation Q̂, the velocity gradient Ḟe ·Fe−1 and its symmetric and

antisymmetric parts are not unique. Secondly, the deforming intermediate

configuration also makes contribution to the elastic rate of deformation, so

that this is not in general given only by
(
Ḟe · Fe−1

)
s
. To overcome these dif-

ficulties, we resort to kinetic definition of the elastic strain increment De dt,

which is a reversible part of the total strain increment Ddt recovered upon

loading–unloading cycle of the stress increment
◦
τdt. The Jaumann deriva-

tive of the Kirchhoff stress relative to material spin W is
◦
τ. Thus, we define

De = LLL−1
(0) :

◦
τ,

◦
τ = τ̇− W · τ + τ · W. (11.6.6)

The remaining part of the total rate of deformation,

Dp = D − De, (11.6.7)

is the plastic part, which gives a residual strain increment left upon con-

sidered infinitesimal cycle of stress. When the material obeys Ilyushin’s

postulate, so defined plastic rate of deformation Dp is codirectional with the

outward normal to a locally smooth yield surface in the Cauchy stress space.

Therefore, to identify in Eq. (11.6.4) the elastic strain rate, according to

the kinetic definition (11.6.6), we use Eq. (11.3.4) to eliminate
(
Ḟe · Fe−1

)
a

and obtain

◦
τ = LLL(0) :

(
Ḟe · Fe−1

)
s
− ωp · τ + τ · ωp. (11.6.8)
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The spin ωp is defined by Eq. (11.3.5). Consequently, the elastic rate of

deformation is

De =
(
Ḟe · Fe−1

)
s
−LLL−1

(0) : (ωp · τ− τ · ωp) . (11.6.9)

From Eq. (11.6.7), the corresponding plastic rate of deformation is given by

Dp =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
s
+LLL−1

(0) : (ωp · τ− τ · ωp) . (11.6.10)

Since LLL−1
(0) and

◦
τ in (11.6.6) are independent of a superposed rotation to the

intermediate configuration, Eq. (11.6.9) specifies De uniquely. In contrast,

its constituents,
(
Ḟe · Fe−1

)
s

and the term associated with the spin ωp, do

depend on the choice of the intermediate configuration. Similar remarks

apply to plastic rate of deformation Dp in its representation (11.6.10).

As we have shown, the right hand side of (11.6.9) is the correct expression

for the elastic rate of deformation, and not
(
Ḟe · Fe−1

)
s

alone. Only if the

intermediate configuration (i.e., the rotation Re during destressing program)

is chosen such that the spin ωp vanishes,

ωp =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
a

= 0, (11.6.11)

the rate of deformation
(
Ḟe · Fe−1

)
s

is exactly equal to De. Within the

framework under discussion, this choice of the spin represents purely geo-

metric (kinematic) specification of the intermediate configuration. It is not a

constitutive assumption and has no consequences on Eq. (11.6.9). We could

just as well define the intermediate configuration by requiring that the spin(
Ḟe · Fe−1

)
a

vanishes identically. In this case,

ωp =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
a

= W. (11.6.12)

The end result is still Eq. (11.6.9), as can be checked by inspection.

The partition of D into its elastic and plastic parts within the framework

of the multiplicative decomposition has been a topic of active research and

discussion. Some of the representative references include Lee (1969), Fre-

und (1970), Kratochvil (1973), Kleiber (1975), Nemat-Nasser (1979,1982),

Lubarda and Lee (1981), Lee (1981,1985), Sidoroff (1982), Dafalias (1987),

and Lubarda and Shih (1994).

We note that the second part of the rate of deformation De, in its rep-

resentation (11.6.9), makes no contribution to elastic work. This follows by
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observing that, in view of elastic isotropy, the part of the rate of deformation

LLL−1
(0) : (ωp · τ− τ · ωp) (11.6.13)

has its principal directions parallel to those of the associated stress rate

(ωp · τ− τ ·ωp). Since direction of this stress rate is normal to τ, their trace

is zero, hence

Ψ̇e = τ : De = τ :
(
Ḟe · Fe−1

)
s
. (11.6.14)

11.7. Analysis of Elastic Rate of Deformation

We present an alternative derivation of the expression for the elastic rate of

deformation of elastically isotropic materials, which gives additional insight

in the kinematics of elastoplastic deformation and the partitioning of the

rate of deformation. We show that De can be expressed as

De =
( •
Fe · Fe−1

)
s

=
(
Ḟe · Fe−1

)
s
+

(
Fe · Ωp · Fe−1

)
s
. (11.7.1)

The Jaumann derivative
•
Fe is defined by Eq. (11.5.1) with Ω = Ωp, i.e.,

•
Fe = Ḟe − Ωp · Fe + Fe · Ωp. (11.7.2)

This represents the rate of Fe observed in the coordinate systems that rotate

with the spin Ωp in both current and intermediate configurations. The spin

Ωp is defined as the solution of the matrix equation(
Ḟe · Fe−1

)
a

+
(
Fe · Ωp · Fe−1

)
a

= W. (11.7.3)

In proof, the application of the Jaumann derivative with respect to spin

Ωp to Eq. (11.6.1) gives

•
τ=

( •
Fe · Fe−1

)
· τ + τ ·

( •
Fe · Fe−1

)T
+ Fe ·

(
∂2Ψe

∂Ee ⊗ ∂Ee
:
•
Ee

)
· FeT ,

(11.7.4)

where
•
τ= τ̇− Ωp · τ + τ · Ωp,

•
Ee = FeT ·

( •
Fe · Fe−1

)
s

· Fe. (11.7.5)

Therefore, if Eqs. (11.7.1) and (11.7.3) hold, so that

Ḟe · Fe−1 + Fe · Ωp · Fe−1 = De + W, (11.7.6)

•
Fe · Fe−1 = De + W − Ωp, (11.7.7)
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the substitution into Eq. (11.7.4) yields

◦
τ = LLL(0) : De, De =

( •
Fe · Fe−1

)
s

. (11.7.8)

The two contributions to the elastic rate of deformation De in Eq.

(11.7.1) both depend on the choice of the intermediate configuration, i.e.,

the elastic rotation Re of the destressing program, but their sum giving De

does not. If elastic destressing is performed without rotation (Re = I), the

spin Ωp = Ωp
I is the solution of(

V̇e · Ve−1
)

a
+

(
Ve · Ωp

I · Ve−1
)
a

= W. (11.7.9)

This defines the spin Ωp
I uniquely in terms of W, Ve and V̇e. The expression

for the elastic rate of deformation (11.7.1) is in this case

De =
( •
Ve · Ve−1

)
s

=
(
V̇e · Ve−1

)
s
+

(
Ve · Ωp

I · Ve−1
)
s
. (11.7.10)

The first term on the right-hand side represents the contribution to De

from the elastic stretching rate
(
V̇e · Ve−1

)
s
, while the second depends

on the spin Ωp
I and accounts for the effects of the deforming and rotating

intermediate configuration.

Since

Ḟe · Fe−1 + Fe · Ωp · Fe−1 = V̇e · Ve−1 + Ve · Ωp
I · Ve−1, (11.7.11)

and

Ḟe · Fe−1 = V̇e · Ve−1 + Ve ·
(
Ṙe · Re−1

)
· Ve−1, (11.7.12)

it follows that, for any other choice of the rotation Re, the corresponding

spin in the expression for the elastic rate of deformation (11.7.1) is

Ωp = ReT ·
(
Ωp

I − Ṙe · Re−1
)
· Re. (11.7.13)

The expression for the elastic rate of deformation in Eq. (11.7.1) in-

volves only kinematic quantities (Fe and Ωp), while the previously derived

expression (11.6.9) involves both kinematic and kinetic quantities. Clearly,

there is a connection(
Fe · Ωp · Fe−1

)
s
= −LLL−1

(0) : (ωp · τ− τ · ωp) . (11.7.14)

Note also that Eq. (11.7.1) can be recast in the form

De =
1
2

Fe−T ·
•
Ce · Fe−1,

•
Ce = Ċe − Ωp · Ce + Ce · Ωp. (11.7.15)
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This expression, as well as (11.7.1), holds for elastoplastic deformation of

elastically isotropic materials, regardless of whether the material hardens

isotropically or anisotropically in the course of plastic deformation.

11.7.1. Analysis of Spin Ωp

The spin Ωp
I , obtained as the solution of Eq. (11.7.9), depends on W, Ve,

and V̇e. It is possible to derive an expression for this spin in terms of W,

Ve, and De. Proceeding as in Section 2.7, we first observe the identity

Ve−1 ·
( •
Ve · Ve−1

)
=

( •
Ve · Ve−1

)T
· Ve−1, (11.7.16)

which can be rewritten in the form

Ve−1 ·
( •
Ve · Ve−1

)
a

+
( •
Ve · Ve−1

)
a

· Ve−1 = De · Ve−1 − Ve−1 · De.

(11.7.17)

This equation can be solved for
( •
Ve · Ve−1

)
a

as

( •
Ve · Ve−1

)
a

= K1

(
De · Ve−1 − Ve−1 · De

)
− (

J1I − Ve−1
)−1 · (De · Ve−1 − Ve−1 · De

)
− (

De · Ve−1 − Ve−1 · De
) · (J1I − Ve−1

)−1
,

(11.7.18)

where

J1 = trVe−1, K1 = tr
(
J1I − Ve−1

)−1
. (11.7.19)

The left-hand side of Eq. (11.7.18) is also equal to W−Ωp
I , by Eq. (11.7.7).

Therefore,

Ωp
I = W −K1

(
De · Ve−1 − Ve−1 · De

)
+

(
J1I − Ve−1

)−1 · (De · Ve−1 − Ve−1 · De
)

+
(
De · Ve−1 − Ve−1 · De

) · (J1I − Ve−1
)−1

.

(11.7.20)

The expression for Ωp is obtained by substituting Eq. (11.7.20) into Eq.

(11.7.13). The result is

Ωp = ReT ·
(
W − Ṙe · Re−1

)
· Re −K1

(
D̂e · Ue−1 − Ue−1 · D̂e

)
+

(
J1I − Ue−1

)−1 ·
(
D̂e · Ue−1 − Ue−1 · D̂e

)
+

(
D̂e · Ue−1 − Ue−1 · D̂e

)
· (J1I − Ue−1

)−1
,

(11.7.21)
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where

D̂e = ReT · De · Re, Ue−1 = ReT · Ve−1 · Re. (11.7.22)

With a specified rotation Re of the destressing program, Eq. (11.7.21) de-

termines the corresponding spin Ωp.

11.8. Analysis of Plastic Rate of Deformation

Having defined the elastic rate of deformation by Eq. (11.7.1), the remaining

plastic rate of deformation is

Dp =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
s
− (

Fe · Ωp · Fe−1
)
s
. (11.8.1)

In view of Eq. (11.7.7), we also have

Dp = Fe ·
(
Ḟp · Fp−1

)
· Fe−1 − Fe · Ωp · Fe−1, (11.8.2)

since

De + Dp + W = L, (11.8.3)

as given by Eq. (11.3.2). Alternatively, Eq. (11.8.2) can be written as

Dp = Fe ·
( •
Fp · Fp−1

)
· Fe−1,

•
Fp = Ḟp − Ωp · Fp. (11.8.4)

By taking the antisymmetric part of Eq. (11.8.2), therefore,(
Fe · Ωp · Fe−1

)
a

=
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
a
. (11.8.5)

Furthermore, from Eq. (11.8.2) we have

DDDp =
(
Fe−1 · Dp · Fe

)
s
, (11.8.6)

WWWp = Ωp +
(
Fe−1 · Dp · Fe

)
a
. (11.8.7)

For convenience, the rate of deformation and the spin of the intermediate

configuration are denoted by

DDDp =
(
Ḟp · Fp−1

)
s
, WWWp =

(
Ḟp · Fp−1

)
a
. (11.8.8)

These quantities, of course, depend on the choice of the intermediate config-

uration.

To elaborate, we start from the identity

Ce · (Fe−1 · Dp · Fe
)

=
(
Fe−1 · Dp · Fe

)T · Ce, (11.8.9)
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which can be recast as

Ce · (Fe−1 · Dp · Fe
)
a

+
(
Fe−1 · Dp · Fe

)
a
· Ce = DDDp · Ce − Ce · DDDp.

(11.8.10)

The last equation can be solved for
(
Fe−1 · Dp · Fe

)
a

in terms of Ce and DDDp.

The result is(
Fe−1 · Dp · Fe

)
a

= k1 (DDDp · Ce − Ce · DDDp)

− (j1I − Ce)−1 · (DDDp · Ce − Ce · DDDp)

− (DDDp · Ce − Ce · DDDp) · (j1I − Ce)−1
,

(11.8.11)

where

j1 = trCe, k1 = tr (j1I − Ce)−1
. (11.8.12)

The substitution of Eqs. (11.8.11) and (11.7.21) into Eq. (11.8.7) gives

Ṙe · Re−1 + Re ·WWWp · ReT = W −K1

(
De · Ve−1 − Ve−1 · De

)
+

(
J1I − Ve−1

)−1 · (De · Ve−1 − Ve−1 · De
)

+
(
De · Ve−1 − Ve−1 · De

) · (J1I − Ve−1
)−1

+ k1

(D̄DDp · Be − Be · D̄DDp)
− (j1I − Be)−1 · (D̄DDp · Be − Be · D̄DDp)
− (D̄DDp · Be − Be · D̄DDp) · (j1I − Be)−1

.

(11.8.13)

The tensor

D̄DDp = Re · DDDp · ReT (11.8.14)

is actually independent of the rotation Re, since it can be expressed from

Eq. (11.8.2) as

D̄DDp =
(
Ve−1 · Dp · Ve

)
s
. (11.8.15)

Note that

trCe = trBe, tr (j1I − Ce)−1 = tr (j1I − Be)−1
. (11.8.16)

Therefore, the spin

Ṙe · Re−1 + Re ·WWWp · ReT (11.8.17)

in Eq. (11.8.13) is expressed in terms of Ve, W, De, and Dp. For example,

if destressing is without rotation (Re = I), Eq. (11.8.13) defines the corre-

sponding spin WWWp of the intermediate configuration. On the other hand, if

destressing program is defined such that the spin of intermediate configura-

tion vanishes (WWWp = 0), Eq. (11.8.13) defines the corresponding rotation Re
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of the destressing program. These (different) choices, however, do not affect

the end result and the values of the components of the elastic and plastic

rates of deformation De and Dp.

11.8.1. Relationship between Dp and DDDp

Equation (11.8.6), which expresses DDDp in terms of Dp, can be rewritten as

DDDp =
1
2

Fe−1 · (Dp · Be + Be · Dp) · Fe−T , (11.8.18)

or,

Dp · Be + Be · Dp = 2Fe · DDDp · FeT . (11.8.19)

The solution for Dp in terms of DDDp is

Dp = 2k1 (Fe ·DDDp · FeT
) − 2 (j1I − Be)−1 · (Fe · DDDp · FeT

)
− 2

(
Fe · DDDp · FeT

) · (j1I − Be)−1
.

(11.8.20)

Alternatively, we can start from Eqs. (11.8.2) and (11.8.7), i.e.,

Dp = Fe · (DDDp +WWWp − Ωp) · Fe−1 = Fe · [DDDp +
(
Fe−1 · Dp · Fe

)
a

] · Fe−1.

(11.8.21)

The substitution of Eq. (11.8.11) gives

Dp = Fe · [DDDp + (trAe) (DDDp · Ce − Ce · DDDp)

− Ae · (DDDp · Ce − Ce · DDDp) − (DDDp · Ce − Ce · DDDp) · Ae] · Fe−1,

(11.8.22)

where

Ae = (j1I − Ce)−1
. (11.8.23)

The antisymmetric part of Eq. (11.8.22) vanishes identically.

11.9. Expression for De in Terms of Fe, Fp, and Their Rates

In Eq. (11.7.1) the elastic rate of deformation De was the sum of two terms,

the second term being dependent on the spin Ωp. It is possible to express

this term as an explicit function of Fe and Fp, and their rates. To that goal,

consider the identity

Be−1 · (Fe · Ωp · Fe−1
)

= − (
Fe · Ωp · Fe−1

)T · Be−1, (11.9.1)
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which can be rewritten as
Be−1 · (Fe · Ωp · Fe−1

)
s
+

(
Fe · Ωp · Fe−1

)
s
· Be−1

=
(
Fe · Ωp · Fe−1

)
a
· Be−1 − Be−1 · (Fe · Ωp · Fe−1

)
a

= ωp · Be−1 − Be−1 · ωp.

(11.9.2)

Expression (11.8.5) was used in the last step. Equation (11.9.2) can be solved

for
(
Fe · Ωp · Fe−1

)
s

in terms of Be−1 and the spin ωp, with the result(
Fe · Ωp · Fe−1

)
s
= k′1

(
ωp · Be−1 − Be−1 · ωp

)
− (

j′1I − Be−1
)−1 · (ωp · Be−1 − Be−1 · ωp

)
− (

ωp · Be−1 − Be−1 · ωp
) · (j′1I − Be−1

)−1
,

(11.9.3)

where

j′1 = trBe−1, k′1 = tr
(
j1I − Be−1

)−1
. (11.9.4)

Consequently, incorporating Eq. (11.9.3) into Eq. (11.7.1) gives an expres-

sion for the elastic rate of deformation, solely in terms of Fe and Fp, and

their rates. This is

De =
(
Ḟe · Fe−1

)
s
+ k′1

(
ωp · Be−1 − Be−1 · ωp

)
− (

j′1I − Be−1
)−1 · (ωp · Be−1 − Be−1 · ωp

)
− (

ωp · Be−1 − Be−1 · ωp
) · (j′1I − Be−1

)−1
.

(11.9.5)

11.9.1. Intermediate Configuration with ωp= 0

The three most appealing choices of the intermediate configuration corre-

spond to
Re = I,

WWWp = 0,

ωp = 0.

(11.9.6)

We discuss here the last choice, i.e., we consider the intermediate configura-

tion obtained by the destressing program such that

ωp =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
a

= 0. (11.9.7)

From Eqs. (11.8.5) and (11.9.3) it follows that

Fe · Ωp · Fe−1 = 0, i.e., Ωp = 0. (11.9.8)

The corresponding rotation is, from Eq. (11.7.13),

Ṙe · Re−1 = Ωp
I , (11.9.9)
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where Ωp
I is defined by Eq. (11.7.20). Furthermore, from Eqs. (11.8.7) and

(11.8.11), the spin of the intermediate configuration is

WWWp =
(
Fe−1 · Dp · Fe

)
a

= k1 (DDDp · Ce − Ce · DDDp)

− (j1I − Ce)−1 · (DDDp · Ce − Ce · DDDp)

− (DDDp · Ce − Ce · DDDp) · (j1I − Ce)−1
.

(11.9.10)

The elastic and plastic rates of deformation are

De =
(
Ḟe · Fe−1

)
s
, (11.9.11)

Dp = Fe ·
(
Ḟp · Fp−1

)
· Fe−1. (11.9.12)

For any other choice of the intermediate configuration, not associated with

the choice (11.9.7), the symmetric part of Ḟe · Fe−1 is not all, but only a

portion of the elastic rate of deformation De.

11.10. Isotropic Hardening

In the case of isotropic hardening the yield function is an isotropic function

of the Cauchy stress σ. Thus, if the normality rule applies, the plastic rate

of deformation Dp is codirectional with the outward normal to a locally

smooth yield surface in stress space, and its principal directions are parallel

to those of the stress σ. Since for elastically isotropic material Ve and Be

are also coaxial with σ, their matrix products commute, and Eqs. (11.8.6)

and (11.8.7) become

DDDp = ReT · Dp · Re, WWWp = Ωp, (11.10.1)

because (
Fe−1 · Dp · Fe

)
a

=
(
ReT · Dp · Re

)
a

= 0. (11.10.2)

Furthermore, since from Eq. (11.8.15) in the case of isotropic hardening,

D̄DDp = Dp, (11.10.3)

Equation (11.8.13) reduces to

Ṙe · Re−1 + Re ·WWWp · ReT = W −K1

(
De · Ve−1 − Ve−1 · De

)
+

(
J1I − Ve−1

)−1 · (De · Ve−1 − Ve−1 · De
)

+
(
De · Ve−1 − Ve−1 · De

) · (J1I − Ve−1
)−1

.

(11.10.4)
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This is precisely the spin Ωp
I of Eq. (11.7.20). In addition, we have

ωp =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
a

=
(
Fe ·WWWp · Fe−1

)
a
. (11.10.5)

If the intermediate configuration is selected so that Re = I, Eq. (11.10.4)

specifies the corresponding spin (Lubarda and Lee, 1981), as

WWWp = Ωp
I . (11.10.6)

If the intermediate configuration is selected so that ωp = 0, then

WWWp = 0 (11.10.7)

(and vice versa, for isotropic hardening). The right-hand side of Eq. (11.10.4)

defines the spin due to Re, i.e.,

Ṙe · Re−1 = Ωp
I . (11.10.8)

11.11. Kinematic Hardening

To approximately account for the Bauschinger effect and anisotropic hard-

ening, the kinematic hardening model was introduced in Subsection 9.4.2.

Translation of the yield surface in stress space is prescribed by the evolution

equation for the back stress α (center of the yield surface). A fairly general

objective equation for this evolution is
◦
α = α̇− W ·α + α · W = A(α, Dp) , (11.11.1)

where A is an isotropic function of both α and Dp. Its polynomial repre-

sentation is given by Eq. (1.11.10). Assuming that α is deviatoric and that

the material response is rate-independent, the function A can be written as

A(α, Dp) = G(α, Dp) + α · Ŵ − Ŵ ·α. (11.11.2)

The tensor function G is

G(α, Dp) = η1 Dp + η2 D
p α + η3 D

p

[
α2 − 1

3
tr

(
α2

)
I
]

+ η4

[
α · Dp + Dp ·α− 2

3
tr (α · Dp) I

]

+ η5

[
α2 · Dp + Dp ·α2 − 2

3
tr

(
α2 · Dp

)
I
]
,

(11.11.3)

and the spin

Ŵ = ϑ1 (α · Dp −Dp ·α) + ϑ2

(
α2 · Dp − Dp ·α2

)
+

+ ϑ3

(
α2 · Dp ·α−α · Dp ·α2

)
.

(11.11.4)
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The scalar

Dp = (2Dp : Dp)1/2 (11.11.5)

is a homogeneous function of degree one in the components of plastic rate

of deformation, while ηi (i = 1, 2, . . . , 5) and ϑi (i = 1, 2, 3) are scalar func-

tions of the invariants of α. The representation of antisymmetric function

Ŵ in terms of α and Dp is constructed according to Eq. (1.11.11). The

combination of terms (α · Ŵ − Ŵ · α), which is an isotropic symmetric

function of α and Dp, is given separately in the representation (11.11.2), so

that the function G incorporates direct influence of the rate of deformation

on the evolution of α, while (α · Ŵ − Ŵ · α) incorporates the influence of

deformation imposed rotation of the lines of material elements considered

to carry the embedded back stress (Agah-Tehrani, Lee, Mallett, and Onat,

1987). Such rotation can have a significant effect on the evolution, quite

independently of the overall material spin W. An example in the case of

straining in simple shear is given by Lee, Mallett, and Wertheimer (1983).

See also Dafalias (1983), Atluri (1984), Johnson and Bammann (1984), and

Van der Giessen (1989).

The following relationships are further observed

α2 · Dp − Dp ·α2 = α · (α · Dp − Dp ·α) + (α · Dp − Dp ·α) ·α,
(11.11.6)

and

α2 · Dp ·α−α · Dp ·α2 = α · (α2 · Dp − Dp ·α2
)

+
(
α2 · Dp − Dp ·α2

) ·α− 1
2

tr
(
α2

)
(α · Dp − Dp ·α) .

(11.11.7)

The second of these can be expressed as

α2 · Dp ·α−α · Dp ·α2 = −α2 · (α · Dp − Dp ·α)

− (α · Dp − Dp ·α) ·α2 +
1
2

tr
(
α2

)
(α · Dp − Dp ·α) .

(11.11.8)

This is easily verified by recalling that α is deviatoric (trα = 0) and that,

from the Cayley–Hamilton theorem (1.4.1),

α3 =
1
2

tr
(
α2

)
α + (detα) I. (11.11.9)
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Substitution of Eqs. (11.11.6) and (11.11.8) into Eq. (11.11.4) thus yields

Ŵ = −H · (α · Dp −Dp ·α) − (α · Dp − Dp ·α) · H
+ (trH) (α · Dp − Dp ·α) .

(11.11.10)

This expresses Ŵ in terms of a basic antisymmetric tensor (α · Dp − Dp ·α)

and an isotropic tensor function H(α), defined by

H = ϑ1 I − ϑ2 α + ϑ3

[
α2 − 1

2
tr

(
α2

)
I
]
. (11.11.11)

The evolution equation for the back stress (11.11.1) consequently be-

comes

•
α = G(α, Dp), (11.11.12)

where, in view of Eq. (11.11.2),

•
α =

◦
α + Ŵ ·α−α · Ŵ = α̇− ω̂ ·α + α · ω̂. (11.11.13)

The spin used to define the Jaumann derivative
•
α is

ω̂ = W − Ŵ. (11.11.14)

Either the spin Ŵ, associated with the angular velocity of the embedded

back stress, or the relative spin ω̂ (relative to the deforming material), can

be referred to as the plastic spin. The constitutive equation for Ŵ is given by

Eqs. (11.11.10) and (11.11.11), with the appropriately specified parameters

ϑi (i = 1, 2, 3).

The introduction of the plastic spin as an ingredient of the phenomeno-

logical theory of plasticity was motivated by the attempts to eliminate spu-

rious oscillations of shear stress, obtained under monotonically increasing

straining in simple shear, within the model of kinematic hardening and sim-

ple evolution equation for the back stress
◦
α ∝ Dp (Nagtegaal and de Jong,

1982; Lee, Mallett, and Wertheimer, 1983). Further research on plastic

spin was subsequently stimulated by the work of Loret (1983) and Dafalias

(1983,1985). Various aspects of this work have been discussed or reviewed by

Aifantis (1987), Zbib and Aifantis (1988), Van der Giessen (1991), Nemat-

Nasser (1992), Lubarda and Shih (1994), Besseling and Van der Giessen

(1994), and Dafalias (1999). The survey paper by Dafalias (1999) contains

additional references. Research on the plastic spin in crystal plasticity is
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discussed in Chapter 12. An analysis of plastic spin in the corner theory of

plasticity was presented by Kuroda (1995).

The elastoplastic behavior of amorphous polymers was studied within

the framework of multiplicative decomposition by Boyce, Parks, and Argon

(1988), and Boyce, Weber, and Parks (1990). Other viscoplastic solids were

considered by Weber and Anand (1990). See also Anand (1980) for an ap-

plication to pressure sensitive dilatant materials. Computational aspects of

finite deformation elastoplasticity based on the multiplicative decomposition

were examined by Needleman (1985), Simo and Ortiz (1985), Moran, Ortiz,

and Shih (1990), Simo (1998), Simo and Hughes (1998), and Belytschko,

Liu, and Moran (2000).

11.12. Rates of Deformation Due to Convected Stress Rate

The rate of deformation tensor was partitioned in Section 11.6 into its elastic

and plastic parts by using the Jaumann rate of the Kirchhoff stress, such

that

De
(0) = LLL−1

(0) :
◦
τ, Dp

(0) = D − De
(0). (11.12.1)

The subscript (0) is added to indicate that the partition was with respect to

the stress rate
◦
τ. In terms of Fe and Fp, and their rates, it was found that

De
(0) =

(
Ḟe · Fe−1

)
s
−LLL−1

(0) :
{[

Fe ·
(
Ḟp · Fp−1

)
· Fe−1

]
a
· τ

− τ ·
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
a

}
,

(11.12.2)

Dp
(0) =

[
Fe ·

(
Ḟp· Fp−1

) · Fe−1
]
s
+LLL−1

(0) :
{[

Fe ·
(
Ḟp · Fp−1

)
· Fe−1

]
a
· τ

− τ ·
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
a

}
.

(11.12.3)

The corresponding elastic and plastic parts of the stress rate
◦
τ are

◦
τ e = LLL(0) : D,

◦
τ p = −LLL(0) : Dp

(0). (11.12.4)

An alternative partition of the rate of deformation tensor can be ob-

tained by using the convected rate of the Kirchhoff stress
�
τ , such that

De
(1) = LLL−1

(1) :
�
τ , Dp

(1) = D − De
(1). (11.12.5)
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Indeed, from Eq. (11.6.2) it follows that

�
τ = LLL(1) :

(
Ḟe·Fe−1

)
s
−

{[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
· τ

+ τ ·
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]T}
.

(11.12.6)

This defines the elastic part of the rate of deformation corresponding to the

stress rate
�
τ , which is

De
(1) =

(
Ḟe · Fe−1

)
s
−LLL−1

(1) :
{[

Fe ·
(
Ḟp · Fp−1

)
· Fe−1

]
· τ

+τ ·
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]T}
.

(11.12.7)

The remaining part of the rate of deformation is the plastic part,

Dp
(1) =

[
Fe ·

(
Ḟp· Fp−1

) · Fe−1
]
s
+LLL−1

(1) :
{[

Fe ·
(
Ḟp · Fp−1

)
· Fe−1

]
· τ

+ τ ·
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]T}
.

(11.12.8)

The corresponding elastic and plastic parts of the stress rate
�
τ are

�
τ e = LLL(1) : D,

�
τ p = −LLL(1) : Dp

(1). (11.12.9)

It is readily verified that

◦
τ p =

�
τ p. (11.12.10)

The partition of the rate of deformation based on the convected rate of

the Kirchhoff stress, which involves in its definition both the spin and the

rate of deformation, may appear less appealing than the partition based on

the Jaumann rate, which involves only the spin part of the velocity gradi-

ent. However, the partition based on the convected rate is inherent in the

constitutive formulation based on the Lagrangian strain and its conjugate,

symmetric Piola–Kirchhoff stress. Since Ė = FT · D · F, the elastic and

plastic parts of the rate of Lagrangian strain are (Lubarda, 1994a)

(Ė)e = FT · De
(1) · F, (Ė)p = FT · Dp

(1) · F. (11.12.11)

These are defined such that

(Ė)e = Λ−1
(1) : Ṫ, (Ė)p = Ė − (Ė)e, (11.12.12)

© 2002 by CRC Press LLC 



where T is the symmetric Piola–Kirchhoff stress tensor, conjugate to the

Lagrangian strain E (the conjugate measures from Chapters 2 and 3 corre-

sponding to n = 1; for simplicity we omit here the subscript (1) in the nota-

tion for T(1) and E(1)). The plastic part of the rate of Lagrangian strain is

normal to a locally smooth yield surface in the Piola–Kirchhoff stress space,

and is within the cone of outward normals at the vertex of the yield surface.

An independent derivation of the partition of the rate of Lagrangian strain

into its elastic and plastic parts is presented in the following section.

11.13. Partition of the Rate of Lagrangian Strain

If elastic strain energy per unit unstressed volume is an isotropic function of

the Lagrangian strain Ee, it can be expressed, with the help of Eq. (11.2.5),

as

Ψe = Ψe (Ee) = Ψe
[
Fp−T · (E − Ep) · Fp−1

]
. (11.13.1)

From this we deduce that

Te =
∂Ψe

∂Ee
, T =

∂Ψe

∂E
, (11.13.2)

with a connection between the two stress tensors

Te = Fp · T · FpT . (11.13.3)

The stress tensors Te and T are related to the Kirchhoff stress τ by

Te = Fe−1 · τ · Fe−T , T = F−1 · τ · F−T . (11.13.4)

The plastic incompressibility is assumed, so that

detFe = detF. (11.13.5)

The two moduli tensors are defined by

Λe
(1) =

∂2Ψe

∂Ee ⊗ ∂Ee
, Λ(1) =

∂2Ψe

∂E ⊗ ∂E
, (11.13.6)

such that

Λ(1) = Fp−1 Fp−1 Λe
(1) F

p−T Fp−T . (11.13.7)

In addition, the moduli tensor LLL(1) is

LLL(1) = Fe Fe Λe
(1) F

eT FeT = FFΛ(1) FT FT . (11.13.8)

The tensor products are here defined as in Eq. (11.6.3).
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By differentiating the first expression in (11.13.2), there follows

Ṫe = Λe
(1) : Ėe, (11.13.9)

while differentiation of Eq. (11.13.3) gives

Ṫe = Fp ·
(
Ṫ + Zp · T + T · ZpT

)
· FpT . (11.13.10)

The second-order tensor Zp is

Zp = Fp−1 ·
(
Ḟp · Fp−1

)
Fp. (11.13.11)

Since, from Eq. (11.3.7),

Ėe = Fp−T ·
{
Ė − FpT ·

[
Ce ·

(
Ḟp · Fp−1

)]
s
· Fp

}
· Fp−1, (11.13.12)

the substitution of Eqs. (11.13.10) and (11.13.12) into Eq. (11.13.9) yields

Ṫ = Λ(1) :
{
Ė − FpT ·

[
Ce ·

(
Ḟp · Fp−1

)]
s
· Fp

}
− (

Zp · T + T · ZpT
)
.

(11.13.13)

The elastic part of the rate of Lagrangian strain is defined by

(Ė)e = Λ−1
(1) : Ṫ. (11.13.14)

Consequently, upon partitioning the total rate of strain as (Fig. 11.2)

Ė = (Ė)e + (Ė)p, (11.13.15)

we identify from Eq. (11.13.13) the plastic part of the rate of Lagrangian

strain as

(Ė)p = FpT ·
[
Ce ·

(
Ḟp · Fp−1

)]
s
· Fp + Λ−1

(1) :
(
Zp · T + T · ZpT

)
.

(11.13.16)

The elastic part is then

(Ė)e = FpT · Ėe · Fp − Λ−1
(1) :

(
Zp · T + T · ZpT

)
, (11.13.17)

where

Ėe = FeT ·
(
Ḟe · Fe−1

)
s
· Fe. (11.13.18)

It can be easily verified that the expressions (11.13.16) and(11.13.17) agree

with the expressions (11.12.11), provided that De
(1) and Dp

(1) are defined by

Eqs. (11.12.7) and (11.12.8).
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Figure 11.2. Geometric interpretation of the partition of
the stress and strain increments into their elastic and plastic
parts.

11.14. Partition of the Rate of Deformation Gradient

The rate of deformation gradient Ḟ can also be partitioned into its elastic

and plastic parts,

Ḟ = (Ḟ)e + (Ḟ)p. (11.14.1)

The elastic part is defined by

(Ḟ)e = Λ−1 · · Ṗ. (11.14.2)

It is assumed that the elastic pseudomoduli tensor Λ has its inverse, the

elastic pseudocompliances tensor Λ−1, such that

Λ · · Λ−1 = Λ−1 · · Λ = III , (11.14.3)

where Iijkl = δilδjk (with the components of Λ and Λ−1 expressed in the

same rectangular coordinate system).

In the derivation, first note that the elastic nominal stress and the overall

nominal stress,

Pe = Te · FeT , P = T · FT , (11.14.4)
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are derived from the elastic strain energy Ψe as (Lubarda and Benson, 2001)

Pe =
∂Ψe

∂Fe
, P =

∂Ψe

∂F
. (11.14.5)

The connection between the two tensors is

Pe = Fp · P. (11.14.6)

The corresponding pseudomoduli tensors are

Λe =
∂2Ψe

∂Fe ⊗ ∂Fe
, Λ =

∂2Ψe

∂F ⊗ ∂F
. (11.14.7)

It can be readily verified by partial differentiation that the components of

the two pseudomoduli tensors (in the same rectangular coordinate system)

are related by

Λe
ijkl = F p

im Λmjnl F
p
kn . (11.14.8)

The pseudomoduli tensor Λe appears in the expression

Ṗe = Λe · · Ḟe. (11.14.9)

By differentiating Eq. (11.14.6), there follows

Ṗe = Fp · Ṗ + Ḟp · P. (11.14.10)

Substitution of Eqs. (11.14.10) and (11.14.8) into Eq. (11.14.9) gives

Ṗ = Λ · ·
(
Ḟe · Fp

)
− Fp−1 · Ḟp · P. (11.14.11)

On the other hand, by differentiating the multiplicative decomposition

F = Fe · Fp, the rate of deformation gradient is

Ḟ = Ḟe · Fp + Fe · Ḟp. (11.14.12)

Using this, Eq. (11.14.11) can be rewritten as

Ṗ = Λ · ·
(
Ḟ − Fe · Ḟp

)
− Fp−1 · Ḟp · P, (11.14.13)

i.e.,

Ṗ = Λ · ·
[
Ḟ − Fe · Ḟp − Λ−1 · ·

(
Fp−1 · Ḟp · P

)]
. (11.14.14)

From Eq. (11.14.14) we now identify the plastic part of the rate of deforma-

tion gradient as

(Ḟ)p = Fe · Ḟp + Λ−1 · ·
(
Fp−1 · Ḟp · P

)
. (11.14.15)
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The remaining part of Ḟ is the elastic part,

(Ḟ)e = Ḟe · Fp − Λ−1 · ·
(
Fp−1 · Ḟp · P

)
, (11.14.16)

complying with Eq. (11.14.2).

Equation (11.14.14) also serves to identify the elastic and plastic parts

of the rate of nominal stress. These are

(Ṗ)e = Λ · · Ḟ, (11.14.17)

(Ṗ)p = −
[
Fp−1 · Ḟp · P + Λ · ·

(
Fe · Ḟp

)]
, (11.14.18)

such that

Ṗ = (Ṗ)e + (Ṗ)p. (11.14.19)

Evidently, by comparing Eqs. (11.14.15) and (11.14.18), there is a relation-

ship between plastic parts of the rate of nominal stress and deformation

gradient,

(Ṗ)p = −Λ · · (Ḟ)p. (11.14.20)

11.15. Relationship between (Ṗ)p and (Ṫ)p

To derive the relationship between plastic parts of the rates of nominal and

symmetric Piola–Kirchhoff stress,

(Ṗ)p = Ṗ − Λ · · Ḟ, (Ṫ)p = Ṫ − Λ(1) : Ė, (11.15.1)

we first recall the relationships between Ṗ and Ṫ, and Λ and Λ(1), which

were derived in Section 6.4. Following Hill (1984), these can be conveniently

cast as

Λ = KKKT : Λ(1) : KKK + TTT , Ṗ = KKKT : Ṫ + TTT · · Ḟ. (11.15.2)

The tensor Λ(1) possesses the reciprocal symmetry ij ↔ kl. The rectangular

components of the fourth-order tensors KKK and TTT are

Kijkl =
1
2

(δikFlj + δjkFli) , Tijkl = Tikδjl. (11.15.3)

They obey the symmetry

Kijkl = Kjikl, Tijkl = Tklij . (11.15.4)

© 2002 by CRC Press LLC 



The tensor KKK is particularly convenient, because in the trace operation with

a second-order tensor A it behaves such that

KKK · · A = A · · KKKT =
1
2

(FT · A + AT · F), (11.15.5)

KKKT · · A = A · · KKK =
1
2

(A + AT ) · FT . (11.15.6)

In particular,

KKK · · Ḟ = Ḟ · · KKKT = Ė, (11.15.7)

KKKT : T = T : KKK = T · FT = P. (11.15.8)

If A is symmetric, the trace product · · can be replaced by : product in

Eqs. (11.15.5) and (11.15.6).

The relationship between (Ṗ)p and (Ṫ)p now follows by taking the trace

product of the second equation in (11.15.1) with KKKT from the left. Upon

using Eq. (11.15.2), this gives

(Ṗ)p = KKKT : (Ṫ)p. (11.15.9)

Since

(Ṗ)p = −Λ · · (Ḟ)p, (Ṫ)p = −Λ(1) : (Ė)p, (11.15.10)

we, in addition, have

(Ḟ)p = Λ−1 · · KKKT : Λ(1) : (Ė)p. (11.15.11)

Note that

Ḟ · · (Ṗ)p = Ė : (Ṫ)p, (11.15.12)

which directly follows by taking the trace product of (11.15.9) with Ḟ from

the left, and by using Eq. (11.15.7).

11.16. Normality Properties

If increments rather than rates are used, we can write Eq. (11.15.12) as

dF · · dpP = dE : dpT. (11.16.1)

An analogous expression holds when the increments of F and E are used

along an unloading elastic branch of the response, i.e.,

δF · · dpP = δE : dpT. (11.16.2)
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If this is positive, we say that the material complies with the normality rule

in strain space. Since

dpP = −Λ · · dpF, dpT = −Λ(1) : dpE, (11.16.3)

and

δP = Λ · · δF, δT = Λ(1) : δE, (11.16.4)

the substitution into Eq. (11.16.2) yields a dual relationship

δP · · dpF = δT : dpE. (11.16.5)

When this is negative, the material complies with the normality rule in stress

space. We recall from Section 8.5, if the material complies with Ilyushin’s

postulate of positive net work in an isothermal cycle of strain that involves

plastic deformation, the quantity in (11.16.1) must be negative, i.e.,

dF · · dpP = dE : dpT < 0. (11.16.6)

Equation (11.16.1) does not have a dual relationship, since

dP · · dpF �= dT : dpE. (11.16.7)

Instead, we can only write

dF · · Λ · · dpF = dE : Λ(1) : dpE, (11.16.8)

or

dP · · dpF + dpF · · Λ · · dpF = dT : dpE + dpE : Λ(1) : dpE. (11.16.9)

If the material is in the hardening range relative to the conjugate measures

E and T, the stress increment dT, producing plastic deformation dpE, is

directed outside the yield surface, satisfying dT : dpE > 0. If the material

is in the softening range, the stress increment producing plastic deformation

is directed inside the yield surface, satisfying the reversed inequality. The

quantity dT : dpE, however, is not invariant under the change of strain

measure, and the material judged to be in the hardening range relative to

one pair of the conjugate stress and strain measures, may be in the softening

range relative to another pair.

As an illustration, consider a uniaxial tension of an incompressible rigid-

plastic material whose response in the Cauchy stress vs. logarithmic strain
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(a) (b)

Figure 11.3. (a) Piola–Kirchhoff vs. Lagrangian strain,
and (b) nominal stress vs. deformation gradient in uniaxial
tension of rigid-plastic material with the constant hardening
modulus k = 2σ0 relative to the Cauchy stress and logarith-
mic strain measures.

space is described by the linear hardening

σ = k lnλ + σ0. (11.16.10)

The constant rate of hardening is k, the initial yield stress is σ0, and λ is

the longitudinal stretch ratio. The corresponding response observed relative

to T = σ/λ2 vs. E = (λ2 − 1)/2 measures is

T =
1

1 + 2E

[
σ0 +

1
2
k ln(1 + 2E)

]
. (11.16.11)

A transition from the hardening to softening occurs at

E0 =
1
2

[
exp

(
1 − 2σ0

k

)
− 1

]
. (11.16.12)

The response observed relative to P = σ/λ vs. F = λ measures is

P =
1
F

(σ0 + k lnF ). (11.16.13)

A transition from the hardening to softening occurs at

F0 = exp
(
1 − σ0

k

)
. (11.16.14)

For example, for k = 2σ0 the softening commences at F0 =
√
e in the

nominal stress vs. deformation gradient, and from the onset of deformation

in the Piola–Kirchhoff stress vs. Lagrangian strain measures (E0 = 0).

However, a necking of the specimen begins when dσ/d(lnλ) = σ, i.e., when
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λ = exp(1 − σ0/k). Thus, the necking takes place when

lnλ∗ = 1 − σ0

k
, 2E∗ = exp

[
2

(
1 − σ0

k

)]
− 1, F∗ = exp

(
1 − σ0

k

)
.

(11.16.15)

For k = 2σ0, this gives

lnλ∗ =
1
2

E∗ =
1
2

(e− 1), F∗ =
√
e. (11.16.16)

While the onset of softening coincides with the onset of necking when (P, F )

measures are used, with k = 2σ0 the necking occurs in the softening range

relative to (T,E) measures, and in the hardening range relative to (σ, lnλ)

measures (Fig. 11.3).

11.17. Elastoplastic Deformation of Orthotropic Materials

11.17.1. Principal Axes of Orthotropy

Consider an elastically orthotropic material in its undeformed configuration

B0. Let the unit vectors a0
i (i = 1, 2, 3) define the corresponding principal

axes of orthotropy (Fig. 11.4). The elastic strain energy function can be

most conveniently expressed in the coordinate system with the axes parallel

to a0
i . Denote this representation by

Ψe = Ψe(Ee), (11.17.1)

where Ee is the Lagrangian strain of purely elastic deformation from B0. If

it is assumed that the material remains orthotropic during elastoplastic de-

formation, the principal axes of orthotropy in the intermediate configuration

Bp are defined by the unit vectors

âi = RRR · a0
i , (11.17.2)

where RRR is an orthogonal rotation tensor. The elastic strain energy rela-

tive to the unstressed intermediate configuration, expressed in the original

coordinate system with the axes parallel to a0
i , is (Lubarda, 1991b)

Ψe = Ψe(RRRT · Ee · RRR). (11.17.3)

The function Ψe here is the same function as that used in Eq. (11.17.1) to

describe elastic response from the initial undeformed configuration, but its

arguments are the components of the rotated strain tensor

Êe = RRRT · Ee · RRR, Ee =
1
2

(
FeT · Fe − I

)
. (11.17.4)
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Figure 11.4. Multiplicative decomposition of deformation
gradient for an orthotropic material. Principal directions
of orthotropy a0

i in the initial configuration B0 are rotated
to âi = RRR · a0

i in the intermediate configuration Bp. They
are then convected to the current configuration B by elastic
deformation such that ai = Fe · âi.

The components of the strain tensor Ee, observed in the coordinate system

with the axes parallel to a0
i , are numerically equal to the components of the

strain tensor Êe, observed in the coordinate system with the axes parallel to

âi.

Due to possible discontinuities in displacements and rotations of the ma-

terial elements at the microscale, caused by plastic deformation, the rotation

tensor RRR is in general not specified by the overall plastic deformation gra-

dient Fp. In particular, the vectors a0
i are not simply convected with the

material in the transformation from B0 to Bp. In contrast, the unit vec-

tors âi can be considered as embedded in the material during the elastic

deformation from Bp to B. Thus, they become

ai = Fe · âi = Fe · RRR · a0
i (11.17.5)

	 �
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in the elastoplastically deformed configuration B. By differentiation, their

rate of change is

ȧi =
[
Ḟe · Fe−1 + Fe ·

(
ṘRR ·RRR−1

)
· Fe−1

]
· ai. (11.17.6)

If Re is the rotation tensor from the polar decomposition

Fe = Ve · Re = Re · Ue, (11.17.7)

we have

ai = Ve · RRRe · a0
i , RRRe = Re · RRR. (11.17.8)

While bothRRR and Re depend on the choice of the intermediate configuration

(superposed rotation Q̂), so that

RRR∗ = Q̂ · RRR, Re∗ = Re · Q̂T , (11.17.9)

the rotation RRRe is a unique quantity, independent of Q̂, i.e.,

RRRe∗ = RRRe. (11.17.10)

Apart from rotation of the material elements caused by elastic stretching

Ve, the directions of the principal axes of orthotropy in the deformed con-

figuration B are completely specified by the rotation tensor RRRe.

11.17.2. Partition of the Rate of Deformation

The stress response from Bp to B is given by

τ = Fe · ∂Ψe(Êe)
∂Ee

· FeT , (11.17.11)

where τ = (detF)σ is the Kirchhoff stress. The elastic strain energy function

is reckoned per unit unstressed volume, and plastic deformation is assumed

to be incompressible. Upon differentiation, we obtain

τ̇−
(
Ḟe · Fe−1

)
· τ− τ ·

(
Ḟe · Fe−1

)T
= LLL(1) :

(
Ḟe · Fe−1

)
s

+ Fe ·
(

∂2Ψe

∂Ee ⊗ ∂RRR · ·ṘRR
)
· FeT .

(11.17.12)

The rectangular components of LLL(1) are

L(1)
ijkl = F e

iMF e
jN

∂2Ψe(Êe)
∂Ee

MN ∂Ee
PQ

F e
kPF

e
lQ. (11.17.13)
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The last term on the right-hand side of Eq. (11.17.12) can be conveniently

rewritten as

Fe ·
(

∂2Ψe

∂Ee ⊗ ∂RRR · ·ṘRR
)
· FeT = −LLL(1) : Zs − τ · Z − ZT · τ, (11.17.14)

where

Z = Fe−T ·
(
ṘRR ·RRR−1

)
· FeT . (11.17.15)

In the transition, the following expressions were utilized

∂Ψe

∂RRR = 2RRRT · ∂Ψe

∂Ee
· Ee, (11.17.16)

∂2Ψe

∂Ee
IJ ∂RKL

= RML

(
2

∂2Ψe

∂Ee
IJ ∂Ee

MN

Ee
NK +

∂Ψe

∂Ee
MI

δJK +
∂Ψe

∂Ee
MJ

δIK

)
.

(11.17.17)

The right-hand side of Eq. (11.17.14) is also equal to

−LLL(1) : Zs − τ · Z − ZT · τ = −LLL(0) : Zs − τ · Za + Za · τ. (11.17.18)

The components of the elastic moduli tensor LLL(0) are

L(0)
ijkl = L(1)

ijkl +
1
2

(τikδjl + τjkδil + τilδjk + τjlδik). (11.17.19)

Thus, Eq. (11.17.12) becomes

τ̇−
(
Ḟe · Fe−1

)
a
· τ + τ ·

(
Ḟe · Fe−1

)
a

= LLL(0) :
[(

Ḟe · Fe−1
)

s
− Zs

]
+ Za · τ− τ · Za.

(11.17.20)

To proceed with the analysis, we recall from Eq. (11.3.4) that(
Ḟe · Fe−1

)
a

= W − ωp, ωp =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
a
. (11.17.21)

When this is substituted into Eq. (11.17.20), there follows
◦
τ = LLL(0) :

[(
Ḟe · Fe−1

)
s
− Zs

]
− (ωp − Za) · τ + τ · (ωp − Za). (11.17.22)

Consequently, the elastic rate of deformation is given by

De =
(
Ḟe · Fe−1

)
s
− Zs

−LLL−1
(0) : [(ωp − Za) · τ− τ · (ωp − Za)] .

(11.17.23)

The remaining, plastic part of the rate of deformation is

Dp =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
s
+ Zs

+LLL−1
(0) : [(ωp − Za) · τ− τ · (ωp − Za)] .

(11.17.24)

© 2002 by CRC Press LLC 



The spin (ωp − Za), appearing in the previous equations, can be expressed

from Eqs. (11.17.15) and (11.17.21) as

ωp − Za =
[
Fe ·

(
Ḟp · Fp−1 −ṘRR ·RRR−1

)
· Fe−1

]
a
. (11.17.25)

11.17.3. Isoclinic Intermediate Configuration

If intermediate configuration is specified by

RRR = I, i.e., âi = a0
i , (11.17.26)

it is referred to as an isoclinic intermediate configuration. The terminology is

originally due to Mandel (1973). For an isoclinic intermediate configuration,

therefore,

ai = Fe · a0
i = Ve · Re · a0

i . (11.17.27)

If the rotation Re is determined by the integration from an appropriately

constructed constitutive expression for the spin

Ωe = Ṙe · Re−1, (11.17.28)

the stress response and the elastic moduli of an orthotropic material are

derived from

τ = 2Ve · ∂Ψe(ReT · Be · Re)
∂Be

· Ve, (11.17.29)

L(1)
ijkl = 4V e

imV e
jn

∂2Ψe(ReT · Be · Re)
∂Be

mn ∂B
e
pq

V e
kpV

e
lq, (11.17.30)

in terms of Ve and Re.

Since ṘRR = 0 for an isoclinic intermediate configuration, we have Z = 0

in Eq. (11.17.15). Consequently, from Eqs. (11.17.23) and (11.17.24), the

elastic and plastic parts of the rate of deformation become

De =
(
Ḟe · Fe−1

)
s
−LLL−1

(0) : (ωp · τ− τ · ωp), (11.17.31)

Dp =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
s
+LLL−1

(0) : (ωp · τ− τ · ωp). (11.17.32)

In particular, if the principal directions of stress remain parallel to a0
i during

the deformation, the orientation of the principal directions of orthotropy are

fixed, and Re = I.
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11.17.4. Orthotropic Yield Criterion

The yield criterion of an orthotropic material can be constructed by using an

orthotropic function of the rotated-axes components of the Cauchy stress,

i.e.,

f(σ̂, k) = 0, σ̂ = RRReT · σ · RRRe. (11.17.33)

The scalar k specifies the current size of the yield surface. For isotropic

hardening, this is a function of an equivalent or generalized plastic strain.

Using Hill’s (1948) orthotropic criterion, the function f can be expressed as

f = [f0(σ̂22 − σ̂33)2 + g0(σ̂33 − σ̂11)2 + h0(σ̂11 − σ̂22)2

+2l0 σ̂2
23 + 2m0 σ̂

2
31 + 2n0 σ̂

2
12

]1/2 − k.
(11.17.34)

The plastic part of the rate of deformation is assumed to be normal to the

yield surface, and given by

Dp =
1
H

(
∂f

∂σ
⊗ ∂f

∂σ

)
:
◦
τ. (11.17.35)

The scalar H is determined from the consistency condition ḟ = 0. For an

isoclinic intermediate configuration,

RRRe = Re, σ̂ = ReT · σ · Re. (11.17.36)

If the constitutive expression for the spin Ωe is available, the rotation Re

is determined by the integration from Eq. (11.17.28). Equation (11.17.35)

then defines the plastic part of the rate of deformation for an orthotropic

material.

Additional analysis of the yield criteria and constitutive theory for or-

thotropic materials is available in Hill (1979,1990,1993), Boehler (1982,

1987), Betten (1988), Ferron, Makkouk, and Morreale (1994), Steinmann,

Miehe, and Stein (1996), and Vial-Edwards (1997). For an elastoplastic

analysis of the transversely isotropic materials, see Aravas (1992).

11.18. Damage-Elastoplasticity

11.18.1. Damage Variables

If plastic deformation affects the elastic properties, which, for example, can

happen due to grain (lattice) rotations in a polycrystalline metal sample and
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resulting crystallographic texture, additional variables need to be introduced

in the constitutive framework to describe these changes. They are referred to

as the damage variables. They describe a degradation of the elastic proper-

ties and their directional changes produced by plastic deformation. Damage

variables may be scalars, vectors, second- or higher-order tensors. Derivation

in this section will be restricted to damage variables that are either scalars,

second- or fourth-order symmetric tensors, collectively denoted by d.

Damage variables change only during plastic deformation, remaining

unaltered by elastic unloading or reverse elastic loading, except for the elas-

tic embedding which convects them with the material (Lubarda, 1994b).

Thus, if a damage variable in the configuration B is d, it becomes d̂ in the

intermediate configuration Bp, where d̂ is induced from d by the elastic de-

formation Fe. For example, the induced damage variable can be defined by

the transformation of a weighted contravariant or covariant type. For the

second-order tensor these are

d̂ = (detFe)w Fe−1 · d · Fe−T , d̂ = (detFe)−w FeT · d · Fe, (11.18.1)

where w is the weight. Transformations of mixed type could also be consid-

ered. For the fourth-order tensors the weighted contravariant and covariant

transformations are

d̂ = (detFe)w Fe−1 Fe−1 dFe−T Fe−T , d̂ = (detFe)−w FeT FeT dFe Fe.
(11.18.2)

The products in (11.18.2) are defined such that, for example, the components

of the covariant transformation are

d̂IJKL = (detFe)−w F e
mI F

e
nJ dmnpq F

e
pK F e

qL. (11.18.3)

The elastic strain energy per unit unstressed volume in the configuration

Bp is

Ψe = Ψe(Ee, d̂). (11.18.4)

The elastic strain energy per unit initial volume in the configuration B0 is

then

Ψ = (detFp) Ψe = Ψ(Ee, d̂), (11.18.5)

which is equal to Ψe only when the plastic deformation is incompressible.

The function Ψ is an isotropic function of both Ee and d̂. This means that,
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under a rigid-body rotation Q̂, superposed to the intermediate configuration,

Ψ(Q̂ · Ee · Q̂T , Q̂ · d̂ · Q̂T ) = Ψ(Ee, d̂). (11.18.6)

The damage variable in this expression is assumed to be a second-order

symmetric tensor. The elastic stress response from Bp to B is consequently

(detFe)σ = Fe · ∂Ψe(Ee, d̂)
∂Ee

· FeT , (11.18.7)

or

τ = Fe · ∂Ψ(Ee, d̂)
∂Ee

· FeT , (11.18.8)

where τ = (detF)σ is the Kirchhoff stress.

11.18.2. Inelastic and Damage Rates of Deformation

Upon differentiation of Eq. (11.18.8), we obtain

τ̇−
(
Ḟe · Fe−1

)
· τ− τ ·

(
Ḟe · Fe−1

)T
= LLL(1) :

(
Ḟe · Fe−1

)
s

+ Fe ·
(

∂2Ψ

∂Ee ⊗ ∂d̂
: ˙̂d

)
· FeT .

(11.18.9)

The rectangular components of LLL(1) are

L(1)
ijkl = F e

iMF e
jN

∂2Ψ(Ee, d̂)
∂Ee

MN ∂Ee
PQ

F e
kPF

e
lQ. (11.18.10)

The last term on the right-hand side of Eq. (11.18.9) can be conveniently

rewritten as

Fe ·
(

∂2Ψ

∂Ee ⊗ ∂d̂
: ˙̂d

)
· FeT =

∂τ

∂d̂
: ˙̂d. (11.18.11)

Substitution of Eqs. (11.18.11) and (11.17.21) into Eq. (11.18.9) then gives

◦
τ = LLL(0) :

(
Ḟe · Fe−1

)
s
− ωp · τ + τ · ωp +

∂τ

∂d̂
: ˙̂d. (11.18.12)

The elastic part of the rate of deformation,

De = LLL−1
(0) :

◦
τ, (11.18.13)

is identified from Eq. (11.18.12) as

De =
(
Ḟe · Fe−1

)
s
−LLL−1

(0) : (ωp · τ− τ · ωp) +LLL−1
(0) :

(
∂τ

∂d̂
: ˙̂d

)
.

(11.18.14)
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Figure 11.5. Geometric interpretation of the partition of
the strain increment into its elastic, damage, and plastic
parts.

The remaining part of the total rate of deformation is the inelastic part

Di = D − De =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
s

+LLL−1
(0) : (ωp · τ− τ · ωp) −LLL−1

(0) :
(
∂τ

∂d̂
: ˙̂d

)
.

(11.18.15)

The first two terms on the right-hand side of Eq. (11.18.15) represent

the plastic part

Dp =
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
s
+LLL−1

(0) : (ωp · τ− τ · ωp), (11.18.16)

while

Dd = −LLL−1
(0) :

(
∂τ

∂d̂
: ˙̂d

)
(11.18.17)

is the damage part of the rate of deformation tensor (Fig. 11.5). These are

such that

Di = Dp + Dd, (11.18.18)

and

D = De + Di = De + Dp + Dd. (11.18.19)

If the material behavior complies with Ilyushin’s postulate, the inelastic

part Di of the rate of deformation tensor is normal to a locally smooth yield

surface in the Cauchy stress space.

�

�

�

�
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�
� ���

��
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© 2002 by CRC Press LLC 



11.18.3. Rates of Damage Tensors

For a scalar damage variable, which transforms during the elastic deforma-

tion according to

d̂ = (detFe)w d, (11.18.20)

the rates of d and d̂ are related by

˙̂
d = (detFe)

[
ḋ + w d tr

(
Ḟe · Fe−1

)]
. (11.18.21)

For a second-order damage tensor d and a covariant type transformation,

we have

d̂ = (detFe)−w FeT · d · Fe,
˙̂d = (detFe)−w FeT ·

�
d · Fe. (11.18.22)

Here,
�
d = ḋ + d ·

(
Ḟe · Fe−1

)
+

(
Ḟe · Fe−1

)T
· d − w d tr

(
Ḟe · Fe−1

)
(11.18.23)

represents the convected rate associated with a weighted covariant trans-

formation. If the induced tensor d̂ is obtained from d by a contravariant

transformation, then

d̂ = (detFe)w Fe−1 · d · Fe−T ,
˙̂d = (detFe)w Fe−1 ·

�
d · Fe−T . (11.18.24)

The convected rate associated with a weighted contravariant transformation

is
�
d = ḋ −

(
Ḟe · Fe−1

)
· d − d ·

(
Ḟe · Fe−1

)T
+ w d tr

(
Ḟe · Fe−1

)
. (11.18.25)

For the fourth-order damage tensor with a covariant transformation, we

similarly have

d̂ = (detFe)−w FeT FeTdFe Fe, (11.18.26)

˙̂d = (detFe)−w FeT FeT
�
dFe Fe. (11.18.27)

The rectangular components of
�
d are

�
dijkl = ḋijkl + Le

mi dmjkl + Le
mj dimkl + Le

mk dijml + Le
ml dijkm

− wLe
mm dijkl.

(11.18.28)

The notation Le = Ḟe ·Fe−1 is used in Eq. (11.18.28). If the induced tensor

d̂ is obtained from the fourth-order damage tensor d by a contravariant
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transformation, there follows

d̂ = (detFe)w Fe−1 Fe−1 dFe−T Fe−T , (11.18.29)

˙̂d = (detFe)w Fe−1 Fe−1
�
dFe−T Fe−T , (11.18.30)

where
�
dijkl = ḋijkl − Le

im dmjkl − Le
jm dimkl − Le

km dijml − Le
lm dijkm

+ wLe
mm dijkl.

(11.18.31)

Substituting the expression for ˙̂d, corresponding to the tensorial order

of the introduced damage variable d and the transformation rule between d̂

and d, into the expression for the damage part of the rate of deformation,

gives

∂τ

∂d̂
: ˙̂d =

∂τ

∂d
:

�
d, or

∂τ

∂d̂
: ˙̂d =

∂τ

∂d
:

�
d, (11.18.32)

and

Dd = −LLL−1
(0) :

(
∂τ

∂d
:

�
d
)
, or Dd = −LLL−1

(0) :
(
∂τ

∂d
:

�
d
)
. (11.18.33)

With the specified evolution equation for
�
d or

�
d, this determines the damage

part of the rate of deformation.

Further elaboration on the constitutive theory of damage-elastoplasticity

can be found in the papers by Simo and Ju (1987), Lehmann (1991), Hansen

and Schreyer (1994), Lubarda (1994b), and Lubarda and Krajcinovic (1995).

See also the books by Lemaitre and Chaboche (1990), Maugin (1992), Kra-

jcinovic (1996), and Voyiadjis and Kattan (1999).

11.19. Reversed Decomposition F = Fp · Fe

In the wake of Lee’s decomposition F = Fe · Fp, the suggestions were

made for an alternative, reversed decomposition F = Fp · Fe (e.g., Clifton,

1972; Nemat-Nasser, 1979). This decomposition, however, remained far less

employed than the original Lee’s decomposition. Lubarda (1999) recently

demonstrated that the constitutive analysis of elastoplastic behavior can be

developed by using the reversed decomposition quite analogously as using

Lee’s decomposition. The two formulations can be viewed in many respects
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as dual to each other, both leading to the same final structure of the con-

stitutive equations, although some of the derivation and interpretations are

simpler in the case of Lee’s decomposition.

The reversed decomposition is introduced as follows. An arbitrary state

of elastoplastic deformation, corresponding to the deformation gradient F,

is imagined to be reached in two stages. First, it is assumed that all in-

ternal mechanisms responsible for plastic deformation are frozen, so that,

for example, the critical forces needed to drive dislocations, or the critical

resolved shear stresses of the crystalline slip systems, are assigned infinitely

large values. The application of the total stress to such material, incapable of

plastic deformation, results in the pure elastic deformation Fe. This carries

the material from its initial configuration B0 to the intermediate configu-

ration Be. Subsequently, the material is plastically unlocked, by defreezing

the mechanisms of plastic deformation, which enables the material to flow

at the constant stress. The corresponding part of the deformation gradient,

associated with the transition from the intermediate Be to the final config-

uration B, is the plastic part of deformation gradient Fp (Fig. 11.6). Thus,

the reversed decomposition

F = Fp · Fe. (11.19.1)

The intermediate elastically deformed configuration Be is unique, since

a superposed rotation to Be would rotate the stress state, and the plastic

flow from Be to B would not take place at the constant state of stress. In the

subsequent analysis it will be assumed that plastic flow is incompressible and

that elastic properties of the material are not affected by plastic deformation.

Relative to a given orientation of the principal directions of elastic anisotropy,

there is in this case a unique

Fe = Fe (11.19.2)

that gives rise to total stress in Be and B. This stress is

τ = Fe · ∂Ψe

∂Ee
· FeT . (11.19.3)

The elastic strain energy per unit initial volume is Ψe, while Ee is the La-

grangian elastic strain relative to its ground state (Bp in the case of Lee’s
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Figure 11.6. Schematic representation of the reversed
multiplicative decomposition of deformation gradient into
its elastic and plastic parts. The intermediate configuration
Be is obtained from the initial configuration B0 by elastic
loading to the current stress level, assuming that all inelastic
mechanisms of the deformation are momentarily frozen.

decomposition and B0 in the case of the reversed decomposition, both hav-

ing the same orientation of the principal axes of anisotropy, relative to the

fixed frame of reference). The Kirchhoff stress is τ = (detF)σ, where σ

designates the Cauchy stress. Therefore, we can write

F = Fe · Fp = Fp · Fe. (11.19.4)

The same elastic deformation gradient Fe appears in both decompositions.

The relationship between plastic parts of the deformation gradient is conse-

quently

Fp = Fe−1 · Fp · Fe. (11.19.5)

If the material is elastically isotropic, an initial rotation Re of B0 does

not affect the stress response, and the relevant part of the total deformation

�
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�
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gradient for the constitutive analysis is

F = Fp · Ve. (11.19.6)

In this case, therefore, we can write

F = Ve · Fp = Fp · Ve. (11.19.7)

11.19.1. Elastic Unloading

During elastic loading from Bp to B, or elastic unloading from B to Bp, the

plastic deformation gradient Fp of the decomposition F = Fe · Fp remains

constant. This greatly simplifies the derivation of the corresponding con-

stitutive equations. As shown in Section 11.3, the velocity gradient in B
is

L = Ḟe · Fe−1 + Fe ·
(
Ḟp · Fp−1

)
· Fe−1, (11.19.8)

so that during elastic unloading

Ḟp = 0, L = Ḟe · Fe−1. (11.19.9)

In the framework of the reversed decomposition F = Fp · Fe, however, the

plastic part of deformation gradient Fp does not remain constant during

elastic unloading. In fact, upon complete unloading from an elastoplastic

state of deformation to zero stress, the configuration Bp is reached, and

Fp = Fp at that instant (Fig. 11.7). Therefore, Ḟp �= 0 during elastic

unloading. This can also be recognized from the general relationship between

Fp and Fp. By differentiating Eq. (11.19.5), we obtain

Ḟp = Fe−1 ·
∗
Fp · Fe, (11.19.10)

where
∗
Fp = Ḟp −

(
Ḟe · Fe−1

)
· Fp + Fp ·

(
Ḟe · Fe−1

)
(11.19.11)

is a convected-type derivative of Fp relative to elastic deformation. Conse-

quently,
∗
Fp = 0, if Ḟp = 0, (11.19.12)

and in this case

Ḟp =
(
Ḟe · Fe−1

)
· Fp − Fp ·

(
Ḟe · Fe−1

)
. (11.19.13)

The last expression defines the change of Fp during elastic unloading.
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Figure 11.7. Plastic part of deformation gradient Fp does
not remain constant during elastic unloading. Upon com-
plete unloading to zero stress, the configuration Bp is
reached, and Fp = Fp at that instant.

Furthermore, from Eq. (11.19.10),

Ḟp · Fp−1 = Fe−1 ·
( ∗
Fp · Fp

−1

)
· Fe, (11.19.14)

and the substitution into Eq. (11.19.8) gives

L = Ḟe · Fe−1 +
∗
Fp · Fp

−1. (11.19.15)

11.19.2. Elastic and Plastic Rates of Deformation

If the elastic part of the rate of deformation tensor is defined by a kinetic

relation

De = LLL−1
(0) :

◦
τ,

◦
τ = τ̇− W · τ + τ · W, (11.19.16)

it follows that

De =
(
Ḟe · Fe−1

)
s
−LLL−1

(0) : (ωp · τ− τ · ωp) , (11.19.17)
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Dp =
( ∗
Fp · Fp

−1

)
s

+LLL−1
(0) : (ωp · τ− τ · ωp) . (11.19.18)

The spin ωp is

ωp =
( ∗
Fp · Fp

−1

)
a

=
[
Fe ·

(
Ḟp · Fp−1

)
· Fe−1

]
a
. (11.19.19)

The elastic part of the rate of deformation can also be expressed as

De =
( •
Fe · Fe−1

)
s

, (11.19.20)

where
•
Fe = Ḟe − Ωp · Fe + Fe · Ωp. (11.19.21)

The spin Ωp is the solution of the matrix equation

W =
(
Ḟe · Fe−1

)
a

+
(
Fe · Ωp · Fe−1

)
a
. (11.19.22)

This is analogous to the derivation from Section 11.7, based on Lee’s decom-

position. Therefore,

De =
(
Ḟe · Fe−1

)
s
+

(
Fe · Ωp · Fe−1

)
s
, (11.19.23)

Dp =
( ∗
Fp · Fp

−1

)
s

− (
Fe · Ωp · Fe−1

)
s
. (11.19.24)

Summing up Eqs. (11.19.22)–(11.19.24), we obtain an expression for the

velocity gradient L. The comparison with Eq. (11.19.15) then gives

0 =
( ∗
Fp · Fp

−1

)
a

− (
Fe · Ωp · Fe−1

)
a
. (11.19.25)

Thus, the plastic part of the rate of deformation can be alternatively written

as

Dp =
∗
Fp · Fp

−1 − Fe · Ωp · Fe−1. (11.19.26)

The result is in accord with Eq. (11.8.2), as can be verified by using the

definitions of
•
Fp and

∗
Fp, and the relationship

F−1
p = Fe · Fp−1 · Fe−1. (11.19.27)

The presented derivation demonstrates a duality in the constitutive for-

mulation of large-deformation elastoplasticity based on Lee’s decomposition

F = Fe ·Fp and the reversed decomposition F = Fp ·Fe, at least for the con-

sidered material models. The structure of the kinematic expressions is more

involved in the case of the reversed decomposition, partly because during
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elastic unloading the plastic deformation gradient Fp of Lee’s decomposition

remains constant, while Fp of the reversed decomposition changes, albeit in

a definite manner specified by Eq. (11.19.13). It is possible, however, that in

some applications the reversed decomposition may have certain advantages.

For example, Clifton (1972) found that it is slightly more convenient in the

analysis of one-dimensional wave propagation in elastic-viscoplastic solids.

Lee’s decomposition has definite advantages in modeling the plasticity

with evolving elastic properties. In this case, a set of damage or structural

tensors can be attached to the intermediate configuration Bp to represent

its current state of elastic anisotropy. The structural tensors evolve during

plastic deformation, depending on the nature of microscopic inelastic pro-

cesses, as represented by the appropriate evolution equations. The stress

response at each instant of deformation is given in terms of the gradient of

elastic strain energy with respect to elastic strain, at the current values of the

structural tensors. This has been discussed in Section 11.18. In the case of

the reversed decomposition, however, the elastic response is defined relative

to the initial configuration B0, which does not contain any information about

the evolving elastic properties or subsequently developed elastic anisotropy.

Additional remedy has to be introduced to deal with these features of the

material response, which is likely to make the reversed decomposition less

attractive than the original Lee’s decomposition.
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CHAPTER 12

CRYSTAL PLASTICITY

Previous chapters were devoted to phenomenological theory of plasticity, in

which microscopic structure and mechanisms causing plastic flow were not

included explicitly, but only implicitly through macroscopic variables, such

as the generalized plastic strain, the radius of the yield surface, or the back

stress. This chapter deals with plastic deformation of single crystals. The

discrete dislocation substructure is still ignored, but plastic deformation is

considered to occur in the form of smooth shearing on the slip planes and

in the slip directions. Such continuum model of slip has its origin in the

pioneering work of Taylor (1938). The model was further developed by Hill

(1966) in the case of elastoplastic deformation with small elastic component

of deformation, and by Rice (1971), Kratochvil (1971), Hill and Rice (1972),

Havner (1973), Mandel (1974), Asaro and Rice (1977), and Hill and Havner

(1982) in the case of finite elastic and plastic deformations. Since the theory

explicitly accounts for the specific microscopic process (crystallographic slip),

it is also referred to as the physical theory of plasticity. Optical micrographs

of crystallographic slip are shown in Fig. 12.1. Other mechanisms of plastic

deformation, such as twinning, displacive (martensitic) transformations, and

diffusional processes are not considered in this chapter.

12.1. Kinematics of Crystal Deformation

The kinematic representation of elastoplastic deformation of single crystals

(monocrystals), in which crystallographic slip is assumed to be the only

mechanism of plastic deformation, is shown in Fig. 12.2. The material flows

through the crystalline lattice via dislocation motion, while the lattice itself,

with the material embedded to it, undergoes elastic deformation and rota-

tion. The plastic deformation is considered to occur in the form of smooth
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(a) (b)

Figure 12.1. (a) Optical micrograph of crystallographic
slip in an Au crystal, and (b) bands of primary and sec-
ondary slip in an aluminum crystal (from Sawkill and Hon-
eycombe, 1954; with permission from Elsevier Science).

shearing on the slip planes and in the slip directions. The deformation gra-

dient F is decomposed as

F = F∗ · Fp, (12.1.1)

where Fp is the part of F due to slip only, while F∗ is the part due to lattice

stretching and rotation. This decomposition is formally analogous to Lee’s

(1969) multiplicative decomposition, discussed in the previous chapter. The

deformation gradient remaining after elastic destressing and upon returning

the lattice to its original orientation is Fp = F·F∗−1. Denote the unit vector

in the slip direction and the unit vector normal to the corresponding slip

plane in the undeformed configuration by sα0 and mα
0 , where α designates the

slip system. The same vectors are attached to the lattice in the intermediate

configuration, because the lattice does not deform or rotate during the slip

induced transformation Fp. The vector sα0 is embedded in the lattice, so

that it becomes sα = F∗ · sα0 in the deformed configuration. The normal

to the slip plane in the deformed configuration is defined by the reciprocal

vector mα = mα
0 · F∗−1. Thus,

sα = F∗ · sα0 , mα = mα
0 · F∗−1. (12.1.2)

In general, sα and mα are not unit vectors, but are orthogonal to each other,

sα · mα = 0.
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Figure 12.2. Kinematic model of elastoplastic deforma-
tion of single crystal. The material flows through the crys-
talline lattice by crystallographic slip, which gives rise to
deformation gradient Fp. Subsequently, the material with
the embedded lattice is deformed elastically from the inter-
mediate to the current configuration. The lattice vectors
in the two configurations are related by sα = F∗ · sα0 and
mα = sα0 · F∗−1.

Velocity Gradient

In view of the decomposition (12.1.1), the velocity gradient L = Ḟ ·F−1 can

be expressed as

L = L∗ + F∗ ·
(
Ḟp · Fp−1

)
· F∗−1, (12.1.3)

where L∗ is the lattice velocity gradient,

L∗ = Ḟ∗ · F∗−1. (12.1.4)

The velocity gradient in the intermediate configuration is produced by the

slip rates γ̇α on n active slip systems, such that

Ḟp · Fp−1 =
n∑

α=1

γ̇α sα0 ⊗ mα
0 . (12.1.5)
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The slip systems
(
s0,m0

)
and

(−s0,m0
)

are considered as separate slip

systems, on each of which only the positive slip rate is allowed. For example,

with this convention, the total number of available slip systems in f.c.c.

crystals is 24. Using Eq. (12.1.2), the corresponding tensor in the deformed

configuration is

F∗ ·
(
Ḟp · Fp−1

)
· F∗−1 =

n∑
α=1

γ̇α sα ⊗ mα. (12.1.6)

The right-hand side of Eq. (12.1.6) can be decomposed into its symmet-

ric and anti-symmetric parts as
n∑

α=1

γ̇α sα ⊗ mα =
n∑

α=1

(Pα + Qα) γ̇α. (12.1.7)

The second-order (slip orientation) tensors Pα and Qα are defined by (e.g.,

Asaro, 1983a)

Pα =
1
2

(sα ⊗ mα + mα ⊗ sα) , (12.1.8)

Qα =
1
2

(sα ⊗ mα − mα ⊗ sα) . (12.1.9)

Thus, the velocity gradient can be expressed as

L = L∗ +
n∑

α=1

(Pα + Qα) γ̇α. (12.1.10)

Upon using the decomposition of the lattice velocity gradient L∗ into its

symmetric and anti-symmetric parts, the lattice rate of deformation D∗ and

the lattice spin W∗, i.e.,

L∗ = D∗ + W∗, (12.1.11)

we can split Eq. (12.1.10) into

D = D∗ +
n∑

α=1

Pα γ̇α, (12.1.12)

W = W∗ +
n∑

α=1

Qα γ̇α. (12.1.13)

The time-rate of the Schmid orientation tensor Pα can be found by

differentiating Eq. (12.1.8). Since

ṡα = L∗ · sα, ṁα = −mα · L∗, (12.1.14)
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there follows

Ṗα =
1
2

[L∗ · (sα ⊗ mα) − (sα ⊗ mα) · L∗

− L∗T · (mα ⊗ sα) + (mα ⊗ sα) · L∗T ]
.

(12.1.15)

This can be rewritten in terms of the Jaumann derivative of Pα with respect

to the lattice spin as
•
Pα = Ṗα − W∗ · Pα + Pα · W∗ = D∗ · Qα − Qα · D∗. (12.1.16)

Rate of Lagrangian Strain

The following Lagrangian strain measures, relative to the initial reference

configuration, can be introduced

E =
1
2

(
FT · F − I

)
, Ep =

1
2

(
FpT · Fp − I

)
, (12.1.17)

where I is the second-order unit tensor. The Lagrangian lattice strain, with

respect to the intermediate configuration, is

E∗ =
1
2

(
F∗T · F∗ − I

)
. (12.1.18)

The introduced strain measures are related by

E = FpT · E∗ · Fp + Ep. (12.1.19)

By differentiating Eq. (12.1.19), the rate of total Lagrangian strain is

Ė = FpT ·
{
Ė∗ +

1
2

[
C∗ ·

(
Ḟp · Fp−1

)
+

(
Ḟp · Fp−1

)T
· C∗

]}
· Fp,

(12.1.20)

where

C∗ = F∗T · F∗ (12.1.21)

is the lattice deformation tensor. After Eq. (12.1.5) is substituted into Eq.

(12.1.20), the rate of the Lagrangian strain becomes

Ė = FpT · Ė∗ · Fp +
n∑

α=1

Pα
0 γ̇α. (12.1.22)

The symmetric second-order tensor Pα
0 is defined by

Pα
0 =

1
2
FpT · [C∗ · (sα0 ⊗ mα

0 ) + (mα
0 ⊗ sα0 ) · C∗] · Fp. (12.1.23)

It can be easily verified that Pα
0 is induced from Pα by the deformation F,

so that

Pα
0 = FT · Pα · F. (12.1.24)
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An equivalent representation of the tensor Pα
0 is

Pα
0 =

1
2

(
C · Zα

0 + Zα
0

T · C)
, (12.1.25)

where C = FT · F, and

Zα
0 = Fp−1 · (sα0 ⊗ mα

0 ) · Fp. (12.1.26)

Since

Pα + Qα = F∗ · (sα0 ⊗ mα
0 ) · F∗−1, (12.1.27)

there is a connection

Zα
0 = F−1 · (Pα + Qα) · F. (12.1.28)

This shows that the tensor Zα
0 is induced from the tensor (Pα + Qα) by the

deformation F. Its rate is

Żα
0 =

n∑
β=1

(
Zα

0 · Zβ
0 − Zβ

0 · Zα
0

)
γ̇β . (12.1.29)

The rate of Pα
0 is obtained by differentiating Eq. (12.1.23). The result is

Ṗα
0 =

(
FpT · Ė∗ · Fp

)
· Zα

0 + Zα
0

T ·
(
FpT · Ė∗ · Fp

)

+
n∑

β=1

(
Pα

0 · Zβ
0 + Zβ

0
T · Pα

0

)
γ̇β .

(12.1.30)

The second-order tensors Pα
0 and Zα

0 were originally introduced by Hill and

Havner (1982) (ν̃ and C̃ in their notation).

12.2. Kinetic Preliminaries

In the following derivation it will be assumed that elastic properties of the

crystal are not affected by crystallographic slip. Since slip is an isochoric

deformation process, the elastic strain energy per unit initial volume can be

written as

Ψe = Ψe (E∗) = Ψe
[
Fp−T · (E − Ep) · Fp−1

]
, (12.2.1)

in view of Eq. (12.1.19). The function Ψe is expressed in the coordinate

system that has a fixed orientation relative to the lattice orientation in B0

and Bp. The symmetric Piola–Kirchhoff stress tensors, relative to the lattice

and total deformation, are derived from Ψe by the gradient operations

T∗ =
∂Ψe

∂E∗ , T =
∂Ψe

∂E
. (12.2.2)
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They are related by

T∗ = Fp · T · FpT . (12.2.3)

The stress tensors T∗ and T, expressed in terms of the Kirchhoff stress

τ = (detF)σ (σ denotes the Cauchy stress), are

T∗ = F∗−1 · τ · F∗−T , T = F−1 · τ · F−T . (12.2.4)

Since plastic incompressibility is assumed, we have

detF∗ = detF. (12.2.5)

The rates of the Piola–Kirchhoff stresses Ṫ∗ and Ṫ can be cast in terms

of the convected rates of the Kirchhoff stress as

Ṫ∗ = F∗−1 · �
τ · F∗−T , Ṫ = F−1 · �τ · F−T . (12.2.6)

The convected rates of the Kirchhoff stress, with respect to the lattice and

total deformation, are
�
τ = τ̇− L∗ · τ− τ · L∗T ,

�
τ = τ̇− L · τ− τ · LT , (12.2.7)

so that
�
τ =

�
τ + (L − L∗) · τ + τ · (L − L∗)T . (12.2.8)

The difference between the total and lattice velocity gradients is obtained

from Eq. (12.1.10),

L − L∗ =
n∑

α=1

(Pα + Qα) γ̇α. (12.2.9)

When this is substituted into Eq. (12.2.8), we obtain the relationship be-

tween the two convected stress rates,

�
τ =

�
τ +

n∑
α=1

(Pα · τ + τ · Pα) γ̇α +
n∑

α=1

(Qα · τ− τ · Qα) γ̇α. (12.2.10)

Similarly, the Jaumann rates
•
τ = τ̇− W∗ · τ + τ · W∗,

◦
τ = τ̇− W · τ + τ · W (12.2.11)

are related by
•
τ =

◦
τ + (W − W∗) · τ− τ · (W − W∗) . (12.2.12)

Since the difference between the total and lattice spin is, from Eq. (12.1.13),

W − W∗ =
n∑

α=1

Qα γ̇α, (12.2.13)
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the substitution into Eq. (12.2.12) gives

•
τ =

◦
τ +

n∑
α=1

(Qα · τ− τ · Qα) γ̇α. (12.2.14)

The relationship between the rates of stress tensors T∗ and T is obtained

by differentiating Eq. (12.2.3), i.e.,

Ṫ∗ = Fp · Ṫ · FpT +
(
Ḟp · Fp−1

)
· T∗ + T∗ ·

(
Ḟp · Fp−1

)T
. (12.2.15)

This can be rewritten as

Ṫ = Fp−1 · Ṫ∗ · Fp−T −
[
Fp−1 ·

(
Ḟp · Fp−1

)
· Fp

]
· T

− T ·
[
Fp−1 ·

(
Ḟp · Fp−1

)
· Fp

]T
.

(12.2.16)

Upon using Eq. (12.1.5), we obtain

Ṫ = Fp−1 · Ṫ∗ · Fp−T −
n∑

α=1

(
Zα

0 · T + T · Zα
0

T
)
γ̇α. (12.2.17)

Additional kinematic and kinetic analysis can be found in Gurtin (2000).

Along purely elastic branch of the response (e.g., during elastic unload-

ing), we have

Ṫ = Fp−1 · Ṫ∗ · Fp−T , Ė = FpT · Ė∗ · Fp, (12.2.18)

since then

γ̇α = 0 and Ḟp = 0. (12.2.19)

12.3. Lattice Response

The tensors of elastic moduli corresponding to strain measures E∗ and E are

Λ∗
(1) =

∂2Ψe

∂E∗ ⊗ ∂E∗ , Λ(1) =
∂2Ψe

∂E ⊗ ∂E
, (12.3.1)

with the connection

Λ(1) = Fp−1 Fp−1 Λ∗
(1) F

p−T Fp−T . (12.3.2)

Taking the time derivative in Eq. (12.2.2), there follows

Ṫ∗ = Λ∗
(1) : Ė∗. (12.3.3)

Substituting the first of (12.2.6), and

Ė∗ = F∗T · D∗ · F∗, (12.3.4)
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into Eq. (12.3.3), yields
�
τ = LLL(1) : D∗. (12.3.5)

The relationship between the introduced elastic moduli is

LLL(1) = F∗ F∗ Λ∗
(1) F

∗T F∗T = FFΛ(1) FT FT . (12.3.6)

The tensor products are such that, in the component form,

L(1)
ijkl = F ∗

im F ∗
jn Λ∗ (1)

mnpq F
∗
pk

T F ∗
ql
T . (12.3.7)

If the Jaumann rate corotational with the lattice spin W∗ is used, Eq.

(12.3.5) can be recast in the form
•
τ = LLL(0) : D∗. (12.3.8)

The relationship between the corresponding elastic moduli tensors is

LLL(0) = LLL(1) + 2SSS , (12.3.9)

which follows by recalling that
�
τ =

•
τ− D∗ · τ− τ · D∗. (12.3.10)

The rectangular components of the fourth-order tensor SSS are

Sijkl =
1
4

(τikδjl + τjkδil + τilδjk + τjlδik) , (12.3.11)

as previously discussed in Section 6.2. Along an elastic branch of the re-

sponse (elastic unloading from elastoplastic state), the total and lattice ve-

locity gradients coincide, so that

L∗ = L,
�
τ =

�
τ ,

•
τ =

◦
τ. (12.3.12)

12.4. Elastoplastic Constitutive Framework

The rate-type constitutive framework for the elastoplastic loading of a single

crystal is obtained by substituting Eq. (12.2.10), and

D∗ = D −
n∑

α=1

Pα γ̇α, (12.4.1)

into Eq. (12.3.5). The result is

�
τ = LLL(1) : D −

n∑
α=1

Cα γ̇α, (12.4.2)

where

Cα = LLL(1) : Pα + (Pα · τ + τ · Pα) + (Qα · τ− τ · Qα) . (12.4.3)
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Alternatively, if Eqs. (12.2.12) and (12.4.1) are substituted into Eq. (12.3.8),

there follows

◦
τ = LLL(0) : D −

n∑
α=1

Cα γ̇α, (12.4.4)

where

Cα = LLL(0) : Pα + (Qα · τ− τ · Qα) . (12.4.5)

Having in mind the connection (12.3.9) between the elastic moduli tensors

LLL(0) and LLL(1), it is readily verified that the right-hand sides of Eqs. (12.4.3)

and (12.4.5) are equal to each other.

An equivalent constitutive structure can be obtained relative to the La-

grangian strain and its conjugate symmetric Piola–Kirchhoff stress. The

substitution of

Ṫ∗ = Fp ·
[
Ṫ +

n∑
α=1

(
Zα

0 · T + T · Zα
0

T
)
γ̇α

]
· FpT (12.4.6)

and

Ė∗ = Fp−T ·
(

Ė −
n∑

α=1

Pα
0 γ̇α

)
· Fp−1, (12.4.7)

which follow from Eqs. (12.2.17) and (12.1.22), into Eq. (12.3.3) gives

Ṫ +
n∑

α=1

(
Zα

0 · T + T · Zα
0

T
)
γ̇α = Λ(1) :

(
Ė −

n∑
α=1

Pα
0 γ̇α

)
. (12.4.8)

The relationship (12.3.2) between the moduli Λ(1) and Λ∗
(1) was also utilized.

Consequently,

Ṫ = Λ(1) : Ė −
n∑

α=1

Cα
0 γ̇α, (12.4.9)

where

Cα
0 = Λ(1) : Pα

0 + Zα
0 · T + T · Zα

0
T . (12.4.10)

Recalling the expressions (12.1.24) and (12.1.28), and

Λ(1) = F−1 F−1LLL(1) F−T F−T , (12.4.11)

we deduce the relationship between the tensors Cα
0 and Cα. This is

Cα
0 = F−1 · Cα · F−T . (12.4.12)

In view of Eq. (12.1.24), there is also an identity

Cα
0 : Pα

0 = Cα : Pα. (12.4.13)
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12.5. Partition of Stress and Strain Rates

The elastic parts of the stress rates
◦
τ,

�
τ and Ṫ are defined by

◦
τ e = LLL(0) : D,

�
τ e = LLL(1) : D, (Ṫ)e = Λ(1) : Ė, (12.5.1)

since, from Eqs. (12.4.2), (12.4.4), and (12.4.9), only the remaining parts of

stress rates depend on the slip rates γ̇α. These are the plastic parts

◦
τ p =

�
τ p = −

n∑
α=1

Cα γ̇α, (Ṫ)p = −
n∑

α=1

Cα
0 γ̇α. (12.5.2)

In view of the connection (12.4.12), we have

(Ṫ)p = F−1 · �τ p · F−T . (12.5.3)

This relationship was anticipated from the previously established relation-

ship given by the second expression in Eq. (12.2.6). Physically, the plastic

stress rate (Ṫ)p gives a residual stress decrement (Ṫ)p dt in an infinitesimal

strain cycle, associated with application and removal of the strain increment

Ėdt.

The rate of deformation tensor and the rate of Lagrangian strain can be

expressed from Eqs. (12.4.2), (12.4.4) and (12.4.9) as

D = MMM(0) :
◦
τ +

n∑
α=1

MMM(0) : Cα γ̇α, (12.5.4)

D = MMM(1) :
�
τ +

n∑
α=1

MMM(1) : Cα γ̇α, (12.5.5)

Ė = M(1) : Ṫ +
n∑

α=1

M(1) : Cα
0 γ̇α. (12.5.6)

The introduced elastic compliances tensors are

MMM(0) = LLL−1
(0), MMM(1) = LLL−1

(1), M(1) = Λ−1
(1). (12.5.7)

The elastic parts of the rate of deformation tensor D, corresponding to the

Jaumann and convected rates of the Kirchhoff stress, and the elastic part of

the rate of Lagrangian strain Ė, are defined by

De
(0) = MMM(0) :

◦
τ, De

(1) = MMM(1) :
�
τ , (Ė)e = M(1) : Ṫ. (12.5.8)
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The remaining parts of D and Ė depend on the slip rates γ̇α. They are the

plastic parts

Dp
(0) =

n∑
α=1

Hα γ̇α, Dp
(1) =

n∑
α=1

Gα γ̇α, (Ė)p =
n∑

α=1

Gα
0 γ̇α, (12.5.9)

where

Hα = MMM(0) : Cα, Gα = MMM(1) : Cα, Gα
0 = M(1) : Cα

0 . (12.5.10)

By comparing Eqs. (12.5.2) and (12.5.9), the plastic parts of the stress and

strain rates are related by

◦
τ p = −LLL(0) : Dp

(0),
�
τ p = −LLL(1) : Dp

(1), (Ṫ)p = −Λ(1) : (Ė)p. (12.5.11)

Since

M(1) = FT FT MMM(1) FF, (12.5.12)

and recalling the relationship (12.4.12) between the tensors Cα and Cα
0 ,

there is a connection

Gα
0 = FT · Gα · F. (12.5.13)

Thus

(Ė)p = FT · Dp
(1) · F, (12.5.14)

as anticipated from the general expression Ė = FT ·D ·F. The strain incre-

ment (Ė)p dt represents a residual strain increment left in the crystal upon

an infinitesimal loading/unloading cycle associated with the stress increment

Ṫdt. The strain increment Dp
(0) dt is a residual strain increment left in the

crystal upon an infinitesimal loading/unloading cycle associated with the

stress increment
◦
τdt. Here,

◦
τdt = (detF)

◦
τdt, (12.5.15)

where
◦
τdt is the increment of stress conjugate to the logarithmic strain,

when the reference configuration is taken to momentarily coincide with the

current configuration. This has been discussed in more details in Section

3.9. Finally,
�
τ dt is the increment of the symmetric Piola–Kirchhoff stress,

conjugate to the Lagrangian strain, when the reference configuration is taken

to be the current configuration.

The relationship between the plastic parts of the rate of deformation

Dp
(0) and Dp

(1) can be obtained by substituting the first two expressions
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from (12.5.11) into the identity
◦
τ p =

�
τ p. This gives

LLL(0) : Dp
(0) = LLL(1) : Dp

(1). (12.5.16)

Since LLL(0) = LLL(1) + 2SSS , we obtain

Dp
(0) = Dp

(1) − 2MMM(0) : SSS : Dp
(1), (12.5.17)

Dp
(1) = Dp

(0) + 2MMM(1) : SSS : Dp
(0). (12.5.18)

Thus, the relative difference between the components of Dp
(0) and Dp

(1) is of

the order of stress over elastic modulus (Lubarda, 1999).

The plastic strain rates can be expressed in terms of the previously

introduced tensors Pα, Qα and Zα
0 by using Eqs. (12.4.3), (12.4.5), and

(12.4.10). The results are

Dp
(0) =

n∑
α=1

[
Pα +MMM(0) : (Qα · τ− τ · Qα)

]
γ̇α, (12.5.19)

Dp
(1) =

n∑
α=1

{
Pα +MMM(1) : [(Pα · τ + τ · Pα) + (Qα · τ− τ · Qα)]

}
γ̇α,

(12.5.20)

(Ė)p =
n∑

α=1

[
Pα

0 + M(1) :
(
Zα

0 · T + T · Zα
0

T
)]

γ̇α. (12.5.21)

As discussed by Hill and Rice (1972), and Hill and Havner (1982), although

Dp
(0) = D −MMM(0) :

◦
τ in Eq. (12.5.19) is commonly called the plastic rate

of deformation, it does not come from the slip deformation only. There is a

further net elastic contribution from the lattice,

MMM(0) : (
•
τ− ◦

τ) = MMM(0) :
n∑

α=1

(Qα · τ− τ · Qα) γ̇α, (12.5.22)

caused by the slip-induced rotation of the lattice relative to the stress, as

embodied in (12.2.14). Similar comments apply to Dp
(1) and (Ė)p in Eqs.

(12.5.20) and (12.5.21).

12.6. Partition of Rate of Deformation Gradient

In this section we partition the rate of deformation gradient into its elastic

and plastic parts, such that

Ḟ = (Ḟ)e + (Ḟ)p. (12.6.1)
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The derivation proceeds as in Section 11.14. The elastic part is defined by

(Ḟ)e = M · · Ṗ, M = Λ−1. (12.6.2)

The lattice nominal stress and the overall nominal stress

P∗ = T∗ · F∗T , P = T · FT (12.6.3)

are derived from the elastic strain energy as

P∗ =
∂Ψe

∂F∗ , P =
∂Ψe

∂F
, (12.6.4)

with the connection

P∗ = Fp · P. (12.6.5)

The corresponding pseudomoduli tensors are

Λ∗ =
∂2Ψe

∂F∗ ⊗ ∂F∗ , Λ =
∂2Ψe

∂F ⊗ ∂F
. (12.6.6)

Their components (in the same rectangular coordinate system) are related

by

Λ∗
ijkl = F p

im Λmjnl F
p
kn . (12.6.7)

The lattice elasticity is governed by the rate-type constitutive equation

Ṗ∗ = Λ∗ · · Ḟ∗. (12.6.8)

By differentiating Eq. (12.6.5), there follows

Ṗ∗ = Fp · Ṗ + Ḟp · P. (12.6.9)

The substitution of Eqs. (12.6.9) and (12.6.7) into Eq. (12.6.8) gives

Ṗ = Λ · ·
(
Ḟ∗ · Fp

)
− Fp−1 · Ḟp · P. (12.6.10)

On the other hand, by differentiating the multiplicative decomposition

F = F∗ · Fp, the rate of deformation gradient is

Ḟ = Ḟ∗ · Fp + F∗ · Ḟp. (12.6.11)

Using this, Eq. (12.6.10) can be rewritten as

Ṗ = Λ · ·
(
Ḟ − F∗ · Ḟp

)
− Fp−1 · Ḟp · P, (12.6.12)

i.e.,

Ṗ = Λ · ·
[
Ḟ − F∗ · Ḟp − M · ·

(
Fp−1 · Ḟp · P

)]
. (12.6.13)
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From Eq. (12.6.13) we identify the plastic part of the rate of deformation

gradient as

(Ḟ)p = F∗ · Ḟp + M · ·
(
Fp−1 · Ḟp · P

)
. (12.6.14)

The remaining part of the rate of deformation gradient Ḟ is the elastic part,

(Ḟ)e = Ḟ∗ · Fp − M · ·
(
Fp−1 · Ḟp · P

)
, (12.6.15)

complying with the definition (12.6.2).

Equation (12.6.13) also serves to identify the elastic and plastic parts of

the rate of nominal stress. These are

(Ṗ)e = Λ · · Ḟ, (12.6.16)

(Ṗ)p = −
[
Fp−1 · Ḟp · P + Λ · ·

(
F∗ · Ḟp

)]
, (12.6.17)

such that

Ṗ = (Ṗ)e + (Ṗ)p. (12.6.18)

Evidently, by comparing Eqs. (12.6.14) and (12.6.17), there is a relationship

between the plastic parts

(Ṗ)p = −Λ · · (Ḟ)p. (12.6.19)

To express the plastic parts of the rate of nominal stress and deformation

gradient in terms of the slip rates γ̇α, Eq. (12.1.5) is first rewritten as

Ḟp =
n∑

α=1

γ̇α (sα0 ⊗ mα
0 ) · Fp. (12.6.20)

Upon substitution into Eq. (12.6.14), the plastic part of the rate of defor-

mation gradient becomes

(Ḟ)p =
n∑

α=1

Aα γ̇α, (12.6.21)

where

Aα = (sα ⊗ mα) · F + M · · F−1 · (sα ⊗ mα) · F · P. (12.6.22)

The plastic part of the rate of nominal stress is then

(Ṗ)p = −
n∑

α=1

Bα γ̇α, (12.6.23)

where

Bα = Λ · · Aα = F−1 · (sα ⊗ mα) · F · P + Λ · · (sα ⊗ mα) · F. (12.6.24)

© 2002 by CRC Press LLC 



Relationship between (Ṗ)p and (Ṫ)p

The relationship between the plastic parts of the rate of nominal and sym-

metric Piola–Kirchhoff stress,

(Ṗ)p = Ṗ − Λ · · Ḟ, (12.6.25)

(Ṫ)p = Ṫ − Λ(1) : Ė, (12.6.26)

can be derived as follows. First, we recall that

KKK · · Ḟ = Ė, KKKT : T = T · FT = P, (12.6.27)

and

Λ = KKKT : Λ(1) : KKK + TTT , (12.6.28)

Ṗ = KKKT : Ṫ + TTT · · Ḟ. (12.6.29)

The rectangular components of the fourth-order tensors KKK and TTT are

Kijkl =
1
2

(δikFlj + δjkFli) , Tijkl = Tikδjl. (12.6.30)

Taking a trace product of Eq. (12.6.26) with KKKT from the left gives

(Ṗ)p = KKKT : (Ṫ)p. (12.6.31)

Furthermore, since

(Ṗ)p = −Λ · · (Ḟ)p, (Ṫ)p = −Λ(1) : (Ė)p, (12.6.32)

we obtain

(Ḟ)p = M · · KKKT : Λ(1) : (Ė)p. (12.6.33)

It is noted that

Ḟ · · (Ṗ)p = Ė : (Ṫ)p. (12.6.34)

This follows by taking a trace product of Eq. (12.6.25) with Ḟ from the left,

and by using Eqs. (12.6.27)–(12.6.29). If crystalline behavior is in accord

with Ilyushin’s postulate of the positive net work in a cycle of strain that

involves plastic slip, the quantity in (12.6.34) must be negative. On the other

hand,

Ṗ · · (Ḟ)p �= Ṫ : (Ė)p. (12.6.35)

Finally, having in mind that

(Ṗ)p = −
n∑

α=1

Bα γ̇α, (Ṫ)p = −
n∑

α=1

Cα
0 γ̇α, (12.6.36)
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we obtain from Eq. (12.6.31)

Bα = KKKT : Cα
0 . (12.6.37)

This relationship can be verified by using Eqs. (12.4.10) and (12.6.24), which

explicitly specify the tensors Cα
0 and Bα, and by performing a trace product

of KKKT with Cα
0 . In the derivation, it is helpful to use the property of KKK in

the trace operation with a second-order tensor A, i.e.,

KKKT · · A =
1
2

(A + AT ) · FT . (12.6.38)

In addition, we note that

F−1 · PT · FT = P, (12.6.39)

Pα
0 = KKK · · (sα ⊗ mα) · F, (12.6.40)

TTT · · (sα ⊗ mα) · F = P · (mα ⊗ sα) . (12.6.41)

12.7. Generalized Schmid Stress and Normality

For the rate-independent materials it is commonly assumed that plastic flow

occurs on a slip system when the resolved shear stress (Schmid stress) on

that system reaches the critical value (e.g., Schmid and Boas, 1968)

τα = ταcr. (12.7.1)

In the finite strain context, τα can be defined as the work conjugate to slip

rate γ̇α, such that
n∑

α=1

τα γ̇α = T :
n∑

α=1

Pα
0 γ̇α = τ :

n∑
α=1

Pα γ̇α. (12.7.2)

Therefore,

τα = Pα
0 : T = Pα : τ. (12.7.3)

This definition of τα will be referred to as the generalized Schmidt stress,

τα = s · τ · m. (12.7.4)

With so defined τα, we prove that the plastic part of the strain rate

(Ė)p lies within a pyramid of outward normals to the yield surface at T,

each normal being associated with an active slip system (Rice, 1971; Hill

and Rice, 1972; Havner, 1982,1992). For example, for f.c.c. crystals the

yield surface consists of 24 hyperplanes, forming a polyhedron within which
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the response is purely elastic. The direction of the normal to the yield plane

τα = ταcr at T is determined from
∂τα

∂T
= Pα

0 +
∂Pα

0

∂T
: T = Pα

0 +
∂Pα

0

∂E
: M(1) : T. (12.7.5)

From Eq. (12.1.25) it follows that, at fixed slips (fixed Fp),

T :
∂Pα

0

∂E
= Zα

0 · T + T · ZαT
0 . (12.7.6)

The substitution into Eq. (12.7.5) gives
∂τα

∂T
= Pα

0 + M(1) :
(
Zα

0 · T + T · Zα
0

T
)
. (12.7.7)

Comparison with Eq. (12.5.21) confirms the normality property

(Ė)p =
n∑

α=1

∂τα

∂T
γ̇α. (12.7.8)

This also shows that the contribution to (Ė)p due to individual slip rate

γ̇α is governed by the gradient ∂τα/∂T of the corresponding resolved shear

stress τα. Equation (12.7.8) can be rewritten as

(Ė)p =
∂

∂T

n∑
α=1

(τα γ̇α), (12.7.9)

with understanding that the partial differentiation is performed at fixed Fp

and γ̇α. Relation (12.7.9) states that
∑

(τα γ̇α) acts as the plastic potential

for (Ė)p over an elastic domain in the stress T space (Havner, 1992).

Dually, in strain space we have
∂τα

∂E
= Λ(1) : Pα

0 +
∂Pα

0

∂E
: T, (12.7.10)

i.e.,
∂τα

∂E
= Λ(1) : Pα

0 + Zα
0 · T + T · Zα

0
T . (12.7.11)

The right-hand side is equal to Cα
0 of Eq. (12.4.10). Thus, in view of (12.5.2),

we establish the normality property

(Ṫ)p = −
n∑

α=1

∂τα

∂E
γ̇α. (12.7.12)

The contribution to (Ṫ)p due to individual slip rate γ̇α is governed by the

gradient ∂τα/∂E of the corresponding resolved shear stress τα. Equation

(12.7.12) can be rewritten as

(Ṫ)p = − ∂

∂E

n∑
α=1

(τα γ̇α), (12.7.13)
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again with understanding that the partial differentiation is performed at

fixed Fp and γ̇α. Relation (12.7.13) states that −∑
(τα γ̇α) acts as the

plastic potential for (Ṫ)p over an elastic domain in the strain E space.

The normality, here proved relative to the conjugate measures E and

T, holds with respect to any other conjugate measures of stress and strain

(e.g., Hill and Havner, 1982). Deviations from the normality arise when τα

in Eq. (12.7.1) is defined to be other than the generalized Schmid stress

of Eq. (12.7.3). The resulting non-normality enhances a tendency toward

localization of deformation, as discussed in a general context in Chapter 10.

Indeed, in their study of strain localization in ductile crystals deforming by

single slip, Asaro and Rice (1977) showed that the critical hardening rate for

the onset of localization may be positive when the non-Schmid effects are

present, i.e., when the stress components other than the resolved shear stress

affect the slip. In contrast, when the slip is governed by the resolved shear

stress only, the critical hardening rate for the onset of localization must be

either negative or zero (i.e., ideally-plastic or strain softening state must be

reached for the localization). The non-Schmid effects will not be further con-

sidered in this chapter. The reviews by Asaro (1983b) and Bassani (1993),

and the book by Havner (1992) can be consulted. See also the papers by

Qin and Bassani (1992a,b), Dao and Asaro (1996), and Brünig and Obrecht

(1998).

Normality Rules for (Ḟ)p and (Ṗ)p

If the nominal stress is used to express the resolved shear stress τα, the rate

of work can be written as

P · · Ḟ = P · ·
(
Ḟ∗ · Fp + F∗ · Ḟp

)
. (12.7.14)

The part associated with Ḟp is the rate of slip work, i.e.,

n∑
α=1

τα γ̇α = P · ·
(
F∗ · Ḟp

)
. (12.7.15)

Substituting Eq. (12.6.20) for Ḟp gives

n∑
α=1

τα γ̇α = P · ·
n∑

α=1

F∗ · (sα0 ⊗ mα
0 ) · Fp γ̇α. (12.7.16)
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From this we identify the generalized resolved shear stress in terms of the

nominal stress,

τα = P · · [F · Fp−1 · (sα0 ⊗ mα
0 ) · Fp

]
. (12.7.17)

It is easily verified that τα given by Eq. (12.7.17) is equal to τα of Eq.

(12.7.3).

The direction of the normal to the yield plane τα = ταcr at P is deter-

mined from the gradient ∂τα/∂P. This is, by Eq. (12.7.17),

∂τα

∂P
= F · Fp−1 · (sα0 ⊗ mα

0 ) · Fp + M · · [Fp−1 · (sα0 ⊗ mα
0 ) · Fp · P]

,

(12.7.18)

i.e.,
∂τα

∂P
= (sα ⊗ mα) · F + M · · F−1 · (sα ⊗ mα) · F · P. (12.7.19)

The right-hand side is equal to Aα of Eq. (12.6.22), so that

∂τα

∂P
= Aα. (12.7.20)

Thus, in view of (12.6.21), we establish the normality property for the plastic

part of the rate of deformation gradient,

(Ḟ)p =
n∑

α=1

∂τα

∂P
γ̇α. (12.7.21)

Equation (12.7.21) can be rewritten as

(Ḟ)p =
∂

∂P

n∑
α=1

(τα γ̇α), (12.7.22)

with the partial differentiation performed at fixed Fp and γ̇α. This states

that
∑

(τα γ̇α) acts as the plastic potential for (Ḟ)p over an elastic domain

in P space.

Dually, by taking the gradient of (12.7.17) with respect to F, we obtain

∂τα

∂F
= Λ · · [F · Fp−1 · (sα0 ⊗ mα

0 ) · Fp
]
+ Fp−1 · (sα0 ⊗ mα

0 ) · Fp · P.

(12.7.23)

The right-hand side is equal to Bα of Eq. (12.6.24). Thus, in view of

(12.6.23), we establish the normality property for the plastic part of the rate

of nominal stress,

(Ṗ)p = −
n∑

α=1

∂τα

∂F
γ̇α. (12.7.24)
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Alternatively,

(Ṗ)p = − ∂

∂F

n∑
α=1

(τα γ̇α) , (12.7.25)

with understanding that the partial differentiation is performed at fixed Fp

and γ̇α. Relation (12.7.25) states that −∑
(τα γ̇α) acts as the plastic po-

tential for (Ṗ)p over an elastic domain in F space.

12.8. Rate of Plastic Work

In the previous section we defined the rate of slip work by

ẇslip =
n∑

α=1

τα γ̇α . (12.8.1)

This invariant quantity is not equal to T · · (Ė)p, nor P · · (Ḟ)p. It is of

interest to elaborate on the relationships between ẇslip and these latter work

quantities. First, from Eqs. (12.4.10) and (12.5.9) we express the rate of

plastic work, associated with the plastic part of strain rate (Ė)p, as

T : (Ė)p = T :
n∑

α=1

Gα
0 γ̇α

= T : M(1) :
n∑

α=1

(
Λ(1) : Pα

0 + Zα
0 · T + T · ZαT

0

)
γ̇α .

(12.8.2)

Comparing with Eq. (12.7.2), i.e.,
n∑

α=1

τα γ̇α = T :
n∑

α=1

Pα
0 γ̇α , (12.8.3)

we establish the relationship

T : (Ė)p =
n∑

α=1

τα γ̇α + T : M(1) :
n∑

α=1

(
Zα

0 · T + T · ZαT
0

)
γ̇α . (12.8.4)

Similarly, from Eqs. (12.6.21) and (12.6.22), we can express the rate of

plastic work, associated with the plastic part of rate of deformation tensor

(Ḟ)p, as

P · · (Ḟ)p = P · ·
n∑

α=1

Aα γ̇α

= P · ·
n∑

α=1

[
M · ·F−1 · (Pα + Qα) · F · P + (Pα + Qα) · F]

γ̇α .

(12.8.5)
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Since, from Eq. (12.7.16),
n∑

α=1

τα γ̇α = P · ·
n∑

α=1

(Pα + Qα) · F γ̇α , (12.8.6)

we obtain

P · · (Ḟ)p =
n∑

α=1

τα γ̇α + P · ·M · ·
n∑

α=1

F−1 · (Pα + Qα) · F · P γ̇α .

(12.8.7)

The plastic work quantities P · · (Ḟ)p and T : (Ḟ)p are not equal to each

other. Recalling that P = T : KKK, and by using Eq. (12.6.33), we have the

connection

P · · (Ḟ)p = T :
[KKK · ·M · · KKKT : Λ(1)

]
: (Ė)p. (12.8.8)

The inequality

P · · (Ḟ)p �= T : (Ė)p (12.8.9)

is physically clear, because P and T do not cycle simultaneously in the

deformation cycle involving plastic slip, since cycling P does not cycle T,

and vice versa.

Expressed in terms of the increments, we can write

P · · (dF − M · ·dP) �= T : (dE − M(1) : dT). (12.8.10)

We also recall that the increment of plastic work T : dpE is not invariant

under the change of strain and conjugate stress measure (again because

different stress measures do not cycle simultaneously).

Second-Order Work Quantities

The analysis of the relationship between the first- and second-order plastic

work quantities, defined by P · ·dpF and dP · ·dpF, or by T : dpE and

dT : dpE, can be pursued further. From the basic work identity

P · ·dF = T : dE, (12.8.11)

and from the partition of the increments of deformation gradient and strain

tensor into their elastic and plastic parts, we have

P · ·dpF + P · ·M · ·dP = T · ·dpE + T · ·M(1) · ·dT, (12.8.12)

i.e.,

P · ·dpF = T : dpE + T : M(1) : dT − P · ·M · ·dP. (12.8.13)
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By eliminating P in terms of T, this can be rewritten as

P · ·dpF = T : dpE + T :
(
M(1) −KKK · ·M · · KKKT

)
: dT. (12.8.14)

This is an explicit relationship between the first-order quantities P · ·dpF

and T : dpE.

Regarding the second-order work contribution, we proceed from

dP · ·dpF = dP · ·dF − dP · ·M · ·dP. (12.8.15)

By substituting

dP = dT : KKK + TTT · ·dF, dE = KKK · ·dF, (12.8.16)

and by using the decomposition of dE into its elastic and plastic parts, there

follows

dP · ·dpF = dT : dpE + dT : M(1) : dT − dP · ·M · ·dP + dF · ·TTT · ·dF.
(12.8.17)

This relates the second-order work quantities dP · ·dpF and dT : dpE.

For completeness of the analysis, we record two more formulas. The first

one is

F · ·dpP = F · · (KKKT : dpT
)

= C : dpT, (12.8.18)

where

C = FT · F = KKK · ·F = F · KKKT . (12.8.19)

The second formula is

dF · ·dpP = F · · (KKKT : dpT
)

= dE : dpT, (12.8.20)

where

dE = KKK · ·dF = dF · KKKT . (12.8.21)

These formulas demonstrate the invariance of C : dpT and dE : dpT under

the change of the strain measure E and its conjugate stress T (because

F · ·dpP and dF : dpP are independent of these measures).

The second-order quantity in Eq. (12.8.20) is proportional to the net

expenditure of work in a cycle (application and removal) of dF, which is by

the trapezoidal rule of quadrature

−1
2

dF · ·dpP = −1
2

dE : dpT. (12.8.22)
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12.9. Hardening Rules and Slip Rates

The rate of change of the critical value of the resolved shear stress on a given

slip system is defined by the hardening law

τ̇αcr =
n0∑
β=1

hαβ γ̇
β , α = 1, 2, . . . , N, (12.9.1)

where N is the total number of all available slip systems, and n0 is the

number of critical (potentially active) slip systems, for which

τα = ταcr . (12.9.2)

The coefficients hαβ are the slip-plane hardening rates (moduli). The moduli

corresponding to α = β represent the self-hardening on a given slip system,

while α �= β moduli represent the latent hardening. When α > n0, β ≤
n0, the moduli represent latent hardening of the noncritical systems. The

hardening moduli hαβ can be formally defined for n0 < β ≤ N , but their

values are irrelevant since the corresponding γ̇β are always zero.

The consistency condition for the slip on the critical system α is

τ̇α =
n∑

β=1

hαβ γ̇
β , γ̇α > 0. (12.9.3)

The number of active slip systems is n, and the corresponding slips are

labeled by γ̇1, γ̇2, . . . , γ̇n. If the critical system becomes inactive,

τ̇α ≤
n∑

β=1

hαβ γ̇
β , γ̇α = 0. (12.9.4)

Equality sign applies only if the system remains critical (τ̇α = τ̇αcr). For a

noncritical system,

τα < ταcr , γ̇α = 0. (12.9.5)

The rate of the generalized Schmid stress is obtained by differentiation

from Eq. (12.7.3), i.e., either from

τ̇α = Ṗα
0 : T + Pα

0 : Ṫ, (12.9.6)

or

τ̇α = Ṗα : τ + Pα : τ̇. (12.9.7)
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If Eq. (12.9.6) is used, from Eq. (12.1.30) we find

Ṗα
0 : T =

(
Zα

0 · T + T · Zα
0

T
)

:
(
FpT · Ė∗ · Fp

)

+
n∑

β=1

Pα
0 :

(
Zβ

0 · T + T · Zβ
0

T
)
γ̇β .

(12.9.8)

Since, from Eq. (12.2.17),

Pα
0 : Ṫ = Pα

0 :
(
Fp−1 · Ṫ∗ · Fp−T

)
−

n∑
β=1

Pα
0 :

(
Zβ

0 · T + T · Zβ
0

T
)
γ̇β ,

(12.9.9)

the substitution into Eq. (12.9.6) gives

τ̇α = Pα
0 :

(
Fp−1 · Ṫ∗ · Fp−T

)
+

(
Zα

0 · T + T · Zα
0

T
)

:
(
FpT · Ė∗ · Fp

)
.

(12.9.10)

Recalling that

Ṫ∗ = Λ∗
(1) : Ė∗ =

(
Fp Fp Λ(1) FpT FpT

)
: Ė∗, (12.9.11)

there follows

τ̇α =
(
Λ(1) : Pα

0 + Zα
0 · T + T · Zα

0
T
)

:
(
FpT · Ė∗ · Fp

)
. (12.9.12)

Thus, in view of Eq. (12.4.10), we have

τ̇α = Cα
0 :

(
FpT · Ė∗ · Fp

)
, (12.9.13)

which is a desired expression for the rate of the generalized Schmid stress.

The expression for τ̇α can also be obtained by starting from Eq. (12.9.7).

First, Eq. (12.1.16) gives

Ṗα : τ = (D∗ · Qα − Qα · D∗) : τ + (W∗ · Pα − Pα · W∗) : τ. (12.9.14)

By using Eq. (12.2.11), we obtain

Pα : τ̇ = Pα :
•
τ− (W∗ · Pα − Pα · W∗) : τ. (12.9.15)

The substitution into Eq. (12.9.7) then gives

τ̇α = Pα :
•
τ + (D∗ · Qα − Qα · D∗) : τ. (12.9.16)

Since
•
τ = LLL(0) : D∗ by Eq. (12.3.8), there follows

τ̇α =
(LLL(0) : Pα + Qα · τ− τ · Qα

)
: D∗. (12.9.17)

Consequently, in view of Eq. (12.4.5), we have

τ̇α = Cα : D∗. (12.9.18)
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This parallels the previously derived expression (12.9.13). Recalling the

relationship between Cα and Cα
0 , and between D∗ and Ė∗, it is readily

verified that the two expressions are equivalent.

When Eq. (12.1.22) is substituted into Eq. (12.9.13) to eliminate the

term FpT · Ė∗ · Fp, or when Eq. (12.1.12) is substituted into Eq. (12.9.18)

to eliminate D∗, we obtain

τ̇α = Cα
0 : Ė −

n∑
β=1

Cα
0 : Pβ

0 γ̇β , (12.9.19)

τ̇α = Cα : D −
n∑

β=1

Cα : Pβ γ̇β . (12.9.20)

Combining with Eq. (12.9.3) yields

Cα
0 : Ė =

n∑
β=1

(
hαβ + Cα

0 : Pβ
0

)
γ̇β , (12.9.21)

Cα : D =
n∑

β=1

(
hαβ + Cα : Pβ

)
γ̇β . (12.9.22)

Since

Cα = F · Cα
0 · FT , D = F−T · Ė · F−1, (12.9.23)

there is a connection

Cα
0 : Ė = Cα : D, (12.9.24)

and from Eqs. (12.9.21) and (12.9.22) we deduce the identity

Cα
0 : Pβ

0 = Cα : Pβ . (12.9.25)

This also follows directly from

Cα
0 = F−1 · Cα · F−T , Pβ

0 = FT · Pβ · F. (12.9.26)

Therefore, by introducing the matrix with components

gαβ = hαβ + Cα
0 : Pβ

0 = hαβ + Cα : Pβ , (12.9.27)

equations (12.9.21) and (12.9.22) reduce to

Cα
0 : Ė = Cα : D =

n∑
β=1

gαβ γ̇
β , γ̇α > 0. (12.9.28)

If the α system is inactive (τ̇α ≤ τ̇αcr), we have

Cα
0 : Ė = Cα : D ≤

n∑
β=1

gαβ γ̇
β , γ̇α = 0. (12.9.29)
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Suppose that the matrix with components gαβ is nonsingular, so that

the inverse matrix whose components are designated by g−1
αβ exists. Equation

(12.9.28) can then be solved for the slip rates to give

γ̇α =
n∑

β=1

g−1
αβ Cβ

0 : Ė =
n∑

β=1

g−1
αβ Cβ : D. (12.9.30)

After substitution into Eq. (12.5.2), the plastic parts of the corresponding

stress rates become

◦
τ p =

�
τ p = −

n∑
α=1

n∑
β=1

g−1
αβ

(
Cα ⊗ Cβ

)
: D, (12.9.31)

(Ṫ)p = −
n∑

α=1

n∑
β=1

g−1
αβ

(
Cα

0 ⊗ Cβ
0

)
: Ė. (12.9.32)

Combining with the elastic parts, defined by Eq. (12.5.1), finally yields

◦
τ =

⎛
⎝LLL(0) −

n∑
α=1

n∑
β=1

g−1
αβ Cα ⊗ Cβ

⎞
⎠ : D, (12.9.33)

�
τ =

⎛
⎝LLL(1) −

n∑
α=1

n∑
β=1

g−1
αβ Cα ⊗ Cβ

⎞
⎠ : D, (12.9.34)

Ṫ =

⎛
⎝Λ(1) −

n∑
α=1

n∑
β=1

g−1
αβ Cα

0 ⊗ Cβ
0

⎞
⎠ : Ė. (12.9.35)

These are alternative representations of the constitutive structure for elasto-

plastic deformation of single crystals. The fourth-order tensors within the

brackets are the crystalline elastoplastic moduli tensors.

12.10. Uniqueness of Slip Rates for Prescribed Strain Rate

Hill and Rice (1972) have shown that, for a prescribed rate of deformation,

sufficient condition for the unique set of slip rates γ̇α is that the matrix with

components gαβ , over all n0 critical systems, is positive definite. In proof,

denote by

Δγ̇α = γ̇α − ˙̄γα (α = 1, 2, . . . , n0) (12.10.1)

the difference between the slip rates in two different slip modes, both at

the same stress and hardening state, one being associated with the rate of
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deformation D and the other with D̄. From Eq. (12.5.2), then,

−Δ(
◦
τ p) =

n0∑
α=1

CαΔγ̇α, (12.10.2)

and

−Δ(
◦
τ p) : ΔD =

n0∑
α=1

(Cα : ΔD) Δγ̇α, (12.10.3)

where

ΔD = D − D̄. (12.10.4)

If the slip system α is active in both modes,

Cα : D −
n0∑
β=1

gαβ γ̇
β = 0, γ̇α > 0, (12.10.5)

Cα : D̄ −
n0∑
β=1

gαβ ˙̄γβ = 0, ˙̄γα
> 0. (12.10.6)

Consequently, in this case

Cα : ΔD −
n0∑
β=1

gαβ Δγ̇β = 0, (12.10.7)

and, upon multiplication with Δγ̇α,

(Cα : ΔD) Δγ̇α =
n0∑
β=1

gαβ Δγ̇α Δγ̇β . (12.10.8)

If the slip system α is active in the first mode, but inactive in the second

mode, i.e.,

Cα : D −
n0∑
β=1

gαβ γ̇
β = 0, γ̇α > 0, (12.10.9)

Cα : D̄ −
n0∑
β=1

gαβ ˙̄γβ ≤ 0, ˙̄γα = 0, (12.10.10)

then

Cα : ΔD −
n0∑
β=1

gαβ Δγ̇β ≥ 0, Δγ̇α > 0. (12.10.11)

Thus, upon multiplication with Δγ̇α,

(Cα : ΔD) Δγ̇α ≥
n0∑
β=1

gαβ Δγ̇α Δγ̇β . (12.10.12)
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Inequality (12.10.12) also holds in the case when α system is active in the

second and inactive in the first mode, since then, in place of (12.10.11),

Cα : ΔD −
n0∑
β=1

gαβ Δγ̇β ≤ 0, Δγ̇α < 0. (12.10.13)

Finally, if the slip system α is inactive in both modes,

(Cα : ΔD) Δγ̇α =
n0∑
β=1

gαβ Δγ̇α Δγ̇β , (12.10.14)

because Δγ̇α = 0. Therefore, (12.10.12) covers all cases, since either = or >

sign applies. Summing over all critical systems gives
n0∑
α=1

(Cα : ΔD) Δγ̇α ≥
n0∑
α=1

n0∑
β=1

gαβ Δγ̇α Δγ̇β . (12.10.15)

From (12.10.15) we deduce that the positive definiteness of the matrix gαβ

is a sufficient condition for the unique slip rates γ̇α under prescribed D.

Indeed, for a prescribed rate of deformation, the difference ΔD = 0, and if

gαβ is positive definite, (12.10.15) can be satisfied only when Δγ̇α = 0, for

all α.

The positive definiteness of the matrix gαβ depends sensitively on the

hardening moduli, stress state and the number and orientation of critical

slip systems. The uniqueness is generally not guaranteed, particularly with

higher rates of latent hardening (Hill, 1966; Hill and Rice, 1972; Havner,

1982; Asaro, 1983b; Franciosi and Zaoui, 1991).

12.11. Further Analysis of Constitutive Equations

Another route toward elastoplastic constitutive equations of single crystals

is to proceed from

τ̇α = Cα : D∗ = Cα : MMM(0) :
•
τ, (12.11.1)

i.e.,

τ̇α = Hα :
•
τ, Hα = Cα : MMM(0) = MMM(0) : Cα. (12.11.2)

Since from Eqs. (12.2.14) and (12.4.5),

•
τ =

◦
τ +

n∑
β=1

(
Cβ −LLL(0) : Pβ

)
γ̇β , (12.11.3)
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Equation (12.11.2) becomes

τ̇α = Hα :
◦
τ +

n∑
β=1

(
Hβ − Pβ

)
γ̇β . (12.11.4)

On an active slip system this must be equal to

τ̇α =
n∑

β=1

hαβ γ̇
β , (12.11.5)

which gives

Hα :
◦
τ =

n∑
β=1

aαβ γ̇
β , γ̇α > 0, (12.11.6)

where

aαβ = hαβ + Cα :
(
Pβ − Hβ

)
= gαβ − Cα : Hβ . (12.11.7)

When a slip system is inactive,

Hα :
◦
τ ≤

n∑
β=1

aαβ γ̇
β , γ̇α = 0. (12.11.8)

If the inverse matrix, whose components are designated by a−1
αβ , exists,

Eq. (12.11.6) can be solved for the slip rates in terms of the stress rate as

γ̇α =
n∑

β=1

a−1
αβ Hβ :

◦
τ. (12.11.9)

Substituting this into the first of equations (12.5.9) gives

Dp
(0) =

n∑
α=1

n∑
β=1

a−1
αβ

(
Hα ⊗ Hβ

)
:
◦
τ. (12.11.10)

Combining with the elastic part, defined by Eq. (12.5.8), yields the consti-

tutive equation for the elastoplastic loading of a single crystal,

D =

⎛
⎝MMM(0) +

n∑
α=1

n∑
β=1

a−1
αβ Hα ⊗ Hβ

⎞
⎠ :

◦
τ. (12.11.11)

The fourth-order tensor within the brackets is the crystalline elastoplastic

compliances tensor.

If the convected rate of stress is used, we have

Gα :
�
τ =

n∑
β=1

bαβ γ̇
β , (12.11.12)

where

bαβ = hαβ + Cα :
(
Pβ − Gβ

)
= gαβ − Cα : Gβ , (12.11.13)
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and

Gα
0 : Ṫ =

n∑
β=1

b0αβ γ̇
β , γ̇α > 0. (12.11.14)

Here,

b0αβ = hαβ + Cα
0 :

(
Pβ

0 − Gβ
0

)
= gαβ − Cα

0 : Gβ
0 . (12.11.15)

However, the identity holds

Cα
0 : Gβ

0 = Cα : Gβ , (12.11.16)

because

Cα
0 = F−1 · Cα · F−T , Gβ

0 = FT · Gβ · F, (12.11.17)

and, consequently,

b0αβ = bαβ . (12.11.18)

This is also clear from Eqs. (12.11.12) and (12.11.14), and the identity

Gα
0 : Ṫ = Gα :

�
τ . (12.11.19)

If bαβ has an inverse matrix whose components are denoted by b−1
αβ , the

slip rates can be determined from

γ̇α =
n∑

β=1

b−1
αβ Gβ :

�
τ =

n∑
β=1

b−1
αβ Gβ

0 : Ṫ. (12.11.20)

When Eq. (12.11.20) is substituted into (12.5.9), there follows

Dp
(1) =

n∑
α=1

n∑
β=1

b−1
αβ

(
Gα ⊗ Gβ

)
:
�
τ , (12.11.21)

(Ė)p =
n∑

α=1

n∑
β=1

b−1
αβ

(
Gα

0 ⊗ Gβ
0

)
: Ṫ. (12.11.22)

Combining with the elastic parts of Eq. (12.5.8) finally gives

D =

⎛
⎝MMM(1) +

n∑
α=1

n∑
β=1

b−1
αβ Gα ⊗ Gβ

⎞
⎠ :

�
τ , (12.11.23)

Ė =

⎛
⎝M(1) +

n∑
α=1

n∑
β=1

b−1
αβ Gα

0 ⊗ Gβ
0

⎞
⎠ : Ṫ. (12.11.24)

These constitutive equations complement the previously derived constitutive

equation (12.11.11), which was expressed in terms of the Jaumann rate of

the Kirchhoff stress.
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12.12. Uniqueness of Slip Rates for Prescribed Stress Rate

The uniqueness of the set of slip rates for the prescribed stress rate has to be

examined separately for each selection of the strain and its conjugate stress

measure. This is because the moduli aαβ and bαβ are different, while the

moduli gαβ used in the proof given in Section 12.10 were measure invariant.

Consequently, let us examine the uniqueness of γ̇α when Ṫ is prescribed.

Denote again by Δγ̇α = γ̇α− ˙̄γα (α = 1, 2, . . . , n0) the difference between the

slip rates in two different slip modes, both at the same stress and hardening

state. One mode is associated with the rate of stress Ṫ and the other with
˙̄T. From Eq. (12.5.9) we have

Δ(Ė)p =
n0∑
α=1

Gα
0 Δγ̇α, (12.12.1)

and

Δ(Ė)p : ΔṪ =
n0∑
α=1

(
Gα

0 : ΔṪ
)

Δγ̇α, (12.12.2)

where

ΔṪ = Ṫ − ˙̄T. (12.12.3)

If the slip system α is active in both modes,

Gα
0 : Ṫ −

n0∑
β=1

bαβ γ̇
β = 0, γ̇α > 0, (12.12.4)

Gα
0 : ˙̄T −

n0∑
β=1

bαβ ˙̄γβ = 0, ˙̄γα
> 0. (12.12.5)

In this case,

Gα
0 : ΔṪ −

n0∑
β=1

bαβ Δγ̇β = 0, (12.12.6)

and, upon multiplication with Δγ̇α,(
Gα

0 : ΔṪ
)

Δγ̇α =
n0∑
β=1

bαβ Δγ̇α Δγ̇β . (12.12.7)

If the slip system α is active in the first mode, but inactive in the second

mode, i.e.,

Gα
0 : Ṫ −

n0∑
β=1

bαβ γ̇
β = 0, γ̇α > 0, (12.12.8)
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Gα
0 : ˙̄T −

n0∑
β=1

bαβ ˙̄γβ ≤ 0, ˙̄γα = 0, (12.12.9)

then

Gα
0 : ΔṪ −

n0∑
β=1

bαβ Δγ̇β ≥ 0, Δγ̇α > 0. (12.12.10)

Thus, upon multiplication with Δγ̇α,(
Gα

0 : ΔṪ
)

Δγ̇α ≥
n0∑
β=1

bαβ Δγ̇α Δγ̇β . (12.12.11)

Inequality (12.12.11) also holds in the case when α system is active in the

second and inactive in the first mode, since then, in place of (12.12.10),

Gα
0 : ΔṪ −

n0∑
β=1

bαβ Δγ̇β ≤ 0, Δγ̇α < 0. (12.12.12)

Finally, if the slip system α is inactive in both modes,(
Gα

0 : ΔṪ
)

Δγ̇α =
n0∑
β=1

bαβ Δγ̇α Δγ̇β , (12.12.13)

because Δγ̇α = 0. Therefore, (12.12.11) encompasses all cases, since either

= or > sign applies. Summing over all critical systems, therefore, gives
n0∑
α=1

(
Gα

0 : ΔṪ
)

Δγ̇α ≥
n0∑
α=1

n0∑
β=1

bαβ Δγ̇α Δγ̇β . (12.12.14)

From (12.12.14) we deduce that the positive definiteness of the matrix bαβ is

a sufficient condition for the unique slip rates γ̇α under prescribed Ṫ. Indeed,

for a prescribed stress rate, the difference ΔṪ = 0, and if bαβ is positive

definite, the inequality (12.12.14) can be satisfied only when Δγ̇α = 0, for

all α. The same applies if the stress rate
�
τ is used (

�
τ is proportional to Ṫ,

if current configuration is taken for the reference). By an analogous prove,

when the stress rate
◦
τ is prescribed (

◦
τ is proportional to the rate of stress

conjugate to logarithmic strain, when the current configuration is taken as

the reference), the slip rates γ̇α are guaranteed to be unique if the matrix

with component aαβ is positive definite.

Finally, we note that, from Eqs. (12.5.10), (12.11.7) and (12.11.13),

gαβ = aαβ + Cα : MMM(0) : Cβ

= bαβ + Cα : MMM(1) : Cβ = bαβ + Cα
0 : M(1) : Cβ

0 .
(12.12.15)
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Figure 12.3. (a) The yield cone in stress space. Indicated
also are prolongation of the yield cone and the cone of fully
active range associated with the directions of stress rate for
which all segments of the yield cone are active. (b) The
plastic cone defining the range of possible directions of the
plastic rate of strain.

Thus, if aαβ is positive definite, positive definiteness of gαβ is ensured if

MMM(0) is positive definite. Likewise, if bαβ is positive definite, the positive

definiteness of gαβ is ensured if MMM(1) or, equivalently, M(1) is positive defi-

nite.

12.13. Fully Active or Total Loading Range

Suppose that the yield vertex in stress space T is a pyramid formed by n0

intersecting hyperplanes corresponding to n0 potentially active slip systems.

The range of directions of the stress rate Ṫ for which all n0 vertex segments

are active (slip takes place on all n0 slip systems) is defined by n0 inequalities

n0∑
β=1

b−1
αβ Gβ

0 : Ṫ > 0, α = 1, 2, . . . , n0. (12.13.1)

These follow from (12.11.14) and the requirement that all slip rates are

positive (the matrix with components bαβ is assumed to be positive definite).

The corresponding range of the stress rate space is referred to as the fully
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active or total loading range (Fig. 12.3a). The terminology is borrowed from

Hill (1966) for fully active, and from Sanders (1955) for total loading range.

The elastic unloading takes place on all slip systems if Ṫ falls within the

range

Gα
0 : Ṫ ≤ 0, α = 1, 2, . . . , n0, (12.13.2)

which is the boundary or the interior of the pyramidal yield vertex. The

outward normal to α segment of the vertex is codirectional with Gα
0 . The

remainder of the stress rate space is dissected into(
n0

1

)
+

(
n0

2

)
+ · · · +

(
n0

n0 − 1

)
= 2n0 − 2 (12.13.3)

pyramidal regions of partial loading (n0 ≥ 2). For example, there are n0

pyramidal regions of single slip, and n0(n0−1)/2 pyramidal regions of double

slip. There are also n0 pyramidal regions of multislip over different sets of

(n0 − 1) slip systems.

As an illustration, consider a pyramidal region of double slip on the first

and second slip system (α = 1, 2). From Eq. (12.11.14) there follows

G1
0 : Ṫ = b11γ̇

1 + b12γ̇
2, G2

0 : Ṫ = b21γ̇
1 + b22γ̇

2, (12.13.4)

Gα
0 : Ṫ ≤ bα1γ̇

1 + bα2γ̇
2, 3 ≤ α ≤ n0. (12.13.5)

Since double slip is assumed to take place under prescribed Ṫ, the two

equations in (12.13.4) can be solved for the slip rates to give

γ̇1 =
1
Δ

(b22G1
0 − b12G2

0) : Ṫ, γ̇2 =
1
Δ

(b11G2
0 − b21G1

0) : Ṫ, (12.13.6)

where

Δ = b11b22 − b12b21 > 0. (12.13.7)

Thus, since γ̇1 > 0 and γ̇2 > 0, we have

(b22G1
0 − b12G2

0) : Ṫ > 0, (b11G2
0 − b21G1

0) : Ṫ > 0. (12.13.8)

Furthermore, if (12.13.6) is substituted into (12.13.5), there follows

[ (b11b22 − b12b21)Gα
0 + (bα2b21 − bα1b22)G1

0

+ (bα1b12 − bα2b11)G2
0

]
: Ṫ ≤ 0, 3 ≤ α ≤ n0.

(12.13.9)

The inequalities (12.13.8) and (12.13.9) define the pyramidal region of double

slip over slip systems 1 and 2 at the vertex formed by n0 ≥ 3 yield segments.

© 2002 by CRC Press LLC 



Similarly, the pyramidal region of single slip over the slip system 1 is

defined by the inequalities

G1
0 : Ṫ > 0, (b11Gα

0 − bα1G1
0) : Ṫ ≤ 0, 2 ≤ α ≤ n0. (12.13.10)

Fully active range and the two regions of single slip for the case n0 = 2 are

schematically shown in Fig. 12.4a.

If there is no latent hardening (hαβ = 0 for α �= β), the fully active range

is just the prolongation of the yield vertex (prolongation cone in Fig. 12.3b).

Thus, a pyramidal region of double slip on the first and second slip system

(α = 1, 2) is defined by

G1
0 : Ṫ > 0, G2

0 : Ṫ > 0, Gα
0 : Ṫ ≤ 0, 3 ≤ α ≤ n0. (12.13.11)

The pyramidal region of single slip over the slip system 1 is similarly

G1
0 : Ṫ > 0, Gα

0 : Ṫ ≤ 0, 2 ≤ α ≤ n0. (12.13.12)

Fully active range and the two regions of single slip are in this case sketched

in Fig. 12.4b. With no latent hardening, the range of possible directions

for the plastic rate of deformation coincides with the fully active range. For

an analysis of elastic-plastic crystals characterized by a smooth yield surface

with rounded corners, see Gambin (1992).

12.14. Constitutive Inequalities

We first recall from Sections 12.5 and 12.9 that

Cα : D = Cα
0 : Ė =

n∑
β=1

gαβ γ̇
β , (12.14.1)

and

◦
τ p =

�
τ p = −

n∑
α=1

Cα γ̇α, (Ṫ)p = −
n∑

α=1

Cα
0 γ̇α. (12.14.2)

Thus,

◦
τ p : D =

�
τ p : D = (Ṫ)p : Ė = −

n∑
α=1

n∑
β=1

gαβ γ̇
α γ̇β . (12.14.3)

In this expression we can replace the number of active slip systems n with

the number of critical slip systems n0, because γ̇α = 0 for inactive critical
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Figure 12.4. (a) The yield vertex formed by two segments
1 and 2. Indicated are the fully active range of slip on both
slip systems, the two ranges of single slip, and the range
of elastic unloading. (b) The same as in (a), but without
latent hardening. The fully active range coincides with the
prolongation of the yield vertex.

systems. Thus, if the matrix with components gαβ over all critical systems

is positive definite, Eq. (12.14.3) yields

◦
τ p : D =

�
τ p : D = (Ṫ)p : Ė < 0. (12.14.4)

The inequality holds regardless of whether the crystal is in the state of

overall hardening or softening (Fig. 12.5). Recall that, in the context of

general strain measures, the quantity dE : dpT is measure invariant, i.e.,

it does not change its value with the change of strain E and its conjugate

stress measure T.

On the other hand,

◦
τ : Dp

(0) �=
�
τ : Dp

(1) = Ṫ : (Ė)p. (12.14.5)

This can be deduced from the derived equations in Sections 12.5 and 12.9,

i.e., from

Hα :
◦
τ =

n∑
β=1

aαβ γ̇
β , Gα :

�
τ = Gα

0 : Ṫ =
n∑

β=1

bαβ γ̇
β , (12.14.6)

Dp
(0) =

n∑
α=1

Hα γ̇α, Dp
(1) =

n∑
α=1

Gα γ̇α, (Ė)p = −
n∑

α=1

Gα
0 γ̇α . (12.14.7)
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Figure 12.5. One-dimensional illustration of elastoplastic
inequalities for the hardening and softening material re-
sponse. Infinitesimal cycles of stress are shown in parts
(a) and (b), and of strain in parts (c) and (d). Indicated
stress and strain increments are positive when their arrows
are directed in the positive coordinate directions.

These yield

◦
τ : Dp

(0) =
n∑

α=1

n∑
β=1

aαβ γ̇
α γ̇β ,

�
τ : Dp

(1) = Ṫ : (Ė)p =
n∑

α=1

n∑
β=1

bαβ γ̇
α γ̇β .

(12.14.8)

In particular, it may happen that
◦
τ : Dp

(0) > 0, implying the hardening

relative to utilized measures of conjugate stress and strain, while
�
τ : Dp

(1) <

0, implying the softening relative to these measures.
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In fact, by multiplying Eq. (12.11.4) with γ̇α, summing over α, and by

using the first of (12.5.9) gives

◦
τ : Dp

(0) =
n∑

α=1

τ̇α γ̇α +
n∑

α=1

n∑
β=1

Cα :
(
Pβ − Hβ

)
γ̇α γ̇β . (12.14.9)

Similarly,

�
τ : Dp

(1) =
n∑

α=1

τ̇α γ̇α +
n∑

α=1

n∑
β=1

Cα :
(
Pβ − Gβ

)
γ̇α γ̇β . (12.14.10)

Their difference is, thus,

◦
τ : Dp

(0) −
�
τ : Dp

(1) =
n∑

α=1

n∑
β=1

Cα :
(
Gβ − Hβ

)
γ̇α γ̇β , (12.14.11)

or

◦
τ : Dp

(0) −
�
τ : Dp

(1) =
n∑

α=1

n∑
β=1

Cα :
(MMM(1) −MMM(0)

)
: Cβ γ̇α γ̇β , (12.14.12)

which can be either positive or negative.

In retrospect, the inequality in (12.14.5) was anticipated in the context

of general strain measures, because the second-order work quantity dT : dpE

is not measure invariant, and changes its value with the change of strain and

its conjugate stress measure.

In contrast to (12.14.5), there is an equality

•
τ : Dp

(0) =
�
τ : Dp

(1) =
(
Fp−1 · Ṫ∗ · Fp−T

)
: (Ė)p =

n∑
α=1

τ̇α γ̇α. (12.14.13)

Further Inequalities

If dpE is the plastic part of the strain increment along plastic loading branch,

while δT is the stress increment along elastic unloading branch, from Eq.

(12.14.13) it follows that

δT : dpE =
n∑

α=1

δτα dγα < 0, (12.14.14)

provided that elastic unloading is such that it reduces τα on each critical

system (δτα < 0). The slip increments dγα are assumed to be always positive

during plastic loading, so that opposite directions of slip in the same glide
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plane are represented by distinct α’s. The inequality (12.14.14) is measure

invariant. The measure invariance is clear since

−δT : dpE = δE : dpT = δF · · dpP. (12.14.15)

This follows by recalling that

dpP = KKKT : dpT, δE = δF · · KKKT , (12.14.16)

and

δT : dpE = δE : Λ(1) : dpE = −δE : dpT. (12.14.17)

Thus

δE : dpT = δF · · dpP > 0. (12.14.18)

The transition between the inequalities (12.14.14) and (12.14.18) can

also be conveniently deduced from an invariant bilinear form, introduced in

a more general context by Hill (1972). This is

δT : dpE − dpT : δE = δP · · dpF − dpP · · δF. (12.14.19)

It is easily verified that

δT : dpE − dpT : δE = 2δT : dpE = −2δE : dpT. (12.14.20)

Thus, if δT : dpE < 0, then δE : dpT > 0, and vice versa.

It is noted that

δE : Cα
0 ≤ 0, α = 1, 2, . . . , n0. (12.14.21)

These inequalities hold because the elastic strain increment is directed inside

of the yield vertex in strain space formed by n0 hyperplane segments (or

along some of the vertex segments), while Cα
0 are in the directions of their

outer normals (Fig. 12.6). From the inequalities (12.14.21) we can deduce

the normality rule. Indeed, by multiplying (12.14.21) with dγα ≥ 0 (dγα = 0

for n0 − n inactive critical systems at the vertex), and by summing over α,

there follows

δE :
n0∑
α=1

Cα
0 dγα < 0. (12.14.22)

In view of Eq. (12.5.2), this implies the normality

δE : dpT > 0. (12.14.23)
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Figure 12.6. The yield cone in strain space. The plastic
part of the rate of stress −dpT falls within the plastic cone
defined by the normals to individual yield segments, such
as Cα

0 and Cβ
0 . If the strain increment dE is within fully

active range, all yield segments are active and participate in
plastic flow. The elastic unloading increment of strain δE
is directed within the yield cone.

12.15. Implications of Ilyushin’s Postulate

We demonstrate in this section that the inequality (12.14.14) is in accord

with Ilyushin’s postulate of positive net work in an isothermal cycle of strain

that involves plastic slip, ∮
E

T : dE > 0. (12.15.1)

As discussed in Section 8.5, when Ilyushin’s postulate is applied to an infin-

itesimal strain cycle emanating from the yield surface, the net expenditure

of work must be positive. By the trapezoidal rule of quadrature this work is

−1
2

dpT : dE > 0, (12.15.2)

so that

dpT : dE < 0. (12.15.3)
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This inequality is often considered as a basic or fundamental inequality of

crystal plasticity (Havner, 1992). Comparing with Eq. (12.14.3), we see that

the positive definiteness of gαβ ensures that the crystal behavior is in accord

with the inequality (12.15.3).

By considering the strain cycle with a sufficiently small segment along

which the slip takes place, it was shown in Section 8.5 that Ilyushin’s pos-

tulate implies, to first order,∮
E

T : dE = (dpΨ)0 − dpΨ > 0. (12.15.4)

The plastic parts of the free energy at the strain levels E and E0, due to

change in slip alone, are defined by

dpΨ = Ψ (E, H + dH) − Ψ (E, H) , (12.15.5)

(dpΨ)0 = Ψ
(
E0, H + dH) − Ψ

(
E0, H)

. (12.15.6)

Infinitesimal change of the pattern of internal rearrangements dH is fully

described by the slip increments dγα. The state (E,H) is on the yield

surface, while the other three states are inside the yield surface (Fig. 12.6).

The plastic change of the free energy in the loading/unloading transition

from (E,H) to (E,H+ dH) is equal to the negative of the work done on the

increment of strain caused by the slip dγα. This is, to first order,

dpΨ = −T :
n∑

α=1

Pα
0 dγα = −

n∑
α=1

τα dγα. (12.15.7)

The resolved shear stress at the stress state T is τα = T : Pα
0 , by Eq.

(12.7.3). The plastic change of the free energy in the loading/unloading

transition from (E0,H) to (E0,H+ dH) is equal to the negative of the work

done on slip increments dγα by the resolved shear stress τα0 , corresponding

to stress T0 at the state (E0,H). Thus,

(dpΨ)0 = −T0 :
n∑

α=1

(Pα
0 )0 dγα = −

n∑
α=1

τα0 dγα, (12.15.8)

where τα0 = T0 : (Pα
0 )0. Substitution into (12.15.4) gives

n∑
α=1

(τα − τα0 ) dγα > 0. (12.15.9)
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The inequality may be referred to as the maximum slip work inequality

(analogous to maximum plastic work inequality discussed in Section 8.6).

Introducing the elastic unloading increments of the resolved shear stress

δτα = τα − τα0 , (12.15.10)

the inequality (12.15.9) becomes
n∑

α=1

δτα dγα < 0. (12.15.11)

Since

δT : dpE = −δE : dpT =
n∑

α=1

δτα dγα, (12.15.12)

we conclude that Ilyushin’s postulate (12.15.4), and the resulting inequality

(12.15.11), ensure (12.14.14) and (12.14.18), and the normality properties

for dpE and dpT.

12.16. Lower Bound on Second-Order Work

In this section we prove that the symmetric positive definite matrix of moduli

gαβ , over all n0 critical systems, guarantees that the second-order work dT :

dE in an actual crystal response, with n < n0 active slip systems, is not

less than it would be with all critical systems active (Sewell, 1972; Havner,

1992). To that goal, introduce the net resistance force on a critical system

α by

ḟα = τ̇αcr − τ̇α

{
= 0, γ̇α > 0,
≥ 0, γ̇α = 0.

(12.16.1)

The rates of the critical resolved shear stress and the resolved shear stress

are defined by Eqs. (12.9.1) and (12.9.19), i.e.,

τ̇αcr =
n0∑
β=1

hαβ γ̇
β , (12.16.2)

τ̇α = Cα
0 : Ė −

n0∑
β=1

Cα
0 : Pβ

0 γ̇β . (12.16.3)

Since, from Eq. (12.9.27), hαβ = gαβ − Cα
0 : Pβ

0 , the substitution of Eqs.

(12.16.2) and (12.16.3) into (12.16.1) yields

ḟα =
n0∑
β=1

gαβ γ̇
β − Cα

0 : Ė. (12.16.4)
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If the matrix gαβ is positive definite, it has an inverse, and Eq. (12.16.4)

can be solved for γ̇α to give

γ̇α =
n0∑
β=1

g−1
αβ

(
ḟβ + Cβ

0 : Ė
)
. (12.16.5)

The plastic part of the stress rate can then be expressed from Eq. (12.5.2)

as

(Ṫ)p = −
n0∑
α=1

Cα
0 γ̇α = −

n0∑
α=1

n0∑
β=1

Cα
0 g−1

αβ

(
ḟβ + Cβ

0 : Ė
)
. (12.16.6)

The substitution into

(Ṫ)p = Λ(1) : Ė + (Ṫ)p (12.16.7)

gives

Ṫ = Λp
(1) : Ė −

n0∑
α=1

n0∑
β=1

Cα
0 g−1

αβ ḟβ . (12.16.8)

The tensor

Λp
(1) = Λ(1) −

n0∑
α=1

n0∑
β=1

g−1
αβ

(
Cα

0 ⊗ Cβ
0

)
(12.16.9)

is the stiffness tensor of fully plastic response, in which all critical systems

are supposed to be active (ḟα = 0 for α = 1, 2, . . . , n0).

By taking a trace product of (12.16.8) with Ė, we obtain

Ṫ : Ė = Ė : Λp
(1) : Ė −

n0∑
α=1

n0∑
β=1

(
Cα

0 : Ė
)
g−1
αβ ḟβ . (12.16.10)

The term involving a double sum on the right-hand side can be expressed,

by substituting Eq. (12.16.4) to eliminate Cα
0 : Ė, as

n0∑
α=1

n0∑
β=1

(
Cα

0 : Ė
)
g−1
αβ ḟβ = −

n0∑
α=1

n0∑
β=1

g−1
αβ ḟαḟβ +

n0∑
α=1

n0∑
β=1

n0∑
ν=1

gαν g
−1
αβ γ̇ν ḟβ .

(12.16.11)

If gαβ is a symmetric matrix, the sum over α of gαν g
−1
αβ is equal to δνβ ,

and the triple sum on the right-hand side of (12.16.11) vanishes, because

γ̇β ḟβ = 0 for all β (ḟβ vanishing on active and γ̇β on inactive slip systems).

Therefore, Eq. (12.16.10) reduces to

Ṫ : Ė = Ė : Λp
(1) : Ė +

n0∑
α=1

n0∑
β=1

g−1
αβ ḟαḟβ . (12.16.12)
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Since gαβ is positive definite, we infer that

Ṫ : Ė ≥ Ė : Λp
(1) : Ė. (12.16.13)

The equality holds only if the actual response momentarily takes place with

all critical systems active. Alternatively, expressed in terms of increments,(
dT − Λp

(1) : dE
)

: dE ≥ 0, (12.16.14)

which establishes a lower bound on the second-order work quantity dT : dE.

12.17. Rigid-Plastic Behavior

In the rigid-plastic idealization,

F = R∗ · Fp, (12.17.1)

where R∗ is the lattice rotation, which carries the lattice vector sα0 into

sα = R∗ · sα0 . The lattice rate of deformation vanishes (D∗ = 0), and the

total rate of deformation is solely due to slip,

D =
n∑

α=1

Pα γ̇α. (12.17.2)

The spin tensor can be expressed as

W = W∗ +
n∑

α=1

Qα γ̇α. (12.17.3)

The lattice spin is

W∗ = Ṙ∗ · R∗−1, (12.17.4)

while

Pα + Qα = sα ⊗ mα = R∗ · (sα0 ⊗ mα
0 ) · R∗T . (12.17.5)

The rate of the generalized Schmid stress on an active slip system meets the

consistency condition

τ̇α = Pα :
•
σ =

n∑
β=1

hαβ γ̇
β . (12.17.6)

It is noted that for the rigid-plastic model of crystal plasticity, the defor-

mation is isochoric (detF = 1), so that the Kirchhoff and Cauchy stress

coincide (τ = σ). By substituting Eq. (12.2.14) for
•
σ, there follows

Pα :
◦
σ =

n∑
β=1

aαβ γ̇
β , (12.17.7)
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where

aαβ = hαβ − Pα :
(
Qβ · σ− σ · Qβ

)
. (12.17.8)

The slip rates are thus

γ̇α =
n∑

β=1

a−1
αβ Pβ :

◦
σ, (12.17.9)

provided that the inverse matrix a−1
αβ exists (see, also, Khan and Huang,

1995).

Alternative derivation proceeds from

τ̇α = Pα
0 :

(
Fp−1 · Ṫ∗ · Fp−T

)
=

n∑
β=1

hαβ γ̇
β . (12.17.10)

By substituting Eq. (12.2.17), we have

Pα
0 : Ṫ =

n∑
β=1

bαβ γ̇
β , (12.17.11)

where

bαβ = hαβ − Pα
0 :

(
Zβ

0 · T + T · Zβ
0

T
)
. (12.17.12)

If this matrix is invertible, the slip rates are

γ̇α =
n∑

β=1

b−1
αβ Pβ

0 : Ṫ. (12.17.13)

When the convected derivative of the Kirchhoff stress is used, the slip

rates can be expressed as

γ̇α =
n∑

β=1

b−1
αβ Pβ :

�
σ, (12.17.14)

with

bαβ = hαβ − Pα :
[(

Pβ + Qβ
) · σ + σ · (Pβ − Qβ

)]
. (12.17.15)

It is easily verified that

Pα
0 : Ṫ = Pα :

�
σ, (12.17.16)

and

Pα
0 :

(
Zβ

0 · T + T · Zβ
0

T
)

= Pα :
[(

Pβ + Qβ
) · σ + σ · (Pβ − Qβ

)]
.

(12.17.17)

Evidently,

◦
σ : D =

n∑
α=1

n∑
β=1

aαβ γ̇
α γ̇β , (12.17.18)
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�
σ : D = Ṫ : Ė =

n∑
α=1

n∑
β=1

bαβ γ̇
α γ̇β . (12.17.19)

The sign of these clearly depends on the positive definiteness of the matrices

aαβ and bαβ , respectively. In particular, one can be positive, the other can

be negative.

12.18. Geometric Softening

A rigid-plastic model can be conveniently used to illustrate that the lattice

rotation can cause an apparent softening of the crystal, even when the slip

directions are still hardening. Consider a specimen under uniaxial tension

oriented for single slip along the direction s0, on the slip plane with the

normal m0 (Fig. 12.7). The corresponding rate of deformation and the spin

tensors can be expressed from Eqs. (12.17.2), (12.17.3), and (12.17.9) as

D =
1
a

(P ⊗ P) :
◦
σ, (12.18.1)

W = W∗ +
1
a

(Q ⊗ P) :
◦
σ, (12.18.2)

where

a = h− P : (Q · σ− σ · Q), (12.18.3)

and

P =
1
2

(s ⊗ m + m ⊗ s), Q =
1
2

(s ⊗ m − m ⊗ s). (12.18.4)

Suppose that the specimen is under uniaxial tension in the direction n, which

is fixed by the grips of the loading machine. The Cauchy stress tensor is then

σ = σ n ⊗ n, (12.18.5)

the material spin is W = 0, and

◦
σ = σ̇ n ⊗ n. (12.18.6)

It follows that

P :
◦
σ = σ̇ (m · n)(s · n) = σ̇ cosφ cosψ, (12.18.7)

where φ is the angle between the current slip plane normal m and the loading

direction n, while ψ is the angle between the current slip direction s and the
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Figure 12.7. Single crystal under uniaxial tension oriented
for single slip along the slip direction s0 in the slip plane with
the normal m0; parts (a) and (b). The lattice rotates dur-
ing deformation so that the slip direction s in the deformed
configuration makes an angle ψ with the longitudinal direc-
tion n; part (c). The angle between the slip plane normal
m and the longitudinal direction is φ.

loading direction n (Fig. 12.7). It is easily found that

P : (Q · σ− σ · Q) =
1
2
σ

[
(m · n)2 − (s · n)2

]
=

1
2
σ (cos2 φ− cos2 ψ).

(12.18.8)

Therefore, upon substitution into Eq. (12.18.1),

D =
σ̇ cosφ cosψ

h− 1
2 (cos2 φ− cos2 ψ)

P. (12.18.9)

Denoting by e the longitudinal strain in the direction of the specimen axis

n, we can write

ė = n · D · n, (12.18.10)

and Eq. (12.18.9) yields

ė =
σ̇ cos2 φ cos2 ψ

h− 1
2 (cos2 φ− cos2 ψ)

, (12.18.11)

  �

�

���
� � ��

�

�

�
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i.e.,

σ̇ =
[

h

cos2 φ cos2 ψ
− σ (cos2 φ− cos2 ψ)

2 cos2 φ cos2 ψ

]
ė. (12.18.12)

Depending on the current orientation of the active slip system, the modulus

in Eq. (12.18.12) can be positive, zero or negative. If the lattice has rotated

such that

cos2 φ− cos2 ψ >
2h
σ

, (12.18.13)

the current modulus is negative, although the slip direction may still be

hardening (h > 0). The resulting apparent softening is purely geometrical

effect, due to rotation of the lattice caused by crystallographic slip, and is

referred to as geometric softening. In the derivation it was assumed that the

lattice rotation does not activate the slip on another slip system.

The product

M = cosφ cosψ (12.18.14)

is known as the Schmid factor. The resolved shear stress in the slip direction,

due to applied tension σ, is τ = M σ. Since the rate of work can be expressed

as ẇ = σ ė = τ γ̇, it follows that the slip rate γ̇ can be expressed in terms

of the longitudinal strain rate ė as γ̇ = ė/M . Therefore, larger the Schmid

factor M , larger the resolved shear stress on the slip system and smaller the

corresponding slip rate.

Since the material spin vanishes in uniaxial tension (W = 0), from Eq.

(12.18.2) we obtain an expression for the lattice spin

W∗ = − σ̇ cosφ cosψ
h− 1

2 (cos2 φ− cos2 ψ)
Q. (12.18.15)

An analysis of lattice spin in an elastoplastic crystal under uniaxial tension

is presented in the paper by Aravas and Aifantis (1991).

12.19. Minimum Shear and Maximum Work Principle

The only mechanism of deformation in rigid-plastic crystal, within the frame-

work of this chapter, is the simple shearing on active slip systems. Therefore,

if the slip rates γ̇α (α = 1, 2, . . . , n) are prescribed, the corresponding rate

of deformation is uniquely determined from

D =
n∑

α=1

Pα γ̇α. (12.19.1)
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On the other hand, when the components of D are prescribed, there are n0

unknown slip rates on n0 critical systems, and 5 independent equations be-

tween them (trD being equal to zero, since slip is an isochoric deformation

process). If there are less than five available slip systems (as in hexagonal

crystals), a combination of shears cannot be found that produces an arbitrary

D. If n0 = 5, there is a unique set of slip rates provided that the determi-

nant of the coefficients is not equal to zero (independent slip systems; e.g.,

if three slip systems are in the same plane, only two are independent). If

n0 > 5, a set of five slip systems can be selected in any one of Cn0
5 ways; the

corresponding slip rates can be found for those sets that consist of five inde-

pendent slip systems (see Section 14.2). Of course, it may also be possible

to find combinations of six or more slip rates that give rise to a prescribed

D.

Selection of the physically operative combination is greatly facilitated

by the following Taylor’s minimum shear principle: among all geometrically

possible combinations of shears that can produce a prescribed strain, physi-

cally possible (operative) combination renders the sum of the absolute values

of shears the least. If more than one combination is physically possible, the

sums of the corresponding absolute values of shears are equal. The principle

was proposed by Taylor (1938), and was proved by Bishop and Hill (1951).

Indeed, let n slip rates γ̇α be actually operating set producing a prescribed

D, at the given state of stress σ, i.e.,

n∑
α=1

Pα γ̇α = D,
∣∣ τα ∣∣ =

∣∣ Pα : σ
∣∣ = ταcr (α = 1, 2, . . . , n). (12.19.2)

Here, for convenience, the slip in the opposite sense along the same slip di-

rection is not considered as an independent slip system, so that γ̇α < 0 when

τα < 0. The Bauschinger effect along the slip direction is assumed to be ab-

sent in Eq. (12.19.2). Further, let n̄ slip rates ˙̄γα be geometrically possible,

but not physically operating, set of shears associated with a prescribed D,

i.e.,

n̄∑
α=1

P̄α ˙̄γα = D,
∣∣ τ̄α ∣∣ =

∣∣ P̄α : σ
∣∣≤ τ̄αcr (α = 1, 2, . . . , n̄). (12.19.3)
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Then, we can write

σ : D =
n∑

α=1

Pα : σ γ̇α =
n̄∑

α=1

P̄α : σ ˙̄γα
, (12.19.4)

or,
n∑

α=1

τα γ̇α =
n̄∑

α=1

τ̄α ˙̄γα
. (12.19.5)

Furthermore,
n∑

α=1

τα γ̇α =
n∑

α=1

∣∣ τα ∣∣ ∣∣ γ̇α
∣∣ =

n∑
α=1

ταcr
∣∣ γ̇α

∣∣, (12.19.6)

n̄∑
α=1

τ̄α ˙̄γα =
n̄∑

α=1

∣∣ τ̄α ∣∣ ∣∣ ˙̄γα ∣∣≤ n̄∑
α=1

τ̄αcr
∣∣ ˙̄γα ∣∣ . (12.19.7)

Consequently, upon combination with Eq. (12.19.5),
n∑

α=1

ταcr
∣∣ γ̇α

∣∣≤ n̄∑
α=1

τ̄αcr
∣∣ ˙̄γα ∣∣ . (12.19.8)

This means that the work on physically operating slip rates is not greater

than the work on the slip rates that are only geometrically possible. If the

hardening on all slip systems is the same (isotropic hardening), the critical

resolved shear stresses at a given stage of deformation are equal on all slip

systems (regardless of how much slip actually occurred on individual slip

systems), and (12.19.8) reduces to
n∑

α=1

∣∣ γ̇α
∣∣≤ n̄∑

α=1

∣∣ ˙̄γα ∣∣ . (12.19.9)

This is the minimum shear principle. Among all geometrically admissible

sets of slip rates, the sum of absolute values of the slip rates is least for the

physically operative set of slip rates.

Bishop and Hill (1951) also formulated and proved the maximum work

principle for a rigid-plastic single crystal. If D is the rate of deformation that

takes place at the state of stress σ, then for any other state of stress σ∗,

which does not violate the yield condition on any slip system, the difference

of the corresponding rates of work per unit volume is

(σ− σ∗) : D =
n∑

α=1

(τα − τα∗ ) γ̇α. (12.19.10)
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The summation extends over all slip rates of a set giving rise to the rate

of deformation tensor D at the state of Cauchy stress σ. If γ̇α > 0 in the

direction α, then

τα − τα∗ = ταcr+ − τα∗ ≥ 0. (12.19.11)

If γ̇α < 0 in the direction α, then

τα − τα∗ = −ταcr− − τα∗ ≤ 0, (12.19.12)

since by hypothesis

−ταcr− ≤ τα∗ ≤ ταcr+ . (12.19.13)

The microscopic Bauschinger effect is here allowed, so that the critical shear

stresses in opposite directions may be different (ταcr− �= ταcr+). All products

in the sum on the right-hand side of Eq. (12.19.10) are thus positive or zero,

and so

(σ− σ∗) : D ≥ 0, (12.19.14)

which is the principle of maximum work. The equality in (12.19.14) holds

only when τα = τα∗ for all active slip systems. If there are at least 5 of these,

the stress states σ and σ∗ can only differ by a hydrostatic stress.

12.20. Modeling of Latent Hardening

A diagonal term hαα of the hardening matrix represents the rate of self-

hardening, i.e., the rate of hardening on the slip system α due to slip on

that system itself. An off-diagonal term hαβ represents the rate of latent or

cross hardening, i.e., the rate of hardening on the slip system α due to slip

on the system β. It has been observed that the ratio of latent hardening

to self-hardening is frequently in the range between 1 and 1.4 (Kocks, 1970;

Asaro, 1983a; Bassani, 1990; Bassani and Wu, 1991). For slip systems within

the same plane (coplanar systems), the ratio is closer to 1. Larger values are

observed for systems on intersecting slip planes. Estimates of latent hard-

ening are most commonly done by the measurements of the lattice rotation

“overshoot”. When the single crystal is deformed by tension in a single slip

mode, the lattice rotates relative to the loading axis, so that the slip direc-

tion rotates toward the loading axis. After a finite amount of slip on the

primary system, a second (conjugate) slip system becomes critical. If the la-

tent hardening on the conjugate slip system is larger than the self-hardening
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Figure 12.8. Plane model of a single crystal. Initially,
the crystal deforms by single slip on the primary slip sys-
tem (sp,mp). As the lattice rotates through the angle ω,
the conjugate slip system (sc,mc) becomes critical, which
results in double slip of the crystal.

on the primary system, the lattice rotation overshoots the symmetry posi-

tion, at which the two slip directions are symmetric about the tensile axis,

until the resolved shear stress on the conjugate system exceeds that on the

primary system, and the conjugate slip begins. This is schematically illus-

trated in Fig. 12.8. Other methods for estimating latent hardening are also

available. An optical micrograph showing the primary and conjugate slip is

shown in Fig. 12.9. The primary slip system is designated by (sp,mp), and

the conjugate slip system by (sc,mc).
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The simplest model of latent hardening is associated with a symmetric

matrix of the hardening rates

hαβ = h1 + (h− h1) δαβ , (12.20.1)

where h is the rate of self-hardening, and h1 is the rate of latent harden-

ing (1 ≤ h1/h ≤ 1.4). For h1 = h, Taylor’s (1938) isotropic hardening

is obtained, i.e., hαβ = h for all slip systems, momentarily active or not.

However, a symmetric form of the hardening matrix hαβ in Eq. (12.20.1)

implies, from Eq. (12.9.27), a nonsymmetric matrix of the moduli gαβ , and,

thus, a nonsymmetric elastoplastic stiffness tensors in the constitutive equa-

tions (12.9.33)–(12.9.35). The lack of reciprocal symmetry of these tensors

prevents the variational formulation of the boundary value problem, and

makes analytical study of elastoplastic uniqueness and bifurcation problems

more difficult. For localization in single crystals, see Asaro and Rice (1979),

Pierce, Asaro, and Needleman (1982), Pierce (1983), and Perzyna and Kor-

bel (1996).

To achieve the symmetry of gαβ , Havner and Shalaby (1977,1978) pro-

posed that

hαβ = h + Pα :
(
Qβ · τ− τ · Qβ

)
= h + 2

(
Pα · Qβ

)
: τ, (12.20.2)

since then

gαβ = h + Pα : LLL(0) : Pβ + 2
(
Pα · Qβ + Pβ · Qα

)
: τ (12.20.3)

becomes symmetric (gαβ = gβα). The hardening law of Eq. (12.9.1) can in

this case be expressed, with the help of (12.1.13), as

τ̇αcr = h

n∑
β=1

γ̇β + 2Pα : [(W − W∗) · τ ] . (12.20.4)

If the loading and orientation of the crystal are such that the lattice spin is

equal to the material spin, the above reduces to Taylor’s hardening model

(Havner, 1992). Pierce, Asaro, and Needleman (1982) observed that the

latent hardening rates from Eq. (12.20.2) are too high, and proposed instead

hαβ = h1 + (h− h1) δαβ +
(
Pα · Qβ − Pβ · Qα

)
: τ, (12.20.5)

which gives

gαβ = h1 + (h− h1) δαβ + Pα : LLL(0) : Pβ +
(
Pα · Qβ + Pβ · Qα

)
: τ.

(12.20.6)
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Figure 12.9. Optical micrographs of α-brass crystals de-
formed in tension, showing the primary and conjugate slips
(from Asaro, 1983b; with permission from Academic Press).

Still, the predicted rates of latent hardening were above experimentally ob-

served values.

Other models of latent hardening were also suggested in the literature.

A two-parameter modification of Taylor’s model was proposed by Nakada

and Keh (1966). According to this model,

τ̇αcr = h1

n1∑
i=1

γ̇i + h2

n2∑
j=1

γ̇j , (12.20.7)

where

mi = mα, mj �= mα, h2 > h1 > 0. (12.20.8)

The rate of hardening on the slip system (α) and all coplanar systems is h1,

while h2 is the rate of hardening on other slip systems. The sum n1 +n2 = n

is the number of all active slip systems. Further analysis and the study of

the response of f.c.c. and b.c.c. crystals based on the considered hardening

models can be found in Havner (1985,1992). For example, Havner (1992)

demonstrated that, under infinitesimal lattice strain, all hardening models

here considered are in accord with the basic inequality dpT : dE < 0, and

they all give rise to positive definite matrix gαβ . See also Weng (1987).
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12.21. Rate-Dependent Models

One of the difficulties with the rate-independent crystal plasticity is that

the slip rates γ̇α may not be uniquely determined in terms of the prescribed

deformation or stress rates. When the deformation rates are prescribed,

uniqueness is not guaranteed when more than five linearly independent slip

systems are potentially active. When the stress rates are prescribed, unique-

ness is not guaranteed even with fewer than five active systems, particularly

when a full range of realistic experimental data for strain hardening behavior

is used (Pierce, Asaro, and Needleman, 1983). This has stimulated intro-

duction of the rate-dependent models of crystal plasticity. The slip rates in

the constitutive equations from Section 12.4, such as

dT
dt

= Λ(1) :
dE
dt

−
N∑

α=1

Cα
0

dγα

dt
, (12.21.1)

are prescribed directly and uniquely in terms of the current stress state and

the internal structure of the material. The derivatives in Eq. (12.21.1) are

with respect to physical time t. In this formulation, there is no explicit

yielding, or division of slip systems into active and inactive. All slip systems

are active: if the resolved shear stress on a slip system is nonzero, the plastic

shearing occurs.

An often utilized expression for the slip rates is the power-law of the type

used by Hutchinson (1976) for polycrystalline creep, and by Pan and Rice

(1983) to describe the influence of the rate sensitivity on the yield vertex

behavior in single crystals. This is

γ̇α = γ̇α
0 sgn(τα)

∣∣∣ τα

ταr

∣∣∣1/m . (12.21.2)

The resolved shear stress is τα = sα · τ · mα. The current strain-hardened

state of slip systems is represented by the hardness parameters ταr , γ̇α
0 is

the reference rate of shearing (which can be same for all slip systems), m

characterizes the material rate sensitivity, and sgn is the sign function. The

rate-independent response is achieved in the limit m → 0. For sufficiently

small values of m (say, m ≤ 0.02), the slip rates γ̇α are exceedingly small

when τα < ταr , so that “yielding” would appear to occur abruptly as τα
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approaches the current value of ταr . The hardening parameters ταr are pos-

itive. Their initial values are ταr o, and they change according to evolution

equations

τ̇αr =
N∑

β=1

hαβ |γ̇β |. (12.21.3)

The slip hardening moduli, including self and latent hardening, are hαβ .

Since all slip systems are potentially active in the rate-dependent formula-

tion, it is more convenient to consider
(
sα,mβ

)
and

(−sα,mβ
)

as the same

slip system, i.e., to permit γ̇α to be negative if the corresponding τα is neg-

ative. This sign convention is embodied in Eqs. (12.21.2) and (12.21.3). For

example, the total number of slip systems in f.c.c. crystals is then N = 12.

In practice, the functions ταr would be fit to τ vs. γ curves, obtained from

the crystal deformed in the single slip modes, and with latent hardening

estimated from the measurements of the lattice rotation overshoots (Asaro,

1983a). If all self-hardening moduli are equal to h and all latent hardening

moduli are equal to h1, we can write

hαβ = h1 + (h− h1) δαβ . (12.21.4)

In their analysis of localization of deformation in rate-dependent single crys-

tals subject to tensile loading, Pierce, Asaro, and Needleman (1983) used

the following expression for the change of the self-hardening modulus during

the slip,

h = h(γ) = h0 sech2
∣∣∣ h0γ

τs − τ0

∣∣∣ . (12.21.5)

The initial hardening rate is h0, the initial yield stress is τ0, and γ is the

cumulative shear strain on all slip systems,

γ =
N∑

α=1

|γα|. (12.21.6)

The hardening rule (12.21.5) describes the material that saturates at large

strains, as the flow stress approaches τs. The latent hardening modulus is

taken to be h1 = q h, where q is in the range 1 ≤ q ≤ 1.4.

A described rate-dependent model of crystal plasticity allows an ex-

tension of the rate-independent calculations for various problems to much

broader range of the material strain hardening properties and crystal geom-

etry. For example, Pierce, Asaro, and Needleman (1983) found that even a

© 2002 by CRC Press LLC 



Figure 12.10. Formation of the macroscopic shear band
(MSB) within clusters of coarse slip bands (CSB) in an
aluminum-copper alloy crystal (from Chang and Asaro,
1981; with permission from Elsevier Science).

very moderate rate sensitivity had a noticeable influence on the development

of localized deformation modes. Additional analysis is given by Zarka (1973),

Canova, Molinari, Fressengeas, and Kocks (1988), and Teodosiu (1997). A

micrograph of the coarse slip band and macroscopic shear band from exper-

imental study of localized flow in single crystals by Chang and Asaro (1981)

is shown in Fig. 12.10.

12.22. Flow Potential and Normality Rule

To make a contact with the rate-dependent analysis presented in Section

8.4, we derive the flow potential for the plastic part of the strain rate, cor-

responding to the slip rates of Eq. (12.21.2). To that goal, we first rewrite

Eq. (12.21.1) as

dE
dt

= M(1) :
dT
dt

+
N∑

α=1

Gα
0

dγα

dt
, (12.22.1)
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where Gα
0 = M(1) : Cα

0 and N is the number of all available slip systems.

The plastic contribution to the strain rate is

dpE
dt

=
N∑

α=1

Gα
0

dγα

dt
. (12.22.2)

The multiplication with an instantaneously applied stress increment δT,

which would give rise to purely elastic strain increment δE, yields

δT :
dpE
dt

=
N∑

α=1

(Gα
0 : δT)

dγα

dt
. (12.22.3)

On the other hand, from Eq. (12.9.13),

δτα = Cα
0 :

(
FpT · dE∗ · Fp

)
= Cα

0 : δE = Gα
0 : δT, (12.22.4)

since δE = M(1) : δT. The substitution into Eq. (12.22.3) gives

δT :
dpE
dt

=
N∑

α=1

δτα
dγα

dt
. (12.22.5)

The slip rates in Eq. (12.21.2) are prescribed as functions of the resolved

shear stress τα and the hardness parameter ταr . This implies that

δτα
dγα

dt
= δωα (τα, ταr ) , (12.22.6)

and
dγα

dt
=

∂ωα

∂τα
. (12.22.7)

Here,

ωα =
m

m + 1
γ̇α
0 ταr

∣∣∣ τα

ταr

∣∣∣m+1
m

(12.22.8)

is a scalar flow potential for the slip system α. Consequently, Eq. (12.22.5)

becomes

δT :
dpE
dt

=
N∑

α=1

δωα (τα, ταr ) = δΩ
(
T, τ1

r , τ
2
r , . . . , τ

N
r

)
. (12.22.9)

This establishes the normality rule

dpE
dt

=
∂Ω
∂T

. (12.22.10)

The overall (macroscopic) flow potential for the plastic part of strain rate is

Ω =
N∑

α=1

ωα =
N∑

α=1

m

m + 1
γ̇α
0 ταr

∣∣∣ τα

ταr

∣∣∣m+1
m

, τα = Pα
0 : T. (12.22.11)
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CHAPTER 13

MICRO-TO-MACRO TRANSITION

Some fundamental aspects of the transition in the constitutive description

of the material response from microlevel to macrolevel are discussed in this

chapter. The analysis is aimed toward the derivation of the constitutive

equations for polycrystalline aggregates based on the known constitutive

equations for elastoplastic single crystals. The theoretical framework for this

study was developed by Bishop and Hill (1951a,b), Hill (1963,1967,1972),

Mandel (1966), Bui (1970), Rice (1970,1971,1975), Hill and Rice (1973),

Havner (1973,1974), and others. The presentation in this chapter follows

the large deformation formulation of Hill (1984,1985). The representative

macroelement is defined, and the macroscopic measures of stress and strain,

and their rates, are introduced. The corresponding elastoplastic moduli

and pseudomoduli tensors, the macroscopic normality and the macroscopic

plastic potentials are then discussed.

13.1. Representative Macroelement

A polycrystalline aggregate is considered to be macroscopically homogeneous

by assuming that local microscopic heterogeneities (due to different orien-

tation and state of hardening of individual crystal grains) are distributed

in such a way that the material elements beyond some minimum scale have

essentially the same overall macroscopic properties. This minimum scale

defines the size of the representative macroelement or representative cell

(Fig. 13.1). The representative macroelement can be viewed as a material

point in the continuum mechanics of macroscopic aggregate behavior. To be

statistically representative of the local properties of its microconstituents,

the representative macroelement must include a sufficiently large number of

microelements (Kröner, 1971; Sanchez-Palencia, 1980; Kunin, 1982). For
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Figure 13.1. Representative macroelement of a deformed
body consists of a large number of constituting microele-
ments – single grains in the case of a polycrystalline aggre-
gate (schematics adopted from Yang and Lee, 1993).

example, for relatively fine-grained metals, a representative macroelement

of volume 1 mm3 contains a minimum of 1000 crystal grains (Havner, 1992).

The concept of the representative macroelement is used in various branches

of the mechanics of heterogeneous materials, and is also referred to as the

representative volume element (e.g., Mura, 1987; Suquet, 1987; Torquato,

1991; Maugin, 1992; Nemat-Nasser and Hori, 1993; Hori and Nemat-Nasser,

1999). See also Hashin (1964), Willis (1981), Sawicki (1983), Ortiz (1987),

and Drugan and Willis (1996). For the linkage of atomistic and continuum

models of the material response, the review by Ortiz and Phillips (1999) can

be consulted.

13.2. Averages over a Macroelement

Experimental determination of the mechanical behavior of an aggregate is

commonly based on the measured loads and displacements over its external

surface. Consequently, the macrovariables introduced in the constitutive
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analysis should be expressible in terms of this surface data alone (Hill, 1972).

Let

F(X, t) =
∂x
∂X

, detF > 0, (13.2.1)

be the deformation gradient at the microlevel of description, associated with

a (continuous and piecewise continuously differentiable) microdeformation

within a crystalline grain, x = x(X, t). The reference position of the particle

is X, and its current position at time t (on some quasi-static scale, for rate-

independent response) is x. The volume average of the deformation gradient

over the reference volume V 0 of the macroelement is

〈F〉 =
1
V 0

∫
V 0

FdV 0 =
1
V 0

∫
S0

x ⊗ n0 dS0, (13.2.2)

by the Gauss divergence theorem. The unit outward normal to the bounding

surface S0 of the macroelement volume is n0. In particular, with F = I (unit

tensor), Eq. (13.2.2) gives an identity

1
V 0

∫
S0

X ⊗ n0 dS0 = I. (13.2.3)

The volume average of the rate of deformation gradient,

Ḟ(X, t) =
∂v
∂X

, v = ẋ(X, t), (13.2.4)

where v is the velocity field, is

〈Ḟ〉 =
1
V 0

∫
V 0

ḞdV 0 =
1
V 0

∫
S0

v ⊗ n0 dS0. (13.2.5)

If the current configuration is taken as the reference configuration (x =

X, F = I, Ḟ = L = ∂v/∂x), Eq. (13.2.2) gives

1
V

∫
S

x ⊗ ndS = I. (13.2.6)

The current volume of the deformed macroelement is V , and S is its bound-

ing surface with the unit outward normal n. With this choice of the refer-

ence configuration, the volume average of the velocity gradient L is, from

Eq. (13.2.5),

{L} =
1
V

∫
V

LdV =
1
V

∫
S

v ⊗ ndS. (13.2.7)

Enclosure within { } brackets is used to indicate that the average is taken

over the deformed volume of the macroelement.
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Let P = P(X, t) be a nonsymmetric nominal stress field within the

macroelement. In the absence of body forces, equations of translational

balance are

∇0 · P = 0 in V 0, n0 · P = pn on S0. (13.2.8)

Here, ∇0 = ∂/∂X is the gradient operator with respect to reference coor-

dinates, and pn is the nominal traction (related to the true traction tn by

pn dS0 = tn dS). The rotational balance requires F ·P = τ to be a symmet-

ric tensor, where τ = (detF)σ is the Kirchhoff stress, and σ is the true or

Cauchy stress.

Equations of the continuing translational balance are

∇0 · Ṗ = 0 in V 0, n0 · Ṗ = ṗn on S0. (13.2.9)

The rates of nominal and true traction are related by

ṗn dS0 =
[
ṫn + (trD − n · D · n) tn

]
dS, (13.2.10)

as in Eq. (3.8.16). The rate of deformation tensor is D. By differentiating

F ·P = PT ·FT (expressing the symmetry of τ), we obtain the condition for

the continuing rotational balance

Ḟ · P + F · Ṗ = ṖT · FT + PT · ḞT . (13.2.11)

The volume averages of the nominal stress and its rate are (Hill, 1972)

〈P〉 =
1
V 0

∫
V 0

PdV 0 =
1
V 0

∫
S0

X ⊗ pn dS0, (13.2.12)

〈Ṗ〉 =
1
V 0

∫
V 0

ṖdV 0 =
1
V 0

∫
S0

X ⊗ ṗn dS0. (13.2.13)

Both of these are expressed on the far right-hand sides solely in terms of the

surface data pn and ṗn over S0. This follows from the divergence theorem

and equilibrium equations (13.2.8) and (13.2.9). If current configuration is

chosen as the reference (P = σ, pn = tn), Eq. (13.2.12) gives

{σ} =
1
V

∫
V

σdV =
1
V

∫
S

x ⊗ tn dS. (13.2.14)

With this choice of the reference configuration, the rate of nominal stress is

from Eq. (3.9.10) equal to

Ṗ = σ̇ + σ trD − L · σ. (13.2.15)
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Thus, in view of Eq. (13.2.10), the average in Eq. (13.2.13) becomes

{σ̇ + σ trD − L · σ} =
1
V

∫
S

x ⊗ [
ṫn + (trD − n · D · n) tn

]
dS. (13.2.16)

Note that, from Eq. (13.2.14),∫
V 0

τdV 0 =
∫
V

σdV =
∫
S

x ⊗ tn dS =
∫
S0

x ⊗ pn dS0, (13.2.17)

so that

〈τ〉 =
1
V 0

∫
V 0

τdV 0 =
1
V 0

∫
S0

x ⊗ pn dS0. (13.2.18)

Since τ = F · P, from Eq. (13.2.18) we have

〈F · P〉 =
1
V 0

∫
V 0

F · PdV 0 =
1
V 0

∫
S0

x ⊗ pn dS0. (13.2.19)

This also follows directly by integration and application of the divergence

theorem and equilibrium equations. Similarly,

〈F · Ṗ〉 =
1
V 0

∫
V 0

F · Ṗ dV 0 =
1
V 0

∫
S0

x ⊗ ṗn dS0, (13.2.20)

〈Ḟ · P〉 =
1
V 0

∫
V 0

Ḟ · P dV 0 =
1
V 0

∫
S0

v ⊗ pn dS0, (13.2.21)

〈Ḟ · Ṗ〉 =
1
V 0

∫
V 0

Ḟ · ṖdV 0 =
1
V 0

∫
S0

v ⊗ ṗn dS0. (13.2.22)

In the last four expressions, the F and P fields, and their rates, need not be

constitutively related to each other.

13.3. Theorem on Product Averages

In the mechanics of macroscopic aggregate behavior it is of fundamental

importance to express the volume averages of various kinematic and kinetic

quantities in terms of the basic macroscopic variables 〈F〉 and 〈P〉, and their

rates. We begin with the evaluation of the product average 〈F ·P〉 in terms

of 〈F〉 and 〈P〉. Following Hill (1984), consider the identity

〈F · P〉 − 〈F〉 · 〈P〉 = 〈(F − 〈F〉) · (P − 〈P〉)〉. (13.3.1)

This identity holds because, for example,

〈F · 〈P〉〉 = 〈〈F〉 · P〉 = 〈F〉 · 〈P〉. (13.3.2)
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The right-hand side of Eq. (13.3.1) can be expressed as

〈(F − 〈F〉) · (P − 〈P〉)〉 =
1
V 0

∫
S0

(x − 〈F〉 · X) ⊗ (P − 〈P〉)T · n0 dS0,

(13.3.3)

which can be verified by the Gauss divergence theorem. This leads to Hill’s

(1972,1984) theorem on product averages: The product average decomposes

into the product of averages,

〈F · P〉 = 〈F〉 · 〈P〉, (13.3.4)

provided that ∫
S0

(x − 〈F〉 · X) ⊗ (P − 〈P〉)T · n0 dS0 = 0. (13.3.5)

The condition (13.3.5) is met, in particular, when the surface S0 is deformed

or loaded uniformly, i.e., when

x = F(t) · X or pn = n0 · P(t) on S0, (13.3.6)

since then

〈F〉 = F(t) or 〈P〉 = P(t), (13.3.7)

which makes the integral in (13.3.5) identically equal to zero.

An analog of Eqs. (13.3.4) and (13.3.5), involving the rate of P, is

〈F · Ṗ〉 = 〈F〉 · 〈Ṗ〉, (13.3.8)

provided that∫
S0

(x − 〈F〉 · X) ⊗
(
Ṗ − 〈Ṗ〉

)T

· n0 dS0 = 0. (13.3.9)

The condition (13.3.9) is, for example, met when

x = F(t) · X or ṗn = n0 · Ṗ(t) on S0. (13.3.10)

The other analogs are, evidently,

〈Ḟ · P〉 = 〈Ḟ〉 · 〈P〉, (13.3.11)

provided that∫
S0

(
v − 〈Ḟ〉 · X

)
⊗ (P − 〈P〉)T · n0 dS0 = 0, (13.3.12)

and

〈Ḟ · Ṗ〉 = 〈Ḟ〉 · 〈Ṗ〉, (13.3.13)

© 2002 by CRC Press LLC 



provided that∫
S0

(
v − 〈Ḟ〉 · X

)
⊗

(
Ṗ − 〈Ṗ〉

)T

· n0 dS0 = 0. (13.3.14)

For instance, the requirement (13.3.14) is met when

v = Ḟ(t) · X or ṗn = n0 · Ṗ(t) on S0. (13.3.15)

It is noted that, with the current configuration as the reference, Eq. (13.3.11)

gives

{L · σ} = {L} · {σ}. (13.3.16)

Under the prescribed uniform boundary conditions (13.3.6), the overall

rotational balance, expressed in terms of the macrovariables, is

〈F〉 · 〈P〉 = 〈P〉T · 〈F〉T . (13.3.17)

This follows from Eq. (13.3.4) by applying the transpose operation to both

sides, and by using the symmetry condition at microlevel F · P = PT · FT .

Similarly, by differentiating Eq. (13.3.4), we have

〈Ḟ · P + F · Ṗ〉 = 〈Ḟ〉 · 〈P〉 + 〈F〉 · 〈Ṗ〉. (13.3.18)

By applying the transpose operation to both sides of this equation and by

imposing (13.2.11), we establish the condition for the overall continuing rota-

tional balance, in terms of the macrovariables, and under prescribed uniform

boundary conditions. This is

〈Ḟ〉 · 〈P〉 + 〈F〉 · 〈Ṗ〉 = 〈P〉T · 〈Ḟ〉T + 〈Ṗ〉T · 〈F〉T . (13.3.19)

Upon contraction operation in Eq. (13.3.4), we obtain

〈F · ·P〉 = 〈F〉 · · 〈P〉. (13.3.20)

Since the trace product is commutative, we also have

〈P · ·F〉 = 〈P〉 · · 〈F〉. (13.3.21)

Likewise,

〈P · · Ḟ〉 = 〈P〉 · · 〈Ḟ〉, (13.3.22)

〈Ṗ · ·F〉 = 〈Ṗ〉 · · 〈F〉, (13.3.23)

〈Ṗ · · Ḟ〉 = 〈Ṗ〉 · · 〈Ḟ〉. (13.3.24)
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In these expressions, P and Ṗ are statically admissible, while F and Ḟ are

kinematically admissible fields, but they are not necessarily constitutively re-

lated to each other. For example, if dP and δF are two unrelated increments

of P and F, we can write

〈dP · · δF〉 = 〈dP〉 · · 〈δF〉. (13.3.25)

When the current configuration is the reference, Eq. (13.3.22) becomes

{σ : L} = {σ} : {L}, i.e., {σ : D} = {σ} : {D}, (13.3.26)

while Eq. (13.3.24) gives

{(σ̇ + σ trD − L · σ) · ·L} = { σ̇ + σ trD − L · σ } · · {L}. (13.3.27)

Additional analysis of the averaging theorems can be found in the paper by

Nemat-Nasser (1999).

13.4. Macroscopic Measures of Stress and Strain

The macroscopic or aggregate measure of the symmetric Piola–Kirchhoff

stress, denoted by [T], is defined such that

〈P〉 = 〈T · FT 〉 = [T] · 〈F〉T . (13.4.1)

Enclosure within square [ ] rather than 〈 〉 brackets is used to indicate that

the macroscopic measure of the Piola–Kirchhoff stress in Eq. (13.4.1) is not

equal to the volume average of the microscopic Piola–Kirchhoff stress, i.e.,

[T] �= 1
V 0

∫
V 0

TdV 0. (13.4.2)

However, [T] is a symmetric tensor, because the tensor 〈F〉·〈P〉 is symmetric,

by Eq. (13.3.17).

Although [T] is not a direct volume average of T, it is defined in Eq.

(13.4.1) in terms of the volume averages of 〈F〉 and 〈P〉, both of which

are expressible in terms of the surface data alone. Thus, [T] is a suitable

macroscopic variable for the constitutive analysis. (Since there is no explicit

connection between [T] and 〈T〉, the latter average is actually not suitable

as a macrovariable at all). When the current configuration is taken for the

reference (P = T = σ), Eq. (13.4.1) gives

{σ} = [σ]. (13.4.3)
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This shows that the macroscopic measure of the Cauchy stress is the volume

average of the microscopic Cauchy stress.

The macroscopic measure of the Lagrangian strain is defined by

[E] =
1
2

(〈F〉T · 〈F〉 − I
)
, (13.4.4)

for then [T] is generated from [E] by the work conjugency

〈ẇ〉 = 〈P · · Ḟ〉 = 〈T : Ė〉 = [T] : [Ė]. (13.4.5)

Indeed,

〈P · · Ḟ〉 = 〈P〉 · · 〈Ḟ〉 = [T] · 〈F〉T · · 〈Ḟ〉 = [T] : [Ė], (13.4.6)

where

[Ė] =
1
2

(
〈Ḟ〉T · 〈F〉 + 〈F〉T · 〈Ḟ〉

)
. (13.4.7)

The trace property A · B · · C = A · · B · C was used for the second-order

tensors, such as A, B and C.

The macroscopic measure of the Lagrangian strain [E] is not a direct

volume average of the microscopic Lagrangian strain, i.e.,

[E] �= 1
V 0

∫
V 0

EdV 0, (13.4.8)

because

〈FT · F〉 �= 〈F〉T · 〈F〉. (13.4.9)

The rates of the macroscopic nominal and symmetric Piola–Kirchhoff

stress tensors are related by

〈Ṗ〉 = [Ṫ] · 〈F〉T + [T] · 〈Ḟ〉T , (13.4.10)

which follows from Eq. (13.4.1) by differentiation. When this is subjected

to the trace product with 〈Ḟ〉, we obtain

〈Ṗ〉 · · 〈Ḟ〉 = [Ṫ] : [Ė] + T :
(
〈Ḟ〉T · 〈Ḟ〉

)
. (13.4.11)

If the current configuration is selected for the reference, the stress rate

Ṫ is equal to (see Section 3.8)
�
τ =

�
σ + σ trD, (13.4.12)

and Eq. (13.4.10) becomes

{ σ̇ + σ trD − L · σ } = [
�
σ + σ trD ] + [σ] · 〈L〉T . (13.4.13)

© 2002 by CRC Press LLC 



Since [σ] = {σ}, and since by direct integration

{σ · LT } = {σ} · {L}T , (13.4.14)

we deduce from Eq. (13.4.13) that

{�
σ + σ trD } = [

�
σ + σ trD ], (13.4.15)

i.e.,

[
�
τ ] = {�

τ }. (13.4.16)

Furthermore, with the current configuration as the reference, Eq. (13.4.7)

gives

[D] = {D}. (13.4.17)

Thus, the macroscopic measure of the rate of deformation is the volume

average of the microscopic rate of deformation.

The macroscopic infinitesimal deformation gradient and, thus, the macro-

scopic infinitesimal strain and rotation are also direct volume averages of the

corresponding microscopic quantities. For the definition of the macroscopic

measures of the rate of stress and deformation in the solids undergoing phase

transformation, see Petryk (1998).

13.5. Influence Tensors of Elastic Heterogeneity

We consider materials for which the interior elastic fields depend uniquely

and continuously on the surface data. Then, under uniform data on S0,

specified by (13.3.15), the fields Ḟ and Ṗ within V 0 depend uniquely on 〈Ḟ〉.
For incrementally linear material response, this dependence is also linear.

Thus, following Hill (1984), we introduce the influence tensors (functions) of

elastic heterogeneity, denoted by FFF and PPP, such that

Ḟ = FFF · · 〈Ḟ〉 = 〈Ḟ〉 · · FFFT , (13.5.1)

Ṗ = PPP · · 〈Ṗ〉 = 〈Ṗ〉 · · PPPT , (13.5.2)

where

〈FFF 〉 = III , 〈PPP 〉 = III . (13.5.3)

The rectangular components of the fourth-order unit tensor III are

Iijkl = δilδjk, Iijkl = Iklij . (13.5.4)
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The influence tensors FFF and PPP are functions of the current heterogeneities of

stress and material properties within a macroelement. As pointed out by Hill

(1984), kinematic data is never micro-uniform, since equivalent macroele-

ments in a test specimen are constrained by one another, not by the appa-

ratus. This results in fluctuations of Ḟ · X on S0 around 〈Ḟ〉 · X, but the

effect of these fluctuations decay rapidly with depth toward interior of the

macroelement. Equations (13.5.1) and (13.5.2) can then be adopted for this

macro-uniform surface data, as well, except within a negligible layer near the

bounding surface of the macroelement. See also Mandel (1964) and Stolz

(1997).

13.6. Macroscopic Free and Complementary Energy

The local free energy, per unit reference volume, is a potential for the local

nominal stress, such that

P =
∂Ψ
∂F

, Ψ = Ψ(F, H). (13.6.1)

The pattern of internal rearrangement due to plastic deformation is desig-

nated by H. The macroscopic free energy, per unit volume of the aggregate

macroelement, is the volume average of Ψ,

Ψ̂ = 〈Ψ〉 =
1
V 0

∫
V 0

Ψ(F, H) dV 0. (13.6.2)

This acts as a potential for the macroscopic nominal stress, such that

〈P〉 =
∂Ψ̂
∂〈F〉 , Ψ̂ = Ψ̂(〈F〉, H). (13.6.3)

Indeed,

∂Ψ̂
∂〈F〉 =

∂

∂〈F〉 〈Ψ〉 = 〈 ∂Ψ
∂〈F〉 〉 = 〈 ∂Ψ

∂F
· · ∂F

∂〈F〉 〉 = 〈P · ·FFF〉 = 〈P〉. (13.6.4)

It is noted that, at fixed H, from Eq. (13.5.1) we have

δ〈F〉 = FFF · · δ〈F〉, i.e.,
∂F
∂〈F〉 = FFF , (13.6.5)

which was used after partial differentiation in Eq. (13.6.4). Also, under

uniform boundary data,

〈P · ·FFF〉 = 〈P〉, (13.6.6)

because

〈P〉 · · δ〈F〉 = 〈P · · δF〉 = 〈P · ·FFF · · δ〈F〉〉 = 〈P · ·FFF〉 · · δ〈F〉. (13.6.7)
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The local complementary energy Φ, per unit reference volume, is a po-

tential for the local deformation gradient. This is a Legendre transform of

Ψ, such that

F =
∂Φ
∂P

, Φ(P, H) = P · ·F − Ψ(F, H). (13.6.8)

The macroscopic free energy, per unit volume of the aggregate macroelement,

is a potential for the macroscopic deformation gradient,

〈F〉 =
∂Φ̂
∂〈P〉 , Φ̂(〈P〉, H) = 〈P〉 · · 〈F〉 − Ψ̂(〈F〉, H). (13.6.9)

Under conditions allowing the product theorem 〈P · · δF〉 = 〈P〉 · · δ〈F〉
to be used, Φ̂ is the volume average of Φ, i.e.,

Φ̂ = 〈Φ〉. (13.6.10)

In this case, the potential property of Φ̂ can be demonstrated through

∂Φ̂
∂〈P〉 =

∂

∂〈P〉 〈Φ〉 = 〈 ∂Φ
∂〈P〉 〉 = 〈 ∂Φ

∂P
· · ∂P

∂〈P〉 〉 = 〈F · ·PPP〉 = 〈F〉. (13.6.11)

Again, at fixed H, from Eq. (13.5.2) we have

δ〈P〉 = PPP · · δ〈P〉, i.e.,
∂P
∂〈P〉 = PPP, (13.6.12)

which was used after partial differentiation in Eq. (13.6.11). In addition,

under uniform boundary data,

〈F · ·PPP〉 = 〈F〉, (13.6.13)

because

〈F〉 · · δ〈P〉 = 〈F · · δP〉 = 〈F · ·PPP · · δ〈P〉〉 = 〈F · ·PPP〉 · · δ〈P〉. (13.6.14)

13.7. Macroscopic Elastic Pseudomoduli

The tensor of macroscopic elastic pseudomoduli is defined by

[Λ] =
∂2Ψ̂

∂〈F〉 ⊗ ∂〈F〉 =
∂〈P〉
∂〈F〉 = 〈 ∂P

∂〈F〉 〉 = 〈 ∂P
∂F

· · ∂F
∂〈F〉 〉 = 〈Λ · ·FFF〉.

(13.7.1)

The tensor of local elastic pseudomoduli is Λ. Along an elastic branch of

the material response at microlevel, the rates of P and F are related by

Ṗ = Λ · · Ḟ, Λ =
∂P
∂F

. (13.7.2)
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The macroscopic tensor of elastic pseudomoduli [Λ] relates 〈Ṗ〉 and 〈Ḟ〉,
such that

〈Ṗ〉 = 〈Λ · · Ḟ〉 = [Λ] · · 〈Ḟ〉. (13.7.3)

An alternative derivation of the relationship between the local and macro-

scopic pseudomoduli, given in Eq. (13.7.1) is as follows. First, by substitut-

ing Eq. (13.7.3) into Eq. (13.5.2), we have

Ṗ = PPP · · 〈Ṗ〉 = PPP · · [Λ] · · 〈Ḟ〉. (13.7.4)

On the other hand, introducing (13.7.2), and then (13.5.1), into Eq. (13.5.2)

gives

Ṗ = PPP · · 〈Ṗ〉 = PPP · · 〈Λ · · Ḟ〉 = PPP · · 〈Λ · · FFF〉 · · 〈Ḟ〉. (13.7.5)

Comparing Eqs. (13.7.4) and (13.7.5), we obtain

[Λ] = 〈Λ · · FFF〉. (13.7.6)

This shows that the tensor of macroscopic elastic pseudomoduli is a weighted

volume average of the tensor of local elastic pseudomoduli Λ, the weight

being the influence tensor FFF of elastic heterogeneity within a representative

macroelement. In addition, since

Ṗ = Λ · · Ḟ = Λ · · FFF · · 〈Ḟ〉, (13.7.7)

by comparing with (13.7.4) we observe that

PPP · · [Λ] = Λ : FFF . (13.7.8)

The symmetry of elastic response at the microlevel is transmitted to the

macrolevel, i.e.,

if ΛT = Λ, then [Λ]T = [Λ]. (13.7.9)

This does not appear to be evident at first from Eq. (13.7.6) or Eq. (13.7.8).

However, since

〈Ḟ · · Ṗ〉 = 〈Ḟ〉 · · 〈Ṗ〉, (13.7.10)

and in view of Eqs. (13.5.1) and (13.5.2) giving

〈Ḟ · · Ṗ〉 = 〈Ḟ〉 · · 〈FFFT · · PPP〉 · · 〈Ṗ〉, (13.7.11)

the comparison with Eq. (13.7.10) establishes

〈FFFT · · PPP〉 = III . (13.7.12)
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Therefore, upon taking a trace product of Eq. (13.7.8) with FFFT from the

left, and upon the volume averaging over V 0, there follows

[Λ] = 〈FFFT · ·Λ · · FFF〉. (13.7.13)

This demonstrates that [Λ] is indeed symmetric whenever Λ is.

When the current configuration is the reference, the previous formulas

reduce to

{Ṗ} = [Λ ] · · {L}, (13.7.14)

L = FFF · · {L}, P = PPP · · {P}, (13.7.15)

and

[Λ ] = {FFFT · ·Λ · · FFF }. (13.7.16)

The underlined symbol indicates that the current configuration is taken for

the reference.

13.8. Macroscopic Elastic Pseudocompliances

Suppose that the local elastic pseudomoduli tensor Λ has its inverse, the lo-

cal elastic pseudocompliances tensor M = Λ−1 (except possibly at isolated

singular points within each crystal grain, whose contribution to volume inte-

grals over the macroelement can be ignored in the micro-to-macro transition;

Hill, 1984). We then write

Ḟ = M · · Ṗ, (13.8.1)

where

Λ · ·M = M · ·Λ−1 = III . (13.8.2)

The macroscopic tensor of elastic pseudocompliances [M] is introduced by

requiring that

〈Ḟ〉 = 〈M · · Ṗ〉 = [M] · · 〈Ṗ〉. (13.8.3)

By substituting Eq. (13.8.3) into (13.5.1), we obtain

Ḟ = FFF · · 〈Ḟ〉 = FFF · · [M] · · 〈Ṗ〉. (13.8.4)

On the other hand, introducing (13.7.2), and then (13.5.2), into Eq. (13.5.1)

gives

Ḟ = FFF · · 〈Ḟ〉 = FFF · · 〈M · · Ṗ〉 = FFF · · 〈M · · PPP〉 · · 〈Ṗ〉. (13.8.5)
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Comparing Eqs. (13.8.4) and (13.8.5) yields

[M] = 〈M · · PPP〉. (13.8.6)

This shows that the tensor of macroscopic elastic pseudocompliances is a

weighted volume average of the tensor of local elastic pseudocompliances

M, the weight being the influence tensor PPP of elastic heterogeneity within a

representative macroelement. In addition, since

Ḟ = M · · Ṗ = M · · PPP · · 〈Ṗ〉, (13.8.7)

by comparing with (13.8.4) there follows

FFF · · [M] = M : PPP. (13.8.8)

We now demonstrate, independently of the proof from the previous sec-

tion, that the symmetry of elastic response at the microlevel is transmitted

to the macrolevel. First, we note that

〈Ṗ · · Ḟ〉 = 〈Ṗ〉 · · 〈Ḟ〉. (13.8.9)

Since, by (13.5.1) and (13.5.2), we have

〈Ṗ · · Ḟ〉 = 〈Ṗ〉 · · 〈PPPT · · FFF〉 · · 〈Ḟ〉, (13.8.10)

the comparison with Eq. (13.8.9) gives

〈PPPT · · FFF〉 = III . (13.8.11)

Therefore, upon taking a trace product of Eq. (13.8.8) with PPPT from the

left, and upon the volume averaging, we obtain

[M] = 〈PPPT · ·M · · PPP〉. (13.8.12)

Consequently, if there is a symmetry of elastic response at the microlevel, it

is transmitted to the macrolevel, i.e.,

if MT = M, then [M]T = [M]. (13.8.13)

When the macroscopic complementary energy is used to define the elastic

pseudocompliances tensor, we can write

[M] =
∂2Φ̂

∂〈P〉 ⊗ ∂〈P〉 =
∂〈F〉
∂〈P〉 = 〈 ∂F

∂〈P〉 〉 = 〈 ∂F
∂P

· · ∂P
∂〈P〉 〉 = 〈M · ·PPP〉.

(13.8.14)
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13.9. Macroscopic Elastic Moduli

The macroscopic elastic moduli tensor [Λ(1)], corresponding to the macro-

scopic Lagrangian strain and its conjugate stress, is defined by requiring that

[Ṫ] = [Λ(1)] : [Ė]. (13.9.1)

To obtain the relationship between [Λ(1)] and [Λ], we use Eq. (13.4.10),

which is here conveniently rewritten as

〈Ṗ〉 = 〈KKK〉T : [Ṫ] + [TTT ] · · 〈Ḟ〉. (13.9.2)

The rectangular components of the fourth-order tensors 〈KKK 〉 and [TTT ] are

〈K〉ijkl =
1
2

(δik〈F 〉lj + δjk〈F 〉li) , [ T ]ijkl = [T ]ik δjl. (13.9.3)

Substitution of Eq. (13.7.3) into Eq. (13.9.2) gives

[Λ] = 〈KKK〉T : [Λ(1)] : 〈KKK〉 + [TTT ]. (13.9.4)

Expressed in rectangular components, this is

[Λ]ijkl = [Λ(1)]ipkq〈F 〉jp〈F 〉lq + [T ]ik δjl. (13.9.5)

Clearly, the symmetry ij ↔ kl of the macroscopic pseudomoduli imposes

the same symmetry for the macroscopic moduli, and vice versa. Also, recall

the symmetry TTT T = TTT .

When the current configuration is the reference, Eq. (13.9.4) reduces to

[Λ ] = [Λ(1)] + [TTT ], (13.9.6)

with the component form

[ Λ ]ijkl = [ Λ(1)]ijkl + {σ}ik δjl. (13.9.7)

In addition, Eq. (13.9.1) becomes

{�
τ } = [Λ(1)] : {D}. (13.9.8)

13.10. Plastic Increment of Macroscopic Nominal Stress

The increment of macroscopic nominal stress can be partitioned into elastic

and plastic parts as

d〈P〉 = de〈P〉 + dp〈P〉. (13.10.1)

The elastic part is defined by

de〈P〉 = [Λ] · ·d〈F〉. (13.10.2)
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The remaining part,

dp〈P〉 = d〈P〉 − [Λ] · ·d〈F〉, (13.10.3)

is the plastic part of the increment d〈P〉. The macroscopic elastoplastic

increment of the deformation gradient is d〈F〉.
It is of interest to establish the relationship between the plastic incre-

ments of macroscopic and microscopic (local) nominal stress, dp〈P〉 and dpP.

To that goal, consider the volume average of the trace product between an

elastic unloading increment of the local deformation gradient δF and the

plastic increment of the local nominal stress dpP, i.e.,

〈δF · ·dpP〉 = 〈δF · · (dP − Λ · ·dF)〉 = 〈δF · ·dP〉 − 〈δF · ·Λ · ·dF〉.
(13.10.4)

Since dF and δF are kinematically admissible, and dP and δF · ·Λ are

statically admissible fields, we can use the product theorem of Section 13.3

to write

〈δF · ·dP〉 = 〈δF〉 · · 〈dP〉 = δ〈F〉 · ·d〈P〉, (13.10.5)

〈δF · ·Λ · ·dF〉 = 〈δF · ·Λ〉 · ·d〈F〉 = δ〈F〉 · · 〈FFFT · ·Λ〉 · ·d〈F〉. (13.10.6)

Upon substitution into Eq. (13.10.4), there follows

〈δF · ·dpP〉 = δ〈F〉 · · (d〈P〉 − [Λ] · ·d〈F〉) . (13.10.7)

Recall that [Λ] is symmetric, and

δF = FFF · · δ〈F〉 = δ〈F〉 · · FFFT , (13.10.8)

so that

[Λ] = 〈Λ · · FFF〉 = 〈FFFT · ·Λ〉. (13.10.9)

Also note that

〈dP〉 = d〈P〉, 〈dF〉 = d〈F〉, (13.10.10)

and likewise for δ increments. Consequently,

〈δF · ·dpP〉 = δ〈F〉 · ·dp〈P〉. (13.10.11)

Furthermore,

〈δF · ·dpP〉 = δ〈F〉 · ·d〈P〉 − δ〈P〉 · ·d〈F〉, (13.10.12)
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which can be easily verified by substituting δ〈P〉 = δ〈F〉 · · [Λ], and by using

Eq. (13.10.3).

On the other hand, from Eq. (13.5.1) we directly obtain

〈δF · ·dpP〉 = δ〈F〉 · · 〈FFFT · · dpP〉. (13.10.13)

The comparison of Eqs. (13.10.11) and (13.10.13) establishes

dp〈P〉 = 〈FFFT · · dpP〉. (13.10.14)

Therefore, the plastic part of the increment of macroscopic nominal stress

is a weighted volume average of the plastic part of the increment of local

nominal stress (Hill, 1984; Havner, 1992).

13.10.1. Plastic Potential and Normality Rule

From Eq. (13.10.11) it follows, if the normality rule applies at the microlevel,

it is transmitted to the macrolevel, i.e.,

δF · ·dpP > 0 implies δ〈F〉 · ·dp〈P〉 > 0. (13.10.15)

We recall from Section 12.7 that −∑
(τα dγα) acts as the plastic potential

for dpP over an elastic domain in F space, such that

dpP = − ∂

∂F

n∑
α=1

(τα dγα). (13.10.16)

The partial differentiation is performed at the fixed slip and slip increments

dγα. The local resolved shear stress on the α slip system is τα, and n is the

number of active slip systems. Substitution into Eq. (13.10.14) gives

dp〈P〉 = −〈FFFT · · ∂

∂F

n∑
α=1

(τα dγα)〉. (13.10.17)

Since, at the fixed slip,
∂

∂〈F〉 =
∂

∂F
· · ∂F

∂〈F〉 =
∂

∂F
· · FFF = FFFT · · ∂

∂F
, (13.10.18)

Equation (13.10.17) becomes

dp〈P〉 = − ∂

∂〈F〉 〈
n∑

α=1

τα dγα〉. (13.10.19)

This shows that −〈∑ τα dγα〉 is a plastic potential for dp〈P〉 over an elastic

domain in 〈F〉 space (Hill and Rice, 1973; Havner, 1986). Since the number

n of active slip systems changes from grain to grain, depending on its orien-

tation and the state of hardening, the sum in Eq. (13.10.19) is kept within
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the 〈 〉 brackets, i.e., within the volume integral appearing in the definition

of the 〈 〉 average.

13.10.2. Local Residual Increment of Nominal Stress

The plastic part of the increment of macroscopic nominal stress dp〈P〉 in Eq.

(13.10.3) gives the macroscopic stress decrement after a cycle (application

and removal) of the increment of macroscopic deformation gradient d〈F〉.
At the microlevel, however, the local decrement of stress dsP, after a cycle

of the increment of macroscopic deformation gradient d〈F〉, is obtained by

subtracting from dP the local stress increment associated with an imagined

(conceptual) elastic removal of d〈F〉. This is PPP · · [Λ] · ·d〈F〉, so that (Hill,

1984; Havner, 1992)

dsP = dP −PPP · · [Λ] · ·d〈F〉. (13.10.20)

Upon a conceptual elastic removal of macroscopic d〈F〉, the residual incre-

ment of the deformation gradient at microscopic level would be

dsF = dF −FFF · ·d〈F〉. (13.10.21)

Recall from Eq. (13.7.8) that PPP · · [Λ] = Λ : FFF , so that

dP − dsP = Λ · · (dF − dsF) . (13.10.22)

Note that dsF is kinematically admissible field (because dF and FFF · ·d〈F〉
are), while dsP is statically admissible field (because dP and Λ · ·FFF · ·d〈F〉
are).

The local increment of stress dsP is different from the local plastic in-

crement

dpP = dP − Λ · ·dF, (13.10.23)

associated with a cycle of the increment of local deformation gradient dF.

They are related by

dsP − dpP = Λ · ·dsF. (13.10.24)

Also, it can be easily verified that

dsF − dpF = M · ·dsP. (13.10.25)

On the other hand,

〈dsP〉 = dp〈P〉, 〈dsF〉 = 0, (13.10.26)
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which follow from Eqs. (13.10.20) and (13.10.21), and 〈FFF〉 = 〈PPP〉 = III .

Since dsF is kinematically and dsP is statically admissible field, by the

theorem on product averages we obtain

〈dsP · ·dsF〉 = 〈dsP〉 · · 〈dsF〉 = 0. (13.10.27)

There is also an identity for the volume averages of the trace products

〈δF · ·dsP〉 = 〈δF · ·dpP〉, (13.10.28)

where δF is an increment of the local deformation gradient along purely

elastic branch of the response. Indeed,

〈δF · ·dsP〉 = 〈δF · · (dP −PPP · · [Λ] · ·d〈F〉)〉
= δ〈F〉 · ·d〈P〉 − 〈δF · ·PPP〉 · · [Λ] · ·d〈F〉.

(13.10.29)

It is observed that

〈δF · ·PPP〉 = 〈δ〈F〉 · ·FFFT · ·PPP〉 = δ〈F〉 · · 〈FFFT · ·PPP〉 = δ〈F〉, (13.10.30)

because 〈FFFT · ·PPP〉 = III , by (13.7.12). Thus, Eq. (13.10.29) becomes

〈δF · ·dsP〉 = δ〈F〉 · ·dp〈P〉. (13.10.31)

In view of Eq. (13.10.11), this reduces to Eq. (13.10.28). Furthermore, since

〈dsP〉 = dp〈P〉, Eq. (13.10.31) gives

〈δF · ·dsP〉 = δ〈F〉 · · 〈dsP〉. (13.10.32)

This was anticipated from the theorem on product averages, because δF is

kinematically admissible and dsP is statically admissible field.

The following two identities are noted

〈dsF · ·Λ · ·dpF〉 = 〈dsF · ·Λ · ·dsF〉, (13.10.33)

〈dsP · ·M · ·dpP〉 = 〈dsP · ·M · ·dsP〉. (13.10.34)

They follow from Eqs. (13.10.24), (13.10.25), and (13.11.26).

13.11. Plastic Increment of Macroscopic Deformation Gradient

Dually to the analysis from the previous section, the increment of macro-

scopic deformation gradient can be partitioned into its elastic and plastic

parts as

d〈F〉 = de〈F〉 + dp〈F〉. (13.11.1)
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The elastic part is defined by

de〈F〉 = [M] · ·d〈P〉, (13.11.2)

while

dp〈F〉 = d〈F〉 − [M] · ·d〈P〉 (13.11.3)

is the plastic part of the increment d〈F〉.
To establish the relationship between the plastic increments of macro-

scopic and microscopic deformation gradients, dp〈F〉 and dpF, consider the

volume average of the trace product between an elastic unloading increment

of the local nominal stress δP and the plastic increment of the local defor-

mation gradient dpF, i.e.,

〈δP · ·dpF〉 = 〈δP · · (dF − M · ·dP)〉 = 〈δP · ·dF〉 − 〈δP · ·M · ·dP〉.
(13.11.4)

Since dP and δP are statically admissible, and dF and δP · ·M are kine-

matically admissible fields, we can use the product theorem of Section 13.3

to write

〈δP · ·dF〉 = δ〈P〉 · ·d〈F〉, (13.11.5)

〈δP · ·M · ·dP〉 = 〈δP · ·M〉 · ·d〈P〉 = δ〈P〉 · · 〈PPPT · ·M〉 · ·d〈P〉.
(13.11.6)

Upon substitution into Eq. (13.11.4), we obtain

〈δP · ·dpF〉 = δ〈P〉 · · (d〈F〉 − [M] · ·d〈P〉) . (13.11.7)

Recall that [M] is symmetric, and

δP = PPP · · δ〈P〉 = δ〈P〉 · · PPPT , (13.11.8)

so that

[M] = 〈M · · PPP〉 = 〈PPPT · ·M〉. (13.11.9)

Consequently,

〈δP · ·dpF〉 = δ〈P〉 · ·dp〈F〉. (13.11.10)

Note that

〈δP · ·dpF〉 = δ〈P〉 · ·d〈F〉 − δ〈F〉 · ·d〈P〉, (13.11.11)

which can be easily verified by substituting δ〈F〉 = δ〈P〉 · · [M], and by using

Eq. (13.11.3).
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On the other hand, from (13.5.2) we have

〈δP · ·dpF〉 = δ〈P〉 · · 〈PPPT · · dpF〉. (13.11.12)

Comparison of Eqs. (13.11.10) and (13.11.12) yields

dp〈F〉 = 〈PPPT · · dpF〉. (13.11.13)

Therefore, the plastic part of the increment of macroscopic deformation gra-

dient is a weighted volume average of the plastic part of the increment of

local deformation gradient.

13.11.1. Plastic Potential and Normality Rule

From Eq. (13.11.10) it follows, if the normality rule applies at the microlevel,

it is transmitted to the macrolevel, i.e.,

δP · ·dpF < 0 implies δ〈P〉 · ·dp〈F〉 < 0. (13.11.14)

From Section 12.7 we recall that
∑

(τα dγα) acts as a plastic potential for

dpF over an elastic domain in P space, such that

dpF =
∂

∂P

n∑
α=1

(τα dγα). (13.11.15)

The partial differentiation is performed at the fixed slip and slip increments

dγα. Substitution into Eq. (13.11.13) gives

dp〈F〉 = 〈PPPT · · ∂

∂P

n∑
α=1

(τα dγα)〉. (13.11.16)

Since, at the fixed slip,

∂

∂〈P〉 =
∂

∂P
· · ∂P

∂〈P〉 =
∂

∂P
· · PPP = PPPT · · ∂

∂P
, (13.11.17)

Equation (13.11.16) becomes

dp〈F〉 =
∂

∂〈P〉 〈
n∑

α=1

τα dγα〉. (13.11.18)

This shows that 〈∑ τα dγα〉 is a plastic potential for dp〈F〉 over an elastic

domain in 〈P〉 space.
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13.11.2. Local Residual Increment of Deformation Gradient

The plastic part of the increment of macroscopic deformation gradient dp〈F〉
in Eq. (13.11.3) represents a residual increment of macroscopic deformation

gradient after a cycle of the increment of macroscopic nominal stress d〈P〉.
At the microlevel, however, the local residual increment of deformation gra-

dient dsF, left upon a cycle of d〈P〉, is obtained by subtracting from dF the

local deformation gradient increment associated with an imagined elastic

removal of d〈P〉. This is FFF · · [M] · ·d〈P〉, so that

drF = dF −FFF · · [M] · ·d〈P〉. (13.11.19)

Upon a conceptual elastic removal of macroscopic d〈P〉, the residual change

of the local nominal stress would be

drP = dP −PPP · ·d〈P〉, (13.11.20)

since PPP ··d〈P〉 is the local stress due to d〈P〉 in an imagined elastic response.

Recall from Eq. (13.8.8) that FFF · · [M] = M : PPP, so that

dF − drF = M · · (dP − drP) . (13.11.21)

Note that drP is statically admissible field (because dP and PPP · ·d〈P〉 are),

while drF is kinematically admissible field (because dF and M · ·PPP · ·d〈P〉
are).

The local increment of deformation gradient drF is different from the

local plastic increment

dpF = dF − M · ·dP, (13.11.22)

associated with a cycle of the increment of local nominal stress dP. They

are related by

drF − dpF = M · ·drP. (13.11.23)

In addition, we have

drP − dpP = Λ · ·drF. (13.11.24)

In general, neither dpF is kinematically admissible, nor dpP is statically

admissible field. On the other hand,

〈drF〉 = dp〈F〉, 〈drP〉 = 0, (13.11.25)

which follow from Eqs. (13.11.19) and (13.11.20), and 〈PPP〉 = 〈FFF〉 = III .
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Since drF is kinematically and drP is statically admissible field, by the

theorem on product averages we can write

〈drP · ·drF〉 = 〈drP〉 · · 〈drF〉 = 0. (13.11.26)

There is also an identity for the volume averages of the trace products

〈δP · ·drF〉 = 〈δP · ·dpF〉, (13.11.27)

where δP is an increment of the local nominal stress along purely elastic

branch of the response. Indeed, by an analogous derivation as in Subsection

13.10.2, there follows

〈δP · ·drF〉 = 〈δP · · (dF −FFF · · [M] · ·d〈P〉)〉
= δ〈P〉 · ·d〈F〉 − 〈δP · ·FFF〉 · · [M] · ·d〈P〉.

(13.11.28)

Furthermore,

〈δP · ·FFF〉 = 〈δ〈P〉 · ·PPPT · ·FFF〉 = δ〈P〉 · · 〈PPPT · ·FFF〉 = δ〈P〉, (13.11.29)

because 〈PPPT · ·FFF〉 = III , by Eq. (13.8.11). Thus, Eq. (13.11.28) becomes

〈δP · ·drF〉 = δ〈P〉 · ·dp〈F〉. (13.11.30)

In view of Eq. (13.11.10) this reduces to Eq. (13.11.27). Also, since 〈drF〉 =

dp〈F〉, Eq. (13.11.30) gives

〈δP · ·drF〉 = δ〈P〉 · · 〈drF〉. (13.11.31)

This was anticipated from the theorem on product averages, because δP is

statically admissible and drF is kinematically admissible field.

The following two identities, which follow from Eqs. (13.11.23), (13.11.24),

and (13.11.26), are noted

〈drF · ·Λ · ·dpF〉 = 〈drF · ·Λ · ·drF〉, (13.11.32)

〈drP · ·M · ·dpP〉 = 〈drP · ·M · ·drP〉. (13.11.33)

By comparing the results of this subsection with those from the Subsec-

tion 13.10.2, it can be easily verified that

drP − dsP = Λ · · (drF − dsF) . (13.11.34)

The local residual quantities here discussed are of interest in the analysis

of the work and energy-related macroscopic quantities considered in Section

13.14.
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13.12. Plastic Increment of Macroscopic Piola–Kirchhoff Stress

The increment of the macroscopic symmetric Piola–Kirchhoff stress can be

partitioned into its elastic and plastic parts, such that

d[T] = de[T] + dp[T]. (13.12.1)

The elastic part is defined by

de[T] = [Λ(1)] : d[E]. (13.12.2)

The remaining part,

dp[T] = d[T] − [Λ(1)] : d[E], (13.12.3)

is the plastic part of the increment d[T]. The macroscopic elastoplastic

increment of the Lagrangian strain is d[E].

The plastic part dp[T] can be related to dp〈P〉 by substituting Eq.

(13.9.4), and

d〈P〉 = 〈KKK〉T : d[T] + [TTT ] · ·d〈F〉, (13.12.4)

d[E] = 〈KKK〉 · ·d〈F〉, (13.12.5)

into Eq. (13.10.3). The result is

dp〈P〉 = 〈KKK〉T : dp[T]. (13.12.6)

Normality Rules

To discuss the normality rules, we first observe that

δ〈F〉 · ·dp〈P〉 = δ〈F〉 · · 〈KKK〉T : dp[T] = δ[E] : dp[T]. (13.12.7)

This shows, if the normality holds for the plastic part of the increment of

macroscopic nominal stress, it also holds for the plastic part of the increment

of macroscopic Piola–Kirchhoff stress, and vice versa, i.e.,

δ〈F〉 · ·dp〈P〉 > 0 ⇐⇒ δ[E] : dp[T] > 0. (13.12.8)

Furthermore, we have

〈δF · ·dpP〉 = 〈δE : dpT〉, (13.12.9)
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because locally δF · ·dpP = δE : dpT, as shown in Section 12.14. Thus, by

comparing Eqs. (13.12.7) and (13.12.9), and having in mind Eq. (13.10.11),

it follows that

〈δE : dpT〉 = δ[E] : dp[T]. (13.12.10)

Consequently, if the normality rule applies at the microlevel, it is transmitted

to the macrolevel,

δE : dpT > 0 =⇒ δ[E] : dp[T] > 0. (13.12.11)

We can derive an expression for dpT in terms of the macroscopic plastic

potential. To that goal, note that
∂

∂〈F〉 = 〈KKK〉T :
∂

∂[E]
. (13.12.12)

When this is substituted into Eq. (13.10.19), there follows

dp〈P〉 = − ∂

∂〈F〉 〈
n∑

α=1

τα dγα〉 = −〈KKK〉T :
∂

∂[E]
〈

n∑
α=1

τα dγα〉, (13.12.13)

and the comparison with Eq. (13.12.6) establishes

dp[T] = − ∂

∂[E]
〈

n∑
α=1

τα dγα〉. (13.12.14)

This demonstrates that −〈∑ τα dγα〉 is the plastic potential for dp[T] over

an elastic domain in [E] space . This result is originally due to Hill and Rice

(1973).

13.13. Plastic Increment of Macroscopic Lagrangian Strain

The increment of the macroscopic Lagrangian strain is partitioned into its

elastic and plastic parts as

d[E] = de[E] + dp[E]. (13.13.1)

The elastic part is

de[E] = [M(1)] : d[T], (13.13.2)

while

dp[E] = d[E] − [M(1)] : d[T] (13.13.3)

represents the plastic part of the increment d[E]. The tensor of macroscopic

elastic compliances is

[M(1)] = [Λ(1)]−1. (13.13.4)
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From Eqs. (13.12.3) and (13.13.3), we observe the connections

dp[T] = −[Λ(1)] : d[E], dp[E] = −[M(1)] : d[T]. (13.13.5)

The plastic part dp[E] can be related to dp〈F〉 by substituting

dp〈P〉 = −[Λ] : dp〈F〉, dp[T] = −[Λ(1)] : dp[E] (13.13.6)

into Eq. (13.12.6). The result is

[Λ] · ·dp〈F〉 = 〈KKK〉T : [Λ(1)] : dp[E], (13.13.7)

i.e.,

dp〈F〉 = [M] · · 〈KKK〉T : [Λ(1)] : dp[E]. (13.13.8)

Normality Rules

First, it is noted that

δ〈P〉 · ·dp〈F〉 = δ〈P〉 · · [M] · · 〈KKK〉T : [Λ(1)] : dp[E]. (13.13.9)

Since

δ〈P〉 · · [M] · · 〈KKK〉T = δ〈F〉 · · 〈KKK〉T = δ[E], (13.13.10)

and

δ[E] : [Λ(1)] = δ[T], (13.13.11)

Equation (13.13.9) becomes

δ〈P〉 · ·dp〈F〉 = δ[T] : dp[E]. (13.13.12)

Therefore, if the normality holds for the plastic part of the increment of

macroscopic deformation gradient, it also holds for the plastic part of the

increment of macroscopic Lagrangian strain, and vice versa, i.e.,

δ〈P〉 · ·dp〈F〉 < 0 ⇐⇒ δ[T] : dp[E] < 0. (13.13.13)

Next, there is an identity

〈δP · ·dpF〉 = 〈δT : dpE〉, (13.13.14)

because locally δP · ·dpF = δT : dpE, as can be inferred from the analysis

in Section 12.14. Thus, by comparing Eqs. (13.13.12) and (13.13.14), and

by recalling Eq. (13.11.10), it follows that

〈δT : dpE〉 = δ[T] : dp[E]. (13.13.15)
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Consequently, if the normality rule applies at the microlevel, it is transmitted

to the macrolevel (Hill, 1972), i.e.,

δT : dpE < 0 =⇒ δ[T] : dp[E] < 0. (13.13.16)

In the context of small deformation the result was originally obtained by

Mandel (1966) and Hill (1967).

An expression for dpE can be derived in terms of the macroscopic plastic

potential by using the chain rule,

∂

∂[E]
=

∂

∂[T]
: [Λ(1)], (13.13.17)

in Eq. (13.12.14). This gives

dp[T] = − ∂

∂[T]
: [Λ(1)] 〈

n∑
α=1

τα dγα〉. (13.13.18)

Upon the trace product with [M(1)], we obtain

dp[E] =
∂

∂[T]
〈

n∑
α=1

τα dγα〉, (13.13.19)

having regard to (13.13.5). This shows that 〈∑ τα dγα〉 is a plastic potential

for dp[E] over an elastic domain in [T] space.

13.14. Macroscopic Increment of Plastic Work

The macroscopic increment of slip work, per unit volume of the macroele-

ment, is the volume average

〈dwslip〉 = 〈
n∑

α=1

τα dγα〉 =
1
V 0

∫
V 0

(
n∑

α=1

τα dγα

)
dV 0. (13.14.1)

The number n of active slip systems changes from grain to grain within the

macroelement, depending on the grain orientation and the state of harden-

ing.

Another quantity, which will be referred to as the macroscopic increment

of plastic work, can be introduced as follows. Consider a cycle of the ap-

plication and removal of the macroscopic increment of nominal stress d〈P〉.
The corresponding macroscopic work can be determined by considering the

volume average of the first-order work quantity

P · ·dpF = P · · (drF − M · ·drP) , (13.14.2)
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which is

〈P · ·dpF〉 = 〈P〉 · ·dp〈F〉 − 〈P · ·M · ·drP〉. (13.14.3)

This follows because P is statically admissible and drF is kinematically ad-

missible, so that

〈P · ·drF〉 = 〈P〉 · · 〈drF〉 = 〈P〉 · ·dp〈F〉. (13.14.4)

Thus,

〈P〉 · ·dp〈F〉 = 〈P · ·dpF〉 + 〈P · ·M · ·drP〉. (13.14.5)

The result shows that the macroscopic first-order work quantity in the cy-

cle of d〈P〉 is not equal to the volume average of the local work quantity

P · ·dpF. This was expected on physical grounds, because cycling d〈P〉
macroscopically does not simultaneously cycle every dP locally. In fact, the

residual increment of stress left locally upon the cycle of d〈P〉 is dr〈P〉 of

Eq. (13.11.20).

To analyze the increment of macroscopic plastic work with an accuracy

to the second order, consider

〈(P +
1
2

dP) · ·dpF〉 = 〈P · ·dpF〉 +
1
2
〈dP · ·dpF〉. (13.14.6)

The second-order contribution can be expressed by using the identity

dP · ·dpF = dP · · (drF − M · ·drP) . (13.14.7)

In view of (13.11.20), this can be rewritten as

dP · ·dpF = dP · ·drF − (
drP + d〈P〉 · ·PPPT

) · ·M · ·drP. (13.14.8)

Since drF and d〈P〉 · ·PPPT · ·M = M · ·PPP · ·d〈P〉 are kinematically admissible

fields, and since 〈drF〉 = dp〈F〉 and 〈drP〉 = 0, upon the averaging of Eq.

(13.14.8) we obtain

〈dP · ·dpF〉 = d〈P〉 · ·dp〈F〉 − 〈drP · ·M · ·drP〉, (13.14.9)

i.e.,

d〈P〉 · ·dp〈F〉 = 〈dP · ·dpF〉 + 〈drP · ·M · ·drP〉. (13.14.10)
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Combining Eqs. (13.14.4), (13.14.6), and (13.14.9), the increment of macro-

scopic plastic work, to second order, can be expressed as

(〈P〉 +
1
2

d〈P〉) · ·dp〈F〉 = 〈(P +
1
2

dP) · ·dpF〉

+ 〈(P +
1
2

drP) · ·M · ·drP〉.
(13.14.11)

The first- and second-order plastic work quantities, defined by P · ·dpF

and dP··dpF, are not equal to T : dpE and dT : dpE, as discussed in Section

12.8. The latter quantities are actually not measure invariant, but change

their values with the change of the strain and conjugate stress measure.

Related Work Expressions

When the Lagrangian strain and Piola–Kirchhoff stress are used, we have

from Eqs. (12.8.13) and (12.8.17),

P · ·dpF = T : dpE + T : M(1) : dT − P · ·M · ·dP, (13.14.12)

dP · ·dpF = dT : dpE + dT : M(1) : dT − dP · ·M · ·dP + dF · ·TTT · ·dF.
(13.14.13)

The corresponding expressions for the macroscopic quantities are readily

obtained. The first one is
〈P〉 · ·dp〈F〉 = 〈P〉 · · (d〈F〉 − [M] · ·d〈P〉)

= [T] : d[E] − 〈P〉 · · [M] · ·d〈P〉,
(13.14.14)

i.e.,

〈P〉 · ·dp〈F〉 = [T] : dp[E] + [T] : [M(1)] : d[T] − 〈P〉 · · [M] · ·d〈P〉.
(13.14.15)

Similarly,

d〈P〉 · ·dp〈F〉 = d[T] : d[E] − d〈P〉 · · [M] · ·d〈P〉 + d〈F〉 · · [TTT ] · ·d〈F〉,
(13.14.16)

and
d〈P〉 · ·dp〈F〉 = d[T] : dp[E] + d[T] : [M(1)] : d[T]

− d〈P〉 · · [M] · ·d〈P〉 + d〈F〉 · · [TTT ] · ·d〈F〉.
(13.14.17)

We now proceed to establish the relationships between the macroscopic

quantities [T] : dp[E] and d[T] : dp[E], and the volume averages 〈T : dpE〉
and 〈dT : dpE〉. First, since from Eq. (13.4.5),

[T] : d[E] = 〈T : dE〉, (13.14.18)
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we obtain

[T] :
(
dp[E] + [M(1)] : d[T]

)
= 〈T :

(
dpE + M(1) : dT

)〉. (13.14.19)

Therefore,

[T] : dp[E] = 〈T : dpE〉 + 〈T : M(1) : dT〉 − [T] : [M(1)] : d[T]. (13.14.20)

To derive the formula for the second-order work quantity, we begin by

volume averaging of (13.14.13), i.e.,

〈dP · ·dpF〉 = 〈dT : dpE〉 + 〈dT : M(1) : dT〉
− 〈dP · ·M · ·dP〉 + 〈dF · ·TTT · ·dF〉.

(13.14.21)

On the other hand, there is a relationship

〈dP · ·M · ·dP〉 − 〈drP · ·M · ·drP〉 = d〈P〉 · · [M] · ·d〈P〉. (13.14.22)

The latter can be verified by subtracting

〈drP · ·M · ·drP〉 = 〈drP · ·M · · (dP −PPP · ·d〈P〉)〉 (13.14.23)

from

〈dP · ·M · ·dP〉 = 〈(drP + d〈P〉 · ·PPPT
) · ·M · ·dP〉, (13.14.24)

and by using the theorem on product averages for the appropriate admissible

fields. The results 〈PPPT · ·M〉 = [M] and 〈drP〉 = 0, from Eqs. (13.8.6) and

(13.11.25), were also used. Substitution of Eq. (13.14.22) into (13.14.21)

then gives

d〈P〉 · ·dp〈F〉 + d〈P〉 · · [M] · ·d〈P〉
= 〈dT : dpE〉 + 〈dT : M(1) : dT〉 + 〈dF · ·TTT · ·dF〉.

(13.14.25)

Equation (13.2.9) was used to eliminate 〈dP··dpF〉 in terms of d〈P〉··dp〈F〉.
By combining Eq. (13.14.25) with Eq. (13.14.17), we finally obtain

d[T] : dp[E] = 〈dT : dpE〉 + 〈dT : M(1) : dT〉 + 〈dF · ·TTT · ·dF〉
− d[T] : [M(1)] : d[T] − d〈F〉 · · [TTT ] · ·d〈F〉,

(13.14.26)

which was originally derived by Hill (1985).

In the infinitesimal (ε) strain theory, there is no distinction between

various stress and strain measures, and both (13.14.10) and (13.14.26) reduce

to

d〈σ〉 : dp〈ε〉 = 〈dσ : dpε〉 + 〈drσ : M : drσ〉. (13.14.27)
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The rotational effects on the stress rate are neglected if Eq. (13.14.27) is

deduced from Eq. (13.14.26), and the Cauchy stress σ is used in place of

P in Eq. (13.14.22). All elastic compliances are given by the tensor M.

Equation (13.14.27) was originally derived by Mandel (1966). With the

positive definite M, it follows that

d〈σ〉 : dp〈ε〉 > 〈dσ : dpε〉. (13.14.28)

Thus, within infinitesimal range, the stability at microlevel, dσ : dpε > 0,

ensures the stability at macrolevel, d〈σ〉 : dp〈ε〉 > 0.

13.15. Nontransmissibility of Basic Crystal Inequality

Consider a cycle of the application and removal of the macroscopic increment

of deformation gradient d〈F〉. Since

F · ·dpP = F · · (dsP − Λ · ·dsF) , (13.15.1)

the volume average is

〈F · ·dpP〉 = 〈F〉 · ·dp〈P〉 − 〈F · ·Λ · ·dsF〉. (13.15.2)

This follows because F is kinematically admissible and dsP is statically ad-

missible, so that

〈F · ·dsP〉 = 〈F〉 · · 〈dsP〉 = 〈F〉 · ·dp〈P〉. (13.15.3)

Thus, dually to Eq. (13.14.5), we have

〈F〉 · ·dp〈P〉 = 〈F · ·dpP〉 + 〈F · ·Λ · ·dsF〉. (13.15.4)

This was expected on physical grounds, because cycling d〈F〉 macroscopi-

cally does not simultaneously cycle every dF locally. In fact, the residual

increment of deformation left locally upon the cycle of d〈F〉 is ds〈F〉, given

by Eq. (13.10.21).

Consider next the net expenditure of work in a cycle of d〈F〉. By the

trapezoidal rule of quadrature, the net work expended locally is

−1
2

dF · ·dpP, (13.15.5)

to second-order. The quantity

dF · ·dpP = dF · · (dsP − Λ · ·dsF) (13.15.6)
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can be rewritten, by using Eq. (13.10.21), as

dF · ·dpP = dF · ·dsP − (
dsF + d〈F〉 · ·FFFT

) · ·Λ · ·dsF. (13.15.7)

Since dsP and d〈F〉 · ·FFFT · ·Λ = Λ · ·FFF · ·d〈F〉 are statically admissible

fields, and since 〈dsP〉 = dp〈P〉 and 〈dsF〉 = 0, upon the averaging of Eq.

(13.15.7) we obtain

〈dF · ·dpP〉 = d〈F〉 · ·dp〈P〉 − 〈dsF · ·Λ · ·dsF〉, (13.15.8)

i.e.,

d〈F〉 · ·dp〈P〉 = 〈dF · ·dpP〉 + 〈dsF · ·Λ · ·dsF〉. (13.15.9)

This shows that d〈F〉 · ·dp〈P〉 is not equal to the volume average of the

local quantity dF · ·dpP, because cycling d〈F〉 macroscopically does not

simultaneously cycle every dF locally.

The second-order work quantity dF · ·dpP is equal to the measure in-

variant quantity dE : dpT, as discussed in Section 12.8. Thus,

〈dF · ·dpP〉 = 〈dE : dpT〉. (13.15.10)

Furthermore, from Eq. (13.12.6), we have

d〈F〉 · ·dp〈P〉 = d〈F〉 · · 〈KKK〉T : dp[T] = d[E] : dp[T]. (13.15.11)

Substitution of Eqs. (13.15.10) and (13.15.11) into Eq. (13.15.9) gives

d[E] : dp[T] = 〈dE : dpT〉 + 〈dsF · ·Λ · ·dsF〉. (13.15.12)

The second-order quantity d〈E〉 : dp〈T〉 is not equal to the volume average of

the local quantity dE : dpT, because cycling d〈E〉 macroscopically does not

simultaneously cycle every dE locally. We conclude that the macroscopic

inequality d[E] : dp[T] < 0 is not guaranteed by the basic single crystal

inequality at the local level dE : dpT < 0. However, since 〈dsF〉 = 0, it is

reasonable to expect that 〈dsF · ·Λ · ·dsF〉 is small (being either positive or

negative, since Λ is not necessarily positive definite); see Havner (1992).

In the infinitesimal strain theory, Eqs. (13.15.9) and (13.15.12) reduce

to

d〈ε〉 : dp〈σ〉 = 〈dε : dpσ〉 − 〈dsε : Λ : dsε〉. (13.15.13)

Equation (13.15.13) was originally derived by Hill (1972). With the positive

definite Λ, it only implies that

d〈ε〉 : dp〈σ〉 > 〈dε : dpσ〉. (13.15.14)
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Evidently, the stability at the microlevel, dε : dpσ < 0, does not ensure the

stability at the macrolevel, d〈ε〉 : dp〈σ〉 < 0.

It is noted that, dually to relation (13.14.22), we have

〈dF · ·Λ · ·dF〉 − 〈dsF · ·Λ · ·dsF〉 = d〈F〉 · · [Λ] · ·d〈F〉. (13.15.15)

This can be verified by subtracting

〈dsF · ·Λ · ·dsF〉 = 〈dsF · ·Λ · · (dF −FFF · ·d〈F〉)〉 (13.15.16)

from

〈dF · ·Λ · ·dF〉 = 〈(dsF + d〈F〉 · ·FFFT
) · ·Λ · ·dF〉, (13.15.17)

and by using the theorem on product averages for appropriate admissible

fields. The results 〈FFFT · ·Λ〉 = [Λ] and 〈dsF〉 = 0, from Eqs. (13.7.6) and

(13.10.26), were also used.

We record an additional result. From Eq. (12.8.18) we have

〈F · ·dpP〉 = 〈C : dpT〉, (13.15.18)

where C = FT · F is the right Cauchy–Green deformation tensor. Thus, in

conjunction with (13.3.4), we conclude that

[C] : dp[T] = 〈C : dpT〉 + 〈F · ·Λ · ·dsF〉. (13.15.19)

13.16. Analysis of Second-Order Work Quantities

Since dP is statically and dF is kinematically admissible, by the theorem on

product averages, we can write for the volume average of the second-order

work quantity

〈dP · ·dF〉 = 〈dP〉 · · 〈dF〉. (13.16.1)

Recalling the definitions of plastic increments, we further have

d〈P〉 · ·d〈F〉 = d〈P〉 · ·dp〈F〉 + d〈P〉 · · [M] · ·d〈P〉, (13.16.2)

〈dP · ·dF〉 = 〈dpP · ·dF〉 + 〈dF · ·Λ · ·dF〉. (13.16.3)

Since dF = drF + M · ·PPP · ·d〈P〉, from Eq. (13.11.19), by expansion and

the use of the product theorem, the last term on the right-hand side of Eq.

(13.16.3) becomes

〈dF · ·Λ · ·dF〉 = 2 d〈P〉 · ·dp〈F〉 + d〈P〉 · · [M] · ·d〈P〉 + 〈drF · ·Λ · ·drF〉.
(13.16.4)
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The relationship 〈PPPT · ·M · ·PPP〉 = [M] from Eq. (13.8.12) was also used.

The substitution of Eqs. (13.16.2)–(13.16.4) into Eq. (13.16.1) gives

d〈P〉 · ·dp〈F〉 = −〈dpP · ·dF〉 − 〈drF · ·Λ · ·drF〉. (13.16.5)

Furthermore, by summing the expressions in Eqs. (13.16.5) and (13.15.9),

there follows

d〈P〉 · ·dp〈F〉 + d〈F〉 · ·dp〈P〉 = 〈dsF · ·Λ · ·dsF〉 − 〈drF · ·Λ · ·drF〉.
(13.16.6)

The right-hand side can be recast as

〈dsF · ·Λ · ·dpF〉 − 〈drF · ·Λ · ·dpF〉 = 〈(drF − dsF) · ·dpP〉, (13.16.7)

recalling Eqs. (13.10.33) and (13.11.32), and dpP = −Λ : dpF.

Expressions dual to (13.16.5)–(13.16.7) can also be derived. We start

from

d〈F〉 · ·d〈P〉 = d〈F〉 · ·dp〈P〉 + d〈F〉 · · [Λ] · ·d〈F〉, (13.16.8)

〈dF · ·dP〉 = 〈dpF · ·dP〉 + 〈dP · ·M · ·dP〉. (13.16.9)

Since dP = dsP + Λ · ·FFF · ·d〈F〉, according to Eq. (13.10.20), by expansion

and the use of the product theorem, the last term on the right-hand side of

Eq. (13.16.9) becomes

〈dP · ·M · ·dF〉 = 2 d〈F〉 · ·dp〈P〉 + d〈F〉 · · [Λ] · ·d〈F〉 + 〈dsP · ·M · ·dsP〉.
(13.16.10)

The relationship 〈FFFT · ·Λ · ·FFF〉 = [Λ] from (13.7.16) was used. Substituting

Eqs. (13.16.8)–(13.16.10) into Eq. (13.16.1) then gives

d〈F〉 · ·dp〈P〉 = −〈dpF · ·dP〉 − 〈dsP · ·M · ·dsP〉, (13.16.11)

which is dual to Eq. (13.16.5).

On the other hand, by summing expressions in Eqs. (13.16.11) and

(13.14.10), there follows

d〈F〉 · ·dp〈P〉 + d〈P〉 · ·dp〈F〉 = 〈drP · ·M · ·drP〉 − 〈dsP · ·M · ·dsP〉.
(13.16.12)

The right-hand side is also equal to

〈drP · ·M · ·dpP〉 − 〈dsP · ·M · ·dpP〉 = 〈(dsP − drP) · ·dpF〉, (13.16.13)
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by Eqs. (13.10.34) and (13.11.33), and because dpF = −M : dpM. It is

easily verified that Eqs. (13.16.6) and (13.16.12) are in accord, since

〈(drF − dsF) · ·dpP〉 = 〈(dsP − drP) · ·dpF〉, (13.16.14)

by Eq. (13.11.34).

We end this section by listing two additional identities. They are

〈dpF · ·Λ · ·dpF 〉 = 〈dsF · ·Λ · ·dsF 〉 + 〈dsP · ·M · ·dsP 〉, (13.16.15)

and

〈dpP · ·M · ·dpP 〉 = 〈drF · ·Λ · ·drF 〉 + 〈drP · ·M · ·drP 〉. (13.16.16)

For example, the first one follows from

dpF · ·Λ · ·dpF = (dsF − dsP · ·M) · ·Λ · ·dpF

= dsF · ·Λ · ·dpF + dsP · ·M · ·dpP,
(13.16.17)

by taking the volume average and by using Eqs. (13.10.33) and (13.10.34).

Note that the left-hand sides in Eqs. (13.16.15) and (13.16.16) are actually

equal to each other, both being equal to −〈dpP · ·dpF 〉.

13.17. General Analysis of Macroscopic Plastic Potentials

A general study of the transmissibility of plastic potentials and normality

rules from micro-to-macrolevel is presented in this section. The analysis is

originally due to Hill and Rice (1973), who used the framework of general

conjugate stress and strain measures in their formulation. Here, the formula-

tion is conveniently cast by using the deformation gradient and the nominal

stress. The plastic part of the free energy increment at the microlevel,

dpΨ = Ψ (F, H + dH) − Ψ (F, H) , (13.17.1)

is a potential for the plastic part of the nominal stress increment,

dpP = P (F, H + dH) − P (F, H) , (13.17.2)

such that

dpP =
∂

∂F
(dpΨ) . (13.17.3)

If the trace product of dpP with an elastic increment δF is positive,

δF · ·dpP = δF · · ∂

∂F
(dpΨ) = δ (dpΨ) > 0, (13.17.4)
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we say that the material response complies with the normality rule at mi-

crolevel in the deformation space.

Dually, the plastic part of the increment of complementary energy at

the microlevel,

dpΦ = Ψ (P, H + dH) − Φ (P, H) , (13.17.5)

is a potential for the plastic part of the deformation gradient increment,

dpF = F (P, H + dH) − F (P, H) , (13.17.6)

such that

dpF =
∂

∂P
(dpΦ) . (13.17.7)

If the trace product of dpF with an elastic increment δP is negative,

δP · ·dpF = δP · · ∂

∂P
(dpΦ) = δ (dpΦ) < 0, (13.17.8)

the material response complies with the normality rule at microlevel in the

stress space. With these preliminaries from the microlevel, we now examine

the macroscopic potentials and macroscopic normality rules.

13.17.1. Deformation Space Formulation

The plastic part of the increment of macroscopic free energy, associated with

a cycle of the application and removal of an elastoplastic increment of the

macroscopic deformation gradient d〈F〉, is defined by

dpΨ̂ = Ψ̂ (〈F〉, H + dH) − Ψ̂ (〈F〉, H) . (13.17.9)

The macroscopic free energy before the cycle is

Ψ̂ (〈F〉, H) =
1
V 0

∫
V 0

Ψ (F, H) dV 0, (13.17.10)

where F is the local deformation gradient field within the macroelement.

After a cycle of d〈F〉, the local deformation gradients within V 0 are in general

not restored, so that

Ψ̂ (〈F〉, H + dH) =
1
V 0

∫
V 0

Ψ (F + dsF, H + dH) dV 0

=
1
V 0

∫
V 0

[
Ψ (F, H + dH) +

∂Ψ
∂F

· ·dsF
]

dV 0.

(13.17.11)

Here, dsF represents a residual increment of the deformation gradient that

remains at the microlevel after macroscopic cycle of d〈F〉. Upon substitution
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of Eqs. (13.17.10) and (13.17.11) into Eq. (13.17.9), there follows

dpΨ̂ =
1
V 0

∫
V 0

[Ψ (F, H + dH) − Ψ (F, H)] dV 0 +
1
V 0

∫
V 0

P · ·dsFdV 0,

(13.17.12)

i.e.,

dpΨ̂ = 〈dpΨ〉 + 〈P · ·dsF〉. (13.17.13)

Recalling that P is statically admissible, while dsF is kinematically admis-

sible field, and since 〈dsF〉 = 0 by Eq. (13.10.26), we have

〈P · ·dsF〉 = 〈P〉 · · 〈dsF〉 = 0. (13.17.14)

Equation (13.17.13) consequently reduces to

dpΨ̂ = 〈dpΨ〉. (13.17.15)

Thus, the plastic increment of macroscopic free energy is a direct volume

average of the plastic increment of microscopic free energy.

The potential property is established through

∂

∂〈F〉 (dpΨ̂) =
∂

∂〈F〉 〈d
pΨ〉 = 〈 ∂ (dpΨ)

∂〈F〉 〉

= 〈 ∂ (dpΨ)
∂F

· · ∂F
∂〈F〉 〉 = 〈dpP · ·FFF 〉.

(13.17.16)

Since the plastic part of the increment of macroscopic nominal stress is a

weighted volume average of the plastic part of the increment of local nominal

stress, as seen from Eq. (13.10.14), we deduce that dpΨ̂ is indeed a plastic

potential for dp〈P〉, i.e.,

dp〈P〉 =
∂

∂〈F〉 (dpΨ̂). (13.17.17)

If Eq. (13.17.17) is subjected to the trace product with an elastic incre-

ment δ〈F〉, there follows

δ〈F〉 · ·dp〈P〉 = δ〈F〉 · · ∂

∂〈F〉 (dpΨ̂) = δ(dpΨ̂). (13.17.18)

Substitution of (13.17.15) gives

δ(dpΨ̂) = δ 〈dpΨ 〉 = 〈 δ(dpΨ) 〉. (13.17.19)

Thus, the normality at the microlevel ensures the normality at the macrolevel,

i.e.,

if δ (dpΨ) > 0, then δ (dpΨ̂) > 0. (13.17.20)
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If the conjugate stress and strain measures T and E are utilized, Eq.

(13.17.17) becomes

dp[T] =
∂

∂[E]
(dpΨ̂). (13.17.21)

This follows because the relationships from Section 13.12 hold,

dp〈P〉 = 〈KKK〉T : dp[T],
∂

∂〈F〉 = 〈KKK〉T :
∂

∂[E]
. (13.17.22)

13.17.2. Stress Space Formulation

In a dual analysis, we introduce the plastic part of the increment of macro-

scopic complementary energy, associated with a cycle of the application and

removal of an elastoplastic increment of macroscopic stress d〈P〉, such that

dpΦ̂ = Φ̂ (〈P〉, H + dH) − Φ̂ (〈P〉, H) . (13.17.23)

The macroscopic complementary energy before the cycle is

Φ̂ (〈P〉, H) =
1
V 0

∫
V 0

Φ (P, H) dV 0, (13.17.24)

where P is the local stress field within the macroelement. After a cycle of

d〈P〉, the local stresses within V 0 are in general not restored, so that

Φ̂ (〈P〉, H + dH) =
1
V 0

∫
V 0

Φ (P + drP, H + dH) dV 0

=
1
V 0

∫
V 0

[
Φ (P, H + dH) +

∂Φ
∂P

· ·drP
]

dV 0,

(13.17.25)

where drP represents a residual increment of stress that remains at the

microlevel upon macroscopic cycle of d〈P〉. Substitution of Eqs. (13.17.24)

and (13.17.25) into Eq. (13.17.23) yields

dpΦ̂ =
1
V 0

∫
V 0

[Φ (P, H + dH) − Φ (P, H)] dV 0 +
1
V 0

∫
V 0

F · ·drPdV 0,

(13.17.26)

i.e.,

dpΦ̂ = 〈dpΦ〉 + 〈F · ·drP〉. (13.17.27)

Since F is kinematically admissible, while drP is statically admissible field,

and since 〈drP〉 = 0 by Eq. (13.11.25), we have

〈F · ·drP〉 = 〈F〉 · · 〈drP〉 = 0. (13.17.28)

Consequently, Eq. (13.17.27) reduces to

dpΦ̂ = 〈dpΦ〉. (13.17.29)
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This shows that the plastic increment of macroscopic complementary energy

is a direct volume average of the plastic increment of microscopic comple-

mentary energy.

The potential property follows from

∂

∂〈P〉 (dpΦ̂) =
∂

∂〈P〉 〈d
pΦ〉 = 〈 ∂ (dpΦ)

∂〈P〉 〉

= 〈 ∂ (dpΦ)
∂P

· · ∂P
∂〈P〉 〉 = 〈dpF · ·PPP 〉.

(13.17.30)

Since the plastic part of the increment of macroscopic deformation gradient

is a weighted volume average of the plastic part of the increment of local

deformation gradient, as shown in Eq. (13.11.13), we deduce that dpΦ̂ is

indeed a plastic potential for dp〈F〉, i.e.,

dp〈F〉 =
∂

∂〈P〉 (dpΦ̂). (13.17.31)

Furthermore, the trace product of Eq. (13.17.31) with an elastic incre-

ment δ〈P〉 gives

δ〈P〉 · ·dp〈F〉 = δ〈P〉 · · ∂

∂〈P〉 (dpΦ̂) = δ(dpΦ̂). (13.17.32)

In view of Eq. (13.17.29), therefore,

δ(dpΦ̂) = δ 〈dpΦ 〉 = 〈 δ(dpΦ) 〉. (13.17.33)

From this we conclude that the normality at the microlevel, ensures the

normality at the macrolevel, i.e.,

if δ (dpΦ) < 0, then δ (dpΦ̂) < 0. (13.17.34)

It is observed that

dpΨ̂ + dpΦ̂ = 0, (13.17.35)

since locally dpΨ + dpΦ = 0, as well. Thus, having in mind that

∂

∂[E]
= [Λ(1)] :

∂

∂[T]
, (13.17.36)

we can rewrite Eq. (13.17.21) as

dp[T] = [Λ(1)] :
∂

∂[T]
(−dpΦ̂). (13.17.37)
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Upon taking the trace product with [M(1)] = [Λ(1)]−1, and recalling that

dp[E] = −[M(1)] : dp[T], Eq. (13.17.37) gives

dp[E] =
∂

∂[T]
(dpΦ̂). (13.17.38)

This shows that dpΦ̂, when expressed in terms of [T], is a potential for the

plastic increment dp[E].

13.18. Transmissibility of Ilyushin’s Postulate

Suppose that the aggregate is taken through the deformation cycle which,

at some stage, involves plastic deformation. Following an analogous analy-

sis as in Section 8.5, the cycle emanates from the state A0
(〈F〉0,H)

within

the macroscopic yield surface, it includes an elastic segment from A0 to

A (〈F〉,H) on the current yield surface, followed by an infinitesimal elasto-

plastic segment from A to B (〈F〉 + d〈F〉,H + dH), and the elastic unloading

segments from B to C(〈F〉,H+dH), and from C to C0
(〈F〉0,H + dH)

. The

work done along the segments A0A and CC0 is

∫ A

A0
〈P〉 · ·d〈F〉 =

∫ A

A0

∂Ψ̂
∂〈F〉 · ·d〈F〉

= Ψ̂ (〈F〉, H) − Ψ̂
(〈F〉0, H)

,

(13.18.1)

∫ C0

C

〈P〉 · ·d〈F〉 =
∫ C0

C

∂Ψ̂
∂〈F〉 · ·d〈F〉

= Ψ̂
(〈F〉0, H + dH) − Ψ̂ (〈F〉, H + dH) .

(13.18.2)

The work done along the segments AB and BC is, by the trapezoidal rule

of quadrature,∫ B

A

〈P〉 · ·d〈F〉 = 〈P〉 · ·d〈F〉 +
1
2

d〈P〉 : d〈F〉, (13.18.3)

∫ C

B

〈P〉 : d〈F〉 = −〈P〉 · ·d〈F〉 − 1
2

(d〈P〉 + dp〈P〉) · ·d〈F〉, (13.18.4)

to second-order terms. Consequently,∮
〈F 〉

〈P〉 · ·d〈F〉 = −1
2

dp〈P〉 · ·d〈F〉 + (dpΨ̂)0 − dpΨ̂, (13.18.5)
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where

dpΨ̂ = Ψ̂ (〈F〉, H + dH) − Ψ̂ (〈F〉, H) ,

(dpΨ̂)0 = Ψ̂
(〈F〉0, H + dH) − Ψ̂

(〈F〉0, H)
.

(13.18.6)

For the cycle with a sufficiently small segment along which the plastic de-

formation takes place, Eq. (13.18.5) becomes, to first order,∮
〈F 〉

〈P〉 · ·d〈F〉 = (dpΨ̂)0 − dpΨ̂. (13.18.7)

Since the plastic increment of macroscopic free energy is the volume average

of the plastic increment of microscopic free energy, dpΨ̂ = 〈dpΨ〉, as shown

in Eq. (13.17.15), we can rewrite Eq. (13.18.7) as∮
〈F 〉

〈P〉 · ·d〈F〉 = 〈 (dpΨ)0 − dpΨ〉. (13.18.8)

This holds even though the local F field is generally not restored in the

macroscopic cycle of d〈F〉. Equation (13.18.8) evidently implies, if

(dpΨ)0 − dpΨ > 0 (13.18.9)

at the microlevel, then

〈 (dpΨ)0 − dpΨ 〉 > 0 (13.18.10)

at the macrolevel. In other words, the restricted Ilyushin’s postulate (for

the specified deformation cycles with sufficiently small plastic segments) is

transmitted from the microlevel to the macrolevel (Hill and Rice, 1973).

If the cycle begins from the point on the yield surface, i.e., if A0 = A

and 〈F〉0 = 〈F〉, Eq. (13.18.5) reduces to∮
〈F 〉

〈P〉 · ·d〈F〉 = −1
2

dp〈P〉 · ·d〈F〉. (13.18.11)

On the other hand, from Eq. (13.15.9) we have

d〈F〉 · ·dp〈P〉 = 〈dF · ·dpP〉 + 〈dsF · ·Λ · ·dsF〉. (13.18.12)

Since Λ is not necessarily positive definite, we conclude that the compliance

with the restricted Ilyushin’s postulate (for infinitesimal cycles emanating

from the yield surface) at the microlevel,∮
F

P · ·dF = −1
2

dpP · ·dF > 0, (13.18.13)

is not necessarily transmitted to the macrolevel.
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13.19. Aggregate Minimum Shear and Maximum Work Principle

Consider an aggregate macroelement in the deformed equilibrium configu-

ration. The local deformation gradient and the nominal stress fields are F

and P. Let dF be the actual increment of deformation gradient that physi-

cally occurs under prescribed increment of displacement du on the bounding

surface S0 of the aggregate macroelement. Furthermore, let dF̄ be any kine-

matically admissible field of the increment of deformation gradient that is

associated with the same prescribed increment of displacement du over S0.

By the Gauss divergence theorem, the volume averages of dF and dF̄, over

the macroelement volume, are equal to each other,

〈dF 〉 = 〈dF̄ 〉 =
∫
S0

du ⊗ n0 dS0. (13.19.1)

In addition, there is an equality

〈P · ·dF 〉 = 〈P · ·dF̄ 〉 =
∫
S0

pn ⊗ dudS0. (13.19.2)

Suppose that simple shearing on active slip systems is the only mecha-

nism of deformation in a rigid-plastic aggregate. Let n shears dγα be a set

of local slip increments which give rise to local strain increment dE. These

are actual, physically operative slips, so that on each slip system of this set

|τα| = ταcr , (α = 1, 2, . . . , n). (13.19.3)

The slip in the opposite sense along the same slip direction is not considered

as an independent slip system. The Bauschinger effect is assumed to be

absent, so that ταcr is equal in both senses along the same slip direction. In

view of Eqs. (12.1.22) and (12.1.24), we can write

dE =
n∑

α=1

Pα
0 dγα, Pα

0 = FT · Pα · F = FT · (sα ⊗ mα)s · F. (13.19.4)

Further, let n̄ shears dγ̄α be a set of local slip increments which give rise to

local strain increment dĒ, but which are not necessarily physically operative,

so that

|τ̄α| ≤ τ̄αcr , (α = 1, 2, . . . , n̄). (13.19.5)

For this set we can write

dĒ =
n̄∑

α=1

P̄α
0 dγ̄α, P̄α

0 = FT · P̄α · F = FT · (s̄α ⊗ m̄α)s · F. (13.19.6)
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The slip system vectors of the second set are denoted by s̄α and m̄α. (Even

if it happens that dĒ = dE at some point or the subelement, there still

may be different sets of shears corresponding to that same dE. These are

geometrically equivalent sets of shears, which were the main concern of the

single crystal consideration in Section 12.19). Consequently,

〈P · ·dF〉 = 〈T : dE〉 = 〈
n∑

α=1

τα dγα 〉 , τα = τ : Pα, (13.19.7)

〈P · ·dF̄〉 = 〈T : dĒ〉 = 〈
n̄∑

α=1

τ̄α dγ̄α 〉 , τ̄α = τ : P̄α, (13.19.8)

where τ = F ·P = F ·T ·TT is the Kirchhoff stress (equal here to the Cauchy

stress σ, because the deformation of rigid-plastic polycrystalline aggregate

is isochoric, detF = 1). Since slip in the opposite sense along the same slip

direction is not considered as an independent slip system, dγα < 0 when

τα < 0, and the above equations can be recast as

〈
n∑

α=1

τα dγα 〉 = 〈
n∑

α=1

|τα| |dγα| 〉 = 〈
n∑

α=1

ταcr |dγα| 〉 , (13.19.9)

〈
n̄∑

α=1

τ̄α dγ̄α 〉 = 〈
n̄∑

α=1

|τ̄α| |dγ̄α| 〉 ≤ 〈
n̄∑

α=1

τ̄αcr |dγ̄α| 〉. (13.19.10)

Recall that |τα| = ταcr and |τ̄α| ≤ τ̄αcr. Thus, we conclude from Eqs.

(13.19.2), (13.19.9), and (13.19.10) that

〈
n∑

α=1

ταcr |dγα| 〉 ≤ 〈
n̄∑

α=1

τ̄αcr |dγ̄α| 〉 . (13.19.11)

If the hardening in each grain is isotropic, we have

〈 ταcr
n∑

α=1

|dγα| 〉 ≤ 〈 τ̄αcr
n̄∑

α=1

|dγ̄α| 〉 . (13.19.12)

Assuming, in addition, that all grains harden equally, the critical resolved

shear stress is uniform throughout the aggregate, and (13.19.12) reduces to

〈
n∑

α=1

|dγα| 〉 ≤ 〈
n̄∑

α=1

|dγ̄α| 〉 . (13.19.13)

This is the minimum shear principle for an aggregate macroelement. In the

context of infinitesimal strain, the original proof was given by Bishop and

Hill (1951a).
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Bishop and Hill (op. cit.) also proved the maximum work principle for an

aggregate of rigid-plastic crystals. Let Ḟ be the rate of deformation gradient

that takes place at the state of stress P, and let P∗ be any other state of

stress which does not violate the yield condition on any slip system. The

difference of the corresponding local rates of work per unit volume is, from

Eq. (12.19.14),

(τ− τ∗) : D = (P − P∗) · · Ḟ = (T − T∗) : Ė ≥ 0. (13.19.14)

Upon integration over the representative macroelement volume, there follows

〈(P − P∗) · · Ḟ〉 = (〈P〉 − 〈P∗〉) · · 〈Ḟ〉 = ([T ] − [T∗ ]) : [Ė ] ≥ 0.
(13.19.15)

If the current configuration is taken for the reference, we can write

({σ} − {σ∗}) : {D} ≥ 0. (13.19.16)

The last two expressions are the alternative statements of the maximum

work principle for an aggregate.

13.20. Macroscopic Flow Potential for Rate-Dependent Plasticity

In a rate-dependent plastic aggregate, which exhibits the instantaneous elas-

tic response to rapid loading or straining, the plastic part of the rate of

macroscopic deformation gradient is defined by
dp〈F〉

dt
=

d〈F〉
dt

− [M] · · d〈P〉
dt

, (13.20.1)

where t stands for the physical time. By an analogous expression to (13.11.13),

this is related to the local rate of deformation gradient by
dp〈F〉

dt
= 〈 dpF

dt
· ·PPP 〉. (13.20.2)

The fourth-order tensor PPP is the influence tensor of elastic heterogeneity,

which relates the elastic increments of the local and macroscopic nominal

stress, δP = PPP · · δ〈P〉.
Suppose that the flow potential exists at the microlevel, such that (see

Section 8.4)

dpF
dt

=
∂Ω (P, H)

∂P
. (13.20.3)

Substitution of Eq. (13.20.3) into Eq. (13.20.2) gives

dp〈F〉
dt

= 〈 ∂Ω
∂P

· ·PPP 〉 = 〈 ∂Ω
∂〈P〉 〉 =

∂

∂〈P〉 〈Ω 〉. (13.20.4)
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In the derivation, the partial differentiation enables the transition

∂Ω
∂〈P〉 =

∂Ω
∂P

· · ∂P
∂〈P〉 =

∂Ω
∂P

· ·PPP. (13.20.5)

From Eq. (13.20.4) we conclude that the existence of the flow potential Ω at

the microlevel implies the existence of the flow potential at the macrolevel.

The macroscopic flow potential is equal to the volume average 〈Ω 〉 of the

microscopic flow potentials.

Since

dp〈P〉
dt

= −[Λ] · · dp〈F〉
dt

, (13.20.6)

and since at fixed H,

∂

∂〈F〉 = [Λ] · · ∂

∂〈P〉 , (13.20.7)

we have, dually to Eq. (13.20.4),

dp〈P〉
dt

= − ∂

∂〈F〉 〈Ω 〉. (13.20.8)

If the stress and strain measures T and E are used, there follows

dp[E]
dt

=
∂

∂[T]
〈Ω 〉, (13.20.9)

dp[T]
dt

= − ∂

∂[E]
〈Ω 〉. (13.20.10)

The original proof for the transmissibility of the flow potential from the

local (subelement) to the macroscopic (aggregate) level is due to Hill and

Rice (1973). See also Zarka (1972), Hutchinson (1976), and Ponter and

Leckie (1976).
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Kröner, E. (1972), Statistical Continuum Mechanics, CISM Lecture Notes –

Udine, 1971, Springer-Verlag, Wien.

Kunin, I. A. (1982), Elastic Media with Microstructure, I and II, Springer-

Verlag, Berlin.

Mandel, J. (1966), Contribution théorique à l’étude de l’écrouissage et des
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CHAPTER 14

POLYCRYSTALLINE MODELS

The approximate models of the polycrystalline plastic response are discussed

in this chapter. The objective is to correlate the polycrystalline to single

crystal behavior and to derive the constitutive relation for a polycrystalline

aggregate in terms of the known constitutive relations for single crystals and

known (or assumed) distribution of crystalline grains within the aggregate.

The classical model of Taylor (1938a,b) and the analysis by Bishop and

Hill (1951a,b) are first presented. Determination of the polycrystalline axial

stress-strain curve and the polycrystalline yield surface is considered. The

main theme of the chapter is the self-consistent method, introduced in the

polycrystalline plasticity by Kröner (1961), and Budiansky and Wu (1962).

Hill’s (1965a) formulation and generalization of the method is followed in

the presentation. The self-consistent calculations of elastic and elastoplastic

moduli, the development of the crystallographic texture, and the effects of

the grain-size on the aggregate response are then discussed.

14.1. Taylor-Bishop-Hill Analysis

The slip in an f.c.c. crystal occurs on the octahedral planes in the directions

of the octahedron edges (Fig. 14.1). There are three possible slip directions

in each of the four distinct slip planes, making a total of twelve slip systems

(if counting both senses of a slip direction as one), or twenty four (if counting

opposite directions separately). The positive senses of the slip directions are

chosen as indicated in Table 14.1. The letters a, b, c, d refer to four slip

planes. With attached indices 1, 2 and 3, they designate the slip rates in the

respective positive slip directions.

If elastic (lattice) strains are disregarded, the components of the rate of

deformation tensor D, expressed on the cubic axes, due to simultaneous slip

© 2002 by CRC Press LLC 



Plane (111) (1̄1̄1) (1̄11) (11̄1)

Slip Rate a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

Slip Direction [01̄1] [101̄] [1̄10] [011] [1̄01̄] [11̄0] [01̄1] [1̄01̄] [110] [011] [101̄] [1̄1̄0]

Table 14.1. Designation of slip systems in f.c.c. crystals

rates in twelve slip directions, are given by (Taylor, 1938a)
√

6D11 = a2 − a3 + b2 − b3 + c2 − c3 + d2 − d3, (14.1.1)

√
6D22 = a3 − a1 + b3 − b1 + c3 − c1 + d3 − d1, (14.1.2)

√
6D33 = a1 − a2 + b1 − b2 + c1 − c2 + d1 − d2, (14.1.3)

2
√

6D23 = −a2 + a3 + b2 − b3 − c2 + c3 + d2 − d3, (14.1.4)

2
√

6D31 = −a3 + a1 + b3 − b1 + c3 − c1 − d3 + d1, (14.1.5)

2
√

6D12 = −a1 + a2 − b1 + b2 + c1 − c2 + d1 − d2. (14.1.6)

These are derived from the formulas in Section 12.17, i.e.,

D =
12∑

α=1

Pα γ̇α =
12∑

α=1

1
2

(sα ⊗ mα + mα ⊗ sα) γ̇α, (14.1.7)

where mα is the unit slip plane normal, and sα is the slip direction. For

example, the contribution from the slip rate γ̇ = a1 is obtained by using

m =
1√
3

(1, 1, 1), s =
1√
2

(0,−1, 1), (14.1.8)

which gives

1
2

(sα ⊗ mα + mα ⊗ sα) a1 =
a1

2
√

6

⎛
⎝ 0 −1 1
−1 −2 0
1 0 2

⎞
⎠ . (14.1.9)

An arbitrary rate of deformation tensor has five independent components

(trD = 0 for a rigid-plastic crystal), and therefore can only be produced by

multiple slip over a group of slip systems containing an independent set of

five. Of the C12
5 = 792 sets of five slips, only 384 are independent (Bishop

© 2002 by CRC Press LLC 



Figure 14.1. Twelve different slip directions in f.c.c. crys-
tals (counting opposite directions as different) are the edges
of the octahedron shown relative to principal cubic axes.
Each slip direction is shared by two intersecting slip planes
so that there is a total of 24 independent slip systems (12 if
counting opposite slip directions as one).

and Hill, 1951b). The 408 dependent sets are identified as follows. First, as

Taylor originally noted, only two of three slip systems in the same slip plane

are independent. The unit slip rates along a1, a2 and a3 directions together

produce the zero resultant rate of deformation. The same applies to three

slip directions in b, c and d slip planes. We write this symbolically as

a1 + a2 + a3 = 0, b1 + b2 + b3 = 0, c1 + c2 + c3 = 0, d1 + d2 + d3 = 0.
(14.1.10)

Thus, if the set of five slip systems contains a1, a2 and a3, there are C9
2 = 36

possible combinations with the remaining nine slip systems. These 36 sets of

five slips cannot produce an arbitrary D, with five independent components,

and are thus eliminated from 792 sets of five slips. Additional 3 × 36 = 108

sets, associated with dependent sets of three slips in b, c and d planes, can

also be eliminated. This makes a total of 144 dependent sets corresponding

to the constraints (14.1.10).

�

�

�

�����

�����
�����

��
��
�

��
��
�

�����
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Of the remaining 648 sets of five slips, 324 involve two slips in each of

two slip planes with one in a third (6 × 32 × 6 = 324), while 324 involve

two slips in one slip plane and one in each of the other three slip planes

(4 × 34 = 324). In the latter group, there are 3 × 8 = 24 sets involving the

combinations

a1 − b1 + c1 − d1 = 0, a2 − b2 + c2 − d2 = 0, a3 − b3 + c3 − d3 = 0.
(14.1.11)

These expressions can also be interpreted as meaning that such combinations

of unit slips produce zero resultant rate of deformation. The 24 sets of five

slips, involving four slip rates according to (14.1.11), can thus be eliminated

(these sets necessarily consists of two slips in one plane and one slip in each

of the remaining three slip planes). Additional 12 sets are eliminated, which

correspond to conditions obtained from (14.1.11) by adding or subtracting∑
ai, . . . ,

∑
di, one at a time, to each of (14.1.11). A representative of these

is a1 − b1 + c1 + d2 + d3 = 0 (Havner, 1992).

There are 4 × 33 = 132 dependent sets associated with

a1 + b2 + d3 = 0, a2 + b1 + c3 = 0, a3 + c2 + d1 = 0, b3 + c1 + d2 = 0.
(14.1.12)

Each group of 33 sets consists of 21 sets involving two slips in one plane

and one slip in each of other three planes, and 12 sets involving two slips

in two planes and one slip in one plane. Additional 84 sets can be elim-

inated by subtracting
∑

ai,
∑

bi and
∑

di, one at a time, from the first

of (14.1.12), and similarly for the other three. This makes 12 groups of 7

sets. A representative group is associated with a1 + b2 − d1 − d2 = 0. Four

of the 7 sets consist of two slips in two planes and one slip in one plane,

while three sets consist of two slips in one plane and one slip in each of the

other three planes. Finally, 12 more sets (making total of 228 dependent

sets associated with (14.1.12) and their equivalents) can be eliminated by

subtracting appropriate one of
∑

ai, . . . ,
∑

di from each of the 12 previous

group equations. An example is −a1 +b1 +b3 +d1 +d2 = 0. They all involve

two slips in each of two planes and one slip in another plane.

In summary, there is a total of 408 dependent sets of five slips: 144 sets

with three slips in the same plane, 108 sets with two slips in each of two

planes and one in a third, and 156 sets with two slips in one plane and one
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slip in each of the other three planes. Taylor (1938a) originally considered

only 216 sets as geometrically admissible (involving double slip in each of

two planes), and did not observe 168 admissible sets with double slip in only

one plane. These were originally identified by Bishop and Hill (1951b).

14.1.1. Polycrystalline Axial Stress-Strain Curve

In an early approach to predict the tensile yield stress of a polycrystalline ag-

gregate, Sachs (1928) assumed that each grain is subjected to uniaxial stress

parallel to the specimen axis and sufficient to initiate slip in the most critical

slip system. Since each grain was assumed to deform only by a single slip, the

deformations across the grain boundaries of differently oriented grains were

incompatible. Furthermore, since the stress in each grain was assumed to

be a simple tension, of the different amount from grain to grain, the equilib-

rium across the grain boundaries was not satisfied, either. Nonetheless, the

obtained value for the aggregate tensile yield stress was about 2.2 τ , where

τ is the yield stress of a single crystal, which was not a very unsatisfactory

estimate.

A more realistic model was proposed by Taylor (1938a), who assumed

that every grain within a polycrystalline aggregate, subjected to macro-

scopically uniform deformation, sustains the same deformation (strain and

rotation). This ensures compatibility, but not equilibrium, across the grain

boundaries. As discussed below, the calculated value for the aggregate ten-

sile yield stress is about 3.1 τ . Taylor’s assumption can be viewed as an

extension of Voigt’s (1889) uniform strain assumption for the elastic inho-

mogeneous bodies, as discussed later in Section 14.5.

Let φ, θ and ψ denote the Euler angles of the lattice axes of an arbitrary

grain relative to the specimen axes. These can be defined as follows. Be-

ginning with the coincident axes, imagine that the grain is first rotated by

φ about [001] axis, then by θ about the current direction of the [010] axis,

and finally by ψ about the new direction of the [001] axis. Counterclockwise

rotations are positive. The corresponding orthogonal transformation defin-

ing the direction cosines of the crystal axes relative to the specimen axes is

(Havner, 1992)
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Q =
(

cosφ cos θ cosψ − sinφ sinψ sinφ cos θ cosψ + cosφ sinψ − sin θ cosψ
− cosφ cos θ sinψ − sinφ cosψ − sinφ cos θ sinψ + cosφ cosψ sin θ sinψ

cosφ sin θ sinφ sin θ cos θ

)
.

(14.1.13)

If the polycrystalline aggregate is subjected to uniform rate of deformation

D∞, the components of this tensor on the local crystal axes of an arbitrarily

oriented grain are the components of the matrix Q · D∞ · QT . This in

general has five independent components, and at least five independent slip

systems must be active in the crystal to satisfy equations (14.1.1)–(14.1.6).

Taylor assumed that only five systems will actually activate. As already

discussed, there are 384 independent combinations of five slip rates that can

produce a local rate of deformation with five independent components on the

local crystal axes. Taylor (1938a,b) suggested, and Bishop and Hill (1951a)

proved, that of all possible combinations of the slip rates, the actual one is

characterized by the least sum of the absolute values of the slip rates. This

was discussed in Section 12.7. From Eqs. (13.19.7) and (13.19.9), we can

write

{σ : D} = {min
∑
α

ταcr |γ̇α| } , (14.1.14)

where { } denotes the orientation average. Assuming that the hardening of

slip systems is isotropic, ταcr = τcr for all slip systems within a grain, and

since D is assumed to be equal to D∞ in every grain, Eq. (14.1.14) becomes

{σ} : D∞ = { τcr min
∑
α

|γ̇α| } . (14.1.15)

The average critical resolved shear stress τ̄cr of the aggregate can be defined

by requiring that

{ τcr min
∑
α

|γ̇α| } = τ̄cr {min
∑
α

|γ̇α| } , (14.1.16)

so that

{σ} : D∞ = τ̄cr {min
∑
α

|γ̇α| } . (14.1.17)

If the macroscopic logarithmic strain in the direction of applied uniaxial

tension σ is e (the lateral strain components of macroscopically isotropic

specimen being equal to −e/2), the rate of work is

σ ė = τ̄cr {min
∑
α

|γ̇α| } . (14.1.18)
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Figure 14.2. Standard [001] stereographic projection of
cubic crystals. The 24 triangles represent regions in which
a particular slip system operates. For f.c.c. crystals the
letters a, b, c, d represent the four slip planes {111}, and the
numbers (indices) 1, 2, 3 designate the three slip directions
〈110〉 (with attached bar, the number designates the op-
posite slip system). For b.c.c. crystals the letters represent
the four slip directions 〈111〉, and the numbers designate the
three {110} planes which contain each slip direction (from
Havner, 1982; with permission from Elsevier Science).

The ratio

m =
σ

τ̄cr
=

{min
∑

α |dγα| }
de

(14.1.19)

is known as the Taylor orientation factor. Taylor (1938a) chose 44 initial

orientations distributed uniformly over the spherical triangle [101][100][111̄]

within a standard [001] stereographic projection (d3̄ in Fig. 14.2). The cal-

culated value of m was m = 3.10. More accurate calculations of Bishop
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Figure 14.3. Single-crystal stress-strain curve τ = f(γ)
and Taylor’s prediction of the stress-stretch curve σ = σ(λ)
for the polycrystalline aggregate (from Taylor, 1938b; with
permission from the Institute for Materials).

and Hill (1951b), accounting for all 384 geometrically admissible sets of five

independent slip rates, resulted in an improved value of m = 3.06.

The polycrystalline stress-strain curve σ = σ(e) can be deduced from

Eq. (14.1.19) as

σ = m τ̄cr = mf(γ̄) = mf

(∫
mde

)
, (14.1.20)

where

γ̄ =
∫

{min
∑
α

|dγα| } =
∫

mde . (14.1.21)

Here, it is assumed that the function f , relating τ̄cr and γ̄, is the same

function that relates the shear stress and shear strain in a monocrystal under

single slip, τ = f(γ). For aluminum crystals investigated by Taylor, this

function was found to be nearly parabolic (∼ γ1/2).

It is noted that the Taylor factor m depends on the strain level, because

lattice rotations change the orientation of slip systems within grains relative

to the specimen axes. The tensile stress-strain curve shown in Fig. 14.3

was obtained by Taylor using the constant value of m. Single crystal and

polycrystalline data from uniaxial stress experiments can be found in Bell

(1968).
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14.1.2. Stresses in Grain

It is of interest to analyze the state of stress in an individual grain. Particu-

larly important is to analyze whether there is a stress state, associated with a

geometrically admissible set of slip rates, that is also physically admissible.

For the physically admissible set, the resolved shear stress along inactive

slip directions does not exceed the critical shear stress there. This problem

was studied by Bishop and Hill (1951b). If the components of the uniform

stress in the grain are σij , relative to the local cubic axes, the resolved shear

stresses (multiplied by
√

6) in the twelve f.c.c. slip systems are
√

6 τa1 = −σ22 + σ33 + σ31 − σ12,
√

6 τa2 = −σ33 + σ11 − σ23 + σ12,

√
6 τa3 = −σ11 + σ22 + σ23 − σ31, (14.1.23)

√
6 τb1 = −σ22 + σ33 − σ31 − σ12,

√
6 τb2 = −σ33 + σ11 + σ23 + σ12,

√
6 τb3 = −σ11 + σ22 − σ23 + σ31, (14.1.25)

√
6 τc1 = −σ22 + σ33 − σ31 + σ12,

√
6 τc2 = −σ33 + σ11 − σ23 − σ12,

√
6 τc3 = −σ11 + σ22 + σ23 + σ31, (14.1.27)

√
6 τd1 = −σ22 + σ33 + σ31 + σ12,

√
6 τd2 = −σ33 + σ11 + σ23 − σ12,

√
6 τd3 = −σ11 + σ22 − σ23 − σ31. (14.1.29)

The 12 × 6 matrix of the coefficients in these relations, between the 12

resolved shear stresses and 6 stress components, is the transpose of the 6×12

matrix of the coefficients relating the rate of deformation components to the

slip rates in Eqs. (14.1.1)–(14.1.6). From the set of 12 equations (14.1.23)–

(14.1.29) we can always find a stress state (apart from pressure) for which

the resolved shear stress attains the critical value in five independent slip

directions. The critical stress would usually be exceeded in one or more of the

other seven slip directions. However, for any prescribed rate of deformation

D, it is always possible to find at least one set of five slip rates, geometrically
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equivalent to D, for which there exist a physically admissible stress state

that does not violate the yield condition on other seven slip systems. Bishop

(1953) actually proved that, for a given D, a stress state determined by

minimizing the rate of work ẇ = σ : D will not exceed the critical shear

stress in any other slip system. It is recalled that the work on physically

operating slip rates is less than the work done on the slip rates that are only

geometrically possible; see (12.19.8).

For example, a tension or compression of amount
√

6 τcr along a cubic

axis is a stress state on an eightfold vertex of a polyhedral yield surface of

the single crystal, since the substitution of σ11 = σ22 = σ12 = σ23 = σ31 = 0

and σ33 =
√

6 τcr into Eqs. (14.1.23)–(14.1.29) gives

τa1 = −τa2 = τb1 = −τb2 = τc1 = −τc2 = τd1 = −τd2 = τcr , (14.1.30)

and

τa3 = τb3 = τc3 = τd3 = 0. (14.1.31)

Differential hardening is assumed to be absent, so that all slip systems harden

equally (τcr equal on all slip systems). The microscopic Bauschinger effect

is assumed to be absent, as well, so that the critical shear stress is equal

in opposite senses along the same slip direction. A tension or compression

of amount
√

6 τcr normal to an octahedral plane is a physically admissible

stress state, too, being on a sixthfold vertex of the monocrystalline yield

surface. Indeed, the substitution of σ11 = σ22 = σ33 = 0 and σ12 = σ23 =

σ31 =
√

6 τcr/2 into Eqs. (14.1.23)–(14.1.29) gives

τb2 = −τb1 = τc3 = −τc2 = τd1 = −τd3 = τcr , (14.1.32)

and

τa1 = τa2 = τa3 = τb3 = τc1 = τd2 = 0. (14.1.33)

The stresses in grains, associated with the assumption of equal deforma-

tion D∞ in all grains, will not be in equilibrium across the grain boundaries.

Denote this stress by σ̂c. Let σc be the actual stress in the grain of a poly-

crystalline aggregate, corresponding to the actual rate of deformation Dc

that takes place in the grain. The fields σc and Dc are the true equilib-

rium and compatible fields of the polycrystalline aggregate. The orientation

average

{σc} = σ∞ (14.1.34)
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is the macroscopically uniform stress applied to the aggregate, and the av-

erage

{Dc} = D∞ (14.1.35)

is the corresponding macroscopically uniform (average) deformation rate in

the aggregate. Since σ̂c is the stress state on the current yield surface of

the grain, at which D∞ would occur in the grain, from the maximum work

principle (12.19.14) we can write

(σ̂c − σc) : D∞ ≥ 0. (14.1.36)

This holds because the stress σc does not violate the current yield condition

for the grain, being the stress state at which the actual Dc takes place. Thus,

upon averaging of (14.1.36), we obtain

{σ̂c} : D∞ ≥ σ∞ : D∞. (14.1.37)

This means that the actual rate of work done on a polycrystalline aggregate

is not greater that the rate of work that would be done if all grains under-

went the same (macroscopic) rate of deformation. Bishop and Hill (1951b)

argued that the two rates of work are in fact nearly equal, and suggested an

approximation

{σ̂c} : D∞ ≈ σ∞ : D∞. (14.1.38)

14.1.3. Calculation of Polycrystalline Yield Surface

The objective is now to calculate the polycrystalline yield surface in terms of

the single crystal properties. First, since a superposed uniform hydrostatic

stress throughout the aggregate does not affect the resolved shear stress on

any slip system, and since slip is assumed to be governed by a pressure-

independent Schmid law, the polycrystalline yield surface does not depend

on the hydrostatic part of the applied stress. The surface is cylindrical, with

its generator parallel to the hydrostatic stress axis. If there is no microscopic

Bauschinger effect, the critical shear stress does not depend on the sense of

slip along the slip direction, which implies that the polycrystalline yield

surface is symmetric about the origin. Thus, if σ∞ produces yielding of the

aggregate, so does −σ∞. When the aggregate is macroscopically isotropic,

the corresponding yield surface possesses a sixfold symmetry in the deviatoric

π plane of the principal stress space (e.g., Hill, 1950).
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Bishop and Hill (1951a) showed that, in the absence of the Bauschinger

effect, the yield locus certainly lies between the two cylindrical surfaces. The

inner locus is associated with the assumption that the stress state is uniform

in all grains, but the displacement continuity is violated. The outer locus

corresponds to deformation being considered uniform, and the equilibrium

across the grain boundaries violated. Bishop and Hill (1951b) subsequently

introduced the following approximate method of calculating the shape of

the yield surface. Equation (14.1.38) implies that the end point of the stress

state {σ̂c} lies on or very near the hyperplane in the macroscopic stress space

that is orthogonal to D∞ and tangent to the aggregate yield surface at the

point σ∞. The perpendicular distance from the stress origin to the yield

hyperplane Σ, associated with D∞, is

hΣ =
σ∞ : D∞

(D∞ : D∞)1/2
≈ {σ̂c} : D∞

(D∞ : D∞)1/2
. (14.1.39)

The polycrystalline yield surface is then the envelope of all planes Σ for the

complete range of the directions D∞.

Rather than by a lengthy calculation of σ̂c in each grain, correspond-

ing to a prescribed D∞, and the averaging procedure to find hΣ, it is more

convenient to use the maximum plastic work principle, i.e., to calculate the

works done on D∞ by the stress states that do not violate the crystalline

yield conditions, and select from these the greatest. Bishop and Hill (1951

b) established that for an isotropic aggregate, in which all slip directions in

every grain harden equally, it is only necessary to investigate 56 particular

stress states, corresponding to the vertices of the polyhedral crystalline yield

surface. Thirty-two of them correspond to a sixfold vertex (resolved shear

stress attains the critical value in six different slip systems), and twenty-four

stress states correspond to an eightfold vertex. These stress states can be

recognized from Eqs. (14.1.23)–(14.1.29). In addition to the two types of

stress state mentioned in the previous subsection, three more types of the

stress states are: pure shear of amount
√

6 τcr in a cubic plane parallel to a

cubic axis; pure shear of amount
√

3 τcr in a cubic plane and at π/8 to the cu-

bic axes; and the stress state with the principal stresses ±√
6 τcr (1, 0,−1/2),

in which the zero principal stress is normal to an octahedral plane, and a√
6 τcr/2 principal stress is along a slip direction in that plane.
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Figure 14.4. Polycrystalline yield loci for f.c.c. metals
according to Bishop and Hill’s theory, Tresca, and von Mises
criteria. Indicated also are experimental data for aluminum
and copper (from Bishop and Hill, 1951b; with permission
from Taylor & Francis Ltd).

Because of the sixfold symmetry of the polycrystalline yield surface, only

macroscopic rates of deformation D∞ whose principal values are in the range

(1,−r, r − 1)D∞
1 ,

1
2
≤ r ≤ 1 (14.1.40)

need to be considered. The axis of the major rate of deformation is then

restricted to one of the 48 identical spherical triangles in the standard stere-

ographic projection, while other axes can rotate through half a revolution

about the major axis. In calculations, Bishop and Hill took 5◦ intervals in

θ and φ, and 18◦ intervals in ψ (these are the Euler angles of the principal

axes relative to the cubic local axes). With an error estimated to be not
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more than one unit in the second decimal place, they obtained

hΣ

τcr
=

√
2
3
× 3.06 = 2.50 (14.1.41)

for an axisymmetric uniaxial tension (r = 1/2), and

hΣ

τcr
=

√
2
3
× 2.86 = 2.34 (14.1.42)

for pure shear (r = 1). Thus, the ratio of the yield stress in shear to that

in tension is 2.86/(
√

3 × 3.06) = 0.54, compared with 0.5 for the Tresca,

and 0.577 for the von Mises criterion. A representative 60◦ sector of the

calculated yield locus in the π plane is shown in Fig. 14.4. Also shown

are the experimental data of Taylor and Quinney (1931), as well as the

von Mises and Tresca yield loci. The calculated theoretical yield locus lies

between the Tresca and von Mises loci. Since the value of hΣ was obtained

from the approximation given by the far right-hand side of (14.1.39), and

since (14.1.37) actually holds, the calculated yield surface is an upper bound

to the true yield surface. See, also, Hill (1967), Havner (1971), and Kocks

(1970,1987). The development of the vertex at the loading point of the

polycrystalline yield surface is discussed in Subsection 14.8.2, and the effects

of the texture in Section 14.9.

14.2. Eshelby’s Inclusion Problem of Linear Elasticity

An improved model of polycrystalline response can be constructed in which

the interaction among grains is approximately taken into account by con-

sidering a grain to be embedded in the matrix with the overall aggregate

properties, to be determined by the analysis. In this self-consistent method,

discussed in detail in the subsequent sections, a prominent role plays the

Eshelby inclusion problem. When an infinite elastic medium of the stiffness

LLL, containing an ellipsoidal elastic inhomogeneity of the stiffness LLLc, is sub-

jected to the far field uniform state of stress σ∞, the state of stress σc within

the inhomogeneity is also uniform. This result was first obtained by Eshelby

(1957, 1961), who derived it from the consideration of an auxiliary inclusion

problem. Some aspects of that analysis are briefly reviewed in this section.
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Figure 14.5. Schematics of Eshelby’s inclusion problem.
An ellipsoidal region, removed from an unstressed infinite
medium, is subjected to an infinitesimal uniform eigenstrain
ε0 and inserted back into the medium. The state of strain
in the inclusion after insertion is uniform and given by ε∗ =
SSS : ε0, where SSS is the Eshelby tensor.

14.2.1. Inclusion Problem

An ellipsoidal region of an unstressed infinitely extended homogeneous elas-

tic medium is imagined to be removed from the medium and subjected to

an infinitesimal uniform transformation strain (eigenstrain) ε0 (Fig. 14.5).

When inserted back into the matrix material, the inclusion attains the strain

ε∗ = SSS : ε0. (14.2.1)

Eshelby (1957) has shown that the in situ strain ε∗ is also uniform, by

demonstrating that the components of the fourth-order nondimensional ten-

sor SSS are functions of the elastic moduli ratios and the aspect ratios of the

ellipsoid only. An arbitrary state of elastic anisotropy was assumed. The Es-

helby tensor SSS is obviously symmetric with respect to the interchange of the

leading pair of indices, and also of the terminal pair (Sijkl = Sjikl = Sijlk),

but does not in general possess a reciprocal symmetry (Sijkl 
= Sklij). Fur-

thermore, since ε0 vanishes with SSS : ε0, the tensor SSS has its inverse SSS−1.

The rotation within the ellipsoidal inclusion is also uniform, and related to

the prescribed eigenstrain by

ω∗ = Π : ε0, (14.2.2)

where Π is an appropriate fourth-order tensor (Eshelby, op. cit.). In the case

of spherical inclusion, ω∗ = 0.

��

��

�

© 2002 by CRC Press LLC 



If the material is isotropic, the components of SSS depend only on the

Poisson ratio ν and the aspect ratios of the ellipsoid. Explicit formulae for

Sijkl, on the ellipsoidal axes, can be found in Eshelby’s paper. In the case

of spherical inclusion, SSS is an isotropic tensor,

SSS = αJJJ + βKKK , (14.2.3)

where

β =
1 + ν

3(1 − ν)
, 5α + β = 3, (14.2.4)

and

Kijkl =
1
3
δijδkl, Jijkl = Iijkl − Kijkl. (14.2.5)

The components of the fourth-order unit tensor are Iijkl = (δikδjl+δilδjk)/2.

Eshelby’s tensor for anisotropic materials can be found in Mura’s (1987)

book, which contains the references to other related work. See, also, Willis

(1964).

The state of stress within the inclusion is uniform and given by

σ∗ = LLL : (ε∗ − ε0) = LLL : (SSS − III ) : ε0. (14.2.6)

It is convenient to introduce the stress tensor σ0 that would be required to

remove the eigenstrain ε0. This is

σ0 = −LLL : ε0, (14.2.7)

so that

σ∗ = LLL : ε∗ + σ0. (14.2.8)

The conjugate Eshelby tensor TTT is defined by

σ∗ = TTT : σ0. (14.2.9)

The relationship between SSS and TTT can be deduced from Eqs. (14.2.6) and

(14.2.9), i.e.,

LLL : (SSS − III ) : ε0 = −TTT : LLL : ε0. (14.2.10)

Since ε0 is an arbitrary uniform strain, this gives

LLL : (III − SSS ) = TTT : LLL, (III −TTT ) : LLL = LLL : SSS . (14.2.11)

An alternative derivation proceeds from

ε∗ = MMM : (σ∗ − σ0) = MMM : (TTT − III ) : σ0, (14.2.12)

© 2002 by CRC Press LLC 



where

ε0 = −MMM : σ0, MMM = LLL−1. (14.2.13)

Thus

MMM : (TTT − III ) : σ0 = −SSS : MMM : σ0. (14.2.14)

Since σ0 is an arbitrary uniform stress, there follows

MMM : (III −TTT ) = SSS : MMM, (III − SSS ) : MMM = MMM : TTT . (14.2.15)

If a far-field uniform state of stress σ∞ = LLL : ε∞ is superposed to the

matrix material, with an inserted inclusion, the states of stress and strain

within the inclusion are, by superposition,

σi = σ∗ + σ∞, εi = ε∗ + ε∞. (14.2.16)

The inclusion stress and strain are related by

σi = LLL : (εi − ε0), εi = MMM : (σi − σ0), (14.2.17)

which follows from Eqs. (14.2.6) and (14.2.16). The states of stress and

strain in the surrounding matrix are nonuniform and related by σm = LLL : εm.

At infinity, σm becomes σ∞, and εm becomes ε∞.

14.2.2. Inhomogeneity Problem

Consider next an ellipsoidal inhomogeneity with elastic moduli LLLc, sur-

rounded by an unstressed infinite medium with elastic moduli LLL. When

subjected to the far field uniform state of stress and strain,

σ∞ = LLL : ε∞, (14.2.18)

the stress and strain in the inhomogeneity are also uniform and related by

σc = LLLc : εc. (14.2.19)

Eshelby has shown that σc and εc can be calculated from the previously

solved inclusion problem by specifying the inclusion eigenstrain ε0 such that

σc = σi and εc = εi . (14.2.20)

The eigenstrain needed for this homogenization obeys, from Eqs. (14.2.17)

and (14.2.19),

LLLc : εc = LLL : (εc − ε0). (14.2.21)
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In view of

εc = ε∞ + ε∗ = ε∞ + SSS : ε0, (14.2.22)

the homogenization condition (14.2.21) becomes

(LLL −LLLc) : ε∞ = [LLL − (LLL −LLLc) : SSS ] : ε0. (14.2.23)

This specifies the homogenization eigenstrain,

ε0 = [LLL − (LLL −LLLc) : SSS ]−1 : (LLL −LLLc) : ε∞, (14.2.24)

in terms of the known LLL, LLLc, SSS , and ε∞. Substituting Eq. (14.2.24) into

Eq. (14.2.21), the strain in the inhomogeneity can be expressed as

εc = AAAc : ε∞, (14.2.25)

where AAAc is the concentration tensor

AAAc = III + SSS : [LLL − (LLL −LLLc) : SSS ]−1 : (LLL −LLLc). (14.2.26)

Note also that

σc = LLL : εc + σ0, (14.2.27)

which can be compared with Eq. (14.2.7).

In a dual analysis, in place of Eq. (14.2.19), we have

εc = MMMc : σc. (14.2.28)

To find the homogenization stress σ0, in order that εc = εi and σc = σi, we

require that

MMMc : σc = MMM : (σc − σ0). (14.2.29)

Since

σc = σ∞ + σ∗ = σ∞ + TTT : σ0, (14.2.30)

there follows

σ0 = [MMM− (MMM−MMMc) : TTT ]−1 : (MMM−MMMc) : σ∞. (14.2.31)

Thus, the stress in the inhomogeneity can be expressed as

σc = BBBc : σ∞, (14.2.32)

where BBBc is a dual-concentration tensor

BBBc = III + TTT : [MMM− (MMM−MMMc) : TTT ]−1 : (MMM−MMMc). (14.2.33)

We interpret ε∗ and σ∗ in

εc = ε∞ + ε∗, σc = σ∞ + σ∗ (14.2.34)
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as the deviations of the strain and stress within the inhomogeneity from the

applied remote fields, due to different elastic properties of the inhomogeneity

and the surrounding matrix. Clearly, if LLLc = LLL, then AAAc = BBBc = III , i.e.,

εc = ε∞ and σc = σ∞.

The relationship between the concentration tensors AAAc and BBBc can be

derived by either substituting Eqs. (14.2.25) and (14.2.32) into σc = LLLc : εc,

which gives

BBBc : LLL = LLLc : AAAc, (14.2.35)

or by substituting Eqs. (14.2.25) and (14.2.32) into εc = MMMc : σc, which

gives

AAAc : MMM = MMMc : BBBc. (14.2.36)

14.3. Inclusion Problem for Incrementally Linear Material

Consider an ellipsoidal grain (crystal) embedded in an infinite medium of a

different (or differently oriented) material. Both materials are assumed to be

incrementally linear, with fully symmetric tensors of instantaneous moduli

LLLc and LLL. Superscript c stands for the crystalline grain. The instantaneous

moduli relate the convected rate of the Kirchhoff stress and the rate of

deformation tensor, such that
�
τ = LLL : D. (14.3.1)

Here,
�
τ =

�
σ + σ trD is the rate of Kirchhoff stress with the current con-

figuration as the reference. The instantaneous moduli tensor LLL was denoted

by LLL(1) in earlier chapters, but for simplicity we omit in this chapter the

underline symbol and the suffix (1). The same remark applies to LLLc.

In the absence of body forces, the equations of continuing equilibrium

require that the rate of nominal stress is divergence-free (see Section 3.11),

i.e.,

∇ · Ṗ = ∇ ·
(

�
τ + σ · LT

)
= 0. (14.3.2)

The existing state of the Cauchy stress σ is in equilibrium, so that

∇ · σ = 0. (14.3.3)

The term ∇ · (σ ·LT ) in Eq. (14.3.2) would thus vanish identically in a field

of uniform velocity gradient L. In a nonuniform field of L, the term will
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be disregarded presuming that the components of σ are small fractions of

dominant instantaneous moduli, and that the spin components are not large

compared to the rate of deformation components (Hill, 1965a). Thus, we

take approximately

∇ · �τ = 0, (14.3.4)

and for a prescribed D at infinity, the problem is analogous to Eshelby’s

problem of linear elasticity, considered in Section 14.2.

The rate of stress and strain are uniform within the ellipsoidal grain,

and can be expressed as
�
τ c =

�
τ ∞ +

�
τ∗, Dc = D∞ + D∗, (14.3.5)

with the connections
�
τ c = LLLc : Dc,

�
τ ∞ = LLL : D∞. (14.3.6)

Deviation from the far-field uniform rates
�
τ ∞ and D∞ are denoted by

�
τ∗

and D∗. Note that during the deformation process an ellipsoidal crystal

remains ellipsoidal, under the uniform deformation.

We retain the convected rate of stress in Eqs. (14.3.4)–(14.3.6) to pre-

serve the objective structure of the rate-type constitutive relations. Also,

the convected rate
�
τ c has a property that its average over a representative

macroelement is an appropriate macrovariable in the constitutive analysis

of the micro-to-macro transition, discussed in Section 13.4. In a truly infin-

itesimal formulation, we would simply proceed with the rates of the Cauchy

stress σ̇c and σ̇∞.

Hill (1965a) introduced a constrained tensor LLL∗ of the material sur-

rounding the grain, such that
�
τ∗ = −LLL∗ : D∗. (14.3.7)

It will be shown in the sequel that LLL∗ depends only on LLL and the aspect

ratios of the ellipsoid, but not on LLLc. By substituting Eqs. (14.3.5) and

(14.3.6) into Eq. (14.3.7), we obtain

LLLc : Dc −LLL : D∞ = −LLL∗ : (Dc − D∞), (14.3.8)

i.e.,

(LLLc +LLL∗) : Dc = (LLL +LLL∗) : D∞. (14.3.9)
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Thus,

Dc = AAAc : D∞, (14.3.10)

where the concentration tensor AAAc is

AAAc = (LLLc +LLL∗)−1 : (LLL +LLL∗). (14.3.11)

To determine a constraint tensor LLL∗, we make use of Eshelby’s inclusion

problem and write, in analogy with Eq. (14.2.6),
�
τ∗ = LLL : (D∗ − D0) = LLL : (SSS − III ) : D0. (14.3.12)

The homogenization rate of deformation is D0, and

D∗ = SSS : D0. (14.3.13)

The tensor SSS here depends on the instantaneous moduli ratios and the cur-

rent aspect ratios of the deformed ellipsoid. In addition, from the Eshelby’s

inclusion problem we can express the spin tensor as W∗ = Π : D0. Com-

paring Eq. (14.3.12) with
�
τ∗ = −LLL∗ : D∗ = −LLL∗ : SSS : D0, (14.3.14)

gives

LLL∗ : SSS = LLL : (III − SSS ), (14.3.15)

or

LLL∗ = LLL : (SSS−1 − III ). (14.3.16)

If Eq. (14.3.15) is compared with Eq. (14.2.11), there follows

LLL∗ : SSS = TTT : LLL. (14.3.17)

Furthermore, from Eq. (14.3.15) we can write

SSS = (LLL +LLL∗)−1 : LLL, SSS−1 = III +MMM : LLL∗. (14.3.18)

Alternatively, by taking a trace product of

D∗ = MMM :
�
τ∗ + D0 (14.3.19)

with Eshelby’s tensor SSS gives

(SSS − III ) : D∗ = SSS : MMM :
�
τ∗. (14.3.20)

The tensor of the instantaneous elastic compliances is MMM = LLL−1. Since

D∗ = −MMM∗ :
�
τ∗, MMM∗ = LLL−1

∗ , (14.3.21)
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we obtain

(III − SSS ) : MMM∗ = SSS : MMM, (14.3.22)

and

SSS = MMM∗ : (MMM +MMM∗)−1. (14.3.23)

The inverse of this is clearly in accord with Eq. (14.3.18).

14.3.1. Dual Formulation

In a dual approach, we use Eq. (14.3.21) and

Dc = MMMc :
�
τ c, D∞ = MMM :

�
τ ∞, (14.3.24)

where MMMc = LLL−1
c is the crystalline instantaneous compliances tensor, to

obtain

(MMMc +MMM∗) :
�
τ c = (MMM +MMM∗) :

�
τ ∞. (14.3.25)

Consequently
�
τ c = BBBc :

�
τ ∞. (14.3.26)

A dual-concentration tensor BBBc is

BBBc = (MMMc +MMM∗)−1 : (MMM +MMM∗). (14.3.27)

To determine a constraint tensor MMM∗ in terms of MMM and the conjugate

Eshelby tensor TTT , we write, in analogy with Eq. (14.2.12),

D∗ = MMM : (
�
τ∗ −

�
τ0) = MMM : (TTT − III ) :

�
τ0. (14.3.28)

The homogenization rate of stress is
�
τ0 = −LLL : D0, (14.3.29)

and
�
τ∗ = TTT :

�
τ0. (14.3.30)

Note that L0 = D0, since W0 = 0, because only the rate of eigenstrain

D0 gives rise to in situ stress and strain rates in the inclusion problem.

Comparing Eq. (14.3.28) with

D∗ = −MMM∗ :
�
τ∗ = −MMM∗ : TTT :

�
τ0, (14.3.31)

gives

MMM∗ : TTT = MMM : (III −TTT ), (14.3.32)
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or

MMM∗ = MMM : (TTT−1 − III ). (14.3.33)

If Eq. (14.3.32) is compared with Eq. (14.2.15), there follows

MMM∗ : TTT = SSS : MMM. (14.3.34)

In addition, from Eq. (14.3.32) we can write

TTT = (MMM +MMM∗)−1 : MMM, TTT−1 = III +LLL : MMM∗. (14.3.35)

Alternatively, by taking a trace product of
�
τ∗ = LLL : D∗ +

�
τ0 (14.3.36)

with the conjugate Eshelby tensor TTT gives

(TTT − III ) :
�
τ∗ = TTT : LLL : D∗. (14.3.37)

Having in mind Eq. (14.3.7), we arrive at

(III −TTT ) : LLL∗ = TTT : LLL, (14.3.38)

and

TTT = LLL∗ : (LLL +LLL∗)−1. (14.3.39)

The inverse of this is clearly in accord with Eq. (14.3.35).

14.3.2. Analysis of Concentration Tensors

It is first observed from Eqs. (14.3.18) and (14.3.39) that

SSS : MMM = MMM∗ : TTT = (LLL +LLL∗)−1 = PPP , (14.3.40)

while, from Eqs. (14.3.23) and (14.3.35),

TTT : LLL = LLL∗ : SSS = (MMM +MMM∗)−1 = QQQ . (14.3.41)

For convenience, the products that appear in Eqs. (14.3.40) and (14.3.41)

are denoted by PPP and QQQ (Hill, 1965a). Evidently, since the instantaneous

moduli and compliances possess the reciprocal symmetry, the tensors PPP and

QQQ share the same symmetry, i.e.,

PPPT = PPP , QQQT = QQQ . (14.3.42)

In view of Eqs. (14.2.11) and (14.2.15), we can write

PPP = MMM : (III −TTT ), QQQ = LLL : (III − SSS ). (14.3.43)
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Furthermore, from Eqs. (14.3.18) and (14.3.35),

SSS = PPP : LLL, TTT = QQQ : MMM. (14.3.44)

A trace product of the second equation in (14.3.43) with MMM from the left

provides a connection between PPP and QQQ ,

PPP : LLL +MMM : QQQ = III . (14.3.45)

The concentration tensor AAAc can be expressed in terms of PPP as

AAAc = (LLLc +LLL∗)−1 : PPP−1, (14.3.46)

which gives, by inversion,

AAA−1
c = PPP : (LLLc +LLL∗). (14.3.47)

Since

PPP : LLL∗ = PPP : (LLL +LLL∗ −LLL) = III −PPP : LLL, (14.3.48)

Equation (14.3.47) can be rewritten as

AAA−1
c = III + PPP : (LLLc −LLL). (14.3.49)

Similarly, the concentration tensor BBBc can be expressed in terms of QQQ

as

BBBc = (MMMc +MMM∗)−1 : QQQ−1. (14.3.50)

Upon inversion, this gives

BBB−1
c = QQQ : (MMMc +MMM∗). (14.3.51)

Recalling that

QQQ : MMM∗ = QQQ : (MMM +MMM∗ −MMM) = III −QQQ : MMM, (14.3.52)

Equation (14.3.51) can be recast as

BBB−1
c = III + QQQ : (MMMc −MMM). (14.3.53)

In addition, we recall from Section 14.2 that

BBBc : LLL = LLLc : AAAc, AAAc : MMM = MMMc : BBBc. (14.3.54)
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14.3.3. Finite Deformation Formulation

To circumvent the approximation made in equilibrium equations (14.3.2),

where the term ∇ · (σ ·LT ) was neglected, based on an assumption that the

stress components are small compared to dominant instantaneous moduli,

we can consider an ellipsoidal grain in an infinitely extended matrix under

the far-field uniform velocity gradient L∞, and the corresponding rate of

nominal stress

Ṗ∞ = Λ · ·L∞. (14.3.55)

The tensor of the instantaneous pseudomoduli for the matrix surrounding the

crystalline grain is Λ (designated by Λ in earlier chapters). The underline

below Ṗ is kept to indicate that the current configuration is taken for the

reference. The problem was studied by Iwakuma and Nemat-Nasser (1984).

As expected on physical grounds, the velocity gradient in the crystal must

be uniform. Introducing the concentration tensor AAA0
c , we write

Lc = AAA0
c · ·L∞. (14.3.56)

The velocity gradient Lc can be represented as the sum of L∞ and the devia-

tion L∗, caused by different pseudomoduli of the crystal and the surrounding

medium. Thus,

Lc = L∞ + L∗ Ṗc = Ṗ∞ + Ṗ∗, (14.3.57)

where

Ṗc = Λc · ·Lc. (14.3.58)

Introducing a constraint tensor Λ∗ of the outer phase by

Ṗ∗ = −Λ∗ · ·L∗, (14.3.59)

upon the substitution of (14.3.57) into (14.3.59), there follows

Ṗc − Ṗ∞ = −Λ∗ · · (Lc − L∞), (14.3.60)

i.e.,

(Λc + Λ∗) · ·Lc = (Λ + Λ∗) · ·L∞. (14.3.61)

This defines the concentration tensor

AAA0
c = (Λc + Λ∗)−1 · · (Λ + Λ∗). (14.3.62)
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Dually, we can start from

L∗ = −M∗ · · Ṗ∗, M∗ = Λ−1
∗ , (14.3.63)

to obtain

Lc − L∞ = −M∗ · · (Ṗc − Ṗ∞), (14.3.64)

and

(Mc + M∗) · · Ṗc = (M + M∗) · · Ṗ∞. (14.3.65)

This defines a dual-concentration tensor

BBB0
c = (Mc + M∗)−1 · · (M + M∗), (14.3.66)

such that

Ṗc = BBB0
c · · Ṗ∞. (14.3.67)

The connections between the two concentration tensors are easily estab-

lished. They are

BBB0
c : Λ = Λc · ·AAA0

c , AAA0
c : M = Mc · ·BBB0

c , (14.3.68)

in line with Eqs. (14.2.35) and (14.2.36).

The analysis can be extended further by introducing the Eshelby-type

tensor HHH , and its conjugate tensor GGG , which appear in the linear relationships

L∗ = HHH : L0, Ṗ∗ = GGG · · Ṗ0. (14.3.69)

Here, L0 is the eigenvelocity gradient in an Eshelby-type inclusion problem,

cast with respect to L and Ṗ measures, while Ṗ0 = −Λ : L0. These are such

that

Ṗ∗ = Λ · · (L∗ − L0), L∗ = M · · (Ṗ∗ − Ṗ0). (14.3.70)

It follows

Λ · · (III −HHH ) = GGG · ·Λ , M · · (III −GGG) = HHH · ·M, (14.3.71)

and

Λ∗ · ·HHH = Λ · · (III −HHH ), (III −HHH ) · ·M∗ = HHH · ·M, (14.3.72)

M∗ · ·GGG = M · · (III −GGG), (III −GGG) · ·Λ∗ = GGG · ·Λ. (14.3.73)

Evidently, by comparing Eqs. (14.3.71)–(14.3.73), we deduce that

M∗ · ·GGG = HHH · ·M, GGG · ·Λ = Λ∗ · ·HHH . (14.3.74)
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Additional analysis can be found in the papers by Iwakuma and Nemat-

Nasser (1984), Lipinski and Berveiller (1989), and Nemat-Nasser (1999). A

construction of Green’s functions needed for the calculation of the general-

ized Eshelby’s tensor and the concentration tensors is there considered. The

problem was also studied in connection with a possible loss of stability of

the uniformly stressed homogeneous body at finite strain.

14.4. Self-Consistent Method

A self-consistent method was proposed in elasticity by Hershey (1954) and

Kröner (1958) to determine the average elastic polycrystalline constants in

terms of the single crystal constants. In this method, a single crystal is

considered to be embedded in an infinite medium with the average polycrys-

talline moduli (homogeneous equivalent medium). The strain in the crystal

is calculated in terms of the applied far-field strain by using the Eshelby

inhomogeneity problem. It is then postulated that the average strain, over

the relevant range of lattice orientations, is equal to the overall macroscopic

strain applied to the polycrystalline aggregate (Fig. 14.6). The same re-

sults are obtained if it is required that the average stress over the relevant

range of lattice orientations within crystalline grains is equal to the overall

macroscopic stress applied to the polycrystalline aggregate. The method is

in that respect self-consistent, thus the terminology. In contrast, the meth-

ods earlier suggested by Voigt (1889) and Reuss (1929), resulted in different

estimates of the elastic polycrystalline constants (see Budiansky, 1965; Hill,

1965b, and the Subsection 14.5.1 of this chapter).

We proceed here with the rate-type formulation of the self-consistent

method, following the presentation by Hill (1965a). Polycrystals are con-

sidered whose grains can be approximately treated as similar ellipsoids with

their corresponding axes aligned (or as variously sized spheres). The lattice

orientation, relative to the fixed frame of reference, may vary from grain to

grain, either randomly or in the specified manner. The tensors LLLc and MMMc

are the instantaneous moduli and compliances of a typical grain, and LLL and

MMM are the overall tensors for the polycrystal itself. The tensors LLL∗ and MMM∗,

as well as SSS and TTT , correspond to an ellipsoid or sphere representing the

average grain shape. The components of these tensors are constants, in the
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Figure 14.6. A micrograph of a polycrystalline sample of
annealed tungsten (by courtesy of Professor M. A. Meyers).

fixed frame of reference, while the components of LLLc and MMMc depend on the

local lattice orientation within the grain.

If the overall macroscopic rate of deformation D∞, applied to the poly-

crystalline aggregate, is taken to be the orientation average of the crystalline

rate of deformation Dc = AAAc : D∞, i.e.,

{Dc} = D∞, (14.4.1)

the orientation average of the concentration tensor AAAc is equal to the fourth-

order unit tensor,

{AAAc} = III , Iijkl =
1
2
(δikδjl + δilδjk). (14.4.2)

In view of Eqs. (14.2.26) and (14.3.49), this implies that

{III + SSS : [LLL − (LLL −LLLc) : SSS ]−1 : (LLL −LLLc)} = III , (14.4.3)

{[III + PPP : (LLLc −LLL)]−1} = III . (14.4.4)

In addition, since

Dc = MMMc :
�
τ c = MMMc : BBBc :

�
τ ∞, D∞ = MMM :

�
τ ∞, (14.4.5)
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the substitution into Eq. (14.4.1) gives

{MMMc : BBBc} = MMM. (14.4.6)

Dually, if the macroscopic rate of stress
�
τ ∞ is taken to be the orientation

average of the crystalline rate of stress
�
τ c = BBBc :

�
τ ∞, i.e.,

{�τ c} =
�
τ ∞, (14.4.7)

the orientation average of the concentration tensor BBBc is equal to the fourth-

order unit tensor,

{BBBc} = III . (14.4.8)

It is recalled from Section 13.4 that the macroscopic measure of the convected

rate of Kirchhoff stress, with the current configuration as the reference, is

indeed the volume (orientation) average of the local convected rate of the

Kirchhoff stress. In view of Eqs. (14.2.33) and (14.3.51), Eq. (14.4.8) implies

that

{III + TTT : [MMM− (MMM−MMMc) : TTT ]−1 : (MMM−MMMc)} = III , (14.4.9)

{[III + QQQ : (MMMc −MMM)]−1} = III . (14.4.10)

In addition, since
�
τ c = LLLc : Dc = LLLc : AAAc : D∞,

�
τ ∞ = LLL : D∞, (14.4.11)

the substitution into Eq. (14.4.7) gives

{LLLc : AAAc} = LLL. (14.4.12)

This parallels the previously derived expression (14.4.6).

The self-consistency of the two approaches is easily established from the

averaging of
�
τ∗ = −LLL∗ : D∗. This can be rewritten as

�
τ c − �

τ ∞ = −LLL∗ : (Dc − D∞), (14.4.13)

and thus

{�τ c} − �
τ ∞ = −LLL∗ : ({Dc} − D∞). (14.4.14)

Recall that the components of the constraint tensor LLL∗ are constants in the

fixed frame of reference. Since LLL∗ is nonsingular, we conclude from Eq.

(14.4.14) that

{�τ c} =
�
τ ∞ whenever {Dc} = D∞ , (14.4.15)
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and vice versa, which establishes the self-consistency of the method.

14.4.1. Polarization Tensors

The rate of stress in the grain can be expressed as
�
τ c =

�
τ ∞ +

�
τ∗ = LLL : D∞ −LLL∗ : (Dc − D∞). (14.4.16)

Following Kröner’s (1958) terminology, the polarization tensor is defined by�
τ c −LLL : Dc , (14.4.17)

so that
�
τ c −LLL : Dc = (LLL +LLL∗) : (D∞ − Dc). (14.4.18)

The orientation average of the polarization tensor vanishes by Eq. (14.4.1),

because LLL and LLL∗ are constant tensors. Thus,

{�τ c −LLL : Dc} = 0. (14.4.19)

The polarization tensor can also be expressed as
�
τ c −LLL : Dc = (LLLc −LLL) : Dc = (LLLc −LLL) : AAAc : D∞. (14.4.20)

The average of this vanishes for any applied D∞, i.e.,

{(LLLc −LLL) : AAAc} : D∞ = 0, (14.4.21)

so that

{ (LLLc −LLL) : AAAc} = 0. (14.4.22)

A condition of this type was employed by Eshelby (1961) to derive a cubic

equation for the effective elastic shear modulus of an isotropic polycrystalline

aggregate of cubic crystals. See also Hill (1965a).

Furthermore, from Eq. (14.3.49) we can write

AAA−1
c = [(LLLc −LLL)−1 + PPP ] : (LLLc −LLL), (14.4.23)

and

(LLLc −LLL) : AAAc = [(LLLc −LLL)−1 + PPP ]−1. (14.4.24)

Consequently, by averaging and by using Eq. (14.4.22), there follows

{[(LLLc −LLL)−1 + PPP ]−1} = 0. (14.4.25)

This condition was originally employed by Kröner (1958) in his derivation of

the cubic equation for the effective shear modulus of an isotropic polycrys-

talline aggregate of cubic crystals.
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A dual-polarization tensor is

Dc −MMM :
�
τ c = (MMM +MMM∗) : (

�
τ ∞ − �

τ c). (14.4.26)

The orientation average of this also vanishes, in view of Eq. (14.4.7) and

because MMM and MMM∗ are constant tensors. Thus,

{Dc −MMM :
�
τ c} = 0. (14.4.27)

On the other hand, a dual-polarization tensor can be expressed as

Dc −MMM :
�
τ c = (MMMc −MMM) :

�
τ c = (MMMc −MMM) : BBBc :

�
τ ∞. (14.4.28)

The average here vanishes for any applied overall rate of stress
�
τ ∞, i.e.,

{(MMMc −MMM) : BBBc} :
�
τ ∞ = 0, (14.4.29)

so that

{(MMMc −MMM) : BBBc} = 0. (14.4.30)

From Eq. (14.3.53) we further observe that

BBB−1
c = [(MMMc −MMM)−1 + QQQ ] : (MMMc −MMM), (14.4.31)

and

(MMMc −MMM) : BBBc = [(MMMc −MMM)−1 + QQQ ]−1. (14.4.32)

Thus, by taking the average and by using Eq. (14.4.30), there follows

{ [(MMMc −MMM)−1 + QQQ ]−1} = 0. (14.4.33)

14.4.2. Alternative Expressions for Polycrystalline Moduli

The effective polycrystalline moduli can be expressed alternatively, in terms

ofLLLc and the constraint tensorLLL∗, by taking the average of the concentration

tensor AAAc in Eq. (14.3.11), which is

{AAAc} = { (LLLc +LLL∗)−1} : (LLL +LLL∗) = III . (14.4.34)

Therefore,

(LLL +LLL∗)−1 = { (LLLc +LLL∗)−1}, (14.4.35)

or

LLL = { (LLLc +LLL∗)−1}−1 −LLL∗. (14.4.36)
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Dually, the effective polycrystalline compliances can be expressed in

terms of MMMc and the constraint tensor MMM∗ by taking the average of the

concentration tensor BBBc in Eq. (14.3.27), which is

{BBBc} = { (MMMc +MMM∗)−1} : (MMM +MMM∗) = III . (14.4.37)

Thus,

(MMM +MMM∗)−1 = { (MMMc +MMM∗)−1}. (14.4.38)

An equation of this type was used in the derivation of the effective polycrys-

talline compliances by Hershey (1954). It can be recast as

MMM = { (MMMc +MMM∗)−1}−1 −MMM∗. (14.4.39)

In applications, either of equations (14.4.2), (14.4.8), (14.4.22), (14.4.25),

(14.4.30), (14.4.33), (14.4.36), or (14.4.39) can be used to evaluate the overall

(effective) instantaneous moduli or compliances of an incrementally linear

polycrystalline aggregate.

14.4.3. Nonaligned Crystals

In the previous analysis it was assumed that the grains comprising a poly-

crystalline aggregate can be taken, on average, as spheres or aligned ellip-

soids. A self-consistent generalization to nonaligned ellipsoidal crystals was

suggested by Walpole (1969). In this generalization the local crystalline rate

of deformation Dc is related to the average polycrystalline rate D∞ by

Dc = AAAc : {AAAc}−1 : D∞. (14.4.40)

This automatically satisfies {Dc} = D∞. The constraint tensor LLL∗ depends

on the grain orientation. Thus, upon averaging of
�
τ c − �

τ ∞ = −LLL∗ : (Dc − D∞) = − (LLL∗ : AAAc : {AAAc}−1 −LLL∗
)

: D∞,
(14.4.41)

there follows

{�τ c} − �
τ ∞ = − ({LLL∗ : AAAc} : {AAAc}−1 − {LLL∗}

)
: D∞. (14.4.42)

In order that {�τ c} =
�
τ ∞ for any D∞, ensuring the self-consistency, it is

required that

{LLL∗ : AAAc} : {AAAc}−1 − {LLL∗} = 0, (14.4.43)

i.e.,

{LLL∗ : AAAc} = {LLL∗} : {AAAc}. (14.4.44)
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By substituting Eq. (14.4.40) into

{LLLc : Dc} = LLL : D∞, (14.4.45)

we obtain

{LLLc : AAAc} = LLL : {AAAc}. (14.4.46)

In a dual formulation, let the local and average stress rates be related

by
�
τ c = BBBc : {BBBc}−1 :

�
τ ∞, (14.4.47)

which automatically satisfies {�τ c} =
�
τ ∞. Upon averaging of

Dc − D∞ = −MMM∗ : (
�
τ c − �

τ ∞) = − (MMM∗ : BBBc : {BBBc}−1 −MMM∗
)

:
�
τ ∞,

(14.4.48)

there follows

{Dc} − D∞ = − ({MMM∗ : BBBc} : {BBBc}−1 − {MMM∗}
)

:
�
τ ∞. (14.4.49)

Thus, in order that {Dc} = D∞ for any
�
τ ∞, which ensures the self-

consistency, it is required that

{MMM∗ : BBBc} : {BBBc}−1 − {MMM∗} = 0, (14.4.50)

i.e.,

{MMM∗ : BBBc} = {MMM∗} : {BBBc}. (14.4.51)

In addition, the substitution of Eq. (14.4.47) into

{MMMc :
�
τ c} = MMM :

�
τ ∞, (14.4.52)

gives

{MMMc : BBBc} = MMM : {BBBc}. (14.4.53)

14.4.4. Polycrystalline Pseudomoduli

If the macroscopic velocity gradient L∞ is taken to be the orientation average

of the crystalline velocity gradients Lc = AAA0
c : L∞, i.e., if

{Lc} = L∞, (14.4.54)

the orientation average of the concentration tensor AAA0
c is equal to the fourth-

order unit tensor,

{AAA0
c} = III , Iijkl = δilδjk. (14.4.55)
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Since

Lc = Mc : Ṗc = Mc : BBB0
c : Ṗ∞, L∞ = M : Ṗ∞, (14.4.56)

the substitution into Eq. (14.4.54) gives

{Mc : BBB0
c} = M. (14.4.57)

On the other hand, if the macroscopic rate of nominal stress Ṗ∞ is

taken to be the orientation average of the crystalline rate of nominal stress

Ṗc = BBB0
c : Ṗ∞, i.e., if

{Ṗc} = Ṗ∞, (14.4.58)

the orientation average of the concentration tensor BBB0
c is equal to the fourth-

order unit tensor,

{BBB0
c} = III . (14.4.59)

Since

Ṗc = Λc : Lc = Λc : AAA0
c : L∞, Ṗ∞ = Λ : L∞, (14.4.60)

the substitution into Eq. (14.4.58) gives

{Λc : AAA0
c} = Λ. (14.4.61)

The rate of nominal stress in the grain can be expressed as

Ṗc = Ṗ∞ + Ṗ∗ = Λ : L∞ − Λ∗ : (Lc − L∞). (14.4.62)

The polarization-type tensor is defined by

Ṗc − Λ : Lc = (Λ + Λ∗) : (L∞ − Lc). (14.4.63)

The orientation average of this vanishes by Eq. (14.4.54), because Λ and Λ∗
are the constant tensors, so that

{Ṗc − Λ : Lc} = 0. (14.4.64)

The polarization tensor can also be expressed as

Ṗc − Λ : Lc = (Λc − Λ) : Lc = (Λc − Λ) : AAA0
c : L∞. (14.4.65)

The average here vanishes for any applied L∞, i.e.,

{(Λc − Λ) : AAA0
c} : L∞ = 0, (14.4.66)

and

{(Λc − Λ) : AAA0
c} = 0. (14.4.67)
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A dual-polarization tensor is

Lc − M : Ṗc = (M + M∗) : (Ṗ∞ − Ṗc). (14.4.68)

Its orientation average also vanishes, in view of Eq. (14.4.58) and because

M and M∗ are the constant tensors. Thus,

{Lc − M : Ṗc} = 0. (14.4.69)

A dual-polarization tensor can be alternatively expressed as

Lc − M : Ṗc = (Mc − M) : Ṗc = (Mc − M) : BBB0
c : Ṗ∞. (14.4.70)

Its average vanishes for any applied Ṗ∞, so that

{(Mc − M) : BBB0
c} : Ṗ∞ = 0, (14.4.71)

and

{(Mc − M) : BBB0
c} = 0. (14.4.72)

The effective polycrystalline pseudomoduli can be cast in terms of Λc

and the constraint tensor Λ∗ by taking the average of the concentration

tensor AAAc in Eq. (14.3.62), which is

{AAA0
c} = { (Λc + Λ∗)−1} : (Λ + Λ∗) = III . (14.4.73)

Thus,

(Λ + Λ∗)−1 = { (Λc + Λ∗)−1}, (14.4.74)

and

Λ = { (Λc + Λ∗)−1}−1 − Λ∗. (14.4.75)

Alternatively, the effective polycrystalline pseudocompliances can be ex-

pressed in terms of Mc and the constraint tensor M∗ by taking the average

of the concentration tensor BBB0
c in Eq. (14.3.66). This is

{BBB0
c} = { (Mc + M∗)−1} : (M + M∗) = III . (14.4.76)

Therefore,

(M + M∗)−1 = { (Mc + M∗)−1}, (14.4.77)

or

M = { (Mc + M∗)−1}−1 − M∗. (14.4.78)

Nonaligned Crystals

In a self-consistent generalization to nonaligned ellipsoidal crystals, the local

velocity gradient within a grain, Lc, is related to the average polycrystalline
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velocity gradient, L∞, by

Lc = AAA0
c : {AAA0

c}−1 : L∞. (14.4.79)

Thus,

{Λ∗ : AAA0
c} = {Λ∗} : {AAA0

c}, (14.4.80)

and

{Λc : AAA0
c} = Λ : {AAA0

c}. (14.4.81)

Other normalizations for the nonaligned ellipsoidal grains were considered

by Iwakuma and Nemat-Nasser (1984).

On the other hand, by defining

Ṗc = BBB0
c : {BBB0

c}−1 : Ṗ∞, (14.4.82)

we obtain

{M∗ : BBB0
c} = {M∗} : {BBB0

c}, (14.4.83)

and

{Mc : BBB0
c} = M : {BBB0

c}. (14.4.84)

14.5. Isotropic Aggregates of Cubic Crystals

Consider a cubic crystal whose elastic moduli are defined by

LLLc = 2c44JJJ + (3c12 + 2c44)KKK + (c11 − c12 − 2c44)ZZZ , (14.5.1)

where JJJ and KKK are defined by Eq. (14.2.5), and

Zijkl = aiajakal + bibjbkbl + cicjckcl. (14.5.2)

The vectors a, b and c are the orthogonal unit vectors along the principal

cubic axes, and the usual notation for the elastic constants c11, c12 and c44

is employed from Section 5.11. Two independent linear invariants of LLLc are

Lc
iijj = 3(c11 + 2c12), Lc

ijij = 3(c11 + 2c44). (14.5.3)

Denote by κ and μ the overall (effective) bulk and shear moduli of an

isotropic aggregate of cubic crystals. The corresponding tensors of elastic

moduli and compliances are

LLL = 2μJJJ + 3κKKK , (14.5.4)

MMM =
1
2μ

JJJ +
1
3κ

KKK . (14.5.5)
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The Eshelby tensor for a spherical grain is

SSS = αJJJ + βKKK , β = 3 − 5α =
κ

κ + 4μ/3
. (14.5.6)

Since the product of any pair of isotropic fourth-order tensors is isotropic

and commutative, from (14.2.15) we deduce

TTT = III − SSS = (1 − α)JJJ + (1 − β)KKK . (14.5.7)

Thus,

PPP = SSS : MMM =
α

2μ
JJJ +

β

3κ
KKK , (14.5.8)

QQQ = TTT : LLL = 2μ(1 − α)JJJ + 3κ(1 − β)KKK . (14.5.9)

The constraint tensors are

LLL∗ = LLL : (SSS−1 − III ) = 2μ
1 − α

α
JJJ + 4μKKK , (14.5.10)

MMM∗ =
1
2μ

α

1 − α
JJJ +

1
4μ

KKK . (14.5.11)

Upon substitution into Eq. (14.2.26) or (14.3.11), the concentration tensor

becomes

AAAc = III + α [aJJJ + (a + 3b)(KKK −ZZZ )], (14.5.12)

where

a =
5(c11 + 2c12 + 4μ)(μ− c44)

8μ2 + 3(c11 + 2c12 + 4c44)μ + 2(c11 + 2c12)c44
, (14.5.13)

b =
5(c11 + 2c12 + 4μ)(c11 − c12 − 2μ)

6[8μ2 + 9c11μ + (c11 − c12)(c11 + 2c12)]
. (14.5.14)

Since the cubic crystals under hydrostatic state of stress behave as isotropic

materials, we have Dc
ii = D∞

ii , which implies that Ac
iikl = δkl, as incorporated

in Eq. (14.5.12). This also implies that c11 + 2c12 = 3κ.

The orientation average of the concentration tensors is

{AAAc} = III + α [aJJJ + (a + 3b)(KKK − {ZZZ})]. (14.5.15)

It can be shown by integration that

{aiajakal} =
1

8π2

∫
Ω

aiajakal dΩ =
1
15

(δijδkl + 2Iijkl), (14.5.16)
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where dΩ = sinθdϕdθdψ is the solid angle, and ϕ, θ and ψ are the Euler

angles. Thus,

{ZZZ} =
2
5

JJJ + KKK , (14.5.17)

and Eq. (14.5.15) becomes

{AAAc} = III +
3α
5

(a− 2b)JJJ . (14.5.18)

From Eq. (14.4.2), this must be equal to the unit tensor III , which requires

that

a = 2b. (14.5.19)

The substitution of expressions (14.5.14) and (14.5.13) into Eq. (14.5.19)

yields a cubic equation for the effective shear modulus,

8μ3 + (5c11 + 4c12)μ2 − c44(7c11 − 4c12)μ− c44(c11 − c12)(c11 + 2c12) = 0.
(14.5.20)

This equation was originally derived by Kröner (1958). A quartic equation

for μ, having the same single positive root, was previously derived by Her-

shey (1954). Willis (1981) showed that the cubic equation follows from an

appropriate variational approach directly from the assumption of the ag-

gregate isotropy, without commitment in the analysis to the spherical grain

shape. The value of μ determined from the cubic equation is in-between

upper and lower bounds provided by the Voigt and Reuss estimates (Hill,

1952). Closer bounds were derived by Hashin and Shtrikman (1962). See

also Cleary, Chen, and Lee (1980), and Walpole (1981). The estimates of

the higher order elastic constants were considered by Lubarda (1997), who

also gives the reference to other related work.

14.5.1. Voigt and Reuss Estimates

According to the Voigt (1889) assumption, when a polycrystalline aggregate

is subjected to the overall uniform strain, the individual crystals will all be

in the same state of applied strain (which gives rise to stress discontinuities

across the grain boundaries). Thus, by requiring that the overall stress is

the average of the local stresses, there follows

LLL = {LLLc}. (14.5.21)

© 2002 by CRC Press LLC 



Instead of performing the integration

Lijkl =
1

8π2

∫
Ω

Lc
ijkl dΩ, (14.5.22)

the effective polycrystalline constants can be obtained directly by observing

that the linear invariants of LLL and LLLc must be equal. Thus, equating (14.5.3)

to

Liijj = 9κ, Lijij = 3κ + 10μ, (14.5.23)

we obtain the well-known Voigt estimates

κ =
1
3
(c11 + 2c12), μV =

1
5
(c11 − c12 + 3c44). (14.5.24)

According to the Reuss (1929) assumption, when a polycrystalline ag-

gregate is subjected to the overall uniform stress, the individual crystals will

all be in the same state of stress (which gives rise to incompatible deforma-

tions across the grain boundaries). Thus, by requiring that the overall strain

is the average of the local strains, there follows

MMM = {MMMc}. (14.5.25)

This gives the well-known Reuss estimates

κ =
1
3
(c11 + 2c12), μR = 5[4(c11 − c12)−1 + 3c−1

44 ]−1. (14.5.26)

Hill (1952) proved that μV is the upper bound, and that μR is the lower

bound on the true value of the effective shear modulus, i.e.,

μR ≤ μ ≤ μV. (14.5.27)

It can be easily shown that the effective Lamé constant is bounded such that

λV ≤ λ ≤ λR; see Lubarda (1998).

14.6. Elastoplastic Crystal Embedded in Elastic Matrix

The analysis of the incrementally linear response presented in Section 14.4

is now extended to a piecewise linear elastoplastic response. We consider

an elastoplastic ellipsoidal grain embedded in an elastic infinite medium,

subjected to the far-field uniform rate of deformation D∞. The crystalline

rate of deformation Dc is uniform within the ellipsoidal grain. Suppose

that the plastic part of Dc, at the considered stress and deformation state

involving n0 potentially active (critical) slip systems, is produced by the
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crystallographic slip on a particular set of n ≤ n0 active slip systems. From

Eq. (12.9.34), we can write

�
τc = LLLep

c : Dc, LLLep
c = LLLe

c −
n∑

α=1

n∑
β=1

gc−1
αβ Cα

c ⊗ Cβ
c . (14.6.1)

The superscripts “e” and “ep” are added to indicate that LLLe
c and LLLep

c are

the instantaneous elastic and elastoplastic moduli of the crystal. Since the

current state is used as the reference, the connections with the corresponding

quantities used in Eq. (12.4.3) are

Cα
c ↔ (detFc)−1Cα

c , gc−1
αβ ↔ (detFc) gc−1

αβ . (14.6.2)

The elastoplastic branch of the constitutive response given by Eq. (14.6.1)

is associated with the crystallographic slip on a set of n active slip systems,

so that the rate of deformation Dc is directed within a pyramidal region

defined by

Cβ
c : Dc > 0, β = 1, 2, . . . , n. (14.6.3)

Each Cβ
c is codirectional with the outward normal to the corresponding

hyperplane of the local yield vertex in strain space.

If the prescribed D∞ is such that the crystal is momentarily in the state

of elastic unloading, then

�
τc = LLLe

c : Dc, (14.6.4)

and

Cβ
c : Dc ≤ 0, β = 1, 2, . . . , n0. (14.6.5)

For other prescribed D∞, the local Dc may be directed within other

pyramidal regions in the rate of deformation space, corresponding to other

sets of active slip systems (from the set of all n0 potentially active slip sys-

tems, which define the local vertex at a given state of stress and deformation).

The whole rate of deformation space can thus be imagined as dissected into

pyramidal regions by the set of hyperplanes Cα
c : Dc = 0. The stress rate

�
τc

varies continuously with Dc over the entire space. In each of the pyramidal

regions, the instantaneous elastoplastic stiffness is constant, and the results

from Section 14.3 can be accordingly applied, Hill (1965a).
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14.6.1. Concentration Tensor

If the crystal is elastically unloading, the concentration tensor, appearing in

the relationship Dc = AAAc : D∞, is

AAAc = (LLLe
c +LLL∗)−1 : (LLLe +LLLe

∗). (14.6.6)

The instantaneous elastic stiffness tensor of the surrounding elastic matrix is

LLLe, and LLLe
∗ is the corresponding constraint tensor (independent ofLLLe

c and the

same for any constitutive branch of the crystalline response). The constraint

tensor LLLe
∗ of elastic matrix LLLe is such that, from Eq. (14.3.15),

LLLe
∗ : SSS e = LLLe : (III − SSS e). (14.6.7)

The Eshelby tensor of the elastic matrix is denoted by SSS e. We added the

superscript “e” to SSS to indicate the elastic matrix. The concentration tensor

in Eq. (14.6.6) applies in the elastic unloading range, which is defined by

Cβ
c : (LLLe

c +LLLe
∗)

−1 : (LLLe +LLLe
∗) : D∞ ≤ 0, β = 1, 2, . . . , n0, (14.6.8)

from Eq. (14.6.5) and the relationship Dc = AAAc : D∞. The unloading

condition can be rewritten as

Cβ
c : (III +MMMe

∗ : LLLe
c)

−1 : (III +MMMe
∗ : LLLe) : D∞ ≤ 0, β = 1, 2, . . . , n0.

(14.6.9)

If the crystal response is elastoplastic, with the crystallographic slip

taking place over the set of n active slip systems, the concentration tensor

becomes

AAAc =

⎛
⎝LLLe

c +LLLe
∗ −

n∑
α=1

n∑
β=1

gc−1
αβ Cα

c ⊗ Cβ
c

⎞
⎠
−1

: (LLLe +LLLe
∗). (14.6.10)

The inverse of the fourth-order tensor in Eq. (14.6.10) is given by Eq.

(14.6.20) below. When this result is substituted into Eq. (14.6.10), there

follows

AAAc = [III +
n∑

α=1

n∑
β=1

b̂c−1
αβ (LLLe

c +LLLe
∗)

−1 : Cα
c ⊗ Cβ

c ]

: (LLLe
c +LLLe

∗)
−1 : (LLLe +LLLe

∗),

(14.6.11)

where

b̂cαβ = gc
αβ − Cα

c : (LLLe
c +LLLe

∗)
−1 : Cβ

c . (14.6.12)
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The corresponding plastic loading range is defined by

Cβ
c : (LLLe

c +LLLe
∗)

−1 : (LLLe +LLLe
∗) : D∞ > 0, β = 1, 2, . . . , n. (14.6.13)

Derivation of the Inverse Tensor

We here derive a formula for the inverse of the fourth-order tensor used in

the transition from (14.6.10) to (14.6.11). Consider first the constitutive

structure in Eq. (14.6.1). A trace product with LLLe−1
c gives

Dc = LLLe−1
c :

�
τc +

n∑
α=1

n∑
β=1

gc−1
αβ LLLe−1

c : Cα
c ⊗ Cβ

c : Dc. (14.6.14)

Upon application of the trace product with Cγ
c : LLLe−1

c to Eq. (14.6.1), we

obtain

Cγ
c : LLLe−1

c :
�
τc =

n∑
α=1

n∑
β=1

bcγα gc−1
αβ Cβ

c : Dc, (14.6.15)

where

bcγα = gc
γα − Cγ

c : LLLe−1
c : Cα

c . (14.6.16)

Suppose that the symmetric matrix with components bcγα is positive-definite.

Then, by inversion, from Eq. (14.6.15),

n∑
β=1

g−1
αβ Cβ

c : Dc =
n∑

γ=1

bc−1
αγ Cγ

c : LLLe−1
c :

�
τc. (14.6.17)

The substitution of (14.6.17) into (14.6.14) gives

Dc =

⎛
⎝LLLe−1

c +
n∑

α=1

n∑
β=1

bc−1
αβ LLLe−1

c : Cα
c ⊗ Cβ

c : LLLe−1
c

⎞
⎠ :

�
τc, (14.6.18)

in agreement with the results from Section 12.11. The comparison of Eqs.

(14.6.1) and (14.6.18) identifies the inverse tensor⎛
⎝LLLe

c −
n∑

α=1

n∑
β=1

gc−1
αβ Cα

c ⊗ Cβ
c

⎞
⎠
−1

= LLLe−1
c +

n∑
α=1

n∑
β=1

bc−1
αβ LLLe−1

c : Cα
c ⊗ Cβ

c : LLLe−1
c .

(14.6.19)
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When LLLe
c in Eq. (14.6.19) is replaced with LLLe

c +LLLe
∗, we obtain⎛

⎝LLLe
c +LLLe

∗ −
n∑

α=1

n∑
β=1

gc−1
αβ Cα

c ⊗ Cβ
c

⎞
⎠
−1

= (LLLe
c +LLLe

∗)
−1

+
n∑

α=1

n∑
β=1

b̂c−1
αβ (LLLe

c +LLLe
∗)

−1 : Cα
c ⊗ Cβ

c : (LLLe
c +LLLe

∗)
−1,

(14.6.20)

which is a desired formula used in Eq. (14.6.11).

14.6.2. Dual-Concentration Tensor

Returning to Eq. (14.6.18), and introducing the tensor

Gα
c = MMMc : Cα

c , MMMe
c = LLLe−1

c , (14.6.21)

the crystalline rate of deformation can be expressed in terms of
�
τc as

Dc = MMMep :
�
τc, MMMep = MMMe

c +
n∑

α=1

n∑
β=1

bc−1
αβ Gα

c ⊗ Gβ
c . (14.6.22)

The stress rate is here directed within the plastic loading range defined by

Gβ
c :

�
τc > 0, β = 1, 2, . . . , n. (14.6.23)

A dual-concentration tensor, appearing in the transition
�
τc = BBBc :

�
τ∞, is

BBBc =

⎛
⎝MMMe

c +MMMe
∗ +

n∑
α=1

n∑
β=1

bc−1
αβ Gα

c ⊗ Gβ
c

⎞
⎠
−1

: (MMMe +MMMe
∗), (14.6.24)

from Eq. (14.3.27). A dual-constraint tensor MMMe
∗ of the elastic matrix MMMe

obeys, from Eq. (14.3.22),

(III − SSS e) : MMMe
∗ = SSS e : MMMe. (14.6.25)

Upon inversion of the fourth-order tensor in Eq. (14.6.24), this becomes

BBBc = [III −
n∑

α=1

n∑
β=1

ĝc−1
αβ (MMMe

c +MMMe
∗)

−1 : (Gα
c ⊗ Gβ

c ) ]

: (MMMe
c +MMMe

∗)
−1 : (MMMe +MMMe

∗),

(14.6.26)

where

ĝc
αβ = bcαβ + Gα

c : (MMMe
c +MMMe

∗)
−1 : Gβ

c . (14.6.27)

The above expression holds in the range of plastic loading,

Gβ
c : (MMMe

c +MMMe
∗)

−1 : (MMMe +MMMe
∗) :

�
τ∞ > 0, β = 1, 2, . . . , n. (14.6.28)
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In the elastic unloading range, we have

Gβ
c : (MMMe

c +MMMe
∗)

−1 : (MMMe +MMMe
∗) :

�
τ∞ ≤ 0, β = 1, 2, . . . , n0, (14.6.29)

with the concentration tensor

BBBc = (MMMe
c +MMMe

∗)
−1 : (MMMe +MMMe

∗). (14.6.30)

The instantaneous compliances tensor of the surrounding matrix is MMMe,

while MMMe
∗ is the corresponding constraint tensor, which is the same for all

constitutive branches of the crystalline response. The unloading condition

(14.6.29) can also be expressed as

Gβ
c : (III +LLLe

∗ : MMMe
c)

−1 : (III +LLLe
∗ : MMMe) :

�
τ∞ ≤ 0, β = 1, 2, . . . , n0,

(14.6.31)

which is dual to (14.6.9).

14.6.3. Locally Smooth Yield Surface

When the yield surface is locally smooth, the elastoplastic branch of the

crystalline response is

�
τc =

(
LLLe

c −
1
gc

Cc ⊗ Cc

)
: Dc, Cc : Dc > 0, (14.6.32)

where gc > 0. The inverted form is

Dc =
(
MMMe

c +
1
bc

Gc ⊗ Gc

)
:
�
τc, Gc :

�
τc > 0. (14.6.33)

The relationships hold

Gc = MMMe
c : Cc, gc − bc = Cc : MMMe

c : Cc = Gc : LLLe
c : Gc. (14.6.34)

The crystal is assumed to be in the hardening range, so that bc > 0 in Eq.

(14.6.33). The corresponding concentration tensors are

AAAc = [III +
1

b̂c
(LLLe

c +LLLe
∗)

−1 : (Cc ⊗ Cc) ]

: (LLLe
c +LLLe

∗)
−1 : (LLLe +LLLe

∗),
(14.6.35)

where

b̂c = gc − Cc : (LLLe
c +LLLe

∗)
−1 : Cc, (14.6.36)

and

BBBc = [III − 1
ĝ

(MMMe
c +MMMe

∗)
−1 : (Gc ⊗ Gc) ]

: (MMMe
c +MMMe

∗)
−1 : (MMMe +MMMe

∗),
(14.6.37)
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where

ĝc = bc + Gc : (MMMe
c +MMMe

∗)
−1 : Gc. (14.6.38)

It is noted that

b̂c = ĝc. (14.6.39)

This can be verified by using the connection (14.6.34) and the relationships

for the inverse tensors

(LLLc +LLL∗)−1 = MMMe
c −MMMe

c : (MMMe
c +MMMe

∗)
−1 : MMMe

c, (14.6.40)

(MMMe
c +MMMe

∗)
−1 = LLLe

c −LLLe
c : (LLLe

c +LLLe
∗)

−1 : LLLe
c. (14.6.41)

The first of these follows because

(LLLe
c +LLLe

∗)
−1 = [LLLe

c : (MMMe
c +MMMe

∗) : LLLe
∗]

−1

= MMM∗ : (MMMe
c +MMMe

∗)
−1 : MMMe

c

= (MMMe
c +MMMe

∗ −MMMe
c) : (MMMe

c +MMMe
∗)

−1 : MMMe
c

= MMMe
c −MMMe

c : (MMMe
c +MMMe

∗)
−1 : MMMe

c,

(14.6.42)

and similarly for the second.

The plastic part of the crystalline stress rate is
�
τc

p =
�
τc −LLLe

c : Dc = − 1
gc

(Cc ⊗ Cc) : Dc = − 1
gc

(Cc ⊗ Cc) : AAAc : D∞.

(14.6.43)
In view of (14.6.35), we can write

Cc : AAAc = (gc /b̂c)Cc : (LLLe
c +LLLe

∗)
−1 : (LLLe +LLLe

∗), (14.6.44)

and the substitution into Eq. (14.6.43) gives

�
τc

p = − 1

b̂c
(Cc ⊗ Cc) : (LLLe

c +LLLe
∗)

−1 : (LLLe +LLLe
∗) : D∞. (14.6.45)

Likewise, the plastic part of the crystalline rate of deformation is

Dp
c = Dc −MMMe

c :
�
τc =

1
bc

(Gc ⊗ Gc) :
�
τc =

1
bc

(Gc ⊗ Gc) : BBBc :
�
τ∞.

(14.6.46)
Since, from (14.6.37),

Gc : BBBc = (bc /ĝc)Gc : (MMMe
c +MMMe

∗)
−1 : (MMMe +MMMe

∗), (14.6.47)

we obtain, upon substitution into Eq. (14.6.46),

Dp
c =

1
ĝc

(Gc ⊗ Gc) : (MMMe
c +MMMe

∗)
−1 : (MMMe +MMMe

∗) :
�
τ∞. (14.6.48)
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Particular Cases

If the elastic properties of the grain and the surrounding matrix are identical,

i.e., if

LLLe
c = LLLe, MMMe

c = MMMe, (14.6.49)

the preceding formulas simplify, and the concentration tensors become (Hill,

1965a)

AAAc = III +
(LLLe +LLLe

∗)
−1 : (Cc ⊗ Cc)

gc − Cc : (LLLe +LLLe
∗)−1 : Cc

= III +
PPP : (Cc ⊗ Cc)
gc − Cc : PPP : Cc

, (14.6.50)

BBBc = III − (MMMe +MMMe
∗)

−1 : (Gc ⊗ Gc)
bc + Gc : (MMMe +MMMe

∗)−1 : Gc
= III − QQQ : (Gc ⊗ Gc)

bc + Gc : QQQ : Gc
.

(14.6.51)

The plastic parts of the crystalline stress and strain rates are similarly

�
τc

p = − (Cc ⊗ Cc) : D∞
gc − Cc : (LLLe +LLLe

∗)−1 : Cc
= − (Cc ⊗ Cc) : D∞

gc − Cc : PPP : Cc
, (14.6.52)

Dp
c =

(Gc ⊗ Gc) :
�
τ∞

bc + Gc : (MMMe +MMMe
∗)−1 : Gc

=
(Gc ⊗ Gc) :

�
τ∞

bc + Gc : QQQ : Gc
. (14.6.53)

These expressions can be further reduced if it is assumed that the elastic

response is isotropic, and that the plastic response is incompressible (Gc

and Cc deviatoric tensors). From Eqs. (14.5.8) and (14.5.9), we obtain in

this case

PPP =
α

2μ
JJJ +

β

3κ
KKK , QQQ = 2μ(1 − α)JJJ + 3κ(1 − β)KKK , (14.6.54)

so that

PPP : Cc =
α

2μ
Cc, QQQ : Gc = 2μ(1 − α)Gc. (14.6.55)

The components of the Eshelby tensor, α and β, are given in Eq. (14.5.6).

Consequently,

AAAc = III +
(α/2μ)Cc ⊗ Cc

gc − (α/2μ)Cc : Cc
, (14.6.56)

BBBc = III − 2μ(1 − α)Gc ⊗ Gc

bc + 2μ(1 − α)Gc : Gc
, (14.6.57)

and
�
τc

p = − (Cc ⊗ Cc) : D∞
gc − (α/2μ)Cc : Cc

, (14.6.58)
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Dp
c =

(Gc ⊗ Gc) :
�
τ∞

bc + 2μ(1 − α)Gc : Gc
. (14.6.59)

14.6.4. Rigid-Plastic Crystal in Elastic Matrix

Suppose that the crystal is rigid-plastic, i.e.,

MMMe
c = 0. (14.6.60)

At the point where the yield surface is locally smooth, we have, from Eqs.

(14.6.33) and (14.6.37),

Dc = MMMp
c :

�
σc, MMMp

c =
1
bc

(Gc ⊗ Gc), (14.6.61)

and

BBBc =
[
III − LLLe

∗ : (Gc ⊗ Gc)
bc + Gc : LLLe

∗ : Gc

]
: (III +LLLe

∗ : MMMe), (14.6.62)

provided that

Gc : (III +LLLe
∗ : MMMe) :

�
τ∞ > 0. (14.6.63)

Recall that for the rigid-plastic crystal
�
τc =

�
σc. (14.6.64)

Since, by Eq. (14.3.23),

MMMe
∗ = SSS e : (MMMe +MMMe

∗) = (MMMe +MMMe
∗) : SSS eT , (14.6.65)

and since

SSS e−1 = III +MMMe : LLLe
∗, SSS e−T = III +LLLe

∗ : MMMe, (14.6.66)

the combination with Eq. (14.6.62) establishes

BBBc : SSS eT = III − LLLe
∗ : Gc ⊗ Gc

bc + Gc : LLLe
∗ : Gc

. (14.6.67)

The plastic loading condition (14.6.63) can be expressed as

Gc : SSS e−T :
�
τ∞ > 0. (14.6.68)

Dually, in view of Eqs. (14.2.36) and (14.3.44), we have

AAAc : MMMe = MMMp
c : BBBc, PPP = SSS e : MMMe = MMMe : SSS eT , (14.6.69)

and

AAAc : PPP = AAAc : MMMe : SSS eT = MMMp
c : BBBc : SSS eT . (14.6.70)
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By substituting the expression (14.6.67) for BBBc : SSS eT into Eq. (14.6.70),

there follows

AAAc : PPP = MMMp
c :

(
III − LLLe

∗ : Gc ⊗ Gc

bc + Gc : LLLe
∗ : Gc

)
. (14.6.71)

Upon using Eq. (14.6.61), this reduces to

AAAc : PPP =
Gc ⊗ Gc

bc + Gc : LLLe
∗ : Gc

, Gc : PPP−1 : D∞ > 0. (14.6.72)

Note the transition

Gc : SSS e−T :
�
τ∞ = Gc : SSS e−T : LLLe : D∞

= Gc : (MMMe : SSS eT )−1 : D∞ = Gc : PPP−1 : D∞.
(14.6.73)

14.7. Elastoplastic Crystal Embedded in Elastoplastic Matrix

The most general case in Hill’s formulation of the self-consistent method

is the consideration of an ellipsoidal elastoplastic crystal embedded in a

homogeneous elastoplastic matrix. Suppose that the elastoplastic stiffness is

uniform throughout the matrix, and given by (see Section 9.5)

LLLep = LLLe −
m∑

α=1

m∑
β=1

g−1
αβ Cα ⊗ Cβ . (14.7.1)

The tensor Cα is codirectional with the outward normal to the corresponding

hyperplane of the local yield vertex in strain space. The constitutive branch

of the elastoplastic matrix response (14.7.1) is associated with m active yield

segments at the vertex. It is assumed that these are activated when the

applied D∞ is such that

Cβ : D∞ > 0, β = 1, 2, . . . ,m. (14.7.2)

For other directions of the imposed D∞, other constitutive branches at the

yield vertex may apply, corresponding to other sets of active yield segments.

In particular, the elastic unloading branch corresponds to D∞ for which

Cβ : D∞ ≤ 0, β = 1, 2, . . . ,m0, (14.7.3)

where m0 is the number of all yield segments forming a local vertex at the

considered instant of deformation.

The concentration tensor associated with the elastoplastic matrix stiff-

ness (14.7.1), and the elastoplastic crystalline stiffness (14.6.1), is

AAAc = (LLLep
c +LLLep

∗ )−1 : (LLLep +LLLep
∗ ). (14.7.4)
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The constraint tensor of the elastoplastic matrix LLLep
∗ is defined such that

LLLep
∗ : SSS ep = LLLep : (III − SSS ep). (14.7.5)

The superscripts “ep” is added to SSS to indicate that SSS ep is the Eshelby

tensor of the elastoplastic matrix. The branch of SSS ep corresponding to the

elastoplastic matrix branch (14.7.1) is used in (14.7.5). We also note that

the tensor PPP , introduced in Subsection 14.3.2, is in this case

PPP = (LLLep
∗ +LLLep)−1 = SSS ep : LLLep−1. (14.7.6)

In an expanded form, the concentration tensor can be written as

AAAc =

⎛
⎝LLLe

c +LLLep
∗ −

n∑
α=1

n∑
β=1

gc−1
αβ Cα

c ⊗ Cβ
c

⎞
⎠
−1

:

⎛
⎝LLLe +LLLep

∗ −
m∑

α=1

m∑
β=1

g−1
αβ Cα ⊗ Cβ

⎞
⎠ .

(14.7.7)

Upon performing the required inversion in Eq. (14.7.7), this becomes

AAAc =

⎡
⎣III +

n∑
α=1

n∑
β=1

b̂c−1
αβ (LLLe

c +LLLep
∗ )−1 : (Cα

c ⊗ Cβ
c )

⎤
⎦

: (LLLe
c +LLLep

∗ )−1 :

⎛
⎝LLLe +LLLep

∗ −
m∑

α=1

m∑
β=1

g−1
αβ Cα ⊗ Cβ

⎞
⎠ ,

(14.7.8)

where

b̂cαβ = gc
αβ − Cα

c : (LLLe
c +LLLep

∗ )−1 : Cβ
c . (14.7.9)

The applied D∞ is such that (14.7.2) holds, as well as

Cβ
c : (LLLe

c +LLLep
∗ )−1 : (LLLe +LLLep

∗ ) : D∞ > 0, β = 1, 2, . . . , n. (14.7.10)

Formulation with Elastoplastic Compliances

In the formulation using the tensors of elastoplastic compliances, we have

(see Section 9.6)

MMMep = MMMe +
m∑

α=1

m∑
β=1

b−1
αβ Gα ⊗ Gβ , (14.7.11)

where

Gα = MMMe : Cα, MMMe = LLLe−1, (14.7.12)
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and

bαβ = gαβ − Cα : MMMe : Cβ . (14.7.13)

The tensor Gα is codirectional with the outward normal to the corresponding

hyperplane of the local yield vertex in stress space. The constitutive branch

of the elastoplastic matrix response (14.7.11) is associated with m active

yield segments of the vertex. It is assumed that, in the hardening range,

these are activated when the applied
�
τ∞ is such that

Gβ :
�
τ∞ > 0, β = 1, 2, . . . ,m. (14.7.14)

The elastic unloading branch corresponds to
�
τ∞ for which

Gβ :
�
τ∞ ≤ 0, β = 1, 2, . . . ,m0, (14.7.15)

where m0 is the number of all yield segments forming a local vertex at the

considered state.

A dual-concentration tensor, associated with the elastoplastic matrix

compliances (14.7.11) and the elastoplastic crystalline compliances (14.6.22),

is

BBBc = (MMMep
c +MMMep

∗ )−1 : (MMMep +MMMep
∗ ). (14.7.16)

A dual-constraint tensor of the elastoplastic matrix is MMMep
∗ , such that

(III − SSS ep) : MMMep
∗ = SSS ep : MMMep. (14.7.17)

The tensor QQQ , introduced in Subsection 14.3.2, is in this case

QQQ = (MMMep
∗ +MMMep)−1 = LLLep

∗ : SSS ep. (14.7.18)

In an expanded form, a dual-concentration tensor is

BBBc =

⎛
⎝MMMe

c +MMMep
∗ +

n∑
α=1

n∑
β=1

bc−1
αβ Gα

c ⊗ Gβ
c

⎞
⎠
−1

:

⎛
⎝MMMe +MMMep

∗ +
m∑

α=1

m∑
β=1

b−1
αβ Gα ⊗ Gβ

⎞
⎠ .

(14.7.19)

Upon the required inversion, this becomes

BBBc =

⎡
⎣III −

n∑
α=1

n∑
β=1

ĝc−1
αβ (MMMe

c +MMMep
∗ )−1 : (Gα

c ⊗ Gβ
c )

⎤
⎦

: (MMMe
c +MMMep

∗ )−1 : (MMMe +MMMep
∗ −

m∑
α=1

m∑
β=1

b−1
αβ Gα ⊗ Gβ),

(14.7.20)

© 2002 by CRC Press LLC 



where

ĝc
αβ = gc

αβ − Gα
c : (MMMe

c +MMMep
∗ )−1 : Gβ

c . (14.7.21)

The stress rate
�
τ∞ is such that (14.7.14) holds, as well as

Gβ
c : (MMMe

c +MMMep
∗ )−1 : (MMMe +MMMep

∗ ) :
�
τ∞ > 0, β = 1, 2, . . . , n. (14.7.22)

14.7.1. Locally Smooth Yield Surface

When the yield surfaces of the crystal and the matrix are both locally

smooth, the corresponding elastoplastic stiffnesses are

LLLep
c = LLLe

c −
1
gc

Cc ⊗ Cc, Cc : Dc > 0, (14.7.23)

where gc > 0, and

LLLep = LLLe − 1
g

C ⊗ C, C : D∞ > 0, (14.7.24)

where g > 0. The crystalline and matrix compliances are

MMMep
c = MMMe

c +
1
bc

Gc ⊗ Gc, Gc :
�
τc > 0, (14.7.25)

and

MMMep = MMMe +
1
b
G ⊗ G, G :

�
τ∞ > 0. (14.7.26)

The connections hold

Gc = MMMe
c : Cc, gc − bc = Cc : MMMe

c : Cc = Gc : LLLe
c : Gc, (14.7.27)

G = MMMe : C, g − b = C : MMMe : C = G : LLLe : G. (14.7.28)

The crystal and the matrix are both assumed to be in the hardening range,

so that bc > 0 and b > 0 in Eqs. (14.7.25) and (14.7.26).

The corresponding concentration tensor is

AAAc =
[
III +

1

b̂c
(LLLe

c +LLLep
∗ )−1 : (Cc ⊗ Cc)

]

: (LLLe
c +LLLep

∗ )−1 :
(
LLLe +LLLep

∗ − 1
g

C ⊗ C
)
,

(14.7.29)

where

b̂c = gc − Cc : (LLLe
c +LLLep

∗ )−1 : Cc. (14.7.30)
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A dual-concentration tensor is similarly

BBBc =
[
III − 1

ĝc
(MMMe

c +MMMep
∗ )−1 : (Gc ⊗ Gc)

]

: (MMMe
c +MMMep

∗ )−1 :
(
MMMe +MMMep

∗ +
1
b
G ⊗ G

)
,

(14.7.31)

with

ĝc = bc + Gc : (MMMe
c +MMMep

∗ )−1 : Gc. (14.7.32)

It is noted that b̂c = ĝc.

If the elastic properties of the crystal and the matrix are identical (LLLe
c =

LLLe, MMMe
c = MMMe), the concentration tensors take on the simpler forms (Hill,

op. cit.)

AAAc =
[
III +

1

b̂c
(LLLe +LLLep

∗ )−1 : (Cc ⊗ Cc)
]

:
[
III − 1

g
(LLLe +LLLep

∗ )−1 : (C ⊗ C)
]
,

(14.7.33)

BBBc =
[
III − 1

ĝc
(MMMe +MMMep

∗ )−1 : (Gc ⊗ Gc)
]

:
[
III +

1
b

(MMMe +MMMep
∗ )−1 : (G ⊗ G)

]
.

(14.7.34)

14.7.2. Rigid-Plastic Crystal in Rigid-Plastic Matrix

The corresponding crystalline and matrix compliances are in this case

MMMp
c =

1
bc

Gc ⊗ Gc, Gc :
�
σc > 0, (14.7.35)

and

MMMp =
1
b
G ⊗ G, G :

�
σ∞ > 0. (14.7.36)

A dual-concentration tensor is

BBBc =
[
III − 1

ĝc
LLLp

∗ : (Gc ⊗ Gc)
]

:
[
III +

1
b
LLLp

∗ : (G ⊗ G)
]
, (14.7.37)

where

ĝc = bc + Gc : LLLp
∗ : Gc. (14.7.38)

The constraint tensors of the rigid-plastic matrix are MMMp
∗ and LLLp

∗ = MMMp−1
∗ ,

such that

(III − SSSp) : MMMp
∗ = SSSp : MMMp, (14.7.39)
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where SSSp is the Eshelby tensor of the rigid-plastic matrix. The condition

(14.7.22) becomes, for the rigid-plastic crystal and the rigid-plastic matrix,

Gc :
�
σ∞ > 0. (14.7.40)

It is observed that

SSSp−1 = III +MMMp : LLLp
∗, SSSp−T = III +LLLp

∗ : MMMp, (14.7.41)

so that, from Eq. (14.7.37),

BBBc : SSSpT = III − LLLp
∗ : (Gc ⊗ Gc)

bc + Gc : LLLp
∗ : Gc

, (14.7.42)

in analogy with (14.6.67). The tensor QQQ is

QQQ = (MMMp +MMMp
∗)

−1 = LLLp
∗ : SSSp. (14.7.43)

On the other hand, from Eqs. (14.2.36) and (14.3.44), we can write

AAAc : MMMp = MMMp
c : BBBc, PPP = SSSp : MMMp = MMMp : SSSpT , (14.7.44)

and

AAAc : PPP = AAAc : MMMp : SSSpT = MMMp
c : BBBc : SSSpT . (14.7.45)

By substituting the expression (14.7.42) for BBBc : SSSpT into Eq. (14.7.45),

there follows

AAAc : PPP = MMMp
c :

(
III − LLLp

∗ : Gc ⊗ Gc

bc + Gc : LLLp
∗ : Gc

)
. (14.7.46)

With the help of Eq. (14.7.36), this can be reduced to

AAAc : PPP =
Gc ⊗ Gc

bc + Gc : LLLp
∗ : Gc

. (14.7.47)

14.8. Self-Consistent Determination of Elastoplastic Moduli

Hill’s general analysis presented in Section 14.7 can be applied to determine

the polycrystalline elastoplastic moduli and compliances as follows. Assume

that the constitutive branch of the elastoplastic response (set of active slip

systems) is known for each grain of a polycrystalline aggregate subjected to

the overall macroscopically uniform rate of deformation D∞, so that LLLep
c is

known for each orientation of the grain relative to applied D∞. The concen-

tration tensor for a grain with the instantaneous stiffness LLLep
c , embedded in

a matrix with the overall elastoplastic moduli LLLep, is

AAAc = (LLLep
c +LLLep

∗ )−1 : (LLLep +LLLep
∗ ), (14.8.1)
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provided that

Cβ
c : (LLLe

c +LLLep
∗ )−1 : (LLLe +LLLep

∗ ) : D∞ > 0, β = 1, 2, . . . , n. (14.8.2)

The corresponding constraint tensor LLLep
∗ is related to LLLep by

LLLep
∗ : SSS ep = LLLep : (III − SSS ep). (14.8.3)

The Eshelby tensor SSS ep is associated with the elastoplastic matrix with cur-

rent (anisotropic) stiffness LLLep.

According to the self-consistent method, an ellipsoidal elastoplastic grain

is considered to be embedded in the elastoplastic matrix with the overall

properties of the polycrystalline aggregate. It is required that the orientation

average of the crystalline rate of deformation Dc = AAAc : D∞ is equal to

applied D∞. Thus,

{Dc} = D∞ ⇒ {AAAc} = III . (14.8.4)

The brackets { } designate the appropriate orientation average. Further-

more, since LLLep is the overall instantaneous stiffness of the polycrystalline

aggregate, we can write

{�τc} = LLLep : {Dc} = LLLep : D∞. (14.8.5)

Comparing this with

{�τc} = {LLLep
c : Dc} = {LLLep

c : AAAc} : D∞, (14.8.6)

establishes

LLLep = {LLLep
c : AAAc}. (14.8.7)

The substitution of Eq. (14.8.1), therefore, gives

LLLep = {LLLep
c : (LLLep

c +LLLep
∗ )−1 : (LLLep +LLLep

∗ )}. (14.8.8)

This is a highly implicit equation for the polycrystalline moduli LLLep. It in-

volves the constraint tensor LLLep
∗ , which itself depends on the polycrystalline

moduli LLLep, as seen from Eq. (14.8.3). Moreover, it is not known in advance

which branch of LLLep and LLLep
c is activated by a prescribed D∞. The calcula-

tion requires an iterative procedure. It was originally devised by Hutchinson

(1970). For a prescribed D∞, a tentative guess is made for LLLep, and LLLep
∗

is calculated from Eq. (14.8.3). The elastoplastic branch of the crystalline

response (the set of active slip systems) is then assumed, the corresponding

LLLep
c calculated from (14.6.1), and the constraint tensor AAAc from (14.8.2). To
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ensure that the assumed set of active slip systems is indeed active, the condi-

tion (14.8.2) is verified. If it is not satisfied, a new set of active slip systems

is selected until the correct LLLep
c is found. This calculation is carried out for

all grains and orientations. The results are substituted into (14.8.8) to find

a new estimate for LLLep. The whole procedure is repeated until a satisfactory

convergence is obtained.

The calculation can also proceed by using the tensors of the instanta-

neous compliances MMMep
c and MMMep (assuming that they exist). In this case

we have

BBBc = (MMMep
c +MMMep

∗ )−1 : (MMMep +MMMep
∗ ), (14.8.9)

provided that

Gβ
c : (MMMe

c +MMMep
∗ )−1 : (MMMe +MMMep

∗ ) :
�
τ∞ > 0, β = 1, 2, . . . , n. (14.8.10)

The corresponding constraint tensor MMMep
∗ is related to MMMep via the Eshelby

tensor SSS ep according to

(III − SSS ep) : MMMep
∗ = SSS ep : MMMep. (14.8.11)

The implicit equation for MMMep is thus

MMMep = {MMMep
c : BBBc}, (14.8.12)

i.e.,

MMMep = {MMMep
c : (MMMep

c +MMMep
∗ )−1 : (MMMep +MMMep

∗ )}. (14.8.13)

The calculation again requires an iterative procedure.

The elastic unloading branch can be determined more readily. It is

associated with the pyramidal region defined by the inequalities

Gβ
c : (MMMe

c +MMMe
∗)

−1 : (MMMe +MMMe
∗) :

�
τ∞ < 0, β = 1, 2, . . . , n0, (14.8.14)

for all crystalline orientations. This can be rewritten as

Gβ
c : (III +LLLe

∗ : MMMe
c)

−1 : (III +LLLe
∗ : MMMe) :

�
τ∞ < 0, β = 1, 2, . . . , n0.

(14.8.15)

The constraint tensor MMMe
∗ is related to MMMe by

(III − SSS e) : MMMe
∗ = SSS e : MMMe. (14.8.16)
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The aggregate yield vertex is more or less pronounced depending on whether

the directions

Gβ
c : (III +LLLe

∗ : MMMe
c)

−1 = (III +MMMe
c : LLLe

∗)
−1 : Gβ

c (14.8.17)

span large or small solid angle (Hill, 1965a). The overall elastic polycrys-

talline compliances are determined from

MMMe = {MMMe
c : (MMMe

c +MMMe
∗)

−1 : (MMMe +MMMe
∗)}. (14.8.18)

14.8.1. Kröner–Budiansky–Wu Method

In the original formulation of the self-consistent model of polycrystalline

plasticity, Kröner (1961), and Budiansky and Wu (1962), in effect, suggested

that the constraint tensor of the elastic matrix relates the differences between

the local and overall stress and strain rates, even in the plastic range. Thus,

it is assumed that
�
τc −

�
τ∞ = −LLLe

∗ : (Dc − D∞), (14.8.19)

where
�
τc = LLLep

c : Dc,
�
τ∞ = LLLep : D∞, (14.8.20)

and

LLLe
∗ : SSS e = LLLe : (III − SSS e). (14.8.21)

The tensor LLLe is the overall elastic moduli tensor of the elastoplastic ag-

gregate, and SSS e is the Eshelby tensor corresponding to LLLe. This leads to

concentration tensors

AAAc = (LLLep
c +LLLe

∗)
−1 : (LLLep +LLLe

∗), (14.8.22)

BBBc = (MMMep
c +MMMe

∗)
−1 : (MMMep +MMMe

∗). (14.8.23)

The implicit equations for LLLep and MMMep are, thus,

LLLep = {LLLep
c : (LLLep

c +LLLe
∗)

−1 : (LLLep +LLLe
∗)}, (14.8.24)

MMMep = {MMMep
c : (MMMep

c +MMMe
∗)

−1 : (MMMep +MMMe
∗)}. (14.8.25)
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Figure 14.7. Polycrystalline stress-plastic strain curves
for isotropic aggregate of isotropic ideally-plastic crystals
(from Hutchinson, 1970; with permission from The Royal
Society and the author).

14.8.2. Hutchinson’s Calculations

Hutchinson’s (1970) calculations of tensile stress-strain curves for polycrys-

tals of spherical f.c.c. grains, with randomly oriented crystalline lattice, re-

veal that in the early stages of plastic deformation predictions based on

Hill’s and K.B.W. models are essentially identical, since LLLep
∗ is then approx-

imately equal to LLLe
∗. However, with progression of plastic deformation, the

components of LLLep decrease, and so do the components of LLLep
∗ , while the

components of LLLe
∗ remain constant. Consequently, the matrix constraint

surrounding each grain is considerably weakened in Hill’s model, and the

stress required to produce a given amount of strain is lower in Hill’s than in

K.B.W. model (Fig. 14.7).

Hutchinson also calculated the initial and subsequent polycrystalline

yield surfaces for the tensile deformation of an aggregate of isotropic non-

hardening single crystals. The polycrystalline yield surface develops a corner

after only a very small amount of plastic deformation. Figure 14.8 shows

the traces of the yield surface on the two indicated planes in stress space.

Since microscopic Bauschinger effect was not incorporated into calculations,

the macroscopic Bauschinger type effect apparent in Fig. 14.8 is entirely

due to grain interaction effects. The inclusion of crystal hardening will af-

fect the yield surface evolution. The stronger (latent) hardening on inactive

© 2002 by CRC Press LLC 



Figure 14.8. Evolution of the yield surface during ten-
sile loading of an f.c.c. polycrystal comprised of isotropic
ideally-plastic crystals (from Hutchinson, 1970; with per-
mission from The Royal Society and the author).

than on active slip systems will cause the yield surface to contract less in

the directions in stress space that are normal to the direction of the loading.

The incorporation of the microscopic crystalline Bauschinger effect will cause

the yield surface to contract more in the direction opposite to the loading

direction.

The self-consistent calculations of the evolution of the yield surface were

also performed by Iwakuma and Nemat-Nasser (1984), Berveiller and Zaoui

(1986), Beradai, Berveiller, and Lipinski (1987). The studies of the rate-

dependent polycrystalline response by the self-consistent method were done

by Brown (1970), Hutchinson (1976), Weng (1981, 1982), Lin (1984), Nemat-

Nasser and Obata (1986), Molinari, Canova, and Ahzi (1987), Harren (1989),

Toth and Molinari (1994), Molinari (1997), Molinari, Ahzi, and Koddane

(1997), Masson and Zaoui (1999), and others.

14.8.3. Berveiller and Zaoui Accommodation Function

The elastic moduli of the crystal and the aggregate are assumed to be iden-

tical in the K.B.W. model, both being given by the isotropic stiffness tensor

LLLe = 2μJJJ +3κKKK . Thus, in the case of spherical grain, the constraint tensor

is

LLLe
∗ = 2μ

[(
1
α
− 1

)
JJJ + 2KKK

]
, (14.8.26)
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and Eq. (14.8.19) becomes

�
τc −

�
τ∞ = −2μ

(
1
α
− 1

)
(Dc − D∞) , α =

6(κ + 2μ)
5(3κ + 4μ)

. (14.8.27)

In an attempt to better represent the grain interaction and the matrix con-

straint, Berveiller and Zaoui (1979) suggested that the constraint tensor LLLe
∗

in the K.B.W. model should be replaced by the constrained tensor corre-

sponding to the elastoplastic stiffness of the polycrystal, which is approxi-

mated by an isotropic fourth-order tensor

LLLep = 2μt JJJ + 3κKKK , (14.8.28)

where μt is the tangent shear modulus of the polycrystal at the considered

instant of elastoplastic deformation. For isochoric plastic deformation, κt =

κ. Thus, Eq. (14.8.26) is replaced with

LLLep
∗ = 2μt

[(
1
αt

− 1
)

JJJ + 2KKK
]
, αt =

6(κ + 2μt)
5(3κ + 4μt)

, (14.8.29)

and Eq. (14.8.27) with

�
τc −

�
τ∞ = −2μt

(
1
αt

− 1
)

(Dc − D∞) . (14.8.30)

If the elastoplastic partitions

Dc = Dp
c +

1
2μ

�
τc , D∞ = Dp

∞ +
1
2μ

�
τ∞ (14.8.31)

are substituted into Eq. (14.8.30), there follows

�
τc −

�
τ∞ = −2ϕμ (1 − α)(Dp

c − Dp
∞) . (14.8.32)

The parameter

ϕ =
1 − αt

1 − α

μt

αtμ + (1 − αt)μt
(14.8.33)

is the so-called plastic accommodation function. The predicted stress strain

curve falls between Hill’s and K.B.W. curve in Fig. 14.7. When μt = μ, it

follows that αt = α and ϕ = 1, so that Eq. (14.8.33) reduces to the original

expression of the K.B.W. method.

14.8.4. Lin’s Model

In an extension of Taylor’s rigid-plastic model, Lin (1957) assumed that all

grains in a polycrystalline aggregate deform equally (Dc = D∞), even when
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elastic strains are not negligible. Thus, the concentration tensor is in this

case AAAc = III , and Eq. (14.8.7) becomes

LLLep = {LLLep
c }. (14.8.34)

The prediction of the tensile stress-plastic strain curve from Lin’s model

is shown in Fig. 14.7. See also Hutchinson (1964a,b), Lin and Ito (1965,

1966), and Lin (1971). If the stresses in all grains are assumed to be equal,

the tensor of the macroscopic aggregate compliances is

MMMep = {MMMep
c }. (14.8.35)

14.8.5. Rigid-Plastic Moduli

The rigid-plastic polycrystalline aggregates can be treated by considering the

rigid-plastic crystals embedded in a rigid-plastic matrix. Suppose that all

crystals deform by single slip, of different orientations in different grains. By

averaging Eq. (14.7.47) we obtain an implicit equation for the compliances

MMMp,

PPP = { η Gc ⊗ Gc

bc + Gc : LLLp
∗ : Gc

}. (14.8.36)

This was derived from {AAAc} = III , and the fact that PPP = SSSp : MMMp is indepen-

dent of the orientation of the crystalline lattice. The parameter η is equal

to 1 or 0, depending on whether Gc :
�
σ∞ is positive or negative.

If the slip mode Gc is the same for all grains, then, for compatibility,

the rate of deformation is necessarily uniform throughout the aggregate, so

that
D∞ = Dc, G = Gc. (14.8.37)

Recalling that for the rigid-plastic response

bcDc = (Gc ⊗ Gc) :
�
σc, bD∞ = (G ⊗ G)

�
σ∞, (14.8.38)

and since {�σc} =
�
σ∞, the averaging of Eq. (14.8.38) gives

b = { bc}. (14.8.39)

Thus, in this particular case, the polycrystalline hardening rate is the average

of the hardening rates in the individual crystals (Hill, 1965a).
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14.9. Development of Crystallographic Texture

The formation of crystallographic texture is an important cause of anisotropy

in polycrystalline materials. The texture has effects on macroscopic yield

surface, the strain hardening characteristics (textural strengthening or soft-

ening effects), and may significantly affect the onset and the development

of the localized modes of deformation. Some basic aspects of the texture

analysis are discussed in this section. We restrict the consideration to crys-

tallographic texture, although the development of morphological texture,

due to the shape changes of the crystalline grains, may also be an important

cause of the overall polycrystalline anisotropy at large strains.

In his treatment of axisymmetric tension of f.c.c. polycrystals, Taylor

(1938a) observed that the crystallographic orientations of the grains in an

initially isotropic aggregate tend toward the orientations with either (111)

or (100) direction parallel to the direction of extension. His analysis was

based on the rigid-plastic model considered in Section 14.1. The material

spin tensor Wc in each grain is caused by the lattice spin W∗
c and by the

slip induced spin, such that

Wc = W∗
c +

12∑
α=1

Qα
c γ̇α. (14.9.1)

The components of the slip induced spin,

ΩΩΩc =
12∑

α=1

Qα
c γ̇α =

12∑
α=1

1
2

(sα ⊗ mα − mα ⊗ sα) γ̇α, (14.9.2)

expressed on the cubic axes, are

2
√

6 Ωc
12 = a1 + a2 − 2a3 + b1 + b2 − 2b3 − c1 − c2 + 2c3 − d1 − d2 + 2d3,

(14.9.3)

2
√

6 Ωc
23 = −2a1 + a2 + a3 + 2b1 − b2 − b3 − 2c1 + c2 + c3 + 2d1 − d2 − d3,

(14.9.4)

2
√

6 Ωc
31 = a1 − 2a2 + a3 − b1 + 2b2 − b3 − c1 + 2c2 − c3 + d1 − 2d2 + d3.

(14.9.5)

The slip rates in the respective positive slip directions (see Table 14.1) are

designated by ai, bi, ci, di (i = 1, 2, 3).
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Figure 14.9. Taylor’s prediction of the rotation of the
specimen axis relative to the lattice axes of differently ori-
ented grains in a polycrystalline aggregate at an extension
of 2.37% (from Taylor, 1938b; with permission from the In-
stitute for Materials).

According to Taylor’s isostrain assumption, all grains are equally de-

formed, so that

Dc = D∞, Wc = W∞ = 0. (14.9.6)

For a prescribed D∞, a set of five independent slip rates can be found in

each grain that is geometrically equivalent to this strain, and meets Taylor’s

minimum shear principle (min
∑

α |dγα|). The corresponding lattice spin in

the grain is then

W∗
c = −

5∑
α=1

Qα
c γ̇α. (14.9.7)

Since more than one set of five slip rates can be geometrically admissible

and meet the minimum shear principle, the lattice spin W∗
c is not necessar-

ily uniquely determined in this model. Taylor plotted incremental rotation

of the specimen axis relative to the lattice axes for selected 44 initial grain

orientations in a polycrystalline bar extended 2.37%. The directions and

relative magnitudes of the rotations are shown in Fig. 14.9. The angles φ

and θ are defined in Fig. 14.10. Although the calculations were confined
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Figure 14.10. Definition of the angles φ and θ used in
Fig. 14.9. The angles specify the orientation of the axis of
specimen extension relative to local crystalline axes.

to a neighborhood of the initial yield, the initial trends of lattice rotations

indicate a tendency toward a (111) − (100) texture development, as exper-

imentally observed in stretched f.c.c. polycrystalline specimens. Since two

different sets of five slips were geometrically equivalent and met the mini-

mum shear principle for many of the initial grain orientations, two arrows

emanate from the points corresponding to such orientations. For example,

in the region EC either the set of five slips designated by E or C can oc-

cur. The angle between the two arrows then indicates the range of possible

rotations of the specimen axis relative to the crystal axes.

Taylor’s analysis motivated further experimental and theoretical stud-

ies of the texture in metal polycrystals. Bishop (1954) found an even more

pronounced nonuniqueness of initial lattice rotations in the uniaxial compres-

sion of f.c.c. polycrystals. Chin and Mammel (1967) performed calculations

for axisymmetric deformation of b.c.c. polycrystalline specimens. A sig-

nificant amount of research was done to extend Taylor’s analysis to large

deformations. An early incremental application of Taylor’s model to predict

the evolving texture was presented by Kallend and Davies (1972), in the

case of the plane strain idealization of cold rolling. Dillamore, Roberts and

Bush (1979) examined the texture evolution in heavily rolled cubic metals
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in which shear bands become a dominant deformation mode. A method of

the relaxed constraints was proposed by Honneff and Mecking (1978), and

further developed by Canova, Kocks, and Jonas (1984), which includes the

effects of the grain morphology and the changes in grain shape at large defor-

mation. See also Van Houtte (1991). The texture evolution in plane strain

compression and simple shear in the f.c.c. and h.c.p. aggregates was studied

by finite elements and orientation distribution schemes by Prantil, Jenkins,

and Dawson (1994), and Dawson and Kumar (1997). The calculations based

on the self-consistent model were performed by Berveiller and Zaoui (1979,

1986), Molinari, Canova, and Ahzi (1987), Lipinski, Naddari, and Berveiller

(1992), and Toth and Molinari (1994). The book by Yang and Lee (1993),

and the reviews by Zaoui (1987) and Molinari (1997) can be consulted for ad-

ditional references. Other aspects of the texture development are discussed

in Gottstein and Lücke (1978), Bunge (1982, 1988), and Bunge and Nielsen

(1997).

A large amount of research was devoted to deal with the nonuniqueness

of lattice rotations due to the nonuniqueness of slip rates, and the result-

ing consequences on the texture predictions. Chin (1969) proposed that the

operative set of slip rates is one with the maximum amount of the cross

slip. Bunge (1970) used the average slips of all sets of admissible slip sys-

tems having the same minimum plastic work. Gil-Sevillano, Van Houtte,

and Aernoudt (1975) selected the average of all admissible rotations in their

calculations of texture, or randomly chose a set of slip rates from all ad-

missible sets (Gil-Sevillano, Van Houtte, and Aernoudt, 1980). Lin and

Havner (1994) adopted a minimum plastic spin postulate, introduced by

Fuh and Havner (1989), according to which the operative set of slip rates

minimizes the magnitude of the spin vector, associated with the compo-

nents (14.9.3)–(14.9.5). The latter work provides a comprehensive analysis

of the texture formation and the evolution of the macroscopic yield surface

for f.c.c. polycrystalline metals in axisymmetric tension and compression,

up to large strains. Taylor’s model was incrementally used. In addition to

Taylor’s isotropic hardening, three other hardening rules were incorporated,

accounting for the latent hardening on slip systems. The texture evolution

in tension up to logarithmic strain eL = 1.61 is depicted in Fig. 14.12. The
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Figure 14.11. The initial distribution of the loading axis
on the inverse pole figure, which is a [001] stereographic pro-
jection of the triangle [001][011][1̄11] (from Lin and Havner,
1994; with permission from Elsevier Science).

distribution of the initial grain orientation is shown in Fig. 14.11. A compar-

ative study of the hardening theories in torsion is given by Lin and Havner

(1996). See also Wu, Neale, and Van der Giessen (1996).

Another approach used to resolve the nonuniqueness of lattice rotations,

is to adopt a rate-dependent model of the crystallographic slip, in which the

nonuniqueness of slip rates is eliminated altogether. This makes the lattice

rotations and texture predictions unique. Using such an approach, Asaro

and Needleman (1985) determined the texture evolution for the uniaxial and

plane strain tensile and compressive loadings. Taylor’s isostrain assumption,

with the included elastic component of strain, was used in the large strain

formulation of the model. Harren, Lowe, Asaro, and Needleman (1989) gave

a comprehensive analysis of the shearing texture, with the stereographic

pole and inverse pole figures corresponding to textures at various levels of

finite shear strain. Anand and Kothari (1996) devised an iterative numer-

ical procedure and a recipe based on the singular value decomposition to

determine the unique set of active slip systems and slip increments in a rate-

independent theory. The calculated stress-strain curves and the evolution of

the crystallographic texture in simple compression were essentially indistin-

guishable from the corresponding calculations for a rate-dependent model

(with a low value of the rate-sensitivity parameter), previously reported by
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Figure 14.12. Inverse pole figures in tension for Taylor’s
hardening and Bunge’s average slip method at the logarith-
mic strain levels of: (a) 0.23, (b) 0.69, (c) 1.15, and (d) 1.61
(from Lin and Havner, 1994; with permission from Elsevier
Science).

Bronkhorst, Kalindini, and Anand (1992). They employed finite element

calculations, as well as calculations based on Taylor’s assumption of uniform

deformation within each grain. The texture evolution in the aggregates of

elastic-viscoplastic crystals with the low symmetry crystal lattices, lacking

five independent slip systems, was studied by Parks and Ahzi (1990), Lee,

Ahzi, and Asaro (1995), and Schoenfeld, Ahzi, and Asaro (1995). Further

detailed analysis of various aspects of texture development can be found in

a recent treatise by Kocks, Tomé, and Wenk (1998).

14.10. Grain Size Effects

The experimental evidence and the dislocation based models indicate that

the macroscopic stress-strain response of a polycrystalline aggregate depends
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on the polycrystalline grain size. The well-known Hall–Petch relationship

expresses the tensile yield stress of an aggregate, at a given amount of strain,

as

σ = σ0 + k l−1/2, (14.10.1)

where l is the average grain size (Fig. 14.13), and σ0 and k are the appropri-

ate constants (Hall, 1951; Petch, 1953). The constant k may be viewed as a

measure of the average grain boundary resistance to slip propagation across

the boundaries of differently oriented grains. Hall and Petch attributed the

l−1/2 dependence to stress acting on a dislocation pileup at the grain bound-

ary. From an analytical solution derived by Eshelby, Frank, and Nabarro

(1951), the stress exerted on the pinned dislocation at the boundary is equal

to τpin = n τ , where τ is the applied shear stress on the pileup of n dislo-

cations. For large n, the length of the pileup approaches l = k0 n/τ , where

k0 = μb/π(1 − ν) (b is the Burgers vector of edge dislocations in isotropic

medium with the shear modulus μ and Poisson’s ratio ν). By assuming that

the length of the pileup is equal to the grain size, and by requiring that τpin is

equal to the critical stress τ∗ necessary to propagate the plastic deformation

across the boundary, the Hall–Petch relation follows

τ = τ0 + (k0τ∗)1/2 l−1/2, (14.10.2)

where τ0 is the lattice friction stress. An alternative explanation of the l−1/2

dependence is based on the measured dislocation density, which was found

to be inversely proportional to the grain size, at a given amount of strain. If

the flow stress increases in proportion to the square-root of the dislocation

density, as suggested by Taylor’s (1934) early dislocation model of strain

hardening, the Hall–Petch relationship is again obtained.

Other micromechanical models were constructed to support the Hall–

Petch relationship. Ashby (1970) suggested that geometrically necessary

dislocations are generated in the vicinity of grain boundaries of the differ-

ently oriented grains, in order for them to fit together upon deformation

under the applied stress. The density of these dislocations scales with the

average strain in the grain divided by the grain size. Thus, the elevation

in the yield stress scales with l−1/2. Meyers and Ashworth (1982) proposed
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Figure 14.13. The yield stress σ of a polycrystalline ag-
gregate as a function of the average grain size l, according
to Hall–Petch inverse square-root relation.

that the grain size dependence of the yield stress is due to elastic incompati-

bility stresses at the grain boundaries. A work-hardened layer in the vicinity

of grain boundaries, created by a network of geometrically necessary dislo-

cations, acts as a reinforcement which elevates the yield stress. Modeling of

the formation of organized dislocation structures by Lubarda, Blume, and

Needleman (1993) can be employed to further study the microscopic struc-

tures causing the grain size effects. Related work includes Aifantis (1995),

Van der Giessen and Needleman (1995), and Zbib, Rhee, and Hirth (1997).

The polycrystalline constitutive models considered in the previous sec-

tions of this chapter are unable to predict any grain size effect on the macro-

scopic response, because they were derived by the averaging schemes from

the single crystal constitutive equations, which did not involve any length

scale in their structure. In an approach toward a theoretical evaluation of

the grain size effect on the overall behavior of polycrystals, Smyshlyaev and
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Fleck (1996), and Shu and Fleck (1999) employed the strain gradient crystal

plasticity theory of Fleck and Hutchinson (1997). The first-order gradients

of the slip rates were included in this formulation. Since the nonlocal con-

tinuum theories are not considered in this book, we refer for the details of

this approach to cited papers, and to Dillon and Kratochvil (1970), Zbib and

Aifantis (1992), and Ning and Aifantis (1996a,b).

In the remainder of this section, we proceed in a simpler manner by

partially addressing the grain size effects as follows. According to Armstrong,

Codd, Douthwaite, and Petch (1962), and Armstrong (1970), it is assumed

that the critical resolved shear stress of a single crystalline grain embedded

in the surrounding polycrystal (effective medium) is grain size dependent,

such that for an α slip system, at a given state of deformation,

ταcr = (ταcr)
∞ + kαc l−1/2. (14.10.3)

Here, (ταcr)
∞ is the critical resolved shear stress in a free crystal (or in an

infinite size crystal). The constant kαc (c stands for the crystal) reflects the

fact that, when the grain is within a polycrystalline aggregate, dislocations

arriving at the grain boundary cannot freely cross the boundary. This el-

evates the slip resistance and the required shear stress on the slip system.

More generally, a hardening rule for the rate of the critical resolved shear

stress could be specified, by extending (12.9.1), as

τ̇αcr =
n0∑
β=1

(
hαβ + cαβ l

−1/2
)
γ̇β , α = 1, 2, . . . , N. (14.10.4)

If Eq. (14.10.3) is adopted, the objective is to deduce the polycrystalline

aggregate yield stress, for a given distribution of lattice orientations among

the grains. A self-consistent calculation was presented by Weng (1983). We

here employ a less involved analysis, based on Taylor’s model of equal strain

in all grains. Assuming that all slip systems within a grain harden equally,

we write

(ταcr)
∞ = τ∞cr , kαc = kc, (14.10.5)

regardless of how much slip actually occurred on a particular slip system.

From Eq. (14.1.16), the average values τ̄∞cr and k̄ for the aggregate are
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defined such that

{
(
τ∞cr + kc l

−1/2
)

min
∑
α

|γ̇α| } =
(
τ̄∞cr + k̄ l−1/2

)
{min

∑
α

|γ̇α| } .
(14.10.6)

In each grain it is assumed that

τ∞cr = f

(∫
min

∑
α

|dγα|
)
, kc = g

(∫
min

∑
α

|dγα|
)
, (14.10.7)

and for the averages over all grains

τ̄∞cr = f(γ̄) , k̄ = g(γ̄) , γ̄ =
∫
{min

∑
α

|dγα| } . (14.10.8)

Thus, extending Eq. (14.1.20), we have

σ = m τ̄cr = m
(
τ̄∞cr + k̄ l−1/2

)
= m

[
f(γ̄) + g(γ̄) l−1/2

]
, (14.10.9)

i.e.,

σ = m

[
f

(∫
mde

)
+ g

(∫
mde

)
l−1/2

]
, (14.10.10)

since

γ̄ =
∫

{min
∑
α

|dγα| } =
∫

mde . (14.10.11)

Consequently, the Hall–Petch relation

σ = σ0 + k l−1/2, (14.10.12)

with

σ0 = mf

(∫
mde

)
, k = mg

(∫
mde

)
. (14.10.13)

As discussed earlier, the Taylor orientation factor m changes with the pro-

gression of deformation due to lattice rotation. For an initial random dis-

tribution of f.c.c. lattice orientation, m = 3.06, while for the random b.c.c.

lattice orientation, m = 2.83.
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Kröner, E. (1961), Zur plastichen Verformung des Vielkristalls, Acta Metall.,

Vol. 9, pp. 155–161.

Lee, B. J., Ahzi, S., and Asaro, R. J. (1995), On the plasticity of low symme-

try crystals lacking five independent slip systems, Mech. Mater., Vol.

20, pp. 1–8.

Lin, G. and Havner, K. S. (1994), On the evolution of texture and yield loci

in axisymmetric deformation of f.c.c. polycrystals, Int. J. Plasticity,

Vol. 10, pp. 471–498.

Lin, G. and Havner, K. S. (1996), A comparative study of hardening theories

in torsion using the Taylor polycrystal model, Int. J. Plasticity, Vol.

12, pp. 695–718.

Lin, T. H. (1957), Analysis of elastic and plastic strains of a face-centred

cubic crystal, J. Mech. Phys. Solids, Vol. 5, pp. 143–149.

Lin, T. H. (1971), Physical theory of plasticity, Adv. Appl. Mech., Vol. 11,

pp. 255–311.

© 2002 by CRC Press LLC 



Lin, T. H. and Ito, Y. M. (1965), Theoretical plastic distortion of a polycrys-

talline aggregate under combined and reversed stresses, J. Mech. Phys.

Solids, Vol. 13, pp. 103–115.

Lin, T. H. and Ito, Y. M. (1966), Theoretical plastic stress-strain relation-

ships of a polycrystal and comparison with von Mises’ and Tresca’s

plasticity theories, Int. J. Engng. Sci., Vol. 4, pp. 543–561.

Lipinski, P. and Berveiller, M. (1989), Elastoplasticity of micro-inhomogene-

ous metals at large strains, Int. J. Plasticity, Vol. 5, pp. 149–172.

Lipinski, P., Naddari, A., and Berveiller, M. (1992), Recent results concern-

ing the modelling of polycrystalline plasticity at large strains, Int. J.

Solids Struct., Vol. 29, pp. 1873–1881.

Lubarda, V. A. (1997), New estimates of the third-order elastic constants

for isotropic aggregates of cubic crystals, J. Mech. Phys. Solids, Vol.

45, pp. 471–490.

Lubarda, V. A. (1998), A note on the effective Lamé constants of poly-
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